]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-mips.c
MIPS16/GAS: Disallow EXTEND delay-slot scheduling
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
6f2750fe 2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24
MF
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
af7ee8bf 426
ad3fea08
TS
427/* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429#define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439/* Return true if ISA supports legacy NAN. */
440#define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
ae52f483
AB
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
ad3fea08 454
bad1aba3 455#define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
ca4e0257 459
bad1aba3 460#define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
ca4e0257 464
316f5878 465#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 466
316f5878 467#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 468
3b91255e
RS
469/* True if relocations are stored in-place. */
470#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
aed1a261
RS
472/* The ABI-derived address size. */
473#define HAVE_64BIT_ADDRESSES \
bad1aba3 474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 475#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 476
aed1a261
RS
477/* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479#define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 482
b7c7d6c1
TS
483/* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
f899b4b8 486#define ADDRESS_ADD_INSN \
b7c7d6c1 487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
488
489#define ADDRESS_ADDI_INSN \
b7c7d6c1 490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
491
492#define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495#define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
a4672219 498/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
499#define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 502
2309ddf2 503/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
504#define CPU_HAS_MICROMIPS(cpu) 0
505
60b63b72
RS
506/* True if CPU has a dror instruction. */
507#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509/* True if CPU has a ror instruction. */
510#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
dd6a37e7 512/* True if CPU is in the Octeon family */
2c629856
N
513#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 515
dd3cbb7e 516/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 517#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 518
0aa27725
RS
519/* True, if CPU has support for ldc1 and sdc1. */
520#define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
c8978940
CD
523/* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535#define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 540 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 545 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 546 || mips_opts.arch == CPU_R4010 \
e407c74b 547 || mips_opts.arch == CPU_R5900 \
c8978940
CD
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
c8978940 552 || mips_opts.arch == CPU_RM7000 \
c8978940 553 || mips_opts.arch == CPU_VR5500 \
df58fc94 554 || mips_opts.micromips \
c8978940 555 )
252b5132
RH
556
557/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
67dc82bc 560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
561 level I and microMIPS mode instructions are always interlocked. */
562#define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
e407c74b 565 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
566 || mips_opts.micromips \
567 )
252b5132 568
81912461
ILT
569/* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
43885403
MF
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
bdaaa2e1 577/* Itbl support may require additional care here. */
81912461
ILT
578#define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
df58fc94 583 || mips_opts.micromips \
81912461
ILT
584 )
585
586/* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592#define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
252b5132 596
6b76fefe
CM
597/* Is this a mfhi or mflo instruction? */
598#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
df58fc94
RS
601/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604#define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
42429eac 607/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 608#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
609#define GPR_SMIN (-GPR_SMAX - 1)
610
252b5132
RH
611/* MIPS PIC level. */
612
a161fe53 613enum mips_pic_level mips_pic;
252b5132 614
c9914766 615/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 616 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 617static int mips_big_got = 0;
252b5132
RH
618
619/* 1 if trap instructions should used for overflow rather than break
620 instructions. */
c9914766 621static int mips_trap = 0;
252b5132 622
119d663a 623/* 1 if double width floating point constants should not be constructed
b6ff326e 624 by assembling two single width halves into two single width floating
119d663a
NC
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
d547a75e 627 in the status register, and the setting of this bit cannot be determined
119d663a
NC
628 automatically at assemble time. */
629static int mips_disable_float_construction;
630
252b5132
RH
631/* Non-zero if any .set noreorder directives were used. */
632
633static int mips_any_noreorder;
634
6b76fefe
CM
635/* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637static int mips_7000_hilo_fix;
638
02ffd3e4 639/* The size of objects in the small data section. */
156c2f8b 640static unsigned int g_switch_value = 8;
252b5132
RH
641/* Whether the -G option was used. */
642static int g_switch_seen = 0;
643
644#define N_RMASK 0xc4
645#define N_VFP 0xd4
646
647/* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
252b5132
RH
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 659static int nopic_need_relax (symbolS *, int);
252b5132
RH
660
661/* handle of the OPCODE hash table */
662static struct hash_control *op_hash = NULL;
663
664/* The opcode hash table we use for the mips16. */
665static struct hash_control *mips16_op_hash = NULL;
666
df58fc94
RS
667/* The opcode hash table we use for the microMIPS ASE. */
668static struct hash_control *micromips_op_hash = NULL;
669
252b5132
RH
670/* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672const char comment_chars[] = "#";
673
674/* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677/* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
bdaaa2e1 679 #NO_APP at the beginning of its output. */
252b5132
RH
680/* Also note that C style comments are always supported. */
681const char line_comment_chars[] = "#";
682
bdaaa2e1 683/* This array holds machine specific line separator characters. */
63a0b638 684const char line_separator_chars[] = ";";
252b5132
RH
685
686/* Chars that can be used to separate mant from exp in floating point nums */
687const char EXP_CHARS[] = "eE";
688
689/* Chars that mean this number is a floating point constant */
690/* As in 0f12.456 */
691/* or 0d1.2345e12 */
692const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
e3de51ce
RS
699/* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705};
706
707/* Information about an error that was found while assembling the current
708 instruction. */
709struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732};
733
734/* The error that should be reported for the current instruction. */
735static struct mips_insn_error insn_error;
252b5132
RH
736
737static int auto_align = 1;
738
739/* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743static offsetT mips_cprestore_offset = -1;
744
67c1ffbe 745/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 746 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 747 offset and even an other register than $gp as global pointer. */
6478892d
TS
748static offsetT mips_cpreturn_offset = -1;
749static int mips_cpreturn_register = -1;
750static int mips_gp_register = GP;
def2e0dd 751static int mips_gprel_offset = 0;
6478892d 752
7a621144
DJ
753/* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755static int mips_cprestore_valid = 0;
756
252b5132
RH
757/* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759static int mips_frame_reg = SP;
760
7a621144
DJ
761/* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763static int mips_frame_reg_valid = 0;
764
252b5132
RH
765/* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768/* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772static int mips_optimize = 2;
773
774/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776static int mips_debug = 0;
777
7d8e00cf
RS
778/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779#define MAX_VR4130_NOPS 4
780
781/* The maximum number of NOPs needed to fill delay slots. */
782#define MAX_DELAY_NOPS 2
783
784/* The maximum number of NOPs needed for any purpose. */
785#define MAX_NOPS 4
71400594
RS
786
787/* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 793
fc76e730 794/* Arrays of operands for each instruction. */
14daeee3 795#define MAX_OPERANDS 6
fc76e730
RS
796struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798};
799static struct mips_operand_array *mips_operands;
800static struct mips_operand_array *mips16_operands;
801static struct mips_operand_array *micromips_operands;
802
1e915849 803/* Nop instructions used by emit_nop. */
df58fc94
RS
804static struct mips_cl_insn nop_insn;
805static struct mips_cl_insn mips16_nop_insn;
806static struct mips_cl_insn micromips_nop16_insn;
807static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
808
809/* The appropriate nop for the current mode. */
833794fc
MR
810#define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
df58fc94
RS
817
818/* The size of NOP_INSN in bytes. */
833794fc
MR
819#define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
252b5132 822
252b5132
RH
823/* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827static fragS *prev_nop_frag;
828
829/* The number of nop instructions we created in prev_nop_frag. */
830static int prev_nop_frag_holds;
831
832/* The number of nop instructions that we know we need in
bdaaa2e1 833 prev_nop_frag. */
252b5132
RH
834static int prev_nop_frag_required;
835
836/* The number of instructions we've seen since prev_nop_frag. */
837static int prev_nop_frag_since;
838
e8044f35
RS
839/* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
252b5132
RH
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
bdaaa2e1 848 corresponding LO relocation. */
252b5132 849
e972090a
NC
850struct mips_hi_fixup
851{
252b5132
RH
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858};
859
860/* The list of unmatched HI relocs. */
861
862static struct mips_hi_fixup *mips_hi_fixup_list;
863
64bdfcaf
RS
864/* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867static fragS *prev_reloc_op_frag;
868
252b5132
RH
869/* Map mips16 register numbers to normal MIPS register numbers. */
870
e972090a
NC
871static const unsigned int mips16_to_32_reg_map[] =
872{
252b5132
RH
873 16, 17, 2, 3, 4, 5, 6, 7
874};
60b63b72 875
df58fc94
RS
876/* Map microMIPS register numbers to normal MIPS register numbers. */
877
df58fc94 878#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
879
880/* The microMIPS registers with type h. */
e76ff5ab 881static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
882{
883 5, 5, 6, 4, 4, 4, 4, 4
884};
e76ff5ab 885static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
886{
887 6, 7, 7, 21, 22, 5, 6, 7
888};
889
df58fc94
RS
890/* The microMIPS registers with type m. */
891static const unsigned int micromips_to_32_reg_m_map[] =
892{
893 0, 17, 2, 3, 16, 18, 19, 20
894};
895
896#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
71400594
RS
898/* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
c67a084a
NC
900enum fix_vr4120_class
901{
71400594
RS
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909};
910
c67a084a
NC
911/* ...likewise -mfix-loongson2f-jump. */
912static bfd_boolean mips_fix_loongson2f_jump;
913
914/* ...likewise -mfix-loongson2f-nop. */
915static bfd_boolean mips_fix_loongson2f_nop;
916
917/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918static bfd_boolean mips_fix_loongson2f;
919
71400594
RS
920/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925/* True if -mfix-vr4120 is in force. */
d766e8ec 926static int mips_fix_vr4120;
4a6a3df4 927
7d8e00cf
RS
928/* ...likewise -mfix-vr4130. */
929static int mips_fix_vr4130;
930
6a32d874
CM
931/* ...likewise -mfix-24k. */
932static int mips_fix_24k;
933
a8d14a88
CM
934/* ...likewise -mfix-rm7000 */
935static int mips_fix_rm7000;
936
d954098f
DD
937/* ...likewise -mfix-cn63xxp1 */
938static bfd_boolean mips_fix_cn63xxp1;
939
4a6a3df4
AO
940/* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945static int mips_relax_branch;
252b5132 946\f
4d7206a2
RS
947/* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
584892a6
RS
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
4d7206a2 964
584892a6
RS
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
4d7206a2 981
df58fc94
RS
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
4d7206a2
RS
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
584892a6 1006#define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
4d7206a2 1007
584892a6
RS
1008#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009#define RELAX_SECOND(X) ((X) & 0xff)
1010#define RELAX_USE_SECOND 0x10000
1011#define RELAX_SECOND_LONGER 0x20000
1012#define RELAX_NOMACRO 0x40000
1013#define RELAX_DELAY_SLOT 0x80000
df58fc94
RS
1014#define RELAX_DELAY_SLOT_16BIT 0x100000
1015#define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016#define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
252b5132 1017
4a6a3df4
AO
1018/* Branch without likely bit. If label is out of range, we turn:
1019
134c0c8b 1020 beq reg1, reg2, label
4a6a3df4
AO
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
b34976b6 1064
4a6a3df4
AO
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
66b3e8da
MR
1085#define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
4a6a3df4 1093#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
66b3e8da
MR
1094#define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095#define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096#define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1099
252b5132
RH
1100/* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120#define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
4a6a3df4 1127#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132
RH
1128#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131#define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136#define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137#define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138#define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
885add95 1139
df58fc94
RS
1140/* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
8484fb75
MR
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162#define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
7bd374a4 1163 uncond, compact, link, nods, \
40209cad
MR
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
8484fb75
MR
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
7bd374a4
MR
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
df58fc94
RS
1176#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75
MR
1179#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182#define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
7bd374a4
MR
1183#define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
8484fb75 1185
7bd374a4
MR
1186#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
df58fc94 1192
43c0598f
RS
1193/* Sign-extend 16-bit value X. */
1194#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
885add95
CD
1196/* Is the given value a sign-extended 32-bit value? */
1197#define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201/* Is the given value a sign-extended 16-bit value? */
1202#define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
df58fc94
RS
1206/* Is the given value a sign-extended 12-bit value? */
1207#define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
7f3c4072
CM
1210/* Is the given value a sign-extended 9-bit value? */
1211#define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
2051e8c4
MR
1214/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215#define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
bf12938e
RS
1219/* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
bf12938e 1224/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1225#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1230#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
5c04167a
RS
1234
1235/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1237\f
df58fc94
RS
1238/* Whether or not we are emitting a branch-likely macro. */
1239static bfd_boolean emit_branch_likely_macro = FALSE;
1240
4d7206a2
RS
1241/* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260} mips_relax;
252b5132 1261\f
584892a6
RS
1262/* Global variables used to decide whether a macro needs a warning. */
1263static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
df58fc94
RS
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
584892a6
RS
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
df58fc94
RS
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
584892a6
RS
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296} mips_macro_warning;
1297\f
252b5132
RH
1298/* Prototypes for static functions. */
1299
252b5132
RH
1300enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
b34976b6 1302static void append_insn
df58fc94
RS
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
7d10b47d 1305static void mips_no_prev_insn (void);
c67a084a 1306static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1307static void mips16_macro_build
03ea81db 1308 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1309static void load_register (int, expressionS *, int);
584892a6
RS
1310static void macro_start (void);
1311static void macro_end (void);
833794fc 1312static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1313static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1314static void mips_ip (char *str, struct mips_cl_insn * ip);
1315static void mips16_ip (char *str, struct mips_cl_insn * ip);
b34976b6 1316static void mips16_immed
3b4dbbbf 1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1318 unsigned int, unsigned long *);
5e0116d5 1319static size_t my_getSmallExpression
17a2f251
TS
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321static void my_getExpression (expressionS *, char *);
1322static void s_align (int);
1323static void s_change_sec (int);
1324static void s_change_section (int);
1325static void s_cons (int);
1326static void s_float_cons (int);
1327static void s_mips_globl (int);
1328static void s_option (int);
1329static void s_mipsset (int);
1330static void s_abicalls (int);
1331static void s_cpload (int);
1332static void s_cpsetup (int);
1333static void s_cplocal (int);
1334static void s_cprestore (int);
1335static void s_cpreturn (int);
741d6ea8
JM
1336static void s_dtprelword (int);
1337static void s_dtpreldword (int);
d0f13682
CLT
1338static void s_tprelword (int);
1339static void s_tpreldword (int);
17a2f251
TS
1340static void s_gpvalue (int);
1341static void s_gpword (int);
1342static void s_gpdword (int);
a3f278e2 1343static void s_ehword (int);
17a2f251
TS
1344static void s_cpadd (int);
1345static void s_insn (int);
ba92f887 1346static void s_nan (int);
919731af 1347static void s_module (int);
17a2f251
TS
1348static void s_mips_ent (int);
1349static void s_mips_end (int);
1350static void s_mips_frame (int);
1351static void s_mips_mask (int reg_type);
1352static void s_mips_stab (int);
1353static void s_mips_weakext (int);
1354static void s_mips_file (int);
1355static void s_mips_loc (int);
1356static bfd_boolean pic_need_relax (symbolS *, asection *);
4a6a3df4 1357static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1358static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1360static void file_mips_check_options (void);
e7af610e
NC
1361
1362/* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
e972090a
NC
1365struct mips_cpu_info
1366{
e7af610e 1367 const char *name; /* CPU or ISA name. */
d16afab6
RS
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372};
1373
ad3fea08 1374#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1375
17a2f251
TS
1376static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1379\f
c31f3936
RS
1380/* Command-line options. */
1381const char *md_shortopts = "O::g::G:";
1382
1383enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
ae52f483
AB
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
7361da2c 1397 OPTION_MIPS32R6,
c31f3936 1398 OPTION_MIPS64R2,
ae52f483
AB
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
7361da2c 1401 OPTION_MIPS64R6,
c31f3936
RS
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
56d438b1
CF
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
c31f3936
RS
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
8f4f9071
MF
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
c31f3936
RS
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
7d64c587
AB
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
c31f3936
RS
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
a8d14a88
CM
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
c31f3936
RS
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
351cdf24 1464 OPTION_FPXX,
c31f3936
RS
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
833794fc
MR
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
c31f3936
RS
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
c31f3936
RS
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
ba92f887 1491 OPTION_NAN,
351cdf24
MF
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
c31f3936
RS
1494 OPTION_END_OF_ENUM
1495 };
1496
1497struct option md_longopts[] =
1498{
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
c31f3936
RS
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
833794fc
MR
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
c31f3936
RS
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1626 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1627
1628 {NULL, no_argument, NULL, 0}
1629};
1630size_t md_longopts_size = sizeof (md_longopts);
1631\f
c6278170
RS
1632/* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635struct mips_ase
1636{
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
7361da2c
AB
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
c6278170
RS
1663};
1664
1665/* A table of all supported ASEs. */
1666static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1669 2, 2, 2, 2,
1670 -1 },
c6278170
RS
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1674 2, 2, 2, 2,
1675 -1 },
c6278170 1676
8f4f9071
MF
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
c6278170
RS
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1684 2, 2, 2, 2,
1685 -1 },
c6278170
RS
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1689 2, 2, 2, 2,
1690 -1 },
c6278170
RS
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1695 -1, 1, -1, -1,
1696 6 },
c6278170
RS
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1701 2, 1, -1, -1,
1702 6 },
c6278170
RS
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1706 2, 2, -1, -1,
1707 -1 },
c6278170
RS
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1711 1, -1, -1, -1,
1712 6 },
c6278170
RS
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1716 2, 2, 2, 2,
1717 -1 },
56d438b1
CF
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1721 2, 2, 2, 2,
1722 -1 },
7d64c587
AB
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
7361da2c
AB
1726 2, 2, -1, -1,
1727 -1 },
c6278170
RS
1728};
1729
1730/* The set of ASEs that require -mfp64. */
82bda27b 1731#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1732
1733/* Groups of ASE_* flags that represent different revisions of an ASE. */
1734static const unsigned int mips_ase_groups[] = {
8f4f9071 1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
c6278170
RS
1736};
1737\f
252b5132
RH
1738/* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
d84bcf09 1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1754
e972090a
NC
1755static const pseudo_typeS mips_pseudo_table[] =
1756{
beae10d5 1757 /* MIPS specific pseudo-ops. */
252b5132
RH
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
6478892d
TS
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
252b5132 1767 {"cprestore", s_cprestore, 0},
6478892d 1768 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
6478892d 1773 {"gpvalue", s_gpvalue, 0},
252b5132 1774 {"gpword", s_gpword, 0},
10181a0d 1775 {"gpdword", s_gpdword, 0},
a3f278e2 1776 {"ehword", s_ehword, 0},
252b5132
RH
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
ba92f887 1779 {"nan", s_nan, 0},
919731af 1780 {"module", s_module, 0},
252b5132 1781
beae10d5 1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1783 chips. */
38a57ae7 1784 {"asciiz", stringer, 8 + 1},
252b5132
RH
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
252b5132 1792
998b3c36
MR
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
beae10d5 1796 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
cca86cc8 1810 {"section", s_change_section, 0},
252b5132
RH
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
754e2bb9 1813 {"stabd", s_mips_stab, 'd'},
252b5132 1814 {"stabn", s_mips_stab, 'n'},
754e2bb9 1815 {"stabs", s_mips_stab, 's'},
252b5132
RH
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
add56521 1818
add56521 1819 { "extern", ecoff_directive_extern, 0},
add56521 1820
43841e91 1821 { NULL, NULL, 0 },
252b5132
RH
1822};
1823
e972090a
NC
1824static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825{
beae10d5
KH
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
c5dd6aab 1833 {"file", s_mips_file, 0},
252b5132
RH
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
c5dd6aab 1836 {"loc", s_mips_loc, 0},
252b5132
RH
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
43841e91 1839 { NULL, NULL, 0 },
252b5132
RH
1840};
1841
3ae8dd8d
MR
1842/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845int
1846mips_address_bytes (void)
1847{
919731af 1848 file_mips_check_options ();
3ae8dd8d
MR
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850}
1851
17a2f251 1852extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1853
1854void
17a2f251 1855mips_pop_insert (void)
252b5132
RH
1856{
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860}
1861\f
1862/* Symbols labelling the current insn. */
1863
e972090a
NC
1864struct insn_label_list
1865{
252b5132
RH
1866 struct insn_label_list *next;
1867 symbolS *label;
1868};
1869
252b5132 1870static struct insn_label_list *free_insn_labels;
742a56fe 1871#define label_list tc_segment_info_data.labels
252b5132 1872
17a2f251 1873static void mips_clear_insn_labels (void);
df58fc94
RS
1874static void mips_mark_labels (void);
1875static void mips_compressed_mark_labels (void);
252b5132
RH
1876
1877static inline void
17a2f251 1878mips_clear_insn_labels (void)
252b5132 1879{
ed9e98c2 1880 struct insn_label_list **pl;
a8dbcb85 1881 segment_info_type *si;
252b5132 1882
a8dbcb85
TS
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
3739860c 1887
a8dbcb85
TS
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
252b5132 1892}
a8dbcb85 1893
df58fc94
RS
1894/* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896static inline void
1897mips_mark_labels (void)
1898{
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901}
252b5132
RH
1902\f
1903static char *expr_end;
1904
e423441d 1905/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 1906 mips16_ip and when populated is always an O_constant. */
252b5132
RH
1907
1908static expressionS imm_expr;
252b5132 1909
77bd4346
RS
1910/* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
252b5132 1914
77bd4346 1915static expressionS offset_expr;
f6688943
TS
1916static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 1918
df58fc94
RS
1919/* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
252b5132 1922
df58fc94 1923static unsigned int forced_insn_length;
252b5132 1924
e1b47bd5
RS
1925/* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928static bfd_boolean mips_assembling_insn;
1929
ecb4347a
DJ
1930/* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
252b5132
RH
1932
1933static segT pdr_seg;
252b5132 1934
e013f690
TS
1935/* The default target format to use. */
1936
aeffff67
RS
1937#if defined (TE_FreeBSD)
1938#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939#elif defined (TE_TMIPS)
1940#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941#else
1942#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943#endif
1944
e013f690 1945const char *
17a2f251 1946mips_target_format (void)
e013f690
TS
1947{
1948 switch (OUTPUT_FLAVOR)
1949 {
e013f690 1950 case bfd_target_elf_flavour:
0a44bf69
RS
1951#ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956#endif
e013f690 1957 return (target_big_endian
cfe86eaa 1958 ? (HAVE_64BIT_OBJECTS
aeffff67 1959 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 1960 : (HAVE_NEWABI
aeffff67
RS
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 1963 : (HAVE_64BIT_OBJECTS
aeffff67 1964 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 1965 : (HAVE_NEWABI
aeffff67
RS
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972}
1973
c6278170
RS
1974/* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977static int
1978mips_isa_rev (void)
1979{
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
ae52f483
AB
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
7361da2c
AB
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
c6278170
RS
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000}
2001
2002/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004static unsigned int
2005mips_ase_mask (unsigned int flags)
2006{
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013}
2014
2015/* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018static void
2019mips_check_isa_supports_ase (const struct mips_ase *ase)
2020{
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
1661c76c 2037 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2038 " `%s' extension"), size, base, ase->name);
2039 else
1661c76c 2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2041 ase->name, base, size, min_rev);
2042 }
7361da2c
AB
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
c6278170 2053 if ((ase->flags & FP64_ASES)
0b35dfee 2054 && mips_opts.fp != 64
c6278170
RS
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
1661c76c 2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2059 }
2060}
2061
2062/* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065static void
2066mips_check_isa_supports_ases (void)
2067{
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076}
2077
2078/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081static unsigned int
919731af 2082mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
c6278170
RS
2084{
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
919731af 2088 opts->ase &= ~mask;
c6278170 2089 if (enabled_p)
919731af 2090 opts->ase |= ase->flags;
c6278170
RS
2091 return mask;
2092}
2093
2094/* Return the ASE called NAME, or null if none. */
2095
2096static const struct mips_ase *
2097mips_lookup_ase (const char *name)
2098{
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105}
2106
df58fc94 2107/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
df58fc94
RS
2110
2111static inline unsigned int
2112micromips_insn_length (const struct mips_opcode *mo)
2113{
7fd53920 2114 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2115}
2116
5c04167a
RS
2117/* Return the length of MIPS16 instruction OPCODE. */
2118
2119static inline unsigned int
2120mips16_opcode_length (unsigned long opcode)
2121{
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123}
2124
1e915849
RS
2125/* Return the length of instruction INSN. */
2126
2127static inline unsigned int
2128insn_length (const struct mips_cl_insn *insn)
2129{
df58fc94
RS
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
5c04167a 2133 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2134 else
1e915849 2135 return 4;
1e915849
RS
2136}
2137
2138/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140static void
2141create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142{
2143 size_t i;
2144
2145 insn->insn_mo = mo;
1e915849
RS
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
15be625d 2154 insn->complete_p = 0;
e407c74b 2155 insn->cleared_p = 0;
1e915849
RS
2156}
2157
fc76e730
RS
2158/* Get a list of all the operands in INSN. */
2159
2160static const struct mips_operand_array *
2161insn_operands (const struct mips_cl_insn *insn)
2162{
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176}
2177
2178/* Get a description of operand OPNO of INSN. */
2179
2180static const struct mips_operand *
2181insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182{
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189}
2190
e077a1c8
RS
2191/* Install UVAL as the value of OPERAND in INSN. */
2192
2193static inline void
2194insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196{
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198}
2199
fc76e730
RS
2200/* Extract the value of OPERAND from INSN. */
2201
2202static inline unsigned
2203insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205{
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207}
2208
df58fc94 2209/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2210
2211static void
df58fc94 2212mips_record_compressed_mode (void)
742a56fe
RS
2213{
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2221}
2222
4d68580a
RS
2223/* Read a standard MIPS instruction from BUF. */
2224
2225static unsigned long
2226read_insn (char *buf)
2227{
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232}
2233
2234/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237static char *
2238write_insn (char *buf, unsigned int insn)
2239{
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242}
2243
2244/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247static unsigned long
2248read_compressed_insn (char *buf, unsigned int length)
2249{
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264}
2265
5c04167a
RS
2266/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269static char *
2270write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271{
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277}
2278
1e915849
RS
2279/* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281static void
2282install_insn (const struct mips_cl_insn *insn)
2283{
2284 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2287 else
4d68580a 2288 write_insn (f, insn->insn_opcode);
df58fc94 2289 mips_record_compressed_mode ();
1e915849
RS
2290}
2291
2292/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295static void
2296move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297{
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309}
2310
2311/* Add INSN to the end of the output. */
2312
2313static void
2314add_fixed_insn (struct mips_cl_insn *insn)
2315{
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318}
2319
2320/* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323static void
2324add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326{
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332}
2333
2334/* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337static void
2338insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340{
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351}
2352
e3de51ce
RS
2353/* Clear the error in insn_error. */
2354
2355static void
2356clear_insn_error (void)
2357{
2358 memset (&insn_error, 0, sizeof (insn_error));
2359}
2360
2361/* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367static bfd_boolean
2368set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370{
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400}
2401
2402/* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405static void
2406set_insn_error (int argnum, const char *msg)
2407{
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409}
2410
2411/* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414static void
2415set_insn_error_i (int argnum, const char *msg, int i)
2416{
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419}
2420
2421/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424static void
2425set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426{
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432}
2433
2434/* Report the error in insn_error, which is against assembly code STR. */
2435
2436static void
2437report_insn_error (const char *str)
2438{
e1fa0163 2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2440
e3de51ce
RS
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
e1fa0163
NC
2455
2456 free ((char *) msg);
e3de51ce
RS
2457}
2458
71400594
RS
2459/* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463static void
2464init_vr4120_conflicts (void)
2465{
2466#define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500#undef CONFLICT
2501}
2502
707bfff6
TS
2503struct regname {
2504 const char *name;
2505 unsigned int num;
2506};
2507
14daeee3 2508#define RNUM_MASK 0x00000ff
56d438b1 2509#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2510#define RTYPE_NUM 0x0000100
2511#define RTYPE_FPU 0x0000200
2512#define RTYPE_FCC 0x0000400
2513#define RTYPE_VEC 0x0000800
2514#define RTYPE_GP 0x0001000
2515#define RTYPE_CP0 0x0002000
2516#define RTYPE_PC 0x0004000
2517#define RTYPE_ACC 0x0008000
2518#define RTYPE_CCC 0x0010000
2519#define RTYPE_VI 0x0020000
2520#define RTYPE_VF 0x0040000
2521#define RTYPE_R5900_I 0x0080000
2522#define RTYPE_R5900_Q 0x0100000
2523#define RTYPE_R5900_R 0x0200000
2524#define RTYPE_R5900_ACC 0x0400000
56d438b1 2525#define RTYPE_MSA 0x0800000
14daeee3 2526#define RWARN 0x8000000
707bfff6
TS
2527
2528#define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
3739860c 2560 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2561
2562#define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596#define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606#define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616#define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630#define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2643
2644/* Remaining symbolic register names */
2645#define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675#define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678#define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
14daeee3
RS
2712#define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715#define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718#define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721#define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
707bfff6
TS
2724#define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
3739860c 2738 one of the tables below once mips_abi is set after
707bfff6
TS
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
707bfff6
TS
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750};
2751
2752static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755};
2756
2757static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760};
2761
a92713e6
RS
2762/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
df58fc94 2766
a92713e6
RS
2767static unsigned int
2768mips_prefer_vec_regno (unsigned int symval)
707bfff6 2769{
a92713e6
RS
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773}
2774
14daeee3
RS
2775/* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2777
2778static bfd_boolean
14daeee3 2779mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2780{
707bfff6 2781 char save_c;
14daeee3 2782 symbolS *symbol;
707bfff6
TS
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
a92713e6
RS
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
14daeee3
RS
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797}
2798
2799/* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809static bfd_boolean
2810mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812{
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
a92713e6 2848 *sptr = e;
14daeee3
RS
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
a92713e6
RS
2852 return TRUE;
2853}
2854
2855/* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859static int
2860reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861{
2862 unsigned int regno;
2863
14daeee3 2864 if (mips_parse_register (s, &regno, NULL))
707bfff6 2865 {
a92713e6
RS
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
707bfff6 2872 }
a92713e6 2873 else
707bfff6 2874 {
a92713e6 2875 if (types & RWARN)
1661c76c 2876 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 2877 regno = ~0;
707bfff6 2878 }
707bfff6 2879 if (regnop)
a92713e6
RS
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
707bfff6
TS
2882}
2883
14daeee3
RS
2884/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887static char *
2888mips_parse_vu0_channels (char *s, unsigned int *channels)
2889{
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900}
2901
a92713e6
RS
2902/* Token types for parsed operand lists. */
2903enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
df58fc94 2906
14daeee3
RS
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
56d438b1
CF
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
df58fc94 2915
a92713e6
RS
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
14daeee3
RS
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
a92713e6
RS
2932 /* The end of the operand list. */
2933 OT_END
2934};
2935
2936/* A parsed operand token. */
2937struct mips_operand_token
2938{
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
56d438b1 2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
2944 unsigned int regno;
2945
14daeee3
RS
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
56d438b1
CF
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
a92713e6
RS
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
14daeee3 2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
2975 char ch;
2976 } u;
2977};
2978
2979/* An obstack used to construct lists of mips_operand_tokens. */
2980static struct obstack mips_operand_tokens;
2981
2982/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984static void
2985mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987{
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990}
2991
2992/* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996static char *
2997mips_parse_base_start (char *s)
2998{
2999 struct mips_operand_token token;
14daeee3
RS
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
df58fc94 3002
a92713e6
RS
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
14daeee3
RS
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
14daeee3
RS
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
a92713e6
RS
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
14daeee3
RS
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
a92713e6
RS
3050 return s;
3051}
3052
3053/* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058static char *
3059mips_parse_argument_token (char *s, char float_format)
3060{
6d4af3c2
AM
3061 char *end, *save_in;
3062 const char *err;
14daeee3 3063 unsigned int regno1, regno2, channels;
a92713e6
RS
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
14daeee3 3082 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3083 {
14daeee3
RS
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
a92713e6
RS
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
df58fc94 3097 {
a92713e6
RS
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
14daeee3 3101 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3102 {
1661c76c 3103 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3104 return 0;
3105 }
df58fc94 3106
a92713e6
RS
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
a92713e6 3112
56d438b1
CF
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
a92713e6
RS
3120 ++s;
3121 SKIP_SPACE_TABS (s);
56d438b1
CF
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
a92713e6 3125 {
56d438b1
CF
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3137 }
a92713e6
RS
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
1661c76c 3141 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3142 return 0;
3143 }
3144 ++s;
df58fc94 3145 }
a92713e6 3146 return s;
df58fc94
RS
3147 }
3148
a92713e6
RS
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
e3de51ce 3160 set_insn_error (0, err);
a92713e6
RS
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178}
3179
3180/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188static struct mips_operand_token *
3189mips_parse_arguments (char *s, char float_format)
3190{
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3207}
3208
d301a56b
RS
3209/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3211
3212static bfd_boolean
f79e2745 3213is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3214{
3215 int isa = mips_opts.isa;
846ef2d0 3216 int ase = mips_opts.ase;
037b32b9 3217 int fp_s, fp_d;
c6278170 3218 unsigned int i;
037b32b9 3219
be0fcbee 3220 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
037b32b9 3224
d301a56b 3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249}
3250
3251/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254static bfd_boolean
3255is_opcode_valid_16 (const struct mips_opcode *mo)
3256{
d301a56b 3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
037b32b9
AN
3258}
3259
df58fc94 3260/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3261 explicitly requested. Always TRUE in the standard MIPS mode.
3262 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3263
3264static bfd_boolean
3265is_size_valid (const struct mips_opcode *mo)
3266{
3267 if (!mips_opts.micromips)
3268 return TRUE;
3269
833794fc
MR
3270 if (mips_opts.insn32)
3271 {
3272 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3273 return FALSE;
3274 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3275 return FALSE;
3276 }
df58fc94
RS
3277 if (!forced_insn_length)
3278 return TRUE;
3279 if (mo->pinfo == INSN_MACRO)
3280 return FALSE;
3281 return forced_insn_length == micromips_insn_length (mo);
3282}
3283
7fd53920
MR
3284/* Return TRUE if the size of the MIPS16 opcode MO matches one
3285 explicitly requested. */
3286
3287static bfd_boolean
3288is_size_valid_16 (const struct mips_opcode *mo)
3289{
3290 if (!forced_insn_length)
3291 return TRUE;
3292 if (mo->pinfo == INSN_MACRO)
3293 return FALSE;
3294 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3295 return FALSE;
3296 return TRUE;
3297}
3298
df58fc94 3299/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3300 of the preceding instruction. Always TRUE in the standard MIPS mode.
3301
3302 We don't accept macros in 16-bit delay slots to avoid a case where
3303 a macro expansion fails because it relies on a preceding 32-bit real
3304 instruction to have matched and does not handle the operands correctly.
3305 The only macros that may expand to 16-bit instructions are JAL that
3306 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3307 and BGT (that likewise cannot be placed in a delay slot) that decay to
3308 a NOP. In all these cases the macros precede any corresponding real
3309 instruction definitions in the opcode table, so they will match in the
3310 second pass where the size of the delay slot is ignored and therefore
3311 produce correct code. */
df58fc94
RS
3312
3313static bfd_boolean
3314is_delay_slot_valid (const struct mips_opcode *mo)
3315{
3316 if (!mips_opts.micromips)
3317 return TRUE;
3318
3319 if (mo->pinfo == INSN_MACRO)
c06dec14 3320 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3321 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3322 && micromips_insn_length (mo) != 4)
3323 return FALSE;
3324 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3325 && micromips_insn_length (mo) != 2)
3326 return FALSE;
3327
3328 return TRUE;
3329}
3330
fc76e730
RS
3331/* For consistency checking, verify that all bits of OPCODE are specified
3332 either by the match/mask part of the instruction definition, or by the
3333 operand list. Also build up a list of operands in OPERANDS.
3334
3335 INSN_BITS says which bits of the instruction are significant.
3336 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3337 provides the mips_operand description of each operand. DECODE_OPERAND
3338 is null for MIPS16 instructions. */
ab902481
RS
3339
3340static int
3341validate_mips_insn (const struct mips_opcode *opcode,
3342 unsigned long insn_bits,
fc76e730
RS
3343 const struct mips_operand *(*decode_operand) (const char *),
3344 struct mips_operand_array *operands)
ab902481
RS
3345{
3346 const char *s;
fc76e730 3347 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3348 const struct mips_operand *operand;
3349
fc76e730
RS
3350 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3351 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3352 {
3353 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3354 opcode->name, opcode->args);
3355 return 0;
3356 }
3357 used_bits = 0;
fc76e730 3358 opno = 0;
14daeee3
RS
3359 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3360 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3361 for (s = opcode->args; *s; ++s)
3362 switch (*s)
3363 {
3364 case ',':
3365 case '(':
3366 case ')':
3367 break;
3368
14daeee3
RS
3369 case '#':
3370 s++;
3371 break;
3372
ab902481 3373 default:
fc76e730 3374 if (!decode_operand)
7fd53920 3375 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3376 else
3377 operand = decode_operand (s);
3378 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3379 {
3380 as_bad (_("internal: unknown operand type: %s %s"),
3381 opcode->name, opcode->args);
3382 return 0;
3383 }
fc76e730
RS
3384 gas_assert (opno < MAX_OPERANDS);
3385 operands->operand[opno] = operand;
14daeee3 3386 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3387 {
14daeee3 3388 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3389 if (operand->type == OP_MDMX_IMM_REG)
3390 /* Bit 5 is the format selector (OB vs QH). The opcode table
3391 has separate entries for each format. */
3392 used_bits &= ~(1 << (operand->lsb + 5));
3393 if (operand->type == OP_ENTRY_EXIT_LIST)
3394 used_bits &= ~(mask & 0x700);
3395 }
ab902481 3396 /* Skip prefix characters. */
7361da2c 3397 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3398 ++s;
fc76e730 3399 opno += 1;
ab902481
RS
3400 break;
3401 }
fc76e730 3402 doubled = used_bits & mask & insn_bits;
ab902481
RS
3403 if (doubled)
3404 {
3405 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3406 " %s %s"), doubled, opcode->name, opcode->args);
3407 return 0;
3408 }
fc76e730 3409 used_bits |= mask;
ab902481 3410 undefined = ~used_bits & insn_bits;
fc76e730 3411 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3412 {
3413 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3414 undefined, opcode->name, opcode->args);
3415 return 0;
3416 }
3417 used_bits &= ~insn_bits;
3418 if (used_bits)
3419 {
3420 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3421 used_bits, opcode->name, opcode->args);
3422 return 0;
3423 }
3424 return 1;
3425}
3426
fc76e730
RS
3427/* The MIPS16 version of validate_mips_insn. */
3428
3429static int
3430validate_mips16_insn (const struct mips_opcode *opcode,
3431 struct mips_operand_array *operands)
3432{
7fd53920 3433 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3434
7fd53920 3435 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3436}
3437
ab902481
RS
3438/* The microMIPS version of validate_mips_insn. */
3439
3440static int
fc76e730
RS
3441validate_micromips_insn (const struct mips_opcode *opc,
3442 struct mips_operand_array *operands)
ab902481
RS
3443{
3444 unsigned long insn_bits;
3445 unsigned long major;
3446 unsigned int length;
3447
fc76e730
RS
3448 if (opc->pinfo == INSN_MACRO)
3449 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3450 operands);
3451
ab902481
RS
3452 length = micromips_insn_length (opc);
3453 if (length != 2 && length != 4)
3454 {
1661c76c 3455 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3456 "%s %s"), length, opc->name, opc->args);
3457 return 0;
3458 }
3459 major = opc->match >> (10 + 8 * (length - 2));
3460 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3461 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3462 {
1661c76c 3463 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3464 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3465 return 0;
3466 }
3467
3468 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3469 insn_bits = 1 << 4 * length;
3470 insn_bits <<= 4 * length;
3471 insn_bits -= 1;
fc76e730
RS
3472 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3473 operands);
ab902481
RS
3474}
3475
707bfff6
TS
3476/* This function is called once, at assembler startup time. It should set up
3477 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3478
252b5132 3479void
17a2f251 3480md_begin (void)
252b5132 3481{
3994f87e 3482 const char *retval = NULL;
156c2f8b 3483 int i = 0;
252b5132 3484 int broken = 0;
1f25f5d3 3485
0a44bf69
RS
3486 if (mips_pic != NO_PIC)
3487 {
3488 if (g_switch_seen && g_switch_value != 0)
3489 as_bad (_("-G may not be used in position-independent code"));
3490 g_switch_value = 0;
3491 }
00acd688
CM
3492 else if (mips_abicalls)
3493 {
3494 if (g_switch_seen && g_switch_value != 0)
3495 as_bad (_("-G may not be used with abicalls"));
3496 g_switch_value = 0;
3497 }
0a44bf69 3498
0b35dfee 3499 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3500 as_warn (_("could not set architecture and machine"));
252b5132 3501
252b5132
RH
3502 op_hash = hash_new ();
3503
fc76e730 3504 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3505 for (i = 0; i < NUMOPCODES;)
3506 {
3507 const char *name = mips_opcodes[i].name;
3508
17a2f251 3509 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3510 if (retval != NULL)
3511 {
3512 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3513 mips_opcodes[i].name, retval);
3514 /* Probably a memory allocation problem? Give up now. */
1661c76c 3515 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3516 }
3517 do
3518 {
fc76e730
RS
3519 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3520 decode_mips_operand, &mips_operands[i]))
3521 broken = 1;
3522 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3523 {
fc76e730
RS
3524 create_insn (&nop_insn, mips_opcodes + i);
3525 if (mips_fix_loongson2f_nop)
3526 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3527 nop_insn.fixed_p = 1;
252b5132
RH
3528 }
3529 ++i;
3530 }
3531 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3532 }
3533
3534 mips16_op_hash = hash_new ();
fc76e730
RS
3535 mips16_operands = XCNEWVEC (struct mips_operand_array,
3536 bfd_mips16_num_opcodes);
252b5132
RH
3537
3538 i = 0;
3539 while (i < bfd_mips16_num_opcodes)
3540 {
3541 const char *name = mips16_opcodes[i].name;
3542
17a2f251 3543 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 mips16_opcodes[i].name, retval);
3547 do
3548 {
fc76e730
RS
3549 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3550 broken = 1;
1e915849
RS
3551 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3552 {
3553 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3554 mips16_nop_insn.fixed_p = 1;
3555 }
252b5132
RH
3556 ++i;
3557 }
3558 while (i < bfd_mips16_num_opcodes
3559 && strcmp (mips16_opcodes[i].name, name) == 0);
3560 }
3561
df58fc94 3562 micromips_op_hash = hash_new ();
fc76e730
RS
3563 micromips_operands = XCNEWVEC (struct mips_operand_array,
3564 bfd_micromips_num_opcodes);
df58fc94
RS
3565
3566 i = 0;
3567 while (i < bfd_micromips_num_opcodes)
3568 {
3569 const char *name = micromips_opcodes[i].name;
3570
3571 retval = hash_insert (micromips_op_hash, name,
3572 (void *) &micromips_opcodes[i]);
3573 if (retval != NULL)
3574 as_fatal (_("internal: can't hash `%s': %s"),
3575 micromips_opcodes[i].name, retval);
3576 do
fc76e730
RS
3577 {
3578 struct mips_cl_insn *micromips_nop_insn;
3579
3580 if (!validate_micromips_insn (&micromips_opcodes[i],
3581 &micromips_operands[i]))
3582 broken = 1;
3583
3584 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3585 {
3586 if (micromips_insn_length (micromips_opcodes + i) == 2)
3587 micromips_nop_insn = &micromips_nop16_insn;
3588 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3589 micromips_nop_insn = &micromips_nop32_insn;
3590 else
3591 continue;
3592
3593 if (micromips_nop_insn->insn_mo == NULL
3594 && strcmp (name, "nop") == 0)
3595 {
3596 create_insn (micromips_nop_insn, micromips_opcodes + i);
3597 micromips_nop_insn->fixed_p = 1;
3598 }
3599 }
3600 }
df58fc94
RS
3601 while (++i < bfd_micromips_num_opcodes
3602 && strcmp (micromips_opcodes[i].name, name) == 0);
3603 }
3604
252b5132 3605 if (broken)
1661c76c 3606 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3607
3608 /* We add all the general register names to the symbol table. This
3609 helps us detect invalid uses of them. */
3739860c 3610 for (i = 0; reg_names[i].name; i++)
707bfff6 3611 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3612 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3613 &zero_address_frag));
3614 if (HAVE_NEWABI)
3739860c 3615 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3616 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3617 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3618 &zero_address_frag));
707bfff6 3619 else
3739860c 3620 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3621 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3622 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3623 &zero_address_frag));
6047c971 3624
14daeee3
RS
3625 for (i = 0; i < 32; i++)
3626 {
92fce9bd 3627 char regname[6];
14daeee3
RS
3628
3629 /* R5900 VU0 floating-point register. */
92fce9bd 3630 sprintf (regname, "$vf%d", i);
14daeee3
RS
3631 symbol_table_insert (symbol_new (regname, reg_section,
3632 RTYPE_VF | i, &zero_address_frag));
3633
3634 /* R5900 VU0 integer register. */
92fce9bd 3635 sprintf (regname, "$vi%d", i);
14daeee3
RS
3636 symbol_table_insert (symbol_new (regname, reg_section,
3637 RTYPE_VI | i, &zero_address_frag));
3638
56d438b1 3639 /* MSA register. */
92fce9bd 3640 sprintf (regname, "$w%d", i);
56d438b1
CF
3641 symbol_table_insert (symbol_new (regname, reg_section,
3642 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3643 }
3644
a92713e6
RS
3645 obstack_init (&mips_operand_tokens);
3646
7d10b47d 3647 mips_no_prev_insn ();
252b5132
RH
3648
3649 mips_gprmask = 0;
3650 mips_cprmask[0] = 0;
3651 mips_cprmask[1] = 0;
3652 mips_cprmask[2] = 0;
3653 mips_cprmask[3] = 0;
3654
3655 /* set the default alignment for the text section (2**2) */
3656 record_alignment (text_section, 2);
3657
4d0d148d 3658 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3659
f3ded42a
RS
3660 /* On a native system other than VxWorks, sections must be aligned
3661 to 16 byte boundaries. When configured for an embedded ELF
3662 target, we don't bother. */
3663 if (strncmp (TARGET_OS, "elf", 3) != 0
3664 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3665 {
f3ded42a
RS
3666 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3667 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3668 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3669 }
252b5132 3670
f3ded42a
RS
3671 /* Create a .reginfo section for register masks and a .mdebug
3672 section for debugging information. */
3673 {
3674 segT seg;
3675 subsegT subseg;
3676 flagword flags;
3677 segT sec;
3678
3679 seg = now_seg;
3680 subseg = now_subseg;
3681
3682 /* The ABI says this section should be loaded so that the
3683 running program can access it. However, we don't load it
3684 if we are configured for an embedded target */
3685 flags = SEC_READONLY | SEC_DATA;
3686 if (strncmp (TARGET_OS, "elf", 3) != 0)
3687 flags |= SEC_ALLOC | SEC_LOAD;
3688
3689 if (mips_abi != N64_ABI)
252b5132 3690 {
f3ded42a 3691 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3692
f3ded42a
RS
3693 bfd_set_section_flags (stdoutput, sec, flags);
3694 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3695
f3ded42a
RS
3696 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3697 }
3698 else
3699 {
3700 /* The 64-bit ABI uses a .MIPS.options section rather than
3701 .reginfo section. */
3702 sec = subseg_new (".MIPS.options", (subsegT) 0);
3703 bfd_set_section_flags (stdoutput, sec, flags);
3704 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3705
f3ded42a
RS
3706 /* Set up the option header. */
3707 {
3708 Elf_Internal_Options opthdr;
3709 char *f;
3710
3711 opthdr.kind = ODK_REGINFO;
3712 opthdr.size = (sizeof (Elf_External_Options)
3713 + sizeof (Elf64_External_RegInfo));
3714 opthdr.section = 0;
3715 opthdr.info = 0;
3716 f = frag_more (sizeof (Elf_External_Options));
3717 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3718 (Elf_External_Options *) f);
3719
3720 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3721 }
3722 }
252b5132 3723
351cdf24
MF
3724 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3725 bfd_set_section_flags (stdoutput, sec,
3726 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3727 bfd_set_section_alignment (stdoutput, sec, 3);
3728 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3729
f3ded42a
RS
3730 if (ECOFF_DEBUGGING)
3731 {
3732 sec = subseg_new (".mdebug", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, sec,
3734 SEC_HAS_CONTENTS | SEC_READONLY);
3735 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3736 }
f3ded42a
RS
3737 else if (mips_flag_pdr)
3738 {
3739 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3740 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3741 SEC_READONLY | SEC_RELOC
3742 | SEC_DEBUGGING);
3743 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3744 }
3745
3746 subseg_set (seg, subseg);
3747 }
252b5132 3748
71400594
RS
3749 if (mips_fix_vr4120)
3750 init_vr4120_conflicts ();
252b5132
RH
3751}
3752
351cdf24
MF
3753static inline void
3754fpabi_incompatible_with (int fpabi, const char *what)
3755{
3756 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758}
3759
3760static inline void
3761fpabi_requires (int fpabi, const char *what)
3762{
3763 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3764 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3765}
3766
3767/* Check -mabi and register sizes against the specified FP ABI. */
3768static void
3769check_fpabi (int fpabi)
3770{
351cdf24
MF
3771 switch (fpabi)
3772 {
3773 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3774 if (file_mips_opts.soft_float)
3775 fpabi_incompatible_with (fpabi, "softfloat");
3776 else if (file_mips_opts.single_float)
3777 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3778 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3779 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3780 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3781 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3782 break;
3783
3784 case Val_GNU_MIPS_ABI_FP_XX:
3785 if (mips_abi != O32_ABI)
3786 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3787 else if (file_mips_opts.soft_float)
3788 fpabi_incompatible_with (fpabi, "softfloat");
3789 else if (file_mips_opts.single_float)
3790 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3791 else if (file_mips_opts.fp != 0)
3792 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_64A:
3796 case Val_GNU_MIPS_ABI_FP_64:
3797 if (mips_abi != O32_ABI)
3798 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3799 else if (file_mips_opts.soft_float)
3800 fpabi_incompatible_with (fpabi, "softfloat");
3801 else if (file_mips_opts.single_float)
3802 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3803 else if (file_mips_opts.fp != 64)
3804 fpabi_requires (fpabi, "fp=64");
3805 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3806 fpabi_incompatible_with (fpabi, "nooddspreg");
3807 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3808 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SINGLE:
3812 if (file_mips_opts.soft_float)
3813 fpabi_incompatible_with (fpabi, "softfloat");
3814 else if (!file_mips_opts.single_float)
3815 fpabi_requires (fpabi, "singlefloat");
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_SOFT:
3819 if (!file_mips_opts.soft_float)
3820 fpabi_requires (fpabi, "softfloat");
3821 break;
3822
3823 case Val_GNU_MIPS_ABI_FP_OLD_64:
3824 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3825 Tag_GNU_MIPS_ABI_FP, fpabi);
3826 break;
3827
3350cc01
CM
3828 case Val_GNU_MIPS_ABI_FP_NAN2008:
3829 /* Silently ignore compatibility value. */
3830 break;
3831
351cdf24
MF
3832 default:
3833 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3834 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3835 break;
3836 }
351cdf24
MF
3837}
3838
919731af 3839/* Perform consistency checks on the current options. */
3840
3841static void
3842mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3843{
3844 /* Check the size of integer registers agrees with the ABI and ISA. */
3845 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3846 as_bad (_("`gp=64' used with a 32-bit processor"));
3847 else if (abi_checks
3848 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3849 as_bad (_("`gp=32' used with a 64-bit ABI"));
3850 else if (abi_checks
3851 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3852 as_bad (_("`gp=64' used with a 32-bit ABI"));
3853
3854 /* Check the size of the float registers agrees with the ABI and ISA. */
3855 switch (opts->fp)
3856 {
351cdf24
MF
3857 case 0:
3858 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3859 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3860 else if (opts->single_float == 1)
3861 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3862 break;
919731af 3863 case 64:
3864 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3865 as_bad (_("`fp=64' used with a 32-bit fpu"));
3866 else if (abi_checks
3867 && ABI_NEEDS_32BIT_REGS (mips_abi)
3868 && !ISA_HAS_MXHC1 (opts->isa))
3869 as_warn (_("`fp=64' used with a 32-bit ABI"));
3870 break;
3871 case 32:
3872 if (abi_checks
3873 && ABI_NEEDS_64BIT_REGS (mips_abi))
3874 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 3875 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 3876 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 3877 break;
3878 default:
3879 as_bad (_("Unknown size of floating point registers"));
3880 break;
3881 }
3882
351cdf24
MF
3883 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3884 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3885
919731af 3886 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 3887 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 3888 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
3889 && (opts->micromips == 1
3890 || opts->mips16 == 1))
1357373c 3891 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 3892 opts->micromips ? "micromips" : "mips16",
5f4678bb 3893 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
3894
3895 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3896 as_fatal (_("branch relaxation is not supported in `%s'"),
3897 mips_cpu_info_from_isa (opts->isa)->name);
919731af 3898}
3899
3900/* Perform consistency checks on the module level options exactly once.
3901 This is a deferred check that happens:
3902 at the first .set directive
3903 or, at the first pseudo op that generates code (inc .dc.a)
3904 or, at the first instruction
3905 or, at the end. */
3906
3907static void
3908file_mips_check_options (void)
3909{
3910 const struct mips_cpu_info *arch_info = 0;
3911
3912 if (file_mips_opts_checked)
3913 return;
3914
3915 /* The following code determines the register size.
3916 Similar code was added to GCC 3.3 (see override_options() in
3917 config/mips/mips.c). The GAS and GCC code should be kept in sync
3918 as much as possible. */
3919
3920 if (file_mips_opts.gp < 0)
3921 {
3922 /* Infer the integer register size from the ABI and processor.
3923 Restrict ourselves to 32-bit registers if that's all the
3924 processor has, or if the ABI cannot handle 64-bit registers. */
3925 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3926 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3927 ? 32 : 64;
3928 }
3929
3930 if (file_mips_opts.fp < 0)
3931 {
3932 /* No user specified float register size.
3933 ??? GAS treats single-float processors as though they had 64-bit
3934 float registers (although it complains when double-precision
3935 instructions are used). As things stand, saying they have 32-bit
3936 registers would lead to spurious "register must be even" messages.
3937 So here we assume float registers are never smaller than the
3938 integer ones. */
3939 if (file_mips_opts.gp == 64)
3940 /* 64-bit integer registers implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else if ((file_mips_opts.ase & FP64_ASES)
3943 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3944 /* Handle ASEs that require 64-bit float registers, if possible. */
3945 file_mips_opts.fp = 64;
7361da2c
AB
3946 else if (ISA_IS_R6 (mips_opts.isa))
3947 /* R6 implies 64-bit float registers. */
3948 file_mips_opts.fp = 64;
919731af 3949 else
3950 /* 32-bit float registers. */
3951 file_mips_opts.fp = 32;
3952 }
3953
3954 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3955
351cdf24
MF
3956 /* Disable operations on odd-numbered floating-point registers by default
3957 when using the FPXX ABI. */
3958 if (file_mips_opts.oddspreg < 0)
3959 {
3960 if (file_mips_opts.fp == 0)
3961 file_mips_opts.oddspreg = 0;
3962 else
3963 file_mips_opts.oddspreg = 1;
3964 }
3965
919731af 3966 /* End of GCC-shared inference code. */
3967
3968 /* This flag is set when we have a 64-bit capable CPU but use only
3969 32-bit wide registers. Note that EABI does not use it. */
3970 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3971 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3972 || mips_abi == O32_ABI))
3973 mips_32bitmode = 1;
3974
3975 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3976 as_bad (_("trap exception not supported at ISA 1"));
3977
3978 /* If the selected architecture includes support for ASEs, enable
3979 generation of code for them. */
3980 if (file_mips_opts.mips16 == -1)
3981 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3982 if (file_mips_opts.micromips == -1)
3983 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3984 ? 1 : 0;
3985
7361da2c
AB
3986 if (mips_nan2008 == -1)
3987 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3988 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3989 as_fatal (_("`%s' does not support legacy NaN"),
3990 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3991
919731af 3992 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3993 being selected implicitly. */
3994 if (file_mips_opts.fp != 64)
3995 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3996
3997 /* If the user didn't explicitly select or deselect a particular ASE,
3998 use the default setting for the CPU. */
3999 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4000
4001 /* Set up the current options. These may change throughout assembly. */
4002 mips_opts = file_mips_opts;
4003
4004 mips_check_isa_supports_ases ();
4005 mips_check_options (&file_mips_opts, TRUE);
4006 file_mips_opts_checked = TRUE;
4007
4008 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4009 as_warn (_("could not set architecture and machine"));
4010}
4011
252b5132 4012void
17a2f251 4013md_assemble (char *str)
252b5132
RH
4014{
4015 struct mips_cl_insn insn;
f6688943
TS
4016 bfd_reloc_code_real_type unused_reloc[3]
4017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4018
919731af 4019 file_mips_check_options ();
4020
252b5132 4021 imm_expr.X_op = O_absent;
252b5132 4022 offset_expr.X_op = O_absent;
f6688943
TS
4023 offset_reloc[0] = BFD_RELOC_UNUSED;
4024 offset_reloc[1] = BFD_RELOC_UNUSED;
4025 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4026
e1b47bd5
RS
4027 mips_mark_labels ();
4028 mips_assembling_insn = TRUE;
e3de51ce 4029 clear_insn_error ();
e1b47bd5 4030
252b5132
RH
4031 if (mips_opts.mips16)
4032 mips16_ip (str, &insn);
4033 else
4034 {
4035 mips_ip (str, &insn);
beae10d5
KH
4036 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4037 str, insn.insn_opcode));
252b5132
RH
4038 }
4039
e3de51ce
RS
4040 if (insn_error.msg)
4041 report_insn_error (str);
e1b47bd5 4042 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4043 {
584892a6 4044 macro_start ();
252b5132
RH
4045 if (mips_opts.mips16)
4046 mips16_macro (&insn);
4047 else
833794fc 4048 macro (&insn, str);
584892a6 4049 macro_end ();
252b5132
RH
4050 }
4051 else
4052 {
77bd4346 4053 if (offset_expr.X_op != O_absent)
df58fc94 4054 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4055 else
df58fc94 4056 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4057 }
e1b47bd5
RS
4058
4059 mips_assembling_insn = FALSE;
252b5132
RH
4060}
4061
738e5348
RS
4062/* Convenience functions for abstracting away the differences between
4063 MIPS16 and non-MIPS16 relocations. */
4064
4065static inline bfd_boolean
4066mips16_reloc_p (bfd_reloc_code_real_type reloc)
4067{
4068 switch (reloc)
4069 {
4070 case BFD_RELOC_MIPS16_JMP:
4071 case BFD_RELOC_MIPS16_GPREL:
4072 case BFD_RELOC_MIPS16_GOT16:
4073 case BFD_RELOC_MIPS16_CALL16:
4074 case BFD_RELOC_MIPS16_HI16_S:
4075 case BFD_RELOC_MIPS16_HI16:
4076 case BFD_RELOC_MIPS16_LO16:
c9775dde 4077 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4078 return TRUE;
4079
4080 default:
4081 return FALSE;
4082 }
4083}
4084
df58fc94
RS
4085static inline bfd_boolean
4086micromips_reloc_p (bfd_reloc_code_real_type reloc)
4087{
4088 switch (reloc)
4089 {
4090 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4091 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4092 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4093 case BFD_RELOC_MICROMIPS_GPREL16:
4094 case BFD_RELOC_MICROMIPS_JMP:
4095 case BFD_RELOC_MICROMIPS_HI16:
4096 case BFD_RELOC_MICROMIPS_HI16_S:
4097 case BFD_RELOC_MICROMIPS_LO16:
4098 case BFD_RELOC_MICROMIPS_LITERAL:
4099 case BFD_RELOC_MICROMIPS_GOT16:
4100 case BFD_RELOC_MICROMIPS_CALL16:
4101 case BFD_RELOC_MICROMIPS_GOT_HI16:
4102 case BFD_RELOC_MICROMIPS_GOT_LO16:
4103 case BFD_RELOC_MICROMIPS_CALL_HI16:
4104 case BFD_RELOC_MICROMIPS_CALL_LO16:
4105 case BFD_RELOC_MICROMIPS_SUB:
4106 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4107 case BFD_RELOC_MICROMIPS_GOT_OFST:
4108 case BFD_RELOC_MICROMIPS_GOT_DISP:
4109 case BFD_RELOC_MICROMIPS_HIGHEST:
4110 case BFD_RELOC_MICROMIPS_HIGHER:
4111 case BFD_RELOC_MICROMIPS_SCN_DISP:
4112 case BFD_RELOC_MICROMIPS_JALR:
4113 return TRUE;
4114
4115 default:
4116 return FALSE;
4117 }
4118}
4119
2309ddf2
MR
4120static inline bfd_boolean
4121jmp_reloc_p (bfd_reloc_code_real_type reloc)
4122{
4123 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4124}
4125
0e9c5a5c
MR
4126static inline bfd_boolean
4127b_reloc_p (bfd_reloc_code_real_type reloc)
4128{
4129 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4130 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4131 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4132 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4133 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4134 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4135 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4136}
4137
738e5348
RS
4138static inline bfd_boolean
4139got16_reloc_p (bfd_reloc_code_real_type reloc)
4140{
2309ddf2 4141 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4142 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4143}
4144
4145static inline bfd_boolean
4146hi16_reloc_p (bfd_reloc_code_real_type reloc)
4147{
2309ddf2 4148 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4149 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4150}
4151
4152static inline bfd_boolean
4153lo16_reloc_p (bfd_reloc_code_real_type reloc)
4154{
2309ddf2 4155 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4156 || reloc == BFD_RELOC_MICROMIPS_LO16);
4157}
4158
df58fc94
RS
4159static inline bfd_boolean
4160jalr_reloc_p (bfd_reloc_code_real_type reloc)
4161{
2309ddf2 4162 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4163}
4164
f2ae14a1
RS
4165static inline bfd_boolean
4166gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4167{
4168 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4169 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4170}
4171
2de39019
CM
4172/* Return true if RELOC is a PC-relative relocation that does not have
4173 full address range. */
4174
4175static inline bfd_boolean
4176limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4177{
4178 switch (reloc)
4179 {
4180 case BFD_RELOC_16_PCREL_S2:
c9775dde 4181 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4182 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4183 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4184 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4185 case BFD_RELOC_MIPS_21_PCREL_S2:
4186 case BFD_RELOC_MIPS_26_PCREL_S2:
4187 case BFD_RELOC_MIPS_18_PCREL_S3:
4188 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4189 return TRUE;
4190
b47468a6 4191 case BFD_RELOC_32_PCREL:
7361da2c
AB
4192 case BFD_RELOC_HI16_S_PCREL:
4193 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4194 return HAVE_64BIT_ADDRESSES;
4195
2de39019
CM
4196 default:
4197 return FALSE;
4198 }
4199}
b47468a6 4200
5919d012 4201/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4202 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4203 need a matching %lo() when applied to local symbols. */
5919d012
RS
4204
4205static inline bfd_boolean
17a2f251 4206reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4207{
3b91255e 4208 return (HAVE_IN_PLACE_ADDENDS
738e5348 4209 && (hi16_reloc_p (reloc)
0a44bf69
RS
4210 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4211 all GOT16 relocations evaluate to "G". */
738e5348
RS
4212 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4213}
4214
4215/* Return the type of %lo() reloc needed by RELOC, given that
4216 reloc_needs_lo_p. */
4217
4218static inline bfd_reloc_code_real_type
4219matching_lo_reloc (bfd_reloc_code_real_type reloc)
4220{
df58fc94
RS
4221 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4222 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4223 : BFD_RELOC_LO16));
5919d012
RS
4224}
4225
4226/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4227 relocation. */
4228
4229static inline bfd_boolean
17a2f251 4230fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4231{
4232 return (fixp->fx_next != NULL
738e5348 4233 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4234 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4235 && fixp->fx_offset == fixp->fx_next->fx_offset);
4236}
4237
462427c4
RS
4238/* Move all labels in LABELS to the current insertion point. TEXT_P
4239 says whether the labels refer to text or data. */
404a8071
RS
4240
4241static void
462427c4 4242mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4243{
4244 struct insn_label_list *l;
4245 valueT val;
4246
462427c4 4247 for (l = labels; l != NULL; l = l->next)
404a8071 4248 {
9c2799c2 4249 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4250 symbol_set_frag (l->label, frag_now);
4251 val = (valueT) frag_now_fix ();
df58fc94 4252 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4253 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4254 ++val;
4255 S_SET_VALUE (l->label, val);
4256 }
4257}
4258
462427c4
RS
4259/* Move all labels in insn_labels to the current insertion point
4260 and treat them as text labels. */
4261
4262static void
4263mips_move_text_labels (void)
4264{
4265 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4266}
4267
5f0fe04b
TS
4268static bfd_boolean
4269s_is_linkonce (symbolS *sym, segT from_seg)
4270{
4271 bfd_boolean linkonce = FALSE;
4272 segT symseg = S_GET_SEGMENT (sym);
4273
4274 if (symseg != from_seg && !S_IS_LOCAL (sym))
4275 {
4276 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4277 linkonce = TRUE;
5f0fe04b
TS
4278 /* The GNU toolchain uses an extension for ELF: a section
4279 beginning with the magic string .gnu.linkonce is a
4280 linkonce section. */
4281 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4282 sizeof ".gnu.linkonce" - 1) == 0)
4283 linkonce = TRUE;
5f0fe04b
TS
4284 }
4285 return linkonce;
4286}
4287
e1b47bd5 4288/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4289 linker to handle them specially, such as generating jalx instructions
4290 when needed. We also make them odd for the duration of the assembly,
4291 in order to generate the right sort of code. We will make them even
252b5132
RH
4292 in the adjust_symtab routine, while leaving them marked. This is
4293 convenient for the debugger and the disassembler. The linker knows
4294 to make them odd again. */
4295
4296static void
e1b47bd5 4297mips_compressed_mark_label (symbolS *label)
252b5132 4298{
df58fc94 4299 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4300
f3ded42a
RS
4301 if (mips_opts.mips16)
4302 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4303 else
4304 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4305 if ((S_GET_VALUE (label) & 1) == 0
4306 /* Don't adjust the address if the label is global or weak, or
4307 in a link-once section, since we'll be emitting symbol reloc
4308 references to it which will be patched up by the linker, and
4309 the final value of the symbol may or may not be MIPS16/microMIPS. */
4310 && !S_IS_WEAK (label)
4311 && !S_IS_EXTERNAL (label)
4312 && !s_is_linkonce (label, now_seg))
4313 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4314}
4315
4316/* Mark preceding MIPS16 or microMIPS instruction labels. */
4317
4318static void
4319mips_compressed_mark_labels (void)
4320{
4321 struct insn_label_list *l;
4322
4323 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4324 mips_compressed_mark_label (l->label);
252b5132
RH
4325}
4326
4d7206a2
RS
4327/* End the current frag. Make it a variant frag and record the
4328 relaxation info. */
4329
4330static void
4331relax_close_frag (void)
4332{
584892a6 4333 mips_macro_warning.first_frag = frag_now;
4d7206a2 4334 frag_var (rs_machine_dependent, 0, 0,
584892a6 4335 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4d7206a2
RS
4336 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4337
4338 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4339 mips_relax.first_fixup = 0;
4340}
4341
4342/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4343 See the comment above RELAX_ENCODE for more details. */
4344
4345static void
4346relax_start (symbolS *symbol)
4347{
9c2799c2 4348 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4349 mips_relax.sequence = 1;
4350 mips_relax.symbol = symbol;
4351}
4352
4353/* Start generating the second version of a relaxable sequence.
4354 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4355
4356static void
4d7206a2
RS
4357relax_switch (void)
4358{
9c2799c2 4359 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4360 mips_relax.sequence = 2;
4361}
4362
4363/* End the current relaxable sequence. */
4364
4365static void
4366relax_end (void)
4367{
9c2799c2 4368 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4369 relax_close_frag ();
4370 mips_relax.sequence = 0;
4371}
4372
11625dd8
RS
4373/* Return true if IP is a delayed branch or jump. */
4374
4375static inline bfd_boolean
4376delayed_branch_p (const struct mips_cl_insn *ip)
4377{
4378 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4379 | INSN_COND_BRANCH_DELAY
4380 | INSN_COND_BRANCH_LIKELY)) != 0;
4381}
4382
4383/* Return true if IP is a compact branch or jump. */
4384
4385static inline bfd_boolean
4386compact_branch_p (const struct mips_cl_insn *ip)
4387{
26545944
RS
4388 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4389 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4390}
4391
4392/* Return true if IP is an unconditional branch or jump. */
4393
4394static inline bfd_boolean
4395uncond_branch_p (const struct mips_cl_insn *ip)
4396{
4397 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4398 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4399}
4400
4401/* Return true if IP is a branch-likely instruction. */
4402
4403static inline bfd_boolean
4404branch_likely_p (const struct mips_cl_insn *ip)
4405{
4406 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4407}
4408
14fe068b
RS
4409/* Return the type of nop that should be used to fill the delay slot
4410 of delayed branch IP. */
4411
4412static struct mips_cl_insn *
4413get_delay_slot_nop (const struct mips_cl_insn *ip)
4414{
4415 if (mips_opts.micromips
4416 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4417 return &micromips_nop32_insn;
4418 return NOP_INSN;
4419}
4420
fc76e730
RS
4421/* Return a mask that has bit N set if OPCODE reads the register(s)
4422 in operand N. */
df58fc94
RS
4423
4424static unsigned int
fc76e730 4425insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4426{
fc76e730
RS
4427 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4428}
df58fc94 4429
fc76e730
RS
4430/* Return a mask that has bit N set if OPCODE writes to the register(s)
4431 in operand N. */
4432
4433static unsigned int
4434insn_write_mask (const struct mips_opcode *opcode)
4435{
4436 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4437}
4438
4439/* Return a mask of the registers specified by operand OPERAND of INSN.
4440 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4441 is set. */
4442
4443static unsigned int
4444operand_reg_mask (const struct mips_cl_insn *insn,
4445 const struct mips_operand *operand,
4446 unsigned int type_mask)
4447{
4448 unsigned int uval, vsel;
4449
4450 switch (operand->type)
df58fc94 4451 {
fc76e730
RS
4452 case OP_INT:
4453 case OP_MAPPED_INT:
4454 case OP_MSB:
4455 case OP_PCREL:
4456 case OP_PERF_REG:
4457 case OP_ADDIUSP_INT:
4458 case OP_ENTRY_EXIT_LIST:
4459 case OP_REPEAT_DEST_REG:
4460 case OP_REPEAT_PREV_REG:
4461 case OP_PC:
14daeee3
RS
4462 case OP_VU0_SUFFIX:
4463 case OP_VU0_MATCH_SUFFIX:
56d438b1 4464 case OP_IMM_INDEX:
fc76e730
RS
4465 abort ();
4466
4467 case OP_REG:
0f35dbc4 4468 case OP_OPTIONAL_REG:
fc76e730
RS
4469 {
4470 const struct mips_reg_operand *reg_op;
4471
4472 reg_op = (const struct mips_reg_operand *) operand;
4473 if (!(type_mask & (1 << reg_op->reg_type)))
4474 return 0;
4475 uval = insn_extract_operand (insn, operand);
4476 return 1 << mips_decode_reg_operand (reg_op, uval);
4477 }
4478
4479 case OP_REG_PAIR:
4480 {
4481 const struct mips_reg_pair_operand *pair_op;
4482
4483 pair_op = (const struct mips_reg_pair_operand *) operand;
4484 if (!(type_mask & (1 << pair_op->reg_type)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4488 }
4489
4490 case OP_CLO_CLZ_DEST:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return (1 << (uval & 31)) | (1 << (uval >> 5));
4495
7361da2c
AB
4496 case OP_SAME_RS_RT:
4497 if (!(type_mask & (1 << OP_REG_GP)))
4498 return 0;
4499 uval = insn_extract_operand (insn, operand);
4500 gas_assert ((uval & 31) == (uval >> 5));
4501 return 1 << (uval & 31);
4502
4503 case OP_CHECK_PREV:
4504 case OP_NON_ZERO_REG:
4505 if (!(type_mask & (1 << OP_REG_GP)))
4506 return 0;
4507 uval = insn_extract_operand (insn, operand);
4508 return 1 << (uval & 31);
4509
fc76e730
RS
4510 case OP_LWM_SWM_LIST:
4511 abort ();
4512
4513 case OP_SAVE_RESTORE_LIST:
4514 abort ();
4515
4516 case OP_MDMX_IMM_REG:
4517 if (!(type_mask & (1 << OP_REG_VEC)))
4518 return 0;
4519 uval = insn_extract_operand (insn, operand);
4520 vsel = uval >> 5;
4521 if ((vsel & 0x18) == 0x18)
4522 return 0;
4523 return 1 << (uval & 31);
56d438b1
CF
4524
4525 case OP_REG_INDEX:
4526 if (!(type_mask & (1 << OP_REG_GP)))
4527 return 0;
4528 return 1 << insn_extract_operand (insn, operand);
df58fc94 4529 }
fc76e730
RS
4530 abort ();
4531}
4532
4533/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4534 where bit N of OPNO_MASK is set if operand N should be included.
4535 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4536 is set. */
4537
4538static unsigned int
4539insn_reg_mask (const struct mips_cl_insn *insn,
4540 unsigned int type_mask, unsigned int opno_mask)
4541{
4542 unsigned int opno, reg_mask;
4543
4544 opno = 0;
4545 reg_mask = 0;
4546 while (opno_mask != 0)
4547 {
4548 if (opno_mask & 1)
4549 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4550 opno_mask >>= 1;
4551 opno += 1;
4552 }
4553 return reg_mask;
df58fc94
RS
4554}
4555
4c260379
RS
4556/* Return the mask of core registers that IP reads. */
4557
4558static unsigned int
4559gpr_read_mask (const struct mips_cl_insn *ip)
4560{
4561 unsigned long pinfo, pinfo2;
4562 unsigned int mask;
4563
fc76e730 4564 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4565 pinfo = ip->insn_mo->pinfo;
4566 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4567 if (pinfo & INSN_UDI)
4c260379 4568 {
fc76e730
RS
4569 /* UDI instructions have traditionally been assumed to read RS
4570 and RT. */
4571 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4572 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4573 }
fc76e730
RS
4574 if (pinfo & INSN_READ_GPR_24)
4575 mask |= 1 << 24;
4576 if (pinfo2 & INSN2_READ_GPR_16)
4577 mask |= 1 << 16;
4578 if (pinfo2 & INSN2_READ_SP)
4579 mask |= 1 << SP;
26545944 4580 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4581 mask |= 1 << 31;
fe35f09f
RS
4582 /* Don't include register 0. */
4583 return mask & ~1;
4c260379
RS
4584}
4585
4586/* Return the mask of core registers that IP writes. */
4587
4588static unsigned int
4589gpr_write_mask (const struct mips_cl_insn *ip)
4590{
4591 unsigned long pinfo, pinfo2;
4592 unsigned int mask;
4593
fc76e730 4594 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4595 pinfo = ip->insn_mo->pinfo;
4596 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4597 if (pinfo & INSN_WRITE_GPR_24)
4598 mask |= 1 << 24;
4599 if (pinfo & INSN_WRITE_GPR_31)
4600 mask |= 1 << 31;
4601 if (pinfo & INSN_UDI)
4602 /* UDI instructions have traditionally been assumed to write to RD. */
4603 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4604 if (pinfo2 & INSN2_WRITE_SP)
4605 mask |= 1 << SP;
fe35f09f
RS
4606 /* Don't include register 0. */
4607 return mask & ~1;
4c260379
RS
4608}
4609
4610/* Return the mask of floating-point registers that IP reads. */
4611
4612static unsigned int
4613fpr_read_mask (const struct mips_cl_insn *ip)
4614{
fc76e730 4615 unsigned long pinfo;
4c260379
RS
4616 unsigned int mask;
4617
9d5de888
CF
4618 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4619 | (1 << OP_REG_MSA)),
fc76e730 4620 insn_read_mask (ip->insn_mo));
4c260379 4621 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4622 /* Conservatively treat all operands to an FP_D instruction are doubles.
4623 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4624 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4625 mask |= mask << 1;
4626 return mask;
4627}
4628
4629/* Return the mask of floating-point registers that IP writes. */
4630
4631static unsigned int
4632fpr_write_mask (const struct mips_cl_insn *ip)
4633{
fc76e730 4634 unsigned long pinfo;
4c260379
RS
4635 unsigned int mask;
4636
9d5de888
CF
4637 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4638 | (1 << OP_REG_MSA)),
fc76e730 4639 insn_write_mask (ip->insn_mo));
4c260379 4640 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4641 /* Conservatively treat all operands to an FP_D instruction are doubles.
4642 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4643 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4644 mask |= mask << 1;
4645 return mask;
4646}
4647
a1d78564
RS
4648/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4649 Check whether that is allowed. */
4650
4651static bfd_boolean
4652mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4653{
4654 const char *s = insn->name;
351cdf24
MF
4655 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4656 || FPR_SIZE == 64)
4657 && mips_opts.oddspreg;
a1d78564
RS
4658
4659 if (insn->pinfo == INSN_MACRO)
4660 /* Let a macro pass, we'll catch it later when it is expanded. */
4661 return TRUE;
4662
351cdf24
MF
4663 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4664 otherwise it depends on oddspreg. */
4665 if ((insn->pinfo & FP_S)
4666 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4667 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4668 return FPR_SIZE == 32 || oddspreg;
a1d78564 4669
351cdf24
MF
4670 /* Allow odd registers for single-precision ops and double-precision if the
4671 floating-point registers are 64-bit wide. */
4672 switch (insn->pinfo & (FP_S | FP_D))
4673 {
4674 case FP_S:
4675 case 0:
4676 return oddspreg;
4677 case FP_D:
4678 return FPR_SIZE == 64;
4679 default:
4680 break;
a1d78564
RS
4681 }
4682
351cdf24
MF
4683 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4684 s = strchr (insn->name, '.');
4685 if (s != NULL && opnum == 2)
4686 s = strchr (s + 1, '.');
4687 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4688 return oddspreg;
a1d78564 4689
351cdf24 4690 return FPR_SIZE == 64;
a1d78564
RS
4691}
4692
a1d78564
RS
4693/* Information about an instruction argument that we're trying to match. */
4694struct mips_arg_info
4695{
4696 /* The instruction so far. */
4697 struct mips_cl_insn *insn;
4698
a92713e6
RS
4699 /* The first unconsumed operand token. */
4700 struct mips_operand_token *token;
4701
a1d78564
RS
4702 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4703 int opnum;
4704
4705 /* The 1-based argument number, for error reporting. This does not
4706 count elided optional registers, etc.. */
4707 int argnum;
4708
4709 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4710 unsigned int last_regno;
4711
4712 /* If the first operand was an OP_REG, this is the register that it
4713 specified, otherwise it is ILLEGAL_REG. */
4714 unsigned int dest_regno;
4715
4716 /* The value of the last OP_INT operand. Only used for OP_MSB,
4717 where it gives the lsb position. */
4718 unsigned int last_op_int;
4719
60f20e8b 4720 /* If true, match routines should assume that no later instruction
2b0f3761 4721 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4722 possible. Match routines should not report errors if something
4723 is only invalid for !LAX_MATCH. */
4724 bfd_boolean lax_match;
a1d78564 4725
a1d78564
RS
4726 /* True if a reference to the current AT register was seen. */
4727 bfd_boolean seen_at;
4728};
4729
1a00e612
RS
4730/* Record that the argument is out of range. */
4731
4732static void
4733match_out_of_range (struct mips_arg_info *arg)
4734{
4735 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4736}
4737
4738/* Record that the argument isn't constant but needs to be. */
4739
4740static void
4741match_not_constant (struct mips_arg_info *arg)
4742{
4743 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4744 arg->argnum);
4745}
4746
a92713e6
RS
4747/* Try to match an OT_CHAR token for character CH. Consume the token
4748 and return true on success, otherwise return false. */
a1d78564 4749
a92713e6
RS
4750static bfd_boolean
4751match_char (struct mips_arg_info *arg, char ch)
a1d78564 4752{
a92713e6
RS
4753 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4754 {
4755 ++arg->token;
4756 if (ch == ',')
4757 arg->argnum += 1;
4758 return TRUE;
4759 }
4760 return FALSE;
4761}
a1d78564 4762
a92713e6
RS
4763/* Try to get an expression from the next tokens in ARG. Consume the
4764 tokens and return true on success, storing the expression value in
4765 VALUE and relocation types in R. */
4766
4767static bfd_boolean
4768match_expression (struct mips_arg_info *arg, expressionS *value,
4769 bfd_reloc_code_real_type *r)
4770{
d436c1c2
RS
4771 /* If the next token is a '(' that was parsed as being part of a base
4772 expression, assume we have an elided offset. The later match will fail
4773 if this turns out to be wrong. */
4774 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4775 {
d436c1c2
RS
4776 value->X_op = O_constant;
4777 value->X_add_number = 0;
4778 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4779 return TRUE;
4780 }
4781
d436c1c2
RS
4782 /* Reject register-based expressions such as "0+$2" and "(($2))".
4783 For plain registers the default error seems more appropriate. */
4784 if (arg->token->type == OT_INTEGER
4785 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4786 {
d436c1c2
RS
4787 set_insn_error (arg->argnum, _("register value used as expression"));
4788 return FALSE;
a1d78564 4789 }
d436c1c2
RS
4790
4791 if (arg->token->type == OT_INTEGER)
a92713e6 4792 {
d436c1c2
RS
4793 *value = arg->token->u.integer.value;
4794 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4795 ++arg->token;
4796 return TRUE;
a92713e6 4797 }
a92713e6 4798
d436c1c2
RS
4799 set_insn_error_i
4800 (arg->argnum, _("operand %d must be an immediate expression"),
4801 arg->argnum);
4802 return FALSE;
a92713e6
RS
4803}
4804
4805/* Try to get a constant expression from the next tokens in ARG. Consume
4806 the tokens and return return true on success, storing the constant value
4807 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4808 error. */
4809
4810static bfd_boolean
1a00e612 4811match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4812{
4813 expressionS ex;
4814 bfd_reloc_code_real_type r[3];
a1d78564 4815
a92713e6
RS
4816 if (!match_expression (arg, &ex, r))
4817 return FALSE;
4818
4819 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4820 *value = ex.X_add_number;
4821 else
4822 {
1a00e612
RS
4823 match_not_constant (arg);
4824 return FALSE;
a1d78564 4825 }
a92713e6 4826 return TRUE;
a1d78564
RS
4827}
4828
4829/* Return the RTYPE_* flags for a register operand of type TYPE that
4830 appears in instruction OPCODE. */
4831
4832static unsigned int
4833convert_reg_type (const struct mips_opcode *opcode,
4834 enum mips_reg_operand_type type)
4835{
4836 switch (type)
4837 {
4838 case OP_REG_GP:
4839 return RTYPE_NUM | RTYPE_GP;
4840
4841 case OP_REG_FP:
4842 /* Allow vector register names for MDMX if the instruction is a 64-bit
4843 FPR load, store or move (including moves to and from GPRs). */
4844 if ((mips_opts.ase & ASE_MDMX)
4845 && (opcode->pinfo & FP_D)
43885403 4846 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4847 | INSN_COPROC_MEMORY_DELAY
43885403 4848 | INSN_LOAD_COPROC
67dc82bc 4849 | INSN_LOAD_MEMORY
a1d78564
RS
4850 | INSN_STORE_MEMORY)))
4851 return RTYPE_FPU | RTYPE_VEC;
4852 return RTYPE_FPU;
4853
4854 case OP_REG_CCC:
4855 if (opcode->pinfo & (FP_D | FP_S))
4856 return RTYPE_CCC | RTYPE_FCC;
4857 return RTYPE_CCC;
4858
4859 case OP_REG_VEC:
4860 if (opcode->membership & INSN_5400)
4861 return RTYPE_FPU;
4862 return RTYPE_FPU | RTYPE_VEC;
4863
4864 case OP_REG_ACC:
4865 return RTYPE_ACC;
4866
4867 case OP_REG_COPRO:
4868 if (opcode->name[strlen (opcode->name) - 1] == '0')
4869 return RTYPE_NUM | RTYPE_CP0;
4870 return RTYPE_NUM;
4871
4872 case OP_REG_HW:
4873 return RTYPE_NUM;
14daeee3
RS
4874
4875 case OP_REG_VI:
4876 return RTYPE_NUM | RTYPE_VI;
4877
4878 case OP_REG_VF:
4879 return RTYPE_NUM | RTYPE_VF;
4880
4881 case OP_REG_R5900_I:
4882 return RTYPE_R5900_I;
4883
4884 case OP_REG_R5900_Q:
4885 return RTYPE_R5900_Q;
4886
4887 case OP_REG_R5900_R:
4888 return RTYPE_R5900_R;
4889
4890 case OP_REG_R5900_ACC:
4891 return RTYPE_R5900_ACC;
56d438b1
CF
4892
4893 case OP_REG_MSA:
4894 return RTYPE_MSA;
4895
4896 case OP_REG_MSA_CTRL:
4897 return RTYPE_NUM;
a1d78564
RS
4898 }
4899 abort ();
4900}
4901
4902/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4903
4904static void
4905check_regno (struct mips_arg_info *arg,
4906 enum mips_reg_operand_type type, unsigned int regno)
4907{
4908 if (AT && type == OP_REG_GP && regno == AT)
4909 arg->seen_at = TRUE;
4910
4911 if (type == OP_REG_FP
4912 && (regno & 1) != 0
a1d78564 4913 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
4914 {
4915 /* This was a warning prior to introducing O32 FPXX and FP64 support
4916 so maintain a warning for FP32 but raise an error for the new
4917 cases. */
4918 if (FPR_SIZE == 32)
4919 as_warn (_("float register should be even, was %d"), regno);
4920 else
4921 as_bad (_("float register should be even, was %d"), regno);
4922 }
a1d78564
RS
4923
4924 if (type == OP_REG_CCC)
4925 {
4926 const char *name;
4927 size_t length;
4928
4929 name = arg->insn->insn_mo->name;
4930 length = strlen (name);
4931 if ((regno & 1) != 0
4932 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4933 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 4934 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
4935 name, regno);
4936
4937 if ((regno & 3) != 0
4938 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 4939 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
4940 name, regno);
4941 }
4942}
4943
a92713e6
RS
4944/* ARG is a register with symbol value SYMVAL. Try to interpret it as
4945 a register of type TYPE. Return true on success, storing the register
4946 number in *REGNO and warning about any dubious uses. */
4947
4948static bfd_boolean
4949match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4950 unsigned int symval, unsigned int *regno)
4951{
4952 if (type == OP_REG_VEC)
4953 symval = mips_prefer_vec_regno (symval);
4954 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4955 return FALSE;
4956
4957 *regno = symval & RNUM_MASK;
4958 check_regno (arg, type, *regno);
4959 return TRUE;
4960}
4961
4962/* Try to interpret the next token in ARG as a register of type TYPE.
4963 Consume the token and return true on success, storing the register
4964 number in *REGNO. Return false on failure. */
4965
4966static bfd_boolean
4967match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4968 unsigned int *regno)
4969{
4970 if (arg->token->type == OT_REG
4971 && match_regno (arg, type, arg->token->u.regno, regno))
4972 {
4973 ++arg->token;
4974 return TRUE;
4975 }
4976 return FALSE;
4977}
4978
4979/* Try to interpret the next token in ARG as a range of registers of type TYPE.
4980 Consume the token and return true on success, storing the register numbers
4981 in *REGNO1 and *REGNO2. Return false on failure. */
4982
4983static bfd_boolean
4984match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4985 unsigned int *regno1, unsigned int *regno2)
4986{
4987 if (match_reg (arg, type, regno1))
4988 {
4989 *regno2 = *regno1;
4990 return TRUE;
4991 }
4992 if (arg->token->type == OT_REG_RANGE
4993 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4994 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4995 && *regno1 <= *regno2)
4996 {
4997 ++arg->token;
4998 return TRUE;
4999 }
5000 return FALSE;
5001}
5002
a1d78564
RS
5003/* OP_INT matcher. */
5004
a92713e6 5005static bfd_boolean
a1d78564 5006match_int_operand (struct mips_arg_info *arg,
a92713e6 5007 const struct mips_operand *operand_base)
a1d78564
RS
5008{
5009 const struct mips_int_operand *operand;
3ccad066 5010 unsigned int uval;
a1d78564
RS
5011 int min_val, max_val, factor;
5012 offsetT sval;
a1d78564
RS
5013
5014 operand = (const struct mips_int_operand *) operand_base;
5015 factor = 1 << operand->shift;
3ccad066
RS
5016 min_val = mips_int_operand_min (operand);
5017 max_val = mips_int_operand_max (operand);
a1d78564 5018
d436c1c2
RS
5019 if (operand_base->lsb == 0
5020 && operand_base->size == 16
5021 && operand->shift == 0
5022 && operand->bias == 0
5023 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5024 {
5025 /* The operand can be relocated. */
a92713e6
RS
5026 if (!match_expression (arg, &offset_expr, offset_reloc))
5027 return FALSE;
5028
5029 if (offset_reloc[0] != BFD_RELOC_UNUSED)
a1d78564
RS
5030 /* Relocation operators were used. Accept the arguent and
5031 leave the relocation value in offset_expr and offset_relocs
5032 for the caller to process. */
a92713e6
RS
5033 return TRUE;
5034
5035 if (offset_expr.X_op != O_constant)
a1d78564 5036 {
60f20e8b
RS
5037 /* Accept non-constant operands if no later alternative matches,
5038 leaving it for the caller to process. */
5039 if (!arg->lax_match)
5040 return FALSE;
a92713e6
RS
5041 offset_reloc[0] = BFD_RELOC_LO16;
5042 return TRUE;
a1d78564 5043 }
a92713e6 5044
a1d78564
RS
5045 /* Clear the global state; we're going to install the operand
5046 ourselves. */
a92713e6 5047 sval = offset_expr.X_add_number;
a1d78564 5048 offset_expr.X_op = O_absent;
60f20e8b
RS
5049
5050 /* For compatibility with older assemblers, we accept
5051 0x8000-0xffff as signed 16-bit numbers when only
5052 signed numbers are allowed. */
5053 if (sval > max_val)
5054 {
5055 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5056 if (!arg->lax_match && sval <= max_val)
5057 return FALSE;
5058 }
a1d78564
RS
5059 }
5060 else
5061 {
1a00e612 5062 if (!match_const_int (arg, &sval))
a92713e6 5063 return FALSE;
a1d78564
RS
5064 }
5065
5066 arg->last_op_int = sval;
5067
1a00e612 5068 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5069 {
1a00e612
RS
5070 match_out_of_range (arg);
5071 return FALSE;
a1d78564
RS
5072 }
5073
5074 uval = (unsigned int) sval >> operand->shift;
5075 uval -= operand->bias;
5076
5077 /* Handle -mfix-cn63xxp1. */
5078 if (arg->opnum == 1
5079 && mips_fix_cn63xxp1
5080 && !mips_opts.micromips
5081 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5082 switch (uval)
5083 {
5084 case 5:
5085 case 25:
5086 case 26:
5087 case 27:
5088 case 28:
5089 case 29:
5090 case 30:
5091 case 31:
5092 /* These are ok. */
5093 break;
5094
5095 default:
5096 /* The rest must be changed to 28. */
5097 uval = 28;
5098 break;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5102 return TRUE;
a1d78564
RS
5103}
5104
5105/* OP_MAPPED_INT matcher. */
5106
a92713e6 5107static bfd_boolean
a1d78564 5108match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5109 const struct mips_operand *operand_base)
a1d78564
RS
5110{
5111 const struct mips_mapped_int_operand *operand;
5112 unsigned int uval, num_vals;
5113 offsetT sval;
5114
5115 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5116 if (!match_const_int (arg, &sval))
a92713e6 5117 return FALSE;
a1d78564
RS
5118
5119 num_vals = 1 << operand_base->size;
5120 for (uval = 0; uval < num_vals; uval++)
5121 if (operand->int_map[uval] == sval)
5122 break;
5123 if (uval == num_vals)
1a00e612
RS
5124 {
5125 match_out_of_range (arg);
5126 return FALSE;
5127 }
a1d78564
RS
5128
5129 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5130 return TRUE;
a1d78564
RS
5131}
5132
5133/* OP_MSB matcher. */
5134
a92713e6 5135static bfd_boolean
a1d78564 5136match_msb_operand (struct mips_arg_info *arg,
a92713e6 5137 const struct mips_operand *operand_base)
a1d78564
RS
5138{
5139 const struct mips_msb_operand *operand;
5140 int min_val, max_val, max_high;
5141 offsetT size, sval, high;
5142
5143 operand = (const struct mips_msb_operand *) operand_base;
5144 min_val = operand->bias;
5145 max_val = min_val + (1 << operand_base->size) - 1;
5146 max_high = operand->opsize;
5147
1a00e612 5148 if (!match_const_int (arg, &size))
a92713e6 5149 return FALSE;
a1d78564
RS
5150
5151 high = size + arg->last_op_int;
5152 sval = operand->add_lsb ? high : size;
5153
5154 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5155 {
1a00e612
RS
5156 match_out_of_range (arg);
5157 return FALSE;
a1d78564
RS
5158 }
5159 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5160 return TRUE;
a1d78564
RS
5161}
5162
5163/* OP_REG matcher. */
5164
a92713e6 5165static bfd_boolean
a1d78564 5166match_reg_operand (struct mips_arg_info *arg,
a92713e6 5167 const struct mips_operand *operand_base)
a1d78564
RS
5168{
5169 const struct mips_reg_operand *operand;
a92713e6 5170 unsigned int regno, uval, num_vals;
a1d78564
RS
5171
5172 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5173 if (!match_reg (arg, operand->reg_type, &regno))
5174 return FALSE;
a1d78564
RS
5175
5176 if (operand->reg_map)
5177 {
5178 num_vals = 1 << operand->root.size;
5179 for (uval = 0; uval < num_vals; uval++)
5180 if (operand->reg_map[uval] == regno)
5181 break;
5182 if (num_vals == uval)
a92713e6 5183 return FALSE;
a1d78564
RS
5184 }
5185 else
5186 uval = regno;
5187
a1d78564
RS
5188 arg->last_regno = regno;
5189 if (arg->opnum == 1)
5190 arg->dest_regno = regno;
5191 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5192 return TRUE;
a1d78564
RS
5193}
5194
5195/* OP_REG_PAIR matcher. */
5196
a92713e6 5197static bfd_boolean
a1d78564 5198match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5199 const struct mips_operand *operand_base)
a1d78564
RS
5200{
5201 const struct mips_reg_pair_operand *operand;
a92713e6 5202 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5203
5204 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5205 if (!match_reg (arg, operand->reg_type, &regno1)
5206 || !match_char (arg, ',')
5207 || !match_reg (arg, operand->reg_type, &regno2))
5208 return FALSE;
a1d78564
RS
5209
5210 num_vals = 1 << operand_base->size;
5211 for (uval = 0; uval < num_vals; uval++)
5212 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5213 break;
5214 if (uval == num_vals)
a92713e6 5215 return FALSE;
a1d78564 5216
a1d78564 5217 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5218 return TRUE;
a1d78564
RS
5219}
5220
5221/* OP_PCREL matcher. The caller chooses the relocation type. */
5222
a92713e6
RS
5223static bfd_boolean
5224match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5225{
a92713e6
RS
5226 bfd_reloc_code_real_type r[3];
5227
5228 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5229}
5230
5231/* OP_PERF_REG matcher. */
5232
a92713e6 5233static bfd_boolean
a1d78564 5234match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5235 const struct mips_operand *operand)
a1d78564
RS
5236{
5237 offsetT sval;
5238
1a00e612 5239 if (!match_const_int (arg, &sval))
a92713e6 5240 return FALSE;
a1d78564
RS
5241
5242 if (sval != 0
5243 && (sval != 1
5244 || (mips_opts.arch == CPU_R5900
5245 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5246 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5247 {
1a00e612
RS
5248 set_insn_error (arg->argnum, _("invalid performance register"));
5249 return FALSE;
a1d78564
RS
5250 }
5251
5252 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5253 return TRUE;
a1d78564
RS
5254}
5255
5256/* OP_ADDIUSP matcher. */
5257
a92713e6 5258static bfd_boolean
a1d78564 5259match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5260 const struct mips_operand *operand)
a1d78564
RS
5261{
5262 offsetT sval;
5263 unsigned int uval;
5264
1a00e612 5265 if (!match_const_int (arg, &sval))
a92713e6 5266 return FALSE;
a1d78564
RS
5267
5268 if (sval % 4)
1a00e612
RS
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
a1d78564
RS
5273
5274 sval /= 4;
5275 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5276 {
5277 match_out_of_range (arg);
5278 return FALSE;
5279 }
a1d78564
RS
5280
5281 uval = (unsigned int) sval;
5282 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5283 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5284 return TRUE;
a1d78564
RS
5285}
5286
5287/* OP_CLO_CLZ_DEST matcher. */
5288
a92713e6 5289static bfd_boolean
a1d78564 5290match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5291 const struct mips_operand *operand)
a1d78564
RS
5292{
5293 unsigned int regno;
5294
a92713e6
RS
5295 if (!match_reg (arg, OP_REG_GP, &regno))
5296 return FALSE;
a1d78564 5297
a1d78564 5298 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5299 return TRUE;
a1d78564
RS
5300}
5301
7361da2c
AB
5302/* OP_CHECK_PREV matcher. */
5303
5304static bfd_boolean
5305match_check_prev_operand (struct mips_arg_info *arg,
5306 const struct mips_operand *operand_base)
5307{
5308 const struct mips_check_prev_operand *operand;
5309 unsigned int regno;
5310
5311 operand = (const struct mips_check_prev_operand *) operand_base;
5312
5313 if (!match_reg (arg, OP_REG_GP, &regno))
5314 return FALSE;
5315
5316 if (!operand->zero_ok && regno == 0)
5317 return FALSE;
5318
5319 if ((operand->less_than_ok && regno < arg->last_regno)
5320 || (operand->greater_than_ok && regno > arg->last_regno)
5321 || (operand->equal_ok && regno == arg->last_regno))
5322 {
5323 arg->last_regno = regno;
5324 insn_insert_operand (arg->insn, operand_base, regno);
5325 return TRUE;
5326 }
5327
5328 return FALSE;
5329}
5330
5331/* OP_SAME_RS_RT matcher. */
5332
5333static bfd_boolean
5334match_same_rs_rt_operand (struct mips_arg_info *arg,
5335 const struct mips_operand *operand)
5336{
5337 unsigned int regno;
5338
5339 if (!match_reg (arg, OP_REG_GP, &regno))
5340 return FALSE;
5341
5342 if (regno == 0)
5343 {
5344 set_insn_error (arg->argnum, _("the source register must not be $0"));
5345 return FALSE;
5346 }
5347
5348 arg->last_regno = regno;
5349
5350 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5351 return TRUE;
5352}
5353
a1d78564
RS
5354/* OP_LWM_SWM_LIST matcher. */
5355
a92713e6 5356static bfd_boolean
a1d78564 5357match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5358 const struct mips_operand *operand)
a1d78564 5359{
a92713e6
RS
5360 unsigned int reglist, sregs, ra, regno1, regno2;
5361 struct mips_arg_info reset;
a1d78564 5362
a92713e6
RS
5363 reglist = 0;
5364 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5365 return FALSE;
5366 do
5367 {
5368 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5369 {
5370 reglist |= 1 << FP;
5371 regno2 = S7;
5372 }
5373 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5374 reset = *arg;
5375 }
5376 while (match_char (arg, ',')
5377 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5378 *arg = reset;
a1d78564
RS
5379
5380 if (operand->size == 2)
5381 {
5382 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5383
5384 s0, ra
5385 s0, s1, ra, s2, s3
5386 s0-s2, ra
5387
5388 and any permutations of these. */
5389 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5390 return FALSE;
a1d78564
RS
5391
5392 sregs = (reglist >> 17) & 7;
5393 ra = 0;
5394 }
5395 else
5396 {
5397 /* The list must include at least one of ra and s0-sN,
5398 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5399 which are $23 and $30 respectively.) E.g.:
5400
5401 ra
5402 s0
5403 ra, s0, s1, s2
5404 s0-s8
5405 s0-s5, ra
5406
5407 and any permutations of these. */
5408 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5409 return FALSE;
a1d78564
RS
5410
5411 ra = (reglist >> 27) & 0x10;
5412 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5413 }
5414 sregs += 1;
5415 if ((sregs & -sregs) != sregs)
a92713e6 5416 return FALSE;
a1d78564
RS
5417
5418 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5419 return TRUE;
a1d78564
RS
5420}
5421
364215c8
RS
5422/* OP_ENTRY_EXIT_LIST matcher. */
5423
a92713e6 5424static unsigned int
364215c8 5425match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5426 const struct mips_operand *operand)
364215c8
RS
5427{
5428 unsigned int mask;
5429 bfd_boolean is_exit;
5430
5431 /* The format is the same for both ENTRY and EXIT, but the constraints
5432 are different. */
5433 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5434 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5435 do
364215c8
RS
5436 {
5437 unsigned int regno1, regno2;
5438 bfd_boolean is_freg;
5439
a92713e6 5440 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5441 is_freg = FALSE;
a92713e6 5442 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5443 is_freg = TRUE;
5444 else
a92713e6 5445 return FALSE;
364215c8
RS
5446
5447 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5448 {
5449 mask &= ~(7 << 3);
5450 mask |= (5 + regno2) << 3;
5451 }
5452 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5453 mask |= (regno2 - 3) << 3;
5454 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5455 mask |= (regno2 - 15) << 1;
5456 else if (regno1 == RA && regno2 == RA)
5457 mask |= 1;
5458 else
a92713e6 5459 return FALSE;
364215c8 5460 }
a92713e6
RS
5461 while (match_char (arg, ','));
5462
364215c8 5463 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5464 return TRUE;
364215c8
RS
5465}
5466
5467/* OP_SAVE_RESTORE_LIST matcher. */
5468
a92713e6
RS
5469static bfd_boolean
5470match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5471{
5472 unsigned int opcode, args, statics, sregs;
5473 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
364215c8 5474 offsetT frame_size;
364215c8 5475
364215c8
RS
5476 opcode = arg->insn->insn_opcode;
5477 frame_size = 0;
5478 num_frame_sizes = 0;
5479 args = 0;
5480 statics = 0;
5481 sregs = 0;
a92713e6 5482 do
364215c8
RS
5483 {
5484 unsigned int regno1, regno2;
5485
a92713e6 5486 if (arg->token->type == OT_INTEGER)
364215c8
RS
5487 {
5488 /* Handle the frame size. */
1a00e612 5489 if (!match_const_int (arg, &frame_size))
a92713e6 5490 return FALSE;
364215c8 5491 num_frame_sizes += 1;
364215c8
RS
5492 }
5493 else
5494 {
a92713e6
RS
5495 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5496 return FALSE;
364215c8
RS
5497
5498 while (regno1 <= regno2)
5499 {
5500 if (regno1 >= 4 && regno1 <= 7)
5501 {
5502 if (num_frame_sizes == 0)
5503 /* args $a0-$a3 */
5504 args |= 1 << (regno1 - 4);
5505 else
5506 /* statics $a0-$a3 */
5507 statics |= 1 << (regno1 - 4);
5508 }
5509 else if (regno1 >= 16 && regno1 <= 23)
5510 /* $s0-$s7 */
5511 sregs |= 1 << (regno1 - 16);
5512 else if (regno1 == 30)
5513 /* $s8 */
5514 sregs |= 1 << 8;
5515 else if (regno1 == 31)
5516 /* Add $ra to insn. */
5517 opcode |= 0x40;
5518 else
a92713e6 5519 return FALSE;
364215c8
RS
5520 regno1 += 1;
5521 if (regno1 == 24)
5522 regno1 = 30;
5523 }
5524 }
364215c8 5525 }
a92713e6 5526 while (match_char (arg, ','));
364215c8
RS
5527
5528 /* Encode args/statics combination. */
5529 if (args & statics)
a92713e6 5530 return FALSE;
364215c8
RS
5531 else if (args == 0xf)
5532 /* All $a0-$a3 are args. */
5533 opcode |= MIPS16_ALL_ARGS << 16;
5534 else if (statics == 0xf)
5535 /* All $a0-$a3 are statics. */
5536 opcode |= MIPS16_ALL_STATICS << 16;
5537 else
5538 {
5539 /* Count arg registers. */
5540 num_args = 0;
5541 while (args & 0x1)
5542 {
5543 args >>= 1;
5544 num_args += 1;
5545 }
5546 if (args != 0)
a92713e6 5547 return FALSE;
364215c8
RS
5548
5549 /* Count static registers. */
5550 num_statics = 0;
5551 while (statics & 0x8)
5552 {
5553 statics = (statics << 1) & 0xf;
5554 num_statics += 1;
5555 }
5556 if (statics != 0)
a92713e6 5557 return FALSE;
364215c8
RS
5558
5559 /* Encode args/statics. */
5560 opcode |= ((num_args << 2) | num_statics) << 16;
5561 }
5562
5563 /* Encode $s0/$s1. */
5564 if (sregs & (1 << 0)) /* $s0 */
5565 opcode |= 0x20;
5566 if (sregs & (1 << 1)) /* $s1 */
5567 opcode |= 0x10;
5568 sregs >>= 2;
5569
5570 /* Encode $s2-$s8. */
5571 num_sregs = 0;
5572 while (sregs & 1)
5573 {
5574 sregs >>= 1;
5575 num_sregs += 1;
5576 }
5577 if (sregs != 0)
a92713e6 5578 return FALSE;
364215c8
RS
5579 opcode |= num_sregs << 24;
5580
5581 /* Encode frame size. */
5582 if (num_frame_sizes == 0)
1a00e612
RS
5583 {
5584 set_insn_error (arg->argnum, _("missing frame size"));
5585 return FALSE;
5586 }
5587 if (num_frame_sizes > 1)
5588 {
5589 set_insn_error (arg->argnum, _("frame size specified twice"));
5590 return FALSE;
5591 }
5592 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5593 {
5594 set_insn_error (arg->argnum, _("invalid frame size"));
5595 return FALSE;
5596 }
5597 if (frame_size != 128 || (opcode >> 16) != 0)
364215c8
RS
5598 {
5599 frame_size /= 8;
5600 opcode |= (((frame_size & 0xf0) << 16)
5601 | (frame_size & 0x0f));
5602 }
5603
364215c8
RS
5604 /* Finally build the instruction. */
5605 if ((opcode >> 16) != 0 || frame_size == 0)
5606 opcode |= MIPS16_EXTEND;
5607 arg->insn->insn_opcode = opcode;
a92713e6 5608 return TRUE;
364215c8
RS
5609}
5610
a1d78564
RS
5611/* OP_MDMX_IMM_REG matcher. */
5612
a92713e6 5613static bfd_boolean
a1d78564 5614match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5615 const struct mips_operand *operand)
a1d78564 5616{
a92713e6 5617 unsigned int regno, uval;
a1d78564
RS
5618 bfd_boolean is_qh;
5619 const struct mips_opcode *opcode;
5620
5621 /* The mips_opcode records whether this is an octobyte or quadhalf
5622 instruction. Start out with that bit in place. */
5623 opcode = arg->insn->insn_mo;
5624 uval = mips_extract_operand (operand, opcode->match);
5625 is_qh = (uval != 0);
5626
56d438b1 5627 if (arg->token->type == OT_REG)
a1d78564
RS
5628 {
5629 if ((opcode->membership & INSN_5400)
5630 && strcmp (opcode->name, "rzu.ob") == 0)
5631 {
1a00e612
RS
5632 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5633 arg->argnum);
5634 return FALSE;
a1d78564
RS
5635 }
5636
56d438b1
CF
5637 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5638 return FALSE;
5639 ++arg->token;
5640
a1d78564
RS
5641 /* Check whether this is a vector register or a broadcast of
5642 a single element. */
56d438b1 5643 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5644 {
56d438b1 5645 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5646 {
1a00e612
RS
5647 set_insn_error (arg->argnum, _("invalid element selector"));
5648 return FALSE;
a1d78564 5649 }
56d438b1
CF
5650 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5651 ++arg->token;
a1d78564
RS
5652 }
5653 else
5654 {
5655 /* A full vector. */
5656 if ((opcode->membership & INSN_5400)
5657 && (strcmp (opcode->name, "sll.ob") == 0
5658 || strcmp (opcode->name, "srl.ob") == 0))
5659 {
1a00e612
RS
5660 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5661 arg->argnum);
5662 return FALSE;
a1d78564
RS
5663 }
5664
5665 if (is_qh)
5666 uval |= MDMX_FMTSEL_VEC_QH << 5;
5667 else
5668 uval |= MDMX_FMTSEL_VEC_OB << 5;
5669 }
a1d78564
RS
5670 uval |= regno;
5671 }
5672 else
5673 {
5674 offsetT sval;
5675
1a00e612 5676 if (!match_const_int (arg, &sval))
a92713e6 5677 return FALSE;
a1d78564
RS
5678 if (sval < 0 || sval > 31)
5679 {
1a00e612
RS
5680 match_out_of_range (arg);
5681 return FALSE;
a1d78564
RS
5682 }
5683 uval |= (sval & 31);
5684 if (is_qh)
5685 uval |= MDMX_FMTSEL_IMM_QH << 5;
5686 else
5687 uval |= MDMX_FMTSEL_IMM_OB << 5;
5688 }
5689 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5690 return TRUE;
a1d78564
RS
5691}
5692
56d438b1
CF
5693/* OP_IMM_INDEX matcher. */
5694
5695static bfd_boolean
5696match_imm_index_operand (struct mips_arg_info *arg,
5697 const struct mips_operand *operand)
5698{
5699 unsigned int max_val;
5700
5701 if (arg->token->type != OT_INTEGER_INDEX)
5702 return FALSE;
5703
5704 max_val = (1 << operand->size) - 1;
5705 if (arg->token->u.index > max_val)
5706 {
5707 match_out_of_range (arg);
5708 return FALSE;
5709 }
5710 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5711 ++arg->token;
5712 return TRUE;
5713}
5714
5715/* OP_REG_INDEX matcher. */
5716
5717static bfd_boolean
5718match_reg_index_operand (struct mips_arg_info *arg,
5719 const struct mips_operand *operand)
5720{
5721 unsigned int regno;
5722
5723 if (arg->token->type != OT_REG_INDEX)
5724 return FALSE;
5725
5726 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5727 return FALSE;
5728
5729 insn_insert_operand (arg->insn, operand, regno);
5730 ++arg->token;
5731 return TRUE;
5732}
5733
a1d78564
RS
5734/* OP_PC matcher. */
5735
a92713e6
RS
5736static bfd_boolean
5737match_pc_operand (struct mips_arg_info *arg)
a1d78564 5738{
a92713e6
RS
5739 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5740 {
5741 ++arg->token;
5742 return TRUE;
5743 }
5744 return FALSE;
a1d78564
RS
5745}
5746
7361da2c
AB
5747/* OP_NON_ZERO_REG matcher. */
5748
5749static bfd_boolean
5750match_non_zero_reg_operand (struct mips_arg_info *arg,
5751 const struct mips_operand *operand)
5752{
5753 unsigned int regno;
5754
5755 if (!match_reg (arg, OP_REG_GP, &regno))
5756 return FALSE;
5757
5758 if (regno == 0)
5759 return FALSE;
5760
5761 arg->last_regno = regno;
5762 insn_insert_operand (arg->insn, operand, regno);
5763 return TRUE;
5764}
5765
a1d78564
RS
5766/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5767 register that we need to match. */
5768
a92713e6
RS
5769static bfd_boolean
5770match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5771{
5772 unsigned int regno;
5773
a92713e6 5774 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5775}
5776
89565f1b
RS
5777/* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5778 the length of the value in bytes (4 for float, 8 for double) and
5779 USING_GPRS says whether the destination is a GPR rather than an FPR.
5780
5781 Return the constant in IMM and OFFSET as follows:
5782
5783 - If the constant should be loaded via memory, set IMM to O_absent and
5784 OFFSET to the memory address.
5785
5786 - Otherwise, if the constant should be loaded into two 32-bit registers,
5787 set IMM to the O_constant to load into the high register and OFFSET
5788 to the corresponding value for the low register.
5789
5790 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5791
5792 These constants only appear as the last operand in an instruction,
5793 and every instruction that accepts them in any variant accepts them
5794 in all variants. This means we don't have to worry about backing out
5795 any changes if the instruction does not match. We just match
5796 unconditionally and report an error if the constant is invalid. */
5797
a92713e6
RS
5798static bfd_boolean
5799match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5800 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 5801{
a92713e6 5802 char *p;
89565f1b
RS
5803 segT seg, new_seg;
5804 subsegT subseg;
5805 const char *newname;
a92713e6 5806 unsigned char *data;
89565f1b
RS
5807
5808 /* Where the constant is placed is based on how the MIPS assembler
5809 does things:
5810
5811 length == 4 && using_gprs -- immediate value only
5812 length == 8 && using_gprs -- .rdata or immediate value
5813 length == 4 && !using_gprs -- .lit4 or immediate value
5814 length == 8 && !using_gprs -- .lit8 or immediate value
5815
5816 The .lit4 and .lit8 sections are only used if permitted by the
5817 -G argument. */
a92713e6 5818 if (arg->token->type != OT_FLOAT)
1a00e612
RS
5819 {
5820 set_insn_error (arg->argnum, _("floating-point expression required"));
5821 return FALSE;
5822 }
a92713e6
RS
5823
5824 gas_assert (arg->token->u.flt.length == length);
5825 data = arg->token->u.flt.data;
5826 ++arg->token;
89565f1b
RS
5827
5828 /* Handle 32-bit constants for which an immediate value is best. */
5829 if (length == 4
5830 && (using_gprs
5831 || g_switch_value < 4
5832 || (data[0] == 0 && data[1] == 0)
5833 || (data[2] == 0 && data[3] == 0)))
5834 {
5835 imm->X_op = O_constant;
5836 if (!target_big_endian)
5837 imm->X_add_number = bfd_getl32 (data);
5838 else
5839 imm->X_add_number = bfd_getb32 (data);
5840 offset->X_op = O_absent;
a92713e6 5841 return TRUE;
89565f1b
RS
5842 }
5843
5844 /* Handle 64-bit constants for which an immediate value is best. */
5845 if (length == 8
5846 && !mips_disable_float_construction
351cdf24
MF
5847 /* Constants can only be constructed in GPRs and copied to FPRs if the
5848 GPRs are at least as wide as the FPRs or MTHC1 is available.
5849 Unlike most tests for 32-bit floating-point registers this check
5850 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5851 permit 64-bit moves without MXHC1.
5852 Force the constant into memory otherwise. */
5853 && (using_gprs
5854 || GPR_SIZE == 64
5855 || ISA_HAS_MXHC1 (mips_opts.isa)
5856 || FPR_SIZE == 32)
89565f1b
RS
5857 && ((data[0] == 0 && data[1] == 0)
5858 || (data[2] == 0 && data[3] == 0))
5859 && ((data[4] == 0 && data[5] == 0)
5860 || (data[6] == 0 && data[7] == 0)))
5861 {
5862 /* The value is simple enough to load with a couple of instructions.
5863 If using 32-bit registers, set IMM to the high order 32 bits and
5864 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5865 64 bit constant. */
351cdf24 5866 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
5867 {
5868 imm->X_op = O_constant;
5869 offset->X_op = O_constant;
5870 if (!target_big_endian)
5871 {
5872 imm->X_add_number = bfd_getl32 (data + 4);
5873 offset->X_add_number = bfd_getl32 (data);
5874 }
5875 else
5876 {
5877 imm->X_add_number = bfd_getb32 (data);
5878 offset->X_add_number = bfd_getb32 (data + 4);
5879 }
5880 if (offset->X_add_number == 0)
5881 offset->X_op = O_absent;
5882 }
5883 else
5884 {
5885 imm->X_op = O_constant;
5886 if (!target_big_endian)
5887 imm->X_add_number = bfd_getl64 (data);
5888 else
5889 imm->X_add_number = bfd_getb64 (data);
5890 offset->X_op = O_absent;
5891 }
a92713e6 5892 return TRUE;
89565f1b
RS
5893 }
5894
5895 /* Switch to the right section. */
5896 seg = now_seg;
5897 subseg = now_subseg;
5898 if (length == 4)
5899 {
5900 gas_assert (!using_gprs && g_switch_value >= 4);
5901 newname = ".lit4";
5902 }
5903 else
5904 {
5905 if (using_gprs || g_switch_value < 8)
5906 newname = RDATA_SECTION_NAME;
5907 else
5908 newname = ".lit8";
5909 }
5910
5911 new_seg = subseg_new (newname, (subsegT) 0);
5912 bfd_set_section_flags (stdoutput, new_seg,
5913 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5914 frag_align (length == 4 ? 2 : 3, 0, 0);
5915 if (strncmp (TARGET_OS, "elf", 3) != 0)
5916 record_alignment (new_seg, 4);
5917 else
5918 record_alignment (new_seg, length == 4 ? 2 : 3);
5919 if (seg == now_seg)
1661c76c 5920 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
5921
5922 /* Set the argument to the current address in the section. */
5923 imm->X_op = O_absent;
5924 offset->X_op = O_symbol;
5925 offset->X_add_symbol = symbol_temp_new_now ();
5926 offset->X_add_number = 0;
5927
5928 /* Put the floating point number into the section. */
5929 p = frag_more (length);
5930 memcpy (p, data, length);
5931
5932 /* Switch back to the original section. */
5933 subseg_set (seg, subseg);
a92713e6 5934 return TRUE;
89565f1b
RS
5935}
5936
14daeee3
RS
5937/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5938 them. */
5939
5940static bfd_boolean
5941match_vu0_suffix_operand (struct mips_arg_info *arg,
5942 const struct mips_operand *operand,
5943 bfd_boolean match_p)
5944{
5945 unsigned int uval;
5946
5947 /* The operand can be an XYZW mask or a single 2-bit channel index
5948 (with X being 0). */
5949 gas_assert (operand->size == 2 || operand->size == 4);
5950
ee5734f0 5951 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 5952 if (arg->token->type != OT_CHANNELS)
ee5734f0 5953 return match_p;
14daeee3
RS
5954
5955 uval = arg->token->u.channels;
5956 if (operand->size == 2)
5957 {
5958 /* Check that a single bit is set and convert it into a 2-bit index. */
5959 if ((uval & -uval) != uval)
5960 return FALSE;
5961 uval = 4 - ffs (uval);
5962 }
5963
5964 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5965 return FALSE;
5966
5967 ++arg->token;
5968 if (!match_p)
5969 insn_insert_operand (arg->insn, operand, uval);
5970 return TRUE;
5971}
5972
a1d78564
RS
5973/* S is the text seen for ARG. Match it against OPERAND. Return the end
5974 of the argument text if the match is successful, otherwise return null. */
5975
a92713e6 5976static bfd_boolean
a1d78564 5977match_operand (struct mips_arg_info *arg,
a92713e6 5978 const struct mips_operand *operand)
a1d78564
RS
5979{
5980 switch (operand->type)
5981 {
5982 case OP_INT:
a92713e6 5983 return match_int_operand (arg, operand);
a1d78564
RS
5984
5985 case OP_MAPPED_INT:
a92713e6 5986 return match_mapped_int_operand (arg, operand);
a1d78564
RS
5987
5988 case OP_MSB:
a92713e6 5989 return match_msb_operand (arg, operand);
a1d78564
RS
5990
5991 case OP_REG:
0f35dbc4 5992 case OP_OPTIONAL_REG:
a92713e6 5993 return match_reg_operand (arg, operand);
a1d78564
RS
5994
5995 case OP_REG_PAIR:
a92713e6 5996 return match_reg_pair_operand (arg, operand);
a1d78564
RS
5997
5998 case OP_PCREL:
a92713e6 5999 return match_pcrel_operand (arg);
a1d78564
RS
6000
6001 case OP_PERF_REG:
a92713e6 6002 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6003
6004 case OP_ADDIUSP_INT:
a92713e6 6005 return match_addiusp_operand (arg, operand);
a1d78564
RS
6006
6007 case OP_CLO_CLZ_DEST:
a92713e6 6008 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6009
6010 case OP_LWM_SWM_LIST:
a92713e6 6011 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6012
6013 case OP_ENTRY_EXIT_LIST:
a92713e6 6014 return match_entry_exit_operand (arg, operand);
364215c8 6015
a1d78564 6016 case OP_SAVE_RESTORE_LIST:
a92713e6 6017 return match_save_restore_list_operand (arg);
a1d78564
RS
6018
6019 case OP_MDMX_IMM_REG:
a92713e6 6020 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6021
6022 case OP_REPEAT_DEST_REG:
a92713e6 6023 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6024
6025 case OP_REPEAT_PREV_REG:
a92713e6 6026 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6027
6028 case OP_PC:
a92713e6 6029 return match_pc_operand (arg);
14daeee3
RS
6030
6031 case OP_VU0_SUFFIX:
6032 return match_vu0_suffix_operand (arg, operand, FALSE);
6033
6034 case OP_VU0_MATCH_SUFFIX:
6035 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6036
6037 case OP_IMM_INDEX:
6038 return match_imm_index_operand (arg, operand);
6039
6040 case OP_REG_INDEX:
6041 return match_reg_index_operand (arg, operand);
7361da2c
AB
6042
6043 case OP_SAME_RS_RT:
6044 return match_same_rs_rt_operand (arg, operand);
6045
6046 case OP_CHECK_PREV:
6047 return match_check_prev_operand (arg, operand);
6048
6049 case OP_NON_ZERO_REG:
6050 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6051 }
6052 abort ();
6053}
6054
6055/* ARG is the state after successfully matching an instruction.
6056 Issue any queued-up warnings. */
6057
6058static void
6059check_completed_insn (struct mips_arg_info *arg)
6060{
6061 if (arg->seen_at)
6062 {
6063 if (AT == ATREG)
1661c76c 6064 as_warn (_("used $at without \".set noat\""));
a1d78564 6065 else
1661c76c 6066 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6067 }
6068}
a1d78564 6069
85fcb30f
RS
6070/* Return true if modifying general-purpose register REG needs a delay. */
6071
6072static bfd_boolean
6073reg_needs_delay (unsigned int reg)
6074{
6075 unsigned long prev_pinfo;
6076
6077 prev_pinfo = history[0].insn_mo->pinfo;
6078 if (!mips_opts.noreorder
67dc82bc 6079 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6080 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6081 && (gpr_write_mask (&history[0]) & (1 << reg)))
6082 return TRUE;
6083
6084 return FALSE;
6085}
6086
71400594
RS
6087/* Classify an instruction according to the FIX_VR4120_* enumeration.
6088 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6089 by VR4120 errata. */
4d7206a2 6090
71400594
RS
6091static unsigned int
6092classify_vr4120_insn (const char *name)
252b5132 6093{
71400594
RS
6094 if (strncmp (name, "macc", 4) == 0)
6095 return FIX_VR4120_MACC;
6096 if (strncmp (name, "dmacc", 5) == 0)
6097 return FIX_VR4120_DMACC;
6098 if (strncmp (name, "mult", 4) == 0)
6099 return FIX_VR4120_MULT;
6100 if (strncmp (name, "dmult", 5) == 0)
6101 return FIX_VR4120_DMULT;
6102 if (strstr (name, "div"))
6103 return FIX_VR4120_DIV;
6104 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6105 return FIX_VR4120_MTHILO;
6106 return NUM_FIX_VR4120_CLASSES;
6107}
252b5132 6108
a8d14a88
CM
6109#define INSN_ERET 0x42000018
6110#define INSN_DERET 0x4200001f
6111#define INSN_DMULT 0x1c
6112#define INSN_DMULTU 0x1d
ff239038 6113
71400594
RS
6114/* Return the number of instructions that must separate INSN1 and INSN2,
6115 where INSN1 is the earlier instruction. Return the worst-case value
6116 for any INSN2 if INSN2 is null. */
252b5132 6117
71400594
RS
6118static unsigned int
6119insns_between (const struct mips_cl_insn *insn1,
6120 const struct mips_cl_insn *insn2)
6121{
6122 unsigned long pinfo1, pinfo2;
4c260379 6123 unsigned int mask;
71400594 6124
85fcb30f
RS
6125 /* If INFO2 is null, pessimistically assume that all flags are set for
6126 the second instruction. */
71400594
RS
6127 pinfo1 = insn1->insn_mo->pinfo;
6128 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6129
71400594
RS
6130 /* For most targets, write-after-read dependencies on the HI and LO
6131 registers must be separated by at least two instructions. */
6132 if (!hilo_interlocks)
252b5132 6133 {
71400594
RS
6134 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6135 return 2;
6136 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6137 return 2;
6138 }
6139
6140 /* If we're working around r7000 errata, there must be two instructions
6141 between an mfhi or mflo and any instruction that uses the result. */
6142 if (mips_7000_hilo_fix
df58fc94 6143 && !mips_opts.micromips
71400594 6144 && MF_HILO_INSN (pinfo1)
85fcb30f 6145 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6146 return 2;
6147
ff239038
CM
6148 /* If we're working around 24K errata, one instruction is required
6149 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6150 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6151 {
6152 if (insn1->insn_opcode == INSN_ERET
6153 || insn1->insn_opcode == INSN_DERET)
6154 {
6155 if (insn2 == NULL
6156 || insn2->insn_opcode == INSN_ERET
6157 || insn2->insn_opcode == INSN_DERET
11625dd8 6158 || delayed_branch_p (insn2))
ff239038
CM
6159 return 1;
6160 }
6161 }
6162
a8d14a88
CM
6163 /* If we're working around PMC RM7000 errata, there must be three
6164 nops between a dmult and a load instruction. */
6165 if (mips_fix_rm7000 && !mips_opts.micromips)
6166 {
6167 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6168 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6169 {
6170 if (pinfo2 & INSN_LOAD_MEMORY)
6171 return 3;
6172 }
6173 }
6174
71400594
RS
6175 /* If working around VR4120 errata, check for combinations that need
6176 a single intervening instruction. */
df58fc94 6177 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6178 {
6179 unsigned int class1, class2;
252b5132 6180
71400594
RS
6181 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6182 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6183 {
71400594
RS
6184 if (insn2 == NULL)
6185 return 1;
6186 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6187 if (vr4120_conflicts[class1] & (1 << class2))
6188 return 1;
252b5132 6189 }
71400594
RS
6190 }
6191
df58fc94 6192 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6193 {
6194 /* Check for GPR or coprocessor load delays. All such delays
6195 are on the RT register. */
6196 /* Itbl support may require additional care here. */
67dc82bc 6197 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6198 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6199 {
85fcb30f 6200 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6201 return 1;
6202 }
6203
6204 /* Check for generic coprocessor hazards.
6205
6206 This case is not handled very well. There is no special
6207 knowledge of CP0 handling, and the coprocessors other than
6208 the floating point unit are not distinguished at all. */
6209 /* Itbl support may require additional care here. FIXME!
6210 Need to modify this to include knowledge about
6211 user specified delays! */
43885403 6212 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6213 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6214 {
6215 /* Handle cases where INSN1 writes to a known general coprocessor
6216 register. There must be a one instruction delay before INSN2
6217 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6218 mask = fpr_write_mask (insn1);
6219 if (mask != 0)
252b5132 6220 {
4c260379 6221 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6222 return 1;
252b5132
RH
6223 }
6224 else
6225 {
71400594
RS
6226 /* Read-after-write dependencies on the control registers
6227 require a two-instruction gap. */
6228 if ((pinfo1 & INSN_WRITE_COND_CODE)
6229 && (pinfo2 & INSN_READ_COND_CODE))
6230 return 2;
6231
6232 /* We don't know exactly what INSN1 does. If INSN2 is
6233 also a coprocessor instruction, assume there must be
6234 a one instruction gap. */
6235 if (pinfo2 & INSN_COP)
6236 return 1;
252b5132
RH
6237 }
6238 }
6b76fefe 6239
71400594
RS
6240 /* Check for read-after-write dependencies on the coprocessor
6241 control registers in cases where INSN1 does not need a general
6242 coprocessor delay. This means that INSN1 is a floating point
6243 comparison instruction. */
6244 /* Itbl support may require additional care here. */
6245 else if (!cop_interlocks
6246 && (pinfo1 & INSN_WRITE_COND_CODE)
6247 && (pinfo2 & INSN_READ_COND_CODE))
6248 return 1;
6249 }
6b76fefe 6250
7361da2c
AB
6251 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6252 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6253 and pause. */
6254 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6255 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6256 || (insn2 && delayed_branch_p (insn2))))
6257 return 1;
6258
71400594
RS
6259 return 0;
6260}
6b76fefe 6261
7d8e00cf
RS
6262/* Return the number of nops that would be needed to work around the
6263 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6264 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6265 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6266
6267static int
932d1a1b 6268nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6269 const struct mips_cl_insn *insn)
6270{
4c260379
RS
6271 int i, j;
6272 unsigned int mask;
7d8e00cf
RS
6273
6274 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6275 are not affected by the errata. */
6276 if (insn != 0
6277 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6278 || strcmp (insn->insn_mo->name, "mtlo") == 0
6279 || strcmp (insn->insn_mo->name, "mthi") == 0))
6280 return 0;
6281
6282 /* Search for the first MFLO or MFHI. */
6283 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6284 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6285 {
6286 /* Extract the destination register. */
4c260379 6287 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6288
6289 /* No nops are needed if INSN reads that register. */
4c260379 6290 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6291 return 0;
6292
6293 /* ...or if any of the intervening instructions do. */
6294 for (j = 0; j < i; j++)
4c260379 6295 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6296 return 0;
6297
932d1a1b
RS
6298 if (i >= ignore)
6299 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6300 }
6301 return 0;
6302}
6303
134c0c8b
MR
6304#define BASE_REG_EQ(INSN1, INSN2) \
6305 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6306 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6307
6308/* Return the minimum alignment for this store instruction. */
6309
6310static int
6311fix_24k_align_to (const struct mips_opcode *mo)
6312{
6313 if (strcmp (mo->name, "sh") == 0)
6314 return 2;
6315
6316 if (strcmp (mo->name, "swc1") == 0
6317 || strcmp (mo->name, "swc2") == 0
6318 || strcmp (mo->name, "sw") == 0
6319 || strcmp (mo->name, "sc") == 0
6320 || strcmp (mo->name, "s.s") == 0)
6321 return 4;
6322
6323 if (strcmp (mo->name, "sdc1") == 0
6324 || strcmp (mo->name, "sdc2") == 0
6325 || strcmp (mo->name, "s.d") == 0)
6326 return 8;
6327
6328 /* sb, swl, swr */
6329 return 1;
6330}
6331
6332struct fix_24k_store_info
6333 {
6334 /* Immediate offset, if any, for this store instruction. */
6335 short off;
6336 /* Alignment required by this store instruction. */
6337 int align_to;
6338 /* True for register offsets. */
6339 int register_offset;
6340 };
6341
6342/* Comparison function used by qsort. */
6343
6344static int
6345fix_24k_sort (const void *a, const void *b)
6346{
6347 const struct fix_24k_store_info *pos1 = a;
6348 const struct fix_24k_store_info *pos2 = b;
6349
6350 return (pos1->off - pos2->off);
6351}
6352
6353/* INSN is a store instruction. Try to record the store information
6354 in STINFO. Return false if the information isn't known. */
6355
6356static bfd_boolean
6357fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6358 const struct mips_cl_insn *insn)
15be625d
CM
6359{
6360 /* The instruction must have a known offset. */
6361 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6362 return FALSE;
6363
6364 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6365 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6366 return TRUE;
6367}
6368
932d1a1b
RS
6369/* Return the number of nops that would be needed to work around the 24k
6370 "lost data on stores during refill" errata if instruction INSN
6371 immediately followed the 2 instructions described by HIST.
6372 Ignore hazards that are contained within the first IGNORE
6373 instructions of HIST.
6374
6375 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6376 for the data cache refills and store data. The following describes
6377 the scenario where the store data could be lost.
6378
6379 * A data cache miss, due to either a load or a store, causing fill
6380 data to be supplied by the memory subsystem
6381 * The first three doublewords of fill data are returned and written
6382 into the cache
6383 * A sequence of four stores occurs in consecutive cycles around the
6384 final doubleword of the fill:
6385 * Store A
6386 * Store B
6387 * Store C
6388 * Zero, One or more instructions
6389 * Store D
6390
6391 The four stores A-D must be to different doublewords of the line that
6392 is being filled. The fourth instruction in the sequence above permits
6393 the fill of the final doubleword to be transferred from the FSB into
6394 the cache. In the sequence above, the stores may be either integer
6395 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6396 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6397 different doublewords on the line. If the floating point unit is
6398 running in 1:2 mode, it is not possible to create the sequence above
6399 using only floating point store instructions.
15be625d
CM
6400
6401 In this case, the cache line being filled is incorrectly marked
6402 invalid, thereby losing the data from any store to the line that
6403 occurs between the original miss and the completion of the five
6404 cycle sequence shown above.
6405
932d1a1b 6406 The workarounds are:
15be625d 6407
932d1a1b
RS
6408 * Run the data cache in write-through mode.
6409 * Insert a non-store instruction between
6410 Store A and Store B or Store B and Store C. */
3739860c 6411
15be625d 6412static int
932d1a1b 6413nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6414 const struct mips_cl_insn *insn)
6415{
6416 struct fix_24k_store_info pos[3];
6417 int align, i, base_offset;
6418
932d1a1b
RS
6419 if (ignore >= 2)
6420 return 0;
6421
ab9794cf
RS
6422 /* If the previous instruction wasn't a store, there's nothing to
6423 worry about. */
15be625d
CM
6424 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6425 return 0;
6426
ab9794cf
RS
6427 /* If the instructions after the previous one are unknown, we have
6428 to assume the worst. */
6429 if (!insn)
15be625d
CM
6430 return 1;
6431
ab9794cf
RS
6432 /* Check whether we are dealing with three consecutive stores. */
6433 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6434 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6435 return 0;
6436
6437 /* If we don't know the relationship between the store addresses,
6438 assume the worst. */
ab9794cf 6439 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6440 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6441 return 1;
6442
6443 if (!fix_24k_record_store_info (&pos[0], insn)
6444 || !fix_24k_record_store_info (&pos[1], &hist[0])
6445 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6446 return 1;
6447
6448 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6449
6450 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6451 X bytes and such that the base register + X is known to be aligned
6452 to align bytes. */
6453
6454 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6455 align = 8;
6456 else
6457 {
6458 align = pos[0].align_to;
6459 base_offset = pos[0].off;
6460 for (i = 1; i < 3; i++)
6461 if (align < pos[i].align_to)
6462 {
6463 align = pos[i].align_to;
6464 base_offset = pos[i].off;
6465 }
6466 for (i = 0; i < 3; i++)
6467 pos[i].off -= base_offset;
6468 }
6469
6470 pos[0].off &= ~align + 1;
6471 pos[1].off &= ~align + 1;
6472 pos[2].off &= ~align + 1;
6473
6474 /* If any two stores write to the same chunk, they also write to the
6475 same doubleword. The offsets are still sorted at this point. */
6476 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6477 return 0;
6478
6479 /* A range of at least 9 bytes is needed for the stores to be in
6480 non-overlapping doublewords. */
6481 if (pos[2].off - pos[0].off <= 8)
6482 return 0;
6483
6484 if (pos[2].off - pos[1].off >= 24
6485 || pos[1].off - pos[0].off >= 24
6486 || pos[2].off - pos[0].off >= 32)
6487 return 0;
6488
6489 return 1;
6490}
6491
71400594 6492/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6493 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6494 where HIST[0] is the most recent instruction. Ignore hazards
6495 between INSN and the first IGNORE instructions in HIST.
6496
6497 If INSN is null, return the worse-case number of nops for any
6498 instruction. */
bdaaa2e1 6499
71400594 6500static int
932d1a1b 6501nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6502 const struct mips_cl_insn *insn)
6503{
6504 int i, nops, tmp_nops;
bdaaa2e1 6505
71400594 6506 nops = 0;
932d1a1b 6507 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6508 {
91d6fa6a 6509 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
7d8e00cf 6513
df58fc94 6514 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6515 {
932d1a1b 6516 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
df58fc94 6521 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6522 {
932d1a1b 6523 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6524 if (tmp_nops > nops)
6525 nops = tmp_nops;
6526 }
6527
71400594
RS
6528 return nops;
6529}
252b5132 6530
71400594 6531/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6532 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6533 would be needed after the extended sequence, ignoring hazards
6534 in the first IGNORE instructions. */
252b5132 6535
71400594 6536static int
932d1a1b
RS
6537nops_for_sequence (int num_insns, int ignore,
6538 const struct mips_cl_insn *hist, ...)
71400594
RS
6539{
6540 va_list args;
6541 struct mips_cl_insn buffer[MAX_NOPS];
6542 struct mips_cl_insn *cursor;
6543 int nops;
6544
91d6fa6a 6545 va_start (args, hist);
71400594 6546 cursor = buffer + num_insns;
91d6fa6a 6547 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6548 while (cursor > buffer)
6549 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6550
932d1a1b 6551 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6552 va_end (args);
6553 return nops;
6554}
252b5132 6555
71400594
RS
6556/* Like nops_for_insn, but if INSN is a branch, take into account the
6557 worst-case delay for the branch target. */
252b5132 6558
71400594 6559static int
932d1a1b 6560nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6561 const struct mips_cl_insn *insn)
6562{
6563 int nops, tmp_nops;
60b63b72 6564
932d1a1b 6565 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6566 if (delayed_branch_p (insn))
71400594 6567 {
932d1a1b 6568 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6569 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6570 if (tmp_nops > nops)
6571 nops = tmp_nops;
6572 }
11625dd8 6573 else if (compact_branch_p (insn))
71400594 6574 {
932d1a1b 6575 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6576 if (tmp_nops > nops)
6577 nops = tmp_nops;
6578 }
6579 return nops;
6580}
6581
c67a084a
NC
6582/* Fix NOP issue: Replace nops by "or at,at,zero". */
6583
6584static void
6585fix_loongson2f_nop (struct mips_cl_insn * ip)
6586{
df58fc94 6587 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6588 if (strcmp (ip->insn_mo->name, "nop") == 0)
6589 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6590}
6591
6592/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6593 jr target pc &= 'hffff_ffff_cfff_ffff. */
6594
6595static void
6596fix_loongson2f_jump (struct mips_cl_insn * ip)
6597{
df58fc94 6598 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6599 if (strcmp (ip->insn_mo->name, "j") == 0
6600 || strcmp (ip->insn_mo->name, "jr") == 0
6601 || strcmp (ip->insn_mo->name, "jalr") == 0)
6602 {
6603 int sreg;
6604 expressionS ep;
6605
6606 if (! mips_opts.at)
6607 return;
6608
df58fc94 6609 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6610 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6611 return;
6612
6613 ep.X_op = O_constant;
6614 ep.X_add_number = 0xcfff0000;
6615 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6616 ep.X_add_number = 0xffff;
6617 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6618 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6619 }
6620}
6621
6622static void
6623fix_loongson2f (struct mips_cl_insn * ip)
6624{
6625 if (mips_fix_loongson2f_nop)
6626 fix_loongson2f_nop (ip);
6627
6628 if (mips_fix_loongson2f_jump)
6629 fix_loongson2f_jump (ip);
6630}
6631
a4e06468
RS
6632/* IP is a branch that has a delay slot, and we need to fill it
6633 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6634 with the previous instruction.
6635 ADDRESS_EXPR is an operand of the instruction to be used with
6636 RELOC_TYPE. */
a4e06468
RS
6637
6638static bfd_boolean
e407c74b 6639can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6640 bfd_reloc_code_real_type *reloc_type)
a4e06468 6641{
2b0c8b40 6642 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6643 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6644 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6645
6646 /* -O2 and above is required for this optimization. */
6647 if (mips_optimize < 2)
6648 return FALSE;
6649
6650 /* If we have seen .set volatile or .set nomove, don't optimize. */
6651 if (mips_opts.nomove)
6652 return FALSE;
6653
6654 /* We can't swap if the previous instruction's position is fixed. */
6655 if (history[0].fixed_p)
6656 return FALSE;
6657
6658 /* If the previous previous insn was in a .set noreorder, we can't
6659 swap. Actually, the MIPS assembler will swap in this situation.
6660 However, gcc configured -with-gnu-as will generate code like
6661
6662 .set noreorder
6663 lw $4,XXX
6664 .set reorder
6665 INSN
6666 bne $4,$0,foo
6667
6668 in which we can not swap the bne and INSN. If gcc is not configured
6669 -with-gnu-as, it does not output the .set pseudo-ops. */
6670 if (history[1].noreorder_p)
6671 return FALSE;
6672
87333bb7
MR
6673 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6674 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6675 if (mips_opts.mips16 && history[0].fixp[0])
6676 return FALSE;
6677
6678 /* If the branch is itself the target of a branch, we can not swap.
6679 We cheat on this; all we check for is whether there is a label on
6680 this instruction. If there are any branches to anything other than
6681 a label, users must use .set noreorder. */
6682 if (seg_info (now_seg)->label_list)
6683 return FALSE;
6684
6685 /* If the previous instruction is in a variant frag other than this
2309ddf2 6686 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6687 MIPS16 code, which uses variant frags for different purposes. */
6688 if (!mips_opts.mips16
a4e06468
RS
6689 && history[0].frag
6690 && history[0].frag->fr_type == rs_machine_dependent)
6691 return FALSE;
6692
bcd530a7
RS
6693 /* We do not swap with instructions that cannot architecturally
6694 be placed in a branch delay slot, such as SYNC or ERET. We
6695 also refrain from swapping with a trap instruction, since it
6696 complicates trap handlers to have the trap instruction be in
6697 a delay slot. */
a4e06468 6698 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6699 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6700 return FALSE;
6701
6702 /* Check for conflicts between the branch and the instructions
6703 before the candidate delay slot. */
6704 if (nops_for_insn (0, history + 1, ip) > 0)
6705 return FALSE;
6706
6707 /* Check for conflicts between the swapped sequence and the
6708 target of the branch. */
6709 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6710 return FALSE;
6711
6712 /* If the branch reads a register that the previous
6713 instruction sets, we can not swap. */
6714 gpr_read = gpr_read_mask (ip);
6715 prev_gpr_write = gpr_write_mask (&history[0]);
6716 if (gpr_read & prev_gpr_write)
6717 return FALSE;
6718
9d5de888
CF
6719 fpr_read = fpr_read_mask (ip);
6720 prev_fpr_write = fpr_write_mask (&history[0]);
6721 if (fpr_read & prev_fpr_write)
6722 return FALSE;
6723
a4e06468
RS
6724 /* If the branch writes a register that the previous
6725 instruction sets, we can not swap. */
6726 gpr_write = gpr_write_mask (ip);
6727 if (gpr_write & prev_gpr_write)
6728 return FALSE;
6729
6730 /* If the branch writes a register that the previous
6731 instruction reads, we can not swap. */
6732 prev_gpr_read = gpr_read_mask (&history[0]);
6733 if (gpr_write & prev_gpr_read)
6734 return FALSE;
6735
6736 /* If one instruction sets a condition code and the
6737 other one uses a condition code, we can not swap. */
6738 pinfo = ip->insn_mo->pinfo;
6739 if ((pinfo & INSN_READ_COND_CODE)
6740 && (prev_pinfo & INSN_WRITE_COND_CODE))
6741 return FALSE;
6742 if ((pinfo & INSN_WRITE_COND_CODE)
6743 && (prev_pinfo & INSN_READ_COND_CODE))
6744 return FALSE;
6745
6746 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6747 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6748 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6749 return FALSE;
a4e06468 6750
df58fc94
RS
6751 /* If the previous instruction has an incorrect size for a fixed
6752 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6753 pinfo2 = ip->insn_mo->pinfo2;
6754 if (mips_opts.micromips
6755 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6756 && insn_length (history) != 2)
6757 return FALSE;
6758 if (mips_opts.micromips
6759 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6760 && insn_length (history) != 4)
6761 return FALSE;
6762
e407c74b
NC
6763 /* On R5900 short loops need to be fixed by inserting a nop in
6764 the branch delay slots.
6765 A short loop can be terminated too early. */
6766 if (mips_opts.arch == CPU_R5900
6767 /* Check if instruction has a parameter, ignore "j $31". */
6768 && (address_expr != NULL)
6769 /* Parameter must be 16 bit. */
6770 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6771 /* Branch to same segment. */
41065f5e 6772 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 6773 /* Branch to same code fragment. */
41065f5e 6774 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 6775 /* Can only calculate branch offset if value is known. */
41065f5e 6776 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
6777 /* Check if branch is really conditional. */
6778 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6779 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6780 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6781 {
6782 int distance;
6783 /* Check if loop is shorter than 6 instructions including
6784 branch and delay slot. */
41065f5e 6785 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
6786 if (distance <= 20)
6787 {
6788 int i;
6789 int rv;
6790
6791 rv = FALSE;
6792 /* When the loop includes branches or jumps,
6793 it is not a short loop. */
6794 for (i = 0; i < (distance / 4); i++)
6795 {
6796 if ((history[i].cleared_p)
41065f5e 6797 || delayed_branch_p (&history[i]))
e407c74b
NC
6798 {
6799 rv = TRUE;
6800 break;
6801 }
6802 }
6803 if (rv == FALSE)
6804 {
6805 /* Insert nop after branch to fix short loop. */
6806 return FALSE;
6807 }
6808 }
6809 }
6810
a4e06468
RS
6811 return TRUE;
6812}
6813
e407c74b
NC
6814/* Decide how we should add IP to the instruction stream.
6815 ADDRESS_EXPR is an operand of the instruction to be used with
6816 RELOC_TYPE. */
a4e06468
RS
6817
6818static enum append_method
e407c74b 6819get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6820 bfd_reloc_code_real_type *reloc_type)
a4e06468 6821{
a4e06468
RS
6822 /* The relaxed version of a macro sequence must be inherently
6823 hazard-free. */
6824 if (mips_relax.sequence == 2)
6825 return APPEND_ADD;
6826
3b821a28 6827 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
6828 if (mips_opts.noreorder)
6829 return APPEND_ADD;
6830
6831 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 6832 if (delayed_branch_p (ip))
a4e06468 6833 {
e407c74b
NC
6834 if (!branch_likely_p (ip)
6835 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
6836 return APPEND_SWAP;
6837
6838 if (mips_opts.mips16
6839 && ISA_SUPPORTS_MIPS16E
fc76e730 6840 && gpr_read_mask (ip) != 0)
a4e06468
RS
6841 return APPEND_ADD_COMPACT;
6842
7bd374a4
MR
6843 if (mips_opts.micromips
6844 && ((ip->insn_opcode & 0xffe0) == 0x4580
6845 || (!forced_insn_length
6846 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6847 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6848 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6849 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6850 return APPEND_ADD_COMPACT;
6851
a4e06468
RS
6852 return APPEND_ADD_WITH_NOP;
6853 }
6854
a4e06468
RS
6855 return APPEND_ADD;
6856}
6857
7bd374a4
MR
6858/* IP is an instruction whose opcode we have just changed, END points
6859 to the end of the opcode table processed. Point IP->insn_mo to the
6860 new opcode's definition. */
ceb94aa5
RS
6861
6862static void
7bd374a4 6863find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 6864{
7bd374a4 6865 const struct mips_opcode *mo;
ceb94aa5 6866
ceb94aa5 6867 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
6868 if (mo->pinfo != INSN_MACRO
6869 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
6870 {
6871 ip->insn_mo = mo;
6872 return;
6873 }
6874 abort ();
6875}
6876
7bd374a4
MR
6877/* IP is a MIPS16 instruction whose opcode we have just changed.
6878 Point IP->insn_mo to the new opcode's definition. */
6879
6880static void
6881find_altered_mips16_opcode (struct mips_cl_insn *ip)
6882{
6883 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6884}
6885
6886/* IP is a microMIPS instruction whose opcode we have just changed.
6887 Point IP->insn_mo to the new opcode's definition. */
6888
6889static void
6890find_altered_micromips_opcode (struct mips_cl_insn *ip)
6891{
6892 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6893}
6894
df58fc94
RS
6895/* For microMIPS macros, we need to generate a local number label
6896 as the target of branches. */
6897#define MICROMIPS_LABEL_CHAR '\037'
6898static unsigned long micromips_target_label;
6899static char micromips_target_name[32];
6900
6901static char *
6902micromips_label_name (void)
6903{
6904 char *p = micromips_target_name;
6905 char symbol_name_temporary[24];
6906 unsigned long l;
6907 int i;
6908
6909 if (*p)
6910 return p;
6911
6912 i = 0;
6913 l = micromips_target_label;
6914#ifdef LOCAL_LABEL_PREFIX
6915 *p++ = LOCAL_LABEL_PREFIX;
6916#endif
6917 *p++ = 'L';
6918 *p++ = MICROMIPS_LABEL_CHAR;
6919 do
6920 {
6921 symbol_name_temporary[i++] = l % 10 + '0';
6922 l /= 10;
6923 }
6924 while (l != 0);
6925 while (i > 0)
6926 *p++ = symbol_name_temporary[--i];
6927 *p = '\0';
6928
6929 return micromips_target_name;
6930}
6931
6932static void
6933micromips_label_expr (expressionS *label_expr)
6934{
6935 label_expr->X_op = O_symbol;
6936 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6937 label_expr->X_add_number = 0;
6938}
6939
6940static void
6941micromips_label_inc (void)
6942{
6943 micromips_target_label++;
6944 *micromips_target_name = '\0';
6945}
6946
6947static void
6948micromips_add_label (void)
6949{
6950 symbolS *s;
6951
6952 s = colon (micromips_label_name ());
6953 micromips_label_inc ();
f3ded42a 6954 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
6955}
6956
6957/* If assembling microMIPS code, then return the microMIPS reloc
6958 corresponding to the requested one if any. Otherwise return
6959 the reloc unchanged. */
6960
6961static bfd_reloc_code_real_type
6962micromips_map_reloc (bfd_reloc_code_real_type reloc)
6963{
6964 static const bfd_reloc_code_real_type relocs[][2] =
6965 {
6966 /* Keep sorted incrementally by the left-hand key. */
6967 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6968 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6969 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6970 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6971 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6972 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6973 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6974 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6975 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6976 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6977 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6978 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6979 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6980 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6981 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6982 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6983 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6984 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6985 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6986 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6987 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6988 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6989 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6990 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6991 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6992 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6993 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6994 };
6995 bfd_reloc_code_real_type r;
6996 size_t i;
6997
6998 if (!mips_opts.micromips)
6999 return reloc;
7000 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7001 {
7002 r = relocs[i][0];
7003 if (r > reloc)
7004 return reloc;
7005 if (r == reloc)
7006 return relocs[i][1];
7007 }
7008 return reloc;
7009}
7010
b886a2ab
RS
7011/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7012 Return true on success, storing the resolved value in RESULT. */
7013
7014static bfd_boolean
7015calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7016 offsetT *result)
7017{
7018 switch (reloc)
7019 {
7020 case BFD_RELOC_MIPS_HIGHEST:
7021 case BFD_RELOC_MICROMIPS_HIGHEST:
7022 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7023 return TRUE;
7024
7025 case BFD_RELOC_MIPS_HIGHER:
7026 case BFD_RELOC_MICROMIPS_HIGHER:
7027 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16_S:
41947d9e 7031 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7032 case BFD_RELOC_MICROMIPS_HI16_S:
7033 case BFD_RELOC_MIPS16_HI16_S:
7034 *result = ((operand + 0x8000) >> 16) & 0xffff;
7035 return TRUE;
7036
7037 case BFD_RELOC_HI16:
7038 case BFD_RELOC_MICROMIPS_HI16:
7039 case BFD_RELOC_MIPS16_HI16:
7040 *result = (operand >> 16) & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_LO16:
41947d9e 7044 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7045 case BFD_RELOC_MICROMIPS_LO16:
7046 case BFD_RELOC_MIPS16_LO16:
7047 *result = operand & 0xffff;
7048 return TRUE;
7049
7050 case BFD_RELOC_UNUSED:
7051 *result = operand;
7052 return TRUE;
7053
7054 default:
7055 return FALSE;
7056 }
7057}
7058
71400594
RS
7059/* Output an instruction. IP is the instruction information.
7060 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7061 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7062 a macro expansion. */
71400594
RS
7063
7064static void
7065append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7066 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7067{
14fe068b 7068 unsigned long prev_pinfo2, pinfo;
71400594 7069 bfd_boolean relaxed_branch = FALSE;
a4e06468 7070 enum append_method method;
2309ddf2 7071 bfd_boolean relax32;
2b0c8b40 7072 int branch_disp;
71400594 7073
2309ddf2 7074 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7075 fix_loongson2f (ip);
7076
738f4d98 7077 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7078 file_ase_micromips |= mips_opts.micromips;
738f4d98 7079
df58fc94 7080 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7081 pinfo = ip->insn_mo->pinfo;
df58fc94 7082
7bd374a4
MR
7083 /* Don't raise alarm about `nods' frags as they'll fill in the right
7084 kind of nop in relaxation if required. */
df58fc94
RS
7085 if (mips_opts.micromips
7086 && !expansionp
7bd374a4
MR
7087 && !(history[0].frag
7088 && history[0].frag->fr_type == rs_machine_dependent
7089 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7090 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7091 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7092 && micromips_insn_length (ip->insn_mo) != 2)
7093 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7094 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7095 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7096 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7097
15be625d
CM
7098 if (address_expr == NULL)
7099 ip->complete_p = 1;
b886a2ab
RS
7100 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7101 && reloc_type[1] == BFD_RELOC_UNUSED
7102 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7103 && address_expr->X_op == O_constant)
7104 {
15be625d
CM
7105 switch (*reloc_type)
7106 {
15be625d 7107 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7108 {
7109 int shift;
7110
17c6c9d9
MR
7111 /* Shift is 2, unusually, for microMIPS JALX. */
7112 shift = (mips_opts.micromips
7113 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7114 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7115 as_bad (_("jump to misaligned address (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7118 & 0x3ffffff);
335574df 7119 ip->complete_p = 1;
df58fc94 7120 }
15be625d
CM
7121 break;
7122
7123 case BFD_RELOC_MIPS16_JMP:
7124 if ((address_expr->X_add_number & 3) != 0)
7125 as_bad (_("jump to misaligned address (0x%lx)"),
7126 (unsigned long) address_expr->X_add_number);
7127 ip->insn_opcode |=
7128 (((address_expr->X_add_number & 0x7c0000) << 3)
7129 | ((address_expr->X_add_number & 0xf800000) >> 7)
7130 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7131 ip->complete_p = 1;
15be625d
CM
7132 break;
7133
7134 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7135 {
7136 int shift;
7137
7138 shift = mips_opts.micromips ? 1 : 2;
7139 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7140 as_bad (_("branch to misaligned address (0x%lx)"),
7141 (unsigned long) address_expr->X_add_number);
7142 if (!mips_relax_branch)
7143 {
7144 if ((address_expr->X_add_number + (1 << (shift + 15)))
7145 & ~((1 << (shift + 16)) - 1))
7146 as_bad (_("branch address range overflow (0x%lx)"),
7147 (unsigned long) address_expr->X_add_number);
7148 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7149 & 0xffff);
7150 }
df58fc94 7151 }
15be625d
CM
7152 break;
7153
7361da2c
AB
7154 case BFD_RELOC_MIPS_21_PCREL_S2:
7155 {
7156 int shift;
7157
7158 shift = 2;
7159 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7160 as_bad (_("branch to misaligned address (0x%lx)"),
7161 (unsigned long) address_expr->X_add_number);
7162 if ((address_expr->X_add_number + (1 << (shift + 20)))
7163 & ~((1 << (shift + 21)) - 1))
7164 as_bad (_("branch address range overflow (0x%lx)"),
7165 (unsigned long) address_expr->X_add_number);
7166 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7167 & 0x1fffff);
7168 }
7169 break;
7170
7171 case BFD_RELOC_MIPS_26_PCREL_S2:
7172 {
7173 int shift;
7174
7175 shift = 2;
7176 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7177 as_bad (_("branch to misaligned address (0x%lx)"),
7178 (unsigned long) address_expr->X_add_number);
7179 if ((address_expr->X_add_number + (1 << (shift + 25)))
7180 & ~((1 << (shift + 26)) - 1))
7181 as_bad (_("branch address range overflow (0x%lx)"),
7182 (unsigned long) address_expr->X_add_number);
7183 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7184 & 0x3ffffff);
7185 }
7186 break;
7187
15be625d 7188 default:
b886a2ab
RS
7189 {
7190 offsetT value;
7191
7192 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7193 &value))
7194 {
7195 ip->insn_opcode |= value & 0xffff;
7196 ip->complete_p = 1;
7197 }
7198 }
7199 break;
7200 }
15be625d
CM
7201 }
7202
71400594
RS
7203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7204 {
7205 /* There are a lot of optimizations we could do that we don't.
7206 In particular, we do not, in general, reorder instructions.
7207 If you use gcc with optimization, it will reorder
7208 instructions and generally do much more optimization then we
7209 do here; repeating all that work in the assembler would only
7210 benefit hand written assembly code, and does not seem worth
7211 it. */
7212 int nops = (mips_optimize == 0
932d1a1b
RS
7213 ? nops_for_insn (0, history, NULL)
7214 : nops_for_insn_or_target (0, history, ip));
71400594 7215 if (nops > 0)
252b5132
RH
7216 {
7217 fragS *old_frag;
7218 unsigned long old_frag_offset;
7219 int i;
252b5132
RH
7220
7221 old_frag = frag_now;
7222 old_frag_offset = frag_now_fix ();
7223
7224 for (i = 0; i < nops; i++)
14fe068b
RS
7225 add_fixed_insn (NOP_INSN);
7226 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7227
7228 if (listing)
7229 {
7230 listing_prev_line ();
7231 /* We may be at the start of a variant frag. In case we
7232 are, make sure there is enough space for the frag
7233 after the frags created by listing_prev_line. The
7234 argument to frag_grow here must be at least as large
7235 as the argument to all other calls to frag_grow in
7236 this file. We don't have to worry about being in the
7237 middle of a variant frag, because the variants insert
7238 all needed nop instructions themselves. */
7239 frag_grow (40);
7240 }
7241
462427c4 7242 mips_move_text_labels ();
252b5132
RH
7243
7244#ifndef NO_ECOFF_DEBUGGING
7245 if (ECOFF_DEBUGGING)
7246 ecoff_fix_loc (old_frag, old_frag_offset);
7247#endif
7248 }
71400594
RS
7249 }
7250 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7251 {
932d1a1b
RS
7252 int nops;
7253
7254 /* Work out how many nops in prev_nop_frag are needed by IP,
7255 ignoring hazards generated by the first prev_nop_frag_since
7256 instructions. */
7257 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7258 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7259
71400594
RS
7260 /* Enforce NOPS as a minimum. */
7261 if (nops > prev_nop_frag_required)
7262 prev_nop_frag_required = nops;
252b5132 7263
71400594
RS
7264 if (prev_nop_frag_holds == prev_nop_frag_required)
7265 {
7266 /* Settle for the current number of nops. Update the history
7267 accordingly (for the benefit of any future .set reorder code). */
7268 prev_nop_frag = NULL;
7269 insert_into_history (prev_nop_frag_since,
7270 prev_nop_frag_holds, NOP_INSN);
7271 }
7272 else
7273 {
7274 /* Allow this instruction to replace one of the nops that was
7275 tentatively added to prev_nop_frag. */
df58fc94 7276 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7277 prev_nop_frag_holds--;
7278 prev_nop_frag_since++;
252b5132
RH
7279 }
7280 }
7281
e407c74b 7282 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7283 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7284
e410add4
RS
7285 dwarf2_emit_insn (0);
7286 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7287 so "move" the instruction address accordingly.
7288
7289 Also, it doesn't seem appropriate for the assembler to reorder .loc
7290 entries. If this instruction is a branch that we are going to swap
7291 with the previous instruction, the two instructions should be
7292 treated as a unit, and the debug information for both instructions
7293 should refer to the start of the branch sequence. Using the
7294 current position is certainly wrong when swapping a 32-bit branch
7295 and a 16-bit delay slot, since the current position would then be
7296 in the middle of a branch. */
7297 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7298
df58fc94
RS
7299 relax32 = (mips_relax_branch
7300 /* Don't try branch relaxation within .set nomacro, or within
7301 .set noat if we use $at for PIC computations. If it turns
7302 out that the branch was out-of-range, we'll get an error. */
7303 && !mips_opts.warn_about_macros
7304 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7305 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7306 as they have no complementing branches. */
7307 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7308
7309 if (!HAVE_CODE_COMPRESSION
7310 && address_expr
7311 && relax32
0b25d3e6 7312 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7313 && delayed_branch_p (ip))
4a6a3df4 7314 {
895921c9 7315 relaxed_branch = TRUE;
1e915849
RS
7316 add_relaxed_insn (ip, (relaxed_branch_length
7317 (NULL, NULL,
11625dd8
RS
7318 uncond_branch_p (ip) ? -1
7319 : branch_likely_p (ip) ? 1
1e915849
RS
7320 : 0)), 4,
7321 RELAX_BRANCH_ENCODE
66b3e8da 7322 (AT,
11625dd8
RS
7323 uncond_branch_p (ip),
7324 branch_likely_p (ip),
1e915849
RS
7325 pinfo & INSN_WRITE_GPR_31,
7326 0),
7327 address_expr->X_add_symbol,
7328 address_expr->X_add_number);
4a6a3df4
AO
7329 *reloc_type = BFD_RELOC_UNUSED;
7330 }
df58fc94
RS
7331 else if (mips_opts.micromips
7332 && address_expr
7333 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7334 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7335 && (delayed_branch_p (ip) || compact_branch_p (ip))
7336 /* Don't try branch relaxation when users specify
7337 16-bit/32-bit instructions. */
7338 && !forced_insn_length)
df58fc94 7339 {
7bd374a4
MR
7340 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7341 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7342 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7343 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7344 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7345 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7346 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7347 int length32 = nods ? 8 : 4;
df58fc94
RS
7348
7349 gas_assert (address_expr != NULL);
7350 gas_assert (!mips_relax.sequence);
7351
2b0c8b40 7352 relaxed_branch = TRUE;
7bd374a4
MR
7353 if (nods)
7354 method = APPEND_ADD;
7355 if (relax32)
7356 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7357 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7358 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7bd374a4 7359 uncond, compact, al, nods,
40209cad 7360 relax32, 0, 0),
df58fc94
RS
7361 address_expr->X_add_symbol,
7362 address_expr->X_add_number);
7363 *reloc_type = BFD_RELOC_UNUSED;
7364 }
7365 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7366 {
7fd53920
MR
7367 bfd_boolean require_unextended;
7368 bfd_boolean require_extended;
88a7ef16
MR
7369 symbolS *symbol;
7370 offsetT offset;
7371
7fd53920
MR
7372 if (forced_insn_length != 0)
7373 {
7374 require_unextended = forced_insn_length == 2;
7375 require_extended = forced_insn_length == 4;
7376 }
7377 else
7378 {
7379 require_unextended = (mips_opts.noautoextend
7380 && !mips_opcode_32bit_p (ip->insn_mo));
7381 require_extended = 0;
7382 }
7383
252b5132 7384 /* We need to set up a variant frag. */
df58fc94 7385 gas_assert (address_expr != NULL);
88a7ef16
MR
7386 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7387 symbol created by `make_expr_symbol' may not get a necessary
7388 external relocation produced. */
7389 if (address_expr->X_op == O_symbol)
7390 {
7391 symbol = address_expr->X_add_symbol;
7392 offset = address_expr->X_add_number;
7393 }
7394 else
7395 {
7396 symbol = make_expr_symbol (address_expr);
7397 offset = 0;
7398 }
1e915849
RS
7399 add_relaxed_insn (ip, 4, 0,
7400 RELAX_MIPS16_ENCODE
7401 (*reloc_type - BFD_RELOC_UNUSED,
7fd53920 7402 require_unextended, require_extended,
11625dd8 7403 delayed_branch_p (&history[0]),
1e915849 7404 history[0].mips16_absolute_jump_p),
88a7ef16 7405 symbol, offset);
252b5132 7406 }
5c04167a 7407 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7408 {
11625dd8 7409 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7410 /* Make sure there is enough room to swap this instruction with
7411 a following jump instruction. */
7412 frag_grow (6);
1e915849 7413 add_fixed_insn (ip);
252b5132
RH
7414 }
7415 else
7416 {
7417 if (mips_opts.mips16
7418 && mips_opts.noreorder
11625dd8 7419 && delayed_branch_p (&history[0]))
252b5132
RH
7420 as_warn (_("extended instruction in delay slot"));
7421
4d7206a2
RS
7422 if (mips_relax.sequence)
7423 {
7424 /* If we've reached the end of this frag, turn it into a variant
7425 frag and record the information for the instructions we've
7426 written so far. */
7427 if (frag_room () < 4)
7428 relax_close_frag ();
df58fc94 7429 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7430 }
7431
584892a6 7432 if (mips_relax.sequence != 2)
df58fc94
RS
7433 {
7434 if (mips_macro_warning.first_insn_sizes[0] == 0)
7435 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7436 mips_macro_warning.sizes[0] += insn_length (ip);
7437 mips_macro_warning.insns[0]++;
7438 }
584892a6 7439 if (mips_relax.sequence != 1)
df58fc94
RS
7440 {
7441 if (mips_macro_warning.first_insn_sizes[1] == 0)
7442 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7443 mips_macro_warning.sizes[1] += insn_length (ip);
7444 mips_macro_warning.insns[1]++;
7445 }
584892a6 7446
1e915849
RS
7447 if (mips_opts.mips16)
7448 {
7449 ip->fixed_p = 1;
7450 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7451 }
7452 add_fixed_insn (ip);
252b5132
RH
7453 }
7454
9fe77896 7455 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7456 {
df58fc94 7457 bfd_reloc_code_real_type final_type[3];
2309ddf2 7458 reloc_howto_type *howto0;
9fe77896
RS
7459 reloc_howto_type *howto;
7460 int i;
34ce925e 7461
df58fc94
RS
7462 /* Perform any necessary conversion to microMIPS relocations
7463 and find out how many relocations there actually are. */
7464 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7465 final_type[i] = micromips_map_reloc (reloc_type[i]);
7466
9fe77896
RS
7467 /* In a compound relocation, it is the final (outermost)
7468 operator that determines the relocated field. */
2309ddf2 7469 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7470 if (!howto)
7471 abort ();
2309ddf2
MR
7472
7473 if (i > 1)
7474 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7475 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7476 bfd_get_reloc_size (howto),
7477 address_expr,
2309ddf2
MR
7478 howto0 && howto0->pc_relative,
7479 final_type[0]);
9fe77896
RS
7480
7481 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7482 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7483 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7484
7485 /* These relocations can have an addend that won't fit in
7486 4 octets for 64bit assembly. */
bad1aba3 7487 if (GPR_SIZE == 64
9fe77896
RS
7488 && ! howto->partial_inplace
7489 && (reloc_type[0] == BFD_RELOC_16
7490 || reloc_type[0] == BFD_RELOC_32
7491 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7492 || reloc_type[0] == BFD_RELOC_GPREL16
7493 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7494 || reloc_type[0] == BFD_RELOC_GPREL32
7495 || reloc_type[0] == BFD_RELOC_64
7496 || reloc_type[0] == BFD_RELOC_CTOR
7497 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7498 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7499 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7500 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7501 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7502 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7503 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7504 || hi16_reloc_p (reloc_type[0])
7505 || lo16_reloc_p (reloc_type[0])))
7506 ip->fixp[0]->fx_no_overflow = 1;
7507
ddaf2c41
MR
7508 /* These relocations can have an addend that won't fit in 2 octets. */
7509 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7510 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7511 ip->fixp[0]->fx_no_overflow = 1;
7512
9fe77896
RS
7513 if (mips_relax.sequence)
7514 {
7515 if (mips_relax.first_fixup == 0)
7516 mips_relax.first_fixup = ip->fixp[0];
7517 }
7518 else if (reloc_needs_lo_p (*reloc_type))
7519 {
7520 struct mips_hi_fixup *hi_fixup;
7521
7522 /* Reuse the last entry if it already has a matching %lo. */
7523 hi_fixup = mips_hi_fixup_list;
7524 if (hi_fixup == 0
7525 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7526 {
325801bd 7527 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7528 hi_fixup->next = mips_hi_fixup_list;
7529 mips_hi_fixup_list = hi_fixup;
4d7206a2 7530 }
9fe77896
RS
7531 hi_fixup->fixp = ip->fixp[0];
7532 hi_fixup->seg = now_seg;
7533 }
252b5132 7534
9fe77896
RS
7535 /* Add fixups for the second and third relocations, if given.
7536 Note that the ABI allows the second relocation to be
7537 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7538 moment we only use RSS_UNDEF, but we could add support
7539 for the others if it ever becomes necessary. */
7540 for (i = 1; i < 3; i++)
7541 if (reloc_type[i] != BFD_RELOC_UNUSED)
7542 {
7543 ip->fixp[i] = fix_new (ip->frag, ip->where,
7544 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7545 FALSE, final_type[i]);
f6688943 7546
9fe77896
RS
7547 /* Use fx_tcbit to mark compound relocs. */
7548 ip->fixp[0]->fx_tcbit = 1;
7549 ip->fixp[i]->fx_tcbit = 1;
7550 }
252b5132 7551 }
252b5132
RH
7552
7553 /* Update the register mask information. */
4c260379
RS
7554 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7555 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7556
a4e06468 7557 switch (method)
252b5132 7558 {
a4e06468
RS
7559 case APPEND_ADD:
7560 insert_into_history (0, 1, ip);
7561 break;
7562
7563 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7564 {
7565 struct mips_cl_insn *nop;
7566
7567 insert_into_history (0, 1, ip);
7568 nop = get_delay_slot_nop (ip);
7569 add_fixed_insn (nop);
7570 insert_into_history (0, 1, nop);
7571 if (mips_relax.sequence)
7572 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7573 }
a4e06468
RS
7574 break;
7575
7576 case APPEND_ADD_COMPACT:
7577 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7578 if (mips_opts.mips16)
7579 {
7580 ip->insn_opcode |= 0x0080;
7581 find_altered_mips16_opcode (ip);
7582 }
7583 /* Convert microMIPS instructions. */
7584 else if (mips_opts.micromips)
7585 {
7586 /* jr16->jrc */
7587 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7588 ip->insn_opcode |= 0x0020;
7589 /* b16->bc */
7590 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7591 ip->insn_opcode = 0x40e00000;
7592 /* beqz16->beqzc, bnez16->bnezc */
7593 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7594 {
7595 unsigned long regno;
7596
7597 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7598 regno &= MICROMIPSOP_MASK_MD;
7599 regno = micromips_to_32_reg_d_map[regno];
7600 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7601 | (regno << MICROMIPSOP_SH_RS)
7602 | 0x40a00000) ^ 0x00400000;
7603 }
7604 /* beqz->beqzc, bnez->bnezc */
7605 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7606 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7607 | ((ip->insn_opcode >> 7) & 0x00400000)
7608 | 0x40a00000) ^ 0x00400000;
7609 /* beq $0->beqzc, bne $0->bnezc */
7610 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7611 ip->insn_opcode = (((ip->insn_opcode >>
7612 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7613 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7614 | ((ip->insn_opcode >> 7) & 0x00400000)
7615 | 0x40a00000) ^ 0x00400000;
7616 else
7617 abort ();
7618 find_altered_micromips_opcode (ip);
7619 }
7620 else
7621 abort ();
a4e06468
RS
7622 install_insn (ip);
7623 insert_into_history (0, 1, ip);
7624 break;
7625
7626 case APPEND_SWAP:
7627 {
7628 struct mips_cl_insn delay = history[0];
99e7978b
MF
7629
7630 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7631 {
7632 /* Add the delay slot instruction to the end of the
7633 current frag and shrink the fixed part of the
7634 original frag. If the branch occupies the tail of
7635 the latter, move it backwards to cover the gap. */
2b0c8b40 7636 delay.frag->fr_fix -= branch_disp;
a4e06468 7637 if (delay.frag == ip->frag)
2b0c8b40 7638 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7639 add_fixed_insn (&delay);
7640 }
7641 else
7642 {
5e35670b
MR
7643 /* If this is not a relaxed branch and we are in the
7644 same frag, then just swap the instructions. */
7645 move_insn (ip, delay.frag, delay.where);
7646 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7647 }
7648 history[0] = *ip;
7649 delay.fixed_p = 1;
7650 insert_into_history (0, 1, &delay);
7651 }
7652 break;
252b5132
RH
7653 }
7654
13408f1e 7655 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7656 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7657 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7658 {
7659 unsigned int i;
7660
79850f26 7661 mips_no_prev_insn ();
13408f1e 7662
e407c74b 7663 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7664 history[i].cleared_p = 1;
e407c74b
NC
7665 }
7666
df58fc94
RS
7667 /* We need to emit a label at the end of branch-likely macros. */
7668 if (emit_branch_likely_macro)
7669 {
7670 emit_branch_likely_macro = FALSE;
7671 micromips_add_label ();
7672 }
7673
252b5132
RH
7674 /* We just output an insn, so the next one doesn't have a label. */
7675 mips_clear_insn_labels ();
252b5132
RH
7676}
7677
e407c74b
NC
7678/* Forget that there was any previous instruction or label.
7679 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7680
7681static void
7d10b47d 7682mips_no_prev_insn (void)
252b5132 7683{
7d10b47d
RS
7684 prev_nop_frag = NULL;
7685 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7686 mips_clear_insn_labels ();
7687}
7688
7d10b47d
RS
7689/* This function must be called before we emit something other than
7690 instructions. It is like mips_no_prev_insn except that it inserts
7691 any NOPS that might be needed by previous instructions. */
252b5132 7692
7d10b47d
RS
7693void
7694mips_emit_delays (void)
252b5132
RH
7695{
7696 if (! mips_opts.noreorder)
7697 {
932d1a1b 7698 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7699 if (nops > 0)
7700 {
7d10b47d
RS
7701 while (nops-- > 0)
7702 add_fixed_insn (NOP_INSN);
462427c4 7703 mips_move_text_labels ();
7d10b47d
RS
7704 }
7705 }
7706 mips_no_prev_insn ();
7707}
7708
7709/* Start a (possibly nested) noreorder block. */
7710
7711static void
7712start_noreorder (void)
7713{
7714 if (mips_opts.noreorder == 0)
7715 {
7716 unsigned int i;
7717 int nops;
7718
7719 /* None of the instructions before the .set noreorder can be moved. */
7720 for (i = 0; i < ARRAY_SIZE (history); i++)
7721 history[i].fixed_p = 1;
7722
7723 /* Insert any nops that might be needed between the .set noreorder
7724 block and the previous instructions. We will later remove any
7725 nops that turn out not to be needed. */
932d1a1b 7726 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7727 if (nops > 0)
7728 {
7729 if (mips_optimize != 0)
252b5132
RH
7730 {
7731 /* Record the frag which holds the nop instructions, so
7732 that we can remove them if we don't need them. */
df58fc94 7733 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7734 prev_nop_frag = frag_now;
7735 prev_nop_frag_holds = nops;
7736 prev_nop_frag_required = 0;
7737 prev_nop_frag_since = 0;
7738 }
7739
7740 for (; nops > 0; --nops)
1e915849 7741 add_fixed_insn (NOP_INSN);
252b5132 7742
7d10b47d
RS
7743 /* Move on to a new frag, so that it is safe to simply
7744 decrease the size of prev_nop_frag. */
7745 frag_wane (frag_now);
7746 frag_new (0);
462427c4 7747 mips_move_text_labels ();
252b5132 7748 }
df58fc94 7749 mips_mark_labels ();
7d10b47d 7750 mips_clear_insn_labels ();
252b5132 7751 }
7d10b47d
RS
7752 mips_opts.noreorder++;
7753 mips_any_noreorder = 1;
7754}
252b5132 7755
7d10b47d 7756/* End a nested noreorder block. */
252b5132 7757
7d10b47d
RS
7758static void
7759end_noreorder (void)
7760{
7761 mips_opts.noreorder--;
7762 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7763 {
7764 /* Commit to inserting prev_nop_frag_required nops and go back to
7765 handling nop insertion the .set reorder way. */
7766 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 7767 * NOP_INSN_SIZE);
7d10b47d
RS
7768 insert_into_history (prev_nop_frag_since,
7769 prev_nop_frag_required, NOP_INSN);
7770 prev_nop_frag = NULL;
7771 }
252b5132
RH
7772}
7773
97d87491
RS
7774/* Sign-extend 32-bit mode constants that have bit 31 set and all
7775 higher bits unset. */
7776
7777static void
7778normalize_constant_expr (expressionS *ex)
7779{
7780 if (ex->X_op == O_constant
7781 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7782 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7783 - 0x80000000);
7784}
7785
7786/* Sign-extend 32-bit mode address offsets that have bit 31 set and
7787 all higher bits unset. */
7788
7789static void
7790normalize_address_expr (expressionS *ex)
7791{
7792 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7793 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7794 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7795 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7796 - 0x80000000);
7797}
7798
7799/* Try to match TOKENS against OPCODE, storing the result in INSN.
7800 Return true if the match was successful.
7801
7802 OPCODE_EXTRA is a value that should be ORed into the opcode
7803 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7804 there are more alternatives after OPCODE and SOFT_MATCH is
7805 as for mips_arg_info. */
7806
7807static bfd_boolean
7808match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7809 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 7810 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
7811{
7812 const char *args;
7813 struct mips_arg_info arg;
7814 const struct mips_operand *operand;
7815 char c;
7816
7817 imm_expr.X_op = O_absent;
97d87491
RS
7818 offset_expr.X_op = O_absent;
7819 offset_reloc[0] = BFD_RELOC_UNUSED;
7820 offset_reloc[1] = BFD_RELOC_UNUSED;
7821 offset_reloc[2] = BFD_RELOC_UNUSED;
7822
7823 create_insn (insn, opcode);
60f20e8b
RS
7824 /* When no opcode suffix is specified, assume ".xyzw". */
7825 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7826 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7827 else
7828 insn->insn_opcode |= opcode_extra;
97d87491
RS
7829 memset (&arg, 0, sizeof (arg));
7830 arg.insn = insn;
7831 arg.token = tokens;
7832 arg.argnum = 1;
7833 arg.last_regno = ILLEGAL_REG;
7834 arg.dest_regno = ILLEGAL_REG;
60f20e8b 7835 arg.lax_match = lax_match;
97d87491
RS
7836 for (args = opcode->args;; ++args)
7837 {
7838 if (arg.token->type == OT_END)
7839 {
7840 /* Handle unary instructions in which only one operand is given.
7841 The source is then the same as the destination. */
7842 if (arg.opnum == 1 && *args == ',')
7843 {
7844 operand = (mips_opts.micromips
7845 ? decode_micromips_operand (args + 1)
7846 : decode_mips_operand (args + 1));
7847 if (operand && mips_optional_operand_p (operand))
7848 {
7849 arg.token = tokens;
7850 arg.argnum = 1;
7851 continue;
7852 }
7853 }
7854
7855 /* Treat elided base registers as $0. */
7856 if (strcmp (args, "(b)") == 0)
7857 args += 3;
7858
7859 if (args[0] == '+')
7860 switch (args[1])
7861 {
7862 case 'K':
7863 case 'N':
7864 /* The register suffix is optional. */
7865 args += 2;
7866 break;
7867 }
7868
7869 /* Fail the match if there were too few operands. */
7870 if (*args)
7871 return FALSE;
7872
7873 /* Successful match. */
60f20e8b
RS
7874 if (!complete_p)
7875 return TRUE;
e3de51ce 7876 clear_insn_error ();
97d87491
RS
7877 if (arg.dest_regno == arg.last_regno
7878 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7879 {
7880 if (arg.opnum == 2)
e3de51ce 7881 set_insn_error
1661c76c 7882 (0, _("source and destination must be different"));
97d87491 7883 else if (arg.last_regno == 31)
e3de51ce 7884 set_insn_error
1661c76c 7885 (0, _("a destination register must be supplied"));
97d87491 7886 }
173d3447
CF
7887 else if (arg.last_regno == 31
7888 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7889 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7890 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
7891 check_completed_insn (&arg);
7892 return TRUE;
7893 }
7894
7895 /* Fail the match if the line has too many operands. */
7896 if (*args == 0)
7897 return FALSE;
7898
7899 /* Handle characters that need to match exactly. */
7900 if (*args == '(' || *args == ')' || *args == ',')
7901 {
7902 if (match_char (&arg, *args))
7903 continue;
7904 return FALSE;
7905 }
7906 if (*args == '#')
7907 {
7908 ++args;
7909 if (arg.token->type == OT_DOUBLE_CHAR
7910 && arg.token->u.ch == *args)
7911 {
7912 ++arg.token;
7913 continue;
7914 }
7915 return FALSE;
7916 }
7917
7918 /* Handle special macro operands. Work out the properties of
7919 other operands. */
7920 arg.opnum += 1;
97d87491
RS
7921 switch (*args)
7922 {
7361da2c
AB
7923 case '-':
7924 switch (args[1])
7925 {
7926 case 'A':
7927 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7928 break;
7929
7930 case 'B':
7931 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7932 break;
7933 }
7934 break;
7935
97d87491
RS
7936 case '+':
7937 switch (args[1])
7938 {
97d87491
RS
7939 case 'i':
7940 *offset_reloc = BFD_RELOC_MIPS_JMP;
7941 break;
7361da2c
AB
7942
7943 case '\'':
7944 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7945 break;
7946
7947 case '\"':
7948 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7949 break;
97d87491
RS
7950 }
7951 break;
7952
97d87491 7953 case 'I':
1a00e612
RS
7954 if (!match_const_int (&arg, &imm_expr.X_add_number))
7955 return FALSE;
7956 imm_expr.X_op = O_constant;
bad1aba3 7957 if (GPR_SIZE == 32)
97d87491
RS
7958 normalize_constant_expr (&imm_expr);
7959 continue;
7960
7961 case 'A':
7962 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7963 {
7964 /* Assume that the offset has been elided and that what
7965 we saw was a base register. The match will fail later
7966 if that assumption turns out to be wrong. */
7967 offset_expr.X_op = O_constant;
7968 offset_expr.X_add_number = 0;
7969 }
97d87491 7970 else
1a00e612
RS
7971 {
7972 if (!match_expression (&arg, &offset_expr, offset_reloc))
7973 return FALSE;
7974 normalize_address_expr (&offset_expr);
7975 }
97d87491
RS
7976 continue;
7977
7978 case 'F':
7979 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7980 8, TRUE))
1a00e612 7981 return FALSE;
97d87491
RS
7982 continue;
7983
7984 case 'L':
7985 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7986 8, FALSE))
1a00e612 7987 return FALSE;
97d87491
RS
7988 continue;
7989
7990 case 'f':
7991 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7992 4, TRUE))
1a00e612 7993 return FALSE;
97d87491
RS
7994 continue;
7995
7996 case 'l':
7997 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7998 4, FALSE))
1a00e612 7999 return FALSE;
97d87491
RS
8000 continue;
8001
97d87491
RS
8002 case 'p':
8003 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8004 break;
8005
8006 case 'a':
8007 *offset_reloc = BFD_RELOC_MIPS_JMP;
8008 break;
8009
8010 case 'm':
8011 gas_assert (mips_opts.micromips);
8012 c = args[1];
8013 switch (c)
8014 {
8015 case 'D':
8016 case 'E':
8017 if (!forced_insn_length)
8018 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8019 else if (c == 'D')
8020 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8021 else
8022 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8023 break;
8024 }
8025 break;
8026 }
8027
8028 operand = (mips_opts.micromips
8029 ? decode_micromips_operand (args)
8030 : decode_mips_operand (args));
8031 if (!operand)
8032 abort ();
8033
8034 /* Skip prefixes. */
7361da2c 8035 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8036 args++;
8037
8038 if (mips_optional_operand_p (operand)
8039 && args[1] == ','
8040 && (arg.token[0].type != OT_REG
8041 || arg.token[1].type == OT_END))
8042 {
8043 /* Assume that the register has been elided and is the
8044 same as the first operand. */
8045 arg.token = tokens;
8046 arg.argnum = 1;
8047 }
8048
8049 if (!match_operand (&arg, operand))
8050 return FALSE;
8051 }
8052}
8053
8054/* Like match_insn, but for MIPS16. */
8055
8056static bfd_boolean
8057match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8058 struct mips_operand_token *tokens)
97d87491
RS
8059{
8060 const char *args;
8061 const struct mips_operand *operand;
8062 const struct mips_operand *ext_operand;
7fd53920 8063 int required_insn_length;
97d87491
RS
8064 struct mips_arg_info arg;
8065 int relax_char;
8066
7fd53920
MR
8067 if (forced_insn_length)
8068 required_insn_length = forced_insn_length;
8069 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8070 required_insn_length = 2;
8071 else
8072 required_insn_length = 0;
8073
97d87491
RS
8074 create_insn (insn, opcode);
8075 imm_expr.X_op = O_absent;
97d87491
RS
8076 offset_expr.X_op = O_absent;
8077 offset_reloc[0] = BFD_RELOC_UNUSED;
8078 offset_reloc[1] = BFD_RELOC_UNUSED;
8079 offset_reloc[2] = BFD_RELOC_UNUSED;
8080 relax_char = 0;
8081
8082 memset (&arg, 0, sizeof (arg));
8083 arg.insn = insn;
8084 arg.token = tokens;
8085 arg.argnum = 1;
8086 arg.last_regno = ILLEGAL_REG;
8087 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8088 relax_char = 0;
8089 for (args = opcode->args;; ++args)
8090 {
8091 int c;
8092
8093 if (arg.token->type == OT_END)
8094 {
8095 offsetT value;
8096
8097 /* Handle unary instructions in which only one operand is given.
8098 The source is then the same as the destination. */
8099 if (arg.opnum == 1 && *args == ',')
8100 {
8101 operand = decode_mips16_operand (args[1], FALSE);
8102 if (operand && mips_optional_operand_p (operand))
8103 {
8104 arg.token = tokens;
8105 arg.argnum = 1;
8106 continue;
8107 }
8108 }
8109
8110 /* Fail the match if there were too few operands. */
8111 if (*args)
8112 return FALSE;
8113
8114 /* Successful match. Stuff the immediate value in now, if
8115 we can. */
e3de51ce 8116 clear_insn_error ();
97d87491
RS
8117 if (opcode->pinfo == INSN_MACRO)
8118 {
8119 gas_assert (relax_char == 0 || relax_char == 'p');
8120 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8121 }
8122 else if (relax_char
8123 && offset_expr.X_op == O_constant
8124 && calculate_reloc (*offset_reloc,
8125 offset_expr.X_add_number,
8126 &value))
8127 {
8128 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8129 required_insn_length, &insn->insn_opcode);
97d87491
RS
8130 offset_expr.X_op = O_absent;
8131 *offset_reloc = BFD_RELOC_UNUSED;
8132 }
8133 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8134 {
7fd53920 8135 if (required_insn_length == 2)
e3de51ce 8136 set_insn_error (0, _("invalid unextended operand value"));
97d87491
RS
8137 forced_insn_length = 4;
8138 insn->insn_opcode |= MIPS16_EXTEND;
8139 }
8140 else if (relax_char)
8141 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8142
8143 check_completed_insn (&arg);
8144 return TRUE;
8145 }
8146
8147 /* Fail the match if the line has too many operands. */
8148 if (*args == 0)
8149 return FALSE;
8150
8151 /* Handle characters that need to match exactly. */
8152 if (*args == '(' || *args == ')' || *args == ',')
8153 {
8154 if (match_char (&arg, *args))
8155 continue;
8156 return FALSE;
8157 }
8158
8159 arg.opnum += 1;
8160 c = *args;
8161 switch (c)
8162 {
8163 case 'p':
8164 case 'q':
8165 case 'A':
8166 case 'B':
8167 case 'E':
8168 relax_char = c;
8169 break;
8170
8171 case 'I':
1a00e612
RS
8172 if (!match_const_int (&arg, &imm_expr.X_add_number))
8173 return FALSE;
8174 imm_expr.X_op = O_constant;
bad1aba3 8175 if (GPR_SIZE == 32)
97d87491
RS
8176 normalize_constant_expr (&imm_expr);
8177 continue;
8178
8179 case 'a':
8180 case 'i':
8181 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8182 break;
8183 }
8184
7fd53920 8185 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8186 if (!operand)
8187 abort ();
8188
8189 /* '6' is a special case. It is used for BREAK and SDBBP,
8190 whose operands are only meaningful to the software that decodes
8191 them. This means that there is no architectural reason why
8192 they cannot be prefixed by EXTEND, but in practice,
8193 exception handlers will only look at the instruction
8194 itself. We therefore allow '6' to be extended when
8195 disassembling but not when assembling. */
8196 if (operand->type != OP_PCREL && c != '6')
8197 {
8198 ext_operand = decode_mips16_operand (c, TRUE);
8199 if (operand != ext_operand)
8200 {
8201 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8202 {
8203 offset_expr.X_op = O_constant;
8204 offset_expr.X_add_number = 0;
8205 relax_char = c;
8206 continue;
8207 }
8208
8209 /* We need the OT_INTEGER check because some MIPS16
8210 immediate variants are listed before the register ones. */
8211 if (arg.token->type != OT_INTEGER
8212 || !match_expression (&arg, &offset_expr, offset_reloc))
8213 return FALSE;
8214
8215 /* '8' is used for SLTI(U) and has traditionally not
8216 been allowed to take relocation operators. */
8217 if (offset_reloc[0] != BFD_RELOC_UNUSED
8218 && (ext_operand->size != 16 || c == '8'))
8219 return FALSE;
8220
8221 relax_char = c;
8222 continue;
8223 }
8224 }
8225
8226 if (mips_optional_operand_p (operand)
8227 && args[1] == ','
8228 && (arg.token[0].type != OT_REG
8229 || arg.token[1].type == OT_END))
8230 {
8231 /* Assume that the register has been elided and is the
8232 same as the first operand. */
8233 arg.token = tokens;
8234 arg.argnum = 1;
8235 }
8236
8237 if (!match_operand (&arg, operand))
8238 return FALSE;
8239 }
8240}
8241
60f20e8b
RS
8242/* Record that the current instruction is invalid for the current ISA. */
8243
8244static void
8245match_invalid_for_isa (void)
8246{
8247 set_insn_error_ss
1661c76c 8248 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8249 mips_cpu_info_from_arch (mips_opts.arch)->name,
8250 mips_cpu_info_from_isa (mips_opts.isa)->name);
8251}
8252
8253/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8254 Return true if a definite match or failure was found, storing any match
8255 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8256 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8257 tried and failed to match under normal conditions and now want to try a
8258 more relaxed match. */
8259
8260static bfd_boolean
8261match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8262 const struct mips_opcode *past, struct mips_operand_token *tokens,
8263 int opcode_extra, bfd_boolean lax_match)
8264{
8265 const struct mips_opcode *opcode;
8266 const struct mips_opcode *invalid_delay_slot;
8267 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8268
8269 /* Search for a match, ignoring alternatives that don't satisfy the
8270 current ISA or forced_length. */
8271 invalid_delay_slot = 0;
8272 seen_valid_for_isa = FALSE;
8273 seen_valid_for_size = FALSE;
8274 opcode = first;
8275 do
8276 {
8277 gas_assert (strcmp (opcode->name, first->name) == 0);
8278 if (is_opcode_valid (opcode))
8279 {
8280 seen_valid_for_isa = TRUE;
8281 if (is_size_valid (opcode))
8282 {
8283 bfd_boolean delay_slot_ok;
8284
8285 seen_valid_for_size = TRUE;
8286 delay_slot_ok = is_delay_slot_valid (opcode);
8287 if (match_insn (insn, opcode, tokens, opcode_extra,
8288 lax_match, delay_slot_ok))
8289 {
8290 if (!delay_slot_ok)
8291 {
8292 if (!invalid_delay_slot)
8293 invalid_delay_slot = opcode;
8294 }
8295 else
8296 return TRUE;
8297 }
8298 }
8299 }
8300 ++opcode;
8301 }
8302 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8303
8304 /* If the only matches we found had the wrong length for the delay slot,
8305 pick the first such match. We'll issue an appropriate warning later. */
8306 if (invalid_delay_slot)
8307 {
8308 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8309 lax_match, TRUE))
8310 return TRUE;
8311 abort ();
8312 }
8313
8314 /* Handle the case where we didn't try to match an instruction because
8315 all the alternatives were incompatible with the current ISA. */
8316 if (!seen_valid_for_isa)
8317 {
8318 match_invalid_for_isa ();
8319 return TRUE;
8320 }
8321
8322 /* Handle the case where we didn't try to match an instruction because
8323 all the alternatives were of the wrong size. */
8324 if (!seen_valid_for_size)
8325 {
8326 if (mips_opts.insn32)
1661c76c 8327 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8328 else
8329 set_insn_error_i
1661c76c 8330 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8331 8 * forced_insn_length);
8332 return TRUE;
8333 }
8334
8335 return FALSE;
8336}
8337
8338/* Like match_insns, but for MIPS16. */
8339
8340static bfd_boolean
8341match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8342 struct mips_operand_token *tokens)
8343{
8344 const struct mips_opcode *opcode;
8345 bfd_boolean seen_valid_for_isa;
7fd53920 8346 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8347
8348 /* Search for a match, ignoring alternatives that don't satisfy the
8349 current ISA. There are no separate entries for extended forms so
8350 we deal with forced_length later. */
8351 seen_valid_for_isa = FALSE;
7fd53920 8352 seen_valid_for_size = FALSE;
60f20e8b
RS
8353 opcode = first;
8354 do
8355 {
8356 gas_assert (strcmp (opcode->name, first->name) == 0);
8357 if (is_opcode_valid_16 (opcode))
8358 {
8359 seen_valid_for_isa = TRUE;
7fd53920
MR
8360 if (is_size_valid_16 (opcode))
8361 {
8362 seen_valid_for_size = TRUE;
8363 if (match_mips16_insn (insn, opcode, tokens))
8364 return TRUE;
8365 }
60f20e8b
RS
8366 }
8367 ++opcode;
8368 }
8369 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8370 && strcmp (opcode->name, first->name) == 0);
8371
8372 /* Handle the case where we didn't try to match an instruction because
8373 all the alternatives were incompatible with the current ISA. */
8374 if (!seen_valid_for_isa)
8375 {
8376 match_invalid_for_isa ();
8377 return TRUE;
8378 }
8379
7fd53920
MR
8380 /* Handle the case where we didn't try to match an instruction because
8381 all the alternatives were of the wrong size. */
8382 if (!seen_valid_for_size)
8383 {
8384 if (forced_insn_length == 2)
8385 set_insn_error
8386 (0, _("unrecognized unextended version of MIPS16 opcode"));
8387 else
8388 set_insn_error
8389 (0, _("unrecognized extended version of MIPS16 opcode"));
8390 return TRUE;
8391 }
8392
60f20e8b
RS
8393 return FALSE;
8394}
8395
584892a6
RS
8396/* Set up global variables for the start of a new macro. */
8397
8398static void
8399macro_start (void)
8400{
8401 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8402 memset (&mips_macro_warning.first_insn_sizes, 0,
8403 sizeof (mips_macro_warning.first_insn_sizes));
8404 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8405 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8406 && delayed_branch_p (&history[0]));
7bd374a4
MR
8407 if (history[0].frag
8408 && history[0].frag->fr_type == rs_machine_dependent
8409 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8410 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8411 mips_macro_warning.delay_slot_length = 0;
8412 else
8413 switch (history[0].insn_mo->pinfo2
8414 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8415 {
8416 case INSN2_BRANCH_DELAY_32BIT:
8417 mips_macro_warning.delay_slot_length = 4;
8418 break;
8419 case INSN2_BRANCH_DELAY_16BIT:
8420 mips_macro_warning.delay_slot_length = 2;
8421 break;
8422 default:
8423 mips_macro_warning.delay_slot_length = 0;
8424 break;
8425 }
df58fc94 8426 mips_macro_warning.first_frag = NULL;
584892a6
RS
8427}
8428
df58fc94
RS
8429/* Given that a macro is longer than one instruction or of the wrong size,
8430 return the appropriate warning for it. Return null if no warning is
8431 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8432 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8433 and RELAX_NOMACRO. */
584892a6
RS
8434
8435static const char *
8436macro_warning (relax_substateT subtype)
8437{
8438 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8439 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8440 " in a branch delay slot");
8441 else if (subtype & RELAX_NOMACRO)
1661c76c 8442 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8443 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8444 | RELAX_DELAY_SLOT_SIZE_SECOND))
8445 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8446 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8447 " in a 16-bit branch delay slot")
1661c76c 8448 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8449 " in a 32-bit branch delay slot"));
584892a6
RS
8450 else
8451 return 0;
8452}
8453
8454/* Finish up a macro. Emit warnings as appropriate. */
8455
8456static void
8457macro_end (void)
8458{
df58fc94
RS
8459 /* Relaxation warning flags. */
8460 relax_substateT subtype = 0;
8461
8462 /* Check delay slot size requirements. */
8463 if (mips_macro_warning.delay_slot_length == 2)
8464 subtype |= RELAX_DELAY_SLOT_16BIT;
8465 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8466 {
df58fc94
RS
8467 if (mips_macro_warning.delay_slot_length
8468 != mips_macro_warning.first_insn_sizes[0])
8469 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8470 if (mips_macro_warning.delay_slot_length
8471 != mips_macro_warning.first_insn_sizes[1])
8472 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8473 }
584892a6 8474
df58fc94
RS
8475 /* Check instruction count requirements. */
8476 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8477 {
8478 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8479 subtype |= RELAX_SECOND_LONGER;
8480 if (mips_opts.warn_about_macros)
8481 subtype |= RELAX_NOMACRO;
8482 if (mips_macro_warning.delay_slot_p)
8483 subtype |= RELAX_DELAY_SLOT;
df58fc94 8484 }
584892a6 8485
df58fc94
RS
8486 /* If both alternatives fail to fill a delay slot correctly,
8487 emit the warning now. */
8488 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8489 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8490 {
8491 relax_substateT s;
8492 const char *msg;
8493
8494 s = subtype & (RELAX_DELAY_SLOT_16BIT
8495 | RELAX_DELAY_SLOT_SIZE_FIRST
8496 | RELAX_DELAY_SLOT_SIZE_SECOND);
8497 msg = macro_warning (s);
8498 if (msg != NULL)
8499 as_warn ("%s", msg);
8500 subtype &= ~s;
8501 }
8502
8503 /* If both implementations are longer than 1 instruction, then emit the
8504 warning now. */
8505 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8506 {
8507 relax_substateT s;
8508 const char *msg;
8509
8510 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8511 msg = macro_warning (s);
8512 if (msg != NULL)
8513 as_warn ("%s", msg);
8514 subtype &= ~s;
584892a6 8515 }
df58fc94
RS
8516
8517 /* If any flags still set, then one implementation might need a warning
8518 and the other either will need one of a different kind or none at all.
8519 Pass any remaining flags over to relaxation. */
8520 if (mips_macro_warning.first_frag != NULL)
8521 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8522}
8523
df58fc94
RS
8524/* Instruction operand formats used in macros that vary between
8525 standard MIPS and microMIPS code. */
8526
833794fc 8527static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8528static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8529static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8530static const char * const lui_fmt[2] = { "t,u", "s,u" };
8531static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8532static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8533static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8534static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8535
833794fc 8536#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8537#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8538 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8539#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8540#define LUI_FMT (lui_fmt[mips_opts.micromips])
8541#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8542#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8543 : mem12_fmt[mips_opts.micromips])
833794fc 8544#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8545#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8546#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8547
6e1304d8
RS
8548/* Read a macro's relocation codes from *ARGS and store them in *R.
8549 The first argument in *ARGS will be either the code for a single
8550 relocation or -1 followed by the three codes that make up a
8551 composite relocation. */
8552
8553static void
8554macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8555{
8556 int i, next;
8557
8558 next = va_arg (*args, int);
8559 if (next >= 0)
8560 r[0] = (bfd_reloc_code_real_type) next;
8561 else
f2ae14a1
RS
8562 {
8563 for (i = 0; i < 3; i++)
8564 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8565 /* This function is only used for 16-bit relocation fields.
8566 To make the macro code simpler, treat an unrelocated value
8567 in the same way as BFD_RELOC_LO16. */
8568 if (r[0] == BFD_RELOC_UNUSED)
8569 r[0] = BFD_RELOC_LO16;
8570 }
6e1304d8
RS
8571}
8572
252b5132
RH
8573/* Build an instruction created by a macro expansion. This is passed
8574 a pointer to the count of instructions created so far, an
8575 expression, the name of the instruction to build, an operand format
8576 string, and corresponding arguments. */
8577
252b5132 8578static void
67c0d1eb 8579macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8580{
df58fc94 8581 const struct mips_opcode *mo = NULL;
f6688943 8582 bfd_reloc_code_real_type r[3];
df58fc94 8583 const struct mips_opcode *amo;
e077a1c8 8584 const struct mips_operand *operand;
df58fc94
RS
8585 struct hash_control *hash;
8586 struct mips_cl_insn insn;
252b5132 8587 va_list args;
e077a1c8 8588 unsigned int uval;
252b5132 8589
252b5132 8590 va_start (args, fmt);
252b5132 8591
252b5132
RH
8592 if (mips_opts.mips16)
8593 {
03ea81db 8594 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8595 va_end (args);
8596 return;
8597 }
8598
f6688943
TS
8599 r[0] = BFD_RELOC_UNUSED;
8600 r[1] = BFD_RELOC_UNUSED;
8601 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8602 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8603 amo = (struct mips_opcode *) hash_find (hash, name);
8604 gas_assert (amo);
8605 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8606
df58fc94 8607 do
8b082fb1
TS
8608 {
8609 /* Search until we get a match for NAME. It is assumed here that
df58fc94
RS
8610 macros will never generate MDMX, MIPS-3D, or MT instructions.
8611 We try to match an instruction that fulfils the branch delay
8612 slot instruction length requirement (if any) of the previous
8613 instruction. While doing this we record the first instruction
8614 seen that matches all the other conditions and use it anyway
8615 if the requirement cannot be met; we will issue an appropriate
8616 warning later on. */
8617 if (strcmp (fmt, amo->args) == 0
8618 && amo->pinfo != INSN_MACRO
8619 && is_opcode_valid (amo)
8620 && is_size_valid (amo))
8621 {
8622 if (is_delay_slot_valid (amo))
8623 {
8624 mo = amo;
8625 break;
8626 }
8627 else if (!mo)
8628 mo = amo;
8629 }
8b082fb1 8630
df58fc94
RS
8631 ++amo;
8632 gas_assert (amo->name);
252b5132 8633 }
df58fc94 8634 while (strcmp (name, amo->name) == 0);
252b5132 8635
df58fc94 8636 gas_assert (mo);
1e915849 8637 create_insn (&insn, mo);
e077a1c8 8638 for (; *fmt; ++fmt)
252b5132 8639 {
e077a1c8 8640 switch (*fmt)
252b5132 8641 {
252b5132
RH
8642 case ',':
8643 case '(':
8644 case ')':
252b5132 8645 case 'z':
e077a1c8 8646 break;
252b5132
RH
8647
8648 case 'i':
8649 case 'j':
6e1304d8 8650 macro_read_relocs (&args, r);
9c2799c2 8651 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8652 || *r == BFD_RELOC_MIPS_HIGHER
8653 || *r == BFD_RELOC_HI16_S
8654 || *r == BFD_RELOC_LO16
8655 || *r == BFD_RELOC_MIPS_GOT_OFST);
e077a1c8 8656 break;
e391c024
RS
8657
8658 case 'o':
8659 macro_read_relocs (&args, r);
e077a1c8 8660 break;
252b5132
RH
8661
8662 case 'u':
6e1304d8 8663 macro_read_relocs (&args, r);
9c2799c2 8664 gas_assert (ep != NULL
90ecf173
MR
8665 && (ep->X_op == O_constant
8666 || (ep->X_op == O_symbol
8667 && (*r == BFD_RELOC_MIPS_HIGHEST
8668 || *r == BFD_RELOC_HI16_S
8669 || *r == BFD_RELOC_HI16
8670 || *r == BFD_RELOC_GPREL16
8671 || *r == BFD_RELOC_MIPS_GOT_HI16
8672 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8673 break;
252b5132
RH
8674
8675 case 'p':
9c2799c2 8676 gas_assert (ep != NULL);
bad36eac 8677
252b5132
RH
8678 /*
8679 * This allows macro() to pass an immediate expression for
8680 * creating short branches without creating a symbol.
bad36eac
DJ
8681 *
8682 * We don't allow branch relaxation for these branches, as
8683 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8684 */
8685 if (ep->X_op == O_constant)
8686 {
df58fc94
RS
8687 /* For microMIPS we always use relocations for branches.
8688 So we should not resolve immediate values. */
8689 gas_assert (!mips_opts.micromips);
8690
bad36eac
DJ
8691 if ((ep->X_add_number & 3) != 0)
8692 as_bad (_("branch to misaligned address (0x%lx)"),
8693 (unsigned long) ep->X_add_number);
8694 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8695 as_bad (_("branch address range overflow (0x%lx)"),
8696 (unsigned long) ep->X_add_number);
252b5132
RH
8697 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8698 ep = NULL;
8699 }
8700 else
0b25d3e6 8701 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8702 break;
252b5132
RH
8703
8704 case 'a':
9c2799c2 8705 gas_assert (ep != NULL);
f6688943 8706 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8707 break;
d43b4baf 8708
252b5132 8709 default:
e077a1c8
RS
8710 operand = (mips_opts.micromips
8711 ? decode_micromips_operand (fmt)
8712 : decode_mips_operand (fmt));
8713 if (!operand)
8714 abort ();
8715
8716 uval = va_arg (args, int);
8717 if (operand->type == OP_CLO_CLZ_DEST)
8718 uval |= (uval << 5);
8719 insn_insert_operand (&insn, operand, uval);
8720
7361da2c 8721 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8722 ++fmt;
8723 break;
252b5132 8724 }
252b5132
RH
8725 }
8726 va_end (args);
9c2799c2 8727 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8728
df58fc94 8729 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8730}
8731
8732static void
67c0d1eb 8733mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 8734 va_list *args)
252b5132 8735{
1e915849 8736 struct mips_opcode *mo;
252b5132 8737 struct mips_cl_insn insn;
e077a1c8 8738 const struct mips_operand *operand;
f6688943
TS
8739 bfd_reloc_code_real_type r[3]
8740 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 8741
1e915849 8742 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
8743 gas_assert (mo);
8744 gas_assert (strcmp (name, mo->name) == 0);
252b5132 8745
1e915849 8746 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 8747 {
1e915849 8748 ++mo;
9c2799c2
NC
8749 gas_assert (mo->name);
8750 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
8751 }
8752
1e915849 8753 create_insn (&insn, mo);
e077a1c8 8754 for (; *fmt; ++fmt)
252b5132
RH
8755 {
8756 int c;
8757
e077a1c8 8758 c = *fmt;
252b5132
RH
8759 switch (c)
8760 {
252b5132
RH
8761 case ',':
8762 case '(':
8763 case ')':
e077a1c8 8764 break;
252b5132
RH
8765
8766 case '0':
8767 case 'S':
8768 case 'P':
8769 case 'R':
e077a1c8 8770 break;
252b5132
RH
8771
8772 case '<':
252b5132
RH
8773 case '4':
8774 case '5':
8775 case 'H':
8776 case 'W':
8777 case 'D':
8778 case 'j':
8779 case '8':
8780 case 'V':
8781 case 'C':
8782 case 'U':
8783 case 'k':
8784 case 'K':
8785 case 'p':
8786 case 'q':
8787 {
b886a2ab
RS
8788 offsetT value;
8789
9c2799c2 8790 gas_assert (ep != NULL);
252b5132
RH
8791
8792 if (ep->X_op != O_constant)
874e8986 8793 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 8794 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 8795 {
b886a2ab 8796 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 8797 ep = NULL;
f6688943 8798 *r = BFD_RELOC_UNUSED;
252b5132
RH
8799 }
8800 }
e077a1c8 8801 break;
252b5132 8802
e077a1c8
RS
8803 default:
8804 operand = decode_mips16_operand (c, FALSE);
8805 if (!operand)
8806 abort ();
252b5132 8807
4a06e5a2 8808 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
8809 break;
8810 }
252b5132
RH
8811 }
8812
9c2799c2 8813 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8814
df58fc94 8815 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8816}
8817
438c16b8
TS
8818/*
8819 * Generate a "jalr" instruction with a relocation hint to the called
8820 * function. This occurs in NewABI PIC code.
8821 */
8822static void
df58fc94 8823macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 8824{
df58fc94
RS
8825 static const bfd_reloc_code_real_type jalr_relocs[2]
8826 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8827 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8828 const char *jalr;
685736be 8829 char *f = NULL;
b34976b6 8830
1180b5a4 8831 if (MIPS_JALR_HINT_P (ep))
f21f8242 8832 {
cc3d92a5 8833 frag_grow (8);
f21f8242
AO
8834 f = frag_more (0);
8835 }
2906b037 8836 if (mips_opts.micromips)
df58fc94 8837 {
833794fc
MR
8838 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8839 ? "jalr" : "jalrs");
e64af278 8840 if (MIPS_JALR_HINT_P (ep)
833794fc 8841 || mips_opts.insn32
e64af278 8842 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
8843 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8844 else
8845 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8846 }
2906b037
MR
8847 else
8848 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 8849 if (MIPS_JALR_HINT_P (ep))
df58fc94 8850 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
8851}
8852
252b5132
RH
8853/*
8854 * Generate a "lui" instruction.
8855 */
8856static void
67c0d1eb 8857macro_build_lui (expressionS *ep, int regnum)
252b5132 8858{
9c2799c2 8859 gas_assert (! mips_opts.mips16);
252b5132 8860
df58fc94 8861 if (ep->X_op != O_constant)
252b5132 8862 {
9c2799c2 8863 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
8864 /* _gp_disp is a special case, used from s_cpload.
8865 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 8866 gas_assert (mips_pic == NO_PIC
78e1bb40 8867 || (! HAVE_NEWABI
aa6975fb
ILT
8868 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8869 || (! mips_in_shared
bbe506e8
TS
8870 && strcmp (S_GET_NAME (ep->X_add_symbol),
8871 "__gnu_local_gp") == 0));
252b5132
RH
8872 }
8873
df58fc94 8874 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
8875}
8876
885add95
CD
8877/* Generate a sequence of instructions to do a load or store from a constant
8878 offset off of a base register (breg) into/from a target register (treg),
8879 using AT if necessary. */
8880static void
67c0d1eb
RS
8881macro_build_ldst_constoffset (expressionS *ep, const char *op,
8882 int treg, int breg, int dbl)
885add95 8883{
9c2799c2 8884 gas_assert (ep->X_op == O_constant);
885add95 8885
256ab948 8886 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
8887 if (!dbl)
8888 normalize_constant_expr (ep);
256ab948 8889
67c1ffbe 8890 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 8891 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
8892 as_warn (_("operand overflow"));
8893
8894 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8895 {
8896 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 8897 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
8898 }
8899 else
8900 {
8901 /* 32-bit offset, need multiple instructions and AT, like:
8902 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8903 addu $tempreg,$tempreg,$breg
8904 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8905 to handle the complete offset. */
67c0d1eb
RS
8906 macro_build_lui (ep, AT);
8907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8908 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 8909
741fe287 8910 if (!mips_opts.at)
1661c76c 8911 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
8912 }
8913}
8914
252b5132
RH
8915/* set_at()
8916 * Generates code to set the $at register to true (one)
8917 * if reg is less than the immediate expression.
8918 */
8919static void
67c0d1eb 8920set_at (int reg, int unsignedp)
252b5132 8921{
b0e6f033 8922 if (imm_expr.X_add_number >= -0x8000
252b5132 8923 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
8924 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8925 AT, reg, BFD_RELOC_LO16);
252b5132
RH
8926 else
8927 {
bad1aba3 8928 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 8929 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
8930 }
8931}
8932
252b5132
RH
8933/* Count the leading zeroes by performing a binary chop. This is a
8934 bulky bit of source, but performance is a LOT better for the
8935 majority of values than a simple loop to count the bits:
8936 for (lcnt = 0; (lcnt < 32); lcnt++)
8937 if ((v) & (1 << (31 - lcnt)))
8938 break;
8939 However it is not code size friendly, and the gain will drop a bit
8940 on certain cached systems.
8941*/
8942#define COUNT_TOP_ZEROES(v) \
8943 (((v) & ~0xffff) == 0 \
8944 ? ((v) & ~0xff) == 0 \
8945 ? ((v) & ~0xf) == 0 \
8946 ? ((v) & ~0x3) == 0 \
8947 ? ((v) & ~0x1) == 0 \
8948 ? !(v) \
8949 ? 32 \
8950 : 31 \
8951 : 30 \
8952 : ((v) & ~0x7) == 0 \
8953 ? 29 \
8954 : 28 \
8955 : ((v) & ~0x3f) == 0 \
8956 ? ((v) & ~0x1f) == 0 \
8957 ? 27 \
8958 : 26 \
8959 : ((v) & ~0x7f) == 0 \
8960 ? 25 \
8961 : 24 \
8962 : ((v) & ~0xfff) == 0 \
8963 ? ((v) & ~0x3ff) == 0 \
8964 ? ((v) & ~0x1ff) == 0 \
8965 ? 23 \
8966 : 22 \
8967 : ((v) & ~0x7ff) == 0 \
8968 ? 21 \
8969 : 20 \
8970 : ((v) & ~0x3fff) == 0 \
8971 ? ((v) & ~0x1fff) == 0 \
8972 ? 19 \
8973 : 18 \
8974 : ((v) & ~0x7fff) == 0 \
8975 ? 17 \
8976 : 16 \
8977 : ((v) & ~0xffffff) == 0 \
8978 ? ((v) & ~0xfffff) == 0 \
8979 ? ((v) & ~0x3ffff) == 0 \
8980 ? ((v) & ~0x1ffff) == 0 \
8981 ? 15 \
8982 : 14 \
8983 : ((v) & ~0x7ffff) == 0 \
8984 ? 13 \
8985 : 12 \
8986 : ((v) & ~0x3fffff) == 0 \
8987 ? ((v) & ~0x1fffff) == 0 \
8988 ? 11 \
8989 : 10 \
8990 : ((v) & ~0x7fffff) == 0 \
8991 ? 9 \
8992 : 8 \
8993 : ((v) & ~0xfffffff) == 0 \
8994 ? ((v) & ~0x3ffffff) == 0 \
8995 ? ((v) & ~0x1ffffff) == 0 \
8996 ? 7 \
8997 : 6 \
8998 : ((v) & ~0x7ffffff) == 0 \
8999 ? 5 \
9000 : 4 \
9001 : ((v) & ~0x3fffffff) == 0 \
9002 ? ((v) & ~0x1fffffff) == 0 \
9003 ? 3 \
9004 : 2 \
9005 : ((v) & ~0x7fffffff) == 0 \
9006 ? 1 \
9007 : 0)
9008
9009/* load_register()
67c1ffbe 9010 * This routine generates the least number of instructions necessary to load
252b5132
RH
9011 * an absolute expression value into a register.
9012 */
9013static void
67c0d1eb 9014load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9015{
9016 int freg;
9017 expressionS hi32, lo32;
9018
9019 if (ep->X_op != O_big)
9020 {
9c2799c2 9021 gas_assert (ep->X_op == O_constant);
256ab948
TS
9022
9023 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9024 if (!dbl)
9025 normalize_constant_expr (ep);
256ab948
TS
9026
9027 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9028 {
9029 /* We can handle 16 bit signed values with an addiu to
9030 $zero. No need to ever use daddiu here, since $zero and
9031 the result are always correct in 32 bit mode. */
67c0d1eb 9032 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9033 return;
9034 }
9035 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9036 {
9037 /* We can handle 16 bit unsigned values with an ori to
9038 $zero. */
67c0d1eb 9039 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9040 return;
9041 }
256ab948 9042 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9043 {
9044 /* 32 bit values require an lui. */
df58fc94 9045 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9046 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9047 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9048 return;
9049 }
9050 }
9051
9052 /* The value is larger than 32 bits. */
9053
bad1aba3 9054 if (!dbl || GPR_SIZE == 32)
252b5132 9055 {
55e08f71
NC
9056 char value[32];
9057
9058 sprintf_vma (value, ep->X_add_number);
1661c76c 9059 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9060 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9061 return;
9062 }
9063
9064 if (ep->X_op != O_big)
9065 {
9066 hi32 = *ep;
9067 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9068 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9069 hi32.X_add_number &= 0xffffffff;
9070 lo32 = *ep;
9071 lo32.X_add_number &= 0xffffffff;
9072 }
9073 else
9074 {
9c2799c2 9075 gas_assert (ep->X_add_number > 2);
252b5132
RH
9076 if (ep->X_add_number == 3)
9077 generic_bignum[3] = 0;
9078 else if (ep->X_add_number > 4)
1661c76c 9079 as_bad (_("number larger than 64 bits"));
252b5132
RH
9080 lo32.X_op = O_constant;
9081 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9082 hi32.X_op = O_constant;
9083 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9084 }
9085
9086 if (hi32.X_add_number == 0)
9087 freg = 0;
9088 else
9089 {
9090 int shift, bit;
9091 unsigned long hi, lo;
9092
956cd1d6 9093 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9094 {
9095 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9096 {
67c0d1eb 9097 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9098 return;
9099 }
9100 if (lo32.X_add_number & 0x80000000)
9101 {
df58fc94 9102 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9103 if (lo32.X_add_number & 0xffff)
67c0d1eb 9104 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9105 return;
9106 }
9107 }
252b5132
RH
9108
9109 /* Check for 16bit shifted constant. We know that hi32 is
9110 non-zero, so start the mask on the first bit of the hi32
9111 value. */
9112 shift = 17;
9113 do
beae10d5
KH
9114 {
9115 unsigned long himask, lomask;
9116
9117 if (shift < 32)
9118 {
9119 himask = 0xffff >> (32 - shift);
9120 lomask = (0xffff << shift) & 0xffffffff;
9121 }
9122 else
9123 {
9124 himask = 0xffff << (shift - 32);
9125 lomask = 0;
9126 }
9127 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9128 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9129 {
9130 expressionS tmp;
9131
9132 tmp.X_op = O_constant;
9133 if (shift < 32)
9134 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9135 | (lo32.X_add_number >> shift));
9136 else
9137 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9138 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9139 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9140 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9141 return;
9142 }
f9419b05 9143 ++shift;
beae10d5
KH
9144 }
9145 while (shift <= (64 - 16));
252b5132
RH
9146
9147 /* Find the bit number of the lowest one bit, and store the
9148 shifted value in hi/lo. */
9149 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9150 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9151 if (lo != 0)
9152 {
9153 bit = 0;
9154 while ((lo & 1) == 0)
9155 {
9156 lo >>= 1;
9157 ++bit;
9158 }
9159 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9160 hi >>= bit;
9161 }
9162 else
9163 {
9164 bit = 32;
9165 while ((hi & 1) == 0)
9166 {
9167 hi >>= 1;
9168 ++bit;
9169 }
9170 lo = hi;
9171 hi = 0;
9172 }
9173
9174 /* Optimize if the shifted value is a (power of 2) - 1. */
9175 if ((hi == 0 && ((lo + 1) & lo) == 0)
9176 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9177 {
9178 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9179 if (shift != 0)
beae10d5 9180 {
252b5132
RH
9181 expressionS tmp;
9182
9183 /* This instruction will set the register to be all
9184 ones. */
beae10d5
KH
9185 tmp.X_op = O_constant;
9186 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9187 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9188 if (bit != 0)
9189 {
9190 bit += shift;
df58fc94 9191 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9192 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9193 }
df58fc94 9194 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9195 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9196 return;
9197 }
9198 }
252b5132
RH
9199
9200 /* Sign extend hi32 before calling load_register, because we can
9201 generally get better code when we load a sign extended value. */
9202 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9203 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9204 load_register (reg, &hi32, 0);
252b5132
RH
9205 freg = reg;
9206 }
9207 if ((lo32.X_add_number & 0xffff0000) == 0)
9208 {
9209 if (freg != 0)
9210 {
df58fc94 9211 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9212 freg = reg;
9213 }
9214 }
9215 else
9216 {
9217 expressionS mid16;
9218
956cd1d6 9219 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9220 {
df58fc94
RS
9221 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9222 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9223 return;
9224 }
252b5132
RH
9225
9226 if (freg != 0)
9227 {
df58fc94 9228 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9229 freg = reg;
9230 }
9231 mid16 = lo32;
9232 mid16.X_add_number >>= 16;
67c0d1eb 9233 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9234 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9235 freg = reg;
9236 }
9237 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9238 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9239}
9240
269137b2
TS
9241static inline void
9242load_delay_nop (void)
9243{
9244 if (!gpr_interlocks)
9245 macro_build (NULL, "nop", "");
9246}
9247
252b5132
RH
9248/* Load an address into a register. */
9249
9250static void
67c0d1eb 9251load_address (int reg, expressionS *ep, int *used_at)
252b5132 9252{
252b5132
RH
9253 if (ep->X_op != O_constant
9254 && ep->X_op != O_symbol)
9255 {
9256 as_bad (_("expression too complex"));
9257 ep->X_op = O_constant;
9258 }
9259
9260 if (ep->X_op == O_constant)
9261 {
67c0d1eb 9262 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9263 return;
9264 }
9265
9266 if (mips_pic == NO_PIC)
9267 {
9268 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9269 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9270 Otherwise we want
9271 lui $reg,<sym> (BFD_RELOC_HI16_S)
9272 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9273 If we have an addend, we always use the latter form.
76b3015f 9274
d6bc6245
TS
9275 With 64bit address space and a usable $at we want
9276 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9277 lui $at,<sym> (BFD_RELOC_HI16_S)
9278 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9279 daddiu $at,<sym> (BFD_RELOC_LO16)
9280 dsll32 $reg,0
3a482fd5 9281 daddu $reg,$reg,$at
76b3015f 9282
c03099e6 9283 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9284 on superscalar processors.
9285 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9286 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9287 dsll $reg,16
9288 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9289 dsll $reg,16
9290 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9291
9292 For GP relative symbols in 64bit address space we can use
9293 the same sequence as in 32bit address space. */
aed1a261 9294 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9295 {
6caf9ef4
TS
9296 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9297 && !nopic_need_relax (ep->X_add_symbol, 1))
9298 {
9299 relax_start (ep->X_add_symbol);
9300 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9301 mips_gp_register, BFD_RELOC_GPREL16);
9302 relax_switch ();
9303 }
d6bc6245 9304
741fe287 9305 if (*used_at == 0 && mips_opts.at)
d6bc6245 9306 {
df58fc94
RS
9307 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9308 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9309 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9310 BFD_RELOC_MIPS_HIGHER);
9311 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9312 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9313 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9314 *used_at = 1;
9315 }
9316 else
9317 {
df58fc94 9318 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9319 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9320 BFD_RELOC_MIPS_HIGHER);
df58fc94 9321 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9322 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9323 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9324 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9325 }
6caf9ef4
TS
9326
9327 if (mips_relax.sequence)
9328 relax_end ();
d6bc6245 9329 }
252b5132
RH
9330 else
9331 {
d6bc6245 9332 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9333 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9334 {
4d7206a2 9335 relax_start (ep->X_add_symbol);
67c0d1eb 9336 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9337 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9338 relax_switch ();
d6bc6245 9339 }
67c0d1eb
RS
9340 macro_build_lui (ep, reg);
9341 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9342 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9343 if (mips_relax.sequence)
9344 relax_end ();
d6bc6245 9345 }
252b5132 9346 }
0a44bf69 9347 else if (!mips_big_got)
252b5132
RH
9348 {
9349 expressionS ex;
9350
9351 /* If this is a reference to an external symbol, we want
9352 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9353 Otherwise we want
9354 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9355 nop
9356 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9357 If there is a constant, it must be added in after.
9358
ed6fb7bd 9359 If we have NewABI, we want
f5040a92
AO
9360 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9361 unless we're referencing a global symbol with a non-zero
9362 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9363 if (HAVE_NEWABI)
9364 {
f5040a92
AO
9365 if (ep->X_add_number)
9366 {
4d7206a2 9367 ex.X_add_number = ep->X_add_number;
f5040a92 9368 ep->X_add_number = 0;
4d7206a2 9369 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9370 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9371 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9372 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9373 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9374 ex.X_op = O_constant;
67c0d1eb 9375 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9376 reg, reg, BFD_RELOC_LO16);
f5040a92 9377 ep->X_add_number = ex.X_add_number;
4d7206a2 9378 relax_switch ();
f5040a92 9379 }
67c0d1eb 9380 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9381 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9382 if (mips_relax.sequence)
9383 relax_end ();
ed6fb7bd
SC
9384 }
9385 else
9386 {
f5040a92
AO
9387 ex.X_add_number = ep->X_add_number;
9388 ep->X_add_number = 0;
67c0d1eb
RS
9389 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9390 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9391 load_delay_nop ();
4d7206a2
RS
9392 relax_start (ep->X_add_symbol);
9393 relax_switch ();
67c0d1eb 9394 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9395 BFD_RELOC_LO16);
4d7206a2 9396 relax_end ();
ed6fb7bd 9397
f5040a92
AO
9398 if (ex.X_add_number != 0)
9399 {
9400 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9401 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9402 ex.X_op = O_constant;
67c0d1eb 9403 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9404 reg, reg, BFD_RELOC_LO16);
f5040a92 9405 }
252b5132
RH
9406 }
9407 }
0a44bf69 9408 else if (mips_big_got)
252b5132
RH
9409 {
9410 expressionS ex;
252b5132
RH
9411
9412 /* This is the large GOT case. If this is a reference to an
9413 external symbol, we want
9414 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9415 addu $reg,$reg,$gp
9416 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9417
9418 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9419 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9420 nop
9421 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9422 If there is a constant, it must be added in after.
f5040a92
AO
9423
9424 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9425 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9426 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9427 */
438c16b8
TS
9428 if (HAVE_NEWABI)
9429 {
4d7206a2 9430 ex.X_add_number = ep->X_add_number;
f5040a92 9431 ep->X_add_number = 0;
4d7206a2 9432 relax_start (ep->X_add_symbol);
df58fc94 9433 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9435 reg, reg, mips_gp_register);
9436 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9437 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9438 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9440 else if (ex.X_add_number)
9441 {
9442 ex.X_op = O_constant;
67c0d1eb
RS
9443 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9444 BFD_RELOC_LO16);
f5040a92
AO
9445 }
9446
9447 ep->X_add_number = ex.X_add_number;
4d7206a2 9448 relax_switch ();
67c0d1eb 9449 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9450 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9451 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9452 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9453 relax_end ();
438c16b8 9454 }
252b5132 9455 else
438c16b8 9456 {
f5040a92
AO
9457 ex.X_add_number = ep->X_add_number;
9458 ep->X_add_number = 0;
4d7206a2 9459 relax_start (ep->X_add_symbol);
df58fc94 9460 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9462 reg, reg, mips_gp_register);
9463 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9464 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9465 relax_switch ();
9466 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9467 {
9468 /* We need a nop before loading from $gp. This special
9469 check is required because the lui which starts the main
9470 instruction stream does not refer to $gp, and so will not
9471 insert the nop which may be required. */
67c0d1eb 9472 macro_build (NULL, "nop", "");
438c16b8 9473 }
67c0d1eb 9474 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9475 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9476 load_delay_nop ();
67c0d1eb 9477 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9478 BFD_RELOC_LO16);
4d7206a2 9479 relax_end ();
438c16b8 9480
f5040a92
AO
9481 if (ex.X_add_number != 0)
9482 {
9483 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9484 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9485 ex.X_op = O_constant;
67c0d1eb
RS
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
f5040a92 9488 }
252b5132
RH
9489 }
9490 }
252b5132
RH
9491 else
9492 abort ();
8fc2e39e 9493
741fe287 9494 if (!mips_opts.at && *used_at == 1)
1661c76c 9495 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9496}
9497
ea1fb5dc
RS
9498/* Move the contents of register SOURCE into register DEST. */
9499
9500static void
67c0d1eb 9501move_register (int dest, int source)
ea1fb5dc 9502{
df58fc94
RS
9503 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9504 instruction specifically requires a 32-bit one. */
9505 if (mips_opts.micromips
833794fc 9506 && !mips_opts.insn32
df58fc94 9507 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9508 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9509 else
40fc1451 9510 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9511}
9512
4d7206a2 9513/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9514 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9515 The two alternatives are:
4d7206a2
RS
9516
9517 Global symbol Local sybmol
9518 ------------- ------------
9519 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9520 ... ...
9521 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9522
9523 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9524 emits the second for a 16-bit offset or add_got_offset_hilo emits
9525 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9526
9527static void
67c0d1eb 9528load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9529{
9530 expressionS global;
9531
9532 global = *local;
9533 global.X_add_number = 0;
9534
9535 relax_start (local->X_add_symbol);
67c0d1eb
RS
9536 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9537 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9538 relax_switch ();
67c0d1eb
RS
9539 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9540 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9541 relax_end ();
9542}
9543
9544static void
67c0d1eb 9545add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9546{
9547 expressionS global;
9548
9549 global.X_op = O_constant;
9550 global.X_op_symbol = NULL;
9551 global.X_add_symbol = NULL;
9552 global.X_add_number = local->X_add_number;
9553
9554 relax_start (local->X_add_symbol);
67c0d1eb 9555 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9556 dest, dest, BFD_RELOC_LO16);
9557 relax_switch ();
67c0d1eb 9558 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9559 relax_end ();
9560}
9561
f6a22291
MR
9562static void
9563add_got_offset_hilo (int dest, expressionS *local, int tmp)
9564{
9565 expressionS global;
9566 int hold_mips_optimize;
9567
9568 global.X_op = O_constant;
9569 global.X_op_symbol = NULL;
9570 global.X_add_symbol = NULL;
9571 global.X_add_number = local->X_add_number;
9572
9573 relax_start (local->X_add_symbol);
9574 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9575 relax_switch ();
9576 /* Set mips_optimize around the lui instruction to avoid
9577 inserting an unnecessary nop after the lw. */
9578 hold_mips_optimize = mips_optimize;
9579 mips_optimize = 2;
9580 macro_build_lui (&global, tmp);
9581 mips_optimize = hold_mips_optimize;
9582 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9583 relax_end ();
9584
9585 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9586}
9587
df58fc94
RS
9588/* Emit a sequence of instructions to emulate a branch likely operation.
9589 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9590 is its complementing branch with the original condition negated.
9591 CALL is set if the original branch specified the link operation.
9592 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9593
9594 Code like this is produced in the noreorder mode:
9595
9596 BRNEG <args>, 1f
9597 nop
9598 b <sym>
9599 delay slot (executed only if branch taken)
9600 1:
9601
9602 or, if CALL is set:
9603
9604 BRNEG <args>, 1f
9605 nop
9606 bal <sym>
9607 delay slot (executed only if branch taken)
9608 1:
9609
9610 In the reorder mode the delay slot would be filled with a nop anyway,
9611 so code produced is simply:
9612
9613 BR <args>, <sym>
9614 nop
9615
9616 This function is used when producing code for the microMIPS ASE that
9617 does not implement branch likely instructions in hardware. */
9618
9619static void
9620macro_build_branch_likely (const char *br, const char *brneg,
9621 int call, expressionS *ep, const char *fmt,
9622 unsigned int sreg, unsigned int treg)
9623{
9624 int noreorder = mips_opts.noreorder;
9625 expressionS expr1;
9626
9627 gas_assert (mips_opts.micromips);
9628 start_noreorder ();
9629 if (noreorder)
9630 {
9631 micromips_label_expr (&expr1);
9632 macro_build (&expr1, brneg, fmt, sreg, treg);
9633 macro_build (NULL, "nop", "");
9634 macro_build (ep, call ? "bal" : "b", "p");
9635
9636 /* Set to true so that append_insn adds a label. */
9637 emit_branch_likely_macro = TRUE;
9638 }
9639 else
9640 {
9641 macro_build (ep, br, fmt, sreg, treg);
9642 macro_build (NULL, "nop", "");
9643 }
9644 end_noreorder ();
9645}
9646
9647/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9648 the condition code tested. EP specifies the branch target. */
9649
9650static void
9651macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9652{
9653 const int call = 0;
9654 const char *brneg;
9655 const char *br;
9656
9657 switch (type)
9658 {
9659 case M_BC1FL:
9660 br = "bc1f";
9661 brneg = "bc1t";
9662 break;
9663 case M_BC1TL:
9664 br = "bc1t";
9665 brneg = "bc1f";
9666 break;
9667 case M_BC2FL:
9668 br = "bc2f";
9669 brneg = "bc2t";
9670 break;
9671 case M_BC2TL:
9672 br = "bc2t";
9673 brneg = "bc2f";
9674 break;
9675 default:
9676 abort ();
9677 }
9678 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9679}
9680
9681/* Emit a two-argument branch macro specified by TYPE, using SREG as
9682 the register tested. EP specifies the branch target. */
9683
9684static void
9685macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9686{
9687 const char *brneg = NULL;
9688 const char *br;
9689 int call = 0;
9690
9691 switch (type)
9692 {
9693 case M_BGEZ:
9694 br = "bgez";
9695 break;
9696 case M_BGEZL:
9697 br = mips_opts.micromips ? "bgez" : "bgezl";
9698 brneg = "bltz";
9699 break;
9700 case M_BGEZALL:
9701 gas_assert (mips_opts.micromips);
833794fc 9702 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9703 brneg = "bltz";
9704 call = 1;
9705 break;
9706 case M_BGTZ:
9707 br = "bgtz";
9708 break;
9709 case M_BGTZL:
9710 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9711 brneg = "blez";
9712 break;
9713 case M_BLEZ:
9714 br = "blez";
9715 break;
9716 case M_BLEZL:
9717 br = mips_opts.micromips ? "blez" : "blezl";
9718 brneg = "bgtz";
9719 break;
9720 case M_BLTZ:
9721 br = "bltz";
9722 break;
9723 case M_BLTZL:
9724 br = mips_opts.micromips ? "bltz" : "bltzl";
9725 brneg = "bgez";
9726 break;
9727 case M_BLTZALL:
9728 gas_assert (mips_opts.micromips);
833794fc 9729 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9730 brneg = "bgez";
9731 call = 1;
9732 break;
9733 default:
9734 abort ();
9735 }
9736 if (mips_opts.micromips && brneg)
9737 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9738 else
9739 macro_build (ep, br, "s,p", sreg);
9740}
9741
9742/* Emit a three-argument branch macro specified by TYPE, using SREG and
9743 TREG as the registers tested. EP specifies the branch target. */
9744
9745static void
9746macro_build_branch_rsrt (int type, expressionS *ep,
9747 unsigned int sreg, unsigned int treg)
9748{
9749 const char *brneg = NULL;
9750 const int call = 0;
9751 const char *br;
9752
9753 switch (type)
9754 {
9755 case M_BEQ:
9756 case M_BEQ_I:
9757 br = "beq";
9758 break;
9759 case M_BEQL:
9760 case M_BEQL_I:
9761 br = mips_opts.micromips ? "beq" : "beql";
9762 brneg = "bne";
9763 break;
9764 case M_BNE:
9765 case M_BNE_I:
9766 br = "bne";
9767 break;
9768 case M_BNEL:
9769 case M_BNEL_I:
9770 br = mips_opts.micromips ? "bne" : "bnel";
9771 brneg = "beq";
9772 break;
9773 default:
9774 abort ();
9775 }
9776 if (mips_opts.micromips && brneg)
9777 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9778 else
9779 macro_build (ep, br, "s,t,p", sreg, treg);
9780}
9781
f2ae14a1
RS
9782/* Return the high part that should be loaded in order to make the low
9783 part of VALUE accessible using an offset of OFFBITS bits. */
9784
9785static offsetT
9786offset_high_part (offsetT value, unsigned int offbits)
9787{
9788 offsetT bias;
9789 addressT low_mask;
9790
9791 if (offbits == 0)
9792 return value;
9793 bias = 1 << (offbits - 1);
9794 low_mask = bias * 2 - 1;
9795 return (value + bias) & ~low_mask;
9796}
9797
9798/* Return true if the value stored in offset_expr and offset_reloc
9799 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9800 amount that the caller wants to add without inducing overflow
9801 and ALIGN is the known alignment of the value in bytes. */
9802
9803static bfd_boolean
9804small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9805{
9806 if (offbits == 16)
9807 {
9808 /* Accept any relocation operator if overflow isn't a concern. */
9809 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9810 return TRUE;
9811
9812 /* These relocations are guaranteed not to overflow in correct links. */
9813 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9814 || gprel16_reloc_p (*offset_reloc))
9815 return TRUE;
9816 }
9817 if (offset_expr.X_op == O_constant
9818 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9819 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9820 return TRUE;
9821 return FALSE;
9822}
9823
252b5132
RH
9824/*
9825 * Build macros
9826 * This routine implements the seemingly endless macro or synthesized
9827 * instructions and addressing modes in the mips assembly language. Many
9828 * of these macros are simple and are similar to each other. These could
67c1ffbe 9829 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
9830 * this verbose method. Others are not simple macros but are more like
9831 * optimizing code generation.
9832 * One interesting optimization is when several store macros appear
67c1ffbe 9833 * consecutively that would load AT with the upper half of the same address.
2b0f3761 9834 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
9835 * of global optimization. We currently only optimize within a single macro.
9836 * For many of the load and store macros if the address is specified as a
9837 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9838 * first load register 'at' with zero and use it as the base register. The
9839 * mips assembler simply uses register $zero. Just one tiny optimization
9840 * we're missing.
9841 */
9842static void
833794fc 9843macro (struct mips_cl_insn *ip, char *str)
252b5132 9844{
c0ebe874
RS
9845 const struct mips_operand_array *operands;
9846 unsigned int breg, i;
741fe287 9847 unsigned int tempreg;
252b5132 9848 int mask;
43841e91 9849 int used_at = 0;
df58fc94 9850 expressionS label_expr;
252b5132 9851 expressionS expr1;
df58fc94 9852 expressionS *ep;
252b5132
RH
9853 const char *s;
9854 const char *s2;
9855 const char *fmt;
9856 int likely = 0;
252b5132 9857 int coproc = 0;
7f3c4072 9858 int offbits = 16;
1abe91b1 9859 int call = 0;
df58fc94
RS
9860 int jals = 0;
9861 int dbl = 0;
9862 int imm = 0;
9863 int ust = 0;
9864 int lp = 0;
f2ae14a1 9865 bfd_boolean large_offset;
252b5132 9866 int off;
252b5132 9867 int hold_mips_optimize;
f2ae14a1 9868 unsigned int align;
c0ebe874 9869 unsigned int op[MAX_OPERANDS];
252b5132 9870
9c2799c2 9871 gas_assert (! mips_opts.mips16);
252b5132 9872
c0ebe874
RS
9873 operands = insn_operands (ip);
9874 for (i = 0; i < MAX_OPERANDS; i++)
9875 if (operands->operand[i])
9876 op[i] = insn_extract_operand (ip, operands->operand[i]);
9877 else
9878 op[i] = -1;
9879
252b5132
RH
9880 mask = ip->insn_mo->mask;
9881
df58fc94
RS
9882 label_expr.X_op = O_constant;
9883 label_expr.X_op_symbol = NULL;
9884 label_expr.X_add_symbol = NULL;
9885 label_expr.X_add_number = 0;
9886
252b5132
RH
9887 expr1.X_op = O_constant;
9888 expr1.X_op_symbol = NULL;
9889 expr1.X_add_symbol = NULL;
9890 expr1.X_add_number = 1;
f2ae14a1 9891 align = 1;
252b5132
RH
9892
9893 switch (mask)
9894 {
9895 case M_DABS:
9896 dbl = 1;
1a0670f3 9897 /* Fall through. */
252b5132 9898 case M_ABS:
df58fc94
RS
9899 /* bgez $a0,1f
9900 move v0,$a0
9901 sub v0,$zero,$a0
9902 1:
9903 */
252b5132 9904
7d10b47d 9905 start_noreorder ();
252b5132 9906
df58fc94
RS
9907 if (mips_opts.micromips)
9908 micromips_label_expr (&label_expr);
9909 else
9910 label_expr.X_add_number = 8;
c0ebe874
RS
9911 macro_build (&label_expr, "bgez", "s,p", op[1]);
9912 if (op[0] == op[1])
a605d2b3 9913 macro_build (NULL, "nop", "");
252b5132 9914 else
c0ebe874
RS
9915 move_register (op[0], op[1]);
9916 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
9917 if (mips_opts.micromips)
9918 micromips_add_label ();
252b5132 9919
7d10b47d 9920 end_noreorder ();
8fc2e39e 9921 break;
252b5132
RH
9922
9923 case M_ADD_I:
9924 s = "addi";
9925 s2 = "add";
9926 goto do_addi;
9927 case M_ADDU_I:
9928 s = "addiu";
9929 s2 = "addu";
9930 goto do_addi;
9931 case M_DADD_I:
9932 dbl = 1;
9933 s = "daddi";
9934 s2 = "dadd";
df58fc94
RS
9935 if (!mips_opts.micromips)
9936 goto do_addi;
b0e6f033 9937 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
9938 && imm_expr.X_add_number < 0x200)
9939 {
b0e6f033
RS
9940 macro_build (NULL, s, "t,r,.", op[0], op[1],
9941 (int) imm_expr.X_add_number);
df58fc94
RS
9942 break;
9943 }
9944 goto do_addi_i;
252b5132
RH
9945 case M_DADDU_I:
9946 dbl = 1;
9947 s = "daddiu";
9948 s2 = "daddu";
9949 do_addi:
b0e6f033 9950 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
9951 && imm_expr.X_add_number < 0x8000)
9952 {
c0ebe874 9953 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 9954 break;
252b5132 9955 }
df58fc94 9956 do_addi_i:
8fc2e39e 9957 used_at = 1;
67c0d1eb 9958 load_register (AT, &imm_expr, dbl);
c0ebe874 9959 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9960 break;
9961
9962 case M_AND_I:
9963 s = "andi";
9964 s2 = "and";
9965 goto do_bit;
9966 case M_OR_I:
9967 s = "ori";
9968 s2 = "or";
9969 goto do_bit;
9970 case M_NOR_I:
9971 s = "";
9972 s2 = "nor";
9973 goto do_bit;
9974 case M_XOR_I:
9975 s = "xori";
9976 s2 = "xor";
9977 do_bit:
b0e6f033 9978 if (imm_expr.X_add_number >= 0
252b5132
RH
9979 && imm_expr.X_add_number < 0x10000)
9980 {
9981 if (mask != M_NOR_I)
c0ebe874 9982 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
9983 else
9984 {
67c0d1eb 9985 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
9986 op[0], op[1], BFD_RELOC_LO16);
9987 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 9988 }
8fc2e39e 9989 break;
252b5132
RH
9990 }
9991
8fc2e39e 9992 used_at = 1;
bad1aba3 9993 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 9994 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
9995 break;
9996
8b082fb1
TS
9997 case M_BALIGN:
9998 switch (imm_expr.X_add_number)
9999 {
10000 case 0:
10001 macro_build (NULL, "nop", "");
10002 break;
10003 case 2:
c0ebe874 10004 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10005 break;
03f66e8a
MR
10006 case 1:
10007 case 3:
c0ebe874 10008 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10009 (int) imm_expr.X_add_number);
8b082fb1 10010 break;
03f66e8a
MR
10011 default:
10012 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10013 (unsigned long) imm_expr.X_add_number);
10014 break;
8b082fb1
TS
10015 }
10016 break;
10017
df58fc94
RS
10018 case M_BC1FL:
10019 case M_BC1TL:
10020 case M_BC2FL:
10021 case M_BC2TL:
10022 gas_assert (mips_opts.micromips);
10023 macro_build_branch_ccl (mask, &offset_expr,
10024 EXTRACT_OPERAND (1, BCC, *ip));
10025 break;
10026
252b5132 10027 case M_BEQ_I:
252b5132 10028 case M_BEQL_I:
252b5132 10029 case M_BNE_I:
252b5132 10030 case M_BNEL_I:
b0e6f033 10031 if (imm_expr.X_add_number == 0)
c0ebe874 10032 op[1] = 0;
df58fc94 10033 else
252b5132 10034 {
c0ebe874 10035 op[1] = AT;
df58fc94 10036 used_at = 1;
bad1aba3 10037 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10038 }
df58fc94
RS
10039 /* Fall through. */
10040 case M_BEQL:
10041 case M_BNEL:
c0ebe874 10042 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10043 break;
10044
10045 case M_BGEL:
10046 likely = 1;
1a0670f3 10047 /* Fall through. */
252b5132 10048 case M_BGE:
c0ebe874
RS
10049 if (op[1] == 0)
10050 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10051 else if (op[0] == 0)
10052 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10053 else
252b5132 10054 {
df58fc94 10055 used_at = 1;
c0ebe874 10056 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10057 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10058 &offset_expr, AT, ZERO);
252b5132 10059 }
df58fc94
RS
10060 break;
10061
10062 case M_BGEZL:
10063 case M_BGEZALL:
10064 case M_BGTZL:
10065 case M_BLEZL:
10066 case M_BLTZL:
10067 case M_BLTZALL:
c0ebe874 10068 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10069 break;
10070
10071 case M_BGTL_I:
10072 likely = 1;
1a0670f3 10073 /* Fall through. */
252b5132 10074 case M_BGT_I:
90ecf173 10075 /* Check for > max integer. */
b0e6f033 10076 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10077 {
10078 do_false:
90ecf173 10079 /* Result is always false. */
252b5132 10080 if (! likely)
a605d2b3 10081 macro_build (NULL, "nop", "");
252b5132 10082 else
df58fc94 10083 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10084 break;
252b5132 10085 }
f9419b05 10086 ++imm_expr.X_add_number;
252b5132
RH
10087 /* FALLTHROUGH */
10088 case M_BGE_I:
10089 case M_BGEL_I:
10090 if (mask == M_BGEL_I)
10091 likely = 1;
b0e6f033 10092 if (imm_expr.X_add_number == 0)
252b5132 10093 {
df58fc94 10094 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10095 &offset_expr, op[0]);
8fc2e39e 10096 break;
252b5132 10097 }
b0e6f033 10098 if (imm_expr.X_add_number == 1)
252b5132 10099 {
df58fc94 10100 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10101 &offset_expr, op[0]);
8fc2e39e 10102 break;
252b5132 10103 }
b0e6f033 10104 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10105 {
10106 do_true:
10107 /* result is always true */
1661c76c 10108 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10109 macro_build (&offset_expr, "b", "p");
8fc2e39e 10110 break;
252b5132 10111 }
8fc2e39e 10112 used_at = 1;
c0ebe874 10113 set_at (op[0], 0);
df58fc94
RS
10114 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10115 &offset_expr, AT, ZERO);
252b5132
RH
10116 break;
10117
10118 case M_BGEUL:
10119 likely = 1;
1a0670f3 10120 /* Fall through. */
252b5132 10121 case M_BGEU:
c0ebe874 10122 if (op[1] == 0)
252b5132 10123 goto do_true;
c0ebe874 10124 else if (op[0] == 0)
df58fc94 10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10126 &offset_expr, ZERO, op[1]);
df58fc94 10127 else
252b5132 10128 {
df58fc94 10129 used_at = 1;
c0ebe874 10130 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10131 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10132 &offset_expr, AT, ZERO);
252b5132 10133 }
252b5132
RH
10134 break;
10135
10136 case M_BGTUL_I:
10137 likely = 1;
1a0670f3 10138 /* Fall through. */
252b5132 10139 case M_BGTU_I:
c0ebe874 10140 if (op[0] == 0
bad1aba3 10141 || (GPR_SIZE == 32
f01dc953 10142 && imm_expr.X_add_number == -1))
252b5132 10143 goto do_false;
f9419b05 10144 ++imm_expr.X_add_number;
252b5132
RH
10145 /* FALLTHROUGH */
10146 case M_BGEU_I:
10147 case M_BGEUL_I:
10148 if (mask == M_BGEUL_I)
10149 likely = 1;
b0e6f033 10150 if (imm_expr.X_add_number == 0)
252b5132 10151 goto do_true;
b0e6f033 10152 else if (imm_expr.X_add_number == 1)
df58fc94 10153 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10154 &offset_expr, op[0], ZERO);
df58fc94 10155 else
252b5132 10156 {
df58fc94 10157 used_at = 1;
c0ebe874 10158 set_at (op[0], 1);
df58fc94
RS
10159 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10160 &offset_expr, AT, ZERO);
252b5132 10161 }
252b5132
RH
10162 break;
10163
10164 case M_BGTL:
10165 likely = 1;
1a0670f3 10166 /* Fall through. */
252b5132 10167 case M_BGT:
c0ebe874
RS
10168 if (op[1] == 0)
10169 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10170 else if (op[0] == 0)
10171 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10172 else
252b5132 10173 {
df58fc94 10174 used_at = 1;
c0ebe874 10175 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10176 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10177 &offset_expr, AT, ZERO);
252b5132 10178 }
252b5132
RH
10179 break;
10180
10181 case M_BGTUL:
10182 likely = 1;
1a0670f3 10183 /* Fall through. */
252b5132 10184 case M_BGTU:
c0ebe874 10185 if (op[1] == 0)
df58fc94 10186 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10187 &offset_expr, op[0], ZERO);
10188 else if (op[0] == 0)
df58fc94
RS
10189 goto do_false;
10190 else
252b5132 10191 {
df58fc94 10192 used_at = 1;
c0ebe874 10193 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10194 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10195 &offset_expr, AT, ZERO);
252b5132 10196 }
252b5132
RH
10197 break;
10198
10199 case M_BLEL:
10200 likely = 1;
1a0670f3 10201 /* Fall through. */
252b5132 10202 case M_BLE:
c0ebe874
RS
10203 if (op[1] == 0)
10204 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10205 else if (op[0] == 0)
10206 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10207 else
252b5132 10208 {
df58fc94 10209 used_at = 1;
c0ebe874 10210 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10211 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10212 &offset_expr, AT, ZERO);
252b5132 10213 }
252b5132
RH
10214 break;
10215
10216 case M_BLEL_I:
10217 likely = 1;
1a0670f3 10218 /* Fall through. */
252b5132 10219 case M_BLE_I:
b0e6f033 10220 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10221 goto do_true;
f9419b05 10222 ++imm_expr.X_add_number;
252b5132
RH
10223 /* FALLTHROUGH */
10224 case M_BLT_I:
10225 case M_BLTL_I:
10226 if (mask == M_BLTL_I)
10227 likely = 1;
b0e6f033 10228 if (imm_expr.X_add_number == 0)
c0ebe874 10229 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10230 else if (imm_expr.X_add_number == 1)
c0ebe874 10231 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10232 else
252b5132 10233 {
df58fc94 10234 used_at = 1;
c0ebe874 10235 set_at (op[0], 0);
df58fc94
RS
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
252b5132 10238 }
252b5132
RH
10239 break;
10240
10241 case M_BLEUL:
10242 likely = 1;
1a0670f3 10243 /* Fall through. */
252b5132 10244 case M_BLEU:
c0ebe874 10245 if (op[1] == 0)
df58fc94 10246 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10247 &offset_expr, op[0], ZERO);
10248 else if (op[0] == 0)
df58fc94
RS
10249 goto do_true;
10250 else
252b5132 10251 {
df58fc94 10252 used_at = 1;
c0ebe874 10253 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
252b5132 10256 }
252b5132
RH
10257 break;
10258
10259 case M_BLEUL_I:
10260 likely = 1;
1a0670f3 10261 /* Fall through. */
252b5132 10262 case M_BLEU_I:
c0ebe874 10263 if (op[0] == 0
bad1aba3 10264 || (GPR_SIZE == 32
f01dc953 10265 && imm_expr.X_add_number == -1))
252b5132 10266 goto do_true;
f9419b05 10267 ++imm_expr.X_add_number;
252b5132
RH
10268 /* FALLTHROUGH */
10269 case M_BLTU_I:
10270 case M_BLTUL_I:
10271 if (mask == M_BLTUL_I)
10272 likely = 1;
b0e6f033 10273 if (imm_expr.X_add_number == 0)
252b5132 10274 goto do_false;
b0e6f033 10275 else if (imm_expr.X_add_number == 1)
df58fc94 10276 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10277 &offset_expr, op[0], ZERO);
df58fc94 10278 else
252b5132 10279 {
df58fc94 10280 used_at = 1;
c0ebe874 10281 set_at (op[0], 1);
df58fc94
RS
10282 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10283 &offset_expr, AT, ZERO);
252b5132 10284 }
252b5132
RH
10285 break;
10286
10287 case M_BLTL:
10288 likely = 1;
1a0670f3 10289 /* Fall through. */
252b5132 10290 case M_BLT:
c0ebe874
RS
10291 if (op[1] == 0)
10292 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10293 else if (op[0] == 0)
10294 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10295 else
252b5132 10296 {
df58fc94 10297 used_at = 1;
c0ebe874 10298 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10299 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10300 &offset_expr, AT, ZERO);
252b5132 10301 }
252b5132
RH
10302 break;
10303
10304 case M_BLTUL:
10305 likely = 1;
1a0670f3 10306 /* Fall through. */
252b5132 10307 case M_BLTU:
c0ebe874 10308 if (op[1] == 0)
252b5132 10309 goto do_false;
c0ebe874 10310 else if (op[0] == 0)
df58fc94 10311 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10312 &offset_expr, ZERO, op[1]);
df58fc94 10313 else
252b5132 10314 {
df58fc94 10315 used_at = 1;
c0ebe874 10316 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10317 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10318 &offset_expr, AT, ZERO);
252b5132 10319 }
252b5132
RH
10320 break;
10321
10322 case M_DDIV_3:
10323 dbl = 1;
1a0670f3 10324 /* Fall through. */
252b5132
RH
10325 case M_DIV_3:
10326 s = "mflo";
10327 goto do_div3;
10328 case M_DREM_3:
10329 dbl = 1;
1a0670f3 10330 /* Fall through. */
252b5132
RH
10331 case M_REM_3:
10332 s = "mfhi";
10333 do_div3:
c0ebe874 10334 if (op[2] == 0)
252b5132 10335 {
1661c76c 10336 as_warn (_("divide by zero"));
252b5132 10337 if (mips_trap)
df58fc94 10338 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10339 else
df58fc94 10340 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10341 break;
252b5132
RH
10342 }
10343
7d10b47d 10344 start_noreorder ();
252b5132
RH
10345 if (mips_trap)
10346 {
c0ebe874
RS
10347 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10348 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10349 }
10350 else
10351 {
df58fc94
RS
10352 if (mips_opts.micromips)
10353 micromips_label_expr (&label_expr);
10354 else
10355 label_expr.X_add_number = 8;
c0ebe874
RS
10356 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10357 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
252b5132
RH
10361 }
10362 expr1.X_add_number = -1;
8fc2e39e 10363 used_at = 1;
f6a22291 10364 load_register (AT, &expr1, dbl);
df58fc94
RS
10365 if (mips_opts.micromips)
10366 micromips_label_expr (&label_expr);
10367 else
10368 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10369 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10370 if (dbl)
10371 {
10372 expr1.X_add_number = 1;
f6a22291 10373 load_register (AT, &expr1, dbl);
df58fc94 10374 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10375 }
10376 else
10377 {
10378 expr1.X_add_number = 0x80000000;
df58fc94 10379 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10380 }
10381 if (mips_trap)
10382 {
c0ebe874 10383 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10384 /* We want to close the noreorder block as soon as possible, so
10385 that later insns are available for delay slot filling. */
7d10b47d 10386 end_noreorder ();
252b5132
RH
10387 }
10388 else
10389 {
df58fc94
RS
10390 if (mips_opts.micromips)
10391 micromips_label_expr (&label_expr);
10392 else
10393 label_expr.X_add_number = 8;
c0ebe874 10394 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10395 macro_build (NULL, "nop", "");
252b5132
RH
10396
10397 /* We want to close the noreorder block as soon as possible, so
10398 that later insns are available for delay slot filling. */
7d10b47d 10399 end_noreorder ();
252b5132 10400
df58fc94 10401 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10402 }
df58fc94
RS
10403 if (mips_opts.micromips)
10404 micromips_add_label ();
c0ebe874 10405 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10406 break;
10407
10408 case M_DIV_3I:
10409 s = "div";
10410 s2 = "mflo";
10411 goto do_divi;
10412 case M_DIVU_3I:
10413 s = "divu";
10414 s2 = "mflo";
10415 goto do_divi;
10416 case M_REM_3I:
10417 s = "div";
10418 s2 = "mfhi";
10419 goto do_divi;
10420 case M_REMU_3I:
10421 s = "divu";
10422 s2 = "mfhi";
10423 goto do_divi;
10424 case M_DDIV_3I:
10425 dbl = 1;
10426 s = "ddiv";
10427 s2 = "mflo";
10428 goto do_divi;
10429 case M_DDIVU_3I:
10430 dbl = 1;
10431 s = "ddivu";
10432 s2 = "mflo";
10433 goto do_divi;
10434 case M_DREM_3I:
10435 dbl = 1;
10436 s = "ddiv";
10437 s2 = "mfhi";
10438 goto do_divi;
10439 case M_DREMU_3I:
10440 dbl = 1;
10441 s = "ddivu";
10442 s2 = "mfhi";
10443 do_divi:
b0e6f033 10444 if (imm_expr.X_add_number == 0)
252b5132 10445 {
1661c76c 10446 as_warn (_("divide by zero"));
252b5132 10447 if (mips_trap)
df58fc94 10448 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10449 else
df58fc94 10450 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10451 break;
252b5132 10452 }
b0e6f033 10453 if (imm_expr.X_add_number == 1)
252b5132
RH
10454 {
10455 if (strcmp (s2, "mflo") == 0)
c0ebe874 10456 move_register (op[0], op[1]);
252b5132 10457 else
c0ebe874 10458 move_register (op[0], ZERO);
8fc2e39e 10459 break;
252b5132 10460 }
b0e6f033 10461 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10462 {
10463 if (strcmp (s2, "mflo") == 0)
c0ebe874 10464 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10465 else
c0ebe874 10466 move_register (op[0], ZERO);
8fc2e39e 10467 break;
252b5132
RH
10468 }
10469
8fc2e39e 10470 used_at = 1;
67c0d1eb 10471 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10472 macro_build (NULL, s, "z,s,t", op[1], AT);
10473 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10474 break;
10475
10476 case M_DIVU_3:
10477 s = "divu";
10478 s2 = "mflo";
10479 goto do_divu3;
10480 case M_REMU_3:
10481 s = "divu";
10482 s2 = "mfhi";
10483 goto do_divu3;
10484 case M_DDIVU_3:
10485 s = "ddivu";
10486 s2 = "mflo";
10487 goto do_divu3;
10488 case M_DREMU_3:
10489 s = "ddivu";
10490 s2 = "mfhi";
10491 do_divu3:
7d10b47d 10492 start_noreorder ();
252b5132
RH
10493 if (mips_trap)
10494 {
c0ebe874
RS
10495 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10496 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10497 /* We want to close the noreorder block as soon as possible, so
10498 that later insns are available for delay slot filling. */
7d10b47d 10499 end_noreorder ();
252b5132
RH
10500 }
10501 else
10502 {
df58fc94
RS
10503 if (mips_opts.micromips)
10504 micromips_label_expr (&label_expr);
10505 else
10506 label_expr.X_add_number = 8;
c0ebe874
RS
10507 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10508 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10509
10510 /* We want to close the noreorder block as soon as possible, so
10511 that later insns are available for delay slot filling. */
7d10b47d 10512 end_noreorder ();
df58fc94
RS
10513 macro_build (NULL, "break", BRK_FMT, 7);
10514 if (mips_opts.micromips)
10515 micromips_add_label ();
252b5132 10516 }
c0ebe874 10517 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10518 break;
252b5132 10519
1abe91b1
MR
10520 case M_DLCA_AB:
10521 dbl = 1;
1a0670f3 10522 /* Fall through. */
1abe91b1
MR
10523 case M_LCA_AB:
10524 call = 1;
10525 goto do_la;
252b5132
RH
10526 case M_DLA_AB:
10527 dbl = 1;
1a0670f3 10528 /* Fall through. */
252b5132 10529 case M_LA_AB:
1abe91b1 10530 do_la:
252b5132
RH
10531 /* Load the address of a symbol into a register. If breg is not
10532 zero, we then add a base register to it. */
10533
c0ebe874 10534 breg = op[2];
bad1aba3 10535 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10536 as_warn (_("dla used to load 32-bit register; recommend using la "
10537 "instead"));
3bec30a8 10538
90ecf173 10539 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10540 as_warn (_("la used to load 64-bit address; recommend using dla "
10541 "instead"));
3bec30a8 10542
f2ae14a1 10543 if (small_offset_p (0, align, 16))
0c11417f 10544 {
c0ebe874 10545 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10546 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10547 break;
0c11417f
MR
10548 }
10549
c0ebe874 10550 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10551 {
10552 tempreg = AT;
10553 used_at = 1;
10554 }
10555 else
c0ebe874 10556 tempreg = op[0];
afdbd6d0 10557
252b5132
RH
10558 if (offset_expr.X_op != O_symbol
10559 && offset_expr.X_op != O_constant)
10560 {
1661c76c 10561 as_bad (_("expression too complex"));
252b5132
RH
10562 offset_expr.X_op = O_constant;
10563 }
10564
252b5132 10565 if (offset_expr.X_op == O_constant)
aed1a261 10566 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10567 else if (mips_pic == NO_PIC)
10568 {
d6bc6245 10569 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10570 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10571 Otherwise we want
10572 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10573 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10574 If we have a constant, we need two instructions anyhow,
d6bc6245 10575 so we may as well always use the latter form.
76b3015f 10576
6caf9ef4
TS
10577 With 64bit address space and a usable $at we want
10578 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10579 lui $at,<sym> (BFD_RELOC_HI16_S)
10580 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10581 daddiu $at,<sym> (BFD_RELOC_LO16)
10582 dsll32 $tempreg,0
10583 daddu $tempreg,$tempreg,$at
10584
10585 If $at is already in use, we use a path which is suboptimal
10586 on superscalar processors.
10587 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10588 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10589 dsll $tempreg,16
10590 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10591 dsll $tempreg,16
10592 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10593
10594 For GP relative symbols in 64bit address space we can use
10595 the same sequence as in 32bit address space. */
aed1a261 10596 if (HAVE_64BIT_SYMBOLS)
252b5132 10597 {
6caf9ef4
TS
10598 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10599 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10600 {
10601 relax_start (offset_expr.X_add_symbol);
10602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10603 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10604 relax_switch ();
10605 }
d6bc6245 10606
741fe287 10607 if (used_at == 0 && mips_opts.at)
98d3f06f 10608 {
df58fc94 10609 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10610 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10611 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10612 AT, BFD_RELOC_HI16_S);
67c0d1eb 10613 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10614 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10615 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10616 AT, AT, BFD_RELOC_LO16);
df58fc94 10617 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10618 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10619 used_at = 1;
10620 }
10621 else
10622 {
df58fc94 10623 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10624 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10625 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10626 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10627 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10628 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10629 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10630 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10631 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10632 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10633 }
6caf9ef4
TS
10634
10635 if (mips_relax.sequence)
10636 relax_end ();
98d3f06f
KH
10637 }
10638 else
10639 {
10640 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10641 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10642 {
4d7206a2 10643 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10644 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10645 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10646 relax_switch ();
98d3f06f 10647 }
6943caf0 10648 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10649 as_bad (_("offset too large"));
67c0d1eb
RS
10650 macro_build_lui (&offset_expr, tempreg);
10651 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10652 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10653 if (mips_relax.sequence)
10654 relax_end ();
98d3f06f 10655 }
252b5132 10656 }
0a44bf69 10657 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10658 {
9117d219
NC
10659 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10660
252b5132
RH
10661 /* If this is a reference to an external symbol, and there
10662 is no constant, we want
10663 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10664 or for lca or if tempreg is PIC_CALL_REG
9117d219 10665 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10666 For a local symbol, we want
10667 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10668 nop
10669 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10670
10671 If we have a small constant, and this is a reference to
10672 an external symbol, we want
10673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10674 nop
10675 addiu $tempreg,$tempreg,<constant>
10676 For a local symbol, we want the same instruction
10677 sequence, but we output a BFD_RELOC_LO16 reloc on the
10678 addiu instruction.
10679
10680 If we have a large constant, and this is a reference to
10681 an external symbol, we want
10682 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10683 lui $at,<hiconstant>
10684 addiu $at,$at,<loconstant>
10685 addu $tempreg,$tempreg,$at
10686 For a local symbol, we want the same instruction
10687 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10688 addiu instruction.
ed6fb7bd
SC
10689 */
10690
4d7206a2 10691 if (offset_expr.X_add_number == 0)
252b5132 10692 {
0a44bf69
RS
10693 if (mips_pic == SVR4_PIC
10694 && breg == 0
10695 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10696 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10697
10698 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10699 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10700 lw_reloc_type, mips_gp_register);
4d7206a2 10701 if (breg != 0)
252b5132
RH
10702 {
10703 /* We're going to put in an addu instruction using
10704 tempreg, so we may as well insert the nop right
10705 now. */
269137b2 10706 load_delay_nop ();
252b5132 10707 }
4d7206a2 10708 relax_switch ();
67c0d1eb
RS
10709 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10710 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10711 load_delay_nop ();
67c0d1eb
RS
10712 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10713 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10714 relax_end ();
252b5132
RH
10715 /* FIXME: If breg == 0, and the next instruction uses
10716 $tempreg, then if this variant case is used an extra
10717 nop will be generated. */
10718 }
4d7206a2
RS
10719 else if (offset_expr.X_add_number >= -0x8000
10720 && offset_expr.X_add_number < 0x8000)
252b5132 10721 {
67c0d1eb 10722 load_got_offset (tempreg, &offset_expr);
269137b2 10723 load_delay_nop ();
67c0d1eb 10724 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10725 }
10726 else
10727 {
4d7206a2
RS
10728 expr1.X_add_number = offset_expr.X_add_number;
10729 offset_expr.X_add_number =
43c0598f 10730 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 10731 load_got_offset (tempreg, &offset_expr);
f6a22291 10732 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
10733 /* If we are going to add in a base register, and the
10734 target register and the base register are the same,
10735 then we are using AT as a temporary register. Since
10736 we want to load the constant into AT, we add our
10737 current AT (from the global offset table) and the
10738 register into the register now, and pretend we were
10739 not using a base register. */
c0ebe874 10740 if (breg == op[0])
252b5132 10741 {
269137b2 10742 load_delay_nop ();
67c0d1eb 10743 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10744 op[0], AT, breg);
252b5132 10745 breg = 0;
c0ebe874 10746 tempreg = op[0];
252b5132 10747 }
f6a22291 10748 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
10749 used_at = 1;
10750 }
10751 }
0a44bf69 10752 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 10753 {
67c0d1eb 10754 int add_breg_early = 0;
f5040a92
AO
10755
10756 /* If this is a reference to an external, and there is no
10757 constant, or local symbol (*), with or without a
10758 constant, we want
10759 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 10760 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
10761 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10762
10763 If we have a small constant, and this is a reference to
10764 an external symbol, we want
10765 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10766 addiu $tempreg,$tempreg,<constant>
10767
10768 If we have a large constant, and this is a reference to
10769 an external symbol, we want
10770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10771 lui $at,<hiconstant>
10772 addiu $at,$at,<loconstant>
10773 addu $tempreg,$tempreg,$at
10774
10775 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10776 local symbols, even though it introduces an additional
10777 instruction. */
10778
f5040a92
AO
10779 if (offset_expr.X_add_number)
10780 {
4d7206a2 10781 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
10782 offset_expr.X_add_number = 0;
10783
4d7206a2 10784 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10785 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10786 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10787
10788 if (expr1.X_add_number >= -0x8000
10789 && expr1.X_add_number < 0x8000)
10790 {
67c0d1eb
RS
10791 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10792 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 10793 }
ecd13cd3 10794 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 10795 {
c0ebe874
RS
10796 unsigned int dreg;
10797
f5040a92
AO
10798 /* If we are going to add in a base register, and the
10799 target register and the base register are the same,
10800 then we are using AT as a temporary register. Since
10801 we want to load the constant into AT, we add our
10802 current AT (from the global offset table) and the
10803 register into the register now, and pretend we were
10804 not using a base register. */
c0ebe874 10805 if (breg != op[0])
f5040a92
AO
10806 dreg = tempreg;
10807 else
10808 {
9c2799c2 10809 gas_assert (tempreg == AT);
67c0d1eb 10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10811 op[0], AT, breg);
10812 dreg = op[0];
67c0d1eb 10813 add_breg_early = 1;
f5040a92
AO
10814 }
10815
f6a22291 10816 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10817 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10818 dreg, dreg, AT);
f5040a92 10819
f5040a92
AO
10820 used_at = 1;
10821 }
10822 else
10823 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10824
4d7206a2 10825 relax_switch ();
f5040a92
AO
10826 offset_expr.X_add_number = expr1.X_add_number;
10827
67c0d1eb
RS
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10830 if (add_breg_early)
f5040a92 10831 {
67c0d1eb 10832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 10833 op[0], tempreg, breg);
f5040a92 10834 breg = 0;
c0ebe874 10835 tempreg = op[0];
f5040a92 10836 }
4d7206a2 10837 relax_end ();
f5040a92 10838 }
4d7206a2 10839 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 10840 {
4d7206a2 10841 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10842 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10843 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 10844 relax_switch ();
67c0d1eb
RS
10845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10846 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 10847 relax_end ();
f5040a92 10848 }
4d7206a2 10849 else
f5040a92 10850 {
67c0d1eb
RS
10851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
10853 }
10854 }
0a44bf69 10855 else if (mips_big_got && !HAVE_NEWABI)
252b5132 10856 {
67c0d1eb 10857 int gpdelay;
9117d219
NC
10858 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10859 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 10860 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
10861
10862 /* This is the large GOT case. If this is a reference to an
10863 external symbol, and there is no constant, we want
10864 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10865 addu $tempreg,$tempreg,$gp
10866 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 10867 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
10868 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10869 addu $tempreg,$tempreg,$gp
10870 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
10871 For a local symbol, we want
10872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10873 nop
10874 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10875
10876 If we have a small constant, and this is a reference to
10877 an external symbol, we want
10878 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10879 addu $tempreg,$tempreg,$gp
10880 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10881 nop
10882 addiu $tempreg,$tempreg,<constant>
10883 For a local symbol, we want
10884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10885 nop
10886 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10887
10888 If we have a large constant, and this is a reference to
10889 an external symbol, we want
10890 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10891 addu $tempreg,$tempreg,$gp
10892 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10893 lui $at,<hiconstant>
10894 addiu $at,$at,<loconstant>
10895 addu $tempreg,$tempreg,$at
10896 For a local symbol, we want
10897 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10898 lui $at,<hiconstant>
10899 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10900 addu $tempreg,$tempreg,$at
f5040a92 10901 */
438c16b8 10902
252b5132
RH
10903 expr1.X_add_number = offset_expr.X_add_number;
10904 offset_expr.X_add_number = 0;
4d7206a2 10905 relax_start (offset_expr.X_add_symbol);
67c0d1eb 10906 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
10907 if (expr1.X_add_number == 0 && breg == 0
10908 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
10909 {
10910 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10911 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10912 }
df58fc94 10913 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 10915 tempreg, tempreg, mips_gp_register);
67c0d1eb 10916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 10917 tempreg, lw_reloc_type, tempreg);
252b5132
RH
10918 if (expr1.X_add_number == 0)
10919 {
67c0d1eb 10920 if (breg != 0)
252b5132
RH
10921 {
10922 /* We're going to put in an addu instruction using
10923 tempreg, so we may as well insert the nop right
10924 now. */
269137b2 10925 load_delay_nop ();
252b5132 10926 }
252b5132
RH
10927 }
10928 else if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10930 {
269137b2 10931 load_delay_nop ();
67c0d1eb 10932 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 10933 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
10934 }
10935 else
10936 {
c0ebe874
RS
10937 unsigned int dreg;
10938
252b5132
RH
10939 /* If we are going to add in a base register, and the
10940 target register and the base register are the same,
10941 then we are using AT as a temporary register. Since
10942 we want to load the constant into AT, we add our
10943 current AT (from the global offset table) and the
10944 register into the register now, and pretend we were
10945 not using a base register. */
c0ebe874 10946 if (breg != op[0])
67c0d1eb 10947 dreg = tempreg;
252b5132
RH
10948 else
10949 {
9c2799c2 10950 gas_assert (tempreg == AT);
269137b2 10951 load_delay_nop ();
67c0d1eb 10952 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10953 op[0], AT, breg);
10954 dreg = op[0];
252b5132
RH
10955 }
10956
f6a22291 10957 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 10958 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 10959
252b5132
RH
10960 used_at = 1;
10961 }
43c0598f 10962 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 10963 relax_switch ();
252b5132 10964
67c0d1eb 10965 if (gpdelay)
252b5132
RH
10966 {
10967 /* This is needed because this instruction uses $gp, but
f5040a92 10968 the first instruction on the main stream does not. */
67c0d1eb 10969 macro_build (NULL, "nop", "");
252b5132 10970 }
ed6fb7bd 10971
67c0d1eb
RS
10972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10973 local_reloc_type, mips_gp_register);
f5040a92 10974 if (expr1.X_add_number >= -0x8000
252b5132
RH
10975 && expr1.X_add_number < 0x8000)
10976 {
269137b2 10977 load_delay_nop ();
67c0d1eb
RS
10978 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10979 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 10980 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
10981 register, the external symbol case ended with a load,
10982 so if the symbol turns out to not be external, and
10983 the next instruction uses tempreg, an unnecessary nop
10984 will be inserted. */
252b5132
RH
10985 }
10986 else
10987 {
c0ebe874 10988 if (breg == op[0])
252b5132
RH
10989 {
10990 /* We must add in the base register now, as in the
f5040a92 10991 external symbol case. */
9c2799c2 10992 gas_assert (tempreg == AT);
269137b2 10993 load_delay_nop ();
67c0d1eb 10994 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
10995 op[0], AT, breg);
10996 tempreg = op[0];
252b5132 10997 /* We set breg to 0 because we have arranged to add
f5040a92 10998 it in in both cases. */
252b5132
RH
10999 breg = 0;
11000 }
11001
67c0d1eb
RS
11002 macro_build_lui (&expr1, AT);
11003 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11004 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11005 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11006 tempreg, tempreg, AT);
8fc2e39e 11007 used_at = 1;
252b5132 11008 }
4d7206a2 11009 relax_end ();
252b5132 11010 }
0a44bf69 11011 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11012 {
f5040a92
AO
11013 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11014 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11015 int add_breg_early = 0;
f5040a92
AO
11016
11017 /* This is the large GOT case. If this is a reference to an
11018 external symbol, and there is no constant, we want
11019 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11020 add $tempreg,$tempreg,$gp
11021 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11022 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11023 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11024 add $tempreg,$tempreg,$gp
11025 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11026
11027 If we have a small constant, and this is a reference to
11028 an external symbol, we want
11029 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11030 add $tempreg,$tempreg,$gp
11031 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11032 addi $tempreg,$tempreg,<constant>
11033
11034 If we have a large constant, and this is a reference to
11035 an external symbol, we want
11036 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11037 addu $tempreg,$tempreg,$gp
11038 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11039 lui $at,<hiconstant>
11040 addi $at,$at,<loconstant>
11041 add $tempreg,$tempreg,$at
11042
11043 If we have NewABI, and we know it's a local symbol, we want
11044 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11045 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11046 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11047
4d7206a2 11048 relax_start (offset_expr.X_add_symbol);
f5040a92 11049
4d7206a2 11050 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11051 offset_expr.X_add_number = 0;
11052
1abe91b1
MR
11053 if (expr1.X_add_number == 0 && breg == 0
11054 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11055 {
11056 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11057 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11058 }
df58fc94 11059 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11061 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11063 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11064
11065 if (expr1.X_add_number == 0)
4d7206a2 11066 ;
f5040a92
AO
11067 else if (expr1.X_add_number >= -0x8000
11068 && expr1.X_add_number < 0x8000)
11069 {
67c0d1eb 11070 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11071 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11072 }
ecd13cd3 11073 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11074 {
c0ebe874
RS
11075 unsigned int dreg;
11076
f5040a92
AO
11077 /* If we are going to add in a base register, and the
11078 target register and the base register are the same,
11079 then we are using AT as a temporary register. Since
11080 we want to load the constant into AT, we add our
11081 current AT (from the global offset table) and the
11082 register into the register now, and pretend we were
11083 not using a base register. */
c0ebe874 11084 if (breg != op[0])
f5040a92
AO
11085 dreg = tempreg;
11086 else
11087 {
9c2799c2 11088 gas_assert (tempreg == AT);
67c0d1eb 11089 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11090 op[0], AT, breg);
11091 dreg = op[0];
67c0d1eb 11092 add_breg_early = 1;
f5040a92
AO
11093 }
11094
f6a22291 11095 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11096 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11097
f5040a92
AO
11098 used_at = 1;
11099 }
11100 else
11101 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11102
4d7206a2 11103 relax_switch ();
f5040a92 11104 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11106 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11107 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11108 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11109 if (add_breg_early)
f5040a92 11110 {
67c0d1eb 11111 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11112 op[0], tempreg, breg);
f5040a92 11113 breg = 0;
c0ebe874 11114 tempreg = op[0];
f5040a92 11115 }
4d7206a2 11116 relax_end ();
f5040a92 11117 }
252b5132
RH
11118 else
11119 abort ();
11120
11121 if (breg != 0)
c0ebe874 11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11123 break;
11124
52b6b6b9 11125 case M_MSGSND:
df58fc94 11126 gas_assert (!mips_opts.micromips);
c0ebe874 11127 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11128 break;
52b6b6b9
JM
11129
11130 case M_MSGLD:
df58fc94 11131 gas_assert (!mips_opts.micromips);
c8276761 11132 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11133 break;
52b6b6b9
JM
11134
11135 case M_MSGLD_T:
df58fc94 11136 gas_assert (!mips_opts.micromips);
c0ebe874 11137 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11138 break;
52b6b6b9
JM
11139
11140 case M_MSGWAIT:
df58fc94 11141 gas_assert (!mips_opts.micromips);
52b6b6b9 11142 macro_build (NULL, "c2", "C", 3);
c7af4273 11143 break;
52b6b6b9
JM
11144
11145 case M_MSGWAIT_T:
df58fc94 11146 gas_assert (!mips_opts.micromips);
c0ebe874 11147 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11148 break;
52b6b6b9 11149
252b5132
RH
11150 case M_J_A:
11151 /* The j instruction may not be used in PIC code, since it
11152 requires an absolute address. We convert it to a b
11153 instruction. */
11154 if (mips_pic == NO_PIC)
67c0d1eb 11155 macro_build (&offset_expr, "j", "a");
252b5132 11156 else
67c0d1eb 11157 macro_build (&offset_expr, "b", "p");
8fc2e39e 11158 break;
252b5132
RH
11159
11160 /* The jal instructions must be handled as macros because when
11161 generating PIC code they expand to multi-instruction
11162 sequences. Normally they are simple instructions. */
df58fc94 11163 case M_JALS_1:
c0ebe874
RS
11164 op[1] = op[0];
11165 op[0] = RA;
df58fc94
RS
11166 /* Fall through. */
11167 case M_JALS_2:
11168 gas_assert (mips_opts.micromips);
833794fc
MR
11169 if (mips_opts.insn32)
11170 {
1661c76c 11171 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11172 break;
11173 }
df58fc94
RS
11174 jals = 1;
11175 goto jal;
252b5132 11176 case M_JAL_1:
c0ebe874
RS
11177 op[1] = op[0];
11178 op[0] = RA;
252b5132
RH
11179 /* Fall through. */
11180 case M_JAL_2:
df58fc94 11181 jal:
3e722fb5 11182 if (mips_pic == NO_PIC)
df58fc94
RS
11183 {
11184 s = jals ? "jalrs" : "jalr";
e64af278 11185 if (mips_opts.micromips
833794fc 11186 && !mips_opts.insn32
c0ebe874 11187 && op[0] == RA
e64af278 11188 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11189 macro_build (NULL, s, "mj", op[1]);
df58fc94 11190 else
c0ebe874 11191 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11192 }
0a44bf69 11193 else
252b5132 11194 {
df58fc94
RS
11195 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11196 && mips_cprestore_offset >= 0);
11197
c0ebe874 11198 if (op[1] != PIC_CALL_REG)
252b5132 11199 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11200
833794fc
MR
11201 s = ((mips_opts.micromips
11202 && !mips_opts.insn32
11203 && (!mips_opts.noreorder || cprestore))
df58fc94 11204 ? "jalrs" : "jalr");
e64af278 11205 if (mips_opts.micromips
833794fc 11206 && !mips_opts.insn32
c0ebe874 11207 && op[0] == RA
e64af278 11208 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11209 macro_build (NULL, s, "mj", op[1]);
df58fc94 11210 else
c0ebe874 11211 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11212 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11213 {
6478892d 11214 if (mips_cprestore_offset < 0)
1661c76c 11215 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11216 else
11217 {
90ecf173 11218 if (!mips_frame_reg_valid)
7a621144 11219 {
1661c76c 11220 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11221 /* Quiet this warning. */
11222 mips_frame_reg_valid = 1;
11223 }
90ecf173 11224 if (!mips_cprestore_valid)
7a621144 11225 {
1661c76c 11226 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11227 /* Quiet this warning. */
11228 mips_cprestore_valid = 1;
11229 }
d3fca0b5
MR
11230 if (mips_opts.noreorder)
11231 macro_build (NULL, "nop", "");
6478892d 11232 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11233 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11234 mips_gp_register,
256ab948
TS
11235 mips_frame_reg,
11236 HAVE_64BIT_ADDRESSES);
6478892d 11237 }
252b5132
RH
11238 }
11239 }
252b5132 11240
8fc2e39e 11241 break;
252b5132 11242
df58fc94
RS
11243 case M_JALS_A:
11244 gas_assert (mips_opts.micromips);
833794fc
MR
11245 if (mips_opts.insn32)
11246 {
1661c76c 11247 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11248 break;
11249 }
df58fc94
RS
11250 jals = 1;
11251 /* Fall through. */
252b5132
RH
11252 case M_JAL_A:
11253 if (mips_pic == NO_PIC)
df58fc94 11254 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11255 else if (mips_pic == SVR4_PIC)
11256 {
11257 /* If this is a reference to an external symbol, and we are
11258 using a small GOT, we want
11259 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11260 nop
f9419b05 11261 jalr $ra,$25
252b5132
RH
11262 nop
11263 lw $gp,cprestore($sp)
11264 The cprestore value is set using the .cprestore
11265 pseudo-op. If we are using a big GOT, we want
11266 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11267 addu $25,$25,$gp
11268 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11269 nop
f9419b05 11270 jalr $ra,$25
252b5132
RH
11271 nop
11272 lw $gp,cprestore($sp)
11273 If the symbol is not external, we want
11274 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11275 nop
11276 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11277 jalr $ra,$25
252b5132 11278 nop
438c16b8 11279 lw $gp,cprestore($sp)
f5040a92
AO
11280
11281 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11282 sequences above, minus nops, unless the symbol is local,
11283 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11284 GOT_DISP. */
438c16b8 11285 if (HAVE_NEWABI)
252b5132 11286 {
90ecf173 11287 if (!mips_big_got)
f5040a92 11288 {
4d7206a2 11289 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11290 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11291 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11292 mips_gp_register);
4d7206a2 11293 relax_switch ();
67c0d1eb
RS
11294 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11295 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11296 mips_gp_register);
11297 relax_end ();
f5040a92
AO
11298 }
11299 else
11300 {
4d7206a2 11301 relax_start (offset_expr.X_add_symbol);
df58fc94 11302 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11303 BFD_RELOC_MIPS_CALL_HI16);
11304 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11305 PIC_CALL_REG, mips_gp_register);
11306 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11307 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11308 PIC_CALL_REG);
4d7206a2 11309 relax_switch ();
67c0d1eb
RS
11310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11311 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11312 mips_gp_register);
11313 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11314 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11315 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11316 relax_end ();
f5040a92 11317 }
684022ea 11318
df58fc94 11319 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11320 }
11321 else
11322 {
4d7206a2 11323 relax_start (offset_expr.X_add_symbol);
90ecf173 11324 if (!mips_big_got)
438c16b8 11325 {
67c0d1eb
RS
11326 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11327 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11328 mips_gp_register);
269137b2 11329 load_delay_nop ();
4d7206a2 11330 relax_switch ();
438c16b8 11331 }
252b5132 11332 else
252b5132 11333 {
67c0d1eb
RS
11334 int gpdelay;
11335
11336 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11337 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11338 BFD_RELOC_MIPS_CALL_HI16);
11339 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11340 PIC_CALL_REG, mips_gp_register);
11341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11342 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11343 PIC_CALL_REG);
269137b2 11344 load_delay_nop ();
4d7206a2 11345 relax_switch ();
67c0d1eb
RS
11346 if (gpdelay)
11347 macro_build (NULL, "nop", "");
252b5132 11348 }
67c0d1eb
RS
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11351 mips_gp_register);
269137b2 11352 load_delay_nop ();
67c0d1eb
RS
11353 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11354 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11355 relax_end ();
df58fc94 11356 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11357
6478892d 11358 if (mips_cprestore_offset < 0)
1661c76c 11359 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11360 else
11361 {
90ecf173 11362 if (!mips_frame_reg_valid)
7a621144 11363 {
1661c76c 11364 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11365 /* Quiet this warning. */
11366 mips_frame_reg_valid = 1;
11367 }
90ecf173 11368 if (!mips_cprestore_valid)
7a621144 11369 {
1661c76c 11370 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11371 /* Quiet this warning. */
11372 mips_cprestore_valid = 1;
11373 }
6478892d 11374 if (mips_opts.noreorder)
67c0d1eb 11375 macro_build (NULL, "nop", "");
6478892d 11376 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11377 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11378 mips_gp_register,
256ab948
TS
11379 mips_frame_reg,
11380 HAVE_64BIT_ADDRESSES);
6478892d 11381 }
252b5132
RH
11382 }
11383 }
0a44bf69 11384 else if (mips_pic == VXWORKS_PIC)
1661c76c 11385 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11386 else
11387 abort ();
11388
8fc2e39e 11389 break;
252b5132 11390
7f3c4072 11391 case M_LBUE_AB:
7f3c4072
CM
11392 s = "lbue";
11393 fmt = "t,+j(b)";
11394 offbits = 9;
11395 goto ld_st;
11396 case M_LHUE_AB:
7f3c4072
CM
11397 s = "lhue";
11398 fmt = "t,+j(b)";
11399 offbits = 9;
11400 goto ld_st;
11401 case M_LBE_AB:
7f3c4072
CM
11402 s = "lbe";
11403 fmt = "t,+j(b)";
11404 offbits = 9;
11405 goto ld_st;
11406 case M_LHE_AB:
7f3c4072
CM
11407 s = "lhe";
11408 fmt = "t,+j(b)";
11409 offbits = 9;
11410 goto ld_st;
11411 case M_LLE_AB:
7f3c4072
CM
11412 s = "lle";
11413 fmt = "t,+j(b)";
11414 offbits = 9;
11415 goto ld_st;
11416 case M_LWE_AB:
7f3c4072
CM
11417 s = "lwe";
11418 fmt = "t,+j(b)";
11419 offbits = 9;
11420 goto ld_st;
11421 case M_LWLE_AB:
7f3c4072
CM
11422 s = "lwle";
11423 fmt = "t,+j(b)";
11424 offbits = 9;
11425 goto ld_st;
11426 case M_LWRE_AB:
7f3c4072
CM
11427 s = "lwre";
11428 fmt = "t,+j(b)";
11429 offbits = 9;
11430 goto ld_st;
11431 case M_SBE_AB:
7f3c4072
CM
11432 s = "sbe";
11433 fmt = "t,+j(b)";
11434 offbits = 9;
11435 goto ld_st;
11436 case M_SCE_AB:
7f3c4072
CM
11437 s = "sce";
11438 fmt = "t,+j(b)";
11439 offbits = 9;
11440 goto ld_st;
11441 case M_SHE_AB:
7f3c4072
CM
11442 s = "she";
11443 fmt = "t,+j(b)";
11444 offbits = 9;
11445 goto ld_st;
11446 case M_SWE_AB:
7f3c4072
CM
11447 s = "swe";
11448 fmt = "t,+j(b)";
11449 offbits = 9;
11450 goto ld_st;
11451 case M_SWLE_AB:
7f3c4072
CM
11452 s = "swle";
11453 fmt = "t,+j(b)";
11454 offbits = 9;
11455 goto ld_st;
11456 case M_SWRE_AB:
7f3c4072
CM
11457 s = "swre";
11458 fmt = "t,+j(b)";
11459 offbits = 9;
11460 goto ld_st;
dec0624d 11461 case M_ACLR_AB:
dec0624d 11462 s = "aclr";
dec0624d 11463 fmt = "\\,~(b)";
7f3c4072 11464 offbits = 12;
dec0624d
MR
11465 goto ld_st;
11466 case M_ASET_AB:
dec0624d 11467 s = "aset";
dec0624d 11468 fmt = "\\,~(b)";
7f3c4072 11469 offbits = 12;
dec0624d 11470 goto ld_st;
252b5132
RH
11471 case M_LB_AB:
11472 s = "lb";
df58fc94 11473 fmt = "t,o(b)";
252b5132
RH
11474 goto ld;
11475 case M_LBU_AB:
11476 s = "lbu";
df58fc94 11477 fmt = "t,o(b)";
252b5132
RH
11478 goto ld;
11479 case M_LH_AB:
11480 s = "lh";
df58fc94 11481 fmt = "t,o(b)";
252b5132
RH
11482 goto ld;
11483 case M_LHU_AB:
11484 s = "lhu";
df58fc94 11485 fmt = "t,o(b)";
252b5132
RH
11486 goto ld;
11487 case M_LW_AB:
11488 s = "lw";
df58fc94 11489 fmt = "t,o(b)";
252b5132
RH
11490 goto ld;
11491 case M_LWC0_AB:
df58fc94 11492 gas_assert (!mips_opts.micromips);
252b5132 11493 s = "lwc0";
df58fc94 11494 fmt = "E,o(b)";
bdaaa2e1 11495 /* Itbl support may require additional care here. */
252b5132 11496 coproc = 1;
df58fc94 11497 goto ld_st;
252b5132
RH
11498 case M_LWC1_AB:
11499 s = "lwc1";
df58fc94 11500 fmt = "T,o(b)";
bdaaa2e1 11501 /* Itbl support may require additional care here. */
252b5132 11502 coproc = 1;
df58fc94 11503 goto ld_st;
252b5132
RH
11504 case M_LWC2_AB:
11505 s = "lwc2";
df58fc94 11506 fmt = COP12_FMT;
7361da2c
AB
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 11
11509 : 16);
bdaaa2e1 11510 /* Itbl support may require additional care here. */
252b5132 11511 coproc = 1;
df58fc94 11512 goto ld_st;
252b5132 11513 case M_LWC3_AB:
df58fc94 11514 gas_assert (!mips_opts.micromips);
252b5132 11515 s = "lwc3";
df58fc94 11516 fmt = "E,o(b)";
bdaaa2e1 11517 /* Itbl support may require additional care here. */
252b5132 11518 coproc = 1;
df58fc94 11519 goto ld_st;
252b5132
RH
11520 case M_LWL_AB:
11521 s = "lwl";
df58fc94 11522 fmt = MEM12_FMT;
7f3c4072 11523 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11524 goto ld_st;
252b5132
RH
11525 case M_LWR_AB:
11526 s = "lwr";
df58fc94 11527 fmt = MEM12_FMT;
7f3c4072 11528 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11529 goto ld_st;
252b5132 11530 case M_LDC1_AB:
252b5132 11531 s = "ldc1";
df58fc94 11532 fmt = "T,o(b)";
bdaaa2e1 11533 /* Itbl support may require additional care here. */
252b5132 11534 coproc = 1;
df58fc94 11535 goto ld_st;
252b5132
RH
11536 case M_LDC2_AB:
11537 s = "ldc2";
df58fc94 11538 fmt = COP12_FMT;
7361da2c
AB
11539 offbits = (mips_opts.micromips ? 12
11540 : ISA_IS_R6 (mips_opts.isa) ? 11
11541 : 16);
bdaaa2e1 11542 /* Itbl support may require additional care here. */
252b5132 11543 coproc = 1;
df58fc94 11544 goto ld_st;
c77c0862 11545 case M_LQC2_AB:
c77c0862 11546 s = "lqc2";
14daeee3 11547 fmt = "+7,o(b)";
c77c0862
RS
11548 /* Itbl support may require additional care here. */
11549 coproc = 1;
11550 goto ld_st;
252b5132
RH
11551 case M_LDC3_AB:
11552 s = "ldc3";
df58fc94 11553 fmt = "E,o(b)";
bdaaa2e1 11554 /* Itbl support may require additional care here. */
252b5132 11555 coproc = 1;
df58fc94 11556 goto ld_st;
252b5132
RH
11557 case M_LDL_AB:
11558 s = "ldl";
df58fc94 11559 fmt = MEM12_FMT;
7f3c4072 11560 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11561 goto ld_st;
252b5132
RH
11562 case M_LDR_AB:
11563 s = "ldr";
df58fc94 11564 fmt = MEM12_FMT;
7f3c4072 11565 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11566 goto ld_st;
252b5132
RH
11567 case M_LL_AB:
11568 s = "ll";
7361da2c
AB
11569 fmt = LL_SC_FMT;
11570 offbits = (mips_opts.micromips ? 12
11571 : ISA_IS_R6 (mips_opts.isa) ? 9
11572 : 16);
252b5132
RH
11573 goto ld;
11574 case M_LLD_AB:
11575 s = "lld";
7361da2c
AB
11576 fmt = LL_SC_FMT;
11577 offbits = (mips_opts.micromips ? 12
11578 : ISA_IS_R6 (mips_opts.isa) ? 9
11579 : 16);
252b5132
RH
11580 goto ld;
11581 case M_LWU_AB:
11582 s = "lwu";
df58fc94 11583 fmt = MEM12_FMT;
7f3c4072 11584 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11585 goto ld;
11586 case M_LWP_AB:
df58fc94
RS
11587 gas_assert (mips_opts.micromips);
11588 s = "lwp";
11589 fmt = "t,~(b)";
7f3c4072 11590 offbits = 12;
df58fc94
RS
11591 lp = 1;
11592 goto ld;
11593 case M_LDP_AB:
df58fc94
RS
11594 gas_assert (mips_opts.micromips);
11595 s = "ldp";
11596 fmt = "t,~(b)";
7f3c4072 11597 offbits = 12;
df58fc94
RS
11598 lp = 1;
11599 goto ld;
11600 case M_LWM_AB:
df58fc94
RS
11601 gas_assert (mips_opts.micromips);
11602 s = "lwm";
11603 fmt = "n,~(b)";
7f3c4072 11604 offbits = 12;
df58fc94
RS
11605 goto ld_st;
11606 case M_LDM_AB:
df58fc94
RS
11607 gas_assert (mips_opts.micromips);
11608 s = "ldm";
11609 fmt = "n,~(b)";
7f3c4072 11610 offbits = 12;
df58fc94
RS
11611 goto ld_st;
11612
252b5132 11613 ld:
f19ccbda 11614 /* We don't want to use $0 as tempreg. */
c0ebe874 11615 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11616 goto ld_st;
252b5132 11617 else
c0ebe874 11618 tempreg = op[0] + lp;
df58fc94
RS
11619 goto ld_noat;
11620
252b5132
RH
11621 case M_SB_AB:
11622 s = "sb";
df58fc94
RS
11623 fmt = "t,o(b)";
11624 goto ld_st;
252b5132
RH
11625 case M_SH_AB:
11626 s = "sh";
df58fc94
RS
11627 fmt = "t,o(b)";
11628 goto ld_st;
252b5132
RH
11629 case M_SW_AB:
11630 s = "sw";
df58fc94
RS
11631 fmt = "t,o(b)";
11632 goto ld_st;
252b5132 11633 case M_SWC0_AB:
df58fc94 11634 gas_assert (!mips_opts.micromips);
252b5132 11635 s = "swc0";
df58fc94 11636 fmt = "E,o(b)";
bdaaa2e1 11637 /* Itbl support may require additional care here. */
252b5132 11638 coproc = 1;
df58fc94 11639 goto ld_st;
252b5132
RH
11640 case M_SWC1_AB:
11641 s = "swc1";
df58fc94 11642 fmt = "T,o(b)";
bdaaa2e1 11643 /* Itbl support may require additional care here. */
252b5132 11644 coproc = 1;
df58fc94 11645 goto ld_st;
252b5132
RH
11646 case M_SWC2_AB:
11647 s = "swc2";
df58fc94 11648 fmt = COP12_FMT;
7361da2c
AB
11649 offbits = (mips_opts.micromips ? 12
11650 : ISA_IS_R6 (mips_opts.isa) ? 11
11651 : 16);
bdaaa2e1 11652 /* Itbl support may require additional care here. */
252b5132 11653 coproc = 1;
df58fc94 11654 goto ld_st;
252b5132 11655 case M_SWC3_AB:
df58fc94 11656 gas_assert (!mips_opts.micromips);
252b5132 11657 s = "swc3";
df58fc94 11658 fmt = "E,o(b)";
bdaaa2e1 11659 /* Itbl support may require additional care here. */
252b5132 11660 coproc = 1;
df58fc94 11661 goto ld_st;
252b5132
RH
11662 case M_SWL_AB:
11663 s = "swl";
df58fc94 11664 fmt = MEM12_FMT;
7f3c4072 11665 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11666 goto ld_st;
252b5132
RH
11667 case M_SWR_AB:
11668 s = "swr";
df58fc94 11669 fmt = MEM12_FMT;
7f3c4072 11670 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11671 goto ld_st;
252b5132
RH
11672 case M_SC_AB:
11673 s = "sc";
7361da2c
AB
11674 fmt = LL_SC_FMT;
11675 offbits = (mips_opts.micromips ? 12
11676 : ISA_IS_R6 (mips_opts.isa) ? 9
11677 : 16);
df58fc94 11678 goto ld_st;
252b5132
RH
11679 case M_SCD_AB:
11680 s = "scd";
7361da2c
AB
11681 fmt = LL_SC_FMT;
11682 offbits = (mips_opts.micromips ? 12
11683 : ISA_IS_R6 (mips_opts.isa) ? 9
11684 : 16);
df58fc94 11685 goto ld_st;
d43b4baf
TS
11686 case M_CACHE_AB:
11687 s = "cache";
7361da2c
AB
11688 fmt = (mips_opts.micromips ? "k,~(b)"
11689 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11690 : "k,o(b)");
11691 offbits = (mips_opts.micromips ? 12
11692 : ISA_IS_R6 (mips_opts.isa) ? 9
11693 : 16);
7f3c4072
CM
11694 goto ld_st;
11695 case M_CACHEE_AB:
7f3c4072
CM
11696 s = "cachee";
11697 fmt = "k,+j(b)";
11698 offbits = 9;
df58fc94 11699 goto ld_st;
3eebd5eb
MR
11700 case M_PREF_AB:
11701 s = "pref";
7361da2c
AB
11702 fmt = (mips_opts.micromips ? "k,~(b)"
11703 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11704 : "k,o(b)");
11705 offbits = (mips_opts.micromips ? 12
11706 : ISA_IS_R6 (mips_opts.isa) ? 9
11707 : 16);
7f3c4072
CM
11708 goto ld_st;
11709 case M_PREFE_AB:
7f3c4072
CM
11710 s = "prefe";
11711 fmt = "k,+j(b)";
11712 offbits = 9;
df58fc94 11713 goto ld_st;
252b5132 11714 case M_SDC1_AB:
252b5132 11715 s = "sdc1";
df58fc94 11716 fmt = "T,o(b)";
252b5132 11717 coproc = 1;
bdaaa2e1 11718 /* Itbl support may require additional care here. */
df58fc94 11719 goto ld_st;
252b5132
RH
11720 case M_SDC2_AB:
11721 s = "sdc2";
df58fc94 11722 fmt = COP12_FMT;
7361da2c
AB
11723 offbits = (mips_opts.micromips ? 12
11724 : ISA_IS_R6 (mips_opts.isa) ? 11
11725 : 16);
c77c0862
RS
11726 /* Itbl support may require additional care here. */
11727 coproc = 1;
11728 goto ld_st;
11729 case M_SQC2_AB:
c77c0862 11730 s = "sqc2";
14daeee3 11731 fmt = "+7,o(b)";
bdaaa2e1 11732 /* Itbl support may require additional care here. */
252b5132 11733 coproc = 1;
df58fc94 11734 goto ld_st;
252b5132 11735 case M_SDC3_AB:
df58fc94 11736 gas_assert (!mips_opts.micromips);
252b5132 11737 s = "sdc3";
df58fc94 11738 fmt = "E,o(b)";
bdaaa2e1 11739 /* Itbl support may require additional care here. */
252b5132 11740 coproc = 1;
df58fc94 11741 goto ld_st;
252b5132
RH
11742 case M_SDL_AB:
11743 s = "sdl";
df58fc94 11744 fmt = MEM12_FMT;
7f3c4072 11745 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11746 goto ld_st;
252b5132
RH
11747 case M_SDR_AB:
11748 s = "sdr";
df58fc94 11749 fmt = MEM12_FMT;
7f3c4072 11750 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11751 goto ld_st;
11752 case M_SWP_AB:
df58fc94
RS
11753 gas_assert (mips_opts.micromips);
11754 s = "swp";
11755 fmt = "t,~(b)";
7f3c4072 11756 offbits = 12;
df58fc94
RS
11757 goto ld_st;
11758 case M_SDP_AB:
df58fc94
RS
11759 gas_assert (mips_opts.micromips);
11760 s = "sdp";
11761 fmt = "t,~(b)";
7f3c4072 11762 offbits = 12;
df58fc94
RS
11763 goto ld_st;
11764 case M_SWM_AB:
df58fc94
RS
11765 gas_assert (mips_opts.micromips);
11766 s = "swm";
11767 fmt = "n,~(b)";
7f3c4072 11768 offbits = 12;
df58fc94
RS
11769 goto ld_st;
11770 case M_SDM_AB:
df58fc94
RS
11771 gas_assert (mips_opts.micromips);
11772 s = "sdm";
11773 fmt = "n,~(b)";
7f3c4072 11774 offbits = 12;
df58fc94
RS
11775
11776 ld_st:
8fc2e39e 11777 tempreg = AT;
df58fc94 11778 ld_noat:
c0ebe874 11779 breg = op[2];
f2ae14a1
RS
11780 if (small_offset_p (0, align, 16))
11781 {
11782 /* The first case exists for M_LD_AB and M_SD_AB, which are
11783 macros for o32 but which should act like normal instructions
11784 otherwise. */
11785 if (offbits == 16)
c0ebe874 11786 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
11787 offset_reloc[1], offset_reloc[2], breg);
11788 else if (small_offset_p (0, align, offbits))
11789 {
11790 if (offbits == 0)
c0ebe874 11791 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 11792 else
c0ebe874 11793 macro_build (NULL, s, fmt, op[0],
c8276761 11794 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
11795 }
11796 else
11797 {
11798 if (tempreg == AT)
11799 used_at = 1;
11800 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11801 tempreg, breg, -1, offset_reloc[0],
11802 offset_reloc[1], offset_reloc[2]);
11803 if (offbits == 0)
c0ebe874 11804 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 11805 else
c0ebe874 11806 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
11807 }
11808 break;
11809 }
11810
11811 if (tempreg == AT)
11812 used_at = 1;
11813
252b5132
RH
11814 if (offset_expr.X_op != O_constant
11815 && offset_expr.X_op != O_symbol)
11816 {
1661c76c 11817 as_bad (_("expression too complex"));
252b5132
RH
11818 offset_expr.X_op = O_constant;
11819 }
11820
2051e8c4
MR
11821 if (HAVE_32BIT_ADDRESSES
11822 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
11823 {
11824 char value [32];
11825
11826 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 11827 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 11828 }
2051e8c4 11829
252b5132
RH
11830 /* A constant expression in PIC code can be handled just as it
11831 is in non PIC code. */
aed1a261
RS
11832 if (offset_expr.X_op == O_constant)
11833 {
f2ae14a1
RS
11834 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11835 offbits == 0 ? 16 : offbits);
11836 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 11837
f2ae14a1
RS
11838 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11839 if (breg != 0)
11840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11841 tempreg, tempreg, breg);
7f3c4072 11842 if (offbits == 0)
dd6a37e7 11843 {
f2ae14a1 11844 if (offset_expr.X_add_number != 0)
dd6a37e7 11845 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 11846 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 11847 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11848 }
7f3c4072 11849 else if (offbits == 16)
c0ebe874 11850 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 11851 else
c0ebe874 11852 macro_build (NULL, s, fmt, op[0],
c8276761 11853 (int) offset_expr.X_add_number, tempreg);
df58fc94 11854 }
7f3c4072 11855 else if (offbits != 16)
df58fc94 11856 {
7f3c4072 11857 /* The offset field is too narrow to be used for a low-part
2b0f3761 11858 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
11859 register. */
11860 load_address (tempreg, &offset_expr, &used_at);
11861 if (breg != 0)
11862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11863 tempreg, tempreg, breg);
7f3c4072 11864 if (offbits == 0)
c0ebe874 11865 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 11866 else
c0ebe874 11867 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
11868 }
11869 else if (mips_pic == NO_PIC)
252b5132
RH
11870 {
11871 /* If this is a reference to a GP relative symbol, and there
11872 is no base register, we want
c0ebe874 11873 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
11874 Otherwise, if there is no base register, we want
11875 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
11877 If we have a constant, we need two instructions anyhow,
11878 so we always use the latter form.
11879
11880 If we have a base register, and this is a reference to a
11881 GP relative symbol, we want
11882 addu $tempreg,$breg,$gp
c0ebe874 11883 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
11884 Otherwise we want
11885 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11886 addu $tempreg,$tempreg,$breg
c0ebe874 11887 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 11888 With a constant we always use the latter case.
76b3015f 11889
d6bc6245
TS
11890 With 64bit address space and no base register and $at usable,
11891 we want
11892 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11893 lui $at,<sym> (BFD_RELOC_HI16_S)
11894 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11895 dsll32 $tempreg,0
11896 daddu $tempreg,$at
c0ebe874 11897 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11898 If we have a base register, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11900 lui $at,<sym> (BFD_RELOC_HI16_S)
11901 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11902 daddu $at,$breg
11903 dsll32 $tempreg,0
11904 daddu $tempreg,$at
c0ebe874 11905 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11906
11907 Without $at we can't generate the optimal path for superscalar
11908 processors here since this would require two temporary registers.
11909 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11910 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11911 dsll $tempreg,16
11912 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11913 dsll $tempreg,16
c0ebe874 11914 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
11915 If we have a base register, we want
11916 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11917 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11918 dsll $tempreg,16
11919 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11920 dsll $tempreg,16
11921 daddu $tempreg,$tempreg,$breg
c0ebe874 11922 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 11923
6caf9ef4 11924 For GP relative symbols in 64bit address space we can use
aed1a261
RS
11925 the same sequence as in 32bit address space. */
11926 if (HAVE_64BIT_SYMBOLS)
d6bc6245 11927 {
aed1a261 11928 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
11929 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11930 {
11931 relax_start (offset_expr.X_add_symbol);
11932 if (breg == 0)
11933 {
c0ebe874 11934 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11935 BFD_RELOC_GPREL16, mips_gp_register);
11936 }
11937 else
11938 {
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, breg, mips_gp_register);
c0ebe874 11941 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
11942 BFD_RELOC_GPREL16, tempreg);
11943 }
11944 relax_switch ();
11945 }
d6bc6245 11946
741fe287 11947 if (used_at == 0 && mips_opts.at)
d6bc6245 11948 {
df58fc94 11949 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 11950 BFD_RELOC_MIPS_HIGHEST);
df58fc94 11951 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
11952 BFD_RELOC_HI16_S);
11953 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11954 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 11955 if (breg != 0)
67c0d1eb 11956 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 11957 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 11958 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 11959 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 11960 tempreg);
d6bc6245
TS
11961 used_at = 1;
11962 }
11963 else
11964 {
df58fc94 11965 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
11966 BFD_RELOC_MIPS_HIGHEST);
11967 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11968 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 11969 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
11970 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11971 tempreg, BFD_RELOC_HI16_S);
df58fc94 11972 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 11973 if (breg != 0)
67c0d1eb 11974 macro_build (NULL, "daddu", "d,v,t",
17a2f251 11975 tempreg, tempreg, breg);
c0ebe874 11976 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11977 BFD_RELOC_LO16, tempreg);
d6bc6245 11978 }
6caf9ef4
TS
11979
11980 if (mips_relax.sequence)
11981 relax_end ();
8fc2e39e 11982 break;
d6bc6245 11983 }
256ab948 11984
252b5132
RH
11985 if (breg == 0)
11986 {
67c0d1eb 11987 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 11988 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 11989 {
4d7206a2 11990 relax_start (offset_expr.X_add_symbol);
c0ebe874 11991 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 11992 mips_gp_register);
4d7206a2 11993 relax_switch ();
252b5132 11994 }
67c0d1eb 11995 macro_build_lui (&offset_expr, tempreg);
c0ebe874 11996 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 11997 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
11998 if (mips_relax.sequence)
11999 relax_end ();
252b5132
RH
12000 }
12001 else
12002 {
67c0d1eb 12003 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12004 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12005 {
4d7206a2 12006 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12008 tempreg, breg, mips_gp_register);
c0ebe874 12009 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12010 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12011 relax_switch ();
252b5132 12012 }
67c0d1eb
RS
12013 macro_build_lui (&offset_expr, tempreg);
12014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12015 tempreg, tempreg, breg);
c0ebe874 12016 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12017 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12018 if (mips_relax.sequence)
12019 relax_end ();
252b5132
RH
12020 }
12021 }
0a44bf69 12022 else if (!mips_big_got)
252b5132 12023 {
ed6fb7bd 12024 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12025
252b5132
RH
12026 /* If this is a reference to an external symbol, we want
12027 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12028 nop
c0ebe874 12029 <op> op[0],0($tempreg)
252b5132
RH
12030 Otherwise we want
12031 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12032 nop
12033 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12034 <op> op[0],0($tempreg)
f5040a92
AO
12035
12036 For NewABI, we want
12037 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12038 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12039
252b5132
RH
12040 If there is a base register, we add it to $tempreg before
12041 the <op>. If there is a constant, we stick it in the
12042 <op> instruction. We don't handle constants larger than
12043 16 bits, because we have no way to load the upper 16 bits
12044 (actually, we could handle them for the subset of cases
12045 in which we are not using $at). */
9c2799c2 12046 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12047 if (HAVE_NEWABI)
12048 {
67c0d1eb
RS
12049 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12050 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12051 if (breg != 0)
67c0d1eb 12052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12053 tempreg, tempreg, breg);
c0ebe874 12054 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12055 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12056 break;
12057 }
252b5132
RH
12058 expr1.X_add_number = offset_expr.X_add_number;
12059 offset_expr.X_add_number = 0;
12060 if (expr1.X_add_number < -0x8000
12061 || expr1.X_add_number >= 0x8000)
12062 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12064 lw_reloc_type, mips_gp_register);
269137b2 12065 load_delay_nop ();
4d7206a2
RS
12066 relax_start (offset_expr.X_add_symbol);
12067 relax_switch ();
67c0d1eb
RS
12068 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12069 tempreg, BFD_RELOC_LO16);
4d7206a2 12070 relax_end ();
252b5132 12071 if (breg != 0)
67c0d1eb 12072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12073 tempreg, tempreg, breg);
c0ebe874 12074 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12075 }
0a44bf69 12076 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12077 {
67c0d1eb 12078 int gpdelay;
252b5132
RH
12079
12080 /* If this is a reference to an external symbol, we want
12081 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12082 addu $tempreg,$tempreg,$gp
12083 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12084 <op> op[0],0($tempreg)
252b5132
RH
12085 Otherwise we want
12086 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12087 nop
12088 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12089 <op> op[0],0($tempreg)
252b5132
RH
12090 If there is a base register, we add it to $tempreg before
12091 the <op>. If there is a constant, we stick it in the
12092 <op> instruction. We don't handle constants larger than
12093 16 bits, because we have no way to load the upper 16 bits
12094 (actually, we could handle them for the subset of cases
f5040a92 12095 in which we are not using $at). */
9c2799c2 12096 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12097 expr1.X_add_number = offset_expr.X_add_number;
12098 offset_expr.X_add_number = 0;
12099 if (expr1.X_add_number < -0x8000
12100 || expr1.X_add_number >= 0x8000)
12101 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12102 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12103 relax_start (offset_expr.X_add_symbol);
df58fc94 12104 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12105 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12107 mips_gp_register);
12108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12109 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12110 relax_switch ();
67c0d1eb
RS
12111 if (gpdelay)
12112 macro_build (NULL, "nop", "");
12113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12114 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12115 load_delay_nop ();
67c0d1eb
RS
12116 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12117 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12118 relax_end ();
12119
252b5132 12120 if (breg != 0)
67c0d1eb 12121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12122 tempreg, tempreg, breg);
c0ebe874 12123 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12124 }
0a44bf69 12125 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12126 {
f5040a92
AO
12127 /* If this is a reference to an external symbol, we want
12128 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12129 add $tempreg,$tempreg,$gp
12130 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12131 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12132 Otherwise, for local symbols, we want:
12133 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12134 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12135 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12136 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12137 offset_expr.X_add_number = 0;
12138 if (expr1.X_add_number < -0x8000
12139 || expr1.X_add_number >= 0x8000)
12140 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12141 relax_start (offset_expr.X_add_symbol);
df58fc94 12142 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12143 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12145 mips_gp_register);
12146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12147 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12148 if (breg != 0)
67c0d1eb 12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12150 tempreg, tempreg, breg);
c0ebe874 12151 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12152
4d7206a2 12153 relax_switch ();
f5040a92 12154 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12155 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12156 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12157 if (breg != 0)
67c0d1eb 12158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12159 tempreg, tempreg, breg);
c0ebe874 12160 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12161 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12162 relax_end ();
f5040a92 12163 }
252b5132
RH
12164 else
12165 abort ();
12166
252b5132
RH
12167 break;
12168
833794fc
MR
12169 case M_JRADDIUSP:
12170 gas_assert (mips_opts.micromips);
12171 gas_assert (mips_opts.insn32);
12172 start_noreorder ();
12173 macro_build (NULL, "jr", "s", RA);
c0ebe874 12174 expr1.X_add_number = op[0] << 2;
833794fc
MR
12175 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12176 end_noreorder ();
12177 break;
12178
12179 case M_JRC:
12180 gas_assert (mips_opts.micromips);
12181 gas_assert (mips_opts.insn32);
c0ebe874 12182 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12183 if (mips_opts.noreorder)
12184 macro_build (NULL, "nop", "");
12185 break;
12186
252b5132
RH
12187 case M_LI:
12188 case M_LI_S:
c0ebe874 12189 load_register (op[0], &imm_expr, 0);
8fc2e39e 12190 break;
252b5132
RH
12191
12192 case M_DLI:
c0ebe874 12193 load_register (op[0], &imm_expr, 1);
8fc2e39e 12194 break;
252b5132
RH
12195
12196 case M_LI_SS:
12197 if (imm_expr.X_op == O_constant)
12198 {
8fc2e39e 12199 used_at = 1;
67c0d1eb 12200 load_register (AT, &imm_expr, 0);
c0ebe874 12201 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12202 break;
12203 }
12204 else
12205 {
b0e6f033
RS
12206 gas_assert (imm_expr.X_op == O_absent
12207 && offset_expr.X_op == O_symbol
90ecf173
MR
12208 && strcmp (segment_name (S_GET_SEGMENT
12209 (offset_expr.X_add_symbol)),
12210 ".lit4") == 0
12211 && offset_expr.X_add_number == 0);
c0ebe874 12212 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12213 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12214 break;
252b5132
RH
12215 }
12216
12217 case M_LI_D:
ca4e0257
RS
12218 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12219 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12220 order 32 bits of the value and the low order 32 bits are either
12221 zero or in OFFSET_EXPR. */
b0e6f033 12222 if (imm_expr.X_op == O_constant)
252b5132 12223 {
bad1aba3 12224 if (GPR_SIZE == 64)
c0ebe874 12225 load_register (op[0], &imm_expr, 1);
252b5132
RH
12226 else
12227 {
12228 int hreg, lreg;
12229
12230 if (target_big_endian)
12231 {
c0ebe874
RS
12232 hreg = op[0];
12233 lreg = op[0] + 1;
252b5132
RH
12234 }
12235 else
12236 {
c0ebe874
RS
12237 hreg = op[0] + 1;
12238 lreg = op[0];
252b5132
RH
12239 }
12240
12241 if (hreg <= 31)
67c0d1eb 12242 load_register (hreg, &imm_expr, 0);
252b5132
RH
12243 if (lreg <= 31)
12244 {
12245 if (offset_expr.X_op == O_absent)
67c0d1eb 12246 move_register (lreg, 0);
252b5132
RH
12247 else
12248 {
9c2799c2 12249 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12250 load_register (lreg, &offset_expr, 0);
252b5132
RH
12251 }
12252 }
12253 }
8fc2e39e 12254 break;
252b5132 12255 }
b0e6f033 12256 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12257
12258 /* We know that sym is in the .rdata section. First we get the
12259 upper 16 bits of the address. */
12260 if (mips_pic == NO_PIC)
12261 {
67c0d1eb 12262 macro_build_lui (&offset_expr, AT);
8fc2e39e 12263 used_at = 1;
252b5132 12264 }
0a44bf69 12265 else
252b5132 12266 {
67c0d1eb
RS
12267 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12268 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12269 used_at = 1;
252b5132 12270 }
bdaaa2e1 12271
252b5132 12272 /* Now we load the register(s). */
bad1aba3 12273 if (GPR_SIZE == 64)
8fc2e39e
TS
12274 {
12275 used_at = 1;
c0ebe874
RS
12276 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12277 BFD_RELOC_LO16, AT);
8fc2e39e 12278 }
252b5132
RH
12279 else
12280 {
8fc2e39e 12281 used_at = 1;
c0ebe874
RS
12282 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12283 BFD_RELOC_LO16, AT);
12284 if (op[0] != RA)
252b5132
RH
12285 {
12286 /* FIXME: How in the world do we deal with the possible
12287 overflow here? */
12288 offset_expr.X_add_number += 4;
67c0d1eb 12289 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12290 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12291 }
12292 }
252b5132
RH
12293 break;
12294
12295 case M_LI_DD:
ca4e0257
RS
12296 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12297 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12298 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12299 the value and the low order 32 bits are either zero or in
12300 OFFSET_EXPR. */
b0e6f033 12301 if (imm_expr.X_op == O_constant)
252b5132 12302 {
8fc2e39e 12303 used_at = 1;
bad1aba3 12304 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12305 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12306 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12307 else
12308 {
351cdf24
MF
12309 if (ISA_HAS_MXHC1 (mips_opts.isa))
12310 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12311 else if (FPR_SIZE != 32)
12312 as_bad (_("Unable to generate `%s' compliant code "
12313 "without mthc1"),
12314 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12315 else
12316 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12317 if (offset_expr.X_op == O_absent)
c0ebe874 12318 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12319 else
12320 {
9c2799c2 12321 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12322 load_register (AT, &offset_expr, 0);
c0ebe874 12323 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12324 }
12325 }
12326 break;
12327 }
12328
b0e6f033
RS
12329 gas_assert (imm_expr.X_op == O_absent
12330 && offset_expr.X_op == O_symbol
90ecf173 12331 && offset_expr.X_add_number == 0);
252b5132
RH
12332 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12333 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12334 {
12335 op[2] = mips_gp_register;
f2ae14a1
RS
12336 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12337 offset_reloc[1] = BFD_RELOC_UNUSED;
12338 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12339 }
12340 else
12341 {
9c2799c2 12342 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12343 used_at = 1;
0a44bf69 12344 if (mips_pic != NO_PIC)
67c0d1eb
RS
12345 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12346 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12347 else
12348 {
12349 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12350 macro_build_lui (&offset_expr, AT);
252b5132 12351 }
bdaaa2e1 12352
c0ebe874 12353 op[2] = AT;
f2ae14a1
RS
12354 offset_reloc[0] = BFD_RELOC_LO16;
12355 offset_reloc[1] = BFD_RELOC_UNUSED;
12356 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12357 }
f2ae14a1
RS
12358 align = 8;
12359 /* Fall through */
c4a68bea 12360
252b5132
RH
12361 case M_L_DAB:
12362 /*
12363 * The MIPS assembler seems to check for X_add_number not
12364 * being double aligned and generating:
12365 * lui at,%hi(foo+1)
12366 * addu at,at,v1
12367 * addiu at,at,%lo(foo+1)
12368 * lwc1 f2,0(at)
12369 * lwc1 f3,4(at)
12370 * But, the resulting address is the same after relocation so why
12371 * generate the extra instruction?
12372 */
bdaaa2e1 12373 /* Itbl support may require additional care here. */
252b5132 12374 coproc = 1;
df58fc94 12375 fmt = "T,o(b)";
0aa27725 12376 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12377 {
12378 s = "ldc1";
df58fc94 12379 goto ld_st;
252b5132 12380 }
252b5132 12381 s = "lwc1";
252b5132
RH
12382 goto ldd_std;
12383
12384 case M_S_DAB:
df58fc94
RS
12385 gas_assert (!mips_opts.micromips);
12386 /* Itbl support may require additional care here. */
12387 coproc = 1;
12388 fmt = "T,o(b)";
0aa27725 12389 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12390 {
12391 s = "sdc1";
df58fc94 12392 goto ld_st;
252b5132 12393 }
252b5132 12394 s = "swc1";
252b5132
RH
12395 goto ldd_std;
12396
e407c74b
NC
12397 case M_LQ_AB:
12398 fmt = "t,o(b)";
12399 s = "lq";
12400 goto ld;
12401
12402 case M_SQ_AB:
12403 fmt = "t,o(b)";
12404 s = "sq";
12405 goto ld_st;
12406
252b5132 12407 case M_LD_AB:
df58fc94 12408 fmt = "t,o(b)";
bad1aba3 12409 if (GPR_SIZE == 64)
252b5132
RH
12410 {
12411 s = "ld";
12412 goto ld;
12413 }
252b5132 12414 s = "lw";
252b5132
RH
12415 goto ldd_std;
12416
12417 case M_SD_AB:
df58fc94 12418 fmt = "t,o(b)";
bad1aba3 12419 if (GPR_SIZE == 64)
252b5132
RH
12420 {
12421 s = "sd";
df58fc94 12422 goto ld_st;
252b5132 12423 }
252b5132 12424 s = "sw";
252b5132
RH
12425
12426 ldd_std:
f2ae14a1
RS
12427 /* Even on a big endian machine $fn comes before $fn+1. We have
12428 to adjust when loading from memory. We set coproc if we must
12429 load $fn+1 first. */
12430 /* Itbl support may require additional care here. */
12431 if (!target_big_endian)
12432 coproc = 0;
12433
c0ebe874 12434 breg = op[2];
f2ae14a1
RS
12435 if (small_offset_p (0, align, 16))
12436 {
12437 ep = &offset_expr;
12438 if (!small_offset_p (4, align, 16))
12439 {
12440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12441 -1, offset_reloc[0], offset_reloc[1],
12442 offset_reloc[2]);
12443 expr1.X_add_number = 0;
12444 ep = &expr1;
12445 breg = AT;
12446 used_at = 1;
12447 offset_reloc[0] = BFD_RELOC_LO16;
12448 offset_reloc[1] = BFD_RELOC_UNUSED;
12449 offset_reloc[2] = BFD_RELOC_UNUSED;
12450 }
c0ebe874 12451 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12452 {
12453 ep->X_add_number += 4;
c0ebe874 12454 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12455 offset_reloc[1], offset_reloc[2], breg);
12456 ep->X_add_number -= 4;
c0ebe874 12457 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12458 offset_reloc[1], offset_reloc[2], breg);
12459 }
12460 else
12461 {
c0ebe874 12462 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12463 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12464 breg);
12465 ep->X_add_number += 4;
c0ebe874 12466 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12467 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12468 breg);
12469 }
12470 break;
12471 }
12472
252b5132
RH
12473 if (offset_expr.X_op != O_symbol
12474 && offset_expr.X_op != O_constant)
12475 {
1661c76c 12476 as_bad (_("expression too complex"));
252b5132
RH
12477 offset_expr.X_op = O_constant;
12478 }
12479
2051e8c4
MR
12480 if (HAVE_32BIT_ADDRESSES
12481 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12482 {
12483 char value [32];
12484
12485 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12486 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12487 }
2051e8c4 12488
90ecf173 12489 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12490 {
12491 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12492 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12493 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12494 If we have a base register, we use this
12495 addu $at,$breg,$gp
c0ebe874
RS
12496 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12497 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12498 If this is not a GP relative symbol, we want
12499 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12500 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12501 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12502 If there is a base register, we add it to $at after the
12503 lui instruction. If there is a constant, we always use
12504 the last case. */
39a59cf8
MR
12505 if (offset_expr.X_op == O_symbol
12506 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12507 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12508 {
4d7206a2 12509 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12510 if (breg == 0)
12511 {
c9914766 12512 tempreg = mips_gp_register;
252b5132
RH
12513 }
12514 else
12515 {
67c0d1eb 12516 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12517 AT, breg, mips_gp_register);
252b5132 12518 tempreg = AT;
252b5132
RH
12519 used_at = 1;
12520 }
12521
beae10d5 12522 /* Itbl support may require additional care here. */
c0ebe874 12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12524 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12525 offset_expr.X_add_number += 4;
12526
12527 /* Set mips_optimize to 2 to avoid inserting an
12528 undesired nop. */
12529 hold_mips_optimize = mips_optimize;
12530 mips_optimize = 2;
beae10d5 12531 /* Itbl support may require additional care here. */
c0ebe874 12532 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12533 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12534 mips_optimize = hold_mips_optimize;
12535
4d7206a2 12536 relax_switch ();
252b5132 12537
0970e49e 12538 offset_expr.X_add_number -= 4;
252b5132 12539 }
8fc2e39e 12540 used_at = 1;
f2ae14a1
RS
12541 if (offset_high_part (offset_expr.X_add_number, 16)
12542 != offset_high_part (offset_expr.X_add_number + 4, 16))
12543 {
12544 load_address (AT, &offset_expr, &used_at);
12545 offset_expr.X_op = O_constant;
12546 offset_expr.X_add_number = 0;
12547 }
12548 else
12549 macro_build_lui (&offset_expr, AT);
252b5132 12550 if (breg != 0)
67c0d1eb 12551 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12552 /* Itbl support may require additional care here. */
c0ebe874 12553 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12554 BFD_RELOC_LO16, AT);
252b5132
RH
12555 /* FIXME: How do we handle overflow here? */
12556 offset_expr.X_add_number += 4;
beae10d5 12557 /* Itbl support may require additional care here. */
c0ebe874 12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12559 BFD_RELOC_LO16, AT);
4d7206a2
RS
12560 if (mips_relax.sequence)
12561 relax_end ();
bdaaa2e1 12562 }
0a44bf69 12563 else if (!mips_big_got)
252b5132 12564 {
252b5132
RH
12565 /* If this is a reference to an external symbol, we want
12566 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
c0ebe874
RS
12568 <op> op[0],0($at)
12569 <op> op[0]+1,4($at)
252b5132
RH
12570 Otherwise we want
12571 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12572 nop
c0ebe874
RS
12573 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12574 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12575 If there is a base register we add it to $at before the
12576 lwc1 instructions. If there is a constant we include it
12577 in the lwc1 instructions. */
12578 used_at = 1;
12579 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12580 if (expr1.X_add_number < -0x8000
12581 || expr1.X_add_number >= 0x8000 - 4)
12582 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12583 load_got_offset (AT, &offset_expr);
269137b2 12584 load_delay_nop ();
252b5132 12585 if (breg != 0)
67c0d1eb 12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12587
12588 /* Set mips_optimize to 2 to avoid inserting an undesired
12589 nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
4d7206a2 12592
beae10d5 12593 /* Itbl support may require additional care here. */
4d7206a2 12594 relax_start (offset_expr.X_add_symbol);
c0ebe874 12595 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12596 BFD_RELOC_LO16, AT);
4d7206a2 12597 expr1.X_add_number += 4;
c0ebe874 12598 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12599 BFD_RELOC_LO16, AT);
4d7206a2 12600 relax_switch ();
c0ebe874 12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12602 BFD_RELOC_LO16, AT);
4d7206a2 12603 offset_expr.X_add_number += 4;
c0ebe874 12604 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12605 BFD_RELOC_LO16, AT);
4d7206a2 12606 relax_end ();
252b5132 12607
4d7206a2 12608 mips_optimize = hold_mips_optimize;
252b5132 12609 }
0a44bf69 12610 else if (mips_big_got)
252b5132 12611 {
67c0d1eb 12612 int gpdelay;
252b5132
RH
12613
12614 /* If this is a reference to an external symbol, we want
12615 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12616 addu $at,$at,$gp
12617 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12618 nop
c0ebe874
RS
12619 <op> op[0],0($at)
12620 <op> op[0]+1,4($at)
252b5132
RH
12621 Otherwise we want
12622 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12623 nop
c0ebe874
RS
12624 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12625 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12626 If there is a base register we add it to $at before the
12627 lwc1 instructions. If there is a constant we include it
12628 in the lwc1 instructions. */
12629 used_at = 1;
12630 expr1.X_add_number = offset_expr.X_add_number;
12631 offset_expr.X_add_number = 0;
12632 if (expr1.X_add_number < -0x8000
12633 || expr1.X_add_number >= 0x8000 - 4)
12634 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12635 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12636 relax_start (offset_expr.X_add_symbol);
df58fc94 12637 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12638 AT, BFD_RELOC_MIPS_GOT_HI16);
12639 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12640 AT, AT, mips_gp_register);
67c0d1eb 12641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12642 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12643 load_delay_nop ();
252b5132 12644 if (breg != 0)
67c0d1eb 12645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12646 /* Itbl support may require additional care here. */
c0ebe874 12647 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12648 BFD_RELOC_LO16, AT);
252b5132
RH
12649 expr1.X_add_number += 4;
12650
12651 /* Set mips_optimize to 2 to avoid inserting an undesired
12652 nop. */
12653 hold_mips_optimize = mips_optimize;
12654 mips_optimize = 2;
beae10d5 12655 /* Itbl support may require additional care here. */
c0ebe874 12656 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12657 BFD_RELOC_LO16, AT);
252b5132
RH
12658 mips_optimize = hold_mips_optimize;
12659 expr1.X_add_number -= 4;
12660
4d7206a2
RS
12661 relax_switch ();
12662 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12663 if (gpdelay)
12664 macro_build (NULL, "nop", "");
12665 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12666 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12667 load_delay_nop ();
252b5132 12668 if (breg != 0)
67c0d1eb 12669 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12670 /* Itbl support may require additional care here. */
c0ebe874 12671 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12672 BFD_RELOC_LO16, AT);
4d7206a2 12673 offset_expr.X_add_number += 4;
252b5132
RH
12674
12675 /* Set mips_optimize to 2 to avoid inserting an undesired
12676 nop. */
12677 hold_mips_optimize = mips_optimize;
12678 mips_optimize = 2;
beae10d5 12679 /* Itbl support may require additional care here. */
c0ebe874 12680 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12681 BFD_RELOC_LO16, AT);
252b5132 12682 mips_optimize = hold_mips_optimize;
4d7206a2 12683 relax_end ();
252b5132 12684 }
252b5132
RH
12685 else
12686 abort ();
12687
252b5132 12688 break;
3739860c 12689
dd6a37e7 12690 case M_SAA_AB:
dd6a37e7 12691 s = "saa";
0db377d0 12692 goto saa_saad;
dd6a37e7 12693 case M_SAAD_AB:
dd6a37e7 12694 s = "saad";
0db377d0
MR
12695 saa_saad:
12696 gas_assert (!mips_opts.micromips);
7f3c4072 12697 offbits = 0;
dd6a37e7
AP
12698 fmt = "t,(b)";
12699 goto ld_st;
12700
252b5132
RH
12701 /* New code added to support COPZ instructions.
12702 This code builds table entries out of the macros in mip_opcodes.
12703 R4000 uses interlocks to handle coproc delays.
12704 Other chips (like the R3000) require nops to be inserted for delays.
12705
f72c8c98 12706 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12707 In order to fill delay slots for non-interlocked chips,
12708 we must have a way to specify delays based on the coprocessor.
12709 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12710 What are the side-effects of the cop instruction?
12711 What cache support might we have and what are its effects?
12712 Both coprocessor & memory require delays. how long???
bdaaa2e1 12713 What registers are read/set/modified?
252b5132
RH
12714
12715 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12716 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12717
12718 case M_COP0:
12719 s = "c0";
12720 goto copz;
12721 case M_COP1:
12722 s = "c1";
12723 goto copz;
12724 case M_COP2:
12725 s = "c2";
12726 goto copz;
12727 case M_COP3:
12728 s = "c3";
12729 copz:
df58fc94 12730 gas_assert (!mips_opts.micromips);
252b5132
RH
12731 /* For now we just do C (same as Cz). The parameter will be
12732 stored in insn_opcode by mips_ip. */
c8276761 12733 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 12734 break;
252b5132 12735
ea1fb5dc 12736 case M_MOVE:
c0ebe874 12737 move_register (op[0], op[1]);
8fc2e39e 12738 break;
ea1fb5dc 12739
833794fc
MR
12740 case M_MOVEP:
12741 gas_assert (mips_opts.micromips);
12742 gas_assert (mips_opts.insn32);
c0ebe874
RS
12743 move_register (micromips_to_32_reg_h_map1[op[0]],
12744 micromips_to_32_reg_m_map[op[1]]);
12745 move_register (micromips_to_32_reg_h_map2[op[0]],
12746 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
12747 break;
12748
252b5132
RH
12749 case M_DMUL:
12750 dbl = 1;
1a0670f3 12751 /* Fall through. */
252b5132 12752 case M_MUL:
e407c74b 12753 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
12754 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12755 op[2]);
e407c74b
NC
12756 else
12757 {
c0ebe874
RS
12758 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12759 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 12760 }
8fc2e39e 12761 break;
252b5132
RH
12762
12763 case M_DMUL_I:
12764 dbl = 1;
1a0670f3 12765 /* Fall through. */
252b5132
RH
12766 case M_MUL_I:
12767 /* The MIPS assembler some times generates shifts and adds. I'm
12768 not trying to be that fancy. GCC should do this for us
12769 anyway. */
8fc2e39e 12770 used_at = 1;
67c0d1eb 12771 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12772 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12773 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12774 break;
12775
12776 case M_DMULO_I:
12777 dbl = 1;
1a0670f3 12778 /* Fall through. */
252b5132
RH
12779 case M_MULO_I:
12780 imm = 1;
12781 goto do_mulo;
12782
12783 case M_DMULO:
12784 dbl = 1;
1a0670f3 12785 /* Fall through. */
252b5132
RH
12786 case M_MULO:
12787 do_mulo:
7d10b47d 12788 start_noreorder ();
8fc2e39e 12789 used_at = 1;
252b5132 12790 if (imm)
67c0d1eb 12791 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
12792 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12793 op[1], imm ? AT : op[2]);
12794 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12795 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 12796 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 12797 if (mips_trap)
c0ebe874 12798 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
12799 else
12800 {
df58fc94
RS
12801 if (mips_opts.micromips)
12802 micromips_label_expr (&label_expr);
12803 else
12804 label_expr.X_add_number = 8;
c0ebe874 12805 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 12806 macro_build (NULL, "nop", "");
df58fc94
RS
12807 macro_build (NULL, "break", BRK_FMT, 6);
12808 if (mips_opts.micromips)
12809 micromips_add_label ();
252b5132 12810 }
7d10b47d 12811 end_noreorder ();
c0ebe874 12812 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
12813 break;
12814
12815 case M_DMULOU_I:
12816 dbl = 1;
1a0670f3 12817 /* Fall through. */
252b5132
RH
12818 case M_MULOU_I:
12819 imm = 1;
12820 goto do_mulou;
12821
12822 case M_DMULOU:
12823 dbl = 1;
1a0670f3 12824 /* Fall through. */
252b5132
RH
12825 case M_MULOU:
12826 do_mulou:
7d10b47d 12827 start_noreorder ();
8fc2e39e 12828 used_at = 1;
252b5132 12829 if (imm)
67c0d1eb
RS
12830 load_register (AT, &imm_expr, dbl);
12831 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 12832 op[1], imm ? AT : op[2]);
df58fc94 12833 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 12834 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 12835 if (mips_trap)
df58fc94 12836 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
12837 else
12838 {
df58fc94
RS
12839 if (mips_opts.micromips)
12840 micromips_label_expr (&label_expr);
12841 else
12842 label_expr.X_add_number = 8;
12843 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 12844 macro_build (NULL, "nop", "");
df58fc94
RS
12845 macro_build (NULL, "break", BRK_FMT, 6);
12846 if (mips_opts.micromips)
12847 micromips_add_label ();
252b5132 12848 }
7d10b47d 12849 end_noreorder ();
252b5132
RH
12850 break;
12851
771c7ce4 12852 case M_DROL:
fef14a42 12853 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12854 {
c0ebe874 12855 if (op[0] == op[1])
82dd0097
CD
12856 {
12857 tempreg = AT;
12858 used_at = 1;
12859 }
12860 else
c0ebe874
RS
12861 tempreg = op[0];
12862 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12863 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12864 break;
82dd0097 12865 }
8fc2e39e 12866 used_at = 1;
c0ebe874
RS
12867 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12868 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12869 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12870 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12871 break;
12872
252b5132 12873 case M_ROL:
fef14a42 12874 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12875 {
c0ebe874 12876 if (op[0] == op[1])
82dd0097
CD
12877 {
12878 tempreg = AT;
12879 used_at = 1;
12880 }
12881 else
c0ebe874
RS
12882 tempreg = op[0];
12883 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12884 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 12885 break;
82dd0097 12886 }
8fc2e39e 12887 used_at = 1;
c0ebe874
RS
12888 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12889 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12890 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12891 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12892 break;
12893
771c7ce4
TS
12894 case M_DROL_I:
12895 {
12896 unsigned int rot;
e0471c16
TS
12897 const char *l;
12898 const char *rr;
771c7ce4 12899
771c7ce4 12900 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12901 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
12902 {
12903 rot = (64 - rot) & 0x3f;
12904 if (rot >= 32)
c0ebe874 12905 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 12906 else
c0ebe874 12907 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12908 break;
60b63b72 12909 }
483fc7cd 12910 if (rot == 0)
483fc7cd 12911 {
c0ebe874 12912 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12913 break;
483fc7cd 12914 }
82dd0097 12915 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 12916 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 12917 rot &= 0x1f;
8fc2e39e 12918 used_at = 1;
c0ebe874
RS
12919 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12920 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12921 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12922 }
12923 break;
12924
252b5132 12925 case M_ROL_I:
771c7ce4
TS
12926 {
12927 unsigned int rot;
12928
771c7ce4 12929 rot = imm_expr.X_add_number & 0x1f;
fef14a42 12930 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 12931 {
c0ebe874
RS
12932 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12933 (32 - rot) & 0x1f);
8fc2e39e 12934 break;
60b63b72 12935 }
483fc7cd 12936 if (rot == 0)
483fc7cd 12937 {
c0ebe874 12938 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12939 break;
483fc7cd 12940 }
8fc2e39e 12941 used_at = 1;
c0ebe874
RS
12942 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12943 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12944 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
12945 }
12946 break;
12947
12948 case M_DROR:
fef14a42 12949 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 12950 {
c0ebe874 12951 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12952 break;
82dd0097 12953 }
8fc2e39e 12954 used_at = 1;
c0ebe874
RS
12955 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12956 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12957 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12958 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12959 break;
12960
12961 case M_ROR:
fef14a42 12962 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 12963 {
c0ebe874 12964 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 12965 break;
82dd0097 12966 }
8fc2e39e 12967 used_at = 1;
c0ebe874
RS
12968 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12969 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12970 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12971 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
12972 break;
12973
771c7ce4
TS
12974 case M_DROR_I:
12975 {
12976 unsigned int rot;
e0471c16
TS
12977 const char *l;
12978 const char *rr;
771c7ce4 12979
771c7ce4 12980 rot = imm_expr.X_add_number & 0x3f;
fef14a42 12981 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
12982 {
12983 if (rot >= 32)
c0ebe874 12984 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 12985 else
c0ebe874 12986 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 12987 break;
82dd0097 12988 }
483fc7cd 12989 if (rot == 0)
483fc7cd 12990 {
c0ebe874 12991 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 12992 break;
483fc7cd 12993 }
91d6fa6a 12994 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
12995 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12996 rot &= 0x1f;
8fc2e39e 12997 used_at = 1;
c0ebe874
RS
12998 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12999 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13000 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13001 }
13002 break;
13003
252b5132 13004 case M_ROR_I:
771c7ce4
TS
13005 {
13006 unsigned int rot;
13007
771c7ce4 13008 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13009 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13010 {
c0ebe874 13011 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13012 break;
82dd0097 13013 }
483fc7cd 13014 if (rot == 0)
483fc7cd 13015 {
c0ebe874 13016 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13017 break;
483fc7cd 13018 }
8fc2e39e 13019 used_at = 1;
c0ebe874
RS
13020 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13021 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13022 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13023 }
252b5132
RH
13024 break;
13025
252b5132 13026 case M_SEQ:
c0ebe874
RS
13027 if (op[1] == 0)
13028 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13029 else if (op[2] == 0)
13030 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13031 else
13032 {
c0ebe874
RS
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13034 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13035 }
8fc2e39e 13036 break;
252b5132
RH
13037
13038 case M_SEQ_I:
b0e6f033 13039 if (imm_expr.X_add_number == 0)
252b5132 13040 {
c0ebe874 13041 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13042 break;
252b5132 13043 }
c0ebe874 13044 if (op[1] == 0)
252b5132 13045 {
1661c76c 13046 as_warn (_("instruction %s: result is always false"),
252b5132 13047 ip->insn_mo->name);
c0ebe874 13048 move_register (op[0], 0);
8fc2e39e 13049 break;
252b5132 13050 }
dd3cbb7e
NC
13051 if (CPU_HAS_SEQ (mips_opts.arch)
13052 && -512 <= imm_expr.X_add_number
13053 && imm_expr.X_add_number < 512)
13054 {
c0ebe874 13055 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13056 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13057 break;
13058 }
b0e6f033 13059 if (imm_expr.X_add_number >= 0
252b5132 13060 && imm_expr.X_add_number < 0x10000)
c0ebe874 13061 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13062 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13063 && imm_expr.X_add_number < 0)
13064 {
13065 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13066 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13067 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13068 }
dd3cbb7e
NC
13069 else if (CPU_HAS_SEQ (mips_opts.arch))
13070 {
13071 used_at = 1;
bad1aba3 13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13073 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13074 break;
13075 }
252b5132
RH
13076 else
13077 {
bad1aba3 13078 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13079 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13080 used_at = 1;
13081 }
c0ebe874 13082 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13083 break;
252b5132 13084
c0ebe874 13085 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13086 s = "slt";
13087 goto sge;
13088 case M_SGEU:
13089 s = "sltu";
13090 sge:
c0ebe874
RS
13091 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13093 break;
252b5132 13094
c0ebe874 13095 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13096 case M_SGEU_I:
b0e6f033 13097 if (imm_expr.X_add_number >= -0x8000
252b5132 13098 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13099 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13100 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13101 else
13102 {
bad1aba3 13103 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13104 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13105 op[0], op[1], AT);
252b5132
RH
13106 used_at = 1;
13107 }
c0ebe874 13108 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13109 break;
252b5132 13110
c0ebe874 13111 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13112 s = "slt";
13113 goto sgt;
13114 case M_SGTU:
13115 s = "sltu";
13116 sgt:
c0ebe874 13117 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13118 break;
252b5132 13119
c0ebe874 13120 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13121 s = "slt";
13122 goto sgti;
13123 case M_SGTU_I:
13124 s = "sltu";
13125 sgti:
8fc2e39e 13126 used_at = 1;
bad1aba3 13127 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13128 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13129 break;
13130
c0ebe874 13131 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13132 s = "slt";
13133 goto sle;
13134 case M_SLEU:
13135 s = "sltu";
13136 sle:
c0ebe874
RS
13137 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13138 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13139 break;
252b5132 13140
c0ebe874 13141 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13142 s = "slt";
13143 goto slei;
13144 case M_SLEU_I:
13145 s = "sltu";
13146 slei:
8fc2e39e 13147 used_at = 1;
bad1aba3 13148 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13149 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13150 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13151 break;
13152
13153 case M_SLT_I:
b0e6f033 13154 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13155 && imm_expr.X_add_number < 0x8000)
13156 {
c0ebe874
RS
13157 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13158 BFD_RELOC_LO16);
8fc2e39e 13159 break;
252b5132 13160 }
8fc2e39e 13161 used_at = 1;
bad1aba3 13162 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13163 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13164 break;
13165
13166 case M_SLTU_I:
b0e6f033 13167 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13168 && imm_expr.X_add_number < 0x8000)
13169 {
c0ebe874 13170 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13171 BFD_RELOC_LO16);
8fc2e39e 13172 break;
252b5132 13173 }
8fc2e39e 13174 used_at = 1;
bad1aba3 13175 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13176 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13177 break;
13178
13179 case M_SNE:
c0ebe874
RS
13180 if (op[1] == 0)
13181 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13182 else if (op[2] == 0)
13183 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13184 else
13185 {
c0ebe874
RS
13186 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13187 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13188 }
8fc2e39e 13189 break;
252b5132
RH
13190
13191 case M_SNE_I:
b0e6f033 13192 if (imm_expr.X_add_number == 0)
252b5132 13193 {
c0ebe874 13194 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13195 break;
252b5132 13196 }
c0ebe874 13197 if (op[1] == 0)
252b5132 13198 {
1661c76c 13199 as_warn (_("instruction %s: result is always true"),
252b5132 13200 ip->insn_mo->name);
bad1aba3 13201 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13202 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13203 break;
252b5132 13204 }
dd3cbb7e
NC
13205 if (CPU_HAS_SEQ (mips_opts.arch)
13206 && -512 <= imm_expr.X_add_number
13207 && imm_expr.X_add_number < 512)
13208 {
c0ebe874 13209 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13210 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13211 break;
13212 }
b0e6f033 13213 if (imm_expr.X_add_number >= 0
252b5132
RH
13214 && imm_expr.X_add_number < 0x10000)
13215 {
c0ebe874
RS
13216 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13217 BFD_RELOC_LO16);
252b5132 13218 }
b0e6f033 13219 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13220 && imm_expr.X_add_number < 0)
13221 {
13222 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13223 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13224 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13225 }
dd3cbb7e
NC
13226 else if (CPU_HAS_SEQ (mips_opts.arch))
13227 {
13228 used_at = 1;
bad1aba3 13229 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13230 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13231 break;
13232 }
252b5132
RH
13233 else
13234 {
bad1aba3 13235 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13236 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13237 used_at = 1;
13238 }
c0ebe874 13239 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13240 break;
252b5132 13241
df58fc94
RS
13242 case M_SUB_I:
13243 s = "addi";
13244 s2 = "sub";
13245 goto do_subi;
13246 case M_SUBU_I:
13247 s = "addiu";
13248 s2 = "subu";
13249 goto do_subi;
252b5132
RH
13250 case M_DSUB_I:
13251 dbl = 1;
df58fc94
RS
13252 s = "daddi";
13253 s2 = "dsub";
13254 if (!mips_opts.micromips)
13255 goto do_subi;
b0e6f033 13256 if (imm_expr.X_add_number > -0x200
df58fc94 13257 && imm_expr.X_add_number <= 0x200)
252b5132 13258 {
b0e6f033
RS
13259 macro_build (NULL, s, "t,r,.", op[0], op[1],
13260 (int) -imm_expr.X_add_number);
8fc2e39e 13261 break;
252b5132 13262 }
df58fc94 13263 goto do_subi_i;
252b5132
RH
13264 case M_DSUBU_I:
13265 dbl = 1;
df58fc94
RS
13266 s = "daddiu";
13267 s2 = "dsubu";
13268 do_subi:
b0e6f033 13269 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13270 && imm_expr.X_add_number <= 0x8000)
13271 {
13272 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13273 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13274 break;
252b5132 13275 }
df58fc94 13276 do_subi_i:
8fc2e39e 13277 used_at = 1;
67c0d1eb 13278 load_register (AT, &imm_expr, dbl);
c0ebe874 13279 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13280 break;
13281
13282 case M_TEQ_I:
13283 s = "teq";
13284 goto trap;
13285 case M_TGE_I:
13286 s = "tge";
13287 goto trap;
13288 case M_TGEU_I:
13289 s = "tgeu";
13290 goto trap;
13291 case M_TLT_I:
13292 s = "tlt";
13293 goto trap;
13294 case M_TLTU_I:
13295 s = "tltu";
13296 goto trap;
13297 case M_TNE_I:
13298 s = "tne";
13299 trap:
8fc2e39e 13300 used_at = 1;
bad1aba3 13301 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13302 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13303 break;
13304
252b5132 13305 case M_TRUNCWS:
43841e91 13306 case M_TRUNCWD:
df58fc94 13307 gas_assert (!mips_opts.micromips);
0aa27725 13308 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13309 used_at = 1;
252b5132
RH
13310
13311 /*
13312 * Is the double cfc1 instruction a bug in the mips assembler;
13313 * or is there a reason for it?
13314 */
7d10b47d 13315 start_noreorder ();
c0ebe874
RS
13316 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13317 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13318 macro_build (NULL, "nop", "");
252b5132 13319 expr1.X_add_number = 3;
c0ebe874 13320 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13321 expr1.X_add_number = 2;
67c0d1eb
RS
13322 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13323 macro_build (NULL, "ctc1", "t,G", AT, RA);
13324 macro_build (NULL, "nop", "");
13325 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13326 op[0], op[1]);
13327 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13328 macro_build (NULL, "nop", "");
7d10b47d 13329 end_noreorder ();
252b5132
RH
13330 break;
13331
f2ae14a1 13332 case M_ULH_AB:
252b5132 13333 s = "lb";
df58fc94
RS
13334 s2 = "lbu";
13335 off = 1;
13336 goto uld_st;
f2ae14a1 13337 case M_ULHU_AB:
252b5132 13338 s = "lbu";
df58fc94
RS
13339 s2 = "lbu";
13340 off = 1;
13341 goto uld_st;
f2ae14a1 13342 case M_ULW_AB:
df58fc94
RS
13343 s = "lwl";
13344 s2 = "lwr";
7f3c4072 13345 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13346 off = 3;
13347 goto uld_st;
f2ae14a1 13348 case M_ULD_AB:
252b5132
RH
13349 s = "ldl";
13350 s2 = "ldr";
7f3c4072 13351 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13352 off = 7;
df58fc94 13353 goto uld_st;
f2ae14a1 13354 case M_USH_AB:
df58fc94
RS
13355 s = "sb";
13356 s2 = "sb";
13357 off = 1;
13358 ust = 1;
13359 goto uld_st;
f2ae14a1 13360 case M_USW_AB:
df58fc94
RS
13361 s = "swl";
13362 s2 = "swr";
7f3c4072 13363 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13364 off = 3;
df58fc94
RS
13365 ust = 1;
13366 goto uld_st;
f2ae14a1 13367 case M_USD_AB:
df58fc94
RS
13368 s = "sdl";
13369 s2 = "sdr";
7f3c4072 13370 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13371 off = 7;
13372 ust = 1;
13373
13374 uld_st:
c0ebe874 13375 breg = op[2];
f2ae14a1 13376 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13377 ep = &offset_expr;
13378 expr1.X_add_number = 0;
f2ae14a1 13379 if (large_offset)
df58fc94
RS
13380 {
13381 used_at = 1;
13382 tempreg = AT;
f2ae14a1
RS
13383 if (small_offset_p (0, align, 16))
13384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13385 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13386 else
13387 {
13388 load_address (tempreg, ep, &used_at);
13389 if (breg != 0)
13390 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13391 tempreg, tempreg, breg);
13392 }
13393 offset_reloc[0] = BFD_RELOC_LO16;
13394 offset_reloc[1] = BFD_RELOC_UNUSED;
13395 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13396 breg = tempreg;
c0ebe874 13397 tempreg = op[0];
df58fc94
RS
13398 ep = &expr1;
13399 }
c0ebe874 13400 else if (!ust && op[0] == breg)
8fc2e39e
TS
13401 {
13402 used_at = 1;
13403 tempreg = AT;
13404 }
252b5132 13405 else
c0ebe874 13406 tempreg = op[0];
af22f5b2 13407
df58fc94
RS
13408 if (off == 1)
13409 goto ulh_sh;
252b5132 13410
90ecf173 13411 if (!target_big_endian)
df58fc94 13412 ep->X_add_number += off;
f2ae14a1 13413 if (offbits == 12)
c8276761 13414 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13415 else
13416 macro_build (ep, s, "t,o(b)", tempreg, -1,
13417 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13418
90ecf173 13419 if (!target_big_endian)
df58fc94 13420 ep->X_add_number -= off;
252b5132 13421 else
df58fc94 13422 ep->X_add_number += off;
f2ae14a1 13423 if (offbits == 12)
df58fc94 13424 macro_build (NULL, s2, "t,~(b)",
c8276761 13425 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13426 else
13427 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13429
df58fc94 13430 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13431 if (!ust && op[0] != tempreg)
df58fc94
RS
13432 {
13433 /* Protect second load's delay slot. */
13434 load_delay_nop ();
c0ebe874 13435 move_register (op[0], tempreg);
df58fc94 13436 }
8fc2e39e 13437 break;
252b5132 13438
df58fc94 13439 ulh_sh:
d6bc6245 13440 used_at = 1;
df58fc94
RS
13441 if (target_big_endian == ust)
13442 ep->X_add_number += off;
c0ebe874 13443 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13444 macro_build (ep, s, "t,o(b)", tempreg, -1,
13445 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13446
13447 /* For halfword transfers we need a temporary register to shuffle
13448 bytes. Unfortunately for M_USH_A we have none available before
13449 the next store as AT holds the base address. We deal with this
13450 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13451 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13452 if (ust)
c0ebe874 13453 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13454
13455 if (target_big_endian == ust)
13456 ep->X_add_number -= off;
252b5132 13457 else
df58fc94 13458 ep->X_add_number += off;
f2ae14a1
RS
13459 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13461
df58fc94 13462 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13463 if (ust && large_offset)
df58fc94
RS
13464 {
13465 if (target_big_endian)
13466 ep->X_add_number += off;
13467 else
13468 ep->X_add_number -= off;
f2ae14a1
RS
13469 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13470 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13471 }
13472 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13473 if (!ust || large_offset)
df58fc94 13474 {
c0ebe874 13475 tempreg = !large_offset ? AT : op[0];
df58fc94 13476 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13477 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13478 }
252b5132
RH
13479 break;
13480
13481 default:
13482 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13483 are added dynamically. */
1661c76c 13484 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13485 break;
13486 }
741fe287 13487 if (!mips_opts.at && used_at)
1661c76c 13488 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13489}
13490
13491/* Implement macros in mips16 mode. */
13492
13493static void
17a2f251 13494mips16_macro (struct mips_cl_insn *ip)
252b5132 13495{
c0ebe874 13496 const struct mips_operand_array *operands;
252b5132 13497 int mask;
c0ebe874 13498 int tmp;
252b5132
RH
13499 expressionS expr1;
13500 int dbl;
13501 const char *s, *s2, *s3;
c0ebe874
RS
13502 unsigned int op[MAX_OPERANDS];
13503 unsigned int i;
252b5132
RH
13504
13505 mask = ip->insn_mo->mask;
13506
c0ebe874
RS
13507 operands = insn_operands (ip);
13508 for (i = 0; i < MAX_OPERANDS; i++)
13509 if (operands->operand[i])
13510 op[i] = insn_extract_operand (ip, operands->operand[i]);
13511 else
13512 op[i] = -1;
252b5132 13513
252b5132
RH
13514 expr1.X_op = O_constant;
13515 expr1.X_op_symbol = NULL;
13516 expr1.X_add_symbol = NULL;
13517 expr1.X_add_number = 1;
13518
13519 dbl = 0;
13520
13521 switch (mask)
13522 {
13523 default:
b37df7c4 13524 abort ();
252b5132
RH
13525
13526 case M_DDIV_3:
13527 dbl = 1;
1a0670f3 13528 /* Fall through. */
252b5132
RH
13529 case M_DIV_3:
13530 s = "mflo";
13531 goto do_div3;
13532 case M_DREM_3:
13533 dbl = 1;
1a0670f3 13534 /* Fall through. */
252b5132
RH
13535 case M_REM_3:
13536 s = "mfhi";
13537 do_div3:
7d10b47d 13538 start_noreorder ();
c0ebe874 13539 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
252b5132 13540 expr1.X_add_number = 2;
c0ebe874 13541 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13542 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13543
252b5132
RH
13544 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13545 since that causes an overflow. We should do that as well,
13546 but I don't see how to do the comparisons without a temporary
13547 register. */
7d10b47d 13548 end_noreorder ();
c0ebe874 13549 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13550 break;
13551
13552 case M_DIVU_3:
13553 s = "divu";
13554 s2 = "mflo";
13555 goto do_divu3;
13556 case M_REMU_3:
13557 s = "divu";
13558 s2 = "mfhi";
13559 goto do_divu3;
13560 case M_DDIVU_3:
13561 s = "ddivu";
13562 s2 = "mflo";
13563 goto do_divu3;
13564 case M_DREMU_3:
13565 s = "ddivu";
13566 s2 = "mfhi";
13567 do_divu3:
7d10b47d 13568 start_noreorder ();
c0ebe874 13569 macro_build (NULL, s, "0,x,y", op[1], op[2]);
252b5132 13570 expr1.X_add_number = 2;
c0ebe874 13571 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13572 macro_build (NULL, "break", "6", 7);
7d10b47d 13573 end_noreorder ();
c0ebe874 13574 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13575 break;
13576
13577 case M_DMUL:
13578 dbl = 1;
1a0670f3 13579 /* Fall through. */
252b5132 13580 case M_MUL:
c0ebe874
RS
13581 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13582 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13583 break;
252b5132
RH
13584
13585 case M_DSUBU_I:
13586 dbl = 1;
13587 goto do_subu;
13588 case M_SUBU_I:
13589 do_subu:
252b5132 13590 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13591 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
252b5132
RH
13592 break;
13593
13594 case M_SUBU_I_2:
252b5132 13595 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13596 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13597 break;
13598
13599 case M_DSUBU_I_2:
252b5132 13600 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13601 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13602 break;
13603
13604 case M_BEQ:
13605 s = "cmp";
13606 s2 = "bteqz";
13607 goto do_branch;
13608 case M_BNE:
13609 s = "cmp";
13610 s2 = "btnez";
13611 goto do_branch;
13612 case M_BLT:
13613 s = "slt";
13614 s2 = "btnez";
13615 goto do_branch;
13616 case M_BLTU:
13617 s = "sltu";
13618 s2 = "btnez";
13619 goto do_branch;
13620 case M_BLE:
13621 s = "slt";
13622 s2 = "bteqz";
13623 goto do_reverse_branch;
13624 case M_BLEU:
13625 s = "sltu";
13626 s2 = "bteqz";
13627 goto do_reverse_branch;
13628 case M_BGE:
13629 s = "slt";
13630 s2 = "bteqz";
13631 goto do_branch;
13632 case M_BGEU:
13633 s = "sltu";
13634 s2 = "bteqz";
13635 goto do_branch;
13636 case M_BGT:
13637 s = "slt";
13638 s2 = "btnez";
13639 goto do_reverse_branch;
13640 case M_BGTU:
13641 s = "sltu";
13642 s2 = "btnez";
13643
13644 do_reverse_branch:
c0ebe874
RS
13645 tmp = op[1];
13646 op[1] = op[0];
13647 op[0] = tmp;
252b5132
RH
13648
13649 do_branch:
c0ebe874 13650 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13651 macro_build (&offset_expr, s2, "p");
252b5132
RH
13652 break;
13653
13654 case M_BEQ_I:
13655 s = "cmpi";
13656 s2 = "bteqz";
13657 s3 = "x,U";
13658 goto do_branch_i;
13659 case M_BNE_I:
13660 s = "cmpi";
13661 s2 = "btnez";
13662 s3 = "x,U";
13663 goto do_branch_i;
13664 case M_BLT_I:
13665 s = "slti";
13666 s2 = "btnez";
13667 s3 = "x,8";
13668 goto do_branch_i;
13669 case M_BLTU_I:
13670 s = "sltiu";
13671 s2 = "btnez";
13672 s3 = "x,8";
13673 goto do_branch_i;
13674 case M_BLE_I:
13675 s = "slti";
13676 s2 = "btnez";
13677 s3 = "x,8";
13678 goto do_addone_branch_i;
13679 case M_BLEU_I:
13680 s = "sltiu";
13681 s2 = "btnez";
13682 s3 = "x,8";
13683 goto do_addone_branch_i;
13684 case M_BGE_I:
13685 s = "slti";
13686 s2 = "bteqz";
13687 s3 = "x,8";
13688 goto do_branch_i;
13689 case M_BGEU_I:
13690 s = "sltiu";
13691 s2 = "bteqz";
13692 s3 = "x,8";
13693 goto do_branch_i;
13694 case M_BGT_I:
13695 s = "slti";
13696 s2 = "bteqz";
13697 s3 = "x,8";
13698 goto do_addone_branch_i;
13699 case M_BGTU_I:
13700 s = "sltiu";
13701 s2 = "bteqz";
13702 s3 = "x,8";
13703
13704 do_addone_branch_i:
252b5132
RH
13705 ++imm_expr.X_add_number;
13706
13707 do_branch_i:
c0ebe874 13708 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13709 macro_build (&offset_expr, s2, "p");
252b5132
RH
13710 break;
13711
13712 case M_ABS:
13713 expr1.X_add_number = 0;
c0ebe874
RS
13714 macro_build (&expr1, "slti", "x,8", op[1]);
13715 if (op[0] != op[1])
13716 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13717 expr1.X_add_number = 2;
67c0d1eb 13718 macro_build (&expr1, "bteqz", "p");
c0ebe874 13719 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13720 break;
252b5132
RH
13721 }
13722}
13723
14daeee3
RS
13724/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13725 opcode bits in *OPCODE_EXTRA. */
13726
13727static struct mips_opcode *
13728mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13729 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13730{
13731 char *name, *dot, *p;
13732 unsigned int mask, suffix;
da8bca91 13733 ssize_t opend;
14daeee3
RS
13734 struct mips_opcode *insn;
13735
13736 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 13737 name = xstrndup (start, length);
14daeee3
RS
13738
13739 /* Look up the instruction as-is. */
13740 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13741 if (insn)
e1fa0163 13742 goto end;
14daeee3
RS
13743
13744 dot = strchr (name, '.');
13745 if (dot && dot[1])
13746 {
13747 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13748 p = mips_parse_vu0_channels (dot + 1, &mask);
13749 if (*p == 0 && mask != 0)
13750 {
13751 *dot = 0;
13752 insn = (struct mips_opcode *) hash_find (hash, name);
13753 *dot = '.';
13754 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13755 {
13756 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 13757 goto end;
14daeee3
RS
13758 }
13759 }
13760 }
13761
13762 if (mips_opts.micromips)
13763 {
13764 /* See if there's an instruction size override suffix,
13765 either `16' or `32', at the end of the mnemonic proper,
13766 that defines the operation, i.e. before the first `.'
13767 character if any. Strip it and retry. */
13768 opend = dot != NULL ? dot - name : length;
13769 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13770 suffix = 2;
13771 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13772 suffix = 4;
13773 else
13774 suffix = 0;
13775 if (suffix)
13776 {
13777 memcpy (name + opend - 2, name + opend, length - opend + 1);
13778 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 13779 if (insn)
14daeee3
RS
13780 {
13781 forced_insn_length = suffix;
e1fa0163 13782 goto end;
14daeee3
RS
13783 }
13784 }
13785 }
13786
e1fa0163
NC
13787 insn = NULL;
13788 end:
13789 free (name);
13790 return insn;
14daeee3
RS
13791}
13792
77bd4346 13793/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
13794 is a macro, set imm_expr and offset_expr to the values associated
13795 with "I" and "A" operands respectively. Otherwise store the value
13796 of the relocatable field (if any) in offset_expr. In both cases
13797 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
13798
13799static void
60f20e8b 13800mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 13801{
60f20e8b 13802 const struct mips_opcode *first, *past;
df58fc94 13803 struct hash_control *hash;
a92713e6 13804 char format;
14daeee3 13805 size_t end;
a92713e6 13806 struct mips_operand_token *tokens;
14daeee3 13807 unsigned int opcode_extra;
252b5132 13808
df58fc94
RS
13809 if (mips_opts.micromips)
13810 {
13811 hash = micromips_op_hash;
13812 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13813 }
13814 else
13815 {
13816 hash = op_hash;
13817 past = &mips_opcodes[NUMOPCODES];
13818 }
13819 forced_insn_length = 0;
14daeee3 13820 opcode_extra = 0;
252b5132 13821
df58fc94 13822 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
13823 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13824 continue;
bdaaa2e1 13825
60f20e8b
RS
13826 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13827 if (first == NULL)
252b5132 13828 {
1661c76c 13829 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 13830 return;
252b5132
RH
13831 }
13832
60f20e8b 13833 if (strcmp (first->name, "li.s") == 0)
a92713e6 13834 format = 'f';
60f20e8b 13835 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
13836 format = 'd';
13837 else
13838 format = 0;
13839 tokens = mips_parse_arguments (str + end, format);
13840 if (!tokens)
13841 return;
13842
60f20e8b
RS
13843 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13844 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 13845 set_insn_error (0, _("invalid operands"));
df58fc94 13846
e3de51ce 13847 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13848}
13849
77bd4346
RS
13850/* As for mips_ip, but used when assembling MIPS16 code.
13851 Also set forced_insn_length to the resulting instruction size in
13852 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
13853
13854static void
60f20e8b 13855mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 13856{
1a00e612 13857 char *end, *s, c;
60f20e8b 13858 struct mips_opcode *first;
a92713e6 13859 struct mips_operand_token *tokens;
252b5132 13860
df58fc94 13861 forced_insn_length = 0;
252b5132 13862
3882b010 13863 for (s = str; ISLOWER (*s); ++s)
252b5132 13864 ;
1a00e612
RS
13865 end = s;
13866 c = *end;
13867 switch (c)
252b5132
RH
13868 {
13869 case '\0':
13870 break;
13871
13872 case ' ':
1a00e612 13873 s++;
252b5132
RH
13874 break;
13875
13876 case '.':
13877 if (s[1] == 't' && s[2] == ' ')
13878 {
df58fc94 13879 forced_insn_length = 2;
252b5132
RH
13880 s += 3;
13881 break;
13882 }
13883 else if (s[1] == 'e' && s[2] == ' ')
13884 {
df58fc94 13885 forced_insn_length = 4;
252b5132
RH
13886 s += 3;
13887 break;
13888 }
13889 /* Fall through. */
13890 default:
1661c76c 13891 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13892 return;
13893 }
13894
1a00e612 13895 *end = 0;
60f20e8b 13896 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
13897 *end = c;
13898
60f20e8b 13899 if (!first)
252b5132 13900 {
1661c76c 13901 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
13902 return;
13903 }
13904
a92713e6
RS
13905 tokens = mips_parse_arguments (s, 0);
13906 if (!tokens)
13907 return;
13908
60f20e8b 13909 if (!match_mips16_insns (insn, first, tokens))
1661c76c 13910 set_insn_error (0, _("invalid operands"));
252b5132 13911
e3de51ce 13912 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
13913}
13914
b886a2ab
RS
13915/* Marshal immediate value VAL for an extended MIPS16 instruction.
13916 NBITS is the number of significant bits in VAL. */
13917
13918static unsigned long
13919mips16_immed_extend (offsetT val, unsigned int nbits)
13920{
13921 int extval;
13922 if (nbits == 16)
13923 {
13924 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13925 val &= 0x1f;
13926 }
13927 else if (nbits == 15)
13928 {
13929 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13930 val &= 0xf;
13931 }
13932 else
13933 {
13934 extval = ((val & 0x1f) << 6) | (val & 0x20);
13935 val = 0;
13936 }
13937 return (extval << 16) | val;
13938}
13939
3ccad066
RS
13940/* Like decode_mips16_operand, but require the operand to be defined and
13941 require it to be an integer. */
13942
13943static const struct mips_int_operand *
13944mips16_immed_operand (int type, bfd_boolean extended_p)
13945{
13946 const struct mips_operand *operand;
13947
13948 operand = decode_mips16_operand (type, extended_p);
13949 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13950 abort ();
13951 return (const struct mips_int_operand *) operand;
13952}
13953
13954/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13955
13956static bfd_boolean
13957mips16_immed_in_range_p (const struct mips_int_operand *operand,
13958 bfd_reloc_code_real_type reloc, offsetT sval)
13959{
13960 int min_val, max_val;
13961
13962 min_val = mips_int_operand_min (operand);
13963 max_val = mips_int_operand_max (operand);
13964 if (reloc != BFD_RELOC_UNUSED)
13965 {
13966 if (min_val < 0)
13967 sval = SEXT_16BIT (sval);
13968 else
13969 sval &= 0xffff;
13970 }
13971
13972 return (sval >= min_val
13973 && sval <= max_val
13974 && (sval & ((1 << operand->shift) - 1)) == 0);
13975}
13976
5c04167a
RS
13977/* Install immediate value VAL into MIPS16 instruction *INSN,
13978 extending it if necessary. The instruction in *INSN may
13979 already be extended.
13980
43c0598f
RS
13981 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13982 if none. In the former case, VAL is a 16-bit number with no
13983 defined signedness.
13984
13985 TYPE is the type of the immediate field. USER_INSN_LENGTH
13986 is the length that the user requested, or 0 if none. */
252b5132
RH
13987
13988static void
3b4dbbbf 13989mips16_immed (const char *file, unsigned int line, int type,
43c0598f 13990 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 13991 unsigned int user_insn_length, unsigned long *insn)
252b5132 13992{
3ccad066
RS
13993 const struct mips_int_operand *operand;
13994 unsigned int uval, length;
252b5132 13995
3ccad066
RS
13996 operand = mips16_immed_operand (type, FALSE);
13997 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
13998 {
13999 /* We need an extended instruction. */
14000 if (user_insn_length == 2)
14001 as_bad_where (file, line, _("invalid unextended operand value"));
14002 else
14003 *insn |= MIPS16_EXTEND;
14004 }
14005 else if (user_insn_length == 4)
14006 {
14007 /* The operand doesn't force an unextended instruction to be extended.
14008 Warn if the user wanted an extended instruction anyway. */
14009 *insn |= MIPS16_EXTEND;
14010 as_warn_where (file, line,
14011 _("extended operand requested but not required"));
14012 }
252b5132 14013
3ccad066
RS
14014 length = mips16_opcode_length (*insn);
14015 if (length == 4)
252b5132 14016 {
3ccad066
RS
14017 operand = mips16_immed_operand (type, TRUE);
14018 if (!mips16_immed_in_range_p (operand, reloc, val))
14019 as_bad_where (file, line,
14020 _("operand value out of range for instruction"));
252b5132 14021 }
3ccad066
RS
14022 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14023 if (length == 2)
14024 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14025 else
3ccad066 14026 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14027}
14028\f
d6f16593 14029struct percent_op_match
ad8d3bb3 14030{
5e0116d5
RS
14031 const char *str;
14032 bfd_reloc_code_real_type reloc;
d6f16593
MR
14033};
14034
14035static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14036{
5e0116d5 14037 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14038 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14039 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14040 {"%call16", BFD_RELOC_MIPS_CALL16},
14041 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14042 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14043 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14044 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14045 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14046 {"%got", BFD_RELOC_MIPS_GOT16},
14047 {"%gp_rel", BFD_RELOC_GPREL16},
14048 {"%half", BFD_RELOC_16},
14049 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14050 {"%higher", BFD_RELOC_MIPS_HIGHER},
14051 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14052 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14053 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14054 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14055 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14056 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14057 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14058 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14059 {"%hi", BFD_RELOC_HI16_S},
14060 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14061 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14062};
14063
d6f16593
MR
14064static const struct percent_op_match mips16_percent_op[] =
14065{
14066 {"%lo", BFD_RELOC_MIPS16_LO16},
14067 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14068 {"%got", BFD_RELOC_MIPS16_GOT16},
14069 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14070 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14071 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14072 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14073 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14074 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14075 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14076 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14077 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14078};
14079
252b5132 14080
5e0116d5
RS
14081/* Return true if *STR points to a relocation operator. When returning true,
14082 move *STR over the operator and store its relocation code in *RELOC.
14083 Leave both *STR and *RELOC alone when returning false. */
14084
14085static bfd_boolean
17a2f251 14086parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14087{
d6f16593
MR
14088 const struct percent_op_match *percent_op;
14089 size_t limit, i;
14090
14091 if (mips_opts.mips16)
14092 {
14093 percent_op = mips16_percent_op;
14094 limit = ARRAY_SIZE (mips16_percent_op);
14095 }
14096 else
14097 {
14098 percent_op = mips_percent_op;
14099 limit = ARRAY_SIZE (mips_percent_op);
14100 }
76b3015f 14101
d6f16593 14102 for (i = 0; i < limit; i++)
5e0116d5 14103 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14104 {
3f98094e
DJ
14105 int len = strlen (percent_op[i].str);
14106
14107 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14108 continue;
14109
5e0116d5
RS
14110 *str += strlen (percent_op[i].str);
14111 *reloc = percent_op[i].reloc;
394f9b3a 14112
5e0116d5
RS
14113 /* Check whether the output BFD supports this relocation.
14114 If not, issue an error and fall back on something safe. */
14115 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14116 {
20203fb9 14117 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14118 percent_op[i].str);
01a3f561 14119 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14120 }
5e0116d5 14121 return TRUE;
394f9b3a 14122 }
5e0116d5 14123 return FALSE;
394f9b3a 14124}
ad8d3bb3 14125
ad8d3bb3 14126
5e0116d5
RS
14127/* Parse string STR as a 16-bit relocatable operand. Store the
14128 expression in *EP and the relocations in the array starting
14129 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14130
01a3f561 14131 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14132
5e0116d5 14133static size_t
17a2f251
TS
14134my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14135 char *str)
ad8d3bb3 14136{
5e0116d5
RS
14137 bfd_reloc_code_real_type reversed_reloc[3];
14138 size_t reloc_index, i;
09b8f35a
RS
14139 int crux_depth, str_depth;
14140 char *crux;
5e0116d5
RS
14141
14142 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14143 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14144 of the main expression and with CRUX_DEPTH containing the number
14145 of open brackets at that point. */
14146 reloc_index = -1;
14147 str_depth = 0;
14148 do
fb1b3232 14149 {
09b8f35a
RS
14150 reloc_index++;
14151 crux = str;
14152 crux_depth = str_depth;
14153
14154 /* Skip over whitespace and brackets, keeping count of the number
14155 of brackets. */
14156 while (*str == ' ' || *str == '\t' || *str == '(')
14157 if (*str++ == '(')
14158 str_depth++;
5e0116d5 14159 }
09b8f35a
RS
14160 while (*str == '%'
14161 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14162 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14163
09b8f35a 14164 my_getExpression (ep, crux);
5e0116d5 14165 str = expr_end;
394f9b3a 14166
5e0116d5 14167 /* Match every open bracket. */
09b8f35a 14168 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14169 if (*str++ == ')')
09b8f35a 14170 crux_depth--;
394f9b3a 14171
09b8f35a 14172 if (crux_depth > 0)
20203fb9 14173 as_bad (_("unclosed '('"));
394f9b3a 14174
5e0116d5 14175 expr_end = str;
252b5132 14176
01a3f561 14177 if (reloc_index != 0)
64bdfcaf
RS
14178 {
14179 prev_reloc_op_frag = frag_now;
14180 for (i = 0; i < reloc_index; i++)
14181 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14182 }
fb1b3232 14183
5e0116d5 14184 return reloc_index;
252b5132
RH
14185}
14186
14187static void
17a2f251 14188my_getExpression (expressionS *ep, char *str)
252b5132
RH
14189{
14190 char *save_in;
14191
14192 save_in = input_line_pointer;
14193 input_line_pointer = str;
14194 expression (ep);
14195 expr_end = input_line_pointer;
14196 input_line_pointer = save_in;
252b5132
RH
14197}
14198
6d4af3c2 14199const char *
17a2f251 14200md_atof (int type, char *litP, int *sizeP)
252b5132 14201{
499ac353 14202 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14203}
14204
14205void
17a2f251 14206md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14207{
14208 if (target_big_endian)
14209 number_to_chars_bigendian (buf, val, n);
14210 else
14211 number_to_chars_littleendian (buf, val, n);
14212}
14213\f
e013f690
TS
14214static int support_64bit_objects(void)
14215{
14216 const char **list, **l;
aa3d8fdf 14217 int yes;
e013f690
TS
14218
14219 list = bfd_target_list ();
14220 for (l = list; *l != NULL; l++)
aeffff67
RS
14221 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14222 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14223 break;
aa3d8fdf 14224 yes = (*l != NULL);
e013f690 14225 free (list);
aa3d8fdf 14226 return yes;
e013f690
TS
14227}
14228
316f5878
RS
14229/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14230 NEW_VALUE. Warn if another value was already specified. Note:
14231 we have to defer parsing the -march and -mtune arguments in order
14232 to handle 'from-abi' correctly, since the ABI might be specified
14233 in a later argument. */
14234
14235static void
17a2f251 14236mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14237{
14238 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14239 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14240 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14241 new_value);
14242
14243 *string_ptr = new_value;
14244}
14245
252b5132 14246int
17b9d67d 14247md_parse_option (int c, const char *arg)
252b5132 14248{
c6278170
RS
14249 unsigned int i;
14250
14251 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14252 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14253 {
919731af 14254 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14255 c == mips_ases[i].option_on);
14256 return 1;
14257 }
14258
252b5132
RH
14259 switch (c)
14260 {
119d663a
NC
14261 case OPTION_CONSTRUCT_FLOATS:
14262 mips_disable_float_construction = 0;
14263 break;
bdaaa2e1 14264
119d663a
NC
14265 case OPTION_NO_CONSTRUCT_FLOATS:
14266 mips_disable_float_construction = 1;
14267 break;
bdaaa2e1 14268
252b5132
RH
14269 case OPTION_TRAP:
14270 mips_trap = 1;
14271 break;
14272
14273 case OPTION_BREAK:
14274 mips_trap = 0;
14275 break;
14276
14277 case OPTION_EB:
14278 target_big_endian = 1;
14279 break;
14280
14281 case OPTION_EL:
14282 target_big_endian = 0;
14283 break;
14284
14285 case 'O':
4ffff32f
TS
14286 if (arg == NULL)
14287 mips_optimize = 1;
14288 else if (arg[0] == '0')
14289 mips_optimize = 0;
14290 else if (arg[0] == '1')
252b5132
RH
14291 mips_optimize = 1;
14292 else
14293 mips_optimize = 2;
14294 break;
14295
14296 case 'g':
14297 if (arg == NULL)
14298 mips_debug = 2;
14299 else
14300 mips_debug = atoi (arg);
252b5132
RH
14301 break;
14302
14303 case OPTION_MIPS1:
0b35dfee 14304 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14305 break;
14306
14307 case OPTION_MIPS2:
0b35dfee 14308 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14309 break;
14310
14311 case OPTION_MIPS3:
0b35dfee 14312 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14313 break;
14314
14315 case OPTION_MIPS4:
0b35dfee 14316 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14317 break;
14318
84ea6cf2 14319 case OPTION_MIPS5:
0b35dfee 14320 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14321 break;
14322
e7af610e 14323 case OPTION_MIPS32:
0b35dfee 14324 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14325 break;
14326
af7ee8bf 14327 case OPTION_MIPS32R2:
0b35dfee 14328 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14329 break;
14330
ae52f483 14331 case OPTION_MIPS32R3:
0ae19f05 14332 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14333 break;
14334
14335 case OPTION_MIPS32R5:
0ae19f05 14336 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14337 break;
14338
7361da2c
AB
14339 case OPTION_MIPS32R6:
14340 file_mips_opts.isa = ISA_MIPS32R6;
14341 break;
14342
5f74bc13 14343 case OPTION_MIPS64R2:
0b35dfee 14344 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14345 break;
14346
ae52f483 14347 case OPTION_MIPS64R3:
0ae19f05 14348 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14349 break;
14350
14351 case OPTION_MIPS64R5:
0ae19f05 14352 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14353 break;
14354
7361da2c
AB
14355 case OPTION_MIPS64R6:
14356 file_mips_opts.isa = ISA_MIPS64R6;
14357 break;
14358
84ea6cf2 14359 case OPTION_MIPS64:
0b35dfee 14360 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14361 break;
14362
ec68c924 14363 case OPTION_MTUNE:
316f5878
RS
14364 mips_set_option_string (&mips_tune_string, arg);
14365 break;
ec68c924 14366
316f5878
RS
14367 case OPTION_MARCH:
14368 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14369 break;
14370
14371 case OPTION_M4650:
316f5878
RS
14372 mips_set_option_string (&mips_arch_string, "4650");
14373 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14374 break;
14375
14376 case OPTION_NO_M4650:
14377 break;
14378
14379 case OPTION_M4010:
316f5878
RS
14380 mips_set_option_string (&mips_arch_string, "4010");
14381 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14382 break;
14383
14384 case OPTION_NO_M4010:
14385 break;
14386
14387 case OPTION_M4100:
316f5878
RS
14388 mips_set_option_string (&mips_arch_string, "4100");
14389 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14390 break;
14391
14392 case OPTION_NO_M4100:
14393 break;
14394
252b5132 14395 case OPTION_M3900:
316f5878
RS
14396 mips_set_option_string (&mips_arch_string, "3900");
14397 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14398 break;
bdaaa2e1 14399
252b5132
RH
14400 case OPTION_NO_M3900:
14401 break;
14402
df58fc94 14403 case OPTION_MICROMIPS:
919731af 14404 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14405 {
14406 as_bad (_("-mmicromips cannot be used with -mips16"));
14407 return 0;
14408 }
919731af 14409 file_mips_opts.micromips = 1;
df58fc94
RS
14410 mips_no_prev_insn ();
14411 break;
14412
14413 case OPTION_NO_MICROMIPS:
919731af 14414 file_mips_opts.micromips = 0;
df58fc94
RS
14415 mips_no_prev_insn ();
14416 break;
14417
252b5132 14418 case OPTION_MIPS16:
919731af 14419 if (file_mips_opts.micromips == 1)
df58fc94
RS
14420 {
14421 as_bad (_("-mips16 cannot be used with -micromips"));
14422 return 0;
14423 }
919731af 14424 file_mips_opts.mips16 = 1;
7d10b47d 14425 mips_no_prev_insn ();
252b5132
RH
14426 break;
14427
14428 case OPTION_NO_MIPS16:
919731af 14429 file_mips_opts.mips16 = 0;
7d10b47d 14430 mips_no_prev_insn ();
252b5132
RH
14431 break;
14432
6a32d874
CM
14433 case OPTION_FIX_24K:
14434 mips_fix_24k = 1;
14435 break;
14436
14437 case OPTION_NO_FIX_24K:
14438 mips_fix_24k = 0;
14439 break;
14440
a8d14a88
CM
14441 case OPTION_FIX_RM7000:
14442 mips_fix_rm7000 = 1;
14443 break;
14444
14445 case OPTION_NO_FIX_RM7000:
14446 mips_fix_rm7000 = 0;
14447 break;
14448
c67a084a
NC
14449 case OPTION_FIX_LOONGSON2F_JUMP:
14450 mips_fix_loongson2f_jump = TRUE;
14451 break;
14452
14453 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14454 mips_fix_loongson2f_jump = FALSE;
14455 break;
14456
14457 case OPTION_FIX_LOONGSON2F_NOP:
14458 mips_fix_loongson2f_nop = TRUE;
14459 break;
14460
14461 case OPTION_NO_FIX_LOONGSON2F_NOP:
14462 mips_fix_loongson2f_nop = FALSE;
14463 break;
14464
d766e8ec
RS
14465 case OPTION_FIX_VR4120:
14466 mips_fix_vr4120 = 1;
60b63b72
RS
14467 break;
14468
d766e8ec
RS
14469 case OPTION_NO_FIX_VR4120:
14470 mips_fix_vr4120 = 0;
60b63b72
RS
14471 break;
14472
7d8e00cf
RS
14473 case OPTION_FIX_VR4130:
14474 mips_fix_vr4130 = 1;
14475 break;
14476
14477 case OPTION_NO_FIX_VR4130:
14478 mips_fix_vr4130 = 0;
14479 break;
14480
d954098f
DD
14481 case OPTION_FIX_CN63XXP1:
14482 mips_fix_cn63xxp1 = TRUE;
14483 break;
14484
14485 case OPTION_NO_FIX_CN63XXP1:
14486 mips_fix_cn63xxp1 = FALSE;
14487 break;
14488
4a6a3df4
AO
14489 case OPTION_RELAX_BRANCH:
14490 mips_relax_branch = 1;
14491 break;
14492
14493 case OPTION_NO_RELAX_BRANCH:
14494 mips_relax_branch = 0;
14495 break;
14496
833794fc 14497 case OPTION_INSN32:
919731af 14498 file_mips_opts.insn32 = TRUE;
833794fc
MR
14499 break;
14500
14501 case OPTION_NO_INSN32:
919731af 14502 file_mips_opts.insn32 = FALSE;
833794fc
MR
14503 break;
14504
aa6975fb
ILT
14505 case OPTION_MSHARED:
14506 mips_in_shared = TRUE;
14507 break;
14508
14509 case OPTION_MNO_SHARED:
14510 mips_in_shared = FALSE;
14511 break;
14512
aed1a261 14513 case OPTION_MSYM32:
919731af 14514 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14515 break;
14516
14517 case OPTION_MNO_SYM32:
919731af 14518 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14519 break;
14520
252b5132
RH
14521 /* When generating ELF code, we permit -KPIC and -call_shared to
14522 select SVR4_PIC, and -non_shared to select no PIC. This is
14523 intended to be compatible with Irix 5. */
14524 case OPTION_CALL_SHARED:
252b5132 14525 mips_pic = SVR4_PIC;
143d77c5 14526 mips_abicalls = TRUE;
252b5132
RH
14527 break;
14528
861fb55a 14529 case OPTION_CALL_NONPIC:
861fb55a
DJ
14530 mips_pic = NO_PIC;
14531 mips_abicalls = TRUE;
14532 break;
14533
252b5132 14534 case OPTION_NON_SHARED:
252b5132 14535 mips_pic = NO_PIC;
143d77c5 14536 mips_abicalls = FALSE;
252b5132
RH
14537 break;
14538
44075ae2
TS
14539 /* The -xgot option tells the assembler to use 32 bit offsets
14540 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14541 compatibility. */
14542 case OPTION_XGOT:
14543 mips_big_got = 1;
14544 break;
14545
14546 case 'G':
6caf9ef4
TS
14547 g_switch_value = atoi (arg);
14548 g_switch_seen = 1;
252b5132
RH
14549 break;
14550
34ba82a8
TS
14551 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14552 and -mabi=64. */
252b5132 14553 case OPTION_32:
f3ded42a 14554 mips_abi = O32_ABI;
252b5132
RH
14555 break;
14556
e013f690 14557 case OPTION_N32:
316f5878 14558 mips_abi = N32_ABI;
e013f690 14559 break;
252b5132 14560
e013f690 14561 case OPTION_64:
316f5878 14562 mips_abi = N64_ABI;
f43abd2b 14563 if (!support_64bit_objects())
1661c76c 14564 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14565 break;
14566
c97ef257 14567 case OPTION_GP32:
bad1aba3 14568 file_mips_opts.gp = 32;
c97ef257
AH
14569 break;
14570
14571 case OPTION_GP64:
bad1aba3 14572 file_mips_opts.gp = 64;
c97ef257 14573 break;
252b5132 14574
ca4e0257 14575 case OPTION_FP32:
0b35dfee 14576 file_mips_opts.fp = 32;
316f5878
RS
14577 break;
14578
351cdf24
MF
14579 case OPTION_FPXX:
14580 file_mips_opts.fp = 0;
14581 break;
14582
316f5878 14583 case OPTION_FP64:
0b35dfee 14584 file_mips_opts.fp = 64;
ca4e0257
RS
14585 break;
14586
351cdf24
MF
14587 case OPTION_ODD_SPREG:
14588 file_mips_opts.oddspreg = 1;
14589 break;
14590
14591 case OPTION_NO_ODD_SPREG:
14592 file_mips_opts.oddspreg = 0;
14593 break;
14594
037b32b9 14595 case OPTION_SINGLE_FLOAT:
0b35dfee 14596 file_mips_opts.single_float = 1;
037b32b9
AN
14597 break;
14598
14599 case OPTION_DOUBLE_FLOAT:
0b35dfee 14600 file_mips_opts.single_float = 0;
037b32b9
AN
14601 break;
14602
14603 case OPTION_SOFT_FLOAT:
0b35dfee 14604 file_mips_opts.soft_float = 1;
037b32b9
AN
14605 break;
14606
14607 case OPTION_HARD_FLOAT:
0b35dfee 14608 file_mips_opts.soft_float = 0;
037b32b9
AN
14609 break;
14610
252b5132 14611 case OPTION_MABI:
e013f690 14612 if (strcmp (arg, "32") == 0)
316f5878 14613 mips_abi = O32_ABI;
e013f690 14614 else if (strcmp (arg, "o64") == 0)
316f5878 14615 mips_abi = O64_ABI;
e013f690 14616 else if (strcmp (arg, "n32") == 0)
316f5878 14617 mips_abi = N32_ABI;
e013f690
TS
14618 else if (strcmp (arg, "64") == 0)
14619 {
316f5878 14620 mips_abi = N64_ABI;
e013f690 14621 if (! support_64bit_objects())
1661c76c 14622 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14623 "format"));
14624 }
14625 else if (strcmp (arg, "eabi") == 0)
316f5878 14626 mips_abi = EABI_ABI;
e013f690 14627 else
da0e507f
TS
14628 {
14629 as_fatal (_("invalid abi -mabi=%s"), arg);
14630 return 0;
14631 }
252b5132
RH
14632 break;
14633
6b76fefe 14634 case OPTION_M7000_HILO_FIX:
b34976b6 14635 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14636 break;
14637
9ee72ff1 14638 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14639 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14640 break;
14641
ecb4347a 14642 case OPTION_MDEBUG:
b34976b6 14643 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14644 break;
14645
14646 case OPTION_NO_MDEBUG:
b34976b6 14647 mips_flag_mdebug = FALSE;
ecb4347a 14648 break;
dcd410fe
RO
14649
14650 case OPTION_PDR:
14651 mips_flag_pdr = TRUE;
14652 break;
14653
14654 case OPTION_NO_PDR:
14655 mips_flag_pdr = FALSE;
14656 break;
0a44bf69
RS
14657
14658 case OPTION_MVXWORKS_PIC:
14659 mips_pic = VXWORKS_PIC;
14660 break;
ecb4347a 14661
ba92f887
MR
14662 case OPTION_NAN:
14663 if (strcmp (arg, "2008") == 0)
7361da2c 14664 mips_nan2008 = 1;
ba92f887 14665 else if (strcmp (arg, "legacy") == 0)
7361da2c 14666 mips_nan2008 = 0;
ba92f887
MR
14667 else
14668 {
1661c76c 14669 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14670 return 0;
14671 }
14672 break;
14673
252b5132
RH
14674 default:
14675 return 0;
14676 }
14677
c67a084a
NC
14678 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14679
252b5132
RH
14680 return 1;
14681}
316f5878 14682\f
919731af 14683/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14684
316f5878 14685static void
17a2f251 14686mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14687{
14688 if (info != 0)
fef14a42 14689 mips_tune = info->cpu;
316f5878 14690}
80cc45a5 14691
34ba82a8 14692
252b5132 14693void
17a2f251 14694mips_after_parse_args (void)
e9670677 14695{
fef14a42
TS
14696 const struct mips_cpu_info *arch_info = 0;
14697 const struct mips_cpu_info *tune_info = 0;
14698
e9670677 14699 /* GP relative stuff not working for PE */
6caf9ef4 14700 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14701 {
6caf9ef4 14702 if (g_switch_seen && g_switch_value != 0)
1661c76c 14703 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14704 g_switch_value = 0;
14705 }
14706
cac012d6
AO
14707 if (mips_abi == NO_ABI)
14708 mips_abi = MIPS_DEFAULT_ABI;
14709
919731af 14710 /* The following code determines the architecture.
22923709
RS
14711 Similar code was added to GCC 3.3 (see override_options() in
14712 config/mips/mips.c). The GAS and GCC code should be kept in sync
14713 as much as possible. */
e9670677 14714
316f5878 14715 if (mips_arch_string != 0)
fef14a42 14716 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 14717
0b35dfee 14718 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 14719 {
0b35dfee 14720 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 14721 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 14722 the -march selection (if any). */
fef14a42 14723 if (arch_info != 0)
e9670677 14724 {
316f5878
RS
14725 /* -march takes precedence over -mipsN, since it is more descriptive.
14726 There's no harm in specifying both as long as the ISA levels
14727 are the same. */
0b35dfee 14728 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
14729 as_bad (_("-%s conflicts with the other architecture options,"
14730 " which imply -%s"),
0b35dfee 14731 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 14732 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 14733 }
316f5878 14734 else
0b35dfee 14735 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
14736 }
14737
fef14a42 14738 if (arch_info == 0)
95bfe26e
MF
14739 {
14740 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14741 gas_assert (arch_info);
14742 }
e9670677 14743
fef14a42 14744 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 14745 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
14746 arch_info->name);
14747
919731af 14748 file_mips_opts.arch = arch_info->cpu;
14749 file_mips_opts.isa = arch_info->isa;
14750
14751 /* Set up initial mips_opts state. */
14752 mips_opts = file_mips_opts;
14753
14754 /* The register size inference code is now placed in
14755 file_mips_check_options. */
fef14a42 14756
0b35dfee 14757 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14758 processor. */
fef14a42
TS
14759 if (mips_tune_string != 0)
14760 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 14761
fef14a42
TS
14762 if (tune_info == 0)
14763 mips_set_tune (arch_info);
14764 else
14765 mips_set_tune (tune_info);
e9670677 14766
ecb4347a 14767 if (mips_flag_mdebug < 0)
e8044f35 14768 mips_flag_mdebug = 0;
e9670677
MR
14769}
14770\f
14771void
17a2f251 14772mips_init_after_args (void)
252b5132
RH
14773{
14774 /* initialize opcodes */
14775 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 14776 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
14777}
14778
14779long
17a2f251 14780md_pcrel_from (fixS *fixP)
252b5132 14781{
a7ebbfdf
TS
14782 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14783 switch (fixP->fx_r_type)
14784 {
df58fc94
RS
14785 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14786 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14787 /* Return the address of the delay slot. */
14788 return addr + 2;
14789
14790 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14791 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 14792 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 14793 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
14794 case BFD_RELOC_MIPS_21_PCREL_S2:
14795 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
14796 case BFD_RELOC_MIPS_JMP:
14797 /* Return the address of the delay slot. */
14798 return addr + 4;
df58fc94 14799
51f6035b
MR
14800 case BFD_RELOC_MIPS_18_PCREL_S3:
14801 /* Return the aligned address of the doubleword containing
14802 the instruction. */
14803 return addr & ~7;
14804
a7ebbfdf
TS
14805 default:
14806 return addr;
14807 }
252b5132
RH
14808}
14809
252b5132
RH
14810/* This is called before the symbol table is processed. In order to
14811 work with gcc when using mips-tfile, we must keep all local labels.
14812 However, in other cases, we want to discard them. If we were
14813 called with -g, but we didn't see any debugging information, it may
14814 mean that gcc is smuggling debugging information through to
14815 mips-tfile, in which case we must generate all local labels. */
14816
14817void
17a2f251 14818mips_frob_file_before_adjust (void)
252b5132
RH
14819{
14820#ifndef NO_ECOFF_DEBUGGING
14821 if (ECOFF_DEBUGGING
14822 && mips_debug != 0
14823 && ! ecoff_debugging_seen)
14824 flag_keep_locals = 1;
14825#endif
14826}
14827
3b91255e 14828/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 14829 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
14830 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14831 relocation operators.
14832
14833 For our purposes, a %lo() expression matches a %got() or %hi()
14834 expression if:
14835
14836 (a) it refers to the same symbol; and
14837 (b) the offset applied in the %lo() expression is no lower than
14838 the offset applied in the %got() or %hi().
14839
14840 (b) allows us to cope with code like:
14841
14842 lui $4,%hi(foo)
14843 lh $4,%lo(foo+2)($4)
14844
14845 ...which is legal on RELA targets, and has a well-defined behaviour
14846 if the user knows that adding 2 to "foo" will not induce a carry to
14847 the high 16 bits.
14848
14849 When several %lo()s match a particular %got() or %hi(), we use the
14850 following rules to distinguish them:
14851
14852 (1) %lo()s with smaller offsets are a better match than %lo()s with
14853 higher offsets.
14854
14855 (2) %lo()s with no matching %got() or %hi() are better than those
14856 that already have a matching %got() or %hi().
14857
14858 (3) later %lo()s are better than earlier %lo()s.
14859
14860 These rules are applied in order.
14861
14862 (1) means, among other things, that %lo()s with identical offsets are
14863 chosen if they exist.
14864
14865 (2) means that we won't associate several high-part relocations with
14866 the same low-part relocation unless there's no alternative. Having
14867 several high parts for the same low part is a GNU extension; this rule
14868 allows careful users to avoid it.
14869
14870 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14871 with the last high-part relocation being at the front of the list.
14872 It therefore makes sense to choose the last matching low-part
14873 relocation, all other things being equal. It's also easier
14874 to code that way. */
252b5132
RH
14875
14876void
17a2f251 14877mips_frob_file (void)
252b5132
RH
14878{
14879 struct mips_hi_fixup *l;
35903be0 14880 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
14881
14882 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14883 {
14884 segment_info_type *seginfo;
3b91255e
RS
14885 bfd_boolean matched_lo_p;
14886 fixS **hi_pos, **lo_pos, **pos;
252b5132 14887
9c2799c2 14888 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 14889
5919d012 14890 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
14891 there isn't supposed to be a matching LO. Ignore %gots against
14892 constants; we'll report an error for those later. */
738e5348 14893 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab
RS
14894 && !(l->fixp->fx_addsy
14895 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
5919d012
RS
14896 continue;
14897
14898 /* Check quickly whether the next fixup happens to be a matching %lo. */
14899 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
14900 continue;
14901
252b5132 14902 seginfo = seg_info (l->seg);
252b5132 14903
3b91255e
RS
14904 /* Set HI_POS to the position of this relocation in the chain.
14905 Set LO_POS to the position of the chosen low-part relocation.
14906 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14907 relocation that matches an immediately-preceding high-part
14908 relocation. */
14909 hi_pos = NULL;
14910 lo_pos = NULL;
14911 matched_lo_p = FALSE;
738e5348 14912 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 14913
3b91255e
RS
14914 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14915 {
14916 if (*pos == l->fixp)
14917 hi_pos = pos;
14918
35903be0 14919 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 14920 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
14921 && (*pos)->fx_offset >= l->fixp->fx_offset
14922 && (lo_pos == NULL
14923 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14924 || (!matched_lo_p
14925 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14926 lo_pos = pos;
14927
14928 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14929 && fixup_has_matching_lo_p (*pos));
14930 }
14931
14932 /* If we found a match, remove the high-part relocation from its
14933 current position and insert it before the low-part relocation.
14934 Make the offsets match so that fixup_has_matching_lo_p()
14935 will return true.
14936
14937 We don't warn about unmatched high-part relocations since some
14938 versions of gcc have been known to emit dead "lui ...%hi(...)"
14939 instructions. */
14940 if (lo_pos != NULL)
14941 {
14942 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14943 if (l->fixp->fx_next != *lo_pos)
252b5132 14944 {
3b91255e
RS
14945 *hi_pos = l->fixp->fx_next;
14946 l->fixp->fx_next = *lo_pos;
14947 *lo_pos = l->fixp;
252b5132 14948 }
252b5132
RH
14949 }
14950 }
14951}
14952
252b5132 14953int
17a2f251 14954mips_force_relocation (fixS *fixp)
252b5132 14955{
ae6063d4 14956 if (generic_force_reloc (fixp))
252b5132
RH
14957 return 1;
14958
df58fc94
RS
14959 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14960 so that the linker relaxation can update targets. */
14961 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14962 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14963 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14964 return 1;
14965
5caa2b07
MR
14966 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14967 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14968 microMIPS symbols so that we can do cross-mode branch diagnostics
14969 and BAL to JALX conversion by the linker. */
14970 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
14971 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14972 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14973 && fixp->fx_addsy
14974 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14975 return 1;
14976
7361da2c 14977 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 14978 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
14979 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14980 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14981 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14982 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14983 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14984 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14985 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14986 return 1;
14987
3e722fb5 14988 return 0;
252b5132
RH
14989}
14990
b416ba9b
MR
14991/* Implement TC_FORCE_RELOCATION_ABS. */
14992
14993bfd_boolean
14994mips_force_relocation_abs (fixS *fixp)
14995{
14996 if (generic_force_reloc (fixp))
14997 return TRUE;
14998
14999 /* These relocations do not have enough bits in the in-place addend
15000 to hold an arbitrary absolute section's offset. */
15001 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15002 return TRUE;
15003
15004 return FALSE;
15005}
15006
b886a2ab
RS
15007/* Read the instruction associated with RELOC from BUF. */
15008
15009static unsigned int
15010read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15011{
15012 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15013 return read_compressed_insn (buf, 4);
15014 else
15015 return read_insn (buf);
15016}
15017
15018/* Write instruction INSN to BUF, given that it has been relocated
15019 by RELOC. */
15020
15021static void
15022write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15023 unsigned long insn)
15024{
15025 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15026 write_compressed_insn (buf, insn, 4);
15027 else
15028 write_insn (buf, insn);
15029}
15030
9d862524
MR
15031/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15032 to a symbol in another ISA mode, which cannot be converted to JALX. */
15033
15034static bfd_boolean
15035fix_bad_cross_mode_jump_p (fixS *fixP)
15036{
15037 unsigned long opcode;
15038 int other;
15039 char *buf;
15040
15041 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15042 return FALSE;
15043
15044 other = S_GET_OTHER (fixP->fx_addsy);
15045 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15046 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15047 switch (fixP->fx_r_type)
15048 {
15049 case BFD_RELOC_MIPS_JMP:
15050 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15051 case BFD_RELOC_MICROMIPS_JMP:
15052 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15053 default:
15054 return FALSE;
15055 }
15056}
15057
15058/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15059 jump to a symbol in the same ISA mode. */
15060
15061static bfd_boolean
15062fix_bad_same_mode_jalx_p (fixS *fixP)
15063{
15064 unsigned long opcode;
15065 int other;
15066 char *buf;
15067
15068 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15069 return FALSE;
15070
15071 other = S_GET_OTHER (fixP->fx_addsy);
15072 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15073 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15074 switch (fixP->fx_r_type)
15075 {
15076 case BFD_RELOC_MIPS_JMP:
15077 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15078 case BFD_RELOC_MIPS16_JMP:
15079 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15080 case BFD_RELOC_MICROMIPS_JMP:
15081 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15082 default:
15083 return FALSE;
15084 }
15085}
15086
15087/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15088 to a symbol whose value plus addend is not aligned according to the
15089 ultimate (after linker relaxation) jump instruction's immediate field
15090 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15091 regular MIPS code, to (1 << 2). */
15092
15093static bfd_boolean
15094fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15095{
15096 bfd_boolean micro_to_mips_p;
15097 valueT val;
15098 int other;
15099
15100 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15101 return FALSE;
15102
15103 other = S_GET_OTHER (fixP->fx_addsy);
15104 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15105 val += fixP->fx_offset;
15106 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15107 && !ELF_ST_IS_MICROMIPS (other));
15108 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15109 != ELF_ST_IS_COMPRESSED (other));
15110}
15111
15112/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15113 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15114 symbols check the ISA bit instead.
15115
15116 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15117 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15118 MIPS symbols and associated with BAL instructions as these instructions
15119 may be be converted to JALX by the linker. */
9d862524
MR
15120
15121static bfd_boolean
15122fix_bad_cross_mode_branch_p (fixS *fixP)
15123{
15124 bfd_boolean absolute_p;
15125 unsigned long opcode;
15126 asection *symsec;
15127 valueT val;
15128 int other;
15129 char *buf;
15130
15131 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15132 return FALSE;
15133
15134 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15135 absolute_p = bfd_is_abs_section (symsec);
15136
15137 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15138 other = S_GET_OTHER (fixP->fx_addsy);
15139
15140 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15141 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15142 switch (fixP->fx_r_type)
15143 {
15144 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15145 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15146 && opcode != 0x0411);
15147 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15148 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15149 && opcode != 0x4060);
9d862524
MR
15150 case BFD_RELOC_MIPS_21_PCREL_S2:
15151 case BFD_RELOC_MIPS_26_PCREL_S2:
15152 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15153 case BFD_RELOC_MIPS16_16_PCREL_S1:
15154 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15155 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15156 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15157 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15158 default:
15159 abort ();
15160 }
15161}
15162
15163/* Return TRUE if the symbol plus addend associated with a regular MIPS
15164 branch instruction pointed to by FIXP is not aligned according to the
15165 branch instruction's immediate field requirement. We need the addend
15166 to preserve the ISA bit and also the sum must not have bit 2 set. We
15167 must explicitly OR in the ISA bit from symbol annotation as the bit
15168 won't be set in the symbol's value then. */
15169
15170static bfd_boolean
15171fix_bad_misaligned_branch_p (fixS *fixP)
15172{
15173 bfd_boolean absolute_p;
15174 asection *symsec;
15175 valueT isa_bit;
15176 valueT val;
15177 valueT off;
15178 int other;
15179
15180 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15181 return FALSE;
15182
15183 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15184 absolute_p = bfd_is_abs_section (symsec);
15185
15186 val = S_GET_VALUE (fixP->fx_addsy);
15187 other = S_GET_OTHER (fixP->fx_addsy);
15188 off = fixP->fx_offset;
15189
15190 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15191 val |= ELF_ST_IS_COMPRESSED (other);
15192 val += off;
15193 return (val & 0x3) != isa_bit;
15194}
15195
15196/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15197 and its calculated value VAL. */
15198
15199static void
15200fix_validate_branch (fixS *fixP, valueT val)
15201{
15202 if (fixP->fx_done && (val & 0x3) != 0)
15203 as_bad_where (fixP->fx_file, fixP->fx_line,
15204 _("branch to misaligned address (0x%lx)"),
15205 (long) (val + md_pcrel_from (fixP)));
15206 else if (fix_bad_cross_mode_branch_p (fixP))
15207 as_bad_where (fixP->fx_file, fixP->fx_line,
15208 _("branch to a symbol in another ISA mode"));
15209 else if (fix_bad_misaligned_branch_p (fixP))
15210 as_bad_where (fixP->fx_file, fixP->fx_line,
15211 _("branch to misaligned address (0x%lx)"),
15212 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15213 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15214 as_bad_where (fixP->fx_file, fixP->fx_line,
15215 _("cannot encode misaligned addend "
15216 "in the relocatable field (0x%lx)"),
15217 (long) fixP->fx_offset);
15218}
15219
252b5132
RH
15220/* Apply a fixup to the object file. */
15221
94f592af 15222void
55cf6793 15223md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15224{
4d68580a 15225 char *buf;
b886a2ab 15226 unsigned long insn;
a7ebbfdf 15227 reloc_howto_type *howto;
252b5132 15228
d56a8dda
RS
15229 if (fixP->fx_pcrel)
15230 switch (fixP->fx_r_type)
15231 {
15232 case BFD_RELOC_16_PCREL_S2:
c9775dde 15233 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15237 case BFD_RELOC_32_PCREL:
7361da2c
AB
15238 case BFD_RELOC_MIPS_21_PCREL_S2:
15239 case BFD_RELOC_MIPS_26_PCREL_S2:
15240 case BFD_RELOC_MIPS_18_PCREL_S3:
15241 case BFD_RELOC_MIPS_19_PCREL_S2:
15242 case BFD_RELOC_HI16_S_PCREL:
15243 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15244 break;
15245
15246 case BFD_RELOC_32:
15247 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15248 break;
15249
15250 default:
15251 as_bad_where (fixP->fx_file, fixP->fx_line,
15252 _("PC-relative reference to a different section"));
15253 break;
15254 }
15255
15256 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15257 that have no MIPS ELF equivalent. */
15258 if (fixP->fx_r_type != BFD_RELOC_8)
15259 {
15260 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15261 if (!howto)
15262 return;
15263 }
65551fa4 15264
df58fc94
RS
15265 gas_assert (fixP->fx_size == 2
15266 || fixP->fx_size == 4
d56a8dda 15267 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15268 || fixP->fx_r_type == BFD_RELOC_16
15269 || fixP->fx_r_type == BFD_RELOC_64
15270 || fixP->fx_r_type == BFD_RELOC_CTOR
15271 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15272 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15273 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15274 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15275 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15276 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15277
4d68580a 15278 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15279
b1dca8ee
RS
15280 /* Don't treat parts of a composite relocation as done. There are two
15281 reasons for this:
15282
15283 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15284 should nevertheless be emitted if the first part is.
15285
15286 (2) In normal usage, composite relocations are never assembly-time
15287 constants. The easiest way of dealing with the pathological
15288 exceptions is to generate a relocation against STN_UNDEF and
15289 leave everything up to the linker. */
3994f87e 15290 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15291 fixP->fx_done = 1;
15292
15293 switch (fixP->fx_r_type)
15294 {
3f98094e
DJ
15295 case BFD_RELOC_MIPS_TLS_GD:
15296 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15297 case BFD_RELOC_MIPS_TLS_DTPREL32:
15298 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15299 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15300 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15301 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15302 case BFD_RELOC_MIPS_TLS_TPREL32:
15303 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15304 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15305 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15306 case BFD_RELOC_MICROMIPS_TLS_GD:
15307 case BFD_RELOC_MICROMIPS_TLS_LDM:
15308 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15309 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15310 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15311 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15312 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15313 case BFD_RELOC_MIPS16_TLS_GD:
15314 case BFD_RELOC_MIPS16_TLS_LDM:
15315 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15316 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15317 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15318 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15319 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15320 if (fixP->fx_addsy)
15321 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15322 else
15323 as_bad_where (fixP->fx_file, fixP->fx_line,
15324 _("TLS relocation against a constant"));
15325 break;
3f98094e 15326
252b5132 15327 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15328 case BFD_RELOC_MIPS16_JMP:
15329 case BFD_RELOC_MICROMIPS_JMP:
15330 {
15331 int shift;
15332
15333 gas_assert (!fixP->fx_done);
15334
15335 /* Shift is 2, unusually, for microMIPS JALX. */
15336 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15337 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15338 shift = 1;
15339 else
15340 shift = 2;
15341
15342 if (fix_bad_cross_mode_jump_p (fixP))
15343 as_bad_where (fixP->fx_file, fixP->fx_line,
15344 _("jump to a symbol in another ISA mode"));
15345 else if (fix_bad_same_mode_jalx_p (fixP))
15346 as_bad_where (fixP->fx_file, fixP->fx_line,
15347 _("JALX to a symbol in the same ISA mode"));
15348 else if (fix_bad_misaligned_jump_p (fixP, shift))
15349 as_bad_where (fixP->fx_file, fixP->fx_line,
15350 _("jump to misaligned address (0x%lx)"),
15351 (long) (S_GET_VALUE (fixP->fx_addsy)
15352 + fixP->fx_offset));
15353 else if (HAVE_IN_PLACE_ADDENDS
15354 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15355 as_bad_where (fixP->fx_file, fixP->fx_line,
15356 _("cannot encode misaligned addend "
15357 "in the relocatable field (0x%lx)"),
15358 (long) fixP->fx_offset);
15359 }
15360 /* Fall through. */
15361
e369bcce
TS
15362 case BFD_RELOC_MIPS_SHIFT5:
15363 case BFD_RELOC_MIPS_SHIFT6:
15364 case BFD_RELOC_MIPS_GOT_DISP:
15365 case BFD_RELOC_MIPS_GOT_PAGE:
15366 case BFD_RELOC_MIPS_GOT_OFST:
15367 case BFD_RELOC_MIPS_SUB:
15368 case BFD_RELOC_MIPS_INSERT_A:
15369 case BFD_RELOC_MIPS_INSERT_B:
15370 case BFD_RELOC_MIPS_DELETE:
15371 case BFD_RELOC_MIPS_HIGHEST:
15372 case BFD_RELOC_MIPS_HIGHER:
15373 case BFD_RELOC_MIPS_SCN_DISP:
15374 case BFD_RELOC_MIPS_REL16:
15375 case BFD_RELOC_MIPS_RELGOT:
15376 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15377 case BFD_RELOC_HI16:
15378 case BFD_RELOC_HI16_S:
b886a2ab 15379 case BFD_RELOC_LO16:
cdf6fd85 15380 case BFD_RELOC_GPREL16:
252b5132
RH
15381 case BFD_RELOC_MIPS_LITERAL:
15382 case BFD_RELOC_MIPS_CALL16:
15383 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15384 case BFD_RELOC_GPREL32:
252b5132
RH
15385 case BFD_RELOC_MIPS_GOT_HI16:
15386 case BFD_RELOC_MIPS_GOT_LO16:
15387 case BFD_RELOC_MIPS_CALL_HI16:
15388 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15389 case BFD_RELOC_HI16_S_PCREL:
15390 case BFD_RELOC_LO16_PCREL:
252b5132 15391 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15392 case BFD_RELOC_MIPS16_GOT16:
15393 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15394 case BFD_RELOC_MIPS16_HI16:
15395 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15396 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15397 case BFD_RELOC_MICROMIPS_GOT_DISP:
15398 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15399 case BFD_RELOC_MICROMIPS_GOT_OFST:
15400 case BFD_RELOC_MICROMIPS_SUB:
15401 case BFD_RELOC_MICROMIPS_HIGHEST:
15402 case BFD_RELOC_MICROMIPS_HIGHER:
15403 case BFD_RELOC_MICROMIPS_SCN_DISP:
15404 case BFD_RELOC_MICROMIPS_JALR:
15405 case BFD_RELOC_MICROMIPS_HI16:
15406 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15407 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15408 case BFD_RELOC_MICROMIPS_GPREL16:
15409 case BFD_RELOC_MICROMIPS_LITERAL:
15410 case BFD_RELOC_MICROMIPS_CALL16:
15411 case BFD_RELOC_MICROMIPS_GOT16:
15412 case BFD_RELOC_MICROMIPS_GOT_HI16:
15413 case BFD_RELOC_MICROMIPS_GOT_LO16:
15414 case BFD_RELOC_MICROMIPS_CALL_HI16:
15415 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15416 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15417 if (fixP->fx_done)
15418 {
15419 offsetT value;
15420
15421 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15422 {
15423 insn = read_reloc_insn (buf, fixP->fx_r_type);
15424 if (mips16_reloc_p (fixP->fx_r_type))
15425 insn |= mips16_immed_extend (value, 16);
15426 else
15427 insn |= (value & 0xffff);
15428 write_reloc_insn (buf, fixP->fx_r_type, insn);
15429 }
15430 else
15431 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15432 _("unsupported constant in relocation"));
b886a2ab 15433 }
252b5132
RH
15434 break;
15435
252b5132
RH
15436 case BFD_RELOC_64:
15437 /* This is handled like BFD_RELOC_32, but we output a sign
15438 extended value if we are only 32 bits. */
3e722fb5 15439 if (fixP->fx_done)
252b5132
RH
15440 {
15441 if (8 <= sizeof (valueT))
4d68580a 15442 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15443 else
15444 {
a7ebbfdf 15445 valueT hiv;
252b5132 15446
a7ebbfdf 15447 if ((*valP & 0x80000000) != 0)
252b5132
RH
15448 hiv = 0xffffffff;
15449 else
15450 hiv = 0;
4d68580a
RS
15451 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15452 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15453 }
15454 }
15455 break;
15456
056350c6 15457 case BFD_RELOC_RVA:
252b5132 15458 case BFD_RELOC_32:
b47468a6 15459 case BFD_RELOC_32_PCREL:
252b5132 15460 case BFD_RELOC_16:
d56a8dda 15461 case BFD_RELOC_8:
252b5132 15462 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15463 value now. This can happen if we have a .word which is not
15464 resolved when it appears but is later defined. */
252b5132 15465 if (fixP->fx_done)
4d68580a 15466 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15467 break;
15468
7361da2c 15469 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15470 fix_validate_branch (fixP, *valP);
41947d9e
MR
15471 if (!fixP->fx_done)
15472 break;
15473
15474 if (*valP + 0x400000 <= 0x7fffff)
15475 {
15476 insn = read_insn (buf);
15477 insn |= (*valP >> 2) & 0x1fffff;
15478 write_insn (buf, insn);
15479 }
15480 else
15481 as_bad_where (fixP->fx_file, fixP->fx_line,
15482 _("branch out of range"));
15483 break;
15484
7361da2c 15485 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15486 fix_validate_branch (fixP, *valP);
41947d9e
MR
15487 if (!fixP->fx_done)
15488 break;
7361da2c 15489
41947d9e
MR
15490 if (*valP + 0x8000000 <= 0xfffffff)
15491 {
15492 insn = read_insn (buf);
15493 insn |= (*valP >> 2) & 0x3ffffff;
15494 write_insn (buf, insn);
15495 }
15496 else
15497 as_bad_where (fixP->fx_file, fixP->fx_line,
15498 _("branch out of range"));
7361da2c
AB
15499 break;
15500
15501 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15502 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15503 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15504 _("PC-relative access using misaligned symbol (%lx)"),
15505 (long) S_GET_VALUE (fixP->fx_addsy));
15506 if ((fixP->fx_offset & 0x7) != 0)
15507 as_bad_where (fixP->fx_file, fixP->fx_line,
15508 _("PC-relative access using misaligned offset (%lx)"),
15509 (long) fixP->fx_offset);
41947d9e
MR
15510 if (!fixP->fx_done)
15511 break;
7361da2c 15512
41947d9e
MR
15513 if (*valP + 0x100000 <= 0x1fffff)
15514 {
15515 insn = read_insn (buf);
15516 insn |= (*valP >> 3) & 0x3ffff;
15517 write_insn (buf, insn);
15518 }
15519 else
15520 as_bad_where (fixP->fx_file, fixP->fx_line,
15521 _("PC-relative access out of range"));
7361da2c
AB
15522 break;
15523
15524 case BFD_RELOC_MIPS_19_PCREL_S2:
15525 if ((*valP & 0x3) != 0)
15526 as_bad_where (fixP->fx_file, fixP->fx_line,
15527 _("PC-relative access to misaligned address (%lx)"),
717ba204 15528 (long) *valP);
41947d9e
MR
15529 if (!fixP->fx_done)
15530 break;
7361da2c 15531
41947d9e
MR
15532 if (*valP + 0x100000 <= 0x1fffff)
15533 {
15534 insn = read_insn (buf);
15535 insn |= (*valP >> 2) & 0x7ffff;
15536 write_insn (buf, insn);
15537 }
15538 else
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("PC-relative access out of range"));
7361da2c
AB
15541 break;
15542
252b5132 15543 case BFD_RELOC_16_PCREL_S2:
9d862524 15544 fix_validate_branch (fixP, *valP);
cb56d3d3 15545
54f4ddb3
TS
15546 /* We need to save the bits in the instruction since fixup_segment()
15547 might be deleting the relocation entry (i.e., a branch within
15548 the current segment). */
a7ebbfdf 15549 if (! fixP->fx_done)
bb2d6cd7 15550 break;
252b5132 15551
54f4ddb3 15552 /* Update old instruction data. */
4d68580a 15553 insn = read_insn (buf);
252b5132 15554
a7ebbfdf
TS
15555 if (*valP + 0x20000 <= 0x3ffff)
15556 {
15557 insn |= (*valP >> 2) & 0xffff;
4d68580a 15558 write_insn (buf, insn);
a7ebbfdf
TS
15559 }
15560 else if (mips_pic == NO_PIC
15561 && fixP->fx_done
15562 && fixP->fx_frag->fr_address >= text_section->vma
15563 && (fixP->fx_frag->fr_address
587aac4e 15564 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15565 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15566 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15567 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15568 {
15569 /* The branch offset is too large. If this is an
15570 unconditional branch, and we are not generating PIC code,
15571 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15572 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15573 insn = 0x0c000000; /* jal */
252b5132 15574 else
a7ebbfdf
TS
15575 insn = 0x08000000; /* j */
15576 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15577 fixP->fx_done = 0;
15578 fixP->fx_addsy = section_symbol (text_section);
15579 *valP += md_pcrel_from (fixP);
4d68580a 15580 write_insn (buf, insn);
a7ebbfdf
TS
15581 }
15582 else
15583 {
15584 /* If we got here, we have branch-relaxation disabled,
15585 and there's nothing we can do to fix this instruction
15586 without turning it into a longer sequence. */
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15588 _("branch out of range"));
252b5132 15589 }
252b5132
RH
15590 break;
15591
c9775dde 15592 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15593 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15594 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15595 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15596 gas_assert (!fixP->fx_done);
9d862524
MR
15597 if (fix_bad_cross_mode_branch_p (fixP))
15598 as_bad_where (fixP->fx_file, fixP->fx_line,
15599 _("branch to a symbol in another ISA mode"));
15600 else if (fixP->fx_addsy
15601 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15602 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15603 && (fixP->fx_offset & 0x1) != 0)
15604 as_bad_where (fixP->fx_file, fixP->fx_line,
15605 _("branch to misaligned address (0x%lx)"),
15606 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15607 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15608 as_bad_where (fixP->fx_file, fixP->fx_line,
15609 _("cannot encode misaligned addend "
15610 "in the relocatable field (0x%lx)"),
15611 (long) fixP->fx_offset);
df58fc94
RS
15612 break;
15613
252b5132
RH
15614 case BFD_RELOC_VTABLE_INHERIT:
15615 fixP->fx_done = 0;
15616 if (fixP->fx_addsy
15617 && !S_IS_DEFINED (fixP->fx_addsy)
15618 && !S_IS_WEAK (fixP->fx_addsy))
15619 S_SET_WEAK (fixP->fx_addsy);
15620 break;
15621
2f0c68f2 15622 case BFD_RELOC_NONE:
252b5132
RH
15623 case BFD_RELOC_VTABLE_ENTRY:
15624 fixP->fx_done = 0;
15625 break;
15626
15627 default:
b37df7c4 15628 abort ();
252b5132 15629 }
a7ebbfdf
TS
15630
15631 /* Remember value for tc_gen_reloc. */
15632 fixP->fx_addnumber = *valP;
252b5132
RH
15633}
15634
252b5132 15635static symbolS *
17a2f251 15636get_symbol (void)
252b5132
RH
15637{
15638 int c;
15639 char *name;
15640 symbolS *p;
15641
d02603dc 15642 c = get_symbol_name (&name);
252b5132 15643 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15644 (void) restore_line_pointer (c);
252b5132
RH
15645 return p;
15646}
15647
742a56fe
RS
15648/* Align the current frag to a given power of two. If a particular
15649 fill byte should be used, FILL points to an integer that contains
15650 that byte, otherwise FILL is null.
15651
462427c4
RS
15652 This function used to have the comment:
15653
15654 The MIPS assembler also automatically adjusts any preceding label.
15655
15656 The implementation therefore applied the adjustment to a maximum of
15657 one label. However, other label adjustments are applied to batches
15658 of labels, and adjusting just one caused problems when new labels
15659 were added for the sake of debugging or unwind information.
15660 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15661
15662static void
462427c4 15663mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15664{
7d10b47d 15665 mips_emit_delays ();
df58fc94 15666 mips_record_compressed_mode ();
742a56fe
RS
15667 if (fill == NULL && subseg_text_p (now_seg))
15668 frag_align_code (to, 0);
15669 else
15670 frag_align (to, fill ? *fill : 0, 0);
252b5132 15671 record_alignment (now_seg, to);
462427c4 15672 mips_move_labels (labels, FALSE);
252b5132
RH
15673}
15674
15675/* Align to a given power of two. .align 0 turns off the automatic
15676 alignment used by the data creating pseudo-ops. */
15677
15678static void
17a2f251 15679s_align (int x ATTRIBUTE_UNUSED)
252b5132 15680{
742a56fe 15681 int temp, fill_value, *fill_ptr;
49954fb4 15682 long max_alignment = 28;
252b5132 15683
54f4ddb3 15684 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15685 to the aligned address.
54f4ddb3 15686 o It's not documented but auto alignment is reinstated by
252b5132 15687 a .align pseudo instruction.
54f4ddb3 15688 o Note also that after auto alignment is turned off the mips assembler
252b5132 15689 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15690 We don't. */
252b5132
RH
15691
15692 temp = get_absolute_expression ();
15693 if (temp > max_alignment)
1661c76c 15694 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15695 else if (temp < 0)
15696 {
1661c76c 15697 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15698 temp = 0;
15699 }
15700 if (*input_line_pointer == ',')
15701 {
f9419b05 15702 ++input_line_pointer;
742a56fe
RS
15703 fill_value = get_absolute_expression ();
15704 fill_ptr = &fill_value;
252b5132
RH
15705 }
15706 else
742a56fe 15707 fill_ptr = 0;
252b5132
RH
15708 if (temp)
15709 {
a8dbcb85
TS
15710 segment_info_type *si = seg_info (now_seg);
15711 struct insn_label_list *l = si->label_list;
54f4ddb3 15712 /* Auto alignment should be switched on by next section change. */
252b5132 15713 auto_align = 1;
462427c4 15714 mips_align (temp, fill_ptr, l);
252b5132
RH
15715 }
15716 else
15717 {
15718 auto_align = 0;
15719 }
15720
15721 demand_empty_rest_of_line ();
15722}
15723
252b5132 15724static void
17a2f251 15725s_change_sec (int sec)
252b5132
RH
15726{
15727 segT seg;
15728
252b5132
RH
15729 /* The ELF backend needs to know that we are changing sections, so
15730 that .previous works correctly. We could do something like check
b6ff326e 15731 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
15732 as it would not be appropriate to use it in the section changing
15733 functions in read.c, since obj-elf.c intercepts those. FIXME:
15734 This should be cleaner, somehow. */
f3ded42a 15735 obj_elf_section_change_hook ();
252b5132 15736
7d10b47d 15737 mips_emit_delays ();
6a32d874 15738
252b5132
RH
15739 switch (sec)
15740 {
15741 case 't':
15742 s_text (0);
15743 break;
15744 case 'd':
15745 s_data (0);
15746 break;
15747 case 'b':
15748 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15749 demand_empty_rest_of_line ();
15750 break;
15751
15752 case 'r':
4d0d148d
TS
15753 seg = subseg_new (RDATA_SECTION_NAME,
15754 (subsegT) get_absolute_expression ());
f3ded42a
RS
15755 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15756 | SEC_READONLY | SEC_RELOC
15757 | SEC_DATA));
15758 if (strncmp (TARGET_OS, "elf", 3) != 0)
15759 record_alignment (seg, 4);
4d0d148d 15760 demand_empty_rest_of_line ();
252b5132
RH
15761 break;
15762
15763 case 's':
4d0d148d 15764 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
15765 bfd_set_section_flags (stdoutput, seg,
15766 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15767 if (strncmp (TARGET_OS, "elf", 3) != 0)
15768 record_alignment (seg, 4);
4d0d148d
TS
15769 demand_empty_rest_of_line ();
15770 break;
998b3c36
MR
15771
15772 case 'B':
15773 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
15774 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15775 if (strncmp (TARGET_OS, "elf", 3) != 0)
15776 record_alignment (seg, 4);
998b3c36
MR
15777 demand_empty_rest_of_line ();
15778 break;
252b5132
RH
15779 }
15780
15781 auto_align = 1;
15782}
b34976b6 15783
cca86cc8 15784void
17a2f251 15785s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 15786{
d02603dc 15787 char *saved_ilp;
cca86cc8 15788 char *section_name;
d02603dc 15789 char c, endc;
684022ea 15790 char next_c = 0;
cca86cc8
SC
15791 int section_type;
15792 int section_flag;
15793 int section_entry_size;
15794 int section_alignment;
b34976b6 15795
d02603dc
NC
15796 saved_ilp = input_line_pointer;
15797 endc = get_symbol_name (&section_name);
15798 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 15799 if (c)
d02603dc 15800 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 15801
4cf0dd0d
TS
15802 /* Do we have .section Name<,"flags">? */
15803 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 15804 {
d02603dc
NC
15805 /* Just after name is now '\0'. */
15806 (void) restore_line_pointer (endc);
15807 input_line_pointer = saved_ilp;
cca86cc8
SC
15808 obj_elf_section (ignore);
15809 return;
15810 }
d02603dc
NC
15811
15812 section_name = xstrdup (section_name);
15813 c = restore_line_pointer (endc);
15814
cca86cc8
SC
15815 input_line_pointer++;
15816
15817 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15818 if (c == ',')
15819 section_type = get_absolute_expression ();
15820 else
15821 section_type = 0;
d02603dc 15822
cca86cc8
SC
15823 if (*input_line_pointer++ == ',')
15824 section_flag = get_absolute_expression ();
15825 else
15826 section_flag = 0;
d02603dc 15827
cca86cc8
SC
15828 if (*input_line_pointer++ == ',')
15829 section_entry_size = get_absolute_expression ();
15830 else
15831 section_entry_size = 0;
d02603dc 15832
cca86cc8
SC
15833 if (*input_line_pointer++ == ',')
15834 section_alignment = get_absolute_expression ();
15835 else
15836 section_alignment = 0;
d02603dc 15837
87975d2a
AM
15838 /* FIXME: really ignore? */
15839 (void) section_alignment;
cca86cc8 15840
8ab8a5c8
RS
15841 /* When using the generic form of .section (as implemented by obj-elf.c),
15842 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15843 traditionally had to fall back on the more common @progbits instead.
15844
15845 There's nothing really harmful in this, since bfd will correct
15846 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 15847 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
15848 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15849
15850 Even so, we shouldn't force users of the MIPS .section syntax to
15851 incorrectly label the sections as SHT_PROGBITS. The best compromise
15852 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15853 generic type-checking code. */
15854 if (section_type == SHT_MIPS_DWARF)
15855 section_type = SHT_PROGBITS;
15856
cca86cc8
SC
15857 obj_elf_change_section (section_name, section_type, section_flag,
15858 section_entry_size, 0, 0, 0);
a816d1ed
AO
15859
15860 if (now_seg->name != section_name)
15861 free (section_name);
cca86cc8 15862}
252b5132
RH
15863
15864void
17a2f251 15865mips_enable_auto_align (void)
252b5132
RH
15866{
15867 auto_align = 1;
15868}
15869
15870static void
17a2f251 15871s_cons (int log_size)
252b5132 15872{
a8dbcb85
TS
15873 segment_info_type *si = seg_info (now_seg);
15874 struct insn_label_list *l = si->label_list;
252b5132 15875
7d10b47d 15876 mips_emit_delays ();
252b5132 15877 if (log_size > 0 && auto_align)
462427c4 15878 mips_align (log_size, 0, l);
252b5132 15879 cons (1 << log_size);
a1facbec 15880 mips_clear_insn_labels ();
252b5132
RH
15881}
15882
15883static void
17a2f251 15884s_float_cons (int type)
252b5132 15885{
a8dbcb85
TS
15886 segment_info_type *si = seg_info (now_seg);
15887 struct insn_label_list *l = si->label_list;
252b5132 15888
7d10b47d 15889 mips_emit_delays ();
252b5132
RH
15890
15891 if (auto_align)
49309057
ILT
15892 {
15893 if (type == 'd')
462427c4 15894 mips_align (3, 0, l);
49309057 15895 else
462427c4 15896 mips_align (2, 0, l);
49309057 15897 }
252b5132 15898
252b5132 15899 float_cons (type);
a1facbec 15900 mips_clear_insn_labels ();
252b5132
RH
15901}
15902
15903/* Handle .globl. We need to override it because on Irix 5 you are
15904 permitted to say
15905 .globl foo .text
15906 where foo is an undefined symbol, to mean that foo should be
15907 considered to be the address of a function. */
15908
15909static void
17a2f251 15910s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
15911{
15912 char *name;
15913 int c;
15914 symbolS *symbolP;
15915 flagword flag;
15916
8a06b769 15917 do
252b5132 15918 {
d02603dc 15919 c = get_symbol_name (&name);
8a06b769
TS
15920 symbolP = symbol_find_or_make (name);
15921 S_SET_EXTERNAL (symbolP);
15922
252b5132 15923 *input_line_pointer = c;
d02603dc 15924 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 15925
8a06b769
TS
15926 /* On Irix 5, every global symbol that is not explicitly labelled as
15927 being a function is apparently labelled as being an object. */
15928 flag = BSF_OBJECT;
252b5132 15929
8a06b769
TS
15930 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15931 && (*input_line_pointer != ','))
15932 {
15933 char *secname;
15934 asection *sec;
15935
d02603dc 15936 c = get_symbol_name (&secname);
8a06b769
TS
15937 sec = bfd_get_section_by_name (stdoutput, secname);
15938 if (sec == NULL)
15939 as_bad (_("%s: no such section"), secname);
d02603dc 15940 (void) restore_line_pointer (c);
8a06b769
TS
15941
15942 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15943 flag = BSF_FUNCTION;
15944 }
15945
15946 symbol_get_bfdsym (symbolP)->flags |= flag;
15947
15948 c = *input_line_pointer;
15949 if (c == ',')
15950 {
15951 input_line_pointer++;
15952 SKIP_WHITESPACE ();
15953 if (is_end_of_line[(unsigned char) *input_line_pointer])
15954 c = '\n';
15955 }
15956 }
15957 while (c == ',');
252b5132 15958
252b5132
RH
15959 demand_empty_rest_of_line ();
15960}
15961
15962static void
17a2f251 15963s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
15964{
15965 char *opt;
15966 char c;
15967
d02603dc 15968 c = get_symbol_name (&opt);
252b5132
RH
15969
15970 if (*opt == 'O')
15971 {
15972 /* FIXME: What does this mean? */
15973 }
41a1578e 15974 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
15975 {
15976 int i;
15977
15978 i = atoi (opt + 3);
668c5ebc
MR
15979 if (i != 0 && i != 2)
15980 as_bad (_(".option pic%d not supported"), i);
15981 else if (mips_pic == VXWORKS_PIC)
15982 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15983 else if (i == 0)
252b5132
RH
15984 mips_pic = NO_PIC;
15985 else if (i == 2)
143d77c5 15986 {
8b828383 15987 mips_pic = SVR4_PIC;
143d77c5
EC
15988 mips_abicalls = TRUE;
15989 }
252b5132 15990
4d0d148d 15991 if (mips_pic == SVR4_PIC)
252b5132
RH
15992 {
15993 if (g_switch_seen && g_switch_value != 0)
15994 as_warn (_("-G may not be used with SVR4 PIC code"));
15995 g_switch_value = 0;
15996 bfd_set_gp_size (stdoutput, 0);
15997 }
15998 }
15999 else
1661c76c 16000 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16001
d02603dc 16002 (void) restore_line_pointer (c);
252b5132
RH
16003 demand_empty_rest_of_line ();
16004}
16005
16006/* This structure is used to hold a stack of .set values. */
16007
e972090a
NC
16008struct mips_option_stack
16009{
252b5132
RH
16010 struct mips_option_stack *next;
16011 struct mips_set_options options;
16012};
16013
16014static struct mips_option_stack *mips_opts_stack;
16015
22522f88
MR
16016/* Return status for .set/.module option handling. */
16017
16018enum code_option_type
16019{
16020 /* Unrecognized option. */
16021 OPTION_TYPE_BAD = -1,
16022
16023 /* Ordinary option. */
16024 OPTION_TYPE_NORMAL,
16025
16026 /* ISA changing option. */
16027 OPTION_TYPE_ISA
16028};
16029
16030/* Handle common .set/.module options. Return status indicating option
16031 type. */
16032
16033static enum code_option_type
919731af 16034parse_code_option (char * name)
252b5132 16035{
22522f88 16036 bfd_boolean isa_set = FALSE;
c6278170 16037 const struct mips_ase *ase;
22522f88 16038
919731af 16039 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16040 {
16041 char *s = name + 3;
16042
16043 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16044 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16045 }
252b5132 16046 else if (strcmp (name, "at") == 0)
919731af 16047 mips_opts.at = ATREG;
252b5132 16048 else if (strcmp (name, "noat") == 0)
919731af 16049 mips_opts.at = ZERO;
252b5132 16050 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16051 mips_opts.nomove = 0;
252b5132 16052 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16053 mips_opts.nomove = 1;
252b5132 16054 else if (strcmp (name, "bopt") == 0)
919731af 16055 mips_opts.nobopt = 0;
252b5132 16056 else if (strcmp (name, "nobopt") == 0)
919731af 16057 mips_opts.nobopt = 1;
ad3fea08 16058 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16059 mips_opts.gp = 32;
ad3fea08 16060 else if (strcmp (name, "gp=64") == 0)
919731af 16061 mips_opts.gp = 64;
ad3fea08 16062 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16063 mips_opts.fp = 32;
351cdf24
MF
16064 else if (strcmp (name, "fp=xx") == 0)
16065 mips_opts.fp = 0;
ad3fea08 16066 else if (strcmp (name, "fp=64") == 0)
919731af 16067 mips_opts.fp = 64;
037b32b9
AN
16068 else if (strcmp (name, "softfloat") == 0)
16069 mips_opts.soft_float = 1;
16070 else if (strcmp (name, "hardfloat") == 0)
16071 mips_opts.soft_float = 0;
16072 else if (strcmp (name, "singlefloat") == 0)
16073 mips_opts.single_float = 1;
16074 else if (strcmp (name, "doublefloat") == 0)
16075 mips_opts.single_float = 0;
351cdf24
MF
16076 else if (strcmp (name, "nooddspreg") == 0)
16077 mips_opts.oddspreg = 0;
16078 else if (strcmp (name, "oddspreg") == 0)
16079 mips_opts.oddspreg = 1;
252b5132
RH
16080 else if (strcmp (name, "mips16") == 0
16081 || strcmp (name, "MIPS-16") == 0)
919731af 16082 mips_opts.mips16 = 1;
252b5132
RH
16083 else if (strcmp (name, "nomips16") == 0
16084 || strcmp (name, "noMIPS-16") == 0)
16085 mips_opts.mips16 = 0;
df58fc94 16086 else if (strcmp (name, "micromips") == 0)
919731af 16087 mips_opts.micromips = 1;
df58fc94
RS
16088 else if (strcmp (name, "nomicromips") == 0)
16089 mips_opts.micromips = 0;
c6278170
RS
16090 else if (name[0] == 'n'
16091 && name[1] == 'o'
16092 && (ase = mips_lookup_ase (name + 2)))
919731af 16093 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16094 else if ((ase = mips_lookup_ase (name)))
919731af 16095 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16096 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16097 {
1a2c1fad
CD
16098 /* Permit the user to change the ISA and architecture on the fly.
16099 Needless to say, misuse can cause serious problems. */
919731af 16100 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16101 {
16102 const struct mips_cpu_info *p;
16103
919731af 16104 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16105 if (!p)
16106 as_bad (_("unknown architecture %s"), name + 5);
16107 else
16108 {
16109 mips_opts.arch = p->cpu;
16110 mips_opts.isa = p->isa;
22522f88 16111 isa_set = TRUE;
1a2c1fad
CD
16112 }
16113 }
81a21e38
TS
16114 else if (strncmp (name, "mips", 4) == 0)
16115 {
16116 const struct mips_cpu_info *p;
16117
919731af 16118 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16119 if (!p)
16120 as_bad (_("unknown ISA level %s"), name + 4);
16121 else
16122 {
16123 mips_opts.arch = p->cpu;
16124 mips_opts.isa = p->isa;
22522f88 16125 isa_set = TRUE;
81a21e38
TS
16126 }
16127 }
af7ee8bf 16128 else
81a21e38 16129 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16130 }
16131 else if (strcmp (name, "autoextend") == 0)
16132 mips_opts.noautoextend = 0;
16133 else if (strcmp (name, "noautoextend") == 0)
16134 mips_opts.noautoextend = 1;
833794fc
MR
16135 else if (strcmp (name, "insn32") == 0)
16136 mips_opts.insn32 = TRUE;
16137 else if (strcmp (name, "noinsn32") == 0)
16138 mips_opts.insn32 = FALSE;
919731af 16139 else if (strcmp (name, "sym32") == 0)
16140 mips_opts.sym32 = TRUE;
16141 else if (strcmp (name, "nosym32") == 0)
16142 mips_opts.sym32 = FALSE;
16143 else
22522f88
MR
16144 return OPTION_TYPE_BAD;
16145
16146 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16147}
16148
16149/* Handle the .set pseudo-op. */
16150
16151static void
16152s_mipsset (int x ATTRIBUTE_UNUSED)
16153{
22522f88 16154 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16155 char *name = input_line_pointer, ch;
919731af 16156
16157 file_mips_check_options ();
16158
16159 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16160 ++input_line_pointer;
16161 ch = *input_line_pointer;
16162 *input_line_pointer = '\0';
16163
16164 if (strchr (name, ','))
16165 {
16166 /* Generic ".set" directive; use the generic handler. */
16167 *input_line_pointer = ch;
16168 input_line_pointer = name;
16169 s_set (0);
16170 return;
16171 }
16172
16173 if (strcmp (name, "reorder") == 0)
16174 {
16175 if (mips_opts.noreorder)
16176 end_noreorder ();
16177 }
16178 else if (strcmp (name, "noreorder") == 0)
16179 {
16180 if (!mips_opts.noreorder)
16181 start_noreorder ();
16182 }
16183 else if (strcmp (name, "macro") == 0)
16184 mips_opts.warn_about_macros = 0;
16185 else if (strcmp (name, "nomacro") == 0)
16186 {
16187 if (mips_opts.noreorder == 0)
16188 as_bad (_("`noreorder' must be set before `nomacro'"));
16189 mips_opts.warn_about_macros = 1;
16190 }
16191 else if (strcmp (name, "gp=default") == 0)
16192 mips_opts.gp = file_mips_opts.gp;
16193 else if (strcmp (name, "fp=default") == 0)
16194 mips_opts.fp = file_mips_opts.fp;
16195 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16196 {
16197 mips_opts.isa = file_mips_opts.isa;
16198 mips_opts.arch = file_mips_opts.arch;
16199 mips_opts.gp = file_mips_opts.gp;
16200 mips_opts.fp = file_mips_opts.fp;
16201 }
252b5132
RH
16202 else if (strcmp (name, "push") == 0)
16203 {
16204 struct mips_option_stack *s;
16205
325801bd 16206 s = XNEW (struct mips_option_stack);
252b5132
RH
16207 s->next = mips_opts_stack;
16208 s->options = mips_opts;
16209 mips_opts_stack = s;
16210 }
16211 else if (strcmp (name, "pop") == 0)
16212 {
16213 struct mips_option_stack *s;
16214
16215 s = mips_opts_stack;
16216 if (s == NULL)
16217 as_bad (_(".set pop with no .set push"));
16218 else
16219 {
16220 /* If we're changing the reorder mode we need to handle
16221 delay slots correctly. */
16222 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16223 start_noreorder ();
252b5132 16224 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16225 end_noreorder ();
252b5132
RH
16226
16227 mips_opts = s->options;
16228 mips_opts_stack = s->next;
16229 free (s);
16230 }
16231 }
22522f88
MR
16232 else
16233 {
16234 type = parse_code_option (name);
16235 if (type == OPTION_TYPE_BAD)
16236 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16237 }
919731af 16238
16239 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16240 registers based on what is supported by the arch/cpu. */
22522f88 16241 if (type == OPTION_TYPE_ISA)
e6559e01 16242 {
919731af 16243 switch (mips_opts.isa)
16244 {
16245 case 0:
16246 break;
16247 case ISA_MIPS1:
351cdf24
MF
16248 /* MIPS I cannot support FPXX. */
16249 mips_opts.fp = 32;
16250 /* fall-through. */
919731af 16251 case ISA_MIPS2:
16252 case ISA_MIPS32:
16253 case ISA_MIPS32R2:
16254 case ISA_MIPS32R3:
16255 case ISA_MIPS32R5:
16256 mips_opts.gp = 32;
351cdf24
MF
16257 if (mips_opts.fp != 0)
16258 mips_opts.fp = 32;
919731af 16259 break;
7361da2c
AB
16260 case ISA_MIPS32R6:
16261 mips_opts.gp = 32;
16262 mips_opts.fp = 64;
16263 break;
919731af 16264 case ISA_MIPS3:
16265 case ISA_MIPS4:
16266 case ISA_MIPS5:
16267 case ISA_MIPS64:
16268 case ISA_MIPS64R2:
16269 case ISA_MIPS64R3:
16270 case ISA_MIPS64R5:
7361da2c 16271 case ISA_MIPS64R6:
919731af 16272 mips_opts.gp = 64;
351cdf24
MF
16273 if (mips_opts.fp != 0)
16274 {
16275 if (mips_opts.arch == CPU_R5900)
16276 mips_opts.fp = 32;
16277 else
16278 mips_opts.fp = 64;
16279 }
919731af 16280 break;
16281 default:
16282 as_bad (_("unknown ISA level %s"), name + 4);
16283 break;
16284 }
e6559e01 16285 }
919731af 16286
16287 mips_check_options (&mips_opts, FALSE);
16288
16289 mips_check_isa_supports_ases ();
16290 *input_line_pointer = ch;
16291 demand_empty_rest_of_line ();
16292}
16293
16294/* Handle the .module pseudo-op. */
16295
16296static void
16297s_module (int ignore ATTRIBUTE_UNUSED)
16298{
16299 char *name = input_line_pointer, ch;
16300
16301 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16302 ++input_line_pointer;
16303 ch = *input_line_pointer;
16304 *input_line_pointer = '\0';
16305
16306 if (!file_mips_opts_checked)
252b5132 16307 {
22522f88 16308 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16309 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16310
16311 /* Update module level settings from mips_opts. */
16312 file_mips_opts = mips_opts;
252b5132 16313 }
919731af 16314 else
16315 as_bad (_(".module is not permitted after generating code"));
16316
252b5132
RH
16317 *input_line_pointer = ch;
16318 demand_empty_rest_of_line ();
16319}
16320
16321/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16322 .option pic2. It means to generate SVR4 PIC calls. */
16323
16324static void
17a2f251 16325s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16326{
16327 mips_pic = SVR4_PIC;
143d77c5 16328 mips_abicalls = TRUE;
4d0d148d
TS
16329
16330 if (g_switch_seen && g_switch_value != 0)
16331 as_warn (_("-G may not be used with SVR4 PIC code"));
16332 g_switch_value = 0;
16333
252b5132
RH
16334 bfd_set_gp_size (stdoutput, 0);
16335 demand_empty_rest_of_line ();
16336}
16337
16338/* Handle the .cpload pseudo-op. This is used when generating SVR4
16339 PIC code. It sets the $gp register for the function based on the
16340 function address, which is in the register named in the argument.
16341 This uses a relocation against _gp_disp, which is handled specially
16342 by the linker. The result is:
16343 lui $gp,%hi(_gp_disp)
16344 addiu $gp,$gp,%lo(_gp_disp)
16345 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16346 The .cpload argument is normally $25 == $t9.
16347
16348 The -mno-shared option changes this to:
bbe506e8
TS
16349 lui $gp,%hi(__gnu_local_gp)
16350 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16351 and the argument is ignored. This saves an instruction, but the
16352 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16353 address for __gnu_local_gp. Thus code assembled with -mno-shared
16354 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16355
16356static void
17a2f251 16357s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16358{
16359 expressionS ex;
aa6975fb
ILT
16360 int reg;
16361 int in_shared;
252b5132 16362
919731af 16363 file_mips_check_options ();
16364
6478892d
TS
16365 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16366 .cpload is ignored. */
16367 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16368 {
16369 s_ignore (0);
16370 return;
16371 }
16372
a276b80c
MR
16373 if (mips_opts.mips16)
16374 {
16375 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16376 ignore_rest_of_line ();
16377 return;
16378 }
16379
d3ecfc59 16380 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16381 if (mips_opts.noreorder == 0)
16382 as_warn (_(".cpload not in noreorder section"));
16383
aa6975fb
ILT
16384 reg = tc_get_register (0);
16385
16386 /* If we need to produce a 64-bit address, we are better off using
16387 the default instruction sequence. */
aed1a261 16388 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16389
252b5132 16390 ex.X_op = O_symbol;
bbe506e8
TS
16391 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16392 "__gnu_local_gp");
252b5132
RH
16393 ex.X_op_symbol = NULL;
16394 ex.X_add_number = 0;
16395
16396 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16397 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16398
8a75745d
MR
16399 mips_mark_labels ();
16400 mips_assembling_insn = TRUE;
16401
584892a6 16402 macro_start ();
67c0d1eb
RS
16403 macro_build_lui (&ex, mips_gp_register);
16404 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16405 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16406 if (in_shared)
16407 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16408 mips_gp_register, reg);
584892a6 16409 macro_end ();
252b5132 16410
8a75745d 16411 mips_assembling_insn = FALSE;
252b5132
RH
16412 demand_empty_rest_of_line ();
16413}
16414
6478892d
TS
16415/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16416 .cpsetup $reg1, offset|$reg2, label
16417
16418 If offset is given, this results in:
16419 sd $gp, offset($sp)
956cd1d6 16420 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16421 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16422 daddu $gp, $gp, $reg1
6478892d
TS
16423
16424 If $reg2 is given, this results in:
40fc1451 16425 or $reg2, $gp, $0
956cd1d6 16426 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16427 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16428 daddu $gp, $gp, $reg1
aa6975fb
ILT
16429 $reg1 is normally $25 == $t9.
16430
16431 The -mno-shared option replaces the last three instructions with
16432 lui $gp,%hi(_gp)
54f4ddb3 16433 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16434
6478892d 16435static void
17a2f251 16436s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16437{
16438 expressionS ex_off;
16439 expressionS ex_sym;
16440 int reg1;
6478892d 16441
919731af 16442 file_mips_check_options ();
16443
8586fc66 16444 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16445 We also need NewABI support. */
16446 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16447 {
16448 s_ignore (0);
16449 return;
16450 }
16451
a276b80c
MR
16452 if (mips_opts.mips16)
16453 {
16454 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16455 ignore_rest_of_line ();
16456 return;
16457 }
16458
6478892d
TS
16459 reg1 = tc_get_register (0);
16460 SKIP_WHITESPACE ();
16461 if (*input_line_pointer != ',')
16462 {
16463 as_bad (_("missing argument separator ',' for .cpsetup"));
16464 return;
16465 }
16466 else
80245285 16467 ++input_line_pointer;
6478892d
TS
16468 SKIP_WHITESPACE ();
16469 if (*input_line_pointer == '$')
80245285
TS
16470 {
16471 mips_cpreturn_register = tc_get_register (0);
16472 mips_cpreturn_offset = -1;
16473 }
6478892d 16474 else
80245285
TS
16475 {
16476 mips_cpreturn_offset = get_absolute_expression ();
16477 mips_cpreturn_register = -1;
16478 }
6478892d
TS
16479 SKIP_WHITESPACE ();
16480 if (*input_line_pointer != ',')
16481 {
16482 as_bad (_("missing argument separator ',' for .cpsetup"));
16483 return;
16484 }
16485 else
f9419b05 16486 ++input_line_pointer;
6478892d 16487 SKIP_WHITESPACE ();
f21f8242 16488 expression (&ex_sym);
6478892d 16489
8a75745d
MR
16490 mips_mark_labels ();
16491 mips_assembling_insn = TRUE;
16492
584892a6 16493 macro_start ();
6478892d
TS
16494 if (mips_cpreturn_register == -1)
16495 {
16496 ex_off.X_op = O_constant;
16497 ex_off.X_add_symbol = NULL;
16498 ex_off.X_op_symbol = NULL;
16499 ex_off.X_add_number = mips_cpreturn_offset;
16500
67c0d1eb 16501 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16502 BFD_RELOC_LO16, SP);
6478892d
TS
16503 }
16504 else
40fc1451 16505 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16506
aed1a261 16507 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16508 {
df58fc94 16509 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16510 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16511 BFD_RELOC_HI16_S);
16512
16513 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16514 mips_gp_register, -1, BFD_RELOC_GPREL16,
16515 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16516
16517 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16518 mips_gp_register, reg1);
16519 }
16520 else
16521 {
16522 expressionS ex;
16523
16524 ex.X_op = O_symbol;
4184909a 16525 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16526 ex.X_op_symbol = NULL;
16527 ex.X_add_number = 0;
6e1304d8 16528
aa6975fb
ILT
16529 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16530 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16531
16532 macro_build_lui (&ex, mips_gp_register);
16533 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16534 mips_gp_register, BFD_RELOC_LO16);
16535 }
f21f8242 16536
584892a6 16537 macro_end ();
6478892d 16538
8a75745d 16539 mips_assembling_insn = FALSE;
6478892d
TS
16540 demand_empty_rest_of_line ();
16541}
16542
16543static void
17a2f251 16544s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16545{
919731af 16546 file_mips_check_options ();
16547
6478892d 16548 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16549 .cplocal is ignored. */
6478892d
TS
16550 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16551 {
16552 s_ignore (0);
16553 return;
16554 }
16555
a276b80c
MR
16556 if (mips_opts.mips16)
16557 {
16558 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16559 ignore_rest_of_line ();
16560 return;
16561 }
16562
6478892d 16563 mips_gp_register = tc_get_register (0);
85b51719 16564 demand_empty_rest_of_line ();
6478892d
TS
16565}
16566
252b5132
RH
16567/* Handle the .cprestore pseudo-op. This stores $gp into a given
16568 offset from $sp. The offset is remembered, and after making a PIC
16569 call $gp is restored from that location. */
16570
16571static void
17a2f251 16572s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16573{
16574 expressionS ex;
252b5132 16575
919731af 16576 file_mips_check_options ();
16577
6478892d 16578 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16579 .cprestore is ignored. */
6478892d 16580 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16581 {
16582 s_ignore (0);
16583 return;
16584 }
16585
a276b80c
MR
16586 if (mips_opts.mips16)
16587 {
16588 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16589 ignore_rest_of_line ();
16590 return;
16591 }
16592
252b5132 16593 mips_cprestore_offset = get_absolute_expression ();
7a621144 16594 mips_cprestore_valid = 1;
252b5132
RH
16595
16596 ex.X_op = O_constant;
16597 ex.X_add_symbol = NULL;
16598 ex.X_op_symbol = NULL;
16599 ex.X_add_number = mips_cprestore_offset;
16600
8a75745d
MR
16601 mips_mark_labels ();
16602 mips_assembling_insn = TRUE;
16603
584892a6 16604 macro_start ();
67c0d1eb
RS
16605 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16606 SP, HAVE_64BIT_ADDRESSES);
584892a6 16607 macro_end ();
252b5132 16608
8a75745d 16609 mips_assembling_insn = FALSE;
252b5132
RH
16610 demand_empty_rest_of_line ();
16611}
16612
6478892d 16613/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16614 was given in the preceding .cpsetup, it results in:
6478892d 16615 ld $gp, offset($sp)
76b3015f 16616
6478892d 16617 If a register $reg2 was given there, it results in:
40fc1451 16618 or $gp, $reg2, $0 */
54f4ddb3 16619
6478892d 16620static void
17a2f251 16621s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16622{
16623 expressionS ex;
6478892d 16624
919731af 16625 file_mips_check_options ();
16626
6478892d
TS
16627 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16628 We also need NewABI support. */
16629 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16630 {
16631 s_ignore (0);
16632 return;
16633 }
16634
a276b80c
MR
16635 if (mips_opts.mips16)
16636 {
16637 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16638 ignore_rest_of_line ();
16639 return;
16640 }
16641
8a75745d
MR
16642 mips_mark_labels ();
16643 mips_assembling_insn = TRUE;
16644
584892a6 16645 macro_start ();
6478892d
TS
16646 if (mips_cpreturn_register == -1)
16647 {
16648 ex.X_op = O_constant;
16649 ex.X_add_symbol = NULL;
16650 ex.X_op_symbol = NULL;
16651 ex.X_add_number = mips_cpreturn_offset;
16652
67c0d1eb 16653 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16654 }
16655 else
40fc1451
SD
16656 move_register (mips_gp_register, mips_cpreturn_register);
16657
584892a6 16658 macro_end ();
6478892d 16659
8a75745d 16660 mips_assembling_insn = FALSE;
6478892d
TS
16661 demand_empty_rest_of_line ();
16662}
16663
d0f13682
CLT
16664/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16665 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16666 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16667 debug information or MIPS16 TLS. */
741d6ea8
JM
16668
16669static void
d0f13682
CLT
16670s_tls_rel_directive (const size_t bytes, const char *dirstr,
16671 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16672{
16673 expressionS ex;
16674 char *p;
16675
16676 expression (&ex);
16677
16678 if (ex.X_op != O_symbol)
16679 {
1661c76c 16680 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16681 ignore_rest_of_line ();
16682 }
16683
16684 p = frag_more (bytes);
16685 md_number_to_chars (p, 0, bytes);
d0f13682 16686 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16687 demand_empty_rest_of_line ();
de64cffd 16688 mips_clear_insn_labels ();
741d6ea8
JM
16689}
16690
16691/* Handle .dtprelword. */
16692
16693static void
16694s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16695{
d0f13682 16696 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16697}
16698
16699/* Handle .dtpreldword. */
16700
16701static void
16702s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16703{
d0f13682
CLT
16704 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16705}
16706
16707/* Handle .tprelword. */
16708
16709static void
16710s_tprelword (int ignore ATTRIBUTE_UNUSED)
16711{
16712 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16713}
16714
16715/* Handle .tpreldword. */
16716
16717static void
16718s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16719{
16720 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
16721}
16722
6478892d
TS
16723/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16724 code. It sets the offset to use in gp_rel relocations. */
16725
16726static void
17a2f251 16727s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16728{
16729 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16730 We also need NewABI support. */
16731 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16732 {
16733 s_ignore (0);
16734 return;
16735 }
16736
def2e0dd 16737 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
16738
16739 demand_empty_rest_of_line ();
16740}
16741
252b5132
RH
16742/* Handle the .gpword pseudo-op. This is used when generating PIC
16743 code. It generates a 32 bit GP relative reloc. */
16744
16745static void
17a2f251 16746s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 16747{
a8dbcb85
TS
16748 segment_info_type *si;
16749 struct insn_label_list *l;
252b5132
RH
16750 expressionS ex;
16751 char *p;
16752
16753 /* When not generating PIC code, this is treated as .word. */
16754 if (mips_pic != SVR4_PIC)
16755 {
16756 s_cons (2);
16757 return;
16758 }
16759
a8dbcb85
TS
16760 si = seg_info (now_seg);
16761 l = si->label_list;
7d10b47d 16762 mips_emit_delays ();
252b5132 16763 if (auto_align)
462427c4 16764 mips_align (2, 0, l);
252b5132
RH
16765
16766 expression (&ex);
a1facbec 16767 mips_clear_insn_labels ();
252b5132
RH
16768
16769 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16770 {
1661c76c 16771 as_bad (_("unsupported use of .gpword"));
252b5132
RH
16772 ignore_rest_of_line ();
16773 }
16774
16775 p = frag_more (4);
17a2f251 16776 md_number_to_chars (p, 0, 4);
b34976b6 16777 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 16778 BFD_RELOC_GPREL32);
252b5132
RH
16779
16780 demand_empty_rest_of_line ();
16781}
16782
10181a0d 16783static void
17a2f251 16784s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 16785{
a8dbcb85
TS
16786 segment_info_type *si;
16787 struct insn_label_list *l;
10181a0d
AO
16788 expressionS ex;
16789 char *p;
16790
16791 /* When not generating PIC code, this is treated as .dword. */
16792 if (mips_pic != SVR4_PIC)
16793 {
16794 s_cons (3);
16795 return;
16796 }
16797
a8dbcb85
TS
16798 si = seg_info (now_seg);
16799 l = si->label_list;
7d10b47d 16800 mips_emit_delays ();
10181a0d 16801 if (auto_align)
462427c4 16802 mips_align (3, 0, l);
10181a0d
AO
16803
16804 expression (&ex);
a1facbec 16805 mips_clear_insn_labels ();
10181a0d
AO
16806
16807 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16808 {
1661c76c 16809 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
16810 ignore_rest_of_line ();
16811 }
16812
16813 p = frag_more (8);
17a2f251 16814 md_number_to_chars (p, 0, 8);
a105a300 16815 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 16816 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
16817
16818 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
16819 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16820 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
16821
16822 demand_empty_rest_of_line ();
16823}
16824
a3f278e2
CM
16825/* Handle the .ehword pseudo-op. This is used when generating unwinding
16826 tables. It generates a R_MIPS_EH reloc. */
16827
16828static void
16829s_ehword (int ignore ATTRIBUTE_UNUSED)
16830{
16831 expressionS ex;
16832 char *p;
16833
16834 mips_emit_delays ();
16835
16836 expression (&ex);
16837 mips_clear_insn_labels ();
16838
16839 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16840 {
1661c76c 16841 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
16842 ignore_rest_of_line ();
16843 }
16844
16845 p = frag_more (4);
16846 md_number_to_chars (p, 0, 4);
16847 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 16848 BFD_RELOC_32_PCREL);
a3f278e2
CM
16849
16850 demand_empty_rest_of_line ();
16851}
16852
252b5132
RH
16853/* Handle the .cpadd pseudo-op. This is used when dealing with switch
16854 tables in SVR4 PIC code. */
16855
16856static void
17a2f251 16857s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 16858{
252b5132
RH
16859 int reg;
16860
919731af 16861 file_mips_check_options ();
16862
10181a0d
AO
16863 /* This is ignored when not generating SVR4 PIC code. */
16864 if (mips_pic != SVR4_PIC)
252b5132
RH
16865 {
16866 s_ignore (0);
16867 return;
16868 }
16869
8a75745d
MR
16870 mips_mark_labels ();
16871 mips_assembling_insn = TRUE;
16872
252b5132 16873 /* Add $gp to the register named as an argument. */
584892a6 16874 macro_start ();
252b5132 16875 reg = tc_get_register (0);
67c0d1eb 16876 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 16877 macro_end ();
252b5132 16878
8a75745d 16879 mips_assembling_insn = FALSE;
bdaaa2e1 16880 demand_empty_rest_of_line ();
252b5132
RH
16881}
16882
16883/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 16884 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
16885 such as generating jalx instructions when needed. We also make
16886 them odd for the duration of the assembly, in order to generate the
16887 right sort of code. We will make them even in the adjust_symtab
16888 routine, while leaving them marked. This is convenient for the
16889 debugger and the disassembler. The linker knows to make them odd
16890 again. */
16891
16892static void
17a2f251 16893s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 16894{
7bb01e2d
MR
16895 file_mips_check_options ();
16896 file_ase_mips16 |= mips_opts.mips16;
16897 file_ase_micromips |= mips_opts.micromips;
16898
df58fc94 16899 mips_mark_labels ();
252b5132
RH
16900
16901 demand_empty_rest_of_line ();
16902}
16903
ba92f887
MR
16904/* Handle the .nan pseudo-op. */
16905
16906static void
16907s_nan (int ignore ATTRIBUTE_UNUSED)
16908{
16909 static const char str_legacy[] = "legacy";
16910 static const char str_2008[] = "2008";
16911 size_t i;
16912
16913 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16914
16915 if (i == sizeof (str_2008) - 1
16916 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 16917 mips_nan2008 = 1;
ba92f887
MR
16918 else if (i == sizeof (str_legacy) - 1
16919 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
16920 {
16921 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16922 mips_nan2008 = 0;
16923 else
16924 as_bad (_("`%s' does not support legacy NaN"),
16925 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16926 }
ba92f887 16927 else
1661c76c 16928 as_bad (_("bad .nan directive"));
ba92f887
MR
16929
16930 input_line_pointer += i;
16931 demand_empty_rest_of_line ();
16932}
16933
754e2bb9
RS
16934/* Handle a .stab[snd] directive. Ideally these directives would be
16935 implemented in a transparent way, so that removing them would not
16936 have any effect on the generated instructions. However, s_stab
16937 internally changes the section, so in practice we need to decide
16938 now whether the preceding label marks compressed code. We do not
16939 support changing the compression mode of a label after a .stab*
16940 directive, such as in:
16941
16942 foo:
134c0c8b 16943 .stabs ...
754e2bb9
RS
16944 .set mips16
16945
16946 so the current mode wins. */
252b5132
RH
16947
16948static void
17a2f251 16949s_mips_stab (int type)
252b5132 16950{
754e2bb9 16951 mips_mark_labels ();
252b5132
RH
16952 s_stab (type);
16953}
16954
54f4ddb3 16955/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
16956
16957static void
17a2f251 16958s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16959{
16960 char *name;
16961 int c;
16962 symbolS *symbolP;
16963 expressionS exp;
16964
d02603dc 16965 c = get_symbol_name (&name);
252b5132
RH
16966 symbolP = symbol_find_or_make (name);
16967 S_SET_WEAK (symbolP);
16968 *input_line_pointer = c;
16969
d02603dc 16970 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
16971
16972 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16973 {
16974 if (S_IS_DEFINED (symbolP))
16975 {
20203fb9 16976 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
16977 S_GET_NAME (symbolP));
16978 ignore_rest_of_line ();
16979 return;
16980 }
bdaaa2e1 16981
252b5132
RH
16982 if (*input_line_pointer == ',')
16983 {
16984 ++input_line_pointer;
16985 SKIP_WHITESPACE ();
16986 }
bdaaa2e1 16987
252b5132
RH
16988 expression (&exp);
16989 if (exp.X_op != O_symbol)
16990 {
20203fb9 16991 as_bad (_("bad .weakext directive"));
98d3f06f 16992 ignore_rest_of_line ();
252b5132
RH
16993 return;
16994 }
49309057 16995 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
16996 }
16997
16998 demand_empty_rest_of_line ();
16999}
17000
17001/* Parse a register string into a number. Called from the ECOFF code
17002 to parse .frame. The argument is non-zero if this is the frame
17003 register, so that we can record it in mips_frame_reg. */
17004
17005int
17a2f251 17006tc_get_register (int frame)
252b5132 17007{
707bfff6 17008 unsigned int reg;
252b5132
RH
17009
17010 SKIP_WHITESPACE ();
707bfff6
TS
17011 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17012 reg = 0;
252b5132 17013 if (frame)
7a621144
DJ
17014 {
17015 mips_frame_reg = reg != 0 ? reg : SP;
17016 mips_frame_reg_valid = 1;
17017 mips_cprestore_valid = 0;
17018 }
252b5132
RH
17019 return reg;
17020}
17021
17022valueT
17a2f251 17023md_section_align (asection *seg, valueT addr)
252b5132
RH
17024{
17025 int align = bfd_get_section_alignment (stdoutput, seg);
17026
f3ded42a
RS
17027 /* We don't need to align ELF sections to the full alignment.
17028 However, Irix 5 may prefer that we align them at least to a 16
17029 byte boundary. We don't bother to align the sections if we
17030 are targeted for an embedded system. */
17031 if (strncmp (TARGET_OS, "elf", 3) == 0)
17032 return addr;
17033 if (align > 4)
17034 align = 4;
252b5132 17035
8d3842cd 17036 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17037}
17038
17039/* Utility routine, called from above as well. If called while the
17040 input file is still being read, it's only an approximation. (For
17041 example, a symbol may later become defined which appeared to be
17042 undefined earlier.) */
17043
17044static int
17a2f251 17045nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17046{
17047 if (sym == 0)
17048 return 0;
17049
4d0d148d 17050 if (g_switch_value > 0)
252b5132
RH
17051 {
17052 const char *symname;
17053 int change;
17054
c9914766 17055 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17056 register. It can be if it is smaller than the -G size or if
17057 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17058 not be referenced off the $gp, although it appears as though
252b5132
RH
17059 they can. */
17060 symname = S_GET_NAME (sym);
17061 if (symname != (const char *) NULL
17062 && (strcmp (symname, "eprol") == 0
17063 || strcmp (symname, "etext") == 0
17064 || strcmp (symname, "_gp") == 0
17065 || strcmp (symname, "edata") == 0
17066 || strcmp (symname, "_fbss") == 0
17067 || strcmp (symname, "_fdata") == 0
17068 || strcmp (symname, "_ftext") == 0
17069 || strcmp (symname, "end") == 0
17070 || strcmp (symname, "_gp_disp") == 0))
17071 change = 1;
17072 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17073 && (0
17074#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17075 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17076 && (symbol_get_obj (sym)->ecoff_extern_size
17077 <= g_switch_value))
252b5132
RH
17078#endif
17079 /* We must defer this decision until after the whole
17080 file has been read, since there might be a .extern
17081 after the first use of this symbol. */
17082 || (before_relaxing
17083#ifndef NO_ECOFF_DEBUGGING
49309057 17084 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17085#endif
17086 && S_GET_VALUE (sym) == 0)
17087 || (S_GET_VALUE (sym) != 0
17088 && S_GET_VALUE (sym) <= g_switch_value)))
17089 change = 0;
17090 else
17091 {
17092 const char *segname;
17093
17094 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17095 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17096 && strcmp (segname, ".lit4") != 0);
17097 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17098 && strcmp (segname, ".sbss") != 0
17099 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17100 && strncmp (segname, ".sbss.", 6) != 0
17101 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17102 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17103 }
17104 return change;
17105 }
17106 else
c9914766 17107 /* We are not optimizing for the $gp register. */
252b5132
RH
17108 return 1;
17109}
17110
5919d012
RS
17111
17112/* Return true if the given symbol should be considered local for SVR4 PIC. */
17113
17114static bfd_boolean
17a2f251 17115pic_need_relax (symbolS *sym, asection *segtype)
5919d012
RS
17116{
17117 asection *symsec;
5919d012
RS
17118
17119 /* Handle the case of a symbol equated to another symbol. */
17120 while (symbol_equated_reloc_p (sym))
17121 {
17122 symbolS *n;
17123
5f0fe04b 17124 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17125 n = symbol_get_value_expression (sym)->X_add_symbol;
17126 if (n == sym)
17127 break;
17128 sym = n;
17129 }
17130
df1f3cda
DD
17131 if (symbol_section_p (sym))
17132 return TRUE;
17133
5919d012
RS
17134 symsec = S_GET_SEGMENT (sym);
17135
5919d012 17136 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17137 return (!bfd_is_und_section (symsec)
17138 && !bfd_is_abs_section (symsec)
5f0fe04b
TS
17139 && !bfd_is_com_section (symsec)
17140 && !s_is_linkonce (sym, segtype)
5919d012 17141 /* A global or weak symbol is treated as external. */
f3ded42a 17142 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012
RS
17143}
17144
17145
252b5132
RH
17146/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17147 extended opcode. SEC is the section the frag is in. */
17148
17149static int
17a2f251 17150mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132
RH
17151{
17152 int type;
3ccad066 17153 const struct mips_int_operand *operand;
252b5132 17154 offsetT val;
252b5132 17155 segT symsec;
98aa84af 17156 fragS *sym_frag;
252b5132
RH
17157
17158 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17159 return 0;
17160 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17161 return 1;
17162
88a7ef16 17163 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17164 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17165 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17166 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17167 || (operand->root.type == OP_PCREL
17168 ? sec != symsec
17169 : !bfd_is_abs_section (symsec)))
17170 return 1;
252b5132 17171
98aa84af 17172 sym_frag = symbol_get_frag (fragp->fr_symbol);
88a7ef16 17173 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17174
3ccad066 17175 if (operand->root.type == OP_PCREL)
252b5132 17176 {
3ccad066 17177 const struct mips_pcrel_operand *pcrel_op;
252b5132 17178 addressT addr;
3ccad066 17179 offsetT maxtiny;
252b5132 17180
88a7ef16
MR
17181 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17182 return 1;
252b5132 17183
88a7ef16 17184 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 17185
88a7ef16
MR
17186 /* If the relax_marker of the symbol fragment differs from the
17187 relax_marker of this fragment, we have not yet adjusted the
17188 symbol fragment fr_address. We want to add in STRETCH in
17189 order to get a better estimate of the address. This
17190 particularly matters because of the shift bits. */
252b5132 17191 if (stretch != 0
98aa84af 17192 && sym_frag->relax_marker != fragp->relax_marker)
252b5132
RH
17193 {
17194 fragS *f;
17195
17196 /* Adjust stretch for any alignment frag. Note that if have
17197 been expanding the earlier code, the symbol may be
17198 defined in what appears to be an earlier frag. FIXME:
17199 This doesn't handle the fr_subtype field, which specifies
17200 a maximum number of bytes to skip when doing an
17201 alignment. */
98aa84af 17202 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
252b5132
RH
17203 {
17204 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17205 {
17206 if (stretch < 0)
17207 stretch = - ((- stretch)
17208 & ~ ((1 << (int) f->fr_offset) - 1));
17209 else
17210 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17211 if (stretch == 0)
17212 break;
17213 }
17214 }
17215 if (f != NULL)
17216 val += stretch;
17217 }
17218
17219 addr = fragp->fr_address + fragp->fr_fix;
17220
17221 /* The base address rules are complicated. The base address of
17222 a branch is the following instruction. The base address of a
17223 PC relative load or add is the instruction itself, but if it
17224 is in a delay slot (in which case it can not be extended) use
17225 the address of the instruction whose delay slot it is in. */
3ccad066 17226 if (pcrel_op->include_isa_bit)
252b5132
RH
17227 {
17228 addr += 2;
17229
17230 /* If we are currently assuming that this frag should be
17231 extended, then, the current address is two bytes
bdaaa2e1 17232 higher. */
252b5132
RH
17233 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17234 addr += 2;
17235
17236 /* Ignore the low bit in the target, since it will be set
17237 for a text label. */
3ccad066 17238 val &= -2;
252b5132
RH
17239 }
17240 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17241 addr -= 4;
17242 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17243 addr -= 2;
17244
3ccad066 17245 val -= addr & -(1 << pcrel_op->align_log2);
252b5132
RH
17246
17247 /* If any of the shifted bits are set, we must use an extended
17248 opcode. If the address depends on the size of this
17249 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17250 use an extended opcode. */
17251 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17252 {
17253 fragp->fr_subtype =
17254 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17255 return 1;
17256 }
17257
17258 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17259 is precisely the next value above maxtiny, then there is a
17260 chance of an infinite loop as in the following code:
252b5132
RH
17261 la $4,foo
17262 .skip 1020
17263 .align 2
17264 foo:
17265 In this case when the la is extended, foo is 0x3fc bytes
17266 away, so the la can be shrunk, but then foo is 0x400 away, so
17267 the la must be extended. To avoid this loop, we mark the
17268 frag as extended if it was small, and is about to become
3ccad066
RS
17269 extended with the next value above maxtiny. */
17270 maxtiny = mips_int_operand_max (operand);
17271 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17272 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17273 {
17274 fragp->fr_subtype =
17275 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17276 return 1;
17277 }
17278 }
252b5132 17279
3ccad066 17280 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17281}
17282
4a6a3df4
AO
17283/* Compute the length of a branch sequence, and adjust the
17284 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17285 worst-case length is computed, with UPDATE being used to indicate
17286 whether an unconditional (-1), branch-likely (+1) or regular (0)
17287 branch is to be computed. */
17288static int
17a2f251 17289relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17290{
b34976b6 17291 bfd_boolean toofar;
4a6a3df4
AO
17292 int length;
17293
17294 if (fragp
17295 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17296 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17297 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17298 {
17299 addressT addr;
17300 offsetT val;
17301
17302 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17303
17304 addr = fragp->fr_address + fragp->fr_fix + 4;
17305
17306 val -= addr;
17307
17308 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17309 }
4a6a3df4 17310 else
c1f61bd2
MR
17311 /* If the symbol is not defined or it's in a different segment,
17312 we emit the long sequence. */
b34976b6 17313 toofar = TRUE;
4a6a3df4
AO
17314
17315 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17316 fragp->fr_subtype
66b3e8da
MR
17317 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17318 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17319 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17320 RELAX_BRANCH_LINK (fragp->fr_subtype),
17321 toofar);
17322
17323 length = 4;
17324 if (toofar)
17325 {
17326 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17327 length += 8;
17328
17329 if (mips_pic != NO_PIC)
17330 {
17331 /* Additional space for PIC loading of target address. */
17332 length += 8;
17333 if (mips_opts.isa == ISA_MIPS1)
17334 /* Additional space for $at-stabilizing nop. */
17335 length += 4;
17336 }
17337
17338 /* If branch is conditional. */
17339 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17340 length += 8;
17341 }
b34976b6 17342
4a6a3df4
AO
17343 return length;
17344}
17345
7bd374a4
MR
17346/* Get a FRAG's branch instruction delay slot size, either from the
17347 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17348 or SHORT_INSN_SIZE otherwise. */
17349
17350static int
17351frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17352{
17353 char *buf = fragp->fr_literal + fragp->fr_fix;
17354
17355 if (al)
17356 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17357 else
17358 return short_insn_size;
17359}
17360
df58fc94
RS
17361/* Compute the length of a branch sequence, and adjust the
17362 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17363 worst-case length is computed, with UPDATE being used to indicate
17364 whether an unconditional (-1), or regular (0) branch is to be
17365 computed. */
17366
17367static int
17368relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17369{
7bd374a4
MR
17370 bfd_boolean insn32 = TRUE;
17371 bfd_boolean nods = TRUE;
17372 bfd_boolean al = TRUE;
17373 int short_insn_size;
df58fc94
RS
17374 bfd_boolean toofar;
17375 int length;
17376
7bd374a4
MR
17377 if (fragp)
17378 {
17379 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17380 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17381 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17382 }
17383 short_insn_size = insn32 ? 4 : 2;
17384
df58fc94
RS
17385 if (fragp
17386 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17387 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17388 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17389 {
17390 addressT addr;
17391 offsetT val;
17392
17393 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17394 /* Ignore the low bit in the target, since it will be set
17395 for a text label. */
17396 if ((val & 1) != 0)
17397 --val;
17398
17399 addr = fragp->fr_address + fragp->fr_fix + 4;
17400
17401 val -= addr;
17402
17403 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17404 }
df58fc94 17405 else
c1f61bd2
MR
17406 /* If the symbol is not defined or it's in a different segment,
17407 we emit the long sequence. */
df58fc94
RS
17408 toofar = TRUE;
17409
17410 if (fragp && update
17411 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17412 fragp->fr_subtype = (toofar
17413 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17414 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17415
17416 length = 4;
17417 if (toofar)
17418 {
17419 bfd_boolean compact_known = fragp != NULL;
17420 bfd_boolean compact = FALSE;
17421 bfd_boolean uncond;
17422
df58fc94 17423 if (fragp)
8484fb75
MR
17424 {
17425 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17426 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17427 }
df58fc94
RS
17428 else
17429 uncond = update < 0;
17430
17431 /* If label is out of range, we turn branch <br>:
17432
17433 <br> label # 4 bytes
17434 0:
17435
17436 into:
17437
17438 j label # 4 bytes
8484fb75
MR
17439 nop # 2/4 bytes if
17440 # compact && (!PIC || insn32)
df58fc94
RS
17441 0:
17442 */
8484fb75
MR
17443 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17444 length += short_insn_size;
df58fc94
RS
17445
17446 /* If assembling PIC code, we further turn:
17447
17448 j label # 4 bytes
17449
17450 into:
17451
17452 lw/ld at, %got(label)(gp) # 4 bytes
17453 d/addiu at, %lo(label) # 4 bytes
8484fb75 17454 jr/c at # 2/4 bytes
df58fc94
RS
17455 */
17456 if (mips_pic != NO_PIC)
8484fb75 17457 length += 4 + short_insn_size;
df58fc94 17458
7bd374a4
MR
17459 /* Add an extra nop if the jump has no compact form and we need
17460 to fill the delay slot. */
17461 if ((mips_pic == NO_PIC || al) && nods)
17462 length += (fragp
17463 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17464 : short_insn_size);
17465
df58fc94
RS
17466 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17467
17468 <brneg> 0f # 4 bytes
8484fb75 17469 nop # 2/4 bytes if !compact
df58fc94
RS
17470 */
17471 if (!uncond)
8484fb75 17472 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17473 }
7bd374a4
MR
17474 else if (nods)
17475 {
17476 /* Add an extra nop to fill the delay slot. */
17477 gas_assert (fragp);
17478 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17479 }
df58fc94
RS
17480
17481 return length;
17482}
17483
17484/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17485 bit accordingly. */
17486
17487static int
17488relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17489{
17490 bfd_boolean toofar;
17491
df58fc94
RS
17492 if (fragp
17493 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17494 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17495 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17496 {
17497 addressT addr;
17498 offsetT val;
17499 int type;
17500
17501 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17502 /* Ignore the low bit in the target, since it will be set
17503 for a text label. */
17504 if ((val & 1) != 0)
17505 --val;
17506
17507 /* Assume this is a 2-byte branch. */
17508 addr = fragp->fr_address + fragp->fr_fix + 2;
17509
17510 /* We try to avoid the infinite loop by not adding 2 more bytes for
17511 long branches. */
17512
17513 val -= addr;
17514
17515 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17516 if (type == 'D')
17517 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17518 else if (type == 'E')
17519 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17520 else
17521 abort ();
17522 }
17523 else
17524 /* If the symbol is not defined or it's in a different segment,
17525 we emit a normal 32-bit branch. */
17526 toofar = TRUE;
17527
17528 if (fragp && update
17529 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17530 fragp->fr_subtype
17531 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17532 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17533
17534 if (toofar)
17535 return 4;
17536
17537 return 2;
17538}
17539
252b5132
RH
17540/* Estimate the size of a frag before relaxing. Unless this is the
17541 mips16, we are not really relaxing here, and the final size is
17542 encoded in the subtype information. For the mips16, we have to
17543 decide whether we are using an extended opcode or not. */
17544
252b5132 17545int
17a2f251 17546md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17547{
5919d012 17548 int change;
252b5132 17549
4a6a3df4
AO
17550 if (RELAX_BRANCH_P (fragp->fr_subtype))
17551 {
17552
b34976b6
AM
17553 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17554
4a6a3df4
AO
17555 return fragp->fr_var;
17556 }
17557
252b5132 17558 if (RELAX_MIPS16_P (fragp->fr_subtype))
177b4a6a
AO
17559 /* We don't want to modify the EXTENDED bit here; it might get us
17560 into infinite loops. We change it only in mips_relax_frag(). */
17561 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
252b5132 17562
df58fc94
RS
17563 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17564 {
17565 int length = 4;
17566
17567 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17568 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17569 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17570 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17571 fragp->fr_var = length;
17572
17573 return length;
17574 }
17575
252b5132 17576 if (mips_pic == NO_PIC)
5919d012 17577 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132 17578 else if (mips_pic == SVR4_PIC)
5919d012 17579 change = pic_need_relax (fragp->fr_symbol, segtype);
0a44bf69
RS
17580 else if (mips_pic == VXWORKS_PIC)
17581 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17582 change = 0;
252b5132
RH
17583 else
17584 abort ();
17585
17586 if (change)
17587 {
4d7206a2 17588 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17589 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17590 }
4d7206a2
RS
17591 else
17592 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17593}
17594
17595/* This is called to see whether a reloc against a defined symbol
de7e6852 17596 should be converted into a reloc against a section. */
252b5132
RH
17597
17598int
17a2f251 17599mips_fix_adjustable (fixS *fixp)
252b5132 17600{
252b5132
RH
17601 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17602 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17603 return 0;
a161fe53 17604
252b5132
RH
17605 if (fixp->fx_addsy == NULL)
17606 return 1;
a161fe53 17607
2f0c68f2
CM
17608 /* Allow relocs used for EH tables. */
17609 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17610 return 1;
17611
de7e6852
RS
17612 /* If symbol SYM is in a mergeable section, relocations of the form
17613 SYM + 0 can usually be made section-relative. The mergeable data
17614 is then identified by the section offset rather than by the symbol.
17615
17616 However, if we're generating REL LO16 relocations, the offset is split
17617 between the LO16 and parterning high part relocation. The linker will
17618 need to recalculate the complete offset in order to correctly identify
17619 the merge data.
17620
17621 The linker has traditionally not looked for the parterning high part
17622 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17623 placed anywhere. Rather than break backwards compatibility by changing
17624 this, it seems better not to force the issue, and instead keep the
17625 original symbol. This will work with either linker behavior. */
738e5348 17626 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17627 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17628 && HAVE_IN_PLACE_ADDENDS
17629 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17630 return 0;
17631
97f50151
MR
17632 /* There is no place to store an in-place offset for JALR relocations. */
17633 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17634 return 0;
17635
17636 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17637 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17638 start address of the symbol's containing section.
17639
17640 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17641 section relative to allow linker relaxations to be performed later on. */
97f50151 17642 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17643 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17644 return 0;
17645
b314ec0e
RS
17646 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17647 to a floating-point stub. The same is true for non-R_MIPS16_26
17648 relocations against MIPS16 functions; in this case, the stub becomes
17649 the function's canonical address.
17650
17651 Floating-point stubs are stored in unique .mips16.call.* or
17652 .mips16.fn.* sections. If a stub T for function F is in section S,
17653 the first relocation in section S must be against F; this is how the
17654 linker determines the target function. All relocations that might
17655 resolve to T must also be against F. We therefore have the following
17656 restrictions, which are given in an intentionally-redundant way:
17657
17658 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17659 symbols.
17660
17661 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17662 if that stub might be used.
17663
17664 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17665 symbols.
17666
17667 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17668 that stub might be used.
17669
17670 There is a further restriction:
17671
df58fc94 17672 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 17673 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
17674 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17675 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17676 against MIPS16 or microMIPS symbols because we need to keep the
17677 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
17678 detection and JAL or BAL to JALX instruction conversion in the
17679 linker.
b314ec0e 17680
df58fc94 17681 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 17682 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 17683 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
17684
17685 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17686 relocation against some symbol R, no relocation against R may be
17687 reduced. (Note that this deals with (2) as well as (1) because
17688 relocations against global symbols will never be reduced on ELF
17689 targets.) This approach is a little simpler than trying to detect
17690 stub sections, and gives the "all or nothing" per-symbol consistency
17691 that we have for MIPS16 symbols. */
f3ded42a 17692 if (fixp->fx_subsy == NULL
30c09090 17693 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 17694 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
17695 && (jmp_reloc_p (fixp->fx_r_type)
17696 || b_reloc_p (fixp->fx_r_type)))
44d3da23 17697 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 17698 return 0;
a161fe53 17699
252b5132
RH
17700 return 1;
17701}
17702
17703/* Translate internal representation of relocation info to BFD target
17704 format. */
17705
17706arelent **
17a2f251 17707tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
17708{
17709 static arelent *retval[4];
17710 arelent *reloc;
17711 bfd_reloc_code_real_type code;
17712
4b0cff4e 17713 memset (retval, 0, sizeof(retval));
325801bd
TS
17714 reloc = retval[0] = XCNEW (arelent);
17715 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 17716 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
17717 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17718
bad36eac
DJ
17719 if (fixp->fx_pcrel)
17720 {
df58fc94 17721 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 17722 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
17723 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17724 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 17725 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
17726 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17727 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17728 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17729 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17730 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17731 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17732 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
17733
17734 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17735 Relocations want only the symbol offset. */
51f6035b
MR
17736 switch (fixp->fx_r_type)
17737 {
17738 case BFD_RELOC_MIPS_18_PCREL_S3:
17739 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17740 break;
17741 default:
17742 reloc->addend = fixp->fx_addnumber + reloc->address;
17743 break;
17744 }
bad36eac 17745 }
17c6c9d9
MR
17746 else if (HAVE_IN_PLACE_ADDENDS
17747 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17748 && (read_compressed_insn (fixp->fx_frag->fr_literal
17749 + fixp->fx_where, 4) >> 26) == 0x3c)
17750 {
17751 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17752 addend accordingly. */
17753 reloc->addend = fixp->fx_addnumber >> 1;
17754 }
bad36eac
DJ
17755 else
17756 reloc->addend = fixp->fx_addnumber;
252b5132 17757
438c16b8
TS
17758 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17759 entry to be used in the relocation's section offset. */
17760 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
17761 {
17762 reloc->address = reloc->addend;
17763 reloc->addend = 0;
17764 }
17765
252b5132 17766 code = fixp->fx_r_type;
252b5132 17767
bad36eac 17768 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
17769 if (reloc->howto == NULL)
17770 {
17771 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
17772 _("cannot represent %s relocation in this object file"
17773 " format"),
252b5132
RH
17774 bfd_get_reloc_code_name (code));
17775 retval[0] = NULL;
17776 }
17777
17778 return retval;
17779}
17780
17781/* Relax a machine dependent frag. This returns the amount by which
17782 the current size of the frag should change. */
17783
17784int
17a2f251 17785mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 17786{
4a6a3df4
AO
17787 if (RELAX_BRANCH_P (fragp->fr_subtype))
17788 {
17789 offsetT old_var = fragp->fr_var;
b34976b6
AM
17790
17791 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
17792
17793 return fragp->fr_var - old_var;
17794 }
17795
df58fc94
RS
17796 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17797 {
17798 offsetT old_var = fragp->fr_var;
17799 offsetT new_var = 4;
17800
17801 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17802 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17803 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17804 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17805 fragp->fr_var = new_var;
17806
17807 return new_var - old_var;
17808 }
17809
252b5132
RH
17810 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17811 return 0;
17812
88a7ef16 17813 if (mips16_extended_frag (fragp, sec, stretch))
252b5132
RH
17814 {
17815 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17816 return 0;
17817 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17818 return 2;
17819 }
17820 else
17821 {
17822 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17823 return 0;
17824 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17825 return -2;
17826 }
17827
17828 return 0;
17829}
17830
17831/* Convert a machine dependent frag. */
17832
17833void
17a2f251 17834md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 17835{
4a6a3df4
AO
17836 if (RELAX_BRANCH_P (fragp->fr_subtype))
17837 {
4d68580a 17838 char *buf;
4a6a3df4
AO
17839 unsigned long insn;
17840 expressionS exp;
17841 fixS *fixp;
b34976b6 17842
4d68580a
RS
17843 buf = fragp->fr_literal + fragp->fr_fix;
17844 insn = read_insn (buf);
b34976b6 17845
4a6a3df4
AO
17846 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17847 {
17848 /* We generate a fixup instead of applying it right now
17849 because, if there are linker relaxations, we're going to
17850 need the relocations. */
17851 exp.X_op = O_symbol;
17852 exp.X_add_symbol = fragp->fr_symbol;
17853 exp.X_add_number = fragp->fr_offset;
17854
4d68580a
RS
17855 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17856 BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
17857 fixp->fx_file = fragp->fr_file;
17858 fixp->fx_line = fragp->fr_line;
b34976b6 17859
4d68580a 17860 buf = write_insn (buf, insn);
4a6a3df4
AO
17861 }
17862 else
17863 {
17864 int i;
17865
17866 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 17867 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
17868
17869 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17870 goto uncond;
17871
17872 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17873 {
17874 /* Reverse the branch. */
17875 switch ((insn >> 28) & 0xf)
17876 {
17877 case 4:
56d438b1
CF
17878 if ((insn & 0xff000000) == 0x47000000
17879 || (insn & 0xff600000) == 0x45600000)
17880 {
17881 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17882 reversed by tweaking bit 23. */
17883 insn ^= 0x00800000;
17884 }
17885 else
17886 {
17887 /* bc[0-3][tf]l? instructions can have the condition
17888 reversed by tweaking a single TF bit, and their
17889 opcodes all have 0x4???????. */
17890 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17891 insn ^= 0x00010000;
17892 }
4a6a3df4
AO
17893 break;
17894
17895 case 0:
17896 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 17897 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 17898 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
17899 insn ^= 0x00010000;
17900 break;
b34976b6 17901
4a6a3df4
AO
17902 case 1:
17903 /* beq 0x10000000 bne 0x14000000
54f4ddb3 17904 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
17905 insn ^= 0x04000000;
17906 break;
17907
17908 default:
17909 abort ();
17910 }
17911 }
17912
17913 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17914 {
17915 /* Clear the and-link bit. */
9c2799c2 17916 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 17917
54f4ddb3
TS
17918 /* bltzal 0x04100000 bgezal 0x04110000
17919 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
17920 insn &= ~0x00100000;
17921 }
17922
17923 /* Branch over the branch (if the branch was likely) or the
17924 full jump (not likely case). Compute the offset from the
17925 current instruction to branch to. */
17926 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17927 i = 16;
17928 else
17929 {
17930 /* How many bytes in instructions we've already emitted? */
4d68580a 17931 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17932 /* How many bytes in instructions from here to the end? */
17933 i = fragp->fr_var - i;
17934 }
17935 /* Convert to instruction count. */
17936 i >>= 2;
17937 /* Branch counts from the next instruction. */
b34976b6 17938 i--;
4a6a3df4
AO
17939 insn |= i;
17940 /* Branch over the jump. */
4d68580a 17941 buf = write_insn (buf, insn);
4a6a3df4 17942
54f4ddb3 17943 /* nop */
4d68580a 17944 buf = write_insn (buf, 0);
4a6a3df4
AO
17945
17946 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17947 {
17948 /* beql $0, $0, 2f */
17949 insn = 0x50000000;
17950 /* Compute the PC offset from the current instruction to
17951 the end of the variable frag. */
17952 /* How many bytes in instructions we've already emitted? */
4d68580a 17953 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
17954 /* How many bytes in instructions from here to the end? */
17955 i = fragp->fr_var - i;
17956 /* Convert to instruction count. */
17957 i >>= 2;
17958 /* Don't decrement i, because we want to branch over the
17959 delay slot. */
4a6a3df4 17960 insn |= i;
4a6a3df4 17961
4d68580a
RS
17962 buf = write_insn (buf, insn);
17963 buf = write_insn (buf, 0);
4a6a3df4
AO
17964 }
17965
17966 uncond:
17967 if (mips_pic == NO_PIC)
17968 {
17969 /* j or jal. */
17970 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17971 ? 0x0c000000 : 0x08000000);
17972 exp.X_op = O_symbol;
17973 exp.X_add_symbol = fragp->fr_symbol;
17974 exp.X_add_number = fragp->fr_offset;
17975
4d68580a
RS
17976 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17977 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
17978 fixp->fx_file = fragp->fr_file;
17979 fixp->fx_line = fragp->fr_line;
17980
4d68580a 17981 buf = write_insn (buf, insn);
4a6a3df4
AO
17982 }
17983 else
17984 {
66b3e8da
MR
17985 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17986
4a6a3df4 17987 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
17988 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17989 insn |= at << OP_SH_RT;
4a6a3df4
AO
17990 exp.X_op = O_symbol;
17991 exp.X_add_symbol = fragp->fr_symbol;
17992 exp.X_add_number = fragp->fr_offset;
17993
17994 if (fragp->fr_offset)
17995 {
17996 exp.X_add_symbol = make_expr_symbol (&exp);
17997 exp.X_add_number = 0;
17998 }
17999
4d68580a
RS
18000 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18001 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18002 fixp->fx_file = fragp->fr_file;
18003 fixp->fx_line = fragp->fr_line;
18004
4d68580a 18005 buf = write_insn (buf, insn);
b34976b6 18006
4a6a3df4 18007 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18008 /* nop */
18009 buf = write_insn (buf, 0);
4a6a3df4
AO
18010
18011 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18012 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18013 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18014
4d68580a
RS
18015 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18016 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18017 fixp->fx_file = fragp->fr_file;
18018 fixp->fx_line = fragp->fr_line;
b34976b6 18019
4d68580a 18020 buf = write_insn (buf, insn);
4a6a3df4
AO
18021
18022 /* j(al)r $at. */
18023 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18024 insn = 0x0000f809;
4a6a3df4 18025 else
66b3e8da
MR
18026 insn = 0x00000008;
18027 insn |= at << OP_SH_RS;
4a6a3df4 18028
4d68580a 18029 buf = write_insn (buf, insn);
4a6a3df4
AO
18030 }
18031 }
18032
4a6a3df4 18033 fragp->fr_fix += fragp->fr_var;
4d68580a 18034 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18035 return;
18036 }
18037
df58fc94
RS
18038 /* Relax microMIPS branches. */
18039 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18040 {
4d68580a 18041 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18042 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18043 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18044 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
df58fc94
RS
18045 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18046 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18047 bfd_boolean short_ds;
df58fc94
RS
18048 unsigned long insn;
18049 expressionS exp;
18050 fixS *fixp;
18051
18052 exp.X_op = O_symbol;
18053 exp.X_add_symbol = fragp->fr_symbol;
18054 exp.X_add_number = fragp->fr_offset;
18055
18056 fragp->fr_fix += fragp->fr_var;
18057
18058 /* Handle 16-bit branches that fit or are forced to fit. */
18059 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18060 {
18061 /* We generate a fixup instead of applying it right now,
18062 because if there is linker relaxation, we're going to
18063 need the relocations. */
18064 if (type == 'D')
4d68580a 18065 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18066 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18067 else if (type == 'E')
4d68580a 18068 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
df58fc94
RS
18069 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18070 else
18071 abort ();
18072
18073 fixp->fx_file = fragp->fr_file;
18074 fixp->fx_line = fragp->fr_line;
18075
18076 /* These relocations can have an addend that won't fit in
18077 2 octets. */
18078 fixp->fx_no_overflow = 1;
18079
18080 return;
18081 }
18082
2309ddf2 18083 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18084 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18085 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18086 {
18087 /* We generate a fixup instead of applying it right now,
18088 because if there is linker relaxation, we're going to
18089 need the relocations. */
4d68580a
RS
18090 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18091 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18092 fixp->fx_file = fragp->fr_file;
18093 fixp->fx_line = fragp->fr_line;
18094
18095 if (type == 0)
7bd374a4
MR
18096 {
18097 insn = read_compressed_insn (buf, 4);
18098 buf += 4;
18099
18100 if (nods)
18101 {
18102 /* Check the short-delay-slot bit. */
18103 if (!al || (insn & 0x02000000) != 0)
18104 buf = write_compressed_insn (buf, 0x0c00, 2);
18105 else
18106 buf = write_compressed_insn (buf, 0x00000000, 4);
18107 }
18108
18109 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18110 return;
18111 }
df58fc94
RS
18112 }
18113
18114 /* Relax 16-bit branches to 32-bit branches. */
18115 if (type != 0)
18116 {
4d68580a 18117 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18118
18119 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18120 insn = 0x94000000; /* beq */
18121 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18122 {
18123 unsigned long regno;
18124
18125 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18126 regno = micromips_to_32_reg_d_map [regno];
18127 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18128 insn |= regno << MICROMIPSOP_SH_RS;
18129 }
18130 else
18131 abort ();
18132
18133 /* Nothing else to do, just write it out. */
18134 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18135 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18136 {
4d68580a 18137 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18138 if (nods)
18139 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18140 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18141 return;
18142 }
18143 }
18144 else
4d68580a 18145 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18146
18147 /* Relax 32-bit branches to a sequence of instructions. */
18148 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18149 _("relaxed out-of-range branch into a jump"));
df58fc94 18150
2309ddf2 18151 /* Set the short-delay-slot bit. */
7bd374a4 18152 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18153
18154 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18155 {
18156 symbolS *l;
18157
18158 /* Reverse the branch. */
18159 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18160 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18161 insn ^= 0x20000000;
18162 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18163 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18164 || (insn & 0xffe00000) == 0x40800000 /* blez */
18165 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18166 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18167 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18168 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18169 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18170 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18171 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18172 insn ^= 0x00400000;
18173 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18174 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18175 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18176 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18177 insn ^= 0x00200000;
56d438b1
CF
18178 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18179 BNZ.df */
18180 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18181 BNZ.V */
18182 insn ^= 0x00800000;
df58fc94
RS
18183 else
18184 abort ();
18185
18186 if (al)
18187 {
18188 /* Clear the and-link and short-delay-slot bits. */
18189 gas_assert ((insn & 0xfda00000) == 0x40200000);
18190
18191 /* bltzal 0x40200000 bgezal 0x40600000 */
18192 /* bltzals 0x42200000 bgezals 0x42600000 */
18193 insn &= ~0x02200000;
18194 }
18195
18196 /* Make a label at the end for use with the branch. */
18197 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18198 micromips_label_inc ();
f3ded42a 18199 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18200
18201 /* Refer to it. */
4d68580a
RS
18202 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18203 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18204 fixp->fx_file = fragp->fr_file;
18205 fixp->fx_line = fragp->fr_line;
18206
18207 /* Branch over the jump. */
4d68580a 18208 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18209
df58fc94 18210 if (!compact)
8484fb75
MR
18211 {
18212 /* nop */
18213 if (insn32)
18214 buf = write_compressed_insn (buf, 0x00000000, 4);
18215 else
18216 buf = write_compressed_insn (buf, 0x0c00, 2);
18217 }
df58fc94
RS
18218 }
18219
18220 if (mips_pic == NO_PIC)
18221 {
7bd374a4
MR
18222 unsigned long jal = (short_ds || nods
18223 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18224
df58fc94
RS
18225 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18226 insn = al ? jal : 0xd4000000;
18227
4d68580a
RS
18228 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18229 BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18230 fixp->fx_file = fragp->fr_file;
18231 fixp->fx_line = fragp->fr_line;
18232
4d68580a 18233 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18234
7bd374a4 18235 if (compact || nods)
8484fb75
MR
18236 {
18237 /* nop */
18238 if (insn32)
18239 buf = write_compressed_insn (buf, 0x00000000, 4);
18240 else
18241 buf = write_compressed_insn (buf, 0x0c00, 2);
18242 }
df58fc94
RS
18243 }
18244 else
18245 {
18246 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18247
18248 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18249 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18250 insn |= at << MICROMIPSOP_SH_RT;
18251
18252 if (exp.X_add_number)
18253 {
18254 exp.X_add_symbol = make_expr_symbol (&exp);
18255 exp.X_add_number = 0;
18256 }
18257
4d68580a
RS
18258 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18259 BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18260 fixp->fx_file = fragp->fr_file;
18261 fixp->fx_line = fragp->fr_line;
18262
4d68580a 18263 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18264
18265 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18266 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18267 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18268
4d68580a
RS
18269 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18270 BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18271 fixp->fx_file = fragp->fr_file;
18272 fixp->fx_line = fragp->fr_line;
18273
4d68580a 18274 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18275
8484fb75
MR
18276 if (insn32)
18277 {
18278 /* jr/jalr $at */
18279 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18280 insn |= at << MICROMIPSOP_SH_RS;
18281
18282 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18283
7bd374a4 18284 if (compact || nods)
8484fb75
MR
18285 /* nop */
18286 buf = write_compressed_insn (buf, 0x00000000, 4);
18287 }
18288 else
18289 {
18290 /* jr/jrc/jalr/jalrs $at */
18291 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18292 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18293
18294 insn = al ? jalr : jr;
18295 insn |= at << MICROMIPSOP_SH_MJ;
18296
18297 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18298 if (al && nods)
18299 {
18300 /* nop */
18301 if (short_ds)
18302 buf = write_compressed_insn (buf, 0x0c00, 2);
18303 else
18304 buf = write_compressed_insn (buf, 0x00000000, 4);
18305 }
8484fb75 18306 }
df58fc94
RS
18307 }
18308
4d68580a 18309 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18310 return;
18311 }
18312
252b5132
RH
18313 if (RELAX_MIPS16_P (fragp->fr_subtype))
18314 {
18315 int type;
3ccad066 18316 const struct mips_int_operand *operand;
252b5132 18317 offsetT val;
5c04167a
RS
18318 char *buf;
18319 unsigned int user_length, length;
9d862524 18320 bfd_boolean need_reloc;
252b5132 18321 unsigned long insn;
5c04167a 18322 bfd_boolean ext;
88a7ef16 18323 segT symsec;
252b5132
RH
18324
18325 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18326 operand = mips16_immed_operand (type, FALSE);
252b5132 18327
5c04167a 18328 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18329 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18330
18331 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18332 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18333 || (operand->root.type == OP_PCREL
18334 ? asec != symsec
18335 : !bfd_is_abs_section (symsec)));
18336
3ccad066 18337 if (operand->root.type == OP_PCREL)
252b5132 18338 {
3ccad066 18339 const struct mips_pcrel_operand *pcrel_op;
252b5132
RH
18340 addressT addr;
18341
3ccad066 18342 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132
RH
18343 addr = fragp->fr_address + fragp->fr_fix;
18344
18345 /* The rules for the base address of a PC relative reloc are
18346 complicated; see mips16_extended_frag. */
3ccad066 18347 if (pcrel_op->include_isa_bit)
252b5132 18348 {
9d862524
MR
18349 if (!need_reloc)
18350 {
18351 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18352 as_bad_where (fragp->fr_file, fragp->fr_line,
18353 _("branch to a symbol in another ISA mode"));
18354 else if ((fragp->fr_offset & 0x1) != 0)
18355 as_bad_where (fragp->fr_file, fragp->fr_line,
18356 _("branch to misaligned address (0x%lx)"),
18357 (long) val);
18358 }
252b5132
RH
18359 addr += 2;
18360 if (ext)
18361 addr += 2;
18362 /* Ignore the low bit in the target, since it will be
18363 set for a text label. */
3ccad066 18364 val &= -2;
252b5132
RH
18365 }
18366 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18367 addr -= 4;
18368 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18369 addr -= 2;
18370
3ccad066 18371 addr &= -(1 << pcrel_op->align_log2);
252b5132
RH
18372 val -= addr;
18373
18374 /* Make sure the section winds up with the alignment we have
18375 assumed. */
3ccad066
RS
18376 if (operand->shift > 0)
18377 record_alignment (asec, operand->shift);
252b5132
RH
18378 }
18379
18380 if (ext
18381 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18382 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18383 as_warn_where (fragp->fr_file, fragp->fr_line,
18384 _("extended instruction in delay slot"));
18385
5c04167a 18386 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18387
4d68580a 18388 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18389 if (ext)
18390 insn |= MIPS16_EXTEND;
252b5132 18391
5c04167a
RS
18392 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18393 user_length = 4;
18394 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18395 user_length = 2;
18396 else
18397 user_length = 0;
18398
9d862524 18399 if (need_reloc)
c9775dde
MR
18400 {
18401 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18402 expressionS exp;
18403 fixS *fixp;
18404
18405 switch (type)
18406 {
18407 case 'p':
18408 case 'q':
18409 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18410 break;
18411 default:
18412 as_bad_where (fragp->fr_file, fragp->fr_line,
18413 _("unsupported relocation"));
18414 break;
18415 }
eefc3365
MR
18416 if (reloc == BFD_RELOC_NONE)
18417 ;
18418 else if (ext)
c9775dde 18419 {
c9775dde
MR
18420 exp.X_op = O_symbol;
18421 exp.X_add_symbol = fragp->fr_symbol;
18422 exp.X_add_number = fragp->fr_offset;
18423
18424 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18425 TRUE, reloc);
18426
18427 fixp->fx_file = fragp->fr_file;
18428 fixp->fx_line = fragp->fr_line;
18429
18430 /* These relocations can have an addend that won't fit
18431 in 2 octets. */
18432 fixp->fx_no_overflow = 1;
18433 }
eefc3365
MR
18434 else
18435 as_bad_where (fragp->fr_file, fragp->fr_line,
18436 _("invalid unextended operand value"));
c9775dde 18437 }
88a7ef16
MR
18438 else
18439 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18440 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18441
5c04167a
RS
18442 length = (ext ? 4 : 2);
18443 gas_assert (mips16_opcode_length (insn) == length);
18444 write_compressed_insn (buf, insn, length);
18445 fragp->fr_fix += length;
252b5132
RH
18446 }
18447 else
18448 {
df58fc94
RS
18449 relax_substateT subtype = fragp->fr_subtype;
18450 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18451 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18452 int first, second;
18453 fixS *fixp;
252b5132 18454
df58fc94
RS
18455 first = RELAX_FIRST (subtype);
18456 second = RELAX_SECOND (subtype);
4d7206a2 18457 fixp = (fixS *) fragp->fr_opcode;
252b5132 18458
df58fc94
RS
18459 /* If the delay slot chosen does not match the size of the instruction,
18460 then emit a warning. */
18461 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18462 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18463 {
18464 relax_substateT s;
18465 const char *msg;
18466
18467 s = subtype & (RELAX_DELAY_SLOT_16BIT
18468 | RELAX_DELAY_SLOT_SIZE_FIRST
18469 | RELAX_DELAY_SLOT_SIZE_SECOND);
18470 msg = macro_warning (s);
18471 if (msg != NULL)
db9b2be4 18472 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18473 subtype &= ~s;
18474 }
18475
584892a6 18476 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18477 if (use_second == second_longer)
584892a6 18478 {
df58fc94
RS
18479 relax_substateT s;
18480 const char *msg;
18481
18482 s = (subtype
18483 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18484 msg = macro_warning (s);
18485 if (msg != NULL)
db9b2be4 18486 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18487 subtype &= ~s;
584892a6
RS
18488 }
18489
4d7206a2
RS
18490 /* Go through all the fixups for the first sequence. Disable them
18491 (by marking them as done) if we're going to use the second
18492 sequence instead. */
18493 while (fixp
18494 && fixp->fx_frag == fragp
18495 && fixp->fx_where < fragp->fr_fix - second)
18496 {
df58fc94 18497 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18498 fixp->fx_done = 1;
18499 fixp = fixp->fx_next;
18500 }
252b5132 18501
4d7206a2
RS
18502 /* Go through the fixups for the second sequence. Disable them if
18503 we're going to use the first sequence, otherwise adjust their
18504 addresses to account for the relaxation. */
18505 while (fixp && fixp->fx_frag == fragp)
18506 {
df58fc94 18507 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18508 fixp->fx_where -= first;
18509 else
18510 fixp->fx_done = 1;
18511 fixp = fixp->fx_next;
18512 }
18513
18514 /* Now modify the frag contents. */
df58fc94 18515 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18516 {
18517 char *start;
18518
18519 start = fragp->fr_literal + fragp->fr_fix - first - second;
18520 memmove (start, start + first, second);
18521 fragp->fr_fix -= first;
18522 }
18523 else
18524 fragp->fr_fix -= second;
252b5132
RH
18525 }
18526}
18527
252b5132
RH
18528/* This function is called after the relocs have been generated.
18529 We've been storing mips16 text labels as odd. Here we convert them
18530 back to even for the convenience of the debugger. */
18531
18532void
17a2f251 18533mips_frob_file_after_relocs (void)
252b5132
RH
18534{
18535 asymbol **syms;
18536 unsigned int count, i;
18537
252b5132
RH
18538 syms = bfd_get_outsymbols (stdoutput);
18539 count = bfd_get_symcount (stdoutput);
18540 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18541 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18542 && ((*syms)->value & 1) != 0)
18543 {
18544 (*syms)->value &= ~1;
18545 /* If the symbol has an odd size, it was probably computed
18546 incorrectly, so adjust that as well. */
18547 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18548 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18549 }
252b5132
RH
18550}
18551
a1facbec
MR
18552/* This function is called whenever a label is defined, including fake
18553 labels instantiated off the dot special symbol. It is used when
18554 handling branch delays; if a branch has a label, we assume we cannot
18555 move it. This also bumps the value of the symbol by 1 in compressed
18556 code. */
252b5132 18557
e1b47bd5 18558static void
a1facbec 18559mips_record_label (symbolS *sym)
252b5132 18560{
a8dbcb85 18561 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18562 struct insn_label_list *l;
18563
18564 if (free_insn_labels == NULL)
325801bd 18565 l = XNEW (struct insn_label_list);
252b5132
RH
18566 else
18567 {
18568 l = free_insn_labels;
18569 free_insn_labels = l->next;
18570 }
18571
18572 l->label = sym;
a8dbcb85
TS
18573 l->next = si->label_list;
18574 si->label_list = l;
a1facbec 18575}
07a53e5c 18576
a1facbec
MR
18577/* This function is called as tc_frob_label() whenever a label is defined
18578 and adds a DWARF-2 record we only want for true labels. */
18579
18580void
18581mips_define_label (symbolS *sym)
18582{
18583 mips_record_label (sym);
07a53e5c 18584 dwarf2_emit_label (sym);
252b5132 18585}
e1b47bd5
RS
18586
18587/* This function is called by tc_new_dot_label whenever a new dot symbol
18588 is defined. */
18589
18590void
18591mips_add_dot_label (symbolS *sym)
18592{
18593 mips_record_label (sym);
18594 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18595 mips_compressed_mark_label (sym);
18596}
252b5132 18597\f
351cdf24
MF
18598/* Converting ASE flags from internal to .MIPS.abiflags values. */
18599static unsigned int
18600mips_convert_ase_flags (int ase)
18601{
18602 unsigned int ext_ases = 0;
18603
18604 if (ase & ASE_DSP)
18605 ext_ases |= AFL_ASE_DSP;
18606 if (ase & ASE_DSPR2)
18607 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
18608 if (ase & ASE_DSPR3)
18609 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
18610 if (ase & ASE_EVA)
18611 ext_ases |= AFL_ASE_EVA;
18612 if (ase & ASE_MCU)
18613 ext_ases |= AFL_ASE_MCU;
18614 if (ase & ASE_MDMX)
18615 ext_ases |= AFL_ASE_MDMX;
18616 if (ase & ASE_MIPS3D)
18617 ext_ases |= AFL_ASE_MIPS3D;
18618 if (ase & ASE_MT)
18619 ext_ases |= AFL_ASE_MT;
18620 if (ase & ASE_SMARTMIPS)
18621 ext_ases |= AFL_ASE_SMARTMIPS;
18622 if (ase & ASE_VIRT)
18623 ext_ases |= AFL_ASE_VIRT;
18624 if (ase & ASE_MSA)
18625 ext_ases |= AFL_ASE_MSA;
18626 if (ase & ASE_XPA)
18627 ext_ases |= AFL_ASE_XPA;
18628
18629 return ext_ases;
18630}
252b5132
RH
18631/* Some special processing for a MIPS ELF file. */
18632
18633void
17a2f251 18634mips_elf_final_processing (void)
252b5132 18635{
351cdf24
MF
18636 int fpabi;
18637 Elf_Internal_ABIFlags_v0 flags;
18638
18639 flags.version = 0;
18640 flags.isa_rev = 0;
18641 switch (file_mips_opts.isa)
18642 {
18643 case INSN_ISA1:
18644 flags.isa_level = 1;
18645 break;
18646 case INSN_ISA2:
18647 flags.isa_level = 2;
18648 break;
18649 case INSN_ISA3:
18650 flags.isa_level = 3;
18651 break;
18652 case INSN_ISA4:
18653 flags.isa_level = 4;
18654 break;
18655 case INSN_ISA5:
18656 flags.isa_level = 5;
18657 break;
18658 case INSN_ISA32:
18659 flags.isa_level = 32;
18660 flags.isa_rev = 1;
18661 break;
18662 case INSN_ISA32R2:
18663 flags.isa_level = 32;
18664 flags.isa_rev = 2;
18665 break;
18666 case INSN_ISA32R3:
18667 flags.isa_level = 32;
18668 flags.isa_rev = 3;
18669 break;
18670 case INSN_ISA32R5:
18671 flags.isa_level = 32;
18672 flags.isa_rev = 5;
18673 break;
09c14161
MF
18674 case INSN_ISA32R6:
18675 flags.isa_level = 32;
18676 flags.isa_rev = 6;
18677 break;
351cdf24
MF
18678 case INSN_ISA64:
18679 flags.isa_level = 64;
18680 flags.isa_rev = 1;
18681 break;
18682 case INSN_ISA64R2:
18683 flags.isa_level = 64;
18684 flags.isa_rev = 2;
18685 break;
18686 case INSN_ISA64R3:
18687 flags.isa_level = 64;
18688 flags.isa_rev = 3;
18689 break;
18690 case INSN_ISA64R5:
18691 flags.isa_level = 64;
18692 flags.isa_rev = 5;
18693 break;
09c14161
MF
18694 case INSN_ISA64R6:
18695 flags.isa_level = 64;
18696 flags.isa_rev = 6;
18697 break;
351cdf24
MF
18698 }
18699
18700 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18701 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18702 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18703 : (file_mips_opts.fp == 64) ? AFL_REG_64
18704 : AFL_REG_32;
18705 flags.cpr2_size = AFL_REG_NONE;
18706 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18707 Tag_GNU_MIPS_ABI_FP);
18708 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18709 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18710 if (file_ase_mips16)
18711 flags.ases |= AFL_ASE_MIPS16;
18712 if (file_ase_micromips)
18713 flags.ases |= AFL_ASE_MICROMIPS;
18714 flags.flags1 = 0;
18715 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18716 || file_mips_opts.fp == 64)
18717 && file_mips_opts.oddspreg)
18718 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18719 flags.flags2 = 0;
18720
18721 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18722 ((Elf_External_ABIFlags_v0 *)
18723 mips_flags_frag));
18724
252b5132 18725 /* Write out the register information. */
316f5878 18726 if (mips_abi != N64_ABI)
252b5132
RH
18727 {
18728 Elf32_RegInfo s;
18729
18730 s.ri_gprmask = mips_gprmask;
18731 s.ri_cprmask[0] = mips_cprmask[0];
18732 s.ri_cprmask[1] = mips_cprmask[1];
18733 s.ri_cprmask[2] = mips_cprmask[2];
18734 s.ri_cprmask[3] = mips_cprmask[3];
18735 /* The gp_value field is set by the MIPS ELF backend. */
18736
18737 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18738 ((Elf32_External_RegInfo *)
18739 mips_regmask_frag));
18740 }
18741 else
18742 {
18743 Elf64_Internal_RegInfo s;
18744
18745 s.ri_gprmask = mips_gprmask;
18746 s.ri_pad = 0;
18747 s.ri_cprmask[0] = mips_cprmask[0];
18748 s.ri_cprmask[1] = mips_cprmask[1];
18749 s.ri_cprmask[2] = mips_cprmask[2];
18750 s.ri_cprmask[3] = mips_cprmask[3];
18751 /* The gp_value field is set by the MIPS ELF backend. */
18752
18753 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18754 ((Elf64_External_RegInfo *)
18755 mips_regmask_frag));
18756 }
18757
18758 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18759 sort of BFD interface for this. */
18760 if (mips_any_noreorder)
18761 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18762 if (mips_pic != NO_PIC)
143d77c5 18763 {
8b828383 18764 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
18765 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18766 }
18767 if (mips_abicalls)
18768 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 18769
b015e599
AP
18770 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18771 defined at present; this might need to change in future. */
a4672219
TS
18772 if (file_ase_mips16)
18773 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
18774 if (file_ase_micromips)
18775 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 18776 if (file_mips_opts.ase & ASE_MDMX)
deec1734 18777 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 18778
bdaaa2e1 18779 /* Set the MIPS ELF ABI flags. */
316f5878 18780 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 18781 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 18782 else if (mips_abi == O64_ABI)
252b5132 18783 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 18784 else if (mips_abi == EABI_ABI)
252b5132 18785 {
bad1aba3 18786 if (file_mips_opts.gp == 64)
252b5132
RH
18787 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18788 else
18789 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18790 }
316f5878 18791 else if (mips_abi == N32_ABI)
be00bddd
TS
18792 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18793
c9914766 18794 /* Nothing to do for N64_ABI. */
252b5132
RH
18795
18796 if (mips_32bitmode)
18797 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 18798
7361da2c 18799 if (mips_nan2008 == 1)
ba92f887
MR
18800 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18801
ad3fea08 18802 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
18803 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18804 Tag_GNU_MIPS_ABI_FP);
18805 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 18806 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 18807}
252b5132 18808\f
beae10d5 18809typedef struct proc {
9b2f1d35
EC
18810 symbolS *func_sym;
18811 symbolS *func_end_sym;
beae10d5
KH
18812 unsigned long reg_mask;
18813 unsigned long reg_offset;
18814 unsigned long fpreg_mask;
18815 unsigned long fpreg_offset;
18816 unsigned long frame_offset;
18817 unsigned long frame_reg;
18818 unsigned long pc_reg;
18819} procS;
252b5132
RH
18820
18821static procS cur_proc;
18822static procS *cur_proc_ptr;
18823static int numprocs;
18824
df58fc94
RS
18825/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18826 as "2", and a normal nop as "0". */
18827
18828#define NOP_OPCODE_MIPS 0
18829#define NOP_OPCODE_MIPS16 1
18830#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
18831
18832char
18833mips_nop_opcode (void)
18834{
df58fc94
RS
18835 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18836 return NOP_OPCODE_MICROMIPS;
18837 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18838 return NOP_OPCODE_MIPS16;
18839 else
18840 return NOP_OPCODE_MIPS;
742a56fe
RS
18841}
18842
df58fc94
RS
18843/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18844 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 18845
0a9ef439 18846void
17a2f251 18847mips_handle_align (fragS *fragp)
a19d8eb0 18848{
df58fc94 18849 char nop_opcode;
742a56fe 18850 char *p;
c67a084a
NC
18851 int bytes, size, excess;
18852 valueT opcode;
742a56fe 18853
0a9ef439
RH
18854 if (fragp->fr_type != rs_align_code)
18855 return;
18856
742a56fe 18857 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
18858 nop_opcode = *p;
18859 switch (nop_opcode)
a19d8eb0 18860 {
df58fc94
RS
18861 case NOP_OPCODE_MICROMIPS:
18862 opcode = micromips_nop32_insn.insn_opcode;
18863 size = 4;
18864 break;
18865 case NOP_OPCODE_MIPS16:
c67a084a
NC
18866 opcode = mips16_nop_insn.insn_opcode;
18867 size = 2;
df58fc94
RS
18868 break;
18869 case NOP_OPCODE_MIPS:
18870 default:
c67a084a
NC
18871 opcode = nop_insn.insn_opcode;
18872 size = 4;
df58fc94 18873 break;
c67a084a 18874 }
a19d8eb0 18875
c67a084a
NC
18876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18877 excess = bytes % size;
df58fc94
RS
18878
18879 /* Handle the leading part if we're not inserting a whole number of
18880 instructions, and make it the end of the fixed part of the frag.
18881 Try to fit in a short microMIPS NOP if applicable and possible,
18882 and use zeroes otherwise. */
18883 gas_assert (excess < 4);
18884 fragp->fr_fix += excess;
18885 switch (excess)
c67a084a 18886 {
df58fc94
RS
18887 case 3:
18888 *p++ = '\0';
18889 /* Fall through. */
18890 case 2:
833794fc 18891 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 18892 {
4d68580a 18893 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
18894 break;
18895 }
18896 *p++ = '\0';
18897 /* Fall through. */
18898 case 1:
18899 *p++ = '\0';
18900 /* Fall through. */
18901 case 0:
18902 break;
a19d8eb0 18903 }
c67a084a
NC
18904
18905 md_number_to_chars (p, opcode, size);
18906 fragp->fr_var = size;
a19d8eb0
CP
18907}
18908
252b5132 18909static long
17a2f251 18910get_number (void)
252b5132
RH
18911{
18912 int negative = 0;
18913 long val = 0;
18914
18915 if (*input_line_pointer == '-')
18916 {
18917 ++input_line_pointer;
18918 negative = 1;
18919 }
3882b010 18920 if (!ISDIGIT (*input_line_pointer))
956cd1d6 18921 as_bad (_("expected simple number"));
252b5132
RH
18922 if (input_line_pointer[0] == '0')
18923 {
18924 if (input_line_pointer[1] == 'x')
18925 {
18926 input_line_pointer += 2;
3882b010 18927 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
18928 {
18929 val <<= 4;
18930 val |= hex_value (*input_line_pointer++);
18931 }
18932 return negative ? -val : val;
18933 }
18934 else
18935 {
18936 ++input_line_pointer;
3882b010 18937 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18938 {
18939 val <<= 3;
18940 val |= *input_line_pointer++ - '0';
18941 }
18942 return negative ? -val : val;
18943 }
18944 }
3882b010 18945 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
18946 {
18947 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18948 *input_line_pointer, *input_line_pointer);
956cd1d6 18949 as_warn (_("invalid number"));
252b5132
RH
18950 return -1;
18951 }
3882b010 18952 while (ISDIGIT (*input_line_pointer))
252b5132
RH
18953 {
18954 val *= 10;
18955 val += *input_line_pointer++ - '0';
18956 }
18957 return negative ? -val : val;
18958}
18959
18960/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
18961 is an initial number which is the ECOFF file index. In the non-ECOFF
18962 case .file implies DWARF-2. */
18963
18964static void
17a2f251 18965s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 18966{
ecb4347a
DJ
18967 static int first_file_directive = 0;
18968
c5dd6aab
DJ
18969 if (ECOFF_DEBUGGING)
18970 {
18971 get_number ();
18972 s_app_file (0);
18973 }
18974 else
ecb4347a
DJ
18975 {
18976 char *filename;
18977
18978 filename = dwarf2_directive_file (0);
18979
18980 /* Versions of GCC up to 3.1 start files with a ".file"
18981 directive even for stabs output. Make sure that this
18982 ".file" is handled. Note that you need a version of GCC
18983 after 3.1 in order to support DWARF-2 on MIPS. */
18984 if (filename != NULL && ! first_file_directive)
18985 {
18986 (void) new_logical_line (filename, -1);
c04f5787 18987 s_app_file_string (filename, 0);
ecb4347a
DJ
18988 }
18989 first_file_directive = 1;
18990 }
c5dd6aab
DJ
18991}
18992
18993/* The .loc directive, implying DWARF-2. */
252b5132
RH
18994
18995static void
17a2f251 18996s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 18997{
c5dd6aab
DJ
18998 if (!ECOFF_DEBUGGING)
18999 dwarf2_directive_loc (0);
252b5132
RH
19000}
19001
252b5132
RH
19002/* The .end directive. */
19003
19004static void
17a2f251 19005s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19006{
19007 symbolS *p;
252b5132 19008
7a621144
DJ
19009 /* Following functions need their own .frame and .cprestore directives. */
19010 mips_frame_reg_valid = 0;
19011 mips_cprestore_valid = 0;
19012
252b5132
RH
19013 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19014 {
19015 p = get_symbol ();
19016 demand_empty_rest_of_line ();
19017 }
19018 else
19019 p = NULL;
19020
14949570 19021 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19022 as_warn (_(".end not in text section"));
19023
19024 if (!cur_proc_ptr)
19025 {
1661c76c 19026 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19027 demand_empty_rest_of_line ();
19028 return;
19029 }
19030
19031 if (p != NULL)
19032 {
9c2799c2 19033 gas_assert (S_GET_NAME (p));
9b2f1d35 19034 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19035 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19036
19037 if (debug_type == DEBUG_STABS)
19038 stabs_generate_asm_endfunc (S_GET_NAME (p),
19039 S_GET_NAME (p));
252b5132
RH
19040 }
19041 else
19042 as_warn (_(".end directive missing or unknown symbol"));
19043
9b2f1d35
EC
19044 /* Create an expression to calculate the size of the function. */
19045 if (p && cur_proc_ptr)
19046 {
19047 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19048 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19049
19050 obj->size = exp;
19051 exp->X_op = O_subtract;
19052 exp->X_add_symbol = symbol_temp_new_now ();
19053 exp->X_op_symbol = p;
19054 exp->X_add_number = 0;
19055
19056 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19057 }
19058
ecb4347a 19059 /* Generate a .pdr section. */
f3ded42a 19060 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19061 {
19062 segT saved_seg = now_seg;
19063 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19064 expressionS exp;
19065 char *fragp;
252b5132 19066
252b5132 19067#ifdef md_flush_pending_output
ecb4347a 19068 md_flush_pending_output ();
252b5132
RH
19069#endif
19070
9c2799c2 19071 gas_assert (pdr_seg);
ecb4347a 19072 subseg_set (pdr_seg, 0);
252b5132 19073
ecb4347a
DJ
19074 /* Write the symbol. */
19075 exp.X_op = O_symbol;
19076 exp.X_add_symbol = p;
19077 exp.X_add_number = 0;
19078 emit_expr (&exp, 4);
252b5132 19079
ecb4347a 19080 fragp = frag_more (7 * 4);
252b5132 19081
17a2f251
TS
19082 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19083 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19084 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19085 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19086 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19087 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19088 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19089
ecb4347a
DJ
19090 subseg_set (saved_seg, saved_subseg);
19091 }
252b5132
RH
19092
19093 cur_proc_ptr = NULL;
19094}
19095
19096/* The .aent and .ent directives. */
19097
19098static void
17a2f251 19099s_mips_ent (int aent)
252b5132 19100{
252b5132 19101 symbolS *symbolP;
252b5132
RH
19102
19103 symbolP = get_symbol ();
19104 if (*input_line_pointer == ',')
f9419b05 19105 ++input_line_pointer;
252b5132 19106 SKIP_WHITESPACE ();
3882b010 19107 if (ISDIGIT (*input_line_pointer)
d9a62219 19108 || *input_line_pointer == '-')
874e8986 19109 get_number ();
252b5132 19110
14949570 19111 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19112 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19113
19114 if (!aent && cur_proc_ptr)
9a41af64 19115 as_warn (_("missing .end"));
252b5132
RH
19116
19117 if (!aent)
19118 {
7a621144
DJ
19119 /* This function needs its own .frame and .cprestore directives. */
19120 mips_frame_reg_valid = 0;
19121 mips_cprestore_valid = 0;
19122
252b5132
RH
19123 cur_proc_ptr = &cur_proc;
19124 memset (cur_proc_ptr, '\0', sizeof (procS));
19125
9b2f1d35 19126 cur_proc_ptr->func_sym = symbolP;
252b5132 19127
f9419b05 19128 ++numprocs;
ecb4347a
DJ
19129
19130 if (debug_type == DEBUG_STABS)
19131 stabs_generate_asm_func (S_GET_NAME (symbolP),
19132 S_GET_NAME (symbolP));
252b5132
RH
19133 }
19134
7c0fc524
MR
19135 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19136
252b5132
RH
19137 demand_empty_rest_of_line ();
19138}
19139
19140/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19141 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19142 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19143 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19144 symbol table (in the mdebug section). */
19145
19146static void
17a2f251 19147s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19148{
f3ded42a
RS
19149 if (ECOFF_DEBUGGING)
19150 s_ignore (ignore);
19151 else
ecb4347a
DJ
19152 {
19153 long val;
252b5132 19154
ecb4347a
DJ
19155 if (cur_proc_ptr == (procS *) NULL)
19156 {
19157 as_warn (_(".frame outside of .ent"));
19158 demand_empty_rest_of_line ();
19159 return;
19160 }
252b5132 19161
ecb4347a
DJ
19162 cur_proc_ptr->frame_reg = tc_get_register (1);
19163
19164 SKIP_WHITESPACE ();
19165 if (*input_line_pointer++ != ','
19166 || get_absolute_expression_and_terminator (&val) != ',')
19167 {
1661c76c 19168 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19169 --input_line_pointer;
19170 demand_empty_rest_of_line ();
19171 return;
19172 }
252b5132 19173
ecb4347a
DJ
19174 cur_proc_ptr->frame_offset = val;
19175 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19176
252b5132 19177 demand_empty_rest_of_line ();
252b5132 19178 }
252b5132
RH
19179}
19180
bdaaa2e1
KH
19181/* The .fmask and .mask directives. If the mdebug section is present
19182 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19183 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19184 information correctly. We can't use the ecoff routines because they
252b5132
RH
19185 make reference to the ecoff symbol table (in the mdebug section). */
19186
19187static void
17a2f251 19188s_mips_mask (int reg_type)
252b5132 19189{
f3ded42a
RS
19190 if (ECOFF_DEBUGGING)
19191 s_ignore (reg_type);
19192 else
252b5132 19193 {
ecb4347a 19194 long mask, off;
252b5132 19195
ecb4347a
DJ
19196 if (cur_proc_ptr == (procS *) NULL)
19197 {
19198 as_warn (_(".mask/.fmask outside of .ent"));
19199 demand_empty_rest_of_line ();
19200 return;
19201 }
252b5132 19202
ecb4347a
DJ
19203 if (get_absolute_expression_and_terminator (&mask) != ',')
19204 {
1661c76c 19205 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19206 --input_line_pointer;
19207 demand_empty_rest_of_line ();
19208 return;
19209 }
252b5132 19210
ecb4347a
DJ
19211 off = get_absolute_expression ();
19212
19213 if (reg_type == 'F')
19214 {
19215 cur_proc_ptr->fpreg_mask = mask;
19216 cur_proc_ptr->fpreg_offset = off;
19217 }
19218 else
19219 {
19220 cur_proc_ptr->reg_mask = mask;
19221 cur_proc_ptr->reg_offset = off;
19222 }
19223
19224 demand_empty_rest_of_line ();
252b5132 19225 }
252b5132
RH
19226}
19227
316f5878
RS
19228/* A table describing all the processors gas knows about. Names are
19229 matched in the order listed.
e7af610e 19230
316f5878
RS
19231 To ease comparison, please keep this table in the same order as
19232 gcc's mips_cpu_info_table[]. */
e972090a
NC
19233static const struct mips_cpu_info mips_cpu_info_table[] =
19234{
316f5878 19235 /* Entries for generic ISAs */
d16afab6
RS
19236 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19237 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19238 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19239 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19240 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19241 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19242 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19243 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19244 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19245 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19246 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19247 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19248 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19249 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19250 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19251
19252 /* MIPS I */
d16afab6
RS
19253 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19254 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19255 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19256
19257 /* MIPS II */
d16afab6 19258 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19259
19260 /* MIPS III */
d16afab6
RS
19261 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19262 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19263 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19264 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19265 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19266 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19267 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19268 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19269 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19270 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19271 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19272 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19273 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19274 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6
RS
19275 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19276 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19277
19278 /* MIPS IV */
d16afab6
RS
19279 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19280 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19281 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19282 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19283 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19284 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19285 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19286 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19287 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19288 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19289 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19290 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19291 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19292 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19293 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19294
19295 /* MIPS 32 */
d16afab6
RS
19296 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19297 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19298 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19299 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19300
19301 /* MIPS 32 Release 2 */
d16afab6
RS
19302 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19303 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19308 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19310 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19311 ISA_MIPS32R2, CPU_MIPS32R2 },
19312 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19313 ISA_MIPS32R2, CPU_MIPS32R2 },
19314 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19315 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19316 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19317 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19318 /* Deprecated forms of the above. */
d16afab6
RS
19319 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19320 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19321 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19322 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19323 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19324 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19325 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19326 /* Deprecated forms of the above. */
d16afab6
RS
19327 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19328 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19329 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19330 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19331 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19332 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19333 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19334 /* Deprecated forms of the above. */
d16afab6
RS
19335 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19336 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19337 /* 34Kn is a 34kc without DSP. */
d16afab6 19338 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19339 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19340 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19341 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19342 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19343 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19344 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19345 /* Deprecated forms of the above. */
d16afab6
RS
19346 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19347 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19348 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19349 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19350 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19351 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19352 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19353 /* interaptiv is the new name for 1004kf */
19354 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
c6e5c03a
RS
19355 /* M5100 family */
19356 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19357 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19358 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19359 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19360
316f5878 19361 /* MIPS 64 */
d16afab6
RS
19362 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19363 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19364 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19365 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19366
c7a23324 19367 /* Broadcom SB-1 CPU core */
d16afab6 19368 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19369 /* Broadcom SB-1A CPU core */
d16afab6 19370 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19371
4ba154f5 19372 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
e7af610e 19373
ed163775
MR
19374 /* MIPS 64 Release 2 */
19375
967344c6 19376 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19377 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19378 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19379 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19380 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19381
52b6b6b9 19382 /* RMI Xlr */
d16afab6 19383 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19384
55a36193
MK
19385 /* Broadcom XLP.
19386 XLP is mostly like XLR, with the prominent exception that it is
19387 MIPS64R2 rather than MIPS64. */
d16afab6 19388 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19389
a4968f42 19390 /* MIPS 64 Release 6 */
7ef0d297 19391 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19392 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19393
316f5878 19394 /* End marker */
d16afab6 19395 { NULL, 0, 0, 0, 0 }
316f5878 19396};
e7af610e 19397
84ea6cf2 19398
316f5878
RS
19399/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19400 with a final "000" replaced by "k". Ignore case.
e7af610e 19401
316f5878 19402 Note: this function is shared between GCC and GAS. */
c6c98b38 19403
b34976b6 19404static bfd_boolean
17a2f251 19405mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19406{
19407 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19408 given++, canonical++;
19409
19410 return ((*given == 0 && *canonical == 0)
19411 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19412}
19413
19414
19415/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19416 CPU name. We've traditionally allowed a lot of variation here.
19417
19418 Note: this function is shared between GCC and GAS. */
19419
b34976b6 19420static bfd_boolean
17a2f251 19421mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19422{
19423 /* First see if the name matches exactly, or with a final "000"
19424 turned into "k". */
19425 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19426 return TRUE;
316f5878
RS
19427
19428 /* If not, try comparing based on numerical designation alone.
19429 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19430 if (TOLOWER (*given) == 'r')
19431 given++;
19432 if (!ISDIGIT (*given))
b34976b6 19433 return FALSE;
316f5878
RS
19434
19435 /* Skip over some well-known prefixes in the canonical name,
19436 hoping to find a number there too. */
19437 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19438 canonical += 2;
19439 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19440 canonical += 2;
19441 else if (TOLOWER (canonical[0]) == 'r')
19442 canonical += 1;
19443
19444 return mips_strict_matching_cpu_name_p (canonical, given);
19445}
19446
19447
19448/* Parse an option that takes the name of a processor as its argument.
19449 OPTION is the name of the option and CPU_STRING is the argument.
19450 Return the corresponding processor enumeration if the CPU_STRING is
19451 recognized, otherwise report an error and return null.
19452
19453 A similar function exists in GCC. */
e7af610e
NC
19454
19455static const struct mips_cpu_info *
17a2f251 19456mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19457{
316f5878 19458 const struct mips_cpu_info *p;
e7af610e 19459
316f5878
RS
19460 /* 'from-abi' selects the most compatible architecture for the given
19461 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19462 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19463 version. Look first at the -mgp options, if given, otherwise base
19464 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19465
316f5878
RS
19466 Treat NO_ABI like the EABIs. One reason to do this is that the
19467 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19468 architecture. This code picks MIPS I for 'mips' and MIPS III for
19469 'mips64', just as we did in the days before 'from-abi'. */
19470 if (strcasecmp (cpu_string, "from-abi") == 0)
19471 {
19472 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19473 return mips_cpu_info_from_isa (ISA_MIPS1);
19474
19475 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19476 return mips_cpu_info_from_isa (ISA_MIPS3);
19477
bad1aba3 19478 if (file_mips_opts.gp >= 0)
19479 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19480 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19481
19482 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19483 ? ISA_MIPS3
19484 : ISA_MIPS1);
19485 }
19486
19487 /* 'default' has traditionally been a no-op. Probably not very useful. */
19488 if (strcasecmp (cpu_string, "default") == 0)
19489 return 0;
19490
19491 for (p = mips_cpu_info_table; p->name != 0; p++)
19492 if (mips_matching_cpu_name_p (p->name, cpu_string))
19493 return p;
19494
1661c76c 19495 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19496 return 0;
e7af610e
NC
19497}
19498
316f5878
RS
19499/* Return the canonical processor information for ISA (a member of the
19500 ISA_MIPS* enumeration). */
19501
e7af610e 19502static const struct mips_cpu_info *
17a2f251 19503mips_cpu_info_from_isa (int isa)
e7af610e
NC
19504{
19505 int i;
19506
19507 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19508 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19509 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19510 return (&mips_cpu_info_table[i]);
19511
e972090a 19512 return NULL;
e7af610e 19513}
fef14a42
TS
19514
19515static const struct mips_cpu_info *
17a2f251 19516mips_cpu_info_from_arch (int arch)
fef14a42
TS
19517{
19518 int i;
19519
19520 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19521 if (arch == mips_cpu_info_table[i].cpu)
19522 return (&mips_cpu_info_table[i]);
19523
19524 return NULL;
19525}
316f5878
RS
19526\f
19527static void
17a2f251 19528show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19529{
19530 if (*first_p)
19531 {
19532 fprintf (stream, "%24s", "");
19533 *col_p = 24;
19534 }
19535 else
19536 {
19537 fprintf (stream, ", ");
19538 *col_p += 2;
19539 }
e7af610e 19540
316f5878
RS
19541 if (*col_p + strlen (string) > 72)
19542 {
19543 fprintf (stream, "\n%24s", "");
19544 *col_p = 24;
19545 }
19546
19547 fprintf (stream, "%s", string);
19548 *col_p += strlen (string);
19549
19550 *first_p = 0;
19551}
19552
19553void
17a2f251 19554md_show_usage (FILE *stream)
e7af610e 19555{
316f5878
RS
19556 int column, first;
19557 size_t i;
19558
19559 fprintf (stream, _("\
19560MIPS options:\n\
316f5878
RS
19561-EB generate big endian output\n\
19562-EL generate little endian output\n\
19563-g, -g2 do not remove unneeded NOPs or swap branches\n\
19564-G NUM allow referencing objects up to NUM bytes\n\
19565 implicitly with the gp register [default 8]\n"));
19566 fprintf (stream, _("\
19567-mips1 generate MIPS ISA I instructions\n\
19568-mips2 generate MIPS ISA II instructions\n\
19569-mips3 generate MIPS ISA III instructions\n\
19570-mips4 generate MIPS ISA IV instructions\n\
19571-mips5 generate MIPS ISA V instructions\n\
19572-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 19573-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
19574-mips32r3 generate MIPS32 release 3 ISA instructions\n\
19575-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 19576-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 19577-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 19578-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
19579-mips64r3 generate MIPS64 release 3 ISA instructions\n\
19580-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 19581-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
19582-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19583
19584 first = 1;
e7af610e
NC
19585
19586 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
19587 show (stream, mips_cpu_info_table[i].name, &column, &first);
19588 show (stream, "from-abi", &column, &first);
19589 fputc ('\n', stream);
e7af610e 19590
316f5878
RS
19591 fprintf (stream, _("\
19592-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19593-no-mCPU don't generate code specific to CPU.\n\
19594 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19595
19596 first = 1;
19597
19598 show (stream, "3900", &column, &first);
19599 show (stream, "4010", &column, &first);
19600 show (stream, "4100", &column, &first);
19601 show (stream, "4650", &column, &first);
19602 fputc ('\n', stream);
19603
19604 fprintf (stream, _("\
19605-mips16 generate mips16 instructions\n\
19606-no-mips16 do not generate mips16 instructions\n"));
19607 fprintf (stream, _("\
df58fc94
RS
19608-mmicromips generate microMIPS instructions\n\
19609-mno-micromips do not generate microMIPS instructions\n"));
19610 fprintf (stream, _("\
e16bfa71 19611-msmartmips generate smartmips instructions\n\
3739860c 19612-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 19613 fprintf (stream, _("\
74cd071d
CF
19614-mdsp generate DSP instructions\n\
19615-mno-dsp do not generate DSP instructions\n"));
19616 fprintf (stream, _("\
8b082fb1
TS
19617-mdspr2 generate DSP R2 instructions\n\
19618-mno-dspr2 do not generate DSP R2 instructions\n"));
19619 fprintf (stream, _("\
8f4f9071
MF
19620-mdspr3 generate DSP R3 instructions\n\
19621-mno-dspr3 do not generate DSP R3 instructions\n"));
19622 fprintf (stream, _("\
ef2e4d86
CF
19623-mmt generate MT instructions\n\
19624-mno-mt do not generate MT instructions\n"));
19625 fprintf (stream, _("\
dec0624d
MR
19626-mmcu generate MCU instructions\n\
19627-mno-mcu do not generate MCU instructions\n"));
19628 fprintf (stream, _("\
56d438b1
CF
19629-mmsa generate MSA instructions\n\
19630-mno-msa do not generate MSA instructions\n"));
19631 fprintf (stream, _("\
7d64c587
AB
19632-mxpa generate eXtended Physical Address (XPA) instructions\n\
19633-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19634 fprintf (stream, _("\
b015e599
AP
19635-mvirt generate Virtualization instructions\n\
19636-mno-virt do not generate Virtualization instructions\n"));
19637 fprintf (stream, _("\
833794fc
MR
19638-minsn32 only generate 32-bit microMIPS instructions\n\
19639-mno-insn32 generate all microMIPS instructions\n"));
19640 fprintf (stream, _("\
c67a084a
NC
19641-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19642-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 19643-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 19644-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 19645-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 19646-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
19647-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19648-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 19649-msym32 assume all symbols have 32-bit values\n\
316f5878
RS
19650-O0 remove unneeded NOPs, do not swap branches\n\
19651-O remove unneeded NOPs and swap branches\n\
316f5878
RS
19652--trap, --no-break trap exception on div by 0 and mult overflow\n\
19653--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
19654 fprintf (stream, _("\
19655-mhard-float allow floating-point instructions\n\
19656-msoft-float do not allow floating-point instructions\n\
19657-msingle-float only allow 32-bit floating-point operations\n\
19658-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 19659--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887
MR
19660--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19661-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19662
19663 first = 1;
19664
19665 show (stream, "legacy", &column, &first);
19666 show (stream, "2008", &column, &first);
19667
19668 fputc ('\n', stream);
19669
316f5878
RS
19670 fprintf (stream, _("\
19671-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 19672-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 19673-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 19674-non_shared do not generate code that can operate with DSOs\n\
316f5878 19675-xgot assume a 32 bit GOT\n\
dcd410fe 19676-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 19677-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 19678 position dependent (non shared) code\n\
316f5878
RS
19679-mabi=ABI create ABI conformant object file for:\n"));
19680
19681 first = 1;
19682
19683 show (stream, "32", &column, &first);
19684 show (stream, "o64", &column, &first);
19685 show (stream, "n32", &column, &first);
19686 show (stream, "64", &column, &first);
19687 show (stream, "eabi", &column, &first);
19688
19689 fputc ('\n', stream);
19690
19691 fprintf (stream, _("\
19692-32 create o32 ABI object file (default)\n\
19693-n32 create n32 ABI object file\n\
19694-64 create 64 ABI object file\n"));
e7af610e 19695}
14e777e0 19696
1575952e 19697#ifdef TE_IRIX
14e777e0 19698enum dwarf2_format
413a266c 19699mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 19700{
369943fe 19701 if (HAVE_64BIT_SYMBOLS)
1575952e 19702 return dwarf2_format_64bit_irix;
14e777e0
KB
19703 else
19704 return dwarf2_format_32bit;
19705}
1575952e 19706#endif
73369e65
EC
19707
19708int
19709mips_dwarf2_addr_size (void)
19710{
6b6b3450 19711 if (HAVE_64BIT_OBJECTS)
73369e65 19712 return 8;
73369e65
EC
19713 else
19714 return 4;
19715}
5862107c
EC
19716
19717/* Standard calling conventions leave the CFA at SP on entry. */
19718void
19719mips_cfi_frame_initial_instructions (void)
19720{
19721 cfi_add_CFA_def_cfa_register (SP);
19722}
19723
707bfff6
TS
19724int
19725tc_mips_regname_to_dw2regnum (char *regname)
19726{
19727 unsigned int regnum = -1;
19728 unsigned int reg;
19729
19730 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19731 regnum = reg;
19732
19733 return regnum;
19734}
263b2574 19735
19736/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19737 Given a symbolic attribute NAME, return the proper integer value.
19738 Returns -1 if the attribute is not known. */
19739
19740int
19741mips_convert_symbolic_attribute (const char *name)
19742{
19743 static const struct
19744 {
19745 const char * name;
19746 const int tag;
19747 }
19748 attribute_table[] =
19749 {
19750#define T(tag) {#tag, tag}
19751 T (Tag_GNU_MIPS_ABI_FP),
19752 T (Tag_GNU_MIPS_ABI_MSA),
19753#undef T
19754 };
19755 unsigned int i;
19756
19757 if (name == NULL)
19758 return -1;
19759
19760 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19761 if (streq (name, attribute_table[i].name))
19762 return attribute_table[i].tag;
19763
19764 return -1;
19765}
fd5c94ab
RS
19766
19767void
19768md_mips_end (void)
19769{
351cdf24
MF
19770 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19771
fd5c94ab
RS
19772 mips_emit_delays ();
19773 if (cur_proc_ptr)
19774 as_warn (_("missing .end at end of assembly"));
919731af 19775
19776 /* Just in case no code was emitted, do the consistency check. */
19777 file_mips_check_options ();
351cdf24
MF
19778
19779 /* Set a floating-point ABI if the user did not. */
19780 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19781 {
19782 /* Perform consistency checks on the floating-point ABI. */
19783 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19784 Tag_GNU_MIPS_ABI_FP);
19785 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19786 check_fpabi (fpabi);
19787 }
19788 else
19789 {
19790 /* Soft-float gets precedence over single-float, the two options should
19791 not be used together so this should not matter. */
19792 if (file_mips_opts.soft_float == 1)
19793 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19794 /* Single-float gets precedence over all double_float cases. */
19795 else if (file_mips_opts.single_float == 1)
19796 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19797 else
19798 {
19799 switch (file_mips_opts.fp)
19800 {
19801 case 32:
19802 if (file_mips_opts.gp == 32)
19803 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19804 break;
19805 case 0:
19806 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19807 break;
19808 case 64:
19809 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19810 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19811 else if (file_mips_opts.gp == 32)
19812 fpabi = Val_GNU_MIPS_ABI_FP_64;
19813 else
19814 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19815 break;
19816 }
19817 }
19818
19819 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19820 Tag_GNU_MIPS_ABI_FP, fpabi);
19821 }
fd5c94ab 19822}
2f0c68f2
CM
19823
19824/* Returns the relocation type required for a particular CFI encoding. */
19825
19826bfd_reloc_code_real_type
19827mips_cfi_reloc_for_encoding (int encoding)
19828{
19829 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19830 return BFD_RELOC_32_PCREL;
19831 else return BFD_RELOC_NONE;
19832}