]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-mips.c
MIPS/BFD: Update outdated comment about o32 R_MIPS_PC32 reloc support
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
134c0c8b 1020 beq reg1, reg2, label
4a6a3df4
AO
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
40209cad
MR
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160#define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
df58fc94
RS
1171#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
40209cad
MR
1174#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176#define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
df58fc94 1185
43c0598f
RS
1186/* Sign-extend 16-bit value X. */
1187#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
885add95
CD
1189/* Is the given value a sign-extended 32-bit value? */
1190#define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194/* Is the given value a sign-extended 16-bit value? */
1195#define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
df58fc94
RS
1199/* Is the given value a sign-extended 12-bit value? */
1200#define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
7f3c4072
CM
1203/* Is the given value a sign-extended 9-bit value? */
1204#define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
2051e8c4
MR
1207/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208#define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
bf12938e
RS
1212/* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
bf12938e 1217/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1218#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1223#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
5c04167a
RS
1227
1228/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1230\f
df58fc94
RS
1231/* Whether or not we are emitting a branch-likely macro. */
1232static bfd_boolean emit_branch_likely_macro = FALSE;
1233
4d7206a2
RS
1234/* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253} mips_relax;
252b5132 1254\f
584892a6
RS
1255/* Global variables used to decide whether a macro needs a warning. */
1256static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
df58fc94
RS
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
584892a6
RS
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
df58fc94
RS
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
584892a6
RS
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289} mips_macro_warning;
1290\f
252b5132
RH
1291/* Prototypes for static functions. */
1292
252b5132
RH
1293enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
b34976b6 1295static void append_insn
df58fc94
RS
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
7d10b47d 1298static void mips_no_prev_insn (void);
c67a084a 1299static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1300static void mips16_macro_build
03ea81db 1301 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1302static void load_register (int, expressionS *, int);
584892a6
RS
1303static void macro_start (void);
1304static void macro_end (void);
833794fc 1305static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1306static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1307static void mips_ip (char *str, struct mips_cl_insn * ip);
1308static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1309static void mips16_immed
3b4dbbbf 1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1311 unsigned int, unsigned long *);
5e0116d5 1312static size_t my_getSmallExpression
17a2f251
TS
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314static void my_getExpression (expressionS *, char *);
1315static void s_align (int);
1316static void s_change_sec (int);
1317static void s_change_section (int);
1318static void s_cons (int);
1319static void s_float_cons (int);
1320static void s_mips_globl (int);
1321static void s_option (int);
1322static void s_mipsset (int);
1323static void s_abicalls (int);
1324static void s_cpload (int);
1325static void s_cpsetup (int);
1326static void s_cplocal (int);
1327static void s_cprestore (int);
1328static void s_cpreturn (int);
741d6ea8
JM
1329static void s_dtprelword (int);
1330static void s_dtpreldword (int);
d0f13682
CLT
1331static void s_tprelword (int);
1332static void s_tpreldword (int);
17a2f251
TS
1333static void s_gpvalue (int);
1334static void s_gpword (int);
1335static void s_gpdword (int);
a3f278e2 1336static void s_ehword (int);
17a2f251
TS
1337static void s_cpadd (int);
1338static void s_insn (int);
ba92f887 1339static void s_nan (int);
919731af 1340static void s_module (int);
17a2f251
TS
1341static void s_mips_ent (int);
1342static void s_mips_end (int);
1343static void s_mips_frame (int);
1344static void s_mips_mask (int reg_type);
1345static void s_mips_stab (int);
1346static void s_mips_weakext (int);
1347static void s_mips_file (int);
1348static void s_mips_loc (int);
1349static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1350static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1351static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1353static void file_mips_check_options (void);
e7af610e
NC
1354
1355/* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
e972090a
NC
1358struct mips_cpu_info
1359{
e7af610e 1360 const char *name; /* CPU or ISA name. */
d16afab6
RS
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365};
1366
ad3fea08 1367#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1368
17a2f251
TS
1369static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1372\f
c31f3936
RS
1373/* Command-line options. */
1374const char *md_shortopts = "O::g::G:";
1375
1376enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
ae52f483
AB
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
7361da2c 1390 OPTION_MIPS32R6,
c31f3936 1391 OPTION_MIPS64R2,
ae52f483
AB
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
7361da2c 1394 OPTION_MIPS64R6,
c31f3936
RS
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
56d438b1
CF
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
c31f3936
RS
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
8f4f9071
MF
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
c31f3936
RS
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
7d64c587
AB
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
c31f3936
RS
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
a8d14a88
CM
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
c31f3936
RS
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
351cdf24 1457 OPTION_FPXX,
c31f3936
RS
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
c31f3936
RS
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
c31f3936
RS
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
ba92f887 1484 OPTION_NAN,
351cdf24
MF
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
c31f3936
RS
1487 OPTION_END_OF_ENUM
1488 };
1489
1490struct option md_longopts[] =
1491{
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
c31f3936
RS
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1619 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1620
1621 {NULL, no_argument, NULL, 0}
1622};
1623size_t md_longopts_size = sizeof (md_longopts);
1624\f
c6278170
RS
1625/* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628struct mips_ase
1629{
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
7361da2c
AB
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
c6278170
RS
1656};
1657
1658/* A table of all supported ASEs. */
1659static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1662 2, 2, 2, 2,
1663 -1 },
c6278170
RS
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1667 2, 2, 2, 2,
1668 -1 },
c6278170 1669
8f4f9071
MF
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
c6278170
RS
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1677 2, 2, 2, 2,
1678 -1 },
c6278170
RS
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1682 2, 2, 2, 2,
1683 -1 },
c6278170
RS
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1688 -1, 1, -1, -1,
1689 6 },
c6278170
RS
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1694 2, 1, -1, -1,
1695 6 },
c6278170
RS
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1699 2, 2, -1, -1,
1700 -1 },
c6278170
RS
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1704 1, -1, -1, -1,
1705 6 },
c6278170
RS
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1709 2, 2, 2, 2,
1710 -1 },
56d438b1
CF
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1714 2, 2, 2, 2,
1715 -1 },
7d64c587
AB
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1719 2, 2, -1, -1,
1720 -1 },
c6278170
RS
1721};
1722
1723/* The set of ASEs that require -mfp64. */
82bda27b 1724#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1725
1726/* Groups of ASE_* flags that represent different revisions of an ASE. */
1727static const unsigned int mips_ase_groups[] = {
8f4f9071 1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1729};
1730\f
252b5132
RH
1731/* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
d84bcf09 1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1747
e972090a
NC
1748static const pseudo_typeS mips_pseudo_table[] =
1749{
beae10d5 1750 /* MIPS specific pseudo-ops. */
252b5132
RH
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
6478892d
TS
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
252b5132 1760 {"cprestore", s_cprestore, 0},
6478892d 1761 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
6478892d 1766 {"gpvalue", s_gpvalue, 0},
252b5132 1767 {"gpword", s_gpword, 0},
10181a0d 1768 {"gpdword", s_gpdword, 0},
a3f278e2 1769 {"ehword", s_ehword, 0},
252b5132
RH
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
ba92f887 1772 {"nan", s_nan, 0},
919731af 1773 {"module", s_module, 0},
252b5132 1774
beae10d5 1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1776 chips. */
38a57ae7 1777 {"asciiz", stringer, 8 + 1},
252b5132
RH
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
252b5132 1785
998b3c36
MR
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
beae10d5 1789 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
cca86cc8 1803 {"section", s_change_section, 0},
252b5132
RH
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
754e2bb9 1806 {"stabd", s_mips_stab, 'd'},
252b5132 1807 {"stabn", s_mips_stab, 'n'},
754e2bb9 1808 {"stabs", s_mips_stab, 's'},
252b5132
RH
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
add56521 1811
add56521 1812 { "extern", ecoff_directive_extern, 0},
add56521 1813
43841e91 1814 { NULL, NULL, 0 },
252b5132
RH
1815};
1816
e972090a
NC
1817static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818{
beae10d5
KH
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
c5dd6aab 1826 {"file", s_mips_file, 0},
252b5132
RH
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
c5dd6aab 1829 {"loc", s_mips_loc, 0},
252b5132
RH
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
43841e91 1832 { NULL, NULL, 0 },
252b5132
RH
1833};
1834
3ae8dd8d
MR
1835/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838int
1839mips_address_bytes (void)
1840{
919731af 1841 file_mips_check_options ();
3ae8dd8d
MR
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843}
1844
17a2f251 1845extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1846
1847void
17a2f251 1848mips_pop_insert (void)
252b5132
RH
1849{
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853}
1854\f
1855/* Symbols labelling the current insn. */
1856
e972090a
NC
1857struct insn_label_list
1858{
252b5132
RH
1859 struct insn_label_list *next;
1860 symbolS *label;
1861};
1862
252b5132 1863static struct insn_label_list *free_insn_labels;
742a56fe 1864#define label_list tc_segment_info_data.labels
252b5132 1865
17a2f251 1866static void mips_clear_insn_labels (void);
df58fc94
RS
1867static void mips_mark_labels (void);
1868static void mips_compressed_mark_labels (void);
252b5132
RH
1869
1870static inline void
17a2f251 1871mips_clear_insn_labels (void)
252b5132 1872{
ed9e98c2 1873 struct insn_label_list **pl;
a8dbcb85 1874 segment_info_type *si;
252b5132 1875
a8dbcb85
TS
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
3739860c 1880
a8dbcb85
TS
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
252b5132 1885}
a8dbcb85 1886
df58fc94
RS
1887/* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889static inline void
1890mips_mark_labels (void)
1891{
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894}
252b5132
RH
1895\f
1896static char *expr_end;
1897
e423441d 1898/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1899 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1900
1901static expressionS imm_expr;
252b5132 1902
77bd4346
RS
1903/* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
252b5132 1907
77bd4346 1908static expressionS offset_expr;
f6688943
TS
1909static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1911
df58fc94
RS
1912/* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
252b5132 1915
df58fc94 1916static unsigned int forced_insn_length;
252b5132 1917
e1b47bd5
RS
1918/* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921static bfd_boolean mips_assembling_insn;
1922
ecb4347a
DJ
1923/* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
252b5132
RH
1925
1926static segT pdr_seg;
252b5132 1927
e013f690
TS
1928/* The default target format to use. */
1929
aeffff67
RS
1930#if defined (TE_FreeBSD)
1931#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932#elif defined (TE_TMIPS)
1933#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934#else
1935#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936#endif
1937
e013f690 1938const char *
17a2f251 1939mips_target_format (void)
e013f690
TS
1940{
1941 switch (OUTPUT_FLAVOR)
1942 {
e013f690 1943 case bfd_target_elf_flavour:
0a44bf69
RS
1944#ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949#endif
e013f690 1950 return (target_big_endian
cfe86eaa 1951 ? (HAVE_64BIT_OBJECTS
aeffff67 1952 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1953 : (HAVE_NEWABI
aeffff67
RS
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1956 : (HAVE_64BIT_OBJECTS
aeffff67 1957 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1958 : (HAVE_NEWABI
aeffff67
RS
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965}
1966
c6278170
RS
1967/* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970static int
1971mips_isa_rev (void)
1972{
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
ae52f483
AB
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
7361da2c
AB
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
c6278170
RS
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993}
1994
1995/* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997static unsigned int
1998mips_ase_mask (unsigned int flags)
1999{
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006}
2007
2008/* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011static void
2012mips_check_isa_supports_ase (const struct mips_ase *ase)
2013{
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
1661c76c 2030 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2031 " `%s' extension"), size, base, ase->name);
2032 else
1661c76c 2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2034 ase->name, base, size, min_rev);
2035 }
7361da2c
AB
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
c6278170 2046 if ((ase->flags & FP64_ASES)
0b35dfee 2047 && mips_opts.fp != 64
c6278170
RS
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
1661c76c 2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2052 }
2053}
2054
2055/* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058static void
2059mips_check_isa_supports_ases (void)
2060{
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069}
2070
2071/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074static unsigned int
919731af 2075mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
c6278170
RS
2077{
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
919731af 2081 opts->ase &= ~mask;
c6278170 2082 if (enabled_p)
919731af 2083 opts->ase |= ase->flags;
c6278170
RS
2084 return mask;
2085}
2086
2087/* Return the ASE called NAME, or null if none. */
2088
2089static const struct mips_ase *
2090mips_lookup_ase (const char *name)
2091{
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098}
2099
df58fc94 2100/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
df58fc94
RS
2103
2104static inline unsigned int
2105micromips_insn_length (const struct mips_opcode *mo)
2106{
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108}
2109
5c04167a
RS
2110/* Return the length of MIPS16 instruction OPCODE. */
2111
2112static inline unsigned int
2113mips16_opcode_length (unsigned long opcode)
2114{
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116}
2117
1e915849
RS
2118/* Return the length of instruction INSN. */
2119
2120static inline unsigned int
2121insn_length (const struct mips_cl_insn *insn)
2122{
df58fc94
RS
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
5c04167a 2126 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2127 else
1e915849 2128 return 4;
1e915849
RS
2129}
2130
2131/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133static void
2134create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135{
2136 size_t i;
2137
2138 insn->insn_mo = mo;
1e915849
RS
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
15be625d 2147 insn->complete_p = 0;
e407c74b 2148 insn->cleared_p = 0;
1e915849
RS
2149}
2150
fc76e730
RS
2151/* Get a list of all the operands in INSN. */
2152
2153static const struct mips_operand_array *
2154insn_operands (const struct mips_cl_insn *insn)
2155{
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169}
2170
2171/* Get a description of operand OPNO of INSN. */
2172
2173static const struct mips_operand *
2174insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175{
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182}
2183
e077a1c8
RS
2184/* Install UVAL as the value of OPERAND in INSN. */
2185
2186static inline void
2187insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189{
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191}
2192
fc76e730
RS
2193/* Extract the value of OPERAND from INSN. */
2194
2195static inline unsigned
2196insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198{
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200}
2201
df58fc94 2202/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2203
2204static void
df58fc94 2205mips_record_compressed_mode (void)
742a56fe
RS
2206{
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2214}
2215
4d68580a
RS
2216/* Read a standard MIPS instruction from BUF. */
2217
2218static unsigned long
2219read_insn (char *buf)
2220{
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225}
2226
2227/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230static char *
2231write_insn (char *buf, unsigned int insn)
2232{
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235}
2236
2237/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240static unsigned long
2241read_compressed_insn (char *buf, unsigned int length)
2242{
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257}
2258
5c04167a
RS
2259/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262static char *
2263write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264{
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270}
2271
1e915849
RS
2272/* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274static void
2275install_insn (const struct mips_cl_insn *insn)
2276{
2277 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2280 else
4d68580a 2281 write_insn (f, insn->insn_opcode);
df58fc94 2282 mips_record_compressed_mode ();
1e915849
RS
2283}
2284
2285/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288static void
2289move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290{
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302}
2303
2304/* Add INSN to the end of the output. */
2305
2306static void
2307add_fixed_insn (struct mips_cl_insn *insn)
2308{
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311}
2312
2313/* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316static void
2317add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319{
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325}
2326
2327/* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330static void
2331insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333{
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344}
2345
e3de51ce
RS
2346/* Clear the error in insn_error. */
2347
2348static void
2349clear_insn_error (void)
2350{
2351 memset (&insn_error, 0, sizeof (insn_error));
2352}
2353
2354/* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360static bfd_boolean
2361set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363{
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393}
2394
2395/* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398static void
2399set_insn_error (int argnum, const char *msg)
2400{
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402}
2403
2404/* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407static void
2408set_insn_error_i (int argnum, const char *msg, int i)
2409{
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412}
2413
2414/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417static void
2418set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419{
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425}
2426
2427/* Report the error in insn_error, which is against assembly code STR. */
2428
2429static void
2430report_insn_error (const char *str)
2431{
e1fa0163 2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2433
e3de51ce
RS
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
e1fa0163
NC
2448
2449 free ((char *) msg);
e3de51ce
RS
2450}
2451
71400594
RS
2452/* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456static void
2457init_vr4120_conflicts (void)
2458{
2459#define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493#undef CONFLICT
2494}
2495
707bfff6
TS
2496struct regname {
2497 const char *name;
2498 unsigned int num;
2499};
2500
14daeee3 2501#define RNUM_MASK 0x00000ff
56d438b1 2502#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2503#define RTYPE_NUM 0x0000100
2504#define RTYPE_FPU 0x0000200
2505#define RTYPE_FCC 0x0000400
2506#define RTYPE_VEC 0x0000800
2507#define RTYPE_GP 0x0001000
2508#define RTYPE_CP0 0x0002000
2509#define RTYPE_PC 0x0004000
2510#define RTYPE_ACC 0x0008000
2511#define RTYPE_CCC 0x0010000
2512#define RTYPE_VI 0x0020000
2513#define RTYPE_VF 0x0040000
2514#define RTYPE_R5900_I 0x0080000
2515#define RTYPE_R5900_Q 0x0100000
2516#define RTYPE_R5900_R 0x0200000
2517#define RTYPE_R5900_ACC 0x0400000
56d438b1 2518#define RTYPE_MSA 0x0800000
14daeee3 2519#define RWARN 0x8000000
707bfff6
TS
2520
2521#define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
3739860c 2553 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2554
2555#define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589#define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599#define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609#define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623#define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2636
2637/* Remaining symbolic register names */
2638#define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668#define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671#define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
14daeee3
RS
2705#define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708#define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711#define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714#define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
707bfff6
TS
2717#define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
3739860c 2731 one of the tables below once mips_abi is set after
707bfff6
TS
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
707bfff6
TS
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743};
2744
2745static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748};
2749
2750static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753};
2754
a92713e6
RS
2755/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
df58fc94 2759
a92713e6
RS
2760static unsigned int
2761mips_prefer_vec_regno (unsigned int symval)
707bfff6 2762{
a92713e6
RS
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766}
2767
14daeee3
RS
2768/* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2770
2771static bfd_boolean
14daeee3 2772mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2773{
707bfff6 2774 char save_c;
14daeee3 2775 symbolS *symbol;
707bfff6
TS
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
a92713e6
RS
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
14daeee3
RS
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790}
2791
2792/* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802static bfd_boolean
2803mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805{
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
a92713e6 2841 *sptr = e;
14daeee3
RS
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
a92713e6
RS
2845 return TRUE;
2846}
2847
2848/* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852static int
2853reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854{
2855 unsigned int regno;
2856
14daeee3 2857 if (mips_parse_register (s, &regno, NULL))
707bfff6 2858 {
a92713e6
RS
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
707bfff6 2865 }
a92713e6 2866 else
707bfff6 2867 {
a92713e6 2868 if (types & RWARN)
1661c76c 2869 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2870 regno = ~0;
707bfff6 2871 }
707bfff6 2872 if (regnop)
a92713e6
RS
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
707bfff6
TS
2875}
2876
14daeee3
RS
2877/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880static char *
2881mips_parse_vu0_channels (char *s, unsigned int *channels)
2882{
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893}
2894
a92713e6
RS
2895/* Token types for parsed operand lists. */
2896enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
df58fc94 2899
14daeee3
RS
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
56d438b1
CF
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
df58fc94 2908
a92713e6
RS
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
14daeee3
RS
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
a92713e6
RS
2925 /* The end of the operand list. */
2926 OT_END
2927};
2928
2929/* A parsed operand token. */
2930struct mips_operand_token
2931{
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
56d438b1 2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2937 unsigned int regno;
2938
14daeee3
RS
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
56d438b1
CF
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
a92713e6
RS
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
14daeee3 2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2968 char ch;
2969 } u;
2970};
2971
2972/* An obstack used to construct lists of mips_operand_tokens. */
2973static struct obstack mips_operand_tokens;
2974
2975/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977static void
2978mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980{
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983}
2984
2985/* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989static char *
2990mips_parse_base_start (char *s)
2991{
2992 struct mips_operand_token token;
14daeee3
RS
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
df58fc94 2995
a92713e6
RS
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
14daeee3
RS
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
14daeee3
RS
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
a92713e6
RS
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
14daeee3
RS
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
a92713e6
RS
3043 return s;
3044}
3045
3046/* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051static char *
3052mips_parse_argument_token (char *s, char float_format)
3053{
6d4af3c2
AM
3054 char *end, *save_in;
3055 const char *err;
14daeee3 3056 unsigned int regno1, regno2, channels;
a92713e6
RS
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
14daeee3 3075 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3076 {
14daeee3
RS
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
a92713e6
RS
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
df58fc94 3090 {
a92713e6
RS
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
14daeee3 3094 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3095 {
1661c76c 3096 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3097 return 0;
3098 }
df58fc94 3099
a92713e6
RS
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
a92713e6 3105
56d438b1
CF
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
a92713e6
RS
3113 ++s;
3114 SKIP_SPACE_TABS (s);
56d438b1
CF
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
a92713e6 3118 {
56d438b1
CF
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3130 }
a92713e6
RS
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
1661c76c 3134 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3135 return 0;
3136 }
3137 ++s;
df58fc94 3138 }
a92713e6 3139 return s;
df58fc94
RS
3140 }
3141
a92713e6
RS
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
e3de51ce 3153 set_insn_error (0, err);
a92713e6
RS
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171}
3172
3173/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181static struct mips_operand_token *
3182mips_parse_arguments (char *s, char float_format)
3183{
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3200}
3201
d301a56b
RS
3202/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3204
3205static bfd_boolean
f79e2745 3206is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3207{
3208 int isa = mips_opts.isa;
846ef2d0 3209 int ase = mips_opts.ase;
037b32b9 3210 int fp_s, fp_d;
c6278170 3211 unsigned int i;
037b32b9 3212
c6278170
RS
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
037b32b9 3217
d301a56b 3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242}
3243
3244/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247static bfd_boolean
3248is_opcode_valid_16 (const struct mips_opcode *mo)
3249{
d301a56b 3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3251}
3252
df58fc94
RS
3253/* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256static bfd_boolean
3257is_size_valid (const struct mips_opcode *mo)
3258{
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
833794fc
MR
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
df58fc94
RS
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274}
3275
3276/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
df58fc94
RS
3289
3290static bfd_boolean
3291is_delay_slot_valid (const struct mips_opcode *mo)
3292{
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
c06dec14 3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306}
3307
fc76e730
RS
3308/* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
ab902481
RS
3316
3317static int
3318validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
fc76e730
RS
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
ab902481
RS
3322{
3323 const char *s;
fc76e730 3324 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3325 const struct mips_operand *operand;
3326
fc76e730
RS
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
fc76e730 3335 opno = 0;
14daeee3
RS
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
14daeee3
RS
3346 case '#':
3347 s++;
3348 break;
3349
ab902481 3350 default:
fc76e730
RS
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
fc76e730
RS
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
14daeee3 3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3364 {
14daeee3 3365 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
ab902481 3373 /* Skip prefix characters. */
7361da2c 3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3375 ++s;
fc76e730 3376 opno += 1;
ab902481
RS
3377 break;
3378 }
fc76e730 3379 doubled = used_bits & mask & insn_bits;
ab902481
RS
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
fc76e730 3386 used_bits |= mask;
ab902481 3387 undefined = ~used_bits & insn_bits;
fc76e730 3388 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402}
3403
fc76e730
RS
3404/* The MIPS16 version of validate_mips_insn. */
3405
3406static int
3407validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409{
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422}
3423
ab902481
RS
3424/* The microMIPS version of validate_mips_insn. */
3425
3426static int
fc76e730
RS
3427validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
ab902481
RS
3429{
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
fc76e730
RS
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
ab902481
RS
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
1661c76c 3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
1661c76c 3449 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
fc76e730
RS
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
ab902481
RS
3460}
3461
707bfff6
TS
3462/* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3464
252b5132 3465void
17a2f251 3466md_begin (void)
252b5132 3467{
3994f87e 3468 const char *retval = NULL;
156c2f8b 3469 int i = 0;
252b5132 3470 int broken = 0;
1f25f5d3 3471
0a44bf69
RS
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
00acd688
CM
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
0a44bf69 3484
0b35dfee 3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3486 as_warn (_("could not set architecture and machine"));
252b5132 3487
252b5132
RH
3488 op_hash = hash_new ();
3489
fc76e730 3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
17a2f251 3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
1661c76c 3501 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3502 }
3503 do
3504 {
fc76e730
RS
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3509 {
fc76e730
RS
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
252b5132
RH
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
fc76e730
RS
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
252b5132
RH
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
17a2f251 3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
fc76e730
RS
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
1e915849
RS
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
252b5132
RH
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
df58fc94 3548 micromips_op_hash = hash_new ();
fc76e730
RS
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
df58fc94
RS
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
fc76e730
RS
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
df58fc94
RS
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
252b5132 3591 if (broken)
1661c76c 3592 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3739860c 3596 for (i = 0; reg_names[i].name; i++)
707bfff6 3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3598 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3739860c 3601 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3604 &zero_address_frag));
707bfff6 3605 else
3739860c 3606 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3608 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3609 &zero_address_frag));
6047c971 3610
14daeee3
RS
3611 for (i = 0; i < 32; i++)
3612 {
92fce9bd 3613 char regname[6];
14daeee3
RS
3614
3615 /* R5900 VU0 floating-point register. */
92fce9bd 3616 sprintf (regname, "$vf%d", i);
14daeee3
RS
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
92fce9bd 3621 sprintf (regname, "$vi%d", i);
14daeee3
RS
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
56d438b1 3625 /* MSA register. */
92fce9bd 3626 sprintf (regname, "$w%d", i);
56d438b1
CF
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3629 }
3630
a92713e6
RS
3631 obstack_init (&mips_operand_tokens);
3632
7d10b47d 3633 mips_no_prev_insn ();
252b5132
RH
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
4d0d148d 3644 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3645
f3ded42a
RS
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3651 {
f3ded42a
RS
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
252b5132 3656
f3ded42a
RS
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
252b5132 3676 {
f3ded42a 3677 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3678
f3ded42a
RS
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3681
f3ded42a
RS
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3691
f3ded42a
RS
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
252b5132 3709
351cdf24
MF
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
f3ded42a
RS
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3722 }
f3ded42a
RS
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
252b5132 3734
71400594
RS
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
252b5132
RH
3737}
3738
351cdf24
MF
3739static inline void
3740fpabi_incompatible_with (int fpabi, const char *what)
3741{
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744}
3745
3746static inline void
3747fpabi_requires (int fpabi, const char *what)
3748{
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751}
3752
3753/* Check -mabi and register sizes against the specified FP ABI. */
3754static void
3755check_fpabi (int fpabi)
3756{
351cdf24
MF
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3350cc01
CM
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
351cdf24
MF
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
351cdf24
MF
3823}
3824
919731af 3825/* Perform consistency checks on the current options. */
3826
3827static void
3828mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829{
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
351cdf24
MF
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
919731af 3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
351cdf24
MF
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
919731af 3872 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3874 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
1357373c 3877 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3878 opts->micromips ? "micromips" : "mips16",
5f4678bb 3879 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3884}
3885
3886/* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893static void
3894file_mips_check_options (void)
3895{
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
7361da2c
AB
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
919731af 3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
351cdf24
MF
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
919731af 3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
7361da2c
AB
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
919731af 3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996}
3997
252b5132 3998void
17a2f251 3999md_assemble (char *str)
252b5132
RH
4000{
4001 struct mips_cl_insn insn;
f6688943
TS
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4004
919731af 4005 file_mips_check_options ();
4006
252b5132 4007 imm_expr.X_op = O_absent;
252b5132 4008 offset_expr.X_op = O_absent;
f6688943
TS
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4012
e1b47bd5
RS
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
e3de51ce 4015 clear_insn_error ();
e1b47bd5 4016
252b5132
RH
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
beae10d5
KH
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
252b5132
RH
4024 }
4025
e3de51ce
RS
4026 if (insn_error.msg)
4027 report_insn_error (str);
e1b47bd5 4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4029 {
584892a6 4030 macro_start ();
252b5132
RH
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
833794fc 4034 macro (&insn, str);
584892a6 4035 macro_end ();
252b5132
RH
4036 }
4037 else
4038 {
77bd4346 4039 if (offset_expr.X_op != O_absent)
df58fc94 4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4041 else
df58fc94 4042 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4043 }
e1b47bd5
RS
4044
4045 mips_assembling_insn = FALSE;
252b5132
RH
4046}
4047
738e5348
RS
4048/* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051static inline bfd_boolean
4052mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053{
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 return TRUE;
4064
4065 default:
4066 return FALSE;
4067 }
4068}
4069
df58fc94
RS
4070static inline bfd_boolean
4071micromips_reloc_p (bfd_reloc_code_real_type reloc)
4072{
4073 switch (reloc)
4074 {
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4098 return TRUE;
4099
4100 default:
4101 return FALSE;
4102 }
4103}
4104
2309ddf2
MR
4105static inline bfd_boolean
4106jmp_reloc_p (bfd_reloc_code_real_type reloc)
4107{
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4109}
4110
738e5348
RS
4111static inline bfd_boolean
4112got16_reloc_p (bfd_reloc_code_real_type reloc)
4113{
2309ddf2 4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4116}
4117
4118static inline bfd_boolean
4119hi16_reloc_p (bfd_reloc_code_real_type reloc)
4120{
2309ddf2 4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4123}
4124
4125static inline bfd_boolean
4126lo16_reloc_p (bfd_reloc_code_real_type reloc)
4127{
2309ddf2 4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4130}
4131
df58fc94
RS
4132static inline bfd_boolean
4133jalr_reloc_p (bfd_reloc_code_real_type reloc)
4134{
2309ddf2 4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4136}
4137
f2ae14a1
RS
4138static inline bfd_boolean
4139gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4143}
4144
2de39019
CM
4145/* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4147
4148static inline bfd_boolean
4149limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4150{
4151 switch (reloc)
4152 {
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4161 return TRUE;
4162
b47468a6 4163 case BFD_RELOC_32_PCREL:
7361da2c
AB
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4166 return HAVE_64BIT_ADDRESSES;
4167
2de39019
CM
4168 default:
4169 return FALSE;
4170 }
4171}
b47468a6 4172
5919d012 4173/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
5919d012
RS
4176
4177static inline bfd_boolean
17a2f251 4178reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4179{
3b91255e 4180 return (HAVE_IN_PLACE_ADDENDS
738e5348 4181 && (hi16_reloc_p (reloc)
0a44bf69
RS
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
738e5348
RS
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4185}
4186
4187/* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4189
4190static inline bfd_reloc_code_real_type
4191matching_lo_reloc (bfd_reloc_code_real_type reloc)
4192{
df58fc94
RS
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4195 : BFD_RELOC_LO16));
5919d012
RS
4196}
4197
4198/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4199 relocation. */
4200
4201static inline bfd_boolean
17a2f251 4202fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4203{
4204 return (fixp->fx_next != NULL
738e5348 4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4208}
4209
462427c4
RS
4210/* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
404a8071
RS
4212
4213static void
462427c4 4214mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4215{
4216 struct insn_label_list *l;
4217 valueT val;
4218
462427c4 4219 for (l = labels; l != NULL; l = l->next)
404a8071 4220 {
9c2799c2 4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
df58fc94 4224 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4225 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4226 ++val;
4227 S_SET_VALUE (l->label, val);
4228 }
4229}
4230
462427c4
RS
4231/* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4233
4234static void
4235mips_move_text_labels (void)
4236{
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4238}
4239
5f0fe04b
TS
4240static bfd_boolean
4241s_is_linkonce (symbolS *sym, segT from_seg)
4242{
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4245
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4247 {
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4249 linkonce = TRUE;
5f0fe04b
TS
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4255 linkonce = TRUE;
5f0fe04b
TS
4256 }
4257 return linkonce;
4258}
4259
e1b47bd5 4260/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
252b5132
RH
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4267
4268static void
e1b47bd5 4269mips_compressed_mark_label (symbolS *label)
252b5132 4270{
df58fc94 4271 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4272
f3ded42a
RS
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4275 else
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4286}
4287
4288/* Mark preceding MIPS16 or microMIPS instruction labels. */
4289
4290static void
4291mips_compressed_mark_labels (void)
4292{
4293 struct insn_label_list *l;
4294
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
252b5132
RH
4297}
4298
4d7206a2
RS
4299/* End the current frag. Make it a variant frag and record the
4300 relaxation info. */
4301
4302static void
4303relax_close_frag (void)
4304{
584892a6 4305 mips_macro_warning.first_frag = frag_now;
4d7206a2 4306 frag_var (rs_machine_dependent, 0, 0,
584892a6 4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4309
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4312}
4313
4314/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4316
4317static void
4318relax_start (symbolS *symbol)
4319{
9c2799c2 4320 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4323}
4324
4325/* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4327
4328static void
4d7206a2
RS
4329relax_switch (void)
4330{
9c2799c2 4331 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4332 mips_relax.sequence = 2;
4333}
4334
4335/* End the current relaxable sequence. */
4336
4337static void
4338relax_end (void)
4339{
9c2799c2 4340 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4343}
4344
11625dd8
RS
4345/* Return true if IP is a delayed branch or jump. */
4346
4347static inline bfd_boolean
4348delayed_branch_p (const struct mips_cl_insn *ip)
4349{
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4353}
4354
4355/* Return true if IP is a compact branch or jump. */
4356
4357static inline bfd_boolean
4358compact_branch_p (const struct mips_cl_insn *ip)
4359{
26545944
RS
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4362}
4363
4364/* Return true if IP is an unconditional branch or jump. */
4365
4366static inline bfd_boolean
4367uncond_branch_p (const struct mips_cl_insn *ip)
4368{
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4371}
4372
4373/* Return true if IP is a branch-likely instruction. */
4374
4375static inline bfd_boolean
4376branch_likely_p (const struct mips_cl_insn *ip)
4377{
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4379}
4380
14fe068b
RS
4381/* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4383
4384static struct mips_cl_insn *
4385get_delay_slot_nop (const struct mips_cl_insn *ip)
4386{
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return &micromips_nop32_insn;
4390 return NOP_INSN;
4391}
4392
fc76e730
RS
4393/* Return a mask that has bit N set if OPCODE reads the register(s)
4394 in operand N. */
df58fc94
RS
4395
4396static unsigned int
fc76e730 4397insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4398{
fc76e730
RS
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4400}
df58fc94 4401
fc76e730
RS
4402/* Return a mask that has bit N set if OPCODE writes to the register(s)
4403 in operand N. */
4404
4405static unsigned int
4406insn_write_mask (const struct mips_opcode *opcode)
4407{
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4409}
4410
4411/* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4413 is set. */
4414
4415static unsigned int
4416operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4419{
4420 unsigned int uval, vsel;
4421
4422 switch (operand->type)
df58fc94 4423 {
fc76e730
RS
4424 case OP_INT:
4425 case OP_MAPPED_INT:
4426 case OP_MSB:
4427 case OP_PCREL:
4428 case OP_PERF_REG:
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4433 case OP_PC:
14daeee3
RS
4434 case OP_VU0_SUFFIX:
4435 case OP_VU0_MATCH_SUFFIX:
56d438b1 4436 case OP_IMM_INDEX:
fc76e730
RS
4437 abort ();
4438
4439 case OP_REG:
0f35dbc4 4440 case OP_OPTIONAL_REG:
fc76e730
RS
4441 {
4442 const struct mips_reg_operand *reg_op;
4443
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4449 }
4450
4451 case OP_REG_PAIR:
4452 {
4453 const struct mips_reg_pair_operand *pair_op;
4454
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4457 return 0;
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4460 }
4461
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4467
7361da2c
AB
4468 case OP_SAME_RS_RT:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4474
4475 case OP_CHECK_PREV:
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4481
fc76e730
RS
4482 case OP_LWM_SWM_LIST:
4483 abort ();
4484
4485 case OP_SAVE_RESTORE_LIST:
4486 abort ();
4487
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4490 return 0;
4491 uval = insn_extract_operand (insn, operand);
4492 vsel = uval >> 5;
4493 if ((vsel & 0x18) == 0x18)
4494 return 0;
4495 return 1 << (uval & 31);
56d438b1
CF
4496
4497 case OP_REG_INDEX:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 return 1 << insn_extract_operand (insn, operand);
df58fc94 4501 }
fc76e730
RS
4502 abort ();
4503}
4504
4505/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4508 is set. */
4509
4510static unsigned int
4511insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4513{
4514 unsigned int opno, reg_mask;
4515
4516 opno = 0;
4517 reg_mask = 0;
4518 while (opno_mask != 0)
4519 {
4520 if (opno_mask & 1)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4522 opno_mask >>= 1;
4523 opno += 1;
4524 }
4525 return reg_mask;
df58fc94
RS
4526}
4527
4c260379
RS
4528/* Return the mask of core registers that IP reads. */
4529
4530static unsigned int
4531gpr_read_mask (const struct mips_cl_insn *ip)
4532{
4533 unsigned long pinfo, pinfo2;
4534 unsigned int mask;
4535
fc76e730 4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4539 if (pinfo & INSN_UDI)
4c260379 4540 {
fc76e730
RS
4541 /* UDI instructions have traditionally been assumed to read RS
4542 and RT. */
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4545 }
fc76e730
RS
4546 if (pinfo & INSN_READ_GPR_24)
4547 mask |= 1 << 24;
4548 if (pinfo2 & INSN2_READ_GPR_16)
4549 mask |= 1 << 16;
4550 if (pinfo2 & INSN2_READ_SP)
4551 mask |= 1 << SP;
26545944 4552 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4553 mask |= 1 << 31;
fe35f09f
RS
4554 /* Don't include register 0. */
4555 return mask & ~1;
4c260379
RS
4556}
4557
4558/* Return the mask of core registers that IP writes. */
4559
4560static unsigned int
4561gpr_write_mask (const struct mips_cl_insn *ip)
4562{
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
fc76e730 4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4569 if (pinfo & INSN_WRITE_GPR_24)
4570 mask |= 1 << 24;
4571 if (pinfo & INSN_WRITE_GPR_31)
4572 mask |= 1 << 31;
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4577 mask |= 1 << SP;
fe35f09f
RS
4578 /* Don't include register 0. */
4579 return mask & ~1;
4c260379
RS
4580}
4581
4582/* Return the mask of floating-point registers that IP reads. */
4583
4584static unsigned int
4585fpr_read_mask (const struct mips_cl_insn *ip)
4586{
fc76e730 4587 unsigned long pinfo;
4c260379
RS
4588 unsigned int mask;
4589
9d5de888
CF
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
fc76e730 4592 insn_read_mask (ip->insn_mo));
4c260379 4593 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4597 mask |= mask << 1;
4598 return mask;
4599}
4600
4601/* Return the mask of floating-point registers that IP writes. */
4602
4603static unsigned int
4604fpr_write_mask (const struct mips_cl_insn *ip)
4605{
fc76e730 4606 unsigned long pinfo;
4c260379
RS
4607 unsigned int mask;
4608
9d5de888
CF
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
fc76e730 4611 insn_write_mask (ip->insn_mo));
4c260379 4612 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4616 mask |= mask << 1;
4617 return mask;
4618}
4619
a1d78564
RS
4620/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4622
4623static bfd_boolean
4624mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4625{
4626 const char *s = insn->name;
351cdf24
MF
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4628 || FPR_SIZE == 64)
4629 && mips_opts.oddspreg;
a1d78564
RS
4630
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4633 return TRUE;
4634
351cdf24
MF
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4640 return FPR_SIZE == 32 || oddspreg;
a1d78564 4641
351cdf24
MF
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4645 {
4646 case FP_S:
4647 case 0:
4648 return oddspreg;
4649 case FP_D:
4650 return FPR_SIZE == 64;
4651 default:
4652 break;
a1d78564
RS
4653 }
4654
351cdf24
MF
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4660 return oddspreg;
a1d78564 4661
351cdf24 4662 return FPR_SIZE == 64;
a1d78564
RS
4663}
4664
a1d78564
RS
4665/* Information about an instruction argument that we're trying to match. */
4666struct mips_arg_info
4667{
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4670
a92713e6
RS
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4673
a1d78564
RS
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4675 int opnum;
4676
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4679 int argnum;
4680
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4683
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4687
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4691
60f20e8b
RS
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
a1d78564 4697
a1d78564
RS
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4700};
4701
1a00e612
RS
4702/* Record that the argument is out of range. */
4703
4704static void
4705match_out_of_range (struct mips_arg_info *arg)
4706{
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4708}
4709
4710/* Record that the argument isn't constant but needs to be. */
4711
4712static void
4713match_not_constant (struct mips_arg_info *arg)
4714{
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4716 arg->argnum);
4717}
4718
a92713e6
RS
4719/* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
a1d78564 4721
a92713e6
RS
4722static bfd_boolean
4723match_char (struct mips_arg_info *arg, char ch)
a1d78564 4724{
a92713e6
RS
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 {
4727 ++arg->token;
4728 if (ch == ',')
4729 arg->argnum += 1;
4730 return TRUE;
4731 }
4732 return FALSE;
4733}
a1d78564 4734
a92713e6
RS
4735/* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4738
4739static bfd_boolean
4740match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4742{
d436c1c2
RS
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4747 {
d436c1c2
RS
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4751 return TRUE;
4752 }
4753
d436c1c2
RS
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4758 {
d436c1c2
RS
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4760 return FALSE;
a1d78564 4761 }
d436c1c2
RS
4762
4763 if (arg->token->type == OT_INTEGER)
a92713e6 4764 {
d436c1c2
RS
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4767 ++arg->token;
4768 return TRUE;
a92713e6 4769 }
a92713e6 4770
d436c1c2
RS
4771 set_insn_error_i
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4773 arg->argnum);
4774 return FALSE;
a92713e6
RS
4775}
4776
4777/* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4780 error. */
4781
4782static bfd_boolean
1a00e612 4783match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4784{
4785 expressionS ex;
4786 bfd_reloc_code_real_type r[3];
a1d78564 4787
a92713e6
RS
4788 if (!match_expression (arg, &ex, r))
4789 return FALSE;
4790
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4792 *value = ex.X_add_number;
4793 else
4794 {
1a00e612
RS
4795 match_not_constant (arg);
4796 return FALSE;
a1d78564 4797 }
a92713e6 4798 return TRUE;
a1d78564
RS
4799}
4800
4801/* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4803
4804static unsigned int
4805convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4807{
4808 switch (type)
4809 {
4810 case OP_REG_GP:
4811 return RTYPE_NUM | RTYPE_GP;
4812
4813 case OP_REG_FP:
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
43885403 4818 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4819 | INSN_COPROC_MEMORY_DELAY
43885403 4820 | INSN_LOAD_COPROC
67dc82bc 4821 | INSN_LOAD_MEMORY
a1d78564
RS
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4824 return RTYPE_FPU;
4825
4826 case OP_REG_CCC:
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4829 return RTYPE_CCC;
4830
4831 case OP_REG_VEC:
4832 if (opcode->membership & INSN_5400)
4833 return RTYPE_FPU;
4834 return RTYPE_FPU | RTYPE_VEC;
4835
4836 case OP_REG_ACC:
4837 return RTYPE_ACC;
4838
4839 case OP_REG_COPRO:
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4842 return RTYPE_NUM;
4843
4844 case OP_REG_HW:
4845 return RTYPE_NUM;
14daeee3
RS
4846
4847 case OP_REG_VI:
4848 return RTYPE_NUM | RTYPE_VI;
4849
4850 case OP_REG_VF:
4851 return RTYPE_NUM | RTYPE_VF;
4852
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4855
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4858
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4861
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
56d438b1
CF
4864
4865 case OP_REG_MSA:
4866 return RTYPE_MSA;
4867
4868 case OP_REG_MSA_CTRL:
4869 return RTYPE_NUM;
a1d78564
RS
4870 }
4871 abort ();
4872}
4873
4874/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4875
4876static void
4877check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4879{
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4882
4883 if (type == OP_REG_FP
4884 && (regno & 1) != 0
a1d78564 4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4886 {
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4889 cases. */
4890 if (FPR_SIZE == 32)
4891 as_warn (_("float register should be even, was %d"), regno);
4892 else
4893 as_bad (_("float register should be even, was %d"), regno);
4894 }
a1d78564
RS
4895
4896 if (type == OP_REG_CCC)
4897 {
4898 const char *name;
4899 size_t length;
4900
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4906 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4907 name, regno);
4908
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4912 name, regno);
4913 }
4914}
4915
a92713e6
RS
4916/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4919
4920static bfd_boolean
4921match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4923{
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4927 return FALSE;
4928
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4931 return TRUE;
4932}
4933
4934/* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4937
4938static bfd_boolean
4939match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4941{
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4944 {
4945 ++arg->token;
4946 return TRUE;
4947 }
4948 return FALSE;
4949}
4950
4951/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4954
4955static bfd_boolean
4956match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4958{
4959 if (match_reg (arg, type, regno1))
4960 {
4961 *regno2 = *regno1;
4962 return TRUE;
4963 }
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4968 {
4969 ++arg->token;
4970 return TRUE;
4971 }
4972 return FALSE;
4973}
4974
a1d78564
RS
4975/* OP_INT matcher. */
4976
a92713e6 4977static bfd_boolean
a1d78564 4978match_int_operand (struct mips_arg_info *arg,
a92713e6 4979 const struct mips_operand *operand_base)
a1d78564
RS
4980{
4981 const struct mips_int_operand *operand;
3ccad066 4982 unsigned int uval;
a1d78564
RS
4983 int min_val, max_val, factor;
4984 offsetT sval;
a1d78564
RS
4985
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
3ccad066
RS
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
a1d78564 4990
d436c1c2
RS
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
4996 {
4997 /* The operand can be relocated. */
a92713e6
RS
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
4999 return FALSE;
5000
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
a92713e6
RS
5005 return TRUE;
5006
5007 if (offset_expr.X_op != O_constant)
a1d78564 5008 {
60f20e8b
RS
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5012 return FALSE;
a92713e6
RS
5013 offset_reloc[0] = BFD_RELOC_LO16;
5014 return TRUE;
a1d78564 5015 }
a92713e6 5016
a1d78564
RS
5017 /* Clear the global state; we're going to install the operand
5018 ourselves. */
a92713e6 5019 sval = offset_expr.X_add_number;
a1d78564 5020 offset_expr.X_op = O_absent;
60f20e8b
RS
5021
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5025 if (sval > max_val)
5026 {
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5029 return FALSE;
5030 }
a1d78564
RS
5031 }
5032 else
5033 {
1a00e612 5034 if (!match_const_int (arg, &sval))
a92713e6 5035 return FALSE;
a1d78564
RS
5036 }
5037
5038 arg->last_op_int = sval;
5039
1a00e612 5040 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5041 {
1a00e612
RS
5042 match_out_of_range (arg);
5043 return FALSE;
a1d78564
RS
5044 }
5045
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5048
5049 /* Handle -mfix-cn63xxp1. */
5050 if (arg->opnum == 1
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5054 switch (uval)
5055 {
5056 case 5:
5057 case 25:
5058 case 26:
5059 case 27:
5060 case 28:
5061 case 29:
5062 case 30:
5063 case 31:
5064 /* These are ok. */
5065 break;
5066
5067 default:
5068 /* The rest must be changed to 28. */
5069 uval = 28;
5070 break;
5071 }
5072
5073 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5074 return TRUE;
a1d78564
RS
5075}
5076
5077/* OP_MAPPED_INT matcher. */
5078
a92713e6 5079static bfd_boolean
a1d78564 5080match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5081 const struct mips_operand *operand_base)
a1d78564
RS
5082{
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5085 offsetT sval;
5086
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5088 if (!match_const_int (arg, &sval))
a92713e6 5089 return FALSE;
a1d78564
RS
5090
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5094 break;
5095 if (uval == num_vals)
1a00e612
RS
5096 {
5097 match_out_of_range (arg);
5098 return FALSE;
5099 }
a1d78564
RS
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5102 return TRUE;
a1d78564
RS
5103}
5104
5105/* OP_MSB matcher. */
5106
a92713e6 5107static bfd_boolean
a1d78564 5108match_msb_operand (struct mips_arg_info *arg,
a92713e6 5109 const struct mips_operand *operand_base)
a1d78564
RS
5110{
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5114
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5119
1a00e612 5120 if (!match_const_int (arg, &size))
a92713e6 5121 return FALSE;
a1d78564
RS
5122
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5125
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5127 {
1a00e612
RS
5128 match_out_of_range (arg);
5129 return FALSE;
a1d78564
RS
5130 }
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5132 return TRUE;
a1d78564
RS
5133}
5134
5135/* OP_REG matcher. */
5136
a92713e6 5137static bfd_boolean
a1d78564 5138match_reg_operand (struct mips_arg_info *arg,
a92713e6 5139 const struct mips_operand *operand_base)
a1d78564
RS
5140{
5141 const struct mips_reg_operand *operand;
a92713e6 5142 unsigned int regno, uval, num_vals;
a1d78564
RS
5143
5144 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5145 if (!match_reg (arg, operand->reg_type, &regno))
5146 return FALSE;
a1d78564
RS
5147
5148 if (operand->reg_map)
5149 {
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5153 break;
5154 if (num_vals == uval)
a92713e6 5155 return FALSE;
a1d78564
RS
5156 }
5157 else
5158 uval = regno;
5159
a1d78564
RS
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5164 return TRUE;
a1d78564
RS
5165}
5166
5167/* OP_REG_PAIR matcher. */
5168
a92713e6 5169static bfd_boolean
a1d78564 5170match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5171 const struct mips_operand *operand_base)
a1d78564
RS
5172{
5173 const struct mips_reg_pair_operand *operand;
a92713e6 5174 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5175
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5177 if (!match_reg (arg, operand->reg_type, &regno1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, &regno2))
5180 return FALSE;
a1d78564
RS
5181
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5185 break;
5186 if (uval == num_vals)
a92713e6 5187 return FALSE;
a1d78564 5188
a1d78564 5189 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5190 return TRUE;
a1d78564
RS
5191}
5192
5193/* OP_PCREL matcher. The caller chooses the relocation type. */
5194
a92713e6
RS
5195static bfd_boolean
5196match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5197{
a92713e6
RS
5198 bfd_reloc_code_real_type r[3];
5199
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5201}
5202
5203/* OP_PERF_REG matcher. */
5204
a92713e6 5205static bfd_boolean
a1d78564 5206match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5207 const struct mips_operand *operand)
a1d78564
RS
5208{
5209 offsetT sval;
5210
1a00e612 5211 if (!match_const_int (arg, &sval))
a92713e6 5212 return FALSE;
a1d78564
RS
5213
5214 if (sval != 0
5215 && (sval != 1
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5219 {
1a00e612
RS
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5221 return FALSE;
a1d78564
RS
5222 }
5223
5224 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5225 return TRUE;
a1d78564
RS
5226}
5227
5228/* OP_ADDIUSP matcher. */
5229
a92713e6 5230static bfd_boolean
a1d78564 5231match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5232 const struct mips_operand *operand)
a1d78564
RS
5233{
5234 offsetT sval;
5235 unsigned int uval;
5236
1a00e612 5237 if (!match_const_int (arg, &sval))
a92713e6 5238 return FALSE;
a1d78564
RS
5239
5240 if (sval % 4)
1a00e612
RS
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
a1d78564
RS
5245
5246 sval /= 4;
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5248 {
5249 match_out_of_range (arg);
5250 return FALSE;
5251 }
a1d78564
RS
5252
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5256 return TRUE;
a1d78564
RS
5257}
5258
5259/* OP_CLO_CLZ_DEST matcher. */
5260
a92713e6 5261static bfd_boolean
a1d78564 5262match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5263 const struct mips_operand *operand)
a1d78564
RS
5264{
5265 unsigned int regno;
5266
a92713e6
RS
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
a1d78564 5269
a1d78564 5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5271 return TRUE;
a1d78564
RS
5272}
5273
7361da2c
AB
5274/* OP_CHECK_PREV matcher. */
5275
5276static bfd_boolean
5277match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5279{
5280 const struct mips_check_prev_operand *operand;
5281 unsigned int regno;
5282
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5284
5285 if (!match_reg (arg, OP_REG_GP, &regno))
5286 return FALSE;
5287
5288 if (!operand->zero_ok && regno == 0)
5289 return FALSE;
5290
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5294 {
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5297 return TRUE;
5298 }
5299
5300 return FALSE;
5301}
5302
5303/* OP_SAME_RS_RT matcher. */
5304
5305static bfd_boolean
5306match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5308{
5309 unsigned int regno;
5310
5311 if (!match_reg (arg, OP_REG_GP, &regno))
5312 return FALSE;
5313
5314 if (regno == 0)
5315 {
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5317 return FALSE;
5318 }
5319
5320 arg->last_regno = regno;
5321
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5323 return TRUE;
5324}
5325
a1d78564
RS
5326/* OP_LWM_SWM_LIST matcher. */
5327
a92713e6 5328static bfd_boolean
a1d78564 5329match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5330 const struct mips_operand *operand)
a1d78564 5331{
a92713e6
RS
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
a1d78564 5334
a92713e6
RS
5335 reglist = 0;
5336 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5337 return FALSE;
5338 do
5339 {
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5341 {
5342 reglist |= 1 << FP;
5343 regno2 = S7;
5344 }
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5346 reset = *arg;
5347 }
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5350 *arg = reset;
a1d78564
RS
5351
5352 if (operand->size == 2)
5353 {
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5355
5356 s0, ra
5357 s0, s1, ra, s2, s3
5358 s0-s2, ra
5359
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5362 return FALSE;
a1d78564
RS
5363
5364 sregs = (reglist >> 17) & 7;
5365 ra = 0;
5366 }
5367 else
5368 {
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5372
5373 ra
5374 s0
5375 ra, s0, s1, s2
5376 s0-s8
5377 s0-s5, ra
5378
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5381 return FALSE;
a1d78564
RS
5382
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5385 }
5386 sregs += 1;
5387 if ((sregs & -sregs) != sregs)
a92713e6 5388 return FALSE;
a1d78564
RS
5389
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5391 return TRUE;
a1d78564
RS
5392}
5393
364215c8
RS
5394/* OP_ENTRY_EXIT_LIST matcher. */
5395
a92713e6 5396static unsigned int
364215c8 5397match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5398 const struct mips_operand *operand)
364215c8
RS
5399{
5400 unsigned int mask;
5401 bfd_boolean is_exit;
5402
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5404 are different. */
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5407 do
364215c8
RS
5408 {
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5411
a92713e6 5412 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5413 is_freg = FALSE;
a92713e6 5414 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5415 is_freg = TRUE;
5416 else
a92713e6 5417 return FALSE;
364215c8
RS
5418
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5420 {
5421 mask &= ~(7 << 3);
5422 mask |= (5 + regno2) << 3;
5423 }
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5429 mask |= 1;
5430 else
a92713e6 5431 return FALSE;
364215c8 5432 }
a92713e6
RS
5433 while (match_char (arg, ','));
5434
364215c8 5435 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5436 return TRUE;
364215c8
RS
5437}
5438
5439/* OP_SAVE_RESTORE_LIST matcher. */
5440
a92713e6
RS
5441static bfd_boolean
5442match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5443{
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5446 offsetT frame_size;
364215c8 5447
364215c8
RS
5448 opcode = arg->insn->insn_opcode;
5449 frame_size = 0;
5450 num_frame_sizes = 0;
5451 args = 0;
5452 statics = 0;
5453 sregs = 0;
a92713e6 5454 do
364215c8
RS
5455 {
5456 unsigned int regno1, regno2;
5457
a92713e6 5458 if (arg->token->type == OT_INTEGER)
364215c8
RS
5459 {
5460 /* Handle the frame size. */
1a00e612 5461 if (!match_const_int (arg, &frame_size))
a92713e6 5462 return FALSE;
364215c8 5463 num_frame_sizes += 1;
364215c8
RS
5464 }
5465 else
5466 {
a92713e6
RS
5467 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5468 return FALSE;
364215c8
RS
5469
5470 while (regno1 <= regno2)
5471 {
5472 if (regno1 >= 4 && regno1 <= 7)
5473 {
5474 if (num_frame_sizes == 0)
5475 /* args $a0-$a3 */
5476 args |= 1 << (regno1 - 4);
5477 else
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5480 }
5481 else if (regno1 >= 16 && regno1 <= 23)
5482 /* $s0-$s7 */
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5485 /* $s8 */
5486 sregs |= 1 << 8;
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5489 opcode |= 0x40;
5490 else
a92713e6 5491 return FALSE;
364215c8
RS
5492 regno1 += 1;
5493 if (regno1 == 24)
5494 regno1 = 30;
5495 }
5496 }
364215c8 5497 }
a92713e6 5498 while (match_char (arg, ','));
364215c8
RS
5499
5500 /* Encode args/statics combination. */
5501 if (args & statics)
a92713e6 5502 return FALSE;
364215c8
RS
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5509 else
5510 {
5511 /* Count arg registers. */
5512 num_args = 0;
5513 while (args & 0x1)
5514 {
5515 args >>= 1;
5516 num_args += 1;
5517 }
5518 if (args != 0)
a92713e6 5519 return FALSE;
364215c8
RS
5520
5521 /* Count static registers. */
5522 num_statics = 0;
5523 while (statics & 0x8)
5524 {
5525 statics = (statics << 1) & 0xf;
5526 num_statics += 1;
5527 }
5528 if (statics != 0)
a92713e6 5529 return FALSE;
364215c8
RS
5530
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5533 }
5534
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5537 opcode |= 0x20;
5538 if (sregs & (1 << 1)) /* $s1 */
5539 opcode |= 0x10;
5540 sregs >>= 2;
5541
5542 /* Encode $s2-$s8. */
5543 num_sregs = 0;
5544 while (sregs & 1)
5545 {
5546 sregs >>= 1;
5547 num_sregs += 1;
5548 }
5549 if (sregs != 0)
a92713e6 5550 return FALSE;
364215c8
RS
5551 opcode |= num_sregs << 24;
5552
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
1a00e612
RS
5555 {
5556 set_insn_error (arg->argnum, _("missing frame size"));
5557 return FALSE;
5558 }
5559 if (num_frame_sizes > 1)
5560 {
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5562 return FALSE;
5563 }
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5565 {
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5567 return FALSE;
5568 }
5569 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5570 {
5571 frame_size /= 8;
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5574 }
5575
364215c8
RS
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
a92713e6 5580 return TRUE;
364215c8
RS
5581}
5582
a1d78564
RS
5583/* OP_MDMX_IMM_REG matcher. */
5584
a92713e6 5585static bfd_boolean
a1d78564 5586match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5587 const struct mips_operand *operand)
a1d78564 5588{
a92713e6 5589 unsigned int regno, uval;
a1d78564
RS
5590 bfd_boolean is_qh;
5591 const struct mips_opcode *opcode;
5592
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5598
56d438b1 5599 if (arg->token->type == OT_REG)
a1d78564
RS
5600 {
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5603 {
1a00e612
RS
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5605 arg->argnum);
5606 return FALSE;
a1d78564
RS
5607 }
5608
56d438b1
CF
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5610 return FALSE;
5611 ++arg->token;
5612
a1d78564
RS
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
56d438b1 5615 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5616 {
56d438b1 5617 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5618 {
1a00e612
RS
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5620 return FALSE;
a1d78564 5621 }
56d438b1
CF
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5623 ++arg->token;
a1d78564
RS
5624 }
5625 else
5626 {
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5631 {
1a00e612
RS
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5633 arg->argnum);
5634 return FALSE;
a1d78564
RS
5635 }
5636
5637 if (is_qh)
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5639 else
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5641 }
a1d78564
RS
5642 uval |= regno;
5643 }
5644 else
5645 {
5646 offsetT sval;
5647
1a00e612 5648 if (!match_const_int (arg, &sval))
a92713e6 5649 return FALSE;
a1d78564
RS
5650 if (sval < 0 || sval > 31)
5651 {
1a00e612
RS
5652 match_out_of_range (arg);
5653 return FALSE;
a1d78564
RS
5654 }
5655 uval |= (sval & 31);
5656 if (is_qh)
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5658 else
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5660 }
5661 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5662 return TRUE;
a1d78564
RS
5663}
5664
56d438b1
CF
5665/* OP_IMM_INDEX matcher. */
5666
5667static bfd_boolean
5668match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5670{
5671 unsigned int max_val;
5672
5673 if (arg->token->type != OT_INTEGER_INDEX)
5674 return FALSE;
5675
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5678 {
5679 match_out_of_range (arg);
5680 return FALSE;
5681 }
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5683 ++arg->token;
5684 return TRUE;
5685}
5686
5687/* OP_REG_INDEX matcher. */
5688
5689static bfd_boolean
5690match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5692{
5693 unsigned int regno;
5694
5695 if (arg->token->type != OT_REG_INDEX)
5696 return FALSE;
5697
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5699 return FALSE;
5700
5701 insn_insert_operand (arg->insn, operand, regno);
5702 ++arg->token;
5703 return TRUE;
5704}
5705
a1d78564
RS
5706/* OP_PC matcher. */
5707
a92713e6
RS
5708static bfd_boolean
5709match_pc_operand (struct mips_arg_info *arg)
a1d78564 5710{
a92713e6
RS
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5712 {
5713 ++arg->token;
5714 return TRUE;
5715 }
5716 return FALSE;
a1d78564
RS
5717}
5718
7361da2c
AB
5719/* OP_NON_ZERO_REG matcher. */
5720
5721static bfd_boolean
5722match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724{
5725 unsigned int regno;
5726
5727 if (!match_reg (arg, OP_REG_GP, &regno))
5728 return FALSE;
5729
5730 if (regno == 0)
5731 return FALSE;
5732
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5735 return TRUE;
5736}
5737
a1d78564
RS
5738/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5740
a92713e6
RS
5741static bfd_boolean
5742match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5743{
5744 unsigned int regno;
5745
a92713e6 5746 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5747}
5748
89565f1b
RS
5749/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5752
5753 Return the constant in IMM and OFFSET as follows:
5754
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5757
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5761
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5763
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5769
a92713e6
RS
5770static bfd_boolean
5771match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5773{
a92713e6 5774 char *p;
89565f1b
RS
5775 segT seg, new_seg;
5776 subsegT subseg;
5777 const char *newname;
a92713e6 5778 unsigned char *data;
89565f1b
RS
5779
5780 /* Where the constant is placed is based on how the MIPS assembler
5781 does things:
5782
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5787
5788 The .lit4 and .lit8 sections are only used if permitted by the
5789 -G argument. */
a92713e6 5790 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5791 {
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5793 return FALSE;
5794 }
a92713e6
RS
5795
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5798 ++arg->token;
89565f1b
RS
5799
5800 /* Handle 32-bit constants for which an immediate value is best. */
5801 if (length == 4
5802 && (using_gprs
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5806 {
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5810 else
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
a92713e6 5813 return TRUE;
89565f1b
RS
5814 }
5815
5816 /* Handle 64-bit constants for which an immediate value is best. */
5817 if (length == 8
5818 && !mips_disable_float_construction
351cdf24
MF
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5825 && (using_gprs
5826 || GPR_SIZE == 64
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5828 || FPR_SIZE == 32)
89565f1b
RS
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5833 {
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5837 64 bit constant. */
351cdf24 5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5839 {
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5843 {
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5846 }
5847 else
5848 {
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5851 }
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5854 }
5855 else
5856 {
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5860 else
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5863 }
a92713e6 5864 return TRUE;
89565f1b
RS
5865 }
5866
5867 /* Switch to the right section. */
5868 seg = now_seg;
5869 subseg = now_subseg;
5870 if (length == 4)
5871 {
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5873 newname = ".lit4";
5874 }
5875 else
5876 {
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5879 else
5880 newname = ".lit8";
5881 }
5882
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5889 else
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5891 if (seg == now_seg)
1661c76c 5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5893
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5899
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5903
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
a92713e6 5906 return TRUE;
89565f1b
RS
5907}
5908
14daeee3
RS
5909/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5910 them. */
5911
5912static bfd_boolean
5913match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5916{
5917 unsigned int uval;
5918
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5922
ee5734f0 5923 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5924 if (arg->token->type != OT_CHANNELS)
ee5734f0 5925 return match_p;
14daeee3
RS
5926
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5929 {
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5932 return FALSE;
5933 uval = 4 - ffs (uval);
5934 }
5935
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5937 return FALSE;
5938
5939 ++arg->token;
5940 if (!match_p)
5941 insn_insert_operand (arg->insn, operand, uval);
5942 return TRUE;
5943}
5944
a1d78564
RS
5945/* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5947
a92713e6 5948static bfd_boolean
a1d78564 5949match_operand (struct mips_arg_info *arg,
a92713e6 5950 const struct mips_operand *operand)
a1d78564
RS
5951{
5952 switch (operand->type)
5953 {
5954 case OP_INT:
a92713e6 5955 return match_int_operand (arg, operand);
a1d78564
RS
5956
5957 case OP_MAPPED_INT:
a92713e6 5958 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5959
5960 case OP_MSB:
a92713e6 5961 return match_msb_operand (arg, operand);
a1d78564
RS
5962
5963 case OP_REG:
0f35dbc4 5964 case OP_OPTIONAL_REG:
a92713e6 5965 return match_reg_operand (arg, operand);
a1d78564
RS
5966
5967 case OP_REG_PAIR:
a92713e6 5968 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5969
5970 case OP_PCREL:
a92713e6 5971 return match_pcrel_operand (arg);
a1d78564
RS
5972
5973 case OP_PERF_REG:
a92713e6 5974 return match_perf_reg_operand (arg, operand);
a1d78564
RS
5975
5976 case OP_ADDIUSP_INT:
a92713e6 5977 return match_addiusp_operand (arg, operand);
a1d78564
RS
5978
5979 case OP_CLO_CLZ_DEST:
a92713e6 5980 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
5981
5982 case OP_LWM_SWM_LIST:
a92713e6 5983 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_ENTRY_EXIT_LIST:
a92713e6 5986 return match_entry_exit_operand (arg, operand);
364215c8 5987
a1d78564 5988 case OP_SAVE_RESTORE_LIST:
a92713e6 5989 return match_save_restore_list_operand (arg);
a1d78564
RS
5990
5991 case OP_MDMX_IMM_REG:
a92713e6 5992 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
5993
5994 case OP_REPEAT_DEST_REG:
a92713e6 5995 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
5996
5997 case OP_REPEAT_PREV_REG:
a92713e6 5998 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
5999
6000 case OP_PC:
a92713e6 6001 return match_pc_operand (arg);
14daeee3
RS
6002
6003 case OP_VU0_SUFFIX:
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6005
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6008
6009 case OP_IMM_INDEX:
6010 return match_imm_index_operand (arg, operand);
6011
6012 case OP_REG_INDEX:
6013 return match_reg_index_operand (arg, operand);
7361da2c
AB
6014
6015 case OP_SAME_RS_RT:
6016 return match_same_rs_rt_operand (arg, operand);
6017
6018 case OP_CHECK_PREV:
6019 return match_check_prev_operand (arg, operand);
6020
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6023 }
6024 abort ();
6025}
6026
6027/* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6029
6030static void
6031check_completed_insn (struct mips_arg_info *arg)
6032{
6033 if (arg->seen_at)
6034 {
6035 if (AT == ATREG)
1661c76c 6036 as_warn (_("used $at without \".set noat\""));
a1d78564 6037 else
1661c76c 6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6039 }
6040}
a1d78564 6041
85fcb30f
RS
6042/* Return true if modifying general-purpose register REG needs a delay. */
6043
6044static bfd_boolean
6045reg_needs_delay (unsigned int reg)
6046{
6047 unsigned long prev_pinfo;
6048
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
67dc82bc 6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6054 return TRUE;
6055
6056 return FALSE;
6057}
6058
71400594
RS
6059/* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
4d7206a2 6062
71400594
RS
6063static unsigned int
6064classify_vr4120_insn (const char *name)
252b5132 6065{
71400594
RS
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6079}
252b5132 6080
a8d14a88
CM
6081#define INSN_ERET 0x42000018
6082#define INSN_DERET 0x4200001f
6083#define INSN_DMULT 0x1c
6084#define INSN_DMULTU 0x1d
ff239038 6085
71400594
RS
6086/* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
252b5132 6089
71400594
RS
6090static unsigned int
6091insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6093{
6094 unsigned long pinfo1, pinfo2;
4c260379 6095 unsigned int mask;
71400594 6096
85fcb30f
RS
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
71400594
RS
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6101
71400594
RS
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
252b5132 6105 {
71400594
RS
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6107 return 2;
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6109 return 2;
6110 }
6111
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
df58fc94 6115 && !mips_opts.micromips
71400594 6116 && MF_HILO_INSN (pinfo1)
85fcb30f 6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6118 return 2;
6119
ff239038
CM
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6122 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6123 {
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6126 {
6127 if (insn2 == NULL
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
11625dd8 6130 || delayed_branch_p (insn2))
ff239038
CM
6131 return 1;
6132 }
6133 }
6134
a8d14a88
CM
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6138 {
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6141 {
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6143 return 3;
6144 }
6145 }
6146
71400594
RS
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
df58fc94 6149 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6150 {
6151 unsigned int class1, class2;
252b5132 6152
71400594
RS
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6155 {
71400594
RS
6156 if (insn2 == NULL)
6157 return 1;
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6160 return 1;
252b5132 6161 }
71400594
RS
6162 }
6163
df58fc94 6164 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6165 {
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
67dc82bc 6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6171 {
85fcb30f 6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6173 return 1;
6174 }
6175
6176 /* Check for generic coprocessor hazards.
6177
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
43885403 6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6186 {
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6190 mask = fpr_write_mask (insn1);
6191 if (mask != 0)
252b5132 6192 {
4c260379 6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6194 return 1;
252b5132
RH
6195 }
6196 else
6197 {
71400594
RS
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 2;
6203
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6208 return 1;
252b5132
RH
6209 }
6210 }
6b76fefe 6211
71400594
RS
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6220 return 1;
6221 }
6b76fefe 6222
7361da2c
AB
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6225 and pause. */
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6229 return 1;
6230
71400594
RS
6231 return 0;
6232}
6b76fefe 6233
7d8e00cf
RS
6234/* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6238
6239static int
932d1a1b 6240nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6241 const struct mips_cl_insn *insn)
6242{
4c260379
RS
6243 int i, j;
6244 unsigned int mask;
7d8e00cf
RS
6245
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6248 if (insn != 0
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6252 return 0;
6253
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6257 {
6258 /* Extract the destination register. */
4c260379 6259 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6260
6261 /* No nops are needed if INSN reads that register. */
4c260379 6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6263 return 0;
6264
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
4c260379 6267 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6268 return 0;
6269
932d1a1b
RS
6270 if (i >= ignore)
6271 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6272 }
6273 return 0;
6274}
6275
134c0c8b
MR
6276#define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6279
6280/* Return the minimum alignment for this store instruction. */
6281
6282static int
6283fix_24k_align_to (const struct mips_opcode *mo)
6284{
6285 if (strcmp (mo->name, "sh") == 0)
6286 return 2;
6287
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6293 return 4;
6294
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6298 return 8;
6299
6300 /* sb, swl, swr */
6301 return 1;
6302}
6303
6304struct fix_24k_store_info
6305 {
6306 /* Immediate offset, if any, for this store instruction. */
6307 short off;
6308 /* Alignment required by this store instruction. */
6309 int align_to;
6310 /* True for register offsets. */
6311 int register_offset;
6312 };
6313
6314/* Comparison function used by qsort. */
6315
6316static int
6317fix_24k_sort (const void *a, const void *b)
6318{
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6321
6322 return (pos1->off - pos2->off);
6323}
6324
6325/* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6327
6328static bfd_boolean
6329fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6330 const struct mips_cl_insn *insn)
15be625d
CM
6331{
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6334 return FALSE;
6335
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6338 return TRUE;
6339}
6340
932d1a1b
RS
6341/* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6346
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6350
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6354 into the cache
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6357 * Store A
6358 * Store B
6359 * Store C
6360 * Zero, One or more instructions
6361 * Store D
6362
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
15be625d
CM
6372
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6377
932d1a1b 6378 The workarounds are:
15be625d 6379
932d1a1b
RS
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
3739860c 6383
15be625d 6384static int
932d1a1b 6385nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6386 const struct mips_cl_insn *insn)
6387{
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6390
932d1a1b
RS
6391 if (ignore >= 2)
6392 return 0;
6393
ab9794cf
RS
6394 /* If the previous instruction wasn't a store, there's nothing to
6395 worry about. */
15be625d
CM
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
ab9794cf
RS
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6401 if (!insn)
15be625d
CM
6402 return 1;
6403
ab9794cf
RS
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6407 return 0;
6408
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
ab9794cf 6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6413 return 1;
6414
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6418 return 1;
6419
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6421
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6424 to align bytes. */
6425
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6427 align = 8;
6428 else
6429 {
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6434 {
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6437 }
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6440 }
6441
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6445
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6449 return 0;
6450
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6454 return 0;
6455
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6459 return 0;
6460
6461 return 1;
6462}
6463
71400594 6464/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6465 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6468
6469 If INSN is null, return the worse-case number of nops for any
6470 instruction. */
bdaaa2e1 6471
71400594 6472static int
932d1a1b 6473nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6474 const struct mips_cl_insn *insn)
6475{
6476 int i, nops, tmp_nops;
bdaaa2e1 6477
71400594 6478 nops = 0;
932d1a1b 6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6480 {
91d6fa6a 6481 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
7d8e00cf 6485
df58fc94 6486 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6487 {
932d1a1b 6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6489 if (tmp_nops > nops)
6490 nops = tmp_nops;
6491 }
6492
df58fc94 6493 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6494 {
932d1a1b 6495 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
71400594
RS
6500 return nops;
6501}
252b5132 6502
71400594 6503/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6504 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
252b5132 6507
71400594 6508static int
932d1a1b
RS
6509nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
71400594
RS
6511{
6512 va_list args;
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6515 int nops;
6516
91d6fa6a 6517 va_start (args, hist);
71400594 6518 cursor = buffer + num_insns;
91d6fa6a 6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6522
932d1a1b 6523 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6524 va_end (args);
6525 return nops;
6526}
252b5132 6527
71400594
RS
6528/* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
252b5132 6530
71400594 6531static int
932d1a1b 6532nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6533 const struct mips_cl_insn *insn)
6534{
6535 int nops, tmp_nops;
60b63b72 6536
932d1a1b 6537 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6538 if (delayed_branch_p (insn))
71400594 6539 {
932d1a1b 6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6541 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6542 if (tmp_nops > nops)
6543 nops = tmp_nops;
6544 }
11625dd8 6545 else if (compact_branch_p (insn))
71400594 6546 {
932d1a1b 6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551 return nops;
6552}
6553
c67a084a
NC
6554/* Fix NOP issue: Replace nops by "or at,at,zero". */
6555
6556static void
6557fix_loongson2f_nop (struct mips_cl_insn * ip)
6558{
df58fc94 6559 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6562}
6563
6564/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6566
6567static void
6568fix_loongson2f_jump (struct mips_cl_insn * ip)
6569{
df58fc94 6570 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6574 {
6575 int sreg;
6576 expressionS ep;
6577
6578 if (! mips_opts.at)
6579 return;
6580
df58fc94 6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6583 return;
6584
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6591 }
6592}
6593
6594static void
6595fix_loongson2f (struct mips_cl_insn * ip)
6596{
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6599
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6602}
6603
a4e06468
RS
6604/* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6608 RELOC_TYPE. */
a4e06468
RS
6609
6610static bfd_boolean
e407c74b 6611can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6612 bfd_reloc_code_real_type *reloc_type)
a4e06468 6613{
2b0c8b40 6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6616 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6617
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6620 return FALSE;
6621
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6624 return FALSE;
6625
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6628 return FALSE;
6629
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6633
6634 .set noreorder
6635 lw $4,XXX
6636 .set reorder
6637 INSN
6638 bne $4,$0,foo
6639
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6643 return FALSE;
6644
87333bb7
MR
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6647 if (mips_opts.mips16 && history[0].fixp[0])
6648 return FALSE;
6649
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6655 return FALSE;
6656
6657 /* If the previous instruction is in a variant frag other than this
2309ddf2 6658 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
a4e06468
RS
6661 && history[0].frag
6662 && history[0].frag->fr_type == rs_machine_dependent)
6663 return FALSE;
6664
bcd530a7
RS
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6669 a delay slot. */
a4e06468 6670 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6672 return FALSE;
6673
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6677 return FALSE;
6678
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6682 return FALSE;
6683
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6689 return FALSE;
6690
9d5de888
CF
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6694 return FALSE;
6695
a4e06468
RS
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6700 return FALSE;
6701
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6706 return FALSE;
6707
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6713 return FALSE;
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6716 return FALSE;
6717
6718 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6720 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6721 return FALSE;
a4e06468 6722
df58fc94
RS
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6729 return FALSE;
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6733 return FALSE;
6734
e407c74b
NC
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
41065f5e 6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6745 /* Branch to same code fragment. */
41065f5e 6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6747 /* Can only calculate branch offset if value is known. */
41065f5e 6748 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6753 {
6754 int distance;
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
41065f5e 6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6758 if (distance <= 20)
6759 {
6760 int i;
6761 int rv;
6762
6763 rv = FALSE;
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6767 {
6768 if ((history[i].cleared_p)
41065f5e 6769 || delayed_branch_p (&history[i]))
e407c74b
NC
6770 {
6771 rv = TRUE;
6772 break;
6773 }
6774 }
6775 if (rv == FALSE)
6776 {
6777 /* Insert nop after branch to fix short loop. */
6778 return FALSE;
6779 }
6780 }
6781 }
6782
a4e06468
RS
6783 return TRUE;
6784}
6785
e407c74b
NC
6786/* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6788 RELOC_TYPE. */
a4e06468
RS
6789
6790static enum append_method
e407c74b 6791get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6792 bfd_reloc_code_real_type *reloc_type)
a4e06468 6793{
a4e06468
RS
6794 /* The relaxed version of a macro sequence must be inherently
6795 hazard-free. */
6796 if (mips_relax.sequence == 2)
6797 return APPEND_ADD;
6798
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6801 return APPEND_ADD;
6802
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6804 if (delayed_branch_p (ip))
a4e06468 6805 {
e407c74b
NC
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6808 return APPEND_SWAP;
6809
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
fc76e730 6812 && gpr_read_mask (ip) != 0)
a4e06468
RS
6813 return APPEND_ADD_COMPACT;
6814
6815 return APPEND_ADD_WITH_NOP;
6816 }
6817
a4e06468
RS
6818 return APPEND_ADD;
6819}
6820
ceb94aa5
RS
6821/* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6823
6824static void
6825find_altered_mips16_opcode (struct mips_cl_insn *ip)
6826{
6827 const struct mips_opcode *mo, *end;
6828
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6832 {
6833 ip->insn_mo = mo;
6834 return;
6835 }
6836 abort ();
6837}
6838
df58fc94
RS
6839/* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841#define MICROMIPS_LABEL_CHAR '\037'
6842static unsigned long micromips_target_label;
6843static char micromips_target_name[32];
6844
6845static char *
6846micromips_label_name (void)
6847{
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6850 unsigned long l;
6851 int i;
6852
6853 if (*p)
6854 return p;
6855
6856 i = 0;
6857 l = micromips_target_label;
6858#ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6860#endif
6861 *p++ = 'L';
6862 *p++ = MICROMIPS_LABEL_CHAR;
6863 do
6864 {
6865 symbol_name_temporary[i++] = l % 10 + '0';
6866 l /= 10;
6867 }
6868 while (l != 0);
6869 while (i > 0)
6870 *p++ = symbol_name_temporary[--i];
6871 *p = '\0';
6872
6873 return micromips_target_name;
6874}
6875
6876static void
6877micromips_label_expr (expressionS *label_expr)
6878{
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6882}
6883
6884static void
6885micromips_label_inc (void)
6886{
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6889}
6890
6891static void
6892micromips_add_label (void)
6893{
6894 symbolS *s;
6895
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
f3ded42a 6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6899}
6900
6901/* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6904
6905static bfd_reloc_code_real_type
6906micromips_map_reloc (bfd_reloc_code_real_type reloc)
6907{
6908 static const bfd_reloc_code_real_type relocs[][2] =
6909 {
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6938 };
6939 bfd_reloc_code_real_type r;
6940 size_t i;
6941
6942 if (!mips_opts.micromips)
6943 return reloc;
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6945 {
6946 r = relocs[i][0];
6947 if (r > reloc)
6948 return reloc;
6949 if (r == reloc)
6950 return relocs[i][1];
6951 }
6952 return reloc;
6953}
6954
b886a2ab
RS
6955/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6957
6958static bfd_boolean
6959calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6960 offsetT *result)
6961{
6962 switch (reloc)
6963 {
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6967 return TRUE;
6968
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_MICROMIPS_HI16_S:
6976 case BFD_RELOC_MIPS16_HI16_S:
6977 *result = ((operand + 0x8000) >> 16) & 0xffff;
6978 return TRUE;
6979
6980 case BFD_RELOC_HI16:
6981 case BFD_RELOC_MICROMIPS_HI16:
6982 case BFD_RELOC_MIPS16_HI16:
6983 *result = (operand >> 16) & 0xffff;
6984 return TRUE;
6985
6986 case BFD_RELOC_LO16:
6987 case BFD_RELOC_MICROMIPS_LO16:
6988 case BFD_RELOC_MIPS16_LO16:
6989 *result = operand & 0xffff;
6990 return TRUE;
6991
6992 case BFD_RELOC_UNUSED:
6993 *result = operand;
6994 return TRUE;
6995
6996 default:
6997 return FALSE;
6998 }
6999}
7000
71400594
RS
7001/* Output an instruction. IP is the instruction information.
7002 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7003 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7004 a macro expansion. */
71400594
RS
7005
7006static void
7007append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7008 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7009{
14fe068b 7010 unsigned long prev_pinfo2, pinfo;
71400594 7011 bfd_boolean relaxed_branch = FALSE;
a4e06468 7012 enum append_method method;
2309ddf2 7013 bfd_boolean relax32;
2b0c8b40 7014 int branch_disp;
71400594 7015
2309ddf2 7016 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7017 fix_loongson2f (ip);
7018
738f4d98 7019 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7020 file_ase_micromips |= mips_opts.micromips;
738f4d98 7021
df58fc94 7022 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7023 pinfo = ip->insn_mo->pinfo;
df58fc94
RS
7024
7025 if (mips_opts.micromips
7026 && !expansionp
7027 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7028 && micromips_insn_length (ip->insn_mo) != 2)
7029 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7031 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7032 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7033
15be625d
CM
7034 if (address_expr == NULL)
7035 ip->complete_p = 1;
b886a2ab
RS
7036 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7037 && reloc_type[1] == BFD_RELOC_UNUSED
7038 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7039 && address_expr->X_op == O_constant)
7040 {
15be625d
CM
7041 switch (*reloc_type)
7042 {
15be625d 7043 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7044 {
7045 int shift;
7046
17c6c9d9
MR
7047 /* Shift is 2, unusually, for microMIPS JALX. */
7048 shift = (mips_opts.micromips
7049 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7050 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7051 as_bad (_("jump to misaligned address (0x%lx)"),
7052 (unsigned long) address_expr->X_add_number);
7053 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7054 & 0x3ffffff);
335574df 7055 ip->complete_p = 1;
df58fc94 7056 }
15be625d
CM
7057 break;
7058
7059 case BFD_RELOC_MIPS16_JMP:
7060 if ((address_expr->X_add_number & 3) != 0)
7061 as_bad (_("jump to misaligned address (0x%lx)"),
7062 (unsigned long) address_expr->X_add_number);
7063 ip->insn_opcode |=
7064 (((address_expr->X_add_number & 0x7c0000) << 3)
7065 | ((address_expr->X_add_number & 0xf800000) >> 7)
7066 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7067 ip->complete_p = 1;
15be625d
CM
7068 break;
7069
7070 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7071 {
7072 int shift;
7073
7074 shift = mips_opts.micromips ? 1 : 2;
7075 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7076 as_bad (_("branch to misaligned address (0x%lx)"),
7077 (unsigned long) address_expr->X_add_number);
7078 if (!mips_relax_branch)
7079 {
7080 if ((address_expr->X_add_number + (1 << (shift + 15)))
7081 & ~((1 << (shift + 16)) - 1))
7082 as_bad (_("branch address range overflow (0x%lx)"),
7083 (unsigned long) address_expr->X_add_number);
7084 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7085 & 0xffff);
7086 }
df58fc94 7087 }
15be625d
CM
7088 break;
7089
7361da2c
AB
7090 case BFD_RELOC_MIPS_21_PCREL_S2:
7091 {
7092 int shift;
7093
7094 shift = 2;
7095 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7096 as_bad (_("branch to misaligned address (0x%lx)"),
7097 (unsigned long) address_expr->X_add_number);
7098 if ((address_expr->X_add_number + (1 << (shift + 20)))
7099 & ~((1 << (shift + 21)) - 1))
7100 as_bad (_("branch address range overflow (0x%lx)"),
7101 (unsigned long) address_expr->X_add_number);
7102 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7103 & 0x1fffff);
7104 }
7105 break;
7106
7107 case BFD_RELOC_MIPS_26_PCREL_S2:
7108 {
7109 int shift;
7110
7111 shift = 2;
7112 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7113 as_bad (_("branch to misaligned address (0x%lx)"),
7114 (unsigned long) address_expr->X_add_number);
7115 if ((address_expr->X_add_number + (1 << (shift + 25)))
7116 & ~((1 << (shift + 26)) - 1))
7117 as_bad (_("branch address range overflow (0x%lx)"),
7118 (unsigned long) address_expr->X_add_number);
7119 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7120 & 0x3ffffff);
7121 }
7122 break;
7123
15be625d 7124 default:
b886a2ab
RS
7125 {
7126 offsetT value;
7127
7128 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7129 &value))
7130 {
7131 ip->insn_opcode |= value & 0xffff;
7132 ip->complete_p = 1;
7133 }
7134 }
7135 break;
7136 }
15be625d
CM
7137 }
7138
71400594
RS
7139 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7140 {
7141 /* There are a lot of optimizations we could do that we don't.
7142 In particular, we do not, in general, reorder instructions.
7143 If you use gcc with optimization, it will reorder
7144 instructions and generally do much more optimization then we
7145 do here; repeating all that work in the assembler would only
7146 benefit hand written assembly code, and does not seem worth
7147 it. */
7148 int nops = (mips_optimize == 0
932d1a1b
RS
7149 ? nops_for_insn (0, history, NULL)
7150 : nops_for_insn_or_target (0, history, ip));
71400594 7151 if (nops > 0)
252b5132
RH
7152 {
7153 fragS *old_frag;
7154 unsigned long old_frag_offset;
7155 int i;
252b5132
RH
7156
7157 old_frag = frag_now;
7158 old_frag_offset = frag_now_fix ();
7159
7160 for (i = 0; i < nops; i++)
14fe068b
RS
7161 add_fixed_insn (NOP_INSN);
7162 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7163
7164 if (listing)
7165 {
7166 listing_prev_line ();
7167 /* We may be at the start of a variant frag. In case we
7168 are, make sure there is enough space for the frag
7169 after the frags created by listing_prev_line. The
7170 argument to frag_grow here must be at least as large
7171 as the argument to all other calls to frag_grow in
7172 this file. We don't have to worry about being in the
7173 middle of a variant frag, because the variants insert
7174 all needed nop instructions themselves. */
7175 frag_grow (40);
7176 }
7177
462427c4 7178 mips_move_text_labels ();
252b5132
RH
7179
7180#ifndef NO_ECOFF_DEBUGGING
7181 if (ECOFF_DEBUGGING)
7182 ecoff_fix_loc (old_frag, old_frag_offset);
7183#endif
7184 }
71400594
RS
7185 }
7186 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7187 {
932d1a1b
RS
7188 int nops;
7189
7190 /* Work out how many nops in prev_nop_frag are needed by IP,
7191 ignoring hazards generated by the first prev_nop_frag_since
7192 instructions. */
7193 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7194 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7195
71400594
RS
7196 /* Enforce NOPS as a minimum. */
7197 if (nops > prev_nop_frag_required)
7198 prev_nop_frag_required = nops;
252b5132 7199
71400594
RS
7200 if (prev_nop_frag_holds == prev_nop_frag_required)
7201 {
7202 /* Settle for the current number of nops. Update the history
7203 accordingly (for the benefit of any future .set reorder code). */
7204 prev_nop_frag = NULL;
7205 insert_into_history (prev_nop_frag_since,
7206 prev_nop_frag_holds, NOP_INSN);
7207 }
7208 else
7209 {
7210 /* Allow this instruction to replace one of the nops that was
7211 tentatively added to prev_nop_frag. */
df58fc94 7212 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7213 prev_nop_frag_holds--;
7214 prev_nop_frag_since++;
252b5132
RH
7215 }
7216 }
7217
e407c74b 7218 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7219 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7220
e410add4
RS
7221 dwarf2_emit_insn (0);
7222 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7223 so "move" the instruction address accordingly.
7224
7225 Also, it doesn't seem appropriate for the assembler to reorder .loc
7226 entries. If this instruction is a branch that we are going to swap
7227 with the previous instruction, the two instructions should be
7228 treated as a unit, and the debug information for both instructions
7229 should refer to the start of the branch sequence. Using the
7230 current position is certainly wrong when swapping a 32-bit branch
7231 and a 16-bit delay slot, since the current position would then be
7232 in the middle of a branch. */
7233 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7234
df58fc94
RS
7235 relax32 = (mips_relax_branch
7236 /* Don't try branch relaxation within .set nomacro, or within
7237 .set noat if we use $at for PIC computations. If it turns
7238 out that the branch was out-of-range, we'll get an error. */
7239 && !mips_opts.warn_about_macros
7240 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7241 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7242 as they have no complementing branches. */
7243 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7244
7245 if (!HAVE_CODE_COMPRESSION
7246 && address_expr
7247 && relax32
0b25d3e6 7248 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7249 && delayed_branch_p (ip))
4a6a3df4 7250 {
895921c9 7251 relaxed_branch = TRUE;
1e915849
RS
7252 add_relaxed_insn (ip, (relaxed_branch_length
7253 (NULL, NULL,
11625dd8
RS
7254 uncond_branch_p (ip) ? -1
7255 : branch_likely_p (ip) ? 1
1e915849
RS
7256 : 0)), 4,
7257 RELAX_BRANCH_ENCODE
66b3e8da 7258 (AT,
11625dd8
RS
7259 uncond_branch_p (ip),
7260 branch_likely_p (ip),
1e915849
RS
7261 pinfo & INSN_WRITE_GPR_31,
7262 0),
7263 address_expr->X_add_symbol,
7264 address_expr->X_add_number);
4a6a3df4
AO
7265 *reloc_type = BFD_RELOC_UNUSED;
7266 }
df58fc94
RS
7267 else if (mips_opts.micromips
7268 && address_expr
7269 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7270 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7271 && (delayed_branch_p (ip) || compact_branch_p (ip))
7272 /* Don't try branch relaxation when users specify
7273 16-bit/32-bit instructions. */
7274 && !forced_insn_length)
df58fc94
RS
7275 {
7276 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7277 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8
RS
7278 int uncond = uncond_branch_p (ip) ? -1 : 0;
7279 int compact = compact_branch_p (ip);
df58fc94
RS
7280 int al = pinfo & INSN_WRITE_GPR_31;
7281 int length32;
7282
7283 gas_assert (address_expr != NULL);
7284 gas_assert (!mips_relax.sequence);
7285
2b0c8b40 7286 relaxed_branch = TRUE;
df58fc94
RS
7287 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7288 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
40209cad
MR
7289 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7290 relax32, 0, 0),
df58fc94
RS
7291 address_expr->X_add_symbol,
7292 address_expr->X_add_number);
7293 *reloc_type = BFD_RELOC_UNUSED;
7294 }
7295 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132
RH
7296 {
7297 /* We need to set up a variant frag. */
df58fc94 7298 gas_assert (address_expr != NULL);
1e915849
RS
7299 add_relaxed_insn (ip, 4, 0,
7300 RELAX_MIPS16_ENCODE
7301 (*reloc_type - BFD_RELOC_UNUSED,
df58fc94 7302 forced_insn_length == 2, forced_insn_length == 4,
11625dd8 7303 delayed_branch_p (&history[0]),
1e915849
RS
7304 history[0].mips16_absolute_jump_p),
7305 make_expr_symbol (address_expr), 0);
252b5132 7306 }
5c04167a 7307 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7308 {
11625dd8 7309 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7310 /* Make sure there is enough room to swap this instruction with
7311 a following jump instruction. */
7312 frag_grow (6);
1e915849 7313 add_fixed_insn (ip);
252b5132
RH
7314 }
7315 else
7316 {
7317 if (mips_opts.mips16
7318 && mips_opts.noreorder
11625dd8 7319 && delayed_branch_p (&history[0]))
252b5132
RH
7320 as_warn (_("extended instruction in delay slot"));
7321
4d7206a2
RS
7322 if (mips_relax.sequence)
7323 {
7324 /* If we've reached the end of this frag, turn it into a variant
7325 frag and record the information for the instructions we've
7326 written so far. */
7327 if (frag_room () < 4)
7328 relax_close_frag ();
df58fc94 7329 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7330 }
7331
584892a6 7332 if (mips_relax.sequence != 2)
df58fc94
RS
7333 {
7334 if (mips_macro_warning.first_insn_sizes[0] == 0)
7335 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7336 mips_macro_warning.sizes[0] += insn_length (ip);
7337 mips_macro_warning.insns[0]++;
7338 }
584892a6 7339 if (mips_relax.sequence != 1)
df58fc94
RS
7340 {
7341 if (mips_macro_warning.first_insn_sizes[1] == 0)
7342 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7343 mips_macro_warning.sizes[1] += insn_length (ip);
7344 mips_macro_warning.insns[1]++;
7345 }
584892a6 7346
1e915849
RS
7347 if (mips_opts.mips16)
7348 {
7349 ip->fixed_p = 1;
7350 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7351 }
7352 add_fixed_insn (ip);
252b5132
RH
7353 }
7354
9fe77896 7355 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7356 {
df58fc94 7357 bfd_reloc_code_real_type final_type[3];
2309ddf2 7358 reloc_howto_type *howto0;
9fe77896
RS
7359 reloc_howto_type *howto;
7360 int i;
34ce925e 7361
df58fc94
RS
7362 /* Perform any necessary conversion to microMIPS relocations
7363 and find out how many relocations there actually are. */
7364 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7365 final_type[i] = micromips_map_reloc (reloc_type[i]);
7366
9fe77896
RS
7367 /* In a compound relocation, it is the final (outermost)
7368 operator that determines the relocated field. */
2309ddf2 7369 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7370 if (!howto)
7371 abort ();
2309ddf2
MR
7372
7373 if (i > 1)
7374 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7375 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7376 bfd_get_reloc_size (howto),
7377 address_expr,
2309ddf2
MR
7378 howto0 && howto0->pc_relative,
7379 final_type[0]);
9fe77896
RS
7380
7381 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7382 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7383 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7384
7385 /* These relocations can have an addend that won't fit in
7386 4 octets for 64bit assembly. */
bad1aba3 7387 if (GPR_SIZE == 64
9fe77896
RS
7388 && ! howto->partial_inplace
7389 && (reloc_type[0] == BFD_RELOC_16
7390 || reloc_type[0] == BFD_RELOC_32
7391 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7392 || reloc_type[0] == BFD_RELOC_GPREL16
7393 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7394 || reloc_type[0] == BFD_RELOC_GPREL32
7395 || reloc_type[0] == BFD_RELOC_64
7396 || reloc_type[0] == BFD_RELOC_CTOR
7397 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7398 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7399 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7400 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7401 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7402 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7403 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7404 || hi16_reloc_p (reloc_type[0])
7405 || lo16_reloc_p (reloc_type[0])))
7406 ip->fixp[0]->fx_no_overflow = 1;
7407
ddaf2c41
MR
7408 /* These relocations can have an addend that won't fit in 2 octets. */
7409 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7410 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7411 ip->fixp[0]->fx_no_overflow = 1;
7412
9fe77896
RS
7413 if (mips_relax.sequence)
7414 {
7415 if (mips_relax.first_fixup == 0)
7416 mips_relax.first_fixup = ip->fixp[0];
7417 }
7418 else if (reloc_needs_lo_p (*reloc_type))
7419 {
7420 struct mips_hi_fixup *hi_fixup;
7421
7422 /* Reuse the last entry if it already has a matching %lo. */
7423 hi_fixup = mips_hi_fixup_list;
7424 if (hi_fixup == 0
7425 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7426 {
325801bd 7427 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7428 hi_fixup->next = mips_hi_fixup_list;
7429 mips_hi_fixup_list = hi_fixup;
4d7206a2 7430 }
9fe77896
RS
7431 hi_fixup->fixp = ip->fixp[0];
7432 hi_fixup->seg = now_seg;
7433 }
252b5132 7434
9fe77896
RS
7435 /* Add fixups for the second and third relocations, if given.
7436 Note that the ABI allows the second relocation to be
7437 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7438 moment we only use RSS_UNDEF, but we could add support
7439 for the others if it ever becomes necessary. */
7440 for (i = 1; i < 3; i++)
7441 if (reloc_type[i] != BFD_RELOC_UNUSED)
7442 {
7443 ip->fixp[i] = fix_new (ip->frag, ip->where,
7444 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7445 FALSE, final_type[i]);
f6688943 7446
9fe77896
RS
7447 /* Use fx_tcbit to mark compound relocs. */
7448 ip->fixp[0]->fx_tcbit = 1;
7449 ip->fixp[i]->fx_tcbit = 1;
7450 }
252b5132 7451 }
1e915849 7452 install_insn (ip);
252b5132
RH
7453
7454 /* Update the register mask information. */
4c260379
RS
7455 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7456 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7457
a4e06468 7458 switch (method)
252b5132 7459 {
a4e06468
RS
7460 case APPEND_ADD:
7461 insert_into_history (0, 1, ip);
7462 break;
7463
7464 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7465 {
7466 struct mips_cl_insn *nop;
7467
7468 insert_into_history (0, 1, ip);
7469 nop = get_delay_slot_nop (ip);
7470 add_fixed_insn (nop);
7471 insert_into_history (0, 1, nop);
7472 if (mips_relax.sequence)
7473 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7474 }
a4e06468
RS
7475 break;
7476
7477 case APPEND_ADD_COMPACT:
7478 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7479 gas_assert (mips_opts.mips16);
7480 ip->insn_opcode |= 0x0080;
7481 find_altered_mips16_opcode (ip);
7482 install_insn (ip);
7483 insert_into_history (0, 1, ip);
7484 break;
7485
7486 case APPEND_SWAP:
7487 {
7488 struct mips_cl_insn delay = history[0];
7489 if (mips_opts.mips16)
7490 {
7491 know (delay.frag == ip->frag);
7492 move_insn (ip, delay.frag, delay.where);
7493 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7494 }
464ab0e5 7495 else if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7496 {
7497 /* Add the delay slot instruction to the end of the
7498 current frag and shrink the fixed part of the
7499 original frag. If the branch occupies the tail of
7500 the latter, move it backwards to cover the gap. */
2b0c8b40 7501 delay.frag->fr_fix -= branch_disp;
a4e06468 7502 if (delay.frag == ip->frag)
2b0c8b40 7503 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7504 add_fixed_insn (&delay);
7505 }
7506 else
7507 {
2b0c8b40
MR
7508 move_insn (&delay, ip->frag,
7509 ip->where - branch_disp + insn_length (ip));
a4e06468
RS
7510 move_insn (ip, history[0].frag, history[0].where);
7511 }
7512 history[0] = *ip;
7513 delay.fixed_p = 1;
7514 insert_into_history (0, 1, &delay);
7515 }
7516 break;
252b5132
RH
7517 }
7518
13408f1e 7519 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7520 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7521 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7522 {
7523 unsigned int i;
7524
79850f26 7525 mips_no_prev_insn ();
13408f1e 7526
e407c74b 7527 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7528 history[i].cleared_p = 1;
e407c74b
NC
7529 }
7530
df58fc94
RS
7531 /* We need to emit a label at the end of branch-likely macros. */
7532 if (emit_branch_likely_macro)
7533 {
7534 emit_branch_likely_macro = FALSE;
7535 micromips_add_label ();
7536 }
7537
252b5132
RH
7538 /* We just output an insn, so the next one doesn't have a label. */
7539 mips_clear_insn_labels ();
252b5132
RH
7540}
7541
e407c74b
NC
7542/* Forget that there was any previous instruction or label.
7543 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7544
7545static void
7d10b47d 7546mips_no_prev_insn (void)
252b5132 7547{
7d10b47d
RS
7548 prev_nop_frag = NULL;
7549 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7550 mips_clear_insn_labels ();
7551}
7552
7d10b47d
RS
7553/* This function must be called before we emit something other than
7554 instructions. It is like mips_no_prev_insn except that it inserts
7555 any NOPS that might be needed by previous instructions. */
252b5132 7556
7d10b47d
RS
7557void
7558mips_emit_delays (void)
252b5132
RH
7559{
7560 if (! mips_opts.noreorder)
7561 {
932d1a1b 7562 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7563 if (nops > 0)
7564 {
7d10b47d
RS
7565 while (nops-- > 0)
7566 add_fixed_insn (NOP_INSN);
462427c4 7567 mips_move_text_labels ();
7d10b47d
RS
7568 }
7569 }
7570 mips_no_prev_insn ();
7571}
7572
7573/* Start a (possibly nested) noreorder block. */
7574
7575static void
7576start_noreorder (void)
7577{
7578 if (mips_opts.noreorder == 0)
7579 {
7580 unsigned int i;
7581 int nops;
7582
7583 /* None of the instructions before the .set noreorder can be moved. */
7584 for (i = 0; i < ARRAY_SIZE (history); i++)
7585 history[i].fixed_p = 1;
7586
7587 /* Insert any nops that might be needed between the .set noreorder
7588 block and the previous instructions. We will later remove any
7589 nops that turn out not to be needed. */
932d1a1b 7590 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7591 if (nops > 0)
7592 {
7593 if (mips_optimize != 0)
252b5132
RH
7594 {
7595 /* Record the frag which holds the nop instructions, so
7596 that we can remove them if we don't need them. */
df58fc94 7597 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7598 prev_nop_frag = frag_now;
7599 prev_nop_frag_holds = nops;
7600 prev_nop_frag_required = 0;
7601 prev_nop_frag_since = 0;
7602 }
7603
7604 for (; nops > 0; --nops)
1e915849 7605 add_fixed_insn (NOP_INSN);
252b5132 7606
7d10b47d
RS
7607 /* Move on to a new frag, so that it is safe to simply
7608 decrease the size of prev_nop_frag. */
7609 frag_wane (frag_now);
7610 frag_new (0);
462427c4 7611 mips_move_text_labels ();
252b5132 7612 }
df58fc94 7613 mips_mark_labels ();
7d10b47d 7614 mips_clear_insn_labels ();
252b5132 7615 }
7d10b47d
RS
7616 mips_opts.noreorder++;
7617 mips_any_noreorder = 1;
7618}
252b5132 7619
7d10b47d 7620/* End a nested noreorder block. */
252b5132 7621
7d10b47d
RS
7622static void
7623end_noreorder (void)
7624{
7625 mips_opts.noreorder--;
7626 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7627 {
7628 /* Commit to inserting prev_nop_frag_required nops and go back to
7629 handling nop insertion the .set reorder way. */
7630 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7631 * NOP_INSN_SIZE);
7d10b47d
RS
7632 insert_into_history (prev_nop_frag_since,
7633 prev_nop_frag_required, NOP_INSN);
7634 prev_nop_frag = NULL;
7635 }
252b5132
RH
7636}
7637
97d87491
RS
7638/* Sign-extend 32-bit mode constants that have bit 31 set and all
7639 higher bits unset. */
7640
7641static void
7642normalize_constant_expr (expressionS *ex)
7643{
7644 if (ex->X_op == O_constant
7645 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7646 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7647 - 0x80000000);
7648}
7649
7650/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7651 all higher bits unset. */
7652
7653static void
7654normalize_address_expr (expressionS *ex)
7655{
7656 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7657 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7658 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7659 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7660 - 0x80000000);
7661}
7662
7663/* Try to match TOKENS against OPCODE, storing the result in INSN.
7664 Return true if the match was successful.
7665
7666 OPCODE_EXTRA is a value that should be ORed into the opcode
7667 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7668 there are more alternatives after OPCODE and SOFT_MATCH is
7669 as for mips_arg_info. */
7670
7671static bfd_boolean
7672match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7673 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7674 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7675{
7676 const char *args;
7677 struct mips_arg_info arg;
7678 const struct mips_operand *operand;
7679 char c;
7680
7681 imm_expr.X_op = O_absent;
97d87491
RS
7682 offset_expr.X_op = O_absent;
7683 offset_reloc[0] = BFD_RELOC_UNUSED;
7684 offset_reloc[1] = BFD_RELOC_UNUSED;
7685 offset_reloc[2] = BFD_RELOC_UNUSED;
7686
7687 create_insn (insn, opcode);
60f20e8b
RS
7688 /* When no opcode suffix is specified, assume ".xyzw". */
7689 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7690 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7691 else
7692 insn->insn_opcode |= opcode_extra;
97d87491
RS
7693 memset (&arg, 0, sizeof (arg));
7694 arg.insn = insn;
7695 arg.token = tokens;
7696 arg.argnum = 1;
7697 arg.last_regno = ILLEGAL_REG;
7698 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7699 arg.lax_match = lax_match;
97d87491
RS
7700 for (args = opcode->args;; ++args)
7701 {
7702 if (arg.token->type == OT_END)
7703 {
7704 /* Handle unary instructions in which only one operand is given.
7705 The source is then the same as the destination. */
7706 if (arg.opnum == 1 && *args == ',')
7707 {
7708 operand = (mips_opts.micromips
7709 ? decode_micromips_operand (args + 1)
7710 : decode_mips_operand (args + 1));
7711 if (operand && mips_optional_operand_p (operand))
7712 {
7713 arg.token = tokens;
7714 arg.argnum = 1;
7715 continue;
7716 }
7717 }
7718
7719 /* Treat elided base registers as $0. */
7720 if (strcmp (args, "(b)") == 0)
7721 args += 3;
7722
7723 if (args[0] == '+')
7724 switch (args[1])
7725 {
7726 case 'K':
7727 case 'N':
7728 /* The register suffix is optional. */
7729 args += 2;
7730 break;
7731 }
7732
7733 /* Fail the match if there were too few operands. */
7734 if (*args)
7735 return FALSE;
7736
7737 /* Successful match. */
60f20e8b
RS
7738 if (!complete_p)
7739 return TRUE;
e3de51ce 7740 clear_insn_error ();
97d87491
RS
7741 if (arg.dest_regno == arg.last_regno
7742 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7743 {
7744 if (arg.opnum == 2)
e3de51ce 7745 set_insn_error
1661c76c 7746 (0, _("source and destination must be different"));
97d87491 7747 else if (arg.last_regno == 31)
e3de51ce 7748 set_insn_error
1661c76c 7749 (0, _("a destination register must be supplied"));
97d87491 7750 }
173d3447
CF
7751 else if (arg.last_regno == 31
7752 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7753 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7754 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7755 check_completed_insn (&arg);
7756 return TRUE;
7757 }
7758
7759 /* Fail the match if the line has too many operands. */
7760 if (*args == 0)
7761 return FALSE;
7762
7763 /* Handle characters that need to match exactly. */
7764 if (*args == '(' || *args == ')' || *args == ',')
7765 {
7766 if (match_char (&arg, *args))
7767 continue;
7768 return FALSE;
7769 }
7770 if (*args == '#')
7771 {
7772 ++args;
7773 if (arg.token->type == OT_DOUBLE_CHAR
7774 && arg.token->u.ch == *args)
7775 {
7776 ++arg.token;
7777 continue;
7778 }
7779 return FALSE;
7780 }
7781
7782 /* Handle special macro operands. Work out the properties of
7783 other operands. */
7784 arg.opnum += 1;
97d87491
RS
7785 switch (*args)
7786 {
7361da2c
AB
7787 case '-':
7788 switch (args[1])
7789 {
7790 case 'A':
7791 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7792 break;
7793
7794 case 'B':
7795 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7796 break;
7797 }
7798 break;
7799
97d87491
RS
7800 case '+':
7801 switch (args[1])
7802 {
97d87491
RS
7803 case 'i':
7804 *offset_reloc = BFD_RELOC_MIPS_JMP;
7805 break;
7361da2c
AB
7806
7807 case '\'':
7808 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7809 break;
7810
7811 case '\"':
7812 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7813 break;
97d87491
RS
7814 }
7815 break;
7816
97d87491 7817 case 'I':
1a00e612
RS
7818 if (!match_const_int (&arg, &imm_expr.X_add_number))
7819 return FALSE;
7820 imm_expr.X_op = O_constant;
bad1aba3 7821 if (GPR_SIZE == 32)
97d87491
RS
7822 normalize_constant_expr (&imm_expr);
7823 continue;
7824
7825 case 'A':
7826 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7827 {
7828 /* Assume that the offset has been elided and that what
7829 we saw was a base register. The match will fail later
7830 if that assumption turns out to be wrong. */
7831 offset_expr.X_op = O_constant;
7832 offset_expr.X_add_number = 0;
7833 }
97d87491 7834 else
1a00e612
RS
7835 {
7836 if (!match_expression (&arg, &offset_expr, offset_reloc))
7837 return FALSE;
7838 normalize_address_expr (&offset_expr);
7839 }
97d87491
RS
7840 continue;
7841
7842 case 'F':
7843 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7844 8, TRUE))
1a00e612 7845 return FALSE;
97d87491
RS
7846 continue;
7847
7848 case 'L':
7849 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7850 8, FALSE))
1a00e612 7851 return FALSE;
97d87491
RS
7852 continue;
7853
7854 case 'f':
7855 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7856 4, TRUE))
1a00e612 7857 return FALSE;
97d87491
RS
7858 continue;
7859
7860 case 'l':
7861 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7862 4, FALSE))
1a00e612 7863 return FALSE;
97d87491
RS
7864 continue;
7865
97d87491
RS
7866 case 'p':
7867 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7868 break;
7869
7870 case 'a':
7871 *offset_reloc = BFD_RELOC_MIPS_JMP;
7872 break;
7873
7874 case 'm':
7875 gas_assert (mips_opts.micromips);
7876 c = args[1];
7877 switch (c)
7878 {
7879 case 'D':
7880 case 'E':
7881 if (!forced_insn_length)
7882 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7883 else if (c == 'D')
7884 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7885 else
7886 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7887 break;
7888 }
7889 break;
7890 }
7891
7892 operand = (mips_opts.micromips
7893 ? decode_micromips_operand (args)
7894 : decode_mips_operand (args));
7895 if (!operand)
7896 abort ();
7897
7898 /* Skip prefixes. */
7361da2c 7899 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
7900 args++;
7901
7902 if (mips_optional_operand_p (operand)
7903 && args[1] == ','
7904 && (arg.token[0].type != OT_REG
7905 || arg.token[1].type == OT_END))
7906 {
7907 /* Assume that the register has been elided and is the
7908 same as the first operand. */
7909 arg.token = tokens;
7910 arg.argnum = 1;
7911 }
7912
7913 if (!match_operand (&arg, operand))
7914 return FALSE;
7915 }
7916}
7917
7918/* Like match_insn, but for MIPS16. */
7919
7920static bfd_boolean
7921match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 7922 struct mips_operand_token *tokens)
97d87491
RS
7923{
7924 const char *args;
7925 const struct mips_operand *operand;
7926 const struct mips_operand *ext_operand;
7927 struct mips_arg_info arg;
7928 int relax_char;
7929
7930 create_insn (insn, opcode);
7931 imm_expr.X_op = O_absent;
97d87491
RS
7932 offset_expr.X_op = O_absent;
7933 offset_reloc[0] = BFD_RELOC_UNUSED;
7934 offset_reloc[1] = BFD_RELOC_UNUSED;
7935 offset_reloc[2] = BFD_RELOC_UNUSED;
7936 relax_char = 0;
7937
7938 memset (&arg, 0, sizeof (arg));
7939 arg.insn = insn;
7940 arg.token = tokens;
7941 arg.argnum = 1;
7942 arg.last_regno = ILLEGAL_REG;
7943 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
7944 relax_char = 0;
7945 for (args = opcode->args;; ++args)
7946 {
7947 int c;
7948
7949 if (arg.token->type == OT_END)
7950 {
7951 offsetT value;
7952
7953 /* Handle unary instructions in which only one operand is given.
7954 The source is then the same as the destination. */
7955 if (arg.opnum == 1 && *args == ',')
7956 {
7957 operand = decode_mips16_operand (args[1], FALSE);
7958 if (operand && mips_optional_operand_p (operand))
7959 {
7960 arg.token = tokens;
7961 arg.argnum = 1;
7962 continue;
7963 }
7964 }
7965
7966 /* Fail the match if there were too few operands. */
7967 if (*args)
7968 return FALSE;
7969
7970 /* Successful match. Stuff the immediate value in now, if
7971 we can. */
e3de51ce 7972 clear_insn_error ();
97d87491
RS
7973 if (opcode->pinfo == INSN_MACRO)
7974 {
7975 gas_assert (relax_char == 0 || relax_char == 'p');
7976 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7977 }
7978 else if (relax_char
7979 && offset_expr.X_op == O_constant
7980 && calculate_reloc (*offset_reloc,
7981 offset_expr.X_add_number,
7982 &value))
7983 {
7984 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7985 forced_insn_length, &insn->insn_opcode);
7986 offset_expr.X_op = O_absent;
7987 *offset_reloc = BFD_RELOC_UNUSED;
7988 }
7989 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7990 {
7991 if (forced_insn_length == 2)
e3de51ce 7992 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
7993 forced_insn_length = 4;
7994 insn->insn_opcode |= MIPS16_EXTEND;
7995 }
7996 else if (relax_char)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7998
7999 check_completed_insn (&arg);
8000 return TRUE;
8001 }
8002
8003 /* Fail the match if the line has too many operands. */
8004 if (*args == 0)
8005 return FALSE;
8006
8007 /* Handle characters that need to match exactly. */
8008 if (*args == '(' || *args == ')' || *args == ',')
8009 {
8010 if (match_char (&arg, *args))
8011 continue;
8012 return FALSE;
8013 }
8014
8015 arg.opnum += 1;
8016 c = *args;
8017 switch (c)
8018 {
8019 case 'p':
8020 case 'q':
8021 case 'A':
8022 case 'B':
8023 case 'E':
8024 relax_char = c;
8025 break;
8026
8027 case 'I':
1a00e612
RS
8028 if (!match_const_int (&arg, &imm_expr.X_add_number))
8029 return FALSE;
8030 imm_expr.X_op = O_constant;
bad1aba3 8031 if (GPR_SIZE == 32)
97d87491
RS
8032 normalize_constant_expr (&imm_expr);
8033 continue;
8034
8035 case 'a':
8036 case 'i':
8037 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8038 insn->insn_opcode <<= 16;
8039 break;
8040 }
8041
8042 operand = decode_mips16_operand (c, FALSE);
8043 if (!operand)
8044 abort ();
8045
8046 /* '6' is a special case. It is used for BREAK and SDBBP,
8047 whose operands are only meaningful to the software that decodes
8048 them. This means that there is no architectural reason why
8049 they cannot be prefixed by EXTEND, but in practice,
8050 exception handlers will only look at the instruction
8051 itself. We therefore allow '6' to be extended when
8052 disassembling but not when assembling. */
8053 if (operand->type != OP_PCREL && c != '6')
8054 {
8055 ext_operand = decode_mips16_operand (c, TRUE);
8056 if (operand != ext_operand)
8057 {
8058 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8059 {
8060 offset_expr.X_op = O_constant;
8061 offset_expr.X_add_number = 0;
8062 relax_char = c;
8063 continue;
8064 }
8065
8066 /* We need the OT_INTEGER check because some MIPS16
8067 immediate variants are listed before the register ones. */
8068 if (arg.token->type != OT_INTEGER
8069 || !match_expression (&arg, &offset_expr, offset_reloc))
8070 return FALSE;
8071
8072 /* '8' is used for SLTI(U) and has traditionally not
8073 been allowed to take relocation operators. */
8074 if (offset_reloc[0] != BFD_RELOC_UNUSED
8075 && (ext_operand->size != 16 || c == '8'))
8076 return FALSE;
8077
8078 relax_char = c;
8079 continue;
8080 }
8081 }
8082
8083 if (mips_optional_operand_p (operand)
8084 && args[1] == ','
8085 && (arg.token[0].type != OT_REG
8086 || arg.token[1].type == OT_END))
8087 {
8088 /* Assume that the register has been elided and is the
8089 same as the first operand. */
8090 arg.token = tokens;
8091 arg.argnum = 1;
8092 }
8093
8094 if (!match_operand (&arg, operand))
8095 return FALSE;
8096 }
8097}
8098
60f20e8b
RS
8099/* Record that the current instruction is invalid for the current ISA. */
8100
8101static void
8102match_invalid_for_isa (void)
8103{
8104 set_insn_error_ss
1661c76c 8105 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8106 mips_cpu_info_from_arch (mips_opts.arch)->name,
8107 mips_cpu_info_from_isa (mips_opts.isa)->name);
8108}
8109
8110/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8111 Return true if a definite match or failure was found, storing any match
8112 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8113 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8114 tried and failed to match under normal conditions and now want to try a
8115 more relaxed match. */
8116
8117static bfd_boolean
8118match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8119 const struct mips_opcode *past, struct mips_operand_token *tokens,
8120 int opcode_extra, bfd_boolean lax_match)
8121{
8122 const struct mips_opcode *opcode;
8123 const struct mips_opcode *invalid_delay_slot;
8124 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8125
8126 /* Search for a match, ignoring alternatives that don't satisfy the
8127 current ISA or forced_length. */
8128 invalid_delay_slot = 0;
8129 seen_valid_for_isa = FALSE;
8130 seen_valid_for_size = FALSE;
8131 opcode = first;
8132 do
8133 {
8134 gas_assert (strcmp (opcode->name, first->name) == 0);
8135 if (is_opcode_valid (opcode))
8136 {
8137 seen_valid_for_isa = TRUE;
8138 if (is_size_valid (opcode))
8139 {
8140 bfd_boolean delay_slot_ok;
8141
8142 seen_valid_for_size = TRUE;
8143 delay_slot_ok = is_delay_slot_valid (opcode);
8144 if (match_insn (insn, opcode, tokens, opcode_extra,
8145 lax_match, delay_slot_ok))
8146 {
8147 if (!delay_slot_ok)
8148 {
8149 if (!invalid_delay_slot)
8150 invalid_delay_slot = opcode;
8151 }
8152 else
8153 return TRUE;
8154 }
8155 }
8156 }
8157 ++opcode;
8158 }
8159 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8160
8161 /* If the only matches we found had the wrong length for the delay slot,
8162 pick the first such match. We'll issue an appropriate warning later. */
8163 if (invalid_delay_slot)
8164 {
8165 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8166 lax_match, TRUE))
8167 return TRUE;
8168 abort ();
8169 }
8170
8171 /* Handle the case where we didn't try to match an instruction because
8172 all the alternatives were incompatible with the current ISA. */
8173 if (!seen_valid_for_isa)
8174 {
8175 match_invalid_for_isa ();
8176 return TRUE;
8177 }
8178
8179 /* Handle the case where we didn't try to match an instruction because
8180 all the alternatives were of the wrong size. */
8181 if (!seen_valid_for_size)
8182 {
8183 if (mips_opts.insn32)
1661c76c 8184 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8185 else
8186 set_insn_error_i
1661c76c 8187 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8188 8 * forced_insn_length);
8189 return TRUE;
8190 }
8191
8192 return FALSE;
8193}
8194
8195/* Like match_insns, but for MIPS16. */
8196
8197static bfd_boolean
8198match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8199 struct mips_operand_token *tokens)
8200{
8201 const struct mips_opcode *opcode;
8202 bfd_boolean seen_valid_for_isa;
8203
8204 /* Search for a match, ignoring alternatives that don't satisfy the
8205 current ISA. There are no separate entries for extended forms so
8206 we deal with forced_length later. */
8207 seen_valid_for_isa = FALSE;
8208 opcode = first;
8209 do
8210 {
8211 gas_assert (strcmp (opcode->name, first->name) == 0);
8212 if (is_opcode_valid_16 (opcode))
8213 {
8214 seen_valid_for_isa = TRUE;
8215 if (match_mips16_insn (insn, opcode, tokens))
8216 return TRUE;
8217 }
8218 ++opcode;
8219 }
8220 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8221 && strcmp (opcode->name, first->name) == 0);
8222
8223 /* Handle the case where we didn't try to match an instruction because
8224 all the alternatives were incompatible with the current ISA. */
8225 if (!seen_valid_for_isa)
8226 {
8227 match_invalid_for_isa ();
8228 return TRUE;
8229 }
8230
8231 return FALSE;
8232}
8233
584892a6
RS
8234/* Set up global variables for the start of a new macro. */
8235
8236static void
8237macro_start (void)
8238{
8239 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8240 memset (&mips_macro_warning.first_insn_sizes, 0,
8241 sizeof (mips_macro_warning.first_insn_sizes));
8242 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8243 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8244 && delayed_branch_p (&history[0]));
df58fc94
RS
8245 switch (history[0].insn_mo->pinfo2
8246 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8247 {
8248 case INSN2_BRANCH_DELAY_32BIT:
8249 mips_macro_warning.delay_slot_length = 4;
8250 break;
8251 case INSN2_BRANCH_DELAY_16BIT:
8252 mips_macro_warning.delay_slot_length = 2;
8253 break;
8254 default:
8255 mips_macro_warning.delay_slot_length = 0;
8256 break;
8257 }
8258 mips_macro_warning.first_frag = NULL;
584892a6
RS
8259}
8260
df58fc94
RS
8261/* Given that a macro is longer than one instruction or of the wrong size,
8262 return the appropriate warning for it. Return null if no warning is
8263 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8264 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8265 and RELAX_NOMACRO. */
584892a6
RS
8266
8267static const char *
8268macro_warning (relax_substateT subtype)
8269{
8270 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8271 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8272 " in a branch delay slot");
8273 else if (subtype & RELAX_NOMACRO)
1661c76c 8274 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8275 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8276 | RELAX_DELAY_SLOT_SIZE_SECOND))
8277 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8278 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8279 " in a 16-bit branch delay slot")
1661c76c 8280 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8281 " in a 32-bit branch delay slot"));
584892a6
RS
8282 else
8283 return 0;
8284}
8285
8286/* Finish up a macro. Emit warnings as appropriate. */
8287
8288static void
8289macro_end (void)
8290{
df58fc94
RS
8291 /* Relaxation warning flags. */
8292 relax_substateT subtype = 0;
8293
8294 /* Check delay slot size requirements. */
8295 if (mips_macro_warning.delay_slot_length == 2)
8296 subtype |= RELAX_DELAY_SLOT_16BIT;
8297 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8298 {
df58fc94
RS
8299 if (mips_macro_warning.delay_slot_length
8300 != mips_macro_warning.first_insn_sizes[0])
8301 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8302 if (mips_macro_warning.delay_slot_length
8303 != mips_macro_warning.first_insn_sizes[1])
8304 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8305 }
584892a6 8306
df58fc94
RS
8307 /* Check instruction count requirements. */
8308 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8309 {
8310 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8311 subtype |= RELAX_SECOND_LONGER;
8312 if (mips_opts.warn_about_macros)
8313 subtype |= RELAX_NOMACRO;
8314 if (mips_macro_warning.delay_slot_p)
8315 subtype |= RELAX_DELAY_SLOT;
df58fc94 8316 }
584892a6 8317
df58fc94
RS
8318 /* If both alternatives fail to fill a delay slot correctly,
8319 emit the warning now. */
8320 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8321 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8322 {
8323 relax_substateT s;
8324 const char *msg;
8325
8326 s = subtype & (RELAX_DELAY_SLOT_16BIT
8327 | RELAX_DELAY_SLOT_SIZE_FIRST
8328 | RELAX_DELAY_SLOT_SIZE_SECOND);
8329 msg = macro_warning (s);
8330 if (msg != NULL)
8331 as_warn ("%s", msg);
8332 subtype &= ~s;
8333 }
8334
8335 /* If both implementations are longer than 1 instruction, then emit the
8336 warning now. */
8337 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8338 {
8339 relax_substateT s;
8340 const char *msg;
8341
8342 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8343 msg = macro_warning (s);
8344 if (msg != NULL)
8345 as_warn ("%s", msg);
8346 subtype &= ~s;
584892a6 8347 }
df58fc94
RS
8348
8349 /* If any flags still set, then one implementation might need a warning
8350 and the other either will need one of a different kind or none at all.
8351 Pass any remaining flags over to relaxation. */
8352 if (mips_macro_warning.first_frag != NULL)
8353 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8354}
8355
df58fc94
RS
8356/* Instruction operand formats used in macros that vary between
8357 standard MIPS and microMIPS code. */
8358
833794fc 8359static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8360static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8361static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8362static const char * const lui_fmt[2] = { "t,u", "s,u" };
8363static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8364static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8365static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8366static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8367
833794fc 8368#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8369#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8370 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8371#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8372#define LUI_FMT (lui_fmt[mips_opts.micromips])
8373#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8374#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8375 : mem12_fmt[mips_opts.micromips])
833794fc 8376#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8377#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8378#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8379
6e1304d8
RS
8380/* Read a macro's relocation codes from *ARGS and store them in *R.
8381 The first argument in *ARGS will be either the code for a single
8382 relocation or -1 followed by the three codes that make up a
8383 composite relocation. */
8384
8385static void
8386macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8387{
8388 int i, next;
8389
8390 next = va_arg (*args, int);
8391 if (next >= 0)
8392 r[0] = (bfd_reloc_code_real_type) next;
8393 else
f2ae14a1
RS
8394 {
8395 for (i = 0; i < 3; i++)
8396 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8397 /* This function is only used for 16-bit relocation fields.
8398 To make the macro code simpler, treat an unrelocated value
8399 in the same way as BFD_RELOC_LO16. */
8400 if (r[0] == BFD_RELOC_UNUSED)
8401 r[0] = BFD_RELOC_LO16;
8402 }
6e1304d8
RS
8403}
8404
252b5132
RH
8405/* Build an instruction created by a macro expansion. This is passed
8406 a pointer to the count of instructions created so far, an
8407 expression, the name of the instruction to build, an operand format
8408 string, and corresponding arguments. */
8409
252b5132 8410static void
67c0d1eb 8411macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8412{
df58fc94 8413 const struct mips_opcode *mo = NULL;
f6688943 8414 bfd_reloc_code_real_type r[3];
df58fc94 8415 const struct mips_opcode *amo;
e077a1c8 8416 const struct mips_operand *operand;
df58fc94
RS
8417 struct hash_control *hash;
8418 struct mips_cl_insn insn;
252b5132 8419 va_list args;
e077a1c8 8420 unsigned int uval;
252b5132 8421
252b5132 8422 va_start (args, fmt);
252b5132 8423
252b5132
RH
8424 if (mips_opts.mips16)
8425 {
03ea81db 8426 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8427 va_end (args);
8428 return;
8429 }
8430
f6688943
TS
8431 r[0] = BFD_RELOC_UNUSED;
8432 r[1] = BFD_RELOC_UNUSED;
8433 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8434 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8435 amo = (struct mips_opcode *) hash_find (hash, name);
8436 gas_assert (amo);
8437 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8438
df58fc94 8439 do
8b082fb1
TS
8440 {
8441 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8442 macros will never generate MDMX, MIPS-3D, or MT instructions.
8443 We try to match an instruction that fulfils the branch delay
8444 slot instruction length requirement (if any) of the previous
8445 instruction. While doing this we record the first instruction
8446 seen that matches all the other conditions and use it anyway
8447 if the requirement cannot be met; we will issue an appropriate
8448 warning later on. */
8449 if (strcmp (fmt, amo->args) == 0
8450 && amo->pinfo != INSN_MACRO
8451 && is_opcode_valid (amo)
8452 && is_size_valid (amo))
8453 {
8454 if (is_delay_slot_valid (amo))
8455 {
8456 mo = amo;
8457 break;
8458 }
8459 else if (!mo)
8460 mo = amo;
8461 }
8b082fb1 8462
df58fc94
RS
8463 ++amo;
8464 gas_assert (amo->name);
252b5132 8465 }
df58fc94 8466 while (strcmp (name, amo->name) == 0);
252b5132 8467
df58fc94 8468 gas_assert (mo);
1e915849 8469 create_insn (&insn, mo);
e077a1c8 8470 for (; *fmt; ++fmt)
252b5132 8471 {
e077a1c8 8472 switch (*fmt)
252b5132 8473 {
252b5132
RH
8474 case ',':
8475 case '(':
8476 case ')':
252b5132 8477 case 'z':
e077a1c8 8478 break;
252b5132
RH
8479
8480 case 'i':
8481 case 'j':
6e1304d8 8482 macro_read_relocs (&args, r);
9c2799c2 8483 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8484 || *r == BFD_RELOC_MIPS_HIGHER
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_LO16
8487 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8488 break;
e391c024
RS
8489
8490 case 'o':
8491 macro_read_relocs (&args, r);
e077a1c8 8492 break;
252b5132
RH
8493
8494 case 'u':
6e1304d8 8495 macro_read_relocs (&args, r);
9c2799c2 8496 gas_assert (ep != NULL
90ecf173
MR
8497 && (ep->X_op == O_constant
8498 || (ep->X_op == O_symbol
8499 && (*r == BFD_RELOC_MIPS_HIGHEST
8500 || *r == BFD_RELOC_HI16_S
8501 || *r == BFD_RELOC_HI16
8502 || *r == BFD_RELOC_GPREL16
8503 || *r == BFD_RELOC_MIPS_GOT_HI16
8504 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8505 break;
252b5132
RH
8506
8507 case 'p':
9c2799c2 8508 gas_assert (ep != NULL);
bad36eac 8509
252b5132
RH
8510 /*
8511 * This allows macro() to pass an immediate expression for
8512 * creating short branches without creating a symbol.
bad36eac
DJ
8513 *
8514 * We don't allow branch relaxation for these branches, as
8515 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8516 */
8517 if (ep->X_op == O_constant)
8518 {
df58fc94
RS
8519 /* For microMIPS we always use relocations for branches.
8520 So we should not resolve immediate values. */
8521 gas_assert (!mips_opts.micromips);
8522
bad36eac
DJ
8523 if ((ep->X_add_number & 3) != 0)
8524 as_bad (_("branch to misaligned address (0x%lx)"),
8525 (unsigned long) ep->X_add_number);
8526 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8527 as_bad (_("branch address range overflow (0x%lx)"),
8528 (unsigned long) ep->X_add_number);
252b5132
RH
8529 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8530 ep = NULL;
8531 }
8532 else
0b25d3e6 8533 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8534 break;
252b5132
RH
8535
8536 case 'a':
9c2799c2 8537 gas_assert (ep != NULL);
f6688943 8538 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8539 break;
d43b4baf 8540
252b5132 8541 default:
e077a1c8
RS
8542 operand = (mips_opts.micromips
8543 ? decode_micromips_operand (fmt)
8544 : decode_mips_operand (fmt));
8545 if (!operand)
8546 abort ();
8547
8548 uval = va_arg (args, int);
8549 if (operand->type == OP_CLO_CLZ_DEST)
8550 uval |= (uval << 5);
8551 insn_insert_operand (&insn, operand, uval);
8552
7361da2c 8553 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8554 ++fmt;
8555 break;
252b5132 8556 }
252b5132
RH
8557 }
8558 va_end (args);
9c2799c2 8559 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8560
df58fc94 8561 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8562}
8563
8564static void
67c0d1eb 8565mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8566 va_list *args)
252b5132 8567{
1e915849 8568 struct mips_opcode *mo;
252b5132 8569 struct mips_cl_insn insn;
e077a1c8 8570 const struct mips_operand *operand;
f6688943
TS
8571 bfd_reloc_code_real_type r[3]
8572 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8573
1e915849 8574 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8575 gas_assert (mo);
8576 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8577
1e915849 8578 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8579 {
1e915849 8580 ++mo;
9c2799c2
NC
8581 gas_assert (mo->name);
8582 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8583 }
8584
1e915849 8585 create_insn (&insn, mo);
e077a1c8 8586 for (; *fmt; ++fmt)
252b5132
RH
8587 {
8588 int c;
8589
e077a1c8 8590 c = *fmt;
252b5132
RH
8591 switch (c)
8592 {
252b5132
RH
8593 case ',':
8594 case '(':
8595 case ')':
e077a1c8 8596 break;
252b5132
RH
8597
8598 case '0':
8599 case 'S':
8600 case 'P':
8601 case 'R':
e077a1c8 8602 break;
252b5132
RH
8603
8604 case '<':
8605 case '>':
8606 case '4':
8607 case '5':
8608 case 'H':
8609 case 'W':
8610 case 'D':
8611 case 'j':
8612 case '8':
8613 case 'V':
8614 case 'C':
8615 case 'U':
8616 case 'k':
8617 case 'K':
8618 case 'p':
8619 case 'q':
8620 {
b886a2ab
RS
8621 offsetT value;
8622
9c2799c2 8623 gas_assert (ep != NULL);
252b5132
RH
8624
8625 if (ep->X_op != O_constant)
874e8986 8626 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8627 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8628 {
b886a2ab 8629 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8630 ep = NULL;
f6688943 8631 *r = BFD_RELOC_UNUSED;
252b5132
RH
8632 }
8633 }
e077a1c8 8634 break;
252b5132 8635
e077a1c8
RS
8636 default:
8637 operand = decode_mips16_operand (c, FALSE);
8638 if (!operand)
8639 abort ();
252b5132 8640
4a06e5a2 8641 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8642 break;
8643 }
252b5132
RH
8644 }
8645
9c2799c2 8646 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8647
df58fc94 8648 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8649}
8650
438c16b8
TS
8651/*
8652 * Generate a "jalr" instruction with a relocation hint to the called
8653 * function. This occurs in NewABI PIC code.
8654 */
8655static void
df58fc94 8656macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8657{
df58fc94
RS
8658 static const bfd_reloc_code_real_type jalr_relocs[2]
8659 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8660 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8661 const char *jalr;
685736be 8662 char *f = NULL;
b34976b6 8663
1180b5a4 8664 if (MIPS_JALR_HINT_P (ep))
f21f8242 8665 {
cc3d92a5 8666 frag_grow (8);
f21f8242
AO
8667 f = frag_more (0);
8668 }
2906b037 8669 if (mips_opts.micromips)
df58fc94 8670 {
833794fc
MR
8671 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8672 ? "jalr" : "jalrs");
e64af278 8673 if (MIPS_JALR_HINT_P (ep)
833794fc 8674 || mips_opts.insn32
e64af278 8675 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8676 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8677 else
8678 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8679 }
2906b037
MR
8680 else
8681 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8682 if (MIPS_JALR_HINT_P (ep))
df58fc94 8683 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8684}
8685
252b5132
RH
8686/*
8687 * Generate a "lui" instruction.
8688 */
8689static void
67c0d1eb 8690macro_build_lui (expressionS *ep, int regnum)
252b5132 8691{
9c2799c2 8692 gas_assert (! mips_opts.mips16);
252b5132 8693
df58fc94 8694 if (ep->X_op != O_constant)
252b5132 8695 {
9c2799c2 8696 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8697 /* _gp_disp is a special case, used from s_cpload.
8698 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8699 gas_assert (mips_pic == NO_PIC
78e1bb40 8700 || (! HAVE_NEWABI
aa6975fb
ILT
8701 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8702 || (! mips_in_shared
bbe506e8
TS
8703 && strcmp (S_GET_NAME (ep->X_add_symbol),
8704 "__gnu_local_gp") == 0));
252b5132
RH
8705 }
8706
df58fc94 8707 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8708}
8709
885add95
CD
8710/* Generate a sequence of instructions to do a load or store from a constant
8711 offset off of a base register (breg) into/from a target register (treg),
8712 using AT if necessary. */
8713static void
67c0d1eb
RS
8714macro_build_ldst_constoffset (expressionS *ep, const char *op,
8715 int treg, int breg, int dbl)
885add95 8716{
9c2799c2 8717 gas_assert (ep->X_op == O_constant);
885add95 8718
256ab948 8719 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8720 if (!dbl)
8721 normalize_constant_expr (ep);
256ab948 8722
67c1ffbe 8723 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8724 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8725 as_warn (_("operand overflow"));
8726
8727 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8728 {
8729 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8731 }
8732 else
8733 {
8734 /* 32-bit offset, need multiple instructions and AT, like:
8735 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8736 addu $tempreg,$tempreg,$breg
8737 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8738 to handle the complete offset. */
67c0d1eb
RS
8739 macro_build_lui (ep, AT);
8740 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8741 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8742
741fe287 8743 if (!mips_opts.at)
1661c76c 8744 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8745 }
8746}
8747
252b5132
RH
8748/* set_at()
8749 * Generates code to set the $at register to true (one)
8750 * if reg is less than the immediate expression.
8751 */
8752static void
67c0d1eb 8753set_at (int reg, int unsignedp)
252b5132 8754{
b0e6f033 8755 if (imm_expr.X_add_number >= -0x8000
252b5132 8756 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8757 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8758 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8759 else
8760 {
bad1aba3 8761 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8762 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8763 }
8764}
8765
252b5132
RH
8766/* Count the leading zeroes by performing a binary chop. This is a
8767 bulky bit of source, but performance is a LOT better for the
8768 majority of values than a simple loop to count the bits:
8769 for (lcnt = 0; (lcnt < 32); lcnt++)
8770 if ((v) & (1 << (31 - lcnt)))
8771 break;
8772 However it is not code size friendly, and the gain will drop a bit
8773 on certain cached systems.
8774*/
8775#define COUNT_TOP_ZEROES(v) \
8776 (((v) & ~0xffff) == 0 \
8777 ? ((v) & ~0xff) == 0 \
8778 ? ((v) & ~0xf) == 0 \
8779 ? ((v) & ~0x3) == 0 \
8780 ? ((v) & ~0x1) == 0 \
8781 ? !(v) \
8782 ? 32 \
8783 : 31 \
8784 : 30 \
8785 : ((v) & ~0x7) == 0 \
8786 ? 29 \
8787 : 28 \
8788 : ((v) & ~0x3f) == 0 \
8789 ? ((v) & ~0x1f) == 0 \
8790 ? 27 \
8791 : 26 \
8792 : ((v) & ~0x7f) == 0 \
8793 ? 25 \
8794 : 24 \
8795 : ((v) & ~0xfff) == 0 \
8796 ? ((v) & ~0x3ff) == 0 \
8797 ? ((v) & ~0x1ff) == 0 \
8798 ? 23 \
8799 : 22 \
8800 : ((v) & ~0x7ff) == 0 \
8801 ? 21 \
8802 : 20 \
8803 : ((v) & ~0x3fff) == 0 \
8804 ? ((v) & ~0x1fff) == 0 \
8805 ? 19 \
8806 : 18 \
8807 : ((v) & ~0x7fff) == 0 \
8808 ? 17 \
8809 : 16 \
8810 : ((v) & ~0xffffff) == 0 \
8811 ? ((v) & ~0xfffff) == 0 \
8812 ? ((v) & ~0x3ffff) == 0 \
8813 ? ((v) & ~0x1ffff) == 0 \
8814 ? 15 \
8815 : 14 \
8816 : ((v) & ~0x7ffff) == 0 \
8817 ? 13 \
8818 : 12 \
8819 : ((v) & ~0x3fffff) == 0 \
8820 ? ((v) & ~0x1fffff) == 0 \
8821 ? 11 \
8822 : 10 \
8823 : ((v) & ~0x7fffff) == 0 \
8824 ? 9 \
8825 : 8 \
8826 : ((v) & ~0xfffffff) == 0 \
8827 ? ((v) & ~0x3ffffff) == 0 \
8828 ? ((v) & ~0x1ffffff) == 0 \
8829 ? 7 \
8830 : 6 \
8831 : ((v) & ~0x7ffffff) == 0 \
8832 ? 5 \
8833 : 4 \
8834 : ((v) & ~0x3fffffff) == 0 \
8835 ? ((v) & ~0x1fffffff) == 0 \
8836 ? 3 \
8837 : 2 \
8838 : ((v) & ~0x7fffffff) == 0 \
8839 ? 1 \
8840 : 0)
8841
8842/* load_register()
67c1ffbe 8843 * This routine generates the least number of instructions necessary to load
252b5132
RH
8844 * an absolute expression value into a register.
8845 */
8846static void
67c0d1eb 8847load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
8848{
8849 int freg;
8850 expressionS hi32, lo32;
8851
8852 if (ep->X_op != O_big)
8853 {
9c2799c2 8854 gas_assert (ep->X_op == O_constant);
256ab948
TS
8855
8856 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8857 if (!dbl)
8858 normalize_constant_expr (ep);
256ab948
TS
8859
8860 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
8861 {
8862 /* We can handle 16 bit signed values with an addiu to
8863 $zero. No need to ever use daddiu here, since $zero and
8864 the result are always correct in 32 bit mode. */
67c0d1eb 8865 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8866 return;
8867 }
8868 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8869 {
8870 /* We can handle 16 bit unsigned values with an ori to
8871 $zero. */
67c0d1eb 8872 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8873 return;
8874 }
256ab948 8875 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
8876 {
8877 /* 32 bit values require an lui. */
df58fc94 8878 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8879 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 8880 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
8881 return;
8882 }
8883 }
8884
8885 /* The value is larger than 32 bits. */
8886
bad1aba3 8887 if (!dbl || GPR_SIZE == 32)
252b5132 8888 {
55e08f71
NC
8889 char value[32];
8890
8891 sprintf_vma (value, ep->X_add_number);
1661c76c 8892 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 8893 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
8894 return;
8895 }
8896
8897 if (ep->X_op != O_big)
8898 {
8899 hi32 = *ep;
8900 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8901 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8902 hi32.X_add_number &= 0xffffffff;
8903 lo32 = *ep;
8904 lo32.X_add_number &= 0xffffffff;
8905 }
8906 else
8907 {
9c2799c2 8908 gas_assert (ep->X_add_number > 2);
252b5132
RH
8909 if (ep->X_add_number == 3)
8910 generic_bignum[3] = 0;
8911 else if (ep->X_add_number > 4)
1661c76c 8912 as_bad (_("number larger than 64 bits"));
252b5132
RH
8913 lo32.X_op = O_constant;
8914 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8915 hi32.X_op = O_constant;
8916 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8917 }
8918
8919 if (hi32.X_add_number == 0)
8920 freg = 0;
8921 else
8922 {
8923 int shift, bit;
8924 unsigned long hi, lo;
8925
956cd1d6 8926 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
8927 {
8928 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8929 {
67c0d1eb 8930 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
8931 return;
8932 }
8933 if (lo32.X_add_number & 0x80000000)
8934 {
df58fc94 8935 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 8936 if (lo32.X_add_number & 0xffff)
67c0d1eb 8937 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
8938 return;
8939 }
8940 }
252b5132
RH
8941
8942 /* Check for 16bit shifted constant. We know that hi32 is
8943 non-zero, so start the mask on the first bit of the hi32
8944 value. */
8945 shift = 17;
8946 do
beae10d5
KH
8947 {
8948 unsigned long himask, lomask;
8949
8950 if (shift < 32)
8951 {
8952 himask = 0xffff >> (32 - shift);
8953 lomask = (0xffff << shift) & 0xffffffff;
8954 }
8955 else
8956 {
8957 himask = 0xffff << (shift - 32);
8958 lomask = 0;
8959 }
8960 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8961 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8962 {
8963 expressionS tmp;
8964
8965 tmp.X_op = O_constant;
8966 if (shift < 32)
8967 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8968 | (lo32.X_add_number >> shift));
8969 else
8970 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 8971 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 8972 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 8973 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
8974 return;
8975 }
f9419b05 8976 ++shift;
beae10d5
KH
8977 }
8978 while (shift <= (64 - 16));
252b5132
RH
8979
8980 /* Find the bit number of the lowest one bit, and store the
8981 shifted value in hi/lo. */
8982 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8983 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8984 if (lo != 0)
8985 {
8986 bit = 0;
8987 while ((lo & 1) == 0)
8988 {
8989 lo >>= 1;
8990 ++bit;
8991 }
8992 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8993 hi >>= bit;
8994 }
8995 else
8996 {
8997 bit = 32;
8998 while ((hi & 1) == 0)
8999 {
9000 hi >>= 1;
9001 ++bit;
9002 }
9003 lo = hi;
9004 hi = 0;
9005 }
9006
9007 /* Optimize if the shifted value is a (power of 2) - 1. */
9008 if ((hi == 0 && ((lo + 1) & lo) == 0)
9009 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9010 {
9011 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9012 if (shift != 0)
beae10d5 9013 {
252b5132
RH
9014 expressionS tmp;
9015
9016 /* This instruction will set the register to be all
9017 ones. */
beae10d5
KH
9018 tmp.X_op = O_constant;
9019 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9020 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9021 if (bit != 0)
9022 {
9023 bit += shift;
df58fc94 9024 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9025 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9026 }
df58fc94 9027 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9028 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9029 return;
9030 }
9031 }
252b5132
RH
9032
9033 /* Sign extend hi32 before calling load_register, because we can
9034 generally get better code when we load a sign extended value. */
9035 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9036 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9037 load_register (reg, &hi32, 0);
252b5132
RH
9038 freg = reg;
9039 }
9040 if ((lo32.X_add_number & 0xffff0000) == 0)
9041 {
9042 if (freg != 0)
9043 {
df58fc94 9044 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9045 freg = reg;
9046 }
9047 }
9048 else
9049 {
9050 expressionS mid16;
9051
956cd1d6 9052 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9053 {
df58fc94
RS
9054 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9055 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9056 return;
9057 }
252b5132
RH
9058
9059 if (freg != 0)
9060 {
df58fc94 9061 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9062 freg = reg;
9063 }
9064 mid16 = lo32;
9065 mid16.X_add_number >>= 16;
67c0d1eb 9066 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9067 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9068 freg = reg;
9069 }
9070 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9071 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9072}
9073
269137b2
TS
9074static inline void
9075load_delay_nop (void)
9076{
9077 if (!gpr_interlocks)
9078 macro_build (NULL, "nop", "");
9079}
9080
252b5132
RH
9081/* Load an address into a register. */
9082
9083static void
67c0d1eb 9084load_address (int reg, expressionS *ep, int *used_at)
252b5132 9085{
252b5132
RH
9086 if (ep->X_op != O_constant
9087 && ep->X_op != O_symbol)
9088 {
9089 as_bad (_("expression too complex"));
9090 ep->X_op = O_constant;
9091 }
9092
9093 if (ep->X_op == O_constant)
9094 {
67c0d1eb 9095 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9096 return;
9097 }
9098
9099 if (mips_pic == NO_PIC)
9100 {
9101 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9102 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9103 Otherwise we want
9104 lui $reg,<sym> (BFD_RELOC_HI16_S)
9105 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9106 If we have an addend, we always use the latter form.
76b3015f 9107
d6bc6245
TS
9108 With 64bit address space and a usable $at we want
9109 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9110 lui $at,<sym> (BFD_RELOC_HI16_S)
9111 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9112 daddiu $at,<sym> (BFD_RELOC_LO16)
9113 dsll32 $reg,0
3a482fd5 9114 daddu $reg,$reg,$at
76b3015f 9115
c03099e6 9116 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9117 on superscalar processors.
9118 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9119 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9120 dsll $reg,16
9121 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9122 dsll $reg,16
9123 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9124
9125 For GP relative symbols in 64bit address space we can use
9126 the same sequence as in 32bit address space. */
aed1a261 9127 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9128 {
6caf9ef4
TS
9129 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9130 && !nopic_need_relax (ep->X_add_symbol, 1))
9131 {
9132 relax_start (ep->X_add_symbol);
9133 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9134 mips_gp_register, BFD_RELOC_GPREL16);
9135 relax_switch ();
9136 }
d6bc6245 9137
741fe287 9138 if (*used_at == 0 && mips_opts.at)
d6bc6245 9139 {
df58fc94
RS
9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9141 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9143 BFD_RELOC_MIPS_HIGHER);
9144 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9145 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9146 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9147 *used_at = 1;
9148 }
9149 else
9150 {
df58fc94 9151 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9152 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9153 BFD_RELOC_MIPS_HIGHER);
df58fc94 9154 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9155 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9156 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9157 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9158 }
6caf9ef4
TS
9159
9160 if (mips_relax.sequence)
9161 relax_end ();
d6bc6245 9162 }
252b5132
RH
9163 else
9164 {
d6bc6245 9165 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9166 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9167 {
4d7206a2 9168 relax_start (ep->X_add_symbol);
67c0d1eb 9169 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9170 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9171 relax_switch ();
d6bc6245 9172 }
67c0d1eb
RS
9173 macro_build_lui (ep, reg);
9174 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9175 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9176 if (mips_relax.sequence)
9177 relax_end ();
d6bc6245 9178 }
252b5132 9179 }
0a44bf69 9180 else if (!mips_big_got)
252b5132
RH
9181 {
9182 expressionS ex;
9183
9184 /* If this is a reference to an external symbol, we want
9185 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9186 Otherwise we want
9187 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9188 nop
9189 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9190 If there is a constant, it must be added in after.
9191
ed6fb7bd 9192 If we have NewABI, we want
f5040a92
AO
9193 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9194 unless we're referencing a global symbol with a non-zero
9195 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9196 if (HAVE_NEWABI)
9197 {
f5040a92
AO
9198 if (ep->X_add_number)
9199 {
4d7206a2 9200 ex.X_add_number = ep->X_add_number;
f5040a92 9201 ep->X_add_number = 0;
4d7206a2 9202 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9205 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9206 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9207 ex.X_op = O_constant;
67c0d1eb 9208 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9209 reg, reg, BFD_RELOC_LO16);
f5040a92 9210 ep->X_add_number = ex.X_add_number;
4d7206a2 9211 relax_switch ();
f5040a92 9212 }
67c0d1eb 9213 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9214 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9215 if (mips_relax.sequence)
9216 relax_end ();
ed6fb7bd
SC
9217 }
9218 else
9219 {
f5040a92
AO
9220 ex.X_add_number = ep->X_add_number;
9221 ep->X_add_number = 0;
67c0d1eb
RS
9222 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9223 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9224 load_delay_nop ();
4d7206a2
RS
9225 relax_start (ep->X_add_symbol);
9226 relax_switch ();
67c0d1eb 9227 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9228 BFD_RELOC_LO16);
4d7206a2 9229 relax_end ();
ed6fb7bd 9230
f5040a92
AO
9231 if (ex.X_add_number != 0)
9232 {
9233 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9234 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9235 ex.X_op = O_constant;
67c0d1eb 9236 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9237 reg, reg, BFD_RELOC_LO16);
f5040a92 9238 }
252b5132
RH
9239 }
9240 }
0a44bf69 9241 else if (mips_big_got)
252b5132
RH
9242 {
9243 expressionS ex;
252b5132
RH
9244
9245 /* This is the large GOT case. If this is a reference to an
9246 external symbol, we want
9247 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9248 addu $reg,$reg,$gp
9249 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9250
9251 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9252 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9253 nop
9254 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9255 If there is a constant, it must be added in after.
f5040a92
AO
9256
9257 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9258 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9259 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9260 */
438c16b8
TS
9261 if (HAVE_NEWABI)
9262 {
4d7206a2 9263 ex.X_add_number = ep->X_add_number;
f5040a92 9264 ep->X_add_number = 0;
4d7206a2 9265 relax_start (ep->X_add_symbol);
df58fc94 9266 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9267 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9268 reg, reg, mips_gp_register);
9269 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9270 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9271 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9272 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9273 else if (ex.X_add_number)
9274 {
9275 ex.X_op = O_constant;
67c0d1eb
RS
9276 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9277 BFD_RELOC_LO16);
f5040a92
AO
9278 }
9279
9280 ep->X_add_number = ex.X_add_number;
4d7206a2 9281 relax_switch ();
67c0d1eb 9282 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9283 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9284 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9285 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9286 relax_end ();
438c16b8 9287 }
252b5132 9288 else
438c16b8 9289 {
f5040a92
AO
9290 ex.X_add_number = ep->X_add_number;
9291 ep->X_add_number = 0;
4d7206a2 9292 relax_start (ep->X_add_symbol);
df58fc94 9293 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9294 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9295 reg, reg, mips_gp_register);
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9297 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9298 relax_switch ();
9299 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9300 {
9301 /* We need a nop before loading from $gp. This special
9302 check is required because the lui which starts the main
9303 instruction stream does not refer to $gp, and so will not
9304 insert the nop which may be required. */
67c0d1eb 9305 macro_build (NULL, "nop", "");
438c16b8 9306 }
67c0d1eb 9307 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9308 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9309 load_delay_nop ();
67c0d1eb 9310 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9311 BFD_RELOC_LO16);
4d7206a2 9312 relax_end ();
438c16b8 9313
f5040a92
AO
9314 if (ex.X_add_number != 0)
9315 {
9316 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9317 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9318 ex.X_op = O_constant;
67c0d1eb
RS
9319 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9320 BFD_RELOC_LO16);
f5040a92 9321 }
252b5132
RH
9322 }
9323 }
252b5132
RH
9324 else
9325 abort ();
8fc2e39e 9326
741fe287 9327 if (!mips_opts.at && *used_at == 1)
1661c76c 9328 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9329}
9330
ea1fb5dc
RS
9331/* Move the contents of register SOURCE into register DEST. */
9332
9333static void
67c0d1eb 9334move_register (int dest, int source)
ea1fb5dc 9335{
df58fc94
RS
9336 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9337 instruction specifically requires a 32-bit one. */
9338 if (mips_opts.micromips
833794fc 9339 && !mips_opts.insn32
df58fc94 9340 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9341 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9342 else
40fc1451 9343 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9344}
9345
4d7206a2 9346/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9347 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9348 The two alternatives are:
4d7206a2
RS
9349
9350 Global symbol Local sybmol
9351 ------------- ------------
9352 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9353 ... ...
9354 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9355
9356 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9357 emits the second for a 16-bit offset or add_got_offset_hilo emits
9358 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9359
9360static void
67c0d1eb 9361load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9362{
9363 expressionS global;
9364
9365 global = *local;
9366 global.X_add_number = 0;
9367
9368 relax_start (local->X_add_symbol);
67c0d1eb
RS
9369 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9370 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9371 relax_switch ();
67c0d1eb
RS
9372 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9373 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9374 relax_end ();
9375}
9376
9377static void
67c0d1eb 9378add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9379{
9380 expressionS global;
9381
9382 global.X_op = O_constant;
9383 global.X_op_symbol = NULL;
9384 global.X_add_symbol = NULL;
9385 global.X_add_number = local->X_add_number;
9386
9387 relax_start (local->X_add_symbol);
67c0d1eb 9388 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9389 dest, dest, BFD_RELOC_LO16);
9390 relax_switch ();
67c0d1eb 9391 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9392 relax_end ();
9393}
9394
f6a22291
MR
9395static void
9396add_got_offset_hilo (int dest, expressionS *local, int tmp)
9397{
9398 expressionS global;
9399 int hold_mips_optimize;
9400
9401 global.X_op = O_constant;
9402 global.X_op_symbol = NULL;
9403 global.X_add_symbol = NULL;
9404 global.X_add_number = local->X_add_number;
9405
9406 relax_start (local->X_add_symbol);
9407 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9408 relax_switch ();
9409 /* Set mips_optimize around the lui instruction to avoid
9410 inserting an unnecessary nop after the lw. */
9411 hold_mips_optimize = mips_optimize;
9412 mips_optimize = 2;
9413 macro_build_lui (&global, tmp);
9414 mips_optimize = hold_mips_optimize;
9415 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9416 relax_end ();
9417
9418 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9419}
9420
df58fc94
RS
9421/* Emit a sequence of instructions to emulate a branch likely operation.
9422 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9423 is its complementing branch with the original condition negated.
9424 CALL is set if the original branch specified the link operation.
9425 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9426
9427 Code like this is produced in the noreorder mode:
9428
9429 BRNEG <args>, 1f
9430 nop
9431 b <sym>
9432 delay slot (executed only if branch taken)
9433 1:
9434
9435 or, if CALL is set:
9436
9437 BRNEG <args>, 1f
9438 nop
9439 bal <sym>
9440 delay slot (executed only if branch taken)
9441 1:
9442
9443 In the reorder mode the delay slot would be filled with a nop anyway,
9444 so code produced is simply:
9445
9446 BR <args>, <sym>
9447 nop
9448
9449 This function is used when producing code for the microMIPS ASE that
9450 does not implement branch likely instructions in hardware. */
9451
9452static void
9453macro_build_branch_likely (const char *br, const char *brneg,
9454 int call, expressionS *ep, const char *fmt,
9455 unsigned int sreg, unsigned int treg)
9456{
9457 int noreorder = mips_opts.noreorder;
9458 expressionS expr1;
9459
9460 gas_assert (mips_opts.micromips);
9461 start_noreorder ();
9462 if (noreorder)
9463 {
9464 micromips_label_expr (&expr1);
9465 macro_build (&expr1, brneg, fmt, sreg, treg);
9466 macro_build (NULL, "nop", "");
9467 macro_build (ep, call ? "bal" : "b", "p");
9468
9469 /* Set to true so that append_insn adds a label. */
9470 emit_branch_likely_macro = TRUE;
9471 }
9472 else
9473 {
9474 macro_build (ep, br, fmt, sreg, treg);
9475 macro_build (NULL, "nop", "");
9476 }
9477 end_noreorder ();
9478}
9479
9480/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9481 the condition code tested. EP specifies the branch target. */
9482
9483static void
9484macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9485{
9486 const int call = 0;
9487 const char *brneg;
9488 const char *br;
9489
9490 switch (type)
9491 {
9492 case M_BC1FL:
9493 br = "bc1f";
9494 brneg = "bc1t";
9495 break;
9496 case M_BC1TL:
9497 br = "bc1t";
9498 brneg = "bc1f";
9499 break;
9500 case M_BC2FL:
9501 br = "bc2f";
9502 brneg = "bc2t";
9503 break;
9504 case M_BC2TL:
9505 br = "bc2t";
9506 brneg = "bc2f";
9507 break;
9508 default:
9509 abort ();
9510 }
9511 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9512}
9513
9514/* Emit a two-argument branch macro specified by TYPE, using SREG as
9515 the register tested. EP specifies the branch target. */
9516
9517static void
9518macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9519{
9520 const char *brneg = NULL;
9521 const char *br;
9522 int call = 0;
9523
9524 switch (type)
9525 {
9526 case M_BGEZ:
9527 br = "bgez";
9528 break;
9529 case M_BGEZL:
9530 br = mips_opts.micromips ? "bgez" : "bgezl";
9531 brneg = "bltz";
9532 break;
9533 case M_BGEZALL:
9534 gas_assert (mips_opts.micromips);
833794fc 9535 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9536 brneg = "bltz";
9537 call = 1;
9538 break;
9539 case M_BGTZ:
9540 br = "bgtz";
9541 break;
9542 case M_BGTZL:
9543 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9544 brneg = "blez";
9545 break;
9546 case M_BLEZ:
9547 br = "blez";
9548 break;
9549 case M_BLEZL:
9550 br = mips_opts.micromips ? "blez" : "blezl";
9551 brneg = "bgtz";
9552 break;
9553 case M_BLTZ:
9554 br = "bltz";
9555 break;
9556 case M_BLTZL:
9557 br = mips_opts.micromips ? "bltz" : "bltzl";
9558 brneg = "bgez";
9559 break;
9560 case M_BLTZALL:
9561 gas_assert (mips_opts.micromips);
833794fc 9562 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9563 brneg = "bgez";
9564 call = 1;
9565 break;
9566 default:
9567 abort ();
9568 }
9569 if (mips_opts.micromips && brneg)
9570 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9571 else
9572 macro_build (ep, br, "s,p", sreg);
9573}
9574
9575/* Emit a three-argument branch macro specified by TYPE, using SREG and
9576 TREG as the registers tested. EP specifies the branch target. */
9577
9578static void
9579macro_build_branch_rsrt (int type, expressionS *ep,
9580 unsigned int sreg, unsigned int treg)
9581{
9582 const char *brneg = NULL;
9583 const int call = 0;
9584 const char *br;
9585
9586 switch (type)
9587 {
9588 case M_BEQ:
9589 case M_BEQ_I:
9590 br = "beq";
9591 break;
9592 case M_BEQL:
9593 case M_BEQL_I:
9594 br = mips_opts.micromips ? "beq" : "beql";
9595 brneg = "bne";
9596 break;
9597 case M_BNE:
9598 case M_BNE_I:
9599 br = "bne";
9600 break;
9601 case M_BNEL:
9602 case M_BNEL_I:
9603 br = mips_opts.micromips ? "bne" : "bnel";
9604 brneg = "beq";
9605 break;
9606 default:
9607 abort ();
9608 }
9609 if (mips_opts.micromips && brneg)
9610 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9611 else
9612 macro_build (ep, br, "s,t,p", sreg, treg);
9613}
9614
f2ae14a1
RS
9615/* Return the high part that should be loaded in order to make the low
9616 part of VALUE accessible using an offset of OFFBITS bits. */
9617
9618static offsetT
9619offset_high_part (offsetT value, unsigned int offbits)
9620{
9621 offsetT bias;
9622 addressT low_mask;
9623
9624 if (offbits == 0)
9625 return value;
9626 bias = 1 << (offbits - 1);
9627 low_mask = bias * 2 - 1;
9628 return (value + bias) & ~low_mask;
9629}
9630
9631/* Return true if the value stored in offset_expr and offset_reloc
9632 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9633 amount that the caller wants to add without inducing overflow
9634 and ALIGN is the known alignment of the value in bytes. */
9635
9636static bfd_boolean
9637small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9638{
9639 if (offbits == 16)
9640 {
9641 /* Accept any relocation operator if overflow isn't a concern. */
9642 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9643 return TRUE;
9644
9645 /* These relocations are guaranteed not to overflow in correct links. */
9646 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9647 || gprel16_reloc_p (*offset_reloc))
9648 return TRUE;
9649 }
9650 if (offset_expr.X_op == O_constant
9651 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9652 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9653 return TRUE;
9654 return FALSE;
9655}
9656
252b5132
RH
9657/*
9658 * Build macros
9659 * This routine implements the seemingly endless macro or synthesized
9660 * instructions and addressing modes in the mips assembly language. Many
9661 * of these macros are simple and are similar to each other. These could
67c1ffbe 9662 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9663 * this verbose method. Others are not simple macros but are more like
9664 * optimizing code generation.
9665 * One interesting optimization is when several store macros appear
67c1ffbe 9666 * consecutively that would load AT with the upper half of the same address.
252b5132
RH
9667 * The ensuing load upper instructions are ommited. This implies some kind
9668 * of global optimization. We currently only optimize within a single macro.
9669 * For many of the load and store macros if the address is specified as a
9670 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9671 * first load register 'at' with zero and use it as the base register. The
9672 * mips assembler simply uses register $zero. Just one tiny optimization
9673 * we're missing.
9674 */
9675static void
833794fc 9676macro (struct mips_cl_insn *ip, char *str)
252b5132 9677{
c0ebe874
RS
9678 const struct mips_operand_array *operands;
9679 unsigned int breg, i;
741fe287 9680 unsigned int tempreg;
252b5132 9681 int mask;
43841e91 9682 int used_at = 0;
df58fc94 9683 expressionS label_expr;
252b5132 9684 expressionS expr1;
df58fc94 9685 expressionS *ep;
252b5132
RH
9686 const char *s;
9687 const char *s2;
9688 const char *fmt;
9689 int likely = 0;
252b5132 9690 int coproc = 0;
7f3c4072 9691 int offbits = 16;
1abe91b1 9692 int call = 0;
df58fc94
RS
9693 int jals = 0;
9694 int dbl = 0;
9695 int imm = 0;
9696 int ust = 0;
9697 int lp = 0;
f2ae14a1 9698 bfd_boolean large_offset;
252b5132 9699 int off;
252b5132 9700 int hold_mips_optimize;
f2ae14a1 9701 unsigned int align;
c0ebe874 9702 unsigned int op[MAX_OPERANDS];
252b5132 9703
9c2799c2 9704 gas_assert (! mips_opts.mips16);
252b5132 9705
c0ebe874
RS
9706 operands = insn_operands (ip);
9707 for (i = 0; i < MAX_OPERANDS; i++)
9708 if (operands->operand[i])
9709 op[i] = insn_extract_operand (ip, operands->operand[i]);
9710 else
9711 op[i] = -1;
9712
252b5132
RH
9713 mask = ip->insn_mo->mask;
9714
df58fc94
RS
9715 label_expr.X_op = O_constant;
9716 label_expr.X_op_symbol = NULL;
9717 label_expr.X_add_symbol = NULL;
9718 label_expr.X_add_number = 0;
9719
252b5132
RH
9720 expr1.X_op = O_constant;
9721 expr1.X_op_symbol = NULL;
9722 expr1.X_add_symbol = NULL;
9723 expr1.X_add_number = 1;
f2ae14a1 9724 align = 1;
252b5132
RH
9725
9726 switch (mask)
9727 {
9728 case M_DABS:
9729 dbl = 1;
9730 case M_ABS:
df58fc94
RS
9731 /* bgez $a0,1f
9732 move v0,$a0
9733 sub v0,$zero,$a0
9734 1:
9735 */
252b5132 9736
7d10b47d 9737 start_noreorder ();
252b5132 9738
df58fc94
RS
9739 if (mips_opts.micromips)
9740 micromips_label_expr (&label_expr);
9741 else
9742 label_expr.X_add_number = 8;
c0ebe874
RS
9743 macro_build (&label_expr, "bgez", "s,p", op[1]);
9744 if (op[0] == op[1])
a605d2b3 9745 macro_build (NULL, "nop", "");
252b5132 9746 else
c0ebe874
RS
9747 move_register (op[0], op[1]);
9748 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9749 if (mips_opts.micromips)
9750 micromips_add_label ();
252b5132 9751
7d10b47d 9752 end_noreorder ();
8fc2e39e 9753 break;
252b5132
RH
9754
9755 case M_ADD_I:
9756 s = "addi";
9757 s2 = "add";
9758 goto do_addi;
9759 case M_ADDU_I:
9760 s = "addiu";
9761 s2 = "addu";
9762 goto do_addi;
9763 case M_DADD_I:
9764 dbl = 1;
9765 s = "daddi";
9766 s2 = "dadd";
df58fc94
RS
9767 if (!mips_opts.micromips)
9768 goto do_addi;
b0e6f033 9769 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9770 && imm_expr.X_add_number < 0x200)
9771 {
b0e6f033
RS
9772 macro_build (NULL, s, "t,r,.", op[0], op[1],
9773 (int) imm_expr.X_add_number);
df58fc94
RS
9774 break;
9775 }
9776 goto do_addi_i;
252b5132
RH
9777 case M_DADDU_I:
9778 dbl = 1;
9779 s = "daddiu";
9780 s2 = "daddu";
9781 do_addi:
b0e6f033 9782 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9783 && imm_expr.X_add_number < 0x8000)
9784 {
c0ebe874 9785 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9786 break;
252b5132 9787 }
df58fc94 9788 do_addi_i:
8fc2e39e 9789 used_at = 1;
67c0d1eb 9790 load_register (AT, &imm_expr, dbl);
c0ebe874 9791 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9792 break;
9793
9794 case M_AND_I:
9795 s = "andi";
9796 s2 = "and";
9797 goto do_bit;
9798 case M_OR_I:
9799 s = "ori";
9800 s2 = "or";
9801 goto do_bit;
9802 case M_NOR_I:
9803 s = "";
9804 s2 = "nor";
9805 goto do_bit;
9806 case M_XOR_I:
9807 s = "xori";
9808 s2 = "xor";
9809 do_bit:
b0e6f033 9810 if (imm_expr.X_add_number >= 0
252b5132
RH
9811 && imm_expr.X_add_number < 0x10000)
9812 {
9813 if (mask != M_NOR_I)
c0ebe874 9814 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9815 else
9816 {
67c0d1eb 9817 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9818 op[0], op[1], BFD_RELOC_LO16);
9819 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9820 }
8fc2e39e 9821 break;
252b5132
RH
9822 }
9823
8fc2e39e 9824 used_at = 1;
bad1aba3 9825 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9826 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9827 break;
9828
8b082fb1
TS
9829 case M_BALIGN:
9830 switch (imm_expr.X_add_number)
9831 {
9832 case 0:
9833 macro_build (NULL, "nop", "");
9834 break;
9835 case 2:
c0ebe874 9836 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 9837 break;
03f66e8a
MR
9838 case 1:
9839 case 3:
c0ebe874 9840 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 9841 (int) imm_expr.X_add_number);
8b082fb1 9842 break;
03f66e8a
MR
9843 default:
9844 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9845 (unsigned long) imm_expr.X_add_number);
9846 break;
8b082fb1
TS
9847 }
9848 break;
9849
df58fc94
RS
9850 case M_BC1FL:
9851 case M_BC1TL:
9852 case M_BC2FL:
9853 case M_BC2TL:
9854 gas_assert (mips_opts.micromips);
9855 macro_build_branch_ccl (mask, &offset_expr,
9856 EXTRACT_OPERAND (1, BCC, *ip));
9857 break;
9858
252b5132 9859 case M_BEQ_I:
252b5132 9860 case M_BEQL_I:
252b5132 9861 case M_BNE_I:
252b5132 9862 case M_BNEL_I:
b0e6f033 9863 if (imm_expr.X_add_number == 0)
c0ebe874 9864 op[1] = 0;
df58fc94 9865 else
252b5132 9866 {
c0ebe874 9867 op[1] = AT;
df58fc94 9868 used_at = 1;
bad1aba3 9869 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 9870 }
df58fc94
RS
9871 /* Fall through. */
9872 case M_BEQL:
9873 case M_BNEL:
c0ebe874 9874 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
9875 break;
9876
9877 case M_BGEL:
9878 likely = 1;
9879 case M_BGE:
c0ebe874
RS
9880 if (op[1] == 0)
9881 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9882 else if (op[0] == 0)
9883 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 9884 else
252b5132 9885 {
df58fc94 9886 used_at = 1;
c0ebe874 9887 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9888 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9889 &offset_expr, AT, ZERO);
252b5132 9890 }
df58fc94
RS
9891 break;
9892
9893 case M_BGEZL:
9894 case M_BGEZALL:
9895 case M_BGTZL:
9896 case M_BLEZL:
9897 case M_BLTZL:
9898 case M_BLTZALL:
c0ebe874 9899 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
9900 break;
9901
9902 case M_BGTL_I:
9903 likely = 1;
9904 case M_BGT_I:
90ecf173 9905 /* Check for > max integer. */
b0e6f033 9906 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
9907 {
9908 do_false:
90ecf173 9909 /* Result is always false. */
252b5132 9910 if (! likely)
a605d2b3 9911 macro_build (NULL, "nop", "");
252b5132 9912 else
df58fc94 9913 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 9914 break;
252b5132 9915 }
f9419b05 9916 ++imm_expr.X_add_number;
252b5132
RH
9917 /* FALLTHROUGH */
9918 case M_BGE_I:
9919 case M_BGEL_I:
9920 if (mask == M_BGEL_I)
9921 likely = 1;
b0e6f033 9922 if (imm_expr.X_add_number == 0)
252b5132 9923 {
df58fc94 9924 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 9925 &offset_expr, op[0]);
8fc2e39e 9926 break;
252b5132 9927 }
b0e6f033 9928 if (imm_expr.X_add_number == 1)
252b5132 9929 {
df58fc94 9930 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 9931 &offset_expr, op[0]);
8fc2e39e 9932 break;
252b5132 9933 }
b0e6f033 9934 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
9935 {
9936 do_true:
9937 /* result is always true */
1661c76c 9938 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 9939 macro_build (&offset_expr, "b", "p");
8fc2e39e 9940 break;
252b5132 9941 }
8fc2e39e 9942 used_at = 1;
c0ebe874 9943 set_at (op[0], 0);
df58fc94
RS
9944 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9945 &offset_expr, AT, ZERO);
252b5132
RH
9946 break;
9947
9948 case M_BGEUL:
9949 likely = 1;
9950 case M_BGEU:
c0ebe874 9951 if (op[1] == 0)
252b5132 9952 goto do_true;
c0ebe874 9953 else if (op[0] == 0)
df58fc94 9954 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 9955 &offset_expr, ZERO, op[1]);
df58fc94 9956 else
252b5132 9957 {
df58fc94 9958 used_at = 1;
c0ebe874 9959 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
9960 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9961 &offset_expr, AT, ZERO);
252b5132 9962 }
252b5132
RH
9963 break;
9964
9965 case M_BGTUL_I:
9966 likely = 1;
9967 case M_BGTU_I:
c0ebe874 9968 if (op[0] == 0
bad1aba3 9969 || (GPR_SIZE == 32
f01dc953 9970 && imm_expr.X_add_number == -1))
252b5132 9971 goto do_false;
f9419b05 9972 ++imm_expr.X_add_number;
252b5132
RH
9973 /* FALLTHROUGH */
9974 case M_BGEU_I:
9975 case M_BGEUL_I:
9976 if (mask == M_BGEUL_I)
9977 likely = 1;
b0e6f033 9978 if (imm_expr.X_add_number == 0)
252b5132 9979 goto do_true;
b0e6f033 9980 else if (imm_expr.X_add_number == 1)
df58fc94 9981 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 9982 &offset_expr, op[0], ZERO);
df58fc94 9983 else
252b5132 9984 {
df58fc94 9985 used_at = 1;
c0ebe874 9986 set_at (op[0], 1);
df58fc94
RS
9987 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9988 &offset_expr, AT, ZERO);
252b5132 9989 }
252b5132
RH
9990 break;
9991
9992 case M_BGTL:
9993 likely = 1;
9994 case M_BGT:
c0ebe874
RS
9995 if (op[1] == 0)
9996 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9997 else if (op[0] == 0)
9998 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 9999 else
252b5132 10000 {
df58fc94 10001 used_at = 1;
c0ebe874 10002 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10003 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10004 &offset_expr, AT, ZERO);
252b5132 10005 }
252b5132
RH
10006 break;
10007
10008 case M_BGTUL:
10009 likely = 1;
10010 case M_BGTU:
c0ebe874 10011 if (op[1] == 0)
df58fc94 10012 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10013 &offset_expr, op[0], ZERO);
10014 else if (op[0] == 0)
df58fc94
RS
10015 goto do_false;
10016 else
252b5132 10017 {
df58fc94 10018 used_at = 1;
c0ebe874 10019 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10020 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10021 &offset_expr, AT, ZERO);
252b5132 10022 }
252b5132
RH
10023 break;
10024
10025 case M_BLEL:
10026 likely = 1;
10027 case M_BLE:
c0ebe874
RS
10028 if (op[1] == 0)
10029 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10030 else if (op[0] == 0)
10031 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10032 else
252b5132 10033 {
df58fc94 10034 used_at = 1;
c0ebe874 10035 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10036 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10037 &offset_expr, AT, ZERO);
252b5132 10038 }
252b5132
RH
10039 break;
10040
10041 case M_BLEL_I:
10042 likely = 1;
10043 case M_BLE_I:
b0e6f033 10044 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10045 goto do_true;
f9419b05 10046 ++imm_expr.X_add_number;
252b5132
RH
10047 /* FALLTHROUGH */
10048 case M_BLT_I:
10049 case M_BLTL_I:
10050 if (mask == M_BLTL_I)
10051 likely = 1;
b0e6f033 10052 if (imm_expr.X_add_number == 0)
c0ebe874 10053 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10054 else if (imm_expr.X_add_number == 1)
c0ebe874 10055 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10056 else
252b5132 10057 {
df58fc94 10058 used_at = 1;
c0ebe874 10059 set_at (op[0], 0);
df58fc94
RS
10060 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10061 &offset_expr, AT, ZERO);
252b5132 10062 }
252b5132
RH
10063 break;
10064
10065 case M_BLEUL:
10066 likely = 1;
10067 case M_BLEU:
c0ebe874 10068 if (op[1] == 0)
df58fc94 10069 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10070 &offset_expr, op[0], ZERO);
10071 else if (op[0] == 0)
df58fc94
RS
10072 goto do_true;
10073 else
252b5132 10074 {
df58fc94 10075 used_at = 1;
c0ebe874 10076 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10077 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10078 &offset_expr, AT, ZERO);
252b5132 10079 }
252b5132
RH
10080 break;
10081
10082 case M_BLEUL_I:
10083 likely = 1;
10084 case M_BLEU_I:
c0ebe874 10085 if (op[0] == 0
bad1aba3 10086 || (GPR_SIZE == 32
f01dc953 10087 && imm_expr.X_add_number == -1))
252b5132 10088 goto do_true;
f9419b05 10089 ++imm_expr.X_add_number;
252b5132
RH
10090 /* FALLTHROUGH */
10091 case M_BLTU_I:
10092 case M_BLTUL_I:
10093 if (mask == M_BLTUL_I)
10094 likely = 1;
b0e6f033 10095 if (imm_expr.X_add_number == 0)
252b5132 10096 goto do_false;
b0e6f033 10097 else if (imm_expr.X_add_number == 1)
df58fc94 10098 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10099 &offset_expr, op[0], ZERO);
df58fc94 10100 else
252b5132 10101 {
df58fc94 10102 used_at = 1;
c0ebe874 10103 set_at (op[0], 1);
df58fc94
RS
10104 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10105 &offset_expr, AT, ZERO);
252b5132 10106 }
252b5132
RH
10107 break;
10108
10109 case M_BLTL:
10110 likely = 1;
10111 case M_BLT:
c0ebe874
RS
10112 if (op[1] == 0)
10113 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10114 else if (op[0] == 0)
10115 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10116 else
252b5132 10117 {
df58fc94 10118 used_at = 1;
c0ebe874 10119 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10121 &offset_expr, AT, ZERO);
252b5132 10122 }
252b5132
RH
10123 break;
10124
10125 case M_BLTUL:
10126 likely = 1;
10127 case M_BLTU:
c0ebe874 10128 if (op[1] == 0)
252b5132 10129 goto do_false;
c0ebe874 10130 else if (op[0] == 0)
df58fc94 10131 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10132 &offset_expr, ZERO, op[1]);
df58fc94 10133 else
252b5132 10134 {
df58fc94 10135 used_at = 1;
c0ebe874 10136 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10137 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10138 &offset_expr, AT, ZERO);
252b5132 10139 }
252b5132
RH
10140 break;
10141
10142 case M_DDIV_3:
10143 dbl = 1;
10144 case M_DIV_3:
10145 s = "mflo";
10146 goto do_div3;
10147 case M_DREM_3:
10148 dbl = 1;
10149 case M_REM_3:
10150 s = "mfhi";
10151 do_div3:
c0ebe874 10152 if (op[2] == 0)
252b5132 10153 {
1661c76c 10154 as_warn (_("divide by zero"));
252b5132 10155 if (mips_trap)
df58fc94 10156 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10157 else
df58fc94 10158 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10159 break;
252b5132
RH
10160 }
10161
7d10b47d 10162 start_noreorder ();
252b5132
RH
10163 if (mips_trap)
10164 {
c0ebe874
RS
10165 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10166 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10167 }
10168 else
10169 {
df58fc94
RS
10170 if (mips_opts.micromips)
10171 micromips_label_expr (&label_expr);
10172 else
10173 label_expr.X_add_number = 8;
c0ebe874
RS
10174 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10175 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10176 macro_build (NULL, "break", BRK_FMT, 7);
10177 if (mips_opts.micromips)
10178 micromips_add_label ();
252b5132
RH
10179 }
10180 expr1.X_add_number = -1;
8fc2e39e 10181 used_at = 1;
f6a22291 10182 load_register (AT, &expr1, dbl);
df58fc94
RS
10183 if (mips_opts.micromips)
10184 micromips_label_expr (&label_expr);
10185 else
10186 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10187 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10188 if (dbl)
10189 {
10190 expr1.X_add_number = 1;
f6a22291 10191 load_register (AT, &expr1, dbl);
df58fc94 10192 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10193 }
10194 else
10195 {
10196 expr1.X_add_number = 0x80000000;
df58fc94 10197 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10198 }
10199 if (mips_trap)
10200 {
c0ebe874 10201 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10202 /* We want to close the noreorder block as soon as possible, so
10203 that later insns are available for delay slot filling. */
7d10b47d 10204 end_noreorder ();
252b5132
RH
10205 }
10206 else
10207 {
df58fc94
RS
10208 if (mips_opts.micromips)
10209 micromips_label_expr (&label_expr);
10210 else
10211 label_expr.X_add_number = 8;
c0ebe874 10212 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10213 macro_build (NULL, "nop", "");
252b5132
RH
10214
10215 /* We want to close the noreorder block as soon as possible, so
10216 that later insns are available for delay slot filling. */
7d10b47d 10217 end_noreorder ();
252b5132 10218
df58fc94 10219 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10220 }
df58fc94
RS
10221 if (mips_opts.micromips)
10222 micromips_add_label ();
c0ebe874 10223 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10224 break;
10225
10226 case M_DIV_3I:
10227 s = "div";
10228 s2 = "mflo";
10229 goto do_divi;
10230 case M_DIVU_3I:
10231 s = "divu";
10232 s2 = "mflo";
10233 goto do_divi;
10234 case M_REM_3I:
10235 s = "div";
10236 s2 = "mfhi";
10237 goto do_divi;
10238 case M_REMU_3I:
10239 s = "divu";
10240 s2 = "mfhi";
10241 goto do_divi;
10242 case M_DDIV_3I:
10243 dbl = 1;
10244 s = "ddiv";
10245 s2 = "mflo";
10246 goto do_divi;
10247 case M_DDIVU_3I:
10248 dbl = 1;
10249 s = "ddivu";
10250 s2 = "mflo";
10251 goto do_divi;
10252 case M_DREM_3I:
10253 dbl = 1;
10254 s = "ddiv";
10255 s2 = "mfhi";
10256 goto do_divi;
10257 case M_DREMU_3I:
10258 dbl = 1;
10259 s = "ddivu";
10260 s2 = "mfhi";
10261 do_divi:
b0e6f033 10262 if (imm_expr.X_add_number == 0)
252b5132 10263 {
1661c76c 10264 as_warn (_("divide by zero"));
252b5132 10265 if (mips_trap)
df58fc94 10266 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10267 else
df58fc94 10268 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10269 break;
252b5132 10270 }
b0e6f033 10271 if (imm_expr.X_add_number == 1)
252b5132
RH
10272 {
10273 if (strcmp (s2, "mflo") == 0)
c0ebe874 10274 move_register (op[0], op[1]);
252b5132 10275 else
c0ebe874 10276 move_register (op[0], ZERO);
8fc2e39e 10277 break;
252b5132 10278 }
b0e6f033 10279 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10280 {
10281 if (strcmp (s2, "mflo") == 0)
c0ebe874 10282 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10283 else
c0ebe874 10284 move_register (op[0], ZERO);
8fc2e39e 10285 break;
252b5132
RH
10286 }
10287
8fc2e39e 10288 used_at = 1;
67c0d1eb 10289 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10290 macro_build (NULL, s, "z,s,t", op[1], AT);
10291 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10292 break;
10293
10294 case M_DIVU_3:
10295 s = "divu";
10296 s2 = "mflo";
10297 goto do_divu3;
10298 case M_REMU_3:
10299 s = "divu";
10300 s2 = "mfhi";
10301 goto do_divu3;
10302 case M_DDIVU_3:
10303 s = "ddivu";
10304 s2 = "mflo";
10305 goto do_divu3;
10306 case M_DREMU_3:
10307 s = "ddivu";
10308 s2 = "mfhi";
10309 do_divu3:
7d10b47d 10310 start_noreorder ();
252b5132
RH
10311 if (mips_trap)
10312 {
c0ebe874
RS
10313 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10314 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10315 /* We want to close the noreorder block as soon as possible, so
10316 that later insns are available for delay slot filling. */
7d10b47d 10317 end_noreorder ();
252b5132
RH
10318 }
10319 else
10320 {
df58fc94
RS
10321 if (mips_opts.micromips)
10322 micromips_label_expr (&label_expr);
10323 else
10324 label_expr.X_add_number = 8;
c0ebe874
RS
10325 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10326 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10327
10328 /* We want to close the noreorder block as soon as possible, so
10329 that later insns are available for delay slot filling. */
7d10b47d 10330 end_noreorder ();
df58fc94
RS
10331 macro_build (NULL, "break", BRK_FMT, 7);
10332 if (mips_opts.micromips)
10333 micromips_add_label ();
252b5132 10334 }
c0ebe874 10335 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10336 break;
252b5132 10337
1abe91b1
MR
10338 case M_DLCA_AB:
10339 dbl = 1;
10340 case M_LCA_AB:
10341 call = 1;
10342 goto do_la;
252b5132
RH
10343 case M_DLA_AB:
10344 dbl = 1;
10345 case M_LA_AB:
1abe91b1 10346 do_la:
252b5132
RH
10347 /* Load the address of a symbol into a register. If breg is not
10348 zero, we then add a base register to it. */
10349
c0ebe874 10350 breg = op[2];
bad1aba3 10351 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10352 as_warn (_("dla used to load 32-bit register; recommend using la "
10353 "instead"));
3bec30a8 10354
90ecf173 10355 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10356 as_warn (_("la used to load 64-bit address; recommend using dla "
10357 "instead"));
3bec30a8 10358
f2ae14a1 10359 if (small_offset_p (0, align, 16))
0c11417f 10360 {
c0ebe874 10361 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10362 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10363 break;
0c11417f
MR
10364 }
10365
c0ebe874 10366 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10367 {
10368 tempreg = AT;
10369 used_at = 1;
10370 }
10371 else
c0ebe874 10372 tempreg = op[0];
afdbd6d0 10373
252b5132
RH
10374 if (offset_expr.X_op != O_symbol
10375 && offset_expr.X_op != O_constant)
10376 {
1661c76c 10377 as_bad (_("expression too complex"));
252b5132
RH
10378 offset_expr.X_op = O_constant;
10379 }
10380
252b5132 10381 if (offset_expr.X_op == O_constant)
aed1a261 10382 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10383 else if (mips_pic == NO_PIC)
10384 {
d6bc6245 10385 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10386 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10387 Otherwise we want
10388 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10389 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10390 If we have a constant, we need two instructions anyhow,
d6bc6245 10391 so we may as well always use the latter form.
76b3015f 10392
6caf9ef4
TS
10393 With 64bit address space and a usable $at we want
10394 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10395 lui $at,<sym> (BFD_RELOC_HI16_S)
10396 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10397 daddiu $at,<sym> (BFD_RELOC_LO16)
10398 dsll32 $tempreg,0
10399 daddu $tempreg,$tempreg,$at
10400
10401 If $at is already in use, we use a path which is suboptimal
10402 on superscalar processors.
10403 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10404 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10405 dsll $tempreg,16
10406 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10407 dsll $tempreg,16
10408 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10409
10410 For GP relative symbols in 64bit address space we can use
10411 the same sequence as in 32bit address space. */
aed1a261 10412 if (HAVE_64BIT_SYMBOLS)
252b5132 10413 {
6caf9ef4
TS
10414 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10415 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10416 {
10417 relax_start (offset_expr.X_add_symbol);
10418 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10419 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10420 relax_switch ();
10421 }
d6bc6245 10422
741fe287 10423 if (used_at == 0 && mips_opts.at)
98d3f06f 10424 {
df58fc94 10425 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10426 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10427 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10428 AT, BFD_RELOC_HI16_S);
67c0d1eb 10429 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10430 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10431 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10432 AT, AT, BFD_RELOC_LO16);
df58fc94 10433 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10434 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10435 used_at = 1;
10436 }
10437 else
10438 {
df58fc94 10439 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10440 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10441 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10442 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10443 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10444 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10445 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10446 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10447 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10448 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10449 }
6caf9ef4
TS
10450
10451 if (mips_relax.sequence)
10452 relax_end ();
98d3f06f
KH
10453 }
10454 else
10455 {
10456 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10457 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10458 {
4d7206a2 10459 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10460 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10461 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10462 relax_switch ();
98d3f06f 10463 }
6943caf0 10464 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10465 as_bad (_("offset too large"));
67c0d1eb
RS
10466 macro_build_lui (&offset_expr, tempreg);
10467 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10468 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10469 if (mips_relax.sequence)
10470 relax_end ();
98d3f06f 10471 }
252b5132 10472 }
0a44bf69 10473 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10474 {
9117d219
NC
10475 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10476
252b5132
RH
10477 /* If this is a reference to an external symbol, and there
10478 is no constant, we want
10479 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10480 or for lca or if tempreg is PIC_CALL_REG
9117d219 10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10482 For a local symbol, we want
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10484 nop
10485 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10486
10487 If we have a small constant, and this is a reference to
10488 an external symbol, we want
10489 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10490 nop
10491 addiu $tempreg,$tempreg,<constant>
10492 For a local symbol, we want the same instruction
10493 sequence, but we output a BFD_RELOC_LO16 reloc on the
10494 addiu instruction.
10495
10496 If we have a large constant, and this is a reference to
10497 an external symbol, we want
10498 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10499 lui $at,<hiconstant>
10500 addiu $at,$at,<loconstant>
10501 addu $tempreg,$tempreg,$at
10502 For a local symbol, we want the same instruction
10503 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10504 addiu instruction.
ed6fb7bd
SC
10505 */
10506
4d7206a2 10507 if (offset_expr.X_add_number == 0)
252b5132 10508 {
0a44bf69
RS
10509 if (mips_pic == SVR4_PIC
10510 && breg == 0
10511 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10512 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10513
10514 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10515 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10516 lw_reloc_type, mips_gp_register);
4d7206a2 10517 if (breg != 0)
252b5132
RH
10518 {
10519 /* We're going to put in an addu instruction using
10520 tempreg, so we may as well insert the nop right
10521 now. */
269137b2 10522 load_delay_nop ();
252b5132 10523 }
4d7206a2 10524 relax_switch ();
67c0d1eb
RS
10525 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10526 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10527 load_delay_nop ();
67c0d1eb
RS
10528 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10529 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10530 relax_end ();
252b5132
RH
10531 /* FIXME: If breg == 0, and the next instruction uses
10532 $tempreg, then if this variant case is used an extra
10533 nop will be generated. */
10534 }
4d7206a2
RS
10535 else if (offset_expr.X_add_number >= -0x8000
10536 && offset_expr.X_add_number < 0x8000)
252b5132 10537 {
67c0d1eb 10538 load_got_offset (tempreg, &offset_expr);
269137b2 10539 load_delay_nop ();
67c0d1eb 10540 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10541 }
10542 else
10543 {
4d7206a2
RS
10544 expr1.X_add_number = offset_expr.X_add_number;
10545 offset_expr.X_add_number =
43c0598f 10546 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10547 load_got_offset (tempreg, &offset_expr);
f6a22291 10548 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10549 /* If we are going to add in a base register, and the
10550 target register and the base register are the same,
10551 then we are using AT as a temporary register. Since
10552 we want to load the constant into AT, we add our
10553 current AT (from the global offset table) and the
10554 register into the register now, and pretend we were
10555 not using a base register. */
c0ebe874 10556 if (breg == op[0])
252b5132 10557 {
269137b2 10558 load_delay_nop ();
67c0d1eb 10559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10560 op[0], AT, breg);
252b5132 10561 breg = 0;
c0ebe874 10562 tempreg = op[0];
252b5132 10563 }
f6a22291 10564 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10565 used_at = 1;
10566 }
10567 }
0a44bf69 10568 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10569 {
67c0d1eb 10570 int add_breg_early = 0;
f5040a92
AO
10571
10572 /* If this is a reference to an external, and there is no
10573 constant, or local symbol (*), with or without a
10574 constant, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10576 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10578
10579 If we have a small constant, and this is a reference to
10580 an external symbol, we want
10581 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10582 addiu $tempreg,$tempreg,<constant>
10583
10584 If we have a large constant, and this is a reference to
10585 an external symbol, we want
10586 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10587 lui $at,<hiconstant>
10588 addiu $at,$at,<loconstant>
10589 addu $tempreg,$tempreg,$at
10590
10591 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10592 local symbols, even though it introduces an additional
10593 instruction. */
10594
f5040a92
AO
10595 if (offset_expr.X_add_number)
10596 {
4d7206a2 10597 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10598 offset_expr.X_add_number = 0;
10599
4d7206a2 10600 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10601 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10602 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10603
10604 if (expr1.X_add_number >= -0x8000
10605 && expr1.X_add_number < 0x8000)
10606 {
67c0d1eb
RS
10607 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10608 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10609 }
ecd13cd3 10610 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10611 {
c0ebe874
RS
10612 unsigned int dreg;
10613
f5040a92
AO
10614 /* If we are going to add in a base register, and the
10615 target register and the base register are the same,
10616 then we are using AT as a temporary register. Since
10617 we want to load the constant into AT, we add our
10618 current AT (from the global offset table) and the
10619 register into the register now, and pretend we were
10620 not using a base register. */
c0ebe874 10621 if (breg != op[0])
f5040a92
AO
10622 dreg = tempreg;
10623 else
10624 {
9c2799c2 10625 gas_assert (tempreg == AT);
67c0d1eb 10626 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10627 op[0], AT, breg);
10628 dreg = op[0];
67c0d1eb 10629 add_breg_early = 1;
f5040a92
AO
10630 }
10631
f6a22291 10632 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10633 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10634 dreg, dreg, AT);
f5040a92 10635
f5040a92
AO
10636 used_at = 1;
10637 }
10638 else
10639 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10640
4d7206a2 10641 relax_switch ();
f5040a92
AO
10642 offset_expr.X_add_number = expr1.X_add_number;
10643
67c0d1eb
RS
10644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10645 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10646 if (add_breg_early)
f5040a92 10647 {
67c0d1eb 10648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10649 op[0], tempreg, breg);
f5040a92 10650 breg = 0;
c0ebe874 10651 tempreg = op[0];
f5040a92 10652 }
4d7206a2 10653 relax_end ();
f5040a92 10654 }
4d7206a2 10655 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10656 {
4d7206a2 10657 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10658 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10659 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10660 relax_switch ();
67c0d1eb
RS
10661 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10662 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10663 relax_end ();
f5040a92 10664 }
4d7206a2 10665 else
f5040a92 10666 {
67c0d1eb
RS
10667 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10668 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10669 }
10670 }
0a44bf69 10671 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10672 {
67c0d1eb 10673 int gpdelay;
9117d219
NC
10674 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10675 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10676 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10677
10678 /* This is the large GOT case. If this is a reference to an
10679 external symbol, and there is no constant, we want
10680 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10681 addu $tempreg,$tempreg,$gp
10682 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10683 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10684 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10685 addu $tempreg,$tempreg,$gp
10686 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10687 For a local symbol, we want
10688 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10689 nop
10690 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10691
10692 If we have a small constant, and this is a reference to
10693 an external symbol, we want
10694 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10695 addu $tempreg,$tempreg,$gp
10696 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10697 nop
10698 addiu $tempreg,$tempreg,<constant>
10699 For a local symbol, we want
10700 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10701 nop
10702 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10703
10704 If we have a large constant, and this is a reference to
10705 an external symbol, we want
10706 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10707 addu $tempreg,$tempreg,$gp
10708 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10709 lui $at,<hiconstant>
10710 addiu $at,$at,<loconstant>
10711 addu $tempreg,$tempreg,$at
10712 For a local symbol, we want
10713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10714 lui $at,<hiconstant>
10715 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10716 addu $tempreg,$tempreg,$at
f5040a92 10717 */
438c16b8 10718
252b5132
RH
10719 expr1.X_add_number = offset_expr.X_add_number;
10720 offset_expr.X_add_number = 0;
4d7206a2 10721 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10722 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10723 if (expr1.X_add_number == 0 && breg == 0
10724 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10725 {
10726 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10727 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10728 }
df58fc94 10729 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10731 tempreg, tempreg, mips_gp_register);
67c0d1eb 10732 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10733 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10734 if (expr1.X_add_number == 0)
10735 {
67c0d1eb 10736 if (breg != 0)
252b5132
RH
10737 {
10738 /* We're going to put in an addu instruction using
10739 tempreg, so we may as well insert the nop right
10740 now. */
269137b2 10741 load_delay_nop ();
252b5132 10742 }
252b5132
RH
10743 }
10744 else if (expr1.X_add_number >= -0x8000
10745 && expr1.X_add_number < 0x8000)
10746 {
269137b2 10747 load_delay_nop ();
67c0d1eb 10748 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10749 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10750 }
10751 else
10752 {
c0ebe874
RS
10753 unsigned int dreg;
10754
252b5132
RH
10755 /* If we are going to add in a base register, and the
10756 target register and the base register are the same,
10757 then we are using AT as a temporary register. Since
10758 we want to load the constant into AT, we add our
10759 current AT (from the global offset table) and the
10760 register into the register now, and pretend we were
10761 not using a base register. */
c0ebe874 10762 if (breg != op[0])
67c0d1eb 10763 dreg = tempreg;
252b5132
RH
10764 else
10765 {
9c2799c2 10766 gas_assert (tempreg == AT);
269137b2 10767 load_delay_nop ();
67c0d1eb 10768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10769 op[0], AT, breg);
10770 dreg = op[0];
252b5132
RH
10771 }
10772
f6a22291 10773 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10774 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10775
252b5132
RH
10776 used_at = 1;
10777 }
43c0598f 10778 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10779 relax_switch ();
252b5132 10780
67c0d1eb 10781 if (gpdelay)
252b5132
RH
10782 {
10783 /* This is needed because this instruction uses $gp, but
f5040a92 10784 the first instruction on the main stream does not. */
67c0d1eb 10785 macro_build (NULL, "nop", "");
252b5132 10786 }
ed6fb7bd 10787
67c0d1eb
RS
10788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10789 local_reloc_type, mips_gp_register);
f5040a92 10790 if (expr1.X_add_number >= -0x8000
252b5132
RH
10791 && expr1.X_add_number < 0x8000)
10792 {
269137b2 10793 load_delay_nop ();
67c0d1eb
RS
10794 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10795 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10796 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10797 register, the external symbol case ended with a load,
10798 so if the symbol turns out to not be external, and
10799 the next instruction uses tempreg, an unnecessary nop
10800 will be inserted. */
252b5132
RH
10801 }
10802 else
10803 {
c0ebe874 10804 if (breg == op[0])
252b5132
RH
10805 {
10806 /* We must add in the base register now, as in the
f5040a92 10807 external symbol case. */
9c2799c2 10808 gas_assert (tempreg == AT);
269137b2 10809 load_delay_nop ();
67c0d1eb 10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10811 op[0], AT, breg);
10812 tempreg = op[0];
252b5132 10813 /* We set breg to 0 because we have arranged to add
f5040a92 10814 it in in both cases. */
252b5132
RH
10815 breg = 0;
10816 }
10817
67c0d1eb
RS
10818 macro_build_lui (&expr1, AT);
10819 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10820 AT, AT, BFD_RELOC_LO16);
67c0d1eb 10821 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10822 tempreg, tempreg, AT);
8fc2e39e 10823 used_at = 1;
252b5132 10824 }
4d7206a2 10825 relax_end ();
252b5132 10826 }
0a44bf69 10827 else if (mips_big_got && HAVE_NEWABI)
f5040a92 10828 {
f5040a92
AO
10829 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10830 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 10831 int add_breg_early = 0;
f5040a92
AO
10832
10833 /* This is the large GOT case. If this is a reference to an
10834 external symbol, and there is no constant, we want
10835 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10836 add $tempreg,$tempreg,$gp
10837 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10838 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10839 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10840 add $tempreg,$tempreg,$gp
10841 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10842
10843 If we have a small constant, and this is a reference to
10844 an external symbol, we want
10845 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10846 add $tempreg,$tempreg,$gp
10847 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10848 addi $tempreg,$tempreg,<constant>
10849
10850 If we have a large constant, and this is a reference to
10851 an external symbol, we want
10852 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10853 addu $tempreg,$tempreg,$gp
10854 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10855 lui $at,<hiconstant>
10856 addi $at,$at,<loconstant>
10857 add $tempreg,$tempreg,$at
10858
10859 If we have NewABI, and we know it's a local symbol, we want
10860 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10861 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10862 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10863
4d7206a2 10864 relax_start (offset_expr.X_add_symbol);
f5040a92 10865
4d7206a2 10866 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10867 offset_expr.X_add_number = 0;
10868
1abe91b1
MR
10869 if (expr1.X_add_number == 0 && breg == 0
10870 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
10871 {
10872 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10873 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10874 }
df58fc94 10875 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10877 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
10878 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10879 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
10880
10881 if (expr1.X_add_number == 0)
4d7206a2 10882 ;
f5040a92
AO
10883 else if (expr1.X_add_number >= -0x8000
10884 && expr1.X_add_number < 0x8000)
10885 {
67c0d1eb 10886 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10887 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10888 }
ecd13cd3 10889 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10890 {
c0ebe874
RS
10891 unsigned int dreg;
10892
f5040a92
AO
10893 /* If we are going to add in a base register, and the
10894 target register and the base register are the same,
10895 then we are using AT as a temporary register. Since
10896 we want to load the constant into AT, we add our
10897 current AT (from the global offset table) and the
10898 register into the register now, and pretend we were
10899 not using a base register. */
c0ebe874 10900 if (breg != op[0])
f5040a92
AO
10901 dreg = tempreg;
10902 else
10903 {
9c2799c2 10904 gas_assert (tempreg == AT);
67c0d1eb 10905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10906 op[0], AT, breg);
10907 dreg = op[0];
67c0d1eb 10908 add_breg_early = 1;
f5040a92
AO
10909 }
10910
f6a22291 10911 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 10913
f5040a92
AO
10914 used_at = 1;
10915 }
10916 else
10917 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10918
4d7206a2 10919 relax_switch ();
f5040a92 10920 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
10921 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10922 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10923 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10924 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10925 if (add_breg_early)
f5040a92 10926 {
67c0d1eb 10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10928 op[0], tempreg, breg);
f5040a92 10929 breg = 0;
c0ebe874 10930 tempreg = op[0];
f5040a92 10931 }
4d7206a2 10932 relax_end ();
f5040a92 10933 }
252b5132
RH
10934 else
10935 abort ();
10936
10937 if (breg != 0)
c0ebe874 10938 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
10939 break;
10940
52b6b6b9 10941 case M_MSGSND:
df58fc94 10942 gas_assert (!mips_opts.micromips);
c0ebe874 10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 10944 break;
52b6b6b9
JM
10945
10946 case M_MSGLD:
df58fc94 10947 gas_assert (!mips_opts.micromips);
c8276761 10948 macro_build (NULL, "c2", "C", 0x02);
c7af4273 10949 break;
52b6b6b9
JM
10950
10951 case M_MSGLD_T:
df58fc94 10952 gas_assert (!mips_opts.micromips);
c0ebe874 10953 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 10954 break;
52b6b6b9
JM
10955
10956 case M_MSGWAIT:
df58fc94 10957 gas_assert (!mips_opts.micromips);
52b6b6b9 10958 macro_build (NULL, "c2", "C", 3);
c7af4273 10959 break;
52b6b6b9
JM
10960
10961 case M_MSGWAIT_T:
df58fc94 10962 gas_assert (!mips_opts.micromips);
c0ebe874 10963 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 10964 break;
52b6b6b9 10965
252b5132
RH
10966 case M_J_A:
10967 /* The j instruction may not be used in PIC code, since it
10968 requires an absolute address. We convert it to a b
10969 instruction. */
10970 if (mips_pic == NO_PIC)
67c0d1eb 10971 macro_build (&offset_expr, "j", "a");
252b5132 10972 else
67c0d1eb 10973 macro_build (&offset_expr, "b", "p");
8fc2e39e 10974 break;
252b5132
RH
10975
10976 /* The jal instructions must be handled as macros because when
10977 generating PIC code they expand to multi-instruction
10978 sequences. Normally they are simple instructions. */
df58fc94 10979 case M_JALS_1:
c0ebe874
RS
10980 op[1] = op[0];
10981 op[0] = RA;
df58fc94
RS
10982 /* Fall through. */
10983 case M_JALS_2:
10984 gas_assert (mips_opts.micromips);
833794fc
MR
10985 if (mips_opts.insn32)
10986 {
1661c76c 10987 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
10988 break;
10989 }
df58fc94
RS
10990 jals = 1;
10991 goto jal;
252b5132 10992 case M_JAL_1:
c0ebe874
RS
10993 op[1] = op[0];
10994 op[0] = RA;
252b5132
RH
10995 /* Fall through. */
10996 case M_JAL_2:
df58fc94 10997 jal:
3e722fb5 10998 if (mips_pic == NO_PIC)
df58fc94
RS
10999 {
11000 s = jals ? "jalrs" : "jalr";
e64af278 11001 if (mips_opts.micromips
833794fc 11002 && !mips_opts.insn32
c0ebe874 11003 && op[0] == RA
e64af278 11004 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11005 macro_build (NULL, s, "mj", op[1]);
df58fc94 11006 else
c0ebe874 11007 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11008 }
0a44bf69 11009 else
252b5132 11010 {
df58fc94
RS
11011 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11012 && mips_cprestore_offset >= 0);
11013
c0ebe874 11014 if (op[1] != PIC_CALL_REG)
252b5132 11015 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11016
833794fc
MR
11017 s = ((mips_opts.micromips
11018 && !mips_opts.insn32
11019 && (!mips_opts.noreorder || cprestore))
df58fc94 11020 ? "jalrs" : "jalr");
e64af278 11021 if (mips_opts.micromips
833794fc 11022 && !mips_opts.insn32
c0ebe874 11023 && op[0] == RA
e64af278 11024 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11025 macro_build (NULL, s, "mj", op[1]);
df58fc94 11026 else
c0ebe874 11027 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11028 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11029 {
6478892d 11030 if (mips_cprestore_offset < 0)
1661c76c 11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11032 else
11033 {
90ecf173 11034 if (!mips_frame_reg_valid)
7a621144 11035 {
1661c76c 11036 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11037 /* Quiet this warning. */
11038 mips_frame_reg_valid = 1;
11039 }
90ecf173 11040 if (!mips_cprestore_valid)
7a621144 11041 {
1661c76c 11042 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11043 /* Quiet this warning. */
11044 mips_cprestore_valid = 1;
11045 }
d3fca0b5
MR
11046 if (mips_opts.noreorder)
11047 macro_build (NULL, "nop", "");
6478892d 11048 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11049 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11050 mips_gp_register,
256ab948
TS
11051 mips_frame_reg,
11052 HAVE_64BIT_ADDRESSES);
6478892d 11053 }
252b5132
RH
11054 }
11055 }
252b5132 11056
8fc2e39e 11057 break;
252b5132 11058
df58fc94
RS
11059 case M_JALS_A:
11060 gas_assert (mips_opts.micromips);
833794fc
MR
11061 if (mips_opts.insn32)
11062 {
1661c76c 11063 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11064 break;
11065 }
df58fc94
RS
11066 jals = 1;
11067 /* Fall through. */
252b5132
RH
11068 case M_JAL_A:
11069 if (mips_pic == NO_PIC)
df58fc94 11070 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11071 else if (mips_pic == SVR4_PIC)
11072 {
11073 /* If this is a reference to an external symbol, and we are
11074 using a small GOT, we want
11075 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11076 nop
f9419b05 11077 jalr $ra,$25
252b5132
RH
11078 nop
11079 lw $gp,cprestore($sp)
11080 The cprestore value is set using the .cprestore
11081 pseudo-op. If we are using a big GOT, we want
11082 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11083 addu $25,$25,$gp
11084 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11085 nop
f9419b05 11086 jalr $ra,$25
252b5132
RH
11087 nop
11088 lw $gp,cprestore($sp)
11089 If the symbol is not external, we want
11090 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11091 nop
11092 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11093 jalr $ra,$25
252b5132 11094 nop
438c16b8 11095 lw $gp,cprestore($sp)
f5040a92
AO
11096
11097 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11098 sequences above, minus nops, unless the symbol is local,
11099 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11100 GOT_DISP. */
438c16b8 11101 if (HAVE_NEWABI)
252b5132 11102 {
90ecf173 11103 if (!mips_big_got)
f5040a92 11104 {
4d7206a2 11105 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11107 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11108 mips_gp_register);
4d7206a2 11109 relax_switch ();
67c0d1eb
RS
11110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11111 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11112 mips_gp_register);
11113 relax_end ();
f5040a92
AO
11114 }
11115 else
11116 {
4d7206a2 11117 relax_start (offset_expr.X_add_symbol);
df58fc94 11118 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11119 BFD_RELOC_MIPS_CALL_HI16);
11120 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11121 PIC_CALL_REG, mips_gp_register);
11122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11123 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11124 PIC_CALL_REG);
4d7206a2 11125 relax_switch ();
67c0d1eb
RS
11126 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11127 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11128 mips_gp_register);
11129 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11130 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11131 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11132 relax_end ();
f5040a92 11133 }
684022ea 11134
df58fc94 11135 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11136 }
11137 else
11138 {
4d7206a2 11139 relax_start (offset_expr.X_add_symbol);
90ecf173 11140 if (!mips_big_got)
438c16b8 11141 {
67c0d1eb
RS
11142 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11143 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11144 mips_gp_register);
269137b2 11145 load_delay_nop ();
4d7206a2 11146 relax_switch ();
438c16b8 11147 }
252b5132 11148 else
252b5132 11149 {
67c0d1eb
RS
11150 int gpdelay;
11151
11152 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11153 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11154 BFD_RELOC_MIPS_CALL_HI16);
11155 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11156 PIC_CALL_REG, mips_gp_register);
11157 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11158 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11159 PIC_CALL_REG);
269137b2 11160 load_delay_nop ();
4d7206a2 11161 relax_switch ();
67c0d1eb
RS
11162 if (gpdelay)
11163 macro_build (NULL, "nop", "");
252b5132 11164 }
67c0d1eb
RS
11165 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11166 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11167 mips_gp_register);
269137b2 11168 load_delay_nop ();
67c0d1eb
RS
11169 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11170 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11171 relax_end ();
df58fc94 11172 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11173
6478892d 11174 if (mips_cprestore_offset < 0)
1661c76c 11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11176 else
11177 {
90ecf173 11178 if (!mips_frame_reg_valid)
7a621144 11179 {
1661c76c 11180 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11181 /* Quiet this warning. */
11182 mips_frame_reg_valid = 1;
11183 }
90ecf173 11184 if (!mips_cprestore_valid)
7a621144 11185 {
1661c76c 11186 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11187 /* Quiet this warning. */
11188 mips_cprestore_valid = 1;
11189 }
6478892d 11190 if (mips_opts.noreorder)
67c0d1eb 11191 macro_build (NULL, "nop", "");
6478892d 11192 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11193 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11194 mips_gp_register,
256ab948
TS
11195 mips_frame_reg,
11196 HAVE_64BIT_ADDRESSES);
6478892d 11197 }
252b5132
RH
11198 }
11199 }
0a44bf69 11200 else if (mips_pic == VXWORKS_PIC)
1661c76c 11201 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11202 else
11203 abort ();
11204
8fc2e39e 11205 break;
252b5132 11206
7f3c4072 11207 case M_LBUE_AB:
7f3c4072
CM
11208 s = "lbue";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LHUE_AB:
7f3c4072
CM
11213 s = "lhue";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LBE_AB:
7f3c4072
CM
11218 s = "lbe";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LHE_AB:
7f3c4072
CM
11223 s = "lhe";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_LLE_AB:
7f3c4072
CM
11228 s = "lle";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_LWE_AB:
7f3c4072
CM
11233 s = "lwe";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_LWLE_AB:
7f3c4072
CM
11238 s = "lwle";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_LWRE_AB:
7f3c4072
CM
11243 s = "lwre";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SBE_AB:
7f3c4072
CM
11248 s = "sbe";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SCE_AB:
7f3c4072
CM
11253 s = "sce";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_SHE_AB:
7f3c4072
CM
11258 s = "she";
11259 fmt = "t,+j(b)";
11260 offbits = 9;
11261 goto ld_st;
11262 case M_SWE_AB:
7f3c4072
CM
11263 s = "swe";
11264 fmt = "t,+j(b)";
11265 offbits = 9;
11266 goto ld_st;
11267 case M_SWLE_AB:
7f3c4072
CM
11268 s = "swle";
11269 fmt = "t,+j(b)";
11270 offbits = 9;
11271 goto ld_st;
11272 case M_SWRE_AB:
7f3c4072
CM
11273 s = "swre";
11274 fmt = "t,+j(b)";
11275 offbits = 9;
11276 goto ld_st;
dec0624d 11277 case M_ACLR_AB:
dec0624d 11278 s = "aclr";
dec0624d 11279 fmt = "\\,~(b)";
7f3c4072 11280 offbits = 12;
dec0624d
MR
11281 goto ld_st;
11282 case M_ASET_AB:
dec0624d 11283 s = "aset";
dec0624d 11284 fmt = "\\,~(b)";
7f3c4072 11285 offbits = 12;
dec0624d 11286 goto ld_st;
252b5132
RH
11287 case M_LB_AB:
11288 s = "lb";
df58fc94 11289 fmt = "t,o(b)";
252b5132
RH
11290 goto ld;
11291 case M_LBU_AB:
11292 s = "lbu";
df58fc94 11293 fmt = "t,o(b)";
252b5132
RH
11294 goto ld;
11295 case M_LH_AB:
11296 s = "lh";
df58fc94 11297 fmt = "t,o(b)";
252b5132
RH
11298 goto ld;
11299 case M_LHU_AB:
11300 s = "lhu";
df58fc94 11301 fmt = "t,o(b)";
252b5132
RH
11302 goto ld;
11303 case M_LW_AB:
11304 s = "lw";
df58fc94 11305 fmt = "t,o(b)";
252b5132
RH
11306 goto ld;
11307 case M_LWC0_AB:
df58fc94 11308 gas_assert (!mips_opts.micromips);
252b5132 11309 s = "lwc0";
df58fc94 11310 fmt = "E,o(b)";
bdaaa2e1 11311 /* Itbl support may require additional care here. */
252b5132 11312 coproc = 1;
df58fc94 11313 goto ld_st;
252b5132
RH
11314 case M_LWC1_AB:
11315 s = "lwc1";
df58fc94 11316 fmt = "T,o(b)";
bdaaa2e1 11317 /* Itbl support may require additional care here. */
252b5132 11318 coproc = 1;
df58fc94 11319 goto ld_st;
252b5132
RH
11320 case M_LWC2_AB:
11321 s = "lwc2";
df58fc94 11322 fmt = COP12_FMT;
7361da2c
AB
11323 offbits = (mips_opts.micromips ? 12
11324 : ISA_IS_R6 (mips_opts.isa) ? 11
11325 : 16);
bdaaa2e1 11326 /* Itbl support may require additional care here. */
252b5132 11327 coproc = 1;
df58fc94 11328 goto ld_st;
252b5132 11329 case M_LWC3_AB:
df58fc94 11330 gas_assert (!mips_opts.micromips);
252b5132 11331 s = "lwc3";
df58fc94 11332 fmt = "E,o(b)";
bdaaa2e1 11333 /* Itbl support may require additional care here. */
252b5132 11334 coproc = 1;
df58fc94 11335 goto ld_st;
252b5132
RH
11336 case M_LWL_AB:
11337 s = "lwl";
df58fc94 11338 fmt = MEM12_FMT;
7f3c4072 11339 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11340 goto ld_st;
252b5132
RH
11341 case M_LWR_AB:
11342 s = "lwr";
df58fc94 11343 fmt = MEM12_FMT;
7f3c4072 11344 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11345 goto ld_st;
252b5132 11346 case M_LDC1_AB:
252b5132 11347 s = "ldc1";
df58fc94 11348 fmt = "T,o(b)";
bdaaa2e1 11349 /* Itbl support may require additional care here. */
252b5132 11350 coproc = 1;
df58fc94 11351 goto ld_st;
252b5132
RH
11352 case M_LDC2_AB:
11353 s = "ldc2";
df58fc94 11354 fmt = COP12_FMT;
7361da2c
AB
11355 offbits = (mips_opts.micromips ? 12
11356 : ISA_IS_R6 (mips_opts.isa) ? 11
11357 : 16);
bdaaa2e1 11358 /* Itbl support may require additional care here. */
252b5132 11359 coproc = 1;
df58fc94 11360 goto ld_st;
c77c0862 11361 case M_LQC2_AB:
c77c0862 11362 s = "lqc2";
14daeee3 11363 fmt = "+7,o(b)";
c77c0862
RS
11364 /* Itbl support may require additional care here. */
11365 coproc = 1;
11366 goto ld_st;
252b5132
RH
11367 case M_LDC3_AB:
11368 s = "ldc3";
df58fc94 11369 fmt = "E,o(b)";
bdaaa2e1 11370 /* Itbl support may require additional care here. */
252b5132 11371 coproc = 1;
df58fc94 11372 goto ld_st;
252b5132
RH
11373 case M_LDL_AB:
11374 s = "ldl";
df58fc94 11375 fmt = MEM12_FMT;
7f3c4072 11376 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11377 goto ld_st;
252b5132
RH
11378 case M_LDR_AB:
11379 s = "ldr";
df58fc94 11380 fmt = MEM12_FMT;
7f3c4072 11381 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11382 goto ld_st;
252b5132
RH
11383 case M_LL_AB:
11384 s = "ll";
7361da2c
AB
11385 fmt = LL_SC_FMT;
11386 offbits = (mips_opts.micromips ? 12
11387 : ISA_IS_R6 (mips_opts.isa) ? 9
11388 : 16);
252b5132
RH
11389 goto ld;
11390 case M_LLD_AB:
11391 s = "lld";
7361da2c
AB
11392 fmt = LL_SC_FMT;
11393 offbits = (mips_opts.micromips ? 12
11394 : ISA_IS_R6 (mips_opts.isa) ? 9
11395 : 16);
252b5132
RH
11396 goto ld;
11397 case M_LWU_AB:
11398 s = "lwu";
df58fc94 11399 fmt = MEM12_FMT;
7f3c4072 11400 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11401 goto ld;
11402 case M_LWP_AB:
df58fc94
RS
11403 gas_assert (mips_opts.micromips);
11404 s = "lwp";
11405 fmt = "t,~(b)";
7f3c4072 11406 offbits = 12;
df58fc94
RS
11407 lp = 1;
11408 goto ld;
11409 case M_LDP_AB:
df58fc94
RS
11410 gas_assert (mips_opts.micromips);
11411 s = "ldp";
11412 fmt = "t,~(b)";
7f3c4072 11413 offbits = 12;
df58fc94
RS
11414 lp = 1;
11415 goto ld;
11416 case M_LWM_AB:
df58fc94
RS
11417 gas_assert (mips_opts.micromips);
11418 s = "lwm";
11419 fmt = "n,~(b)";
7f3c4072 11420 offbits = 12;
df58fc94
RS
11421 goto ld_st;
11422 case M_LDM_AB:
df58fc94
RS
11423 gas_assert (mips_opts.micromips);
11424 s = "ldm";
11425 fmt = "n,~(b)";
7f3c4072 11426 offbits = 12;
df58fc94
RS
11427 goto ld_st;
11428
252b5132 11429 ld:
f19ccbda 11430 /* We don't want to use $0 as tempreg. */
c0ebe874 11431 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11432 goto ld_st;
252b5132 11433 else
c0ebe874 11434 tempreg = op[0] + lp;
df58fc94
RS
11435 goto ld_noat;
11436
252b5132
RH
11437 case M_SB_AB:
11438 s = "sb";
df58fc94
RS
11439 fmt = "t,o(b)";
11440 goto ld_st;
252b5132
RH
11441 case M_SH_AB:
11442 s = "sh";
df58fc94
RS
11443 fmt = "t,o(b)";
11444 goto ld_st;
252b5132
RH
11445 case M_SW_AB:
11446 s = "sw";
df58fc94
RS
11447 fmt = "t,o(b)";
11448 goto ld_st;
252b5132 11449 case M_SWC0_AB:
df58fc94 11450 gas_assert (!mips_opts.micromips);
252b5132 11451 s = "swc0";
df58fc94 11452 fmt = "E,o(b)";
bdaaa2e1 11453 /* Itbl support may require additional care here. */
252b5132 11454 coproc = 1;
df58fc94 11455 goto ld_st;
252b5132
RH
11456 case M_SWC1_AB:
11457 s = "swc1";
df58fc94 11458 fmt = "T,o(b)";
bdaaa2e1 11459 /* Itbl support may require additional care here. */
252b5132 11460 coproc = 1;
df58fc94 11461 goto ld_st;
252b5132
RH
11462 case M_SWC2_AB:
11463 s = "swc2";
df58fc94 11464 fmt = COP12_FMT;
7361da2c
AB
11465 offbits = (mips_opts.micromips ? 12
11466 : ISA_IS_R6 (mips_opts.isa) ? 11
11467 : 16);
bdaaa2e1 11468 /* Itbl support may require additional care here. */
252b5132 11469 coproc = 1;
df58fc94 11470 goto ld_st;
252b5132 11471 case M_SWC3_AB:
df58fc94 11472 gas_assert (!mips_opts.micromips);
252b5132 11473 s = "swc3";
df58fc94 11474 fmt = "E,o(b)";
bdaaa2e1 11475 /* Itbl support may require additional care here. */
252b5132 11476 coproc = 1;
df58fc94 11477 goto ld_st;
252b5132
RH
11478 case M_SWL_AB:
11479 s = "swl";
df58fc94 11480 fmt = MEM12_FMT;
7f3c4072 11481 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11482 goto ld_st;
252b5132
RH
11483 case M_SWR_AB:
11484 s = "swr";
df58fc94 11485 fmt = MEM12_FMT;
7f3c4072 11486 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11487 goto ld_st;
252b5132
RH
11488 case M_SC_AB:
11489 s = "sc";
7361da2c
AB
11490 fmt = LL_SC_FMT;
11491 offbits = (mips_opts.micromips ? 12
11492 : ISA_IS_R6 (mips_opts.isa) ? 9
11493 : 16);
df58fc94 11494 goto ld_st;
252b5132
RH
11495 case M_SCD_AB:
11496 s = "scd";
7361da2c
AB
11497 fmt = LL_SC_FMT;
11498 offbits = (mips_opts.micromips ? 12
11499 : ISA_IS_R6 (mips_opts.isa) ? 9
11500 : 16);
df58fc94 11501 goto ld_st;
d43b4baf
TS
11502 case M_CACHE_AB:
11503 s = "cache";
7361da2c
AB
11504 fmt = (mips_opts.micromips ? "k,~(b)"
11505 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11506 : "k,o(b)");
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 9
11509 : 16);
7f3c4072
CM
11510 goto ld_st;
11511 case M_CACHEE_AB:
7f3c4072
CM
11512 s = "cachee";
11513 fmt = "k,+j(b)";
11514 offbits = 9;
df58fc94 11515 goto ld_st;
3eebd5eb
MR
11516 case M_PREF_AB:
11517 s = "pref";
7361da2c
AB
11518 fmt = (mips_opts.micromips ? "k,~(b)"
11519 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11520 : "k,o(b)");
11521 offbits = (mips_opts.micromips ? 12
11522 : ISA_IS_R6 (mips_opts.isa) ? 9
11523 : 16);
7f3c4072
CM
11524 goto ld_st;
11525 case M_PREFE_AB:
7f3c4072
CM
11526 s = "prefe";
11527 fmt = "k,+j(b)";
11528 offbits = 9;
df58fc94 11529 goto ld_st;
252b5132 11530 case M_SDC1_AB:
252b5132 11531 s = "sdc1";
df58fc94 11532 fmt = "T,o(b)";
252b5132 11533 coproc = 1;
bdaaa2e1 11534 /* Itbl support may require additional care here. */
df58fc94 11535 goto ld_st;
252b5132
RH
11536 case M_SDC2_AB:
11537 s = "sdc2";
df58fc94 11538 fmt = COP12_FMT;
7361da2c
AB
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
c77c0862
RS
11542 /* Itbl support may require additional care here. */
11543 coproc = 1;
11544 goto ld_st;
11545 case M_SQC2_AB:
c77c0862 11546 s = "sqc2";
14daeee3 11547 fmt = "+7,o(b)";
bdaaa2e1 11548 /* Itbl support may require additional care here. */
252b5132 11549 coproc = 1;
df58fc94 11550 goto ld_st;
252b5132 11551 case M_SDC3_AB:
df58fc94 11552 gas_assert (!mips_opts.micromips);
252b5132 11553 s = "sdc3";
df58fc94 11554 fmt = "E,o(b)";
bdaaa2e1 11555 /* Itbl support may require additional care here. */
252b5132 11556 coproc = 1;
df58fc94 11557 goto ld_st;
252b5132
RH
11558 case M_SDL_AB:
11559 s = "sdl";
df58fc94 11560 fmt = MEM12_FMT;
7f3c4072 11561 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11562 goto ld_st;
252b5132
RH
11563 case M_SDR_AB:
11564 s = "sdr";
df58fc94 11565 fmt = MEM12_FMT;
7f3c4072 11566 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11567 goto ld_st;
11568 case M_SWP_AB:
df58fc94
RS
11569 gas_assert (mips_opts.micromips);
11570 s = "swp";
11571 fmt = "t,~(b)";
7f3c4072 11572 offbits = 12;
df58fc94
RS
11573 goto ld_st;
11574 case M_SDP_AB:
df58fc94
RS
11575 gas_assert (mips_opts.micromips);
11576 s = "sdp";
11577 fmt = "t,~(b)";
7f3c4072 11578 offbits = 12;
df58fc94
RS
11579 goto ld_st;
11580 case M_SWM_AB:
df58fc94
RS
11581 gas_assert (mips_opts.micromips);
11582 s = "swm";
11583 fmt = "n,~(b)";
7f3c4072 11584 offbits = 12;
df58fc94
RS
11585 goto ld_st;
11586 case M_SDM_AB:
df58fc94
RS
11587 gas_assert (mips_opts.micromips);
11588 s = "sdm";
11589 fmt = "n,~(b)";
7f3c4072 11590 offbits = 12;
df58fc94
RS
11591
11592 ld_st:
8fc2e39e 11593 tempreg = AT;
df58fc94 11594 ld_noat:
c0ebe874 11595 breg = op[2];
f2ae14a1
RS
11596 if (small_offset_p (0, align, 16))
11597 {
11598 /* The first case exists for M_LD_AB and M_SD_AB, which are
11599 macros for o32 but which should act like normal instructions
11600 otherwise. */
11601 if (offbits == 16)
c0ebe874 11602 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11603 offset_reloc[1], offset_reloc[2], breg);
11604 else if (small_offset_p (0, align, offbits))
11605 {
11606 if (offbits == 0)
c0ebe874 11607 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11608 else
c0ebe874 11609 macro_build (NULL, s, fmt, op[0],
c8276761 11610 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11611 }
11612 else
11613 {
11614 if (tempreg == AT)
11615 used_at = 1;
11616 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11617 tempreg, breg, -1, offset_reloc[0],
11618 offset_reloc[1], offset_reloc[2]);
11619 if (offbits == 0)
c0ebe874 11620 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11621 else
c0ebe874 11622 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11623 }
11624 break;
11625 }
11626
11627 if (tempreg == AT)
11628 used_at = 1;
11629
252b5132
RH
11630 if (offset_expr.X_op != O_constant
11631 && offset_expr.X_op != O_symbol)
11632 {
1661c76c 11633 as_bad (_("expression too complex"));
252b5132
RH
11634 offset_expr.X_op = O_constant;
11635 }
11636
2051e8c4
MR
11637 if (HAVE_32BIT_ADDRESSES
11638 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11639 {
11640 char value [32];
11641
11642 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11643 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11644 }
2051e8c4 11645
252b5132
RH
11646 /* A constant expression in PIC code can be handled just as it
11647 is in non PIC code. */
aed1a261
RS
11648 if (offset_expr.X_op == O_constant)
11649 {
f2ae14a1
RS
11650 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11651 offbits == 0 ? 16 : offbits);
11652 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11653
f2ae14a1
RS
11654 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11655 if (breg != 0)
11656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11657 tempreg, tempreg, breg);
7f3c4072 11658 if (offbits == 0)
dd6a37e7 11659 {
f2ae14a1 11660 if (offset_expr.X_add_number != 0)
dd6a37e7 11661 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11662 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11663 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11664 }
7f3c4072 11665 else if (offbits == 16)
c0ebe874 11666 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11667 else
c0ebe874 11668 macro_build (NULL, s, fmt, op[0],
c8276761 11669 (int) offset_expr.X_add_number, tempreg);
df58fc94 11670 }
7f3c4072 11671 else if (offbits != 16)
df58fc94 11672 {
7f3c4072
CM
11673 /* The offset field is too narrow to be used for a low-part
11674 relocation, so load the whole address into the auxillary
f2ae14a1
RS
11675 register. */
11676 load_address (tempreg, &offset_expr, &used_at);
11677 if (breg != 0)
11678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11679 tempreg, tempreg, breg);
7f3c4072 11680 if (offbits == 0)
c0ebe874 11681 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11682 else
c0ebe874 11683 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11684 }
11685 else if (mips_pic == NO_PIC)
252b5132
RH
11686 {
11687 /* If this is a reference to a GP relative symbol, and there
11688 is no base register, we want
c0ebe874 11689 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11690 Otherwise, if there is no base register, we want
11691 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11693 If we have a constant, we need two instructions anyhow,
11694 so we always use the latter form.
11695
11696 If we have a base register, and this is a reference to a
11697 GP relative symbol, we want
11698 addu $tempreg,$breg,$gp
c0ebe874 11699 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11700 Otherwise we want
11701 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11702 addu $tempreg,$tempreg,$breg
c0ebe874 11703 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11704 With a constant we always use the latter case.
76b3015f 11705
d6bc6245
TS
11706 With 64bit address space and no base register and $at usable,
11707 we want
11708 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11709 lui $at,<sym> (BFD_RELOC_HI16_S)
11710 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11711 dsll32 $tempreg,0
11712 daddu $tempreg,$at
c0ebe874 11713 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11714 If we have a base register, we want
11715 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11716 lui $at,<sym> (BFD_RELOC_HI16_S)
11717 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11718 daddu $at,$breg
11719 dsll32 $tempreg,0
11720 daddu $tempreg,$at
c0ebe874 11721 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11722
11723 Without $at we can't generate the optimal path for superscalar
11724 processors here since this would require two temporary registers.
11725 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11726 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11727 dsll $tempreg,16
11728 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11729 dsll $tempreg,16
c0ebe874 11730 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11731 If we have a base register, we want
11732 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11733 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11734 dsll $tempreg,16
11735 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11736 dsll $tempreg,16
11737 daddu $tempreg,$tempreg,$breg
c0ebe874 11738 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11739
6caf9ef4 11740 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11741 the same sequence as in 32bit address space. */
11742 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11743 {
aed1a261 11744 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11745 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11746 {
11747 relax_start (offset_expr.X_add_symbol);
11748 if (breg == 0)
11749 {
c0ebe874 11750 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11751 BFD_RELOC_GPREL16, mips_gp_register);
11752 }
11753 else
11754 {
11755 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11756 tempreg, breg, mips_gp_register);
c0ebe874 11757 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11758 BFD_RELOC_GPREL16, tempreg);
11759 }
11760 relax_switch ();
11761 }
d6bc6245 11762
741fe287 11763 if (used_at == 0 && mips_opts.at)
d6bc6245 11764 {
df58fc94 11765 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11766 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11767 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11768 BFD_RELOC_HI16_S);
11769 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11770 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11771 if (breg != 0)
67c0d1eb 11772 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11773 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11774 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11775 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11776 tempreg);
d6bc6245
TS
11777 used_at = 1;
11778 }
11779 else
11780 {
df58fc94 11781 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11782 BFD_RELOC_MIPS_HIGHEST);
11783 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11784 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11785 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11786 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11787 tempreg, BFD_RELOC_HI16_S);
df58fc94 11788 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11789 if (breg != 0)
67c0d1eb 11790 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11791 tempreg, tempreg, breg);
c0ebe874 11792 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11793 BFD_RELOC_LO16, tempreg);
d6bc6245 11794 }
6caf9ef4
TS
11795
11796 if (mips_relax.sequence)
11797 relax_end ();
8fc2e39e 11798 break;
d6bc6245 11799 }
256ab948 11800
252b5132
RH
11801 if (breg == 0)
11802 {
67c0d1eb 11803 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11804 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11805 {
4d7206a2 11806 relax_start (offset_expr.X_add_symbol);
c0ebe874 11807 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11808 mips_gp_register);
4d7206a2 11809 relax_switch ();
252b5132 11810 }
67c0d1eb 11811 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11812 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11813 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11814 if (mips_relax.sequence)
11815 relax_end ();
252b5132
RH
11816 }
11817 else
11818 {
67c0d1eb 11819 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11820 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11821 {
4d7206a2 11822 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11824 tempreg, breg, mips_gp_register);
c0ebe874 11825 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11826 BFD_RELOC_GPREL16, tempreg);
4d7206a2 11827 relax_switch ();
252b5132 11828 }
67c0d1eb
RS
11829 macro_build_lui (&offset_expr, tempreg);
11830 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11831 tempreg, tempreg, breg);
c0ebe874 11832 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11833 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11834 if (mips_relax.sequence)
11835 relax_end ();
252b5132
RH
11836 }
11837 }
0a44bf69 11838 else if (!mips_big_got)
252b5132 11839 {
ed6fb7bd 11840 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 11841
252b5132
RH
11842 /* If this is a reference to an external symbol, we want
11843 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11844 nop
c0ebe874 11845 <op> op[0],0($tempreg)
252b5132
RH
11846 Otherwise we want
11847 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11848 nop
11849 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11850 <op> op[0],0($tempreg)
f5040a92
AO
11851
11852 For NewABI, we want
11853 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11854 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 11855
252b5132
RH
11856 If there is a base register, we add it to $tempreg before
11857 the <op>. If there is a constant, we stick it in the
11858 <op> instruction. We don't handle constants larger than
11859 16 bits, because we have no way to load the upper 16 bits
11860 (actually, we could handle them for the subset of cases
11861 in which we are not using $at). */
9c2799c2 11862 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
11863 if (HAVE_NEWABI)
11864 {
67c0d1eb
RS
11865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11866 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11867 if (breg != 0)
67c0d1eb 11868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11869 tempreg, tempreg, breg);
c0ebe874 11870 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11871 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
11872 break;
11873 }
252b5132
RH
11874 expr1.X_add_number = offset_expr.X_add_number;
11875 offset_expr.X_add_number = 0;
11876 if (expr1.X_add_number < -0x8000
11877 || expr1.X_add_number >= 0x8000)
11878 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
11879 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11880 lw_reloc_type, mips_gp_register);
269137b2 11881 load_delay_nop ();
4d7206a2
RS
11882 relax_start (offset_expr.X_add_symbol);
11883 relax_switch ();
67c0d1eb
RS
11884 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11885 tempreg, BFD_RELOC_LO16);
4d7206a2 11886 relax_end ();
252b5132 11887 if (breg != 0)
67c0d1eb 11888 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11889 tempreg, tempreg, breg);
c0ebe874 11890 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11891 }
0a44bf69 11892 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11893 {
67c0d1eb 11894 int gpdelay;
252b5132
RH
11895
11896 /* If this is a reference to an external symbol, we want
11897 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11898 addu $tempreg,$tempreg,$gp
11899 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11900 <op> op[0],0($tempreg)
252b5132
RH
11901 Otherwise we want
11902 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11903 nop
11904 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 11905 <op> op[0],0($tempreg)
252b5132
RH
11906 If there is a base register, we add it to $tempreg before
11907 the <op>. If there is a constant, we stick it in the
11908 <op> instruction. We don't handle constants larger than
11909 16 bits, because we have no way to load the upper 16 bits
11910 (actually, we could handle them for the subset of cases
f5040a92 11911 in which we are not using $at). */
9c2799c2 11912 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
11913 expr1.X_add_number = offset_expr.X_add_number;
11914 offset_expr.X_add_number = 0;
11915 if (expr1.X_add_number < -0x8000
11916 || expr1.X_add_number >= 0x8000)
11917 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 11918 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 11919 relax_start (offset_expr.X_add_symbol);
df58fc94 11920 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11921 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11922 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11923 mips_gp_register);
11924 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11925 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 11926 relax_switch ();
67c0d1eb
RS
11927 if (gpdelay)
11928 macro_build (NULL, "nop", "");
11929 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11930 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 11931 load_delay_nop ();
67c0d1eb
RS
11932 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11933 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
11934 relax_end ();
11935
252b5132 11936 if (breg != 0)
67c0d1eb 11937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11938 tempreg, tempreg, breg);
c0ebe874 11939 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 11940 }
0a44bf69 11941 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11942 {
f5040a92
AO
11943 /* If this is a reference to an external symbol, we want
11944 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11945 add $tempreg,$tempreg,$gp
11946 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 11947 <op> op[0],<ofst>($tempreg)
f5040a92
AO
11948 Otherwise, for local symbols, we want:
11949 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 11950 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 11951 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 11952 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11953 offset_expr.X_add_number = 0;
11954 if (expr1.X_add_number < -0x8000
11955 || expr1.X_add_number >= 0x8000)
11956 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 11957 relax_start (offset_expr.X_add_symbol);
df58fc94 11958 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 11959 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
11960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11961 mips_gp_register);
11962 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11963 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 11964 if (breg != 0)
67c0d1eb 11965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11966 tempreg, tempreg, breg);
c0ebe874 11967 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 11968
4d7206a2 11969 relax_switch ();
f5040a92 11970 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11971 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11972 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 11973 if (breg != 0)
67c0d1eb 11974 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11975 tempreg, tempreg, breg);
c0ebe874 11976 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11977 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 11978 relax_end ();
f5040a92 11979 }
252b5132
RH
11980 else
11981 abort ();
11982
252b5132
RH
11983 break;
11984
833794fc
MR
11985 case M_JRADDIUSP:
11986 gas_assert (mips_opts.micromips);
11987 gas_assert (mips_opts.insn32);
11988 start_noreorder ();
11989 macro_build (NULL, "jr", "s", RA);
c0ebe874 11990 expr1.X_add_number = op[0] << 2;
833794fc
MR
11991 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11992 end_noreorder ();
11993 break;
11994
11995 case M_JRC:
11996 gas_assert (mips_opts.micromips);
11997 gas_assert (mips_opts.insn32);
c0ebe874 11998 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
11999 if (mips_opts.noreorder)
12000 macro_build (NULL, "nop", "");
12001 break;
12002
252b5132
RH
12003 case M_LI:
12004 case M_LI_S:
c0ebe874 12005 load_register (op[0], &imm_expr, 0);
8fc2e39e 12006 break;
252b5132
RH
12007
12008 case M_DLI:
c0ebe874 12009 load_register (op[0], &imm_expr, 1);
8fc2e39e 12010 break;
252b5132
RH
12011
12012 case M_LI_SS:
12013 if (imm_expr.X_op == O_constant)
12014 {
8fc2e39e 12015 used_at = 1;
67c0d1eb 12016 load_register (AT, &imm_expr, 0);
c0ebe874 12017 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12018 break;
12019 }
12020 else
12021 {
b0e6f033
RS
12022 gas_assert (imm_expr.X_op == O_absent
12023 && offset_expr.X_op == O_symbol
90ecf173
MR
12024 && strcmp (segment_name (S_GET_SEGMENT
12025 (offset_expr.X_add_symbol)),
12026 ".lit4") == 0
12027 && offset_expr.X_add_number == 0);
c0ebe874 12028 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12029 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12030 break;
252b5132
RH
12031 }
12032
12033 case M_LI_D:
ca4e0257
RS
12034 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12035 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12036 order 32 bits of the value and the low order 32 bits are either
12037 zero or in OFFSET_EXPR. */
b0e6f033 12038 if (imm_expr.X_op == O_constant)
252b5132 12039 {
bad1aba3 12040 if (GPR_SIZE == 64)
c0ebe874 12041 load_register (op[0], &imm_expr, 1);
252b5132
RH
12042 else
12043 {
12044 int hreg, lreg;
12045
12046 if (target_big_endian)
12047 {
c0ebe874
RS
12048 hreg = op[0];
12049 lreg = op[0] + 1;
252b5132
RH
12050 }
12051 else
12052 {
c0ebe874
RS
12053 hreg = op[0] + 1;
12054 lreg = op[0];
252b5132
RH
12055 }
12056
12057 if (hreg <= 31)
67c0d1eb 12058 load_register (hreg, &imm_expr, 0);
252b5132
RH
12059 if (lreg <= 31)
12060 {
12061 if (offset_expr.X_op == O_absent)
67c0d1eb 12062 move_register (lreg, 0);
252b5132
RH
12063 else
12064 {
9c2799c2 12065 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12066 load_register (lreg, &offset_expr, 0);
252b5132
RH
12067 }
12068 }
12069 }
8fc2e39e 12070 break;
252b5132 12071 }
b0e6f033 12072 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12073
12074 /* We know that sym is in the .rdata section. First we get the
12075 upper 16 bits of the address. */
12076 if (mips_pic == NO_PIC)
12077 {
67c0d1eb 12078 macro_build_lui (&offset_expr, AT);
8fc2e39e 12079 used_at = 1;
252b5132 12080 }
0a44bf69 12081 else
252b5132 12082 {
67c0d1eb
RS
12083 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12084 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12085 used_at = 1;
252b5132 12086 }
bdaaa2e1 12087
252b5132 12088 /* Now we load the register(s). */
bad1aba3 12089 if (GPR_SIZE == 64)
8fc2e39e
TS
12090 {
12091 used_at = 1;
c0ebe874
RS
12092 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12093 BFD_RELOC_LO16, AT);
8fc2e39e 12094 }
252b5132
RH
12095 else
12096 {
8fc2e39e 12097 used_at = 1;
c0ebe874
RS
12098 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12099 BFD_RELOC_LO16, AT);
12100 if (op[0] != RA)
252b5132
RH
12101 {
12102 /* FIXME: How in the world do we deal with the possible
12103 overflow here? */
12104 offset_expr.X_add_number += 4;
67c0d1eb 12105 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12106 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12107 }
12108 }
252b5132
RH
12109 break;
12110
12111 case M_LI_DD:
ca4e0257
RS
12112 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12113 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12114 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12115 the value and the low order 32 bits are either zero or in
12116 OFFSET_EXPR. */
b0e6f033 12117 if (imm_expr.X_op == O_constant)
252b5132 12118 {
8fc2e39e 12119 used_at = 1;
bad1aba3 12120 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12121 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12122 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12123 else
12124 {
351cdf24
MF
12125 if (ISA_HAS_MXHC1 (mips_opts.isa))
12126 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12127 else if (FPR_SIZE != 32)
12128 as_bad (_("Unable to generate `%s' compliant code "
12129 "without mthc1"),
12130 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12131 else
12132 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12133 if (offset_expr.X_op == O_absent)
c0ebe874 12134 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12135 else
12136 {
9c2799c2 12137 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12138 load_register (AT, &offset_expr, 0);
c0ebe874 12139 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12140 }
12141 }
12142 break;
12143 }
12144
b0e6f033
RS
12145 gas_assert (imm_expr.X_op == O_absent
12146 && offset_expr.X_op == O_symbol
90ecf173 12147 && offset_expr.X_add_number == 0);
252b5132
RH
12148 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12149 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12150 {
12151 op[2] = mips_gp_register;
f2ae14a1
RS
12152 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12153 offset_reloc[1] = BFD_RELOC_UNUSED;
12154 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12155 }
12156 else
12157 {
9c2799c2 12158 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12159 used_at = 1;
0a44bf69 12160 if (mips_pic != NO_PIC)
67c0d1eb
RS
12161 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12162 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12163 else
12164 {
12165 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12166 macro_build_lui (&offset_expr, AT);
252b5132 12167 }
bdaaa2e1 12168
c0ebe874 12169 op[2] = AT;
f2ae14a1
RS
12170 offset_reloc[0] = BFD_RELOC_LO16;
12171 offset_reloc[1] = BFD_RELOC_UNUSED;
12172 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12173 }
f2ae14a1
RS
12174 align = 8;
12175 /* Fall through */
c4a68bea 12176
252b5132
RH
12177 case M_L_DAB:
12178 /*
12179 * The MIPS assembler seems to check for X_add_number not
12180 * being double aligned and generating:
12181 * lui at,%hi(foo+1)
12182 * addu at,at,v1
12183 * addiu at,at,%lo(foo+1)
12184 * lwc1 f2,0(at)
12185 * lwc1 f3,4(at)
12186 * But, the resulting address is the same after relocation so why
12187 * generate the extra instruction?
12188 */
bdaaa2e1 12189 /* Itbl support may require additional care here. */
252b5132 12190 coproc = 1;
df58fc94 12191 fmt = "T,o(b)";
0aa27725 12192 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12193 {
12194 s = "ldc1";
df58fc94 12195 goto ld_st;
252b5132 12196 }
252b5132 12197 s = "lwc1";
252b5132
RH
12198 goto ldd_std;
12199
12200 case M_S_DAB:
df58fc94
RS
12201 gas_assert (!mips_opts.micromips);
12202 /* Itbl support may require additional care here. */
12203 coproc = 1;
12204 fmt = "T,o(b)";
0aa27725 12205 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12206 {
12207 s = "sdc1";
df58fc94 12208 goto ld_st;
252b5132 12209 }
252b5132 12210 s = "swc1";
252b5132
RH
12211 goto ldd_std;
12212
e407c74b
NC
12213 case M_LQ_AB:
12214 fmt = "t,o(b)";
12215 s = "lq";
12216 goto ld;
12217
12218 case M_SQ_AB:
12219 fmt = "t,o(b)";
12220 s = "sq";
12221 goto ld_st;
12222
252b5132 12223 case M_LD_AB:
df58fc94 12224 fmt = "t,o(b)";
bad1aba3 12225 if (GPR_SIZE == 64)
252b5132
RH
12226 {
12227 s = "ld";
12228 goto ld;
12229 }
252b5132 12230 s = "lw";
252b5132
RH
12231 goto ldd_std;
12232
12233 case M_SD_AB:
df58fc94 12234 fmt = "t,o(b)";
bad1aba3 12235 if (GPR_SIZE == 64)
252b5132
RH
12236 {
12237 s = "sd";
df58fc94 12238 goto ld_st;
252b5132 12239 }
252b5132 12240 s = "sw";
252b5132
RH
12241
12242 ldd_std:
f2ae14a1
RS
12243 /* Even on a big endian machine $fn comes before $fn+1. We have
12244 to adjust when loading from memory. We set coproc if we must
12245 load $fn+1 first. */
12246 /* Itbl support may require additional care here. */
12247 if (!target_big_endian)
12248 coproc = 0;
12249
c0ebe874 12250 breg = op[2];
f2ae14a1
RS
12251 if (small_offset_p (0, align, 16))
12252 {
12253 ep = &offset_expr;
12254 if (!small_offset_p (4, align, 16))
12255 {
12256 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12257 -1, offset_reloc[0], offset_reloc[1],
12258 offset_reloc[2]);
12259 expr1.X_add_number = 0;
12260 ep = &expr1;
12261 breg = AT;
12262 used_at = 1;
12263 offset_reloc[0] = BFD_RELOC_LO16;
12264 offset_reloc[1] = BFD_RELOC_UNUSED;
12265 offset_reloc[2] = BFD_RELOC_UNUSED;
12266 }
c0ebe874 12267 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12268 {
12269 ep->X_add_number += 4;
c0ebe874 12270 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12271 offset_reloc[1], offset_reloc[2], breg);
12272 ep->X_add_number -= 4;
c0ebe874 12273 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12274 offset_reloc[1], offset_reloc[2], breg);
12275 }
12276 else
12277 {
c0ebe874 12278 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12279 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12280 breg);
12281 ep->X_add_number += 4;
c0ebe874 12282 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12283 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12284 breg);
12285 }
12286 break;
12287 }
12288
252b5132
RH
12289 if (offset_expr.X_op != O_symbol
12290 && offset_expr.X_op != O_constant)
12291 {
1661c76c 12292 as_bad (_("expression too complex"));
252b5132
RH
12293 offset_expr.X_op = O_constant;
12294 }
12295
2051e8c4
MR
12296 if (HAVE_32BIT_ADDRESSES
12297 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12298 {
12299 char value [32];
12300
12301 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12302 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12303 }
2051e8c4 12304
90ecf173 12305 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12306 {
12307 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12308 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12309 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12310 If we have a base register, we use this
12311 addu $at,$breg,$gp
c0ebe874
RS
12312 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12313 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12314 If this is not a GP relative symbol, we want
12315 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12316 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12317 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12318 If there is a base register, we add it to $at after the
12319 lui instruction. If there is a constant, we always use
12320 the last case. */
39a59cf8
MR
12321 if (offset_expr.X_op == O_symbol
12322 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12323 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12324 {
4d7206a2 12325 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12326 if (breg == 0)
12327 {
c9914766 12328 tempreg = mips_gp_register;
252b5132
RH
12329 }
12330 else
12331 {
67c0d1eb 12332 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12333 AT, breg, mips_gp_register);
252b5132 12334 tempreg = AT;
252b5132
RH
12335 used_at = 1;
12336 }
12337
beae10d5 12338 /* Itbl support may require additional care here. */
c0ebe874 12339 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12340 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12341 offset_expr.X_add_number += 4;
12342
12343 /* Set mips_optimize to 2 to avoid inserting an
12344 undesired nop. */
12345 hold_mips_optimize = mips_optimize;
12346 mips_optimize = 2;
beae10d5 12347 /* Itbl support may require additional care here. */
c0ebe874 12348 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12349 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12350 mips_optimize = hold_mips_optimize;
12351
4d7206a2 12352 relax_switch ();
252b5132 12353
0970e49e 12354 offset_expr.X_add_number -= 4;
252b5132 12355 }
8fc2e39e 12356 used_at = 1;
f2ae14a1
RS
12357 if (offset_high_part (offset_expr.X_add_number, 16)
12358 != offset_high_part (offset_expr.X_add_number + 4, 16))
12359 {
12360 load_address (AT, &offset_expr, &used_at);
12361 offset_expr.X_op = O_constant;
12362 offset_expr.X_add_number = 0;
12363 }
12364 else
12365 macro_build_lui (&offset_expr, AT);
252b5132 12366 if (breg != 0)
67c0d1eb 12367 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12368 /* Itbl support may require additional care here. */
c0ebe874 12369 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12370 BFD_RELOC_LO16, AT);
252b5132
RH
12371 /* FIXME: How do we handle overflow here? */
12372 offset_expr.X_add_number += 4;
beae10d5 12373 /* Itbl support may require additional care here. */
c0ebe874 12374 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12375 BFD_RELOC_LO16, AT);
4d7206a2
RS
12376 if (mips_relax.sequence)
12377 relax_end ();
bdaaa2e1 12378 }
0a44bf69 12379 else if (!mips_big_got)
252b5132 12380 {
252b5132
RH
12381 /* If this is a reference to an external symbol, we want
12382 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12383 nop
c0ebe874
RS
12384 <op> op[0],0($at)
12385 <op> op[0]+1,4($at)
252b5132
RH
12386 Otherwise we want
12387 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12388 nop
c0ebe874
RS
12389 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12390 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12391 If there is a base register we add it to $at before the
12392 lwc1 instructions. If there is a constant we include it
12393 in the lwc1 instructions. */
12394 used_at = 1;
12395 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12396 if (expr1.X_add_number < -0x8000
12397 || expr1.X_add_number >= 0x8000 - 4)
12398 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12399 load_got_offset (AT, &offset_expr);
269137b2 12400 load_delay_nop ();
252b5132 12401 if (breg != 0)
67c0d1eb 12402 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12403
12404 /* Set mips_optimize to 2 to avoid inserting an undesired
12405 nop. */
12406 hold_mips_optimize = mips_optimize;
12407 mips_optimize = 2;
4d7206a2 12408
beae10d5 12409 /* Itbl support may require additional care here. */
4d7206a2 12410 relax_start (offset_expr.X_add_symbol);
c0ebe874 12411 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12412 BFD_RELOC_LO16, AT);
4d7206a2 12413 expr1.X_add_number += 4;
c0ebe874 12414 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12415 BFD_RELOC_LO16, AT);
4d7206a2 12416 relax_switch ();
c0ebe874 12417 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12418 BFD_RELOC_LO16, AT);
4d7206a2 12419 offset_expr.X_add_number += 4;
c0ebe874 12420 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12421 BFD_RELOC_LO16, AT);
4d7206a2 12422 relax_end ();
252b5132 12423
4d7206a2 12424 mips_optimize = hold_mips_optimize;
252b5132 12425 }
0a44bf69 12426 else if (mips_big_got)
252b5132 12427 {
67c0d1eb 12428 int gpdelay;
252b5132
RH
12429
12430 /* If this is a reference to an external symbol, we want
12431 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12432 addu $at,$at,$gp
12433 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12434 nop
c0ebe874
RS
12435 <op> op[0],0($at)
12436 <op> op[0]+1,4($at)
252b5132
RH
12437 Otherwise we want
12438 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12439 nop
c0ebe874
RS
12440 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12441 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12442 If there is a base register we add it to $at before the
12443 lwc1 instructions. If there is a constant we include it
12444 in the lwc1 instructions. */
12445 used_at = 1;
12446 expr1.X_add_number = offset_expr.X_add_number;
12447 offset_expr.X_add_number = 0;
12448 if (expr1.X_add_number < -0x8000
12449 || expr1.X_add_number >= 0x8000 - 4)
12450 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12451 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12452 relax_start (offset_expr.X_add_symbol);
df58fc94 12453 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12454 AT, BFD_RELOC_MIPS_GOT_HI16);
12455 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12456 AT, AT, mips_gp_register);
67c0d1eb 12457 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12458 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12459 load_delay_nop ();
252b5132 12460 if (breg != 0)
67c0d1eb 12461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12462 /* Itbl support may require additional care here. */
c0ebe874 12463 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12464 BFD_RELOC_LO16, AT);
252b5132
RH
12465 expr1.X_add_number += 4;
12466
12467 /* Set mips_optimize to 2 to avoid inserting an undesired
12468 nop. */
12469 hold_mips_optimize = mips_optimize;
12470 mips_optimize = 2;
beae10d5 12471 /* Itbl support may require additional care here. */
c0ebe874 12472 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12473 BFD_RELOC_LO16, AT);
252b5132
RH
12474 mips_optimize = hold_mips_optimize;
12475 expr1.X_add_number -= 4;
12476
4d7206a2
RS
12477 relax_switch ();
12478 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12479 if (gpdelay)
12480 macro_build (NULL, "nop", "");
12481 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12482 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12483 load_delay_nop ();
252b5132 12484 if (breg != 0)
67c0d1eb 12485 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12486 /* Itbl support may require additional care here. */
c0ebe874 12487 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12488 BFD_RELOC_LO16, AT);
4d7206a2 12489 offset_expr.X_add_number += 4;
252b5132
RH
12490
12491 /* Set mips_optimize to 2 to avoid inserting an undesired
12492 nop. */
12493 hold_mips_optimize = mips_optimize;
12494 mips_optimize = 2;
beae10d5 12495 /* Itbl support may require additional care here. */
c0ebe874 12496 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12497 BFD_RELOC_LO16, AT);
252b5132 12498 mips_optimize = hold_mips_optimize;
4d7206a2 12499 relax_end ();
252b5132 12500 }
252b5132
RH
12501 else
12502 abort ();
12503
252b5132 12504 break;
3739860c 12505
dd6a37e7 12506 case M_SAA_AB:
dd6a37e7 12507 s = "saa";
0db377d0 12508 goto saa_saad;
dd6a37e7 12509 case M_SAAD_AB:
dd6a37e7 12510 s = "saad";
0db377d0
MR
12511 saa_saad:
12512 gas_assert (!mips_opts.micromips);
7f3c4072 12513 offbits = 0;
dd6a37e7
AP
12514 fmt = "t,(b)";
12515 goto ld_st;
12516
252b5132
RH
12517 /* New code added to support COPZ instructions.
12518 This code builds table entries out of the macros in mip_opcodes.
12519 R4000 uses interlocks to handle coproc delays.
12520 Other chips (like the R3000) require nops to be inserted for delays.
12521
f72c8c98 12522 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12523 In order to fill delay slots for non-interlocked chips,
12524 we must have a way to specify delays based on the coprocessor.
12525 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12526 What are the side-effects of the cop instruction?
12527 What cache support might we have and what are its effects?
12528 Both coprocessor & memory require delays. how long???
bdaaa2e1 12529 What registers are read/set/modified?
252b5132
RH
12530
12531 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12532 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12533
12534 case M_COP0:
12535 s = "c0";
12536 goto copz;
12537 case M_COP1:
12538 s = "c1";
12539 goto copz;
12540 case M_COP2:
12541 s = "c2";
12542 goto copz;
12543 case M_COP3:
12544 s = "c3";
12545 copz:
df58fc94 12546 gas_assert (!mips_opts.micromips);
252b5132
RH
12547 /* For now we just do C (same as Cz). The parameter will be
12548 stored in insn_opcode by mips_ip. */
c8276761 12549 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12550 break;
252b5132 12551
ea1fb5dc 12552 case M_MOVE:
c0ebe874 12553 move_register (op[0], op[1]);
8fc2e39e 12554 break;
ea1fb5dc 12555
833794fc
MR
12556 case M_MOVEP:
12557 gas_assert (mips_opts.micromips);
12558 gas_assert (mips_opts.insn32);
c0ebe874
RS
12559 move_register (micromips_to_32_reg_h_map1[op[0]],
12560 micromips_to_32_reg_m_map[op[1]]);
12561 move_register (micromips_to_32_reg_h_map2[op[0]],
12562 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12563 break;
12564
252b5132
RH
12565 case M_DMUL:
12566 dbl = 1;
12567 case M_MUL:
e407c74b 12568 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12569 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12570 op[2]);
e407c74b
NC
12571 else
12572 {
c0ebe874
RS
12573 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12574 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12575 }
8fc2e39e 12576 break;
252b5132
RH
12577
12578 case M_DMUL_I:
12579 dbl = 1;
12580 case M_MUL_I:
12581 /* The MIPS assembler some times generates shifts and adds. I'm
12582 not trying to be that fancy. GCC should do this for us
12583 anyway. */
8fc2e39e 12584 used_at = 1;
67c0d1eb 12585 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12586 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12587 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12588 break;
12589
12590 case M_DMULO_I:
12591 dbl = 1;
12592 case M_MULO_I:
12593 imm = 1;
12594 goto do_mulo;
12595
12596 case M_DMULO:
12597 dbl = 1;
12598 case M_MULO:
12599 do_mulo:
7d10b47d 12600 start_noreorder ();
8fc2e39e 12601 used_at = 1;
252b5132 12602 if (imm)
67c0d1eb 12603 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12604 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12605 op[1], imm ? AT : op[2]);
12606 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12607 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12608 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12609 if (mips_trap)
c0ebe874 12610 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12611 else
12612 {
df58fc94
RS
12613 if (mips_opts.micromips)
12614 micromips_label_expr (&label_expr);
12615 else
12616 label_expr.X_add_number = 8;
c0ebe874 12617 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12618 macro_build (NULL, "nop", "");
df58fc94
RS
12619 macro_build (NULL, "break", BRK_FMT, 6);
12620 if (mips_opts.micromips)
12621 micromips_add_label ();
252b5132 12622 }
7d10b47d 12623 end_noreorder ();
c0ebe874 12624 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12625 break;
12626
12627 case M_DMULOU_I:
12628 dbl = 1;
12629 case M_MULOU_I:
12630 imm = 1;
12631 goto do_mulou;
12632
12633 case M_DMULOU:
12634 dbl = 1;
12635 case M_MULOU:
12636 do_mulou:
7d10b47d 12637 start_noreorder ();
8fc2e39e 12638 used_at = 1;
252b5132 12639 if (imm)
67c0d1eb
RS
12640 load_register (AT, &imm_expr, dbl);
12641 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12642 op[1], imm ? AT : op[2]);
df58fc94 12643 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12644 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12645 if (mips_trap)
df58fc94 12646 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12647 else
12648 {
df58fc94
RS
12649 if (mips_opts.micromips)
12650 micromips_label_expr (&label_expr);
12651 else
12652 label_expr.X_add_number = 8;
12653 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12654 macro_build (NULL, "nop", "");
df58fc94
RS
12655 macro_build (NULL, "break", BRK_FMT, 6);
12656 if (mips_opts.micromips)
12657 micromips_add_label ();
252b5132 12658 }
7d10b47d 12659 end_noreorder ();
252b5132
RH
12660 break;
12661
771c7ce4 12662 case M_DROL:
fef14a42 12663 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12664 {
c0ebe874 12665 if (op[0] == op[1])
82dd0097
CD
12666 {
12667 tempreg = AT;
12668 used_at = 1;
12669 }
12670 else
c0ebe874
RS
12671 tempreg = op[0];
12672 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12673 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12674 break;
82dd0097 12675 }
8fc2e39e 12676 used_at = 1;
c0ebe874
RS
12677 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12678 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12679 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12680 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12681 break;
12682
252b5132 12683 case M_ROL:
fef14a42 12684 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12685 {
c0ebe874 12686 if (op[0] == op[1])
82dd0097
CD
12687 {
12688 tempreg = AT;
12689 used_at = 1;
12690 }
12691 else
c0ebe874
RS
12692 tempreg = op[0];
12693 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12694 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12695 break;
82dd0097 12696 }
8fc2e39e 12697 used_at = 1;
c0ebe874
RS
12698 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12699 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12700 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12701 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12702 break;
12703
771c7ce4
TS
12704 case M_DROL_I:
12705 {
12706 unsigned int rot;
e0471c16
TS
12707 const char *l;
12708 const char *rr;
771c7ce4 12709
771c7ce4 12710 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12711 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12712 {
12713 rot = (64 - rot) & 0x3f;
12714 if (rot >= 32)
c0ebe874 12715 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12716 else
c0ebe874 12717 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12718 break;
60b63b72 12719 }
483fc7cd 12720 if (rot == 0)
483fc7cd 12721 {
c0ebe874 12722 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12723 break;
483fc7cd 12724 }
82dd0097 12725 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12726 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12727 rot &= 0x1f;
8fc2e39e 12728 used_at = 1;
c0ebe874
RS
12729 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12730 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12731 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12732 }
12733 break;
12734
252b5132 12735 case M_ROL_I:
771c7ce4
TS
12736 {
12737 unsigned int rot;
12738
771c7ce4 12739 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12740 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12741 {
c0ebe874
RS
12742 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12743 (32 - rot) & 0x1f);
8fc2e39e 12744 break;
60b63b72 12745 }
483fc7cd 12746 if (rot == 0)
483fc7cd 12747 {
c0ebe874 12748 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12749 break;
483fc7cd 12750 }
8fc2e39e 12751 used_at = 1;
c0ebe874
RS
12752 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12753 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12754 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12755 }
12756 break;
12757
12758 case M_DROR:
fef14a42 12759 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12760 {
c0ebe874 12761 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12762 break;
82dd0097 12763 }
8fc2e39e 12764 used_at = 1;
c0ebe874
RS
12765 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12766 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12767 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12768 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12769 break;
12770
12771 case M_ROR:
fef14a42 12772 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12773 {
c0ebe874 12774 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12775 break;
82dd0097 12776 }
8fc2e39e 12777 used_at = 1;
c0ebe874
RS
12778 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12779 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12780 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12781 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12782 break;
12783
771c7ce4
TS
12784 case M_DROR_I:
12785 {
12786 unsigned int rot;
e0471c16
TS
12787 const char *l;
12788 const char *rr;
771c7ce4 12789
771c7ce4 12790 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12791 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12792 {
12793 if (rot >= 32)
c0ebe874 12794 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12795 else
c0ebe874 12796 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12797 break;
82dd0097 12798 }
483fc7cd 12799 if (rot == 0)
483fc7cd 12800 {
c0ebe874 12801 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12802 break;
483fc7cd 12803 }
91d6fa6a 12804 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12805 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12806 rot &= 0x1f;
8fc2e39e 12807 used_at = 1;
c0ebe874
RS
12808 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12809 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12810 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12811 }
12812 break;
12813
252b5132 12814 case M_ROR_I:
771c7ce4
TS
12815 {
12816 unsigned int rot;
12817
771c7ce4 12818 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12819 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12820 {
c0ebe874 12821 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12822 break;
82dd0097 12823 }
483fc7cd 12824 if (rot == 0)
483fc7cd 12825 {
c0ebe874 12826 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12827 break;
483fc7cd 12828 }
8fc2e39e 12829 used_at = 1;
c0ebe874
RS
12830 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12831 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12832 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 12833 }
252b5132
RH
12834 break;
12835
252b5132 12836 case M_SEQ:
c0ebe874
RS
12837 if (op[1] == 0)
12838 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12839 else if (op[2] == 0)
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12841 else
12842 {
c0ebe874
RS
12843 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12844 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 12845 }
8fc2e39e 12846 break;
252b5132
RH
12847
12848 case M_SEQ_I:
b0e6f033 12849 if (imm_expr.X_add_number == 0)
252b5132 12850 {
c0ebe874 12851 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 12852 break;
252b5132 12853 }
c0ebe874 12854 if (op[1] == 0)
252b5132 12855 {
1661c76c 12856 as_warn (_("instruction %s: result is always false"),
252b5132 12857 ip->insn_mo->name);
c0ebe874 12858 move_register (op[0], 0);
8fc2e39e 12859 break;
252b5132 12860 }
dd3cbb7e
NC
12861 if (CPU_HAS_SEQ (mips_opts.arch)
12862 && -512 <= imm_expr.X_add_number
12863 && imm_expr.X_add_number < 512)
12864 {
c0ebe874 12865 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 12866 (int) imm_expr.X_add_number);
dd3cbb7e
NC
12867 break;
12868 }
b0e6f033 12869 if (imm_expr.X_add_number >= 0
252b5132 12870 && imm_expr.X_add_number < 0x10000)
c0ebe874 12871 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 12872 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
12873 && imm_expr.X_add_number < 0)
12874 {
12875 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 12876 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 12877 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 12878 }
dd3cbb7e
NC
12879 else if (CPU_HAS_SEQ (mips_opts.arch))
12880 {
12881 used_at = 1;
bad1aba3 12882 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12883 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
12884 break;
12885 }
252b5132
RH
12886 else
12887 {
bad1aba3 12888 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12889 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
12890 used_at = 1;
12891 }
c0ebe874 12892 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12893 break;
252b5132 12894
c0ebe874 12895 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
12896 s = "slt";
12897 goto sge;
12898 case M_SGEU:
12899 s = "sltu";
12900 sge:
c0ebe874
RS
12901 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12902 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12903 break;
252b5132 12904
c0ebe874 12905 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 12906 case M_SGEU_I:
b0e6f033 12907 if (imm_expr.X_add_number >= -0x8000
252b5132 12908 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
12909 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12910 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
12911 else
12912 {
bad1aba3 12913 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 12914 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 12915 op[0], op[1], AT);
252b5132
RH
12916 used_at = 1;
12917 }
c0ebe874 12918 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12919 break;
252b5132 12920
c0ebe874 12921 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
12922 s = "slt";
12923 goto sgt;
12924 case M_SGTU:
12925 s = "sltu";
12926 sgt:
c0ebe874 12927 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 12928 break;
252b5132 12929
c0ebe874 12930 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
12931 s = "slt";
12932 goto sgti;
12933 case M_SGTU_I:
12934 s = "sltu";
12935 sgti:
8fc2e39e 12936 used_at = 1;
bad1aba3 12937 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12938 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
12939 break;
12940
c0ebe874 12941 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
12942 s = "slt";
12943 goto sle;
12944 case M_SLEU:
12945 s = "sltu";
12946 sle:
c0ebe874
RS
12947 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12948 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 12949 break;
252b5132 12950
c0ebe874 12951 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
12952 s = "slt";
12953 goto slei;
12954 case M_SLEU_I:
12955 s = "sltu";
12956 slei:
8fc2e39e 12957 used_at = 1;
bad1aba3 12958 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
12959 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12960 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
12961 break;
12962
12963 case M_SLT_I:
b0e6f033 12964 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12965 && imm_expr.X_add_number < 0x8000)
12966 {
c0ebe874
RS
12967 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12968 BFD_RELOC_LO16);
8fc2e39e 12969 break;
252b5132 12970 }
8fc2e39e 12971 used_at = 1;
bad1aba3 12972 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12973 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
12974 break;
12975
12976 case M_SLTU_I:
b0e6f033 12977 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
12978 && imm_expr.X_add_number < 0x8000)
12979 {
c0ebe874 12980 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 12981 BFD_RELOC_LO16);
8fc2e39e 12982 break;
252b5132 12983 }
8fc2e39e 12984 used_at = 1;
bad1aba3 12985 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 12986 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
12987 break;
12988
12989 case M_SNE:
c0ebe874
RS
12990 if (op[1] == 0)
12991 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12992 else if (op[2] == 0)
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
12994 else
12995 {
c0ebe874
RS
12996 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12997 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 12998 }
8fc2e39e 12999 break;
252b5132
RH
13000
13001 case M_SNE_I:
b0e6f033 13002 if (imm_expr.X_add_number == 0)
252b5132 13003 {
c0ebe874 13004 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13005 break;
252b5132 13006 }
c0ebe874 13007 if (op[1] == 0)
252b5132 13008 {
1661c76c 13009 as_warn (_("instruction %s: result is always true"),
252b5132 13010 ip->insn_mo->name);
bad1aba3 13011 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13012 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13013 break;
252b5132 13014 }
dd3cbb7e
NC
13015 if (CPU_HAS_SEQ (mips_opts.arch)
13016 && -512 <= imm_expr.X_add_number
13017 && imm_expr.X_add_number < 512)
13018 {
c0ebe874 13019 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13020 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13021 break;
13022 }
b0e6f033 13023 if (imm_expr.X_add_number >= 0
252b5132
RH
13024 && imm_expr.X_add_number < 0x10000)
13025 {
c0ebe874
RS
13026 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13027 BFD_RELOC_LO16);
252b5132 13028 }
b0e6f033 13029 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13030 && imm_expr.X_add_number < 0)
13031 {
13032 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13033 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13034 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13035 }
dd3cbb7e
NC
13036 else if (CPU_HAS_SEQ (mips_opts.arch))
13037 {
13038 used_at = 1;
bad1aba3 13039 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13040 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13041 break;
13042 }
252b5132
RH
13043 else
13044 {
bad1aba3 13045 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13046 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13047 used_at = 1;
13048 }
c0ebe874 13049 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13050 break;
252b5132 13051
df58fc94
RS
13052 case M_SUB_I:
13053 s = "addi";
13054 s2 = "sub";
13055 goto do_subi;
13056 case M_SUBU_I:
13057 s = "addiu";
13058 s2 = "subu";
13059 goto do_subi;
252b5132
RH
13060 case M_DSUB_I:
13061 dbl = 1;
df58fc94
RS
13062 s = "daddi";
13063 s2 = "dsub";
13064 if (!mips_opts.micromips)
13065 goto do_subi;
b0e6f033 13066 if (imm_expr.X_add_number > -0x200
df58fc94 13067 && imm_expr.X_add_number <= 0x200)
252b5132 13068 {
b0e6f033
RS
13069 macro_build (NULL, s, "t,r,.", op[0], op[1],
13070 (int) -imm_expr.X_add_number);
8fc2e39e 13071 break;
252b5132 13072 }
df58fc94 13073 goto do_subi_i;
252b5132
RH
13074 case M_DSUBU_I:
13075 dbl = 1;
df58fc94
RS
13076 s = "daddiu";
13077 s2 = "dsubu";
13078 do_subi:
b0e6f033 13079 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13080 && imm_expr.X_add_number <= 0x8000)
13081 {
13082 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13083 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13084 break;
252b5132 13085 }
df58fc94 13086 do_subi_i:
8fc2e39e 13087 used_at = 1;
67c0d1eb 13088 load_register (AT, &imm_expr, dbl);
c0ebe874 13089 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13090 break;
13091
13092 case M_TEQ_I:
13093 s = "teq";
13094 goto trap;
13095 case M_TGE_I:
13096 s = "tge";
13097 goto trap;
13098 case M_TGEU_I:
13099 s = "tgeu";
13100 goto trap;
13101 case M_TLT_I:
13102 s = "tlt";
13103 goto trap;
13104 case M_TLTU_I:
13105 s = "tltu";
13106 goto trap;
13107 case M_TNE_I:
13108 s = "tne";
13109 trap:
8fc2e39e 13110 used_at = 1;
bad1aba3 13111 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13112 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13113 break;
13114
252b5132 13115 case M_TRUNCWS:
43841e91 13116 case M_TRUNCWD:
df58fc94 13117 gas_assert (!mips_opts.micromips);
0aa27725 13118 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13119 used_at = 1;
252b5132
RH
13120
13121 /*
13122 * Is the double cfc1 instruction a bug in the mips assembler;
13123 * or is there a reason for it?
13124 */
7d10b47d 13125 start_noreorder ();
c0ebe874
RS
13126 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13127 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13128 macro_build (NULL, "nop", "");
252b5132 13129 expr1.X_add_number = 3;
c0ebe874 13130 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13131 expr1.X_add_number = 2;
67c0d1eb
RS
13132 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13133 macro_build (NULL, "ctc1", "t,G", AT, RA);
13134 macro_build (NULL, "nop", "");
13135 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13136 op[0], op[1]);
13137 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13138 macro_build (NULL, "nop", "");
7d10b47d 13139 end_noreorder ();
252b5132
RH
13140 break;
13141
f2ae14a1 13142 case M_ULH_AB:
252b5132 13143 s = "lb";
df58fc94
RS
13144 s2 = "lbu";
13145 off = 1;
13146 goto uld_st;
f2ae14a1 13147 case M_ULHU_AB:
252b5132 13148 s = "lbu";
df58fc94
RS
13149 s2 = "lbu";
13150 off = 1;
13151 goto uld_st;
f2ae14a1 13152 case M_ULW_AB:
df58fc94
RS
13153 s = "lwl";
13154 s2 = "lwr";
7f3c4072 13155 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13156 off = 3;
13157 goto uld_st;
f2ae14a1 13158 case M_ULD_AB:
252b5132
RH
13159 s = "ldl";
13160 s2 = "ldr";
7f3c4072 13161 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13162 off = 7;
df58fc94 13163 goto uld_st;
f2ae14a1 13164 case M_USH_AB:
df58fc94
RS
13165 s = "sb";
13166 s2 = "sb";
13167 off = 1;
13168 ust = 1;
13169 goto uld_st;
f2ae14a1 13170 case M_USW_AB:
df58fc94
RS
13171 s = "swl";
13172 s2 = "swr";
7f3c4072 13173 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13174 off = 3;
df58fc94
RS
13175 ust = 1;
13176 goto uld_st;
f2ae14a1 13177 case M_USD_AB:
df58fc94
RS
13178 s = "sdl";
13179 s2 = "sdr";
7f3c4072 13180 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13181 off = 7;
13182 ust = 1;
13183
13184 uld_st:
c0ebe874 13185 breg = op[2];
f2ae14a1 13186 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13187 ep = &offset_expr;
13188 expr1.X_add_number = 0;
f2ae14a1 13189 if (large_offset)
df58fc94
RS
13190 {
13191 used_at = 1;
13192 tempreg = AT;
f2ae14a1
RS
13193 if (small_offset_p (0, align, 16))
13194 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13195 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13196 else
13197 {
13198 load_address (tempreg, ep, &used_at);
13199 if (breg != 0)
13200 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13201 tempreg, tempreg, breg);
13202 }
13203 offset_reloc[0] = BFD_RELOC_LO16;
13204 offset_reloc[1] = BFD_RELOC_UNUSED;
13205 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13206 breg = tempreg;
c0ebe874 13207 tempreg = op[0];
df58fc94
RS
13208 ep = &expr1;
13209 }
c0ebe874 13210 else if (!ust && op[0] == breg)
8fc2e39e
TS
13211 {
13212 used_at = 1;
13213 tempreg = AT;
13214 }
252b5132 13215 else
c0ebe874 13216 tempreg = op[0];
af22f5b2 13217
df58fc94
RS
13218 if (off == 1)
13219 goto ulh_sh;
252b5132 13220
90ecf173 13221 if (!target_big_endian)
df58fc94 13222 ep->X_add_number += off;
f2ae14a1 13223 if (offbits == 12)
c8276761 13224 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13225 else
13226 macro_build (ep, s, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13228
90ecf173 13229 if (!target_big_endian)
df58fc94 13230 ep->X_add_number -= off;
252b5132 13231 else
df58fc94 13232 ep->X_add_number += off;
f2ae14a1 13233 if (offbits == 12)
df58fc94 13234 macro_build (NULL, s2, "t,~(b)",
c8276761 13235 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13236 else
13237 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13238 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13239
df58fc94 13240 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13241 if (!ust && op[0] != tempreg)
df58fc94
RS
13242 {
13243 /* Protect second load's delay slot. */
13244 load_delay_nop ();
c0ebe874 13245 move_register (op[0], tempreg);
df58fc94 13246 }
8fc2e39e 13247 break;
252b5132 13248
df58fc94 13249 ulh_sh:
d6bc6245 13250 used_at = 1;
df58fc94
RS
13251 if (target_big_endian == ust)
13252 ep->X_add_number += off;
c0ebe874 13253 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13254 macro_build (ep, s, "t,o(b)", tempreg, -1,
13255 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13256
13257 /* For halfword transfers we need a temporary register to shuffle
13258 bytes. Unfortunately for M_USH_A we have none available before
13259 the next store as AT holds the base address. We deal with this
13260 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13261 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13262 if (ust)
c0ebe874 13263 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13264
13265 if (target_big_endian == ust)
13266 ep->X_add_number -= off;
252b5132 13267 else
df58fc94 13268 ep->X_add_number += off;
f2ae14a1
RS
13269 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13270 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13271
df58fc94 13272 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13273 if (ust && large_offset)
df58fc94
RS
13274 {
13275 if (target_big_endian)
13276 ep->X_add_number += off;
13277 else
13278 ep->X_add_number -= off;
f2ae14a1
RS
13279 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13280 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13281 }
13282 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13283 if (!ust || large_offset)
df58fc94 13284 {
c0ebe874 13285 tempreg = !large_offset ? AT : op[0];
df58fc94 13286 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13287 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13288 }
252b5132
RH
13289 break;
13290
13291 default:
13292 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13293 are added dynamically. */
1661c76c 13294 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13295 break;
13296 }
741fe287 13297 if (!mips_opts.at && used_at)
1661c76c 13298 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13299}
13300
13301/* Implement macros in mips16 mode. */
13302
13303static void
17a2f251 13304mips16_macro (struct mips_cl_insn *ip)
252b5132 13305{
c0ebe874 13306 const struct mips_operand_array *operands;
252b5132 13307 int mask;
c0ebe874 13308 int tmp;
252b5132
RH
13309 expressionS expr1;
13310 int dbl;
13311 const char *s, *s2, *s3;
c0ebe874
RS
13312 unsigned int op[MAX_OPERANDS];
13313 unsigned int i;
252b5132
RH
13314
13315 mask = ip->insn_mo->mask;
13316
c0ebe874
RS
13317 operands = insn_operands (ip);
13318 for (i = 0; i < MAX_OPERANDS; i++)
13319 if (operands->operand[i])
13320 op[i] = insn_extract_operand (ip, operands->operand[i]);
13321 else
13322 op[i] = -1;
252b5132 13323
252b5132
RH
13324 expr1.X_op = O_constant;
13325 expr1.X_op_symbol = NULL;
13326 expr1.X_add_symbol = NULL;
13327 expr1.X_add_number = 1;
13328
13329 dbl = 0;
13330
13331 switch (mask)
13332 {
13333 default:
b37df7c4 13334 abort ();
252b5132
RH
13335
13336 case M_DDIV_3:
13337 dbl = 1;
13338 case M_DIV_3:
13339 s = "mflo";
13340 goto do_div3;
13341 case M_DREM_3:
13342 dbl = 1;
13343 case M_REM_3:
13344 s = "mfhi";
13345 do_div3:
7d10b47d 13346 start_noreorder ();
c0ebe874 13347 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13348 expr1.X_add_number = 2;
c0ebe874 13349 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13350 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13351
252b5132
RH
13352 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13353 since that causes an overflow. We should do that as well,
13354 but I don't see how to do the comparisons without a temporary
13355 register. */
7d10b47d 13356 end_noreorder ();
c0ebe874 13357 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13358 break;
13359
13360 case M_DIVU_3:
13361 s = "divu";
13362 s2 = "mflo";
13363 goto do_divu3;
13364 case M_REMU_3:
13365 s = "divu";
13366 s2 = "mfhi";
13367 goto do_divu3;
13368 case M_DDIVU_3:
13369 s = "ddivu";
13370 s2 = "mflo";
13371 goto do_divu3;
13372 case M_DREMU_3:
13373 s = "ddivu";
13374 s2 = "mfhi";
13375 do_divu3:
7d10b47d 13376 start_noreorder ();
c0ebe874 13377 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13378 expr1.X_add_number = 2;
c0ebe874 13379 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13380 macro_build (NULL, "break", "6", 7);
7d10b47d 13381 end_noreorder ();
c0ebe874 13382 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13383 break;
13384
13385 case M_DMUL:
13386 dbl = 1;
13387 case M_MUL:
c0ebe874
RS
13388 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13389 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13390 break;
252b5132
RH
13391
13392 case M_DSUBU_I:
13393 dbl = 1;
13394 goto do_subu;
13395 case M_SUBU_I:
13396 do_subu:
252b5132 13397 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13398 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13399 break;
13400
13401 case M_SUBU_I_2:
252b5132 13402 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13403 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13404 break;
13405
13406 case M_DSUBU_I_2:
252b5132 13407 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13408 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13409 break;
13410
13411 case M_BEQ:
13412 s = "cmp";
13413 s2 = "bteqz";
13414 goto do_branch;
13415 case M_BNE:
13416 s = "cmp";
13417 s2 = "btnez";
13418 goto do_branch;
13419 case M_BLT:
13420 s = "slt";
13421 s2 = "btnez";
13422 goto do_branch;
13423 case M_BLTU:
13424 s = "sltu";
13425 s2 = "btnez";
13426 goto do_branch;
13427 case M_BLE:
13428 s = "slt";
13429 s2 = "bteqz";
13430 goto do_reverse_branch;
13431 case M_BLEU:
13432 s = "sltu";
13433 s2 = "bteqz";
13434 goto do_reverse_branch;
13435 case M_BGE:
13436 s = "slt";
13437 s2 = "bteqz";
13438 goto do_branch;
13439 case M_BGEU:
13440 s = "sltu";
13441 s2 = "bteqz";
13442 goto do_branch;
13443 case M_BGT:
13444 s = "slt";
13445 s2 = "btnez";
13446 goto do_reverse_branch;
13447 case M_BGTU:
13448 s = "sltu";
13449 s2 = "btnez";
13450
13451 do_reverse_branch:
c0ebe874
RS
13452 tmp = op[1];
13453 op[1] = op[0];
13454 op[0] = tmp;
252b5132
RH
13455
13456 do_branch:
c0ebe874 13457 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13458 macro_build (&offset_expr, s2, "p");
252b5132
RH
13459 break;
13460
13461 case M_BEQ_I:
13462 s = "cmpi";
13463 s2 = "bteqz";
13464 s3 = "x,U";
13465 goto do_branch_i;
13466 case M_BNE_I:
13467 s = "cmpi";
13468 s2 = "btnez";
13469 s3 = "x,U";
13470 goto do_branch_i;
13471 case M_BLT_I:
13472 s = "slti";
13473 s2 = "btnez";
13474 s3 = "x,8";
13475 goto do_branch_i;
13476 case M_BLTU_I:
13477 s = "sltiu";
13478 s2 = "btnez";
13479 s3 = "x,8";
13480 goto do_branch_i;
13481 case M_BLE_I:
13482 s = "slti";
13483 s2 = "btnez";
13484 s3 = "x,8";
13485 goto do_addone_branch_i;
13486 case M_BLEU_I:
13487 s = "sltiu";
13488 s2 = "btnez";
13489 s3 = "x,8";
13490 goto do_addone_branch_i;
13491 case M_BGE_I:
13492 s = "slti";
13493 s2 = "bteqz";
13494 s3 = "x,8";
13495 goto do_branch_i;
13496 case M_BGEU_I:
13497 s = "sltiu";
13498 s2 = "bteqz";
13499 s3 = "x,8";
13500 goto do_branch_i;
13501 case M_BGT_I:
13502 s = "slti";
13503 s2 = "bteqz";
13504 s3 = "x,8";
13505 goto do_addone_branch_i;
13506 case M_BGTU_I:
13507 s = "sltiu";
13508 s2 = "bteqz";
13509 s3 = "x,8";
13510
13511 do_addone_branch_i:
252b5132
RH
13512 ++imm_expr.X_add_number;
13513
13514 do_branch_i:
c0ebe874 13515 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13516 macro_build (&offset_expr, s2, "p");
252b5132
RH
13517 break;
13518
13519 case M_ABS:
13520 expr1.X_add_number = 0;
c0ebe874
RS
13521 macro_build (&expr1, "slti", "x,8", op[1]);
13522 if (op[0] != op[1])
13523 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13524 expr1.X_add_number = 2;
67c0d1eb 13525 macro_build (&expr1, "bteqz", "p");
c0ebe874 13526 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13527 break;
252b5132
RH
13528 }
13529}
13530
14daeee3
RS
13531/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13532 opcode bits in *OPCODE_EXTRA. */
13533
13534static struct mips_opcode *
13535mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13536 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13537{
13538 char *name, *dot, *p;
13539 unsigned int mask, suffix;
da8bca91 13540 ssize_t opend;
14daeee3
RS
13541 struct mips_opcode *insn;
13542
13543 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13544 name = xstrndup (start, length);
14daeee3
RS
13545
13546 /* Look up the instruction as-is. */
13547 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13548 if (insn)
e1fa0163 13549 goto end;
14daeee3
RS
13550
13551 dot = strchr (name, '.');
13552 if (dot && dot[1])
13553 {
13554 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13555 p = mips_parse_vu0_channels (dot + 1, &mask);
13556 if (*p == 0 && mask != 0)
13557 {
13558 *dot = 0;
13559 insn = (struct mips_opcode *) hash_find (hash, name);
13560 *dot = '.';
13561 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13562 {
13563 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13564 goto end;
14daeee3
RS
13565 }
13566 }
13567 }
13568
13569 if (mips_opts.micromips)
13570 {
13571 /* See if there's an instruction size override suffix,
13572 either `16' or `32', at the end of the mnemonic proper,
13573 that defines the operation, i.e. before the first `.'
13574 character if any. Strip it and retry. */
13575 opend = dot != NULL ? dot - name : length;
13576 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13577 suffix = 2;
13578 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13579 suffix = 4;
13580 else
13581 suffix = 0;
13582 if (suffix)
13583 {
13584 memcpy (name + opend - 2, name + opend, length - opend + 1);
13585 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13586 if (insn)
14daeee3
RS
13587 {
13588 forced_insn_length = suffix;
e1fa0163 13589 goto end;
14daeee3
RS
13590 }
13591 }
13592 }
13593
e1fa0163
NC
13594 insn = NULL;
13595 end:
13596 free (name);
13597 return insn;
14daeee3
RS
13598}
13599
77bd4346 13600/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13601 is a macro, set imm_expr and offset_expr to the values associated
13602 with "I" and "A" operands respectively. Otherwise store the value
13603 of the relocatable field (if any) in offset_expr. In both cases
13604 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13605
13606static void
60f20e8b 13607mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13608{
60f20e8b 13609 const struct mips_opcode *first, *past;
df58fc94 13610 struct hash_control *hash;
a92713e6 13611 char format;
14daeee3 13612 size_t end;
a92713e6 13613 struct mips_operand_token *tokens;
14daeee3 13614 unsigned int opcode_extra;
252b5132 13615
df58fc94
RS
13616 if (mips_opts.micromips)
13617 {
13618 hash = micromips_op_hash;
13619 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13620 }
13621 else
13622 {
13623 hash = op_hash;
13624 past = &mips_opcodes[NUMOPCODES];
13625 }
13626 forced_insn_length = 0;
14daeee3 13627 opcode_extra = 0;
252b5132 13628
df58fc94 13629 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13630 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13631 continue;
bdaaa2e1 13632
60f20e8b
RS
13633 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13634 if (first == NULL)
252b5132 13635 {
1661c76c 13636 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13637 return;
252b5132
RH
13638 }
13639
60f20e8b 13640 if (strcmp (first->name, "li.s") == 0)
a92713e6 13641 format = 'f';
60f20e8b 13642 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13643 format = 'd';
13644 else
13645 format = 0;
13646 tokens = mips_parse_arguments (str + end, format);
13647 if (!tokens)
13648 return;
13649
60f20e8b
RS
13650 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13651 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13652 set_insn_error (0, _("invalid operands"));
df58fc94 13653
e3de51ce 13654 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13655}
13656
77bd4346
RS
13657/* As for mips_ip, but used when assembling MIPS16 code.
13658 Also set forced_insn_length to the resulting instruction size in
13659 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13660
13661static void
60f20e8b 13662mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13663{
1a00e612 13664 char *end, *s, c;
60f20e8b 13665 struct mips_opcode *first;
a92713e6 13666 struct mips_operand_token *tokens;
252b5132 13667
df58fc94 13668 forced_insn_length = 0;
252b5132 13669
3882b010 13670 for (s = str; ISLOWER (*s); ++s)
252b5132 13671 ;
1a00e612
RS
13672 end = s;
13673 c = *end;
13674 switch (c)
252b5132
RH
13675 {
13676 case '\0':
13677 break;
13678
13679 case ' ':
1a00e612 13680 s++;
252b5132
RH
13681 break;
13682
13683 case '.':
13684 if (s[1] == 't' && s[2] == ' ')
13685 {
df58fc94 13686 forced_insn_length = 2;
252b5132
RH
13687 s += 3;
13688 break;
13689 }
13690 else if (s[1] == 'e' && s[2] == ' ')
13691 {
df58fc94 13692 forced_insn_length = 4;
252b5132
RH
13693 s += 3;
13694 break;
13695 }
13696 /* Fall through. */
13697 default:
1661c76c 13698 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13699 return;
13700 }
13701
df58fc94
RS
13702 if (mips_opts.noautoextend && !forced_insn_length)
13703 forced_insn_length = 2;
252b5132 13704
1a00e612 13705 *end = 0;
60f20e8b 13706 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13707 *end = c;
13708
60f20e8b 13709 if (!first)
252b5132 13710 {
1661c76c 13711 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13712 return;
13713 }
13714
a92713e6
RS
13715 tokens = mips_parse_arguments (s, 0);
13716 if (!tokens)
13717 return;
13718
60f20e8b 13719 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13720 set_insn_error (0, _("invalid operands"));
252b5132 13721
e3de51ce 13722 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13723}
13724
b886a2ab
RS
13725/* Marshal immediate value VAL for an extended MIPS16 instruction.
13726 NBITS is the number of significant bits in VAL. */
13727
13728static unsigned long
13729mips16_immed_extend (offsetT val, unsigned int nbits)
13730{
13731 int extval;
13732 if (nbits == 16)
13733 {
13734 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13735 val &= 0x1f;
13736 }
13737 else if (nbits == 15)
13738 {
13739 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13740 val &= 0xf;
13741 }
13742 else
13743 {
13744 extval = ((val & 0x1f) << 6) | (val & 0x20);
13745 val = 0;
13746 }
13747 return (extval << 16) | val;
13748}
13749
3ccad066
RS
13750/* Like decode_mips16_operand, but require the operand to be defined and
13751 require it to be an integer. */
13752
13753static const struct mips_int_operand *
13754mips16_immed_operand (int type, bfd_boolean extended_p)
13755{
13756 const struct mips_operand *operand;
13757
13758 operand = decode_mips16_operand (type, extended_p);
13759 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13760 abort ();
13761 return (const struct mips_int_operand *) operand;
13762}
13763
13764/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13765
13766static bfd_boolean
13767mips16_immed_in_range_p (const struct mips_int_operand *operand,
13768 bfd_reloc_code_real_type reloc, offsetT sval)
13769{
13770 int min_val, max_val;
13771
13772 min_val = mips_int_operand_min (operand);
13773 max_val = mips_int_operand_max (operand);
13774 if (reloc != BFD_RELOC_UNUSED)
13775 {
13776 if (min_val < 0)
13777 sval = SEXT_16BIT (sval);
13778 else
13779 sval &= 0xffff;
13780 }
13781
13782 return (sval >= min_val
13783 && sval <= max_val
13784 && (sval & ((1 << operand->shift) - 1)) == 0);
13785}
13786
5c04167a
RS
13787/* Install immediate value VAL into MIPS16 instruction *INSN,
13788 extending it if necessary. The instruction in *INSN may
13789 already be extended.
13790
43c0598f
RS
13791 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13792 if none. In the former case, VAL is a 16-bit number with no
13793 defined signedness.
13794
13795 TYPE is the type of the immediate field. USER_INSN_LENGTH
13796 is the length that the user requested, or 0 if none. */
252b5132
RH
13797
13798static void
3b4dbbbf 13799mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13800 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13801 unsigned int user_insn_length, unsigned long *insn)
252b5132 13802{
3ccad066
RS
13803 const struct mips_int_operand *operand;
13804 unsigned int uval, length;
252b5132 13805
3ccad066
RS
13806 operand = mips16_immed_operand (type, FALSE);
13807 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13808 {
13809 /* We need an extended instruction. */
13810 if (user_insn_length == 2)
13811 as_bad_where (file, line, _("invalid unextended operand value"));
13812 else
13813 *insn |= MIPS16_EXTEND;
13814 }
13815 else if (user_insn_length == 4)
13816 {
13817 /* The operand doesn't force an unextended instruction to be extended.
13818 Warn if the user wanted an extended instruction anyway. */
13819 *insn |= MIPS16_EXTEND;
13820 as_warn_where (file, line,
13821 _("extended operand requested but not required"));
13822 }
252b5132 13823
3ccad066
RS
13824 length = mips16_opcode_length (*insn);
13825 if (length == 4)
252b5132 13826 {
3ccad066
RS
13827 operand = mips16_immed_operand (type, TRUE);
13828 if (!mips16_immed_in_range_p (operand, reloc, val))
13829 as_bad_where (file, line,
13830 _("operand value out of range for instruction"));
252b5132 13831 }
3ccad066
RS
13832 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13833 if (length == 2)
13834 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 13835 else
3ccad066 13836 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
13837}
13838\f
d6f16593 13839struct percent_op_match
ad8d3bb3 13840{
5e0116d5
RS
13841 const char *str;
13842 bfd_reloc_code_real_type reloc;
d6f16593
MR
13843};
13844
13845static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 13846{
5e0116d5 13847 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
13848 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13849 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13850 {"%call16", BFD_RELOC_MIPS_CALL16},
13851 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13852 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13853 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13854 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13855 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13856 {"%got", BFD_RELOC_MIPS_GOT16},
13857 {"%gp_rel", BFD_RELOC_GPREL16},
13858 {"%half", BFD_RELOC_16},
13859 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13860 {"%higher", BFD_RELOC_MIPS_HIGHER},
13861 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
13862 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13863 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13864 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13865 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13866 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13867 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13868 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
13869 {"%hi", BFD_RELOC_HI16_S},
13870 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13871 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
13872};
13873
d6f16593
MR
13874static const struct percent_op_match mips16_percent_op[] =
13875{
13876 {"%lo", BFD_RELOC_MIPS16_LO16},
13877 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
13878 {"%got", BFD_RELOC_MIPS16_GOT16},
13879 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
13880 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13881 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13882 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13883 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13884 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13885 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13886 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13887 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
13888};
13889
252b5132 13890
5e0116d5
RS
13891/* Return true if *STR points to a relocation operator. When returning true,
13892 move *STR over the operator and store its relocation code in *RELOC.
13893 Leave both *STR and *RELOC alone when returning false. */
13894
13895static bfd_boolean
17a2f251 13896parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 13897{
d6f16593
MR
13898 const struct percent_op_match *percent_op;
13899 size_t limit, i;
13900
13901 if (mips_opts.mips16)
13902 {
13903 percent_op = mips16_percent_op;
13904 limit = ARRAY_SIZE (mips16_percent_op);
13905 }
13906 else
13907 {
13908 percent_op = mips_percent_op;
13909 limit = ARRAY_SIZE (mips_percent_op);
13910 }
76b3015f 13911
d6f16593 13912 for (i = 0; i < limit; i++)
5e0116d5 13913 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 13914 {
3f98094e
DJ
13915 int len = strlen (percent_op[i].str);
13916
13917 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13918 continue;
13919
5e0116d5
RS
13920 *str += strlen (percent_op[i].str);
13921 *reloc = percent_op[i].reloc;
394f9b3a 13922
5e0116d5
RS
13923 /* Check whether the output BFD supports this relocation.
13924 If not, issue an error and fall back on something safe. */
13925 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 13926 {
20203fb9 13927 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 13928 percent_op[i].str);
01a3f561 13929 *reloc = BFD_RELOC_UNUSED;
394f9b3a 13930 }
5e0116d5 13931 return TRUE;
394f9b3a 13932 }
5e0116d5 13933 return FALSE;
394f9b3a 13934}
ad8d3bb3 13935
ad8d3bb3 13936
5e0116d5
RS
13937/* Parse string STR as a 16-bit relocatable operand. Store the
13938 expression in *EP and the relocations in the array starting
13939 at RELOC. Return the number of relocation operators used.
ad8d3bb3 13940
01a3f561 13941 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 13942
5e0116d5 13943static size_t
17a2f251
TS
13944my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13945 char *str)
ad8d3bb3 13946{
5e0116d5
RS
13947 bfd_reloc_code_real_type reversed_reloc[3];
13948 size_t reloc_index, i;
09b8f35a
RS
13949 int crux_depth, str_depth;
13950 char *crux;
5e0116d5
RS
13951
13952 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
13953 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13954 of the main expression and with CRUX_DEPTH containing the number
13955 of open brackets at that point. */
13956 reloc_index = -1;
13957 str_depth = 0;
13958 do
fb1b3232 13959 {
09b8f35a
RS
13960 reloc_index++;
13961 crux = str;
13962 crux_depth = str_depth;
13963
13964 /* Skip over whitespace and brackets, keeping count of the number
13965 of brackets. */
13966 while (*str == ' ' || *str == '\t' || *str == '(')
13967 if (*str++ == '(')
13968 str_depth++;
5e0116d5 13969 }
09b8f35a
RS
13970 while (*str == '%'
13971 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13972 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 13973
09b8f35a 13974 my_getExpression (ep, crux);
5e0116d5 13975 str = expr_end;
394f9b3a 13976
5e0116d5 13977 /* Match every open bracket. */
09b8f35a 13978 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 13979 if (*str++ == ')')
09b8f35a 13980 crux_depth--;
394f9b3a 13981
09b8f35a 13982 if (crux_depth > 0)
20203fb9 13983 as_bad (_("unclosed '('"));
394f9b3a 13984
5e0116d5 13985 expr_end = str;
252b5132 13986
01a3f561 13987 if (reloc_index != 0)
64bdfcaf
RS
13988 {
13989 prev_reloc_op_frag = frag_now;
13990 for (i = 0; i < reloc_index; i++)
13991 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13992 }
fb1b3232 13993
5e0116d5 13994 return reloc_index;
252b5132
RH
13995}
13996
13997static void
17a2f251 13998my_getExpression (expressionS *ep, char *str)
252b5132
RH
13999{
14000 char *save_in;
14001
14002 save_in = input_line_pointer;
14003 input_line_pointer = str;
14004 expression (ep);
14005 expr_end = input_line_pointer;
14006 input_line_pointer = save_in;
252b5132
RH
14007}
14008
6d4af3c2 14009const char *
17a2f251 14010md_atof (int type, char *litP, int *sizeP)
252b5132 14011{
499ac353 14012 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14013}
14014
14015void
17a2f251 14016md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14017{
14018 if (target_big_endian)
14019 number_to_chars_bigendian (buf, val, n);
14020 else
14021 number_to_chars_littleendian (buf, val, n);
14022}
14023\f
e013f690
TS
14024static int support_64bit_objects(void)
14025{
14026 const char **list, **l;
aa3d8fdf 14027 int yes;
e013f690
TS
14028
14029 list = bfd_target_list ();
14030 for (l = list; *l != NULL; l++)
aeffff67
RS
14031 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14032 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14033 break;
aa3d8fdf 14034 yes = (*l != NULL);
e013f690 14035 free (list);
aa3d8fdf 14036 return yes;
e013f690
TS
14037}
14038
316f5878
RS
14039/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14040 NEW_VALUE. Warn if another value was already specified. Note:
14041 we have to defer parsing the -march and -mtune arguments in order
14042 to handle 'from-abi' correctly, since the ABI might be specified
14043 in a later argument. */
14044
14045static void
17a2f251 14046mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14047{
14048 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14049 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14050 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14051 new_value);
14052
14053 *string_ptr = new_value;
14054}
14055
252b5132 14056int
17b9d67d 14057md_parse_option (int c, const char *arg)
252b5132 14058{
c6278170
RS
14059 unsigned int i;
14060
14061 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14062 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14063 {
919731af 14064 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14065 c == mips_ases[i].option_on);
14066 return 1;
14067 }
14068
252b5132
RH
14069 switch (c)
14070 {
119d663a
NC
14071 case OPTION_CONSTRUCT_FLOATS:
14072 mips_disable_float_construction = 0;
14073 break;
bdaaa2e1 14074
119d663a
NC
14075 case OPTION_NO_CONSTRUCT_FLOATS:
14076 mips_disable_float_construction = 1;
14077 break;
bdaaa2e1 14078
252b5132
RH
14079 case OPTION_TRAP:
14080 mips_trap = 1;
14081 break;
14082
14083 case OPTION_BREAK:
14084 mips_trap = 0;
14085 break;
14086
14087 case OPTION_EB:
14088 target_big_endian = 1;
14089 break;
14090
14091 case OPTION_EL:
14092 target_big_endian = 0;
14093 break;
14094
14095 case 'O':
4ffff32f
TS
14096 if (arg == NULL)
14097 mips_optimize = 1;
14098 else if (arg[0] == '0')
14099 mips_optimize = 0;
14100 else if (arg[0] == '1')
252b5132
RH
14101 mips_optimize = 1;
14102 else
14103 mips_optimize = 2;
14104 break;
14105
14106 case 'g':
14107 if (arg == NULL)
14108 mips_debug = 2;
14109 else
14110 mips_debug = atoi (arg);
252b5132
RH
14111 break;
14112
14113 case OPTION_MIPS1:
0b35dfee 14114 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14115 break;
14116
14117 case OPTION_MIPS2:
0b35dfee 14118 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14119 break;
14120
14121 case OPTION_MIPS3:
0b35dfee 14122 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14123 break;
14124
14125 case OPTION_MIPS4:
0b35dfee 14126 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14127 break;
14128
84ea6cf2 14129 case OPTION_MIPS5:
0b35dfee 14130 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14131 break;
14132
e7af610e 14133 case OPTION_MIPS32:
0b35dfee 14134 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14135 break;
14136
af7ee8bf 14137 case OPTION_MIPS32R2:
0b35dfee 14138 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14139 break;
14140
ae52f483 14141 case OPTION_MIPS32R3:
0ae19f05 14142 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14143 break;
14144
14145 case OPTION_MIPS32R5:
0ae19f05 14146 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14147 break;
14148
7361da2c
AB
14149 case OPTION_MIPS32R6:
14150 file_mips_opts.isa = ISA_MIPS32R6;
14151 break;
14152
5f74bc13 14153 case OPTION_MIPS64R2:
0b35dfee 14154 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14155 break;
14156
ae52f483 14157 case OPTION_MIPS64R3:
0ae19f05 14158 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14159 break;
14160
14161 case OPTION_MIPS64R5:
0ae19f05 14162 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14163 break;
14164
7361da2c
AB
14165 case OPTION_MIPS64R6:
14166 file_mips_opts.isa = ISA_MIPS64R6;
14167 break;
14168
84ea6cf2 14169 case OPTION_MIPS64:
0b35dfee 14170 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14171 break;
14172
ec68c924 14173 case OPTION_MTUNE:
316f5878
RS
14174 mips_set_option_string (&mips_tune_string, arg);
14175 break;
ec68c924 14176
316f5878
RS
14177 case OPTION_MARCH:
14178 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14179 break;
14180
14181 case OPTION_M4650:
316f5878
RS
14182 mips_set_option_string (&mips_arch_string, "4650");
14183 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14184 break;
14185
14186 case OPTION_NO_M4650:
14187 break;
14188
14189 case OPTION_M4010:
316f5878
RS
14190 mips_set_option_string (&mips_arch_string, "4010");
14191 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14192 break;
14193
14194 case OPTION_NO_M4010:
14195 break;
14196
14197 case OPTION_M4100:
316f5878
RS
14198 mips_set_option_string (&mips_arch_string, "4100");
14199 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14200 break;
14201
14202 case OPTION_NO_M4100:
14203 break;
14204
252b5132 14205 case OPTION_M3900:
316f5878
RS
14206 mips_set_option_string (&mips_arch_string, "3900");
14207 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14208 break;
bdaaa2e1 14209
252b5132
RH
14210 case OPTION_NO_M3900:
14211 break;
14212
df58fc94 14213 case OPTION_MICROMIPS:
919731af 14214 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14215 {
14216 as_bad (_("-mmicromips cannot be used with -mips16"));
14217 return 0;
14218 }
919731af 14219 file_mips_opts.micromips = 1;
df58fc94
RS
14220 mips_no_prev_insn ();
14221 break;
14222
14223 case OPTION_NO_MICROMIPS:
919731af 14224 file_mips_opts.micromips = 0;
df58fc94
RS
14225 mips_no_prev_insn ();
14226 break;
14227
252b5132 14228 case OPTION_MIPS16:
919731af 14229 if (file_mips_opts.micromips == 1)
df58fc94
RS
14230 {
14231 as_bad (_("-mips16 cannot be used with -micromips"));
14232 return 0;
14233 }
919731af 14234 file_mips_opts.mips16 = 1;
7d10b47d 14235 mips_no_prev_insn ();
252b5132
RH
14236 break;
14237
14238 case OPTION_NO_MIPS16:
919731af 14239 file_mips_opts.mips16 = 0;
7d10b47d 14240 mips_no_prev_insn ();
252b5132
RH
14241 break;
14242
6a32d874
CM
14243 case OPTION_FIX_24K:
14244 mips_fix_24k = 1;
14245 break;
14246
14247 case OPTION_NO_FIX_24K:
14248 mips_fix_24k = 0;
14249 break;
14250
a8d14a88
CM
14251 case OPTION_FIX_RM7000:
14252 mips_fix_rm7000 = 1;
14253 break;
14254
14255 case OPTION_NO_FIX_RM7000:
14256 mips_fix_rm7000 = 0;
14257 break;
14258
c67a084a
NC
14259 case OPTION_FIX_LOONGSON2F_JUMP:
14260 mips_fix_loongson2f_jump = TRUE;
14261 break;
14262
14263 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14264 mips_fix_loongson2f_jump = FALSE;
14265 break;
14266
14267 case OPTION_FIX_LOONGSON2F_NOP:
14268 mips_fix_loongson2f_nop = TRUE;
14269 break;
14270
14271 case OPTION_NO_FIX_LOONGSON2F_NOP:
14272 mips_fix_loongson2f_nop = FALSE;
14273 break;
14274
d766e8ec
RS
14275 case OPTION_FIX_VR4120:
14276 mips_fix_vr4120 = 1;
60b63b72
RS
14277 break;
14278
d766e8ec
RS
14279 case OPTION_NO_FIX_VR4120:
14280 mips_fix_vr4120 = 0;
60b63b72
RS
14281 break;
14282
7d8e00cf
RS
14283 case OPTION_FIX_VR4130:
14284 mips_fix_vr4130 = 1;
14285 break;
14286
14287 case OPTION_NO_FIX_VR4130:
14288 mips_fix_vr4130 = 0;
14289 break;
14290
d954098f
DD
14291 case OPTION_FIX_CN63XXP1:
14292 mips_fix_cn63xxp1 = TRUE;
14293 break;
14294
14295 case OPTION_NO_FIX_CN63XXP1:
14296 mips_fix_cn63xxp1 = FALSE;
14297 break;
14298
4a6a3df4
AO
14299 case OPTION_RELAX_BRANCH:
14300 mips_relax_branch = 1;
14301 break;
14302
14303 case OPTION_NO_RELAX_BRANCH:
14304 mips_relax_branch = 0;
14305 break;
14306
833794fc 14307 case OPTION_INSN32:
919731af 14308 file_mips_opts.insn32 = TRUE;
833794fc
MR
14309 break;
14310
14311 case OPTION_NO_INSN32:
919731af 14312 file_mips_opts.insn32 = FALSE;
833794fc
MR
14313 break;
14314
aa6975fb
ILT
14315 case OPTION_MSHARED:
14316 mips_in_shared = TRUE;
14317 break;
14318
14319 case OPTION_MNO_SHARED:
14320 mips_in_shared = FALSE;
14321 break;
14322
aed1a261 14323 case OPTION_MSYM32:
919731af 14324 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14325 break;
14326
14327 case OPTION_MNO_SYM32:
919731af 14328 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14329 break;
14330
252b5132
RH
14331 /* When generating ELF code, we permit -KPIC and -call_shared to
14332 select SVR4_PIC, and -non_shared to select no PIC. This is
14333 intended to be compatible with Irix 5. */
14334 case OPTION_CALL_SHARED:
252b5132 14335 mips_pic = SVR4_PIC;
143d77c5 14336 mips_abicalls = TRUE;
252b5132
RH
14337 break;
14338
861fb55a 14339 case OPTION_CALL_NONPIC:
861fb55a
DJ
14340 mips_pic = NO_PIC;
14341 mips_abicalls = TRUE;
14342 break;
14343
252b5132 14344 case OPTION_NON_SHARED:
252b5132 14345 mips_pic = NO_PIC;
143d77c5 14346 mips_abicalls = FALSE;
252b5132
RH
14347 break;
14348
44075ae2
TS
14349 /* The -xgot option tells the assembler to use 32 bit offsets
14350 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14351 compatibility. */
14352 case OPTION_XGOT:
14353 mips_big_got = 1;
14354 break;
14355
14356 case 'G':
6caf9ef4
TS
14357 g_switch_value = atoi (arg);
14358 g_switch_seen = 1;
252b5132
RH
14359 break;
14360
34ba82a8
TS
14361 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14362 and -mabi=64. */
252b5132 14363 case OPTION_32:
f3ded42a 14364 mips_abi = O32_ABI;
252b5132
RH
14365 break;
14366
e013f690 14367 case OPTION_N32:
316f5878 14368 mips_abi = N32_ABI;
e013f690 14369 break;
252b5132 14370
e013f690 14371 case OPTION_64:
316f5878 14372 mips_abi = N64_ABI;
f43abd2b 14373 if (!support_64bit_objects())
1661c76c 14374 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14375 break;
14376
c97ef257 14377 case OPTION_GP32:
bad1aba3 14378 file_mips_opts.gp = 32;
c97ef257
AH
14379 break;
14380
14381 case OPTION_GP64:
bad1aba3 14382 file_mips_opts.gp = 64;
c97ef257 14383 break;
252b5132 14384
ca4e0257 14385 case OPTION_FP32:
0b35dfee 14386 file_mips_opts.fp = 32;
316f5878
RS
14387 break;
14388
351cdf24
MF
14389 case OPTION_FPXX:
14390 file_mips_opts.fp = 0;
14391 break;
14392
316f5878 14393 case OPTION_FP64:
0b35dfee 14394 file_mips_opts.fp = 64;
ca4e0257
RS
14395 break;
14396
351cdf24
MF
14397 case OPTION_ODD_SPREG:
14398 file_mips_opts.oddspreg = 1;
14399 break;
14400
14401 case OPTION_NO_ODD_SPREG:
14402 file_mips_opts.oddspreg = 0;
14403 break;
14404
037b32b9 14405 case OPTION_SINGLE_FLOAT:
0b35dfee 14406 file_mips_opts.single_float = 1;
037b32b9
AN
14407 break;
14408
14409 case OPTION_DOUBLE_FLOAT:
0b35dfee 14410 file_mips_opts.single_float = 0;
037b32b9
AN
14411 break;
14412
14413 case OPTION_SOFT_FLOAT:
0b35dfee 14414 file_mips_opts.soft_float = 1;
037b32b9
AN
14415 break;
14416
14417 case OPTION_HARD_FLOAT:
0b35dfee 14418 file_mips_opts.soft_float = 0;
037b32b9
AN
14419 break;
14420
252b5132 14421 case OPTION_MABI:
e013f690 14422 if (strcmp (arg, "32") == 0)
316f5878 14423 mips_abi = O32_ABI;
e013f690 14424 else if (strcmp (arg, "o64") == 0)
316f5878 14425 mips_abi = O64_ABI;
e013f690 14426 else if (strcmp (arg, "n32") == 0)
316f5878 14427 mips_abi = N32_ABI;
e013f690
TS
14428 else if (strcmp (arg, "64") == 0)
14429 {
316f5878 14430 mips_abi = N64_ABI;
e013f690 14431 if (! support_64bit_objects())
1661c76c 14432 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14433 "format"));
14434 }
14435 else if (strcmp (arg, "eabi") == 0)
316f5878 14436 mips_abi = EABI_ABI;
e013f690 14437 else
da0e507f
TS
14438 {
14439 as_fatal (_("invalid abi -mabi=%s"), arg);
14440 return 0;
14441 }
252b5132
RH
14442 break;
14443
6b76fefe 14444 case OPTION_M7000_HILO_FIX:
b34976b6 14445 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14446 break;
14447
9ee72ff1 14448 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14449 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14450 break;
14451
ecb4347a 14452 case OPTION_MDEBUG:
b34976b6 14453 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14454 break;
14455
14456 case OPTION_NO_MDEBUG:
b34976b6 14457 mips_flag_mdebug = FALSE;
ecb4347a 14458 break;
dcd410fe
RO
14459
14460 case OPTION_PDR:
14461 mips_flag_pdr = TRUE;
14462 break;
14463
14464 case OPTION_NO_PDR:
14465 mips_flag_pdr = FALSE;
14466 break;
0a44bf69
RS
14467
14468 case OPTION_MVXWORKS_PIC:
14469 mips_pic = VXWORKS_PIC;
14470 break;
ecb4347a 14471
ba92f887
MR
14472 case OPTION_NAN:
14473 if (strcmp (arg, "2008") == 0)
7361da2c 14474 mips_nan2008 = 1;
ba92f887 14475 else if (strcmp (arg, "legacy") == 0)
7361da2c 14476 mips_nan2008 = 0;
ba92f887
MR
14477 else
14478 {
1661c76c 14479 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14480 return 0;
14481 }
14482 break;
14483
252b5132
RH
14484 default:
14485 return 0;
14486 }
14487
c67a084a
NC
14488 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14489
252b5132
RH
14490 return 1;
14491}
316f5878 14492\f
919731af 14493/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14494
316f5878 14495static void
17a2f251 14496mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14497{
14498 if (info != 0)
fef14a42 14499 mips_tune = info->cpu;
316f5878 14500}
80cc45a5 14501
34ba82a8 14502
252b5132 14503void
17a2f251 14504mips_after_parse_args (void)
e9670677 14505{
fef14a42
TS
14506 const struct mips_cpu_info *arch_info = 0;
14507 const struct mips_cpu_info *tune_info = 0;
14508
e9670677 14509 /* GP relative stuff not working for PE */
6caf9ef4 14510 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14511 {
6caf9ef4 14512 if (g_switch_seen && g_switch_value != 0)
1661c76c 14513 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14514 g_switch_value = 0;
14515 }
14516
cac012d6
AO
14517 if (mips_abi == NO_ABI)
14518 mips_abi = MIPS_DEFAULT_ABI;
14519
919731af 14520 /* The following code determines the architecture.
22923709
RS
14521 Similar code was added to GCC 3.3 (see override_options() in
14522 config/mips/mips.c). The GAS and GCC code should be kept in sync
14523 as much as possible. */
e9670677 14524
316f5878 14525 if (mips_arch_string != 0)
fef14a42 14526 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14527
0b35dfee 14528 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14529 {
0b35dfee 14530 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14531 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14532 the -march selection (if any). */
fef14a42 14533 if (arch_info != 0)
e9670677 14534 {
316f5878
RS
14535 /* -march takes precedence over -mipsN, since it is more descriptive.
14536 There's no harm in specifying both as long as the ISA levels
14537 are the same. */
0b35dfee 14538 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14539 as_bad (_("-%s conflicts with the other architecture options,"
14540 " which imply -%s"),
0b35dfee 14541 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14542 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14543 }
316f5878 14544 else
0b35dfee 14545 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14546 }
14547
fef14a42 14548 if (arch_info == 0)
95bfe26e
MF
14549 {
14550 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14551 gas_assert (arch_info);
14552 }
e9670677 14553
fef14a42 14554 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14555 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14556 arch_info->name);
14557
919731af 14558 file_mips_opts.arch = arch_info->cpu;
14559 file_mips_opts.isa = arch_info->isa;
14560
14561 /* Set up initial mips_opts state. */
14562 mips_opts = file_mips_opts;
14563
14564 /* The register size inference code is now placed in
14565 file_mips_check_options. */
fef14a42 14566
0b35dfee 14567 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14568 processor. */
fef14a42
TS
14569 if (mips_tune_string != 0)
14570 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14571
fef14a42
TS
14572 if (tune_info == 0)
14573 mips_set_tune (arch_info);
14574 else
14575 mips_set_tune (tune_info);
e9670677 14576
ecb4347a 14577 if (mips_flag_mdebug < 0)
e8044f35 14578 mips_flag_mdebug = 0;
e9670677
MR
14579}
14580\f
14581void
17a2f251 14582mips_init_after_args (void)
252b5132
RH
14583{
14584 /* initialize opcodes */
14585 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14586 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14587}
14588
14589long
17a2f251 14590md_pcrel_from (fixS *fixP)
252b5132 14591{
a7ebbfdf
TS
14592 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14593 switch (fixP->fx_r_type)
14594 {
df58fc94
RS
14595 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14596 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14597 /* Return the address of the delay slot. */
14598 return addr + 2;
14599
14600 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14601 case BFD_RELOC_MICROMIPS_JMP:
a7ebbfdf 14602 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14603 case BFD_RELOC_MIPS_21_PCREL_S2:
14604 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14605 case BFD_RELOC_MIPS_JMP:
14606 /* Return the address of the delay slot. */
14607 return addr + 4;
df58fc94 14608
a7ebbfdf
TS
14609 default:
14610 return addr;
14611 }
252b5132
RH
14612}
14613
252b5132
RH
14614/* This is called before the symbol table is processed. In order to
14615 work with gcc when using mips-tfile, we must keep all local labels.
14616 However, in other cases, we want to discard them. If we were
14617 called with -g, but we didn't see any debugging information, it may
14618 mean that gcc is smuggling debugging information through to
14619 mips-tfile, in which case we must generate all local labels. */
14620
14621void
17a2f251 14622mips_frob_file_before_adjust (void)
252b5132
RH
14623{
14624#ifndef NO_ECOFF_DEBUGGING
14625 if (ECOFF_DEBUGGING
14626 && mips_debug != 0
14627 && ! ecoff_debugging_seen)
14628 flag_keep_locals = 1;
14629#endif
14630}
14631
3b91255e 14632/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14633 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14634 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14635 relocation operators.
14636
14637 For our purposes, a %lo() expression matches a %got() or %hi()
14638 expression if:
14639
14640 (a) it refers to the same symbol; and
14641 (b) the offset applied in the %lo() expression is no lower than
14642 the offset applied in the %got() or %hi().
14643
14644 (b) allows us to cope with code like:
14645
14646 lui $4,%hi(foo)
14647 lh $4,%lo(foo+2)($4)
14648
14649 ...which is legal on RELA targets, and has a well-defined behaviour
14650 if the user knows that adding 2 to "foo" will not induce a carry to
14651 the high 16 bits.
14652
14653 When several %lo()s match a particular %got() or %hi(), we use the
14654 following rules to distinguish them:
14655
14656 (1) %lo()s with smaller offsets are a better match than %lo()s with
14657 higher offsets.
14658
14659 (2) %lo()s with no matching %got() or %hi() are better than those
14660 that already have a matching %got() or %hi().
14661
14662 (3) later %lo()s are better than earlier %lo()s.
14663
14664 These rules are applied in order.
14665
14666 (1) means, among other things, that %lo()s with identical offsets are
14667 chosen if they exist.
14668
14669 (2) means that we won't associate several high-part relocations with
14670 the same low-part relocation unless there's no alternative. Having
14671 several high parts for the same low part is a GNU extension; this rule
14672 allows careful users to avoid it.
14673
14674 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14675 with the last high-part relocation being at the front of the list.
14676 It therefore makes sense to choose the last matching low-part
14677 relocation, all other things being equal. It's also easier
14678 to code that way. */
252b5132
RH
14679
14680void
17a2f251 14681mips_frob_file (void)
252b5132
RH
14682{
14683 struct mips_hi_fixup *l;
35903be0 14684 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14685
14686 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14687 {
14688 segment_info_type *seginfo;
3b91255e
RS
14689 bfd_boolean matched_lo_p;
14690 fixS **hi_pos, **lo_pos, **pos;
252b5132 14691
9c2799c2 14692 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14693
5919d012 14694 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14695 there isn't supposed to be a matching LO. Ignore %gots against
14696 constants; we'll report an error for those later. */
738e5348 14697 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14698 && !(l->fixp->fx_addsy
14699 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14700 continue;
14701
14702 /* Check quickly whether the next fixup happens to be a matching %lo. */
14703 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14704 continue;
14705
252b5132 14706 seginfo = seg_info (l->seg);
252b5132 14707
3b91255e
RS
14708 /* Set HI_POS to the position of this relocation in the chain.
14709 Set LO_POS to the position of the chosen low-part relocation.
14710 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14711 relocation that matches an immediately-preceding high-part
14712 relocation. */
14713 hi_pos = NULL;
14714 lo_pos = NULL;
14715 matched_lo_p = FALSE;
738e5348 14716 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14717
3b91255e
RS
14718 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14719 {
14720 if (*pos == l->fixp)
14721 hi_pos = pos;
14722
35903be0 14723 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14724 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14725 && (*pos)->fx_offset >= l->fixp->fx_offset
14726 && (lo_pos == NULL
14727 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14728 || (!matched_lo_p
14729 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14730 lo_pos = pos;
14731
14732 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14733 && fixup_has_matching_lo_p (*pos));
14734 }
14735
14736 /* If we found a match, remove the high-part relocation from its
14737 current position and insert it before the low-part relocation.
14738 Make the offsets match so that fixup_has_matching_lo_p()
14739 will return true.
14740
14741 We don't warn about unmatched high-part relocations since some
14742 versions of gcc have been known to emit dead "lui ...%hi(...)"
14743 instructions. */
14744 if (lo_pos != NULL)
14745 {
14746 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14747 if (l->fixp->fx_next != *lo_pos)
252b5132 14748 {
3b91255e
RS
14749 *hi_pos = l->fixp->fx_next;
14750 l->fixp->fx_next = *lo_pos;
14751 *lo_pos = l->fixp;
252b5132 14752 }
252b5132
RH
14753 }
14754 }
14755}
14756
252b5132 14757int
17a2f251 14758mips_force_relocation (fixS *fixp)
252b5132 14759{
ae6063d4 14760 if (generic_force_reloc (fixp))
252b5132
RH
14761 return 1;
14762
df58fc94
RS
14763 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14764 so that the linker relaxation can update targets. */
14765 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14766 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14767 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14768 return 1;
14769
7361da2c
AB
14770 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14771 if (ISA_IS_R6 (mips_opts.isa)
14772 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14773 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14774 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14775 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14776 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14777 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14778 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14779 return 1;
14780
3e722fb5 14781 return 0;
252b5132
RH
14782}
14783
b886a2ab
RS
14784/* Read the instruction associated with RELOC from BUF. */
14785
14786static unsigned int
14787read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14788{
14789 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14790 return read_compressed_insn (buf, 4);
14791 else
14792 return read_insn (buf);
14793}
14794
14795/* Write instruction INSN to BUF, given that it has been relocated
14796 by RELOC. */
14797
14798static void
14799write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14800 unsigned long insn)
14801{
14802 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14803 write_compressed_insn (buf, insn, 4);
14804 else
14805 write_insn (buf, insn);
14806}
14807
252b5132
RH
14808/* Apply a fixup to the object file. */
14809
94f592af 14810void
55cf6793 14811md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 14812{
4d68580a 14813 char *buf;
b886a2ab 14814 unsigned long insn;
a7ebbfdf 14815 reloc_howto_type *howto;
252b5132 14816
d56a8dda
RS
14817 if (fixP->fx_pcrel)
14818 switch (fixP->fx_r_type)
14819 {
14820 case BFD_RELOC_16_PCREL_S2:
14821 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14822 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14823 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14824 case BFD_RELOC_32_PCREL:
7361da2c
AB
14825 case BFD_RELOC_MIPS_21_PCREL_S2:
14826 case BFD_RELOC_MIPS_26_PCREL_S2:
14827 case BFD_RELOC_MIPS_18_PCREL_S3:
14828 case BFD_RELOC_MIPS_19_PCREL_S2:
14829 case BFD_RELOC_HI16_S_PCREL:
14830 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
14831 break;
14832
14833 case BFD_RELOC_32:
14834 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14835 break;
14836
14837 default:
14838 as_bad_where (fixP->fx_file, fixP->fx_line,
14839 _("PC-relative reference to a different section"));
14840 break;
14841 }
14842
14843 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14844 that have no MIPS ELF equivalent. */
14845 if (fixP->fx_r_type != BFD_RELOC_8)
14846 {
14847 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14848 if (!howto)
14849 return;
14850 }
65551fa4 14851
df58fc94
RS
14852 gas_assert (fixP->fx_size == 2
14853 || fixP->fx_size == 4
d56a8dda 14854 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
14855 || fixP->fx_r_type == BFD_RELOC_16
14856 || fixP->fx_r_type == BFD_RELOC_64
14857 || fixP->fx_r_type == BFD_RELOC_CTOR
14858 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 14859 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
14860 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14861 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
14862 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14863 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 14864
4d68580a 14865 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 14866
b1dca8ee
RS
14867 /* Don't treat parts of a composite relocation as done. There are two
14868 reasons for this:
14869
14870 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14871 should nevertheless be emitted if the first part is.
14872
14873 (2) In normal usage, composite relocations are never assembly-time
14874 constants. The easiest way of dealing with the pathological
14875 exceptions is to generate a relocation against STN_UNDEF and
14876 leave everything up to the linker. */
3994f87e 14877 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
14878 fixP->fx_done = 1;
14879
14880 switch (fixP->fx_r_type)
14881 {
3f98094e
DJ
14882 case BFD_RELOC_MIPS_TLS_GD:
14883 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
14884 case BFD_RELOC_MIPS_TLS_DTPREL32:
14885 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
14886 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14887 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14888 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
14889 case BFD_RELOC_MIPS_TLS_TPREL32:
14890 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
14891 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14892 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
14893 case BFD_RELOC_MICROMIPS_TLS_GD:
14894 case BFD_RELOC_MICROMIPS_TLS_LDM:
14895 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14896 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14897 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14898 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14899 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
14900 case BFD_RELOC_MIPS16_TLS_GD:
14901 case BFD_RELOC_MIPS16_TLS_LDM:
14902 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14903 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14904 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14905 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14906 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
14907 if (fixP->fx_addsy)
14908 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14909 else
14910 as_bad_where (fixP->fx_file, fixP->fx_line,
14911 _("TLS relocation against a constant"));
14912 break;
3f98094e 14913
252b5132 14914 case BFD_RELOC_MIPS_JMP:
e369bcce
TS
14915 case BFD_RELOC_MIPS_SHIFT5:
14916 case BFD_RELOC_MIPS_SHIFT6:
14917 case BFD_RELOC_MIPS_GOT_DISP:
14918 case BFD_RELOC_MIPS_GOT_PAGE:
14919 case BFD_RELOC_MIPS_GOT_OFST:
14920 case BFD_RELOC_MIPS_SUB:
14921 case BFD_RELOC_MIPS_INSERT_A:
14922 case BFD_RELOC_MIPS_INSERT_B:
14923 case BFD_RELOC_MIPS_DELETE:
14924 case BFD_RELOC_MIPS_HIGHEST:
14925 case BFD_RELOC_MIPS_HIGHER:
14926 case BFD_RELOC_MIPS_SCN_DISP:
14927 case BFD_RELOC_MIPS_REL16:
14928 case BFD_RELOC_MIPS_RELGOT:
14929 case BFD_RELOC_MIPS_JALR:
252b5132
RH
14930 case BFD_RELOC_HI16:
14931 case BFD_RELOC_HI16_S:
b886a2ab 14932 case BFD_RELOC_LO16:
cdf6fd85 14933 case BFD_RELOC_GPREL16:
252b5132
RH
14934 case BFD_RELOC_MIPS_LITERAL:
14935 case BFD_RELOC_MIPS_CALL16:
14936 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 14937 case BFD_RELOC_GPREL32:
252b5132
RH
14938 case BFD_RELOC_MIPS_GOT_HI16:
14939 case BFD_RELOC_MIPS_GOT_LO16:
14940 case BFD_RELOC_MIPS_CALL_HI16:
14941 case BFD_RELOC_MIPS_CALL_LO16:
14942 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
14943 case BFD_RELOC_MIPS16_GOT16:
14944 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
14945 case BFD_RELOC_MIPS16_HI16:
14946 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 14947 case BFD_RELOC_MIPS16_LO16:
252b5132 14948 case BFD_RELOC_MIPS16_JMP:
df58fc94
RS
14949 case BFD_RELOC_MICROMIPS_JMP:
14950 case BFD_RELOC_MICROMIPS_GOT_DISP:
14951 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14952 case BFD_RELOC_MICROMIPS_GOT_OFST:
14953 case BFD_RELOC_MICROMIPS_SUB:
14954 case BFD_RELOC_MICROMIPS_HIGHEST:
14955 case BFD_RELOC_MICROMIPS_HIGHER:
14956 case BFD_RELOC_MICROMIPS_SCN_DISP:
14957 case BFD_RELOC_MICROMIPS_JALR:
14958 case BFD_RELOC_MICROMIPS_HI16:
14959 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 14960 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
14961 case BFD_RELOC_MICROMIPS_GPREL16:
14962 case BFD_RELOC_MICROMIPS_LITERAL:
14963 case BFD_RELOC_MICROMIPS_CALL16:
14964 case BFD_RELOC_MICROMIPS_GOT16:
14965 case BFD_RELOC_MICROMIPS_GOT_HI16:
14966 case BFD_RELOC_MICROMIPS_GOT_LO16:
14967 case BFD_RELOC_MICROMIPS_CALL_HI16:
14968 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 14969 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
14970 if (fixP->fx_done)
14971 {
14972 offsetT value;
14973
14974 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14975 {
14976 insn = read_reloc_insn (buf, fixP->fx_r_type);
14977 if (mips16_reloc_p (fixP->fx_r_type))
14978 insn |= mips16_immed_extend (value, 16);
14979 else
14980 insn |= (value & 0xffff);
14981 write_reloc_insn (buf, fixP->fx_r_type, insn);
14982 }
14983 else
14984 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 14985 _("unsupported constant in relocation"));
b886a2ab 14986 }
252b5132
RH
14987 break;
14988
252b5132
RH
14989 case BFD_RELOC_64:
14990 /* This is handled like BFD_RELOC_32, but we output a sign
14991 extended value if we are only 32 bits. */
3e722fb5 14992 if (fixP->fx_done)
252b5132
RH
14993 {
14994 if (8 <= sizeof (valueT))
4d68580a 14995 md_number_to_chars (buf, *valP, 8);
252b5132
RH
14996 else
14997 {
a7ebbfdf 14998 valueT hiv;
252b5132 14999
a7ebbfdf 15000 if ((*valP & 0x80000000) != 0)
252b5132
RH
15001 hiv = 0xffffffff;
15002 else
15003 hiv = 0;
4d68580a
RS
15004 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15005 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15006 }
15007 }
15008 break;
15009
056350c6 15010 case BFD_RELOC_RVA:
252b5132 15011 case BFD_RELOC_32:
b47468a6 15012 case BFD_RELOC_32_PCREL:
252b5132 15013 case BFD_RELOC_16:
d56a8dda 15014 case BFD_RELOC_8:
252b5132 15015 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15016 value now. This can happen if we have a .word which is not
15017 resolved when it appears but is later defined. */
252b5132 15018 if (fixP->fx_done)
4d68580a 15019 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15020 break;
15021
7361da2c
AB
15022 case BFD_RELOC_MIPS_21_PCREL_S2:
15023 case BFD_RELOC_MIPS_26_PCREL_S2:
15024 if ((*valP & 0x3) != 0)
15025 as_bad_where (fixP->fx_file, fixP->fx_line,
15026 _("branch to misaligned address (%lx)"), (long) *valP);
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_18_PCREL_S3:
0866e94c 15032 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15033 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15034 _("PC-relative access using misaligned symbol (%lx)"),
15035 (long) S_GET_VALUE (fixP->fx_addsy));
15036 if ((fixP->fx_offset & 0x7) != 0)
15037 as_bad_where (fixP->fx_file, fixP->fx_line,
15038 _("PC-relative access using misaligned offset (%lx)"),
15039 (long) fixP->fx_offset);
7361da2c
AB
15040
15041 gas_assert (!fixP->fx_done);
15042 break;
15043
15044 case BFD_RELOC_MIPS_19_PCREL_S2:
15045 if ((*valP & 0x3) != 0)
15046 as_bad_where (fixP->fx_file, fixP->fx_line,
15047 _("PC-relative access to misaligned address (%lx)"),
0866e94c 15048 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
7361da2c
AB
15049
15050 gas_assert (!fixP->fx_done);
15051 break;
15052
15053 case BFD_RELOC_HI16_S_PCREL:
15054 case BFD_RELOC_LO16_PCREL:
15055 gas_assert (!fixP->fx_done);
15056 break;
15057
252b5132 15058 case BFD_RELOC_16_PCREL_S2:
a7ebbfdf 15059 if ((*valP & 0x3) != 0)
cb56d3d3 15060 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15061 _("branch to misaligned address (%lx)"), (long) *valP);
cb56d3d3 15062
54f4ddb3
TS
15063 /* We need to save the bits in the instruction since fixup_segment()
15064 might be deleting the relocation entry (i.e., a branch within
15065 the current segment). */
a7ebbfdf 15066 if (! fixP->fx_done)
bb2d6cd7 15067 break;
252b5132 15068
54f4ddb3 15069 /* Update old instruction data. */
4d68580a 15070 insn = read_insn (buf);
252b5132 15071
a7ebbfdf
TS
15072 if (*valP + 0x20000 <= 0x3ffff)
15073 {
15074 insn |= (*valP >> 2) & 0xffff;
4d68580a 15075 write_insn (buf, insn);
a7ebbfdf
TS
15076 }
15077 else if (mips_pic == NO_PIC
15078 && fixP->fx_done
15079 && fixP->fx_frag->fr_address >= text_section->vma
15080 && (fixP->fx_frag->fr_address
587aac4e 15081 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15082 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15083 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15084 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15085 {
15086 /* The branch offset is too large. If this is an
15087 unconditional branch, and we are not generating PIC code,
15088 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15089 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15090 insn = 0x0c000000; /* jal */
252b5132 15091 else
a7ebbfdf
TS
15092 insn = 0x08000000; /* j */
15093 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15094 fixP->fx_done = 0;
15095 fixP->fx_addsy = section_symbol (text_section);
15096 *valP += md_pcrel_from (fixP);
4d68580a 15097 write_insn (buf, insn);
a7ebbfdf
TS
15098 }
15099 else
15100 {
15101 /* If we got here, we have branch-relaxation disabled,
15102 and there's nothing we can do to fix this instruction
15103 without turning it into a longer sequence. */
15104 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15105 _("branch out of range"));
252b5132 15106 }
252b5132
RH
15107 break;
15108
df58fc94
RS
15109 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15110 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15111 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15112 /* We adjust the offset back to even. */
15113 if ((*valP & 0x1) != 0)
15114 --(*valP);
15115
15116 if (! fixP->fx_done)
15117 break;
15118
15119 /* Should never visit here, because we keep the relocation. */
15120 abort ();
15121 break;
15122
252b5132
RH
15123 case BFD_RELOC_VTABLE_INHERIT:
15124 fixP->fx_done = 0;
15125 if (fixP->fx_addsy
15126 && !S_IS_DEFINED (fixP->fx_addsy)
15127 && !S_IS_WEAK (fixP->fx_addsy))
15128 S_SET_WEAK (fixP->fx_addsy);
15129 break;
15130
2f0c68f2 15131 case BFD_RELOC_NONE:
252b5132
RH
15132 case BFD_RELOC_VTABLE_ENTRY:
15133 fixP->fx_done = 0;
15134 break;
15135
15136 default:
b37df7c4 15137 abort ();
252b5132 15138 }
a7ebbfdf
TS
15139
15140 /* Remember value for tc_gen_reloc. */
15141 fixP->fx_addnumber = *valP;
252b5132
RH
15142}
15143
252b5132 15144static symbolS *
17a2f251 15145get_symbol (void)
252b5132
RH
15146{
15147 int c;
15148 char *name;
15149 symbolS *p;
15150
d02603dc 15151 c = get_symbol_name (&name);
252b5132 15152 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15153 (void) restore_line_pointer (c);
252b5132
RH
15154 return p;
15155}
15156
742a56fe
RS
15157/* Align the current frag to a given power of two. If a particular
15158 fill byte should be used, FILL points to an integer that contains
15159 that byte, otherwise FILL is null.
15160
462427c4
RS
15161 This function used to have the comment:
15162
15163 The MIPS assembler also automatically adjusts any preceding label.
15164
15165 The implementation therefore applied the adjustment to a maximum of
15166 one label. However, other label adjustments are applied to batches
15167 of labels, and adjusting just one caused problems when new labels
15168 were added for the sake of debugging or unwind information.
15169 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15170
15171static void
462427c4 15172mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15173{
7d10b47d 15174 mips_emit_delays ();
df58fc94 15175 mips_record_compressed_mode ();
742a56fe
RS
15176 if (fill == NULL && subseg_text_p (now_seg))
15177 frag_align_code (to, 0);
15178 else
15179 frag_align (to, fill ? *fill : 0, 0);
252b5132 15180 record_alignment (now_seg, to);
462427c4 15181 mips_move_labels (labels, FALSE);
252b5132
RH
15182}
15183
15184/* Align to a given power of two. .align 0 turns off the automatic
15185 alignment used by the data creating pseudo-ops. */
15186
15187static void
17a2f251 15188s_align (int x ATTRIBUTE_UNUSED)
252b5132 15189{
742a56fe 15190 int temp, fill_value, *fill_ptr;
49954fb4 15191 long max_alignment = 28;
252b5132 15192
54f4ddb3 15193 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15194 to the aligned address.
54f4ddb3 15195 o It's not documented but auto alignment is reinstated by
252b5132 15196 a .align pseudo instruction.
54f4ddb3 15197 o Note also that after auto alignment is turned off the mips assembler
252b5132 15198 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15199 We don't. */
252b5132
RH
15200
15201 temp = get_absolute_expression ();
15202 if (temp > max_alignment)
1661c76c 15203 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15204 else if (temp < 0)
15205 {
1661c76c 15206 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15207 temp = 0;
15208 }
15209 if (*input_line_pointer == ',')
15210 {
f9419b05 15211 ++input_line_pointer;
742a56fe
RS
15212 fill_value = get_absolute_expression ();
15213 fill_ptr = &fill_value;
252b5132
RH
15214 }
15215 else
742a56fe 15216 fill_ptr = 0;
252b5132
RH
15217 if (temp)
15218 {
a8dbcb85
TS
15219 segment_info_type *si = seg_info (now_seg);
15220 struct insn_label_list *l = si->label_list;
54f4ddb3 15221 /* Auto alignment should be switched on by next section change. */
252b5132 15222 auto_align = 1;
462427c4 15223 mips_align (temp, fill_ptr, l);
252b5132
RH
15224 }
15225 else
15226 {
15227 auto_align = 0;
15228 }
15229
15230 demand_empty_rest_of_line ();
15231}
15232
252b5132 15233static void
17a2f251 15234s_change_sec (int sec)
252b5132
RH
15235{
15236 segT seg;
15237
252b5132
RH
15238 /* The ELF backend needs to know that we are changing sections, so
15239 that .previous works correctly. We could do something like check
b6ff326e 15240 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15241 as it would not be appropriate to use it in the section changing
15242 functions in read.c, since obj-elf.c intercepts those. FIXME:
15243 This should be cleaner, somehow. */
f3ded42a 15244 obj_elf_section_change_hook ();
252b5132 15245
7d10b47d 15246 mips_emit_delays ();
6a32d874 15247
252b5132
RH
15248 switch (sec)
15249 {
15250 case 't':
15251 s_text (0);
15252 break;
15253 case 'd':
15254 s_data (0);
15255 break;
15256 case 'b':
15257 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15258 demand_empty_rest_of_line ();
15259 break;
15260
15261 case 'r':
4d0d148d
TS
15262 seg = subseg_new (RDATA_SECTION_NAME,
15263 (subsegT) get_absolute_expression ());
f3ded42a
RS
15264 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15265 | SEC_READONLY | SEC_RELOC
15266 | SEC_DATA));
15267 if (strncmp (TARGET_OS, "elf", 3) != 0)
15268 record_alignment (seg, 4);
4d0d148d 15269 demand_empty_rest_of_line ();
252b5132
RH
15270 break;
15271
15272 case 's':
4d0d148d 15273 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15274 bfd_set_section_flags (stdoutput, seg,
15275 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15276 if (strncmp (TARGET_OS, "elf", 3) != 0)
15277 record_alignment (seg, 4);
4d0d148d
TS
15278 demand_empty_rest_of_line ();
15279 break;
998b3c36
MR
15280
15281 case 'B':
15282 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15283 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15284 if (strncmp (TARGET_OS, "elf", 3) != 0)
15285 record_alignment (seg, 4);
998b3c36
MR
15286 demand_empty_rest_of_line ();
15287 break;
252b5132
RH
15288 }
15289
15290 auto_align = 1;
15291}
b34976b6 15292
cca86cc8 15293void
17a2f251 15294s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15295{
d02603dc 15296 char *saved_ilp;
cca86cc8 15297 char *section_name;
d02603dc 15298 char c, endc;
684022ea 15299 char next_c = 0;
cca86cc8
SC
15300 int section_type;
15301 int section_flag;
15302 int section_entry_size;
15303 int section_alignment;
b34976b6 15304
d02603dc
NC
15305 saved_ilp = input_line_pointer;
15306 endc = get_symbol_name (&section_name);
15307 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15308 if (c)
d02603dc 15309 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15310
4cf0dd0d
TS
15311 /* Do we have .section Name<,"flags">? */
15312 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15313 {
d02603dc
NC
15314 /* Just after name is now '\0'. */
15315 (void) restore_line_pointer (endc);
15316 input_line_pointer = saved_ilp;
cca86cc8
SC
15317 obj_elf_section (ignore);
15318 return;
15319 }
d02603dc
NC
15320
15321 section_name = xstrdup (section_name);
15322 c = restore_line_pointer (endc);
15323
cca86cc8
SC
15324 input_line_pointer++;
15325
15326 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15327 if (c == ',')
15328 section_type = get_absolute_expression ();
15329 else
15330 section_type = 0;
d02603dc 15331
cca86cc8
SC
15332 if (*input_line_pointer++ == ',')
15333 section_flag = get_absolute_expression ();
15334 else
15335 section_flag = 0;
d02603dc 15336
cca86cc8
SC
15337 if (*input_line_pointer++ == ',')
15338 section_entry_size = get_absolute_expression ();
15339 else
15340 section_entry_size = 0;
d02603dc 15341
cca86cc8
SC
15342 if (*input_line_pointer++ == ',')
15343 section_alignment = get_absolute_expression ();
15344 else
15345 section_alignment = 0;
d02603dc 15346
87975d2a
AM
15347 /* FIXME: really ignore? */
15348 (void) section_alignment;
cca86cc8 15349
8ab8a5c8
RS
15350 /* When using the generic form of .section (as implemented by obj-elf.c),
15351 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15352 traditionally had to fall back on the more common @progbits instead.
15353
15354 There's nothing really harmful in this, since bfd will correct
15355 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15356 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15357 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15358
15359 Even so, we shouldn't force users of the MIPS .section syntax to
15360 incorrectly label the sections as SHT_PROGBITS. The best compromise
15361 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15362 generic type-checking code. */
15363 if (section_type == SHT_MIPS_DWARF)
15364 section_type = SHT_PROGBITS;
15365
cca86cc8
SC
15366 obj_elf_change_section (section_name, section_type, section_flag,
15367 section_entry_size, 0, 0, 0);
a816d1ed
AO
15368
15369 if (now_seg->name != section_name)
15370 free (section_name);
cca86cc8 15371}
252b5132
RH
15372
15373void
17a2f251 15374mips_enable_auto_align (void)
252b5132
RH
15375{
15376 auto_align = 1;
15377}
15378
15379static void
17a2f251 15380s_cons (int log_size)
252b5132 15381{
a8dbcb85
TS
15382 segment_info_type *si = seg_info (now_seg);
15383 struct insn_label_list *l = si->label_list;
252b5132 15384
7d10b47d 15385 mips_emit_delays ();
252b5132 15386 if (log_size > 0 && auto_align)
462427c4 15387 mips_align (log_size, 0, l);
252b5132 15388 cons (1 << log_size);
a1facbec 15389 mips_clear_insn_labels ();
252b5132
RH
15390}
15391
15392static void
17a2f251 15393s_float_cons (int type)
252b5132 15394{
a8dbcb85
TS
15395 segment_info_type *si = seg_info (now_seg);
15396 struct insn_label_list *l = si->label_list;
252b5132 15397
7d10b47d 15398 mips_emit_delays ();
252b5132
RH
15399
15400 if (auto_align)
49309057
ILT
15401 {
15402 if (type == 'd')
462427c4 15403 mips_align (3, 0, l);
49309057 15404 else
462427c4 15405 mips_align (2, 0, l);
49309057 15406 }
252b5132 15407
252b5132 15408 float_cons (type);
a1facbec 15409 mips_clear_insn_labels ();
252b5132
RH
15410}
15411
15412/* Handle .globl. We need to override it because on Irix 5 you are
15413 permitted to say
15414 .globl foo .text
15415 where foo is an undefined symbol, to mean that foo should be
15416 considered to be the address of a function. */
15417
15418static void
17a2f251 15419s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15420{
15421 char *name;
15422 int c;
15423 symbolS *symbolP;
15424 flagword flag;
15425
8a06b769 15426 do
252b5132 15427 {
d02603dc 15428 c = get_symbol_name (&name);
8a06b769
TS
15429 symbolP = symbol_find_or_make (name);
15430 S_SET_EXTERNAL (symbolP);
15431
252b5132 15432 *input_line_pointer = c;
d02603dc 15433 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15434
8a06b769
TS
15435 /* On Irix 5, every global symbol that is not explicitly labelled as
15436 being a function is apparently labelled as being an object. */
15437 flag = BSF_OBJECT;
252b5132 15438
8a06b769
TS
15439 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15440 && (*input_line_pointer != ','))
15441 {
15442 char *secname;
15443 asection *sec;
15444
d02603dc 15445 c = get_symbol_name (&secname);
8a06b769
TS
15446 sec = bfd_get_section_by_name (stdoutput, secname);
15447 if (sec == NULL)
15448 as_bad (_("%s: no such section"), secname);
d02603dc 15449 (void) restore_line_pointer (c);
8a06b769
TS
15450
15451 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15452 flag = BSF_FUNCTION;
15453 }
15454
15455 symbol_get_bfdsym (symbolP)->flags |= flag;
15456
15457 c = *input_line_pointer;
15458 if (c == ',')
15459 {
15460 input_line_pointer++;
15461 SKIP_WHITESPACE ();
15462 if (is_end_of_line[(unsigned char) *input_line_pointer])
15463 c = '\n';
15464 }
15465 }
15466 while (c == ',');
252b5132 15467
252b5132
RH
15468 demand_empty_rest_of_line ();
15469}
15470
15471static void
17a2f251 15472s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15473{
15474 char *opt;
15475 char c;
15476
d02603dc 15477 c = get_symbol_name (&opt);
252b5132
RH
15478
15479 if (*opt == 'O')
15480 {
15481 /* FIXME: What does this mean? */
15482 }
41a1578e 15483 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15484 {
15485 int i;
15486
15487 i = atoi (opt + 3);
668c5ebc
MR
15488 if (i != 0 && i != 2)
15489 as_bad (_(".option pic%d not supported"), i);
15490 else if (mips_pic == VXWORKS_PIC)
15491 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15492 else if (i == 0)
252b5132
RH
15493 mips_pic = NO_PIC;
15494 else if (i == 2)
143d77c5 15495 {
8b828383 15496 mips_pic = SVR4_PIC;
143d77c5
EC
15497 mips_abicalls = TRUE;
15498 }
252b5132 15499
4d0d148d 15500 if (mips_pic == SVR4_PIC)
252b5132
RH
15501 {
15502 if (g_switch_seen && g_switch_value != 0)
15503 as_warn (_("-G may not be used with SVR4 PIC code"));
15504 g_switch_value = 0;
15505 bfd_set_gp_size (stdoutput, 0);
15506 }
15507 }
15508 else
1661c76c 15509 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 15510
d02603dc 15511 (void) restore_line_pointer (c);
252b5132
RH
15512 demand_empty_rest_of_line ();
15513}
15514
15515/* This structure is used to hold a stack of .set values. */
15516
e972090a
NC
15517struct mips_option_stack
15518{
252b5132
RH
15519 struct mips_option_stack *next;
15520 struct mips_set_options options;
15521};
15522
15523static struct mips_option_stack *mips_opts_stack;
15524
22522f88
MR
15525/* Return status for .set/.module option handling. */
15526
15527enum code_option_type
15528{
15529 /* Unrecognized option. */
15530 OPTION_TYPE_BAD = -1,
15531
15532 /* Ordinary option. */
15533 OPTION_TYPE_NORMAL,
15534
15535 /* ISA changing option. */
15536 OPTION_TYPE_ISA
15537};
15538
15539/* Handle common .set/.module options. Return status indicating option
15540 type. */
15541
15542static enum code_option_type
919731af 15543parse_code_option (char * name)
252b5132 15544{
22522f88 15545 bfd_boolean isa_set = FALSE;
c6278170 15546 const struct mips_ase *ase;
22522f88 15547
919731af 15548 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
15549 {
15550 char *s = name + 3;
15551
15552 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 15553 as_bad (_("unrecognized register name `%s'"), s);
741fe287 15554 }
252b5132 15555 else if (strcmp (name, "at") == 0)
919731af 15556 mips_opts.at = ATREG;
252b5132 15557 else if (strcmp (name, "noat") == 0)
919731af 15558 mips_opts.at = ZERO;
252b5132 15559 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 15560 mips_opts.nomove = 0;
252b5132 15561 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 15562 mips_opts.nomove = 1;
252b5132 15563 else if (strcmp (name, "bopt") == 0)
919731af 15564 mips_opts.nobopt = 0;
252b5132 15565 else if (strcmp (name, "nobopt") == 0)
919731af 15566 mips_opts.nobopt = 1;
ad3fea08 15567 else if (strcmp (name, "gp=32") == 0)
bad1aba3 15568 mips_opts.gp = 32;
ad3fea08 15569 else if (strcmp (name, "gp=64") == 0)
919731af 15570 mips_opts.gp = 64;
ad3fea08 15571 else if (strcmp (name, "fp=32") == 0)
0b35dfee 15572 mips_opts.fp = 32;
351cdf24
MF
15573 else if (strcmp (name, "fp=xx") == 0)
15574 mips_opts.fp = 0;
ad3fea08 15575 else if (strcmp (name, "fp=64") == 0)
919731af 15576 mips_opts.fp = 64;
037b32b9
AN
15577 else if (strcmp (name, "softfloat") == 0)
15578 mips_opts.soft_float = 1;
15579 else if (strcmp (name, "hardfloat") == 0)
15580 mips_opts.soft_float = 0;
15581 else if (strcmp (name, "singlefloat") == 0)
15582 mips_opts.single_float = 1;
15583 else if (strcmp (name, "doublefloat") == 0)
15584 mips_opts.single_float = 0;
351cdf24
MF
15585 else if (strcmp (name, "nooddspreg") == 0)
15586 mips_opts.oddspreg = 0;
15587 else if (strcmp (name, "oddspreg") == 0)
15588 mips_opts.oddspreg = 1;
252b5132
RH
15589 else if (strcmp (name, "mips16") == 0
15590 || strcmp (name, "MIPS-16") == 0)
919731af 15591 mips_opts.mips16 = 1;
252b5132
RH
15592 else if (strcmp (name, "nomips16") == 0
15593 || strcmp (name, "noMIPS-16") == 0)
15594 mips_opts.mips16 = 0;
df58fc94 15595 else if (strcmp (name, "micromips") == 0)
919731af 15596 mips_opts.micromips = 1;
df58fc94
RS
15597 else if (strcmp (name, "nomicromips") == 0)
15598 mips_opts.micromips = 0;
c6278170
RS
15599 else if (name[0] == 'n'
15600 && name[1] == 'o'
15601 && (ase = mips_lookup_ase (name + 2)))
919731af 15602 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 15603 else if ((ase = mips_lookup_ase (name)))
919731af 15604 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 15605 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 15606 {
1a2c1fad
CD
15607 /* Permit the user to change the ISA and architecture on the fly.
15608 Needless to say, misuse can cause serious problems. */
919731af 15609 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
15610 {
15611 const struct mips_cpu_info *p;
15612
919731af 15613 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
15614 if (!p)
15615 as_bad (_("unknown architecture %s"), name + 5);
15616 else
15617 {
15618 mips_opts.arch = p->cpu;
15619 mips_opts.isa = p->isa;
22522f88 15620 isa_set = TRUE;
1a2c1fad
CD
15621 }
15622 }
81a21e38
TS
15623 else if (strncmp (name, "mips", 4) == 0)
15624 {
15625 const struct mips_cpu_info *p;
15626
919731af 15627 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
15628 if (!p)
15629 as_bad (_("unknown ISA level %s"), name + 4);
15630 else
15631 {
15632 mips_opts.arch = p->cpu;
15633 mips_opts.isa = p->isa;
22522f88 15634 isa_set = TRUE;
81a21e38
TS
15635 }
15636 }
af7ee8bf 15637 else
81a21e38 15638 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
15639 }
15640 else if (strcmp (name, "autoextend") == 0)
15641 mips_opts.noautoextend = 0;
15642 else if (strcmp (name, "noautoextend") == 0)
15643 mips_opts.noautoextend = 1;
833794fc
MR
15644 else if (strcmp (name, "insn32") == 0)
15645 mips_opts.insn32 = TRUE;
15646 else if (strcmp (name, "noinsn32") == 0)
15647 mips_opts.insn32 = FALSE;
919731af 15648 else if (strcmp (name, "sym32") == 0)
15649 mips_opts.sym32 = TRUE;
15650 else if (strcmp (name, "nosym32") == 0)
15651 mips_opts.sym32 = FALSE;
15652 else
22522f88
MR
15653 return OPTION_TYPE_BAD;
15654
15655 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 15656}
15657
15658/* Handle the .set pseudo-op. */
15659
15660static void
15661s_mipsset (int x ATTRIBUTE_UNUSED)
15662{
22522f88 15663 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 15664 char *name = input_line_pointer, ch;
919731af 15665
15666 file_mips_check_options ();
15667
15668 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15669 ++input_line_pointer;
15670 ch = *input_line_pointer;
15671 *input_line_pointer = '\0';
15672
15673 if (strchr (name, ','))
15674 {
15675 /* Generic ".set" directive; use the generic handler. */
15676 *input_line_pointer = ch;
15677 input_line_pointer = name;
15678 s_set (0);
15679 return;
15680 }
15681
15682 if (strcmp (name, "reorder") == 0)
15683 {
15684 if (mips_opts.noreorder)
15685 end_noreorder ();
15686 }
15687 else if (strcmp (name, "noreorder") == 0)
15688 {
15689 if (!mips_opts.noreorder)
15690 start_noreorder ();
15691 }
15692 else if (strcmp (name, "macro") == 0)
15693 mips_opts.warn_about_macros = 0;
15694 else if (strcmp (name, "nomacro") == 0)
15695 {
15696 if (mips_opts.noreorder == 0)
15697 as_bad (_("`noreorder' must be set before `nomacro'"));
15698 mips_opts.warn_about_macros = 1;
15699 }
15700 else if (strcmp (name, "gp=default") == 0)
15701 mips_opts.gp = file_mips_opts.gp;
15702 else if (strcmp (name, "fp=default") == 0)
15703 mips_opts.fp = file_mips_opts.fp;
15704 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15705 {
15706 mips_opts.isa = file_mips_opts.isa;
15707 mips_opts.arch = file_mips_opts.arch;
15708 mips_opts.gp = file_mips_opts.gp;
15709 mips_opts.fp = file_mips_opts.fp;
15710 }
252b5132
RH
15711 else if (strcmp (name, "push") == 0)
15712 {
15713 struct mips_option_stack *s;
15714
325801bd 15715 s = XNEW (struct mips_option_stack);
252b5132
RH
15716 s->next = mips_opts_stack;
15717 s->options = mips_opts;
15718 mips_opts_stack = s;
15719 }
15720 else if (strcmp (name, "pop") == 0)
15721 {
15722 struct mips_option_stack *s;
15723
15724 s = mips_opts_stack;
15725 if (s == NULL)
15726 as_bad (_(".set pop with no .set push"));
15727 else
15728 {
15729 /* If we're changing the reorder mode we need to handle
15730 delay slots correctly. */
15731 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 15732 start_noreorder ();
252b5132 15733 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 15734 end_noreorder ();
252b5132
RH
15735
15736 mips_opts = s->options;
15737 mips_opts_stack = s->next;
15738 free (s);
15739 }
15740 }
22522f88
MR
15741 else
15742 {
15743 type = parse_code_option (name);
15744 if (type == OPTION_TYPE_BAD)
15745 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15746 }
919731af 15747
15748 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15749 registers based on what is supported by the arch/cpu. */
22522f88 15750 if (type == OPTION_TYPE_ISA)
e6559e01 15751 {
919731af 15752 switch (mips_opts.isa)
15753 {
15754 case 0:
15755 break;
15756 case ISA_MIPS1:
351cdf24
MF
15757 /* MIPS I cannot support FPXX. */
15758 mips_opts.fp = 32;
15759 /* fall-through. */
919731af 15760 case ISA_MIPS2:
15761 case ISA_MIPS32:
15762 case ISA_MIPS32R2:
15763 case ISA_MIPS32R3:
15764 case ISA_MIPS32R5:
15765 mips_opts.gp = 32;
351cdf24
MF
15766 if (mips_opts.fp != 0)
15767 mips_opts.fp = 32;
919731af 15768 break;
7361da2c
AB
15769 case ISA_MIPS32R6:
15770 mips_opts.gp = 32;
15771 mips_opts.fp = 64;
15772 break;
919731af 15773 case ISA_MIPS3:
15774 case ISA_MIPS4:
15775 case ISA_MIPS5:
15776 case ISA_MIPS64:
15777 case ISA_MIPS64R2:
15778 case ISA_MIPS64R3:
15779 case ISA_MIPS64R5:
7361da2c 15780 case ISA_MIPS64R6:
919731af 15781 mips_opts.gp = 64;
351cdf24
MF
15782 if (mips_opts.fp != 0)
15783 {
15784 if (mips_opts.arch == CPU_R5900)
15785 mips_opts.fp = 32;
15786 else
15787 mips_opts.fp = 64;
15788 }
919731af 15789 break;
15790 default:
15791 as_bad (_("unknown ISA level %s"), name + 4);
15792 break;
15793 }
e6559e01 15794 }
919731af 15795
15796 mips_check_options (&mips_opts, FALSE);
15797
15798 mips_check_isa_supports_ases ();
15799 *input_line_pointer = ch;
15800 demand_empty_rest_of_line ();
15801}
15802
15803/* Handle the .module pseudo-op. */
15804
15805static void
15806s_module (int ignore ATTRIBUTE_UNUSED)
15807{
15808 char *name = input_line_pointer, ch;
15809
15810 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15811 ++input_line_pointer;
15812 ch = *input_line_pointer;
15813 *input_line_pointer = '\0';
15814
15815 if (!file_mips_opts_checked)
252b5132 15816 {
22522f88 15817 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 15818 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15819
15820 /* Update module level settings from mips_opts. */
15821 file_mips_opts = mips_opts;
252b5132 15822 }
919731af 15823 else
15824 as_bad (_(".module is not permitted after generating code"));
15825
252b5132
RH
15826 *input_line_pointer = ch;
15827 demand_empty_rest_of_line ();
15828}
15829
15830/* Handle the .abicalls pseudo-op. I believe this is equivalent to
15831 .option pic2. It means to generate SVR4 PIC calls. */
15832
15833static void
17a2f251 15834s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15835{
15836 mips_pic = SVR4_PIC;
143d77c5 15837 mips_abicalls = TRUE;
4d0d148d
TS
15838
15839 if (g_switch_seen && g_switch_value != 0)
15840 as_warn (_("-G may not be used with SVR4 PIC code"));
15841 g_switch_value = 0;
15842
252b5132
RH
15843 bfd_set_gp_size (stdoutput, 0);
15844 demand_empty_rest_of_line ();
15845}
15846
15847/* Handle the .cpload pseudo-op. This is used when generating SVR4
15848 PIC code. It sets the $gp register for the function based on the
15849 function address, which is in the register named in the argument.
15850 This uses a relocation against _gp_disp, which is handled specially
15851 by the linker. The result is:
15852 lui $gp,%hi(_gp_disp)
15853 addiu $gp,$gp,%lo(_gp_disp)
15854 addu $gp,$gp,.cpload argument
aa6975fb
ILT
15855 The .cpload argument is normally $25 == $t9.
15856
15857 The -mno-shared option changes this to:
bbe506e8
TS
15858 lui $gp,%hi(__gnu_local_gp)
15859 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
15860 and the argument is ignored. This saves an instruction, but the
15861 resulting code is not position independent; it uses an absolute
bbe506e8
TS
15862 address for __gnu_local_gp. Thus code assembled with -mno-shared
15863 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
15864
15865static void
17a2f251 15866s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
15867{
15868 expressionS ex;
aa6975fb
ILT
15869 int reg;
15870 int in_shared;
252b5132 15871
919731af 15872 file_mips_check_options ();
15873
6478892d
TS
15874 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15875 .cpload is ignored. */
15876 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
15877 {
15878 s_ignore (0);
15879 return;
15880 }
15881
a276b80c
MR
15882 if (mips_opts.mips16)
15883 {
15884 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15885 ignore_rest_of_line ();
15886 return;
15887 }
15888
d3ecfc59 15889 /* .cpload should be in a .set noreorder section. */
252b5132
RH
15890 if (mips_opts.noreorder == 0)
15891 as_warn (_(".cpload not in noreorder section"));
15892
aa6975fb
ILT
15893 reg = tc_get_register (0);
15894
15895 /* If we need to produce a 64-bit address, we are better off using
15896 the default instruction sequence. */
aed1a261 15897 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 15898
252b5132 15899 ex.X_op = O_symbol;
bbe506e8
TS
15900 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15901 "__gnu_local_gp");
252b5132
RH
15902 ex.X_op_symbol = NULL;
15903 ex.X_add_number = 0;
15904
15905 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 15906 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 15907
8a75745d
MR
15908 mips_mark_labels ();
15909 mips_assembling_insn = TRUE;
15910
584892a6 15911 macro_start ();
67c0d1eb
RS
15912 macro_build_lui (&ex, mips_gp_register);
15913 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 15914 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
15915 if (in_shared)
15916 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15917 mips_gp_register, reg);
584892a6 15918 macro_end ();
252b5132 15919
8a75745d 15920 mips_assembling_insn = FALSE;
252b5132
RH
15921 demand_empty_rest_of_line ();
15922}
15923
6478892d
TS
15924/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15925 .cpsetup $reg1, offset|$reg2, label
15926
15927 If offset is given, this results in:
15928 sd $gp, offset($sp)
956cd1d6 15929 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15930 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15931 daddu $gp, $gp, $reg1
6478892d
TS
15932
15933 If $reg2 is given, this results in:
40fc1451 15934 or $reg2, $gp, $0
956cd1d6 15935 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
15936 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15937 daddu $gp, $gp, $reg1
aa6975fb
ILT
15938 $reg1 is normally $25 == $t9.
15939
15940 The -mno-shared option replaces the last three instructions with
15941 lui $gp,%hi(_gp)
54f4ddb3 15942 addiu $gp,$gp,%lo(_gp) */
aa6975fb 15943
6478892d 15944static void
17a2f251 15945s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
15946{
15947 expressionS ex_off;
15948 expressionS ex_sym;
15949 int reg1;
6478892d 15950
919731af 15951 file_mips_check_options ();
15952
8586fc66 15953 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
15954 We also need NewABI support. */
15955 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
a276b80c
MR
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
6478892d
TS
15968 reg1 = tc_get_register (0);
15969 SKIP_WHITESPACE ();
15970 if (*input_line_pointer != ',')
15971 {
15972 as_bad (_("missing argument separator ',' for .cpsetup"));
15973 return;
15974 }
15975 else
80245285 15976 ++input_line_pointer;
6478892d
TS
15977 SKIP_WHITESPACE ();
15978 if (*input_line_pointer == '$')
80245285
TS
15979 {
15980 mips_cpreturn_register = tc_get_register (0);
15981 mips_cpreturn_offset = -1;
15982 }
6478892d 15983 else
80245285
TS
15984 {
15985 mips_cpreturn_offset = get_absolute_expression ();
15986 mips_cpreturn_register = -1;
15987 }
6478892d
TS
15988 SKIP_WHITESPACE ();
15989 if (*input_line_pointer != ',')
15990 {
15991 as_bad (_("missing argument separator ',' for .cpsetup"));
15992 return;
15993 }
15994 else
f9419b05 15995 ++input_line_pointer;
6478892d 15996 SKIP_WHITESPACE ();
f21f8242 15997 expression (&ex_sym);
6478892d 15998
8a75745d
MR
15999 mips_mark_labels ();
16000 mips_assembling_insn = TRUE;
16001
584892a6 16002 macro_start ();
6478892d
TS
16003 if (mips_cpreturn_register == -1)
16004 {
16005 ex_off.X_op = O_constant;
16006 ex_off.X_add_symbol = NULL;
16007 ex_off.X_op_symbol = NULL;
16008 ex_off.X_add_number = mips_cpreturn_offset;
16009
67c0d1eb 16010 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16011 BFD_RELOC_LO16, SP);
6478892d
TS
16012 }
16013 else
40fc1451 16014 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16015
aed1a261 16016 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16017 {
df58fc94 16018 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16019 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16020 BFD_RELOC_HI16_S);
16021
16022 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16023 mips_gp_register, -1, BFD_RELOC_GPREL16,
16024 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16025
16026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16027 mips_gp_register, reg1);
16028 }
16029 else
16030 {
16031 expressionS ex;
16032
16033 ex.X_op = O_symbol;
4184909a 16034 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16035 ex.X_op_symbol = NULL;
16036 ex.X_add_number = 0;
6e1304d8 16037
aa6975fb
ILT
16038 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16039 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16040
16041 macro_build_lui (&ex, mips_gp_register);
16042 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16043 mips_gp_register, BFD_RELOC_LO16);
16044 }
f21f8242 16045
584892a6 16046 macro_end ();
6478892d 16047
8a75745d 16048 mips_assembling_insn = FALSE;
6478892d
TS
16049 demand_empty_rest_of_line ();
16050}
16051
16052static void
17a2f251 16053s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16054{
919731af 16055 file_mips_check_options ();
16056
6478892d 16057 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16058 .cplocal is ignored. */
6478892d
TS
16059 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16060 {
16061 s_ignore (0);
16062 return;
16063 }
16064
a276b80c
MR
16065 if (mips_opts.mips16)
16066 {
16067 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16068 ignore_rest_of_line ();
16069 return;
16070 }
16071
6478892d 16072 mips_gp_register = tc_get_register (0);
85b51719 16073 demand_empty_rest_of_line ();
6478892d
TS
16074}
16075
252b5132
RH
16076/* Handle the .cprestore pseudo-op. This stores $gp into a given
16077 offset from $sp. The offset is remembered, and after making a PIC
16078 call $gp is restored from that location. */
16079
16080static void
17a2f251 16081s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16082{
16083 expressionS ex;
252b5132 16084
919731af 16085 file_mips_check_options ();
16086
6478892d 16087 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16088 .cprestore is ignored. */
6478892d 16089 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16090 {
16091 s_ignore (0);
16092 return;
16093 }
16094
a276b80c
MR
16095 if (mips_opts.mips16)
16096 {
16097 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16098 ignore_rest_of_line ();
16099 return;
16100 }
16101
252b5132 16102 mips_cprestore_offset = get_absolute_expression ();
7a621144 16103 mips_cprestore_valid = 1;
252b5132
RH
16104
16105 ex.X_op = O_constant;
16106 ex.X_add_symbol = NULL;
16107 ex.X_op_symbol = NULL;
16108 ex.X_add_number = mips_cprestore_offset;
16109
8a75745d
MR
16110 mips_mark_labels ();
16111 mips_assembling_insn = TRUE;
16112
584892a6 16113 macro_start ();
67c0d1eb
RS
16114 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16115 SP, HAVE_64BIT_ADDRESSES);
584892a6 16116 macro_end ();
252b5132 16117
8a75745d 16118 mips_assembling_insn = FALSE;
252b5132
RH
16119 demand_empty_rest_of_line ();
16120}
16121
6478892d 16122/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16123 was given in the preceding .cpsetup, it results in:
6478892d 16124 ld $gp, offset($sp)
76b3015f 16125
6478892d 16126 If a register $reg2 was given there, it results in:
40fc1451 16127 or $gp, $reg2, $0 */
54f4ddb3 16128
6478892d 16129static void
17a2f251 16130s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16131{
16132 expressionS ex;
6478892d 16133
919731af 16134 file_mips_check_options ();
16135
6478892d
TS
16136 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16137 We also need NewABI support. */
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
a276b80c
MR
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
8a75745d
MR
16151 mips_mark_labels ();
16152 mips_assembling_insn = TRUE;
16153
584892a6 16154 macro_start ();
6478892d
TS
16155 if (mips_cpreturn_register == -1)
16156 {
16157 ex.X_op = O_constant;
16158 ex.X_add_symbol = NULL;
16159 ex.X_op_symbol = NULL;
16160 ex.X_add_number = mips_cpreturn_offset;
16161
67c0d1eb 16162 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16163 }
16164 else
40fc1451
SD
16165 move_register (mips_gp_register, mips_cpreturn_register);
16166
584892a6 16167 macro_end ();
6478892d 16168
8a75745d 16169 mips_assembling_insn = FALSE;
6478892d
TS
16170 demand_empty_rest_of_line ();
16171}
16172
d0f13682
CLT
16173/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16174 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16175 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16176 debug information or MIPS16 TLS. */
741d6ea8
JM
16177
16178static void
d0f13682
CLT
16179s_tls_rel_directive (const size_t bytes, const char *dirstr,
16180 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16181{
16182 expressionS ex;
16183 char *p;
16184
16185 expression (&ex);
16186
16187 if (ex.X_op != O_symbol)
16188 {
1661c76c 16189 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16190 ignore_rest_of_line ();
16191 }
16192
16193 p = frag_more (bytes);
16194 md_number_to_chars (p, 0, bytes);
d0f13682 16195 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16196 demand_empty_rest_of_line ();
de64cffd 16197 mips_clear_insn_labels ();
741d6ea8
JM
16198}
16199
16200/* Handle .dtprelword. */
16201
16202static void
16203s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16204{
d0f13682 16205 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16206}
16207
16208/* Handle .dtpreldword. */
16209
16210static void
16211s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16212{
d0f13682
CLT
16213 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16214}
16215
16216/* Handle .tprelword. */
16217
16218static void
16219s_tprelword (int ignore ATTRIBUTE_UNUSED)
16220{
16221 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16222}
16223
16224/* Handle .tpreldword. */
16225
16226static void
16227s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16228{
16229 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16230}
16231
6478892d
TS
16232/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16233 code. It sets the offset to use in gp_rel relocations. */
16234
16235static void
17a2f251 16236s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16237{
16238 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16239 We also need NewABI support. */
16240 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16241 {
16242 s_ignore (0);
16243 return;
16244 }
16245
def2e0dd 16246 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16247
16248 demand_empty_rest_of_line ();
16249}
16250
252b5132
RH
16251/* Handle the .gpword pseudo-op. This is used when generating PIC
16252 code. It generates a 32 bit GP relative reloc. */
16253
16254static void
17a2f251 16255s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16256{
a8dbcb85
TS
16257 segment_info_type *si;
16258 struct insn_label_list *l;
252b5132
RH
16259 expressionS ex;
16260 char *p;
16261
16262 /* When not generating PIC code, this is treated as .word. */
16263 if (mips_pic != SVR4_PIC)
16264 {
16265 s_cons (2);
16266 return;
16267 }
16268
a8dbcb85
TS
16269 si = seg_info (now_seg);
16270 l = si->label_list;
7d10b47d 16271 mips_emit_delays ();
252b5132 16272 if (auto_align)
462427c4 16273 mips_align (2, 0, l);
252b5132
RH
16274
16275 expression (&ex);
a1facbec 16276 mips_clear_insn_labels ();
252b5132
RH
16277
16278 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16279 {
1661c76c 16280 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16281 ignore_rest_of_line ();
16282 }
16283
16284 p = frag_more (4);
17a2f251 16285 md_number_to_chars (p, 0, 4);
b34976b6 16286 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16287 BFD_RELOC_GPREL32);
252b5132
RH
16288
16289 demand_empty_rest_of_line ();
16290}
16291
10181a0d 16292static void
17a2f251 16293s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16294{
a8dbcb85
TS
16295 segment_info_type *si;
16296 struct insn_label_list *l;
10181a0d
AO
16297 expressionS ex;
16298 char *p;
16299
16300 /* When not generating PIC code, this is treated as .dword. */
16301 if (mips_pic != SVR4_PIC)
16302 {
16303 s_cons (3);
16304 return;
16305 }
16306
a8dbcb85
TS
16307 si = seg_info (now_seg);
16308 l = si->label_list;
7d10b47d 16309 mips_emit_delays ();
10181a0d 16310 if (auto_align)
462427c4 16311 mips_align (3, 0, l);
10181a0d
AO
16312
16313 expression (&ex);
a1facbec 16314 mips_clear_insn_labels ();
10181a0d
AO
16315
16316 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16317 {
1661c76c 16318 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16319 ignore_rest_of_line ();
16320 }
16321
16322 p = frag_more (8);
17a2f251 16323 md_number_to_chars (p, 0, 8);
a105a300 16324 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16325 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16326
16327 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16328 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16329 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16330
16331 demand_empty_rest_of_line ();
16332}
16333
a3f278e2
CM
16334/* Handle the .ehword pseudo-op. This is used when generating unwinding
16335 tables. It generates a R_MIPS_EH reloc. */
16336
16337static void
16338s_ehword (int ignore ATTRIBUTE_UNUSED)
16339{
16340 expressionS ex;
16341 char *p;
16342
16343 mips_emit_delays ();
16344
16345 expression (&ex);
16346 mips_clear_insn_labels ();
16347
16348 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16349 {
1661c76c 16350 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16351 ignore_rest_of_line ();
16352 }
16353
16354 p = frag_more (4);
16355 md_number_to_chars (p, 0, 4);
16356 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16357 BFD_RELOC_32_PCREL);
a3f278e2
CM
16358
16359 demand_empty_rest_of_line ();
16360}
16361
252b5132
RH
16362/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16363 tables in SVR4 PIC code. */
16364
16365static void
17a2f251 16366s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16367{
252b5132
RH
16368 int reg;
16369
919731af 16370 file_mips_check_options ();
16371
10181a0d
AO
16372 /* This is ignored when not generating SVR4 PIC code. */
16373 if (mips_pic != SVR4_PIC)
252b5132
RH
16374 {
16375 s_ignore (0);
16376 return;
16377 }
16378
8a75745d
MR
16379 mips_mark_labels ();
16380 mips_assembling_insn = TRUE;
16381
252b5132 16382 /* Add $gp to the register named as an argument. */
584892a6 16383 macro_start ();
252b5132 16384 reg = tc_get_register (0);
67c0d1eb 16385 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16386 macro_end ();
252b5132 16387
8a75745d 16388 mips_assembling_insn = FALSE;
bdaaa2e1 16389 demand_empty_rest_of_line ();
252b5132
RH
16390}
16391
16392/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16393 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16394 such as generating jalx instructions when needed. We also make
16395 them odd for the duration of the assembly, in order to generate the
16396 right sort of code. We will make them even in the adjust_symtab
16397 routine, while leaving them marked. This is convenient for the
16398 debugger and the disassembler. The linker knows to make them odd
16399 again. */
16400
16401static void
17a2f251 16402s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16403{
7bb01e2d
MR
16404 file_mips_check_options ();
16405 file_ase_mips16 |= mips_opts.mips16;
16406 file_ase_micromips |= mips_opts.micromips;
16407
df58fc94 16408 mips_mark_labels ();
252b5132
RH
16409
16410 demand_empty_rest_of_line ();
16411}
16412
ba92f887
MR
16413/* Handle the .nan pseudo-op. */
16414
16415static void
16416s_nan (int ignore ATTRIBUTE_UNUSED)
16417{
16418 static const char str_legacy[] = "legacy";
16419 static const char str_2008[] = "2008";
16420 size_t i;
16421
16422 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16423
16424 if (i == sizeof (str_2008) - 1
16425 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16426 mips_nan2008 = 1;
ba92f887
MR
16427 else if (i == sizeof (str_legacy) - 1
16428 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16429 {
16430 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16431 mips_nan2008 = 0;
16432 else
16433 as_bad (_("`%s' does not support legacy NaN"),
16434 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16435 }
ba92f887 16436 else
1661c76c 16437 as_bad (_("bad .nan directive"));
ba92f887
MR
16438
16439 input_line_pointer += i;
16440 demand_empty_rest_of_line ();
16441}
16442
754e2bb9
RS
16443/* Handle a .stab[snd] directive. Ideally these directives would be
16444 implemented in a transparent way, so that removing them would not
16445 have any effect on the generated instructions. However, s_stab
16446 internally changes the section, so in practice we need to decide
16447 now whether the preceding label marks compressed code. We do not
16448 support changing the compression mode of a label after a .stab*
16449 directive, such as in:
16450
16451 foo:
134c0c8b 16452 .stabs ...
754e2bb9
RS
16453 .set mips16
16454
16455 so the current mode wins. */
252b5132
RH
16456
16457static void
17a2f251 16458s_mips_stab (int type)
252b5132 16459{
754e2bb9 16460 mips_mark_labels ();
252b5132
RH
16461 s_stab (type);
16462}
16463
54f4ddb3 16464/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16465
16466static void
17a2f251 16467s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16468{
16469 char *name;
16470 int c;
16471 symbolS *symbolP;
16472 expressionS exp;
16473
d02603dc 16474 c = get_symbol_name (&name);
252b5132
RH
16475 symbolP = symbol_find_or_make (name);
16476 S_SET_WEAK (symbolP);
16477 *input_line_pointer = c;
16478
d02603dc 16479 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16480
16481 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16482 {
16483 if (S_IS_DEFINED (symbolP))
16484 {
20203fb9 16485 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16486 S_GET_NAME (symbolP));
16487 ignore_rest_of_line ();
16488 return;
16489 }
bdaaa2e1 16490
252b5132
RH
16491 if (*input_line_pointer == ',')
16492 {
16493 ++input_line_pointer;
16494 SKIP_WHITESPACE ();
16495 }
bdaaa2e1 16496
252b5132
RH
16497 expression (&exp);
16498 if (exp.X_op != O_symbol)
16499 {
20203fb9 16500 as_bad (_("bad .weakext directive"));
98d3f06f 16501 ignore_rest_of_line ();
252b5132
RH
16502 return;
16503 }
49309057 16504 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16505 }
16506
16507 demand_empty_rest_of_line ();
16508}
16509
16510/* Parse a register string into a number. Called from the ECOFF code
16511 to parse .frame. The argument is non-zero if this is the frame
16512 register, so that we can record it in mips_frame_reg. */
16513
16514int
17a2f251 16515tc_get_register (int frame)
252b5132 16516{
707bfff6 16517 unsigned int reg;
252b5132
RH
16518
16519 SKIP_WHITESPACE ();
707bfff6
TS
16520 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16521 reg = 0;
252b5132 16522 if (frame)
7a621144
DJ
16523 {
16524 mips_frame_reg = reg != 0 ? reg : SP;
16525 mips_frame_reg_valid = 1;
16526 mips_cprestore_valid = 0;
16527 }
252b5132
RH
16528 return reg;
16529}
16530
16531valueT
17a2f251 16532md_section_align (asection *seg, valueT addr)
252b5132
RH
16533{
16534 int align = bfd_get_section_alignment (stdoutput, seg);
16535
f3ded42a
RS
16536 /* We don't need to align ELF sections to the full alignment.
16537 However, Irix 5 may prefer that we align them at least to a 16
16538 byte boundary. We don't bother to align the sections if we
16539 are targeted for an embedded system. */
16540 if (strncmp (TARGET_OS, "elf", 3) == 0)
16541 return addr;
16542 if (align > 4)
16543 align = 4;
252b5132 16544
8d3842cd 16545 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
16546}
16547
16548/* Utility routine, called from above as well. If called while the
16549 input file is still being read, it's only an approximation. (For
16550 example, a symbol may later become defined which appeared to be
16551 undefined earlier.) */
16552
16553static int
17a2f251 16554nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
16555{
16556 if (sym == 0)
16557 return 0;
16558
4d0d148d 16559 if (g_switch_value > 0)
252b5132
RH
16560 {
16561 const char *symname;
16562 int change;
16563
c9914766 16564 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
16565 register. It can be if it is smaller than the -G size or if
16566 it is in the .sdata or .sbss section. Certain symbols can
c9914766 16567 not be referenced off the $gp, although it appears as though
252b5132
RH
16568 they can. */
16569 symname = S_GET_NAME (sym);
16570 if (symname != (const char *) NULL
16571 && (strcmp (symname, "eprol") == 0
16572 || strcmp (symname, "etext") == 0
16573 || strcmp (symname, "_gp") == 0
16574 || strcmp (symname, "edata") == 0
16575 || strcmp (symname, "_fbss") == 0
16576 || strcmp (symname, "_fdata") == 0
16577 || strcmp (symname, "_ftext") == 0
16578 || strcmp (symname, "end") == 0
16579 || strcmp (symname, "_gp_disp") == 0))
16580 change = 1;
16581 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16582 && (0
16583#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
16584 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16585 && (symbol_get_obj (sym)->ecoff_extern_size
16586 <= g_switch_value))
252b5132
RH
16587#endif
16588 /* We must defer this decision until after the whole
16589 file has been read, since there might be a .extern
16590 after the first use of this symbol. */
16591 || (before_relaxing
16592#ifndef NO_ECOFF_DEBUGGING
49309057 16593 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
16594#endif
16595 && S_GET_VALUE (sym) == 0)
16596 || (S_GET_VALUE (sym) != 0
16597 && S_GET_VALUE (sym) <= g_switch_value)))
16598 change = 0;
16599 else
16600 {
16601 const char *segname;
16602
16603 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 16604 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
16605 && strcmp (segname, ".lit4") != 0);
16606 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
16607 && strcmp (segname, ".sbss") != 0
16608 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
16609 && strncmp (segname, ".sbss.", 6) != 0
16610 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 16611 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
16612 }
16613 return change;
16614 }
16615 else
c9914766 16616 /* We are not optimizing for the $gp register. */
252b5132
RH
16617 return 1;
16618}
16619
5919d012
RS
16620
16621/* Return true if the given symbol should be considered local for SVR4 PIC. */
16622
16623static bfd_boolean
17a2f251 16624pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
16625{
16626 asection *symsec;
5919d012
RS
16627
16628 /* Handle the case of a symbol equated to another symbol. */
16629 while (symbol_equated_reloc_p (sym))
16630 {
16631 symbolS *n;
16632
5f0fe04b 16633 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
16634 n = symbol_get_value_expression (sym)->X_add_symbol;
16635 if (n == sym)
16636 break;
16637 sym = n;
16638 }
16639
df1f3cda
DD
16640 if (symbol_section_p (sym))
16641 return TRUE;
16642
5919d012
RS
16643 symsec = S_GET_SEGMENT (sym);
16644
5919d012 16645 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
16646 return (!bfd_is_und_section (symsec)
16647 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
16648 && !bfd_is_com_section (symsec)
16649 && !s_is_linkonce (sym, segtype)
5919d012 16650 /* A global or weak symbol is treated as external. */
f3ded42a 16651 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
16652}
16653
16654
252b5132
RH
16655/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16656 extended opcode. SEC is the section the frag is in. */
16657
16658static int
17a2f251 16659mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
16660{
16661 int type;
3ccad066 16662 const struct mips_int_operand *operand;
252b5132 16663 offsetT val;
252b5132 16664 segT symsec;
98aa84af 16665 fragS *sym_frag;
252b5132
RH
16666
16667 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16668 return 0;
16669 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16670 return 1;
16671
16672 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 16673 operand = mips16_immed_operand (type, FALSE);
252b5132 16674
98aa84af 16675 sym_frag = symbol_get_frag (fragp->fr_symbol);
ac62c346 16676 val = S_GET_VALUE (fragp->fr_symbol);
98aa84af 16677 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 16678
3ccad066 16679 if (operand->root.type == OP_PCREL)
252b5132 16680 {
3ccad066 16681 const struct mips_pcrel_operand *pcrel_op;
252b5132 16682 addressT addr;
3ccad066 16683 offsetT maxtiny;
252b5132
RH
16684
16685 /* We won't have the section when we are called from
16686 mips_relax_frag. However, we will always have been called
16687 from md_estimate_size_before_relax first. If this is a
16688 branch to a different section, we mark it as such. If SEC is
16689 NULL, and the frag is not marked, then it must be a branch to
16690 the same section. */
3ccad066 16691 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
16692 if (sec == NULL)
16693 {
16694 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16695 return 1;
16696 }
16697 else
16698 {
98aa84af 16699 /* Must have been called from md_estimate_size_before_relax. */
252b5132
RH
16700 if (symsec != sec)
16701 {
16702 fragp->fr_subtype =
16703 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16704
16705 /* FIXME: We should support this, and let the linker
16706 catch branches and loads that are out of range. */
16707 as_bad_where (fragp->fr_file, fragp->fr_line,
16708 _("unsupported PC relative reference to different section"));
16709
16710 return 1;
16711 }
98aa84af
AM
16712 if (fragp != sym_frag && sym_frag->fr_address == 0)
16713 /* Assume non-extended on the first relaxation pass.
16714 The address we have calculated will be bogus if this is
16715 a forward branch to another frag, as the forward frag
16716 will have fr_address == 0. */
16717 return 0;
252b5132
RH
16718 }
16719
16720 /* In this case, we know for sure that the symbol fragment is in
98aa84af
AM
16721 the same section. If the relax_marker of the symbol fragment
16722 differs from the relax_marker of this fragment, we have not
16723 yet adjusted the symbol fragment fr_address. We want to add
252b5132
RH
16724 in STRETCH in order to get a better estimate of the address.
16725 This particularly matters because of the shift bits. */
16726 if (stretch != 0
98aa84af 16727 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
16728 {
16729 fragS *f;
16730
16731 /* Adjust stretch for any alignment frag. Note that if have
16732 been expanding the earlier code, the symbol may be
16733 defined in what appears to be an earlier frag. FIXME:
16734 This doesn't handle the fr_subtype field, which specifies
16735 a maximum number of bytes to skip when doing an
16736 alignment. */
98aa84af 16737 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
16738 {
16739 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16740 {
16741 if (stretch < 0)
16742 stretch = - ((- stretch)
16743 & ~ ((1 << (int) f->fr_offset) - 1));
16744 else
16745 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16746 if (stretch == 0)
16747 break;
16748 }
16749 }
16750 if (f != NULL)
16751 val += stretch;
16752 }
16753
16754 addr = fragp->fr_address + fragp->fr_fix;
16755
16756 /* The base address rules are complicated. The base address of
16757 a branch is the following instruction. The base address of a
16758 PC relative load or add is the instruction itself, but if it
16759 is in a delay slot (in which case it can not be extended) use
16760 the address of the instruction whose delay slot it is in. */
3ccad066 16761 if (pcrel_op->include_isa_bit)
252b5132
RH
16762 {
16763 addr += 2;
16764
16765 /* If we are currently assuming that this frag should be
16766 extended, then, the current address is two bytes
bdaaa2e1 16767 higher. */
252b5132
RH
16768 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16769 addr += 2;
16770
16771 /* Ignore the low bit in the target, since it will be set
16772 for a text label. */
3ccad066 16773 val &= -2;
252b5132
RH
16774 }
16775 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16776 addr -= 4;
16777 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16778 addr -= 2;
16779
3ccad066 16780 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
16781
16782 /* If any of the shifted bits are set, we must use an extended
16783 opcode. If the address depends on the size of this
16784 instruction, this can lead to a loop, so we arrange to always
16785 use an extended opcode. We only check this when we are in
16786 the main relaxation loop, when SEC is NULL. */
3ccad066 16787 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
252b5132
RH
16788 {
16789 fragp->fr_subtype =
16790 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16791 return 1;
16792 }
16793
16794 /* If we are about to mark a frag as extended because the value
3ccad066
RS
16795 is precisely the next value above maxtiny, then there is a
16796 chance of an infinite loop as in the following code:
252b5132
RH
16797 la $4,foo
16798 .skip 1020
16799 .align 2
16800 foo:
16801 In this case when the la is extended, foo is 0x3fc bytes
16802 away, so the la can be shrunk, but then foo is 0x400 away, so
16803 the la must be extended. To avoid this loop, we mark the
16804 frag as extended if it was small, and is about to become
3ccad066
RS
16805 extended with the next value above maxtiny. */
16806 maxtiny = mips_int_operand_max (operand);
16807 if (val == maxtiny + (1 << operand->shift)
252b5132
RH
16808 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16809 && sec == NULL)
16810 {
16811 fragp->fr_subtype =
16812 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16813 return 1;
16814 }
16815 }
16816 else if (symsec != absolute_section && sec != NULL)
16817 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16818
3ccad066 16819 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
16820}
16821
4a6a3df4
AO
16822/* Compute the length of a branch sequence, and adjust the
16823 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16824 worst-case length is computed, with UPDATE being used to indicate
16825 whether an unconditional (-1), branch-likely (+1) or regular (0)
16826 branch is to be computed. */
16827static int
17a2f251 16828relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 16829{
b34976b6 16830 bfd_boolean toofar;
4a6a3df4
AO
16831 int length;
16832
16833 if (fragp
16834 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16835 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
16836 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16837 {
16838 addressT addr;
16839 offsetT val;
16840
16841 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16842
16843 addr = fragp->fr_address + fragp->fr_fix + 4;
16844
16845 val -= addr;
16846
16847 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16848 }
4a6a3df4 16849 else
c1f61bd2
MR
16850 /* If the symbol is not defined or it's in a different segment,
16851 we emit the long sequence. */
b34976b6 16852 toofar = TRUE;
4a6a3df4
AO
16853
16854 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16855 fragp->fr_subtype
66b3e8da
MR
16856 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16857 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
16858 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16859 RELAX_BRANCH_LINK (fragp->fr_subtype),
16860 toofar);
16861
16862 length = 4;
16863 if (toofar)
16864 {
16865 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16866 length += 8;
16867
16868 if (mips_pic != NO_PIC)
16869 {
16870 /* Additional space for PIC loading of target address. */
16871 length += 8;
16872 if (mips_opts.isa == ISA_MIPS1)
16873 /* Additional space for $at-stabilizing nop. */
16874 length += 4;
16875 }
16876
16877 /* If branch is conditional. */
16878 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16879 length += 8;
16880 }
b34976b6 16881
4a6a3df4
AO
16882 return length;
16883}
16884
df58fc94
RS
16885/* Compute the length of a branch sequence, and adjust the
16886 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16887 worst-case length is computed, with UPDATE being used to indicate
16888 whether an unconditional (-1), or regular (0) branch is to be
16889 computed. */
16890
16891static int
16892relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16893{
16894 bfd_boolean toofar;
16895 int length;
16896
16897 if (fragp
16898 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16899 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16900 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16901 {
16902 addressT addr;
16903 offsetT val;
16904
16905 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16906 /* Ignore the low bit in the target, since it will be set
16907 for a text label. */
16908 if ((val & 1) != 0)
16909 --val;
16910
16911 addr = fragp->fr_address + fragp->fr_fix + 4;
16912
16913 val -= addr;
16914
16915 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16916 }
df58fc94 16917 else
c1f61bd2
MR
16918 /* If the symbol is not defined or it's in a different segment,
16919 we emit the long sequence. */
df58fc94
RS
16920 toofar = TRUE;
16921
16922 if (fragp && update
16923 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16924 fragp->fr_subtype = (toofar
16925 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16926 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16927
16928 length = 4;
16929 if (toofar)
16930 {
16931 bfd_boolean compact_known = fragp != NULL;
16932 bfd_boolean compact = FALSE;
16933 bfd_boolean uncond;
16934
16935 if (compact_known)
16936 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16937 if (fragp)
16938 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16939 else
16940 uncond = update < 0;
16941
16942 /* If label is out of range, we turn branch <br>:
16943
16944 <br> label # 4 bytes
16945 0:
16946
16947 into:
16948
16949 j label # 4 bytes
16950 nop # 2 bytes if compact && !PIC
16951 0:
16952 */
16953 if (mips_pic == NO_PIC && (!compact_known || compact))
16954 length += 2;
16955
16956 /* If assembling PIC code, we further turn:
16957
16958 j label # 4 bytes
16959
16960 into:
16961
16962 lw/ld at, %got(label)(gp) # 4 bytes
16963 d/addiu at, %lo(label) # 4 bytes
16964 jr/c at # 2 bytes
16965 */
16966 if (mips_pic != NO_PIC)
16967 length += 6;
16968
16969 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16970
16971 <brneg> 0f # 4 bytes
16972 nop # 2 bytes if !compact
16973 */
16974 if (!uncond)
16975 length += (compact_known && compact) ? 4 : 6;
16976 }
16977
16978 return length;
16979}
16980
16981/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16982 bit accordingly. */
16983
16984static int
16985relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16986{
16987 bfd_boolean toofar;
16988
df58fc94
RS
16989 if (fragp
16990 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 16991 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
16992 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16993 {
16994 addressT addr;
16995 offsetT val;
16996 int type;
16997
16998 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16999 /* Ignore the low bit in the target, since it will be set
17000 for a text label. */
17001 if ((val & 1) != 0)
17002 --val;
17003
17004 /* Assume this is a 2-byte branch. */
17005 addr = fragp->fr_address + fragp->fr_fix + 2;
17006
17007 /* We try to avoid the infinite loop by not adding 2 more bytes for
17008 long branches. */
17009
17010 val -= addr;
17011
17012 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17013 if (type == 'D')
17014 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17015 else if (type == 'E')
17016 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17017 else
17018 abort ();
17019 }
17020 else
17021 /* If the symbol is not defined or it's in a different segment,
17022 we emit a normal 32-bit branch. */
17023 toofar = TRUE;
17024
17025 if (fragp && update
17026 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17027 fragp->fr_subtype
17028 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17029 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17030
17031 if (toofar)
17032 return 4;
17033
17034 return 2;
17035}
17036
252b5132
RH
17037/* Estimate the size of a frag before relaxing. Unless this is the
17038 mips16, we are not really relaxing here, and the final size is
17039 encoded in the subtype information. For the mips16, we have to
17040 decide whether we are using an extended opcode or not. */
17041
252b5132 17042int
17a2f251 17043md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17044{
5919d012 17045 int change;
252b5132 17046
4a6a3df4
AO
17047 if (RELAX_BRANCH_P (fragp->fr_subtype))
17048 {
17049
b34976b6
AM
17050 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17051
4a6a3df4
AO
17052 return fragp->fr_var;
17053 }
17054
252b5132 17055 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17056 /* We don't want to modify the EXTENDED bit here; it might get us
17057 into infinite loops. We change it only in mips_relax_frag(). */
17058 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17059
df58fc94
RS
17060 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17061 {
17062 int length = 4;
17063
17064 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17065 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17066 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17067 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17068 fragp->fr_var = length;
17069
17070 return length;
17071 }
17072
252b5132 17073 if (mips_pic == NO_PIC)
5919d012 17074 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17075 else if (mips_pic == SVR4_PIC)
5919d012 17076 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17077 else if (mips_pic == VXWORKS_PIC)
17078 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17079 change = 0;
252b5132
RH
17080 else
17081 abort ();
17082
17083 if (change)
17084 {
4d7206a2 17085 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17086 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17087 }
4d7206a2
RS
17088 else
17089 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17090}
17091
17092/* This is called to see whether a reloc against a defined symbol
de7e6852 17093 should be converted into a reloc against a section. */
252b5132
RH
17094
17095int
17a2f251 17096mips_fix_adjustable (fixS *fixp)
252b5132 17097{
252b5132
RH
17098 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17099 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17100 return 0;
a161fe53 17101
252b5132
RH
17102 if (fixp->fx_addsy == NULL)
17103 return 1;
a161fe53 17104
2f0c68f2
CM
17105 /* Allow relocs used for EH tables. */
17106 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17107 return 1;
17108
de7e6852
RS
17109 /* If symbol SYM is in a mergeable section, relocations of the form
17110 SYM + 0 can usually be made section-relative. The mergeable data
17111 is then identified by the section offset rather than by the symbol.
17112
17113 However, if we're generating REL LO16 relocations, the offset is split
17114 between the LO16 and parterning high part relocation. The linker will
17115 need to recalculate the complete offset in order to correctly identify
17116 the merge data.
17117
17118 The linker has traditionally not looked for the parterning high part
17119 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17120 placed anywhere. Rather than break backwards compatibility by changing
17121 this, it seems better not to force the issue, and instead keep the
17122 original symbol. This will work with either linker behavior. */
738e5348 17123 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17124 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17125 && HAVE_IN_PLACE_ADDENDS
17126 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17127 return 0;
17128
ce70d90a 17129 /* There is no place to store an in-place offset for JALR relocations.
2de39019
CM
17130 Likewise an in-range offset of limited PC-relative relocations may
17131 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17132 start address of the symbol's containing section.
17133
17134 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17135 section relative to allow linker relaxations to be performed later on. */
17136 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
2de39019
CM
17137 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17138 || jalr_reloc_p (fixp->fx_r_type)))
1180b5a4
RS
17139 return 0;
17140
b314ec0e
RS
17141 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17142 to a floating-point stub. The same is true for non-R_MIPS16_26
17143 relocations against MIPS16 functions; in this case, the stub becomes
17144 the function's canonical address.
17145
17146 Floating-point stubs are stored in unique .mips16.call.* or
17147 .mips16.fn.* sections. If a stub T for function F is in section S,
17148 the first relocation in section S must be against F; this is how the
17149 linker determines the target function. All relocations that might
17150 resolve to T must also be against F. We therefore have the following
17151 restrictions, which are given in an intentionally-redundant way:
17152
17153 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17154 symbols.
17155
17156 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17157 if that stub might be used.
17158
17159 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17160 symbols.
17161
17162 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17163 that stub might be used.
17164
17165 There is a further restriction:
17166
df58fc94 17167 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
44d3da23
MR
17168 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols because
17169 we need to keep the MIPS16 or microMIPS symbol for the purpose
17170 of converting JAL to JALX instructions in the linker.
b314ec0e 17171
df58fc94
RS
17172 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17173 against a MIPS16 symbol. We deal with (5) by by not reducing any
17174 such relocations on REL targets.
b314ec0e
RS
17175
17176 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17177 relocation against some symbol R, no relocation against R may be
17178 reduced. (Note that this deals with (2) as well as (1) because
17179 relocations against global symbols will never be reduced on ELF
17180 targets.) This approach is a little simpler than trying to detect
17181 stub sections, and gives the "all or nothing" per-symbol consistency
17182 that we have for MIPS16 symbols. */
f3ded42a 17183 if (fixp->fx_subsy == NULL
30c09090 17184 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23
MR
17185 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17186 && jmp_reloc_p (fixp->fx_r_type))
17187 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17188 return 0;
a161fe53 17189
252b5132
RH
17190 return 1;
17191}
17192
17193/* Translate internal representation of relocation info to BFD target
17194 format. */
17195
17196arelent **
17a2f251 17197tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17198{
17199 static arelent *retval[4];
17200 arelent *reloc;
17201 bfd_reloc_code_real_type code;
17202
4b0cff4e 17203 memset (retval, 0, sizeof(retval));
325801bd
TS
17204 reloc = retval[0] = XCNEW (arelent);
17205 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17206 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17207 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17208
bad36eac
DJ
17209 if (fixp->fx_pcrel)
17210 {
df58fc94
RS
17211 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17212 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17213 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17214 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17215 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17216 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17217 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17218 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17219 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17220 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17221 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17222
17223 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17224 Relocations want only the symbol offset. */
17225 reloc->addend = fixp->fx_addnumber + reloc->address;
bad36eac 17226 }
17c6c9d9
MR
17227 else if (HAVE_IN_PLACE_ADDENDS
17228 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17229 && (read_compressed_insn (fixp->fx_frag->fr_literal
17230 + fixp->fx_where, 4) >> 26) == 0x3c)
17231 {
17232 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17233 addend accordingly. */
17234 reloc->addend = fixp->fx_addnumber >> 1;
17235 }
bad36eac
DJ
17236 else
17237 reloc->addend = fixp->fx_addnumber;
252b5132 17238
438c16b8
TS
17239 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17240 entry to be used in the relocation's section offset. */
17241 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17242 {
17243 reloc->address = reloc->addend;
17244 reloc->addend = 0;
17245 }
17246
252b5132 17247 code = fixp->fx_r_type;
252b5132 17248
bad36eac 17249 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17250 if (reloc->howto == NULL)
17251 {
17252 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17253 _("cannot represent %s relocation in this object file"
17254 " format"),
252b5132
RH
17255 bfd_get_reloc_code_name (code));
17256 retval[0] = NULL;
17257 }
17258
17259 return retval;
17260}
17261
17262/* Relax a machine dependent frag. This returns the amount by which
17263 the current size of the frag should change. */
17264
17265int
17a2f251 17266mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17267{
4a6a3df4
AO
17268 if (RELAX_BRANCH_P (fragp->fr_subtype))
17269 {
17270 offsetT old_var = fragp->fr_var;
b34976b6
AM
17271
17272 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17273
17274 return fragp->fr_var - old_var;
17275 }
17276
df58fc94
RS
17277 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17278 {
17279 offsetT old_var = fragp->fr_var;
17280 offsetT new_var = 4;
17281
17282 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17283 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17284 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17285 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17286 fragp->fr_var = new_var;
17287
17288 return new_var - old_var;
17289 }
17290
252b5132
RH
17291 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17292 return 0;
17293
c4e7957c 17294 if (mips16_extended_frag (fragp, NULL, stretch))
252b5132
RH
17295 {
17296 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17297 return 0;
17298 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17299 return 2;
17300 }
17301 else
17302 {
17303 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17304 return 0;
17305 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17306 return -2;
17307 }
17308
17309 return 0;
17310}
17311
17312/* Convert a machine dependent frag. */
17313
17314void
17a2f251 17315md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17316{
4a6a3df4
AO
17317 if (RELAX_BRANCH_P (fragp->fr_subtype))
17318 {
4d68580a 17319 char *buf;
4a6a3df4
AO
17320 unsigned long insn;
17321 expressionS exp;
17322 fixS *fixp;
b34976b6 17323
4d68580a
RS
17324 buf = fragp->fr_literal + fragp->fr_fix;
17325 insn = read_insn (buf);
b34976b6 17326
4a6a3df4
AO
17327 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17328 {
17329 /* We generate a fixup instead of applying it right now
17330 because, if there are linker relaxations, we're going to
17331 need the relocations. */
17332 exp.X_op = O_symbol;
17333 exp.X_add_symbol = fragp->fr_symbol;
17334 exp.X_add_number = fragp->fr_offset;
17335
4d68580a
RS
17336 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17337 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17338 fixp->fx_file = fragp->fr_file;
17339 fixp->fx_line = fragp->fr_line;
b34976b6 17340
4d68580a 17341 buf = write_insn (buf, insn);
4a6a3df4
AO
17342 }
17343 else
17344 {
17345 int i;
17346
17347 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17348 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17349
17350 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17351 goto uncond;
17352
17353 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17354 {
17355 /* Reverse the branch. */
17356 switch ((insn >> 28) & 0xf)
17357 {
17358 case 4:
56d438b1
CF
17359 if ((insn & 0xff000000) == 0x47000000
17360 || (insn & 0xff600000) == 0x45600000)
17361 {
17362 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17363 reversed by tweaking bit 23. */
17364 insn ^= 0x00800000;
17365 }
17366 else
17367 {
17368 /* bc[0-3][tf]l? instructions can have the condition
17369 reversed by tweaking a single TF bit, and their
17370 opcodes all have 0x4???????. */
17371 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17372 insn ^= 0x00010000;
17373 }
4a6a3df4
AO
17374 break;
17375
17376 case 0:
17377 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17378 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17379 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17380 insn ^= 0x00010000;
17381 break;
b34976b6 17382
4a6a3df4
AO
17383 case 1:
17384 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17385 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17386 insn ^= 0x04000000;
17387 break;
17388
17389 default:
17390 abort ();
17391 }
17392 }
17393
17394 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17395 {
17396 /* Clear the and-link bit. */
9c2799c2 17397 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17398
54f4ddb3
TS
17399 /* bltzal 0x04100000 bgezal 0x04110000
17400 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17401 insn &= ~0x00100000;
17402 }
17403
17404 /* Branch over the branch (if the branch was likely) or the
17405 full jump (not likely case). Compute the offset from the
17406 current instruction to branch to. */
17407 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17408 i = 16;
17409 else
17410 {
17411 /* How many bytes in instructions we've already emitted? */
4d68580a 17412 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17413 /* How many bytes in instructions from here to the end? */
17414 i = fragp->fr_var - i;
17415 }
17416 /* Convert to instruction count. */
17417 i >>= 2;
17418 /* Branch counts from the next instruction. */
b34976b6 17419 i--;
4a6a3df4
AO
17420 insn |= i;
17421 /* Branch over the jump. */
4d68580a 17422 buf = write_insn (buf, insn);
4a6a3df4 17423
54f4ddb3 17424 /* nop */
4d68580a 17425 buf = write_insn (buf, 0);
4a6a3df4
AO
17426
17427 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17428 {
17429 /* beql $0, $0, 2f */
17430 insn = 0x50000000;
17431 /* Compute the PC offset from the current instruction to
17432 the end of the variable frag. */
17433 /* How many bytes in instructions we've already emitted? */
4d68580a 17434 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17435 /* How many bytes in instructions from here to the end? */
17436 i = fragp->fr_var - i;
17437 /* Convert to instruction count. */
17438 i >>= 2;
17439 /* Don't decrement i, because we want to branch over the
17440 delay slot. */
4a6a3df4 17441 insn |= i;
4a6a3df4 17442
4d68580a
RS
17443 buf = write_insn (buf, insn);
17444 buf = write_insn (buf, 0);
4a6a3df4
AO
17445 }
17446
17447 uncond:
17448 if (mips_pic == NO_PIC)
17449 {
17450 /* j or jal. */
17451 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17452 ? 0x0c000000 : 0x08000000);
17453 exp.X_op = O_symbol;
17454 exp.X_add_symbol = fragp->fr_symbol;
17455 exp.X_add_number = fragp->fr_offset;
17456
4d68580a
RS
17457 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17458 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17459 fixp->fx_file = fragp->fr_file;
17460 fixp->fx_line = fragp->fr_line;
17461
4d68580a 17462 buf = write_insn (buf, insn);
4a6a3df4
AO
17463 }
17464 else
17465 {
66b3e8da
MR
17466 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17467
4a6a3df4 17468 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17469 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17470 insn |= at << OP_SH_RT;
4a6a3df4
AO
17471 exp.X_op = O_symbol;
17472 exp.X_add_symbol = fragp->fr_symbol;
17473 exp.X_add_number = fragp->fr_offset;
17474
17475 if (fragp->fr_offset)
17476 {
17477 exp.X_add_symbol = make_expr_symbol (&exp);
17478 exp.X_add_number = 0;
17479 }
17480
4d68580a
RS
17481 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17482 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
17483 fixp->fx_file = fragp->fr_file;
17484 fixp->fx_line = fragp->fr_line;
17485
4d68580a 17486 buf = write_insn (buf, insn);
b34976b6 17487
4a6a3df4 17488 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
17489 /* nop */
17490 buf = write_insn (buf, 0);
4a6a3df4
AO
17491
17492 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
17493 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17494 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 17495
4d68580a
RS
17496 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17497 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
17498 fixp->fx_file = fragp->fr_file;
17499 fixp->fx_line = fragp->fr_line;
b34976b6 17500
4d68580a 17501 buf = write_insn (buf, insn);
4a6a3df4
AO
17502
17503 /* j(al)r $at. */
17504 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 17505 insn = 0x0000f809;
4a6a3df4 17506 else
66b3e8da
MR
17507 insn = 0x00000008;
17508 insn |= at << OP_SH_RS;
4a6a3df4 17509
4d68580a 17510 buf = write_insn (buf, insn);
4a6a3df4
AO
17511 }
17512 }
17513
4a6a3df4 17514 fragp->fr_fix += fragp->fr_var;
4d68580a 17515 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
17516 return;
17517 }
17518
df58fc94
RS
17519 /* Relax microMIPS branches. */
17520 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17521 {
4d68580a 17522 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
17523 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17524 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17525 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 17526 bfd_boolean short_ds;
df58fc94
RS
17527 unsigned long insn;
17528 expressionS exp;
17529 fixS *fixp;
17530
17531 exp.X_op = O_symbol;
17532 exp.X_add_symbol = fragp->fr_symbol;
17533 exp.X_add_number = fragp->fr_offset;
17534
17535 fragp->fr_fix += fragp->fr_var;
17536
17537 /* Handle 16-bit branches that fit or are forced to fit. */
17538 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17539 {
17540 /* We generate a fixup instead of applying it right now,
17541 because if there is linker relaxation, we're going to
17542 need the relocations. */
17543 if (type == 'D')
4d68580a 17544 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17545 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17546 else if (type == 'E')
4d68580a 17547 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
17548 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17549 else
17550 abort ();
17551
17552 fixp->fx_file = fragp->fr_file;
17553 fixp->fx_line = fragp->fr_line;
17554
17555 /* These relocations can have an addend that won't fit in
17556 2 octets. */
17557 fixp->fx_no_overflow = 1;
17558
17559 return;
17560 }
17561
2309ddf2 17562 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
17563 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17564 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17565 {
17566 /* We generate a fixup instead of applying it right now,
17567 because if there is linker relaxation, we're going to
17568 need the relocations. */
4d68580a
RS
17569 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17570 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17571 fixp->fx_file = fragp->fr_file;
17572 fixp->fx_line = fragp->fr_line;
17573
17574 if (type == 0)
17575 return;
17576 }
17577
17578 /* Relax 16-bit branches to 32-bit branches. */
17579 if (type != 0)
17580 {
4d68580a 17581 insn = read_compressed_insn (buf, 2);
df58fc94
RS
17582
17583 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17584 insn = 0x94000000; /* beq */
17585 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17586 {
17587 unsigned long regno;
17588
17589 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17590 regno = micromips_to_32_reg_d_map [regno];
17591 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17592 insn |= regno << MICROMIPSOP_SH_RS;
17593 }
17594 else
17595 abort ();
17596
17597 /* Nothing else to do, just write it out. */
17598 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17599 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17600 {
4d68580a
RS
17601 buf = write_compressed_insn (buf, insn, 4);
17602 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17603 return;
17604 }
17605 }
17606 else
4d68580a 17607 insn = read_compressed_insn (buf, 4);
df58fc94
RS
17608
17609 /* Relax 32-bit branches to a sequence of instructions. */
17610 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17611 _("relaxed out-of-range branch into a jump"));
df58fc94 17612
2309ddf2
MR
17613 /* Set the short-delay-slot bit. */
17614 short_ds = al && (insn & 0x02000000) != 0;
df58fc94
RS
17615
17616 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17617 {
17618 symbolS *l;
17619
17620 /* Reverse the branch. */
17621 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17622 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17623 insn ^= 0x20000000;
17624 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17625 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17626 || (insn & 0xffe00000) == 0x40800000 /* blez */
17627 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17628 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17629 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17630 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17631 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17632 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17633 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17634 insn ^= 0x00400000;
17635 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17636 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17637 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17638 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17639 insn ^= 0x00200000;
56d438b1
CF
17640 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17641 BNZ.df */
17642 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17643 BNZ.V */
17644 insn ^= 0x00800000;
df58fc94
RS
17645 else
17646 abort ();
17647
17648 if (al)
17649 {
17650 /* Clear the and-link and short-delay-slot bits. */
17651 gas_assert ((insn & 0xfda00000) == 0x40200000);
17652
17653 /* bltzal 0x40200000 bgezal 0x40600000 */
17654 /* bltzals 0x42200000 bgezals 0x42600000 */
17655 insn &= ~0x02200000;
17656 }
17657
17658 /* Make a label at the end for use with the branch. */
17659 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17660 micromips_label_inc ();
f3ded42a 17661 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
17662
17663 /* Refer to it. */
4d68580a
RS
17664 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17665 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
17666 fixp->fx_file = fragp->fr_file;
17667 fixp->fx_line = fragp->fr_line;
17668
17669 /* Branch over the jump. */
4d68580a 17670 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17671 if (!compact)
4d68580a
RS
17672 /* nop */
17673 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17674 }
17675
17676 if (mips_pic == NO_PIC)
17677 {
2309ddf2
MR
17678 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17679
df58fc94
RS
17680 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17681 insn = al ? jal : 0xd4000000;
17682
4d68580a
RS
17683 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17684 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
17685 fixp->fx_file = fragp->fr_file;
17686 fixp->fx_line = fragp->fr_line;
17687
4d68580a 17688 buf = write_compressed_insn (buf, insn, 4);
df58fc94 17689 if (compact)
4d68580a
RS
17690 /* nop */
17691 buf = write_compressed_insn (buf, 0x0c00, 2);
df58fc94
RS
17692 }
17693 else
17694 {
17695 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
2309ddf2
MR
17696 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17697 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
df58fc94
RS
17698
17699 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17700 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17701 insn |= at << MICROMIPSOP_SH_RT;
17702
17703 if (exp.X_add_number)
17704 {
17705 exp.X_add_symbol = make_expr_symbol (&exp);
17706 exp.X_add_number = 0;
17707 }
17708
4d68580a
RS
17709 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17710 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
17711 fixp->fx_file = fragp->fr_file;
17712 fixp->fx_line = fragp->fr_line;
17713
4d68580a 17714 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17715
17716 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17717 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17718 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17719
4d68580a
RS
17720 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17721 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
17722 fixp->fx_file = fragp->fr_file;
17723 fixp->fx_line = fragp->fr_line;
17724
4d68580a 17725 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
17726
17727 /* jr/jrc/jalr/jalrs $at */
17728 insn = al ? jalr : jr;
17729 insn |= at << MICROMIPSOP_SH_MJ;
17730
4d68580a 17731 buf = write_compressed_insn (buf, insn, 2);
df58fc94
RS
17732 }
17733
4d68580a 17734 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
17735 return;
17736 }
17737
252b5132
RH
17738 if (RELAX_MIPS16_P (fragp->fr_subtype))
17739 {
17740 int type;
3ccad066 17741 const struct mips_int_operand *operand;
252b5132 17742 offsetT val;
5c04167a
RS
17743 char *buf;
17744 unsigned int user_length, length;
252b5132 17745 unsigned long insn;
5c04167a 17746 bfd_boolean ext;
252b5132
RH
17747
17748 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17749 operand = mips16_immed_operand (type, FALSE);
252b5132 17750
5c04167a 17751 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
5f5f22c0 17752 val = resolve_symbol_value (fragp->fr_symbol);
3ccad066 17753 if (operand->root.type == OP_PCREL)
252b5132 17754 {
3ccad066 17755 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
17756 addressT addr;
17757
3ccad066 17758 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
17759 addr = fragp->fr_address + fragp->fr_fix;
17760
17761 /* The rules for the base address of a PC relative reloc are
17762 complicated; see mips16_extended_frag. */
3ccad066 17763 if (pcrel_op->include_isa_bit)
252b5132
RH
17764 {
17765 addr += 2;
17766 if (ext)
17767 addr += 2;
17768 /* Ignore the low bit in the target, since it will be
17769 set for a text label. */
3ccad066 17770 val &= -2;
252b5132
RH
17771 }
17772 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17773 addr -= 4;
17774 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17775 addr -= 2;
17776
3ccad066 17777 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
17778 val -= addr;
17779
17780 /* Make sure the section winds up with the alignment we have
17781 assumed. */
3ccad066
RS
17782 if (operand->shift > 0)
17783 record_alignment (asec, operand->shift);
252b5132
RH
17784 }
17785
17786 if (ext
17787 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17788 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17789 as_warn_where (fragp->fr_file, fragp->fr_line,
17790 _("extended instruction in delay slot"));
17791
5c04167a 17792 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 17793
4d68580a 17794 insn = read_compressed_insn (buf, 2);
5c04167a
RS
17795 if (ext)
17796 insn |= MIPS16_EXTEND;
252b5132 17797
5c04167a
RS
17798 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17799 user_length = 4;
17800 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17801 user_length = 2;
17802 else
17803 user_length = 0;
17804
43c0598f 17805 mips16_immed (fragp->fr_file, fragp->fr_line, type,
c150d1d2 17806 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 17807
5c04167a
RS
17808 length = (ext ? 4 : 2);
17809 gas_assert (mips16_opcode_length (insn) == length);
17810 write_compressed_insn (buf, insn, length);
17811 fragp->fr_fix += length;
252b5132
RH
17812 }
17813 else
17814 {
df58fc94
RS
17815 relax_substateT subtype = fragp->fr_subtype;
17816 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17817 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
17818 int first, second;
17819 fixS *fixp;
252b5132 17820
df58fc94
RS
17821 first = RELAX_FIRST (subtype);
17822 second = RELAX_SECOND (subtype);
4d7206a2 17823 fixp = (fixS *) fragp->fr_opcode;
252b5132 17824
df58fc94
RS
17825 /* If the delay slot chosen does not match the size of the instruction,
17826 then emit a warning. */
17827 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17828 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17829 {
17830 relax_substateT s;
17831 const char *msg;
17832
17833 s = subtype & (RELAX_DELAY_SLOT_16BIT
17834 | RELAX_DELAY_SLOT_SIZE_FIRST
17835 | RELAX_DELAY_SLOT_SIZE_SECOND);
17836 msg = macro_warning (s);
17837 if (msg != NULL)
db9b2be4 17838 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
17839 subtype &= ~s;
17840 }
17841
584892a6 17842 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 17843 if (use_second == second_longer)
584892a6 17844 {
df58fc94
RS
17845 relax_substateT s;
17846 const char *msg;
17847
17848 s = (subtype
17849 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17850 msg = macro_warning (s);
17851 if (msg != NULL)
db9b2be4 17852 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 17853 subtype &= ~s;
584892a6
RS
17854 }
17855
4d7206a2
RS
17856 /* Go through all the fixups for the first sequence. Disable them
17857 (by marking them as done) if we're going to use the second
17858 sequence instead. */
17859 while (fixp
17860 && fixp->fx_frag == fragp
17861 && fixp->fx_where < fragp->fr_fix - second)
17862 {
df58fc94 17863 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17864 fixp->fx_done = 1;
17865 fixp = fixp->fx_next;
17866 }
252b5132 17867
4d7206a2
RS
17868 /* Go through the fixups for the second sequence. Disable them if
17869 we're going to use the first sequence, otherwise adjust their
17870 addresses to account for the relaxation. */
17871 while (fixp && fixp->fx_frag == fragp)
17872 {
df58fc94 17873 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17874 fixp->fx_where -= first;
17875 else
17876 fixp->fx_done = 1;
17877 fixp = fixp->fx_next;
17878 }
17879
17880 /* Now modify the frag contents. */
df58fc94 17881 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
17882 {
17883 char *start;
17884
17885 start = fragp->fr_literal + fragp->fr_fix - first - second;
17886 memmove (start, start + first, second);
17887 fragp->fr_fix -= first;
17888 }
17889 else
17890 fragp->fr_fix -= second;
252b5132
RH
17891 }
17892}
17893
252b5132
RH
17894/* This function is called after the relocs have been generated.
17895 We've been storing mips16 text labels as odd. Here we convert them
17896 back to even for the convenience of the debugger. */
17897
17898void
17a2f251 17899mips_frob_file_after_relocs (void)
252b5132
RH
17900{
17901 asymbol **syms;
17902 unsigned int count, i;
17903
252b5132
RH
17904 syms = bfd_get_outsymbols (stdoutput);
17905 count = bfd_get_symcount (stdoutput);
17906 for (i = 0; i < count; i++, syms++)
df58fc94
RS
17907 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17908 && ((*syms)->value & 1) != 0)
17909 {
17910 (*syms)->value &= ~1;
17911 /* If the symbol has an odd size, it was probably computed
17912 incorrectly, so adjust that as well. */
17913 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17914 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17915 }
252b5132
RH
17916}
17917
a1facbec
MR
17918/* This function is called whenever a label is defined, including fake
17919 labels instantiated off the dot special symbol. It is used when
17920 handling branch delays; if a branch has a label, we assume we cannot
17921 move it. This also bumps the value of the symbol by 1 in compressed
17922 code. */
252b5132 17923
e1b47bd5 17924static void
a1facbec 17925mips_record_label (symbolS *sym)
252b5132 17926{
a8dbcb85 17927 segment_info_type *si = seg_info (now_seg);
252b5132
RH
17928 struct insn_label_list *l;
17929
17930 if (free_insn_labels == NULL)
325801bd 17931 l = XNEW (struct insn_label_list);
252b5132
RH
17932 else
17933 {
17934 l = free_insn_labels;
17935 free_insn_labels = l->next;
17936 }
17937
17938 l->label = sym;
a8dbcb85
TS
17939 l->next = si->label_list;
17940 si->label_list = l;
a1facbec 17941}
07a53e5c 17942
a1facbec
MR
17943/* This function is called as tc_frob_label() whenever a label is defined
17944 and adds a DWARF-2 record we only want for true labels. */
17945
17946void
17947mips_define_label (symbolS *sym)
17948{
17949 mips_record_label (sym);
07a53e5c 17950 dwarf2_emit_label (sym);
252b5132 17951}
e1b47bd5
RS
17952
17953/* This function is called by tc_new_dot_label whenever a new dot symbol
17954 is defined. */
17955
17956void
17957mips_add_dot_label (symbolS *sym)
17958{
17959 mips_record_label (sym);
17960 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17961 mips_compressed_mark_label (sym);
17962}
252b5132 17963\f
351cdf24
MF
17964/* Converting ASE flags from internal to .MIPS.abiflags values. */
17965static unsigned int
17966mips_convert_ase_flags (int ase)
17967{
17968 unsigned int ext_ases = 0;
17969
17970 if (ase & ASE_DSP)
17971 ext_ases |= AFL_ASE_DSP;
17972 if (ase & ASE_DSPR2)
17973 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
17974 if (ase & ASE_DSPR3)
17975 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
17976 if (ase & ASE_EVA)
17977 ext_ases |= AFL_ASE_EVA;
17978 if (ase & ASE_MCU)
17979 ext_ases |= AFL_ASE_MCU;
17980 if (ase & ASE_MDMX)
17981 ext_ases |= AFL_ASE_MDMX;
17982 if (ase & ASE_MIPS3D)
17983 ext_ases |= AFL_ASE_MIPS3D;
17984 if (ase & ASE_MT)
17985 ext_ases |= AFL_ASE_MT;
17986 if (ase & ASE_SMARTMIPS)
17987 ext_ases |= AFL_ASE_SMARTMIPS;
17988 if (ase & ASE_VIRT)
17989 ext_ases |= AFL_ASE_VIRT;
17990 if (ase & ASE_MSA)
17991 ext_ases |= AFL_ASE_MSA;
17992 if (ase & ASE_XPA)
17993 ext_ases |= AFL_ASE_XPA;
17994
17995 return ext_ases;
17996}
252b5132
RH
17997/* Some special processing for a MIPS ELF file. */
17998
17999void
17a2f251 18000mips_elf_final_processing (void)
252b5132 18001{
351cdf24
MF
18002 int fpabi;
18003 Elf_Internal_ABIFlags_v0 flags;
18004
18005 flags.version = 0;
18006 flags.isa_rev = 0;
18007 switch (file_mips_opts.isa)
18008 {
18009 case INSN_ISA1:
18010 flags.isa_level = 1;
18011 break;
18012 case INSN_ISA2:
18013 flags.isa_level = 2;
18014 break;
18015 case INSN_ISA3:
18016 flags.isa_level = 3;
18017 break;
18018 case INSN_ISA4:
18019 flags.isa_level = 4;
18020 break;
18021 case INSN_ISA5:
18022 flags.isa_level = 5;
18023 break;
18024 case INSN_ISA32:
18025 flags.isa_level = 32;
18026 flags.isa_rev = 1;
18027 break;
18028 case INSN_ISA32R2:
18029 flags.isa_level = 32;
18030 flags.isa_rev = 2;
18031 break;
18032 case INSN_ISA32R3:
18033 flags.isa_level = 32;
18034 flags.isa_rev = 3;
18035 break;
18036 case INSN_ISA32R5:
18037 flags.isa_level = 32;
18038 flags.isa_rev = 5;
18039 break;
09c14161
MF
18040 case INSN_ISA32R6:
18041 flags.isa_level = 32;
18042 flags.isa_rev = 6;
18043 break;
351cdf24
MF
18044 case INSN_ISA64:
18045 flags.isa_level = 64;
18046 flags.isa_rev = 1;
18047 break;
18048 case INSN_ISA64R2:
18049 flags.isa_level = 64;
18050 flags.isa_rev = 2;
18051 break;
18052 case INSN_ISA64R3:
18053 flags.isa_level = 64;
18054 flags.isa_rev = 3;
18055 break;
18056 case INSN_ISA64R5:
18057 flags.isa_level = 64;
18058 flags.isa_rev = 5;
18059 break;
09c14161
MF
18060 case INSN_ISA64R6:
18061 flags.isa_level = 64;
18062 flags.isa_rev = 6;
18063 break;
351cdf24
MF
18064 }
18065
18066 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18067 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18068 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18069 : (file_mips_opts.fp == 64) ? AFL_REG_64
18070 : AFL_REG_32;
18071 flags.cpr2_size = AFL_REG_NONE;
18072 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18073 Tag_GNU_MIPS_ABI_FP);
18074 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18075 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18076 if (file_ase_mips16)
18077 flags.ases |= AFL_ASE_MIPS16;
18078 if (file_ase_micromips)
18079 flags.ases |= AFL_ASE_MICROMIPS;
18080 flags.flags1 = 0;
18081 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18082 || file_mips_opts.fp == 64)
18083 && file_mips_opts.oddspreg)
18084 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18085 flags.flags2 = 0;
18086
18087 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18088 ((Elf_External_ABIFlags_v0 *)
18089 mips_flags_frag));
18090
252b5132 18091 /* Write out the register information. */
316f5878 18092 if (mips_abi != N64_ABI)
252b5132
RH
18093 {
18094 Elf32_RegInfo s;
18095
18096 s.ri_gprmask = mips_gprmask;
18097 s.ri_cprmask[0] = mips_cprmask[0];
18098 s.ri_cprmask[1] = mips_cprmask[1];
18099 s.ri_cprmask[2] = mips_cprmask[2];
18100 s.ri_cprmask[3] = mips_cprmask[3];
18101 /* The gp_value field is set by the MIPS ELF backend. */
18102
18103 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18104 ((Elf32_External_RegInfo *)
18105 mips_regmask_frag));
18106 }
18107 else
18108 {
18109 Elf64_Internal_RegInfo s;
18110
18111 s.ri_gprmask = mips_gprmask;
18112 s.ri_pad = 0;
18113 s.ri_cprmask[0] = mips_cprmask[0];
18114 s.ri_cprmask[1] = mips_cprmask[1];
18115 s.ri_cprmask[2] = mips_cprmask[2];
18116 s.ri_cprmask[3] = mips_cprmask[3];
18117 /* The gp_value field is set by the MIPS ELF backend. */
18118
18119 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18120 ((Elf64_External_RegInfo *)
18121 mips_regmask_frag));
18122 }
18123
18124 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18125 sort of BFD interface for this. */
18126 if (mips_any_noreorder)
18127 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18128 if (mips_pic != NO_PIC)
143d77c5 18129 {
8b828383 18130 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18131 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18132 }
18133 if (mips_abicalls)
18134 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18135
b015e599
AP
18136 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18137 defined at present; this might need to change in future. */
a4672219
TS
18138 if (file_ase_mips16)
18139 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18140 if (file_ase_micromips)
18141 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18142 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18143 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18144
bdaaa2e1 18145 /* Set the MIPS ELF ABI flags. */
316f5878 18146 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18147 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18148 else if (mips_abi == O64_ABI)
252b5132 18149 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18150 else if (mips_abi == EABI_ABI)
252b5132 18151 {
bad1aba3 18152 if (file_mips_opts.gp == 64)
252b5132
RH
18153 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18154 else
18155 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18156 }
316f5878 18157 else if (mips_abi == N32_ABI)
be00bddd
TS
18158 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18159
c9914766 18160 /* Nothing to do for N64_ABI. */
252b5132
RH
18161
18162 if (mips_32bitmode)
18163 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18164
7361da2c 18165 if (mips_nan2008 == 1)
ba92f887
MR
18166 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18167
ad3fea08 18168 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18169 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18170 Tag_GNU_MIPS_ABI_FP);
18171 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18172 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18173}
252b5132 18174\f
beae10d5 18175typedef struct proc {
9b2f1d35
EC
18176 symbolS *func_sym;
18177 symbolS *func_end_sym;
beae10d5
KH
18178 unsigned long reg_mask;
18179 unsigned long reg_offset;
18180 unsigned long fpreg_mask;
18181 unsigned long fpreg_offset;
18182 unsigned long frame_offset;
18183 unsigned long frame_reg;
18184 unsigned long pc_reg;
18185} procS;
252b5132
RH
18186
18187static procS cur_proc;
18188static procS *cur_proc_ptr;
18189static int numprocs;
18190
df58fc94
RS
18191/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18192 as "2", and a normal nop as "0". */
18193
18194#define NOP_OPCODE_MIPS 0
18195#define NOP_OPCODE_MIPS16 1
18196#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18197
18198char
18199mips_nop_opcode (void)
18200{
df58fc94
RS
18201 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18202 return NOP_OPCODE_MICROMIPS;
18203 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18204 return NOP_OPCODE_MIPS16;
18205 else
18206 return NOP_OPCODE_MIPS;
742a56fe
RS
18207}
18208
df58fc94
RS
18209/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18210 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18211
0a9ef439 18212void
17a2f251 18213mips_handle_align (fragS *fragp)
a19d8eb0 18214{
df58fc94 18215 char nop_opcode;
742a56fe 18216 char *p;
c67a084a
NC
18217 int bytes, size, excess;
18218 valueT opcode;
742a56fe 18219
0a9ef439
RH
18220 if (fragp->fr_type != rs_align_code)
18221 return;
18222
742a56fe 18223 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18224 nop_opcode = *p;
18225 switch (nop_opcode)
a19d8eb0 18226 {
df58fc94
RS
18227 case NOP_OPCODE_MICROMIPS:
18228 opcode = micromips_nop32_insn.insn_opcode;
18229 size = 4;
18230 break;
18231 case NOP_OPCODE_MIPS16:
c67a084a
NC
18232 opcode = mips16_nop_insn.insn_opcode;
18233 size = 2;
df58fc94
RS
18234 break;
18235 case NOP_OPCODE_MIPS:
18236 default:
c67a084a
NC
18237 opcode = nop_insn.insn_opcode;
18238 size = 4;
df58fc94 18239 break;
c67a084a 18240 }
a19d8eb0 18241
c67a084a
NC
18242 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18243 excess = bytes % size;
df58fc94
RS
18244
18245 /* Handle the leading part if we're not inserting a whole number of
18246 instructions, and make it the end of the fixed part of the frag.
18247 Try to fit in a short microMIPS NOP if applicable and possible,
18248 and use zeroes otherwise. */
18249 gas_assert (excess < 4);
18250 fragp->fr_fix += excess;
18251 switch (excess)
c67a084a 18252 {
df58fc94
RS
18253 case 3:
18254 *p++ = '\0';
18255 /* Fall through. */
18256 case 2:
833794fc 18257 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18258 {
4d68580a 18259 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18260 break;
18261 }
18262 *p++ = '\0';
18263 /* Fall through. */
18264 case 1:
18265 *p++ = '\0';
18266 /* Fall through. */
18267 case 0:
18268 break;
a19d8eb0 18269 }
c67a084a
NC
18270
18271 md_number_to_chars (p, opcode, size);
18272 fragp->fr_var = size;
a19d8eb0
CP
18273}
18274
252b5132 18275static long
17a2f251 18276get_number (void)
252b5132
RH
18277{
18278 int negative = 0;
18279 long val = 0;
18280
18281 if (*input_line_pointer == '-')
18282 {
18283 ++input_line_pointer;
18284 negative = 1;
18285 }
3882b010 18286 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18287 as_bad (_("expected simple number"));
252b5132
RH
18288 if (input_line_pointer[0] == '0')
18289 {
18290 if (input_line_pointer[1] == 'x')
18291 {
18292 input_line_pointer += 2;
3882b010 18293 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18294 {
18295 val <<= 4;
18296 val |= hex_value (*input_line_pointer++);
18297 }
18298 return negative ? -val : val;
18299 }
18300 else
18301 {
18302 ++input_line_pointer;
3882b010 18303 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18304 {
18305 val <<= 3;
18306 val |= *input_line_pointer++ - '0';
18307 }
18308 return negative ? -val : val;
18309 }
18310 }
3882b010 18311 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18312 {
18313 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18314 *input_line_pointer, *input_line_pointer);
956cd1d6 18315 as_warn (_("invalid number"));
252b5132
RH
18316 return -1;
18317 }
3882b010 18318 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18319 {
18320 val *= 10;
18321 val += *input_line_pointer++ - '0';
18322 }
18323 return negative ? -val : val;
18324}
18325
18326/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18327 is an initial number which is the ECOFF file index. In the non-ECOFF
18328 case .file implies DWARF-2. */
18329
18330static void
17a2f251 18331s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18332{
ecb4347a
DJ
18333 static int first_file_directive = 0;
18334
c5dd6aab
DJ
18335 if (ECOFF_DEBUGGING)
18336 {
18337 get_number ();
18338 s_app_file (0);
18339 }
18340 else
ecb4347a
DJ
18341 {
18342 char *filename;
18343
18344 filename = dwarf2_directive_file (0);
18345
18346 /* Versions of GCC up to 3.1 start files with a ".file"
18347 directive even for stabs output. Make sure that this
18348 ".file" is handled. Note that you need a version of GCC
18349 after 3.1 in order to support DWARF-2 on MIPS. */
18350 if (filename != NULL && ! first_file_directive)
18351 {
18352 (void) new_logical_line (filename, -1);
c04f5787 18353 s_app_file_string (filename, 0);
ecb4347a
DJ
18354 }
18355 first_file_directive = 1;
18356 }
c5dd6aab
DJ
18357}
18358
18359/* The .loc directive, implying DWARF-2. */
252b5132
RH
18360
18361static void
17a2f251 18362s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18363{
c5dd6aab
DJ
18364 if (!ECOFF_DEBUGGING)
18365 dwarf2_directive_loc (0);
252b5132
RH
18366}
18367
252b5132
RH
18368/* The .end directive. */
18369
18370static void
17a2f251 18371s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
18372{
18373 symbolS *p;
252b5132 18374
7a621144
DJ
18375 /* Following functions need their own .frame and .cprestore directives. */
18376 mips_frame_reg_valid = 0;
18377 mips_cprestore_valid = 0;
18378
252b5132
RH
18379 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18380 {
18381 p = get_symbol ();
18382 demand_empty_rest_of_line ();
18383 }
18384 else
18385 p = NULL;
18386
14949570 18387 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
18388 as_warn (_(".end not in text section"));
18389
18390 if (!cur_proc_ptr)
18391 {
1661c76c 18392 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
18393 demand_empty_rest_of_line ();
18394 return;
18395 }
18396
18397 if (p != NULL)
18398 {
9c2799c2 18399 gas_assert (S_GET_NAME (p));
9b2f1d35 18400 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 18401 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
18402
18403 if (debug_type == DEBUG_STABS)
18404 stabs_generate_asm_endfunc (S_GET_NAME (p),
18405 S_GET_NAME (p));
252b5132
RH
18406 }
18407 else
18408 as_warn (_(".end directive missing or unknown symbol"));
18409
9b2f1d35
EC
18410 /* Create an expression to calculate the size of the function. */
18411 if (p && cur_proc_ptr)
18412 {
18413 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 18414 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
18415
18416 obj->size = exp;
18417 exp->X_op = O_subtract;
18418 exp->X_add_symbol = symbol_temp_new_now ();
18419 exp->X_op_symbol = p;
18420 exp->X_add_number = 0;
18421
18422 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18423 }
18424
ecb4347a 18425 /* Generate a .pdr section. */
f3ded42a 18426 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
18427 {
18428 segT saved_seg = now_seg;
18429 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
18430 expressionS exp;
18431 char *fragp;
252b5132 18432
252b5132 18433#ifdef md_flush_pending_output
ecb4347a 18434 md_flush_pending_output ();
252b5132
RH
18435#endif
18436
9c2799c2 18437 gas_assert (pdr_seg);
ecb4347a 18438 subseg_set (pdr_seg, 0);
252b5132 18439
ecb4347a
DJ
18440 /* Write the symbol. */
18441 exp.X_op = O_symbol;
18442 exp.X_add_symbol = p;
18443 exp.X_add_number = 0;
18444 emit_expr (&exp, 4);
252b5132 18445
ecb4347a 18446 fragp = frag_more (7 * 4);
252b5132 18447
17a2f251
TS
18448 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18449 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18450 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18451 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18452 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18453 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18454 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 18455
ecb4347a
DJ
18456 subseg_set (saved_seg, saved_subseg);
18457 }
252b5132
RH
18458
18459 cur_proc_ptr = NULL;
18460}
18461
18462/* The .aent and .ent directives. */
18463
18464static void
17a2f251 18465s_mips_ent (int aent)
252b5132 18466{
252b5132 18467 symbolS *symbolP;
252b5132
RH
18468
18469 symbolP = get_symbol ();
18470 if (*input_line_pointer == ',')
f9419b05 18471 ++input_line_pointer;
252b5132 18472 SKIP_WHITESPACE ();
3882b010 18473 if (ISDIGIT (*input_line_pointer)
d9a62219 18474 || *input_line_pointer == '-')
874e8986 18475 get_number ();
252b5132 18476
14949570 18477 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 18478 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
18479
18480 if (!aent && cur_proc_ptr)
9a41af64 18481 as_warn (_("missing .end"));
252b5132
RH
18482
18483 if (!aent)
18484 {
7a621144
DJ
18485 /* This function needs its own .frame and .cprestore directives. */
18486 mips_frame_reg_valid = 0;
18487 mips_cprestore_valid = 0;
18488
252b5132
RH
18489 cur_proc_ptr = &cur_proc;
18490 memset (cur_proc_ptr, '\0', sizeof (procS));
18491
9b2f1d35 18492 cur_proc_ptr->func_sym = symbolP;
252b5132 18493
f9419b05 18494 ++numprocs;
ecb4347a
DJ
18495
18496 if (debug_type == DEBUG_STABS)
18497 stabs_generate_asm_func (S_GET_NAME (symbolP),
18498 S_GET_NAME (symbolP));
252b5132
RH
18499 }
18500
7c0fc524
MR
18501 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18502
252b5132
RH
18503 demand_empty_rest_of_line ();
18504}
18505
18506/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 18507 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 18508 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 18509 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
18510 symbol table (in the mdebug section). */
18511
18512static void
17a2f251 18513s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 18514{
f3ded42a
RS
18515 if (ECOFF_DEBUGGING)
18516 s_ignore (ignore);
18517 else
ecb4347a
DJ
18518 {
18519 long val;
252b5132 18520
ecb4347a
DJ
18521 if (cur_proc_ptr == (procS *) NULL)
18522 {
18523 as_warn (_(".frame outside of .ent"));
18524 demand_empty_rest_of_line ();
18525 return;
18526 }
252b5132 18527
ecb4347a
DJ
18528 cur_proc_ptr->frame_reg = tc_get_register (1);
18529
18530 SKIP_WHITESPACE ();
18531 if (*input_line_pointer++ != ','
18532 || get_absolute_expression_and_terminator (&val) != ',')
18533 {
1661c76c 18534 as_warn (_("bad .frame directive"));
ecb4347a
DJ
18535 --input_line_pointer;
18536 demand_empty_rest_of_line ();
18537 return;
18538 }
252b5132 18539
ecb4347a
DJ
18540 cur_proc_ptr->frame_offset = val;
18541 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 18542
252b5132 18543 demand_empty_rest_of_line ();
252b5132 18544 }
252b5132
RH
18545}
18546
bdaaa2e1
KH
18547/* The .fmask and .mask directives. If the mdebug section is present
18548 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 18549 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 18550 information correctly. We can't use the ecoff routines because they
252b5132
RH
18551 make reference to the ecoff symbol table (in the mdebug section). */
18552
18553static void
17a2f251 18554s_mips_mask (int reg_type)
252b5132 18555{
f3ded42a
RS
18556 if (ECOFF_DEBUGGING)
18557 s_ignore (reg_type);
18558 else
252b5132 18559 {
ecb4347a 18560 long mask, off;
252b5132 18561
ecb4347a
DJ
18562 if (cur_proc_ptr == (procS *) NULL)
18563 {
18564 as_warn (_(".mask/.fmask outside of .ent"));
18565 demand_empty_rest_of_line ();
18566 return;
18567 }
252b5132 18568
ecb4347a
DJ
18569 if (get_absolute_expression_and_terminator (&mask) != ',')
18570 {
1661c76c 18571 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
18572 --input_line_pointer;
18573 demand_empty_rest_of_line ();
18574 return;
18575 }
252b5132 18576
ecb4347a
DJ
18577 off = get_absolute_expression ();
18578
18579 if (reg_type == 'F')
18580 {
18581 cur_proc_ptr->fpreg_mask = mask;
18582 cur_proc_ptr->fpreg_offset = off;
18583 }
18584 else
18585 {
18586 cur_proc_ptr->reg_mask = mask;
18587 cur_proc_ptr->reg_offset = off;
18588 }
18589
18590 demand_empty_rest_of_line ();
252b5132 18591 }
252b5132
RH
18592}
18593
316f5878
RS
18594/* A table describing all the processors gas knows about. Names are
18595 matched in the order listed.
e7af610e 18596
316f5878
RS
18597 To ease comparison, please keep this table in the same order as
18598 gcc's mips_cpu_info_table[]. */
e972090a
NC
18599static const struct mips_cpu_info mips_cpu_info_table[] =
18600{
316f5878 18601 /* Entries for generic ISAs */
d16afab6
RS
18602 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18603 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18604 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18605 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18606 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18607 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18608 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
18609 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18610 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 18611 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
18612 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18613 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
18614 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18615 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 18616 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
18617
18618 /* MIPS I */
d16afab6
RS
18619 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18620 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18621 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
18622
18623 /* MIPS II */
d16afab6 18624 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
18625
18626 /* MIPS III */
d16afab6
RS
18627 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18628 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18629 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18630 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18631 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18632 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18633 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18634 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18635 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18636 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18637 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18638 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18639 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 18640 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
18641 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18642 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
18643
18644 /* MIPS IV */
d16afab6
RS
18645 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18646 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18647 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18648 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18649 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18650 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18651 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18652 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18653 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18654 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18655 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18656 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18657 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18658 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18659 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
18660
18661 /* MIPS 32 */
d16afab6
RS
18662 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18663 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18664 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18665 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
18666
18667 /* MIPS 32 Release 2 */
d16afab6
RS
18668 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18675 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18677 ISA_MIPS32R2, CPU_MIPS32R2 },
18678 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18679 ISA_MIPS32R2, CPU_MIPS32R2 },
18680 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18681 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18682 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18683 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18684 /* Deprecated forms of the above. */
d16afab6
RS
18685 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18686 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18687 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
18688 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18689 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18690 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18691 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18692 /* Deprecated forms of the above. */
d16afab6
RS
18693 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18694 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18695 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
18696 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18697 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18698 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18699 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18700 /* Deprecated forms of the above. */
d16afab6
RS
18701 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18702 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 18703 /* 34Kn is a 34kc without DSP. */
d16afab6 18704 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 18705 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
18706 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18707 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18708 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18709 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18710 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 18711 /* Deprecated forms of the above. */
d16afab6
RS
18712 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18713 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 18714 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
18715 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18716 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18717 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18718 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
18719 /* interaptiv is the new name for 1004kf */
18720 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
18721 /* M5100 family */
18722 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18723 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 18724 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 18725 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 18726
316f5878 18727 /* MIPS 64 */
d16afab6
RS
18728 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18729 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18730 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18731 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 18732
c7a23324 18733 /* Broadcom SB-1 CPU core */
d16afab6 18734 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 18735 /* Broadcom SB-1A CPU core */
d16afab6 18736 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 18737
4ba154f5 18738 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 18739
ed163775
MR
18740 /* MIPS 64 Release 2 */
18741
967344c6 18742 /* Cavium Networks Octeon CPU core */
d16afab6
RS
18743 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18744 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18745 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 18746 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 18747
52b6b6b9 18748 /* RMI Xlr */
d16afab6 18749 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 18750
55a36193
MK
18751 /* Broadcom XLP.
18752 XLP is mostly like XLR, with the prominent exception that it is
18753 MIPS64R2 rather than MIPS64. */
d16afab6 18754 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 18755
a4968f42 18756 /* MIPS 64 Release 6 */
7ef0d297 18757 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 18758 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 18759
316f5878 18760 /* End marker */
d16afab6 18761 { NULL, 0, 0, 0, 0 }
316f5878 18762};
e7af610e 18763
84ea6cf2 18764
316f5878
RS
18765/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18766 with a final "000" replaced by "k". Ignore case.
e7af610e 18767
316f5878 18768 Note: this function is shared between GCC and GAS. */
c6c98b38 18769
b34976b6 18770static bfd_boolean
17a2f251 18771mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18772{
18773 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18774 given++, canonical++;
18775
18776 return ((*given == 0 && *canonical == 0)
18777 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18778}
18779
18780
18781/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18782 CPU name. We've traditionally allowed a lot of variation here.
18783
18784 Note: this function is shared between GCC and GAS. */
18785
b34976b6 18786static bfd_boolean
17a2f251 18787mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
18788{
18789 /* First see if the name matches exactly, or with a final "000"
18790 turned into "k". */
18791 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 18792 return TRUE;
316f5878
RS
18793
18794 /* If not, try comparing based on numerical designation alone.
18795 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18796 if (TOLOWER (*given) == 'r')
18797 given++;
18798 if (!ISDIGIT (*given))
b34976b6 18799 return FALSE;
316f5878
RS
18800
18801 /* Skip over some well-known prefixes in the canonical name,
18802 hoping to find a number there too. */
18803 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18804 canonical += 2;
18805 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18806 canonical += 2;
18807 else if (TOLOWER (canonical[0]) == 'r')
18808 canonical += 1;
18809
18810 return mips_strict_matching_cpu_name_p (canonical, given);
18811}
18812
18813
18814/* Parse an option that takes the name of a processor as its argument.
18815 OPTION is the name of the option and CPU_STRING is the argument.
18816 Return the corresponding processor enumeration if the CPU_STRING is
18817 recognized, otherwise report an error and return null.
18818
18819 A similar function exists in GCC. */
e7af610e
NC
18820
18821static const struct mips_cpu_info *
17a2f251 18822mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 18823{
316f5878 18824 const struct mips_cpu_info *p;
e7af610e 18825
316f5878
RS
18826 /* 'from-abi' selects the most compatible architecture for the given
18827 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18828 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18829 version. Look first at the -mgp options, if given, otherwise base
18830 the choice on MIPS_DEFAULT_64BIT.
e7af610e 18831
316f5878
RS
18832 Treat NO_ABI like the EABIs. One reason to do this is that the
18833 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18834 architecture. This code picks MIPS I for 'mips' and MIPS III for
18835 'mips64', just as we did in the days before 'from-abi'. */
18836 if (strcasecmp (cpu_string, "from-abi") == 0)
18837 {
18838 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18839 return mips_cpu_info_from_isa (ISA_MIPS1);
18840
18841 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18842 return mips_cpu_info_from_isa (ISA_MIPS3);
18843
bad1aba3 18844 if (file_mips_opts.gp >= 0)
18845 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 18846 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
18847
18848 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18849 ? ISA_MIPS3
18850 : ISA_MIPS1);
18851 }
18852
18853 /* 'default' has traditionally been a no-op. Probably not very useful. */
18854 if (strcasecmp (cpu_string, "default") == 0)
18855 return 0;
18856
18857 for (p = mips_cpu_info_table; p->name != 0; p++)
18858 if (mips_matching_cpu_name_p (p->name, cpu_string))
18859 return p;
18860
1661c76c 18861 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 18862 return 0;
e7af610e
NC
18863}
18864
316f5878
RS
18865/* Return the canonical processor information for ISA (a member of the
18866 ISA_MIPS* enumeration). */
18867
e7af610e 18868static const struct mips_cpu_info *
17a2f251 18869mips_cpu_info_from_isa (int isa)
e7af610e
NC
18870{
18871 int i;
18872
18873 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 18874 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 18875 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
18876 return (&mips_cpu_info_table[i]);
18877
e972090a 18878 return NULL;
e7af610e 18879}
fef14a42
TS
18880
18881static const struct mips_cpu_info *
17a2f251 18882mips_cpu_info_from_arch (int arch)
fef14a42
TS
18883{
18884 int i;
18885
18886 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18887 if (arch == mips_cpu_info_table[i].cpu)
18888 return (&mips_cpu_info_table[i]);
18889
18890 return NULL;
18891}
316f5878
RS
18892\f
18893static void
17a2f251 18894show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
18895{
18896 if (*first_p)
18897 {
18898 fprintf (stream, "%24s", "");
18899 *col_p = 24;
18900 }
18901 else
18902 {
18903 fprintf (stream, ", ");
18904 *col_p += 2;
18905 }
e7af610e 18906
316f5878
RS
18907 if (*col_p + strlen (string) > 72)
18908 {
18909 fprintf (stream, "\n%24s", "");
18910 *col_p = 24;
18911 }
18912
18913 fprintf (stream, "%s", string);
18914 *col_p += strlen (string);
18915
18916 *first_p = 0;
18917}
18918
18919void
17a2f251 18920md_show_usage (FILE *stream)
e7af610e 18921{
316f5878
RS
18922 int column, first;
18923 size_t i;
18924
18925 fprintf (stream, _("\
18926MIPS options:\n\
316f5878
RS
18927-EB generate big endian output\n\
18928-EL generate little endian output\n\
18929-g, -g2 do not remove unneeded NOPs or swap branches\n\
18930-G NUM allow referencing objects up to NUM bytes\n\
18931 implicitly with the gp register [default 8]\n"));
18932 fprintf (stream, _("\
18933-mips1 generate MIPS ISA I instructions\n\
18934-mips2 generate MIPS ISA II instructions\n\
18935-mips3 generate MIPS ISA III instructions\n\
18936-mips4 generate MIPS ISA IV instructions\n\
18937-mips5 generate MIPS ISA V instructions\n\
18938-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 18939-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
18940-mips32r3 generate MIPS32 release 3 ISA instructions\n\
18941-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 18942-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 18943-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 18944-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
18945-mips64r3 generate MIPS64 release 3 ISA instructions\n\
18946-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 18947-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
18948-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18949
18950 first = 1;
e7af610e
NC
18951
18952 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
18953 show (stream, mips_cpu_info_table[i].name, &column, &first);
18954 show (stream, "from-abi", &column, &first);
18955 fputc ('\n', stream);
e7af610e 18956
316f5878
RS
18957 fprintf (stream, _("\
18958-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18959-no-mCPU don't generate code specific to CPU.\n\
18960 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18961
18962 first = 1;
18963
18964 show (stream, "3900", &column, &first);
18965 show (stream, "4010", &column, &first);
18966 show (stream, "4100", &column, &first);
18967 show (stream, "4650", &column, &first);
18968 fputc ('\n', stream);
18969
18970 fprintf (stream, _("\
18971-mips16 generate mips16 instructions\n\
18972-no-mips16 do not generate mips16 instructions\n"));
18973 fprintf (stream, _("\
df58fc94
RS
18974-mmicromips generate microMIPS instructions\n\
18975-mno-micromips do not generate microMIPS instructions\n"));
18976 fprintf (stream, _("\
e16bfa71 18977-msmartmips generate smartmips instructions\n\
3739860c 18978-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 18979 fprintf (stream, _("\
74cd071d
CF
18980-mdsp generate DSP instructions\n\
18981-mno-dsp do not generate DSP instructions\n"));
18982 fprintf (stream, _("\
8b082fb1
TS
18983-mdspr2 generate DSP R2 instructions\n\
18984-mno-dspr2 do not generate DSP R2 instructions\n"));
18985 fprintf (stream, _("\
8f4f9071
MF
18986-mdspr3 generate DSP R3 instructions\n\
18987-mno-dspr3 do not generate DSP R3 instructions\n"));
18988 fprintf (stream, _("\
ef2e4d86
CF
18989-mmt generate MT instructions\n\
18990-mno-mt do not generate MT instructions\n"));
18991 fprintf (stream, _("\
dec0624d
MR
18992-mmcu generate MCU instructions\n\
18993-mno-mcu do not generate MCU instructions\n"));
18994 fprintf (stream, _("\
56d438b1
CF
18995-mmsa generate MSA instructions\n\
18996-mno-msa do not generate MSA instructions\n"));
18997 fprintf (stream, _("\
7d64c587
AB
18998-mxpa generate eXtended Physical Address (XPA) instructions\n\
18999-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19000 fprintf (stream, _("\
b015e599
AP
19001-mvirt generate Virtualization instructions\n\
19002-mno-virt do not generate Virtualization instructions\n"));
19003 fprintf (stream, _("\
833794fc
MR
19004-minsn32 only generate 32-bit microMIPS instructions\n\
19005-mno-insn32 generate all microMIPS instructions\n"));
19006 fprintf (stream, _("\
c67a084a
NC
19007-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19008-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19009-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19010-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19011-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19012-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19013-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19014-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19015-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19016-O0 remove unneeded NOPs, do not swap branches\n\
19017-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19018--trap, --no-break trap exception on div by 0 and mult overflow\n\
19019--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19020 fprintf (stream, _("\
19021-mhard-float allow floating-point instructions\n\
19022-msoft-float do not allow floating-point instructions\n\
19023-msingle-float only allow 32-bit floating-point operations\n\
19024-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19025--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19026--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19027-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19028
19029 first = 1;
19030
19031 show (stream, "legacy", &column, &first);
19032 show (stream, "2008", &column, &first);
19033
19034 fputc ('\n', stream);
19035
316f5878
RS
19036 fprintf (stream, _("\
19037-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19038-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19039-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19040-non_shared do not generate code that can operate with DSOs\n\
316f5878 19041-xgot assume a 32 bit GOT\n\
dcd410fe 19042-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19043-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19044 position dependent (non shared) code\n\
316f5878
RS
19045-mabi=ABI create ABI conformant object file for:\n"));
19046
19047 first = 1;
19048
19049 show (stream, "32", &column, &first);
19050 show (stream, "o64", &column, &first);
19051 show (stream, "n32", &column, &first);
19052 show (stream, "64", &column, &first);
19053 show (stream, "eabi", &column, &first);
19054
19055 fputc ('\n', stream);
19056
19057 fprintf (stream, _("\
19058-32 create o32 ABI object file (default)\n\
19059-n32 create n32 ABI object file\n\
19060-64 create 64 ABI object file\n"));
e7af610e 19061}
14e777e0 19062
1575952e 19063#ifdef TE_IRIX
14e777e0 19064enum dwarf2_format
413a266c 19065mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19066{
369943fe 19067 if (HAVE_64BIT_SYMBOLS)
1575952e 19068 return dwarf2_format_64bit_irix;
14e777e0
KB
19069 else
19070 return dwarf2_format_32bit;
19071}
1575952e 19072#endif
73369e65
EC
19073
19074int
19075mips_dwarf2_addr_size (void)
19076{
6b6b3450 19077 if (HAVE_64BIT_OBJECTS)
73369e65 19078 return 8;
73369e65
EC
19079 else
19080 return 4;
19081}
5862107c
EC
19082
19083/* Standard calling conventions leave the CFA at SP on entry. */
19084void
19085mips_cfi_frame_initial_instructions (void)
19086{
19087 cfi_add_CFA_def_cfa_register (SP);
19088}
19089
707bfff6
TS
19090int
19091tc_mips_regname_to_dw2regnum (char *regname)
19092{
19093 unsigned int regnum = -1;
19094 unsigned int reg;
19095
19096 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19097 regnum = reg;
19098
19099 return regnum;
19100}
263b2574 19101
19102/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19103 Given a symbolic attribute NAME, return the proper integer value.
19104 Returns -1 if the attribute is not known. */
19105
19106int
19107mips_convert_symbolic_attribute (const char *name)
19108{
19109 static const struct
19110 {
19111 const char * name;
19112 const int tag;
19113 }
19114 attribute_table[] =
19115 {
19116#define T(tag) {#tag, tag}
19117 T (Tag_GNU_MIPS_ABI_FP),
19118 T (Tag_GNU_MIPS_ABI_MSA),
19119#undef T
19120 };
19121 unsigned int i;
19122
19123 if (name == NULL)
19124 return -1;
19125
19126 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19127 if (streq (name, attribute_table[i].name))
19128 return attribute_table[i].tag;
19129
19130 return -1;
19131}
fd5c94ab
RS
19132
19133void
19134md_mips_end (void)
19135{
351cdf24
MF
19136 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19137
fd5c94ab
RS
19138 mips_emit_delays ();
19139 if (cur_proc_ptr)
19140 as_warn (_("missing .end at end of assembly"));
919731af 19141
19142 /* Just in case no code was emitted, do the consistency check. */
19143 file_mips_check_options ();
351cdf24
MF
19144
19145 /* Set a floating-point ABI if the user did not. */
19146 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19147 {
19148 /* Perform consistency checks on the floating-point ABI. */
19149 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19150 Tag_GNU_MIPS_ABI_FP);
19151 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19152 check_fpabi (fpabi);
19153 }
19154 else
19155 {
19156 /* Soft-float gets precedence over single-float, the two options should
19157 not be used together so this should not matter. */
19158 if (file_mips_opts.soft_float == 1)
19159 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19160 /* Single-float gets precedence over all double_float cases. */
19161 else if (file_mips_opts.single_float == 1)
19162 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19163 else
19164 {
19165 switch (file_mips_opts.fp)
19166 {
19167 case 32:
19168 if (file_mips_opts.gp == 32)
19169 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19170 break;
19171 case 0:
19172 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19173 break;
19174 case 64:
19175 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19176 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19177 else if (file_mips_opts.gp == 32)
19178 fpabi = Val_GNU_MIPS_ABI_FP_64;
19179 else
19180 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19181 break;
19182 }
19183 }
19184
19185 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19186 Tag_GNU_MIPS_ABI_FP, fpabi);
19187 }
fd5c94ab 19188}
2f0c68f2
CM
19189
19190/* Returns the relocation type required for a particular CFI encoding. */
19191
19192bfd_reloc_code_real_type
19193mips_cfi_reloc_for_encoding (int encoding)
19194{
19195 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19196 return BFD_RELOC_32_PCREL;
19197 else return BFD_RELOC_NONE;
19198}