]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-mips.c
gdb/riscv: Add read_description method for riscv_linux_nat_target
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
CommitLineData
252b5132 1/* tc-mips.c -- assemble code for a MIPS chip.
219d1afa 2 Copyright (C) 1993-2018 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
ec2655a6 12 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
252b5132
RH
24
25#include "as.h"
26#include "config.h"
27#include "subsegs.h"
3882b010 28#include "safe-ctype.h"
252b5132 29
252b5132
RH
30#include "opcode/mips.h"
31#include "itbl-ops.h"
c5dd6aab 32#include "dwarf2dbg.h"
5862107c 33#include "dw2gencfi.h"
252b5132 34
42429eac
RS
35/* Check assumptions made in this file. */
36typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
252b5132
RH
39#ifdef DEBUG
40#define DBG(x) printf x
41#else
42#define DBG(x)
43#endif
44
263b2574 45#define streq(a, b) (strcmp (a, b) == 0)
46
9e12b7a2
RS
47#define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
252b5132 50/* Clean up namespace so we can include obj-elf.h too. */
17a2f251
TS
51static int mips_output_flavor (void);
52static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
252b5132
RH
53#undef OBJ_PROCESS_STAB
54#undef OUTPUT_FLAVOR
55#undef S_GET_ALIGN
56#undef S_GET_SIZE
57#undef S_SET_ALIGN
58#undef S_SET_SIZE
252b5132
RH
59#undef obj_frob_file
60#undef obj_frob_file_after_relocs
61#undef obj_frob_symbol
62#undef obj_pop_insert
63#undef obj_sec_sym_ok_for_reloc
64#undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66#include "obj-elf.h"
67/* Fix any of them that we actually care about. */
68#undef OUTPUT_FLAVOR
69#define OUTPUT_FLAVOR mips_output_flavor()
252b5132 70
252b5132 71#include "elf/mips.h"
252b5132
RH
72
73#ifndef ECOFF_DEBUGGING
74#define NO_ECOFF_DEBUGGING
75#define ECOFF_DEBUGGING 0
76#endif
77
ecb4347a
DJ
78int mips_flag_mdebug = -1;
79
dcd410fe
RO
80/* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83#ifdef TE_IRIX
84int mips_flag_pdr = FALSE;
85#else
86int mips_flag_pdr = TRUE;
87#endif
88
252b5132
RH
89#include "ecoff.h"
90
252b5132 91static char *mips_regmask_frag;
351cdf24 92static char *mips_flags_frag;
252b5132 93
85b51719 94#define ZERO 0
741fe287 95#define ATREG 1
df58fc94
RS
96#define S0 16
97#define S7 23
252b5132
RH
98#define TREG 24
99#define PIC_CALL_REG 25
100#define KT0 26
101#define KT1 27
102#define GP 28
103#define SP 29
104#define FP 30
105#define RA 31
106
107#define ILLEGAL_REG (32)
108
741fe287
MR
109#define AT mips_opts.at
110
252b5132
RH
111extern int target_big_endian;
112
252b5132 113/* The name of the readonly data section. */
e8044f35 114#define RDATA_SECTION_NAME ".rodata"
252b5132 115
a4e06468
RS
116/* Ways in which an instruction can be "appended" to the output. */
117enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129};
130
47e39b9d
RS
131/* Information about an instruction, including its format, operands
132 and fixups. */
133struct mips_cl_insn
134{
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
47e39b9d 138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
5c04167a
RS
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
47e39b9d
RS
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
a38419a5
RS
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
47e39b9d 155
708587a4 156 /* True if this instruction occurred in a .set noreorder block. */
47e39b9d
RS
157 unsigned int noreorder_p : 1;
158
2fa15973
RS
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
15be625d
CM
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
e407c74b
NC
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
47e39b9d
RS
168};
169
a325df1d
TS
170/* The ABI to use. */
171enum mips_abi_level
172{
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179};
180
181/* MIPS ABI we are using for this output file. */
316f5878 182static enum mips_abi_level mips_abi = NO_ABI;
a325df1d 183
143d77c5
EC
184/* Whether or not we have code that can call pic code. */
185int mips_abicalls = FALSE;
186
aa6975fb
ILT
187/* Whether or not we have code which can be put into a shared
188 library. */
189static bfd_boolean mips_in_shared = TRUE;
190
252b5132
RH
191/* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
e972090a
NC
195struct mips_set_options
196{
252b5132
RH
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
846ef2d0
RS
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
252b5132
RH
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
df58fc94
RS
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
252b5132
RH
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
741fe287
MR
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
252b5132
RH
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
833794fc
MR
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
a325df1d
TS
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
bad1aba3 245 int gp;
0b35dfee 246 int fp;
fef14a42
TS
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
aed1a261
RS
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
037b32b9
AN
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
351cdf24
MF
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
252b5132
RH
265};
266
919731af 267/* Specifies whether module level options have been checked yet. */
268static bfd_boolean file_mips_opts_checked = FALSE;
269
7361da2c
AB
270/* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274static int mips_nan2008 = -1;
a325df1d 275
0b35dfee 276/* This is the struct we use to hold the module level set of options.
bad1aba3 277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
0b35dfee 278 fp fields to -1 to indicate that they have not been initialized. */
037b32b9 279
0b35dfee 280static struct mips_set_options file_mips_opts =
281{
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
0b35dfee 287};
252b5132 288
0b35dfee 289/* This is similar to file_mips_opts, but for the current set of options. */
ba92f887 290
e972090a
NC
291static struct mips_set_options mips_opts =
292{
846ef2d0 293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
b015e599 294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
833794fc 295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
bad1aba3 296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
351cdf24 297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
e7af610e 298};
252b5132 299
846ef2d0
RS
300/* Which bits of file_ase were explicitly set or cleared by ASE options. */
301static unsigned int file_ase_explicit;
302
252b5132
RH
303/* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306unsigned long mips_gprmask;
307unsigned long mips_cprmask[4];
308
738f4d98 309/* True if any MIPS16 code was produced. */
a4672219
TS
310static int file_ase_mips16;
311
3994f87e
TS
312#define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
3994f87e 316 || mips_opts.isa == ISA_MIPS64 \
ae52f483
AB
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
3994f87e 320
df58fc94
RS
321/* True if any microMIPS code was produced. */
322static int file_ase_micromips;
323
b12dd2e4
CF
324/* True if we want to create R_MIPS_JALR for jalr $25. */
325#ifdef TE_IRIX
1180b5a4 326#define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
b12dd2e4 327#else
1180b5a4
RS
328/* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331#define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
b12dd2e4
CF
334#endif
335
ec68c924 336/* The argument of the -march= flag. The architecture we are assembling. */
316f5878 337static const char *mips_arch_string;
ec68c924
EC
338
339/* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341static int mips_tune = CPU_UNKNOWN;
316f5878 342static const char *mips_tune_string;
ec68c924 343
316f5878 344/* True when generating 32-bit code for a 64-bit processor. */
252b5132
RH
345static int mips_32bitmode = 0;
346
316f5878
RS
347/* True if the given ABI requires 32-bit registers. */
348#define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350/* Likewise 64-bit registers. */
707bfff6 351#define ABI_NEEDS_64BIT_REGS(ABI) \
134c0c8b 352 ((ABI) == N32_ABI \
707bfff6 353 || (ABI) == N64_ABI \
316f5878
RS
354 || (ABI) == O64_ABI)
355
7361da2c
AB
356#define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
ad3fea08 360/* Return true if ISA supports 64 bit wide gp registers. */
707bfff6
TS
361#define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
ae52f483
AB
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
9ce8a5dd 370
ad3fea08
TS
371/* Return true if ISA supports 64 bit wide float registers. */
372#define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
ae52f483
AB
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
7361da2c 379 || (ISA) == ISA_MIPS32R6 \
ad3fea08 380 || (ISA) == ISA_MIPS64 \
ae52f483
AB
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
7361da2c
AB
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
ad3fea08 385
af7ee8bf
CD
386/* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
707bfff6 388#define ISA_HAS_DROR(ISA) \
df58fc94 389 ((ISA) == ISA_MIPS64R2 \
ae52f483
AB
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
7361da2c 392 || (ISA) == ISA_MIPS64R6 \
df58fc94
RS
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
af7ee8bf
CD
396
397/* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
707bfff6
TS
399#define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
7361da2c 403 || (ISA) == ISA_MIPS32R6 \
707bfff6 404 || (ISA) == ISA_MIPS64R2 \
ae52f483
AB
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
7361da2c 407 || (ISA) == ISA_MIPS64R6 \
846ef2d0 408 || (mips_opts.ase & ASE_SMARTMIPS) \
df58fc94
RS
409 || mips_opts.micromips \
410 )
707bfff6 411
7455baf8 412/* Return true if ISA supports single-precision floats in odd registers. */
351cdf24
MF
413#define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
7361da2c 418 || (ISA) == ISA_MIPS32R6 \
351cdf24
MF
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
7361da2c 423 || (ISA) == ISA_MIPS64R6 \
351cdf24 424 || (CPU) == CPU_R5900) \
bd782c07 425 && ((CPU) != CPU_GS464 \
9108bc33
CX
426 || (CPU) != CPU_GS464E \
427 || (CPU) != CPU_GS264E))
af7ee8bf 428
ad3fea08
TS
429/* Return true if ISA supports move to/from high part of a 64-bit
430 floating-point register. */
431#define ISA_HAS_MXHC1(ISA) \
432 ((ISA) == ISA_MIPS32R2 \
ae52f483
AB
433 || (ISA) == ISA_MIPS32R3 \
434 || (ISA) == ISA_MIPS32R5 \
7361da2c
AB
435 || (ISA) == ISA_MIPS32R6 \
436 || (ISA) == ISA_MIPS64R2 \
437 || (ISA) == ISA_MIPS64R3 \
438 || (ISA) == ISA_MIPS64R5 \
439 || (ISA) == ISA_MIPS64R6)
440
441/* Return true if ISA supports legacy NAN. */
442#define ISA_HAS_LEGACY_NAN(ISA) \
443 ((ISA) == ISA_MIPS1 \
444 || (ISA) == ISA_MIPS2 \
445 || (ISA) == ISA_MIPS3 \
446 || (ISA) == ISA_MIPS4 \
447 || (ISA) == ISA_MIPS5 \
448 || (ISA) == ISA_MIPS32 \
449 || (ISA) == ISA_MIPS32R2 \
450 || (ISA) == ISA_MIPS32R3 \
451 || (ISA) == ISA_MIPS32R5 \
452 || (ISA) == ISA_MIPS64 \
ae52f483
AB
453 || (ISA) == ISA_MIPS64R2 \
454 || (ISA) == ISA_MIPS64R3 \
455 || (ISA) == ISA_MIPS64R5)
ad3fea08 456
bad1aba3 457#define GPR_SIZE \
458 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
459 ? 32 \
460 : mips_opts.gp)
ca4e0257 461
bad1aba3 462#define FPR_SIZE \
463 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
464 ? 32 \
465 : mips_opts.fp)
ca4e0257 466
316f5878 467#define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
e013f690 468
316f5878 469#define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
e013f690 470
3b91255e
RS
471/* True if relocations are stored in-place. */
472#define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
473
aed1a261
RS
474/* The ABI-derived address size. */
475#define HAVE_64BIT_ADDRESSES \
bad1aba3 476 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
aed1a261 477#define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
e013f690 478
aed1a261
RS
479/* The size of symbolic constants (i.e., expressions of the form
480 "SYMBOL" or "SYMBOL + OFFSET"). */
481#define HAVE_32BIT_SYMBOLS \
482 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
483#define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
ca4e0257 484
b7c7d6c1
TS
485/* Addresses are loaded in different ways, depending on the address size
486 in use. The n32 ABI Documentation also mandates the use of additions
487 with overflow checking, but existing implementations don't follow it. */
f899b4b8 488#define ADDRESS_ADD_INSN \
b7c7d6c1 489 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
f899b4b8
TS
490
491#define ADDRESS_ADDI_INSN \
b7c7d6c1 492 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
f899b4b8
TS
493
494#define ADDRESS_LOAD_INSN \
495 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
496
497#define ADDRESS_STORE_INSN \
498 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
499
a4672219 500/* Return true if the given CPU supports the MIPS16 ASE. */
3396de36
TS
501#define CPU_HAS_MIPS16(cpu) \
502 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
503 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
a4672219 504
2309ddf2 505/* Return true if the given CPU supports the microMIPS ASE. */
df58fc94
RS
506#define CPU_HAS_MICROMIPS(cpu) 0
507
60b63b72
RS
508/* True if CPU has a dror instruction. */
509#define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
510
511/* True if CPU has a ror instruction. */
512#define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
513
dd6a37e7 514/* True if CPU is in the Octeon family */
2c629856
N
515#define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
516 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
dd6a37e7 517
dd3cbb7e 518/* True if CPU has seq/sne and seqi/snei instructions. */
dd6a37e7 519#define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
dd3cbb7e 520
0aa27725
RS
521/* True, if CPU has support for ldc1 and sdc1. */
522#define CPU_HAS_LDC1_SDC1(CPU) \
523 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
524
c8978940
CD
525/* True if mflo and mfhi can be immediately followed by instructions
526 which write to the HI and LO registers.
527
528 According to MIPS specifications, MIPS ISAs I, II, and III need
529 (at least) two instructions between the reads of HI/LO and
530 instructions which write them, and later ISAs do not. Contradicting
531 the MIPS specifications, some MIPS IV processor user manuals (e.g.
532 the UM for the NEC Vr5000) document needing the instructions between
533 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
534 MIPS64 and later ISAs to have the interlocks, plus any specific
535 earlier-ISA CPUs for which CPU documentation declares that the
536 instructions are really interlocked. */
537#define hilo_interlocks \
538 (mips_opts.isa == ISA_MIPS32 \
539 || mips_opts.isa == ISA_MIPS32R2 \
ae52f483
AB
540 || mips_opts.isa == ISA_MIPS32R3 \
541 || mips_opts.isa == ISA_MIPS32R5 \
7361da2c 542 || mips_opts.isa == ISA_MIPS32R6 \
c8978940
CD
543 || mips_opts.isa == ISA_MIPS64 \
544 || mips_opts.isa == ISA_MIPS64R2 \
ae52f483
AB
545 || mips_opts.isa == ISA_MIPS64R3 \
546 || mips_opts.isa == ISA_MIPS64R5 \
7361da2c 547 || mips_opts.isa == ISA_MIPS64R6 \
c8978940 548 || mips_opts.arch == CPU_R4010 \
e407c74b 549 || mips_opts.arch == CPU_R5900 \
c8978940
CD
550 || mips_opts.arch == CPU_R10000 \
551 || mips_opts.arch == CPU_R12000 \
3aa3176b
TS
552 || mips_opts.arch == CPU_R14000 \
553 || mips_opts.arch == CPU_R16000 \
c8978940 554 || mips_opts.arch == CPU_RM7000 \
c8978940 555 || mips_opts.arch == CPU_VR5500 \
df58fc94 556 || mips_opts.micromips \
c8978940 557 )
252b5132
RH
558
559/* Whether the processor uses hardware interlocks to protect reads
81912461
ILT
560 from the GPRs after they are loaded from memory, and thus does not
561 require nops to be inserted. This applies to instructions marked
67dc82bc 562 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
df58fc94
RS
563 level I and microMIPS mode instructions are always interlocked. */
564#define gpr_interlocks \
565 (mips_opts.isa != ISA_MIPS1 \
566 || mips_opts.arch == CPU_R3900 \
e407c74b 567 || mips_opts.arch == CPU_R5900 \
df58fc94
RS
568 || mips_opts.micromips \
569 )
252b5132 570
81912461
ILT
571/* Whether the processor uses hardware interlocks to avoid delays
572 required by coprocessor instructions, and thus does not require
573 nops to be inserted. This applies to instructions marked
43885403
MF
574 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
575 instructions marked INSN_WRITE_COND_CODE and ones marked
81912461 576 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
df58fc94
RS
577 levels I, II, and III and microMIPS mode instructions are always
578 interlocked. */
bdaaa2e1 579/* Itbl support may require additional care here. */
81912461
ILT
580#define cop_interlocks \
581 ((mips_opts.isa != ISA_MIPS1 \
582 && mips_opts.isa != ISA_MIPS2 \
583 && mips_opts.isa != ISA_MIPS3) \
584 || mips_opts.arch == CPU_R4300 \
df58fc94 585 || mips_opts.micromips \
81912461
ILT
586 )
587
588/* Whether the processor uses hardware interlocks to protect reads
589 from coprocessor registers after they are loaded from memory, and
590 thus does not require nops to be inserted. This applies to
591 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
df58fc94
RS
592 requires at MIPS ISA level I and microMIPS mode instructions are
593 always interlocked. */
594#define cop_mem_interlocks \
595 (mips_opts.isa != ISA_MIPS1 \
596 || mips_opts.micromips \
597 )
252b5132 598
6b76fefe
CM
599/* Is this a mfhi or mflo instruction? */
600#define MF_HILO_INSN(PINFO) \
b19e8a9b
AN
601 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
602
df58fc94
RS
603/* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
604 has been selected. This implies, in particular, that addresses of text
605 labels have their LSB set. */
606#define HAVE_CODE_COMPRESSION \
607 ((mips_opts.mips16 | mips_opts.micromips) != 0)
608
42429eac 609/* The minimum and maximum signed values that can be stored in a GPR. */
bad1aba3 610#define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
42429eac
RS
611#define GPR_SMIN (-GPR_SMAX - 1)
612
252b5132
RH
613/* MIPS PIC level. */
614
a161fe53 615enum mips_pic_level mips_pic;
252b5132 616
c9914766 617/* 1 if we should generate 32 bit offsets from the $gp register in
252b5132 618 SVR4_PIC mode. Currently has no meaning in other modes. */
c9914766 619static int mips_big_got = 0;
252b5132
RH
620
621/* 1 if trap instructions should used for overflow rather than break
622 instructions. */
c9914766 623static int mips_trap = 0;
252b5132 624
119d663a 625/* 1 if double width floating point constants should not be constructed
b6ff326e 626 by assembling two single width halves into two single width floating
119d663a
NC
627 point registers which just happen to alias the double width destination
628 register. On some architectures this aliasing can be disabled by a bit
d547a75e 629 in the status register, and the setting of this bit cannot be determined
119d663a
NC
630 automatically at assemble time. */
631static int mips_disable_float_construction;
632
252b5132
RH
633/* Non-zero if any .set noreorder directives were used. */
634
635static int mips_any_noreorder;
636
6b76fefe
CM
637/* Non-zero if nops should be inserted when the register referenced in
638 an mfhi/mflo instruction is read in the next two instructions. */
639static int mips_7000_hilo_fix;
640
02ffd3e4 641/* The size of objects in the small data section. */
156c2f8b 642static unsigned int g_switch_value = 8;
252b5132
RH
643/* Whether the -G option was used. */
644static int g_switch_seen = 0;
645
646#define N_RMASK 0xc4
647#define N_VFP 0xd4
648
649/* If we can determine in advance that GP optimization won't be
650 possible, we can skip the relaxation stuff that tries to produce
651 GP-relative references. This makes delay slot optimization work
652 better.
653
654 This function can only provide a guess, but it seems to work for
fba2b7f9
GK
655 gcc output. It needs to guess right for gcc, otherwise gcc
656 will put what it thinks is a GP-relative instruction in a branch
657 delay slot.
252b5132
RH
658
659 I don't know if a fix is needed for the SVR4_PIC mode. I've only
660 fixed it for the non-PIC mode. KR 95/04/07 */
17a2f251 661static int nopic_need_relax (symbolS *, int);
252b5132
RH
662
663/* handle of the OPCODE hash table */
664static struct hash_control *op_hash = NULL;
665
666/* The opcode hash table we use for the mips16. */
667static struct hash_control *mips16_op_hash = NULL;
668
df58fc94
RS
669/* The opcode hash table we use for the microMIPS ASE. */
670static struct hash_control *micromips_op_hash = NULL;
671
252b5132
RH
672/* This array holds the chars that always start a comment. If the
673 pre-processor is disabled, these aren't very useful */
674const char comment_chars[] = "#";
675
676/* This array holds the chars that only start a comment at the beginning of
677 a line. If the line seems to have the form '# 123 filename'
678 .line and .file directives will appear in the pre-processed output */
679/* Note that input_file.c hand checks for '#' at the beginning of the
680 first line of the input file. This is because the compiler outputs
bdaaa2e1 681 #NO_APP at the beginning of its output. */
252b5132
RH
682/* Also note that C style comments are always supported. */
683const char line_comment_chars[] = "#";
684
bdaaa2e1 685/* This array holds machine specific line separator characters. */
63a0b638 686const char line_separator_chars[] = ";";
252b5132
RH
687
688/* Chars that can be used to separate mant from exp in floating point nums */
689const char EXP_CHARS[] = "eE";
690
691/* Chars that mean this number is a floating point constant */
692/* As in 0f12.456 */
693/* or 0d1.2345e12 */
694const char FLT_CHARS[] = "rRsSfFdDxXpP";
695
696/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
697 changed in read.c . Ideally it shouldn't have to know about it at all,
698 but nothing is ideal around here.
699 */
700
e3de51ce
RS
701/* Types of printf format used for instruction-related error messages.
702 "I" means int ("%d") and "S" means string ("%s"). */
703enum mips_insn_error_format {
704 ERR_FMT_PLAIN,
705 ERR_FMT_I,
706 ERR_FMT_SS,
707};
708
709/* Information about an error that was found while assembling the current
710 instruction. */
711struct mips_insn_error {
712 /* We sometimes need to match an instruction against more than one
713 opcode table entry. Errors found during this matching are reported
714 against a particular syntactic argument rather than against the
715 instruction as a whole. We grade these messages so that errors
716 against argument N have a greater priority than an error against
717 any argument < N, since the former implies that arguments up to N
718 were acceptable and that the opcode entry was therefore a closer match.
719 If several matches report an error against the same argument,
720 we only use that error if it is the same in all cases.
721
722 min_argnum is the minimum argument number for which an error message
723 should be accepted. It is 0 if MSG is against the instruction as
724 a whole. */
725 int min_argnum;
726
727 /* The printf()-style message, including its format and arguments. */
728 enum mips_insn_error_format format;
729 const char *msg;
730 union {
731 int i;
732 const char *ss[2];
733 } u;
734};
735
736/* The error that should be reported for the current instruction. */
737static struct mips_insn_error insn_error;
252b5132
RH
738
739static int auto_align = 1;
740
741/* When outputting SVR4 PIC code, the assembler needs to know the
742 offset in the stack frame from which to restore the $gp register.
743 This is set by the .cprestore pseudo-op, and saved in this
744 variable. */
745static offsetT mips_cprestore_offset = -1;
746
67c1ffbe 747/* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
6478892d 748 more optimizations, it can use a register value instead of a memory-saved
956cd1d6 749 offset and even an other register than $gp as global pointer. */
6478892d
TS
750static offsetT mips_cpreturn_offset = -1;
751static int mips_cpreturn_register = -1;
752static int mips_gp_register = GP;
def2e0dd 753static int mips_gprel_offset = 0;
6478892d 754
7a621144
DJ
755/* Whether mips_cprestore_offset has been set in the current function
756 (or whether it has already been warned about, if not). */
757static int mips_cprestore_valid = 0;
758
252b5132
RH
759/* This is the register which holds the stack frame, as set by the
760 .frame pseudo-op. This is needed to implement .cprestore. */
761static int mips_frame_reg = SP;
762
7a621144
DJ
763/* Whether mips_frame_reg has been set in the current function
764 (or whether it has already been warned about, if not). */
765static int mips_frame_reg_valid = 0;
766
252b5132
RH
767/* To output NOP instructions correctly, we need to keep information
768 about the previous two instructions. */
769
770/* Whether we are optimizing. The default value of 2 means to remove
771 unneeded NOPs and swap branch instructions when possible. A value
772 of 1 means to not swap branches. A value of 0 means to always
773 insert NOPs. */
774static int mips_optimize = 2;
775
776/* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
777 equivalent to seeing no -g option at all. */
778static int mips_debug = 0;
779
7d8e00cf
RS
780/* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
781#define MAX_VR4130_NOPS 4
782
783/* The maximum number of NOPs needed to fill delay slots. */
784#define MAX_DELAY_NOPS 2
785
786/* The maximum number of NOPs needed for any purpose. */
787#define MAX_NOPS 4
71400594
RS
788
789/* A list of previous instructions, with index 0 being the most recent.
790 We need to look back MAX_NOPS instructions when filling delay slots
791 or working around processor errata. We need to look back one
792 instruction further if we're thinking about using history[0] to
793 fill a branch delay slot. */
794static struct mips_cl_insn history[1 + MAX_NOPS];
252b5132 795
fc76e730 796/* Arrays of operands for each instruction. */
14daeee3 797#define MAX_OPERANDS 6
fc76e730
RS
798struct mips_operand_array {
799 const struct mips_operand *operand[MAX_OPERANDS];
800};
801static struct mips_operand_array *mips_operands;
802static struct mips_operand_array *mips16_operands;
803static struct mips_operand_array *micromips_operands;
804
1e915849 805/* Nop instructions used by emit_nop. */
df58fc94
RS
806static struct mips_cl_insn nop_insn;
807static struct mips_cl_insn mips16_nop_insn;
808static struct mips_cl_insn micromips_nop16_insn;
809static struct mips_cl_insn micromips_nop32_insn;
1e915849
RS
810
811/* The appropriate nop for the current mode. */
833794fc
MR
812#define NOP_INSN (mips_opts.mips16 \
813 ? &mips16_nop_insn \
814 : (mips_opts.micromips \
815 ? (mips_opts.insn32 \
816 ? &micromips_nop32_insn \
817 : &micromips_nop16_insn) \
818 : &nop_insn))
df58fc94
RS
819
820/* The size of NOP_INSN in bytes. */
833794fc
MR
821#define NOP_INSN_SIZE ((mips_opts.mips16 \
822 || (mips_opts.micromips && !mips_opts.insn32)) \
823 ? 2 : 4)
252b5132 824
252b5132
RH
825/* If this is set, it points to a frag holding nop instructions which
826 were inserted before the start of a noreorder section. If those
827 nops turn out to be unnecessary, the size of the frag can be
828 decreased. */
829static fragS *prev_nop_frag;
830
831/* The number of nop instructions we created in prev_nop_frag. */
832static int prev_nop_frag_holds;
833
834/* The number of nop instructions that we know we need in
bdaaa2e1 835 prev_nop_frag. */
252b5132
RH
836static int prev_nop_frag_required;
837
838/* The number of instructions we've seen since prev_nop_frag. */
839static int prev_nop_frag_since;
840
e8044f35
RS
841/* Relocations against symbols are sometimes done in two parts, with a HI
842 relocation and a LO relocation. Each relocation has only 16 bits of
843 space to store an addend. This means that in order for the linker to
844 handle carries correctly, it must be able to locate both the HI and
845 the LO relocation. This means that the relocations must appear in
846 order in the relocation table.
252b5132
RH
847
848 In order to implement this, we keep track of each unmatched HI
849 relocation. We then sort them so that they immediately precede the
bdaaa2e1 850 corresponding LO relocation. */
252b5132 851
e972090a
NC
852struct mips_hi_fixup
853{
252b5132
RH
854 /* Next HI fixup. */
855 struct mips_hi_fixup *next;
856 /* This fixup. */
857 fixS *fixp;
858 /* The section this fixup is in. */
859 segT seg;
860};
861
862/* The list of unmatched HI relocs. */
863
864static struct mips_hi_fixup *mips_hi_fixup_list;
865
64bdfcaf
RS
866/* The frag containing the last explicit relocation operator.
867 Null if explicit relocations have not been used. */
868
869static fragS *prev_reloc_op_frag;
870
252b5132
RH
871/* Map mips16 register numbers to normal MIPS register numbers. */
872
e972090a
NC
873static const unsigned int mips16_to_32_reg_map[] =
874{
252b5132
RH
875 16, 17, 2, 3, 4, 5, 6, 7
876};
60b63b72 877
df58fc94
RS
878/* Map microMIPS register numbers to normal MIPS register numbers. */
879
df58fc94 880#define micromips_to_32_reg_d_map mips16_to_32_reg_map
df58fc94
RS
881
882/* The microMIPS registers with type h. */
e76ff5ab 883static const unsigned int micromips_to_32_reg_h_map1[] =
df58fc94
RS
884{
885 5, 5, 6, 4, 4, 4, 4, 4
886};
e76ff5ab 887static const unsigned int micromips_to_32_reg_h_map2[] =
df58fc94
RS
888{
889 6, 7, 7, 21, 22, 5, 6, 7
890};
891
df58fc94
RS
892/* The microMIPS registers with type m. */
893static const unsigned int micromips_to_32_reg_m_map[] =
894{
895 0, 17, 2, 3, 16, 18, 19, 20
896};
897
898#define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
899
71400594
RS
900/* Classifies the kind of instructions we're interested in when
901 implementing -mfix-vr4120. */
c67a084a
NC
902enum fix_vr4120_class
903{
71400594
RS
904 FIX_VR4120_MACC,
905 FIX_VR4120_DMACC,
906 FIX_VR4120_MULT,
907 FIX_VR4120_DMULT,
908 FIX_VR4120_DIV,
909 FIX_VR4120_MTHILO,
910 NUM_FIX_VR4120_CLASSES
911};
912
c67a084a
NC
913/* ...likewise -mfix-loongson2f-jump. */
914static bfd_boolean mips_fix_loongson2f_jump;
915
916/* ...likewise -mfix-loongson2f-nop. */
917static bfd_boolean mips_fix_loongson2f_nop;
918
919/* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
920static bfd_boolean mips_fix_loongson2f;
921
71400594
RS
922/* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
923 there must be at least one other instruction between an instruction
924 of type X and an instruction of type Y. */
925static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
926
927/* True if -mfix-vr4120 is in force. */
d766e8ec 928static int mips_fix_vr4120;
4a6a3df4 929
7d8e00cf
RS
930/* ...likewise -mfix-vr4130. */
931static int mips_fix_vr4130;
932
6a32d874
CM
933/* ...likewise -mfix-24k. */
934static int mips_fix_24k;
935
a8d14a88
CM
936/* ...likewise -mfix-rm7000 */
937static int mips_fix_rm7000;
938
d954098f
DD
939/* ...likewise -mfix-cn63xxp1 */
940static bfd_boolean mips_fix_cn63xxp1;
941
4a6a3df4
AO
942/* We don't relax branches by default, since this causes us to expand
943 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
944 fail to compute the offset before expanding the macro to the most
945 efficient expansion. */
946
947static int mips_relax_branch;
8b10b0b3
MR
948
949/* TRUE if checks are suppressed for invalid branches between ISA modes.
950 Needed for broken assembly produced by some GCC versions and some
951 sloppy code out there, where branches to data labels are present. */
952static bfd_boolean mips_ignore_branch_isa;
252b5132 953\f
4d7206a2
RS
954/* The expansion of many macros depends on the type of symbol that
955 they refer to. For example, when generating position-dependent code,
956 a macro that refers to a symbol may have two different expansions,
957 one which uses GP-relative addresses and one which uses absolute
958 addresses. When generating SVR4-style PIC, a macro may have
959 different expansions for local and global symbols.
960
961 We handle these situations by generating both sequences and putting
962 them in variant frags. In position-dependent code, the first sequence
963 will be the GP-relative one and the second sequence will be the
964 absolute one. In SVR4 PIC, the first sequence will be for global
965 symbols and the second will be for local symbols.
966
584892a6
RS
967 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
968 SECOND are the lengths of the two sequences in bytes. These fields
969 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
970 the subtype has the following flags:
4d7206a2 971
ce8ad872
MR
972 RELAX_PIC
973 Set if generating PIC code.
974
584892a6
RS
975 RELAX_USE_SECOND
976 Set if it has been decided that we should use the second
977 sequence instead of the first.
978
979 RELAX_SECOND_LONGER
980 Set in the first variant frag if the macro's second implementation
981 is longer than its first. This refers to the macro as a whole,
982 not an individual relaxation.
983
984 RELAX_NOMACRO
985 Set in the first variant frag if the macro appeared in a .set nomacro
986 block and if one alternative requires a warning but the other does not.
987
988 RELAX_DELAY_SLOT
989 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
990 delay slot.
4d7206a2 991
df58fc94
RS
992 RELAX_DELAY_SLOT_16BIT
993 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
994 16-bit instruction.
995
996 RELAX_DELAY_SLOT_SIZE_FIRST
997 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
998 the macro is of the wrong size for the branch delay slot.
999
1000 RELAX_DELAY_SLOT_SIZE_SECOND
1001 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1002 the macro is of the wrong size for the branch delay slot.
1003
4d7206a2
RS
1004 The frag's "opcode" points to the first fixup for relaxable code.
1005
1006 Relaxable macros are generated using a sequence such as:
1007
1008 relax_start (SYMBOL);
1009 ... generate first expansion ...
1010 relax_switch ();
1011 ... generate second expansion ...
1012 relax_end ();
1013
1014 The code and fixups for the unwanted alternative are discarded
1015 by md_convert_frag. */
ce8ad872
MR
1016#define RELAX_ENCODE(FIRST, SECOND, PIC) \
1017 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
4d7206a2 1018
584892a6
RS
1019#define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1020#define RELAX_SECOND(X) ((X) & 0xff)
ce8ad872
MR
1021#define RELAX_PIC(X) (((X) & 0x10000) != 0)
1022#define RELAX_USE_SECOND 0x20000
1023#define RELAX_SECOND_LONGER 0x40000
1024#define RELAX_NOMACRO 0x80000
1025#define RELAX_DELAY_SLOT 0x100000
1026#define RELAX_DELAY_SLOT_16BIT 0x200000
1027#define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1028#define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
252b5132 1029
4a6a3df4
AO
1030/* Branch without likely bit. If label is out of range, we turn:
1031
134c0c8b 1032 beq reg1, reg2, label
4a6a3df4
AO
1033 delay slot
1034
1035 into
1036
1037 bne reg1, reg2, 0f
1038 nop
1039 j label
1040 0: delay slot
1041
1042 with the following opcode replacements:
1043
1044 beq <-> bne
1045 blez <-> bgtz
1046 bltz <-> bgez
1047 bc1f <-> bc1t
1048
1049 bltzal <-> bgezal (with jal label instead of j label)
1050
1051 Even though keeping the delay slot instruction in the delay slot of
1052 the branch would be more efficient, it would be very tricky to do
1053 correctly, because we'd have to introduce a variable frag *after*
1054 the delay slot instruction, and expand that instead. Let's do it
1055 the easy way for now, even if the branch-not-taken case now costs
1056 one additional instruction. Out-of-range branches are not supposed
1057 to be common, anyway.
1058
1059 Branch likely. If label is out of range, we turn:
1060
1061 beql reg1, reg2, label
1062 delay slot (annulled if branch not taken)
1063
1064 into
1065
1066 beql reg1, reg2, 1f
1067 nop
1068 beql $0, $0, 2f
1069 nop
1070 1: j[al] label
1071 delay slot (executed only if branch taken)
1072 2:
1073
1074 It would be possible to generate a shorter sequence by losing the
1075 likely bit, generating something like:
b34976b6 1076
4a6a3df4
AO
1077 bne reg1, reg2, 0f
1078 nop
1079 j[al] label
1080 delay slot (executed only if branch taken)
1081 0:
1082
1083 beql -> bne
1084 bnel -> beq
1085 blezl -> bgtz
1086 bgtzl -> blez
1087 bltzl -> bgez
1088 bgezl -> bltz
1089 bc1fl -> bc1t
1090 bc1tl -> bc1f
1091
1092 bltzall -> bgezal (with jal label instead of j label)
1093 bgezall -> bltzal (ditto)
1094
1095
1096 but it's not clear that it would actually improve performance. */
ce8ad872
MR
1097#define RELAX_BRANCH_ENCODE(at, pic, \
1098 uncond, likely, link, toofar) \
66b3e8da
MR
1099 ((relax_substateT) \
1100 (0xc0000000 \
1101 | ((at) & 0x1f) \
ce8ad872
MR
1102 | ((pic) ? 0x20 : 0) \
1103 | ((toofar) ? 0x40 : 0) \
1104 | ((link) ? 0x80 : 0) \
1105 | ((likely) ? 0x100 : 0) \
1106 | ((uncond) ? 0x200 : 0)))
4a6a3df4 1107#define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
ce8ad872
MR
1108#define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1109#define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1110#define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1111#define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1112#define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
66b3e8da 1113#define RELAX_BRANCH_AT(i) ((i) & 0x1f)
4a6a3df4 1114
252b5132
RH
1115/* For mips16 code, we use an entirely different form of relaxation.
1116 mips16 supports two versions of most instructions which take
1117 immediate values: a small one which takes some small value, and a
1118 larger one which takes a 16 bit value. Since branches also follow
1119 this pattern, relaxing these values is required.
1120
1121 We can assemble both mips16 and normal MIPS code in a single
1122 object. Therefore, we need to support this type of relaxation at
1123 the same time that we support the relaxation described above. We
1124 use the high bit of the subtype field to distinguish these cases.
1125
1126 The information we store for this type of relaxation is the
1127 argument code found in the opcode file for this relocation, whether
1128 the user explicitly requested a small or extended form, and whether
1129 the relocation is in a jump or jal delay slot. That tells us the
1130 size of the value, and how it should be stored. We also store
1131 whether the fragment is considered to be extended or not. We also
1132 store whether this is known to be a branch to a different section,
1133 whether we have tried to relax this frag yet, and whether we have
1134 ever extended a PC relative fragment because of a shift count. */
25499ac7 1135#define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
8507b6e7
MR
1136 small, ext, \
1137 dslot, jal_dslot) \
252b5132
RH
1138 (0x80000000 \
1139 | ((type) & 0xff) \
25499ac7
MR
1140 | ((e2) ? 0x100 : 0) \
1141 | ((pic) ? 0x200 : 0) \
1142 | ((sym32) ? 0x400 : 0) \
1143 | ((nomacro) ? 0x800 : 0) \
1144 | ((small) ? 0x1000 : 0) \
1145 | ((ext) ? 0x2000 : 0) \
1146 | ((dslot) ? 0x4000 : 0) \
1147 | ((jal_dslot) ? 0x8000 : 0))
8507b6e7 1148
4a6a3df4 1149#define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
252b5132 1150#define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
25499ac7
MR
1151#define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1152#define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1153#define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1154#define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1155#define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1156#define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1157#define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1158#define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1159
1160#define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1161#define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1162#define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1163#define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1164#define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1165#define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1166#define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1167#define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1168#define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
885add95 1169
df58fc94
RS
1170/* For microMIPS code, we use relaxation similar to one we use for
1171 MIPS16 code. Some instructions that take immediate values support
1172 two encodings: a small one which takes some small value, and a
1173 larger one which takes a 16 bit value. As some branches also follow
1174 this pattern, relaxing these values is required.
1175
1176 We can assemble both microMIPS and normal MIPS code in a single
1177 object. Therefore, we need to support this type of relaxation at
1178 the same time that we support the relaxation described above. We
1179 use one of the high bits of the subtype field to distinguish these
1180 cases.
1181
1182 The information we store for this type of relaxation is the argument
1183 code found in the opcode file for this relocation, the register
8484fb75
MR
1184 selected as the assembler temporary, whether in the 32-bit
1185 instruction mode, whether the branch is unconditional, whether it is
7bd374a4
MR
1186 compact, whether there is no delay-slot instruction available to fill
1187 in, whether it stores the link address implicitly in $ra, whether
1188 relaxation of out-of-range 32-bit branches to a sequence of
8484fb75
MR
1189 instructions is enabled, and whether the displacement of a branch is
1190 too large to fit as an immediate argument of a 16-bit and a 32-bit
1191 branch, respectively. */
ce8ad872 1192#define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
7bd374a4 1193 uncond, compact, link, nods, \
40209cad
MR
1194 relax32, toofar16, toofar32) \
1195 (0x40000000 \
1196 | ((type) & 0xff) \
1197 | (((at) & 0x1f) << 8) \
8484fb75 1198 | ((insn32) ? 0x2000 : 0) \
ce8ad872
MR
1199 | ((pic) ? 0x4000 : 0) \
1200 | ((uncond) ? 0x8000 : 0) \
1201 | ((compact) ? 0x10000 : 0) \
1202 | ((link) ? 0x20000 : 0) \
1203 | ((nods) ? 0x40000 : 0) \
1204 | ((relax32) ? 0x80000 : 0) \
1205 | ((toofar16) ? 0x100000 : 0) \
1206 | ((toofar32) ? 0x200000 : 0))
df58fc94
RS
1207#define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1208#define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1209#define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
8484fb75 1210#define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
ce8ad872
MR
1211#define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1212#define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1213#define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1214#define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1215#define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1216#define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1217
1218#define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1219#define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1220#define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1221#define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1222#define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1223#define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
df58fc94 1224
43c0598f
RS
1225/* Sign-extend 16-bit value X. */
1226#define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1227
885add95
CD
1228/* Is the given value a sign-extended 32-bit value? */
1229#define IS_SEXT_32BIT_NUM(x) \
1230 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1231 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1232
1233/* Is the given value a sign-extended 16-bit value? */
1234#define IS_SEXT_16BIT_NUM(x) \
1235 (((x) &~ (offsetT) 0x7fff) == 0 \
1236 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1237
df58fc94
RS
1238/* Is the given value a sign-extended 12-bit value? */
1239#define IS_SEXT_12BIT_NUM(x) \
1240 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1241
7f3c4072
CM
1242/* Is the given value a sign-extended 9-bit value? */
1243#define IS_SEXT_9BIT_NUM(x) \
1244 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1245
2051e8c4
MR
1246/* Is the given value a zero-extended 32-bit value? Or a negated one? */
1247#define IS_ZEXT_32BIT_NUM(x) \
1248 (((x) &~ (offsetT) 0xffffffff) == 0 \
1249 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1250
bf12938e
RS
1251/* Extract bits MASK << SHIFT from STRUCT and shift them right
1252 SHIFT places. */
1253#define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1254 (((STRUCT) >> (SHIFT)) & (MASK))
1255
bf12938e 1256/* Extract the operand given by FIELD from mips_cl_insn INSN. */
df58fc94
RS
1257#define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1258 (!(MICROMIPS) \
1259 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1260 : EXTRACT_BITS ((INSN).insn_opcode, \
1261 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
bf12938e
RS
1262#define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1263 EXTRACT_BITS ((INSN).insn_opcode, \
1264 MIPS16OP_MASK_##FIELD, \
1265 MIPS16OP_SH_##FIELD)
5c04167a
RS
1266
1267/* The MIPS16 EXTEND opcode, shifted left 16 places. */
1268#define MIPS16_EXTEND (0xf000U << 16)
4d7206a2 1269\f
df58fc94
RS
1270/* Whether or not we are emitting a branch-likely macro. */
1271static bfd_boolean emit_branch_likely_macro = FALSE;
1272
4d7206a2
RS
1273/* Global variables used when generating relaxable macros. See the
1274 comment above RELAX_ENCODE for more details about how relaxation
1275 is used. */
1276static struct {
1277 /* 0 if we're not emitting a relaxable macro.
1278 1 if we're emitting the first of the two relaxation alternatives.
1279 2 if we're emitting the second alternative. */
1280 int sequence;
1281
1282 /* The first relaxable fixup in the current frag. (In other words,
1283 the first fixup that refers to relaxable code.) */
1284 fixS *first_fixup;
1285
1286 /* sizes[0] says how many bytes of the first alternative are stored in
1287 the current frag. Likewise sizes[1] for the second alternative. */
1288 unsigned int sizes[2];
1289
1290 /* The symbol on which the choice of sequence depends. */
1291 symbolS *symbol;
1292} mips_relax;
252b5132 1293\f
584892a6
RS
1294/* Global variables used to decide whether a macro needs a warning. */
1295static struct {
1296 /* True if the macro is in a branch delay slot. */
1297 bfd_boolean delay_slot_p;
1298
df58fc94
RS
1299 /* Set to the length in bytes required if the macro is in a delay slot
1300 that requires a specific length of instruction, otherwise zero. */
1301 unsigned int delay_slot_length;
1302
584892a6
RS
1303 /* For relaxable macros, sizes[0] is the length of the first alternative
1304 in bytes and sizes[1] is the length of the second alternative.
1305 For non-relaxable macros, both elements give the length of the
1306 macro in bytes. */
1307 unsigned int sizes[2];
1308
df58fc94
RS
1309 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1310 instruction of the first alternative in bytes and first_insn_sizes[1]
1311 is the length of the first instruction of the second alternative.
1312 For non-relaxable macros, both elements give the length of the first
1313 instruction in bytes.
1314
1315 Set to zero if we haven't yet seen the first instruction. */
1316 unsigned int first_insn_sizes[2];
1317
1318 /* For relaxable macros, insns[0] is the number of instructions for the
1319 first alternative and insns[1] is the number of instructions for the
1320 second alternative.
1321
1322 For non-relaxable macros, both elements give the number of
1323 instructions for the macro. */
1324 unsigned int insns[2];
1325
584892a6
RS
1326 /* The first variant frag for this macro. */
1327 fragS *first_frag;
1328} mips_macro_warning;
1329\f
252b5132
RH
1330/* Prototypes for static functions. */
1331
252b5132
RH
1332enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1333
b34976b6 1334static void append_insn
df58fc94
RS
1335 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1336 bfd_boolean expansionp);
7d10b47d 1337static void mips_no_prev_insn (void);
c67a084a 1338static void macro_build (expressionS *, const char *, const char *, ...);
b34976b6 1339static void mips16_macro_build
03ea81db 1340 (expressionS *, const char *, const char *, va_list *);
67c0d1eb 1341static void load_register (int, expressionS *, int);
584892a6
RS
1342static void macro_start (void);
1343static void macro_end (void);
833794fc 1344static void macro (struct mips_cl_insn *ip, char *str);
17a2f251 1345static void mips16_macro (struct mips_cl_insn * ip);
17a2f251
TS
1346static void mips_ip (char *str, struct mips_cl_insn * ip);
1347static void mips16_ip (char *str, struct mips_cl_insn * ip);
25499ac7 1348static unsigned long mips16_immed_extend (offsetT, unsigned int);
b34976b6 1349static void mips16_immed
3b4dbbbf 1350 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
43c0598f 1351 unsigned int, unsigned long *);
5e0116d5 1352static size_t my_getSmallExpression
17a2f251
TS
1353 (expressionS *, bfd_reloc_code_real_type *, char *);
1354static void my_getExpression (expressionS *, char *);
1355static void s_align (int);
1356static void s_change_sec (int);
1357static void s_change_section (int);
1358static void s_cons (int);
1359static void s_float_cons (int);
1360static void s_mips_globl (int);
1361static void s_option (int);
1362static void s_mipsset (int);
1363static void s_abicalls (int);
1364static void s_cpload (int);
1365static void s_cpsetup (int);
1366static void s_cplocal (int);
1367static void s_cprestore (int);
1368static void s_cpreturn (int);
741d6ea8
JM
1369static void s_dtprelword (int);
1370static void s_dtpreldword (int);
d0f13682
CLT
1371static void s_tprelword (int);
1372static void s_tpreldword (int);
17a2f251
TS
1373static void s_gpvalue (int);
1374static void s_gpword (int);
1375static void s_gpdword (int);
a3f278e2 1376static void s_ehword (int);
17a2f251
TS
1377static void s_cpadd (int);
1378static void s_insn (int);
ba92f887 1379static void s_nan (int);
919731af 1380static void s_module (int);
17a2f251
TS
1381static void s_mips_ent (int);
1382static void s_mips_end (int);
1383static void s_mips_frame (int);
1384static void s_mips_mask (int reg_type);
1385static void s_mips_stab (int);
1386static void s_mips_weakext (int);
1387static void s_mips_file (int);
1388static void s_mips_loc (int);
9e009953 1389static bfd_boolean pic_need_relax (symbolS *);
4a6a3df4 1390static int relaxed_branch_length (fragS *, asection *, int);
df58fc94
RS
1391static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1392static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
919731af 1393static void file_mips_check_options (void);
e7af610e
NC
1394
1395/* Table and functions used to map between CPU/ISA names, and
1396 ISA levels, and CPU numbers. */
1397
e972090a
NC
1398struct mips_cpu_info
1399{
e7af610e 1400 const char *name; /* CPU or ISA name. */
d16afab6
RS
1401 int flags; /* MIPS_CPU_* flags. */
1402 int ase; /* Set of ASEs implemented by the CPU. */
e7af610e
NC
1403 int isa; /* ISA level. */
1404 int cpu; /* CPU number (default CPU if ISA). */
1405};
1406
ad3fea08 1407#define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
ad3fea08 1408
17a2f251
TS
1409static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1410static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1411static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
252b5132 1412\f
c31f3936
RS
1413/* Command-line options. */
1414const char *md_shortopts = "O::g::G:";
1415
1416enum options
1417 {
1418 OPTION_MARCH = OPTION_MD_BASE,
1419 OPTION_MTUNE,
1420 OPTION_MIPS1,
1421 OPTION_MIPS2,
1422 OPTION_MIPS3,
1423 OPTION_MIPS4,
1424 OPTION_MIPS5,
1425 OPTION_MIPS32,
1426 OPTION_MIPS64,
1427 OPTION_MIPS32R2,
ae52f483
AB
1428 OPTION_MIPS32R3,
1429 OPTION_MIPS32R5,
7361da2c 1430 OPTION_MIPS32R6,
c31f3936 1431 OPTION_MIPS64R2,
ae52f483
AB
1432 OPTION_MIPS64R3,
1433 OPTION_MIPS64R5,
7361da2c 1434 OPTION_MIPS64R6,
c31f3936
RS
1435 OPTION_MIPS16,
1436 OPTION_NO_MIPS16,
1437 OPTION_MIPS3D,
1438 OPTION_NO_MIPS3D,
1439 OPTION_MDMX,
1440 OPTION_NO_MDMX,
1441 OPTION_DSP,
1442 OPTION_NO_DSP,
1443 OPTION_MT,
1444 OPTION_NO_MT,
1445 OPTION_VIRT,
1446 OPTION_NO_VIRT,
56d438b1
CF
1447 OPTION_MSA,
1448 OPTION_NO_MSA,
c31f3936
RS
1449 OPTION_SMARTMIPS,
1450 OPTION_NO_SMARTMIPS,
1451 OPTION_DSPR2,
1452 OPTION_NO_DSPR2,
8f4f9071
MF
1453 OPTION_DSPR3,
1454 OPTION_NO_DSPR3,
c31f3936
RS
1455 OPTION_EVA,
1456 OPTION_NO_EVA,
7d64c587
AB
1457 OPTION_XPA,
1458 OPTION_NO_XPA,
c31f3936
RS
1459 OPTION_MICROMIPS,
1460 OPTION_NO_MICROMIPS,
1461 OPTION_MCU,
1462 OPTION_NO_MCU,
25499ac7
MR
1463 OPTION_MIPS16E2,
1464 OPTION_NO_MIPS16E2,
730c3174
SE
1465 OPTION_CRC,
1466 OPTION_NO_CRC,
c31f3936
RS
1467 OPTION_M4650,
1468 OPTION_NO_M4650,
1469 OPTION_M4010,
1470 OPTION_NO_M4010,
1471 OPTION_M4100,
1472 OPTION_NO_M4100,
1473 OPTION_M3900,
1474 OPTION_NO_M3900,
1475 OPTION_M7000_HILO_FIX,
1476 OPTION_MNO_7000_HILO_FIX,
1477 OPTION_FIX_24K,
1478 OPTION_NO_FIX_24K,
a8d14a88
CM
1479 OPTION_FIX_RM7000,
1480 OPTION_NO_FIX_RM7000,
c31f3936
RS
1481 OPTION_FIX_LOONGSON2F_JUMP,
1482 OPTION_NO_FIX_LOONGSON2F_JUMP,
1483 OPTION_FIX_LOONGSON2F_NOP,
1484 OPTION_NO_FIX_LOONGSON2F_NOP,
1485 OPTION_FIX_VR4120,
1486 OPTION_NO_FIX_VR4120,
1487 OPTION_FIX_VR4130,
1488 OPTION_NO_FIX_VR4130,
1489 OPTION_FIX_CN63XXP1,
1490 OPTION_NO_FIX_CN63XXP1,
1491 OPTION_TRAP,
1492 OPTION_BREAK,
1493 OPTION_EB,
1494 OPTION_EL,
1495 OPTION_FP32,
1496 OPTION_GP32,
1497 OPTION_CONSTRUCT_FLOATS,
1498 OPTION_NO_CONSTRUCT_FLOATS,
1499 OPTION_FP64,
351cdf24 1500 OPTION_FPXX,
c31f3936
RS
1501 OPTION_GP64,
1502 OPTION_RELAX_BRANCH,
1503 OPTION_NO_RELAX_BRANCH,
8b10b0b3
MR
1504 OPTION_IGNORE_BRANCH_ISA,
1505 OPTION_NO_IGNORE_BRANCH_ISA,
833794fc
MR
1506 OPTION_INSN32,
1507 OPTION_NO_INSN32,
c31f3936
RS
1508 OPTION_MSHARED,
1509 OPTION_MNO_SHARED,
1510 OPTION_MSYM32,
1511 OPTION_MNO_SYM32,
1512 OPTION_SOFT_FLOAT,
1513 OPTION_HARD_FLOAT,
1514 OPTION_SINGLE_FLOAT,
1515 OPTION_DOUBLE_FLOAT,
1516 OPTION_32,
c31f3936
RS
1517 OPTION_CALL_SHARED,
1518 OPTION_CALL_NONPIC,
1519 OPTION_NON_SHARED,
1520 OPTION_XGOT,
1521 OPTION_MABI,
1522 OPTION_N32,
1523 OPTION_64,
1524 OPTION_MDEBUG,
1525 OPTION_NO_MDEBUG,
1526 OPTION_PDR,
1527 OPTION_NO_PDR,
1528 OPTION_MVXWORKS_PIC,
ba92f887 1529 OPTION_NAN,
351cdf24
MF
1530 OPTION_ODD_SPREG,
1531 OPTION_NO_ODD_SPREG,
6f20c942
FS
1532 OPTION_GINV,
1533 OPTION_NO_GINV,
8095d2f7
CX
1534 OPTION_LOONGSON_MMI,
1535 OPTION_NO_LOONGSON_MMI,
716c08de
CX
1536 OPTION_LOONGSON_CAM,
1537 OPTION_NO_LOONGSON_CAM,
bdc6c06e
CX
1538 OPTION_LOONGSON_EXT,
1539 OPTION_NO_LOONGSON_EXT,
a693765e
CX
1540 OPTION_LOONGSON_EXT2,
1541 OPTION_NO_LOONGSON_EXT2,
c31f3936
RS
1542 OPTION_END_OF_ENUM
1543 };
1544
1545struct option md_longopts[] =
1546{
1547 /* Options which specify architecture. */
1548 {"march", required_argument, NULL, OPTION_MARCH},
1549 {"mtune", required_argument, NULL, OPTION_MTUNE},
1550 {"mips0", no_argument, NULL, OPTION_MIPS1},
1551 {"mips1", no_argument, NULL, OPTION_MIPS1},
1552 {"mips2", no_argument, NULL, OPTION_MIPS2},
1553 {"mips3", no_argument, NULL, OPTION_MIPS3},
1554 {"mips4", no_argument, NULL, OPTION_MIPS4},
1555 {"mips5", no_argument, NULL, OPTION_MIPS5},
1556 {"mips32", no_argument, NULL, OPTION_MIPS32},
1557 {"mips64", no_argument, NULL, OPTION_MIPS64},
1558 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
ae52f483
AB
1559 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1560 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
7361da2c 1561 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
c31f3936 1562 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
ae52f483
AB
1563 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1564 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
7361da2c 1565 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
c31f3936
RS
1566
1567 /* Options which specify Application Specific Extensions (ASEs). */
1568 {"mips16", no_argument, NULL, OPTION_MIPS16},
1569 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1570 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1571 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1572 {"mdmx", no_argument, NULL, OPTION_MDMX},
1573 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1574 {"mdsp", no_argument, NULL, OPTION_DSP},
1575 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1576 {"mmt", no_argument, NULL, OPTION_MT},
1577 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1578 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1579 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1580 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1581 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
8f4f9071
MF
1582 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1583 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
c31f3936
RS
1584 {"meva", no_argument, NULL, OPTION_EVA},
1585 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1586 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1587 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1588 {"mmcu", no_argument, NULL, OPTION_MCU},
1589 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1590 {"mvirt", no_argument, NULL, OPTION_VIRT},
1591 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
56d438b1
CF
1592 {"mmsa", no_argument, NULL, OPTION_MSA},
1593 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
7d64c587
AB
1594 {"mxpa", no_argument, NULL, OPTION_XPA},
1595 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
25499ac7
MR
1596 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1597 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
730c3174
SE
1598 {"mcrc", no_argument, NULL, OPTION_CRC},
1599 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
6f20c942
FS
1600 {"mginv", no_argument, NULL, OPTION_GINV},
1601 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
8095d2f7
CX
1602 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1603 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
716c08de
CX
1604 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1605 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
bdc6c06e
CX
1606 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1607 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
a693765e
CX
1608 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1609 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
c31f3936
RS
1610
1611 /* Old-style architecture options. Don't add more of these. */
1612 {"m4650", no_argument, NULL, OPTION_M4650},
1613 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1614 {"m4010", no_argument, NULL, OPTION_M4010},
1615 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1616 {"m4100", no_argument, NULL, OPTION_M4100},
1617 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1618 {"m3900", no_argument, NULL, OPTION_M3900},
1619 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1620
1621 /* Options which enable bug fixes. */
1622 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1623 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1624 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1625 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1626 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1627 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1628 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1629 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1630 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1631 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1632 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1633 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1634 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
a8d14a88
CM
1635 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1636 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
c31f3936
RS
1637 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1638 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1639
1640 /* Miscellaneous options. */
1641 {"trap", no_argument, NULL, OPTION_TRAP},
1642 {"no-break", no_argument, NULL, OPTION_TRAP},
1643 {"break", no_argument, NULL, OPTION_BREAK},
1644 {"no-trap", no_argument, NULL, OPTION_BREAK},
1645 {"EB", no_argument, NULL, OPTION_EB},
1646 {"EL", no_argument, NULL, OPTION_EL},
1647 {"mfp32", no_argument, NULL, OPTION_FP32},
1648 {"mgp32", no_argument, NULL, OPTION_GP32},
1649 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1650 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1651 {"mfp64", no_argument, NULL, OPTION_FP64},
351cdf24 1652 {"mfpxx", no_argument, NULL, OPTION_FPXX},
c31f3936
RS
1653 {"mgp64", no_argument, NULL, OPTION_GP64},
1654 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1655 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
8b10b0b3
MR
1656 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1657 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
833794fc
MR
1658 {"minsn32", no_argument, NULL, OPTION_INSN32},
1659 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
c31f3936
RS
1660 {"mshared", no_argument, NULL, OPTION_MSHARED},
1661 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1662 {"msym32", no_argument, NULL, OPTION_MSYM32},
1663 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1664 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1665 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1666 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1667 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
351cdf24
MF
1668 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1669 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
c31f3936
RS
1670
1671 /* Strictly speaking this next option is ELF specific,
1672 but we allow it for other ports as well in order to
1673 make testing easier. */
1674 {"32", no_argument, NULL, OPTION_32},
1675
1676 /* ELF-specific options. */
c31f3936
RS
1677 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1678 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1679 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1680 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1681 {"xgot", no_argument, NULL, OPTION_XGOT},
1682 {"mabi", required_argument, NULL, OPTION_MABI},
1683 {"n32", no_argument, NULL, OPTION_N32},
1684 {"64", no_argument, NULL, OPTION_64},
1685 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1686 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1687 {"mpdr", no_argument, NULL, OPTION_PDR},
1688 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1689 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
ba92f887 1690 {"mnan", required_argument, NULL, OPTION_NAN},
c31f3936
RS
1691
1692 {NULL, no_argument, NULL, 0}
1693};
1694size_t md_longopts_size = sizeof (md_longopts);
1695\f
c6278170
RS
1696/* Information about either an Application Specific Extension or an
1697 optional architecture feature that, for simplicity, we treat in the
1698 same way as an ASE. */
1699struct mips_ase
1700{
1701 /* The name of the ASE, used in both the command-line and .set options. */
1702 const char *name;
1703
1704 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1705 and 64-bit architectures, the flags here refer to the subset that
1706 is available on both. */
1707 unsigned int flags;
1708
1709 /* The ASE_* flag used for instructions that are available on 64-bit
1710 architectures but that are not included in FLAGS. */
1711 unsigned int flags64;
1712
1713 /* The command-line options that turn the ASE on and off. */
1714 int option_on;
1715 int option_off;
1716
1717 /* The minimum required architecture revisions for MIPS32, MIPS64,
1718 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1719 int mips32_rev;
1720 int mips64_rev;
1721 int micromips32_rev;
1722 int micromips64_rev;
7361da2c
AB
1723
1724 /* The architecture where the ASE was removed or -1 if the extension has not
1725 been removed. */
1726 int rem_rev;
c6278170
RS
1727};
1728
1729/* A table of all supported ASEs. */
1730static const struct mips_ase mips_ases[] = {
1731 { "dsp", ASE_DSP, ASE_DSP64,
1732 OPTION_DSP, OPTION_NO_DSP,
7361da2c
AB
1733 2, 2, 2, 2,
1734 -1 },
c6278170
RS
1735
1736 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1737 OPTION_DSPR2, OPTION_NO_DSPR2,
7361da2c
AB
1738 2, 2, 2, 2,
1739 -1 },
c6278170 1740
8f4f9071
MF
1741 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1742 OPTION_DSPR3, OPTION_NO_DSPR3,
1743 6, 6, -1, -1,
1744 -1 },
1745
c6278170
RS
1746 { "eva", ASE_EVA, 0,
1747 OPTION_EVA, OPTION_NO_EVA,
7361da2c
AB
1748 2, 2, 2, 2,
1749 -1 },
c6278170
RS
1750
1751 { "mcu", ASE_MCU, 0,
1752 OPTION_MCU, OPTION_NO_MCU,
7361da2c
AB
1753 2, 2, 2, 2,
1754 -1 },
c6278170
RS
1755
1756 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1757 { "mdmx", ASE_MDMX, 0,
1758 OPTION_MDMX, OPTION_NO_MDMX,
7361da2c
AB
1759 -1, 1, -1, -1,
1760 6 },
c6278170
RS
1761
1762 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1763 { "mips3d", ASE_MIPS3D, 0,
1764 OPTION_MIPS3D, OPTION_NO_MIPS3D,
7361da2c
AB
1765 2, 1, -1, -1,
1766 6 },
c6278170
RS
1767
1768 { "mt", ASE_MT, 0,
1769 OPTION_MT, OPTION_NO_MT,
7361da2c
AB
1770 2, 2, -1, -1,
1771 -1 },
c6278170
RS
1772
1773 { "smartmips", ASE_SMARTMIPS, 0,
1774 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
7361da2c
AB
1775 1, -1, -1, -1,
1776 6 },
c6278170
RS
1777
1778 { "virt", ASE_VIRT, ASE_VIRT64,
1779 OPTION_VIRT, OPTION_NO_VIRT,
7361da2c
AB
1780 2, 2, 2, 2,
1781 -1 },
56d438b1
CF
1782
1783 { "msa", ASE_MSA, ASE_MSA64,
1784 OPTION_MSA, OPTION_NO_MSA,
7361da2c
AB
1785 2, 2, 2, 2,
1786 -1 },
7d64c587
AB
1787
1788 { "xpa", ASE_XPA, 0,
1789 OPTION_XPA, OPTION_NO_XPA,
909b4e3d 1790 2, 2, 2, 2,
7361da2c 1791 -1 },
25499ac7
MR
1792
1793 { "mips16e2", ASE_MIPS16E2, 0,
1794 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1795 2, 2, -1, -1,
1796 6 },
730c3174
SE
1797
1798 { "crc", ASE_CRC, ASE_CRC64,
1799 OPTION_CRC, OPTION_NO_CRC,
1800 6, 6, -1, -1,
1801 -1 },
6f20c942
FS
1802
1803 { "ginv", ASE_GINV, 0,
1804 OPTION_GINV, OPTION_NO_GINV,
1805 6, 6, 6, 6,
1806 -1 },
8095d2f7
CX
1807
1808 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1809 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1810 0, 0, -1, -1,
1811 -1 },
716c08de
CX
1812
1813 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1814 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1815 0, 0, -1, -1,
1816 -1 },
bdc6c06e
CX
1817
1818 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1819 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1820 0, 0, -1, -1,
1821 -1 },
a693765e
CX
1822
1823 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1824 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1825 0, 0, -1, -1,
1826 -1 },
c6278170
RS
1827};
1828
1829/* The set of ASEs that require -mfp64. */
82bda27b 1830#define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
c6278170
RS
1831
1832/* Groups of ASE_* flags that represent different revisions of an ASE. */
1833static const unsigned int mips_ase_groups[] = {
a693765e
CX
1834 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1835 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
c6278170
RS
1836};
1837\f
252b5132
RH
1838/* Pseudo-op table.
1839
1840 The following pseudo-ops from the Kane and Heinrich MIPS book
1841 should be defined here, but are currently unsupported: .alias,
1842 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1843
1844 The following pseudo-ops from the Kane and Heinrich MIPS book are
1845 specific to the type of debugging information being generated, and
1846 should be defined by the object format: .aent, .begin, .bend,
1847 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1848 .vreg.
1849
1850 The following pseudo-ops from the Kane and Heinrich MIPS book are
1851 not MIPS CPU specific, but are also not specific to the object file
1852 format. This file is probably the best place to define them, but
d84bcf09 1853 they are not currently supported: .asm0, .endr, .lab, .struct. */
252b5132 1854
e972090a
NC
1855static const pseudo_typeS mips_pseudo_table[] =
1856{
beae10d5 1857 /* MIPS specific pseudo-ops. */
252b5132
RH
1858 {"option", s_option, 0},
1859 {"set", s_mipsset, 0},
1860 {"rdata", s_change_sec, 'r'},
1861 {"sdata", s_change_sec, 's'},
1862 {"livereg", s_ignore, 0},
1863 {"abicalls", s_abicalls, 0},
1864 {"cpload", s_cpload, 0},
6478892d
TS
1865 {"cpsetup", s_cpsetup, 0},
1866 {"cplocal", s_cplocal, 0},
252b5132 1867 {"cprestore", s_cprestore, 0},
6478892d 1868 {"cpreturn", s_cpreturn, 0},
741d6ea8
JM
1869 {"dtprelword", s_dtprelword, 0},
1870 {"dtpreldword", s_dtpreldword, 0},
d0f13682
CLT
1871 {"tprelword", s_tprelword, 0},
1872 {"tpreldword", s_tpreldword, 0},
6478892d 1873 {"gpvalue", s_gpvalue, 0},
252b5132 1874 {"gpword", s_gpword, 0},
10181a0d 1875 {"gpdword", s_gpdword, 0},
a3f278e2 1876 {"ehword", s_ehword, 0},
252b5132
RH
1877 {"cpadd", s_cpadd, 0},
1878 {"insn", s_insn, 0},
ba92f887 1879 {"nan", s_nan, 0},
919731af 1880 {"module", s_module, 0},
252b5132 1881
beae10d5 1882 /* Relatively generic pseudo-ops that happen to be used on MIPS
252b5132 1883 chips. */
38a57ae7 1884 {"asciiz", stringer, 8 + 1},
252b5132
RH
1885 {"bss", s_change_sec, 'b'},
1886 {"err", s_err, 0},
1887 {"half", s_cons, 1},
1888 {"dword", s_cons, 3},
1889 {"weakext", s_mips_weakext, 0},
7c752c2a
TS
1890 {"origin", s_org, 0},
1891 {"repeat", s_rept, 0},
252b5132 1892
998b3c36
MR
1893 /* For MIPS this is non-standard, but we define it for consistency. */
1894 {"sbss", s_change_sec, 'B'},
1895
beae10d5 1896 /* These pseudo-ops are defined in read.c, but must be overridden
252b5132
RH
1897 here for one reason or another. */
1898 {"align", s_align, 0},
1899 {"byte", s_cons, 0},
1900 {"data", s_change_sec, 'd'},
1901 {"double", s_float_cons, 'd'},
1902 {"float", s_float_cons, 'f'},
1903 {"globl", s_mips_globl, 0},
1904 {"global", s_mips_globl, 0},
1905 {"hword", s_cons, 1},
1906 {"int", s_cons, 2},
1907 {"long", s_cons, 2},
1908 {"octa", s_cons, 4},
1909 {"quad", s_cons, 3},
cca86cc8 1910 {"section", s_change_section, 0},
252b5132
RH
1911 {"short", s_cons, 1},
1912 {"single", s_float_cons, 'f'},
754e2bb9 1913 {"stabd", s_mips_stab, 'd'},
252b5132 1914 {"stabn", s_mips_stab, 'n'},
754e2bb9 1915 {"stabs", s_mips_stab, 's'},
252b5132
RH
1916 {"text", s_change_sec, 't'},
1917 {"word", s_cons, 2},
add56521 1918
add56521 1919 { "extern", ecoff_directive_extern, 0},
add56521 1920
43841e91 1921 { NULL, NULL, 0 },
252b5132
RH
1922};
1923
e972090a
NC
1924static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1925{
beae10d5
KH
1926 /* These pseudo-ops should be defined by the object file format.
1927 However, a.out doesn't support them, so we have versions here. */
252b5132
RH
1928 {"aent", s_mips_ent, 1},
1929 {"bgnb", s_ignore, 0},
1930 {"end", s_mips_end, 0},
1931 {"endb", s_ignore, 0},
1932 {"ent", s_mips_ent, 0},
c5dd6aab 1933 {"file", s_mips_file, 0},
252b5132
RH
1934 {"fmask", s_mips_mask, 'F'},
1935 {"frame", s_mips_frame, 0},
c5dd6aab 1936 {"loc", s_mips_loc, 0},
252b5132
RH
1937 {"mask", s_mips_mask, 'R'},
1938 {"verstamp", s_ignore, 0},
43841e91 1939 { NULL, NULL, 0 },
252b5132
RH
1940};
1941
3ae8dd8d
MR
1942/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1943 purpose of the `.dc.a' internal pseudo-op. */
1944
1945int
1946mips_address_bytes (void)
1947{
919731af 1948 file_mips_check_options ();
3ae8dd8d
MR
1949 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1950}
1951
17a2f251 1952extern void pop_insert (const pseudo_typeS *);
252b5132
RH
1953
1954void
17a2f251 1955mips_pop_insert (void)
252b5132
RH
1956{
1957 pop_insert (mips_pseudo_table);
1958 if (! ECOFF_DEBUGGING)
1959 pop_insert (mips_nonecoff_pseudo_table);
1960}
1961\f
1962/* Symbols labelling the current insn. */
1963
e972090a
NC
1964struct insn_label_list
1965{
252b5132
RH
1966 struct insn_label_list *next;
1967 symbolS *label;
1968};
1969
252b5132 1970static struct insn_label_list *free_insn_labels;
742a56fe 1971#define label_list tc_segment_info_data.labels
252b5132 1972
17a2f251 1973static void mips_clear_insn_labels (void);
df58fc94
RS
1974static void mips_mark_labels (void);
1975static void mips_compressed_mark_labels (void);
252b5132
RH
1976
1977static inline void
17a2f251 1978mips_clear_insn_labels (void)
252b5132 1979{
ed9e98c2 1980 struct insn_label_list **pl;
a8dbcb85 1981 segment_info_type *si;
252b5132 1982
a8dbcb85
TS
1983 if (now_seg)
1984 {
1985 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1986 ;
3739860c 1987
a8dbcb85
TS
1988 si = seg_info (now_seg);
1989 *pl = si->label_list;
1990 si->label_list = NULL;
1991 }
252b5132 1992}
a8dbcb85 1993
df58fc94
RS
1994/* Mark instruction labels in MIPS16/microMIPS mode. */
1995
1996static inline void
1997mips_mark_labels (void)
1998{
1999 if (HAVE_CODE_COMPRESSION)
2000 mips_compressed_mark_labels ();
2001}
252b5132
RH
2002\f
2003static char *expr_end;
2004
e423441d 2005/* An expression in a macro instruction. This is set by mips_ip and
b0e6f033 2006 mips16_ip and when populated is always an O_constant. */
252b5132
RH
2007
2008static expressionS imm_expr;
252b5132 2009
77bd4346
RS
2010/* The relocatable field in an instruction and the relocs associated
2011 with it. These variables are used for instructions like LUI and
2012 JAL as well as true offsets. They are also used for address
2013 operands in macros. */
252b5132 2014
77bd4346 2015static expressionS offset_expr;
f6688943
TS
2016static bfd_reloc_code_real_type offset_reloc[3]
2017 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 2018
df58fc94
RS
2019/* This is set to the resulting size of the instruction to be produced
2020 by mips16_ip if an explicit extension is used or by mips_ip if an
2021 explicit size is supplied. */
252b5132 2022
df58fc94 2023static unsigned int forced_insn_length;
252b5132 2024
e1b47bd5
RS
2025/* True if we are assembling an instruction. All dot symbols defined during
2026 this time should be treated as code labels. */
2027
2028static bfd_boolean mips_assembling_insn;
2029
ecb4347a
DJ
2030/* The pdr segment for per procedure frame/regmask info. Not used for
2031 ECOFF debugging. */
252b5132
RH
2032
2033static segT pdr_seg;
252b5132 2034
e013f690
TS
2035/* The default target format to use. */
2036
aeffff67
RS
2037#if defined (TE_FreeBSD)
2038#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2039#elif defined (TE_TMIPS)
2040#define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2041#else
2042#define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2043#endif
2044
e013f690 2045const char *
17a2f251 2046mips_target_format (void)
e013f690
TS
2047{
2048 switch (OUTPUT_FLAVOR)
2049 {
e013f690 2050 case bfd_target_elf_flavour:
0a44bf69
RS
2051#ifdef TE_VXWORKS
2052 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2053 return (target_big_endian
2054 ? "elf32-bigmips-vxworks"
2055 : "elf32-littlemips-vxworks");
2056#endif
e013f690 2057 return (target_big_endian
cfe86eaa 2058 ? (HAVE_64BIT_OBJECTS
aeffff67 2059 ? ELF_TARGET ("elf64-", "big")
cfe86eaa 2060 : (HAVE_NEWABI
aeffff67
RS
2061 ? ELF_TARGET ("elf32-n", "big")
2062 : ELF_TARGET ("elf32-", "big")))
cfe86eaa 2063 : (HAVE_64BIT_OBJECTS
aeffff67 2064 ? ELF_TARGET ("elf64-", "little")
cfe86eaa 2065 : (HAVE_NEWABI
aeffff67
RS
2066 ? ELF_TARGET ("elf32-n", "little")
2067 : ELF_TARGET ("elf32-", "little"))));
e013f690
TS
2068 default:
2069 abort ();
2070 return NULL;
2071 }
2072}
2073
c6278170
RS
2074/* Return the ISA revision that is currently in use, or 0 if we are
2075 generating code for MIPS V or below. */
2076
2077static int
2078mips_isa_rev (void)
2079{
2080 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2081 return 2;
2082
ae52f483
AB
2083 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2084 return 3;
2085
2086 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2087 return 5;
2088
7361da2c
AB
2089 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2090 return 6;
2091
c6278170
RS
2092 /* microMIPS implies revision 2 or above. */
2093 if (mips_opts.micromips)
2094 return 2;
2095
2096 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2097 return 1;
2098
2099 return 0;
2100}
2101
2102/* Return the mask of all ASEs that are revisions of those in FLAGS. */
2103
2104static unsigned int
2105mips_ase_mask (unsigned int flags)
2106{
2107 unsigned int i;
2108
2109 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2110 if (flags & mips_ase_groups[i])
2111 flags |= mips_ase_groups[i];
2112 return flags;
2113}
2114
2115/* Check whether the current ISA supports ASE. Issue a warning if
2116 appropriate. */
2117
2118static void
2119mips_check_isa_supports_ase (const struct mips_ase *ase)
2120{
2121 const char *base;
2122 int min_rev, size;
2123 static unsigned int warned_isa;
2124 static unsigned int warned_fp32;
2125
2126 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2127 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2128 else
2129 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2130 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2131 && (warned_isa & ase->flags) != ase->flags)
2132 {
2133 warned_isa |= ase->flags;
2134 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2135 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2136 if (min_rev < 0)
1661c76c 2137 as_warn (_("the %d-bit %s architecture does not support the"
c6278170
RS
2138 " `%s' extension"), size, base, ase->name);
2139 else
1661c76c 2140 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
c6278170
RS
2141 ase->name, base, size, min_rev);
2142 }
7361da2c
AB
2143 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2144 && (warned_isa & ase->flags) != ase->flags)
2145 {
2146 warned_isa |= ase->flags;
2147 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2148 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2149 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2150 ase->name, base, size, ase->rem_rev);
2151 }
2152
c6278170 2153 if ((ase->flags & FP64_ASES)
0b35dfee 2154 && mips_opts.fp != 64
c6278170
RS
2155 && (warned_fp32 & ase->flags) != ase->flags)
2156 {
2157 warned_fp32 |= ase->flags;
1661c76c 2158 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
c6278170
RS
2159 }
2160}
2161
2162/* Check all enabled ASEs to see whether they are supported by the
2163 chosen architecture. */
2164
2165static void
2166mips_check_isa_supports_ases (void)
2167{
2168 unsigned int i, mask;
2169
2170 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2171 {
2172 mask = mips_ase_mask (mips_ases[i].flags);
2173 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2174 mips_check_isa_supports_ase (&mips_ases[i]);
2175 }
2176}
2177
2178/* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2179 that were affected. */
2180
2181static unsigned int
919731af 2182mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2183 bfd_boolean enabled_p)
c6278170
RS
2184{
2185 unsigned int mask;
2186
2187 mask = mips_ase_mask (ase->flags);
919731af 2188 opts->ase &= ~mask;
92cebb3d
MR
2189
2190 /* Clear combination ASE flags, which need to be recalculated based on
2191 updated regular ASE settings. */
9785fc2a 2192 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
92cebb3d 2193
c6278170 2194 if (enabled_p)
919731af 2195 opts->ase |= ase->flags;
25499ac7 2196
9785fc2a
MR
2197 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2198 instructions which are only valid when both ASEs are enabled.
2199 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2200 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2201 {
2202 opts->ase |= ASE_XPA_VIRT;
2203 mask |= ASE_XPA_VIRT;
2204 }
25499ac7
MR
2205 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2206 {
2207 opts->ase |= ASE_MIPS16E2_MT;
2208 mask |= ASE_MIPS16E2_MT;
2209 }
2210
c6278170
RS
2211 return mask;
2212}
2213
2214/* Return the ASE called NAME, or null if none. */
2215
2216static const struct mips_ase *
2217mips_lookup_ase (const char *name)
2218{
2219 unsigned int i;
2220
2221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2222 if (strcmp (name, mips_ases[i].name) == 0)
2223 return &mips_ases[i];
2224 return NULL;
2225}
2226
df58fc94 2227/* Return the length of a microMIPS instruction in bytes. If bits of
100b4f2e
MR
2228 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2229 otherwise it is a 32-bit instruction. */
df58fc94
RS
2230
2231static inline unsigned int
2232micromips_insn_length (const struct mips_opcode *mo)
2233{
7fd53920 2234 return mips_opcode_32bit_p (mo) ? 4 : 2;
df58fc94
RS
2235}
2236
5c04167a
RS
2237/* Return the length of MIPS16 instruction OPCODE. */
2238
2239static inline unsigned int
2240mips16_opcode_length (unsigned long opcode)
2241{
2242 return (opcode >> 16) == 0 ? 2 : 4;
2243}
2244
1e915849
RS
2245/* Return the length of instruction INSN. */
2246
2247static inline unsigned int
2248insn_length (const struct mips_cl_insn *insn)
2249{
df58fc94
RS
2250 if (mips_opts.micromips)
2251 return micromips_insn_length (insn->insn_mo);
2252 else if (mips_opts.mips16)
5c04167a 2253 return mips16_opcode_length (insn->insn_opcode);
df58fc94 2254 else
1e915849 2255 return 4;
1e915849
RS
2256}
2257
2258/* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2259
2260static void
2261create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2262{
2263 size_t i;
2264
2265 insn->insn_mo = mo;
1e915849
RS
2266 insn->insn_opcode = mo->match;
2267 insn->frag = NULL;
2268 insn->where = 0;
2269 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2270 insn->fixp[i] = NULL;
2271 insn->fixed_p = (mips_opts.noreorder > 0);
2272 insn->noreorder_p = (mips_opts.noreorder > 0);
2273 insn->mips16_absolute_jump_p = 0;
15be625d 2274 insn->complete_p = 0;
e407c74b 2275 insn->cleared_p = 0;
1e915849
RS
2276}
2277
fc76e730
RS
2278/* Get a list of all the operands in INSN. */
2279
2280static const struct mips_operand_array *
2281insn_operands (const struct mips_cl_insn *insn)
2282{
2283 if (insn->insn_mo >= &mips_opcodes[0]
2284 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2285 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2286
2287 if (insn->insn_mo >= &mips16_opcodes[0]
2288 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2289 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2290
2291 if (insn->insn_mo >= &micromips_opcodes[0]
2292 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2293 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2294
2295 abort ();
2296}
2297
2298/* Get a description of operand OPNO of INSN. */
2299
2300static const struct mips_operand *
2301insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2302{
2303 const struct mips_operand_array *operands;
2304
2305 operands = insn_operands (insn);
2306 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2307 abort ();
2308 return operands->operand[opno];
2309}
2310
e077a1c8
RS
2311/* Install UVAL as the value of OPERAND in INSN. */
2312
2313static inline void
2314insn_insert_operand (struct mips_cl_insn *insn,
2315 const struct mips_operand *operand, unsigned int uval)
2316{
25499ac7
MR
2317 if (mips_opts.mips16
2318 && operand->type == OP_INT && operand->lsb == 0
2319 && mips_opcode_32bit_p (insn->insn_mo))
2320 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2321 else
2322 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
e077a1c8
RS
2323}
2324
fc76e730
RS
2325/* Extract the value of OPERAND from INSN. */
2326
2327static inline unsigned
2328insn_extract_operand (const struct mips_cl_insn *insn,
2329 const struct mips_operand *operand)
2330{
2331 return mips_extract_operand (operand, insn->insn_opcode);
2332}
2333
df58fc94 2334/* Record the current MIPS16/microMIPS mode in now_seg. */
742a56fe
RS
2335
2336static void
df58fc94 2337mips_record_compressed_mode (void)
742a56fe
RS
2338{
2339 segment_info_type *si;
2340
2341 si = seg_info (now_seg);
2342 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2343 si->tc_segment_info_data.mips16 = mips_opts.mips16;
df58fc94
RS
2344 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2345 si->tc_segment_info_data.micromips = mips_opts.micromips;
742a56fe
RS
2346}
2347
4d68580a
RS
2348/* Read a standard MIPS instruction from BUF. */
2349
2350static unsigned long
2351read_insn (char *buf)
2352{
2353 if (target_big_endian)
2354 return bfd_getb32 ((bfd_byte *) buf);
2355 else
2356 return bfd_getl32 ((bfd_byte *) buf);
2357}
2358
2359/* Write standard MIPS instruction INSN to BUF. Return a pointer to
2360 the next byte. */
2361
2362static char *
2363write_insn (char *buf, unsigned int insn)
2364{
2365 md_number_to_chars (buf, insn, 4);
2366 return buf + 4;
2367}
2368
2369/* Read a microMIPS or MIPS16 opcode from BUF, given that it
2370 has length LENGTH. */
2371
2372static unsigned long
2373read_compressed_insn (char *buf, unsigned int length)
2374{
2375 unsigned long insn;
2376 unsigned int i;
2377
2378 insn = 0;
2379 for (i = 0; i < length; i += 2)
2380 {
2381 insn <<= 16;
2382 if (target_big_endian)
2383 insn |= bfd_getb16 ((char *) buf);
2384 else
2385 insn |= bfd_getl16 ((char *) buf);
2386 buf += 2;
2387 }
2388 return insn;
2389}
2390
5c04167a
RS
2391/* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2392 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2393
2394static char *
2395write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2396{
2397 unsigned int i;
2398
2399 for (i = 0; i < length; i += 2)
2400 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2401 return buf + length;
2402}
2403
1e915849
RS
2404/* Install INSN at the location specified by its "frag" and "where" fields. */
2405
2406static void
2407install_insn (const struct mips_cl_insn *insn)
2408{
2409 char *f = insn->frag->fr_literal + insn->where;
5c04167a
RS
2410 if (HAVE_CODE_COMPRESSION)
2411 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
1e915849 2412 else
4d68580a 2413 write_insn (f, insn->insn_opcode);
df58fc94 2414 mips_record_compressed_mode ();
1e915849
RS
2415}
2416
2417/* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2418 and install the opcode in the new location. */
2419
2420static void
2421move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2422{
2423 size_t i;
2424
2425 insn->frag = frag;
2426 insn->where = where;
2427 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2428 if (insn->fixp[i] != NULL)
2429 {
2430 insn->fixp[i]->fx_frag = frag;
2431 insn->fixp[i]->fx_where = where;
2432 }
2433 install_insn (insn);
2434}
2435
2436/* Add INSN to the end of the output. */
2437
2438static void
2439add_fixed_insn (struct mips_cl_insn *insn)
2440{
2441 char *f = frag_more (insn_length (insn));
2442 move_insn (insn, frag_now, f - frag_now->fr_literal);
2443}
2444
2445/* Start a variant frag and move INSN to the start of the variant part,
2446 marking it as fixed. The other arguments are as for frag_var. */
2447
2448static void
2449add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2450 relax_substateT subtype, symbolS *symbol, offsetT offset)
2451{
2452 frag_grow (max_chars);
2453 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2454 insn->fixed_p = 1;
2455 frag_var (rs_machine_dependent, max_chars, var,
2456 subtype, symbol, offset, NULL);
2457}
2458
2459/* Insert N copies of INSN into the history buffer, starting at
2460 position FIRST. Neither FIRST nor N need to be clipped. */
2461
2462static void
2463insert_into_history (unsigned int first, unsigned int n,
2464 const struct mips_cl_insn *insn)
2465{
2466 if (mips_relax.sequence != 2)
2467 {
2468 unsigned int i;
2469
2470 for (i = ARRAY_SIZE (history); i-- > first;)
2471 if (i >= first + n)
2472 history[i] = history[i - n];
2473 else
2474 history[i] = *insn;
2475 }
2476}
2477
e3de51ce
RS
2478/* Clear the error in insn_error. */
2479
2480static void
2481clear_insn_error (void)
2482{
2483 memset (&insn_error, 0, sizeof (insn_error));
2484}
2485
2486/* Possibly record error message MSG for the current instruction.
2487 If the error is about a particular argument, ARGNUM is the 1-based
2488 number of that argument, otherwise it is 0. FORMAT is the format
2489 of MSG. Return true if MSG was used, false if the current message
2490 was kept. */
2491
2492static bfd_boolean
2493set_insn_error_format (int argnum, enum mips_insn_error_format format,
2494 const char *msg)
2495{
2496 if (argnum == 0)
2497 {
2498 /* Give priority to errors against specific arguments, and to
2499 the first whole-instruction message. */
2500 if (insn_error.msg)
2501 return FALSE;
2502 }
2503 else
2504 {
2505 /* Keep insn_error if it is against a later argument. */
2506 if (argnum < insn_error.min_argnum)
2507 return FALSE;
2508
2509 /* If both errors are against the same argument but are different,
2510 give up on reporting a specific error for this argument.
2511 See the comment about mips_insn_error for details. */
2512 if (argnum == insn_error.min_argnum
2513 && insn_error.msg
2514 && strcmp (insn_error.msg, msg) != 0)
2515 {
2516 insn_error.msg = 0;
2517 insn_error.min_argnum += 1;
2518 return FALSE;
2519 }
2520 }
2521 insn_error.min_argnum = argnum;
2522 insn_error.format = format;
2523 insn_error.msg = msg;
2524 return TRUE;
2525}
2526
2527/* Record an instruction error with no % format fields. ARGNUM and MSG are
2528 as for set_insn_error_format. */
2529
2530static void
2531set_insn_error (int argnum, const char *msg)
2532{
2533 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2534}
2535
2536/* Record an instruction error with one %d field I. ARGNUM and MSG are
2537 as for set_insn_error_format. */
2538
2539static void
2540set_insn_error_i (int argnum, const char *msg, int i)
2541{
2542 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2543 insn_error.u.i = i;
2544}
2545
2546/* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2547 are as for set_insn_error_format. */
2548
2549static void
2550set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2551{
2552 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2553 {
2554 insn_error.u.ss[0] = s1;
2555 insn_error.u.ss[1] = s2;
2556 }
2557}
2558
2559/* Report the error in insn_error, which is against assembly code STR. */
2560
2561static void
2562report_insn_error (const char *str)
2563{
e1fa0163 2564 const char *msg = concat (insn_error.msg, " `%s'", NULL);
e3de51ce 2565
e3de51ce
RS
2566 switch (insn_error.format)
2567 {
2568 case ERR_FMT_PLAIN:
2569 as_bad (msg, str);
2570 break;
2571
2572 case ERR_FMT_I:
2573 as_bad (msg, insn_error.u.i, str);
2574 break;
2575
2576 case ERR_FMT_SS:
2577 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2578 break;
2579 }
e1fa0163
NC
2580
2581 free ((char *) msg);
e3de51ce
RS
2582}
2583
71400594
RS
2584/* Initialize vr4120_conflicts. There is a bit of duplication here:
2585 the idea is to make it obvious at a glance that each errata is
2586 included. */
2587
2588static void
2589init_vr4120_conflicts (void)
2590{
2591#define CONFLICT(FIRST, SECOND) \
2592 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2593
2594 /* Errata 21 - [D]DIV[U] after [D]MACC */
2595 CONFLICT (MACC, DIV);
2596 CONFLICT (DMACC, DIV);
2597
2598 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2599 CONFLICT (DMULT, DMULT);
2600 CONFLICT (DMULT, DMACC);
2601 CONFLICT (DMACC, DMULT);
2602 CONFLICT (DMACC, DMACC);
2603
2604 /* Errata 24 - MT{LO,HI} after [D]MACC */
2605 CONFLICT (MACC, MTHILO);
2606 CONFLICT (DMACC, MTHILO);
2607
2608 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2609 instruction is executed immediately after a MACC or DMACC
2610 instruction, the result of [either instruction] is incorrect." */
2611 CONFLICT (MACC, MULT);
2612 CONFLICT (MACC, DMULT);
2613 CONFLICT (DMACC, MULT);
2614 CONFLICT (DMACC, DMULT);
2615
2616 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2617 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2618 DDIV or DDIVU instruction, the result of the MACC or
2619 DMACC instruction is incorrect.". */
2620 CONFLICT (DMULT, MACC);
2621 CONFLICT (DMULT, DMACC);
2622 CONFLICT (DIV, MACC);
2623 CONFLICT (DIV, DMACC);
2624
2625#undef CONFLICT
2626}
2627
707bfff6
TS
2628struct regname {
2629 const char *name;
2630 unsigned int num;
2631};
2632
14daeee3 2633#define RNUM_MASK 0x00000ff
56d438b1 2634#define RTYPE_MASK 0x0ffff00
14daeee3
RS
2635#define RTYPE_NUM 0x0000100
2636#define RTYPE_FPU 0x0000200
2637#define RTYPE_FCC 0x0000400
2638#define RTYPE_VEC 0x0000800
2639#define RTYPE_GP 0x0001000
2640#define RTYPE_CP0 0x0002000
2641#define RTYPE_PC 0x0004000
2642#define RTYPE_ACC 0x0008000
2643#define RTYPE_CCC 0x0010000
2644#define RTYPE_VI 0x0020000
2645#define RTYPE_VF 0x0040000
2646#define RTYPE_R5900_I 0x0080000
2647#define RTYPE_R5900_Q 0x0100000
2648#define RTYPE_R5900_R 0x0200000
2649#define RTYPE_R5900_ACC 0x0400000
56d438b1 2650#define RTYPE_MSA 0x0800000
14daeee3 2651#define RWARN 0x8000000
707bfff6
TS
2652
2653#define GENERIC_REGISTER_NUMBERS \
2654 {"$0", RTYPE_NUM | 0}, \
2655 {"$1", RTYPE_NUM | 1}, \
2656 {"$2", RTYPE_NUM | 2}, \
2657 {"$3", RTYPE_NUM | 3}, \
2658 {"$4", RTYPE_NUM | 4}, \
2659 {"$5", RTYPE_NUM | 5}, \
2660 {"$6", RTYPE_NUM | 6}, \
2661 {"$7", RTYPE_NUM | 7}, \
2662 {"$8", RTYPE_NUM | 8}, \
2663 {"$9", RTYPE_NUM | 9}, \
2664 {"$10", RTYPE_NUM | 10}, \
2665 {"$11", RTYPE_NUM | 11}, \
2666 {"$12", RTYPE_NUM | 12}, \
2667 {"$13", RTYPE_NUM | 13}, \
2668 {"$14", RTYPE_NUM | 14}, \
2669 {"$15", RTYPE_NUM | 15}, \
2670 {"$16", RTYPE_NUM | 16}, \
2671 {"$17", RTYPE_NUM | 17}, \
2672 {"$18", RTYPE_NUM | 18}, \
2673 {"$19", RTYPE_NUM | 19}, \
2674 {"$20", RTYPE_NUM | 20}, \
2675 {"$21", RTYPE_NUM | 21}, \
2676 {"$22", RTYPE_NUM | 22}, \
2677 {"$23", RTYPE_NUM | 23}, \
2678 {"$24", RTYPE_NUM | 24}, \
2679 {"$25", RTYPE_NUM | 25}, \
2680 {"$26", RTYPE_NUM | 26}, \
2681 {"$27", RTYPE_NUM | 27}, \
2682 {"$28", RTYPE_NUM | 28}, \
2683 {"$29", RTYPE_NUM | 29}, \
2684 {"$30", RTYPE_NUM | 30}, \
3739860c 2685 {"$31", RTYPE_NUM | 31}
707bfff6
TS
2686
2687#define FPU_REGISTER_NAMES \
2688 {"$f0", RTYPE_FPU | 0}, \
2689 {"$f1", RTYPE_FPU | 1}, \
2690 {"$f2", RTYPE_FPU | 2}, \
2691 {"$f3", RTYPE_FPU | 3}, \
2692 {"$f4", RTYPE_FPU | 4}, \
2693 {"$f5", RTYPE_FPU | 5}, \
2694 {"$f6", RTYPE_FPU | 6}, \
2695 {"$f7", RTYPE_FPU | 7}, \
2696 {"$f8", RTYPE_FPU | 8}, \
2697 {"$f9", RTYPE_FPU | 9}, \
2698 {"$f10", RTYPE_FPU | 10}, \
2699 {"$f11", RTYPE_FPU | 11}, \
2700 {"$f12", RTYPE_FPU | 12}, \
2701 {"$f13", RTYPE_FPU | 13}, \
2702 {"$f14", RTYPE_FPU | 14}, \
2703 {"$f15", RTYPE_FPU | 15}, \
2704 {"$f16", RTYPE_FPU | 16}, \
2705 {"$f17", RTYPE_FPU | 17}, \
2706 {"$f18", RTYPE_FPU | 18}, \
2707 {"$f19", RTYPE_FPU | 19}, \
2708 {"$f20", RTYPE_FPU | 20}, \
2709 {"$f21", RTYPE_FPU | 21}, \
2710 {"$f22", RTYPE_FPU | 22}, \
2711 {"$f23", RTYPE_FPU | 23}, \
2712 {"$f24", RTYPE_FPU | 24}, \
2713 {"$f25", RTYPE_FPU | 25}, \
2714 {"$f26", RTYPE_FPU | 26}, \
2715 {"$f27", RTYPE_FPU | 27}, \
2716 {"$f28", RTYPE_FPU | 28}, \
2717 {"$f29", RTYPE_FPU | 29}, \
2718 {"$f30", RTYPE_FPU | 30}, \
2719 {"$f31", RTYPE_FPU | 31}
2720
2721#define FPU_CONDITION_CODE_NAMES \
2722 {"$fcc0", RTYPE_FCC | 0}, \
2723 {"$fcc1", RTYPE_FCC | 1}, \
2724 {"$fcc2", RTYPE_FCC | 2}, \
2725 {"$fcc3", RTYPE_FCC | 3}, \
2726 {"$fcc4", RTYPE_FCC | 4}, \
2727 {"$fcc5", RTYPE_FCC | 5}, \
2728 {"$fcc6", RTYPE_FCC | 6}, \
2729 {"$fcc7", RTYPE_FCC | 7}
2730
2731#define COPROC_CONDITION_CODE_NAMES \
2732 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2733 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2734 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2735 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2736 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2737 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2738 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2739 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2740
2741#define N32N64_SYMBOLIC_REGISTER_NAMES \
2742 {"$a4", RTYPE_GP | 8}, \
2743 {"$a5", RTYPE_GP | 9}, \
2744 {"$a6", RTYPE_GP | 10}, \
2745 {"$a7", RTYPE_GP | 11}, \
2746 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2747 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2748 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2749 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2750 {"$t0", RTYPE_GP | 12}, \
2751 {"$t1", RTYPE_GP | 13}, \
2752 {"$t2", RTYPE_GP | 14}, \
2753 {"$t3", RTYPE_GP | 15}
2754
2755#define O32_SYMBOLIC_REGISTER_NAMES \
2756 {"$t0", RTYPE_GP | 8}, \
2757 {"$t1", RTYPE_GP | 9}, \
2758 {"$t2", RTYPE_GP | 10}, \
2759 {"$t3", RTYPE_GP | 11}, \
2760 {"$t4", RTYPE_GP | 12}, \
2761 {"$t5", RTYPE_GP | 13}, \
2762 {"$t6", RTYPE_GP | 14}, \
2763 {"$t7", RTYPE_GP | 15}, \
2764 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2765 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2766 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
3739860c 2767 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
707bfff6
TS
2768
2769/* Remaining symbolic register names */
2770#define SYMBOLIC_REGISTER_NAMES \
2771 {"$zero", RTYPE_GP | 0}, \
2772 {"$at", RTYPE_GP | 1}, \
2773 {"$AT", RTYPE_GP | 1}, \
2774 {"$v0", RTYPE_GP | 2}, \
2775 {"$v1", RTYPE_GP | 3}, \
2776 {"$a0", RTYPE_GP | 4}, \
2777 {"$a1", RTYPE_GP | 5}, \
2778 {"$a2", RTYPE_GP | 6}, \
2779 {"$a3", RTYPE_GP | 7}, \
2780 {"$s0", RTYPE_GP | 16}, \
2781 {"$s1", RTYPE_GP | 17}, \
2782 {"$s2", RTYPE_GP | 18}, \
2783 {"$s3", RTYPE_GP | 19}, \
2784 {"$s4", RTYPE_GP | 20}, \
2785 {"$s5", RTYPE_GP | 21}, \
2786 {"$s6", RTYPE_GP | 22}, \
2787 {"$s7", RTYPE_GP | 23}, \
2788 {"$t8", RTYPE_GP | 24}, \
2789 {"$t9", RTYPE_GP | 25}, \
2790 {"$k0", RTYPE_GP | 26}, \
2791 {"$kt0", RTYPE_GP | 26}, \
2792 {"$k1", RTYPE_GP | 27}, \
2793 {"$kt1", RTYPE_GP | 27}, \
2794 {"$gp", RTYPE_GP | 28}, \
2795 {"$sp", RTYPE_GP | 29}, \
2796 {"$s8", RTYPE_GP | 30}, \
2797 {"$fp", RTYPE_GP | 30}, \
2798 {"$ra", RTYPE_GP | 31}
2799
2800#define MIPS16_SPECIAL_REGISTER_NAMES \
2801 {"$pc", RTYPE_PC | 0}
2802
2803#define MDMX_VECTOR_REGISTER_NAMES \
2804 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2805 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2806 {"$v2", RTYPE_VEC | 2}, \
2807 {"$v3", RTYPE_VEC | 3}, \
2808 {"$v4", RTYPE_VEC | 4}, \
2809 {"$v5", RTYPE_VEC | 5}, \
2810 {"$v6", RTYPE_VEC | 6}, \
2811 {"$v7", RTYPE_VEC | 7}, \
2812 {"$v8", RTYPE_VEC | 8}, \
2813 {"$v9", RTYPE_VEC | 9}, \
2814 {"$v10", RTYPE_VEC | 10}, \
2815 {"$v11", RTYPE_VEC | 11}, \
2816 {"$v12", RTYPE_VEC | 12}, \
2817 {"$v13", RTYPE_VEC | 13}, \
2818 {"$v14", RTYPE_VEC | 14}, \
2819 {"$v15", RTYPE_VEC | 15}, \
2820 {"$v16", RTYPE_VEC | 16}, \
2821 {"$v17", RTYPE_VEC | 17}, \
2822 {"$v18", RTYPE_VEC | 18}, \
2823 {"$v19", RTYPE_VEC | 19}, \
2824 {"$v20", RTYPE_VEC | 20}, \
2825 {"$v21", RTYPE_VEC | 21}, \
2826 {"$v22", RTYPE_VEC | 22}, \
2827 {"$v23", RTYPE_VEC | 23}, \
2828 {"$v24", RTYPE_VEC | 24}, \
2829 {"$v25", RTYPE_VEC | 25}, \
2830 {"$v26", RTYPE_VEC | 26}, \
2831 {"$v27", RTYPE_VEC | 27}, \
2832 {"$v28", RTYPE_VEC | 28}, \
2833 {"$v29", RTYPE_VEC | 29}, \
2834 {"$v30", RTYPE_VEC | 30}, \
2835 {"$v31", RTYPE_VEC | 31}
2836
14daeee3
RS
2837#define R5900_I_NAMES \
2838 {"$I", RTYPE_R5900_I | 0}
2839
2840#define R5900_Q_NAMES \
2841 {"$Q", RTYPE_R5900_Q | 0}
2842
2843#define R5900_R_NAMES \
2844 {"$R", RTYPE_R5900_R | 0}
2845
2846#define R5900_ACC_NAMES \
2847 {"$ACC", RTYPE_R5900_ACC | 0 }
2848
707bfff6
TS
2849#define MIPS_DSP_ACCUMULATOR_NAMES \
2850 {"$ac0", RTYPE_ACC | 0}, \
2851 {"$ac1", RTYPE_ACC | 1}, \
2852 {"$ac2", RTYPE_ACC | 2}, \
2853 {"$ac3", RTYPE_ACC | 3}
2854
2855static const struct regname reg_names[] = {
2856 GENERIC_REGISTER_NUMBERS,
2857 FPU_REGISTER_NAMES,
2858 FPU_CONDITION_CODE_NAMES,
2859 COPROC_CONDITION_CODE_NAMES,
2860
2861 /* The $txx registers depends on the abi,
2862 these will be added later into the symbol table from
3739860c 2863 one of the tables below once mips_abi is set after
707bfff6
TS
2864 parsing of arguments from the command line. */
2865 SYMBOLIC_REGISTER_NAMES,
2866
2867 MIPS16_SPECIAL_REGISTER_NAMES,
2868 MDMX_VECTOR_REGISTER_NAMES,
14daeee3
RS
2869 R5900_I_NAMES,
2870 R5900_Q_NAMES,
2871 R5900_R_NAMES,
2872 R5900_ACC_NAMES,
707bfff6
TS
2873 MIPS_DSP_ACCUMULATOR_NAMES,
2874 {0, 0}
2875};
2876
2877static const struct regname reg_names_o32[] = {
2878 O32_SYMBOLIC_REGISTER_NAMES,
2879 {0, 0}
2880};
2881
2882static const struct regname reg_names_n32n64[] = {
2883 N32N64_SYMBOLIC_REGISTER_NAMES,
2884 {0, 0}
2885};
2886
a92713e6
RS
2887/* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2888 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2889 of these register symbols, return the associated vector register,
2890 otherwise return SYMVAL itself. */
df58fc94 2891
a92713e6
RS
2892static unsigned int
2893mips_prefer_vec_regno (unsigned int symval)
707bfff6 2894{
a92713e6
RS
2895 if ((symval & -2) == (RTYPE_GP | 2))
2896 return RTYPE_VEC | (symval & 1);
2897 return symval;
2898}
2899
14daeee3
RS
2900/* Return true if string [S, E) is a valid register name, storing its
2901 symbol value in *SYMVAL_PTR if so. */
a92713e6
RS
2902
2903static bfd_boolean
14daeee3 2904mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
a92713e6 2905{
707bfff6 2906 char save_c;
14daeee3 2907 symbolS *symbol;
707bfff6
TS
2908
2909 /* Terminate name. */
2910 save_c = *e;
2911 *e = '\0';
2912
a92713e6
RS
2913 /* Look up the name. */
2914 symbol = symbol_find (s);
2915 *e = save_c;
2916
2917 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2918 return FALSE;
2919
14daeee3
RS
2920 *symval_ptr = S_GET_VALUE (symbol);
2921 return TRUE;
2922}
2923
2924/* Return true if the string at *SPTR is a valid register name. Allow it
2925 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2926 is nonnull.
2927
2928 When returning true, move *SPTR past the register, store the
2929 register's symbol value in *SYMVAL_PTR and the channel mask in
2930 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2931 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2932 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2933
2934static bfd_boolean
2935mips_parse_register (char **sptr, unsigned int *symval_ptr,
2936 unsigned int *channels_ptr)
2937{
2938 char *s, *e, *m;
2939 const char *q;
2940 unsigned int channels, symval, bit;
2941
2942 /* Find end of name. */
2943 s = e = *sptr;
2944 if (is_name_beginner (*e))
2945 ++e;
2946 while (is_part_of_name (*e))
2947 ++e;
2948
2949 channels = 0;
2950 if (!mips_parse_register_1 (s, e, &symval))
2951 {
2952 if (!channels_ptr)
2953 return FALSE;
2954
2955 /* Eat characters from the end of the string that are valid
2956 channel suffixes. The preceding register must be $ACC or
2957 end with a digit, so there is no ambiguity. */
2958 bit = 1;
2959 m = e;
2960 for (q = "wzyx"; *q; q++, bit <<= 1)
2961 if (m > s && m[-1] == *q)
2962 {
2963 --m;
2964 channels |= bit;
2965 }
2966
2967 if (channels == 0
2968 || !mips_parse_register_1 (s, m, &symval)
2969 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2970 return FALSE;
2971 }
2972
a92713e6 2973 *sptr = e;
14daeee3
RS
2974 *symval_ptr = symval;
2975 if (channels_ptr)
2976 *channels_ptr = channels;
a92713e6
RS
2977 return TRUE;
2978}
2979
2980/* Check if SPTR points at a valid register specifier according to TYPES.
2981 If so, then return 1, advance S to consume the specifier and store
2982 the register's number in REGNOP, otherwise return 0. */
2983
2984static int
2985reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2986{
2987 unsigned int regno;
2988
14daeee3 2989 if (mips_parse_register (s, &regno, NULL))
707bfff6 2990 {
a92713e6
RS
2991 if (types & RTYPE_VEC)
2992 regno = mips_prefer_vec_regno (regno);
2993 if (regno & types)
2994 regno &= RNUM_MASK;
2995 else
2996 regno = ~0;
707bfff6 2997 }
a92713e6 2998 else
707bfff6 2999 {
a92713e6 3000 if (types & RWARN)
1661c76c 3001 as_warn (_("unrecognized register name `%s'"), *s);
a92713e6 3002 regno = ~0;
707bfff6 3003 }
707bfff6 3004 if (regnop)
a92713e6
RS
3005 *regnop = regno;
3006 return regno <= RNUM_MASK;
707bfff6
TS
3007}
3008
14daeee3
RS
3009/* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3010 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3011
3012static char *
3013mips_parse_vu0_channels (char *s, unsigned int *channels)
3014{
3015 unsigned int i;
3016
3017 *channels = 0;
3018 for (i = 0; i < 4; i++)
3019 if (*s == "xyzw"[i])
3020 {
3021 *channels |= 1 << (3 - i);
3022 ++s;
3023 }
3024 return s;
3025}
3026
a92713e6
RS
3027/* Token types for parsed operand lists. */
3028enum mips_operand_token_type {
3029 /* A plain register, e.g. $f2. */
3030 OT_REG,
df58fc94 3031
14daeee3
RS
3032 /* A 4-bit XYZW channel mask. */
3033 OT_CHANNELS,
3034
56d438b1
CF
3035 /* A constant vector index, e.g. [1]. */
3036 OT_INTEGER_INDEX,
3037
3038 /* A register vector index, e.g. [$2]. */
3039 OT_REG_INDEX,
df58fc94 3040
a92713e6
RS
3041 /* A continuous range of registers, e.g. $s0-$s4. */
3042 OT_REG_RANGE,
3043
3044 /* A (possibly relocated) expression. */
3045 OT_INTEGER,
3046
3047 /* A floating-point value. */
3048 OT_FLOAT,
3049
3050 /* A single character. This can be '(', ')' or ',', but '(' only appears
3051 before OT_REGs. */
3052 OT_CHAR,
3053
14daeee3
RS
3054 /* A doubled character, either "--" or "++". */
3055 OT_DOUBLE_CHAR,
3056
a92713e6
RS
3057 /* The end of the operand list. */
3058 OT_END
3059};
3060
3061/* A parsed operand token. */
3062struct mips_operand_token
3063{
3064 /* The type of token. */
3065 enum mips_operand_token_type type;
3066 union
3067 {
56d438b1 3068 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
a92713e6
RS
3069 unsigned int regno;
3070
14daeee3
RS
3071 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3072 unsigned int channels;
3073
56d438b1
CF
3074 /* The integer value of an OT_INTEGER_INDEX. */
3075 addressT index;
a92713e6
RS
3076
3077 /* The two register symbol values involved in an OT_REG_RANGE. */
3078 struct {
3079 unsigned int regno1;
3080 unsigned int regno2;
3081 } reg_range;
3082
3083 /* The value of an OT_INTEGER. The value is represented as an
3084 expression and the relocation operators that were applied to
3085 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3086 relocation operators were used. */
3087 struct {
3088 expressionS value;
3089 bfd_reloc_code_real_type relocs[3];
3090 } integer;
3091
3092 /* The binary data for an OT_FLOAT constant, and the number of bytes
3093 in the constant. */
3094 struct {
3095 unsigned char data[8];
3096 int length;
3097 } flt;
3098
14daeee3 3099 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
a92713e6
RS
3100 char ch;
3101 } u;
3102};
3103
3104/* An obstack used to construct lists of mips_operand_tokens. */
3105static struct obstack mips_operand_tokens;
3106
3107/* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3108
3109static void
3110mips_add_token (struct mips_operand_token *token,
3111 enum mips_operand_token_type type)
3112{
3113 token->type = type;
3114 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3115}
3116
3117/* Check whether S is '(' followed by a register name. Add OT_CHAR
3118 and OT_REG tokens for them if so, and return a pointer to the first
3119 unconsumed character. Return null otherwise. */
3120
3121static char *
3122mips_parse_base_start (char *s)
3123{
3124 struct mips_operand_token token;
14daeee3
RS
3125 unsigned int regno, channels;
3126 bfd_boolean decrement_p;
df58fc94 3127
a92713e6
RS
3128 if (*s != '(')
3129 return 0;
3130
3131 ++s;
3132 SKIP_SPACE_TABS (s);
14daeee3
RS
3133
3134 /* Only match "--" as part of a base expression. In other contexts "--X"
3135 is a double negative. */
3136 decrement_p = (s[0] == '-' && s[1] == '-');
3137 if (decrement_p)
3138 {
3139 s += 2;
3140 SKIP_SPACE_TABS (s);
3141 }
3142
3143 /* Allow a channel specifier because that leads to better error messages
3144 than treating something like "$vf0x++" as an expression. */
3145 if (!mips_parse_register (&s, &regno, &channels))
a92713e6
RS
3146 return 0;
3147
3148 token.u.ch = '(';
3149 mips_add_token (&token, OT_CHAR);
3150
14daeee3
RS
3151 if (decrement_p)
3152 {
3153 token.u.ch = '-';
3154 mips_add_token (&token, OT_DOUBLE_CHAR);
3155 }
3156
a92713e6
RS
3157 token.u.regno = regno;
3158 mips_add_token (&token, OT_REG);
3159
14daeee3
RS
3160 if (channels)
3161 {
3162 token.u.channels = channels;
3163 mips_add_token (&token, OT_CHANNELS);
3164 }
3165
3166 /* For consistency, only match "++" as part of base expressions too. */
3167 SKIP_SPACE_TABS (s);
3168 if (s[0] == '+' && s[1] == '+')
3169 {
3170 s += 2;
3171 token.u.ch = '+';
3172 mips_add_token (&token, OT_DOUBLE_CHAR);
3173 }
3174
a92713e6
RS
3175 return s;
3176}
3177
3178/* Parse one or more tokens from S. Return a pointer to the first
3179 unconsumed character on success. Return null if an error was found
3180 and store the error text in insn_error. FLOAT_FORMAT is as for
3181 mips_parse_arguments. */
3182
3183static char *
3184mips_parse_argument_token (char *s, char float_format)
3185{
6d4af3c2
AM
3186 char *end, *save_in;
3187 const char *err;
14daeee3 3188 unsigned int regno1, regno2, channels;
a92713e6
RS
3189 struct mips_operand_token token;
3190
3191 /* First look for "($reg", since we want to treat that as an
3192 OT_CHAR and OT_REG rather than an expression. */
3193 end = mips_parse_base_start (s);
3194 if (end)
3195 return end;
3196
3197 /* Handle other characters that end up as OT_CHARs. */
3198 if (*s == ')' || *s == ',')
3199 {
3200 token.u.ch = *s;
3201 mips_add_token (&token, OT_CHAR);
3202 ++s;
3203 return s;
3204 }
3205
3206 /* Handle tokens that start with a register. */
14daeee3 3207 if (mips_parse_register (&s, &regno1, &channels))
df58fc94 3208 {
14daeee3
RS
3209 if (channels)
3210 {
3211 /* A register and a VU0 channel suffix. */
3212 token.u.regno = regno1;
3213 mips_add_token (&token, OT_REG);
3214
3215 token.u.channels = channels;
3216 mips_add_token (&token, OT_CHANNELS);
3217 return s;
3218 }
3219
a92713e6
RS
3220 SKIP_SPACE_TABS (s);
3221 if (*s == '-')
df58fc94 3222 {
a92713e6
RS
3223 /* A register range. */
3224 ++s;
3225 SKIP_SPACE_TABS (s);
14daeee3 3226 if (!mips_parse_register (&s, &regno2, NULL))
a92713e6 3227 {
1661c76c 3228 set_insn_error (0, _("invalid register range"));
a92713e6
RS
3229 return 0;
3230 }
df58fc94 3231
a92713e6
RS
3232 token.u.reg_range.regno1 = regno1;
3233 token.u.reg_range.regno2 = regno2;
3234 mips_add_token (&token, OT_REG_RANGE);
3235 return s;
3236 }
a92713e6 3237
56d438b1
CF
3238 /* Add the register itself. */
3239 token.u.regno = regno1;
3240 mips_add_token (&token, OT_REG);
3241
3242 /* Check for a vector index. */
3243 if (*s == '[')
3244 {
a92713e6
RS
3245 ++s;
3246 SKIP_SPACE_TABS (s);
56d438b1
CF
3247 if (mips_parse_register (&s, &token.u.regno, NULL))
3248 mips_add_token (&token, OT_REG_INDEX);
3249 else
a92713e6 3250 {
56d438b1
CF
3251 expressionS element;
3252
3253 my_getExpression (&element, s);
3254 if (element.X_op != O_constant)
3255 {
3256 set_insn_error (0, _("vector element must be constant"));
3257 return 0;
3258 }
3259 s = expr_end;
3260 token.u.index = element.X_add_number;
3261 mips_add_token (&token, OT_INTEGER_INDEX);
a92713e6 3262 }
a92713e6
RS
3263 SKIP_SPACE_TABS (s);
3264 if (*s != ']')
3265 {
1661c76c 3266 set_insn_error (0, _("missing `]'"));
a92713e6
RS
3267 return 0;
3268 }
3269 ++s;
df58fc94 3270 }
a92713e6 3271 return s;
df58fc94
RS
3272 }
3273
a92713e6
RS
3274 if (float_format)
3275 {
3276 /* First try to treat expressions as floats. */
3277 save_in = input_line_pointer;
3278 input_line_pointer = s;
3279 err = md_atof (float_format, (char *) token.u.flt.data,
3280 &token.u.flt.length);
3281 end = input_line_pointer;
3282 input_line_pointer = save_in;
3283 if (err && *err)
3284 {
e3de51ce 3285 set_insn_error (0, err);
a92713e6
RS
3286 return 0;
3287 }
3288 if (s != end)
3289 {
3290 mips_add_token (&token, OT_FLOAT);
3291 return end;
3292 }
3293 }
3294
3295 /* Treat everything else as an integer expression. */
3296 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3297 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3298 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3299 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3300 s = expr_end;
3301 mips_add_token (&token, OT_INTEGER);
3302 return s;
3303}
3304
3305/* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3306 if expressions should be treated as 32-bit floating-point constants,
3307 'd' if they should be treated as 64-bit floating-point constants,
3308 or 0 if they should be treated as integer expressions (the usual case).
3309
3310 Return a list of tokens on success, otherwise return 0. The caller
3311 must obstack_free the list after use. */
3312
3313static struct mips_operand_token *
3314mips_parse_arguments (char *s, char float_format)
3315{
3316 struct mips_operand_token token;
3317
3318 SKIP_SPACE_TABS (s);
3319 while (*s)
3320 {
3321 s = mips_parse_argument_token (s, float_format);
3322 if (!s)
3323 {
3324 obstack_free (&mips_operand_tokens,
3325 obstack_finish (&mips_operand_tokens));
3326 return 0;
3327 }
3328 SKIP_SPACE_TABS (s);
3329 }
3330 mips_add_token (&token, OT_END);
3331 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
df58fc94
RS
3332}
3333
d301a56b
RS
3334/* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3335 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
037b32b9
AN
3336
3337static bfd_boolean
f79e2745 3338is_opcode_valid (const struct mips_opcode *mo)
037b32b9
AN
3339{
3340 int isa = mips_opts.isa;
846ef2d0 3341 int ase = mips_opts.ase;
037b32b9 3342 int fp_s, fp_d;
c6278170 3343 unsigned int i;
037b32b9 3344
be0fcbee 3345 if (ISA_HAS_64BIT_REGS (isa))
c6278170
RS
3346 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3347 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3348 ase |= mips_ases[i].flags64;
037b32b9 3349
d301a56b 3350 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
037b32b9
AN
3351 return FALSE;
3352
3353 /* Check whether the instruction or macro requires single-precision or
3354 double-precision floating-point support. Note that this information is
3355 stored differently in the opcode table for insns and macros. */
3356 if (mo->pinfo == INSN_MACRO)
3357 {
3358 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3359 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3360 }
3361 else
3362 {
3363 fp_s = mo->pinfo & FP_S;
3364 fp_d = mo->pinfo & FP_D;
3365 }
3366
3367 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3368 return FALSE;
3369
3370 if (fp_s && mips_opts.soft_float)
3371 return FALSE;
3372
3373 return TRUE;
3374}
3375
3376/* Return TRUE if the MIPS16 opcode MO is valid on the currently
3377 selected ISA and architecture. */
3378
3379static bfd_boolean
3380is_opcode_valid_16 (const struct mips_opcode *mo)
3381{
25499ac7
MR
3382 int isa = mips_opts.isa;
3383 int ase = mips_opts.ase;
3384 unsigned int i;
3385
3386 if (ISA_HAS_64BIT_REGS (isa))
3387 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3388 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3389 ase |= mips_ases[i].flags64;
3390
3391 return opcode_is_member (mo, isa, ase, mips_opts.arch);
037b32b9
AN
3392}
3393
df58fc94 3394/* Return TRUE if the size of the microMIPS opcode MO matches one
7fd53920
MR
3395 explicitly requested. Always TRUE in the standard MIPS mode.
3396 Use is_size_valid_16 for MIPS16 opcodes. */
df58fc94
RS
3397
3398static bfd_boolean
3399is_size_valid (const struct mips_opcode *mo)
3400{
3401 if (!mips_opts.micromips)
3402 return TRUE;
3403
833794fc
MR
3404 if (mips_opts.insn32)
3405 {
3406 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3407 return FALSE;
3408 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3409 return FALSE;
3410 }
df58fc94
RS
3411 if (!forced_insn_length)
3412 return TRUE;
3413 if (mo->pinfo == INSN_MACRO)
3414 return FALSE;
3415 return forced_insn_length == micromips_insn_length (mo);
3416}
3417
7fd53920
MR
3418/* Return TRUE if the size of the MIPS16 opcode MO matches one
3419 explicitly requested. */
3420
3421static bfd_boolean
3422is_size_valid_16 (const struct mips_opcode *mo)
3423{
3424 if (!forced_insn_length)
3425 return TRUE;
3426 if (mo->pinfo == INSN_MACRO)
3427 return FALSE;
3428 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3429 return FALSE;
0674ee5d
MR
3430 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3431 return FALSE;
7fd53920
MR
3432 return TRUE;
3433}
3434
df58fc94 3435/* Return TRUE if the microMIPS opcode MO is valid for the delay slot
e64af278
MR
3436 of the preceding instruction. Always TRUE in the standard MIPS mode.
3437
3438 We don't accept macros in 16-bit delay slots to avoid a case where
3439 a macro expansion fails because it relies on a preceding 32-bit real
3440 instruction to have matched and does not handle the operands correctly.
3441 The only macros that may expand to 16-bit instructions are JAL that
3442 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3443 and BGT (that likewise cannot be placed in a delay slot) that decay to
3444 a NOP. In all these cases the macros precede any corresponding real
3445 instruction definitions in the opcode table, so they will match in the
3446 second pass where the size of the delay slot is ignored and therefore
3447 produce correct code. */
df58fc94
RS
3448
3449static bfd_boolean
3450is_delay_slot_valid (const struct mips_opcode *mo)
3451{
3452 if (!mips_opts.micromips)
3453 return TRUE;
3454
3455 if (mo->pinfo == INSN_MACRO)
c06dec14 3456 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
df58fc94
RS
3457 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3458 && micromips_insn_length (mo) != 4)
3459 return FALSE;
3460 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3461 && micromips_insn_length (mo) != 2)
3462 return FALSE;
3463
3464 return TRUE;
3465}
3466
fc76e730
RS
3467/* For consistency checking, verify that all bits of OPCODE are specified
3468 either by the match/mask part of the instruction definition, or by the
3469 operand list. Also build up a list of operands in OPERANDS.
3470
3471 INSN_BITS says which bits of the instruction are significant.
3472 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3473 provides the mips_operand description of each operand. DECODE_OPERAND
3474 is null for MIPS16 instructions. */
ab902481
RS
3475
3476static int
3477validate_mips_insn (const struct mips_opcode *opcode,
3478 unsigned long insn_bits,
fc76e730
RS
3479 const struct mips_operand *(*decode_operand) (const char *),
3480 struct mips_operand_array *operands)
ab902481
RS
3481{
3482 const char *s;
fc76e730 3483 unsigned long used_bits, doubled, undefined, opno, mask;
ab902481
RS
3484 const struct mips_operand *operand;
3485
fc76e730
RS
3486 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3487 if ((mask & opcode->match) != opcode->match)
ab902481
RS
3488 {
3489 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3490 opcode->name, opcode->args);
3491 return 0;
3492 }
3493 used_bits = 0;
fc76e730 3494 opno = 0;
14daeee3
RS
3495 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3496 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
ab902481
RS
3497 for (s = opcode->args; *s; ++s)
3498 switch (*s)
3499 {
3500 case ',':
3501 case '(':
3502 case ')':
3503 break;
3504
14daeee3
RS
3505 case '#':
3506 s++;
3507 break;
3508
ab902481 3509 default:
fc76e730 3510 if (!decode_operand)
7fd53920 3511 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
fc76e730
RS
3512 else
3513 operand = decode_operand (s);
3514 if (!operand && opcode->pinfo != INSN_MACRO)
ab902481
RS
3515 {
3516 as_bad (_("internal: unknown operand type: %s %s"),
3517 opcode->name, opcode->args);
3518 return 0;
3519 }
fc76e730
RS
3520 gas_assert (opno < MAX_OPERANDS);
3521 operands->operand[opno] = operand;
25499ac7
MR
3522 if (!decode_operand && operand
3523 && operand->type == OP_INT && operand->lsb == 0
3524 && mips_opcode_32bit_p (opcode))
3525 used_bits |= mips16_immed_extend (-1, operand->size);
3526 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
fc76e730 3527 {
14daeee3 3528 used_bits = mips_insert_operand (operand, used_bits, -1);
fc76e730
RS
3529 if (operand->type == OP_MDMX_IMM_REG)
3530 /* Bit 5 is the format selector (OB vs QH). The opcode table
3531 has separate entries for each format. */
3532 used_bits &= ~(1 << (operand->lsb + 5));
3533 if (operand->type == OP_ENTRY_EXIT_LIST)
3534 used_bits &= ~(mask & 0x700);
38bf472a
MR
3535 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3536 operand field that cannot be fully described with LSB/SIZE. */
3537 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3538 used_bits &= ~0x6000;
fc76e730 3539 }
ab902481 3540 /* Skip prefix characters. */
7361da2c 3541 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
ab902481 3542 ++s;
fc76e730 3543 opno += 1;
ab902481
RS
3544 break;
3545 }
fc76e730 3546 doubled = used_bits & mask & insn_bits;
ab902481
RS
3547 if (doubled)
3548 {
3549 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3550 " %s %s"), doubled, opcode->name, opcode->args);
3551 return 0;
3552 }
fc76e730 3553 used_bits |= mask;
ab902481 3554 undefined = ~used_bits & insn_bits;
fc76e730 3555 if (opcode->pinfo != INSN_MACRO && undefined)
ab902481
RS
3556 {
3557 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3558 undefined, opcode->name, opcode->args);
3559 return 0;
3560 }
3561 used_bits &= ~insn_bits;
3562 if (used_bits)
3563 {
3564 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3565 used_bits, opcode->name, opcode->args);
3566 return 0;
3567 }
3568 return 1;
3569}
3570
fc76e730
RS
3571/* The MIPS16 version of validate_mips_insn. */
3572
3573static int
3574validate_mips16_insn (const struct mips_opcode *opcode,
3575 struct mips_operand_array *operands)
3576{
7fd53920 3577 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
fc76e730 3578
7fd53920 3579 return validate_mips_insn (opcode, insn_bits, 0, operands);
fc76e730
RS
3580}
3581
ab902481
RS
3582/* The microMIPS version of validate_mips_insn. */
3583
3584static int
fc76e730
RS
3585validate_micromips_insn (const struct mips_opcode *opc,
3586 struct mips_operand_array *operands)
ab902481
RS
3587{
3588 unsigned long insn_bits;
3589 unsigned long major;
3590 unsigned int length;
3591
fc76e730
RS
3592 if (opc->pinfo == INSN_MACRO)
3593 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3594 operands);
3595
ab902481
RS
3596 length = micromips_insn_length (opc);
3597 if (length != 2 && length != 4)
3598 {
1661c76c 3599 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
ab902481
RS
3600 "%s %s"), length, opc->name, opc->args);
3601 return 0;
3602 }
3603 major = opc->match >> (10 + 8 * (length - 2));
3604 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3605 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3606 {
1661c76c 3607 as_bad (_("internal error: bad microMIPS opcode "
ab902481
RS
3608 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3609 return 0;
3610 }
3611
3612 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3613 insn_bits = 1 << 4 * length;
3614 insn_bits <<= 4 * length;
3615 insn_bits -= 1;
fc76e730
RS
3616 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3617 operands);
ab902481
RS
3618}
3619
707bfff6
TS
3620/* This function is called once, at assembler startup time. It should set up
3621 all the tables, etc. that the MD part of the assembler will need. */
156c2f8b 3622
252b5132 3623void
17a2f251 3624md_begin (void)
252b5132 3625{
3994f87e 3626 const char *retval = NULL;
156c2f8b 3627 int i = 0;
252b5132 3628 int broken = 0;
1f25f5d3 3629
0a44bf69
RS
3630 if (mips_pic != NO_PIC)
3631 {
3632 if (g_switch_seen && g_switch_value != 0)
3633 as_bad (_("-G may not be used in position-independent code"));
3634 g_switch_value = 0;
3635 }
00acd688
CM
3636 else if (mips_abicalls)
3637 {
3638 if (g_switch_seen && g_switch_value != 0)
3639 as_bad (_("-G may not be used with abicalls"));
3640 g_switch_value = 0;
3641 }
0a44bf69 3642
0b35dfee 3643 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
1661c76c 3644 as_warn (_("could not set architecture and machine"));
252b5132 3645
252b5132
RH
3646 op_hash = hash_new ();
3647
fc76e730 3648 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
252b5132
RH
3649 for (i = 0; i < NUMOPCODES;)
3650 {
3651 const char *name = mips_opcodes[i].name;
3652
17a2f251 3653 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
252b5132
RH
3654 if (retval != NULL)
3655 {
3656 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3657 mips_opcodes[i].name, retval);
3658 /* Probably a memory allocation problem? Give up now. */
1661c76c 3659 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3660 }
3661 do
3662 {
fc76e730
RS
3663 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3664 decode_mips_operand, &mips_operands[i]))
3665 broken = 1;
3666 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
252b5132 3667 {
fc76e730
RS
3668 create_insn (&nop_insn, mips_opcodes + i);
3669 if (mips_fix_loongson2f_nop)
3670 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3671 nop_insn.fixed_p = 1;
252b5132
RH
3672 }
3673 ++i;
3674 }
3675 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3676 }
3677
3678 mips16_op_hash = hash_new ();
fc76e730
RS
3679 mips16_operands = XCNEWVEC (struct mips_operand_array,
3680 bfd_mips16_num_opcodes);
252b5132
RH
3681
3682 i = 0;
3683 while (i < bfd_mips16_num_opcodes)
3684 {
3685 const char *name = mips16_opcodes[i].name;
3686
17a2f251 3687 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
252b5132
RH
3688 if (retval != NULL)
3689 as_fatal (_("internal: can't hash `%s': %s"),
3690 mips16_opcodes[i].name, retval);
3691 do
3692 {
fc76e730
RS
3693 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3694 broken = 1;
1e915849
RS
3695 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3696 {
3697 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3698 mips16_nop_insn.fixed_p = 1;
3699 }
252b5132
RH
3700 ++i;
3701 }
3702 while (i < bfd_mips16_num_opcodes
3703 && strcmp (mips16_opcodes[i].name, name) == 0);
3704 }
3705
df58fc94 3706 micromips_op_hash = hash_new ();
fc76e730
RS
3707 micromips_operands = XCNEWVEC (struct mips_operand_array,
3708 bfd_micromips_num_opcodes);
df58fc94
RS
3709
3710 i = 0;
3711 while (i < bfd_micromips_num_opcodes)
3712 {
3713 const char *name = micromips_opcodes[i].name;
3714
3715 retval = hash_insert (micromips_op_hash, name,
3716 (void *) &micromips_opcodes[i]);
3717 if (retval != NULL)
3718 as_fatal (_("internal: can't hash `%s': %s"),
3719 micromips_opcodes[i].name, retval);
3720 do
fc76e730
RS
3721 {
3722 struct mips_cl_insn *micromips_nop_insn;
3723
3724 if (!validate_micromips_insn (&micromips_opcodes[i],
3725 &micromips_operands[i]))
3726 broken = 1;
3727
3728 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3729 {
3730 if (micromips_insn_length (micromips_opcodes + i) == 2)
3731 micromips_nop_insn = &micromips_nop16_insn;
3732 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3733 micromips_nop_insn = &micromips_nop32_insn;
3734 else
3735 continue;
3736
3737 if (micromips_nop_insn->insn_mo == NULL
3738 && strcmp (name, "nop") == 0)
3739 {
3740 create_insn (micromips_nop_insn, micromips_opcodes + i);
3741 micromips_nop_insn->fixed_p = 1;
3742 }
3743 }
3744 }
df58fc94
RS
3745 while (++i < bfd_micromips_num_opcodes
3746 && strcmp (micromips_opcodes[i].name, name) == 0);
3747 }
3748
252b5132 3749 if (broken)
1661c76c 3750 as_fatal (_("broken assembler, no assembly attempted"));
252b5132
RH
3751
3752 /* We add all the general register names to the symbol table. This
3753 helps us detect invalid uses of them. */
3739860c 3754 for (i = 0; reg_names[i].name; i++)
707bfff6 3755 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
8fc4ee9b 3756 reg_names[i].num, /* & RNUM_MASK, */
707bfff6
TS
3757 &zero_address_frag));
3758 if (HAVE_NEWABI)
3739860c 3759 for (i = 0; reg_names_n32n64[i].name; i++)
707bfff6 3760 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
8fc4ee9b 3761 reg_names_n32n64[i].num, /* & RNUM_MASK, */
252b5132 3762 &zero_address_frag));
707bfff6 3763 else
3739860c 3764 for (i = 0; reg_names_o32[i].name; i++)
707bfff6 3765 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
8fc4ee9b 3766 reg_names_o32[i].num, /* & RNUM_MASK, */
6047c971 3767 &zero_address_frag));
6047c971 3768
14daeee3
RS
3769 for (i = 0; i < 32; i++)
3770 {
92fce9bd 3771 char regname[6];
14daeee3
RS
3772
3773 /* R5900 VU0 floating-point register. */
92fce9bd 3774 sprintf (regname, "$vf%d", i);
14daeee3
RS
3775 symbol_table_insert (symbol_new (regname, reg_section,
3776 RTYPE_VF | i, &zero_address_frag));
3777
3778 /* R5900 VU0 integer register. */
92fce9bd 3779 sprintf (regname, "$vi%d", i);
14daeee3
RS
3780 symbol_table_insert (symbol_new (regname, reg_section,
3781 RTYPE_VI | i, &zero_address_frag));
3782
56d438b1 3783 /* MSA register. */
92fce9bd 3784 sprintf (regname, "$w%d", i);
56d438b1
CF
3785 symbol_table_insert (symbol_new (regname, reg_section,
3786 RTYPE_MSA | i, &zero_address_frag));
14daeee3
RS
3787 }
3788
a92713e6
RS
3789 obstack_init (&mips_operand_tokens);
3790
7d10b47d 3791 mips_no_prev_insn ();
252b5132
RH
3792
3793 mips_gprmask = 0;
3794 mips_cprmask[0] = 0;
3795 mips_cprmask[1] = 0;
3796 mips_cprmask[2] = 0;
3797 mips_cprmask[3] = 0;
3798
3799 /* set the default alignment for the text section (2**2) */
3800 record_alignment (text_section, 2);
3801
4d0d148d 3802 bfd_set_gp_size (stdoutput, g_switch_value);
252b5132 3803
f3ded42a
RS
3804 /* On a native system other than VxWorks, sections must be aligned
3805 to 16 byte boundaries. When configured for an embedded ELF
3806 target, we don't bother. */
3807 if (strncmp (TARGET_OS, "elf", 3) != 0
3808 && strncmp (TARGET_OS, "vxworks", 7) != 0)
252b5132 3809 {
f3ded42a
RS
3810 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3811 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3812 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3813 }
252b5132 3814
f3ded42a
RS
3815 /* Create a .reginfo section for register masks and a .mdebug
3816 section for debugging information. */
3817 {
3818 segT seg;
3819 subsegT subseg;
3820 flagword flags;
3821 segT sec;
3822
3823 seg = now_seg;
3824 subseg = now_subseg;
3825
3826 /* The ABI says this section should be loaded so that the
3827 running program can access it. However, we don't load it
3828 if we are configured for an embedded target */
3829 flags = SEC_READONLY | SEC_DATA;
3830 if (strncmp (TARGET_OS, "elf", 3) != 0)
3831 flags |= SEC_ALLOC | SEC_LOAD;
3832
3833 if (mips_abi != N64_ABI)
252b5132 3834 {
f3ded42a 3835 sec = subseg_new (".reginfo", (subsegT) 0);
bdaaa2e1 3836
f3ded42a
RS
3837 bfd_set_section_flags (stdoutput, sec, flags);
3838 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
252b5132 3839
f3ded42a
RS
3840 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3841 }
3842 else
3843 {
3844 /* The 64-bit ABI uses a .MIPS.options section rather than
3845 .reginfo section. */
3846 sec = subseg_new (".MIPS.options", (subsegT) 0);
3847 bfd_set_section_flags (stdoutput, sec, flags);
3848 bfd_set_section_alignment (stdoutput, sec, 3);
252b5132 3849
f3ded42a
RS
3850 /* Set up the option header. */
3851 {
3852 Elf_Internal_Options opthdr;
3853 char *f;
3854
3855 opthdr.kind = ODK_REGINFO;
3856 opthdr.size = (sizeof (Elf_External_Options)
3857 + sizeof (Elf64_External_RegInfo));
3858 opthdr.section = 0;
3859 opthdr.info = 0;
3860 f = frag_more (sizeof (Elf_External_Options));
3861 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3862 (Elf_External_Options *) f);
3863
3864 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3865 }
3866 }
252b5132 3867
351cdf24
MF
3868 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3869 bfd_set_section_flags (stdoutput, sec,
3870 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3871 bfd_set_section_alignment (stdoutput, sec, 3);
3872 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3873
f3ded42a
RS
3874 if (ECOFF_DEBUGGING)
3875 {
3876 sec = subseg_new (".mdebug", (subsegT) 0);
3877 (void) bfd_set_section_flags (stdoutput, sec,
3878 SEC_HAS_CONTENTS | SEC_READONLY);
3879 (void) bfd_set_section_alignment (stdoutput, sec, 2);
252b5132 3880 }
f3ded42a
RS
3881 else if (mips_flag_pdr)
3882 {
3883 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3884 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3885 SEC_READONLY | SEC_RELOC
3886 | SEC_DEBUGGING);
3887 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3888 }
3889
3890 subseg_set (seg, subseg);
3891 }
252b5132 3892
71400594
RS
3893 if (mips_fix_vr4120)
3894 init_vr4120_conflicts ();
252b5132
RH
3895}
3896
351cdf24
MF
3897static inline void
3898fpabi_incompatible_with (int fpabi, const char *what)
3899{
3900 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3901 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3902}
3903
3904static inline void
3905fpabi_requires (int fpabi, const char *what)
3906{
3907 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3908 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3909}
3910
3911/* Check -mabi and register sizes against the specified FP ABI. */
3912static void
3913check_fpabi (int fpabi)
3914{
351cdf24
MF
3915 switch (fpabi)
3916 {
3917 case Val_GNU_MIPS_ABI_FP_DOUBLE:
ea79f94a
MF
3918 if (file_mips_opts.soft_float)
3919 fpabi_incompatible_with (fpabi, "softfloat");
3920 else if (file_mips_opts.single_float)
3921 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3922 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3923 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3924 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3925 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
351cdf24
MF
3926 break;
3927
3928 case Val_GNU_MIPS_ABI_FP_XX:
3929 if (mips_abi != O32_ABI)
3930 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3931 else if (file_mips_opts.soft_float)
3932 fpabi_incompatible_with (fpabi, "softfloat");
3933 else if (file_mips_opts.single_float)
3934 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3935 else if (file_mips_opts.fp != 0)
3936 fpabi_requires (fpabi, "fp=xx");
351cdf24
MF
3937 break;
3938
3939 case Val_GNU_MIPS_ABI_FP_64A:
3940 case Val_GNU_MIPS_ABI_FP_64:
3941 if (mips_abi != O32_ABI)
3942 fpabi_requires (fpabi, "-mabi=32");
ea79f94a
MF
3943 else if (file_mips_opts.soft_float)
3944 fpabi_incompatible_with (fpabi, "softfloat");
3945 else if (file_mips_opts.single_float)
3946 fpabi_incompatible_with (fpabi, "singlefloat");
351cdf24
MF
3947 else if (file_mips_opts.fp != 64)
3948 fpabi_requires (fpabi, "fp=64");
3949 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3950 fpabi_incompatible_with (fpabi, "nooddspreg");
3951 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3952 fpabi_requires (fpabi, "nooddspreg");
351cdf24
MF
3953 break;
3954
3955 case Val_GNU_MIPS_ABI_FP_SINGLE:
3956 if (file_mips_opts.soft_float)
3957 fpabi_incompatible_with (fpabi, "softfloat");
3958 else if (!file_mips_opts.single_float)
3959 fpabi_requires (fpabi, "singlefloat");
3960 break;
3961
3962 case Val_GNU_MIPS_ABI_FP_SOFT:
3963 if (!file_mips_opts.soft_float)
3964 fpabi_requires (fpabi, "softfloat");
3965 break;
3966
3967 case Val_GNU_MIPS_ABI_FP_OLD_64:
3968 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3969 Tag_GNU_MIPS_ABI_FP, fpabi);
3970 break;
3971
3350cc01
CM
3972 case Val_GNU_MIPS_ABI_FP_NAN2008:
3973 /* Silently ignore compatibility value. */
3974 break;
3975
351cdf24
MF
3976 default:
3977 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3978 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3979 break;
3980 }
351cdf24
MF
3981}
3982
919731af 3983/* Perform consistency checks on the current options. */
3984
3985static void
3986mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3987{
3988 /* Check the size of integer registers agrees with the ABI and ISA. */
3989 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3990 as_bad (_("`gp=64' used with a 32-bit processor"));
3991 else if (abi_checks
3992 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3993 as_bad (_("`gp=32' used with a 64-bit ABI"));
3994 else if (abi_checks
3995 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3996 as_bad (_("`gp=64' used with a 32-bit ABI"));
3997
3998 /* Check the size of the float registers agrees with the ABI and ISA. */
3999 switch (opts->fp)
4000 {
351cdf24
MF
4001 case 0:
4002 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4003 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4004 else if (opts->single_float == 1)
4005 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4006 break;
919731af 4007 case 64:
4008 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4009 as_bad (_("`fp=64' used with a 32-bit fpu"));
4010 else if (abi_checks
4011 && ABI_NEEDS_32BIT_REGS (mips_abi)
4012 && !ISA_HAS_MXHC1 (opts->isa))
4013 as_warn (_("`fp=64' used with a 32-bit ABI"));
4014 break;
4015 case 32:
4016 if (abi_checks
4017 && ABI_NEEDS_64BIT_REGS (mips_abi))
4018 as_warn (_("`fp=32' used with a 64-bit ABI"));
5f4678bb 4019 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
7361da2c 4020 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
919731af 4021 break;
4022 default:
4023 as_bad (_("Unknown size of floating point registers"));
4024 break;
4025 }
4026
351cdf24
MF
4027 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4028 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4029
919731af 4030 if (opts->micromips == 1 && opts->mips16 == 1)
1357373c 4031 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
5f4678bb 4032 else if (ISA_IS_R6 (opts->isa)
7361da2c
AB
4033 && (opts->micromips == 1
4034 || opts->mips16 == 1))
1357373c 4035 as_fatal (_("`%s' cannot be used with `%s'"),
7361da2c 4036 opts->micromips ? "micromips" : "mips16",
5f4678bb 4037 mips_cpu_info_from_isa (opts->isa)->name);
7361da2c
AB
4038
4039 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4040 as_fatal (_("branch relaxation is not supported in `%s'"),
4041 mips_cpu_info_from_isa (opts->isa)->name);
919731af 4042}
4043
4044/* Perform consistency checks on the module level options exactly once.
4045 This is a deferred check that happens:
4046 at the first .set directive
4047 or, at the first pseudo op that generates code (inc .dc.a)
4048 or, at the first instruction
4049 or, at the end. */
4050
4051static void
4052file_mips_check_options (void)
4053{
4054 const struct mips_cpu_info *arch_info = 0;
4055
4056 if (file_mips_opts_checked)
4057 return;
4058
4059 /* The following code determines the register size.
4060 Similar code was added to GCC 3.3 (see override_options() in
4061 config/mips/mips.c). The GAS and GCC code should be kept in sync
4062 as much as possible. */
4063
4064 if (file_mips_opts.gp < 0)
4065 {
4066 /* Infer the integer register size from the ABI and processor.
4067 Restrict ourselves to 32-bit registers if that's all the
4068 processor has, or if the ABI cannot handle 64-bit registers. */
4069 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4070 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4071 ? 32 : 64;
4072 }
4073
4074 if (file_mips_opts.fp < 0)
4075 {
4076 /* No user specified float register size.
4077 ??? GAS treats single-float processors as though they had 64-bit
4078 float registers (although it complains when double-precision
4079 instructions are used). As things stand, saying they have 32-bit
4080 registers would lead to spurious "register must be even" messages.
4081 So here we assume float registers are never smaller than the
4082 integer ones. */
4083 if (file_mips_opts.gp == 64)
4084 /* 64-bit integer registers implies 64-bit float registers. */
4085 file_mips_opts.fp = 64;
4086 else if ((file_mips_opts.ase & FP64_ASES)
4087 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4088 /* Handle ASEs that require 64-bit float registers, if possible. */
4089 file_mips_opts.fp = 64;
7361da2c
AB
4090 else if (ISA_IS_R6 (mips_opts.isa))
4091 /* R6 implies 64-bit float registers. */
4092 file_mips_opts.fp = 64;
919731af 4093 else
4094 /* 32-bit float registers. */
4095 file_mips_opts.fp = 32;
4096 }
4097
4098 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
4099
351cdf24
MF
4100 /* Disable operations on odd-numbered floating-point registers by default
4101 when using the FPXX ABI. */
4102 if (file_mips_opts.oddspreg < 0)
4103 {
4104 if (file_mips_opts.fp == 0)
4105 file_mips_opts.oddspreg = 0;
4106 else
4107 file_mips_opts.oddspreg = 1;
4108 }
4109
919731af 4110 /* End of GCC-shared inference code. */
4111
4112 /* This flag is set when we have a 64-bit capable CPU but use only
4113 32-bit wide registers. Note that EABI does not use it. */
4114 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4115 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4116 || mips_abi == O32_ABI))
4117 mips_32bitmode = 1;
4118
4119 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4120 as_bad (_("trap exception not supported at ISA 1"));
4121
4122 /* If the selected architecture includes support for ASEs, enable
4123 generation of code for them. */
4124 if (file_mips_opts.mips16 == -1)
4125 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4126 if (file_mips_opts.micromips == -1)
4127 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4128 ? 1 : 0;
4129
7361da2c
AB
4130 if (mips_nan2008 == -1)
4131 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4132 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4133 as_fatal (_("`%s' does not support legacy NaN"),
4134 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4135
919731af 4136 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4137 being selected implicitly. */
4138 if (file_mips_opts.fp != 64)
4139 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4140
4141 /* If the user didn't explicitly select or deselect a particular ASE,
4142 use the default setting for the CPU. */
4143 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4144
4145 /* Set up the current options. These may change throughout assembly. */
4146 mips_opts = file_mips_opts;
4147
4148 mips_check_isa_supports_ases ();
4149 mips_check_options (&file_mips_opts, TRUE);
4150 file_mips_opts_checked = TRUE;
4151
4152 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4153 as_warn (_("could not set architecture and machine"));
4154}
4155
252b5132 4156void
17a2f251 4157md_assemble (char *str)
252b5132
RH
4158{
4159 struct mips_cl_insn insn;
f6688943
TS
4160 bfd_reloc_code_real_type unused_reloc[3]
4161 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 4162
919731af 4163 file_mips_check_options ();
4164
252b5132 4165 imm_expr.X_op = O_absent;
252b5132 4166 offset_expr.X_op = O_absent;
f6688943
TS
4167 offset_reloc[0] = BFD_RELOC_UNUSED;
4168 offset_reloc[1] = BFD_RELOC_UNUSED;
4169 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132 4170
e1b47bd5
RS
4171 mips_mark_labels ();
4172 mips_assembling_insn = TRUE;
e3de51ce 4173 clear_insn_error ();
e1b47bd5 4174
252b5132
RH
4175 if (mips_opts.mips16)
4176 mips16_ip (str, &insn);
4177 else
4178 {
4179 mips_ip (str, &insn);
beae10d5
KH
4180 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4181 str, insn.insn_opcode));
252b5132
RH
4182 }
4183
e3de51ce
RS
4184 if (insn_error.msg)
4185 report_insn_error (str);
e1b47bd5 4186 else if (insn.insn_mo->pinfo == INSN_MACRO)
252b5132 4187 {
584892a6 4188 macro_start ();
252b5132
RH
4189 if (mips_opts.mips16)
4190 mips16_macro (&insn);
4191 else
833794fc 4192 macro (&insn, str);
584892a6 4193 macro_end ();
252b5132
RH
4194 }
4195 else
4196 {
77bd4346 4197 if (offset_expr.X_op != O_absent)
df58fc94 4198 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
252b5132 4199 else
df58fc94 4200 append_insn (&insn, NULL, unused_reloc, FALSE);
252b5132 4201 }
e1b47bd5
RS
4202
4203 mips_assembling_insn = FALSE;
252b5132
RH
4204}
4205
738e5348
RS
4206/* Convenience functions for abstracting away the differences between
4207 MIPS16 and non-MIPS16 relocations. */
4208
4209static inline bfd_boolean
4210mips16_reloc_p (bfd_reloc_code_real_type reloc)
4211{
4212 switch (reloc)
4213 {
4214 case BFD_RELOC_MIPS16_JMP:
4215 case BFD_RELOC_MIPS16_GPREL:
4216 case BFD_RELOC_MIPS16_GOT16:
4217 case BFD_RELOC_MIPS16_CALL16:
4218 case BFD_RELOC_MIPS16_HI16_S:
4219 case BFD_RELOC_MIPS16_HI16:
4220 case BFD_RELOC_MIPS16_LO16:
c9775dde 4221 case BFD_RELOC_MIPS16_16_PCREL_S1:
738e5348
RS
4222 return TRUE;
4223
4224 default:
4225 return FALSE;
4226 }
4227}
4228
df58fc94
RS
4229static inline bfd_boolean
4230micromips_reloc_p (bfd_reloc_code_real_type reloc)
4231{
4232 switch (reloc)
4233 {
4234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4236 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4237 case BFD_RELOC_MICROMIPS_GPREL16:
4238 case BFD_RELOC_MICROMIPS_JMP:
4239 case BFD_RELOC_MICROMIPS_HI16:
4240 case BFD_RELOC_MICROMIPS_HI16_S:
4241 case BFD_RELOC_MICROMIPS_LO16:
4242 case BFD_RELOC_MICROMIPS_LITERAL:
4243 case BFD_RELOC_MICROMIPS_GOT16:
4244 case BFD_RELOC_MICROMIPS_CALL16:
4245 case BFD_RELOC_MICROMIPS_GOT_HI16:
4246 case BFD_RELOC_MICROMIPS_GOT_LO16:
4247 case BFD_RELOC_MICROMIPS_CALL_HI16:
4248 case BFD_RELOC_MICROMIPS_CALL_LO16:
4249 case BFD_RELOC_MICROMIPS_SUB:
4250 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4251 case BFD_RELOC_MICROMIPS_GOT_OFST:
4252 case BFD_RELOC_MICROMIPS_GOT_DISP:
4253 case BFD_RELOC_MICROMIPS_HIGHEST:
4254 case BFD_RELOC_MICROMIPS_HIGHER:
4255 case BFD_RELOC_MICROMIPS_SCN_DISP:
4256 case BFD_RELOC_MICROMIPS_JALR:
4257 return TRUE;
4258
4259 default:
4260 return FALSE;
4261 }
4262}
4263
2309ddf2
MR
4264static inline bfd_boolean
4265jmp_reloc_p (bfd_reloc_code_real_type reloc)
4266{
4267 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4268}
4269
0e9c5a5c
MR
4270static inline bfd_boolean
4271b_reloc_p (bfd_reloc_code_real_type reloc)
4272{
4273 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4274 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4275 || reloc == BFD_RELOC_16_PCREL_S2
c9775dde 4276 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
0e9c5a5c
MR
4277 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4278 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4279 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4280}
4281
738e5348
RS
4282static inline bfd_boolean
4283got16_reloc_p (bfd_reloc_code_real_type reloc)
4284{
2309ddf2 4285 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
df58fc94 4286 || reloc == BFD_RELOC_MICROMIPS_GOT16);
738e5348
RS
4287}
4288
4289static inline bfd_boolean
4290hi16_reloc_p (bfd_reloc_code_real_type reloc)
4291{
2309ddf2 4292 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
df58fc94 4293 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
738e5348
RS
4294}
4295
4296static inline bfd_boolean
4297lo16_reloc_p (bfd_reloc_code_real_type reloc)
4298{
2309ddf2 4299 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
df58fc94
RS
4300 || reloc == BFD_RELOC_MICROMIPS_LO16);
4301}
4302
df58fc94
RS
4303static inline bfd_boolean
4304jalr_reloc_p (bfd_reloc_code_real_type reloc)
4305{
2309ddf2 4306 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
738e5348
RS
4307}
4308
f2ae14a1
RS
4309static inline bfd_boolean
4310gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4311{
4312 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4313 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4314}
4315
2de39019
CM
4316/* Return true if RELOC is a PC-relative relocation that does not have
4317 full address range. */
4318
4319static inline bfd_boolean
4320limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4321{
4322 switch (reloc)
4323 {
4324 case BFD_RELOC_16_PCREL_S2:
c9775dde 4325 case BFD_RELOC_MIPS16_16_PCREL_S1:
2de39019
CM
4326 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4327 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4328 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
7361da2c
AB
4329 case BFD_RELOC_MIPS_21_PCREL_S2:
4330 case BFD_RELOC_MIPS_26_PCREL_S2:
4331 case BFD_RELOC_MIPS_18_PCREL_S3:
4332 case BFD_RELOC_MIPS_19_PCREL_S2:
2de39019
CM
4333 return TRUE;
4334
b47468a6 4335 case BFD_RELOC_32_PCREL:
7361da2c
AB
4336 case BFD_RELOC_HI16_S_PCREL:
4337 case BFD_RELOC_LO16_PCREL:
b47468a6
CM
4338 return HAVE_64BIT_ADDRESSES;
4339
2de39019
CM
4340 default:
4341 return FALSE;
4342 }
4343}
b47468a6 4344
5919d012 4345/* Return true if the given relocation might need a matching %lo().
0a44bf69
RS
4346 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4347 need a matching %lo() when applied to local symbols. */
5919d012
RS
4348
4349static inline bfd_boolean
17a2f251 4350reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
5919d012 4351{
3b91255e 4352 return (HAVE_IN_PLACE_ADDENDS
738e5348 4353 && (hi16_reloc_p (reloc)
0a44bf69
RS
4354 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4355 all GOT16 relocations evaluate to "G". */
738e5348
RS
4356 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4357}
4358
4359/* Return the type of %lo() reloc needed by RELOC, given that
4360 reloc_needs_lo_p. */
4361
4362static inline bfd_reloc_code_real_type
4363matching_lo_reloc (bfd_reloc_code_real_type reloc)
4364{
df58fc94
RS
4365 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4366 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4367 : BFD_RELOC_LO16));
5919d012
RS
4368}
4369
4370/* Return true if the given fixup is followed by a matching R_MIPS_LO16
4371 relocation. */
4372
4373static inline bfd_boolean
17a2f251 4374fixup_has_matching_lo_p (fixS *fixp)
5919d012
RS
4375{
4376 return (fixp->fx_next != NULL
738e5348 4377 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
5919d012
RS
4378 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4379 && fixp->fx_offset == fixp->fx_next->fx_offset);
4380}
4381
462427c4
RS
4382/* Move all labels in LABELS to the current insertion point. TEXT_P
4383 says whether the labels refer to text or data. */
404a8071
RS
4384
4385static void
462427c4 4386mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
404a8071
RS
4387{
4388 struct insn_label_list *l;
4389 valueT val;
4390
462427c4 4391 for (l = labels; l != NULL; l = l->next)
404a8071 4392 {
9c2799c2 4393 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
404a8071
RS
4394 symbol_set_frag (l->label, frag_now);
4395 val = (valueT) frag_now_fix ();
df58fc94 4396 /* MIPS16/microMIPS text labels are stored as odd. */
462427c4 4397 if (text_p && HAVE_CODE_COMPRESSION)
404a8071
RS
4398 ++val;
4399 S_SET_VALUE (l->label, val);
4400 }
4401}
4402
462427c4
RS
4403/* Move all labels in insn_labels to the current insertion point
4404 and treat them as text labels. */
4405
4406static void
4407mips_move_text_labels (void)
4408{
4409 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4410}
4411
9e009953
MR
4412/* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4413
5f0fe04b
TS
4414static bfd_boolean
4415s_is_linkonce (symbolS *sym, segT from_seg)
4416{
4417 bfd_boolean linkonce = FALSE;
4418 segT symseg = S_GET_SEGMENT (sym);
4419
4420 if (symseg != from_seg && !S_IS_LOCAL (sym))
4421 {
4422 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4423 linkonce = TRUE;
5f0fe04b
TS
4424 /* The GNU toolchain uses an extension for ELF: a section
4425 beginning with the magic string .gnu.linkonce is a
4426 linkonce section. */
4427 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4428 sizeof ".gnu.linkonce" - 1) == 0)
4429 linkonce = TRUE;
5f0fe04b
TS
4430 }
4431 return linkonce;
4432}
4433
e1b47bd5 4434/* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
df58fc94
RS
4435 linker to handle them specially, such as generating jalx instructions
4436 when needed. We also make them odd for the duration of the assembly,
4437 in order to generate the right sort of code. We will make them even
252b5132
RH
4438 in the adjust_symtab routine, while leaving them marked. This is
4439 convenient for the debugger and the disassembler. The linker knows
4440 to make them odd again. */
4441
4442static void
e1b47bd5 4443mips_compressed_mark_label (symbolS *label)
252b5132 4444{
df58fc94 4445 gas_assert (HAVE_CODE_COMPRESSION);
a8dbcb85 4446
f3ded42a
RS
4447 if (mips_opts.mips16)
4448 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4449 else
4450 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
e1b47bd5
RS
4451 if ((S_GET_VALUE (label) & 1) == 0
4452 /* Don't adjust the address if the label is global or weak, or
4453 in a link-once section, since we'll be emitting symbol reloc
4454 references to it which will be patched up by the linker, and
4455 the final value of the symbol may or may not be MIPS16/microMIPS. */
4456 && !S_IS_WEAK (label)
4457 && !S_IS_EXTERNAL (label)
4458 && !s_is_linkonce (label, now_seg))
4459 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4460}
4461
4462/* Mark preceding MIPS16 or microMIPS instruction labels. */
4463
4464static void
4465mips_compressed_mark_labels (void)
4466{
4467 struct insn_label_list *l;
4468
4469 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4470 mips_compressed_mark_label (l->label);
252b5132
RH
4471}
4472
4d7206a2
RS
4473/* End the current frag. Make it a variant frag and record the
4474 relaxation info. */
4475
4476static void
4477relax_close_frag (void)
4478{
584892a6 4479 mips_macro_warning.first_frag = frag_now;
4d7206a2 4480 frag_var (rs_machine_dependent, 0, 0,
ce8ad872
MR
4481 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4482 mips_pic != NO_PIC),
4d7206a2
RS
4483 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4484
4485 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4486 mips_relax.first_fixup = 0;
4487}
4488
4489/* Start a new relaxation sequence whose expansion depends on SYMBOL.
4490 See the comment above RELAX_ENCODE for more details. */
4491
4492static void
4493relax_start (symbolS *symbol)
4494{
9c2799c2 4495 gas_assert (mips_relax.sequence == 0);
4d7206a2
RS
4496 mips_relax.sequence = 1;
4497 mips_relax.symbol = symbol;
4498}
4499
4500/* Start generating the second version of a relaxable sequence.
4501 See the comment above RELAX_ENCODE for more details. */
252b5132
RH
4502
4503static void
4d7206a2
RS
4504relax_switch (void)
4505{
9c2799c2 4506 gas_assert (mips_relax.sequence == 1);
4d7206a2
RS
4507 mips_relax.sequence = 2;
4508}
4509
4510/* End the current relaxable sequence. */
4511
4512static void
4513relax_end (void)
4514{
9c2799c2 4515 gas_assert (mips_relax.sequence == 2);
4d7206a2
RS
4516 relax_close_frag ();
4517 mips_relax.sequence = 0;
4518}
4519
11625dd8
RS
4520/* Return true if IP is a delayed branch or jump. */
4521
4522static inline bfd_boolean
4523delayed_branch_p (const struct mips_cl_insn *ip)
4524{
4525 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4526 | INSN_COND_BRANCH_DELAY
4527 | INSN_COND_BRANCH_LIKELY)) != 0;
4528}
4529
4530/* Return true if IP is a compact branch or jump. */
4531
4532static inline bfd_boolean
4533compact_branch_p (const struct mips_cl_insn *ip)
4534{
26545944
RS
4535 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4536 | INSN2_COND_BRANCH)) != 0;
11625dd8
RS
4537}
4538
4539/* Return true if IP is an unconditional branch or jump. */
4540
4541static inline bfd_boolean
4542uncond_branch_p (const struct mips_cl_insn *ip)
4543{
4544 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
26545944 4545 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
11625dd8
RS
4546}
4547
4548/* Return true if IP is a branch-likely instruction. */
4549
4550static inline bfd_boolean
4551branch_likely_p (const struct mips_cl_insn *ip)
4552{
4553 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4554}
4555
14fe068b
RS
4556/* Return the type of nop that should be used to fill the delay slot
4557 of delayed branch IP. */
4558
4559static struct mips_cl_insn *
4560get_delay_slot_nop (const struct mips_cl_insn *ip)
4561{
4562 if (mips_opts.micromips
4563 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4564 return &micromips_nop32_insn;
4565 return NOP_INSN;
4566}
4567
fc76e730
RS
4568/* Return a mask that has bit N set if OPCODE reads the register(s)
4569 in operand N. */
df58fc94
RS
4570
4571static unsigned int
fc76e730 4572insn_read_mask (const struct mips_opcode *opcode)
df58fc94 4573{
fc76e730
RS
4574 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4575}
df58fc94 4576
fc76e730
RS
4577/* Return a mask that has bit N set if OPCODE writes to the register(s)
4578 in operand N. */
4579
4580static unsigned int
4581insn_write_mask (const struct mips_opcode *opcode)
4582{
4583 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4584}
4585
4586/* Return a mask of the registers specified by operand OPERAND of INSN.
4587 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4588 is set. */
4589
4590static unsigned int
4591operand_reg_mask (const struct mips_cl_insn *insn,
4592 const struct mips_operand *operand,
4593 unsigned int type_mask)
4594{
4595 unsigned int uval, vsel;
4596
4597 switch (operand->type)
df58fc94 4598 {
fc76e730
RS
4599 case OP_INT:
4600 case OP_MAPPED_INT:
4601 case OP_MSB:
4602 case OP_PCREL:
4603 case OP_PERF_REG:
4604 case OP_ADDIUSP_INT:
4605 case OP_ENTRY_EXIT_LIST:
4606 case OP_REPEAT_DEST_REG:
4607 case OP_REPEAT_PREV_REG:
4608 case OP_PC:
14daeee3
RS
4609 case OP_VU0_SUFFIX:
4610 case OP_VU0_MATCH_SUFFIX:
56d438b1 4611 case OP_IMM_INDEX:
fc76e730
RS
4612 abort ();
4613
25499ac7
MR
4614 case OP_REG28:
4615 return 1 << 28;
4616
fc76e730 4617 case OP_REG:
0f35dbc4 4618 case OP_OPTIONAL_REG:
fc76e730
RS
4619 {
4620 const struct mips_reg_operand *reg_op;
4621
4622 reg_op = (const struct mips_reg_operand *) operand;
4623 if (!(type_mask & (1 << reg_op->reg_type)))
4624 return 0;
4625 uval = insn_extract_operand (insn, operand);
4626 return 1 << mips_decode_reg_operand (reg_op, uval);
4627 }
4628
4629 case OP_REG_PAIR:
4630 {
4631 const struct mips_reg_pair_operand *pair_op;
4632
4633 pair_op = (const struct mips_reg_pair_operand *) operand;
4634 if (!(type_mask & (1 << pair_op->reg_type)))
4635 return 0;
4636 uval = insn_extract_operand (insn, operand);
4637 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4638 }
4639
4640 case OP_CLO_CLZ_DEST:
4641 if (!(type_mask & (1 << OP_REG_GP)))
4642 return 0;
4643 uval = insn_extract_operand (insn, operand);
4644 return (1 << (uval & 31)) | (1 << (uval >> 5));
4645
7361da2c
AB
4646 case OP_SAME_RS_RT:
4647 if (!(type_mask & (1 << OP_REG_GP)))
4648 return 0;
4649 uval = insn_extract_operand (insn, operand);
4650 gas_assert ((uval & 31) == (uval >> 5));
4651 return 1 << (uval & 31);
4652
4653 case OP_CHECK_PREV:
4654 case OP_NON_ZERO_REG:
4655 if (!(type_mask & (1 << OP_REG_GP)))
4656 return 0;
4657 uval = insn_extract_operand (insn, operand);
4658 return 1 << (uval & 31);
4659
fc76e730
RS
4660 case OP_LWM_SWM_LIST:
4661 abort ();
4662
4663 case OP_SAVE_RESTORE_LIST:
4664 abort ();
4665
4666 case OP_MDMX_IMM_REG:
4667 if (!(type_mask & (1 << OP_REG_VEC)))
4668 return 0;
4669 uval = insn_extract_operand (insn, operand);
4670 vsel = uval >> 5;
4671 if ((vsel & 0x18) == 0x18)
4672 return 0;
4673 return 1 << (uval & 31);
56d438b1
CF
4674
4675 case OP_REG_INDEX:
4676 if (!(type_mask & (1 << OP_REG_GP)))
4677 return 0;
4678 return 1 << insn_extract_operand (insn, operand);
df58fc94 4679 }
fc76e730
RS
4680 abort ();
4681}
4682
4683/* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4684 where bit N of OPNO_MASK is set if operand N should be included.
4685 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4686 is set. */
4687
4688static unsigned int
4689insn_reg_mask (const struct mips_cl_insn *insn,
4690 unsigned int type_mask, unsigned int opno_mask)
4691{
4692 unsigned int opno, reg_mask;
4693
4694 opno = 0;
4695 reg_mask = 0;
4696 while (opno_mask != 0)
4697 {
4698 if (opno_mask & 1)
4699 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4700 opno_mask >>= 1;
4701 opno += 1;
4702 }
4703 return reg_mask;
df58fc94
RS
4704}
4705
4c260379
RS
4706/* Return the mask of core registers that IP reads. */
4707
4708static unsigned int
4709gpr_read_mask (const struct mips_cl_insn *ip)
4710{
4711 unsigned long pinfo, pinfo2;
4712 unsigned int mask;
4713
fc76e730 4714 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4c260379
RS
4715 pinfo = ip->insn_mo->pinfo;
4716 pinfo2 = ip->insn_mo->pinfo2;
fc76e730 4717 if (pinfo & INSN_UDI)
4c260379 4718 {
fc76e730
RS
4719 /* UDI instructions have traditionally been assumed to read RS
4720 and RT. */
4721 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4722 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4c260379 4723 }
fc76e730
RS
4724 if (pinfo & INSN_READ_GPR_24)
4725 mask |= 1 << 24;
4726 if (pinfo2 & INSN2_READ_GPR_16)
4727 mask |= 1 << 16;
4728 if (pinfo2 & INSN2_READ_SP)
4729 mask |= 1 << SP;
26545944 4730 if (pinfo2 & INSN2_READ_GPR_31)
fc76e730 4731 mask |= 1 << 31;
fe35f09f
RS
4732 /* Don't include register 0. */
4733 return mask & ~1;
4c260379
RS
4734}
4735
4736/* Return the mask of core registers that IP writes. */
4737
4738static unsigned int
4739gpr_write_mask (const struct mips_cl_insn *ip)
4740{
4741 unsigned long pinfo, pinfo2;
4742 unsigned int mask;
4743
fc76e730 4744 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4c260379
RS
4745 pinfo = ip->insn_mo->pinfo;
4746 pinfo2 = ip->insn_mo->pinfo2;
fc76e730
RS
4747 if (pinfo & INSN_WRITE_GPR_24)
4748 mask |= 1 << 24;
4749 if (pinfo & INSN_WRITE_GPR_31)
4750 mask |= 1 << 31;
4751 if (pinfo & INSN_UDI)
4752 /* UDI instructions have traditionally been assumed to write to RD. */
4753 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4754 if (pinfo2 & INSN2_WRITE_SP)
4755 mask |= 1 << SP;
fe35f09f
RS
4756 /* Don't include register 0. */
4757 return mask & ~1;
4c260379
RS
4758}
4759
4760/* Return the mask of floating-point registers that IP reads. */
4761
4762static unsigned int
4763fpr_read_mask (const struct mips_cl_insn *ip)
4764{
fc76e730 4765 unsigned long pinfo;
4c260379
RS
4766 unsigned int mask;
4767
9d5de888
CF
4768 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4769 | (1 << OP_REG_MSA)),
fc76e730 4770 insn_read_mask (ip->insn_mo));
4c260379 4771 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4772 /* Conservatively treat all operands to an FP_D instruction are doubles.
4773 (This is overly pessimistic for things like cvt.d.s.) */
bad1aba3 4774 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4775 mask |= mask << 1;
4776 return mask;
4777}
4778
4779/* Return the mask of floating-point registers that IP writes. */
4780
4781static unsigned int
4782fpr_write_mask (const struct mips_cl_insn *ip)
4783{
fc76e730 4784 unsigned long pinfo;
4c260379
RS
4785 unsigned int mask;
4786
9d5de888
CF
4787 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4788 | (1 << OP_REG_MSA)),
fc76e730 4789 insn_write_mask (ip->insn_mo));
4c260379 4790 pinfo = ip->insn_mo->pinfo;
4c260379
RS
4791 /* Conservatively treat all operands to an FP_D instruction are doubles.
4792 (This is overly pessimistic for things like cvt.s.d.) */
bad1aba3 4793 if (FPR_SIZE != 64 && (pinfo & FP_D))
4c260379
RS
4794 mask |= mask << 1;
4795 return mask;
4796}
4797
a1d78564
RS
4798/* Operand OPNUM of INSN is an odd-numbered floating-point register.
4799 Check whether that is allowed. */
4800
4801static bfd_boolean
4802mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4803{
4804 const char *s = insn->name;
351cdf24
MF
4805 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4806 || FPR_SIZE == 64)
4807 && mips_opts.oddspreg;
a1d78564
RS
4808
4809 if (insn->pinfo == INSN_MACRO)
4810 /* Let a macro pass, we'll catch it later when it is expanded. */
4811 return TRUE;
4812
351cdf24
MF
4813 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4814 otherwise it depends on oddspreg. */
4815 if ((insn->pinfo & FP_S)
4816 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
43885403 4817 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
351cdf24 4818 return FPR_SIZE == 32 || oddspreg;
a1d78564 4819
351cdf24
MF
4820 /* Allow odd registers for single-precision ops and double-precision if the
4821 floating-point registers are 64-bit wide. */
4822 switch (insn->pinfo & (FP_S | FP_D))
4823 {
4824 case FP_S:
4825 case 0:
4826 return oddspreg;
4827 case FP_D:
4828 return FPR_SIZE == 64;
4829 default:
4830 break;
a1d78564
RS
4831 }
4832
351cdf24
MF
4833 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4834 s = strchr (insn->name, '.');
4835 if (s != NULL && opnum == 2)
4836 s = strchr (s + 1, '.');
4837 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4838 return oddspreg;
a1d78564 4839
351cdf24 4840 return FPR_SIZE == 64;
a1d78564
RS
4841}
4842
a1d78564
RS
4843/* Information about an instruction argument that we're trying to match. */
4844struct mips_arg_info
4845{
4846 /* The instruction so far. */
4847 struct mips_cl_insn *insn;
4848
a92713e6
RS
4849 /* The first unconsumed operand token. */
4850 struct mips_operand_token *token;
4851
a1d78564
RS
4852 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4853 int opnum;
4854
4855 /* The 1-based argument number, for error reporting. This does not
4856 count elided optional registers, etc.. */
4857 int argnum;
4858
4859 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4860 unsigned int last_regno;
4861
4862 /* If the first operand was an OP_REG, this is the register that it
4863 specified, otherwise it is ILLEGAL_REG. */
4864 unsigned int dest_regno;
4865
4866 /* The value of the last OP_INT operand. Only used for OP_MSB,
4867 where it gives the lsb position. */
4868 unsigned int last_op_int;
4869
60f20e8b 4870 /* If true, match routines should assume that no later instruction
2b0f3761 4871 alternative matches and should therefore be as accommodating as
60f20e8b
RS
4872 possible. Match routines should not report errors if something
4873 is only invalid for !LAX_MATCH. */
4874 bfd_boolean lax_match;
a1d78564 4875
a1d78564
RS
4876 /* True if a reference to the current AT register was seen. */
4877 bfd_boolean seen_at;
4878};
4879
1a00e612
RS
4880/* Record that the argument is out of range. */
4881
4882static void
4883match_out_of_range (struct mips_arg_info *arg)
4884{
4885 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4886}
4887
4888/* Record that the argument isn't constant but needs to be. */
4889
4890static void
4891match_not_constant (struct mips_arg_info *arg)
4892{
4893 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4894 arg->argnum);
4895}
4896
a92713e6
RS
4897/* Try to match an OT_CHAR token for character CH. Consume the token
4898 and return true on success, otherwise return false. */
a1d78564 4899
a92713e6
RS
4900static bfd_boolean
4901match_char (struct mips_arg_info *arg, char ch)
a1d78564 4902{
a92713e6
RS
4903 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4904 {
4905 ++arg->token;
4906 if (ch == ',')
4907 arg->argnum += 1;
4908 return TRUE;
4909 }
4910 return FALSE;
4911}
a1d78564 4912
a92713e6
RS
4913/* Try to get an expression from the next tokens in ARG. Consume the
4914 tokens and return true on success, storing the expression value in
4915 VALUE and relocation types in R. */
4916
4917static bfd_boolean
4918match_expression (struct mips_arg_info *arg, expressionS *value,
4919 bfd_reloc_code_real_type *r)
4920{
d436c1c2
RS
4921 /* If the next token is a '(' that was parsed as being part of a base
4922 expression, assume we have an elided offset. The later match will fail
4923 if this turns out to be wrong. */
4924 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
a1d78564 4925 {
d436c1c2
RS
4926 value->X_op = O_constant;
4927 value->X_add_number = 0;
4928 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
a92713e6
RS
4929 return TRUE;
4930 }
4931
d436c1c2
RS
4932 /* Reject register-based expressions such as "0+$2" and "(($2))".
4933 For plain registers the default error seems more appropriate. */
4934 if (arg->token->type == OT_INTEGER
4935 && arg->token->u.integer.value.X_op == O_register)
a92713e6 4936 {
d436c1c2
RS
4937 set_insn_error (arg->argnum, _("register value used as expression"));
4938 return FALSE;
a1d78564 4939 }
d436c1c2
RS
4940
4941 if (arg->token->type == OT_INTEGER)
a92713e6 4942 {
d436c1c2
RS
4943 *value = arg->token->u.integer.value;
4944 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4945 ++arg->token;
4946 return TRUE;
a92713e6 4947 }
a92713e6 4948
d436c1c2
RS
4949 set_insn_error_i
4950 (arg->argnum, _("operand %d must be an immediate expression"),
4951 arg->argnum);
4952 return FALSE;
a92713e6
RS
4953}
4954
4955/* Try to get a constant expression from the next tokens in ARG. Consume
de194d85 4956 the tokens and return true on success, storing the constant value
a54d5f8b 4957 in *VALUE. */
a92713e6
RS
4958
4959static bfd_boolean
1a00e612 4960match_const_int (struct mips_arg_info *arg, offsetT *value)
a92713e6
RS
4961{
4962 expressionS ex;
4963 bfd_reloc_code_real_type r[3];
a1d78564 4964
a92713e6
RS
4965 if (!match_expression (arg, &ex, r))
4966 return FALSE;
4967
4968 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
a1d78564
RS
4969 *value = ex.X_add_number;
4970 else
4971 {
c96425c5
MR
4972 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4973 match_out_of_range (arg);
4974 else
4975 match_not_constant (arg);
1a00e612 4976 return FALSE;
a1d78564 4977 }
a92713e6 4978 return TRUE;
a1d78564
RS
4979}
4980
4981/* Return the RTYPE_* flags for a register operand of type TYPE that
4982 appears in instruction OPCODE. */
4983
4984static unsigned int
4985convert_reg_type (const struct mips_opcode *opcode,
4986 enum mips_reg_operand_type type)
4987{
4988 switch (type)
4989 {
4990 case OP_REG_GP:
4991 return RTYPE_NUM | RTYPE_GP;
4992
4993 case OP_REG_FP:
4994 /* Allow vector register names for MDMX if the instruction is a 64-bit
4995 FPR load, store or move (including moves to and from GPRs). */
4996 if ((mips_opts.ase & ASE_MDMX)
4997 && (opcode->pinfo & FP_D)
43885403 4998 && (opcode->pinfo & (INSN_COPROC_MOVE
a1d78564 4999 | INSN_COPROC_MEMORY_DELAY
43885403 5000 | INSN_LOAD_COPROC
67dc82bc 5001 | INSN_LOAD_MEMORY
a1d78564
RS
5002 | INSN_STORE_MEMORY)))
5003 return RTYPE_FPU | RTYPE_VEC;
5004 return RTYPE_FPU;
5005
5006 case OP_REG_CCC:
5007 if (opcode->pinfo & (FP_D | FP_S))
5008 return RTYPE_CCC | RTYPE_FCC;
5009 return RTYPE_CCC;
5010
5011 case OP_REG_VEC:
5012 if (opcode->membership & INSN_5400)
5013 return RTYPE_FPU;
5014 return RTYPE_FPU | RTYPE_VEC;
5015
5016 case OP_REG_ACC:
5017 return RTYPE_ACC;
5018
5019 case OP_REG_COPRO:
5020 if (opcode->name[strlen (opcode->name) - 1] == '0')
5021 return RTYPE_NUM | RTYPE_CP0;
5022 return RTYPE_NUM;
5023
5024 case OP_REG_HW:
5025 return RTYPE_NUM;
14daeee3
RS
5026
5027 case OP_REG_VI:
5028 return RTYPE_NUM | RTYPE_VI;
5029
5030 case OP_REG_VF:
5031 return RTYPE_NUM | RTYPE_VF;
5032
5033 case OP_REG_R5900_I:
5034 return RTYPE_R5900_I;
5035
5036 case OP_REG_R5900_Q:
5037 return RTYPE_R5900_Q;
5038
5039 case OP_REG_R5900_R:
5040 return RTYPE_R5900_R;
5041
5042 case OP_REG_R5900_ACC:
5043 return RTYPE_R5900_ACC;
56d438b1
CF
5044
5045 case OP_REG_MSA:
5046 return RTYPE_MSA;
5047
5048 case OP_REG_MSA_CTRL:
5049 return RTYPE_NUM;
a1d78564
RS
5050 }
5051 abort ();
5052}
5053
5054/* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5055
5056static void
5057check_regno (struct mips_arg_info *arg,
5058 enum mips_reg_operand_type type, unsigned int regno)
5059{
5060 if (AT && type == OP_REG_GP && regno == AT)
5061 arg->seen_at = TRUE;
5062
5063 if (type == OP_REG_FP
5064 && (regno & 1) != 0
a1d78564 5065 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
351cdf24
MF
5066 {
5067 /* This was a warning prior to introducing O32 FPXX and FP64 support
5068 so maintain a warning for FP32 but raise an error for the new
5069 cases. */
5070 if (FPR_SIZE == 32)
5071 as_warn (_("float register should be even, was %d"), regno);
5072 else
5073 as_bad (_("float register should be even, was %d"), regno);
5074 }
a1d78564
RS
5075
5076 if (type == OP_REG_CCC)
5077 {
5078 const char *name;
5079 size_t length;
5080
5081 name = arg->insn->insn_mo->name;
5082 length = strlen (name);
5083 if ((regno & 1) != 0
5084 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5085 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
1661c76c 5086 as_warn (_("condition code register should be even for %s, was %d"),
a1d78564
RS
5087 name, regno);
5088
5089 if ((regno & 3) != 0
5090 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
1661c76c 5091 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
a1d78564
RS
5092 name, regno);
5093 }
5094}
5095
a92713e6
RS
5096/* ARG is a register with symbol value SYMVAL. Try to interpret it as
5097 a register of type TYPE. Return true on success, storing the register
5098 number in *REGNO and warning about any dubious uses. */
5099
5100static bfd_boolean
5101match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5102 unsigned int symval, unsigned int *regno)
5103{
5104 if (type == OP_REG_VEC)
5105 symval = mips_prefer_vec_regno (symval);
5106 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5107 return FALSE;
5108
5109 *regno = symval & RNUM_MASK;
5110 check_regno (arg, type, *regno);
5111 return TRUE;
5112}
5113
5114/* Try to interpret the next token in ARG as a register of type TYPE.
5115 Consume the token and return true on success, storing the register
5116 number in *REGNO. Return false on failure. */
5117
5118static bfd_boolean
5119match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5120 unsigned int *regno)
5121{
5122 if (arg->token->type == OT_REG
5123 && match_regno (arg, type, arg->token->u.regno, regno))
5124 {
5125 ++arg->token;
5126 return TRUE;
5127 }
5128 return FALSE;
5129}
5130
5131/* Try to interpret the next token in ARG as a range of registers of type TYPE.
5132 Consume the token and return true on success, storing the register numbers
5133 in *REGNO1 and *REGNO2. Return false on failure. */
5134
5135static bfd_boolean
5136match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5137 unsigned int *regno1, unsigned int *regno2)
5138{
5139 if (match_reg (arg, type, regno1))
5140 {
5141 *regno2 = *regno1;
5142 return TRUE;
5143 }
5144 if (arg->token->type == OT_REG_RANGE
5145 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5146 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5147 && *regno1 <= *regno2)
5148 {
5149 ++arg->token;
5150 return TRUE;
5151 }
5152 return FALSE;
5153}
5154
a1d78564
RS
5155/* OP_INT matcher. */
5156
a92713e6 5157static bfd_boolean
a1d78564 5158match_int_operand (struct mips_arg_info *arg,
a92713e6 5159 const struct mips_operand *operand_base)
a1d78564
RS
5160{
5161 const struct mips_int_operand *operand;
3ccad066 5162 unsigned int uval;
a1d78564
RS
5163 int min_val, max_val, factor;
5164 offsetT sval;
a1d78564
RS
5165
5166 operand = (const struct mips_int_operand *) operand_base;
5167 factor = 1 << operand->shift;
3ccad066
RS
5168 min_val = mips_int_operand_min (operand);
5169 max_val = mips_int_operand_max (operand);
a1d78564 5170
d436c1c2
RS
5171 if (operand_base->lsb == 0
5172 && operand_base->size == 16
5173 && operand->shift == 0
5174 && operand->bias == 0
5175 && (operand->max_val == 32767 || operand->max_val == 65535))
a1d78564
RS
5176 {
5177 /* The operand can be relocated. */
a92713e6
RS
5178 if (!match_expression (arg, &offset_expr, offset_reloc))
5179 return FALSE;
5180
c96425c5
MR
5181 if (offset_expr.X_op == O_big)
5182 {
5183 match_out_of_range (arg);
5184 return FALSE;
5185 }
5186
a92713e6 5187 if (offset_reloc[0] != BFD_RELOC_UNUSED)
33eaf5de 5188 /* Relocation operators were used. Accept the argument and
a1d78564
RS
5189 leave the relocation value in offset_expr and offset_relocs
5190 for the caller to process. */
a92713e6
RS
5191 return TRUE;
5192
5193 if (offset_expr.X_op != O_constant)
a1d78564 5194 {
60f20e8b
RS
5195 /* Accept non-constant operands if no later alternative matches,
5196 leaving it for the caller to process. */
5197 if (!arg->lax_match)
602b88e3
MR
5198 {
5199 match_not_constant (arg);
5200 return FALSE;
5201 }
a92713e6
RS
5202 offset_reloc[0] = BFD_RELOC_LO16;
5203 return TRUE;
a1d78564 5204 }
a92713e6 5205
a1d78564
RS
5206 /* Clear the global state; we're going to install the operand
5207 ourselves. */
a92713e6 5208 sval = offset_expr.X_add_number;
a1d78564 5209 offset_expr.X_op = O_absent;
60f20e8b
RS
5210
5211 /* For compatibility with older assemblers, we accept
5212 0x8000-0xffff as signed 16-bit numbers when only
5213 signed numbers are allowed. */
5214 if (sval > max_val)
5215 {
5216 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5217 if (!arg->lax_match && sval <= max_val)
20c59b84
MR
5218 {
5219 match_out_of_range (arg);
5220 return FALSE;
5221 }
60f20e8b 5222 }
a1d78564
RS
5223 }
5224 else
5225 {
1a00e612 5226 if (!match_const_int (arg, &sval))
a92713e6 5227 return FALSE;
a1d78564
RS
5228 }
5229
5230 arg->last_op_int = sval;
5231
1a00e612 5232 if (sval < min_val || sval > max_val || sval % factor)
a1d78564 5233 {
1a00e612
RS
5234 match_out_of_range (arg);
5235 return FALSE;
a1d78564
RS
5236 }
5237
5238 uval = (unsigned int) sval >> operand->shift;
5239 uval -= operand->bias;
5240
5241 /* Handle -mfix-cn63xxp1. */
5242 if (arg->opnum == 1
5243 && mips_fix_cn63xxp1
5244 && !mips_opts.micromips
5245 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5246 switch (uval)
5247 {
5248 case 5:
5249 case 25:
5250 case 26:
5251 case 27:
5252 case 28:
5253 case 29:
5254 case 30:
5255 case 31:
5256 /* These are ok. */
5257 break;
5258
5259 default:
5260 /* The rest must be changed to 28. */
5261 uval = 28;
5262 break;
5263 }
5264
5265 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5266 return TRUE;
a1d78564
RS
5267}
5268
5269/* OP_MAPPED_INT matcher. */
5270
a92713e6 5271static bfd_boolean
a1d78564 5272match_mapped_int_operand (struct mips_arg_info *arg,
a92713e6 5273 const struct mips_operand *operand_base)
a1d78564
RS
5274{
5275 const struct mips_mapped_int_operand *operand;
5276 unsigned int uval, num_vals;
5277 offsetT sval;
5278
5279 operand = (const struct mips_mapped_int_operand *) operand_base;
1a00e612 5280 if (!match_const_int (arg, &sval))
a92713e6 5281 return FALSE;
a1d78564
RS
5282
5283 num_vals = 1 << operand_base->size;
5284 for (uval = 0; uval < num_vals; uval++)
5285 if (operand->int_map[uval] == sval)
5286 break;
5287 if (uval == num_vals)
1a00e612
RS
5288 {
5289 match_out_of_range (arg);
5290 return FALSE;
5291 }
a1d78564
RS
5292
5293 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5294 return TRUE;
a1d78564
RS
5295}
5296
5297/* OP_MSB matcher. */
5298
a92713e6 5299static bfd_boolean
a1d78564 5300match_msb_operand (struct mips_arg_info *arg,
a92713e6 5301 const struct mips_operand *operand_base)
a1d78564
RS
5302{
5303 const struct mips_msb_operand *operand;
5304 int min_val, max_val, max_high;
5305 offsetT size, sval, high;
5306
5307 operand = (const struct mips_msb_operand *) operand_base;
5308 min_val = operand->bias;
5309 max_val = min_val + (1 << operand_base->size) - 1;
5310 max_high = operand->opsize;
5311
1a00e612 5312 if (!match_const_int (arg, &size))
a92713e6 5313 return FALSE;
a1d78564
RS
5314
5315 high = size + arg->last_op_int;
5316 sval = operand->add_lsb ? high : size;
5317
5318 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5319 {
1a00e612
RS
5320 match_out_of_range (arg);
5321 return FALSE;
a1d78564
RS
5322 }
5323 insn_insert_operand (arg->insn, operand_base, sval - min_val);
a92713e6 5324 return TRUE;
a1d78564
RS
5325}
5326
5327/* OP_REG matcher. */
5328
a92713e6 5329static bfd_boolean
a1d78564 5330match_reg_operand (struct mips_arg_info *arg,
a92713e6 5331 const struct mips_operand *operand_base)
a1d78564
RS
5332{
5333 const struct mips_reg_operand *operand;
a92713e6 5334 unsigned int regno, uval, num_vals;
a1d78564
RS
5335
5336 operand = (const struct mips_reg_operand *) operand_base;
a92713e6
RS
5337 if (!match_reg (arg, operand->reg_type, &regno))
5338 return FALSE;
a1d78564
RS
5339
5340 if (operand->reg_map)
5341 {
5342 num_vals = 1 << operand->root.size;
5343 for (uval = 0; uval < num_vals; uval++)
5344 if (operand->reg_map[uval] == regno)
5345 break;
5346 if (num_vals == uval)
a92713e6 5347 return FALSE;
a1d78564
RS
5348 }
5349 else
5350 uval = regno;
5351
a1d78564
RS
5352 arg->last_regno = regno;
5353 if (arg->opnum == 1)
5354 arg->dest_regno = regno;
5355 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5356 return TRUE;
a1d78564
RS
5357}
5358
5359/* OP_REG_PAIR matcher. */
5360
a92713e6 5361static bfd_boolean
a1d78564 5362match_reg_pair_operand (struct mips_arg_info *arg,
a92713e6 5363 const struct mips_operand *operand_base)
a1d78564
RS
5364{
5365 const struct mips_reg_pair_operand *operand;
a92713e6 5366 unsigned int regno1, regno2, uval, num_vals;
a1d78564
RS
5367
5368 operand = (const struct mips_reg_pair_operand *) operand_base;
a92713e6
RS
5369 if (!match_reg (arg, operand->reg_type, &regno1)
5370 || !match_char (arg, ',')
5371 || !match_reg (arg, operand->reg_type, &regno2))
5372 return FALSE;
a1d78564
RS
5373
5374 num_vals = 1 << operand_base->size;
5375 for (uval = 0; uval < num_vals; uval++)
5376 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5377 break;
5378 if (uval == num_vals)
a92713e6 5379 return FALSE;
a1d78564 5380
a1d78564 5381 insn_insert_operand (arg->insn, operand_base, uval);
a92713e6 5382 return TRUE;
a1d78564
RS
5383}
5384
5385/* OP_PCREL matcher. The caller chooses the relocation type. */
5386
a92713e6
RS
5387static bfd_boolean
5388match_pcrel_operand (struct mips_arg_info *arg)
a1d78564 5389{
a92713e6
RS
5390 bfd_reloc_code_real_type r[3];
5391
5392 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
a1d78564
RS
5393}
5394
5395/* OP_PERF_REG matcher. */
5396
a92713e6 5397static bfd_boolean
a1d78564 5398match_perf_reg_operand (struct mips_arg_info *arg,
a92713e6 5399 const struct mips_operand *operand)
a1d78564
RS
5400{
5401 offsetT sval;
5402
1a00e612 5403 if (!match_const_int (arg, &sval))
a92713e6 5404 return FALSE;
a1d78564
RS
5405
5406 if (sval != 0
5407 && (sval != 1
5408 || (mips_opts.arch == CPU_R5900
5409 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5410 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5411 {
1a00e612
RS
5412 set_insn_error (arg->argnum, _("invalid performance register"));
5413 return FALSE;
a1d78564
RS
5414 }
5415
5416 insn_insert_operand (arg->insn, operand, sval);
a92713e6 5417 return TRUE;
a1d78564
RS
5418}
5419
5420/* OP_ADDIUSP matcher. */
5421
a92713e6 5422static bfd_boolean
a1d78564 5423match_addiusp_operand (struct mips_arg_info *arg,
a92713e6 5424 const struct mips_operand *operand)
a1d78564
RS
5425{
5426 offsetT sval;
5427 unsigned int uval;
5428
1a00e612 5429 if (!match_const_int (arg, &sval))
a92713e6 5430 return FALSE;
a1d78564
RS
5431
5432 if (sval % 4)
1a00e612
RS
5433 {
5434 match_out_of_range (arg);
5435 return FALSE;
5436 }
a1d78564
RS
5437
5438 sval /= 4;
5439 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
1a00e612
RS
5440 {
5441 match_out_of_range (arg);
5442 return FALSE;
5443 }
a1d78564
RS
5444
5445 uval = (unsigned int) sval;
5446 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5447 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5448 return TRUE;
a1d78564
RS
5449}
5450
5451/* OP_CLO_CLZ_DEST matcher. */
5452
a92713e6 5453static bfd_boolean
a1d78564 5454match_clo_clz_dest_operand (struct mips_arg_info *arg,
a92713e6 5455 const struct mips_operand *operand)
a1d78564
RS
5456{
5457 unsigned int regno;
5458
a92713e6
RS
5459 if (!match_reg (arg, OP_REG_GP, &regno))
5460 return FALSE;
a1d78564 5461
a1d78564 5462 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
a92713e6 5463 return TRUE;
a1d78564
RS
5464}
5465
7361da2c
AB
5466/* OP_CHECK_PREV matcher. */
5467
5468static bfd_boolean
5469match_check_prev_operand (struct mips_arg_info *arg,
5470 const struct mips_operand *operand_base)
5471{
5472 const struct mips_check_prev_operand *operand;
5473 unsigned int regno;
5474
5475 operand = (const struct mips_check_prev_operand *) operand_base;
5476
5477 if (!match_reg (arg, OP_REG_GP, &regno))
5478 return FALSE;
5479
5480 if (!operand->zero_ok && regno == 0)
5481 return FALSE;
5482
5483 if ((operand->less_than_ok && regno < arg->last_regno)
5484 || (operand->greater_than_ok && regno > arg->last_regno)
5485 || (operand->equal_ok && regno == arg->last_regno))
5486 {
5487 arg->last_regno = regno;
5488 insn_insert_operand (arg->insn, operand_base, regno);
5489 return TRUE;
5490 }
5491
5492 return FALSE;
5493}
5494
5495/* OP_SAME_RS_RT matcher. */
5496
5497static bfd_boolean
5498match_same_rs_rt_operand (struct mips_arg_info *arg,
5499 const struct mips_operand *operand)
5500{
5501 unsigned int regno;
5502
5503 if (!match_reg (arg, OP_REG_GP, &regno))
5504 return FALSE;
5505
5506 if (regno == 0)
5507 {
5508 set_insn_error (arg->argnum, _("the source register must not be $0"));
5509 return FALSE;
5510 }
5511
5512 arg->last_regno = regno;
5513
5514 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5515 return TRUE;
5516}
5517
a1d78564
RS
5518/* OP_LWM_SWM_LIST matcher. */
5519
a92713e6 5520static bfd_boolean
a1d78564 5521match_lwm_swm_list_operand (struct mips_arg_info *arg,
a92713e6 5522 const struct mips_operand *operand)
a1d78564 5523{
a92713e6
RS
5524 unsigned int reglist, sregs, ra, regno1, regno2;
5525 struct mips_arg_info reset;
a1d78564 5526
a92713e6
RS
5527 reglist = 0;
5528 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5529 return FALSE;
5530 do
5531 {
5532 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5533 {
5534 reglist |= 1 << FP;
5535 regno2 = S7;
5536 }
5537 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5538 reset = *arg;
5539 }
5540 while (match_char (arg, ',')
5541 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5542 *arg = reset;
a1d78564
RS
5543
5544 if (operand->size == 2)
5545 {
5546 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5547
5548 s0, ra
5549 s0, s1, ra, s2, s3
5550 s0-s2, ra
5551
5552 and any permutations of these. */
5553 if ((reglist & 0xfff1ffff) != 0x80010000)
a92713e6 5554 return FALSE;
a1d78564
RS
5555
5556 sregs = (reglist >> 17) & 7;
5557 ra = 0;
5558 }
5559 else
5560 {
5561 /* The list must include at least one of ra and s0-sN,
5562 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5563 which are $23 and $30 respectively.) E.g.:
5564
5565 ra
5566 s0
5567 ra, s0, s1, s2
5568 s0-s8
5569 s0-s5, ra
5570
5571 and any permutations of these. */
5572 if ((reglist & 0x3f00ffff) != 0)
a92713e6 5573 return FALSE;
a1d78564
RS
5574
5575 ra = (reglist >> 27) & 0x10;
5576 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5577 }
5578 sregs += 1;
5579 if ((sregs & -sregs) != sregs)
a92713e6 5580 return FALSE;
a1d78564
RS
5581
5582 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
a92713e6 5583 return TRUE;
a1d78564
RS
5584}
5585
364215c8
RS
5586/* OP_ENTRY_EXIT_LIST matcher. */
5587
a92713e6 5588static unsigned int
364215c8 5589match_entry_exit_operand (struct mips_arg_info *arg,
a92713e6 5590 const struct mips_operand *operand)
364215c8
RS
5591{
5592 unsigned int mask;
5593 bfd_boolean is_exit;
5594
5595 /* The format is the same for both ENTRY and EXIT, but the constraints
5596 are different. */
5597 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5598 mask = (is_exit ? 7 << 3 : 0);
a92713e6 5599 do
364215c8
RS
5600 {
5601 unsigned int regno1, regno2;
5602 bfd_boolean is_freg;
5603
a92713e6 5604 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
364215c8 5605 is_freg = FALSE;
a92713e6 5606 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
364215c8
RS
5607 is_freg = TRUE;
5608 else
a92713e6 5609 return FALSE;
364215c8
RS
5610
5611 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5612 {
5613 mask &= ~(7 << 3);
5614 mask |= (5 + regno2) << 3;
5615 }
5616 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5617 mask |= (regno2 - 3) << 3;
5618 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5619 mask |= (regno2 - 15) << 1;
5620 else if (regno1 == RA && regno2 == RA)
5621 mask |= 1;
5622 else
a92713e6 5623 return FALSE;
364215c8 5624 }
a92713e6
RS
5625 while (match_char (arg, ','));
5626
364215c8 5627 insn_insert_operand (arg->insn, operand, mask);
a92713e6 5628 return TRUE;
364215c8
RS
5629}
5630
38bf472a
MR
5631/* Encode regular MIPS SAVE/RESTORE instruction operands according to
5632 the argument register mask AMASK, the number of static registers
5633 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5634 respectively, and the frame size FRAME_SIZE. */
5635
5636static unsigned int
5637mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5638 unsigned int ra, unsigned int s0, unsigned int s1,
5639 unsigned int frame_size)
5640{
5641 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5642 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5643}
5644
5645/* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5646 argument register mask AMASK, the number of static registers saved
5647 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5648 respectively, and the frame size FRAME_SIZE. */
5649
5650static unsigned int
5651mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5652 unsigned int ra, unsigned int s0, unsigned int s1,
5653 unsigned int frame_size)
5654{
5655 unsigned int args;
5656
5657 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5658 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5659 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5660 | ((frame_size & 0xf0) << 16));
5661 return args;
5662}
5663
364215c8
RS
5664/* OP_SAVE_RESTORE_LIST matcher. */
5665
a92713e6
RS
5666static bfd_boolean
5667match_save_restore_list_operand (struct mips_arg_info *arg)
364215c8
RS
5668{
5669 unsigned int opcode, args, statics, sregs;
5670 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
38bf472a 5671 unsigned int arg_mask, ra, s0, s1;
364215c8 5672 offsetT frame_size;
364215c8 5673
364215c8
RS
5674 opcode = arg->insn->insn_opcode;
5675 frame_size = 0;
5676 num_frame_sizes = 0;
5677 args = 0;
5678 statics = 0;
5679 sregs = 0;
38bf472a
MR
5680 ra = 0;
5681 s0 = 0;
5682 s1 = 0;
a92713e6 5683 do
364215c8
RS
5684 {
5685 unsigned int regno1, regno2;
5686
a92713e6 5687 if (arg->token->type == OT_INTEGER)
364215c8
RS
5688 {
5689 /* Handle the frame size. */
1a00e612 5690 if (!match_const_int (arg, &frame_size))
a92713e6 5691 return FALSE;
364215c8 5692 num_frame_sizes += 1;
364215c8
RS
5693 }
5694 else
5695 {
a92713e6
RS
5696 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5697 return FALSE;
364215c8
RS
5698
5699 while (regno1 <= regno2)
5700 {
5701 if (regno1 >= 4 && regno1 <= 7)
5702 {
5703 if (num_frame_sizes == 0)
5704 /* args $a0-$a3 */
5705 args |= 1 << (regno1 - 4);
5706 else
5707 /* statics $a0-$a3 */
5708 statics |= 1 << (regno1 - 4);
5709 }
5710 else if (regno1 >= 16 && regno1 <= 23)
5711 /* $s0-$s7 */
5712 sregs |= 1 << (regno1 - 16);
5713 else if (regno1 == 30)
5714 /* $s8 */
5715 sregs |= 1 << 8;
5716 else if (regno1 == 31)
5717 /* Add $ra to insn. */
38bf472a 5718 ra = 1;
364215c8 5719 else
a92713e6 5720 return FALSE;
364215c8
RS
5721 regno1 += 1;
5722 if (regno1 == 24)
5723 regno1 = 30;
5724 }
5725 }
364215c8 5726 }
a92713e6 5727 while (match_char (arg, ','));
364215c8
RS
5728
5729 /* Encode args/statics combination. */
5730 if (args & statics)
a92713e6 5731 return FALSE;
364215c8
RS
5732 else if (args == 0xf)
5733 /* All $a0-$a3 are args. */
38bf472a 5734 arg_mask = MIPS_SVRS_ALL_ARGS;
364215c8
RS
5735 else if (statics == 0xf)
5736 /* All $a0-$a3 are statics. */
38bf472a 5737 arg_mask = MIPS_SVRS_ALL_STATICS;
364215c8
RS
5738 else
5739 {
5740 /* Count arg registers. */
5741 num_args = 0;
5742 while (args & 0x1)
5743 {
5744 args >>= 1;
5745 num_args += 1;
5746 }
5747 if (args != 0)
a92713e6 5748 return FALSE;
364215c8
RS
5749
5750 /* Count static registers. */
5751 num_statics = 0;
5752 while (statics & 0x8)
5753 {
5754 statics = (statics << 1) & 0xf;
5755 num_statics += 1;
5756 }
5757 if (statics != 0)
a92713e6 5758 return FALSE;
364215c8
RS
5759
5760 /* Encode args/statics. */
38bf472a 5761 arg_mask = (num_args << 2) | num_statics;
364215c8
RS
5762 }
5763
5764 /* Encode $s0/$s1. */
5765 if (sregs & (1 << 0)) /* $s0 */
38bf472a 5766 s0 = 1;
364215c8 5767 if (sregs & (1 << 1)) /* $s1 */
38bf472a 5768 s1 = 1;
364215c8
RS
5769 sregs >>= 2;
5770
5771 /* Encode $s2-$s8. */
5772 num_sregs = 0;
5773 while (sregs & 1)
5774 {
5775 sregs >>= 1;
5776 num_sregs += 1;
5777 }
5778 if (sregs != 0)
a92713e6 5779 return FALSE;
364215c8
RS
5780
5781 /* Encode frame size. */
5782 if (num_frame_sizes == 0)
1a00e612
RS
5783 {
5784 set_insn_error (arg->argnum, _("missing frame size"));
5785 return FALSE;
5786 }
5787 if (num_frame_sizes > 1)
5788 {
5789 set_insn_error (arg->argnum, _("frame size specified twice"));
5790 return FALSE;
5791 }
5792 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5793 {
5794 set_insn_error (arg->argnum, _("invalid frame size"));
5795 return FALSE;
5796 }
38bf472a 5797 frame_size /= 8;
364215c8 5798
364215c8 5799 /* Finally build the instruction. */
38bf472a
MR
5800 if (mips_opts.mips16)
5801 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5802 frame_size);
5803 else if (!mips_opts.micromips)
5804 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5805 frame_size);
5806 else
5807 abort ();
5808
364215c8 5809 arg->insn->insn_opcode = opcode;
a92713e6 5810 return TRUE;
364215c8
RS
5811}
5812
a1d78564
RS
5813/* OP_MDMX_IMM_REG matcher. */
5814
a92713e6 5815static bfd_boolean
a1d78564 5816match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
a92713e6 5817 const struct mips_operand *operand)
a1d78564 5818{
a92713e6 5819 unsigned int regno, uval;
a1d78564
RS
5820 bfd_boolean is_qh;
5821 const struct mips_opcode *opcode;
5822
5823 /* The mips_opcode records whether this is an octobyte or quadhalf
5824 instruction. Start out with that bit in place. */
5825 opcode = arg->insn->insn_mo;
5826 uval = mips_extract_operand (operand, opcode->match);
5827 is_qh = (uval != 0);
5828
56d438b1 5829 if (arg->token->type == OT_REG)
a1d78564
RS
5830 {
5831 if ((opcode->membership & INSN_5400)
5832 && strcmp (opcode->name, "rzu.ob") == 0)
5833 {
1a00e612
RS
5834 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5835 arg->argnum);
5836 return FALSE;
a1d78564
RS
5837 }
5838
56d438b1
CF
5839 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5840 return FALSE;
5841 ++arg->token;
5842
a1d78564
RS
5843 /* Check whether this is a vector register or a broadcast of
5844 a single element. */
56d438b1 5845 if (arg->token->type == OT_INTEGER_INDEX)
a1d78564 5846 {
56d438b1 5847 if (arg->token->u.index > (is_qh ? 3 : 7))
a1d78564 5848 {
1a00e612
RS
5849 set_insn_error (arg->argnum, _("invalid element selector"));
5850 return FALSE;
a1d78564 5851 }
56d438b1
CF
5852 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5853 ++arg->token;
a1d78564
RS
5854 }
5855 else
5856 {
5857 /* A full vector. */
5858 if ((opcode->membership & INSN_5400)
5859 && (strcmp (opcode->name, "sll.ob") == 0
5860 || strcmp (opcode->name, "srl.ob") == 0))
5861 {
1a00e612
RS
5862 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5863 arg->argnum);
5864 return FALSE;
a1d78564
RS
5865 }
5866
5867 if (is_qh)
5868 uval |= MDMX_FMTSEL_VEC_QH << 5;
5869 else
5870 uval |= MDMX_FMTSEL_VEC_OB << 5;
5871 }
a1d78564
RS
5872 uval |= regno;
5873 }
5874 else
5875 {
5876 offsetT sval;
5877
1a00e612 5878 if (!match_const_int (arg, &sval))
a92713e6 5879 return FALSE;
a1d78564
RS
5880 if (sval < 0 || sval > 31)
5881 {
1a00e612
RS
5882 match_out_of_range (arg);
5883 return FALSE;
a1d78564
RS
5884 }
5885 uval |= (sval & 31);
5886 if (is_qh)
5887 uval |= MDMX_FMTSEL_IMM_QH << 5;
5888 else
5889 uval |= MDMX_FMTSEL_IMM_OB << 5;
5890 }
5891 insn_insert_operand (arg->insn, operand, uval);
a92713e6 5892 return TRUE;
a1d78564
RS
5893}
5894
56d438b1
CF
5895/* OP_IMM_INDEX matcher. */
5896
5897static bfd_boolean
5898match_imm_index_operand (struct mips_arg_info *arg,
5899 const struct mips_operand *operand)
5900{
5901 unsigned int max_val;
5902
5903 if (arg->token->type != OT_INTEGER_INDEX)
5904 return FALSE;
5905
5906 max_val = (1 << operand->size) - 1;
5907 if (arg->token->u.index > max_val)
5908 {
5909 match_out_of_range (arg);
5910 return FALSE;
5911 }
5912 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5913 ++arg->token;
5914 return TRUE;
5915}
5916
5917/* OP_REG_INDEX matcher. */
5918
5919static bfd_boolean
5920match_reg_index_operand (struct mips_arg_info *arg,
5921 const struct mips_operand *operand)
5922{
5923 unsigned int regno;
5924
5925 if (arg->token->type != OT_REG_INDEX)
5926 return FALSE;
5927
5928 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5929 return FALSE;
5930
5931 insn_insert_operand (arg->insn, operand, regno);
5932 ++arg->token;
5933 return TRUE;
5934}
5935
a1d78564
RS
5936/* OP_PC matcher. */
5937
a92713e6
RS
5938static bfd_boolean
5939match_pc_operand (struct mips_arg_info *arg)
a1d78564 5940{
a92713e6
RS
5941 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5942 {
5943 ++arg->token;
5944 return TRUE;
5945 }
5946 return FALSE;
a1d78564
RS
5947}
5948
25499ac7
MR
5949/* OP_REG28 matcher. */
5950
5951static bfd_boolean
5952match_reg28_operand (struct mips_arg_info *arg)
5953{
5954 unsigned int regno;
5955
5956 if (arg->token->type == OT_REG
5957 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5958 && regno == GP)
5959 {
5960 ++arg->token;
5961 return TRUE;
5962 }
5963 return FALSE;
5964}
5965
7361da2c
AB
5966/* OP_NON_ZERO_REG matcher. */
5967
5968static bfd_boolean
5969match_non_zero_reg_operand (struct mips_arg_info *arg,
5970 const struct mips_operand *operand)
5971{
5972 unsigned int regno;
5973
5974 if (!match_reg (arg, OP_REG_GP, &regno))
5975 return FALSE;
5976
5977 if (regno == 0)
5978 return FALSE;
5979
5980 arg->last_regno = regno;
5981 insn_insert_operand (arg->insn, operand, regno);
5982 return TRUE;
5983}
5984
a1d78564
RS
5985/* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5986 register that we need to match. */
5987
a92713e6
RS
5988static bfd_boolean
5989match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
a1d78564
RS
5990{
5991 unsigned int regno;
5992
a92713e6 5993 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
a1d78564
RS
5994}
5995
33f46696
MR
5996/* Try to match a floating-point constant from ARG for LI.S or LI.D.
5997 LENGTH is the length of the value in bytes (4 for float, 8 for double)
5998 and USING_GPRS says whether the destination is a GPR rather than an FPR.
89565f1b
RS
5999
6000 Return the constant in IMM and OFFSET as follows:
6001
6002 - If the constant should be loaded via memory, set IMM to O_absent and
6003 OFFSET to the memory address.
6004
6005 - Otherwise, if the constant should be loaded into two 32-bit registers,
6006 set IMM to the O_constant to load into the high register and OFFSET
6007 to the corresponding value for the low register.
6008
6009 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6010
6011 These constants only appear as the last operand in an instruction,
6012 and every instruction that accepts them in any variant accepts them
6013 in all variants. This means we don't have to worry about backing out
6014 any changes if the instruction does not match. We just match
6015 unconditionally and report an error if the constant is invalid. */
6016
a92713e6
RS
6017static bfd_boolean
6018match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6019 expressionS *offset, int length, bfd_boolean using_gprs)
89565f1b 6020{
a92713e6 6021 char *p;
89565f1b
RS
6022 segT seg, new_seg;
6023 subsegT subseg;
6024 const char *newname;
a92713e6 6025 unsigned char *data;
89565f1b
RS
6026
6027 /* Where the constant is placed is based on how the MIPS assembler
6028 does things:
6029
6030 length == 4 && using_gprs -- immediate value only
6031 length == 8 && using_gprs -- .rdata or immediate value
6032 length == 4 && !using_gprs -- .lit4 or immediate value
6033 length == 8 && !using_gprs -- .lit8 or immediate value
6034
6035 The .lit4 and .lit8 sections are only used if permitted by the
6036 -G argument. */
a92713e6 6037 if (arg->token->type != OT_FLOAT)
1a00e612
RS
6038 {
6039 set_insn_error (arg->argnum, _("floating-point expression required"));
6040 return FALSE;
6041 }
a92713e6
RS
6042
6043 gas_assert (arg->token->u.flt.length == length);
6044 data = arg->token->u.flt.data;
6045 ++arg->token;
89565f1b
RS
6046
6047 /* Handle 32-bit constants for which an immediate value is best. */
6048 if (length == 4
6049 && (using_gprs
6050 || g_switch_value < 4
6051 || (data[0] == 0 && data[1] == 0)
6052 || (data[2] == 0 && data[3] == 0)))
6053 {
6054 imm->X_op = O_constant;
6055 if (!target_big_endian)
6056 imm->X_add_number = bfd_getl32 (data);
6057 else
6058 imm->X_add_number = bfd_getb32 (data);
6059 offset->X_op = O_absent;
a92713e6 6060 return TRUE;
89565f1b
RS
6061 }
6062
6063 /* Handle 64-bit constants for which an immediate value is best. */
6064 if (length == 8
6065 && !mips_disable_float_construction
351cdf24
MF
6066 /* Constants can only be constructed in GPRs and copied to FPRs if the
6067 GPRs are at least as wide as the FPRs or MTHC1 is available.
6068 Unlike most tests for 32-bit floating-point registers this check
6069 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6070 permit 64-bit moves without MXHC1.
6071 Force the constant into memory otherwise. */
6072 && (using_gprs
6073 || GPR_SIZE == 64
6074 || ISA_HAS_MXHC1 (mips_opts.isa)
6075 || FPR_SIZE == 32)
89565f1b
RS
6076 && ((data[0] == 0 && data[1] == 0)
6077 || (data[2] == 0 && data[3] == 0))
6078 && ((data[4] == 0 && data[5] == 0)
6079 || (data[6] == 0 && data[7] == 0)))
6080 {
6081 /* The value is simple enough to load with a couple of instructions.
6082 If using 32-bit registers, set IMM to the high order 32 bits and
6083 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6084 64 bit constant. */
351cdf24 6085 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
89565f1b
RS
6086 {
6087 imm->X_op = O_constant;
6088 offset->X_op = O_constant;
6089 if (!target_big_endian)
6090 {
6091 imm->X_add_number = bfd_getl32 (data + 4);
6092 offset->X_add_number = bfd_getl32 (data);
6093 }
6094 else
6095 {
6096 imm->X_add_number = bfd_getb32 (data);
6097 offset->X_add_number = bfd_getb32 (data + 4);
6098 }
6099 if (offset->X_add_number == 0)
6100 offset->X_op = O_absent;
6101 }
6102 else
6103 {
6104 imm->X_op = O_constant;
6105 if (!target_big_endian)
6106 imm->X_add_number = bfd_getl64 (data);
6107 else
6108 imm->X_add_number = bfd_getb64 (data);
6109 offset->X_op = O_absent;
6110 }
a92713e6 6111 return TRUE;
89565f1b
RS
6112 }
6113
6114 /* Switch to the right section. */
6115 seg = now_seg;
6116 subseg = now_subseg;
6117 if (length == 4)
6118 {
6119 gas_assert (!using_gprs && g_switch_value >= 4);
6120 newname = ".lit4";
6121 }
6122 else
6123 {
6124 if (using_gprs || g_switch_value < 8)
6125 newname = RDATA_SECTION_NAME;
6126 else
6127 newname = ".lit8";
6128 }
6129
6130 new_seg = subseg_new (newname, (subsegT) 0);
6131 bfd_set_section_flags (stdoutput, new_seg,
6132 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6133 frag_align (length == 4 ? 2 : 3, 0, 0);
6134 if (strncmp (TARGET_OS, "elf", 3) != 0)
6135 record_alignment (new_seg, 4);
6136 else
6137 record_alignment (new_seg, length == 4 ? 2 : 3);
6138 if (seg == now_seg)
1661c76c 6139 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
89565f1b
RS
6140
6141 /* Set the argument to the current address in the section. */
6142 imm->X_op = O_absent;
6143 offset->X_op = O_symbol;
6144 offset->X_add_symbol = symbol_temp_new_now ();
6145 offset->X_add_number = 0;
6146
6147 /* Put the floating point number into the section. */
6148 p = frag_more (length);
6149 memcpy (p, data, length);
6150
6151 /* Switch back to the original section. */
6152 subseg_set (seg, subseg);
a92713e6 6153 return TRUE;
89565f1b
RS
6154}
6155
14daeee3
RS
6156/* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6157 them. */
6158
6159static bfd_boolean
6160match_vu0_suffix_operand (struct mips_arg_info *arg,
6161 const struct mips_operand *operand,
6162 bfd_boolean match_p)
6163{
6164 unsigned int uval;
6165
6166 /* The operand can be an XYZW mask or a single 2-bit channel index
6167 (with X being 0). */
6168 gas_assert (operand->size == 2 || operand->size == 4);
6169
ee5734f0 6170 /* The suffix can be omitted when it is already part of the opcode. */
14daeee3 6171 if (arg->token->type != OT_CHANNELS)
ee5734f0 6172 return match_p;
14daeee3
RS
6173
6174 uval = arg->token->u.channels;
6175 if (operand->size == 2)
6176 {
6177 /* Check that a single bit is set and convert it into a 2-bit index. */
6178 if ((uval & -uval) != uval)
6179 return FALSE;
6180 uval = 4 - ffs (uval);
6181 }
6182
6183 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6184 return FALSE;
6185
6186 ++arg->token;
6187 if (!match_p)
6188 insn_insert_operand (arg->insn, operand, uval);
6189 return TRUE;
6190}
6191
33f46696
MR
6192/* Try to match a token from ARG against OPERAND. Consume the token
6193 and return true on success, otherwise return false. */
a1d78564 6194
a92713e6 6195static bfd_boolean
a1d78564 6196match_operand (struct mips_arg_info *arg,
a92713e6 6197 const struct mips_operand *operand)
a1d78564
RS
6198{
6199 switch (operand->type)
6200 {
6201 case OP_INT:
a92713e6 6202 return match_int_operand (arg, operand);
a1d78564
RS
6203
6204 case OP_MAPPED_INT:
a92713e6 6205 return match_mapped_int_operand (arg, operand);
a1d78564
RS
6206
6207 case OP_MSB:
a92713e6 6208 return match_msb_operand (arg, operand);
a1d78564
RS
6209
6210 case OP_REG:
0f35dbc4 6211 case OP_OPTIONAL_REG:
a92713e6 6212 return match_reg_operand (arg, operand);
a1d78564
RS
6213
6214 case OP_REG_PAIR:
a92713e6 6215 return match_reg_pair_operand (arg, operand);
a1d78564
RS
6216
6217 case OP_PCREL:
a92713e6 6218 return match_pcrel_operand (arg);
a1d78564
RS
6219
6220 case OP_PERF_REG:
a92713e6 6221 return match_perf_reg_operand (arg, operand);
a1d78564
RS
6222
6223 case OP_ADDIUSP_INT:
a92713e6 6224 return match_addiusp_operand (arg, operand);
a1d78564
RS
6225
6226 case OP_CLO_CLZ_DEST:
a92713e6 6227 return match_clo_clz_dest_operand (arg, operand);
a1d78564
RS
6228
6229 case OP_LWM_SWM_LIST:
a92713e6 6230 return match_lwm_swm_list_operand (arg, operand);
a1d78564
RS
6231
6232 case OP_ENTRY_EXIT_LIST:
a92713e6 6233 return match_entry_exit_operand (arg, operand);
364215c8 6234
a1d78564 6235 case OP_SAVE_RESTORE_LIST:
a92713e6 6236 return match_save_restore_list_operand (arg);
a1d78564
RS
6237
6238 case OP_MDMX_IMM_REG:
a92713e6 6239 return match_mdmx_imm_reg_operand (arg, operand);
a1d78564
RS
6240
6241 case OP_REPEAT_DEST_REG:
a92713e6 6242 return match_tied_reg_operand (arg, arg->dest_regno);
a1d78564
RS
6243
6244 case OP_REPEAT_PREV_REG:
a92713e6 6245 return match_tied_reg_operand (arg, arg->last_regno);
a1d78564
RS
6246
6247 case OP_PC:
a92713e6 6248 return match_pc_operand (arg);
14daeee3 6249
25499ac7
MR
6250 case OP_REG28:
6251 return match_reg28_operand (arg);
6252
14daeee3
RS
6253 case OP_VU0_SUFFIX:
6254 return match_vu0_suffix_operand (arg, operand, FALSE);
6255
6256 case OP_VU0_MATCH_SUFFIX:
6257 return match_vu0_suffix_operand (arg, operand, TRUE);
56d438b1
CF
6258
6259 case OP_IMM_INDEX:
6260 return match_imm_index_operand (arg, operand);
6261
6262 case OP_REG_INDEX:
6263 return match_reg_index_operand (arg, operand);
7361da2c
AB
6264
6265 case OP_SAME_RS_RT:
6266 return match_same_rs_rt_operand (arg, operand);
6267
6268 case OP_CHECK_PREV:
6269 return match_check_prev_operand (arg, operand);
6270
6271 case OP_NON_ZERO_REG:
6272 return match_non_zero_reg_operand (arg, operand);
a1d78564
RS
6273 }
6274 abort ();
6275}
6276
6277/* ARG is the state after successfully matching an instruction.
6278 Issue any queued-up warnings. */
6279
6280static void
6281check_completed_insn (struct mips_arg_info *arg)
6282{
6283 if (arg->seen_at)
6284 {
6285 if (AT == ATREG)
1661c76c 6286 as_warn (_("used $at without \".set noat\""));
a1d78564 6287 else
1661c76c 6288 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
a1d78564
RS
6289 }
6290}
a1d78564 6291
85fcb30f
RS
6292/* Return true if modifying general-purpose register REG needs a delay. */
6293
6294static bfd_boolean
6295reg_needs_delay (unsigned int reg)
6296{
6297 unsigned long prev_pinfo;
6298
6299 prev_pinfo = history[0].insn_mo->pinfo;
6300 if (!mips_opts.noreorder
67dc82bc 6301 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
43885403 6302 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
85fcb30f
RS
6303 && (gpr_write_mask (&history[0]) & (1 << reg)))
6304 return TRUE;
6305
6306 return FALSE;
6307}
6308
71400594
RS
6309/* Classify an instruction according to the FIX_VR4120_* enumeration.
6310 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6311 by VR4120 errata. */
4d7206a2 6312
71400594
RS
6313static unsigned int
6314classify_vr4120_insn (const char *name)
252b5132 6315{
71400594
RS
6316 if (strncmp (name, "macc", 4) == 0)
6317 return FIX_VR4120_MACC;
6318 if (strncmp (name, "dmacc", 5) == 0)
6319 return FIX_VR4120_DMACC;
6320 if (strncmp (name, "mult", 4) == 0)
6321 return FIX_VR4120_MULT;
6322 if (strncmp (name, "dmult", 5) == 0)
6323 return FIX_VR4120_DMULT;
6324 if (strstr (name, "div"))
6325 return FIX_VR4120_DIV;
6326 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6327 return FIX_VR4120_MTHILO;
6328 return NUM_FIX_VR4120_CLASSES;
6329}
252b5132 6330
a8d14a88
CM
6331#define INSN_ERET 0x42000018
6332#define INSN_DERET 0x4200001f
6333#define INSN_DMULT 0x1c
6334#define INSN_DMULTU 0x1d
ff239038 6335
71400594
RS
6336/* Return the number of instructions that must separate INSN1 and INSN2,
6337 where INSN1 is the earlier instruction. Return the worst-case value
6338 for any INSN2 if INSN2 is null. */
252b5132 6339
71400594
RS
6340static unsigned int
6341insns_between (const struct mips_cl_insn *insn1,
6342 const struct mips_cl_insn *insn2)
6343{
6344 unsigned long pinfo1, pinfo2;
4c260379 6345 unsigned int mask;
71400594 6346
85fcb30f
RS
6347 /* If INFO2 is null, pessimistically assume that all flags are set for
6348 the second instruction. */
71400594
RS
6349 pinfo1 = insn1->insn_mo->pinfo;
6350 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
252b5132 6351
71400594
RS
6352 /* For most targets, write-after-read dependencies on the HI and LO
6353 registers must be separated by at least two instructions. */
6354 if (!hilo_interlocks)
252b5132 6355 {
71400594
RS
6356 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6357 return 2;
6358 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6359 return 2;
6360 }
6361
6362 /* If we're working around r7000 errata, there must be two instructions
6363 between an mfhi or mflo and any instruction that uses the result. */
6364 if (mips_7000_hilo_fix
df58fc94 6365 && !mips_opts.micromips
71400594 6366 && MF_HILO_INSN (pinfo1)
85fcb30f 6367 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
71400594
RS
6368 return 2;
6369
ff239038
CM
6370 /* If we're working around 24K errata, one instruction is required
6371 if an ERET or DERET is followed by a branch instruction. */
df58fc94 6372 if (mips_fix_24k && !mips_opts.micromips)
ff239038
CM
6373 {
6374 if (insn1->insn_opcode == INSN_ERET
6375 || insn1->insn_opcode == INSN_DERET)
6376 {
6377 if (insn2 == NULL
6378 || insn2->insn_opcode == INSN_ERET
6379 || insn2->insn_opcode == INSN_DERET
11625dd8 6380 || delayed_branch_p (insn2))
ff239038
CM
6381 return 1;
6382 }
6383 }
6384
a8d14a88
CM
6385 /* If we're working around PMC RM7000 errata, there must be three
6386 nops between a dmult and a load instruction. */
6387 if (mips_fix_rm7000 && !mips_opts.micromips)
6388 {
6389 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6390 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6391 {
6392 if (pinfo2 & INSN_LOAD_MEMORY)
6393 return 3;
6394 }
6395 }
6396
71400594
RS
6397 /* If working around VR4120 errata, check for combinations that need
6398 a single intervening instruction. */
df58fc94 6399 if (mips_fix_vr4120 && !mips_opts.micromips)
71400594
RS
6400 {
6401 unsigned int class1, class2;
252b5132 6402
71400594
RS
6403 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6404 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
252b5132 6405 {
71400594
RS
6406 if (insn2 == NULL)
6407 return 1;
6408 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6409 if (vr4120_conflicts[class1] & (1 << class2))
6410 return 1;
252b5132 6411 }
71400594
RS
6412 }
6413
df58fc94 6414 if (!HAVE_CODE_COMPRESSION)
71400594
RS
6415 {
6416 /* Check for GPR or coprocessor load delays. All such delays
6417 are on the RT register. */
6418 /* Itbl support may require additional care here. */
67dc82bc 6419 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
43885403 6420 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
252b5132 6421 {
85fcb30f 6422 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
71400594
RS
6423 return 1;
6424 }
6425
6426 /* Check for generic coprocessor hazards.
6427
6428 This case is not handled very well. There is no special
6429 knowledge of CP0 handling, and the coprocessors other than
6430 the floating point unit are not distinguished at all. */
6431 /* Itbl support may require additional care here. FIXME!
6432 Need to modify this to include knowledge about
6433 user specified delays! */
43885403 6434 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
71400594
RS
6435 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6436 {
6437 /* Handle cases where INSN1 writes to a known general coprocessor
6438 register. There must be a one instruction delay before INSN2
6439 if INSN2 reads that register, otherwise no delay is needed. */
4c260379
RS
6440 mask = fpr_write_mask (insn1);
6441 if (mask != 0)
252b5132 6442 {
4c260379 6443 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
71400594 6444 return 1;
252b5132
RH
6445 }
6446 else
6447 {
71400594
RS
6448 /* Read-after-write dependencies on the control registers
6449 require a two-instruction gap. */
6450 if ((pinfo1 & INSN_WRITE_COND_CODE)
6451 && (pinfo2 & INSN_READ_COND_CODE))
6452 return 2;
6453
6454 /* We don't know exactly what INSN1 does. If INSN2 is
6455 also a coprocessor instruction, assume there must be
6456 a one instruction gap. */
6457 if (pinfo2 & INSN_COP)
6458 return 1;
252b5132
RH
6459 }
6460 }
6b76fefe 6461
71400594
RS
6462 /* Check for read-after-write dependencies on the coprocessor
6463 control registers in cases where INSN1 does not need a general
6464 coprocessor delay. This means that INSN1 is a floating point
6465 comparison instruction. */
6466 /* Itbl support may require additional care here. */
6467 else if (!cop_interlocks
6468 && (pinfo1 & INSN_WRITE_COND_CODE)
6469 && (pinfo2 & INSN_READ_COND_CODE))
6470 return 1;
6471 }
6b76fefe 6472
7361da2c
AB
6473 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6474 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6475 and pause. */
6476 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6477 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6478 || (insn2 && delayed_branch_p (insn2))))
6479 return 1;
6480
71400594
RS
6481 return 0;
6482}
6b76fefe 6483
7d8e00cf
RS
6484/* Return the number of nops that would be needed to work around the
6485 VR4130 mflo/mfhi errata if instruction INSN immediately followed
932d1a1b
RS
6486 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6487 that are contained within the first IGNORE instructions of HIST. */
7d8e00cf
RS
6488
6489static int
932d1a1b 6490nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
7d8e00cf
RS
6491 const struct mips_cl_insn *insn)
6492{
4c260379
RS
6493 int i, j;
6494 unsigned int mask;
7d8e00cf
RS
6495
6496 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6497 are not affected by the errata. */
6498 if (insn != 0
6499 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6500 || strcmp (insn->insn_mo->name, "mtlo") == 0
6501 || strcmp (insn->insn_mo->name, "mthi") == 0))
6502 return 0;
6503
6504 /* Search for the first MFLO or MFHI. */
6505 for (i = 0; i < MAX_VR4130_NOPS; i++)
91d6fa6a 6506 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
7d8e00cf
RS
6507 {
6508 /* Extract the destination register. */
4c260379 6509 mask = gpr_write_mask (&hist[i]);
7d8e00cf
RS
6510
6511 /* No nops are needed if INSN reads that register. */
4c260379 6512 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
7d8e00cf
RS
6513 return 0;
6514
6515 /* ...or if any of the intervening instructions do. */
6516 for (j = 0; j < i; j++)
4c260379 6517 if (gpr_read_mask (&hist[j]) & mask)
7d8e00cf
RS
6518 return 0;
6519
932d1a1b
RS
6520 if (i >= ignore)
6521 return MAX_VR4130_NOPS - i;
7d8e00cf
RS
6522 }
6523 return 0;
6524}
6525
134c0c8b
MR
6526#define BASE_REG_EQ(INSN1, INSN2) \
6527 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
15be625d
CM
6528 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6529
6530/* Return the minimum alignment for this store instruction. */
6531
6532static int
6533fix_24k_align_to (const struct mips_opcode *mo)
6534{
6535 if (strcmp (mo->name, "sh") == 0)
6536 return 2;
6537
6538 if (strcmp (mo->name, "swc1") == 0
6539 || strcmp (mo->name, "swc2") == 0
6540 || strcmp (mo->name, "sw") == 0
6541 || strcmp (mo->name, "sc") == 0
6542 || strcmp (mo->name, "s.s") == 0)
6543 return 4;
6544
6545 if (strcmp (mo->name, "sdc1") == 0
6546 || strcmp (mo->name, "sdc2") == 0
6547 || strcmp (mo->name, "s.d") == 0)
6548 return 8;
6549
6550 /* sb, swl, swr */
6551 return 1;
6552}
6553
6554struct fix_24k_store_info
6555 {
6556 /* Immediate offset, if any, for this store instruction. */
6557 short off;
6558 /* Alignment required by this store instruction. */
6559 int align_to;
6560 /* True for register offsets. */
6561 int register_offset;
6562 };
6563
6564/* Comparison function used by qsort. */
6565
6566static int
6567fix_24k_sort (const void *a, const void *b)
6568{
6569 const struct fix_24k_store_info *pos1 = a;
6570 const struct fix_24k_store_info *pos2 = b;
6571
6572 return (pos1->off - pos2->off);
6573}
6574
6575/* INSN is a store instruction. Try to record the store information
6576 in STINFO. Return false if the information isn't known. */
6577
6578static bfd_boolean
6579fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
ab9794cf 6580 const struct mips_cl_insn *insn)
15be625d
CM
6581{
6582 /* The instruction must have a known offset. */
6583 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6584 return FALSE;
6585
6586 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6587 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6588 return TRUE;
6589}
6590
932d1a1b
RS
6591/* Return the number of nops that would be needed to work around the 24k
6592 "lost data on stores during refill" errata if instruction INSN
6593 immediately followed the 2 instructions described by HIST.
6594 Ignore hazards that are contained within the first IGNORE
6595 instructions of HIST.
6596
6597 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6598 for the data cache refills and store data. The following describes
6599 the scenario where the store data could be lost.
6600
6601 * A data cache miss, due to either a load or a store, causing fill
6602 data to be supplied by the memory subsystem
6603 * The first three doublewords of fill data are returned and written
6604 into the cache
6605 * A sequence of four stores occurs in consecutive cycles around the
6606 final doubleword of the fill:
6607 * Store A
6608 * Store B
6609 * Store C
6610 * Zero, One or more instructions
6611 * Store D
6612
6613 The four stores A-D must be to different doublewords of the line that
6614 is being filled. The fourth instruction in the sequence above permits
6615 the fill of the final doubleword to be transferred from the FSB into
6616 the cache. In the sequence above, the stores may be either integer
6617 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6618 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6619 different doublewords on the line. If the floating point unit is
6620 running in 1:2 mode, it is not possible to create the sequence above
6621 using only floating point store instructions.
15be625d
CM
6622
6623 In this case, the cache line being filled is incorrectly marked
6624 invalid, thereby losing the data from any store to the line that
6625 occurs between the original miss and the completion of the five
6626 cycle sequence shown above.
6627
932d1a1b 6628 The workarounds are:
15be625d 6629
932d1a1b
RS
6630 * Run the data cache in write-through mode.
6631 * Insert a non-store instruction between
6632 Store A and Store B or Store B and Store C. */
3739860c 6633
15be625d 6634static int
932d1a1b 6635nops_for_24k (int ignore, const struct mips_cl_insn *hist,
15be625d
CM
6636 const struct mips_cl_insn *insn)
6637{
6638 struct fix_24k_store_info pos[3];
6639 int align, i, base_offset;
6640
932d1a1b
RS
6641 if (ignore >= 2)
6642 return 0;
6643
ab9794cf
RS
6644 /* If the previous instruction wasn't a store, there's nothing to
6645 worry about. */
15be625d
CM
6646 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6647 return 0;
6648
ab9794cf
RS
6649 /* If the instructions after the previous one are unknown, we have
6650 to assume the worst. */
6651 if (!insn)
15be625d
CM
6652 return 1;
6653
ab9794cf
RS
6654 /* Check whether we are dealing with three consecutive stores. */
6655 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6656 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
15be625d
CM
6657 return 0;
6658
6659 /* If we don't know the relationship between the store addresses,
6660 assume the worst. */
ab9794cf 6661 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
15be625d
CM
6662 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6663 return 1;
6664
6665 if (!fix_24k_record_store_info (&pos[0], insn)
6666 || !fix_24k_record_store_info (&pos[1], &hist[0])
6667 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6668 return 1;
6669
6670 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6671
6672 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6673 X bytes and such that the base register + X is known to be aligned
6674 to align bytes. */
6675
6676 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6677 align = 8;
6678 else
6679 {
6680 align = pos[0].align_to;
6681 base_offset = pos[0].off;
6682 for (i = 1; i < 3; i++)
6683 if (align < pos[i].align_to)
6684 {
6685 align = pos[i].align_to;
6686 base_offset = pos[i].off;
6687 }
6688 for (i = 0; i < 3; i++)
6689 pos[i].off -= base_offset;
6690 }
6691
6692 pos[0].off &= ~align + 1;
6693 pos[1].off &= ~align + 1;
6694 pos[2].off &= ~align + 1;
6695
6696 /* If any two stores write to the same chunk, they also write to the
6697 same doubleword. The offsets are still sorted at this point. */
6698 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6699 return 0;
6700
6701 /* A range of at least 9 bytes is needed for the stores to be in
6702 non-overlapping doublewords. */
6703 if (pos[2].off - pos[0].off <= 8)
6704 return 0;
6705
6706 if (pos[2].off - pos[1].off >= 24
6707 || pos[1].off - pos[0].off >= 24
6708 || pos[2].off - pos[0].off >= 32)
6709 return 0;
6710
6711 return 1;
6712}
6713
71400594 6714/* Return the number of nops that would be needed if instruction INSN
91d6fa6a 6715 immediately followed the MAX_NOPS instructions given by HIST,
932d1a1b
RS
6716 where HIST[0] is the most recent instruction. Ignore hazards
6717 between INSN and the first IGNORE instructions in HIST.
6718
6719 If INSN is null, return the worse-case number of nops for any
6720 instruction. */
bdaaa2e1 6721
71400594 6722static int
932d1a1b 6723nops_for_insn (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6724 const struct mips_cl_insn *insn)
6725{
6726 int i, nops, tmp_nops;
bdaaa2e1 6727
71400594 6728 nops = 0;
932d1a1b 6729 for (i = ignore; i < MAX_DELAY_NOPS; i++)
65b02341 6730 {
91d6fa6a 6731 tmp_nops = insns_between (hist + i, insn) - i;
65b02341
RS
6732 if (tmp_nops > nops)
6733 nops = tmp_nops;
6734 }
7d8e00cf 6735
df58fc94 6736 if (mips_fix_vr4130 && !mips_opts.micromips)
7d8e00cf 6737 {
932d1a1b 6738 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
7d8e00cf
RS
6739 if (tmp_nops > nops)
6740 nops = tmp_nops;
6741 }
6742
df58fc94 6743 if (mips_fix_24k && !mips_opts.micromips)
15be625d 6744 {
932d1a1b 6745 tmp_nops = nops_for_24k (ignore, hist, insn);
15be625d
CM
6746 if (tmp_nops > nops)
6747 nops = tmp_nops;
6748 }
6749
71400594
RS
6750 return nops;
6751}
252b5132 6752
71400594 6753/* The variable arguments provide NUM_INSNS extra instructions that
91d6fa6a 6754 might be added to HIST. Return the largest number of nops that
932d1a1b
RS
6755 would be needed after the extended sequence, ignoring hazards
6756 in the first IGNORE instructions. */
252b5132 6757
71400594 6758static int
932d1a1b
RS
6759nops_for_sequence (int num_insns, int ignore,
6760 const struct mips_cl_insn *hist, ...)
71400594
RS
6761{
6762 va_list args;
6763 struct mips_cl_insn buffer[MAX_NOPS];
6764 struct mips_cl_insn *cursor;
6765 int nops;
6766
91d6fa6a 6767 va_start (args, hist);
71400594 6768 cursor = buffer + num_insns;
91d6fa6a 6769 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
71400594
RS
6770 while (cursor > buffer)
6771 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6772
932d1a1b 6773 nops = nops_for_insn (ignore, buffer, NULL);
71400594
RS
6774 va_end (args);
6775 return nops;
6776}
252b5132 6777
71400594
RS
6778/* Like nops_for_insn, but if INSN is a branch, take into account the
6779 worst-case delay for the branch target. */
252b5132 6780
71400594 6781static int
932d1a1b 6782nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
71400594
RS
6783 const struct mips_cl_insn *insn)
6784{
6785 int nops, tmp_nops;
60b63b72 6786
932d1a1b 6787 nops = nops_for_insn (ignore, hist, insn);
11625dd8 6788 if (delayed_branch_p (insn))
71400594 6789 {
932d1a1b 6790 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
14fe068b 6791 hist, insn, get_delay_slot_nop (insn));
71400594
RS
6792 if (tmp_nops > nops)
6793 nops = tmp_nops;
6794 }
11625dd8 6795 else if (compact_branch_p (insn))
71400594 6796 {
932d1a1b 6797 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
71400594
RS
6798 if (tmp_nops > nops)
6799 nops = tmp_nops;
6800 }
6801 return nops;
6802}
6803
c67a084a
NC
6804/* Fix NOP issue: Replace nops by "or at,at,zero". */
6805
6806static void
6807fix_loongson2f_nop (struct mips_cl_insn * ip)
6808{
df58fc94 6809 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6810 if (strcmp (ip->insn_mo->name, "nop") == 0)
6811 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6812}
6813
6814/* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6815 jr target pc &= 'hffff_ffff_cfff_ffff. */
6816
6817static void
6818fix_loongson2f_jump (struct mips_cl_insn * ip)
6819{
df58fc94 6820 gas_assert (!HAVE_CODE_COMPRESSION);
c67a084a
NC
6821 if (strcmp (ip->insn_mo->name, "j") == 0
6822 || strcmp (ip->insn_mo->name, "jr") == 0
6823 || strcmp (ip->insn_mo->name, "jalr") == 0)
6824 {
6825 int sreg;
6826 expressionS ep;
6827
6828 if (! mips_opts.at)
6829 return;
6830
df58fc94 6831 sreg = EXTRACT_OPERAND (0, RS, *ip);
c67a084a
NC
6832 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6833 return;
6834
6835 ep.X_op = O_constant;
6836 ep.X_add_number = 0xcfff0000;
6837 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6838 ep.X_add_number = 0xffff;
6839 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6840 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6841 }
6842}
6843
6844static void
6845fix_loongson2f (struct mips_cl_insn * ip)
6846{
6847 if (mips_fix_loongson2f_nop)
6848 fix_loongson2f_nop (ip);
6849
6850 if (mips_fix_loongson2f_jump)
6851 fix_loongson2f_jump (ip);
6852}
6853
a4e06468
RS
6854/* IP is a branch that has a delay slot, and we need to fill it
6855 automatically. Return true if we can do that by swapping IP
e407c74b
NC
6856 with the previous instruction.
6857 ADDRESS_EXPR is an operand of the instruction to be used with
6858 RELOC_TYPE. */
a4e06468
RS
6859
6860static bfd_boolean
e407c74b 6861can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 6862 bfd_reloc_code_real_type *reloc_type)
a4e06468 6863{
2b0c8b40 6864 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
a4e06468 6865 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
9d5de888 6866 unsigned int fpr_read, prev_fpr_write;
a4e06468
RS
6867
6868 /* -O2 and above is required for this optimization. */
6869 if (mips_optimize < 2)
6870 return FALSE;
6871
6872 /* If we have seen .set volatile or .set nomove, don't optimize. */
6873 if (mips_opts.nomove)
6874 return FALSE;
6875
6876 /* We can't swap if the previous instruction's position is fixed. */
6877 if (history[0].fixed_p)
6878 return FALSE;
6879
6880 /* If the previous previous insn was in a .set noreorder, we can't
6881 swap. Actually, the MIPS assembler will swap in this situation.
6882 However, gcc configured -with-gnu-as will generate code like
6883
6884 .set noreorder
6885 lw $4,XXX
6886 .set reorder
6887 INSN
6888 bne $4,$0,foo
6889
6890 in which we can not swap the bne and INSN. If gcc is not configured
6891 -with-gnu-as, it does not output the .set pseudo-ops. */
6892 if (history[1].noreorder_p)
6893 return FALSE;
6894
87333bb7
MR
6895 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6896 This means that the previous instruction was a 4-byte one anyhow. */
a4e06468
RS
6897 if (mips_opts.mips16 && history[0].fixp[0])
6898 return FALSE;
6899
6900 /* If the branch is itself the target of a branch, we can not swap.
6901 We cheat on this; all we check for is whether there is a label on
6902 this instruction. If there are any branches to anything other than
6903 a label, users must use .set noreorder. */
6904 if (seg_info (now_seg)->label_list)
6905 return FALSE;
6906
6907 /* If the previous instruction is in a variant frag other than this
2309ddf2 6908 branch's one, we cannot do the swap. This does not apply to
9301f9c3
MR
6909 MIPS16 code, which uses variant frags for different purposes. */
6910 if (!mips_opts.mips16
a4e06468
RS
6911 && history[0].frag
6912 && history[0].frag->fr_type == rs_machine_dependent)
6913 return FALSE;
6914
bcd530a7
RS
6915 /* We do not swap with instructions that cannot architecturally
6916 be placed in a branch delay slot, such as SYNC or ERET. We
6917 also refrain from swapping with a trap instruction, since it
6918 complicates trap handlers to have the trap instruction be in
6919 a delay slot. */
a4e06468 6920 prev_pinfo = history[0].insn_mo->pinfo;
bcd530a7 6921 if (prev_pinfo & INSN_NO_DELAY_SLOT)
a4e06468
RS
6922 return FALSE;
6923
6924 /* Check for conflicts between the branch and the instructions
6925 before the candidate delay slot. */
6926 if (nops_for_insn (0, history + 1, ip) > 0)
6927 return FALSE;
6928
6929 /* Check for conflicts between the swapped sequence and the
6930 target of the branch. */
6931 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6932 return FALSE;
6933
6934 /* If the branch reads a register that the previous
6935 instruction sets, we can not swap. */
6936 gpr_read = gpr_read_mask (ip);
6937 prev_gpr_write = gpr_write_mask (&history[0]);
6938 if (gpr_read & prev_gpr_write)
6939 return FALSE;
6940
9d5de888
CF
6941 fpr_read = fpr_read_mask (ip);
6942 prev_fpr_write = fpr_write_mask (&history[0]);
6943 if (fpr_read & prev_fpr_write)
6944 return FALSE;
6945
a4e06468
RS
6946 /* If the branch writes a register that the previous
6947 instruction sets, we can not swap. */
6948 gpr_write = gpr_write_mask (ip);
6949 if (gpr_write & prev_gpr_write)
6950 return FALSE;
6951
6952 /* If the branch writes a register that the previous
6953 instruction reads, we can not swap. */
6954 prev_gpr_read = gpr_read_mask (&history[0]);
6955 if (gpr_write & prev_gpr_read)
6956 return FALSE;
6957
6958 /* If one instruction sets a condition code and the
6959 other one uses a condition code, we can not swap. */
6960 pinfo = ip->insn_mo->pinfo;
6961 if ((pinfo & INSN_READ_COND_CODE)
6962 && (prev_pinfo & INSN_WRITE_COND_CODE))
6963 return FALSE;
6964 if ((pinfo & INSN_WRITE_COND_CODE)
6965 && (prev_pinfo & INSN_READ_COND_CODE))
6966 return FALSE;
6967
6968 /* If the previous instruction uses the PC, we can not swap. */
2b0c8b40 6969 prev_pinfo2 = history[0].insn_mo->pinfo2;
26545944 6970 if (prev_pinfo2 & INSN2_READ_PC)
2b0c8b40 6971 return FALSE;
a4e06468 6972
df58fc94
RS
6973 /* If the previous instruction has an incorrect size for a fixed
6974 branch delay slot in microMIPS mode, we cannot swap. */
2309ddf2
MR
6975 pinfo2 = ip->insn_mo->pinfo2;
6976 if (mips_opts.micromips
6977 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6978 && insn_length (history) != 2)
6979 return FALSE;
6980 if (mips_opts.micromips
6981 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6982 && insn_length (history) != 4)
6983 return FALSE;
6984
33d64ca5
FN
6985 /* On the R5900 short loops need to be fixed by inserting a NOP in the
6986 branch delay slot.
6987
6988 The short loop bug under certain conditions causes loops to execute
6989 only once or twice. We must ensure that the assembler never
6990 generates loops that satisfy all of the following conditions:
6991
6992 - a loop consists of less than or equal to six instructions
6993 (including the branch delay slot);
6994 - a loop contains only one conditional branch instruction at the end
6995 of the loop;
6996 - a loop does not contain any other branch or jump instructions;
6997 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
6998
6999 We need to do this because of a hardware bug in the R5900 chip. */
e407c74b
NC
7000 if (mips_opts.arch == CPU_R5900
7001 /* Check if instruction has a parameter, ignore "j $31". */
7002 && (address_expr != NULL)
7003 /* Parameter must be 16 bit. */
7004 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7005 /* Branch to same segment. */
41065f5e 7006 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
e407c74b 7007 /* Branch to same code fragment. */
41065f5e 7008 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
e407c74b 7009 /* Can only calculate branch offset if value is known. */
41065f5e 7010 && symbol_constant_p (address_expr->X_add_symbol)
e407c74b
NC
7011 /* Check if branch is really conditional. */
7012 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7013 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7014 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7015 {
7016 int distance;
33d64ca5
FN
7017 /* Check if loop is shorter than or equal to 6 instructions
7018 including branch and delay slot. */
41065f5e 7019 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
e407c74b
NC
7020 if (distance <= 20)
7021 {
7022 int i;
7023 int rv;
7024
7025 rv = FALSE;
7026 /* When the loop includes branches or jumps,
7027 it is not a short loop. */
7028 for (i = 0; i < (distance / 4); i++)
7029 {
7030 if ((history[i].cleared_p)
41065f5e 7031 || delayed_branch_p (&history[i]))
e407c74b
NC
7032 {
7033 rv = TRUE;
7034 break;
7035 }
7036 }
535b785f 7037 if (!rv)
e407c74b
NC
7038 {
7039 /* Insert nop after branch to fix short loop. */
7040 return FALSE;
7041 }
7042 }
7043 }
7044
a4e06468
RS
7045 return TRUE;
7046}
7047
e407c74b
NC
7048/* Decide how we should add IP to the instruction stream.
7049 ADDRESS_EXPR is an operand of the instruction to be used with
7050 RELOC_TYPE. */
a4e06468
RS
7051
7052static enum append_method
e407c74b 7053get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
26545944 7054 bfd_reloc_code_real_type *reloc_type)
a4e06468 7055{
a4e06468
RS
7056 /* The relaxed version of a macro sequence must be inherently
7057 hazard-free. */
7058 if (mips_relax.sequence == 2)
7059 return APPEND_ADD;
7060
3b821a28 7061 /* We must not dabble with instructions in a ".set noreorder" block. */
a4e06468
RS
7062 if (mips_opts.noreorder)
7063 return APPEND_ADD;
7064
7065 /* Otherwise, it's our responsibility to fill branch delay slots. */
11625dd8 7066 if (delayed_branch_p (ip))
a4e06468 7067 {
e407c74b
NC
7068 if (!branch_likely_p (ip)
7069 && can_swap_branch_p (ip, address_expr, reloc_type))
a4e06468
RS
7070 return APPEND_SWAP;
7071
7072 if (mips_opts.mips16
7073 && ISA_SUPPORTS_MIPS16E
fc76e730 7074 && gpr_read_mask (ip) != 0)
a4e06468
RS
7075 return APPEND_ADD_COMPACT;
7076
7bd374a4
MR
7077 if (mips_opts.micromips
7078 && ((ip->insn_opcode & 0xffe0) == 0x4580
7079 || (!forced_insn_length
7080 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7081 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7082 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7083 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7084 return APPEND_ADD_COMPACT;
7085
a4e06468
RS
7086 return APPEND_ADD_WITH_NOP;
7087 }
7088
a4e06468
RS
7089 return APPEND_ADD;
7090}
7091
7bd374a4
MR
7092/* IP is an instruction whose opcode we have just changed, END points
7093 to the end of the opcode table processed. Point IP->insn_mo to the
7094 new opcode's definition. */
ceb94aa5
RS
7095
7096static void
7bd374a4 7097find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
ceb94aa5 7098{
7bd374a4 7099 const struct mips_opcode *mo;
ceb94aa5 7100
ceb94aa5 7101 for (mo = ip->insn_mo; mo < end; mo++)
7bd374a4
MR
7102 if (mo->pinfo != INSN_MACRO
7103 && (ip->insn_opcode & mo->mask) == mo->match)
ceb94aa5
RS
7104 {
7105 ip->insn_mo = mo;
7106 return;
7107 }
7108 abort ();
7109}
7110
7bd374a4
MR
7111/* IP is a MIPS16 instruction whose opcode we have just changed.
7112 Point IP->insn_mo to the new opcode's definition. */
7113
7114static void
7115find_altered_mips16_opcode (struct mips_cl_insn *ip)
7116{
7117 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7118}
7119
7120/* IP is a microMIPS instruction whose opcode we have just changed.
7121 Point IP->insn_mo to the new opcode's definition. */
7122
7123static void
7124find_altered_micromips_opcode (struct mips_cl_insn *ip)
7125{
7126 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7127}
7128
df58fc94
RS
7129/* For microMIPS macros, we need to generate a local number label
7130 as the target of branches. */
7131#define MICROMIPS_LABEL_CHAR '\037'
7132static unsigned long micromips_target_label;
7133static char micromips_target_name[32];
7134
7135static char *
7136micromips_label_name (void)
7137{
7138 char *p = micromips_target_name;
7139 char symbol_name_temporary[24];
7140 unsigned long l;
7141 int i;
7142
7143 if (*p)
7144 return p;
7145
7146 i = 0;
7147 l = micromips_target_label;
7148#ifdef LOCAL_LABEL_PREFIX
7149 *p++ = LOCAL_LABEL_PREFIX;
7150#endif
7151 *p++ = 'L';
7152 *p++ = MICROMIPS_LABEL_CHAR;
7153 do
7154 {
7155 symbol_name_temporary[i++] = l % 10 + '0';
7156 l /= 10;
7157 }
7158 while (l != 0);
7159 while (i > 0)
7160 *p++ = symbol_name_temporary[--i];
7161 *p = '\0';
7162
7163 return micromips_target_name;
7164}
7165
7166static void
7167micromips_label_expr (expressionS *label_expr)
7168{
7169 label_expr->X_op = O_symbol;
7170 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7171 label_expr->X_add_number = 0;
7172}
7173
7174static void
7175micromips_label_inc (void)
7176{
7177 micromips_target_label++;
7178 *micromips_target_name = '\0';
7179}
7180
7181static void
7182micromips_add_label (void)
7183{
7184 symbolS *s;
7185
7186 s = colon (micromips_label_name ());
7187 micromips_label_inc ();
f3ded42a 7188 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
df58fc94
RS
7189}
7190
7191/* If assembling microMIPS code, then return the microMIPS reloc
7192 corresponding to the requested one if any. Otherwise return
7193 the reloc unchanged. */
7194
7195static bfd_reloc_code_real_type
7196micromips_map_reloc (bfd_reloc_code_real_type reloc)
7197{
7198 static const bfd_reloc_code_real_type relocs[][2] =
7199 {
7200 /* Keep sorted incrementally by the left-hand key. */
7201 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7202 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7203 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7204 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7205 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7206 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7207 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7208 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7209 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7210 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7211 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7212 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7213 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7214 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7215 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7216 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7217 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7218 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7219 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7220 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7221 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7222 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7223 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7224 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7225 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7226 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7227 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7228 };
7229 bfd_reloc_code_real_type r;
7230 size_t i;
7231
7232 if (!mips_opts.micromips)
7233 return reloc;
7234 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7235 {
7236 r = relocs[i][0];
7237 if (r > reloc)
7238 return reloc;
7239 if (r == reloc)
7240 return relocs[i][1];
7241 }
7242 return reloc;
7243}
7244
b886a2ab
RS
7245/* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7246 Return true on success, storing the resolved value in RESULT. */
7247
7248static bfd_boolean
7249calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7250 offsetT *result)
7251{
7252 switch (reloc)
7253 {
7254 case BFD_RELOC_MIPS_HIGHEST:
7255 case BFD_RELOC_MICROMIPS_HIGHEST:
7256 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7257 return TRUE;
7258
7259 case BFD_RELOC_MIPS_HIGHER:
7260 case BFD_RELOC_MICROMIPS_HIGHER:
7261 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7262 return TRUE;
7263
7264 case BFD_RELOC_HI16_S:
41947d9e 7265 case BFD_RELOC_HI16_S_PCREL:
b886a2ab
RS
7266 case BFD_RELOC_MICROMIPS_HI16_S:
7267 case BFD_RELOC_MIPS16_HI16_S:
7268 *result = ((operand + 0x8000) >> 16) & 0xffff;
7269 return TRUE;
7270
7271 case BFD_RELOC_HI16:
7272 case BFD_RELOC_MICROMIPS_HI16:
7273 case BFD_RELOC_MIPS16_HI16:
7274 *result = (operand >> 16) & 0xffff;
7275 return TRUE;
7276
7277 case BFD_RELOC_LO16:
41947d9e 7278 case BFD_RELOC_LO16_PCREL:
b886a2ab
RS
7279 case BFD_RELOC_MICROMIPS_LO16:
7280 case BFD_RELOC_MIPS16_LO16:
7281 *result = operand & 0xffff;
7282 return TRUE;
7283
7284 case BFD_RELOC_UNUSED:
7285 *result = operand;
7286 return TRUE;
7287
7288 default:
7289 return FALSE;
7290 }
7291}
7292
71400594
RS
7293/* Output an instruction. IP is the instruction information.
7294 ADDRESS_EXPR is an operand of the instruction to be used with
df58fc94
RS
7295 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7296 a macro expansion. */
71400594
RS
7297
7298static void
7299append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
df58fc94 7300 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
71400594 7301{
14fe068b 7302 unsigned long prev_pinfo2, pinfo;
71400594 7303 bfd_boolean relaxed_branch = FALSE;
a4e06468 7304 enum append_method method;
2309ddf2 7305 bfd_boolean relax32;
2b0c8b40 7306 int branch_disp;
71400594 7307
2309ddf2 7308 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
c67a084a
NC
7309 fix_loongson2f (ip);
7310
738f4d98 7311 file_ase_mips16 |= mips_opts.mips16;
df58fc94 7312 file_ase_micromips |= mips_opts.micromips;
738f4d98 7313
df58fc94 7314 prev_pinfo2 = history[0].insn_mo->pinfo2;
71400594 7315 pinfo = ip->insn_mo->pinfo;
df58fc94 7316
7bd374a4
MR
7317 /* Don't raise alarm about `nods' frags as they'll fill in the right
7318 kind of nop in relaxation if required. */
df58fc94
RS
7319 if (mips_opts.micromips
7320 && !expansionp
7bd374a4
MR
7321 && !(history[0].frag
7322 && history[0].frag->fr_type == rs_machine_dependent
7323 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7324 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
df58fc94
RS
7325 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7326 && micromips_insn_length (ip->insn_mo) != 2)
7327 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7328 && micromips_insn_length (ip->insn_mo) != 4)))
1661c76c 7329 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
df58fc94 7330 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
71400594 7331
15be625d
CM
7332 if (address_expr == NULL)
7333 ip->complete_p = 1;
b886a2ab
RS
7334 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7335 && reloc_type[1] == BFD_RELOC_UNUSED
7336 && reloc_type[2] == BFD_RELOC_UNUSED
15be625d
CM
7337 && address_expr->X_op == O_constant)
7338 {
15be625d
CM
7339 switch (*reloc_type)
7340 {
15be625d 7341 case BFD_RELOC_MIPS_JMP:
df58fc94
RS
7342 {
7343 int shift;
7344
17c6c9d9
MR
7345 /* Shift is 2, unusually, for microMIPS JALX. */
7346 shift = (mips_opts.micromips
7347 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
df58fc94
RS
7348 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7349 as_bad (_("jump to misaligned address (0x%lx)"),
7350 (unsigned long) address_expr->X_add_number);
7351 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7352 & 0x3ffffff);
335574df 7353 ip->complete_p = 1;
df58fc94 7354 }
15be625d
CM
7355 break;
7356
7357 case BFD_RELOC_MIPS16_JMP:
7358 if ((address_expr->X_add_number & 3) != 0)
7359 as_bad (_("jump to misaligned address (0x%lx)"),
7360 (unsigned long) address_expr->X_add_number);
7361 ip->insn_opcode |=
7362 (((address_expr->X_add_number & 0x7c0000) << 3)
7363 | ((address_expr->X_add_number & 0xf800000) >> 7)
7364 | ((address_expr->X_add_number & 0x3fffc) >> 2));
335574df 7365 ip->complete_p = 1;
15be625d
CM
7366 break;
7367
7368 case BFD_RELOC_16_PCREL_S2:
df58fc94
RS
7369 {
7370 int shift;
7371
7372 shift = mips_opts.micromips ? 1 : 2;
7373 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7374 as_bad (_("branch to misaligned address (0x%lx)"),
7375 (unsigned long) address_expr->X_add_number);
7376 if (!mips_relax_branch)
7377 {
7378 if ((address_expr->X_add_number + (1 << (shift + 15)))
7379 & ~((1 << (shift + 16)) - 1))
7380 as_bad (_("branch address range overflow (0x%lx)"),
7381 (unsigned long) address_expr->X_add_number);
7382 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7383 & 0xffff);
7384 }
df58fc94 7385 }
15be625d
CM
7386 break;
7387
7361da2c
AB
7388 case BFD_RELOC_MIPS_21_PCREL_S2:
7389 {
7390 int shift;
7391
7392 shift = 2;
7393 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7394 as_bad (_("branch to misaligned address (0x%lx)"),
7395 (unsigned long) address_expr->X_add_number);
7396 if ((address_expr->X_add_number + (1 << (shift + 20)))
7397 & ~((1 << (shift + 21)) - 1))
7398 as_bad (_("branch address range overflow (0x%lx)"),
7399 (unsigned long) address_expr->X_add_number);
7400 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7401 & 0x1fffff);
7402 }
7403 break;
7404
7405 case BFD_RELOC_MIPS_26_PCREL_S2:
7406 {
7407 int shift;
7408
7409 shift = 2;
7410 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7411 as_bad (_("branch to misaligned address (0x%lx)"),
7412 (unsigned long) address_expr->X_add_number);
7413 if ((address_expr->X_add_number + (1 << (shift + 25)))
7414 & ~((1 << (shift + 26)) - 1))
7415 as_bad (_("branch address range overflow (0x%lx)"),
7416 (unsigned long) address_expr->X_add_number);
7417 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7418 & 0x3ffffff);
7419 }
7420 break;
7421
15be625d 7422 default:
b886a2ab
RS
7423 {
7424 offsetT value;
7425
7426 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7427 &value))
7428 {
7429 ip->insn_opcode |= value & 0xffff;
7430 ip->complete_p = 1;
7431 }
7432 }
7433 break;
7434 }
15be625d
CM
7435 }
7436
71400594
RS
7437 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7438 {
7439 /* There are a lot of optimizations we could do that we don't.
7440 In particular, we do not, in general, reorder instructions.
7441 If you use gcc with optimization, it will reorder
7442 instructions and generally do much more optimization then we
7443 do here; repeating all that work in the assembler would only
7444 benefit hand written assembly code, and does not seem worth
7445 it. */
7446 int nops = (mips_optimize == 0
932d1a1b
RS
7447 ? nops_for_insn (0, history, NULL)
7448 : nops_for_insn_or_target (0, history, ip));
71400594 7449 if (nops > 0)
252b5132
RH
7450 {
7451 fragS *old_frag;
7452 unsigned long old_frag_offset;
7453 int i;
252b5132
RH
7454
7455 old_frag = frag_now;
7456 old_frag_offset = frag_now_fix ();
7457
7458 for (i = 0; i < nops; i++)
14fe068b
RS
7459 add_fixed_insn (NOP_INSN);
7460 insert_into_history (0, nops, NOP_INSN);
252b5132
RH
7461
7462 if (listing)
7463 {
7464 listing_prev_line ();
7465 /* We may be at the start of a variant frag. In case we
7466 are, make sure there is enough space for the frag
7467 after the frags created by listing_prev_line. The
7468 argument to frag_grow here must be at least as large
7469 as the argument to all other calls to frag_grow in
7470 this file. We don't have to worry about being in the
7471 middle of a variant frag, because the variants insert
7472 all needed nop instructions themselves. */
7473 frag_grow (40);
7474 }
7475
462427c4 7476 mips_move_text_labels ();
252b5132
RH
7477
7478#ifndef NO_ECOFF_DEBUGGING
7479 if (ECOFF_DEBUGGING)
7480 ecoff_fix_loc (old_frag, old_frag_offset);
7481#endif
7482 }
71400594
RS
7483 }
7484 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7485 {
932d1a1b
RS
7486 int nops;
7487
7488 /* Work out how many nops in prev_nop_frag are needed by IP,
7489 ignoring hazards generated by the first prev_nop_frag_since
7490 instructions. */
7491 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
9c2799c2 7492 gas_assert (nops <= prev_nop_frag_holds);
252b5132 7493
71400594
RS
7494 /* Enforce NOPS as a minimum. */
7495 if (nops > prev_nop_frag_required)
7496 prev_nop_frag_required = nops;
252b5132 7497
71400594
RS
7498 if (prev_nop_frag_holds == prev_nop_frag_required)
7499 {
7500 /* Settle for the current number of nops. Update the history
7501 accordingly (for the benefit of any future .set reorder code). */
7502 prev_nop_frag = NULL;
7503 insert_into_history (prev_nop_frag_since,
7504 prev_nop_frag_holds, NOP_INSN);
7505 }
7506 else
7507 {
7508 /* Allow this instruction to replace one of the nops that was
7509 tentatively added to prev_nop_frag. */
df58fc94 7510 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
71400594
RS
7511 prev_nop_frag_holds--;
7512 prev_nop_frag_since++;
252b5132
RH
7513 }
7514 }
7515
e407c74b 7516 method = get_append_method (ip, address_expr, reloc_type);
2b0c8b40 7517 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
a4e06468 7518
e410add4
RS
7519 dwarf2_emit_insn (0);
7520 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7521 so "move" the instruction address accordingly.
7522
7523 Also, it doesn't seem appropriate for the assembler to reorder .loc
7524 entries. If this instruction is a branch that we are going to swap
7525 with the previous instruction, the two instructions should be
7526 treated as a unit, and the debug information for both instructions
7527 should refer to the start of the branch sequence. Using the
7528 current position is certainly wrong when swapping a 32-bit branch
7529 and a 16-bit delay slot, since the current position would then be
7530 in the middle of a branch. */
7531 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
58e2ea4d 7532
df58fc94
RS
7533 relax32 = (mips_relax_branch
7534 /* Don't try branch relaxation within .set nomacro, or within
7535 .set noat if we use $at for PIC computations. If it turns
7536 out that the branch was out-of-range, we'll get an error. */
7537 && !mips_opts.warn_about_macros
7538 && (mips_opts.at || mips_pic == NO_PIC)
3bf0dbfb
MR
7539 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7540 as they have no complementing branches. */
7541 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
df58fc94
RS
7542
7543 if (!HAVE_CODE_COMPRESSION
7544 && address_expr
7545 && relax32
0b25d3e6 7546 && *reloc_type == BFD_RELOC_16_PCREL_S2
11625dd8 7547 && delayed_branch_p (ip))
4a6a3df4 7548 {
895921c9 7549 relaxed_branch = TRUE;
1e915849
RS
7550 add_relaxed_insn (ip, (relaxed_branch_length
7551 (NULL, NULL,
11625dd8
RS
7552 uncond_branch_p (ip) ? -1
7553 : branch_likely_p (ip) ? 1
1e915849
RS
7554 : 0)), 4,
7555 RELAX_BRANCH_ENCODE
ce8ad872 7556 (AT, mips_pic != NO_PIC,
11625dd8
RS
7557 uncond_branch_p (ip),
7558 branch_likely_p (ip),
1e915849
RS
7559 pinfo & INSN_WRITE_GPR_31,
7560 0),
7561 address_expr->X_add_symbol,
7562 address_expr->X_add_number);
4a6a3df4
AO
7563 *reloc_type = BFD_RELOC_UNUSED;
7564 }
df58fc94
RS
7565 else if (mips_opts.micromips
7566 && address_expr
7567 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7568 || *reloc_type > BFD_RELOC_UNUSED)
40209cad
MR
7569 && (delayed_branch_p (ip) || compact_branch_p (ip))
7570 /* Don't try branch relaxation when users specify
7571 16-bit/32-bit instructions. */
7572 && !forced_insn_length)
df58fc94 7573 {
7bd374a4
MR
7574 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7575 && *reloc_type > BFD_RELOC_UNUSED);
df58fc94 7576 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
11625dd8 7577 int uncond = uncond_branch_p (ip) ? -1 : 0;
7bd374a4
MR
7578 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7579 int nods = method == APPEND_ADD_WITH_NOP;
df58fc94 7580 int al = pinfo & INSN_WRITE_GPR_31;
7bd374a4 7581 int length32 = nods ? 8 : 4;
df58fc94
RS
7582
7583 gas_assert (address_expr != NULL);
7584 gas_assert (!mips_relax.sequence);
7585
2b0c8b40 7586 relaxed_branch = TRUE;
7bd374a4
MR
7587 if (nods)
7588 method = APPEND_ADD;
7589 if (relax32)
7590 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7591 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
8484fb75 7592 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
ce8ad872 7593 mips_pic != NO_PIC,
7bd374a4 7594 uncond, compact, al, nods,
40209cad 7595 relax32, 0, 0),
df58fc94
RS
7596 address_expr->X_add_symbol,
7597 address_expr->X_add_number);
7598 *reloc_type = BFD_RELOC_UNUSED;
7599 }
7600 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
252b5132 7601 {
7fd53920
MR
7602 bfd_boolean require_unextended;
7603 bfd_boolean require_extended;
88a7ef16
MR
7604 symbolS *symbol;
7605 offsetT offset;
7606
7fd53920
MR
7607 if (forced_insn_length != 0)
7608 {
7609 require_unextended = forced_insn_length == 2;
7610 require_extended = forced_insn_length == 4;
7611 }
7612 else
7613 {
7614 require_unextended = (mips_opts.noautoextend
7615 && !mips_opcode_32bit_p (ip->insn_mo));
7616 require_extended = 0;
7617 }
7618
252b5132 7619 /* We need to set up a variant frag. */
df58fc94 7620 gas_assert (address_expr != NULL);
88a7ef16
MR
7621 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7622 symbol created by `make_expr_symbol' may not get a necessary
7623 external relocation produced. */
7624 if (address_expr->X_op == O_symbol)
7625 {
7626 symbol = address_expr->X_add_symbol;
7627 offset = address_expr->X_add_number;
7628 }
7629 else
7630 {
7631 symbol = make_expr_symbol (address_expr);
82d808ed 7632 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
88a7ef16
MR
7633 offset = 0;
7634 }
8507b6e7 7635 add_relaxed_insn (ip, 12, 0,
1e915849
RS
7636 RELAX_MIPS16_ENCODE
7637 (*reloc_type - BFD_RELOC_UNUSED,
25499ac7 7638 mips_opts.ase & ASE_MIPS16E2,
8507b6e7
MR
7639 mips_pic != NO_PIC,
7640 HAVE_32BIT_SYMBOLS,
7641 mips_opts.warn_about_macros,
7fd53920 7642 require_unextended, require_extended,
11625dd8 7643 delayed_branch_p (&history[0]),
1e915849 7644 history[0].mips16_absolute_jump_p),
88a7ef16 7645 symbol, offset);
252b5132 7646 }
5c04167a 7647 else if (mips_opts.mips16 && insn_length (ip) == 2)
9497f5ac 7648 {
11625dd8 7649 if (!delayed_branch_p (ip))
b8ee1a6e
DU
7650 /* Make sure there is enough room to swap this instruction with
7651 a following jump instruction. */
7652 frag_grow (6);
1e915849 7653 add_fixed_insn (ip);
252b5132
RH
7654 }
7655 else
7656 {
7657 if (mips_opts.mips16
7658 && mips_opts.noreorder
11625dd8 7659 && delayed_branch_p (&history[0]))
252b5132
RH
7660 as_warn (_("extended instruction in delay slot"));
7661
4d7206a2
RS
7662 if (mips_relax.sequence)
7663 {
7664 /* If we've reached the end of this frag, turn it into a variant
7665 frag and record the information for the instructions we've
7666 written so far. */
7667 if (frag_room () < 4)
7668 relax_close_frag ();
df58fc94 7669 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
4d7206a2
RS
7670 }
7671
584892a6 7672 if (mips_relax.sequence != 2)
df58fc94
RS
7673 {
7674 if (mips_macro_warning.first_insn_sizes[0] == 0)
7675 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7676 mips_macro_warning.sizes[0] += insn_length (ip);
7677 mips_macro_warning.insns[0]++;
7678 }
584892a6 7679 if (mips_relax.sequence != 1)
df58fc94
RS
7680 {
7681 if (mips_macro_warning.first_insn_sizes[1] == 0)
7682 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7683 mips_macro_warning.sizes[1] += insn_length (ip);
7684 mips_macro_warning.insns[1]++;
7685 }
584892a6 7686
1e915849
RS
7687 if (mips_opts.mips16)
7688 {
7689 ip->fixed_p = 1;
7690 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7691 }
7692 add_fixed_insn (ip);
252b5132
RH
7693 }
7694
9fe77896 7695 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
252b5132 7696 {
df58fc94 7697 bfd_reloc_code_real_type final_type[3];
2309ddf2 7698 reloc_howto_type *howto0;
9fe77896
RS
7699 reloc_howto_type *howto;
7700 int i;
34ce925e 7701
df58fc94
RS
7702 /* Perform any necessary conversion to microMIPS relocations
7703 and find out how many relocations there actually are. */
7704 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7705 final_type[i] = micromips_map_reloc (reloc_type[i]);
7706
9fe77896
RS
7707 /* In a compound relocation, it is the final (outermost)
7708 operator that determines the relocated field. */
2309ddf2 7709 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
e8044f35
RS
7710 if (!howto)
7711 abort ();
2309ddf2
MR
7712
7713 if (i > 1)
7714 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
9fe77896
RS
7715 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7716 bfd_get_reloc_size (howto),
7717 address_expr,
2309ddf2
MR
7718 howto0 && howto0->pc_relative,
7719 final_type[0]);
ce8ad872
MR
7720 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7721 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
9fe77896
RS
7722
7723 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
2309ddf2 7724 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
9fe77896
RS
7725 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7726
7727 /* These relocations can have an addend that won't fit in
7728 4 octets for 64bit assembly. */
bad1aba3 7729 if (GPR_SIZE == 64
9fe77896
RS
7730 && ! howto->partial_inplace
7731 && (reloc_type[0] == BFD_RELOC_16
7732 || reloc_type[0] == BFD_RELOC_32
7733 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7734 || reloc_type[0] == BFD_RELOC_GPREL16
7735 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7736 || reloc_type[0] == BFD_RELOC_GPREL32
7737 || reloc_type[0] == BFD_RELOC_64
7738 || reloc_type[0] == BFD_RELOC_CTOR
7739 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7740 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7741 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7742 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7743 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7744 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7745 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7746 || hi16_reloc_p (reloc_type[0])
7747 || lo16_reloc_p (reloc_type[0])))
7748 ip->fixp[0]->fx_no_overflow = 1;
7749
ddaf2c41
MR
7750 /* These relocations can have an addend that won't fit in 2 octets. */
7751 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7752 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7753 ip->fixp[0]->fx_no_overflow = 1;
7754
9fe77896
RS
7755 if (mips_relax.sequence)
7756 {
7757 if (mips_relax.first_fixup == 0)
7758 mips_relax.first_fixup = ip->fixp[0];
7759 }
7760 else if (reloc_needs_lo_p (*reloc_type))
7761 {
7762 struct mips_hi_fixup *hi_fixup;
7763
7764 /* Reuse the last entry if it already has a matching %lo. */
7765 hi_fixup = mips_hi_fixup_list;
7766 if (hi_fixup == 0
7767 || !fixup_has_matching_lo_p (hi_fixup->fixp))
4d7206a2 7768 {
325801bd 7769 hi_fixup = XNEW (struct mips_hi_fixup);
9fe77896
RS
7770 hi_fixup->next = mips_hi_fixup_list;
7771 mips_hi_fixup_list = hi_fixup;
4d7206a2 7772 }
9fe77896
RS
7773 hi_fixup->fixp = ip->fixp[0];
7774 hi_fixup->seg = now_seg;
7775 }
252b5132 7776
9fe77896
RS
7777 /* Add fixups for the second and third relocations, if given.
7778 Note that the ABI allows the second relocation to be
7779 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7780 moment we only use RSS_UNDEF, but we could add support
7781 for the others if it ever becomes necessary. */
7782 for (i = 1; i < 3; i++)
7783 if (reloc_type[i] != BFD_RELOC_UNUSED)
7784 {
7785 ip->fixp[i] = fix_new (ip->frag, ip->where,
7786 ip->fixp[0]->fx_size, NULL, 0,
df58fc94 7787 FALSE, final_type[i]);
f6688943 7788
9fe77896
RS
7789 /* Use fx_tcbit to mark compound relocs. */
7790 ip->fixp[0]->fx_tcbit = 1;
7791 ip->fixp[i]->fx_tcbit = 1;
7792 }
252b5132 7793 }
252b5132
RH
7794
7795 /* Update the register mask information. */
4c260379
RS
7796 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7797 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
252b5132 7798
a4e06468 7799 switch (method)
252b5132 7800 {
a4e06468
RS
7801 case APPEND_ADD:
7802 insert_into_history (0, 1, ip);
7803 break;
7804
7805 case APPEND_ADD_WITH_NOP:
14fe068b
RS
7806 {
7807 struct mips_cl_insn *nop;
7808
7809 insert_into_history (0, 1, ip);
7810 nop = get_delay_slot_nop (ip);
7811 add_fixed_insn (nop);
7812 insert_into_history (0, 1, nop);
7813 if (mips_relax.sequence)
7814 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7815 }
a4e06468
RS
7816 break;
7817
7818 case APPEND_ADD_COMPACT:
7819 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7bd374a4
MR
7820 if (mips_opts.mips16)
7821 {
7822 ip->insn_opcode |= 0x0080;
7823 find_altered_mips16_opcode (ip);
7824 }
7825 /* Convert microMIPS instructions. */
7826 else if (mips_opts.micromips)
7827 {
7828 /* jr16->jrc */
7829 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7830 ip->insn_opcode |= 0x0020;
7831 /* b16->bc */
7832 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7833 ip->insn_opcode = 0x40e00000;
7834 /* beqz16->beqzc, bnez16->bnezc */
7835 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7836 {
7837 unsigned long regno;
7838
7839 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7840 regno &= MICROMIPSOP_MASK_MD;
7841 regno = micromips_to_32_reg_d_map[regno];
7842 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7843 | (regno << MICROMIPSOP_SH_RS)
7844 | 0x40a00000) ^ 0x00400000;
7845 }
7846 /* beqz->beqzc, bnez->bnezc */
7847 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7848 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7849 | ((ip->insn_opcode >> 7) & 0x00400000)
7850 | 0x40a00000) ^ 0x00400000;
7851 /* beq $0->beqzc, bne $0->bnezc */
7852 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7853 ip->insn_opcode = (((ip->insn_opcode >>
7854 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7855 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7856 | ((ip->insn_opcode >> 7) & 0x00400000)
7857 | 0x40a00000) ^ 0x00400000;
7858 else
7859 abort ();
7860 find_altered_micromips_opcode (ip);
7861 }
7862 else
7863 abort ();
a4e06468
RS
7864 install_insn (ip);
7865 insert_into_history (0, 1, ip);
7866 break;
7867
7868 case APPEND_SWAP:
7869 {
7870 struct mips_cl_insn delay = history[0];
99e7978b
MF
7871
7872 if (relaxed_branch || delay.frag != ip->frag)
a4e06468
RS
7873 {
7874 /* Add the delay slot instruction to the end of the
7875 current frag and shrink the fixed part of the
7876 original frag. If the branch occupies the tail of
7877 the latter, move it backwards to cover the gap. */
2b0c8b40 7878 delay.frag->fr_fix -= branch_disp;
a4e06468 7879 if (delay.frag == ip->frag)
2b0c8b40 7880 move_insn (ip, ip->frag, ip->where - branch_disp);
a4e06468
RS
7881 add_fixed_insn (&delay);
7882 }
7883 else
7884 {
5e35670b
MR
7885 /* If this is not a relaxed branch and we are in the
7886 same frag, then just swap the instructions. */
7887 move_insn (ip, delay.frag, delay.where);
7888 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
a4e06468
RS
7889 }
7890 history[0] = *ip;
7891 delay.fixed_p = 1;
7892 insert_into_history (0, 1, &delay);
7893 }
7894 break;
252b5132
RH
7895 }
7896
13408f1e 7897 /* If we have just completed an unconditional branch, clear the history. */
11625dd8
RS
7898 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7899 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
e407c74b
NC
7900 {
7901 unsigned int i;
7902
79850f26 7903 mips_no_prev_insn ();
13408f1e 7904
e407c74b 7905 for (i = 0; i < ARRAY_SIZE (history); i++)
79850f26 7906 history[i].cleared_p = 1;
e407c74b
NC
7907 }
7908
df58fc94
RS
7909 /* We need to emit a label at the end of branch-likely macros. */
7910 if (emit_branch_likely_macro)
7911 {
7912 emit_branch_likely_macro = FALSE;
7913 micromips_add_label ();
7914 }
7915
252b5132
RH
7916 /* We just output an insn, so the next one doesn't have a label. */
7917 mips_clear_insn_labels ();
252b5132
RH
7918}
7919
e407c74b
NC
7920/* Forget that there was any previous instruction or label.
7921 When BRANCH is true, the branch history is also flushed. */
252b5132
RH
7922
7923static void
7d10b47d 7924mips_no_prev_insn (void)
252b5132 7925{
7d10b47d
RS
7926 prev_nop_frag = NULL;
7927 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
252b5132
RH
7928 mips_clear_insn_labels ();
7929}
7930
7d10b47d
RS
7931/* This function must be called before we emit something other than
7932 instructions. It is like mips_no_prev_insn except that it inserts
7933 any NOPS that might be needed by previous instructions. */
252b5132 7934
7d10b47d
RS
7935void
7936mips_emit_delays (void)
252b5132
RH
7937{
7938 if (! mips_opts.noreorder)
7939 {
932d1a1b 7940 int nops = nops_for_insn (0, history, NULL);
252b5132
RH
7941 if (nops > 0)
7942 {
7d10b47d
RS
7943 while (nops-- > 0)
7944 add_fixed_insn (NOP_INSN);
462427c4 7945 mips_move_text_labels ();
7d10b47d
RS
7946 }
7947 }
7948 mips_no_prev_insn ();
7949}
7950
7951/* Start a (possibly nested) noreorder block. */
7952
7953static void
7954start_noreorder (void)
7955{
7956 if (mips_opts.noreorder == 0)
7957 {
7958 unsigned int i;
7959 int nops;
7960
7961 /* None of the instructions before the .set noreorder can be moved. */
7962 for (i = 0; i < ARRAY_SIZE (history); i++)
7963 history[i].fixed_p = 1;
7964
7965 /* Insert any nops that might be needed between the .set noreorder
7966 block and the previous instructions. We will later remove any
7967 nops that turn out not to be needed. */
932d1a1b 7968 nops = nops_for_insn (0, history, NULL);
7d10b47d
RS
7969 if (nops > 0)
7970 {
7971 if (mips_optimize != 0)
252b5132
RH
7972 {
7973 /* Record the frag which holds the nop instructions, so
7974 that we can remove them if we don't need them. */
df58fc94 7975 frag_grow (nops * NOP_INSN_SIZE);
252b5132
RH
7976 prev_nop_frag = frag_now;
7977 prev_nop_frag_holds = nops;
7978 prev_nop_frag_required = 0;
7979 prev_nop_frag_since = 0;
7980 }
7981
7982 for (; nops > 0; --nops)
1e915849 7983 add_fixed_insn (NOP_INSN);
252b5132 7984
7d10b47d
RS
7985 /* Move on to a new frag, so that it is safe to simply
7986 decrease the size of prev_nop_frag. */
7987 frag_wane (frag_now);
7988 frag_new (0);
462427c4 7989 mips_move_text_labels ();
252b5132 7990 }
df58fc94 7991 mips_mark_labels ();
7d10b47d 7992 mips_clear_insn_labels ();
252b5132 7993 }
7d10b47d
RS
7994 mips_opts.noreorder++;
7995 mips_any_noreorder = 1;
7996}
252b5132 7997
7d10b47d 7998/* End a nested noreorder block. */
252b5132 7999
7d10b47d
RS
8000static void
8001end_noreorder (void)
8002{
8003 mips_opts.noreorder--;
8004 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8005 {
8006 /* Commit to inserting prev_nop_frag_required nops and go back to
8007 handling nop insertion the .set reorder way. */
8008 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
df58fc94 8009 * NOP_INSN_SIZE);
7d10b47d
RS
8010 insert_into_history (prev_nop_frag_since,
8011 prev_nop_frag_required, NOP_INSN);
8012 prev_nop_frag = NULL;
8013 }
252b5132
RH
8014}
8015
97d87491
RS
8016/* Sign-extend 32-bit mode constants that have bit 31 set and all
8017 higher bits unset. */
8018
8019static void
8020normalize_constant_expr (expressionS *ex)
8021{
8022 if (ex->X_op == O_constant
8023 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8024 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8025 - 0x80000000);
8026}
8027
8028/* Sign-extend 32-bit mode address offsets that have bit 31 set and
8029 all higher bits unset. */
8030
8031static void
8032normalize_address_expr (expressionS *ex)
8033{
8034 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8035 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8036 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8037 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8038 - 0x80000000);
8039}
8040
8041/* Try to match TOKENS against OPCODE, storing the result in INSN.
8042 Return true if the match was successful.
8043
8044 OPCODE_EXTRA is a value that should be ORed into the opcode
8045 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8046 there are more alternatives after OPCODE and SOFT_MATCH is
8047 as for mips_arg_info. */
8048
8049static bfd_boolean
8050match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8051 struct mips_operand_token *tokens, unsigned int opcode_extra,
60f20e8b 8052 bfd_boolean lax_match, bfd_boolean complete_p)
97d87491
RS
8053{
8054 const char *args;
8055 struct mips_arg_info arg;
8056 const struct mips_operand *operand;
8057 char c;
8058
8059 imm_expr.X_op = O_absent;
97d87491
RS
8060 offset_expr.X_op = O_absent;
8061 offset_reloc[0] = BFD_RELOC_UNUSED;
8062 offset_reloc[1] = BFD_RELOC_UNUSED;
8063 offset_reloc[2] = BFD_RELOC_UNUSED;
8064
8065 create_insn (insn, opcode);
60f20e8b
RS
8066 /* When no opcode suffix is specified, assume ".xyzw". */
8067 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8068 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8069 else
8070 insn->insn_opcode |= opcode_extra;
97d87491
RS
8071 memset (&arg, 0, sizeof (arg));
8072 arg.insn = insn;
8073 arg.token = tokens;
8074 arg.argnum = 1;
8075 arg.last_regno = ILLEGAL_REG;
8076 arg.dest_regno = ILLEGAL_REG;
60f20e8b 8077 arg.lax_match = lax_match;
97d87491
RS
8078 for (args = opcode->args;; ++args)
8079 {
8080 if (arg.token->type == OT_END)
8081 {
8082 /* Handle unary instructions in which only one operand is given.
8083 The source is then the same as the destination. */
8084 if (arg.opnum == 1 && *args == ',')
8085 {
8086 operand = (mips_opts.micromips
8087 ? decode_micromips_operand (args + 1)
8088 : decode_mips_operand (args + 1));
8089 if (operand && mips_optional_operand_p (operand))
8090 {
8091 arg.token = tokens;
8092 arg.argnum = 1;
8093 continue;
8094 }
8095 }
8096
8097 /* Treat elided base registers as $0. */
8098 if (strcmp (args, "(b)") == 0)
8099 args += 3;
8100
8101 if (args[0] == '+')
8102 switch (args[1])
8103 {
8104 case 'K':
8105 case 'N':
8106 /* The register suffix is optional. */
8107 args += 2;
8108 break;
8109 }
8110
8111 /* Fail the match if there were too few operands. */
8112 if (*args)
8113 return FALSE;
8114
8115 /* Successful match. */
60f20e8b
RS
8116 if (!complete_p)
8117 return TRUE;
e3de51ce 8118 clear_insn_error ();
97d87491
RS
8119 if (arg.dest_regno == arg.last_regno
8120 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8121 {
8122 if (arg.opnum == 2)
e3de51ce 8123 set_insn_error
1661c76c 8124 (0, _("source and destination must be different"));
97d87491 8125 else if (arg.last_regno == 31)
e3de51ce 8126 set_insn_error
1661c76c 8127 (0, _("a destination register must be supplied"));
97d87491 8128 }
173d3447
CF
8129 else if (arg.last_regno == 31
8130 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8131 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8132 set_insn_error (0, _("the source register must not be $31"));
97d87491
RS
8133 check_completed_insn (&arg);
8134 return TRUE;
8135 }
8136
8137 /* Fail the match if the line has too many operands. */
8138 if (*args == 0)
8139 return FALSE;
8140
8141 /* Handle characters that need to match exactly. */
8142 if (*args == '(' || *args == ')' || *args == ',')
8143 {
8144 if (match_char (&arg, *args))
8145 continue;
8146 return FALSE;
8147 }
8148 if (*args == '#')
8149 {
8150 ++args;
8151 if (arg.token->type == OT_DOUBLE_CHAR
8152 && arg.token->u.ch == *args)
8153 {
8154 ++arg.token;
8155 continue;
8156 }
8157 return FALSE;
8158 }
8159
8160 /* Handle special macro operands. Work out the properties of
8161 other operands. */
8162 arg.opnum += 1;
97d87491
RS
8163 switch (*args)
8164 {
7361da2c
AB
8165 case '-':
8166 switch (args[1])
8167 {
8168 case 'A':
8169 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8170 break;
8171
8172 case 'B':
8173 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8174 break;
8175 }
8176 break;
8177
97d87491
RS
8178 case '+':
8179 switch (args[1])
8180 {
97d87491
RS
8181 case 'i':
8182 *offset_reloc = BFD_RELOC_MIPS_JMP;
8183 break;
7361da2c
AB
8184
8185 case '\'':
8186 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8187 break;
8188
8189 case '\"':
8190 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8191 break;
97d87491
RS
8192 }
8193 break;
8194
97d87491 8195 case 'I':
1a00e612
RS
8196 if (!match_const_int (&arg, &imm_expr.X_add_number))
8197 return FALSE;
8198 imm_expr.X_op = O_constant;
bad1aba3 8199 if (GPR_SIZE == 32)
97d87491
RS
8200 normalize_constant_expr (&imm_expr);
8201 continue;
8202
8203 case 'A':
8204 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8205 {
8206 /* Assume that the offset has been elided and that what
8207 we saw was a base register. The match will fail later
8208 if that assumption turns out to be wrong. */
8209 offset_expr.X_op = O_constant;
8210 offset_expr.X_add_number = 0;
8211 }
97d87491 8212 else
1a00e612
RS
8213 {
8214 if (!match_expression (&arg, &offset_expr, offset_reloc))
8215 return FALSE;
8216 normalize_address_expr (&offset_expr);
8217 }
97d87491
RS
8218 continue;
8219
8220 case 'F':
8221 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8222 8, TRUE))
1a00e612 8223 return FALSE;
97d87491
RS
8224 continue;
8225
8226 case 'L':
8227 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8228 8, FALSE))
1a00e612 8229 return FALSE;
97d87491
RS
8230 continue;
8231
8232 case 'f':
8233 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8234 4, TRUE))
1a00e612 8235 return FALSE;
97d87491
RS
8236 continue;
8237
8238 case 'l':
8239 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8240 4, FALSE))
1a00e612 8241 return FALSE;
97d87491
RS
8242 continue;
8243
97d87491
RS
8244 case 'p':
8245 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8246 break;
8247
8248 case 'a':
8249 *offset_reloc = BFD_RELOC_MIPS_JMP;
8250 break;
8251
8252 case 'm':
8253 gas_assert (mips_opts.micromips);
8254 c = args[1];
8255 switch (c)
8256 {
8257 case 'D':
8258 case 'E':
8259 if (!forced_insn_length)
8260 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8261 else if (c == 'D')
8262 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8263 else
8264 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8265 break;
8266 }
8267 break;
8268 }
8269
8270 operand = (mips_opts.micromips
8271 ? decode_micromips_operand (args)
8272 : decode_mips_operand (args));
8273 if (!operand)
8274 abort ();
8275
8276 /* Skip prefixes. */
7361da2c 8277 if (*args == '+' || *args == 'm' || *args == '-')
97d87491
RS
8278 args++;
8279
8280 if (mips_optional_operand_p (operand)
8281 && args[1] == ','
8282 && (arg.token[0].type != OT_REG
8283 || arg.token[1].type == OT_END))
8284 {
8285 /* Assume that the register has been elided and is the
8286 same as the first operand. */
8287 arg.token = tokens;
8288 arg.argnum = 1;
8289 }
8290
8291 if (!match_operand (&arg, operand))
8292 return FALSE;
8293 }
8294}
8295
8296/* Like match_insn, but for MIPS16. */
8297
8298static bfd_boolean
8299match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
1a00e612 8300 struct mips_operand_token *tokens)
97d87491
RS
8301{
8302 const char *args;
8303 const struct mips_operand *operand;
8304 const struct mips_operand *ext_operand;
82d808ed 8305 bfd_boolean pcrel = FALSE;
7fd53920 8306 int required_insn_length;
97d87491
RS
8307 struct mips_arg_info arg;
8308 int relax_char;
8309
7fd53920
MR
8310 if (forced_insn_length)
8311 required_insn_length = forced_insn_length;
8312 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8313 required_insn_length = 2;
8314 else
8315 required_insn_length = 0;
8316
97d87491
RS
8317 create_insn (insn, opcode);
8318 imm_expr.X_op = O_absent;
97d87491
RS
8319 offset_expr.X_op = O_absent;
8320 offset_reloc[0] = BFD_RELOC_UNUSED;
8321 offset_reloc[1] = BFD_RELOC_UNUSED;
8322 offset_reloc[2] = BFD_RELOC_UNUSED;
8323 relax_char = 0;
8324
8325 memset (&arg, 0, sizeof (arg));
8326 arg.insn = insn;
8327 arg.token = tokens;
8328 arg.argnum = 1;
8329 arg.last_regno = ILLEGAL_REG;
8330 arg.dest_regno = ILLEGAL_REG;
97d87491
RS
8331 relax_char = 0;
8332 for (args = opcode->args;; ++args)
8333 {
8334 int c;
8335
8336 if (arg.token->type == OT_END)
8337 {
8338 offsetT value;
8339
8340 /* Handle unary instructions in which only one operand is given.
8341 The source is then the same as the destination. */
8342 if (arg.opnum == 1 && *args == ',')
8343 {
8344 operand = decode_mips16_operand (args[1], FALSE);
8345 if (operand && mips_optional_operand_p (operand))
8346 {
8347 arg.token = tokens;
8348 arg.argnum = 1;
8349 continue;
8350 }
8351 }
8352
8353 /* Fail the match if there were too few operands. */
8354 if (*args)
8355 return FALSE;
8356
8357 /* Successful match. Stuff the immediate value in now, if
8358 we can. */
e3de51ce 8359 clear_insn_error ();
97d87491
RS
8360 if (opcode->pinfo == INSN_MACRO)
8361 {
8362 gas_assert (relax_char == 0 || relax_char == 'p');
8363 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8364 }
8365 else if (relax_char
8366 && offset_expr.X_op == O_constant
82d808ed 8367 && !pcrel
97d87491
RS
8368 && calculate_reloc (*offset_reloc,
8369 offset_expr.X_add_number,
8370 &value))
8371 {
8372 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7fd53920 8373 required_insn_length, &insn->insn_opcode);
97d87491
RS
8374 offset_expr.X_op = O_absent;
8375 *offset_reloc = BFD_RELOC_UNUSED;
8376 }
8377 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8378 {
7fd53920 8379 if (required_insn_length == 2)
e3de51ce 8380 set_insn_error (0, _("invalid unextended operand value"));
25499ac7 8381 else if (!mips_opcode_32bit_p (opcode))
1da43acc
MR
8382 {
8383 forced_insn_length = 4;
8384 insn->insn_opcode |= MIPS16_EXTEND;
8385 }
97d87491
RS
8386 }
8387 else if (relax_char)
8388 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8389
8390 check_completed_insn (&arg);
8391 return TRUE;
8392 }
8393
8394 /* Fail the match if the line has too many operands. */
8395 if (*args == 0)
8396 return FALSE;
8397
8398 /* Handle characters that need to match exactly. */
8399 if (*args == '(' || *args == ')' || *args == ',')
8400 {
8401 if (match_char (&arg, *args))
8402 continue;
8403 return FALSE;
8404 }
8405
8406 arg.opnum += 1;
8407 c = *args;
8408 switch (c)
8409 {
8410 case 'p':
8411 case 'q':
8412 case 'A':
8413 case 'B':
8414 case 'E':
25499ac7
MR
8415 case 'V':
8416 case 'u':
97d87491
RS
8417 relax_char = c;
8418 break;
8419
8420 case 'I':
1a00e612
RS
8421 if (!match_const_int (&arg, &imm_expr.X_add_number))
8422 return FALSE;
8423 imm_expr.X_op = O_constant;
bad1aba3 8424 if (GPR_SIZE == 32)
97d87491
RS
8425 normalize_constant_expr (&imm_expr);
8426 continue;
8427
8428 case 'a':
8429 case 'i':
8430 *offset_reloc = BFD_RELOC_MIPS16_JMP;
97d87491
RS
8431 break;
8432 }
8433
7fd53920 8434 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
97d87491
RS
8435 if (!operand)
8436 abort ();
8437
82d808ed
MR
8438 if (operand->type == OP_PCREL)
8439 pcrel = TRUE;
8440 else
97d87491
RS
8441 {
8442 ext_operand = decode_mips16_operand (c, TRUE);
8443 if (operand != ext_operand)
8444 {
8445 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8446 {
8447 offset_expr.X_op = O_constant;
8448 offset_expr.X_add_number = 0;
8449 relax_char = c;
8450 continue;
8451 }
8452
1a7bf198 8453 if (!match_expression (&arg, &offset_expr, offset_reloc))
97d87491
RS
8454 return FALSE;
8455
8456 /* '8' is used for SLTI(U) and has traditionally not
8457 been allowed to take relocation operators. */
8458 if (offset_reloc[0] != BFD_RELOC_UNUSED
8459 && (ext_operand->size != 16 || c == '8'))
e295202f
MR
8460 {
8461 match_not_constant (&arg);
8462 return FALSE;
8463 }
97d87491 8464
c96425c5
MR
8465 if (offset_expr.X_op == O_big)
8466 {
8467 match_out_of_range (&arg);
8468 return FALSE;
8469 }
8470
97d87491
RS
8471 relax_char = c;
8472 continue;
8473 }
8474 }
8475
8476 if (mips_optional_operand_p (operand)
8477 && args[1] == ','
8478 && (arg.token[0].type != OT_REG
8479 || arg.token[1].type == OT_END))
8480 {
8481 /* Assume that the register has been elided and is the
8482 same as the first operand. */
8483 arg.token = tokens;
8484 arg.argnum = 1;
8485 }
8486
8487 if (!match_operand (&arg, operand))
8488 return FALSE;
8489 }
8490}
8491
60f20e8b
RS
8492/* Record that the current instruction is invalid for the current ISA. */
8493
8494static void
8495match_invalid_for_isa (void)
8496{
8497 set_insn_error_ss
1661c76c 8498 (0, _("opcode not supported on this processor: %s (%s)"),
60f20e8b
RS
8499 mips_cpu_info_from_arch (mips_opts.arch)->name,
8500 mips_cpu_info_from_isa (mips_opts.isa)->name);
8501}
8502
8503/* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8504 Return true if a definite match or failure was found, storing any match
8505 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8506 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8507 tried and failed to match under normal conditions and now want to try a
8508 more relaxed match. */
8509
8510static bfd_boolean
8511match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8512 const struct mips_opcode *past, struct mips_operand_token *tokens,
8513 int opcode_extra, bfd_boolean lax_match)
8514{
8515 const struct mips_opcode *opcode;
8516 const struct mips_opcode *invalid_delay_slot;
8517 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8518
8519 /* Search for a match, ignoring alternatives that don't satisfy the
8520 current ISA or forced_length. */
8521 invalid_delay_slot = 0;
8522 seen_valid_for_isa = FALSE;
8523 seen_valid_for_size = FALSE;
8524 opcode = first;
8525 do
8526 {
8527 gas_assert (strcmp (opcode->name, first->name) == 0);
8528 if (is_opcode_valid (opcode))
8529 {
8530 seen_valid_for_isa = TRUE;
8531 if (is_size_valid (opcode))
8532 {
8533 bfd_boolean delay_slot_ok;
8534
8535 seen_valid_for_size = TRUE;
8536 delay_slot_ok = is_delay_slot_valid (opcode);
8537 if (match_insn (insn, opcode, tokens, opcode_extra,
8538 lax_match, delay_slot_ok))
8539 {
8540 if (!delay_slot_ok)
8541 {
8542 if (!invalid_delay_slot)
8543 invalid_delay_slot = opcode;
8544 }
8545 else
8546 return TRUE;
8547 }
8548 }
8549 }
8550 ++opcode;
8551 }
8552 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8553
8554 /* If the only matches we found had the wrong length for the delay slot,
8555 pick the first such match. We'll issue an appropriate warning later. */
8556 if (invalid_delay_slot)
8557 {
8558 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8559 lax_match, TRUE))
8560 return TRUE;
8561 abort ();
8562 }
8563
8564 /* Handle the case where we didn't try to match an instruction because
8565 all the alternatives were incompatible with the current ISA. */
8566 if (!seen_valid_for_isa)
8567 {
8568 match_invalid_for_isa ();
8569 return TRUE;
8570 }
8571
8572 /* Handle the case where we didn't try to match an instruction because
8573 all the alternatives were of the wrong size. */
8574 if (!seen_valid_for_size)
8575 {
8576 if (mips_opts.insn32)
1661c76c 8577 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
60f20e8b
RS
8578 else
8579 set_insn_error_i
1661c76c 8580 (0, _("unrecognized %d-bit version of microMIPS opcode"),
60f20e8b
RS
8581 8 * forced_insn_length);
8582 return TRUE;
8583 }
8584
8585 return FALSE;
8586}
8587
8588/* Like match_insns, but for MIPS16. */
8589
8590static bfd_boolean
8591match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8592 struct mips_operand_token *tokens)
8593{
8594 const struct mips_opcode *opcode;
8595 bfd_boolean seen_valid_for_isa;
7fd53920 8596 bfd_boolean seen_valid_for_size;
60f20e8b
RS
8597
8598 /* Search for a match, ignoring alternatives that don't satisfy the
8599 current ISA. There are no separate entries for extended forms so
8600 we deal with forced_length later. */
8601 seen_valid_for_isa = FALSE;
7fd53920 8602 seen_valid_for_size = FALSE;
60f20e8b
RS
8603 opcode = first;
8604 do
8605 {
8606 gas_assert (strcmp (opcode->name, first->name) == 0);
8607 if (is_opcode_valid_16 (opcode))
8608 {
8609 seen_valid_for_isa = TRUE;
7fd53920
MR
8610 if (is_size_valid_16 (opcode))
8611 {
8612 seen_valid_for_size = TRUE;
8613 if (match_mips16_insn (insn, opcode, tokens))
8614 return TRUE;
8615 }
60f20e8b
RS
8616 }
8617 ++opcode;
8618 }
8619 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8620 && strcmp (opcode->name, first->name) == 0);
8621
8622 /* Handle the case where we didn't try to match an instruction because
8623 all the alternatives were incompatible with the current ISA. */
8624 if (!seen_valid_for_isa)
8625 {
8626 match_invalid_for_isa ();
8627 return TRUE;
8628 }
8629
7fd53920
MR
8630 /* Handle the case where we didn't try to match an instruction because
8631 all the alternatives were of the wrong size. */
8632 if (!seen_valid_for_size)
8633 {
8634 if (forced_insn_length == 2)
8635 set_insn_error
8636 (0, _("unrecognized unextended version of MIPS16 opcode"));
8637 else
8638 set_insn_error
8639 (0, _("unrecognized extended version of MIPS16 opcode"));
8640 return TRUE;
8641 }
8642
60f20e8b
RS
8643 return FALSE;
8644}
8645
584892a6
RS
8646/* Set up global variables for the start of a new macro. */
8647
8648static void
8649macro_start (void)
8650{
8651 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
df58fc94
RS
8652 memset (&mips_macro_warning.first_insn_sizes, 0,
8653 sizeof (mips_macro_warning.first_insn_sizes));
8654 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
584892a6 8655 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
11625dd8 8656 && delayed_branch_p (&history[0]));
7bd374a4
MR
8657 if (history[0].frag
8658 && history[0].frag->fr_type == rs_machine_dependent
8659 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8660 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8661 mips_macro_warning.delay_slot_length = 0;
8662 else
8663 switch (history[0].insn_mo->pinfo2
8664 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8665 {
8666 case INSN2_BRANCH_DELAY_32BIT:
8667 mips_macro_warning.delay_slot_length = 4;
8668 break;
8669 case INSN2_BRANCH_DELAY_16BIT:
8670 mips_macro_warning.delay_slot_length = 2;
8671 break;
8672 default:
8673 mips_macro_warning.delay_slot_length = 0;
8674 break;
8675 }
df58fc94 8676 mips_macro_warning.first_frag = NULL;
584892a6
RS
8677}
8678
df58fc94
RS
8679/* Given that a macro is longer than one instruction or of the wrong size,
8680 return the appropriate warning for it. Return null if no warning is
8681 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8682 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8683 and RELAX_NOMACRO. */
584892a6
RS
8684
8685static const char *
8686macro_warning (relax_substateT subtype)
8687{
8688 if (subtype & RELAX_DELAY_SLOT)
1661c76c 8689 return _("macro instruction expanded into multiple instructions"
584892a6
RS
8690 " in a branch delay slot");
8691 else if (subtype & RELAX_NOMACRO)
1661c76c 8692 return _("macro instruction expanded into multiple instructions");
df58fc94
RS
8693 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8694 | RELAX_DELAY_SLOT_SIZE_SECOND))
8695 return ((subtype & RELAX_DELAY_SLOT_16BIT)
1661c76c 8696 ? _("macro instruction expanded into a wrong size instruction"
df58fc94 8697 " in a 16-bit branch delay slot")
1661c76c 8698 : _("macro instruction expanded into a wrong size instruction"
df58fc94 8699 " in a 32-bit branch delay slot"));
584892a6
RS
8700 else
8701 return 0;
8702}
8703
8704/* Finish up a macro. Emit warnings as appropriate. */
8705
8706static void
8707macro_end (void)
8708{
df58fc94
RS
8709 /* Relaxation warning flags. */
8710 relax_substateT subtype = 0;
8711
8712 /* Check delay slot size requirements. */
8713 if (mips_macro_warning.delay_slot_length == 2)
8714 subtype |= RELAX_DELAY_SLOT_16BIT;
8715 if (mips_macro_warning.delay_slot_length != 0)
584892a6 8716 {
df58fc94
RS
8717 if (mips_macro_warning.delay_slot_length
8718 != mips_macro_warning.first_insn_sizes[0])
8719 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8720 if (mips_macro_warning.delay_slot_length
8721 != mips_macro_warning.first_insn_sizes[1])
8722 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8723 }
584892a6 8724
df58fc94
RS
8725 /* Check instruction count requirements. */
8726 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8727 {
8728 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
584892a6
RS
8729 subtype |= RELAX_SECOND_LONGER;
8730 if (mips_opts.warn_about_macros)
8731 subtype |= RELAX_NOMACRO;
8732 if (mips_macro_warning.delay_slot_p)
8733 subtype |= RELAX_DELAY_SLOT;
df58fc94 8734 }
584892a6 8735
df58fc94
RS
8736 /* If both alternatives fail to fill a delay slot correctly,
8737 emit the warning now. */
8738 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8739 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8740 {
8741 relax_substateT s;
8742 const char *msg;
8743
8744 s = subtype & (RELAX_DELAY_SLOT_16BIT
8745 | RELAX_DELAY_SLOT_SIZE_FIRST
8746 | RELAX_DELAY_SLOT_SIZE_SECOND);
8747 msg = macro_warning (s);
8748 if (msg != NULL)
8749 as_warn ("%s", msg);
8750 subtype &= ~s;
8751 }
8752
8753 /* If both implementations are longer than 1 instruction, then emit the
8754 warning now. */
8755 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8756 {
8757 relax_substateT s;
8758 const char *msg;
8759
8760 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8761 msg = macro_warning (s);
8762 if (msg != NULL)
8763 as_warn ("%s", msg);
8764 subtype &= ~s;
584892a6 8765 }
df58fc94
RS
8766
8767 /* If any flags still set, then one implementation might need a warning
8768 and the other either will need one of a different kind or none at all.
8769 Pass any remaining flags over to relaxation. */
8770 if (mips_macro_warning.first_frag != NULL)
8771 mips_macro_warning.first_frag->fr_subtype |= subtype;
584892a6
RS
8772}
8773
df58fc94
RS
8774/* Instruction operand formats used in macros that vary between
8775 standard MIPS and microMIPS code. */
8776
833794fc 8777static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
df58fc94
RS
8778static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8779static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8780static const char * const lui_fmt[2] = { "t,u", "s,u" };
8781static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
833794fc 8782static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
df58fc94
RS
8783static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8784static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8785
833794fc 8786#define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
7361da2c
AB
8787#define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8788 : cop12_fmt[mips_opts.micromips])
df58fc94
RS
8789#define JALR_FMT (jalr_fmt[mips_opts.micromips])
8790#define LUI_FMT (lui_fmt[mips_opts.micromips])
8791#define MEM12_FMT (mem12_fmt[mips_opts.micromips])
7361da2c
AB
8792#define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8793 : mem12_fmt[mips_opts.micromips])
833794fc 8794#define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
df58fc94
RS
8795#define SHFT_FMT (shft_fmt[mips_opts.micromips])
8796#define TRAP_FMT (trap_fmt[mips_opts.micromips])
8797
6e1304d8
RS
8798/* Read a macro's relocation codes from *ARGS and store them in *R.
8799 The first argument in *ARGS will be either the code for a single
8800 relocation or -1 followed by the three codes that make up a
8801 composite relocation. */
8802
8803static void
8804macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8805{
8806 int i, next;
8807
8808 next = va_arg (*args, int);
8809 if (next >= 0)
8810 r[0] = (bfd_reloc_code_real_type) next;
8811 else
f2ae14a1
RS
8812 {
8813 for (i = 0; i < 3; i++)
8814 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8815 /* This function is only used for 16-bit relocation fields.
8816 To make the macro code simpler, treat an unrelocated value
8817 in the same way as BFD_RELOC_LO16. */
8818 if (r[0] == BFD_RELOC_UNUSED)
8819 r[0] = BFD_RELOC_LO16;
8820 }
6e1304d8
RS
8821}
8822
252b5132
RH
8823/* Build an instruction created by a macro expansion. This is passed
8824 a pointer to the count of instructions created so far, an
8825 expression, the name of the instruction to build, an operand format
8826 string, and corresponding arguments. */
8827
252b5132 8828static void
67c0d1eb 8829macro_build (expressionS *ep, const char *name, const char *fmt, ...)
252b5132 8830{
df58fc94 8831 const struct mips_opcode *mo = NULL;
f6688943 8832 bfd_reloc_code_real_type r[3];
df58fc94 8833 const struct mips_opcode *amo;
e077a1c8 8834 const struct mips_operand *operand;
df58fc94
RS
8835 struct hash_control *hash;
8836 struct mips_cl_insn insn;
252b5132 8837 va_list args;
e077a1c8 8838 unsigned int uval;
252b5132 8839
252b5132 8840 va_start (args, fmt);
252b5132 8841
252b5132
RH
8842 if (mips_opts.mips16)
8843 {
03ea81db 8844 mips16_macro_build (ep, name, fmt, &args);
252b5132
RH
8845 va_end (args);
8846 return;
8847 }
8848
f6688943
TS
8849 r[0] = BFD_RELOC_UNUSED;
8850 r[1] = BFD_RELOC_UNUSED;
8851 r[2] = BFD_RELOC_UNUSED;
df58fc94
RS
8852 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8853 amo = (struct mips_opcode *) hash_find (hash, name);
8854 gas_assert (amo);
8855 gas_assert (strcmp (name, amo->name) == 0);
1e915849 8856
df58fc94 8857 do
8b082fb1
TS
8858 {
8859 /* Search until we get a match for NAME. It is assumed here that
df58fc94 8860 macros will never generate MDMX, MIPS-3D, or MT instructions.
33eaf5de 8861 We try to match an instruction that fulfills the branch delay
df58fc94
RS
8862 slot instruction length requirement (if any) of the previous
8863 instruction. While doing this we record the first instruction
8864 seen that matches all the other conditions and use it anyway
8865 if the requirement cannot be met; we will issue an appropriate
8866 warning later on. */
8867 if (strcmp (fmt, amo->args) == 0
8868 && amo->pinfo != INSN_MACRO
8869 && is_opcode_valid (amo)
8870 && is_size_valid (amo))
8871 {
8872 if (is_delay_slot_valid (amo))
8873 {
8874 mo = amo;
8875 break;
8876 }
8877 else if (!mo)
8878 mo = amo;
8879 }
8b082fb1 8880
df58fc94
RS
8881 ++amo;
8882 gas_assert (amo->name);
252b5132 8883 }
df58fc94 8884 while (strcmp (name, amo->name) == 0);
252b5132 8885
df58fc94 8886 gas_assert (mo);
1e915849 8887 create_insn (&insn, mo);
e077a1c8 8888 for (; *fmt; ++fmt)
252b5132 8889 {
e077a1c8 8890 switch (*fmt)
252b5132 8891 {
252b5132
RH
8892 case ',':
8893 case '(':
8894 case ')':
252b5132 8895 case 'z':
e077a1c8 8896 break;
252b5132
RH
8897
8898 case 'i':
8899 case 'j':
6e1304d8 8900 macro_read_relocs (&args, r);
9c2799c2 8901 gas_assert (*r == BFD_RELOC_GPREL16
e391c024
RS
8902 || *r == BFD_RELOC_MIPS_HIGHER
8903 || *r == BFD_RELOC_HI16_S
8904 || *r == BFD_RELOC_LO16
14c80123
MR
8905 || *r == BFD_RELOC_MIPS_GOT_OFST
8906 || (mips_opts.micromips
8907 && (*r == BFD_RELOC_16
8908 || *r == BFD_RELOC_MIPS_GOT16
8909 || *r == BFD_RELOC_MIPS_CALL16
8910 || *r == BFD_RELOC_MIPS_GOT_HI16
8911 || *r == BFD_RELOC_MIPS_GOT_LO16
8912 || *r == BFD_RELOC_MIPS_CALL_HI16
8913 || *r == BFD_RELOC_MIPS_CALL_LO16
8914 || *r == BFD_RELOC_MIPS_SUB
8915 || *r == BFD_RELOC_MIPS_GOT_PAGE
8916 || *r == BFD_RELOC_MIPS_HIGHEST
8917 || *r == BFD_RELOC_MIPS_GOT_DISP
8918 || *r == BFD_RELOC_MIPS_TLS_GD
8919 || *r == BFD_RELOC_MIPS_TLS_LDM
8920 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
8921 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
8922 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
8923 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
8924 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
e077a1c8 8925 break;
e391c024
RS
8926
8927 case 'o':
8928 macro_read_relocs (&args, r);
e077a1c8 8929 break;
252b5132
RH
8930
8931 case 'u':
6e1304d8 8932 macro_read_relocs (&args, r);
9c2799c2 8933 gas_assert (ep != NULL
90ecf173
MR
8934 && (ep->X_op == O_constant
8935 || (ep->X_op == O_symbol
8936 && (*r == BFD_RELOC_MIPS_HIGHEST
8937 || *r == BFD_RELOC_HI16_S
8938 || *r == BFD_RELOC_HI16
8939 || *r == BFD_RELOC_GPREL16
8940 || *r == BFD_RELOC_MIPS_GOT_HI16
8941 || *r == BFD_RELOC_MIPS_CALL_HI16))));
e077a1c8 8942 break;
252b5132
RH
8943
8944 case 'p':
9c2799c2 8945 gas_assert (ep != NULL);
bad36eac 8946
252b5132
RH
8947 /*
8948 * This allows macro() to pass an immediate expression for
8949 * creating short branches without creating a symbol.
bad36eac
DJ
8950 *
8951 * We don't allow branch relaxation for these branches, as
8952 * they should only appear in ".set nomacro" anyway.
252b5132
RH
8953 */
8954 if (ep->X_op == O_constant)
8955 {
df58fc94
RS
8956 /* For microMIPS we always use relocations for branches.
8957 So we should not resolve immediate values. */
8958 gas_assert (!mips_opts.micromips);
8959
bad36eac
DJ
8960 if ((ep->X_add_number & 3) != 0)
8961 as_bad (_("branch to misaligned address (0x%lx)"),
8962 (unsigned long) ep->X_add_number);
8963 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8964 as_bad (_("branch address range overflow (0x%lx)"),
8965 (unsigned long) ep->X_add_number);
252b5132
RH
8966 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8967 ep = NULL;
8968 }
8969 else
0b25d3e6 8970 *r = BFD_RELOC_16_PCREL_S2;
e077a1c8 8971 break;
252b5132
RH
8972
8973 case 'a':
9c2799c2 8974 gas_assert (ep != NULL);
f6688943 8975 *r = BFD_RELOC_MIPS_JMP;
e077a1c8 8976 break;
d43b4baf 8977
252b5132 8978 default:
e077a1c8
RS
8979 operand = (mips_opts.micromips
8980 ? decode_micromips_operand (fmt)
8981 : decode_mips_operand (fmt));
8982 if (!operand)
8983 abort ();
8984
8985 uval = va_arg (args, int);
8986 if (operand->type == OP_CLO_CLZ_DEST)
8987 uval |= (uval << 5);
8988 insn_insert_operand (&insn, operand, uval);
8989
7361da2c 8990 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
e077a1c8
RS
8991 ++fmt;
8992 break;
252b5132 8993 }
252b5132
RH
8994 }
8995 va_end (args);
9c2799c2 8996 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 8997
df58fc94 8998 append_insn (&insn, ep, r, TRUE);
252b5132
RH
8999}
9000
9001static void
67c0d1eb 9002mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
03ea81db 9003 va_list *args)
252b5132 9004{
1e915849 9005 struct mips_opcode *mo;
252b5132 9006 struct mips_cl_insn insn;
e077a1c8 9007 const struct mips_operand *operand;
f6688943
TS
9008 bfd_reloc_code_real_type r[3]
9009 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
252b5132 9010
1e915849 9011 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9c2799c2
NC
9012 gas_assert (mo);
9013 gas_assert (strcmp (name, mo->name) == 0);
252b5132 9014
1e915849 9015 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
252b5132 9016 {
1e915849 9017 ++mo;
9c2799c2
NC
9018 gas_assert (mo->name);
9019 gas_assert (strcmp (name, mo->name) == 0);
252b5132
RH
9020 }
9021
1e915849 9022 create_insn (&insn, mo);
e077a1c8 9023 for (; *fmt; ++fmt)
252b5132
RH
9024 {
9025 int c;
9026
e077a1c8 9027 c = *fmt;
252b5132
RH
9028 switch (c)
9029 {
252b5132
RH
9030 case ',':
9031 case '(':
9032 case ')':
e077a1c8 9033 break;
252b5132 9034
d8722d76 9035 case '.':
252b5132
RH
9036 case 'S':
9037 case 'P':
9038 case 'R':
e077a1c8 9039 break;
252b5132
RH
9040
9041 case '<':
252b5132 9042 case '5':
d8722d76 9043 case 'F':
252b5132
RH
9044 case 'H':
9045 case 'W':
9046 case 'D':
9047 case 'j':
9048 case '8':
9049 case 'V':
9050 case 'C':
9051 case 'U':
9052 case 'k':
9053 case 'K':
9054 case 'p':
9055 case 'q':
9056 {
b886a2ab
RS
9057 offsetT value;
9058
9c2799c2 9059 gas_assert (ep != NULL);
252b5132
RH
9060
9061 if (ep->X_op != O_constant)
874e8986 9062 *r = (int) BFD_RELOC_UNUSED + c;
b886a2ab 9063 else if (calculate_reloc (*r, ep->X_add_number, &value))
252b5132 9064 {
b886a2ab 9065 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
252b5132 9066 ep = NULL;
f6688943 9067 *r = BFD_RELOC_UNUSED;
252b5132
RH
9068 }
9069 }
e077a1c8 9070 break;
252b5132 9071
e077a1c8
RS
9072 default:
9073 operand = decode_mips16_operand (c, FALSE);
9074 if (!operand)
9075 abort ();
252b5132 9076
4a06e5a2 9077 insn_insert_operand (&insn, operand, va_arg (*args, int));
e077a1c8
RS
9078 break;
9079 }
252b5132
RH
9080 }
9081
9c2799c2 9082 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
252b5132 9083
df58fc94 9084 append_insn (&insn, ep, r, TRUE);
252b5132
RH
9085}
9086
438c16b8
TS
9087/*
9088 * Generate a "jalr" instruction with a relocation hint to the called
9089 * function. This occurs in NewABI PIC code.
9090 */
9091static void
df58fc94 9092macro_build_jalr (expressionS *ep, int cprestore)
438c16b8 9093{
df58fc94
RS
9094 static const bfd_reloc_code_real_type jalr_relocs[2]
9095 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9096 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9097 const char *jalr;
685736be 9098 char *f = NULL;
b34976b6 9099
1180b5a4 9100 if (MIPS_JALR_HINT_P (ep))
f21f8242 9101 {
cc3d92a5 9102 frag_grow (8);
f21f8242
AO
9103 f = frag_more (0);
9104 }
2906b037 9105 if (mips_opts.micromips)
df58fc94 9106 {
833794fc
MR
9107 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9108 ? "jalr" : "jalrs");
e64af278 9109 if (MIPS_JALR_HINT_P (ep)
833794fc 9110 || mips_opts.insn32
e64af278 9111 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
df58fc94
RS
9112 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9113 else
9114 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9115 }
2906b037
MR
9116 else
9117 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
1180b5a4 9118 if (MIPS_JALR_HINT_P (ep))
df58fc94 9119 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
438c16b8
TS
9120}
9121
252b5132
RH
9122/*
9123 * Generate a "lui" instruction.
9124 */
9125static void
67c0d1eb 9126macro_build_lui (expressionS *ep, int regnum)
252b5132 9127{
9c2799c2 9128 gas_assert (! mips_opts.mips16);
252b5132 9129
df58fc94 9130 if (ep->X_op != O_constant)
252b5132 9131 {
9c2799c2 9132 gas_assert (ep->X_op == O_symbol);
bbe506e8
TS
9133 /* _gp_disp is a special case, used from s_cpload.
9134 __gnu_local_gp is used if mips_no_shared. */
9c2799c2 9135 gas_assert (mips_pic == NO_PIC
78e1bb40 9136 || (! HAVE_NEWABI
aa6975fb
ILT
9137 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9138 || (! mips_in_shared
bbe506e8
TS
9139 && strcmp (S_GET_NAME (ep->X_add_symbol),
9140 "__gnu_local_gp") == 0));
252b5132
RH
9141 }
9142
df58fc94 9143 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
252b5132
RH
9144}
9145
885add95
CD
9146/* Generate a sequence of instructions to do a load or store from a constant
9147 offset off of a base register (breg) into/from a target register (treg),
9148 using AT if necessary. */
9149static void
67c0d1eb
RS
9150macro_build_ldst_constoffset (expressionS *ep, const char *op,
9151 int treg, int breg, int dbl)
885add95 9152{
9c2799c2 9153 gas_assert (ep->X_op == O_constant);
885add95 9154
256ab948 9155 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9156 if (!dbl)
9157 normalize_constant_expr (ep);
256ab948 9158
67c1ffbe 9159 /* Right now, this routine can only handle signed 32-bit constants. */
ecd13cd3 9160 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
885add95
CD
9161 as_warn (_("operand overflow"));
9162
9163 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9164 {
9165 /* Signed 16-bit offset will fit in the op. Easy! */
67c0d1eb 9166 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
885add95
CD
9167 }
9168 else
9169 {
9170 /* 32-bit offset, need multiple instructions and AT, like:
9171 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9172 addu $tempreg,$tempreg,$breg
9173 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9174 to handle the complete offset. */
67c0d1eb
RS
9175 macro_build_lui (ep, AT);
9176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9177 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
885add95 9178
741fe287 9179 if (!mips_opts.at)
1661c76c 9180 as_bad (_("macro used $at after \".set noat\""));
885add95
CD
9181 }
9182}
9183
252b5132
RH
9184/* set_at()
9185 * Generates code to set the $at register to true (one)
9186 * if reg is less than the immediate expression.
9187 */
9188static void
67c0d1eb 9189set_at (int reg, int unsignedp)
252b5132 9190{
b0e6f033 9191 if (imm_expr.X_add_number >= -0x8000
252b5132 9192 && imm_expr.X_add_number < 0x8000)
67c0d1eb
RS
9193 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9194 AT, reg, BFD_RELOC_LO16);
252b5132
RH
9195 else
9196 {
bad1aba3 9197 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 9198 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
252b5132
RH
9199 }
9200}
9201
252b5132
RH
9202/* Count the leading zeroes by performing a binary chop. This is a
9203 bulky bit of source, but performance is a LOT better for the
9204 majority of values than a simple loop to count the bits:
9205 for (lcnt = 0; (lcnt < 32); lcnt++)
9206 if ((v) & (1 << (31 - lcnt)))
9207 break;
9208 However it is not code size friendly, and the gain will drop a bit
9209 on certain cached systems.
9210*/
9211#define COUNT_TOP_ZEROES(v) \
9212 (((v) & ~0xffff) == 0 \
9213 ? ((v) & ~0xff) == 0 \
9214 ? ((v) & ~0xf) == 0 \
9215 ? ((v) & ~0x3) == 0 \
9216 ? ((v) & ~0x1) == 0 \
9217 ? !(v) \
9218 ? 32 \
9219 : 31 \
9220 : 30 \
9221 : ((v) & ~0x7) == 0 \
9222 ? 29 \
9223 : 28 \
9224 : ((v) & ~0x3f) == 0 \
9225 ? ((v) & ~0x1f) == 0 \
9226 ? 27 \
9227 : 26 \
9228 : ((v) & ~0x7f) == 0 \
9229 ? 25 \
9230 : 24 \
9231 : ((v) & ~0xfff) == 0 \
9232 ? ((v) & ~0x3ff) == 0 \
9233 ? ((v) & ~0x1ff) == 0 \
9234 ? 23 \
9235 : 22 \
9236 : ((v) & ~0x7ff) == 0 \
9237 ? 21 \
9238 : 20 \
9239 : ((v) & ~0x3fff) == 0 \
9240 ? ((v) & ~0x1fff) == 0 \
9241 ? 19 \
9242 : 18 \
9243 : ((v) & ~0x7fff) == 0 \
9244 ? 17 \
9245 : 16 \
9246 : ((v) & ~0xffffff) == 0 \
9247 ? ((v) & ~0xfffff) == 0 \
9248 ? ((v) & ~0x3ffff) == 0 \
9249 ? ((v) & ~0x1ffff) == 0 \
9250 ? 15 \
9251 : 14 \
9252 : ((v) & ~0x7ffff) == 0 \
9253 ? 13 \
9254 : 12 \
9255 : ((v) & ~0x3fffff) == 0 \
9256 ? ((v) & ~0x1fffff) == 0 \
9257 ? 11 \
9258 : 10 \
9259 : ((v) & ~0x7fffff) == 0 \
9260 ? 9 \
9261 : 8 \
9262 : ((v) & ~0xfffffff) == 0 \
9263 ? ((v) & ~0x3ffffff) == 0 \
9264 ? ((v) & ~0x1ffffff) == 0 \
9265 ? 7 \
9266 : 6 \
9267 : ((v) & ~0x7ffffff) == 0 \
9268 ? 5 \
9269 : 4 \
9270 : ((v) & ~0x3fffffff) == 0 \
9271 ? ((v) & ~0x1fffffff) == 0 \
9272 ? 3 \
9273 : 2 \
9274 : ((v) & ~0x7fffffff) == 0 \
9275 ? 1 \
9276 : 0)
9277
9278/* load_register()
67c1ffbe 9279 * This routine generates the least number of instructions necessary to load
252b5132
RH
9280 * an absolute expression value into a register.
9281 */
9282static void
67c0d1eb 9283load_register (int reg, expressionS *ep, int dbl)
252b5132
RH
9284{
9285 int freg;
9286 expressionS hi32, lo32;
9287
9288 if (ep->X_op != O_big)
9289 {
9c2799c2 9290 gas_assert (ep->X_op == O_constant);
256ab948
TS
9291
9292 /* Sign-extending 32-bit constants makes their handling easier. */
2051e8c4
MR
9293 if (!dbl)
9294 normalize_constant_expr (ep);
256ab948
TS
9295
9296 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
252b5132
RH
9297 {
9298 /* We can handle 16 bit signed values with an addiu to
9299 $zero. No need to ever use daddiu here, since $zero and
9300 the result are always correct in 32 bit mode. */
67c0d1eb 9301 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9302 return;
9303 }
9304 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9305 {
9306 /* We can handle 16 bit unsigned values with an ori to
9307 $zero. */
67c0d1eb 9308 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9309 return;
9310 }
256ab948 9311 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
252b5132
RH
9312 {
9313 /* 32 bit values require an lui. */
df58fc94 9314 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9315 if ((ep->X_add_number & 0xffff) != 0)
67c0d1eb 9316 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
252b5132
RH
9317 return;
9318 }
9319 }
9320
9321 /* The value is larger than 32 bits. */
9322
bad1aba3 9323 if (!dbl || GPR_SIZE == 32)
252b5132 9324 {
55e08f71
NC
9325 char value[32];
9326
9327 sprintf_vma (value, ep->X_add_number);
1661c76c 9328 as_bad (_("number (0x%s) larger than 32 bits"), value);
67c0d1eb 9329 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
252b5132
RH
9330 return;
9331 }
9332
9333 if (ep->X_op != O_big)
9334 {
9335 hi32 = *ep;
9336 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9337 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9338 hi32.X_add_number &= 0xffffffff;
9339 lo32 = *ep;
9340 lo32.X_add_number &= 0xffffffff;
9341 }
9342 else
9343 {
9c2799c2 9344 gas_assert (ep->X_add_number > 2);
252b5132
RH
9345 if (ep->X_add_number == 3)
9346 generic_bignum[3] = 0;
9347 else if (ep->X_add_number > 4)
1661c76c 9348 as_bad (_("number larger than 64 bits"));
252b5132
RH
9349 lo32.X_op = O_constant;
9350 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9351 hi32.X_op = O_constant;
9352 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9353 }
9354
9355 if (hi32.X_add_number == 0)
9356 freg = 0;
9357 else
9358 {
9359 int shift, bit;
9360 unsigned long hi, lo;
9361
956cd1d6 9362 if (hi32.X_add_number == (offsetT) 0xffffffff)
beae10d5
KH
9363 {
9364 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9365 {
67c0d1eb 9366 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9367 return;
9368 }
9369 if (lo32.X_add_number & 0x80000000)
9370 {
df58fc94 9371 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
252b5132 9372 if (lo32.X_add_number & 0xffff)
67c0d1eb 9373 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
beae10d5
KH
9374 return;
9375 }
9376 }
252b5132
RH
9377
9378 /* Check for 16bit shifted constant. We know that hi32 is
9379 non-zero, so start the mask on the first bit of the hi32
9380 value. */
9381 shift = 17;
9382 do
beae10d5
KH
9383 {
9384 unsigned long himask, lomask;
9385
9386 if (shift < 32)
9387 {
9388 himask = 0xffff >> (32 - shift);
9389 lomask = (0xffff << shift) & 0xffffffff;
9390 }
9391 else
9392 {
9393 himask = 0xffff << (shift - 32);
9394 lomask = 0;
9395 }
9396 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9397 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9398 {
9399 expressionS tmp;
9400
9401 tmp.X_op = O_constant;
9402 if (shift < 32)
9403 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9404 | (lo32.X_add_number >> shift));
9405 else
9406 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
67c0d1eb 9407 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
df58fc94 9408 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9409 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9410 return;
9411 }
f9419b05 9412 ++shift;
beae10d5
KH
9413 }
9414 while (shift <= (64 - 16));
252b5132
RH
9415
9416 /* Find the bit number of the lowest one bit, and store the
9417 shifted value in hi/lo. */
9418 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9419 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9420 if (lo != 0)
9421 {
9422 bit = 0;
9423 while ((lo & 1) == 0)
9424 {
9425 lo >>= 1;
9426 ++bit;
9427 }
9428 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9429 hi >>= bit;
9430 }
9431 else
9432 {
9433 bit = 32;
9434 while ((hi & 1) == 0)
9435 {
9436 hi >>= 1;
9437 ++bit;
9438 }
9439 lo = hi;
9440 hi = 0;
9441 }
9442
9443 /* Optimize if the shifted value is a (power of 2) - 1. */
9444 if ((hi == 0 && ((lo + 1) & lo) == 0)
9445 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
beae10d5
KH
9446 {
9447 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
252b5132 9448 if (shift != 0)
beae10d5 9449 {
252b5132
RH
9450 expressionS tmp;
9451
9452 /* This instruction will set the register to be all
9453 ones. */
beae10d5
KH
9454 tmp.X_op = O_constant;
9455 tmp.X_add_number = (offsetT) -1;
67c0d1eb 9456 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
beae10d5
KH
9457 if (bit != 0)
9458 {
9459 bit += shift;
df58fc94 9460 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
67c0d1eb 9461 reg, reg, (bit >= 32) ? bit - 32 : bit);
beae10d5 9462 }
df58fc94 9463 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
67c0d1eb 9464 reg, reg, (shift >= 32) ? shift - 32 : shift);
beae10d5
KH
9465 return;
9466 }
9467 }
252b5132
RH
9468
9469 /* Sign extend hi32 before calling load_register, because we can
9470 generally get better code when we load a sign extended value. */
9471 if ((hi32.X_add_number & 0x80000000) != 0)
beae10d5 9472 hi32.X_add_number |= ~(offsetT) 0xffffffff;
67c0d1eb 9473 load_register (reg, &hi32, 0);
252b5132
RH
9474 freg = reg;
9475 }
9476 if ((lo32.X_add_number & 0xffff0000) == 0)
9477 {
9478 if (freg != 0)
9479 {
df58fc94 9480 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
252b5132
RH
9481 freg = reg;
9482 }
9483 }
9484 else
9485 {
9486 expressionS mid16;
9487
956cd1d6 9488 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
beae10d5 9489 {
df58fc94
RS
9490 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9491 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
beae10d5
KH
9492 return;
9493 }
252b5132
RH
9494
9495 if (freg != 0)
9496 {
df58fc94 9497 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
252b5132
RH
9498 freg = reg;
9499 }
9500 mid16 = lo32;
9501 mid16.X_add_number >>= 16;
67c0d1eb 9502 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
df58fc94 9503 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
252b5132
RH
9504 freg = reg;
9505 }
9506 if ((lo32.X_add_number & 0xffff) != 0)
67c0d1eb 9507 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
252b5132
RH
9508}
9509
269137b2
TS
9510static inline void
9511load_delay_nop (void)
9512{
9513 if (!gpr_interlocks)
9514 macro_build (NULL, "nop", "");
9515}
9516
252b5132
RH
9517/* Load an address into a register. */
9518
9519static void
67c0d1eb 9520load_address (int reg, expressionS *ep, int *used_at)
252b5132 9521{
252b5132
RH
9522 if (ep->X_op != O_constant
9523 && ep->X_op != O_symbol)
9524 {
9525 as_bad (_("expression too complex"));
9526 ep->X_op = O_constant;
9527 }
9528
9529 if (ep->X_op == O_constant)
9530 {
67c0d1eb 9531 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
252b5132
RH
9532 return;
9533 }
9534
9535 if (mips_pic == NO_PIC)
9536 {
9537 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 9538 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
9539 Otherwise we want
9540 lui $reg,<sym> (BFD_RELOC_HI16_S)
9541 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
d6bc6245 9542 If we have an addend, we always use the latter form.
76b3015f 9543
d6bc6245
TS
9544 With 64bit address space and a usable $at we want
9545 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9546 lui $at,<sym> (BFD_RELOC_HI16_S)
9547 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9548 daddiu $at,<sym> (BFD_RELOC_LO16)
9549 dsll32 $reg,0
3a482fd5 9550 daddu $reg,$reg,$at
76b3015f 9551
c03099e6 9552 If $at is already in use, we use a path which is suboptimal
d6bc6245
TS
9553 on superscalar processors.
9554 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9555 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9556 dsll $reg,16
9557 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9558 dsll $reg,16
9559 daddiu $reg,<sym> (BFD_RELOC_LO16)
6caf9ef4
TS
9560
9561 For GP relative symbols in 64bit address space we can use
9562 the same sequence as in 32bit address space. */
aed1a261 9563 if (HAVE_64BIT_SYMBOLS)
d6bc6245 9564 {
6caf9ef4
TS
9565 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9566 && !nopic_need_relax (ep->X_add_symbol, 1))
9567 {
9568 relax_start (ep->X_add_symbol);
9569 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9570 mips_gp_register, BFD_RELOC_GPREL16);
9571 relax_switch ();
9572 }
d6bc6245 9573
741fe287 9574 if (*used_at == 0 && mips_opts.at)
d6bc6245 9575 {
df58fc94
RS
9576 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9577 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
67c0d1eb
RS
9578 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9579 BFD_RELOC_MIPS_HIGHER);
9580 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
df58fc94 9581 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
67c0d1eb 9582 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
d6bc6245
TS
9583 *used_at = 1;
9584 }
9585 else
9586 {
df58fc94 9587 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb
RS
9588 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9589 BFD_RELOC_MIPS_HIGHER);
df58fc94 9590 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9591 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
df58fc94 9592 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
67c0d1eb 9593 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
d6bc6245 9594 }
6caf9ef4
TS
9595
9596 if (mips_relax.sequence)
9597 relax_end ();
d6bc6245 9598 }
252b5132
RH
9599 else
9600 {
d6bc6245 9601 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 9602 && !nopic_need_relax (ep->X_add_symbol, 1))
d6bc6245 9603 {
4d7206a2 9604 relax_start (ep->X_add_symbol);
67c0d1eb 9605 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
17a2f251 9606 mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 9607 relax_switch ();
d6bc6245 9608 }
67c0d1eb
RS
9609 macro_build_lui (ep, reg);
9610 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9611 reg, reg, BFD_RELOC_LO16);
4d7206a2
RS
9612 if (mips_relax.sequence)
9613 relax_end ();
d6bc6245 9614 }
252b5132 9615 }
0a44bf69 9616 else if (!mips_big_got)
252b5132
RH
9617 {
9618 expressionS ex;
9619
9620 /* If this is a reference to an external symbol, we want
9621 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9622 Otherwise we want
9623 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9624 nop
9625 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
f5040a92
AO
9626 If there is a constant, it must be added in after.
9627
ed6fb7bd 9628 If we have NewABI, we want
f5040a92
AO
9629 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9630 unless we're referencing a global symbol with a non-zero
9631 offset, in which case cst must be added separately. */
ed6fb7bd
SC
9632 if (HAVE_NEWABI)
9633 {
f5040a92
AO
9634 if (ep->X_add_number)
9635 {
4d7206a2 9636 ex.X_add_number = ep->X_add_number;
f5040a92 9637 ep->X_add_number = 0;
4d7206a2 9638 relax_start (ep->X_add_symbol);
67c0d1eb
RS
9639 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9640 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
9641 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9642 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9643 ex.X_op = O_constant;
67c0d1eb 9644 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9645 reg, reg, BFD_RELOC_LO16);
f5040a92 9646 ep->X_add_number = ex.X_add_number;
4d7206a2 9647 relax_switch ();
f5040a92 9648 }
67c0d1eb 9649 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9650 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2
RS
9651 if (mips_relax.sequence)
9652 relax_end ();
ed6fb7bd
SC
9653 }
9654 else
9655 {
f5040a92
AO
9656 ex.X_add_number = ep->X_add_number;
9657 ep->X_add_number = 0;
67c0d1eb
RS
9658 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9659 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9660 load_delay_nop ();
4d7206a2
RS
9661 relax_start (ep->X_add_symbol);
9662 relax_switch ();
67c0d1eb 9663 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9664 BFD_RELOC_LO16);
4d7206a2 9665 relax_end ();
ed6fb7bd 9666
f5040a92
AO
9667 if (ex.X_add_number != 0)
9668 {
9669 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9670 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9671 ex.X_op = O_constant;
67c0d1eb 9672 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 9673 reg, reg, BFD_RELOC_LO16);
f5040a92 9674 }
252b5132
RH
9675 }
9676 }
0a44bf69 9677 else if (mips_big_got)
252b5132
RH
9678 {
9679 expressionS ex;
252b5132
RH
9680
9681 /* This is the large GOT case. If this is a reference to an
9682 external symbol, we want
9683 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9684 addu $reg,$reg,$gp
9685 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
f5040a92
AO
9686
9687 Otherwise, for a reference to a local symbol in old ABI, we want
252b5132
RH
9688 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9689 nop
9690 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
684022ea 9691 If there is a constant, it must be added in after.
f5040a92
AO
9692
9693 In the NewABI, for local symbols, with or without offsets, we want:
438c16b8
TS
9694 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9695 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 9696 */
438c16b8
TS
9697 if (HAVE_NEWABI)
9698 {
4d7206a2 9699 ex.X_add_number = ep->X_add_number;
f5040a92 9700 ep->X_add_number = 0;
4d7206a2 9701 relax_start (ep->X_add_symbol);
df58fc94 9702 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9703 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9704 reg, reg, mips_gp_register);
9705 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9706 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
f5040a92
AO
9707 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9708 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9709 else if (ex.X_add_number)
9710 {
9711 ex.X_op = O_constant;
67c0d1eb
RS
9712 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9713 BFD_RELOC_LO16);
f5040a92
AO
9714 }
9715
9716 ep->X_add_number = ex.X_add_number;
4d7206a2 9717 relax_switch ();
67c0d1eb 9718 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9719 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
67c0d1eb
RS
9720 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9721 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 9722 relax_end ();
438c16b8 9723 }
252b5132 9724 else
438c16b8 9725 {
f5040a92
AO
9726 ex.X_add_number = ep->X_add_number;
9727 ep->X_add_number = 0;
4d7206a2 9728 relax_start (ep->X_add_symbol);
df58fc94 9729 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
9730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9731 reg, reg, mips_gp_register);
9732 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9733 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4d7206a2
RS
9734 relax_switch ();
9735 if (reg_needs_delay (mips_gp_register))
438c16b8
TS
9736 {
9737 /* We need a nop before loading from $gp. This special
9738 check is required because the lui which starts the main
9739 instruction stream does not refer to $gp, and so will not
9740 insert the nop which may be required. */
67c0d1eb 9741 macro_build (NULL, "nop", "");
438c16b8 9742 }
67c0d1eb 9743 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
17a2f251 9744 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 9745 load_delay_nop ();
67c0d1eb 9746 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
17a2f251 9747 BFD_RELOC_LO16);
4d7206a2 9748 relax_end ();
438c16b8 9749
f5040a92
AO
9750 if (ex.X_add_number != 0)
9751 {
9752 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9753 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9754 ex.X_op = O_constant;
67c0d1eb
RS
9755 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9756 BFD_RELOC_LO16);
f5040a92 9757 }
252b5132
RH
9758 }
9759 }
252b5132
RH
9760 else
9761 abort ();
8fc2e39e 9762
741fe287 9763 if (!mips_opts.at && *used_at == 1)
1661c76c 9764 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
9765}
9766
ea1fb5dc
RS
9767/* Move the contents of register SOURCE into register DEST. */
9768
9769static void
67c0d1eb 9770move_register (int dest, int source)
ea1fb5dc 9771{
df58fc94
RS
9772 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9773 instruction specifically requires a 32-bit one. */
9774 if (mips_opts.micromips
833794fc 9775 && !mips_opts.insn32
df58fc94 9776 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7951ca42 9777 macro_build (NULL, "move", "mp,mj", dest, source);
df58fc94 9778 else
40fc1451 9779 macro_build (NULL, "or", "d,v,t", dest, source, 0);
ea1fb5dc
RS
9780}
9781
4d7206a2 9782/* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
f6a22291
MR
9783 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9784 The two alternatives are:
4d7206a2 9785
33eaf5de 9786 Global symbol Local symbol
4d7206a2
RS
9787 ------------- ------------
9788 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9789 ... ...
9790 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9791
9792 load_got_offset emits the first instruction and add_got_offset
f6a22291
MR
9793 emits the second for a 16-bit offset or add_got_offset_hilo emits
9794 a sequence to add a 32-bit offset using a scratch register. */
4d7206a2
RS
9795
9796static void
67c0d1eb 9797load_got_offset (int dest, expressionS *local)
4d7206a2
RS
9798{
9799 expressionS global;
9800
9801 global = *local;
9802 global.X_add_number = 0;
9803
9804 relax_start (local->X_add_symbol);
67c0d1eb
RS
9805 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9806 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2 9807 relax_switch ();
67c0d1eb
RS
9808 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9809 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4d7206a2
RS
9810 relax_end ();
9811}
9812
9813static void
67c0d1eb 9814add_got_offset (int dest, expressionS *local)
4d7206a2
RS
9815{
9816 expressionS global;
9817
9818 global.X_op = O_constant;
9819 global.X_op_symbol = NULL;
9820 global.X_add_symbol = NULL;
9821 global.X_add_number = local->X_add_number;
9822
9823 relax_start (local->X_add_symbol);
67c0d1eb 9824 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4d7206a2
RS
9825 dest, dest, BFD_RELOC_LO16);
9826 relax_switch ();
67c0d1eb 9827 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4d7206a2
RS
9828 relax_end ();
9829}
9830
f6a22291
MR
9831static void
9832add_got_offset_hilo (int dest, expressionS *local, int tmp)
9833{
9834 expressionS global;
9835 int hold_mips_optimize;
9836
9837 global.X_op = O_constant;
9838 global.X_op_symbol = NULL;
9839 global.X_add_symbol = NULL;
9840 global.X_add_number = local->X_add_number;
9841
9842 relax_start (local->X_add_symbol);
9843 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9844 relax_switch ();
9845 /* Set mips_optimize around the lui instruction to avoid
9846 inserting an unnecessary nop after the lw. */
9847 hold_mips_optimize = mips_optimize;
9848 mips_optimize = 2;
9849 macro_build_lui (&global, tmp);
9850 mips_optimize = hold_mips_optimize;
9851 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9852 relax_end ();
9853
9854 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9855}
9856
df58fc94
RS
9857/* Emit a sequence of instructions to emulate a branch likely operation.
9858 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9859 is its complementing branch with the original condition negated.
9860 CALL is set if the original branch specified the link operation.
9861 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9862
9863 Code like this is produced in the noreorder mode:
9864
9865 BRNEG <args>, 1f
9866 nop
9867 b <sym>
9868 delay slot (executed only if branch taken)
9869 1:
9870
9871 or, if CALL is set:
9872
9873 BRNEG <args>, 1f
9874 nop
9875 bal <sym>
9876 delay slot (executed only if branch taken)
9877 1:
9878
9879 In the reorder mode the delay slot would be filled with a nop anyway,
9880 so code produced is simply:
9881
9882 BR <args>, <sym>
9883 nop
9884
9885 This function is used when producing code for the microMIPS ASE that
9886 does not implement branch likely instructions in hardware. */
9887
9888static void
9889macro_build_branch_likely (const char *br, const char *brneg,
9890 int call, expressionS *ep, const char *fmt,
9891 unsigned int sreg, unsigned int treg)
9892{
9893 int noreorder = mips_opts.noreorder;
9894 expressionS expr1;
9895
9896 gas_assert (mips_opts.micromips);
9897 start_noreorder ();
9898 if (noreorder)
9899 {
9900 micromips_label_expr (&expr1);
9901 macro_build (&expr1, brneg, fmt, sreg, treg);
9902 macro_build (NULL, "nop", "");
9903 macro_build (ep, call ? "bal" : "b", "p");
9904
9905 /* Set to true so that append_insn adds a label. */
9906 emit_branch_likely_macro = TRUE;
9907 }
9908 else
9909 {
9910 macro_build (ep, br, fmt, sreg, treg);
9911 macro_build (NULL, "nop", "");
9912 }
9913 end_noreorder ();
9914}
9915
9916/* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9917 the condition code tested. EP specifies the branch target. */
9918
9919static void
9920macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9921{
9922 const int call = 0;
9923 const char *brneg;
9924 const char *br;
9925
9926 switch (type)
9927 {
9928 case M_BC1FL:
9929 br = "bc1f";
9930 brneg = "bc1t";
9931 break;
9932 case M_BC1TL:
9933 br = "bc1t";
9934 brneg = "bc1f";
9935 break;
9936 case M_BC2FL:
9937 br = "bc2f";
9938 brneg = "bc2t";
9939 break;
9940 case M_BC2TL:
9941 br = "bc2t";
9942 brneg = "bc2f";
9943 break;
9944 default:
9945 abort ();
9946 }
9947 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9948}
9949
9950/* Emit a two-argument branch macro specified by TYPE, using SREG as
9951 the register tested. EP specifies the branch target. */
9952
9953static void
9954macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9955{
9956 const char *brneg = NULL;
9957 const char *br;
9958 int call = 0;
9959
9960 switch (type)
9961 {
9962 case M_BGEZ:
9963 br = "bgez";
9964 break;
9965 case M_BGEZL:
9966 br = mips_opts.micromips ? "bgez" : "bgezl";
9967 brneg = "bltz";
9968 break;
9969 case M_BGEZALL:
9970 gas_assert (mips_opts.micromips);
833794fc 9971 br = mips_opts.insn32 ? "bgezal" : "bgezals";
df58fc94
RS
9972 brneg = "bltz";
9973 call = 1;
9974 break;
9975 case M_BGTZ:
9976 br = "bgtz";
9977 break;
9978 case M_BGTZL:
9979 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9980 brneg = "blez";
9981 break;
9982 case M_BLEZ:
9983 br = "blez";
9984 break;
9985 case M_BLEZL:
9986 br = mips_opts.micromips ? "blez" : "blezl";
9987 brneg = "bgtz";
9988 break;
9989 case M_BLTZ:
9990 br = "bltz";
9991 break;
9992 case M_BLTZL:
9993 br = mips_opts.micromips ? "bltz" : "bltzl";
9994 brneg = "bgez";
9995 break;
9996 case M_BLTZALL:
9997 gas_assert (mips_opts.micromips);
833794fc 9998 br = mips_opts.insn32 ? "bltzal" : "bltzals";
df58fc94
RS
9999 brneg = "bgez";
10000 call = 1;
10001 break;
10002 default:
10003 abort ();
10004 }
10005 if (mips_opts.micromips && brneg)
10006 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10007 else
10008 macro_build (ep, br, "s,p", sreg);
10009}
10010
10011/* Emit a three-argument branch macro specified by TYPE, using SREG and
10012 TREG as the registers tested. EP specifies the branch target. */
10013
10014static void
10015macro_build_branch_rsrt (int type, expressionS *ep,
10016 unsigned int sreg, unsigned int treg)
10017{
10018 const char *brneg = NULL;
10019 const int call = 0;
10020 const char *br;
10021
10022 switch (type)
10023 {
10024 case M_BEQ:
10025 case M_BEQ_I:
10026 br = "beq";
10027 break;
10028 case M_BEQL:
10029 case M_BEQL_I:
10030 br = mips_opts.micromips ? "beq" : "beql";
10031 brneg = "bne";
10032 break;
10033 case M_BNE:
10034 case M_BNE_I:
10035 br = "bne";
10036 break;
10037 case M_BNEL:
10038 case M_BNEL_I:
10039 br = mips_opts.micromips ? "bne" : "bnel";
10040 brneg = "beq";
10041 break;
10042 default:
10043 abort ();
10044 }
10045 if (mips_opts.micromips && brneg)
10046 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10047 else
10048 macro_build (ep, br, "s,t,p", sreg, treg);
10049}
10050
f2ae14a1
RS
10051/* Return the high part that should be loaded in order to make the low
10052 part of VALUE accessible using an offset of OFFBITS bits. */
10053
10054static offsetT
10055offset_high_part (offsetT value, unsigned int offbits)
10056{
10057 offsetT bias;
10058 addressT low_mask;
10059
10060 if (offbits == 0)
10061 return value;
10062 bias = 1 << (offbits - 1);
10063 low_mask = bias * 2 - 1;
10064 return (value + bias) & ~low_mask;
10065}
10066
10067/* Return true if the value stored in offset_expr and offset_reloc
10068 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10069 amount that the caller wants to add without inducing overflow
10070 and ALIGN is the known alignment of the value in bytes. */
10071
10072static bfd_boolean
10073small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10074{
10075 if (offbits == 16)
10076 {
10077 /* Accept any relocation operator if overflow isn't a concern. */
10078 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10079 return TRUE;
10080
10081 /* These relocations are guaranteed not to overflow in correct links. */
10082 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10083 || gprel16_reloc_p (*offset_reloc))
10084 return TRUE;
10085 }
10086 if (offset_expr.X_op == O_constant
10087 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10088 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10089 return TRUE;
10090 return FALSE;
10091}
10092
252b5132
RH
10093/*
10094 * Build macros
10095 * This routine implements the seemingly endless macro or synthesized
10096 * instructions and addressing modes in the mips assembly language. Many
10097 * of these macros are simple and are similar to each other. These could
67c1ffbe 10098 * probably be handled by some kind of table or grammar approach instead of
252b5132
RH
10099 * this verbose method. Others are not simple macros but are more like
10100 * optimizing code generation.
10101 * One interesting optimization is when several store macros appear
67c1ffbe 10102 * consecutively that would load AT with the upper half of the same address.
2b0f3761 10103 * The ensuing load upper instructions are omitted. This implies some kind
252b5132
RH
10104 * of global optimization. We currently only optimize within a single macro.
10105 * For many of the load and store macros if the address is specified as a
10106 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10107 * first load register 'at' with zero and use it as the base register. The
10108 * mips assembler simply uses register $zero. Just one tiny optimization
10109 * we're missing.
10110 */
10111static void
833794fc 10112macro (struct mips_cl_insn *ip, char *str)
252b5132 10113{
c0ebe874
RS
10114 const struct mips_operand_array *operands;
10115 unsigned int breg, i;
741fe287 10116 unsigned int tempreg;
252b5132 10117 int mask;
43841e91 10118 int used_at = 0;
df58fc94 10119 expressionS label_expr;
252b5132 10120 expressionS expr1;
df58fc94 10121 expressionS *ep;
252b5132
RH
10122 const char *s;
10123 const char *s2;
10124 const char *fmt;
10125 int likely = 0;
252b5132 10126 int coproc = 0;
7f3c4072 10127 int offbits = 16;
1abe91b1 10128 int call = 0;
df58fc94
RS
10129 int jals = 0;
10130 int dbl = 0;
10131 int imm = 0;
10132 int ust = 0;
10133 int lp = 0;
f2ae14a1 10134 bfd_boolean large_offset;
252b5132 10135 int off;
252b5132 10136 int hold_mips_optimize;
f2ae14a1 10137 unsigned int align;
c0ebe874 10138 unsigned int op[MAX_OPERANDS];
252b5132 10139
9c2799c2 10140 gas_assert (! mips_opts.mips16);
252b5132 10141
c0ebe874
RS
10142 operands = insn_operands (ip);
10143 for (i = 0; i < MAX_OPERANDS; i++)
10144 if (operands->operand[i])
10145 op[i] = insn_extract_operand (ip, operands->operand[i]);
10146 else
10147 op[i] = -1;
10148
252b5132
RH
10149 mask = ip->insn_mo->mask;
10150
df58fc94
RS
10151 label_expr.X_op = O_constant;
10152 label_expr.X_op_symbol = NULL;
10153 label_expr.X_add_symbol = NULL;
10154 label_expr.X_add_number = 0;
10155
252b5132
RH
10156 expr1.X_op = O_constant;
10157 expr1.X_op_symbol = NULL;
10158 expr1.X_add_symbol = NULL;
10159 expr1.X_add_number = 1;
f2ae14a1 10160 align = 1;
252b5132
RH
10161
10162 switch (mask)
10163 {
10164 case M_DABS:
10165 dbl = 1;
1a0670f3 10166 /* Fall through. */
252b5132 10167 case M_ABS:
df58fc94
RS
10168 /* bgez $a0,1f
10169 move v0,$a0
10170 sub v0,$zero,$a0
10171 1:
10172 */
252b5132 10173
7d10b47d 10174 start_noreorder ();
252b5132 10175
df58fc94
RS
10176 if (mips_opts.micromips)
10177 micromips_label_expr (&label_expr);
10178 else
10179 label_expr.X_add_number = 8;
c0ebe874
RS
10180 macro_build (&label_expr, "bgez", "s,p", op[1]);
10181 if (op[0] == op[1])
a605d2b3 10182 macro_build (NULL, "nop", "");
252b5132 10183 else
c0ebe874
RS
10184 move_register (op[0], op[1]);
10185 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
df58fc94
RS
10186 if (mips_opts.micromips)
10187 micromips_add_label ();
252b5132 10188
7d10b47d 10189 end_noreorder ();
8fc2e39e 10190 break;
252b5132
RH
10191
10192 case M_ADD_I:
10193 s = "addi";
10194 s2 = "add";
10195 goto do_addi;
10196 case M_ADDU_I:
10197 s = "addiu";
10198 s2 = "addu";
10199 goto do_addi;
10200 case M_DADD_I:
10201 dbl = 1;
10202 s = "daddi";
10203 s2 = "dadd";
df58fc94
RS
10204 if (!mips_opts.micromips)
10205 goto do_addi;
b0e6f033 10206 if (imm_expr.X_add_number >= -0x200
df58fc94
RS
10207 && imm_expr.X_add_number < 0x200)
10208 {
b0e6f033
RS
10209 macro_build (NULL, s, "t,r,.", op[0], op[1],
10210 (int) imm_expr.X_add_number);
df58fc94
RS
10211 break;
10212 }
10213 goto do_addi_i;
252b5132
RH
10214 case M_DADDU_I:
10215 dbl = 1;
10216 s = "daddiu";
10217 s2 = "daddu";
10218 do_addi:
b0e6f033 10219 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
10220 && imm_expr.X_add_number < 0x8000)
10221 {
c0ebe874 10222 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 10223 break;
252b5132 10224 }
df58fc94 10225 do_addi_i:
8fc2e39e 10226 used_at = 1;
67c0d1eb 10227 load_register (AT, &imm_expr, dbl);
c0ebe874 10228 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10229 break;
10230
10231 case M_AND_I:
10232 s = "andi";
10233 s2 = "and";
10234 goto do_bit;
10235 case M_OR_I:
10236 s = "ori";
10237 s2 = "or";
10238 goto do_bit;
10239 case M_NOR_I:
10240 s = "";
10241 s2 = "nor";
10242 goto do_bit;
10243 case M_XOR_I:
10244 s = "xori";
10245 s2 = "xor";
10246 do_bit:
b0e6f033 10247 if (imm_expr.X_add_number >= 0
252b5132
RH
10248 && imm_expr.X_add_number < 0x10000)
10249 {
10250 if (mask != M_NOR_I)
c0ebe874 10251 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
10252 else
10253 {
67c0d1eb 10254 macro_build (&imm_expr, "ori", "t,r,i",
c0ebe874
RS
10255 op[0], op[1], BFD_RELOC_LO16);
10256 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
252b5132 10257 }
8fc2e39e 10258 break;
252b5132
RH
10259 }
10260
8fc2e39e 10261 used_at = 1;
bad1aba3 10262 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 10263 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
10264 break;
10265
8b082fb1
TS
10266 case M_BALIGN:
10267 switch (imm_expr.X_add_number)
10268 {
10269 case 0:
10270 macro_build (NULL, "nop", "");
10271 break;
10272 case 2:
c0ebe874 10273 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
8b082fb1 10274 break;
03f66e8a
MR
10275 case 1:
10276 case 3:
c0ebe874 10277 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
90ecf173 10278 (int) imm_expr.X_add_number);
8b082fb1 10279 break;
03f66e8a
MR
10280 default:
10281 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10282 (unsigned long) imm_expr.X_add_number);
10283 break;
8b082fb1
TS
10284 }
10285 break;
10286
df58fc94
RS
10287 case M_BC1FL:
10288 case M_BC1TL:
10289 case M_BC2FL:
10290 case M_BC2TL:
10291 gas_assert (mips_opts.micromips);
10292 macro_build_branch_ccl (mask, &offset_expr,
10293 EXTRACT_OPERAND (1, BCC, *ip));
10294 break;
10295
252b5132 10296 case M_BEQ_I:
252b5132 10297 case M_BEQL_I:
252b5132 10298 case M_BNE_I:
252b5132 10299 case M_BNEL_I:
b0e6f033 10300 if (imm_expr.X_add_number == 0)
c0ebe874 10301 op[1] = 0;
df58fc94 10302 else
252b5132 10303 {
c0ebe874 10304 op[1] = AT;
df58fc94 10305 used_at = 1;
bad1aba3 10306 load_register (op[1], &imm_expr, GPR_SIZE == 64);
252b5132 10307 }
df58fc94
RS
10308 /* Fall through. */
10309 case M_BEQL:
10310 case M_BNEL:
c0ebe874 10311 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
252b5132
RH
10312 break;
10313
10314 case M_BGEL:
10315 likely = 1;
1a0670f3 10316 /* Fall through. */
252b5132 10317 case M_BGE:
c0ebe874
RS
10318 if (op[1] == 0)
10319 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10320 else if (op[0] == 0)
10321 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
df58fc94 10322 else
252b5132 10323 {
df58fc94 10324 used_at = 1;
c0ebe874 10325 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10326 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10327 &offset_expr, AT, ZERO);
252b5132 10328 }
df58fc94
RS
10329 break;
10330
10331 case M_BGEZL:
10332 case M_BGEZALL:
10333 case M_BGTZL:
10334 case M_BLEZL:
10335 case M_BLTZL:
10336 case M_BLTZALL:
c0ebe874 10337 macro_build_branch_rs (mask, &offset_expr, op[0]);
252b5132
RH
10338 break;
10339
10340 case M_BGTL_I:
10341 likely = 1;
1a0670f3 10342 /* Fall through. */
252b5132 10343 case M_BGT_I:
90ecf173 10344 /* Check for > max integer. */
b0e6f033 10345 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132
RH
10346 {
10347 do_false:
90ecf173 10348 /* Result is always false. */
252b5132 10349 if (! likely)
a605d2b3 10350 macro_build (NULL, "nop", "");
252b5132 10351 else
df58fc94 10352 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8fc2e39e 10353 break;
252b5132 10354 }
f9419b05 10355 ++imm_expr.X_add_number;
252b5132
RH
10356 /* FALLTHROUGH */
10357 case M_BGE_I:
10358 case M_BGEL_I:
10359 if (mask == M_BGEL_I)
10360 likely = 1;
b0e6f033 10361 if (imm_expr.X_add_number == 0)
252b5132 10362 {
df58fc94 10363 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
c0ebe874 10364 &offset_expr, op[0]);
8fc2e39e 10365 break;
252b5132 10366 }
b0e6f033 10367 if (imm_expr.X_add_number == 1)
252b5132 10368 {
df58fc94 10369 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
c0ebe874 10370 &offset_expr, op[0]);
8fc2e39e 10371 break;
252b5132 10372 }
b0e6f033 10373 if (imm_expr.X_add_number <= GPR_SMIN)
252b5132
RH
10374 {
10375 do_true:
10376 /* result is always true */
1661c76c 10377 as_warn (_("branch %s is always true"), ip->insn_mo->name);
67c0d1eb 10378 macro_build (&offset_expr, "b", "p");
8fc2e39e 10379 break;
252b5132 10380 }
8fc2e39e 10381 used_at = 1;
c0ebe874 10382 set_at (op[0], 0);
df58fc94
RS
10383 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10384 &offset_expr, AT, ZERO);
252b5132
RH
10385 break;
10386
10387 case M_BGEUL:
10388 likely = 1;
1a0670f3 10389 /* Fall through. */
252b5132 10390 case M_BGEU:
c0ebe874 10391 if (op[1] == 0)
252b5132 10392 goto do_true;
c0ebe874 10393 else if (op[0] == 0)
df58fc94 10394 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10395 &offset_expr, ZERO, op[1]);
df58fc94 10396 else
252b5132 10397 {
df58fc94 10398 used_at = 1;
c0ebe874 10399 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10400 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10401 &offset_expr, AT, ZERO);
252b5132 10402 }
252b5132
RH
10403 break;
10404
10405 case M_BGTUL_I:
10406 likely = 1;
1a0670f3 10407 /* Fall through. */
252b5132 10408 case M_BGTU_I:
c0ebe874 10409 if (op[0] == 0
bad1aba3 10410 || (GPR_SIZE == 32
f01dc953 10411 && imm_expr.X_add_number == -1))
252b5132 10412 goto do_false;
f9419b05 10413 ++imm_expr.X_add_number;
252b5132
RH
10414 /* FALLTHROUGH */
10415 case M_BGEU_I:
10416 case M_BGEUL_I:
10417 if (mask == M_BGEUL_I)
10418 likely = 1;
b0e6f033 10419 if (imm_expr.X_add_number == 0)
252b5132 10420 goto do_true;
b0e6f033 10421 else if (imm_expr.X_add_number == 1)
df58fc94 10422 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10423 &offset_expr, op[0], ZERO);
df58fc94 10424 else
252b5132 10425 {
df58fc94 10426 used_at = 1;
c0ebe874 10427 set_at (op[0], 1);
df58fc94
RS
10428 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10429 &offset_expr, AT, ZERO);
252b5132 10430 }
252b5132
RH
10431 break;
10432
10433 case M_BGTL:
10434 likely = 1;
1a0670f3 10435 /* Fall through. */
252b5132 10436 case M_BGT:
c0ebe874
RS
10437 if (op[1] == 0)
10438 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10439 else if (op[0] == 0)
10440 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
df58fc94 10441 else
252b5132 10442 {
df58fc94 10443 used_at = 1;
c0ebe874 10444 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10445 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10446 &offset_expr, AT, ZERO);
252b5132 10447 }
252b5132
RH
10448 break;
10449
10450 case M_BGTUL:
10451 likely = 1;
1a0670f3 10452 /* Fall through. */
252b5132 10453 case M_BGTU:
c0ebe874 10454 if (op[1] == 0)
df58fc94 10455 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874
RS
10456 &offset_expr, op[0], ZERO);
10457 else if (op[0] == 0)
df58fc94
RS
10458 goto do_false;
10459 else
252b5132 10460 {
df58fc94 10461 used_at = 1;
c0ebe874 10462 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10463 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10464 &offset_expr, AT, ZERO);
252b5132 10465 }
252b5132
RH
10466 break;
10467
10468 case M_BLEL:
10469 likely = 1;
1a0670f3 10470 /* Fall through. */
252b5132 10471 case M_BLE:
c0ebe874
RS
10472 if (op[1] == 0)
10473 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10474 else if (op[0] == 0)
10475 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
df58fc94 10476 else
252b5132 10477 {
df58fc94 10478 used_at = 1;
c0ebe874 10479 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10480 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10481 &offset_expr, AT, ZERO);
252b5132 10482 }
252b5132
RH
10483 break;
10484
10485 case M_BLEL_I:
10486 likely = 1;
1a0670f3 10487 /* Fall through. */
252b5132 10488 case M_BLE_I:
b0e6f033 10489 if (imm_expr.X_add_number >= GPR_SMAX)
252b5132 10490 goto do_true;
f9419b05 10491 ++imm_expr.X_add_number;
252b5132
RH
10492 /* FALLTHROUGH */
10493 case M_BLT_I:
10494 case M_BLTL_I:
10495 if (mask == M_BLTL_I)
10496 likely = 1;
b0e6f033 10497 if (imm_expr.X_add_number == 0)
c0ebe874 10498 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
b0e6f033 10499 else if (imm_expr.X_add_number == 1)
c0ebe874 10500 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
df58fc94 10501 else
252b5132 10502 {
df58fc94 10503 used_at = 1;
c0ebe874 10504 set_at (op[0], 0);
df58fc94
RS
10505 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10506 &offset_expr, AT, ZERO);
252b5132 10507 }
252b5132
RH
10508 break;
10509
10510 case M_BLEUL:
10511 likely = 1;
1a0670f3 10512 /* Fall through. */
252b5132 10513 case M_BLEU:
c0ebe874 10514 if (op[1] == 0)
df58fc94 10515 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874
RS
10516 &offset_expr, op[0], ZERO);
10517 else if (op[0] == 0)
df58fc94
RS
10518 goto do_true;
10519 else
252b5132 10520 {
df58fc94 10521 used_at = 1;
c0ebe874 10522 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
df58fc94
RS
10523 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10524 &offset_expr, AT, ZERO);
252b5132 10525 }
252b5132
RH
10526 break;
10527
10528 case M_BLEUL_I:
10529 likely = 1;
1a0670f3 10530 /* Fall through. */
252b5132 10531 case M_BLEU_I:
c0ebe874 10532 if (op[0] == 0
bad1aba3 10533 || (GPR_SIZE == 32
f01dc953 10534 && imm_expr.X_add_number == -1))
252b5132 10535 goto do_true;
f9419b05 10536 ++imm_expr.X_add_number;
252b5132
RH
10537 /* FALLTHROUGH */
10538 case M_BLTU_I:
10539 case M_BLTUL_I:
10540 if (mask == M_BLTUL_I)
10541 likely = 1;
b0e6f033 10542 if (imm_expr.X_add_number == 0)
252b5132 10543 goto do_false;
b0e6f033 10544 else if (imm_expr.X_add_number == 1)
df58fc94 10545 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
c0ebe874 10546 &offset_expr, op[0], ZERO);
df58fc94 10547 else
252b5132 10548 {
df58fc94 10549 used_at = 1;
c0ebe874 10550 set_at (op[0], 1);
df58fc94
RS
10551 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10552 &offset_expr, AT, ZERO);
252b5132 10553 }
252b5132
RH
10554 break;
10555
10556 case M_BLTL:
10557 likely = 1;
1a0670f3 10558 /* Fall through. */
252b5132 10559 case M_BLT:
c0ebe874
RS
10560 if (op[1] == 0)
10561 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10562 else if (op[0] == 0)
10563 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
df58fc94 10564 else
252b5132 10565 {
df58fc94 10566 used_at = 1;
c0ebe874 10567 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10568 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10569 &offset_expr, AT, ZERO);
252b5132 10570 }
252b5132
RH
10571 break;
10572
10573 case M_BLTUL:
10574 likely = 1;
1a0670f3 10575 /* Fall through. */
252b5132 10576 case M_BLTU:
c0ebe874 10577 if (op[1] == 0)
252b5132 10578 goto do_false;
c0ebe874 10579 else if (op[0] == 0)
df58fc94 10580 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
c0ebe874 10581 &offset_expr, ZERO, op[1]);
df58fc94 10582 else
252b5132 10583 {
df58fc94 10584 used_at = 1;
c0ebe874 10585 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
df58fc94
RS
10586 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10587 &offset_expr, AT, ZERO);
252b5132 10588 }
252b5132
RH
10589 break;
10590
10591 case M_DDIV_3:
10592 dbl = 1;
1a0670f3 10593 /* Fall through. */
252b5132
RH
10594 case M_DIV_3:
10595 s = "mflo";
10596 goto do_div3;
10597 case M_DREM_3:
10598 dbl = 1;
1a0670f3 10599 /* Fall through. */
252b5132
RH
10600 case M_REM_3:
10601 s = "mfhi";
10602 do_div3:
c0ebe874 10603 if (op[2] == 0)
252b5132 10604 {
1661c76c 10605 as_warn (_("divide by zero"));
252b5132 10606 if (mips_trap)
df58fc94 10607 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10608 else
df58fc94 10609 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10610 break;
252b5132
RH
10611 }
10612
7d10b47d 10613 start_noreorder ();
252b5132
RH
10614 if (mips_trap)
10615 {
c0ebe874
RS
10616 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10617 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
252b5132
RH
10618 }
10619 else
10620 {
df58fc94
RS
10621 if (mips_opts.micromips)
10622 micromips_label_expr (&label_expr);
10623 else
10624 label_expr.X_add_number = 8;
c0ebe874
RS
10625 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10626 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
df58fc94
RS
10627 macro_build (NULL, "break", BRK_FMT, 7);
10628 if (mips_opts.micromips)
10629 micromips_add_label ();
252b5132
RH
10630 }
10631 expr1.X_add_number = -1;
8fc2e39e 10632 used_at = 1;
f6a22291 10633 load_register (AT, &expr1, dbl);
df58fc94
RS
10634 if (mips_opts.micromips)
10635 micromips_label_expr (&label_expr);
10636 else
10637 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
c0ebe874 10638 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
252b5132
RH
10639 if (dbl)
10640 {
10641 expr1.X_add_number = 1;
f6a22291 10642 load_register (AT, &expr1, dbl);
df58fc94 10643 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
252b5132
RH
10644 }
10645 else
10646 {
10647 expr1.X_add_number = 0x80000000;
df58fc94 10648 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
252b5132
RH
10649 }
10650 if (mips_trap)
10651 {
c0ebe874 10652 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
252b5132
RH
10653 /* We want to close the noreorder block as soon as possible, so
10654 that later insns are available for delay slot filling. */
7d10b47d 10655 end_noreorder ();
252b5132
RH
10656 }
10657 else
10658 {
df58fc94
RS
10659 if (mips_opts.micromips)
10660 micromips_label_expr (&label_expr);
10661 else
10662 label_expr.X_add_number = 8;
c0ebe874 10663 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
a605d2b3 10664 macro_build (NULL, "nop", "");
252b5132
RH
10665
10666 /* We want to close the noreorder block as soon as possible, so
10667 that later insns are available for delay slot filling. */
7d10b47d 10668 end_noreorder ();
252b5132 10669
df58fc94 10670 macro_build (NULL, "break", BRK_FMT, 6);
252b5132 10671 }
df58fc94
RS
10672 if (mips_opts.micromips)
10673 micromips_add_label ();
c0ebe874 10674 macro_build (NULL, s, MFHL_FMT, op[0]);
252b5132
RH
10675 break;
10676
10677 case M_DIV_3I:
10678 s = "div";
10679 s2 = "mflo";
10680 goto do_divi;
10681 case M_DIVU_3I:
10682 s = "divu";
10683 s2 = "mflo";
10684 goto do_divi;
10685 case M_REM_3I:
10686 s = "div";
10687 s2 = "mfhi";
10688 goto do_divi;
10689 case M_REMU_3I:
10690 s = "divu";
10691 s2 = "mfhi";
10692 goto do_divi;
10693 case M_DDIV_3I:
10694 dbl = 1;
10695 s = "ddiv";
10696 s2 = "mflo";
10697 goto do_divi;
10698 case M_DDIVU_3I:
10699 dbl = 1;
10700 s = "ddivu";
10701 s2 = "mflo";
10702 goto do_divi;
10703 case M_DREM_3I:
10704 dbl = 1;
10705 s = "ddiv";
10706 s2 = "mfhi";
10707 goto do_divi;
10708 case M_DREMU_3I:
10709 dbl = 1;
10710 s = "ddivu";
10711 s2 = "mfhi";
10712 do_divi:
b0e6f033 10713 if (imm_expr.X_add_number == 0)
252b5132 10714 {
1661c76c 10715 as_warn (_("divide by zero"));
252b5132 10716 if (mips_trap)
df58fc94 10717 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
252b5132 10718 else
df58fc94 10719 macro_build (NULL, "break", BRK_FMT, 7);
8fc2e39e 10720 break;
252b5132 10721 }
b0e6f033 10722 if (imm_expr.X_add_number == 1)
252b5132
RH
10723 {
10724 if (strcmp (s2, "mflo") == 0)
c0ebe874 10725 move_register (op[0], op[1]);
252b5132 10726 else
c0ebe874 10727 move_register (op[0], ZERO);
8fc2e39e 10728 break;
252b5132 10729 }
b0e6f033 10730 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
252b5132
RH
10731 {
10732 if (strcmp (s2, "mflo") == 0)
c0ebe874 10733 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
252b5132 10734 else
c0ebe874 10735 move_register (op[0], ZERO);
8fc2e39e 10736 break;
252b5132
RH
10737 }
10738
8fc2e39e 10739 used_at = 1;
67c0d1eb 10740 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
10741 macro_build (NULL, s, "z,s,t", op[1], AT);
10742 macro_build (NULL, s2, MFHL_FMT, op[0]);
252b5132
RH
10743 break;
10744
10745 case M_DIVU_3:
10746 s = "divu";
10747 s2 = "mflo";
10748 goto do_divu3;
10749 case M_REMU_3:
10750 s = "divu";
10751 s2 = "mfhi";
10752 goto do_divu3;
10753 case M_DDIVU_3:
10754 s = "ddivu";
10755 s2 = "mflo";
10756 goto do_divu3;
10757 case M_DREMU_3:
10758 s = "ddivu";
10759 s2 = "mfhi";
10760 do_divu3:
7d10b47d 10761 start_noreorder ();
252b5132
RH
10762 if (mips_trap)
10763 {
c0ebe874
RS
10764 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10765 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10766 /* We want to close the noreorder block as soon as possible, so
10767 that later insns are available for delay slot filling. */
7d10b47d 10768 end_noreorder ();
252b5132
RH
10769 }
10770 else
10771 {
df58fc94
RS
10772 if (mips_opts.micromips)
10773 micromips_label_expr (&label_expr);
10774 else
10775 label_expr.X_add_number = 8;
c0ebe874
RS
10776 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10777 macro_build (NULL, s, "z,s,t", op[1], op[2]);
252b5132
RH
10778
10779 /* We want to close the noreorder block as soon as possible, so
10780 that later insns are available for delay slot filling. */
7d10b47d 10781 end_noreorder ();
df58fc94
RS
10782 macro_build (NULL, "break", BRK_FMT, 7);
10783 if (mips_opts.micromips)
10784 micromips_add_label ();
252b5132 10785 }
c0ebe874 10786 macro_build (NULL, s2, MFHL_FMT, op[0]);
8fc2e39e 10787 break;
252b5132 10788
1abe91b1
MR
10789 case M_DLCA_AB:
10790 dbl = 1;
1a0670f3 10791 /* Fall through. */
1abe91b1
MR
10792 case M_LCA_AB:
10793 call = 1;
10794 goto do_la;
252b5132
RH
10795 case M_DLA_AB:
10796 dbl = 1;
1a0670f3 10797 /* Fall through. */
252b5132 10798 case M_LA_AB:
1abe91b1 10799 do_la:
252b5132
RH
10800 /* Load the address of a symbol into a register. If breg is not
10801 zero, we then add a base register to it. */
10802
c0ebe874 10803 breg = op[2];
bad1aba3 10804 if (dbl && GPR_SIZE == 32)
ece794d9
MF
10805 as_warn (_("dla used to load 32-bit register; recommend using la "
10806 "instead"));
3bec30a8 10807
90ecf173 10808 if (!dbl && HAVE_64BIT_OBJECTS)
ece794d9
MF
10809 as_warn (_("la used to load 64-bit address; recommend using dla "
10810 "instead"));
3bec30a8 10811
f2ae14a1 10812 if (small_offset_p (0, align, 16))
0c11417f 10813 {
c0ebe874 10814 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
f2ae14a1 10815 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8fc2e39e 10816 break;
0c11417f
MR
10817 }
10818
c0ebe874 10819 if (mips_opts.at && (op[0] == breg))
afdbd6d0
CD
10820 {
10821 tempreg = AT;
10822 used_at = 1;
10823 }
10824 else
c0ebe874 10825 tempreg = op[0];
afdbd6d0 10826
252b5132
RH
10827 if (offset_expr.X_op != O_symbol
10828 && offset_expr.X_op != O_constant)
10829 {
1661c76c 10830 as_bad (_("expression too complex"));
252b5132
RH
10831 offset_expr.X_op = O_constant;
10832 }
10833
252b5132 10834 if (offset_expr.X_op == O_constant)
aed1a261 10835 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
252b5132
RH
10836 else if (mips_pic == NO_PIC)
10837 {
d6bc6245 10838 /* If this is a reference to a GP relative symbol, we want
cdf6fd85 10839 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
252b5132
RH
10840 Otherwise we want
10841 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10842 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10843 If we have a constant, we need two instructions anyhow,
d6bc6245 10844 so we may as well always use the latter form.
76b3015f 10845
6caf9ef4
TS
10846 With 64bit address space and a usable $at we want
10847 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10848 lui $at,<sym> (BFD_RELOC_HI16_S)
10849 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10850 daddiu $at,<sym> (BFD_RELOC_LO16)
10851 dsll32 $tempreg,0
10852 daddu $tempreg,$tempreg,$at
10853
10854 If $at is already in use, we use a path which is suboptimal
10855 on superscalar processors.
10856 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10857 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10858 dsll $tempreg,16
10859 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10860 dsll $tempreg,16
10861 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10862
10863 For GP relative symbols in 64bit address space we can use
10864 the same sequence as in 32bit address space. */
aed1a261 10865 if (HAVE_64BIT_SYMBOLS)
252b5132 10866 {
6caf9ef4
TS
10867 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10868 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10869 {
10870 relax_start (offset_expr.X_add_symbol);
10871 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10872 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10873 relax_switch ();
10874 }
d6bc6245 10875
741fe287 10876 if (used_at == 0 && mips_opts.at)
98d3f06f 10877 {
df58fc94 10878 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10879 tempreg, BFD_RELOC_MIPS_HIGHEST);
df58fc94 10880 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10881 AT, BFD_RELOC_HI16_S);
67c0d1eb 10882 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10883 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
67c0d1eb 10884 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10885 AT, AT, BFD_RELOC_LO16);
df58fc94 10886 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 10887 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
98d3f06f
KH
10888 used_at = 1;
10889 }
10890 else
10891 {
df58fc94 10892 macro_build (&offset_expr, "lui", LUI_FMT,
17a2f251 10893 tempreg, BFD_RELOC_MIPS_HIGHEST);
67c0d1eb 10894 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10895 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 10896 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10897 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10898 tempreg, tempreg, BFD_RELOC_HI16_S);
df58fc94 10899 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb 10900 macro_build (&offset_expr, "daddiu", "t,r,j",
17a2f251 10901 tempreg, tempreg, BFD_RELOC_LO16);
98d3f06f 10902 }
6caf9ef4
TS
10903
10904 if (mips_relax.sequence)
10905 relax_end ();
98d3f06f
KH
10906 }
10907 else
10908 {
10909 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 10910 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
98d3f06f 10911 {
4d7206a2 10912 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10913 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10914 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4d7206a2 10915 relax_switch ();
98d3f06f 10916 }
6943caf0 10917 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
1661c76c 10918 as_bad (_("offset too large"));
67c0d1eb
RS
10919 macro_build_lui (&offset_expr, tempreg);
10920 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10921 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2
RS
10922 if (mips_relax.sequence)
10923 relax_end ();
98d3f06f 10924 }
252b5132 10925 }
0a44bf69 10926 else if (!mips_big_got && !HAVE_NEWABI)
252b5132 10927 {
9117d219
NC
10928 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10929
252b5132
RH
10930 /* If this is a reference to an external symbol, and there
10931 is no constant, we want
10932 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
1abe91b1 10933 or for lca or if tempreg is PIC_CALL_REG
9117d219 10934 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
252b5132
RH
10935 For a local symbol, we want
10936 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10937 nop
10938 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10939
10940 If we have a small constant, and this is a reference to
10941 an external symbol, we want
10942 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10943 nop
10944 addiu $tempreg,$tempreg,<constant>
10945 For a local symbol, we want the same instruction
10946 sequence, but we output a BFD_RELOC_LO16 reloc on the
10947 addiu instruction.
10948
10949 If we have a large constant, and this is a reference to
10950 an external symbol, we want
10951 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10952 lui $at,<hiconstant>
10953 addiu $at,$at,<loconstant>
10954 addu $tempreg,$tempreg,$at
10955 For a local symbol, we want the same instruction
10956 sequence, but we output a BFD_RELOC_LO16 reloc on the
ed6fb7bd 10957 addiu instruction.
ed6fb7bd
SC
10958 */
10959
4d7206a2 10960 if (offset_expr.X_add_number == 0)
252b5132 10961 {
0a44bf69
RS
10962 if (mips_pic == SVR4_PIC
10963 && breg == 0
10964 && (call || tempreg == PIC_CALL_REG))
4d7206a2
RS
10965 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10966
10967 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
10968 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10969 lw_reloc_type, mips_gp_register);
4d7206a2 10970 if (breg != 0)
252b5132
RH
10971 {
10972 /* We're going to put in an addu instruction using
10973 tempreg, so we may as well insert the nop right
10974 now. */
269137b2 10975 load_delay_nop ();
252b5132 10976 }
4d7206a2 10977 relax_switch ();
67c0d1eb
RS
10978 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10979 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 10980 load_delay_nop ();
67c0d1eb
RS
10981 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10982 tempreg, tempreg, BFD_RELOC_LO16);
4d7206a2 10983 relax_end ();
252b5132
RH
10984 /* FIXME: If breg == 0, and the next instruction uses
10985 $tempreg, then if this variant case is used an extra
10986 nop will be generated. */
10987 }
4d7206a2
RS
10988 else if (offset_expr.X_add_number >= -0x8000
10989 && offset_expr.X_add_number < 0x8000)
252b5132 10990 {
67c0d1eb 10991 load_got_offset (tempreg, &offset_expr);
269137b2 10992 load_delay_nop ();
67c0d1eb 10993 add_got_offset (tempreg, &offset_expr);
252b5132
RH
10994 }
10995 else
10996 {
4d7206a2
RS
10997 expr1.X_add_number = offset_expr.X_add_number;
10998 offset_expr.X_add_number =
43c0598f 10999 SEXT_16BIT (offset_expr.X_add_number);
67c0d1eb 11000 load_got_offset (tempreg, &offset_expr);
f6a22291 11001 offset_expr.X_add_number = expr1.X_add_number;
252b5132
RH
11002 /* If we are going to add in a base register, and the
11003 target register and the base register are the same,
11004 then we are using AT as a temporary register. Since
11005 we want to load the constant into AT, we add our
11006 current AT (from the global offset table) and the
11007 register into the register now, and pretend we were
11008 not using a base register. */
c0ebe874 11009 if (breg == op[0])
252b5132 11010 {
269137b2 11011 load_delay_nop ();
67c0d1eb 11012 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11013 op[0], AT, breg);
252b5132 11014 breg = 0;
c0ebe874 11015 tempreg = op[0];
252b5132 11016 }
f6a22291 11017 add_got_offset_hilo (tempreg, &offset_expr, AT);
252b5132
RH
11018 used_at = 1;
11019 }
11020 }
0a44bf69 11021 else if (!mips_big_got && HAVE_NEWABI)
f5040a92 11022 {
67c0d1eb 11023 int add_breg_early = 0;
f5040a92
AO
11024
11025 /* If this is a reference to an external, and there is no
11026 constant, or local symbol (*), with or without a
11027 constant, we want
11028 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
1abe91b1 11029 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11030 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11031
11032 If we have a small constant, and this is a reference to
11033 an external symbol, we want
11034 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11035 addiu $tempreg,$tempreg,<constant>
11036
11037 If we have a large constant, and this is a reference to
11038 an external symbol, we want
11039 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11040 lui $at,<hiconstant>
11041 addiu $at,$at,<loconstant>
11042 addu $tempreg,$tempreg,$at
11043
11044 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11045 local symbols, even though it introduces an additional
11046 instruction. */
11047
f5040a92
AO
11048 if (offset_expr.X_add_number)
11049 {
4d7206a2 11050 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11051 offset_expr.X_add_number = 0;
11052
4d7206a2 11053 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11054 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11055 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11056
11057 if (expr1.X_add_number >= -0x8000
11058 && expr1.X_add_number < 0x8000)
11059 {
67c0d1eb
RS
11060 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11061 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11062 }
ecd13cd3 11063 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11064 {
c0ebe874
RS
11065 unsigned int dreg;
11066
f5040a92
AO
11067 /* If we are going to add in a base register, and the
11068 target register and the base register are the same,
11069 then we are using AT as a temporary register. Since
11070 we want to load the constant into AT, we add our
11071 current AT (from the global offset table) and the
11072 register into the register now, and pretend we were
11073 not using a base register. */
c0ebe874 11074 if (breg != op[0])
f5040a92
AO
11075 dreg = tempreg;
11076 else
11077 {
9c2799c2 11078 gas_assert (tempreg == AT);
67c0d1eb 11079 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11080 op[0], AT, breg);
11081 dreg = op[0];
67c0d1eb 11082 add_breg_early = 1;
f5040a92
AO
11083 }
11084
f6a22291 11085 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11086 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11087 dreg, dreg, AT);
f5040a92 11088
f5040a92
AO
11089 used_at = 1;
11090 }
11091 else
11092 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11093
4d7206a2 11094 relax_switch ();
f5040a92
AO
11095 offset_expr.X_add_number = expr1.X_add_number;
11096
67c0d1eb
RS
11097 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11098 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11099 if (add_breg_early)
f5040a92 11100 {
67c0d1eb 11101 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11102 op[0], tempreg, breg);
f5040a92 11103 breg = 0;
c0ebe874 11104 tempreg = op[0];
f5040a92 11105 }
4d7206a2 11106 relax_end ();
f5040a92 11107 }
4d7206a2 11108 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
f5040a92 11109 {
4d7206a2 11110 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11112 BFD_RELOC_MIPS_CALL16, mips_gp_register);
4d7206a2 11113 relax_switch ();
67c0d1eb
RS
11114 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11115 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4d7206a2 11116 relax_end ();
f5040a92 11117 }
4d7206a2 11118 else
f5040a92 11119 {
67c0d1eb
RS
11120 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11121 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
f5040a92
AO
11122 }
11123 }
0a44bf69 11124 else if (mips_big_got && !HAVE_NEWABI)
252b5132 11125 {
67c0d1eb 11126 int gpdelay;
9117d219
NC
11127 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11128 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
ed6fb7bd 11129 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
252b5132
RH
11130
11131 /* This is the large GOT case. If this is a reference to an
11132 external symbol, and there is no constant, we want
11133 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11134 addu $tempreg,$tempreg,$gp
11135 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11136 or for lca or if tempreg is PIC_CALL_REG
9117d219
NC
11137 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11138 addu $tempreg,$tempreg,$gp
11139 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
252b5132
RH
11140 For a local symbol, we want
11141 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11142 nop
11143 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11144
11145 If we have a small constant, and this is a reference to
11146 an external symbol, we want
11147 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11148 addu $tempreg,$tempreg,$gp
11149 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11150 nop
11151 addiu $tempreg,$tempreg,<constant>
11152 For a local symbol, we want
11153 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11154 nop
11155 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11156
11157 If we have a large constant, and this is a reference to
11158 an external symbol, we want
11159 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11160 addu $tempreg,$tempreg,$gp
11161 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11162 lui $at,<hiconstant>
11163 addiu $at,$at,<loconstant>
11164 addu $tempreg,$tempreg,$at
11165 For a local symbol, we want
11166 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11167 lui $at,<hiconstant>
11168 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11169 addu $tempreg,$tempreg,$at
f5040a92 11170 */
438c16b8 11171
252b5132
RH
11172 expr1.X_add_number = offset_expr.X_add_number;
11173 offset_expr.X_add_number = 0;
4d7206a2 11174 relax_start (offset_expr.X_add_symbol);
67c0d1eb 11175 gpdelay = reg_needs_delay (mips_gp_register);
1abe91b1
MR
11176 if (expr1.X_add_number == 0 && breg == 0
11177 && (call || tempreg == PIC_CALL_REG))
9117d219
NC
11178 {
11179 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11180 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11181 }
df58fc94 11182 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11184 tempreg, tempreg, mips_gp_register);
67c0d1eb 11185 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 11186 tempreg, lw_reloc_type, tempreg);
252b5132
RH
11187 if (expr1.X_add_number == 0)
11188 {
67c0d1eb 11189 if (breg != 0)
252b5132
RH
11190 {
11191 /* We're going to put in an addu instruction using
11192 tempreg, so we may as well insert the nop right
11193 now. */
269137b2 11194 load_delay_nop ();
252b5132 11195 }
252b5132
RH
11196 }
11197 else if (expr1.X_add_number >= -0x8000
11198 && expr1.X_add_number < 0x8000)
11199 {
269137b2 11200 load_delay_nop ();
67c0d1eb 11201 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11202 tempreg, tempreg, BFD_RELOC_LO16);
252b5132
RH
11203 }
11204 else
11205 {
c0ebe874
RS
11206 unsigned int dreg;
11207
252b5132
RH
11208 /* If we are going to add in a base register, and the
11209 target register and the base register are the same,
11210 then we are using AT as a temporary register. Since
11211 we want to load the constant into AT, we add our
11212 current AT (from the global offset table) and the
11213 register into the register now, and pretend we were
11214 not using a base register. */
c0ebe874 11215 if (breg != op[0])
67c0d1eb 11216 dreg = tempreg;
252b5132
RH
11217 else
11218 {
9c2799c2 11219 gas_assert (tempreg == AT);
269137b2 11220 load_delay_nop ();
67c0d1eb 11221 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11222 op[0], AT, breg);
11223 dreg = op[0];
252b5132
RH
11224 }
11225
f6a22291 11226 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
252b5132 11228
252b5132
RH
11229 used_at = 1;
11230 }
43c0598f 11231 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
4d7206a2 11232 relax_switch ();
252b5132 11233
67c0d1eb 11234 if (gpdelay)
252b5132
RH
11235 {
11236 /* This is needed because this instruction uses $gp, but
f5040a92 11237 the first instruction on the main stream does not. */
67c0d1eb 11238 macro_build (NULL, "nop", "");
252b5132 11239 }
ed6fb7bd 11240
67c0d1eb
RS
11241 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11242 local_reloc_type, mips_gp_register);
f5040a92 11243 if (expr1.X_add_number >= -0x8000
252b5132
RH
11244 && expr1.X_add_number < 0x8000)
11245 {
269137b2 11246 load_delay_nop ();
67c0d1eb
RS
11247 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11248 tempreg, tempreg, BFD_RELOC_LO16);
252b5132 11249 /* FIXME: If add_number is 0, and there was no base
f5040a92
AO
11250 register, the external symbol case ended with a load,
11251 so if the symbol turns out to not be external, and
11252 the next instruction uses tempreg, an unnecessary nop
11253 will be inserted. */
252b5132
RH
11254 }
11255 else
11256 {
c0ebe874 11257 if (breg == op[0])
252b5132
RH
11258 {
11259 /* We must add in the base register now, as in the
f5040a92 11260 external symbol case. */
9c2799c2 11261 gas_assert (tempreg == AT);
269137b2 11262 load_delay_nop ();
67c0d1eb 11263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11264 op[0], AT, breg);
11265 tempreg = op[0];
252b5132 11266 /* We set breg to 0 because we have arranged to add
f5040a92 11267 it in in both cases. */
252b5132
RH
11268 breg = 0;
11269 }
11270
67c0d1eb
RS
11271 macro_build_lui (&expr1, AT);
11272 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11273 AT, AT, BFD_RELOC_LO16);
67c0d1eb 11274 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11275 tempreg, tempreg, AT);
8fc2e39e 11276 used_at = 1;
252b5132 11277 }
4d7206a2 11278 relax_end ();
252b5132 11279 }
0a44bf69 11280 else if (mips_big_got && HAVE_NEWABI)
f5040a92 11281 {
f5040a92
AO
11282 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11283 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
67c0d1eb 11284 int add_breg_early = 0;
f5040a92
AO
11285
11286 /* This is the large GOT case. If this is a reference to an
11287 external symbol, and there is no constant, we want
11288 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11289 add $tempreg,$tempreg,$gp
11290 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
1abe91b1 11291 or for lca or if tempreg is PIC_CALL_REG
f5040a92
AO
11292 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11293 add $tempreg,$tempreg,$gp
11294 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11295
11296 If we have a small constant, and this is a reference to
11297 an external symbol, we want
11298 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11299 add $tempreg,$tempreg,$gp
11300 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11301 addi $tempreg,$tempreg,<constant>
11302
11303 If we have a large constant, and this is a reference to
11304 an external symbol, we want
11305 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11306 addu $tempreg,$tempreg,$gp
11307 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11308 lui $at,<hiconstant>
11309 addi $at,$at,<loconstant>
11310 add $tempreg,$tempreg,$at
11311
11312 If we have NewABI, and we know it's a local symbol, we want
11313 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11314 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11315 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11316
4d7206a2 11317 relax_start (offset_expr.X_add_symbol);
f5040a92 11318
4d7206a2 11319 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
11320 offset_expr.X_add_number = 0;
11321
1abe91b1
MR
11322 if (expr1.X_add_number == 0 && breg == 0
11323 && (call || tempreg == PIC_CALL_REG))
f5040a92
AO
11324 {
11325 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11326 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11327 }
df58fc94 11328 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
67c0d1eb 11329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 11330 tempreg, tempreg, mips_gp_register);
67c0d1eb
RS
11331 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11332 tempreg, lw_reloc_type, tempreg);
f5040a92
AO
11333
11334 if (expr1.X_add_number == 0)
4d7206a2 11335 ;
f5040a92
AO
11336 else if (expr1.X_add_number >= -0x8000
11337 && expr1.X_add_number < 0x8000)
11338 {
67c0d1eb 11339 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
17a2f251 11340 tempreg, tempreg, BFD_RELOC_LO16);
f5040a92 11341 }
ecd13cd3 11342 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
f5040a92 11343 {
c0ebe874
RS
11344 unsigned int dreg;
11345
f5040a92
AO
11346 /* If we are going to add in a base register, and the
11347 target register and the base register are the same,
11348 then we are using AT as a temporary register. Since
11349 we want to load the constant into AT, we add our
11350 current AT (from the global offset table) and the
11351 register into the register now, and pretend we were
11352 not using a base register. */
c0ebe874 11353 if (breg != op[0])
f5040a92
AO
11354 dreg = tempreg;
11355 else
11356 {
9c2799c2 11357 gas_assert (tempreg == AT);
67c0d1eb 11358 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874
RS
11359 op[0], AT, breg);
11360 dreg = op[0];
67c0d1eb 11361 add_breg_early = 1;
f5040a92
AO
11362 }
11363
f6a22291 11364 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
67c0d1eb 11365 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
f5040a92 11366
f5040a92
AO
11367 used_at = 1;
11368 }
11369 else
11370 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11371
4d7206a2 11372 relax_switch ();
f5040a92 11373 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
11374 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11375 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11376 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11377 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11378 if (add_breg_early)
f5040a92 11379 {
67c0d1eb 11380 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
c0ebe874 11381 op[0], tempreg, breg);
f5040a92 11382 breg = 0;
c0ebe874 11383 tempreg = op[0];
f5040a92 11384 }
4d7206a2 11385 relax_end ();
f5040a92 11386 }
252b5132
RH
11387 else
11388 abort ();
11389
11390 if (breg != 0)
c0ebe874 11391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
252b5132
RH
11392 break;
11393
52b6b6b9 11394 case M_MSGSND:
df58fc94 11395 gas_assert (!mips_opts.micromips);
c0ebe874 11396 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
c7af4273 11397 break;
52b6b6b9
JM
11398
11399 case M_MSGLD:
df58fc94 11400 gas_assert (!mips_opts.micromips);
c8276761 11401 macro_build (NULL, "c2", "C", 0x02);
c7af4273 11402 break;
52b6b6b9
JM
11403
11404 case M_MSGLD_T:
df58fc94 11405 gas_assert (!mips_opts.micromips);
c0ebe874 11406 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
c7af4273 11407 break;
52b6b6b9
JM
11408
11409 case M_MSGWAIT:
df58fc94 11410 gas_assert (!mips_opts.micromips);
52b6b6b9 11411 macro_build (NULL, "c2", "C", 3);
c7af4273 11412 break;
52b6b6b9
JM
11413
11414 case M_MSGWAIT_T:
df58fc94 11415 gas_assert (!mips_opts.micromips);
c0ebe874 11416 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
c7af4273 11417 break;
52b6b6b9 11418
252b5132
RH
11419 case M_J_A:
11420 /* The j instruction may not be used in PIC code, since it
11421 requires an absolute address. We convert it to a b
11422 instruction. */
11423 if (mips_pic == NO_PIC)
67c0d1eb 11424 macro_build (&offset_expr, "j", "a");
252b5132 11425 else
67c0d1eb 11426 macro_build (&offset_expr, "b", "p");
8fc2e39e 11427 break;
252b5132
RH
11428
11429 /* The jal instructions must be handled as macros because when
11430 generating PIC code they expand to multi-instruction
11431 sequences. Normally they are simple instructions. */
df58fc94 11432 case M_JALS_1:
c0ebe874
RS
11433 op[1] = op[0];
11434 op[0] = RA;
df58fc94
RS
11435 /* Fall through. */
11436 case M_JALS_2:
11437 gas_assert (mips_opts.micromips);
833794fc
MR
11438 if (mips_opts.insn32)
11439 {
1661c76c 11440 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11441 break;
11442 }
df58fc94
RS
11443 jals = 1;
11444 goto jal;
252b5132 11445 case M_JAL_1:
c0ebe874
RS
11446 op[1] = op[0];
11447 op[0] = RA;
252b5132
RH
11448 /* Fall through. */
11449 case M_JAL_2:
df58fc94 11450 jal:
3e722fb5 11451 if (mips_pic == NO_PIC)
df58fc94
RS
11452 {
11453 s = jals ? "jalrs" : "jalr";
e64af278 11454 if (mips_opts.micromips
833794fc 11455 && !mips_opts.insn32
c0ebe874 11456 && op[0] == RA
e64af278 11457 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11458 macro_build (NULL, s, "mj", op[1]);
df58fc94 11459 else
c0ebe874 11460 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
df58fc94 11461 }
0a44bf69 11462 else
252b5132 11463 {
df58fc94
RS
11464 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11465 && mips_cprestore_offset >= 0);
11466
c0ebe874 11467 if (op[1] != PIC_CALL_REG)
252b5132 11468 as_warn (_("MIPS PIC call to register other than $25"));
bdaaa2e1 11469
833794fc
MR
11470 s = ((mips_opts.micromips
11471 && !mips_opts.insn32
11472 && (!mips_opts.noreorder || cprestore))
df58fc94 11473 ? "jalrs" : "jalr");
e64af278 11474 if (mips_opts.micromips
833794fc 11475 && !mips_opts.insn32
c0ebe874 11476 && op[0] == RA
e64af278 11477 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
c0ebe874 11478 macro_build (NULL, s, "mj", op[1]);
df58fc94 11479 else
c0ebe874 11480 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
0a44bf69 11481 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
252b5132 11482 {
6478892d 11483 if (mips_cprestore_offset < 0)
1661c76c 11484 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11485 else
11486 {
90ecf173 11487 if (!mips_frame_reg_valid)
7a621144 11488 {
1661c76c 11489 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11490 /* Quiet this warning. */
11491 mips_frame_reg_valid = 1;
11492 }
90ecf173 11493 if (!mips_cprestore_valid)
7a621144 11494 {
1661c76c 11495 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11496 /* Quiet this warning. */
11497 mips_cprestore_valid = 1;
11498 }
d3fca0b5
MR
11499 if (mips_opts.noreorder)
11500 macro_build (NULL, "nop", "");
6478892d 11501 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11502 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11503 mips_gp_register,
256ab948
TS
11504 mips_frame_reg,
11505 HAVE_64BIT_ADDRESSES);
6478892d 11506 }
252b5132
RH
11507 }
11508 }
252b5132 11509
8fc2e39e 11510 break;
252b5132 11511
df58fc94
RS
11512 case M_JALS_A:
11513 gas_assert (mips_opts.micromips);
833794fc
MR
11514 if (mips_opts.insn32)
11515 {
1661c76c 11516 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
833794fc
MR
11517 break;
11518 }
df58fc94
RS
11519 jals = 1;
11520 /* Fall through. */
252b5132
RH
11521 case M_JAL_A:
11522 if (mips_pic == NO_PIC)
df58fc94 11523 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
252b5132
RH
11524 else if (mips_pic == SVR4_PIC)
11525 {
11526 /* If this is a reference to an external symbol, and we are
11527 using a small GOT, we want
11528 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11529 nop
f9419b05 11530 jalr $ra,$25
252b5132
RH
11531 nop
11532 lw $gp,cprestore($sp)
11533 The cprestore value is set using the .cprestore
11534 pseudo-op. If we are using a big GOT, we want
11535 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11536 addu $25,$25,$gp
11537 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11538 nop
f9419b05 11539 jalr $ra,$25
252b5132
RH
11540 nop
11541 lw $gp,cprestore($sp)
11542 If the symbol is not external, we want
11543 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11544 nop
11545 addiu $25,$25,<sym> (BFD_RELOC_LO16)
f9419b05 11546 jalr $ra,$25
252b5132 11547 nop
438c16b8 11548 lw $gp,cprestore($sp)
f5040a92
AO
11549
11550 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11551 sequences above, minus nops, unless the symbol is local,
11552 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11553 GOT_DISP. */
438c16b8 11554 if (HAVE_NEWABI)
252b5132 11555 {
90ecf173 11556 if (!mips_big_got)
f5040a92 11557 {
4d7206a2 11558 relax_start (offset_expr.X_add_symbol);
67c0d1eb
RS
11559 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11560 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
f5040a92 11561 mips_gp_register);
4d7206a2 11562 relax_switch ();
67c0d1eb
RS
11563 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11564 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
4d7206a2
RS
11565 mips_gp_register);
11566 relax_end ();
f5040a92
AO
11567 }
11568 else
11569 {
4d7206a2 11570 relax_start (offset_expr.X_add_symbol);
df58fc94 11571 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11572 BFD_RELOC_MIPS_CALL_HI16);
11573 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11574 PIC_CALL_REG, mips_gp_register);
11575 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11576 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11577 PIC_CALL_REG);
4d7206a2 11578 relax_switch ();
67c0d1eb
RS
11579 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11580 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11581 mips_gp_register);
11582 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11583 PIC_CALL_REG, PIC_CALL_REG,
17a2f251 11584 BFD_RELOC_MIPS_GOT_OFST);
4d7206a2 11585 relax_end ();
f5040a92 11586 }
684022ea 11587
df58fc94 11588 macro_build_jalr (&offset_expr, 0);
252b5132
RH
11589 }
11590 else
11591 {
4d7206a2 11592 relax_start (offset_expr.X_add_symbol);
90ecf173 11593 if (!mips_big_got)
438c16b8 11594 {
67c0d1eb
RS
11595 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11596 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
17a2f251 11597 mips_gp_register);
269137b2 11598 load_delay_nop ();
4d7206a2 11599 relax_switch ();
438c16b8 11600 }
252b5132 11601 else
252b5132 11602 {
67c0d1eb
RS
11603 int gpdelay;
11604
11605 gpdelay = reg_needs_delay (mips_gp_register);
df58fc94 11606 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
67c0d1eb
RS
11607 BFD_RELOC_MIPS_CALL_HI16);
11608 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11609 PIC_CALL_REG, mips_gp_register);
11610 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11611 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11612 PIC_CALL_REG);
269137b2 11613 load_delay_nop ();
4d7206a2 11614 relax_switch ();
67c0d1eb
RS
11615 if (gpdelay)
11616 macro_build (NULL, "nop", "");
252b5132 11617 }
67c0d1eb
RS
11618 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11619 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
4d7206a2 11620 mips_gp_register);
269137b2 11621 load_delay_nop ();
67c0d1eb
RS
11622 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11623 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
4d7206a2 11624 relax_end ();
df58fc94 11625 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
438c16b8 11626
6478892d 11627 if (mips_cprestore_offset < 0)
1661c76c 11628 as_warn (_("no .cprestore pseudo-op used in PIC code"));
6478892d
TS
11629 else
11630 {
90ecf173 11631 if (!mips_frame_reg_valid)
7a621144 11632 {
1661c76c 11633 as_warn (_("no .frame pseudo-op used in PIC code"));
7a621144
DJ
11634 /* Quiet this warning. */
11635 mips_frame_reg_valid = 1;
11636 }
90ecf173 11637 if (!mips_cprestore_valid)
7a621144 11638 {
1661c76c 11639 as_warn (_("no .cprestore pseudo-op used in PIC code"));
7a621144
DJ
11640 /* Quiet this warning. */
11641 mips_cprestore_valid = 1;
11642 }
6478892d 11643 if (mips_opts.noreorder)
67c0d1eb 11644 macro_build (NULL, "nop", "");
6478892d 11645 expr1.X_add_number = mips_cprestore_offset;
134c0c8b 11646 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
f899b4b8 11647 mips_gp_register,
256ab948
TS
11648 mips_frame_reg,
11649 HAVE_64BIT_ADDRESSES);
6478892d 11650 }
252b5132
RH
11651 }
11652 }
0a44bf69 11653 else if (mips_pic == VXWORKS_PIC)
1661c76c 11654 as_bad (_("non-PIC jump used in PIC library"));
252b5132
RH
11655 else
11656 abort ();
11657
8fc2e39e 11658 break;
252b5132 11659
7f3c4072 11660 case M_LBUE_AB:
7f3c4072
CM
11661 s = "lbue";
11662 fmt = "t,+j(b)";
11663 offbits = 9;
11664 goto ld_st;
11665 case M_LHUE_AB:
7f3c4072
CM
11666 s = "lhue";
11667 fmt = "t,+j(b)";
11668 offbits = 9;
11669 goto ld_st;
11670 case M_LBE_AB:
7f3c4072
CM
11671 s = "lbe";
11672 fmt = "t,+j(b)";
11673 offbits = 9;
11674 goto ld_st;
11675 case M_LHE_AB:
7f3c4072
CM
11676 s = "lhe";
11677 fmt = "t,+j(b)";
11678 offbits = 9;
11679 goto ld_st;
11680 case M_LLE_AB:
7f3c4072
CM
11681 s = "lle";
11682 fmt = "t,+j(b)";
11683 offbits = 9;
11684 goto ld_st;
11685 case M_LWE_AB:
7f3c4072
CM
11686 s = "lwe";
11687 fmt = "t,+j(b)";
11688 offbits = 9;
11689 goto ld_st;
11690 case M_LWLE_AB:
7f3c4072
CM
11691 s = "lwle";
11692 fmt = "t,+j(b)";
11693 offbits = 9;
11694 goto ld_st;
11695 case M_LWRE_AB:
7f3c4072
CM
11696 s = "lwre";
11697 fmt = "t,+j(b)";
11698 offbits = 9;
11699 goto ld_st;
11700 case M_SBE_AB:
7f3c4072
CM
11701 s = "sbe";
11702 fmt = "t,+j(b)";
11703 offbits = 9;
11704 goto ld_st;
11705 case M_SCE_AB:
7f3c4072
CM
11706 s = "sce";
11707 fmt = "t,+j(b)";
11708 offbits = 9;
11709 goto ld_st;
11710 case M_SHE_AB:
7f3c4072
CM
11711 s = "she";
11712 fmt = "t,+j(b)";
11713 offbits = 9;
11714 goto ld_st;
11715 case M_SWE_AB:
7f3c4072
CM
11716 s = "swe";
11717 fmt = "t,+j(b)";
11718 offbits = 9;
11719 goto ld_st;
11720 case M_SWLE_AB:
7f3c4072
CM
11721 s = "swle";
11722 fmt = "t,+j(b)";
11723 offbits = 9;
11724 goto ld_st;
11725 case M_SWRE_AB:
7f3c4072
CM
11726 s = "swre";
11727 fmt = "t,+j(b)";
11728 offbits = 9;
11729 goto ld_st;
dec0624d 11730 case M_ACLR_AB:
dec0624d 11731 s = "aclr";
dec0624d 11732 fmt = "\\,~(b)";
7f3c4072 11733 offbits = 12;
dec0624d
MR
11734 goto ld_st;
11735 case M_ASET_AB:
dec0624d 11736 s = "aset";
dec0624d 11737 fmt = "\\,~(b)";
7f3c4072 11738 offbits = 12;
dec0624d 11739 goto ld_st;
252b5132
RH
11740 case M_LB_AB:
11741 s = "lb";
df58fc94 11742 fmt = "t,o(b)";
252b5132
RH
11743 goto ld;
11744 case M_LBU_AB:
11745 s = "lbu";
df58fc94 11746 fmt = "t,o(b)";
252b5132
RH
11747 goto ld;
11748 case M_LH_AB:
11749 s = "lh";
df58fc94 11750 fmt = "t,o(b)";
252b5132
RH
11751 goto ld;
11752 case M_LHU_AB:
11753 s = "lhu";
df58fc94 11754 fmt = "t,o(b)";
252b5132
RH
11755 goto ld;
11756 case M_LW_AB:
11757 s = "lw";
df58fc94 11758 fmt = "t,o(b)";
252b5132
RH
11759 goto ld;
11760 case M_LWC0_AB:
df58fc94 11761 gas_assert (!mips_opts.micromips);
252b5132 11762 s = "lwc0";
df58fc94 11763 fmt = "E,o(b)";
bdaaa2e1 11764 /* Itbl support may require additional care here. */
252b5132 11765 coproc = 1;
df58fc94 11766 goto ld_st;
252b5132
RH
11767 case M_LWC1_AB:
11768 s = "lwc1";
df58fc94 11769 fmt = "T,o(b)";
bdaaa2e1 11770 /* Itbl support may require additional care here. */
252b5132 11771 coproc = 1;
df58fc94 11772 goto ld_st;
252b5132
RH
11773 case M_LWC2_AB:
11774 s = "lwc2";
df58fc94 11775 fmt = COP12_FMT;
7361da2c
AB
11776 offbits = (mips_opts.micromips ? 12
11777 : ISA_IS_R6 (mips_opts.isa) ? 11
11778 : 16);
bdaaa2e1 11779 /* Itbl support may require additional care here. */
252b5132 11780 coproc = 1;
df58fc94 11781 goto ld_st;
252b5132 11782 case M_LWC3_AB:
df58fc94 11783 gas_assert (!mips_opts.micromips);
252b5132 11784 s = "lwc3";
df58fc94 11785 fmt = "E,o(b)";
bdaaa2e1 11786 /* Itbl support may require additional care here. */
252b5132 11787 coproc = 1;
df58fc94 11788 goto ld_st;
252b5132
RH
11789 case M_LWL_AB:
11790 s = "lwl";
df58fc94 11791 fmt = MEM12_FMT;
7f3c4072 11792 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11793 goto ld_st;
252b5132
RH
11794 case M_LWR_AB:
11795 s = "lwr";
df58fc94 11796 fmt = MEM12_FMT;
7f3c4072 11797 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11798 goto ld_st;
252b5132 11799 case M_LDC1_AB:
252b5132 11800 s = "ldc1";
df58fc94 11801 fmt = "T,o(b)";
bdaaa2e1 11802 /* Itbl support may require additional care here. */
252b5132 11803 coproc = 1;
df58fc94 11804 goto ld_st;
252b5132
RH
11805 case M_LDC2_AB:
11806 s = "ldc2";
df58fc94 11807 fmt = COP12_FMT;
7361da2c
AB
11808 offbits = (mips_opts.micromips ? 12
11809 : ISA_IS_R6 (mips_opts.isa) ? 11
11810 : 16);
bdaaa2e1 11811 /* Itbl support may require additional care here. */
252b5132 11812 coproc = 1;
df58fc94 11813 goto ld_st;
c77c0862 11814 case M_LQC2_AB:
c77c0862 11815 s = "lqc2";
14daeee3 11816 fmt = "+7,o(b)";
c77c0862
RS
11817 /* Itbl support may require additional care here. */
11818 coproc = 1;
11819 goto ld_st;
252b5132
RH
11820 case M_LDC3_AB:
11821 s = "ldc3";
df58fc94 11822 fmt = "E,o(b)";
bdaaa2e1 11823 /* Itbl support may require additional care here. */
252b5132 11824 coproc = 1;
df58fc94 11825 goto ld_st;
252b5132
RH
11826 case M_LDL_AB:
11827 s = "ldl";
df58fc94 11828 fmt = MEM12_FMT;
7f3c4072 11829 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11830 goto ld_st;
252b5132
RH
11831 case M_LDR_AB:
11832 s = "ldr";
df58fc94 11833 fmt = MEM12_FMT;
7f3c4072 11834 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11835 goto ld_st;
252b5132
RH
11836 case M_LL_AB:
11837 s = "ll";
7361da2c
AB
11838 fmt = LL_SC_FMT;
11839 offbits = (mips_opts.micromips ? 12
11840 : ISA_IS_R6 (mips_opts.isa) ? 9
11841 : 16);
252b5132
RH
11842 goto ld;
11843 case M_LLD_AB:
11844 s = "lld";
7361da2c
AB
11845 fmt = LL_SC_FMT;
11846 offbits = (mips_opts.micromips ? 12
11847 : ISA_IS_R6 (mips_opts.isa) ? 9
11848 : 16);
252b5132
RH
11849 goto ld;
11850 case M_LWU_AB:
11851 s = "lwu";
df58fc94 11852 fmt = MEM12_FMT;
7f3c4072 11853 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
11854 goto ld;
11855 case M_LWP_AB:
df58fc94
RS
11856 gas_assert (mips_opts.micromips);
11857 s = "lwp";
11858 fmt = "t,~(b)";
7f3c4072 11859 offbits = 12;
df58fc94
RS
11860 lp = 1;
11861 goto ld;
11862 case M_LDP_AB:
df58fc94
RS
11863 gas_assert (mips_opts.micromips);
11864 s = "ldp";
11865 fmt = "t,~(b)";
7f3c4072 11866 offbits = 12;
df58fc94
RS
11867 lp = 1;
11868 goto ld;
11869 case M_LWM_AB:
df58fc94
RS
11870 gas_assert (mips_opts.micromips);
11871 s = "lwm";
11872 fmt = "n,~(b)";
7f3c4072 11873 offbits = 12;
df58fc94
RS
11874 goto ld_st;
11875 case M_LDM_AB:
df58fc94
RS
11876 gas_assert (mips_opts.micromips);
11877 s = "ldm";
11878 fmt = "n,~(b)";
7f3c4072 11879 offbits = 12;
df58fc94
RS
11880 goto ld_st;
11881
252b5132 11882 ld:
f19ccbda 11883 /* We don't want to use $0 as tempreg. */
c0ebe874 11884 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
df58fc94 11885 goto ld_st;
252b5132 11886 else
c0ebe874 11887 tempreg = op[0] + lp;
df58fc94
RS
11888 goto ld_noat;
11889
252b5132
RH
11890 case M_SB_AB:
11891 s = "sb";
df58fc94
RS
11892 fmt = "t,o(b)";
11893 goto ld_st;
252b5132
RH
11894 case M_SH_AB:
11895 s = "sh";
df58fc94
RS
11896 fmt = "t,o(b)";
11897 goto ld_st;
252b5132
RH
11898 case M_SW_AB:
11899 s = "sw";
df58fc94
RS
11900 fmt = "t,o(b)";
11901 goto ld_st;
252b5132 11902 case M_SWC0_AB:
df58fc94 11903 gas_assert (!mips_opts.micromips);
252b5132 11904 s = "swc0";
df58fc94 11905 fmt = "E,o(b)";
bdaaa2e1 11906 /* Itbl support may require additional care here. */
252b5132 11907 coproc = 1;
df58fc94 11908 goto ld_st;
252b5132
RH
11909 case M_SWC1_AB:
11910 s = "swc1";
df58fc94 11911 fmt = "T,o(b)";
bdaaa2e1 11912 /* Itbl support may require additional care here. */
252b5132 11913 coproc = 1;
df58fc94 11914 goto ld_st;
252b5132
RH
11915 case M_SWC2_AB:
11916 s = "swc2";
df58fc94 11917 fmt = COP12_FMT;
7361da2c
AB
11918 offbits = (mips_opts.micromips ? 12
11919 : ISA_IS_R6 (mips_opts.isa) ? 11
11920 : 16);
bdaaa2e1 11921 /* Itbl support may require additional care here. */
252b5132 11922 coproc = 1;
df58fc94 11923 goto ld_st;
252b5132 11924 case M_SWC3_AB:
df58fc94 11925 gas_assert (!mips_opts.micromips);
252b5132 11926 s = "swc3";
df58fc94 11927 fmt = "E,o(b)";
bdaaa2e1 11928 /* Itbl support may require additional care here. */
252b5132 11929 coproc = 1;
df58fc94 11930 goto ld_st;
252b5132
RH
11931 case M_SWL_AB:
11932 s = "swl";
df58fc94 11933 fmt = MEM12_FMT;
7f3c4072 11934 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11935 goto ld_st;
252b5132
RH
11936 case M_SWR_AB:
11937 s = "swr";
df58fc94 11938 fmt = MEM12_FMT;
7f3c4072 11939 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 11940 goto ld_st;
252b5132
RH
11941 case M_SC_AB:
11942 s = "sc";
7361da2c
AB
11943 fmt = LL_SC_FMT;
11944 offbits = (mips_opts.micromips ? 12
11945 : ISA_IS_R6 (mips_opts.isa) ? 9
11946 : 16);
df58fc94 11947 goto ld_st;
252b5132
RH
11948 case M_SCD_AB:
11949 s = "scd";
7361da2c
AB
11950 fmt = LL_SC_FMT;
11951 offbits = (mips_opts.micromips ? 12
11952 : ISA_IS_R6 (mips_opts.isa) ? 9
11953 : 16);
df58fc94 11954 goto ld_st;
d43b4baf
TS
11955 case M_CACHE_AB:
11956 s = "cache";
7361da2c
AB
11957 fmt = (mips_opts.micromips ? "k,~(b)"
11958 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11959 : "k,o(b)");
11960 offbits = (mips_opts.micromips ? 12
11961 : ISA_IS_R6 (mips_opts.isa) ? 9
11962 : 16);
7f3c4072
CM
11963 goto ld_st;
11964 case M_CACHEE_AB:
7f3c4072
CM
11965 s = "cachee";
11966 fmt = "k,+j(b)";
11967 offbits = 9;
df58fc94 11968 goto ld_st;
3eebd5eb
MR
11969 case M_PREF_AB:
11970 s = "pref";
7361da2c
AB
11971 fmt = (mips_opts.micromips ? "k,~(b)"
11972 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11973 : "k,o(b)");
11974 offbits = (mips_opts.micromips ? 12
11975 : ISA_IS_R6 (mips_opts.isa) ? 9
11976 : 16);
7f3c4072
CM
11977 goto ld_st;
11978 case M_PREFE_AB:
7f3c4072
CM
11979 s = "prefe";
11980 fmt = "k,+j(b)";
11981 offbits = 9;
df58fc94 11982 goto ld_st;
252b5132 11983 case M_SDC1_AB:
252b5132 11984 s = "sdc1";
df58fc94 11985 fmt = "T,o(b)";
252b5132 11986 coproc = 1;
bdaaa2e1 11987 /* Itbl support may require additional care here. */
df58fc94 11988 goto ld_st;
252b5132
RH
11989 case M_SDC2_AB:
11990 s = "sdc2";
df58fc94 11991 fmt = COP12_FMT;
7361da2c
AB
11992 offbits = (mips_opts.micromips ? 12
11993 : ISA_IS_R6 (mips_opts.isa) ? 11
11994 : 16);
c77c0862
RS
11995 /* Itbl support may require additional care here. */
11996 coproc = 1;
11997 goto ld_st;
11998 case M_SQC2_AB:
c77c0862 11999 s = "sqc2";
14daeee3 12000 fmt = "+7,o(b)";
bdaaa2e1 12001 /* Itbl support may require additional care here. */
252b5132 12002 coproc = 1;
df58fc94 12003 goto ld_st;
252b5132 12004 case M_SDC3_AB:
df58fc94 12005 gas_assert (!mips_opts.micromips);
252b5132 12006 s = "sdc3";
df58fc94 12007 fmt = "E,o(b)";
bdaaa2e1 12008 /* Itbl support may require additional care here. */
252b5132 12009 coproc = 1;
df58fc94 12010 goto ld_st;
252b5132
RH
12011 case M_SDL_AB:
12012 s = "sdl";
df58fc94 12013 fmt = MEM12_FMT;
7f3c4072 12014 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94 12015 goto ld_st;
252b5132
RH
12016 case M_SDR_AB:
12017 s = "sdr";
df58fc94 12018 fmt = MEM12_FMT;
7f3c4072 12019 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
12020 goto ld_st;
12021 case M_SWP_AB:
df58fc94
RS
12022 gas_assert (mips_opts.micromips);
12023 s = "swp";
12024 fmt = "t,~(b)";
7f3c4072 12025 offbits = 12;
df58fc94
RS
12026 goto ld_st;
12027 case M_SDP_AB:
df58fc94
RS
12028 gas_assert (mips_opts.micromips);
12029 s = "sdp";
12030 fmt = "t,~(b)";
7f3c4072 12031 offbits = 12;
df58fc94
RS
12032 goto ld_st;
12033 case M_SWM_AB:
df58fc94
RS
12034 gas_assert (mips_opts.micromips);
12035 s = "swm";
12036 fmt = "n,~(b)";
7f3c4072 12037 offbits = 12;
df58fc94
RS
12038 goto ld_st;
12039 case M_SDM_AB:
df58fc94
RS
12040 gas_assert (mips_opts.micromips);
12041 s = "sdm";
12042 fmt = "n,~(b)";
7f3c4072 12043 offbits = 12;
df58fc94
RS
12044
12045 ld_st:
8fc2e39e 12046 tempreg = AT;
df58fc94 12047 ld_noat:
c0ebe874 12048 breg = op[2];
f2ae14a1
RS
12049 if (small_offset_p (0, align, 16))
12050 {
12051 /* The first case exists for M_LD_AB and M_SD_AB, which are
12052 macros for o32 but which should act like normal instructions
12053 otherwise. */
12054 if (offbits == 16)
c0ebe874 12055 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12056 offset_reloc[1], offset_reloc[2], breg);
12057 else if (small_offset_p (0, align, offbits))
12058 {
12059 if (offbits == 0)
c0ebe874 12060 macro_build (NULL, s, fmt, op[0], breg);
f2ae14a1 12061 else
c0ebe874 12062 macro_build (NULL, s, fmt, op[0],
c8276761 12063 (int) offset_expr.X_add_number, breg);
f2ae14a1
RS
12064 }
12065 else
12066 {
12067 if (tempreg == AT)
12068 used_at = 1;
12069 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12070 tempreg, breg, -1, offset_reloc[0],
12071 offset_reloc[1], offset_reloc[2]);
12072 if (offbits == 0)
c0ebe874 12073 macro_build (NULL, s, fmt, op[0], tempreg);
f2ae14a1 12074 else
c0ebe874 12075 macro_build (NULL, s, fmt, op[0], 0, tempreg);
f2ae14a1
RS
12076 }
12077 break;
12078 }
12079
12080 if (tempreg == AT)
12081 used_at = 1;
12082
252b5132
RH
12083 if (offset_expr.X_op != O_constant
12084 && offset_expr.X_op != O_symbol)
12085 {
1661c76c 12086 as_bad (_("expression too complex"));
252b5132
RH
12087 offset_expr.X_op = O_constant;
12088 }
12089
2051e8c4
MR
12090 if (HAVE_32BIT_ADDRESSES
12091 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12092 {
12093 char value [32];
12094
12095 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12096 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12097 }
2051e8c4 12098
252b5132
RH
12099 /* A constant expression in PIC code can be handled just as it
12100 is in non PIC code. */
aed1a261
RS
12101 if (offset_expr.X_op == O_constant)
12102 {
f2ae14a1
RS
12103 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12104 offbits == 0 ? 16 : offbits);
12105 offset_expr.X_add_number -= expr1.X_add_number;
df58fc94 12106
f2ae14a1
RS
12107 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12108 if (breg != 0)
12109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12110 tempreg, tempreg, breg);
7f3c4072 12111 if (offbits == 0)
dd6a37e7 12112 {
f2ae14a1 12113 if (offset_expr.X_add_number != 0)
dd6a37e7 12114 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
f2ae14a1 12115 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
c0ebe874 12116 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 12117 }
7f3c4072 12118 else if (offbits == 16)
c0ebe874 12119 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
df58fc94 12120 else
c0ebe874 12121 macro_build (NULL, s, fmt, op[0],
c8276761 12122 (int) offset_expr.X_add_number, tempreg);
df58fc94 12123 }
7f3c4072 12124 else if (offbits != 16)
df58fc94 12125 {
7f3c4072 12126 /* The offset field is too narrow to be used for a low-part
2b0f3761 12127 relocation, so load the whole address into the auxiliary
f2ae14a1
RS
12128 register. */
12129 load_address (tempreg, &offset_expr, &used_at);
12130 if (breg != 0)
12131 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12132 tempreg, tempreg, breg);
7f3c4072 12133 if (offbits == 0)
c0ebe874 12134 macro_build (NULL, s, fmt, op[0], tempreg);
dd6a37e7 12135 else
c0ebe874 12136 macro_build (NULL, s, fmt, op[0], 0, tempreg);
aed1a261
RS
12137 }
12138 else if (mips_pic == NO_PIC)
252b5132
RH
12139 {
12140 /* If this is a reference to a GP relative symbol, and there
12141 is no base register, we want
c0ebe874 12142 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12143 Otherwise, if there is no base register, we want
12144 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
c0ebe874 12145 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
252b5132
RH
12146 If we have a constant, we need two instructions anyhow,
12147 so we always use the latter form.
12148
12149 If we have a base register, and this is a reference to a
12150 GP relative symbol, we want
12151 addu $tempreg,$breg,$gp
c0ebe874 12152 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
252b5132
RH
12153 Otherwise we want
12154 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12155 addu $tempreg,$tempreg,$breg
c0ebe874 12156 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245 12157 With a constant we always use the latter case.
76b3015f 12158
d6bc6245
TS
12159 With 64bit address space and no base register and $at usable,
12160 we want
12161 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12162 lui $at,<sym> (BFD_RELOC_HI16_S)
12163 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12164 dsll32 $tempreg,0
12165 daddu $tempreg,$at
c0ebe874 12166 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12167 If we have a base register, we want
12168 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12169 lui $at,<sym> (BFD_RELOC_HI16_S)
12170 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12171 daddu $at,$breg
12172 dsll32 $tempreg,0
12173 daddu $tempreg,$at
c0ebe874 12174 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12175
12176 Without $at we can't generate the optimal path for superscalar
12177 processors here since this would require two temporary registers.
12178 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12179 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12180 dsll $tempreg,16
12181 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12182 dsll $tempreg,16
c0ebe874 12183 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
d6bc6245
TS
12184 If we have a base register, we want
12185 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12186 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12187 dsll $tempreg,16
12188 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12189 dsll $tempreg,16
12190 daddu $tempreg,$tempreg,$breg
c0ebe874 12191 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
6373ee54 12192
6caf9ef4 12193 For GP relative symbols in 64bit address space we can use
aed1a261
RS
12194 the same sequence as in 32bit address space. */
12195 if (HAVE_64BIT_SYMBOLS)
d6bc6245 12196 {
aed1a261 12197 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4
TS
12198 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12199 {
12200 relax_start (offset_expr.X_add_symbol);
12201 if (breg == 0)
12202 {
c0ebe874 12203 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12204 BFD_RELOC_GPREL16, mips_gp_register);
12205 }
12206 else
12207 {
12208 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12209 tempreg, breg, mips_gp_register);
c0ebe874 12210 macro_build (&offset_expr, s, fmt, op[0],
6caf9ef4
TS
12211 BFD_RELOC_GPREL16, tempreg);
12212 }
12213 relax_switch ();
12214 }
d6bc6245 12215
741fe287 12216 if (used_at == 0 && mips_opts.at)
d6bc6245 12217 {
df58fc94 12218 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb 12219 BFD_RELOC_MIPS_HIGHEST);
df58fc94 12220 macro_build (&offset_expr, "lui", LUI_FMT, AT,
67c0d1eb
RS
12221 BFD_RELOC_HI16_S);
12222 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12223 tempreg, BFD_RELOC_MIPS_HIGHER);
d6bc6245 12224 if (breg != 0)
67c0d1eb 12225 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
df58fc94 12226 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
67c0d1eb 12227 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
c0ebe874 12228 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
67c0d1eb 12229 tempreg);
d6bc6245
TS
12230 used_at = 1;
12231 }
12232 else
12233 {
df58fc94 12234 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
67c0d1eb
RS
12235 BFD_RELOC_MIPS_HIGHEST);
12236 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12237 tempreg, BFD_RELOC_MIPS_HIGHER);
df58fc94 12238 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
67c0d1eb
RS
12239 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12240 tempreg, BFD_RELOC_HI16_S);
df58fc94 12241 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
d6bc6245 12242 if (breg != 0)
67c0d1eb 12243 macro_build (NULL, "daddu", "d,v,t",
17a2f251 12244 tempreg, tempreg, breg);
c0ebe874 12245 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12246 BFD_RELOC_LO16, tempreg);
d6bc6245 12247 }
6caf9ef4
TS
12248
12249 if (mips_relax.sequence)
12250 relax_end ();
8fc2e39e 12251 break;
d6bc6245 12252 }
256ab948 12253
252b5132
RH
12254 if (breg == 0)
12255 {
67c0d1eb 12256 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12257 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12258 {
4d7206a2 12259 relax_start (offset_expr.X_add_symbol);
c0ebe874 12260 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
67c0d1eb 12261 mips_gp_register);
4d7206a2 12262 relax_switch ();
252b5132 12263 }
67c0d1eb 12264 macro_build_lui (&offset_expr, tempreg);
c0ebe874 12265 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12266 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12267 if (mips_relax.sequence)
12268 relax_end ();
252b5132
RH
12269 }
12270 else
12271 {
67c0d1eb 12272 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12273 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12274 {
4d7206a2 12275 relax_start (offset_expr.X_add_symbol);
67c0d1eb 12276 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12277 tempreg, breg, mips_gp_register);
c0ebe874 12278 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12279 BFD_RELOC_GPREL16, tempreg);
4d7206a2 12280 relax_switch ();
252b5132 12281 }
67c0d1eb
RS
12282 macro_build_lui (&offset_expr, tempreg);
12283 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12284 tempreg, tempreg, breg);
c0ebe874 12285 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12286 BFD_RELOC_LO16, tempreg);
4d7206a2
RS
12287 if (mips_relax.sequence)
12288 relax_end ();
252b5132
RH
12289 }
12290 }
0a44bf69 12291 else if (!mips_big_got)
252b5132 12292 {
ed6fb7bd 12293 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
f9419b05 12294
252b5132
RH
12295 /* If this is a reference to an external symbol, we want
12296 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12297 nop
c0ebe874 12298 <op> op[0],0($tempreg)
252b5132
RH
12299 Otherwise we want
12300 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12301 nop
12302 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12303 <op> op[0],0($tempreg)
f5040a92
AO
12304
12305 For NewABI, we want
12306 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12307 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
f5040a92 12308
252b5132
RH
12309 If there is a base register, we add it to $tempreg before
12310 the <op>. If there is a constant, we stick it in the
12311 <op> instruction. We don't handle constants larger than
12312 16 bits, because we have no way to load the upper 16 bits
12313 (actually, we could handle them for the subset of cases
12314 in which we are not using $at). */
9c2799c2 12315 gas_assert (offset_expr.X_op == O_symbol);
f5040a92
AO
12316 if (HAVE_NEWABI)
12317 {
67c0d1eb
RS
12318 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12319 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12320 if (breg != 0)
67c0d1eb 12321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12322 tempreg, tempreg, breg);
c0ebe874 12323 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12324 BFD_RELOC_MIPS_GOT_OFST, tempreg);
f5040a92
AO
12325 break;
12326 }
252b5132
RH
12327 expr1.X_add_number = offset_expr.X_add_number;
12328 offset_expr.X_add_number = 0;
12329 if (expr1.X_add_number < -0x8000
12330 || expr1.X_add_number >= 0x8000)
12331 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb
RS
12332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12333 lw_reloc_type, mips_gp_register);
269137b2 12334 load_delay_nop ();
4d7206a2
RS
12335 relax_start (offset_expr.X_add_symbol);
12336 relax_switch ();
67c0d1eb
RS
12337 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12338 tempreg, BFD_RELOC_LO16);
4d7206a2 12339 relax_end ();
252b5132 12340 if (breg != 0)
67c0d1eb 12341 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12342 tempreg, tempreg, breg);
c0ebe874 12343 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12344 }
0a44bf69 12345 else if (mips_big_got && !HAVE_NEWABI)
252b5132 12346 {
67c0d1eb 12347 int gpdelay;
252b5132
RH
12348
12349 /* If this is a reference to an external symbol, we want
12350 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12351 addu $tempreg,$tempreg,$gp
12352 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12353 <op> op[0],0($tempreg)
252b5132
RH
12354 Otherwise we want
12355 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12356 nop
12357 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
c0ebe874 12358 <op> op[0],0($tempreg)
252b5132
RH
12359 If there is a base register, we add it to $tempreg before
12360 the <op>. If there is a constant, we stick it in the
12361 <op> instruction. We don't handle constants larger than
12362 16 bits, because we have no way to load the upper 16 bits
12363 (actually, we could handle them for the subset of cases
f5040a92 12364 in which we are not using $at). */
9c2799c2 12365 gas_assert (offset_expr.X_op == O_symbol);
252b5132
RH
12366 expr1.X_add_number = offset_expr.X_add_number;
12367 offset_expr.X_add_number = 0;
12368 if (expr1.X_add_number < -0x8000
12369 || expr1.X_add_number >= 0x8000)
12370 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12371 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12372 relax_start (offset_expr.X_add_symbol);
df58fc94 12373 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12374 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12375 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12376 mips_gp_register);
12377 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12378 BFD_RELOC_MIPS_GOT_LO16, tempreg);
4d7206a2 12379 relax_switch ();
67c0d1eb
RS
12380 if (gpdelay)
12381 macro_build (NULL, "nop", "");
12382 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12383 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12384 load_delay_nop ();
67c0d1eb
RS
12385 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12386 tempreg, BFD_RELOC_LO16);
4d7206a2
RS
12387 relax_end ();
12388
252b5132 12389 if (breg != 0)
67c0d1eb 12390 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12391 tempreg, tempreg, breg);
c0ebe874 12392 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
252b5132 12393 }
0a44bf69 12394 else if (mips_big_got && HAVE_NEWABI)
f5040a92 12395 {
f5040a92
AO
12396 /* If this is a reference to an external symbol, we want
12397 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12398 add $tempreg,$tempreg,$gp
12399 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
c0ebe874 12400 <op> op[0],<ofst>($tempreg)
f5040a92
AO
12401 Otherwise, for local symbols, we want:
12402 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
c0ebe874 12403 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
9c2799c2 12404 gas_assert (offset_expr.X_op == O_symbol);
4d7206a2 12405 expr1.X_add_number = offset_expr.X_add_number;
f5040a92
AO
12406 offset_expr.X_add_number = 0;
12407 if (expr1.X_add_number < -0x8000
12408 || expr1.X_add_number >= 0x8000)
12409 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4d7206a2 12410 relax_start (offset_expr.X_add_symbol);
df58fc94 12411 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
17a2f251 12412 BFD_RELOC_MIPS_GOT_HI16);
67c0d1eb
RS
12413 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12414 mips_gp_register);
12415 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12416 BFD_RELOC_MIPS_GOT_LO16, tempreg);
f5040a92 12417 if (breg != 0)
67c0d1eb 12418 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12419 tempreg, tempreg, breg);
c0ebe874 12420 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
684022ea 12421
4d7206a2 12422 relax_switch ();
f5040a92 12423 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12424 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12425 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
f5040a92 12426 if (breg != 0)
67c0d1eb 12427 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12428 tempreg, tempreg, breg);
c0ebe874 12429 macro_build (&offset_expr, s, fmt, op[0],
17a2f251 12430 BFD_RELOC_MIPS_GOT_OFST, tempreg);
4d7206a2 12431 relax_end ();
f5040a92 12432 }
252b5132
RH
12433 else
12434 abort ();
12435
252b5132
RH
12436 break;
12437
833794fc
MR
12438 case M_JRADDIUSP:
12439 gas_assert (mips_opts.micromips);
12440 gas_assert (mips_opts.insn32);
12441 start_noreorder ();
12442 macro_build (NULL, "jr", "s", RA);
c0ebe874 12443 expr1.X_add_number = op[0] << 2;
833794fc
MR
12444 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12445 end_noreorder ();
12446 break;
12447
12448 case M_JRC:
12449 gas_assert (mips_opts.micromips);
12450 gas_assert (mips_opts.insn32);
c0ebe874 12451 macro_build (NULL, "jr", "s", op[0]);
833794fc
MR
12452 if (mips_opts.noreorder)
12453 macro_build (NULL, "nop", "");
12454 break;
12455
252b5132
RH
12456 case M_LI:
12457 case M_LI_S:
c0ebe874 12458 load_register (op[0], &imm_expr, 0);
8fc2e39e 12459 break;
252b5132
RH
12460
12461 case M_DLI:
c0ebe874 12462 load_register (op[0], &imm_expr, 1);
8fc2e39e 12463 break;
252b5132
RH
12464
12465 case M_LI_SS:
12466 if (imm_expr.X_op == O_constant)
12467 {
8fc2e39e 12468 used_at = 1;
67c0d1eb 12469 load_register (AT, &imm_expr, 0);
c0ebe874 12470 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12471 break;
12472 }
12473 else
12474 {
b0e6f033
RS
12475 gas_assert (imm_expr.X_op == O_absent
12476 && offset_expr.X_op == O_symbol
90ecf173
MR
12477 && strcmp (segment_name (S_GET_SEGMENT
12478 (offset_expr.X_add_symbol)),
12479 ".lit4") == 0
12480 && offset_expr.X_add_number == 0);
c0ebe874 12481 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
17a2f251 12482 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
8fc2e39e 12483 break;
252b5132
RH
12484 }
12485
12486 case M_LI_D:
ca4e0257
RS
12487 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12488 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12489 order 32 bits of the value and the low order 32 bits are either
12490 zero or in OFFSET_EXPR. */
b0e6f033 12491 if (imm_expr.X_op == O_constant)
252b5132 12492 {
bad1aba3 12493 if (GPR_SIZE == 64)
c0ebe874 12494 load_register (op[0], &imm_expr, 1);
252b5132
RH
12495 else
12496 {
12497 int hreg, lreg;
12498
12499 if (target_big_endian)
12500 {
c0ebe874
RS
12501 hreg = op[0];
12502 lreg = op[0] + 1;
252b5132
RH
12503 }
12504 else
12505 {
c0ebe874
RS
12506 hreg = op[0] + 1;
12507 lreg = op[0];
252b5132
RH
12508 }
12509
12510 if (hreg <= 31)
67c0d1eb 12511 load_register (hreg, &imm_expr, 0);
252b5132
RH
12512 if (lreg <= 31)
12513 {
12514 if (offset_expr.X_op == O_absent)
67c0d1eb 12515 move_register (lreg, 0);
252b5132
RH
12516 else
12517 {
9c2799c2 12518 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12519 load_register (lreg, &offset_expr, 0);
252b5132
RH
12520 }
12521 }
12522 }
8fc2e39e 12523 break;
252b5132 12524 }
b0e6f033 12525 gas_assert (imm_expr.X_op == O_absent);
252b5132
RH
12526
12527 /* We know that sym is in the .rdata section. First we get the
12528 upper 16 bits of the address. */
12529 if (mips_pic == NO_PIC)
12530 {
67c0d1eb 12531 macro_build_lui (&offset_expr, AT);
8fc2e39e 12532 used_at = 1;
252b5132 12533 }
0a44bf69 12534 else
252b5132 12535 {
67c0d1eb
RS
12536 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12537 BFD_RELOC_MIPS_GOT16, mips_gp_register);
8fc2e39e 12538 used_at = 1;
252b5132 12539 }
bdaaa2e1 12540
252b5132 12541 /* Now we load the register(s). */
bad1aba3 12542 if (GPR_SIZE == 64)
8fc2e39e
TS
12543 {
12544 used_at = 1;
c0ebe874
RS
12545 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12546 BFD_RELOC_LO16, AT);
8fc2e39e 12547 }
252b5132
RH
12548 else
12549 {
8fc2e39e 12550 used_at = 1;
c0ebe874
RS
12551 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12552 BFD_RELOC_LO16, AT);
12553 if (op[0] != RA)
252b5132
RH
12554 {
12555 /* FIXME: How in the world do we deal with the possible
12556 overflow here? */
12557 offset_expr.X_add_number += 4;
67c0d1eb 12558 macro_build (&offset_expr, "lw", "t,o(b)",
c0ebe874 12559 op[0] + 1, BFD_RELOC_LO16, AT);
252b5132
RH
12560 }
12561 }
252b5132
RH
12562 break;
12563
12564 case M_LI_DD:
ca4e0257
RS
12565 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12566 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12567 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12568 the value and the low order 32 bits are either zero or in
12569 OFFSET_EXPR. */
b0e6f033 12570 if (imm_expr.X_op == O_constant)
252b5132 12571 {
8fc2e39e 12572 used_at = 1;
bad1aba3 12573 load_register (AT, &imm_expr, FPR_SIZE == 64);
351cdf24
MF
12574 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12575 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
252b5132
RH
12576 else
12577 {
351cdf24
MF
12578 if (ISA_HAS_MXHC1 (mips_opts.isa))
12579 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12580 else if (FPR_SIZE != 32)
12581 as_bad (_("Unable to generate `%s' compliant code "
12582 "without mthc1"),
12583 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12584 else
12585 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
252b5132 12586 if (offset_expr.X_op == O_absent)
c0ebe874 12587 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
252b5132
RH
12588 else
12589 {
9c2799c2 12590 gas_assert (offset_expr.X_op == O_constant);
67c0d1eb 12591 load_register (AT, &offset_expr, 0);
c0ebe874 12592 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
252b5132
RH
12593 }
12594 }
12595 break;
12596 }
12597
b0e6f033
RS
12598 gas_assert (imm_expr.X_op == O_absent
12599 && offset_expr.X_op == O_symbol
90ecf173 12600 && offset_expr.X_add_number == 0);
252b5132
RH
12601 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12602 if (strcmp (s, ".lit8") == 0)
134c0c8b
MR
12603 {
12604 op[2] = mips_gp_register;
f2ae14a1
RS
12605 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12606 offset_reloc[1] = BFD_RELOC_UNUSED;
12607 offset_reloc[2] = BFD_RELOC_UNUSED;
252b5132
RH
12608 }
12609 else
12610 {
9c2799c2 12611 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
8fc2e39e 12612 used_at = 1;
0a44bf69 12613 if (mips_pic != NO_PIC)
67c0d1eb
RS
12614 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12615 BFD_RELOC_MIPS_GOT16, mips_gp_register);
252b5132
RH
12616 else
12617 {
12618 /* FIXME: This won't work for a 64 bit address. */
67c0d1eb 12619 macro_build_lui (&offset_expr, AT);
252b5132 12620 }
bdaaa2e1 12621
c0ebe874 12622 op[2] = AT;
f2ae14a1
RS
12623 offset_reloc[0] = BFD_RELOC_LO16;
12624 offset_reloc[1] = BFD_RELOC_UNUSED;
12625 offset_reloc[2] = BFD_RELOC_UNUSED;
134c0c8b 12626 }
f2ae14a1
RS
12627 align = 8;
12628 /* Fall through */
c4a68bea 12629
252b5132
RH
12630 case M_L_DAB:
12631 /*
12632 * The MIPS assembler seems to check for X_add_number not
12633 * being double aligned and generating:
12634 * lui at,%hi(foo+1)
12635 * addu at,at,v1
12636 * addiu at,at,%lo(foo+1)
12637 * lwc1 f2,0(at)
12638 * lwc1 f3,4(at)
12639 * But, the resulting address is the same after relocation so why
12640 * generate the extra instruction?
12641 */
bdaaa2e1 12642 /* Itbl support may require additional care here. */
252b5132 12643 coproc = 1;
df58fc94 12644 fmt = "T,o(b)";
0aa27725 12645 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12646 {
12647 s = "ldc1";
df58fc94 12648 goto ld_st;
252b5132 12649 }
252b5132 12650 s = "lwc1";
252b5132
RH
12651 goto ldd_std;
12652
12653 case M_S_DAB:
df58fc94
RS
12654 gas_assert (!mips_opts.micromips);
12655 /* Itbl support may require additional care here. */
12656 coproc = 1;
12657 fmt = "T,o(b)";
0aa27725 12658 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
252b5132
RH
12659 {
12660 s = "sdc1";
df58fc94 12661 goto ld_st;
252b5132 12662 }
252b5132 12663 s = "swc1";
252b5132
RH
12664 goto ldd_std;
12665
e407c74b
NC
12666 case M_LQ_AB:
12667 fmt = "t,o(b)";
12668 s = "lq";
12669 goto ld;
12670
12671 case M_SQ_AB:
12672 fmt = "t,o(b)";
12673 s = "sq";
12674 goto ld_st;
12675
252b5132 12676 case M_LD_AB:
df58fc94 12677 fmt = "t,o(b)";
bad1aba3 12678 if (GPR_SIZE == 64)
252b5132
RH
12679 {
12680 s = "ld";
12681 goto ld;
12682 }
252b5132 12683 s = "lw";
252b5132
RH
12684 goto ldd_std;
12685
12686 case M_SD_AB:
df58fc94 12687 fmt = "t,o(b)";
bad1aba3 12688 if (GPR_SIZE == 64)
252b5132
RH
12689 {
12690 s = "sd";
df58fc94 12691 goto ld_st;
252b5132 12692 }
252b5132 12693 s = "sw";
252b5132
RH
12694
12695 ldd_std:
f2ae14a1
RS
12696 /* Even on a big endian machine $fn comes before $fn+1. We have
12697 to adjust when loading from memory. We set coproc if we must
12698 load $fn+1 first. */
12699 /* Itbl support may require additional care here. */
12700 if (!target_big_endian)
12701 coproc = 0;
12702
c0ebe874 12703 breg = op[2];
f2ae14a1
RS
12704 if (small_offset_p (0, align, 16))
12705 {
12706 ep = &offset_expr;
12707 if (!small_offset_p (4, align, 16))
12708 {
12709 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12710 -1, offset_reloc[0], offset_reloc[1],
12711 offset_reloc[2]);
12712 expr1.X_add_number = 0;
12713 ep = &expr1;
12714 breg = AT;
12715 used_at = 1;
12716 offset_reloc[0] = BFD_RELOC_LO16;
12717 offset_reloc[1] = BFD_RELOC_UNUSED;
12718 offset_reloc[2] = BFD_RELOC_UNUSED;
12719 }
c0ebe874 12720 if (strcmp (s, "lw") == 0 && op[0] == breg)
f2ae14a1
RS
12721 {
12722 ep->X_add_number += 4;
c0ebe874 12723 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
f2ae14a1
RS
12724 offset_reloc[1], offset_reloc[2], breg);
12725 ep->X_add_number -= 4;
c0ebe874 12726 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
f2ae14a1
RS
12727 offset_reloc[1], offset_reloc[2], breg);
12728 }
12729 else
12730 {
c0ebe874 12731 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
f2ae14a1
RS
12732 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12733 breg);
12734 ep->X_add_number += 4;
c0ebe874 12735 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
f2ae14a1
RS
12736 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12737 breg);
12738 }
12739 break;
12740 }
12741
252b5132
RH
12742 if (offset_expr.X_op != O_symbol
12743 && offset_expr.X_op != O_constant)
12744 {
1661c76c 12745 as_bad (_("expression too complex"));
252b5132
RH
12746 offset_expr.X_op = O_constant;
12747 }
12748
2051e8c4
MR
12749 if (HAVE_32BIT_ADDRESSES
12750 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
55e08f71
NC
12751 {
12752 char value [32];
12753
12754 sprintf_vma (value, offset_expr.X_add_number);
1661c76c 12755 as_bad (_("number (0x%s) larger than 32 bits"), value);
55e08f71 12756 }
2051e8c4 12757
90ecf173 12758 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
252b5132
RH
12759 {
12760 /* If this is a reference to a GP relative symbol, we want
c0ebe874
RS
12761 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12762 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
252b5132
RH
12763 If we have a base register, we use this
12764 addu $at,$breg,$gp
c0ebe874
RS
12765 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12766 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
252b5132
RH
12767 If this is not a GP relative symbol, we want
12768 lui $at,<sym> (BFD_RELOC_HI16_S)
c0ebe874
RS
12769 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12770 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12771 If there is a base register, we add it to $at after the
12772 lui instruction. If there is a constant, we always use
12773 the last case. */
39a59cf8
MR
12774 if (offset_expr.X_op == O_symbol
12775 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6caf9ef4 12776 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
252b5132 12777 {
4d7206a2 12778 relax_start (offset_expr.X_add_symbol);
252b5132
RH
12779 if (breg == 0)
12780 {
c9914766 12781 tempreg = mips_gp_register;
252b5132
RH
12782 }
12783 else
12784 {
67c0d1eb 12785 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12786 AT, breg, mips_gp_register);
252b5132 12787 tempreg = AT;
252b5132
RH
12788 used_at = 1;
12789 }
12790
beae10d5 12791 /* Itbl support may require additional care here. */
c0ebe874 12792 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12793 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12794 offset_expr.X_add_number += 4;
12795
12796 /* Set mips_optimize to 2 to avoid inserting an
12797 undesired nop. */
12798 hold_mips_optimize = mips_optimize;
12799 mips_optimize = 2;
beae10d5 12800 /* Itbl support may require additional care here. */
c0ebe874 12801 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12802 BFD_RELOC_GPREL16, tempreg);
252b5132
RH
12803 mips_optimize = hold_mips_optimize;
12804
4d7206a2 12805 relax_switch ();
252b5132 12806
0970e49e 12807 offset_expr.X_add_number -= 4;
252b5132 12808 }
8fc2e39e 12809 used_at = 1;
f2ae14a1
RS
12810 if (offset_high_part (offset_expr.X_add_number, 16)
12811 != offset_high_part (offset_expr.X_add_number + 4, 16))
12812 {
12813 load_address (AT, &offset_expr, &used_at);
12814 offset_expr.X_op = O_constant;
12815 offset_expr.X_add_number = 0;
12816 }
12817 else
12818 macro_build_lui (&offset_expr, AT);
252b5132 12819 if (breg != 0)
67c0d1eb 12820 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12821 /* Itbl support may require additional care here. */
c0ebe874 12822 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12823 BFD_RELOC_LO16, AT);
252b5132
RH
12824 /* FIXME: How do we handle overflow here? */
12825 offset_expr.X_add_number += 4;
beae10d5 12826 /* Itbl support may require additional care here. */
c0ebe874 12827 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12828 BFD_RELOC_LO16, AT);
4d7206a2
RS
12829 if (mips_relax.sequence)
12830 relax_end ();
bdaaa2e1 12831 }
0a44bf69 12832 else if (!mips_big_got)
252b5132 12833 {
252b5132
RH
12834 /* If this is a reference to an external symbol, we want
12835 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12836 nop
c0ebe874
RS
12837 <op> op[0],0($at)
12838 <op> op[0]+1,4($at)
252b5132
RH
12839 Otherwise we want
12840 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12841 nop
c0ebe874
RS
12842 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12843 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12844 If there is a base register we add it to $at before the
12845 lwc1 instructions. If there is a constant we include it
12846 in the lwc1 instructions. */
12847 used_at = 1;
12848 expr1.X_add_number = offset_expr.X_add_number;
252b5132
RH
12849 if (expr1.X_add_number < -0x8000
12850 || expr1.X_add_number >= 0x8000 - 4)
12851 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12852 load_got_offset (AT, &offset_expr);
269137b2 12853 load_delay_nop ();
252b5132 12854 if (breg != 0)
67c0d1eb 12855 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
252b5132
RH
12856
12857 /* Set mips_optimize to 2 to avoid inserting an undesired
12858 nop. */
12859 hold_mips_optimize = mips_optimize;
12860 mips_optimize = 2;
4d7206a2 12861
beae10d5 12862 /* Itbl support may require additional care here. */
4d7206a2 12863 relax_start (offset_expr.X_add_symbol);
c0ebe874 12864 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12865 BFD_RELOC_LO16, AT);
4d7206a2 12866 expr1.X_add_number += 4;
c0ebe874 12867 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12868 BFD_RELOC_LO16, AT);
4d7206a2 12869 relax_switch ();
c0ebe874 12870 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12871 BFD_RELOC_LO16, AT);
4d7206a2 12872 offset_expr.X_add_number += 4;
c0ebe874 12873 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12874 BFD_RELOC_LO16, AT);
4d7206a2 12875 relax_end ();
252b5132 12876
4d7206a2 12877 mips_optimize = hold_mips_optimize;
252b5132 12878 }
0a44bf69 12879 else if (mips_big_got)
252b5132 12880 {
67c0d1eb 12881 int gpdelay;
252b5132
RH
12882
12883 /* If this is a reference to an external symbol, we want
12884 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12885 addu $at,$at,$gp
12886 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12887 nop
c0ebe874
RS
12888 <op> op[0],0($at)
12889 <op> op[0]+1,4($at)
252b5132
RH
12890 Otherwise we want
12891 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12892 nop
c0ebe874
RS
12893 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12894 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
252b5132
RH
12895 If there is a base register we add it to $at before the
12896 lwc1 instructions. If there is a constant we include it
12897 in the lwc1 instructions. */
12898 used_at = 1;
12899 expr1.X_add_number = offset_expr.X_add_number;
12900 offset_expr.X_add_number = 0;
12901 if (expr1.X_add_number < -0x8000
12902 || expr1.X_add_number >= 0x8000 - 4)
12903 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
67c0d1eb 12904 gpdelay = reg_needs_delay (mips_gp_register);
4d7206a2 12905 relax_start (offset_expr.X_add_symbol);
df58fc94 12906 macro_build (&offset_expr, "lui", LUI_FMT,
67c0d1eb
RS
12907 AT, BFD_RELOC_MIPS_GOT_HI16);
12908 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
17a2f251 12909 AT, AT, mips_gp_register);
67c0d1eb 12910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
17a2f251 12911 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
269137b2 12912 load_delay_nop ();
252b5132 12913 if (breg != 0)
67c0d1eb 12914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12915 /* Itbl support may require additional care here. */
c0ebe874 12916 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
17a2f251 12917 BFD_RELOC_LO16, AT);
252b5132
RH
12918 expr1.X_add_number += 4;
12919
12920 /* Set mips_optimize to 2 to avoid inserting an undesired
12921 nop. */
12922 hold_mips_optimize = mips_optimize;
12923 mips_optimize = 2;
beae10d5 12924 /* Itbl support may require additional care here. */
c0ebe874 12925 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
17a2f251 12926 BFD_RELOC_LO16, AT);
252b5132
RH
12927 mips_optimize = hold_mips_optimize;
12928 expr1.X_add_number -= 4;
12929
4d7206a2
RS
12930 relax_switch ();
12931 offset_expr.X_add_number = expr1.X_add_number;
67c0d1eb
RS
12932 if (gpdelay)
12933 macro_build (NULL, "nop", "");
12934 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12935 BFD_RELOC_MIPS_GOT16, mips_gp_register);
269137b2 12936 load_delay_nop ();
252b5132 12937 if (breg != 0)
67c0d1eb 12938 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
beae10d5 12939 /* Itbl support may require additional care here. */
c0ebe874 12940 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
67c0d1eb 12941 BFD_RELOC_LO16, AT);
4d7206a2 12942 offset_expr.X_add_number += 4;
252b5132
RH
12943
12944 /* Set mips_optimize to 2 to avoid inserting an undesired
12945 nop. */
12946 hold_mips_optimize = mips_optimize;
12947 mips_optimize = 2;
beae10d5 12948 /* Itbl support may require additional care here. */
c0ebe874 12949 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
67c0d1eb 12950 BFD_RELOC_LO16, AT);
252b5132 12951 mips_optimize = hold_mips_optimize;
4d7206a2 12952 relax_end ();
252b5132 12953 }
252b5132
RH
12954 else
12955 abort ();
12956
252b5132 12957 break;
3739860c 12958
dd6a37e7 12959 case M_SAA_AB:
dd6a37e7 12960 s = "saa";
0db377d0 12961 goto saa_saad;
dd6a37e7 12962 case M_SAAD_AB:
dd6a37e7 12963 s = "saad";
0db377d0
MR
12964 saa_saad:
12965 gas_assert (!mips_opts.micromips);
7f3c4072 12966 offbits = 0;
dd6a37e7
AP
12967 fmt = "t,(b)";
12968 goto ld_st;
12969
252b5132
RH
12970 /* New code added to support COPZ instructions.
12971 This code builds table entries out of the macros in mip_opcodes.
12972 R4000 uses interlocks to handle coproc delays.
12973 Other chips (like the R3000) require nops to be inserted for delays.
12974
f72c8c98 12975 FIXME: Currently, we require that the user handle delays.
252b5132
RH
12976 In order to fill delay slots for non-interlocked chips,
12977 we must have a way to specify delays based on the coprocessor.
12978 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12979 What are the side-effects of the cop instruction?
12980 What cache support might we have and what are its effects?
12981 Both coprocessor & memory require delays. how long???
bdaaa2e1 12982 What registers are read/set/modified?
252b5132
RH
12983
12984 If an itbl is provided to interpret cop instructions,
bdaaa2e1 12985 this knowledge can be encoded in the itbl spec. */
252b5132
RH
12986
12987 case M_COP0:
12988 s = "c0";
12989 goto copz;
12990 case M_COP1:
12991 s = "c1";
12992 goto copz;
12993 case M_COP2:
12994 s = "c2";
12995 goto copz;
12996 case M_COP3:
12997 s = "c3";
12998 copz:
df58fc94 12999 gas_assert (!mips_opts.micromips);
252b5132
RH
13000 /* For now we just do C (same as Cz). The parameter will be
13001 stored in insn_opcode by mips_ip. */
c8276761 13002 macro_build (NULL, s, "C", (int) ip->insn_opcode);
8fc2e39e 13003 break;
252b5132 13004
ea1fb5dc 13005 case M_MOVE:
c0ebe874 13006 move_register (op[0], op[1]);
8fc2e39e 13007 break;
ea1fb5dc 13008
833794fc
MR
13009 case M_MOVEP:
13010 gas_assert (mips_opts.micromips);
13011 gas_assert (mips_opts.insn32);
c0ebe874
RS
13012 move_register (micromips_to_32_reg_h_map1[op[0]],
13013 micromips_to_32_reg_m_map[op[1]]);
13014 move_register (micromips_to_32_reg_h_map2[op[0]],
13015 micromips_to_32_reg_n_map[op[2]]);
833794fc
MR
13016 break;
13017
252b5132
RH
13018 case M_DMUL:
13019 dbl = 1;
1a0670f3 13020 /* Fall through. */
252b5132 13021 case M_MUL:
e407c74b 13022 if (mips_opts.arch == CPU_R5900)
c0ebe874
RS
13023 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13024 op[2]);
e407c74b
NC
13025 else
13026 {
c0ebe874
RS
13027 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13028 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
e407c74b 13029 }
8fc2e39e 13030 break;
252b5132
RH
13031
13032 case M_DMUL_I:
13033 dbl = 1;
1a0670f3 13034 /* Fall through. */
252b5132
RH
13035 case M_MUL_I:
13036 /* The MIPS assembler some times generates shifts and adds. I'm
13037 not trying to be that fancy. GCC should do this for us
13038 anyway. */
8fc2e39e 13039 used_at = 1;
67c0d1eb 13040 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13041 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13042 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13043 break;
13044
13045 case M_DMULO_I:
13046 dbl = 1;
1a0670f3 13047 /* Fall through. */
252b5132
RH
13048 case M_MULO_I:
13049 imm = 1;
13050 goto do_mulo;
13051
13052 case M_DMULO:
13053 dbl = 1;
1a0670f3 13054 /* Fall through. */
252b5132
RH
13055 case M_MULO:
13056 do_mulo:
7d10b47d 13057 start_noreorder ();
8fc2e39e 13058 used_at = 1;
252b5132 13059 if (imm)
67c0d1eb 13060 load_register (AT, &imm_expr, dbl);
c0ebe874
RS
13061 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13062 op[1], imm ? AT : op[2]);
13063 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13064 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
df58fc94 13065 macro_build (NULL, "mfhi", MFHL_FMT, AT);
252b5132 13066 if (mips_trap)
c0ebe874 13067 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
252b5132
RH
13068 else
13069 {
df58fc94
RS
13070 if (mips_opts.micromips)
13071 micromips_label_expr (&label_expr);
13072 else
13073 label_expr.X_add_number = 8;
c0ebe874 13074 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
a605d2b3 13075 macro_build (NULL, "nop", "");
df58fc94
RS
13076 macro_build (NULL, "break", BRK_FMT, 6);
13077 if (mips_opts.micromips)
13078 micromips_add_label ();
252b5132 13079 }
7d10b47d 13080 end_noreorder ();
c0ebe874 13081 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132
RH
13082 break;
13083
13084 case M_DMULOU_I:
13085 dbl = 1;
1a0670f3 13086 /* Fall through. */
252b5132
RH
13087 case M_MULOU_I:
13088 imm = 1;
13089 goto do_mulou;
13090
13091 case M_DMULOU:
13092 dbl = 1;
1a0670f3 13093 /* Fall through. */
252b5132
RH
13094 case M_MULOU:
13095 do_mulou:
7d10b47d 13096 start_noreorder ();
8fc2e39e 13097 used_at = 1;
252b5132 13098 if (imm)
67c0d1eb
RS
13099 load_register (AT, &imm_expr, dbl);
13100 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
c0ebe874 13101 op[1], imm ? AT : op[2]);
df58fc94 13102 macro_build (NULL, "mfhi", MFHL_FMT, AT);
c0ebe874 13103 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
252b5132 13104 if (mips_trap)
df58fc94 13105 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
252b5132
RH
13106 else
13107 {
df58fc94
RS
13108 if (mips_opts.micromips)
13109 micromips_label_expr (&label_expr);
13110 else
13111 label_expr.X_add_number = 8;
13112 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
a605d2b3 13113 macro_build (NULL, "nop", "");
df58fc94
RS
13114 macro_build (NULL, "break", BRK_FMT, 6);
13115 if (mips_opts.micromips)
13116 micromips_add_label ();
252b5132 13117 }
7d10b47d 13118 end_noreorder ();
252b5132
RH
13119 break;
13120
771c7ce4 13121 case M_DROL:
fef14a42 13122 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13123 {
c0ebe874 13124 if (op[0] == op[1])
82dd0097
CD
13125 {
13126 tempreg = AT;
13127 used_at = 1;
13128 }
13129 else
c0ebe874
RS
13130 tempreg = op[0];
13131 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13132 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13133 break;
82dd0097 13134 }
8fc2e39e 13135 used_at = 1;
c0ebe874
RS
13136 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13137 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13138 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13139 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13140 break;
13141
252b5132 13142 case M_ROL:
fef14a42 13143 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13144 {
c0ebe874 13145 if (op[0] == op[1])
82dd0097
CD
13146 {
13147 tempreg = AT;
13148 used_at = 1;
13149 }
13150 else
c0ebe874
RS
13151 tempreg = op[0];
13152 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13153 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
8fc2e39e 13154 break;
82dd0097 13155 }
8fc2e39e 13156 used_at = 1;
c0ebe874
RS
13157 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13158 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13159 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13160 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13161 break;
13162
771c7ce4
TS
13163 case M_DROL_I:
13164 {
13165 unsigned int rot;
e0471c16
TS
13166 const char *l;
13167 const char *rr;
771c7ce4 13168
771c7ce4 13169 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13170 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
60b63b72
RS
13171 {
13172 rot = (64 - rot) & 0x3f;
13173 if (rot >= 32)
c0ebe874 13174 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
60b63b72 13175 else
c0ebe874 13176 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13177 break;
60b63b72 13178 }
483fc7cd 13179 if (rot == 0)
483fc7cd 13180 {
c0ebe874 13181 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13182 break;
483fc7cd 13183 }
82dd0097 13184 l = (rot < 0x20) ? "dsll" : "dsll32";
91d6fa6a 13185 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
82dd0097 13186 rot &= 0x1f;
8fc2e39e 13187 used_at = 1;
c0ebe874
RS
13188 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13189 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13190 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13191 }
13192 break;
13193
252b5132 13194 case M_ROL_I:
771c7ce4
TS
13195 {
13196 unsigned int rot;
13197
771c7ce4 13198 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13199 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
60b63b72 13200 {
c0ebe874
RS
13201 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13202 (32 - rot) & 0x1f);
8fc2e39e 13203 break;
60b63b72 13204 }
483fc7cd 13205 if (rot == 0)
483fc7cd 13206 {
c0ebe874 13207 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13208 break;
483fc7cd 13209 }
8fc2e39e 13210 used_at = 1;
c0ebe874
RS
13211 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13212 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13213 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13214 }
13215 break;
13216
13217 case M_DROR:
fef14a42 13218 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097 13219 {
c0ebe874 13220 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13221 break;
82dd0097 13222 }
8fc2e39e 13223 used_at = 1;
c0ebe874
RS
13224 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13225 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13226 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13227 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13228 break;
13229
13230 case M_ROR:
fef14a42 13231 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13232 {
c0ebe874 13233 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
8fc2e39e 13234 break;
82dd0097 13235 }
8fc2e39e 13236 used_at = 1;
c0ebe874
RS
13237 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13238 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13239 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13240 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
252b5132
RH
13241 break;
13242
771c7ce4
TS
13243 case M_DROR_I:
13244 {
13245 unsigned int rot;
e0471c16
TS
13246 const char *l;
13247 const char *rr;
771c7ce4 13248
771c7ce4 13249 rot = imm_expr.X_add_number & 0x3f;
fef14a42 13250 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
82dd0097
CD
13251 {
13252 if (rot >= 32)
c0ebe874 13253 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
82dd0097 13254 else
c0ebe874 13255 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13256 break;
82dd0097 13257 }
483fc7cd 13258 if (rot == 0)
483fc7cd 13259 {
c0ebe874 13260 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13261 break;
483fc7cd 13262 }
91d6fa6a 13263 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
82dd0097
CD
13264 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13265 rot &= 0x1f;
8fc2e39e 13266 used_at = 1;
c0ebe874
RS
13267 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13268 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13269 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4
TS
13270 }
13271 break;
13272
252b5132 13273 case M_ROR_I:
771c7ce4
TS
13274 {
13275 unsigned int rot;
13276
771c7ce4 13277 rot = imm_expr.X_add_number & 0x1f;
fef14a42 13278 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
82dd0097 13279 {
c0ebe874 13280 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
8fc2e39e 13281 break;
82dd0097 13282 }
483fc7cd 13283 if (rot == 0)
483fc7cd 13284 {
c0ebe874 13285 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
8fc2e39e 13286 break;
483fc7cd 13287 }
8fc2e39e 13288 used_at = 1;
c0ebe874
RS
13289 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13290 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13291 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
771c7ce4 13292 }
252b5132
RH
13293 break;
13294
252b5132 13295 case M_SEQ:
c0ebe874
RS
13296 if (op[1] == 0)
13297 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13298 else if (op[2] == 0)
13299 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13300 else
13301 {
c0ebe874
RS
13302 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13303 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
252b5132 13304 }
8fc2e39e 13305 break;
252b5132
RH
13306
13307 case M_SEQ_I:
b0e6f033 13308 if (imm_expr.X_add_number == 0)
252b5132 13309 {
c0ebe874 13310 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13311 break;
252b5132 13312 }
c0ebe874 13313 if (op[1] == 0)
252b5132 13314 {
1661c76c 13315 as_warn (_("instruction %s: result is always false"),
252b5132 13316 ip->insn_mo->name);
c0ebe874 13317 move_register (op[0], 0);
8fc2e39e 13318 break;
252b5132 13319 }
dd3cbb7e
NC
13320 if (CPU_HAS_SEQ (mips_opts.arch)
13321 && -512 <= imm_expr.X_add_number
13322 && imm_expr.X_add_number < 512)
13323 {
c0ebe874 13324 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
750bdd57 13325 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13326 break;
13327 }
b0e6f033 13328 if (imm_expr.X_add_number >= 0
252b5132 13329 && imm_expr.X_add_number < 0x10000)
c0ebe874 13330 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
b0e6f033 13331 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13332 && imm_expr.X_add_number < 0)
13333 {
13334 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13335 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13336 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13337 }
dd3cbb7e
NC
13338 else if (CPU_HAS_SEQ (mips_opts.arch))
13339 {
13340 used_at = 1;
bad1aba3 13341 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13342 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13343 break;
13344 }
252b5132
RH
13345 else
13346 {
bad1aba3 13347 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13348 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13349 used_at = 1;
13350 }
c0ebe874 13351 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13352 break;
252b5132 13353
c0ebe874 13354 case M_SGE: /* X >= Y <==> not (X < Y) */
252b5132
RH
13355 s = "slt";
13356 goto sge;
13357 case M_SGEU:
13358 s = "sltu";
13359 sge:
c0ebe874
RS
13360 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13361 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13362 break;
252b5132 13363
c0ebe874 13364 case M_SGE_I: /* X >= I <==> not (X < I) */
252b5132 13365 case M_SGEU_I:
b0e6f033 13366 if (imm_expr.X_add_number >= -0x8000
252b5132 13367 && imm_expr.X_add_number < 0x8000)
c0ebe874
RS
13368 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13369 op[0], op[1], BFD_RELOC_LO16);
252b5132
RH
13370 else
13371 {
bad1aba3 13372 load_register (AT, &imm_expr, GPR_SIZE == 64);
67c0d1eb 13373 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
c0ebe874 13374 op[0], op[1], AT);
252b5132
RH
13375 used_at = 1;
13376 }
c0ebe874 13377 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13378 break;
252b5132 13379
c0ebe874 13380 case M_SGT: /* X > Y <==> Y < X */
252b5132
RH
13381 s = "slt";
13382 goto sgt;
13383 case M_SGTU:
13384 s = "sltu";
13385 sgt:
c0ebe874 13386 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
8fc2e39e 13387 break;
252b5132 13388
c0ebe874 13389 case M_SGT_I: /* X > I <==> I < X */
252b5132
RH
13390 s = "slt";
13391 goto sgti;
13392 case M_SGTU_I:
13393 s = "sltu";
13394 sgti:
8fc2e39e 13395 used_at = 1;
bad1aba3 13396 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13397 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
252b5132
RH
13398 break;
13399
c0ebe874 13400 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
252b5132
RH
13401 s = "slt";
13402 goto sle;
13403 case M_SLEU:
13404 s = "sltu";
13405 sle:
c0ebe874
RS
13406 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13407 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
8fc2e39e 13408 break;
252b5132 13409
c0ebe874 13410 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
252b5132
RH
13411 s = "slt";
13412 goto slei;
13413 case M_SLEU_I:
13414 s = "sltu";
13415 slei:
8fc2e39e 13416 used_at = 1;
bad1aba3 13417 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874
RS
13418 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13419 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
252b5132
RH
13420 break;
13421
13422 case M_SLT_I:
b0e6f033 13423 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13424 && imm_expr.X_add_number < 0x8000)
13425 {
c0ebe874
RS
13426 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13427 BFD_RELOC_LO16);
8fc2e39e 13428 break;
252b5132 13429 }
8fc2e39e 13430 used_at = 1;
bad1aba3 13431 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13432 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
252b5132
RH
13433 break;
13434
13435 case M_SLTU_I:
b0e6f033 13436 if (imm_expr.X_add_number >= -0x8000
252b5132
RH
13437 && imm_expr.X_add_number < 0x8000)
13438 {
c0ebe874 13439 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
17a2f251 13440 BFD_RELOC_LO16);
8fc2e39e 13441 break;
252b5132 13442 }
8fc2e39e 13443 used_at = 1;
bad1aba3 13444 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13445 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
252b5132
RH
13446 break;
13447
13448 case M_SNE:
c0ebe874
RS
13449 if (op[1] == 0)
13450 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13451 else if (op[2] == 0)
13452 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
252b5132
RH
13453 else
13454 {
c0ebe874
RS
13455 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13456 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
252b5132 13457 }
8fc2e39e 13458 break;
252b5132
RH
13459
13460 case M_SNE_I:
b0e6f033 13461 if (imm_expr.X_add_number == 0)
252b5132 13462 {
c0ebe874 13463 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
8fc2e39e 13464 break;
252b5132 13465 }
c0ebe874 13466 if (op[1] == 0)
252b5132 13467 {
1661c76c 13468 as_warn (_("instruction %s: result is always true"),
252b5132 13469 ip->insn_mo->name);
bad1aba3 13470 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
c0ebe874 13471 op[0], 0, BFD_RELOC_LO16);
8fc2e39e 13472 break;
252b5132 13473 }
dd3cbb7e
NC
13474 if (CPU_HAS_SEQ (mips_opts.arch)
13475 && -512 <= imm_expr.X_add_number
13476 && imm_expr.X_add_number < 512)
13477 {
c0ebe874 13478 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
750bdd57 13479 (int) imm_expr.X_add_number);
dd3cbb7e
NC
13480 break;
13481 }
b0e6f033 13482 if (imm_expr.X_add_number >= 0
252b5132
RH
13483 && imm_expr.X_add_number < 0x10000)
13484 {
c0ebe874
RS
13485 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13486 BFD_RELOC_LO16);
252b5132 13487 }
b0e6f033 13488 else if (imm_expr.X_add_number > -0x8000
252b5132
RH
13489 && imm_expr.X_add_number < 0)
13490 {
13491 imm_expr.X_add_number = -imm_expr.X_add_number;
bad1aba3 13492 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
c0ebe874 13493 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
252b5132 13494 }
dd3cbb7e
NC
13495 else if (CPU_HAS_SEQ (mips_opts.arch))
13496 {
13497 used_at = 1;
bad1aba3 13498 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13499 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
dd3cbb7e
NC
13500 break;
13501 }
252b5132
RH
13502 else
13503 {
bad1aba3 13504 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13505 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
252b5132
RH
13506 used_at = 1;
13507 }
c0ebe874 13508 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
8fc2e39e 13509 break;
252b5132 13510
df58fc94
RS
13511 case M_SUB_I:
13512 s = "addi";
13513 s2 = "sub";
13514 goto do_subi;
13515 case M_SUBU_I:
13516 s = "addiu";
13517 s2 = "subu";
13518 goto do_subi;
252b5132
RH
13519 case M_DSUB_I:
13520 dbl = 1;
df58fc94
RS
13521 s = "daddi";
13522 s2 = "dsub";
13523 if (!mips_opts.micromips)
13524 goto do_subi;
b0e6f033 13525 if (imm_expr.X_add_number > -0x200
df58fc94 13526 && imm_expr.X_add_number <= 0x200)
252b5132 13527 {
b0e6f033
RS
13528 macro_build (NULL, s, "t,r,.", op[0], op[1],
13529 (int) -imm_expr.X_add_number);
8fc2e39e 13530 break;
252b5132 13531 }
df58fc94 13532 goto do_subi_i;
252b5132
RH
13533 case M_DSUBU_I:
13534 dbl = 1;
df58fc94
RS
13535 s = "daddiu";
13536 s2 = "dsubu";
13537 do_subi:
b0e6f033 13538 if (imm_expr.X_add_number > -0x8000
252b5132
RH
13539 && imm_expr.X_add_number <= 0x8000)
13540 {
13541 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13542 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
8fc2e39e 13543 break;
252b5132 13544 }
df58fc94 13545 do_subi_i:
8fc2e39e 13546 used_at = 1;
67c0d1eb 13547 load_register (AT, &imm_expr, dbl);
c0ebe874 13548 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
252b5132
RH
13549 break;
13550
13551 case M_TEQ_I:
13552 s = "teq";
13553 goto trap;
13554 case M_TGE_I:
13555 s = "tge";
13556 goto trap;
13557 case M_TGEU_I:
13558 s = "tgeu";
13559 goto trap;
13560 case M_TLT_I:
13561 s = "tlt";
13562 goto trap;
13563 case M_TLTU_I:
13564 s = "tltu";
13565 goto trap;
13566 case M_TNE_I:
13567 s = "tne";
13568 trap:
8fc2e39e 13569 used_at = 1;
bad1aba3 13570 load_register (AT, &imm_expr, GPR_SIZE == 64);
c0ebe874 13571 macro_build (NULL, s, "s,t", op[0], AT);
252b5132
RH
13572 break;
13573
252b5132 13574 case M_TRUNCWS:
43841e91 13575 case M_TRUNCWD:
df58fc94 13576 gas_assert (!mips_opts.micromips);
0aa27725 13577 gas_assert (mips_opts.isa == ISA_MIPS1);
8fc2e39e 13578 used_at = 1;
252b5132
RH
13579
13580 /*
13581 * Is the double cfc1 instruction a bug in the mips assembler;
13582 * or is there a reason for it?
13583 */
7d10b47d 13584 start_noreorder ();
c0ebe874
RS
13585 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13586 macro_build (NULL, "cfc1", "t,G", op[2], RA);
67c0d1eb 13587 macro_build (NULL, "nop", "");
252b5132 13588 expr1.X_add_number = 3;
c0ebe874 13589 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
252b5132 13590 expr1.X_add_number = 2;
67c0d1eb
RS
13591 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13592 macro_build (NULL, "ctc1", "t,G", AT, RA);
13593 macro_build (NULL, "nop", "");
13594 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
c0ebe874
RS
13595 op[0], op[1]);
13596 macro_build (NULL, "ctc1", "t,G", op[2], RA);
67c0d1eb 13597 macro_build (NULL, "nop", "");
7d10b47d 13598 end_noreorder ();
252b5132
RH
13599 break;
13600
f2ae14a1 13601 case M_ULH_AB:
252b5132 13602 s = "lb";
df58fc94
RS
13603 s2 = "lbu";
13604 off = 1;
13605 goto uld_st;
f2ae14a1 13606 case M_ULHU_AB:
252b5132 13607 s = "lbu";
df58fc94
RS
13608 s2 = "lbu";
13609 off = 1;
13610 goto uld_st;
f2ae14a1 13611 case M_ULW_AB:
df58fc94
RS
13612 s = "lwl";
13613 s2 = "lwr";
7f3c4072 13614 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13615 off = 3;
13616 goto uld_st;
f2ae14a1 13617 case M_ULD_AB:
252b5132
RH
13618 s = "ldl";
13619 s2 = "ldr";
7f3c4072 13620 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13621 off = 7;
df58fc94 13622 goto uld_st;
f2ae14a1 13623 case M_USH_AB:
df58fc94
RS
13624 s = "sb";
13625 s2 = "sb";
13626 off = 1;
13627 ust = 1;
13628 goto uld_st;
f2ae14a1 13629 case M_USW_AB:
df58fc94
RS
13630 s = "swl";
13631 s2 = "swr";
7f3c4072 13632 offbits = (mips_opts.micromips ? 12 : 16);
252b5132 13633 off = 3;
df58fc94
RS
13634 ust = 1;
13635 goto uld_st;
f2ae14a1 13636 case M_USD_AB:
df58fc94
RS
13637 s = "sdl";
13638 s2 = "sdr";
7f3c4072 13639 offbits = (mips_opts.micromips ? 12 : 16);
df58fc94
RS
13640 off = 7;
13641 ust = 1;
13642
13643 uld_st:
c0ebe874 13644 breg = op[2];
f2ae14a1 13645 large_offset = !small_offset_p (off, align, offbits);
df58fc94
RS
13646 ep = &offset_expr;
13647 expr1.X_add_number = 0;
f2ae14a1 13648 if (large_offset)
df58fc94
RS
13649 {
13650 used_at = 1;
13651 tempreg = AT;
f2ae14a1
RS
13652 if (small_offset_p (0, align, 16))
13653 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13654 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13655 else
13656 {
13657 load_address (tempreg, ep, &used_at);
13658 if (breg != 0)
13659 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13660 tempreg, tempreg, breg);
13661 }
13662 offset_reloc[0] = BFD_RELOC_LO16;
13663 offset_reloc[1] = BFD_RELOC_UNUSED;
13664 offset_reloc[2] = BFD_RELOC_UNUSED;
df58fc94 13665 breg = tempreg;
c0ebe874 13666 tempreg = op[0];
df58fc94
RS
13667 ep = &expr1;
13668 }
c0ebe874 13669 else if (!ust && op[0] == breg)
8fc2e39e
TS
13670 {
13671 used_at = 1;
13672 tempreg = AT;
13673 }
252b5132 13674 else
c0ebe874 13675 tempreg = op[0];
af22f5b2 13676
df58fc94
RS
13677 if (off == 1)
13678 goto ulh_sh;
252b5132 13679
90ecf173 13680 if (!target_big_endian)
df58fc94 13681 ep->X_add_number += off;
f2ae14a1 13682 if (offbits == 12)
c8276761 13683 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13684 else
13685 macro_build (ep, s, "t,o(b)", tempreg, -1,
13686 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94 13687
90ecf173 13688 if (!target_big_endian)
df58fc94 13689 ep->X_add_number -= off;
252b5132 13690 else
df58fc94 13691 ep->X_add_number += off;
f2ae14a1 13692 if (offbits == 12)
df58fc94 13693 macro_build (NULL, s2, "t,~(b)",
c8276761 13694 tempreg, (int) ep->X_add_number, breg);
f2ae14a1
RS
13695 else
13696 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13697 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13698
df58fc94 13699 /* If necessary, move the result in tempreg to the final destination. */
c0ebe874 13700 if (!ust && op[0] != tempreg)
df58fc94
RS
13701 {
13702 /* Protect second load's delay slot. */
13703 load_delay_nop ();
c0ebe874 13704 move_register (op[0], tempreg);
df58fc94 13705 }
8fc2e39e 13706 break;
252b5132 13707
df58fc94 13708 ulh_sh:
d6bc6245 13709 used_at = 1;
df58fc94
RS
13710 if (target_big_endian == ust)
13711 ep->X_add_number += off;
c0ebe874 13712 tempreg = ust || large_offset ? op[0] : AT;
f2ae14a1
RS
13713 macro_build (ep, s, "t,o(b)", tempreg, -1,
13714 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
df58fc94
RS
13715
13716 /* For halfword transfers we need a temporary register to shuffle
13717 bytes. Unfortunately for M_USH_A we have none available before
13718 the next store as AT holds the base address. We deal with this
13719 case by clobbering TREG and then restoring it as with ULH. */
c0ebe874 13720 tempreg = ust == large_offset ? op[0] : AT;
df58fc94 13721 if (ust)
c0ebe874 13722 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
df58fc94
RS
13723
13724 if (target_big_endian == ust)
13725 ep->X_add_number -= off;
252b5132 13726 else
df58fc94 13727 ep->X_add_number += off;
f2ae14a1
RS
13728 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13729 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
252b5132 13730
df58fc94 13731 /* For M_USH_A re-retrieve the LSB. */
f2ae14a1 13732 if (ust && large_offset)
df58fc94
RS
13733 {
13734 if (target_big_endian)
13735 ep->X_add_number += off;
13736 else
13737 ep->X_add_number -= off;
f2ae14a1
RS
13738 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13739 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
df58fc94
RS
13740 }
13741 /* For ULH and M_USH_A OR the LSB in. */
f2ae14a1 13742 if (!ust || large_offset)
df58fc94 13743 {
c0ebe874 13744 tempreg = !large_offset ? AT : op[0];
df58fc94 13745 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
c0ebe874 13746 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
df58fc94 13747 }
252b5132
RH
13748 break;
13749
13750 default:
13751 /* FIXME: Check if this is one of the itbl macros, since they
bdaaa2e1 13752 are added dynamically. */
1661c76c 13753 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
252b5132
RH
13754 break;
13755 }
741fe287 13756 if (!mips_opts.at && used_at)
1661c76c 13757 as_bad (_("macro used $at after \".set noat\""));
252b5132
RH
13758}
13759
13760/* Implement macros in mips16 mode. */
13761
13762static void
17a2f251 13763mips16_macro (struct mips_cl_insn *ip)
252b5132 13764{
c0ebe874 13765 const struct mips_operand_array *operands;
252b5132 13766 int mask;
c0ebe874 13767 int tmp;
252b5132
RH
13768 expressionS expr1;
13769 int dbl;
13770 const char *s, *s2, *s3;
c0ebe874
RS
13771 unsigned int op[MAX_OPERANDS];
13772 unsigned int i;
252b5132
RH
13773
13774 mask = ip->insn_mo->mask;
13775
c0ebe874
RS
13776 operands = insn_operands (ip);
13777 for (i = 0; i < MAX_OPERANDS; i++)
13778 if (operands->operand[i])
13779 op[i] = insn_extract_operand (ip, operands->operand[i]);
13780 else
13781 op[i] = -1;
252b5132 13782
252b5132
RH
13783 expr1.X_op = O_constant;
13784 expr1.X_op_symbol = NULL;
13785 expr1.X_add_symbol = NULL;
13786 expr1.X_add_number = 1;
13787
13788 dbl = 0;
13789
13790 switch (mask)
13791 {
13792 default:
b37df7c4 13793 abort ();
252b5132
RH
13794
13795 case M_DDIV_3:
13796 dbl = 1;
1a0670f3 13797 /* Fall through. */
252b5132
RH
13798 case M_DIV_3:
13799 s = "mflo";
13800 goto do_div3;
13801 case M_DREM_3:
13802 dbl = 1;
1a0670f3 13803 /* Fall through. */
252b5132
RH
13804 case M_REM_3:
13805 s = "mfhi";
13806 do_div3:
7d10b47d 13807 start_noreorder ();
d8722d76 13808 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
252b5132 13809 expr1.X_add_number = 2;
c0ebe874 13810 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13811 macro_build (NULL, "break", "6", 7);
bdaaa2e1 13812
252b5132
RH
13813 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13814 since that causes an overflow. We should do that as well,
13815 but I don't see how to do the comparisons without a temporary
13816 register. */
7d10b47d 13817 end_noreorder ();
c0ebe874 13818 macro_build (NULL, s, "x", op[0]);
252b5132
RH
13819 break;
13820
13821 case M_DIVU_3:
13822 s = "divu";
13823 s2 = "mflo";
13824 goto do_divu3;
13825 case M_REMU_3:
13826 s = "divu";
13827 s2 = "mfhi";
13828 goto do_divu3;
13829 case M_DDIVU_3:
13830 s = "ddivu";
13831 s2 = "mflo";
13832 goto do_divu3;
13833 case M_DREMU_3:
13834 s = "ddivu";
13835 s2 = "mfhi";
13836 do_divu3:
7d10b47d 13837 start_noreorder ();
d8722d76 13838 macro_build (NULL, s, ".,x,y", op[1], op[2]);
252b5132 13839 expr1.X_add_number = 2;
c0ebe874 13840 macro_build (&expr1, "bnez", "x,p", op[2]);
67c0d1eb 13841 macro_build (NULL, "break", "6", 7);
7d10b47d 13842 end_noreorder ();
c0ebe874 13843 macro_build (NULL, s2, "x", op[0]);
252b5132
RH
13844 break;
13845
13846 case M_DMUL:
13847 dbl = 1;
1a0670f3 13848 /* Fall through. */
252b5132 13849 case M_MUL:
c0ebe874
RS
13850 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13851 macro_build (NULL, "mflo", "x", op[0]);
8fc2e39e 13852 break;
252b5132
RH
13853
13854 case M_DSUBU_I:
13855 dbl = 1;
13856 goto do_subu;
13857 case M_SUBU_I:
13858 do_subu:
252b5132 13859 imm_expr.X_add_number = -imm_expr.X_add_number;
d8722d76 13860 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
252b5132
RH
13861 break;
13862
13863 case M_SUBU_I_2:
252b5132 13864 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13865 macro_build (&imm_expr, "addiu", "x,k", op[0]);
252b5132
RH
13866 break;
13867
13868 case M_DSUBU_I_2:
252b5132 13869 imm_expr.X_add_number = -imm_expr.X_add_number;
c0ebe874 13870 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
252b5132
RH
13871 break;
13872
13873 case M_BEQ:
13874 s = "cmp";
13875 s2 = "bteqz";
13876 goto do_branch;
13877 case M_BNE:
13878 s = "cmp";
13879 s2 = "btnez";
13880 goto do_branch;
13881 case M_BLT:
13882 s = "slt";
13883 s2 = "btnez";
13884 goto do_branch;
13885 case M_BLTU:
13886 s = "sltu";
13887 s2 = "btnez";
13888 goto do_branch;
13889 case M_BLE:
13890 s = "slt";
13891 s2 = "bteqz";
13892 goto do_reverse_branch;
13893 case M_BLEU:
13894 s = "sltu";
13895 s2 = "bteqz";
13896 goto do_reverse_branch;
13897 case M_BGE:
13898 s = "slt";
13899 s2 = "bteqz";
13900 goto do_branch;
13901 case M_BGEU:
13902 s = "sltu";
13903 s2 = "bteqz";
13904 goto do_branch;
13905 case M_BGT:
13906 s = "slt";
13907 s2 = "btnez";
13908 goto do_reverse_branch;
13909 case M_BGTU:
13910 s = "sltu";
13911 s2 = "btnez";
13912
13913 do_reverse_branch:
c0ebe874
RS
13914 tmp = op[1];
13915 op[1] = op[0];
13916 op[0] = tmp;
252b5132
RH
13917
13918 do_branch:
c0ebe874 13919 macro_build (NULL, s, "x,y", op[0], op[1]);
67c0d1eb 13920 macro_build (&offset_expr, s2, "p");
252b5132
RH
13921 break;
13922
13923 case M_BEQ_I:
13924 s = "cmpi";
13925 s2 = "bteqz";
13926 s3 = "x,U";
13927 goto do_branch_i;
13928 case M_BNE_I:
13929 s = "cmpi";
13930 s2 = "btnez";
13931 s3 = "x,U";
13932 goto do_branch_i;
13933 case M_BLT_I:
13934 s = "slti";
13935 s2 = "btnez";
13936 s3 = "x,8";
13937 goto do_branch_i;
13938 case M_BLTU_I:
13939 s = "sltiu";
13940 s2 = "btnez";
13941 s3 = "x,8";
13942 goto do_branch_i;
13943 case M_BLE_I:
13944 s = "slti";
13945 s2 = "btnez";
13946 s3 = "x,8";
13947 goto do_addone_branch_i;
13948 case M_BLEU_I:
13949 s = "sltiu";
13950 s2 = "btnez";
13951 s3 = "x,8";
13952 goto do_addone_branch_i;
13953 case M_BGE_I:
13954 s = "slti";
13955 s2 = "bteqz";
13956 s3 = "x,8";
13957 goto do_branch_i;
13958 case M_BGEU_I:
13959 s = "sltiu";
13960 s2 = "bteqz";
13961 s3 = "x,8";
13962 goto do_branch_i;
13963 case M_BGT_I:
13964 s = "slti";
13965 s2 = "bteqz";
13966 s3 = "x,8";
13967 goto do_addone_branch_i;
13968 case M_BGTU_I:
13969 s = "sltiu";
13970 s2 = "bteqz";
13971 s3 = "x,8";
13972
13973 do_addone_branch_i:
252b5132
RH
13974 ++imm_expr.X_add_number;
13975
13976 do_branch_i:
c0ebe874 13977 macro_build (&imm_expr, s, s3, op[0]);
67c0d1eb 13978 macro_build (&offset_expr, s2, "p");
252b5132
RH
13979 break;
13980
13981 case M_ABS:
13982 expr1.X_add_number = 0;
c0ebe874
RS
13983 macro_build (&expr1, "slti", "x,8", op[1]);
13984 if (op[0] != op[1])
13985 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
252b5132 13986 expr1.X_add_number = 2;
67c0d1eb 13987 macro_build (&expr1, "bteqz", "p");
c0ebe874 13988 macro_build (NULL, "neg", "x,w", op[0], op[0]);
0acfaea6 13989 break;
252b5132
RH
13990 }
13991}
13992
14daeee3
RS
13993/* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13994 opcode bits in *OPCODE_EXTRA. */
13995
13996static struct mips_opcode *
13997mips_lookup_insn (struct hash_control *hash, const char *start,
da8bca91 13998 ssize_t length, unsigned int *opcode_extra)
14daeee3
RS
13999{
14000 char *name, *dot, *p;
14001 unsigned int mask, suffix;
da8bca91 14002 ssize_t opend;
14daeee3
RS
14003 struct mips_opcode *insn;
14004
14005 /* Make a copy of the instruction so that we can fiddle with it. */
4ec9d7d5 14006 name = xstrndup (start, length);
14daeee3
RS
14007
14008 /* Look up the instruction as-is. */
14009 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 14010 if (insn)
e1fa0163 14011 goto end;
14daeee3
RS
14012
14013 dot = strchr (name, '.');
14014 if (dot && dot[1])
14015 {
14016 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14017 p = mips_parse_vu0_channels (dot + 1, &mask);
14018 if (*p == 0 && mask != 0)
14019 {
14020 *dot = 0;
14021 insn = (struct mips_opcode *) hash_find (hash, name);
14022 *dot = '.';
14023 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14024 {
14025 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
e1fa0163 14026 goto end;
14daeee3
RS
14027 }
14028 }
14029 }
14030
14031 if (mips_opts.micromips)
14032 {
14033 /* See if there's an instruction size override suffix,
14034 either `16' or `32', at the end of the mnemonic proper,
14035 that defines the operation, i.e. before the first `.'
14036 character if any. Strip it and retry. */
14037 opend = dot != NULL ? dot - name : length;
14038 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14039 suffix = 2;
14040 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14041 suffix = 4;
14042 else
14043 suffix = 0;
14044 if (suffix)
14045 {
39334a61 14046 memmove (name + opend - 2, name + opend, length - opend + 1);
14daeee3 14047 insn = (struct mips_opcode *) hash_find (hash, name);
ee5734f0 14048 if (insn)
14daeee3
RS
14049 {
14050 forced_insn_length = suffix;
e1fa0163 14051 goto end;
14daeee3
RS
14052 }
14053 }
14054 }
14055
e1fa0163
NC
14056 insn = NULL;
14057 end:
14058 free (name);
14059 return insn;
14daeee3
RS
14060}
14061
77bd4346 14062/* Assemble an instruction into its binary format. If the instruction
e423441d
RS
14063 is a macro, set imm_expr and offset_expr to the values associated
14064 with "I" and "A" operands respectively. Otherwise store the value
14065 of the relocatable field (if any) in offset_expr. In both cases
14066 set offset_reloc to the relocation operators applied to offset_expr. */
252b5132
RH
14067
14068static void
60f20e8b 14069mips_ip (char *str, struct mips_cl_insn *insn)
252b5132 14070{
60f20e8b 14071 const struct mips_opcode *first, *past;
df58fc94 14072 struct hash_control *hash;
a92713e6 14073 char format;
14daeee3 14074 size_t end;
a92713e6 14075 struct mips_operand_token *tokens;
14daeee3 14076 unsigned int opcode_extra;
252b5132 14077
df58fc94
RS
14078 if (mips_opts.micromips)
14079 {
14080 hash = micromips_op_hash;
14081 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14082 }
14083 else
14084 {
14085 hash = op_hash;
14086 past = &mips_opcodes[NUMOPCODES];
14087 }
14088 forced_insn_length = 0;
14daeee3 14089 opcode_extra = 0;
252b5132 14090
df58fc94 14091 /* We first try to match an instruction up to a space or to the end. */
a40bc9dd
RS
14092 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14093 continue;
bdaaa2e1 14094
60f20e8b
RS
14095 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14096 if (first == NULL)
252b5132 14097 {
1661c76c 14098 set_insn_error (0, _("unrecognized opcode"));
a40bc9dd 14099 return;
252b5132
RH
14100 }
14101
60f20e8b 14102 if (strcmp (first->name, "li.s") == 0)
a92713e6 14103 format = 'f';
60f20e8b 14104 else if (strcmp (first->name, "li.d") == 0)
a92713e6
RS
14105 format = 'd';
14106 else
14107 format = 0;
14108 tokens = mips_parse_arguments (str + end, format);
14109 if (!tokens)
14110 return;
14111
60f20e8b
RS
14112 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14113 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
1661c76c 14114 set_insn_error (0, _("invalid operands"));
df58fc94 14115
e3de51ce 14116 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14117}
14118
77bd4346
RS
14119/* As for mips_ip, but used when assembling MIPS16 code.
14120 Also set forced_insn_length to the resulting instruction size in
14121 bytes if the user explicitly requested a small or extended instruction. */
252b5132
RH
14122
14123static void
60f20e8b 14124mips16_ip (char *str, struct mips_cl_insn *insn)
252b5132 14125{
1a00e612 14126 char *end, *s, c;
60f20e8b 14127 struct mips_opcode *first;
a92713e6 14128 struct mips_operand_token *tokens;
3fb49709 14129 unsigned int l;
252b5132 14130
25499ac7 14131 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
252b5132 14132 ;
1a00e612
RS
14133 end = s;
14134 c = *end;
3fb49709
MR
14135
14136 l = 0;
1a00e612 14137 switch (c)
252b5132
RH
14138 {
14139 case '\0':
14140 break;
14141
14142 case ' ':
1a00e612 14143 s++;
252b5132
RH
14144 break;
14145
14146 case '.':
3fb49709
MR
14147 s++;
14148 if (*s == 't')
252b5132 14149 {
3fb49709
MR
14150 l = 2;
14151 s++;
252b5132 14152 }
3fb49709 14153 else if (*s == 'e')
252b5132 14154 {
3fb49709
MR
14155 l = 4;
14156 s++;
252b5132 14157 }
3fb49709
MR
14158 if (*s == '\0')
14159 break;
14160 else if (*s++ == ' ')
14161 break;
1661c76c 14162 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14163 return;
14164 }
3fb49709 14165 forced_insn_length = l;
252b5132 14166
1a00e612 14167 *end = 0;
60f20e8b 14168 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
1a00e612
RS
14169 *end = c;
14170
60f20e8b 14171 if (!first)
252b5132 14172 {
1661c76c 14173 set_insn_error (0, _("unrecognized opcode"));
252b5132
RH
14174 return;
14175 }
14176
a92713e6
RS
14177 tokens = mips_parse_arguments (s, 0);
14178 if (!tokens)
14179 return;
14180
60f20e8b 14181 if (!match_mips16_insns (insn, first, tokens))
1661c76c 14182 set_insn_error (0, _("invalid operands"));
252b5132 14183
e3de51ce 14184 obstack_free (&mips_operand_tokens, tokens);
252b5132
RH
14185}
14186
b886a2ab
RS
14187/* Marshal immediate value VAL for an extended MIPS16 instruction.
14188 NBITS is the number of significant bits in VAL. */
14189
14190static unsigned long
14191mips16_immed_extend (offsetT val, unsigned int nbits)
14192{
14193 int extval;
25499ac7
MR
14194
14195 extval = 0;
14196 val &= (1U << nbits) - 1;
14197 if (nbits == 16 || nbits == 9)
b886a2ab
RS
14198 {
14199 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14200 val &= 0x1f;
14201 }
14202 else if (nbits == 15)
14203 {
14204 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14205 val &= 0xf;
14206 }
25499ac7 14207 else if (nbits == 6)
b886a2ab
RS
14208 {
14209 extval = ((val & 0x1f) << 6) | (val & 0x20);
14210 val = 0;
14211 }
14212 return (extval << 16) | val;
14213}
14214
3ccad066
RS
14215/* Like decode_mips16_operand, but require the operand to be defined and
14216 require it to be an integer. */
14217
14218static const struct mips_int_operand *
14219mips16_immed_operand (int type, bfd_boolean extended_p)
14220{
14221 const struct mips_operand *operand;
14222
14223 operand = decode_mips16_operand (type, extended_p);
14224 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14225 abort ();
14226 return (const struct mips_int_operand *) operand;
14227}
14228
14229/* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14230
14231static bfd_boolean
14232mips16_immed_in_range_p (const struct mips_int_operand *operand,
14233 bfd_reloc_code_real_type reloc, offsetT sval)
14234{
14235 int min_val, max_val;
14236
14237 min_val = mips_int_operand_min (operand);
14238 max_val = mips_int_operand_max (operand);
14239 if (reloc != BFD_RELOC_UNUSED)
14240 {
14241 if (min_val < 0)
14242 sval = SEXT_16BIT (sval);
14243 else
14244 sval &= 0xffff;
14245 }
14246
14247 return (sval >= min_val
14248 && sval <= max_val
14249 && (sval & ((1 << operand->shift) - 1)) == 0);
14250}
14251
5c04167a
RS
14252/* Install immediate value VAL into MIPS16 instruction *INSN,
14253 extending it if necessary. The instruction in *INSN may
14254 already be extended.
14255
43c0598f
RS
14256 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14257 if none. In the former case, VAL is a 16-bit number with no
14258 defined signedness.
14259
14260 TYPE is the type of the immediate field. USER_INSN_LENGTH
14261 is the length that the user requested, or 0 if none. */
252b5132
RH
14262
14263static void
3b4dbbbf 14264mips16_immed (const char *file, unsigned int line, int type,
43c0598f 14265 bfd_reloc_code_real_type reloc, offsetT val,
5c04167a 14266 unsigned int user_insn_length, unsigned long *insn)
252b5132 14267{
3ccad066
RS
14268 const struct mips_int_operand *operand;
14269 unsigned int uval, length;
252b5132 14270
3ccad066
RS
14271 operand = mips16_immed_operand (type, FALSE);
14272 if (!mips16_immed_in_range_p (operand, reloc, val))
5c04167a
RS
14273 {
14274 /* We need an extended instruction. */
14275 if (user_insn_length == 2)
14276 as_bad_where (file, line, _("invalid unextended operand value"));
14277 else
14278 *insn |= MIPS16_EXTEND;
14279 }
14280 else if (user_insn_length == 4)
14281 {
14282 /* The operand doesn't force an unextended instruction to be extended.
14283 Warn if the user wanted an extended instruction anyway. */
14284 *insn |= MIPS16_EXTEND;
14285 as_warn_where (file, line,
14286 _("extended operand requested but not required"));
14287 }
252b5132 14288
3ccad066
RS
14289 length = mips16_opcode_length (*insn);
14290 if (length == 4)
252b5132 14291 {
3ccad066
RS
14292 operand = mips16_immed_operand (type, TRUE);
14293 if (!mips16_immed_in_range_p (operand, reloc, val))
14294 as_bad_where (file, line,
14295 _("operand value out of range for instruction"));
252b5132 14296 }
3ccad066 14297 uval = ((unsigned int) val >> operand->shift) - operand->bias;
bdd15286 14298 if (length == 2 || operand->root.lsb != 0)
3ccad066 14299 *insn = mips_insert_operand (&operand->root, *insn, uval);
252b5132 14300 else
3ccad066 14301 *insn |= mips16_immed_extend (uval, operand->root.size);
252b5132
RH
14302}
14303\f
d6f16593 14304struct percent_op_match
ad8d3bb3 14305{
5e0116d5
RS
14306 const char *str;
14307 bfd_reloc_code_real_type reloc;
d6f16593
MR
14308};
14309
14310static const struct percent_op_match mips_percent_op[] =
ad8d3bb3 14311{
5e0116d5 14312 {"%lo", BFD_RELOC_LO16},
5e0116d5
RS
14313 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14314 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14315 {"%call16", BFD_RELOC_MIPS_CALL16},
14316 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14317 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14318 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14319 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14320 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14321 {"%got", BFD_RELOC_MIPS_GOT16},
14322 {"%gp_rel", BFD_RELOC_GPREL16},
be3f1006 14323 {"%gprel", BFD_RELOC_GPREL16},
5e0116d5
RS
14324 {"%half", BFD_RELOC_16},
14325 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14326 {"%higher", BFD_RELOC_MIPS_HIGHER},
14327 {"%neg", BFD_RELOC_MIPS_SUB},
3f98094e
DJ
14328 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14329 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14330 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14331 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14332 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14333 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14334 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
7361da2c
AB
14335 {"%hi", BFD_RELOC_HI16_S},
14336 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14337 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
ad8d3bb3
TS
14338};
14339
d6f16593
MR
14340static const struct percent_op_match mips16_percent_op[] =
14341{
14342 {"%lo", BFD_RELOC_MIPS16_LO16},
be3f1006 14343 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
d6f16593 14344 {"%gprel", BFD_RELOC_MIPS16_GPREL},
738e5348
RS
14345 {"%got", BFD_RELOC_MIPS16_GOT16},
14346 {"%call16", BFD_RELOC_MIPS16_CALL16},
d0f13682
CLT
14347 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14348 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14349 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14350 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14351 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14352 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14353 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14354 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
d6f16593
MR
14355};
14356
252b5132 14357
5e0116d5
RS
14358/* Return true if *STR points to a relocation operator. When returning true,
14359 move *STR over the operator and store its relocation code in *RELOC.
14360 Leave both *STR and *RELOC alone when returning false. */
14361
14362static bfd_boolean
17a2f251 14363parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
252b5132 14364{
d6f16593
MR
14365 const struct percent_op_match *percent_op;
14366 size_t limit, i;
14367
14368 if (mips_opts.mips16)
14369 {
14370 percent_op = mips16_percent_op;
14371 limit = ARRAY_SIZE (mips16_percent_op);
14372 }
14373 else
14374 {
14375 percent_op = mips_percent_op;
14376 limit = ARRAY_SIZE (mips_percent_op);
14377 }
76b3015f 14378
d6f16593 14379 for (i = 0; i < limit; i++)
5e0116d5 14380 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
394f9b3a 14381 {
3f98094e
DJ
14382 int len = strlen (percent_op[i].str);
14383
14384 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14385 continue;
14386
5e0116d5
RS
14387 *str += strlen (percent_op[i].str);
14388 *reloc = percent_op[i].reloc;
394f9b3a 14389
5e0116d5
RS
14390 /* Check whether the output BFD supports this relocation.
14391 If not, issue an error and fall back on something safe. */
14392 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
394f9b3a 14393 {
20203fb9 14394 as_bad (_("relocation %s isn't supported by the current ABI"),
5e0116d5 14395 percent_op[i].str);
01a3f561 14396 *reloc = BFD_RELOC_UNUSED;
394f9b3a 14397 }
5e0116d5 14398 return TRUE;
394f9b3a 14399 }
5e0116d5 14400 return FALSE;
394f9b3a 14401}
ad8d3bb3 14402
ad8d3bb3 14403
5e0116d5
RS
14404/* Parse string STR as a 16-bit relocatable operand. Store the
14405 expression in *EP and the relocations in the array starting
14406 at RELOC. Return the number of relocation operators used.
ad8d3bb3 14407
01a3f561 14408 On exit, EXPR_END points to the first character after the expression. */
ad8d3bb3 14409
5e0116d5 14410static size_t
17a2f251
TS
14411my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14412 char *str)
ad8d3bb3 14413{
5e0116d5
RS
14414 bfd_reloc_code_real_type reversed_reloc[3];
14415 size_t reloc_index, i;
09b8f35a
RS
14416 int crux_depth, str_depth;
14417 char *crux;
5e0116d5
RS
14418
14419 /* Search for the start of the main expression, recoding relocations
09b8f35a
RS
14420 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14421 of the main expression and with CRUX_DEPTH containing the number
14422 of open brackets at that point. */
14423 reloc_index = -1;
14424 str_depth = 0;
14425 do
fb1b3232 14426 {
09b8f35a
RS
14427 reloc_index++;
14428 crux = str;
14429 crux_depth = str_depth;
14430
14431 /* Skip over whitespace and brackets, keeping count of the number
14432 of brackets. */
14433 while (*str == ' ' || *str == '\t' || *str == '(')
14434 if (*str++ == '(')
14435 str_depth++;
5e0116d5 14436 }
09b8f35a
RS
14437 while (*str == '%'
14438 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14439 && parse_relocation (&str, &reversed_reloc[reloc_index]));
ad8d3bb3 14440
09b8f35a 14441 my_getExpression (ep, crux);
5e0116d5 14442 str = expr_end;
394f9b3a 14443
5e0116d5 14444 /* Match every open bracket. */
09b8f35a 14445 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
5e0116d5 14446 if (*str++ == ')')
09b8f35a 14447 crux_depth--;
394f9b3a 14448
09b8f35a 14449 if (crux_depth > 0)
20203fb9 14450 as_bad (_("unclosed '('"));
394f9b3a 14451
5e0116d5 14452 expr_end = str;
252b5132 14453
01a3f561 14454 if (reloc_index != 0)
64bdfcaf
RS
14455 {
14456 prev_reloc_op_frag = frag_now;
14457 for (i = 0; i < reloc_index; i++)
14458 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14459 }
fb1b3232 14460
5e0116d5 14461 return reloc_index;
252b5132
RH
14462}
14463
14464static void
17a2f251 14465my_getExpression (expressionS *ep, char *str)
252b5132
RH
14466{
14467 char *save_in;
14468
14469 save_in = input_line_pointer;
14470 input_line_pointer = str;
14471 expression (ep);
14472 expr_end = input_line_pointer;
14473 input_line_pointer = save_in;
252b5132
RH
14474}
14475
6d4af3c2 14476const char *
17a2f251 14477md_atof (int type, char *litP, int *sizeP)
252b5132 14478{
499ac353 14479 return ieee_md_atof (type, litP, sizeP, target_big_endian);
252b5132
RH
14480}
14481
14482void
17a2f251 14483md_number_to_chars (char *buf, valueT val, int n)
252b5132
RH
14484{
14485 if (target_big_endian)
14486 number_to_chars_bigendian (buf, val, n);
14487 else
14488 number_to_chars_littleendian (buf, val, n);
14489}
14490\f
e013f690
TS
14491static int support_64bit_objects(void)
14492{
14493 const char **list, **l;
aa3d8fdf 14494 int yes;
e013f690
TS
14495
14496 list = bfd_target_list ();
14497 for (l = list; *l != NULL; l++)
aeffff67
RS
14498 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14499 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
e013f690 14500 break;
aa3d8fdf 14501 yes = (*l != NULL);
e013f690 14502 free (list);
aa3d8fdf 14503 return yes;
e013f690
TS
14504}
14505
316f5878
RS
14506/* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14507 NEW_VALUE. Warn if another value was already specified. Note:
14508 we have to defer parsing the -march and -mtune arguments in order
14509 to handle 'from-abi' correctly, since the ABI might be specified
14510 in a later argument. */
14511
14512static void
17a2f251 14513mips_set_option_string (const char **string_ptr, const char *new_value)
316f5878
RS
14514{
14515 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
1661c76c 14516 as_warn (_("a different %s was already specified, is now %s"),
316f5878
RS
14517 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14518 new_value);
14519
14520 *string_ptr = new_value;
14521}
14522
252b5132 14523int
17b9d67d 14524md_parse_option (int c, const char *arg)
252b5132 14525{
c6278170
RS
14526 unsigned int i;
14527
14528 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14529 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14530 {
919731af 14531 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
c6278170
RS
14532 c == mips_ases[i].option_on);
14533 return 1;
14534 }
14535
252b5132
RH
14536 switch (c)
14537 {
119d663a
NC
14538 case OPTION_CONSTRUCT_FLOATS:
14539 mips_disable_float_construction = 0;
14540 break;
bdaaa2e1 14541
119d663a
NC
14542 case OPTION_NO_CONSTRUCT_FLOATS:
14543 mips_disable_float_construction = 1;
14544 break;
bdaaa2e1 14545
252b5132
RH
14546 case OPTION_TRAP:
14547 mips_trap = 1;
14548 break;
14549
14550 case OPTION_BREAK:
14551 mips_trap = 0;
14552 break;
14553
14554 case OPTION_EB:
14555 target_big_endian = 1;
14556 break;
14557
14558 case OPTION_EL:
14559 target_big_endian = 0;
14560 break;
14561
14562 case 'O':
4ffff32f
TS
14563 if (arg == NULL)
14564 mips_optimize = 1;
14565 else if (arg[0] == '0')
14566 mips_optimize = 0;
14567 else if (arg[0] == '1')
252b5132
RH
14568 mips_optimize = 1;
14569 else
14570 mips_optimize = 2;
14571 break;
14572
14573 case 'g':
14574 if (arg == NULL)
14575 mips_debug = 2;
14576 else
14577 mips_debug = atoi (arg);
252b5132
RH
14578 break;
14579
14580 case OPTION_MIPS1:
0b35dfee 14581 file_mips_opts.isa = ISA_MIPS1;
252b5132
RH
14582 break;
14583
14584 case OPTION_MIPS2:
0b35dfee 14585 file_mips_opts.isa = ISA_MIPS2;
252b5132
RH
14586 break;
14587
14588 case OPTION_MIPS3:
0b35dfee 14589 file_mips_opts.isa = ISA_MIPS3;
252b5132
RH
14590 break;
14591
14592 case OPTION_MIPS4:
0b35dfee 14593 file_mips_opts.isa = ISA_MIPS4;
e7af610e
NC
14594 break;
14595
84ea6cf2 14596 case OPTION_MIPS5:
0b35dfee 14597 file_mips_opts.isa = ISA_MIPS5;
84ea6cf2
NC
14598 break;
14599
e7af610e 14600 case OPTION_MIPS32:
0b35dfee 14601 file_mips_opts.isa = ISA_MIPS32;
252b5132
RH
14602 break;
14603
af7ee8bf 14604 case OPTION_MIPS32R2:
0b35dfee 14605 file_mips_opts.isa = ISA_MIPS32R2;
af7ee8bf
CD
14606 break;
14607
ae52f483 14608 case OPTION_MIPS32R3:
0ae19f05 14609 file_mips_opts.isa = ISA_MIPS32R3;
ae52f483
AB
14610 break;
14611
14612 case OPTION_MIPS32R5:
0ae19f05 14613 file_mips_opts.isa = ISA_MIPS32R5;
ae52f483
AB
14614 break;
14615
7361da2c
AB
14616 case OPTION_MIPS32R6:
14617 file_mips_opts.isa = ISA_MIPS32R6;
14618 break;
14619
5f74bc13 14620 case OPTION_MIPS64R2:
0b35dfee 14621 file_mips_opts.isa = ISA_MIPS64R2;
5f74bc13
CD
14622 break;
14623
ae52f483 14624 case OPTION_MIPS64R3:
0ae19f05 14625 file_mips_opts.isa = ISA_MIPS64R3;
ae52f483
AB
14626 break;
14627
14628 case OPTION_MIPS64R5:
0ae19f05 14629 file_mips_opts.isa = ISA_MIPS64R5;
ae52f483
AB
14630 break;
14631
7361da2c
AB
14632 case OPTION_MIPS64R6:
14633 file_mips_opts.isa = ISA_MIPS64R6;
14634 break;
14635
84ea6cf2 14636 case OPTION_MIPS64:
0b35dfee 14637 file_mips_opts.isa = ISA_MIPS64;
84ea6cf2
NC
14638 break;
14639
ec68c924 14640 case OPTION_MTUNE:
316f5878
RS
14641 mips_set_option_string (&mips_tune_string, arg);
14642 break;
ec68c924 14643
316f5878
RS
14644 case OPTION_MARCH:
14645 mips_set_option_string (&mips_arch_string, arg);
252b5132
RH
14646 break;
14647
14648 case OPTION_M4650:
316f5878
RS
14649 mips_set_option_string (&mips_arch_string, "4650");
14650 mips_set_option_string (&mips_tune_string, "4650");
252b5132
RH
14651 break;
14652
14653 case OPTION_NO_M4650:
14654 break;
14655
14656 case OPTION_M4010:
316f5878
RS
14657 mips_set_option_string (&mips_arch_string, "4010");
14658 mips_set_option_string (&mips_tune_string, "4010");
252b5132
RH
14659 break;
14660
14661 case OPTION_NO_M4010:
14662 break;
14663
14664 case OPTION_M4100:
316f5878
RS
14665 mips_set_option_string (&mips_arch_string, "4100");
14666 mips_set_option_string (&mips_tune_string, "4100");
252b5132
RH
14667 break;
14668
14669 case OPTION_NO_M4100:
14670 break;
14671
252b5132 14672 case OPTION_M3900:
316f5878
RS
14673 mips_set_option_string (&mips_arch_string, "3900");
14674 mips_set_option_string (&mips_tune_string, "3900");
252b5132 14675 break;
bdaaa2e1 14676
252b5132
RH
14677 case OPTION_NO_M3900:
14678 break;
14679
df58fc94 14680 case OPTION_MICROMIPS:
919731af 14681 if (file_mips_opts.mips16 == 1)
df58fc94
RS
14682 {
14683 as_bad (_("-mmicromips cannot be used with -mips16"));
14684 return 0;
14685 }
919731af 14686 file_mips_opts.micromips = 1;
df58fc94
RS
14687 mips_no_prev_insn ();
14688 break;
14689
14690 case OPTION_NO_MICROMIPS:
919731af 14691 file_mips_opts.micromips = 0;
df58fc94
RS
14692 mips_no_prev_insn ();
14693 break;
14694
252b5132 14695 case OPTION_MIPS16:
919731af 14696 if (file_mips_opts.micromips == 1)
df58fc94
RS
14697 {
14698 as_bad (_("-mips16 cannot be used with -micromips"));
14699 return 0;
14700 }
919731af 14701 file_mips_opts.mips16 = 1;
7d10b47d 14702 mips_no_prev_insn ();
252b5132
RH
14703 break;
14704
14705 case OPTION_NO_MIPS16:
919731af 14706 file_mips_opts.mips16 = 0;
7d10b47d 14707 mips_no_prev_insn ();
252b5132
RH
14708 break;
14709
6a32d874
CM
14710 case OPTION_FIX_24K:
14711 mips_fix_24k = 1;
14712 break;
14713
14714 case OPTION_NO_FIX_24K:
14715 mips_fix_24k = 0;
14716 break;
14717
a8d14a88
CM
14718 case OPTION_FIX_RM7000:
14719 mips_fix_rm7000 = 1;
14720 break;
14721
14722 case OPTION_NO_FIX_RM7000:
14723 mips_fix_rm7000 = 0;
14724 break;
14725
c67a084a
NC
14726 case OPTION_FIX_LOONGSON2F_JUMP:
14727 mips_fix_loongson2f_jump = TRUE;
14728 break;
14729
14730 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14731 mips_fix_loongson2f_jump = FALSE;
14732 break;
14733
14734 case OPTION_FIX_LOONGSON2F_NOP:
14735 mips_fix_loongson2f_nop = TRUE;
14736 break;
14737
14738 case OPTION_NO_FIX_LOONGSON2F_NOP:
14739 mips_fix_loongson2f_nop = FALSE;
14740 break;
14741
d766e8ec
RS
14742 case OPTION_FIX_VR4120:
14743 mips_fix_vr4120 = 1;
60b63b72
RS
14744 break;
14745
d766e8ec
RS
14746 case OPTION_NO_FIX_VR4120:
14747 mips_fix_vr4120 = 0;
60b63b72
RS
14748 break;
14749
7d8e00cf
RS
14750 case OPTION_FIX_VR4130:
14751 mips_fix_vr4130 = 1;
14752 break;
14753
14754 case OPTION_NO_FIX_VR4130:
14755 mips_fix_vr4130 = 0;
14756 break;
14757
d954098f
DD
14758 case OPTION_FIX_CN63XXP1:
14759 mips_fix_cn63xxp1 = TRUE;
14760 break;
14761
14762 case OPTION_NO_FIX_CN63XXP1:
14763 mips_fix_cn63xxp1 = FALSE;
14764 break;
14765
4a6a3df4
AO
14766 case OPTION_RELAX_BRANCH:
14767 mips_relax_branch = 1;
14768 break;
14769
14770 case OPTION_NO_RELAX_BRANCH:
14771 mips_relax_branch = 0;
14772 break;
14773
8b10b0b3
MR
14774 case OPTION_IGNORE_BRANCH_ISA:
14775 mips_ignore_branch_isa = TRUE;
14776 break;
14777
14778 case OPTION_NO_IGNORE_BRANCH_ISA:
14779 mips_ignore_branch_isa = FALSE;
14780 break;
14781
833794fc 14782 case OPTION_INSN32:
919731af 14783 file_mips_opts.insn32 = TRUE;
833794fc
MR
14784 break;
14785
14786 case OPTION_NO_INSN32:
919731af 14787 file_mips_opts.insn32 = FALSE;
833794fc
MR
14788 break;
14789
aa6975fb
ILT
14790 case OPTION_MSHARED:
14791 mips_in_shared = TRUE;
14792 break;
14793
14794 case OPTION_MNO_SHARED:
14795 mips_in_shared = FALSE;
14796 break;
14797
aed1a261 14798 case OPTION_MSYM32:
919731af 14799 file_mips_opts.sym32 = TRUE;
aed1a261
RS
14800 break;
14801
14802 case OPTION_MNO_SYM32:
919731af 14803 file_mips_opts.sym32 = FALSE;
aed1a261
RS
14804 break;
14805
252b5132
RH
14806 /* When generating ELF code, we permit -KPIC and -call_shared to
14807 select SVR4_PIC, and -non_shared to select no PIC. This is
14808 intended to be compatible with Irix 5. */
14809 case OPTION_CALL_SHARED:
252b5132 14810 mips_pic = SVR4_PIC;
143d77c5 14811 mips_abicalls = TRUE;
252b5132
RH
14812 break;
14813
861fb55a 14814 case OPTION_CALL_NONPIC:
861fb55a
DJ
14815 mips_pic = NO_PIC;
14816 mips_abicalls = TRUE;
14817 break;
14818
252b5132 14819 case OPTION_NON_SHARED:
252b5132 14820 mips_pic = NO_PIC;
143d77c5 14821 mips_abicalls = FALSE;
252b5132
RH
14822 break;
14823
44075ae2
TS
14824 /* The -xgot option tells the assembler to use 32 bit offsets
14825 when accessing the got in SVR4_PIC mode. It is for Irix
252b5132
RH
14826 compatibility. */
14827 case OPTION_XGOT:
14828 mips_big_got = 1;
14829 break;
14830
14831 case 'G':
6caf9ef4
TS
14832 g_switch_value = atoi (arg);
14833 g_switch_seen = 1;
252b5132
RH
14834 break;
14835
34ba82a8
TS
14836 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14837 and -mabi=64. */
252b5132 14838 case OPTION_32:
f3ded42a 14839 mips_abi = O32_ABI;
252b5132
RH
14840 break;
14841
e013f690 14842 case OPTION_N32:
316f5878 14843 mips_abi = N32_ABI;
e013f690 14844 break;
252b5132 14845
e013f690 14846 case OPTION_64:
316f5878 14847 mips_abi = N64_ABI;
f43abd2b 14848 if (!support_64bit_objects())
1661c76c 14849 as_fatal (_("no compiled in support for 64 bit object file format"));
252b5132
RH
14850 break;
14851
c97ef257 14852 case OPTION_GP32:
bad1aba3 14853 file_mips_opts.gp = 32;
c97ef257
AH
14854 break;
14855
14856 case OPTION_GP64:
bad1aba3 14857 file_mips_opts.gp = 64;
c97ef257 14858 break;
252b5132 14859
ca4e0257 14860 case OPTION_FP32:
0b35dfee 14861 file_mips_opts.fp = 32;
316f5878
RS
14862 break;
14863
351cdf24
MF
14864 case OPTION_FPXX:
14865 file_mips_opts.fp = 0;
14866 break;
14867
316f5878 14868 case OPTION_FP64:
0b35dfee 14869 file_mips_opts.fp = 64;
ca4e0257
RS
14870 break;
14871
351cdf24
MF
14872 case OPTION_ODD_SPREG:
14873 file_mips_opts.oddspreg = 1;
14874 break;
14875
14876 case OPTION_NO_ODD_SPREG:
14877 file_mips_opts.oddspreg = 0;
14878 break;
14879
037b32b9 14880 case OPTION_SINGLE_FLOAT:
0b35dfee 14881 file_mips_opts.single_float = 1;
037b32b9
AN
14882 break;
14883
14884 case OPTION_DOUBLE_FLOAT:
0b35dfee 14885 file_mips_opts.single_float = 0;
037b32b9
AN
14886 break;
14887
14888 case OPTION_SOFT_FLOAT:
0b35dfee 14889 file_mips_opts.soft_float = 1;
037b32b9
AN
14890 break;
14891
14892 case OPTION_HARD_FLOAT:
0b35dfee 14893 file_mips_opts.soft_float = 0;
037b32b9
AN
14894 break;
14895
252b5132 14896 case OPTION_MABI:
e013f690 14897 if (strcmp (arg, "32") == 0)
316f5878 14898 mips_abi = O32_ABI;
e013f690 14899 else if (strcmp (arg, "o64") == 0)
316f5878 14900 mips_abi = O64_ABI;
e013f690 14901 else if (strcmp (arg, "n32") == 0)
316f5878 14902 mips_abi = N32_ABI;
e013f690
TS
14903 else if (strcmp (arg, "64") == 0)
14904 {
316f5878 14905 mips_abi = N64_ABI;
e013f690 14906 if (! support_64bit_objects())
1661c76c 14907 as_fatal (_("no compiled in support for 64 bit object file "
e013f690
TS
14908 "format"));
14909 }
14910 else if (strcmp (arg, "eabi") == 0)
316f5878 14911 mips_abi = EABI_ABI;
e013f690 14912 else
da0e507f
TS
14913 {
14914 as_fatal (_("invalid abi -mabi=%s"), arg);
14915 return 0;
14916 }
252b5132
RH
14917 break;
14918
6b76fefe 14919 case OPTION_M7000_HILO_FIX:
b34976b6 14920 mips_7000_hilo_fix = TRUE;
6b76fefe
CM
14921 break;
14922
9ee72ff1 14923 case OPTION_MNO_7000_HILO_FIX:
b34976b6 14924 mips_7000_hilo_fix = FALSE;
6b76fefe
CM
14925 break;
14926
ecb4347a 14927 case OPTION_MDEBUG:
b34976b6 14928 mips_flag_mdebug = TRUE;
ecb4347a
DJ
14929 break;
14930
14931 case OPTION_NO_MDEBUG:
b34976b6 14932 mips_flag_mdebug = FALSE;
ecb4347a 14933 break;
dcd410fe
RO
14934
14935 case OPTION_PDR:
14936 mips_flag_pdr = TRUE;
14937 break;
14938
14939 case OPTION_NO_PDR:
14940 mips_flag_pdr = FALSE;
14941 break;
0a44bf69
RS
14942
14943 case OPTION_MVXWORKS_PIC:
14944 mips_pic = VXWORKS_PIC;
14945 break;
ecb4347a 14946
ba92f887
MR
14947 case OPTION_NAN:
14948 if (strcmp (arg, "2008") == 0)
7361da2c 14949 mips_nan2008 = 1;
ba92f887 14950 else if (strcmp (arg, "legacy") == 0)
7361da2c 14951 mips_nan2008 = 0;
ba92f887
MR
14952 else
14953 {
1661c76c 14954 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
ba92f887
MR
14955 return 0;
14956 }
14957 break;
14958
252b5132
RH
14959 default:
14960 return 0;
14961 }
14962
c67a084a
NC
14963 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14964
252b5132
RH
14965 return 1;
14966}
316f5878 14967\f
919731af 14968/* Set up globals to tune for the ISA or processor described by INFO. */
252b5132 14969
316f5878 14970static void
17a2f251 14971mips_set_tune (const struct mips_cpu_info *info)
316f5878
RS
14972{
14973 if (info != 0)
fef14a42 14974 mips_tune = info->cpu;
316f5878 14975}
80cc45a5 14976
34ba82a8 14977
252b5132 14978void
17a2f251 14979mips_after_parse_args (void)
e9670677 14980{
fef14a42
TS
14981 const struct mips_cpu_info *arch_info = 0;
14982 const struct mips_cpu_info *tune_info = 0;
14983
e9670677 14984 /* GP relative stuff not working for PE */
6caf9ef4 14985 if (strncmp (TARGET_OS, "pe", 2) == 0)
e9670677 14986 {
6caf9ef4 14987 if (g_switch_seen && g_switch_value != 0)
1661c76c 14988 as_bad (_("-G not supported in this configuration"));
e9670677
MR
14989 g_switch_value = 0;
14990 }
14991
cac012d6
AO
14992 if (mips_abi == NO_ABI)
14993 mips_abi = MIPS_DEFAULT_ABI;
14994
919731af 14995 /* The following code determines the architecture.
22923709
RS
14996 Similar code was added to GCC 3.3 (see override_options() in
14997 config/mips/mips.c). The GAS and GCC code should be kept in sync
14998 as much as possible. */
e9670677 14999
316f5878 15000 if (mips_arch_string != 0)
fef14a42 15001 arch_info = mips_parse_cpu ("-march", mips_arch_string);
e9670677 15002
0b35dfee 15003 if (file_mips_opts.isa != ISA_UNKNOWN)
e9670677 15004 {
0b35dfee 15005 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
fef14a42 15006 ISA level specified by -mipsN, while arch_info->isa contains
316f5878 15007 the -march selection (if any). */
fef14a42 15008 if (arch_info != 0)
e9670677 15009 {
316f5878
RS
15010 /* -march takes precedence over -mipsN, since it is more descriptive.
15011 There's no harm in specifying both as long as the ISA levels
15012 are the same. */
0b35dfee 15013 if (file_mips_opts.isa != arch_info->isa)
1661c76c
RS
15014 as_bad (_("-%s conflicts with the other architecture options,"
15015 " which imply -%s"),
0b35dfee 15016 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
fef14a42 15017 mips_cpu_info_from_isa (arch_info->isa)->name);
e9670677 15018 }
316f5878 15019 else
0b35dfee 15020 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
e9670677
MR
15021 }
15022
fef14a42 15023 if (arch_info == 0)
95bfe26e
MF
15024 {
15025 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15026 gas_assert (arch_info);
15027 }
e9670677 15028
fef14a42 15029 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
20203fb9 15030 as_bad (_("-march=%s is not compatible with the selected ABI"),
fef14a42
TS
15031 arch_info->name);
15032
919731af 15033 file_mips_opts.arch = arch_info->cpu;
15034 file_mips_opts.isa = arch_info->isa;
15035
15036 /* Set up initial mips_opts state. */
15037 mips_opts = file_mips_opts;
15038
15039 /* The register size inference code is now placed in
15040 file_mips_check_options. */
fef14a42 15041
0b35dfee 15042 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15043 processor. */
fef14a42
TS
15044 if (mips_tune_string != 0)
15045 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
e9670677 15046
fef14a42
TS
15047 if (tune_info == 0)
15048 mips_set_tune (arch_info);
15049 else
15050 mips_set_tune (tune_info);
e9670677 15051
ecb4347a 15052 if (mips_flag_mdebug < 0)
e8044f35 15053 mips_flag_mdebug = 0;
e9670677
MR
15054}
15055\f
15056void
17a2f251 15057mips_init_after_args (void)
252b5132
RH
15058{
15059 /* initialize opcodes */
15060 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
beae10d5 15061 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
252b5132
RH
15062}
15063
15064long
17a2f251 15065md_pcrel_from (fixS *fixP)
252b5132 15066{
a7ebbfdf
TS
15067 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15068 switch (fixP->fx_r_type)
15069 {
df58fc94
RS
15070 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15071 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15072 /* Return the address of the delay slot. */
15073 return addr + 2;
15074
15075 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15076 case BFD_RELOC_MICROMIPS_JMP:
c9775dde 15077 case BFD_RELOC_MIPS16_16_PCREL_S1:
a7ebbfdf 15078 case BFD_RELOC_16_PCREL_S2:
7361da2c
AB
15079 case BFD_RELOC_MIPS_21_PCREL_S2:
15080 case BFD_RELOC_MIPS_26_PCREL_S2:
a7ebbfdf
TS
15081 case BFD_RELOC_MIPS_JMP:
15082 /* Return the address of the delay slot. */
15083 return addr + 4;
df58fc94 15084
51f6035b
MR
15085 case BFD_RELOC_MIPS_18_PCREL_S3:
15086 /* Return the aligned address of the doubleword containing
15087 the instruction. */
15088 return addr & ~7;
15089
a7ebbfdf
TS
15090 default:
15091 return addr;
15092 }
252b5132
RH
15093}
15094
252b5132
RH
15095/* This is called before the symbol table is processed. In order to
15096 work with gcc when using mips-tfile, we must keep all local labels.
15097 However, in other cases, we want to discard them. If we were
15098 called with -g, but we didn't see any debugging information, it may
15099 mean that gcc is smuggling debugging information through to
15100 mips-tfile, in which case we must generate all local labels. */
15101
15102void
17a2f251 15103mips_frob_file_before_adjust (void)
252b5132
RH
15104{
15105#ifndef NO_ECOFF_DEBUGGING
15106 if (ECOFF_DEBUGGING
15107 && mips_debug != 0
15108 && ! ecoff_debugging_seen)
15109 flag_keep_locals = 1;
15110#endif
15111}
15112
3b91255e 15113/* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
55cf6793 15114 the corresponding LO16 reloc. This is called before md_apply_fix and
3b91255e
RS
15115 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15116 relocation operators.
15117
15118 For our purposes, a %lo() expression matches a %got() or %hi()
15119 expression if:
15120
15121 (a) it refers to the same symbol; and
15122 (b) the offset applied in the %lo() expression is no lower than
15123 the offset applied in the %got() or %hi().
15124
15125 (b) allows us to cope with code like:
15126
15127 lui $4,%hi(foo)
15128 lh $4,%lo(foo+2)($4)
15129
15130 ...which is legal on RELA targets, and has a well-defined behaviour
15131 if the user knows that adding 2 to "foo" will not induce a carry to
15132 the high 16 bits.
15133
15134 When several %lo()s match a particular %got() or %hi(), we use the
15135 following rules to distinguish them:
15136
15137 (1) %lo()s with smaller offsets are a better match than %lo()s with
15138 higher offsets.
15139
15140 (2) %lo()s with no matching %got() or %hi() are better than those
15141 that already have a matching %got() or %hi().
15142
15143 (3) later %lo()s are better than earlier %lo()s.
15144
15145 These rules are applied in order.
15146
15147 (1) means, among other things, that %lo()s with identical offsets are
15148 chosen if they exist.
15149
15150 (2) means that we won't associate several high-part relocations with
15151 the same low-part relocation unless there's no alternative. Having
15152 several high parts for the same low part is a GNU extension; this rule
15153 allows careful users to avoid it.
15154
15155 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15156 with the last high-part relocation being at the front of the list.
15157 It therefore makes sense to choose the last matching low-part
15158 relocation, all other things being equal. It's also easier
15159 to code that way. */
252b5132
RH
15160
15161void
17a2f251 15162mips_frob_file (void)
252b5132
RH
15163{
15164 struct mips_hi_fixup *l;
35903be0 15165 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
252b5132
RH
15166
15167 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15168 {
15169 segment_info_type *seginfo;
3b91255e
RS
15170 bfd_boolean matched_lo_p;
15171 fixS **hi_pos, **lo_pos, **pos;
252b5132 15172
9c2799c2 15173 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
252b5132 15174
5919d012 15175 /* If a GOT16 relocation turns out to be against a global symbol,
b886a2ab
RS
15176 there isn't supposed to be a matching LO. Ignore %gots against
15177 constants; we'll report an error for those later. */
738e5348 15178 if (got16_reloc_p (l->fixp->fx_r_type)
b886a2ab 15179 && !(l->fixp->fx_addsy
9e009953 15180 && pic_need_relax (l->fixp->fx_addsy)))
5919d012
RS
15181 continue;
15182
15183 /* Check quickly whether the next fixup happens to be a matching %lo. */
15184 if (fixup_has_matching_lo_p (l->fixp))
252b5132
RH
15185 continue;
15186
252b5132 15187 seginfo = seg_info (l->seg);
252b5132 15188
3b91255e
RS
15189 /* Set HI_POS to the position of this relocation in the chain.
15190 Set LO_POS to the position of the chosen low-part relocation.
15191 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15192 relocation that matches an immediately-preceding high-part
15193 relocation. */
15194 hi_pos = NULL;
15195 lo_pos = NULL;
15196 matched_lo_p = FALSE;
738e5348 15197 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
35903be0 15198
3b91255e
RS
15199 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15200 {
15201 if (*pos == l->fixp)
15202 hi_pos = pos;
15203
35903be0 15204 if ((*pos)->fx_r_type == looking_for_rtype
30cfc97a 15205 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
3b91255e
RS
15206 && (*pos)->fx_offset >= l->fixp->fx_offset
15207 && (lo_pos == NULL
15208 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15209 || (!matched_lo_p
15210 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15211 lo_pos = pos;
15212
15213 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15214 && fixup_has_matching_lo_p (*pos));
15215 }
15216
15217 /* If we found a match, remove the high-part relocation from its
15218 current position and insert it before the low-part relocation.
15219 Make the offsets match so that fixup_has_matching_lo_p()
15220 will return true.
15221
15222 We don't warn about unmatched high-part relocations since some
15223 versions of gcc have been known to emit dead "lui ...%hi(...)"
15224 instructions. */
15225 if (lo_pos != NULL)
15226 {
15227 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15228 if (l->fixp->fx_next != *lo_pos)
252b5132 15229 {
3b91255e
RS
15230 *hi_pos = l->fixp->fx_next;
15231 l->fixp->fx_next = *lo_pos;
15232 *lo_pos = l->fixp;
252b5132 15233 }
252b5132
RH
15234 }
15235 }
15236}
15237
252b5132 15238int
17a2f251 15239mips_force_relocation (fixS *fixp)
252b5132 15240{
ae6063d4 15241 if (generic_force_reloc (fixp))
252b5132
RH
15242 return 1;
15243
df58fc94
RS
15244 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15245 so that the linker relaxation can update targets. */
15246 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15247 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15248 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15249 return 1;
15250
5caa2b07
MR
15251 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15252 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15253 microMIPS symbols so that we can do cross-mode branch diagnostics
15254 and BAL to JALX conversion by the linker. */
15255 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
9d862524
MR
15256 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15257 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15258 && fixp->fx_addsy
15259 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15260 return 1;
15261
7361da2c 15262 /* We want all PC-relative relocations to be kept for R6 relaxation. */
912815f0 15263 if (ISA_IS_R6 (file_mips_opts.isa)
7361da2c
AB
15264 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15265 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15266 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15267 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15268 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15269 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15270 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15271 return 1;
15272
3e722fb5 15273 return 0;
252b5132
RH
15274}
15275
b416ba9b
MR
15276/* Implement TC_FORCE_RELOCATION_ABS. */
15277
15278bfd_boolean
15279mips_force_relocation_abs (fixS *fixp)
15280{
15281 if (generic_force_reloc (fixp))
15282 return TRUE;
15283
15284 /* These relocations do not have enough bits in the in-place addend
15285 to hold an arbitrary absolute section's offset. */
15286 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15287 return TRUE;
15288
15289 return FALSE;
15290}
15291
b886a2ab
RS
15292/* Read the instruction associated with RELOC from BUF. */
15293
15294static unsigned int
15295read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15296{
15297 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15298 return read_compressed_insn (buf, 4);
15299 else
15300 return read_insn (buf);
15301}
15302
15303/* Write instruction INSN to BUF, given that it has been relocated
15304 by RELOC. */
15305
15306static void
15307write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15308 unsigned long insn)
15309{
15310 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15311 write_compressed_insn (buf, insn, 4);
15312 else
15313 write_insn (buf, insn);
15314}
15315
9d862524
MR
15316/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15317 to a symbol in another ISA mode, which cannot be converted to JALX. */
15318
15319static bfd_boolean
15320fix_bad_cross_mode_jump_p (fixS *fixP)
15321{
15322 unsigned long opcode;
15323 int other;
15324 char *buf;
15325
15326 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15327 return FALSE;
15328
15329 other = S_GET_OTHER (fixP->fx_addsy);
15330 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15331 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15332 switch (fixP->fx_r_type)
15333 {
15334 case BFD_RELOC_MIPS_JMP:
15335 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15336 case BFD_RELOC_MICROMIPS_JMP:
15337 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15338 default:
15339 return FALSE;
15340 }
15341}
15342
15343/* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15344 jump to a symbol in the same ISA mode. */
15345
15346static bfd_boolean
15347fix_bad_same_mode_jalx_p (fixS *fixP)
15348{
15349 unsigned long opcode;
15350 int other;
15351 char *buf;
15352
15353 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15354 return FALSE;
15355
15356 other = S_GET_OTHER (fixP->fx_addsy);
15357 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15358 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15359 switch (fixP->fx_r_type)
15360 {
15361 case BFD_RELOC_MIPS_JMP:
15362 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15363 case BFD_RELOC_MIPS16_JMP:
15364 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15365 case BFD_RELOC_MICROMIPS_JMP:
15366 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15367 default:
15368 return FALSE;
15369 }
15370}
15371
15372/* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15373 to a symbol whose value plus addend is not aligned according to the
15374 ultimate (after linker relaxation) jump instruction's immediate field
15375 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15376 regular MIPS code, to (1 << 2). */
15377
15378static bfd_boolean
15379fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15380{
15381 bfd_boolean micro_to_mips_p;
15382 valueT val;
15383 int other;
15384
15385 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15386 return FALSE;
15387
15388 other = S_GET_OTHER (fixP->fx_addsy);
15389 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15390 val += fixP->fx_offset;
15391 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15392 && !ELF_ST_IS_MICROMIPS (other));
15393 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15394 != ELF_ST_IS_COMPRESSED (other));
15395}
15396
15397/* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15398 to a symbol whose annotation indicates another ISA mode. For absolute
a6ebf616
MR
15399 symbols check the ISA bit instead.
15400
15401 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15402 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15403 MIPS symbols and associated with BAL instructions as these instructions
de194d85 15404 may be converted to JALX by the linker. */
9d862524
MR
15405
15406static bfd_boolean
15407fix_bad_cross_mode_branch_p (fixS *fixP)
15408{
15409 bfd_boolean absolute_p;
15410 unsigned long opcode;
15411 asection *symsec;
15412 valueT val;
15413 int other;
15414 char *buf;
15415
8b10b0b3
MR
15416 if (mips_ignore_branch_isa)
15417 return FALSE;
15418
9d862524
MR
15419 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15420 return FALSE;
15421
15422 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15423 absolute_p = bfd_is_abs_section (symsec);
15424
15425 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15426 other = S_GET_OTHER (fixP->fx_addsy);
15427
15428 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15429 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15430 switch (fixP->fx_r_type)
15431 {
15432 case BFD_RELOC_16_PCREL_S2:
a6ebf616
MR
15433 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15434 && opcode != 0x0411);
15435 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15436 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15437 && opcode != 0x4060);
9d862524
MR
15438 case BFD_RELOC_MIPS_21_PCREL_S2:
15439 case BFD_RELOC_MIPS_26_PCREL_S2:
15440 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15441 case BFD_RELOC_MIPS16_16_PCREL_S1:
15442 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15443 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15444 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
9d862524
MR
15445 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15446 default:
15447 abort ();
15448 }
15449}
15450
15451/* Return TRUE if the symbol plus addend associated with a regular MIPS
15452 branch instruction pointed to by FIXP is not aligned according to the
15453 branch instruction's immediate field requirement. We need the addend
15454 to preserve the ISA bit and also the sum must not have bit 2 set. We
15455 must explicitly OR in the ISA bit from symbol annotation as the bit
15456 won't be set in the symbol's value then. */
15457
15458static bfd_boolean
15459fix_bad_misaligned_branch_p (fixS *fixP)
15460{
15461 bfd_boolean absolute_p;
15462 asection *symsec;
15463 valueT isa_bit;
15464 valueT val;
15465 valueT off;
15466 int other;
15467
15468 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15469 return FALSE;
15470
15471 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15472 absolute_p = bfd_is_abs_section (symsec);
15473
15474 val = S_GET_VALUE (fixP->fx_addsy);
15475 other = S_GET_OTHER (fixP->fx_addsy);
15476 off = fixP->fx_offset;
15477
15478 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15479 val |= ELF_ST_IS_COMPRESSED (other);
15480 val += off;
15481 return (val & 0x3) != isa_bit;
15482}
15483
15484/* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15485 and its calculated value VAL. */
15486
15487static void
15488fix_validate_branch (fixS *fixP, valueT val)
15489{
15490 if (fixP->fx_done && (val & 0x3) != 0)
15491 as_bad_where (fixP->fx_file, fixP->fx_line,
15492 _("branch to misaligned address (0x%lx)"),
15493 (long) (val + md_pcrel_from (fixP)));
15494 else if (fix_bad_cross_mode_branch_p (fixP))
15495 as_bad_where (fixP->fx_file, fixP->fx_line,
15496 _("branch to a symbol in another ISA mode"));
15497 else if (fix_bad_misaligned_branch_p (fixP))
15498 as_bad_where (fixP->fx_file, fixP->fx_line,
15499 _("branch to misaligned address (0x%lx)"),
15500 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15501 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15502 as_bad_where (fixP->fx_file, fixP->fx_line,
15503 _("cannot encode misaligned addend "
15504 "in the relocatable field (0x%lx)"),
15505 (long) fixP->fx_offset);
15506}
15507
252b5132
RH
15508/* Apply a fixup to the object file. */
15509
94f592af 15510void
55cf6793 15511md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 15512{
4d68580a 15513 char *buf;
b886a2ab 15514 unsigned long insn;
a7ebbfdf 15515 reloc_howto_type *howto;
252b5132 15516
d56a8dda
RS
15517 if (fixP->fx_pcrel)
15518 switch (fixP->fx_r_type)
15519 {
15520 case BFD_RELOC_16_PCREL_S2:
c9775dde 15521 case BFD_RELOC_MIPS16_16_PCREL_S1:
d56a8dda
RS
15522 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15523 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15524 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15525 case BFD_RELOC_32_PCREL:
7361da2c
AB
15526 case BFD_RELOC_MIPS_21_PCREL_S2:
15527 case BFD_RELOC_MIPS_26_PCREL_S2:
15528 case BFD_RELOC_MIPS_18_PCREL_S3:
15529 case BFD_RELOC_MIPS_19_PCREL_S2:
15530 case BFD_RELOC_HI16_S_PCREL:
15531 case BFD_RELOC_LO16_PCREL:
d56a8dda
RS
15532 break;
15533
15534 case BFD_RELOC_32:
15535 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15536 break;
15537
15538 default:
15539 as_bad_where (fixP->fx_file, fixP->fx_line,
15540 _("PC-relative reference to a different section"));
15541 break;
15542 }
15543
15544 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15545 that have no MIPS ELF equivalent. */
15546 if (fixP->fx_r_type != BFD_RELOC_8)
15547 {
15548 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15549 if (!howto)
15550 return;
15551 }
65551fa4 15552
df58fc94
RS
15553 gas_assert (fixP->fx_size == 2
15554 || fixP->fx_size == 4
d56a8dda 15555 || fixP->fx_r_type == BFD_RELOC_8
90ecf173
MR
15556 || fixP->fx_r_type == BFD_RELOC_16
15557 || fixP->fx_r_type == BFD_RELOC_64
15558 || fixP->fx_r_type == BFD_RELOC_CTOR
15559 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
df58fc94 15560 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
90ecf173
MR
15561 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15562 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
2f0c68f2
CM
15563 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15564 || fixP->fx_r_type == BFD_RELOC_NONE);
252b5132 15565
4d68580a 15566 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
252b5132 15567
b1dca8ee
RS
15568 /* Don't treat parts of a composite relocation as done. There are two
15569 reasons for this:
15570
15571 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15572 should nevertheless be emitted if the first part is.
15573
15574 (2) In normal usage, composite relocations are never assembly-time
15575 constants. The easiest way of dealing with the pathological
15576 exceptions is to generate a relocation against STN_UNDEF and
15577 leave everything up to the linker. */
3994f87e 15578 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
252b5132
RH
15579 fixP->fx_done = 1;
15580
15581 switch (fixP->fx_r_type)
15582 {
3f98094e
DJ
15583 case BFD_RELOC_MIPS_TLS_GD:
15584 case BFD_RELOC_MIPS_TLS_LDM:
741d6ea8
JM
15585 case BFD_RELOC_MIPS_TLS_DTPREL32:
15586 case BFD_RELOC_MIPS_TLS_DTPREL64:
3f98094e
DJ
15587 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15588 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15589 case BFD_RELOC_MIPS_TLS_GOTTPREL:
d0f13682
CLT
15590 case BFD_RELOC_MIPS_TLS_TPREL32:
15591 case BFD_RELOC_MIPS_TLS_TPREL64:
3f98094e
DJ
15592 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15593 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
df58fc94
RS
15594 case BFD_RELOC_MICROMIPS_TLS_GD:
15595 case BFD_RELOC_MICROMIPS_TLS_LDM:
15596 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15597 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15598 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15599 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15600 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
d0f13682
CLT
15601 case BFD_RELOC_MIPS16_TLS_GD:
15602 case BFD_RELOC_MIPS16_TLS_LDM:
15603 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15604 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15605 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15606 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15607 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
4512dafa
MR
15608 if (fixP->fx_addsy)
15609 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15610 else
15611 as_bad_where (fixP->fx_file, fixP->fx_line,
15612 _("TLS relocation against a constant"));
15613 break;
3f98094e 15614
252b5132 15615 case BFD_RELOC_MIPS_JMP:
9d862524
MR
15616 case BFD_RELOC_MIPS16_JMP:
15617 case BFD_RELOC_MICROMIPS_JMP:
15618 {
15619 int shift;
15620
15621 gas_assert (!fixP->fx_done);
15622
15623 /* Shift is 2, unusually, for microMIPS JALX. */
15624 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15625 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15626 shift = 1;
15627 else
15628 shift = 2;
15629
15630 if (fix_bad_cross_mode_jump_p (fixP))
15631 as_bad_where (fixP->fx_file, fixP->fx_line,
15632 _("jump to a symbol in another ISA mode"));
15633 else if (fix_bad_same_mode_jalx_p (fixP))
15634 as_bad_where (fixP->fx_file, fixP->fx_line,
15635 _("JALX to a symbol in the same ISA mode"));
15636 else if (fix_bad_misaligned_jump_p (fixP, shift))
15637 as_bad_where (fixP->fx_file, fixP->fx_line,
15638 _("jump to misaligned address (0x%lx)"),
15639 (long) (S_GET_VALUE (fixP->fx_addsy)
15640 + fixP->fx_offset));
15641 else if (HAVE_IN_PLACE_ADDENDS
15642 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15643 as_bad_where (fixP->fx_file, fixP->fx_line,
15644 _("cannot encode misaligned addend "
15645 "in the relocatable field (0x%lx)"),
15646 (long) fixP->fx_offset);
15647 }
15648 /* Fall through. */
15649
e369bcce
TS
15650 case BFD_RELOC_MIPS_SHIFT5:
15651 case BFD_RELOC_MIPS_SHIFT6:
15652 case BFD_RELOC_MIPS_GOT_DISP:
15653 case BFD_RELOC_MIPS_GOT_PAGE:
15654 case BFD_RELOC_MIPS_GOT_OFST:
15655 case BFD_RELOC_MIPS_SUB:
15656 case BFD_RELOC_MIPS_INSERT_A:
15657 case BFD_RELOC_MIPS_INSERT_B:
15658 case BFD_RELOC_MIPS_DELETE:
15659 case BFD_RELOC_MIPS_HIGHEST:
15660 case BFD_RELOC_MIPS_HIGHER:
15661 case BFD_RELOC_MIPS_SCN_DISP:
15662 case BFD_RELOC_MIPS_REL16:
15663 case BFD_RELOC_MIPS_RELGOT:
15664 case BFD_RELOC_MIPS_JALR:
252b5132
RH
15665 case BFD_RELOC_HI16:
15666 case BFD_RELOC_HI16_S:
b886a2ab 15667 case BFD_RELOC_LO16:
cdf6fd85 15668 case BFD_RELOC_GPREL16:
252b5132
RH
15669 case BFD_RELOC_MIPS_LITERAL:
15670 case BFD_RELOC_MIPS_CALL16:
15671 case BFD_RELOC_MIPS_GOT16:
cdf6fd85 15672 case BFD_RELOC_GPREL32:
252b5132
RH
15673 case BFD_RELOC_MIPS_GOT_HI16:
15674 case BFD_RELOC_MIPS_GOT_LO16:
15675 case BFD_RELOC_MIPS_CALL_HI16:
15676 case BFD_RELOC_MIPS_CALL_LO16:
41947d9e
MR
15677 case BFD_RELOC_HI16_S_PCREL:
15678 case BFD_RELOC_LO16_PCREL:
252b5132 15679 case BFD_RELOC_MIPS16_GPREL:
738e5348
RS
15680 case BFD_RELOC_MIPS16_GOT16:
15681 case BFD_RELOC_MIPS16_CALL16:
d6f16593
MR
15682 case BFD_RELOC_MIPS16_HI16:
15683 case BFD_RELOC_MIPS16_HI16_S:
b886a2ab 15684 case BFD_RELOC_MIPS16_LO16:
df58fc94
RS
15685 case BFD_RELOC_MICROMIPS_GOT_DISP:
15686 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15687 case BFD_RELOC_MICROMIPS_GOT_OFST:
15688 case BFD_RELOC_MICROMIPS_SUB:
15689 case BFD_RELOC_MICROMIPS_HIGHEST:
15690 case BFD_RELOC_MICROMIPS_HIGHER:
15691 case BFD_RELOC_MICROMIPS_SCN_DISP:
15692 case BFD_RELOC_MICROMIPS_JALR:
15693 case BFD_RELOC_MICROMIPS_HI16:
15694 case BFD_RELOC_MICROMIPS_HI16_S:
b886a2ab 15695 case BFD_RELOC_MICROMIPS_LO16:
df58fc94
RS
15696 case BFD_RELOC_MICROMIPS_GPREL16:
15697 case BFD_RELOC_MICROMIPS_LITERAL:
15698 case BFD_RELOC_MICROMIPS_CALL16:
15699 case BFD_RELOC_MICROMIPS_GOT16:
15700 case BFD_RELOC_MICROMIPS_GOT_HI16:
15701 case BFD_RELOC_MICROMIPS_GOT_LO16:
15702 case BFD_RELOC_MICROMIPS_CALL_HI16:
15703 case BFD_RELOC_MICROMIPS_CALL_LO16:
067ec077 15704 case BFD_RELOC_MIPS_EH:
b886a2ab
RS
15705 if (fixP->fx_done)
15706 {
15707 offsetT value;
15708
15709 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15710 {
15711 insn = read_reloc_insn (buf, fixP->fx_r_type);
15712 if (mips16_reloc_p (fixP->fx_r_type))
15713 insn |= mips16_immed_extend (value, 16);
15714 else
15715 insn |= (value & 0xffff);
15716 write_reloc_insn (buf, fixP->fx_r_type, insn);
15717 }
15718 else
15719 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15720 _("unsupported constant in relocation"));
b886a2ab 15721 }
252b5132
RH
15722 break;
15723
252b5132
RH
15724 case BFD_RELOC_64:
15725 /* This is handled like BFD_RELOC_32, but we output a sign
15726 extended value if we are only 32 bits. */
3e722fb5 15727 if (fixP->fx_done)
252b5132
RH
15728 {
15729 if (8 <= sizeof (valueT))
4d68580a 15730 md_number_to_chars (buf, *valP, 8);
252b5132
RH
15731 else
15732 {
a7ebbfdf 15733 valueT hiv;
252b5132 15734
a7ebbfdf 15735 if ((*valP & 0x80000000) != 0)
252b5132
RH
15736 hiv = 0xffffffff;
15737 else
15738 hiv = 0;
4d68580a
RS
15739 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15740 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
252b5132
RH
15741 }
15742 }
15743 break;
15744
056350c6 15745 case BFD_RELOC_RVA:
252b5132 15746 case BFD_RELOC_32:
b47468a6 15747 case BFD_RELOC_32_PCREL:
252b5132 15748 case BFD_RELOC_16:
d56a8dda 15749 case BFD_RELOC_8:
252b5132 15750 /* If we are deleting this reloc entry, we must fill in the
54f4ddb3
TS
15751 value now. This can happen if we have a .word which is not
15752 resolved when it appears but is later defined. */
252b5132 15753 if (fixP->fx_done)
4d68580a 15754 md_number_to_chars (buf, *valP, fixP->fx_size);
252b5132
RH
15755 break;
15756
7361da2c 15757 case BFD_RELOC_MIPS_21_PCREL_S2:
9d862524 15758 fix_validate_branch (fixP, *valP);
41947d9e
MR
15759 if (!fixP->fx_done)
15760 break;
15761
15762 if (*valP + 0x400000 <= 0x7fffff)
15763 {
15764 insn = read_insn (buf);
15765 insn |= (*valP >> 2) & 0x1fffff;
15766 write_insn (buf, insn);
15767 }
15768 else
15769 as_bad_where (fixP->fx_file, fixP->fx_line,
15770 _("branch out of range"));
15771 break;
15772
7361da2c 15773 case BFD_RELOC_MIPS_26_PCREL_S2:
9d862524 15774 fix_validate_branch (fixP, *valP);
41947d9e
MR
15775 if (!fixP->fx_done)
15776 break;
7361da2c 15777
41947d9e
MR
15778 if (*valP + 0x8000000 <= 0xfffffff)
15779 {
15780 insn = read_insn (buf);
15781 insn |= (*valP >> 2) & 0x3ffffff;
15782 write_insn (buf, insn);
15783 }
15784 else
15785 as_bad_where (fixP->fx_file, fixP->fx_line,
15786 _("branch out of range"));
7361da2c
AB
15787 break;
15788
15789 case BFD_RELOC_MIPS_18_PCREL_S3:
717ba204 15790 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
7361da2c 15791 as_bad_where (fixP->fx_file, fixP->fx_line,
0866e94c
MF
15792 _("PC-relative access using misaligned symbol (%lx)"),
15793 (long) S_GET_VALUE (fixP->fx_addsy));
15794 if ((fixP->fx_offset & 0x7) != 0)
15795 as_bad_where (fixP->fx_file, fixP->fx_line,
15796 _("PC-relative access using misaligned offset (%lx)"),
15797 (long) fixP->fx_offset);
41947d9e
MR
15798 if (!fixP->fx_done)
15799 break;
7361da2c 15800
41947d9e
MR
15801 if (*valP + 0x100000 <= 0x1fffff)
15802 {
15803 insn = read_insn (buf);
15804 insn |= (*valP >> 3) & 0x3ffff;
15805 write_insn (buf, insn);
15806 }
15807 else
15808 as_bad_where (fixP->fx_file, fixP->fx_line,
15809 _("PC-relative access out of range"));
7361da2c
AB
15810 break;
15811
15812 case BFD_RELOC_MIPS_19_PCREL_S2:
15813 if ((*valP & 0x3) != 0)
15814 as_bad_where (fixP->fx_file, fixP->fx_line,
15815 _("PC-relative access to misaligned address (%lx)"),
717ba204 15816 (long) *valP);
41947d9e
MR
15817 if (!fixP->fx_done)
15818 break;
7361da2c 15819
41947d9e
MR
15820 if (*valP + 0x100000 <= 0x1fffff)
15821 {
15822 insn = read_insn (buf);
15823 insn |= (*valP >> 2) & 0x7ffff;
15824 write_insn (buf, insn);
15825 }
15826 else
15827 as_bad_where (fixP->fx_file, fixP->fx_line,
15828 _("PC-relative access out of range"));
7361da2c
AB
15829 break;
15830
252b5132 15831 case BFD_RELOC_16_PCREL_S2:
9d862524 15832 fix_validate_branch (fixP, *valP);
cb56d3d3 15833
54f4ddb3
TS
15834 /* We need to save the bits in the instruction since fixup_segment()
15835 might be deleting the relocation entry (i.e., a branch within
15836 the current segment). */
a7ebbfdf 15837 if (! fixP->fx_done)
bb2d6cd7 15838 break;
252b5132 15839
54f4ddb3 15840 /* Update old instruction data. */
4d68580a 15841 insn = read_insn (buf);
252b5132 15842
a7ebbfdf
TS
15843 if (*valP + 0x20000 <= 0x3ffff)
15844 {
15845 insn |= (*valP >> 2) & 0xffff;
4d68580a 15846 write_insn (buf, insn);
a7ebbfdf 15847 }
ce8ad872 15848 else if (fixP->fx_tcbit2
a7ebbfdf
TS
15849 && fixP->fx_done
15850 && fixP->fx_frag->fr_address >= text_section->vma
15851 && (fixP->fx_frag->fr_address
587aac4e 15852 < text_section->vma + bfd_get_section_size (text_section))
a7ebbfdf
TS
15853 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15854 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15855 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
252b5132
RH
15856 {
15857 /* The branch offset is too large. If this is an
15858 unconditional branch, and we are not generating PIC code,
15859 we can convert it to an absolute jump instruction. */
a7ebbfdf
TS
15860 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15861 insn = 0x0c000000; /* jal */
252b5132 15862 else
a7ebbfdf
TS
15863 insn = 0x08000000; /* j */
15864 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15865 fixP->fx_done = 0;
15866 fixP->fx_addsy = section_symbol (text_section);
15867 *valP += md_pcrel_from (fixP);
4d68580a 15868 write_insn (buf, insn);
a7ebbfdf
TS
15869 }
15870 else
15871 {
15872 /* If we got here, we have branch-relaxation disabled,
15873 and there's nothing we can do to fix this instruction
15874 without turning it into a longer sequence. */
15875 as_bad_where (fixP->fx_file, fixP->fx_line,
1661c76c 15876 _("branch out of range"));
252b5132 15877 }
252b5132
RH
15878 break;
15879
c9775dde 15880 case BFD_RELOC_MIPS16_16_PCREL_S1:
df58fc94
RS
15881 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15882 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15883 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
96e9ba5f 15884 gas_assert (!fixP->fx_done);
9d862524
MR
15885 if (fix_bad_cross_mode_branch_p (fixP))
15886 as_bad_where (fixP->fx_file, fixP->fx_line,
15887 _("branch to a symbol in another ISA mode"));
15888 else if (fixP->fx_addsy
15889 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15890 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15891 && (fixP->fx_offset & 0x1) != 0)
15892 as_bad_where (fixP->fx_file, fixP->fx_line,
15893 _("branch to misaligned address (0x%lx)"),
15894 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15895 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15896 as_bad_where (fixP->fx_file, fixP->fx_line,
15897 _("cannot encode misaligned addend "
15898 "in the relocatable field (0x%lx)"),
15899 (long) fixP->fx_offset);
df58fc94
RS
15900 break;
15901
252b5132
RH
15902 case BFD_RELOC_VTABLE_INHERIT:
15903 fixP->fx_done = 0;
15904 if (fixP->fx_addsy
15905 && !S_IS_DEFINED (fixP->fx_addsy)
15906 && !S_IS_WEAK (fixP->fx_addsy))
15907 S_SET_WEAK (fixP->fx_addsy);
15908 break;
15909
2f0c68f2 15910 case BFD_RELOC_NONE:
252b5132
RH
15911 case BFD_RELOC_VTABLE_ENTRY:
15912 fixP->fx_done = 0;
15913 break;
15914
15915 default:
b37df7c4 15916 abort ();
252b5132 15917 }
a7ebbfdf
TS
15918
15919 /* Remember value for tc_gen_reloc. */
15920 fixP->fx_addnumber = *valP;
252b5132
RH
15921}
15922
252b5132 15923static symbolS *
17a2f251 15924get_symbol (void)
252b5132
RH
15925{
15926 int c;
15927 char *name;
15928 symbolS *p;
15929
d02603dc 15930 c = get_symbol_name (&name);
252b5132 15931 p = (symbolS *) symbol_find_or_make (name);
d02603dc 15932 (void) restore_line_pointer (c);
252b5132
RH
15933 return p;
15934}
15935
742a56fe
RS
15936/* Align the current frag to a given power of two. If a particular
15937 fill byte should be used, FILL points to an integer that contains
15938 that byte, otherwise FILL is null.
15939
462427c4
RS
15940 This function used to have the comment:
15941
15942 The MIPS assembler also automatically adjusts any preceding label.
15943
15944 The implementation therefore applied the adjustment to a maximum of
15945 one label. However, other label adjustments are applied to batches
15946 of labels, and adjusting just one caused problems when new labels
15947 were added for the sake of debugging or unwind information.
15948 We therefore adjust all preceding labels (given as LABELS) instead. */
252b5132
RH
15949
15950static void
462427c4 15951mips_align (int to, int *fill, struct insn_label_list *labels)
252b5132 15952{
7d10b47d 15953 mips_emit_delays ();
df58fc94 15954 mips_record_compressed_mode ();
742a56fe
RS
15955 if (fill == NULL && subseg_text_p (now_seg))
15956 frag_align_code (to, 0);
15957 else
15958 frag_align (to, fill ? *fill : 0, 0);
252b5132 15959 record_alignment (now_seg, to);
462427c4 15960 mips_move_labels (labels, FALSE);
252b5132
RH
15961}
15962
15963/* Align to a given power of two. .align 0 turns off the automatic
15964 alignment used by the data creating pseudo-ops. */
15965
15966static void
17a2f251 15967s_align (int x ATTRIBUTE_UNUSED)
252b5132 15968{
742a56fe 15969 int temp, fill_value, *fill_ptr;
49954fb4 15970 long max_alignment = 28;
252b5132 15971
54f4ddb3 15972 /* o Note that the assembler pulls down any immediately preceding label
252b5132 15973 to the aligned address.
54f4ddb3 15974 o It's not documented but auto alignment is reinstated by
252b5132 15975 a .align pseudo instruction.
54f4ddb3 15976 o Note also that after auto alignment is turned off the mips assembler
252b5132 15977 issues an error on attempt to assemble an improperly aligned data item.
54f4ddb3 15978 We don't. */
252b5132
RH
15979
15980 temp = get_absolute_expression ();
15981 if (temp > max_alignment)
1661c76c 15982 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
252b5132
RH
15983 else if (temp < 0)
15984 {
1661c76c 15985 as_warn (_("alignment negative, 0 assumed"));
252b5132
RH
15986 temp = 0;
15987 }
15988 if (*input_line_pointer == ',')
15989 {
f9419b05 15990 ++input_line_pointer;
742a56fe
RS
15991 fill_value = get_absolute_expression ();
15992 fill_ptr = &fill_value;
252b5132
RH
15993 }
15994 else
742a56fe 15995 fill_ptr = 0;
252b5132
RH
15996 if (temp)
15997 {
a8dbcb85
TS
15998 segment_info_type *si = seg_info (now_seg);
15999 struct insn_label_list *l = si->label_list;
54f4ddb3 16000 /* Auto alignment should be switched on by next section change. */
252b5132 16001 auto_align = 1;
462427c4 16002 mips_align (temp, fill_ptr, l);
252b5132
RH
16003 }
16004 else
16005 {
16006 auto_align = 0;
16007 }
16008
16009 demand_empty_rest_of_line ();
16010}
16011
252b5132 16012static void
17a2f251 16013s_change_sec (int sec)
252b5132
RH
16014{
16015 segT seg;
16016
252b5132
RH
16017 /* The ELF backend needs to know that we are changing sections, so
16018 that .previous works correctly. We could do something like check
b6ff326e 16019 for an obj_section_change_hook macro, but that might be confusing
252b5132
RH
16020 as it would not be appropriate to use it in the section changing
16021 functions in read.c, since obj-elf.c intercepts those. FIXME:
16022 This should be cleaner, somehow. */
f3ded42a 16023 obj_elf_section_change_hook ();
252b5132 16024
7d10b47d 16025 mips_emit_delays ();
6a32d874 16026
252b5132
RH
16027 switch (sec)
16028 {
16029 case 't':
16030 s_text (0);
16031 break;
16032 case 'd':
16033 s_data (0);
16034 break;
16035 case 'b':
16036 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16037 demand_empty_rest_of_line ();
16038 break;
16039
16040 case 'r':
4d0d148d
TS
16041 seg = subseg_new (RDATA_SECTION_NAME,
16042 (subsegT) get_absolute_expression ());
f3ded42a
RS
16043 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16044 | SEC_READONLY | SEC_RELOC
16045 | SEC_DATA));
16046 if (strncmp (TARGET_OS, "elf", 3) != 0)
16047 record_alignment (seg, 4);
4d0d148d 16048 demand_empty_rest_of_line ();
252b5132
RH
16049 break;
16050
16051 case 's':
4d0d148d 16052 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
f3ded42a
RS
16053 bfd_set_section_flags (stdoutput, seg,
16054 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16055 if (strncmp (TARGET_OS, "elf", 3) != 0)
16056 record_alignment (seg, 4);
4d0d148d
TS
16057 demand_empty_rest_of_line ();
16058 break;
998b3c36
MR
16059
16060 case 'B':
16061 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
f3ded42a
RS
16062 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16063 if (strncmp (TARGET_OS, "elf", 3) != 0)
16064 record_alignment (seg, 4);
998b3c36
MR
16065 demand_empty_rest_of_line ();
16066 break;
252b5132
RH
16067 }
16068
16069 auto_align = 1;
16070}
b34976b6 16071
cca86cc8 16072void
17a2f251 16073s_change_section (int ignore ATTRIBUTE_UNUSED)
cca86cc8 16074{
d02603dc 16075 char *saved_ilp;
cca86cc8 16076 char *section_name;
d02603dc 16077 char c, endc;
684022ea 16078 char next_c = 0;
cca86cc8
SC
16079 int section_type;
16080 int section_flag;
16081 int section_entry_size;
16082 int section_alignment;
b34976b6 16083
d02603dc
NC
16084 saved_ilp = input_line_pointer;
16085 endc = get_symbol_name (&section_name);
16086 c = (endc == '"' ? input_line_pointer[1] : endc);
a816d1ed 16087 if (c)
d02603dc 16088 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
cca86cc8 16089
4cf0dd0d
TS
16090 /* Do we have .section Name<,"flags">? */
16091 if (c != ',' || (c == ',' && next_c == '"'))
cca86cc8 16092 {
d02603dc
NC
16093 /* Just after name is now '\0'. */
16094 (void) restore_line_pointer (endc);
16095 input_line_pointer = saved_ilp;
cca86cc8
SC
16096 obj_elf_section (ignore);
16097 return;
16098 }
d02603dc
NC
16099
16100 section_name = xstrdup (section_name);
16101 c = restore_line_pointer (endc);
16102
cca86cc8
SC
16103 input_line_pointer++;
16104
16105 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16106 if (c == ',')
16107 section_type = get_absolute_expression ();
16108 else
16109 section_type = 0;
d02603dc 16110
cca86cc8
SC
16111 if (*input_line_pointer++ == ',')
16112 section_flag = get_absolute_expression ();
16113 else
16114 section_flag = 0;
d02603dc 16115
cca86cc8
SC
16116 if (*input_line_pointer++ == ',')
16117 section_entry_size = get_absolute_expression ();
16118 else
16119 section_entry_size = 0;
d02603dc 16120
cca86cc8
SC
16121 if (*input_line_pointer++ == ',')
16122 section_alignment = get_absolute_expression ();
16123 else
16124 section_alignment = 0;
d02603dc 16125
87975d2a
AM
16126 /* FIXME: really ignore? */
16127 (void) section_alignment;
cca86cc8 16128
8ab8a5c8
RS
16129 /* When using the generic form of .section (as implemented by obj-elf.c),
16130 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16131 traditionally had to fall back on the more common @progbits instead.
16132
16133 There's nothing really harmful in this, since bfd will correct
16134 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
708587a4 16135 means that, for backwards compatibility, the special_section entries
8ab8a5c8
RS
16136 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16137
16138 Even so, we shouldn't force users of the MIPS .section syntax to
16139 incorrectly label the sections as SHT_PROGBITS. The best compromise
16140 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16141 generic type-checking code. */
16142 if (section_type == SHT_MIPS_DWARF)
16143 section_type = SHT_PROGBITS;
16144
a91e1603 16145 obj_elf_change_section (section_name, section_type, 0, section_flag,
cca86cc8 16146 section_entry_size, 0, 0, 0);
a816d1ed
AO
16147
16148 if (now_seg->name != section_name)
16149 free (section_name);
cca86cc8 16150}
252b5132
RH
16151
16152void
17a2f251 16153mips_enable_auto_align (void)
252b5132
RH
16154{
16155 auto_align = 1;
16156}
16157
16158static void
17a2f251 16159s_cons (int log_size)
252b5132 16160{
a8dbcb85
TS
16161 segment_info_type *si = seg_info (now_seg);
16162 struct insn_label_list *l = si->label_list;
252b5132 16163
7d10b47d 16164 mips_emit_delays ();
252b5132 16165 if (log_size > 0 && auto_align)
462427c4 16166 mips_align (log_size, 0, l);
252b5132 16167 cons (1 << log_size);
a1facbec 16168 mips_clear_insn_labels ();
252b5132
RH
16169}
16170
16171static void
17a2f251 16172s_float_cons (int type)
252b5132 16173{
a8dbcb85
TS
16174 segment_info_type *si = seg_info (now_seg);
16175 struct insn_label_list *l = si->label_list;
252b5132 16176
7d10b47d 16177 mips_emit_delays ();
252b5132
RH
16178
16179 if (auto_align)
49309057
ILT
16180 {
16181 if (type == 'd')
462427c4 16182 mips_align (3, 0, l);
49309057 16183 else
462427c4 16184 mips_align (2, 0, l);
49309057 16185 }
252b5132 16186
252b5132 16187 float_cons (type);
a1facbec 16188 mips_clear_insn_labels ();
252b5132
RH
16189}
16190
16191/* Handle .globl. We need to override it because on Irix 5 you are
16192 permitted to say
16193 .globl foo .text
16194 where foo is an undefined symbol, to mean that foo should be
16195 considered to be the address of a function. */
16196
16197static void
17a2f251 16198s_mips_globl (int x ATTRIBUTE_UNUSED)
252b5132
RH
16199{
16200 char *name;
16201 int c;
16202 symbolS *symbolP;
16203 flagword flag;
16204
8a06b769 16205 do
252b5132 16206 {
d02603dc 16207 c = get_symbol_name (&name);
8a06b769
TS
16208 symbolP = symbol_find_or_make (name);
16209 S_SET_EXTERNAL (symbolP);
16210
252b5132 16211 *input_line_pointer = c;
d02603dc 16212 SKIP_WHITESPACE_AFTER_NAME ();
252b5132 16213
8a06b769
TS
16214 /* On Irix 5, every global symbol that is not explicitly labelled as
16215 being a function is apparently labelled as being an object. */
16216 flag = BSF_OBJECT;
252b5132 16217
8a06b769
TS
16218 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16219 && (*input_line_pointer != ','))
16220 {
16221 char *secname;
16222 asection *sec;
16223
d02603dc 16224 c = get_symbol_name (&secname);
8a06b769
TS
16225 sec = bfd_get_section_by_name (stdoutput, secname);
16226 if (sec == NULL)
16227 as_bad (_("%s: no such section"), secname);
d02603dc 16228 (void) restore_line_pointer (c);
8a06b769
TS
16229
16230 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16231 flag = BSF_FUNCTION;
16232 }
16233
16234 symbol_get_bfdsym (symbolP)->flags |= flag;
16235
16236 c = *input_line_pointer;
16237 if (c == ',')
16238 {
16239 input_line_pointer++;
16240 SKIP_WHITESPACE ();
16241 if (is_end_of_line[(unsigned char) *input_line_pointer])
16242 c = '\n';
16243 }
16244 }
16245 while (c == ',');
252b5132 16246
252b5132
RH
16247 demand_empty_rest_of_line ();
16248}
16249
16250static void
17a2f251 16251s_option (int x ATTRIBUTE_UNUSED)
252b5132
RH
16252{
16253 char *opt;
16254 char c;
16255
d02603dc 16256 c = get_symbol_name (&opt);
252b5132
RH
16257
16258 if (*opt == 'O')
16259 {
16260 /* FIXME: What does this mean? */
16261 }
41a1578e 16262 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
252b5132
RH
16263 {
16264 int i;
16265
16266 i = atoi (opt + 3);
668c5ebc
MR
16267 if (i != 0 && i != 2)
16268 as_bad (_(".option pic%d not supported"), i);
16269 else if (mips_pic == VXWORKS_PIC)
16270 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16271 else if (i == 0)
252b5132
RH
16272 mips_pic = NO_PIC;
16273 else if (i == 2)
143d77c5 16274 {
8b828383 16275 mips_pic = SVR4_PIC;
143d77c5
EC
16276 mips_abicalls = TRUE;
16277 }
252b5132 16278
4d0d148d 16279 if (mips_pic == SVR4_PIC)
252b5132
RH
16280 {
16281 if (g_switch_seen && g_switch_value != 0)
16282 as_warn (_("-G may not be used with SVR4 PIC code"));
16283 g_switch_value = 0;
16284 bfd_set_gp_size (stdoutput, 0);
16285 }
16286 }
16287 else
1661c76c 16288 as_warn (_("unrecognized option \"%s\""), opt);
252b5132 16289
d02603dc 16290 (void) restore_line_pointer (c);
252b5132
RH
16291 demand_empty_rest_of_line ();
16292}
16293
16294/* This structure is used to hold a stack of .set values. */
16295
e972090a
NC
16296struct mips_option_stack
16297{
252b5132
RH
16298 struct mips_option_stack *next;
16299 struct mips_set_options options;
16300};
16301
16302static struct mips_option_stack *mips_opts_stack;
16303
22522f88
MR
16304/* Return status for .set/.module option handling. */
16305
16306enum code_option_type
16307{
16308 /* Unrecognized option. */
16309 OPTION_TYPE_BAD = -1,
16310
16311 /* Ordinary option. */
16312 OPTION_TYPE_NORMAL,
16313
16314 /* ISA changing option. */
16315 OPTION_TYPE_ISA
16316};
16317
16318/* Handle common .set/.module options. Return status indicating option
16319 type. */
16320
16321static enum code_option_type
919731af 16322parse_code_option (char * name)
252b5132 16323{
22522f88 16324 bfd_boolean isa_set = FALSE;
c6278170 16325 const struct mips_ase *ase;
22522f88 16326
919731af 16327 if (strncmp (name, "at=", 3) == 0)
741fe287
MR
16328 {
16329 char *s = name + 3;
16330
16331 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
1661c76c 16332 as_bad (_("unrecognized register name `%s'"), s);
741fe287 16333 }
252b5132 16334 else if (strcmp (name, "at") == 0)
919731af 16335 mips_opts.at = ATREG;
252b5132 16336 else if (strcmp (name, "noat") == 0)
919731af 16337 mips_opts.at = ZERO;
252b5132 16338 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
919731af 16339 mips_opts.nomove = 0;
252b5132 16340 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
919731af 16341 mips_opts.nomove = 1;
252b5132 16342 else if (strcmp (name, "bopt") == 0)
919731af 16343 mips_opts.nobopt = 0;
252b5132 16344 else if (strcmp (name, "nobopt") == 0)
919731af 16345 mips_opts.nobopt = 1;
ad3fea08 16346 else if (strcmp (name, "gp=32") == 0)
bad1aba3 16347 mips_opts.gp = 32;
ad3fea08 16348 else if (strcmp (name, "gp=64") == 0)
919731af 16349 mips_opts.gp = 64;
ad3fea08 16350 else if (strcmp (name, "fp=32") == 0)
0b35dfee 16351 mips_opts.fp = 32;
351cdf24
MF
16352 else if (strcmp (name, "fp=xx") == 0)
16353 mips_opts.fp = 0;
ad3fea08 16354 else if (strcmp (name, "fp=64") == 0)
919731af 16355 mips_opts.fp = 64;
037b32b9
AN
16356 else if (strcmp (name, "softfloat") == 0)
16357 mips_opts.soft_float = 1;
16358 else if (strcmp (name, "hardfloat") == 0)
16359 mips_opts.soft_float = 0;
16360 else if (strcmp (name, "singlefloat") == 0)
16361 mips_opts.single_float = 1;
16362 else if (strcmp (name, "doublefloat") == 0)
16363 mips_opts.single_float = 0;
351cdf24
MF
16364 else if (strcmp (name, "nooddspreg") == 0)
16365 mips_opts.oddspreg = 0;
16366 else if (strcmp (name, "oddspreg") == 0)
16367 mips_opts.oddspreg = 1;
252b5132
RH
16368 else if (strcmp (name, "mips16") == 0
16369 || strcmp (name, "MIPS-16") == 0)
919731af 16370 mips_opts.mips16 = 1;
252b5132
RH
16371 else if (strcmp (name, "nomips16") == 0
16372 || strcmp (name, "noMIPS-16") == 0)
16373 mips_opts.mips16 = 0;
df58fc94 16374 else if (strcmp (name, "micromips") == 0)
919731af 16375 mips_opts.micromips = 1;
df58fc94
RS
16376 else if (strcmp (name, "nomicromips") == 0)
16377 mips_opts.micromips = 0;
c6278170
RS
16378 else if (name[0] == 'n'
16379 && name[1] == 'o'
16380 && (ase = mips_lookup_ase (name + 2)))
919731af 16381 mips_set_ase (ase, &mips_opts, FALSE);
c6278170 16382 else if ((ase = mips_lookup_ase (name)))
919731af 16383 mips_set_ase (ase, &mips_opts, TRUE);
1a2c1fad 16384 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
252b5132 16385 {
1a2c1fad
CD
16386 /* Permit the user to change the ISA and architecture on the fly.
16387 Needless to say, misuse can cause serious problems. */
919731af 16388 if (strncmp (name, "arch=", 5) == 0)
1a2c1fad
CD
16389 {
16390 const struct mips_cpu_info *p;
16391
919731af 16392 p = mips_parse_cpu ("internal use", name + 5);
1a2c1fad
CD
16393 if (!p)
16394 as_bad (_("unknown architecture %s"), name + 5);
16395 else
16396 {
16397 mips_opts.arch = p->cpu;
16398 mips_opts.isa = p->isa;
22522f88 16399 isa_set = TRUE;
1a2c1fad
CD
16400 }
16401 }
81a21e38
TS
16402 else if (strncmp (name, "mips", 4) == 0)
16403 {
16404 const struct mips_cpu_info *p;
16405
919731af 16406 p = mips_parse_cpu ("internal use", name);
81a21e38
TS
16407 if (!p)
16408 as_bad (_("unknown ISA level %s"), name + 4);
16409 else
16410 {
16411 mips_opts.arch = p->cpu;
16412 mips_opts.isa = p->isa;
22522f88 16413 isa_set = TRUE;
81a21e38
TS
16414 }
16415 }
af7ee8bf 16416 else
81a21e38 16417 as_bad (_("unknown ISA or architecture %s"), name);
252b5132
RH
16418 }
16419 else if (strcmp (name, "autoextend") == 0)
16420 mips_opts.noautoextend = 0;
16421 else if (strcmp (name, "noautoextend") == 0)
16422 mips_opts.noautoextend = 1;
833794fc
MR
16423 else if (strcmp (name, "insn32") == 0)
16424 mips_opts.insn32 = TRUE;
16425 else if (strcmp (name, "noinsn32") == 0)
16426 mips_opts.insn32 = FALSE;
919731af 16427 else if (strcmp (name, "sym32") == 0)
16428 mips_opts.sym32 = TRUE;
16429 else if (strcmp (name, "nosym32") == 0)
16430 mips_opts.sym32 = FALSE;
16431 else
22522f88
MR
16432 return OPTION_TYPE_BAD;
16433
16434 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
919731af 16435}
16436
16437/* Handle the .set pseudo-op. */
16438
16439static void
16440s_mipsset (int x ATTRIBUTE_UNUSED)
16441{
22522f88 16442 enum code_option_type type = OPTION_TYPE_NORMAL;
919731af 16443 char *name = input_line_pointer, ch;
919731af 16444
16445 file_mips_check_options ();
16446
16447 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16448 ++input_line_pointer;
16449 ch = *input_line_pointer;
16450 *input_line_pointer = '\0';
16451
16452 if (strchr (name, ','))
16453 {
16454 /* Generic ".set" directive; use the generic handler. */
16455 *input_line_pointer = ch;
16456 input_line_pointer = name;
16457 s_set (0);
16458 return;
16459 }
16460
16461 if (strcmp (name, "reorder") == 0)
16462 {
16463 if (mips_opts.noreorder)
16464 end_noreorder ();
16465 }
16466 else if (strcmp (name, "noreorder") == 0)
16467 {
16468 if (!mips_opts.noreorder)
16469 start_noreorder ();
16470 }
16471 else if (strcmp (name, "macro") == 0)
16472 mips_opts.warn_about_macros = 0;
16473 else if (strcmp (name, "nomacro") == 0)
16474 {
16475 if (mips_opts.noreorder == 0)
16476 as_bad (_("`noreorder' must be set before `nomacro'"));
16477 mips_opts.warn_about_macros = 1;
16478 }
16479 else if (strcmp (name, "gp=default") == 0)
16480 mips_opts.gp = file_mips_opts.gp;
16481 else if (strcmp (name, "fp=default") == 0)
16482 mips_opts.fp = file_mips_opts.fp;
16483 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16484 {
16485 mips_opts.isa = file_mips_opts.isa;
16486 mips_opts.arch = file_mips_opts.arch;
16487 mips_opts.gp = file_mips_opts.gp;
16488 mips_opts.fp = file_mips_opts.fp;
16489 }
252b5132
RH
16490 else if (strcmp (name, "push") == 0)
16491 {
16492 struct mips_option_stack *s;
16493
325801bd 16494 s = XNEW (struct mips_option_stack);
252b5132
RH
16495 s->next = mips_opts_stack;
16496 s->options = mips_opts;
16497 mips_opts_stack = s;
16498 }
16499 else if (strcmp (name, "pop") == 0)
16500 {
16501 struct mips_option_stack *s;
16502
16503 s = mips_opts_stack;
16504 if (s == NULL)
16505 as_bad (_(".set pop with no .set push"));
16506 else
16507 {
16508 /* If we're changing the reorder mode we need to handle
16509 delay slots correctly. */
16510 if (s->options.noreorder && ! mips_opts.noreorder)
7d10b47d 16511 start_noreorder ();
252b5132 16512 else if (! s->options.noreorder && mips_opts.noreorder)
7d10b47d 16513 end_noreorder ();
252b5132
RH
16514
16515 mips_opts = s->options;
16516 mips_opts_stack = s->next;
16517 free (s);
16518 }
16519 }
22522f88
MR
16520 else
16521 {
16522 type = parse_code_option (name);
16523 if (type == OPTION_TYPE_BAD)
16524 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16525 }
919731af 16526
16527 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16528 registers based on what is supported by the arch/cpu. */
22522f88 16529 if (type == OPTION_TYPE_ISA)
e6559e01 16530 {
919731af 16531 switch (mips_opts.isa)
16532 {
16533 case 0:
16534 break;
16535 case ISA_MIPS1:
351cdf24
MF
16536 /* MIPS I cannot support FPXX. */
16537 mips_opts.fp = 32;
16538 /* fall-through. */
919731af 16539 case ISA_MIPS2:
16540 case ISA_MIPS32:
16541 case ISA_MIPS32R2:
16542 case ISA_MIPS32R3:
16543 case ISA_MIPS32R5:
16544 mips_opts.gp = 32;
351cdf24
MF
16545 if (mips_opts.fp != 0)
16546 mips_opts.fp = 32;
919731af 16547 break;
7361da2c
AB
16548 case ISA_MIPS32R6:
16549 mips_opts.gp = 32;
16550 mips_opts.fp = 64;
16551 break;
919731af 16552 case ISA_MIPS3:
16553 case ISA_MIPS4:
16554 case ISA_MIPS5:
16555 case ISA_MIPS64:
16556 case ISA_MIPS64R2:
16557 case ISA_MIPS64R3:
16558 case ISA_MIPS64R5:
7361da2c 16559 case ISA_MIPS64R6:
919731af 16560 mips_opts.gp = 64;
351cdf24
MF
16561 if (mips_opts.fp != 0)
16562 {
16563 if (mips_opts.arch == CPU_R5900)
16564 mips_opts.fp = 32;
16565 else
16566 mips_opts.fp = 64;
16567 }
919731af 16568 break;
16569 default:
16570 as_bad (_("unknown ISA level %s"), name + 4);
16571 break;
16572 }
e6559e01 16573 }
919731af 16574
16575 mips_check_options (&mips_opts, FALSE);
16576
16577 mips_check_isa_supports_ases ();
16578 *input_line_pointer = ch;
16579 demand_empty_rest_of_line ();
16580}
16581
16582/* Handle the .module pseudo-op. */
16583
16584static void
16585s_module (int ignore ATTRIBUTE_UNUSED)
16586{
16587 char *name = input_line_pointer, ch;
16588
16589 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16590 ++input_line_pointer;
16591 ch = *input_line_pointer;
16592 *input_line_pointer = '\0';
16593
16594 if (!file_mips_opts_checked)
252b5132 16595 {
22522f88 16596 if (parse_code_option (name) == OPTION_TYPE_BAD)
919731af 16597 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16598
16599 /* Update module level settings from mips_opts. */
16600 file_mips_opts = mips_opts;
252b5132 16601 }
919731af 16602 else
16603 as_bad (_(".module is not permitted after generating code"));
16604
252b5132
RH
16605 *input_line_pointer = ch;
16606 demand_empty_rest_of_line ();
16607}
16608
16609/* Handle the .abicalls pseudo-op. I believe this is equivalent to
16610 .option pic2. It means to generate SVR4 PIC calls. */
16611
16612static void
17a2f251 16613s_abicalls (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16614{
16615 mips_pic = SVR4_PIC;
143d77c5 16616 mips_abicalls = TRUE;
4d0d148d
TS
16617
16618 if (g_switch_seen && g_switch_value != 0)
16619 as_warn (_("-G may not be used with SVR4 PIC code"));
16620 g_switch_value = 0;
16621
252b5132
RH
16622 bfd_set_gp_size (stdoutput, 0);
16623 demand_empty_rest_of_line ();
16624}
16625
16626/* Handle the .cpload pseudo-op. This is used when generating SVR4
16627 PIC code. It sets the $gp register for the function based on the
16628 function address, which is in the register named in the argument.
16629 This uses a relocation against _gp_disp, which is handled specially
16630 by the linker. The result is:
16631 lui $gp,%hi(_gp_disp)
16632 addiu $gp,$gp,%lo(_gp_disp)
16633 addu $gp,$gp,.cpload argument
aa6975fb
ILT
16634 The .cpload argument is normally $25 == $t9.
16635
16636 The -mno-shared option changes this to:
bbe506e8
TS
16637 lui $gp,%hi(__gnu_local_gp)
16638 addiu $gp,$gp,%lo(__gnu_local_gp)
aa6975fb
ILT
16639 and the argument is ignored. This saves an instruction, but the
16640 resulting code is not position independent; it uses an absolute
bbe506e8
TS
16641 address for __gnu_local_gp. Thus code assembled with -mno-shared
16642 can go into an ordinary executable, but not into a shared library. */
252b5132
RH
16643
16644static void
17a2f251 16645s_cpload (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16646{
16647 expressionS ex;
aa6975fb
ILT
16648 int reg;
16649 int in_shared;
252b5132 16650
919731af 16651 file_mips_check_options ();
16652
6478892d
TS
16653 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16654 .cpload is ignored. */
16655 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16656 {
16657 s_ignore (0);
16658 return;
16659 }
16660
a276b80c
MR
16661 if (mips_opts.mips16)
16662 {
16663 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16664 ignore_rest_of_line ();
16665 return;
16666 }
16667
d3ecfc59 16668 /* .cpload should be in a .set noreorder section. */
252b5132
RH
16669 if (mips_opts.noreorder == 0)
16670 as_warn (_(".cpload not in noreorder section"));
16671
aa6975fb
ILT
16672 reg = tc_get_register (0);
16673
16674 /* If we need to produce a 64-bit address, we are better off using
16675 the default instruction sequence. */
aed1a261 16676 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
aa6975fb 16677
252b5132 16678 ex.X_op = O_symbol;
bbe506e8
TS
16679 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16680 "__gnu_local_gp");
252b5132
RH
16681 ex.X_op_symbol = NULL;
16682 ex.X_add_number = 0;
16683
16684 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
49309057 16685 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
252b5132 16686
8a75745d
MR
16687 mips_mark_labels ();
16688 mips_assembling_insn = TRUE;
16689
584892a6 16690 macro_start ();
67c0d1eb
RS
16691 macro_build_lui (&ex, mips_gp_register);
16692 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17a2f251 16693 mips_gp_register, BFD_RELOC_LO16);
aa6975fb
ILT
16694 if (in_shared)
16695 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16696 mips_gp_register, reg);
584892a6 16697 macro_end ();
252b5132 16698
8a75745d 16699 mips_assembling_insn = FALSE;
252b5132
RH
16700 demand_empty_rest_of_line ();
16701}
16702
6478892d
TS
16703/* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16704 .cpsetup $reg1, offset|$reg2, label
16705
16706 If offset is given, this results in:
16707 sd $gp, offset($sp)
956cd1d6 16708 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16709 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16710 daddu $gp, $gp, $reg1
6478892d
TS
16711
16712 If $reg2 is given, this results in:
40fc1451 16713 or $reg2, $gp, $0
956cd1d6 16714 lui $gp, %hi(%neg(%gp_rel(label)))
698b7d9d
TS
16715 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16716 daddu $gp, $gp, $reg1
aa6975fb
ILT
16717 $reg1 is normally $25 == $t9.
16718
16719 The -mno-shared option replaces the last three instructions with
16720 lui $gp,%hi(_gp)
54f4ddb3 16721 addiu $gp,$gp,%lo(_gp) */
aa6975fb 16722
6478892d 16723static void
17a2f251 16724s_cpsetup (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16725{
16726 expressionS ex_off;
16727 expressionS ex_sym;
16728 int reg1;
6478892d 16729
919731af 16730 file_mips_check_options ();
16731
8586fc66 16732 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
6478892d
TS
16733 We also need NewABI support. */
16734 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16735 {
16736 s_ignore (0);
16737 return;
16738 }
16739
a276b80c
MR
16740 if (mips_opts.mips16)
16741 {
16742 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16743 ignore_rest_of_line ();
16744 return;
16745 }
16746
6478892d
TS
16747 reg1 = tc_get_register (0);
16748 SKIP_WHITESPACE ();
16749 if (*input_line_pointer != ',')
16750 {
16751 as_bad (_("missing argument separator ',' for .cpsetup"));
16752 return;
16753 }
16754 else
80245285 16755 ++input_line_pointer;
6478892d
TS
16756 SKIP_WHITESPACE ();
16757 if (*input_line_pointer == '$')
80245285
TS
16758 {
16759 mips_cpreturn_register = tc_get_register (0);
16760 mips_cpreturn_offset = -1;
16761 }
6478892d 16762 else
80245285
TS
16763 {
16764 mips_cpreturn_offset = get_absolute_expression ();
16765 mips_cpreturn_register = -1;
16766 }
6478892d
TS
16767 SKIP_WHITESPACE ();
16768 if (*input_line_pointer != ',')
16769 {
16770 as_bad (_("missing argument separator ',' for .cpsetup"));
16771 return;
16772 }
16773 else
f9419b05 16774 ++input_line_pointer;
6478892d 16775 SKIP_WHITESPACE ();
f21f8242 16776 expression (&ex_sym);
6478892d 16777
8a75745d
MR
16778 mips_mark_labels ();
16779 mips_assembling_insn = TRUE;
16780
584892a6 16781 macro_start ();
6478892d
TS
16782 if (mips_cpreturn_register == -1)
16783 {
16784 ex_off.X_op = O_constant;
16785 ex_off.X_add_symbol = NULL;
16786 ex_off.X_op_symbol = NULL;
16787 ex_off.X_add_number = mips_cpreturn_offset;
16788
67c0d1eb 16789 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17a2f251 16790 BFD_RELOC_LO16, SP);
6478892d
TS
16791 }
16792 else
40fc1451 16793 move_register (mips_cpreturn_register, mips_gp_register);
6478892d 16794
aed1a261 16795 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
aa6975fb 16796 {
df58fc94 16797 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
aa6975fb
ILT
16798 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16799 BFD_RELOC_HI16_S);
16800
16801 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16802 mips_gp_register, -1, BFD_RELOC_GPREL16,
16803 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16804
16805 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16806 mips_gp_register, reg1);
16807 }
16808 else
16809 {
16810 expressionS ex;
16811
16812 ex.X_op = O_symbol;
4184909a 16813 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
aa6975fb
ILT
16814 ex.X_op_symbol = NULL;
16815 ex.X_add_number = 0;
6e1304d8 16816
aa6975fb
ILT
16817 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16818 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16819
16820 macro_build_lui (&ex, mips_gp_register);
16821 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16822 mips_gp_register, BFD_RELOC_LO16);
16823 }
f21f8242 16824
584892a6 16825 macro_end ();
6478892d 16826
8a75745d 16827 mips_assembling_insn = FALSE;
6478892d
TS
16828 demand_empty_rest_of_line ();
16829}
16830
16831static void
17a2f251 16832s_cplocal (int ignore ATTRIBUTE_UNUSED)
6478892d 16833{
919731af 16834 file_mips_check_options ();
16835
6478892d 16836 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
54f4ddb3 16837 .cplocal is ignored. */
6478892d
TS
16838 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16839 {
16840 s_ignore (0);
16841 return;
16842 }
16843
a276b80c
MR
16844 if (mips_opts.mips16)
16845 {
16846 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16847 ignore_rest_of_line ();
16848 return;
16849 }
16850
6478892d 16851 mips_gp_register = tc_get_register (0);
85b51719 16852 demand_empty_rest_of_line ();
6478892d
TS
16853}
16854
252b5132
RH
16855/* Handle the .cprestore pseudo-op. This stores $gp into a given
16856 offset from $sp. The offset is remembered, and after making a PIC
16857 call $gp is restored from that location. */
16858
16859static void
17a2f251 16860s_cprestore (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
16861{
16862 expressionS ex;
252b5132 16863
919731af 16864 file_mips_check_options ();
16865
6478892d 16866 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
c9914766 16867 .cprestore is ignored. */
6478892d 16868 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
252b5132
RH
16869 {
16870 s_ignore (0);
16871 return;
16872 }
16873
a276b80c
MR
16874 if (mips_opts.mips16)
16875 {
16876 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16877 ignore_rest_of_line ();
16878 return;
16879 }
16880
252b5132 16881 mips_cprestore_offset = get_absolute_expression ();
7a621144 16882 mips_cprestore_valid = 1;
252b5132
RH
16883
16884 ex.X_op = O_constant;
16885 ex.X_add_symbol = NULL;
16886 ex.X_op_symbol = NULL;
16887 ex.X_add_number = mips_cprestore_offset;
16888
8a75745d
MR
16889 mips_mark_labels ();
16890 mips_assembling_insn = TRUE;
16891
584892a6 16892 macro_start ();
67c0d1eb
RS
16893 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16894 SP, HAVE_64BIT_ADDRESSES);
584892a6 16895 macro_end ();
252b5132 16896
8a75745d 16897 mips_assembling_insn = FALSE;
252b5132
RH
16898 demand_empty_rest_of_line ();
16899}
16900
6478892d 16901/* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
67c1ffbe 16902 was given in the preceding .cpsetup, it results in:
6478892d 16903 ld $gp, offset($sp)
76b3015f 16904
6478892d 16905 If a register $reg2 was given there, it results in:
40fc1451 16906 or $gp, $reg2, $0 */
54f4ddb3 16907
6478892d 16908static void
17a2f251 16909s_cpreturn (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
16910{
16911 expressionS ex;
6478892d 16912
919731af 16913 file_mips_check_options ();
16914
6478892d
TS
16915 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16916 We also need NewABI support. */
16917 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16918 {
16919 s_ignore (0);
16920 return;
16921 }
16922
a276b80c
MR
16923 if (mips_opts.mips16)
16924 {
16925 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16926 ignore_rest_of_line ();
16927 return;
16928 }
16929
8a75745d
MR
16930 mips_mark_labels ();
16931 mips_assembling_insn = TRUE;
16932
584892a6 16933 macro_start ();
6478892d
TS
16934 if (mips_cpreturn_register == -1)
16935 {
16936 ex.X_op = O_constant;
16937 ex.X_add_symbol = NULL;
16938 ex.X_op_symbol = NULL;
16939 ex.X_add_number = mips_cpreturn_offset;
16940
67c0d1eb 16941 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
6478892d
TS
16942 }
16943 else
40fc1451
SD
16944 move_register (mips_gp_register, mips_cpreturn_register);
16945
584892a6 16946 macro_end ();
6478892d 16947
8a75745d 16948 mips_assembling_insn = FALSE;
6478892d
TS
16949 demand_empty_rest_of_line ();
16950}
16951
d0f13682
CLT
16952/* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16953 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16954 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16955 debug information or MIPS16 TLS. */
741d6ea8
JM
16956
16957static void
d0f13682
CLT
16958s_tls_rel_directive (const size_t bytes, const char *dirstr,
16959 bfd_reloc_code_real_type rtype)
741d6ea8
JM
16960{
16961 expressionS ex;
16962 char *p;
16963
16964 expression (&ex);
16965
16966 if (ex.X_op != O_symbol)
16967 {
1661c76c 16968 as_bad (_("unsupported use of %s"), dirstr);
741d6ea8
JM
16969 ignore_rest_of_line ();
16970 }
16971
16972 p = frag_more (bytes);
16973 md_number_to_chars (p, 0, bytes);
d0f13682 16974 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
741d6ea8 16975 demand_empty_rest_of_line ();
de64cffd 16976 mips_clear_insn_labels ();
741d6ea8
JM
16977}
16978
16979/* Handle .dtprelword. */
16980
16981static void
16982s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16983{
d0f13682 16984 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
741d6ea8
JM
16985}
16986
16987/* Handle .dtpreldword. */
16988
16989static void
16990s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16991{
d0f13682
CLT
16992 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16993}
16994
16995/* Handle .tprelword. */
16996
16997static void
16998s_tprelword (int ignore ATTRIBUTE_UNUSED)
16999{
17000 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17001}
17002
17003/* Handle .tpreldword. */
17004
17005static void
17006s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17007{
17008 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
741d6ea8
JM
17009}
17010
6478892d
TS
17011/* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17012 code. It sets the offset to use in gp_rel relocations. */
17013
17014static void
17a2f251 17015s_gpvalue (int ignore ATTRIBUTE_UNUSED)
6478892d
TS
17016{
17017 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17018 We also need NewABI support. */
17019 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17020 {
17021 s_ignore (0);
17022 return;
17023 }
17024
def2e0dd 17025 mips_gprel_offset = get_absolute_expression ();
6478892d
TS
17026
17027 demand_empty_rest_of_line ();
17028}
17029
252b5132
RH
17030/* Handle the .gpword pseudo-op. This is used when generating PIC
17031 code. It generates a 32 bit GP relative reloc. */
17032
17033static void
17a2f251 17034s_gpword (int ignore ATTRIBUTE_UNUSED)
252b5132 17035{
a8dbcb85
TS
17036 segment_info_type *si;
17037 struct insn_label_list *l;
252b5132
RH
17038 expressionS ex;
17039 char *p;
17040
17041 /* When not generating PIC code, this is treated as .word. */
17042 if (mips_pic != SVR4_PIC)
17043 {
17044 s_cons (2);
17045 return;
17046 }
17047
a8dbcb85
TS
17048 si = seg_info (now_seg);
17049 l = si->label_list;
7d10b47d 17050 mips_emit_delays ();
252b5132 17051 if (auto_align)
462427c4 17052 mips_align (2, 0, l);
252b5132
RH
17053
17054 expression (&ex);
a1facbec 17055 mips_clear_insn_labels ();
252b5132
RH
17056
17057 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17058 {
1661c76c 17059 as_bad (_("unsupported use of .gpword"));
252b5132
RH
17060 ignore_rest_of_line ();
17061 }
17062
17063 p = frag_more (4);
17a2f251 17064 md_number_to_chars (p, 0, 4);
b34976b6 17065 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
cdf6fd85 17066 BFD_RELOC_GPREL32);
252b5132
RH
17067
17068 demand_empty_rest_of_line ();
17069}
17070
10181a0d 17071static void
17a2f251 17072s_gpdword (int ignore ATTRIBUTE_UNUSED)
10181a0d 17073{
a8dbcb85
TS
17074 segment_info_type *si;
17075 struct insn_label_list *l;
10181a0d
AO
17076 expressionS ex;
17077 char *p;
17078
17079 /* When not generating PIC code, this is treated as .dword. */
17080 if (mips_pic != SVR4_PIC)
17081 {
17082 s_cons (3);
17083 return;
17084 }
17085
a8dbcb85
TS
17086 si = seg_info (now_seg);
17087 l = si->label_list;
7d10b47d 17088 mips_emit_delays ();
10181a0d 17089 if (auto_align)
462427c4 17090 mips_align (3, 0, l);
10181a0d
AO
17091
17092 expression (&ex);
a1facbec 17093 mips_clear_insn_labels ();
10181a0d
AO
17094
17095 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17096 {
1661c76c 17097 as_bad (_("unsupported use of .gpdword"));
10181a0d
AO
17098 ignore_rest_of_line ();
17099 }
17100
17101 p = frag_more (8);
17a2f251 17102 md_number_to_chars (p, 0, 8);
a105a300 17103 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
6e1304d8 17104 BFD_RELOC_GPREL32)->fx_tcbit = 1;
10181a0d
AO
17105
17106 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
6e1304d8
RS
17107 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17108 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
10181a0d
AO
17109
17110 demand_empty_rest_of_line ();
17111}
17112
a3f278e2
CM
17113/* Handle the .ehword pseudo-op. This is used when generating unwinding
17114 tables. It generates a R_MIPS_EH reloc. */
17115
17116static void
17117s_ehword (int ignore ATTRIBUTE_UNUSED)
17118{
17119 expressionS ex;
17120 char *p;
17121
17122 mips_emit_delays ();
17123
17124 expression (&ex);
17125 mips_clear_insn_labels ();
17126
17127 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17128 {
1661c76c 17129 as_bad (_("unsupported use of .ehword"));
a3f278e2
CM
17130 ignore_rest_of_line ();
17131 }
17132
17133 p = frag_more (4);
17134 md_number_to_chars (p, 0, 4);
17135 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
2f0c68f2 17136 BFD_RELOC_32_PCREL);
a3f278e2
CM
17137
17138 demand_empty_rest_of_line ();
17139}
17140
252b5132
RH
17141/* Handle the .cpadd pseudo-op. This is used when dealing with switch
17142 tables in SVR4 PIC code. */
17143
17144static void
17a2f251 17145s_cpadd (int ignore ATTRIBUTE_UNUSED)
252b5132 17146{
252b5132
RH
17147 int reg;
17148
919731af 17149 file_mips_check_options ();
17150
10181a0d
AO
17151 /* This is ignored when not generating SVR4 PIC code. */
17152 if (mips_pic != SVR4_PIC)
252b5132
RH
17153 {
17154 s_ignore (0);
17155 return;
17156 }
17157
8a75745d
MR
17158 mips_mark_labels ();
17159 mips_assembling_insn = TRUE;
17160
252b5132 17161 /* Add $gp to the register named as an argument. */
584892a6 17162 macro_start ();
252b5132 17163 reg = tc_get_register (0);
67c0d1eb 17164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
584892a6 17165 macro_end ();
252b5132 17166
8a75745d 17167 mips_assembling_insn = FALSE;
bdaaa2e1 17168 demand_empty_rest_of_line ();
252b5132
RH
17169}
17170
17171/* Handle the .insn pseudo-op. This marks instruction labels in
df58fc94 17172 mips16/micromips mode. This permits the linker to handle them specially,
252b5132
RH
17173 such as generating jalx instructions when needed. We also make
17174 them odd for the duration of the assembly, in order to generate the
17175 right sort of code. We will make them even in the adjust_symtab
17176 routine, while leaving them marked. This is convenient for the
17177 debugger and the disassembler. The linker knows to make them odd
17178 again. */
17179
17180static void
17a2f251 17181s_insn (int ignore ATTRIBUTE_UNUSED)
252b5132 17182{
7bb01e2d
MR
17183 file_mips_check_options ();
17184 file_ase_mips16 |= mips_opts.mips16;
17185 file_ase_micromips |= mips_opts.micromips;
17186
df58fc94 17187 mips_mark_labels ();
252b5132
RH
17188
17189 demand_empty_rest_of_line ();
17190}
17191
ba92f887
MR
17192/* Handle the .nan pseudo-op. */
17193
17194static void
17195s_nan (int ignore ATTRIBUTE_UNUSED)
17196{
17197 static const char str_legacy[] = "legacy";
17198 static const char str_2008[] = "2008";
17199 size_t i;
17200
17201 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17202
17203 if (i == sizeof (str_2008) - 1
17204 && memcmp (input_line_pointer, str_2008, i) == 0)
7361da2c 17205 mips_nan2008 = 1;
ba92f887
MR
17206 else if (i == sizeof (str_legacy) - 1
17207 && memcmp (input_line_pointer, str_legacy, i) == 0)
7361da2c
AB
17208 {
17209 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17210 mips_nan2008 = 0;
17211 else
17212 as_bad (_("`%s' does not support legacy NaN"),
17213 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17214 }
ba92f887 17215 else
1661c76c 17216 as_bad (_("bad .nan directive"));
ba92f887
MR
17217
17218 input_line_pointer += i;
17219 demand_empty_rest_of_line ();
17220}
17221
754e2bb9
RS
17222/* Handle a .stab[snd] directive. Ideally these directives would be
17223 implemented in a transparent way, so that removing them would not
17224 have any effect on the generated instructions. However, s_stab
17225 internally changes the section, so in practice we need to decide
17226 now whether the preceding label marks compressed code. We do not
17227 support changing the compression mode of a label after a .stab*
17228 directive, such as in:
17229
17230 foo:
134c0c8b 17231 .stabs ...
754e2bb9
RS
17232 .set mips16
17233
17234 so the current mode wins. */
252b5132
RH
17235
17236static void
17a2f251 17237s_mips_stab (int type)
252b5132 17238{
42c0794e 17239 file_mips_check_options ();
754e2bb9 17240 mips_mark_labels ();
252b5132
RH
17241 s_stab (type);
17242}
17243
54f4ddb3 17244/* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
252b5132
RH
17245
17246static void
17a2f251 17247s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
252b5132
RH
17248{
17249 char *name;
17250 int c;
17251 symbolS *symbolP;
17252 expressionS exp;
17253
d02603dc 17254 c = get_symbol_name (&name);
252b5132
RH
17255 symbolP = symbol_find_or_make (name);
17256 S_SET_WEAK (symbolP);
17257 *input_line_pointer = c;
17258
d02603dc 17259 SKIP_WHITESPACE_AFTER_NAME ();
252b5132
RH
17260
17261 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17262 {
17263 if (S_IS_DEFINED (symbolP))
17264 {
20203fb9 17265 as_bad (_("ignoring attempt to redefine symbol %s"),
252b5132
RH
17266 S_GET_NAME (symbolP));
17267 ignore_rest_of_line ();
17268 return;
17269 }
bdaaa2e1 17270
252b5132
RH
17271 if (*input_line_pointer == ',')
17272 {
17273 ++input_line_pointer;
17274 SKIP_WHITESPACE ();
17275 }
bdaaa2e1 17276
252b5132
RH
17277 expression (&exp);
17278 if (exp.X_op != O_symbol)
17279 {
20203fb9 17280 as_bad (_("bad .weakext directive"));
98d3f06f 17281 ignore_rest_of_line ();
252b5132
RH
17282 return;
17283 }
49309057 17284 symbol_set_value_expression (symbolP, &exp);
252b5132
RH
17285 }
17286
17287 demand_empty_rest_of_line ();
17288}
17289
17290/* Parse a register string into a number. Called from the ECOFF code
17291 to parse .frame. The argument is non-zero if this is the frame
17292 register, so that we can record it in mips_frame_reg. */
17293
17294int
17a2f251 17295tc_get_register (int frame)
252b5132 17296{
707bfff6 17297 unsigned int reg;
252b5132
RH
17298
17299 SKIP_WHITESPACE ();
707bfff6
TS
17300 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17301 reg = 0;
252b5132 17302 if (frame)
7a621144
DJ
17303 {
17304 mips_frame_reg = reg != 0 ? reg : SP;
17305 mips_frame_reg_valid = 1;
17306 mips_cprestore_valid = 0;
17307 }
252b5132
RH
17308 return reg;
17309}
17310
17311valueT
17a2f251 17312md_section_align (asection *seg, valueT addr)
252b5132
RH
17313{
17314 int align = bfd_get_section_alignment (stdoutput, seg);
17315
f3ded42a
RS
17316 /* We don't need to align ELF sections to the full alignment.
17317 However, Irix 5 may prefer that we align them at least to a 16
17318 byte boundary. We don't bother to align the sections if we
17319 are targeted for an embedded system. */
17320 if (strncmp (TARGET_OS, "elf", 3) == 0)
17321 return addr;
17322 if (align > 4)
17323 align = 4;
252b5132 17324
8d3842cd 17325 return ((addr + (1 << align) - 1) & -(1 << align));
252b5132
RH
17326}
17327
17328/* Utility routine, called from above as well. If called while the
17329 input file is still being read, it's only an approximation. (For
17330 example, a symbol may later become defined which appeared to be
17331 undefined earlier.) */
17332
17333static int
17a2f251 17334nopic_need_relax (symbolS *sym, int before_relaxing)
252b5132
RH
17335{
17336 if (sym == 0)
17337 return 0;
17338
4d0d148d 17339 if (g_switch_value > 0)
252b5132
RH
17340 {
17341 const char *symname;
17342 int change;
17343
c9914766 17344 /* Find out whether this symbol can be referenced off the $gp
252b5132
RH
17345 register. It can be if it is smaller than the -G size or if
17346 it is in the .sdata or .sbss section. Certain symbols can
c9914766 17347 not be referenced off the $gp, although it appears as though
252b5132
RH
17348 they can. */
17349 symname = S_GET_NAME (sym);
17350 if (symname != (const char *) NULL
17351 && (strcmp (symname, "eprol") == 0
17352 || strcmp (symname, "etext") == 0
17353 || strcmp (symname, "_gp") == 0
17354 || strcmp (symname, "edata") == 0
17355 || strcmp (symname, "_fbss") == 0
17356 || strcmp (symname, "_fdata") == 0
17357 || strcmp (symname, "_ftext") == 0
17358 || strcmp (symname, "end") == 0
17359 || strcmp (symname, "_gp_disp") == 0))
17360 change = 1;
17361 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17362 && (0
17363#ifndef NO_ECOFF_DEBUGGING
49309057
ILT
17364 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17365 && (symbol_get_obj (sym)->ecoff_extern_size
17366 <= g_switch_value))
252b5132
RH
17367#endif
17368 /* We must defer this decision until after the whole
17369 file has been read, since there might be a .extern
17370 after the first use of this symbol. */
17371 || (before_relaxing
17372#ifndef NO_ECOFF_DEBUGGING
49309057 17373 && symbol_get_obj (sym)->ecoff_extern_size == 0
252b5132
RH
17374#endif
17375 && S_GET_VALUE (sym) == 0)
17376 || (S_GET_VALUE (sym) != 0
17377 && S_GET_VALUE (sym) <= g_switch_value)))
17378 change = 0;
17379 else
17380 {
17381 const char *segname;
17382
17383 segname = segment_name (S_GET_SEGMENT (sym));
9c2799c2 17384 gas_assert (strcmp (segname, ".lit8") != 0
252b5132
RH
17385 && strcmp (segname, ".lit4") != 0);
17386 change = (strcmp (segname, ".sdata") != 0
fba2b7f9
GK
17387 && strcmp (segname, ".sbss") != 0
17388 && strncmp (segname, ".sdata.", 7) != 0
d4dc2f22
TS
17389 && strncmp (segname, ".sbss.", 6) != 0
17390 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
fba2b7f9 17391 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
252b5132
RH
17392 }
17393 return change;
17394 }
17395 else
c9914766 17396 /* We are not optimizing for the $gp register. */
252b5132
RH
17397 return 1;
17398}
17399
5919d012
RS
17400
17401/* Return true if the given symbol should be considered local for SVR4 PIC. */
17402
17403static bfd_boolean
9e009953 17404pic_need_relax (symbolS *sym)
5919d012
RS
17405{
17406 asection *symsec;
5919d012
RS
17407
17408 /* Handle the case of a symbol equated to another symbol. */
17409 while (symbol_equated_reloc_p (sym))
17410 {
17411 symbolS *n;
17412
5f0fe04b 17413 /* It's possible to get a loop here in a badly written program. */
5919d012
RS
17414 n = symbol_get_value_expression (sym)->X_add_symbol;
17415 if (n == sym)
17416 break;
17417 sym = n;
17418 }
17419
df1f3cda
DD
17420 if (symbol_section_p (sym))
17421 return TRUE;
17422
5919d012
RS
17423 symsec = S_GET_SEGMENT (sym);
17424
5919d012 17425 /* This must duplicate the test in adjust_reloc_syms. */
45dfa85a
AM
17426 return (!bfd_is_und_section (symsec)
17427 && !bfd_is_abs_section (symsec)
5f0fe04b 17428 && !bfd_is_com_section (symsec)
5919d012 17429 /* A global or weak symbol is treated as external. */
f3ded42a 17430 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
5919d012 17431}
14f72d45
MR
17432\f
17433/* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17434 convert a section-relative value VAL to the equivalent PC-relative
17435 value. */
17436
17437static offsetT
17438mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17439 offsetT val, long stretch)
17440{
17441 fragS *sym_frag;
17442 addressT addr;
17443
17444 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17445
17446 sym_frag = symbol_get_frag (fragp->fr_symbol);
17447
17448 /* If the relax_marker of the symbol fragment differs from the
17449 relax_marker of this fragment, we have not yet adjusted the
17450 symbol fragment fr_address. We want to add in STRETCH in
17451 order to get a better estimate of the address. This
17452 particularly matters because of the shift bits. */
17453 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17454 {
17455 fragS *f;
17456
17457 /* Adjust stretch for any alignment frag. Note that if have
17458 been expanding the earlier code, the symbol may be
17459 defined in what appears to be an earlier frag. FIXME:
17460 This doesn't handle the fr_subtype field, which specifies
17461 a maximum number of bytes to skip when doing an
17462 alignment. */
17463 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17464 {
17465 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17466 {
17467 if (stretch < 0)
17468 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17469 else
17470 stretch &= ~((1 << (int) f->fr_offset) - 1);
17471 if (stretch == 0)
17472 break;
17473 }
17474 }
17475 if (f != NULL)
17476 val += stretch;
17477 }
17478
17479 addr = fragp->fr_address + fragp->fr_fix;
17480
17481 /* The base address rules are complicated. The base address of
17482 a branch is the following instruction. The base address of a
17483 PC relative load or add is the instruction itself, but if it
17484 is in a delay slot (in which case it can not be extended) use
17485 the address of the instruction whose delay slot it is in. */
17486 if (pcrel_op->include_isa_bit)
17487 {
17488 addr += 2;
17489
17490 /* If we are currently assuming that this frag should be
17491 extended, then the current address is two bytes higher. */
17492 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17493 addr += 2;
17494
17495 /* Ignore the low bit in the target, since it will be set
17496 for a text label. */
17497 val &= -2;
17498 }
17499 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17500 addr -= 4;
17501 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17502 addr -= 2;
5919d012 17503
14f72d45
MR
17504 val -= addr & -(1 << pcrel_op->align_log2);
17505
17506 return val;
17507}
5919d012 17508
252b5132
RH
17509/* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17510 extended opcode. SEC is the section the frag is in. */
17511
17512static int
17a2f251 17513mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
252b5132 17514{
3ccad066 17515 const struct mips_int_operand *operand;
252b5132 17516 offsetT val;
252b5132 17517 segT symsec;
14f72d45 17518 int type;
252b5132
RH
17519
17520 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17521 return 0;
17522 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17523 return 1;
17524
88a7ef16 17525 symsec = S_GET_SEGMENT (fragp->fr_symbol);
252b5132 17526 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 17527 operand = mips16_immed_operand (type, FALSE);
88a7ef16
MR
17528 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17529 || (operand->root.type == OP_PCREL
17530 ? sec != symsec
17531 : !bfd_is_abs_section (symsec)))
17532 return 1;
252b5132 17533
88a7ef16 17534 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
252b5132 17535
3ccad066 17536 if (operand->root.type == OP_PCREL)
252b5132 17537 {
3ccad066 17538 const struct mips_pcrel_operand *pcrel_op;
3ccad066 17539 offsetT maxtiny;
252b5132 17540
1425c41d 17541 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
88a7ef16 17542 return 1;
252b5132 17543
88a7ef16 17544 pcrel_op = (const struct mips_pcrel_operand *) operand;
14f72d45 17545 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
252b5132
RH
17546
17547 /* If any of the shifted bits are set, we must use an extended
17548 opcode. If the address depends on the size of this
17549 instruction, this can lead to a loop, so we arrange to always
88a7ef16
MR
17550 use an extended opcode. */
17551 if ((val & ((1 << operand->shift) - 1)) != 0)
252b5132
RH
17552 {
17553 fragp->fr_subtype =
1425c41d 17554 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17555 return 1;
17556 }
17557
17558 /* If we are about to mark a frag as extended because the value
3ccad066
RS
17559 is precisely the next value above maxtiny, then there is a
17560 chance of an infinite loop as in the following code:
252b5132
RH
17561 la $4,foo
17562 .skip 1020
17563 .align 2
17564 foo:
17565 In this case when the la is extended, foo is 0x3fc bytes
17566 away, so the la can be shrunk, but then foo is 0x400 away, so
17567 the la must be extended. To avoid this loop, we mark the
17568 frag as extended if it was small, and is about to become
3ccad066
RS
17569 extended with the next value above maxtiny. */
17570 maxtiny = mips_int_operand_max (operand);
17571 if (val == maxtiny + (1 << operand->shift)
88a7ef16 17572 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
252b5132
RH
17573 {
17574 fragp->fr_subtype =
1425c41d 17575 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
252b5132
RH
17576 return 1;
17577 }
17578 }
252b5132 17579
3ccad066 17580 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
252b5132
RH
17581}
17582
8507b6e7
MR
17583/* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17584 macro expansion. SEC is the section the frag is in. We only
17585 support PC-relative instructions (LA, DLA, LW, LD) here, in
17586 non-PIC code using 32-bit addressing. */
17587
17588static int
17589mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17590{
17591 const struct mips_pcrel_operand *pcrel_op;
17592 const struct mips_int_operand *operand;
17593 offsetT val;
17594 segT symsec;
17595 int type;
17596
17597 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17598
17599 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17600 return 0;
17601 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17602 return 0;
17603
17604 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17605 switch (type)
17606 {
17607 case 'A':
17608 case 'B':
17609 case 'E':
17610 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17611 if (bfd_is_abs_section (symsec))
17612 return 1;
17613 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17614 return 0;
17615 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17616 return 1;
17617
17618 operand = mips16_immed_operand (type, TRUE);
17619 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17620 pcrel_op = (const struct mips_pcrel_operand *) operand;
17621 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17622
17623 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17624
17625 default:
17626 return 0;
17627 }
17628}
17629
4a6a3df4
AO
17630/* Compute the length of a branch sequence, and adjust the
17631 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17632 worst-case length is computed, with UPDATE being used to indicate
17633 whether an unconditional (-1), branch-likely (+1) or regular (0)
17634 branch is to be computed. */
17635static int
17a2f251 17636relaxed_branch_length (fragS *fragp, asection *sec, int update)
4a6a3df4 17637{
b34976b6 17638 bfd_boolean toofar;
4a6a3df4
AO
17639 int length;
17640
17641 if (fragp
17642 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17643 && !S_IS_WEAK (fragp->fr_symbol)
4a6a3df4
AO
17644 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17645 {
17646 addressT addr;
17647 offsetT val;
17648
17649 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17650
17651 addr = fragp->fr_address + fragp->fr_fix + 4;
17652
17653 val -= addr;
17654
17655 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17656 }
4a6a3df4 17657 else
c1f61bd2
MR
17658 /* If the symbol is not defined or it's in a different segment,
17659 we emit the long sequence. */
b34976b6 17660 toofar = TRUE;
4a6a3df4
AO
17661
17662 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17663 fragp->fr_subtype
66b3e8da 17664 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
ce8ad872 17665 RELAX_BRANCH_PIC (fragp->fr_subtype),
66b3e8da 17666 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
4a6a3df4
AO
17667 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17668 RELAX_BRANCH_LINK (fragp->fr_subtype),
17669 toofar);
17670
17671 length = 4;
17672 if (toofar)
17673 {
17674 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17675 length += 8;
17676
ce8ad872 17677 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
17678 {
17679 /* Additional space for PIC loading of target address. */
17680 length += 8;
17681 if (mips_opts.isa == ISA_MIPS1)
17682 /* Additional space for $at-stabilizing nop. */
17683 length += 4;
17684 }
17685
17686 /* If branch is conditional. */
17687 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17688 length += 8;
17689 }
b34976b6 17690
4a6a3df4
AO
17691 return length;
17692}
17693
7bd374a4
MR
17694/* Get a FRAG's branch instruction delay slot size, either from the
17695 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17696 or SHORT_INSN_SIZE otherwise. */
17697
17698static int
17699frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17700{
17701 char *buf = fragp->fr_literal + fragp->fr_fix;
17702
17703 if (al)
17704 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17705 else
17706 return short_insn_size;
17707}
17708
df58fc94
RS
17709/* Compute the length of a branch sequence, and adjust the
17710 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17711 worst-case length is computed, with UPDATE being used to indicate
17712 whether an unconditional (-1), or regular (0) branch is to be
17713 computed. */
17714
17715static int
17716relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17717{
7bd374a4
MR
17718 bfd_boolean insn32 = TRUE;
17719 bfd_boolean nods = TRUE;
ce8ad872 17720 bfd_boolean pic = TRUE;
7bd374a4
MR
17721 bfd_boolean al = TRUE;
17722 int short_insn_size;
df58fc94
RS
17723 bfd_boolean toofar;
17724 int length;
17725
7bd374a4
MR
17726 if (fragp)
17727 {
17728 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17729 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 17730 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
7bd374a4
MR
17731 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17732 }
17733 short_insn_size = insn32 ? 4 : 2;
17734
df58fc94
RS
17735 if (fragp
17736 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17737 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17738 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17739 {
17740 addressT addr;
17741 offsetT val;
17742
17743 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17744 /* Ignore the low bit in the target, since it will be set
17745 for a text label. */
17746 if ((val & 1) != 0)
17747 --val;
17748
17749 addr = fragp->fr_address + fragp->fr_fix + 4;
17750
17751 val -= addr;
17752
17753 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17754 }
df58fc94 17755 else
c1f61bd2
MR
17756 /* If the symbol is not defined or it's in a different segment,
17757 we emit the long sequence. */
df58fc94
RS
17758 toofar = TRUE;
17759
17760 if (fragp && update
17761 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17762 fragp->fr_subtype = (toofar
17763 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17764 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17765
17766 length = 4;
17767 if (toofar)
17768 {
17769 bfd_boolean compact_known = fragp != NULL;
17770 bfd_boolean compact = FALSE;
17771 bfd_boolean uncond;
17772
df58fc94 17773 if (fragp)
8484fb75
MR
17774 {
17775 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17776 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
8484fb75 17777 }
df58fc94
RS
17778 else
17779 uncond = update < 0;
17780
17781 /* If label is out of range, we turn branch <br>:
17782
17783 <br> label # 4 bytes
17784 0:
17785
17786 into:
17787
17788 j label # 4 bytes
8484fb75
MR
17789 nop # 2/4 bytes if
17790 # compact && (!PIC || insn32)
df58fc94
RS
17791 0:
17792 */
ce8ad872 17793 if ((!pic || insn32) && (!compact_known || compact))
8484fb75 17794 length += short_insn_size;
df58fc94
RS
17795
17796 /* If assembling PIC code, we further turn:
17797
17798 j label # 4 bytes
17799
17800 into:
17801
17802 lw/ld at, %got(label)(gp) # 4 bytes
17803 d/addiu at, %lo(label) # 4 bytes
8484fb75 17804 jr/c at # 2/4 bytes
df58fc94 17805 */
ce8ad872 17806 if (pic)
8484fb75 17807 length += 4 + short_insn_size;
df58fc94 17808
7bd374a4
MR
17809 /* Add an extra nop if the jump has no compact form and we need
17810 to fill the delay slot. */
ce8ad872 17811 if ((!pic || al) && nods)
7bd374a4
MR
17812 length += (fragp
17813 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17814 : short_insn_size);
17815
df58fc94
RS
17816 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17817
17818 <brneg> 0f # 4 bytes
8484fb75 17819 nop # 2/4 bytes if !compact
df58fc94
RS
17820 */
17821 if (!uncond)
8484fb75 17822 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
df58fc94 17823 }
7bd374a4
MR
17824 else if (nods)
17825 {
17826 /* Add an extra nop to fill the delay slot. */
17827 gas_assert (fragp);
17828 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17829 }
df58fc94
RS
17830
17831 return length;
17832}
17833
17834/* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17835 bit accordingly. */
17836
17837static int
17838relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17839{
17840 bfd_boolean toofar;
17841
df58fc94
RS
17842 if (fragp
17843 && S_IS_DEFINED (fragp->fr_symbol)
991f40a9 17844 && !S_IS_WEAK (fragp->fr_symbol)
df58fc94
RS
17845 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17846 {
17847 addressT addr;
17848 offsetT val;
17849 int type;
17850
17851 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17852 /* Ignore the low bit in the target, since it will be set
17853 for a text label. */
17854 if ((val & 1) != 0)
17855 --val;
17856
17857 /* Assume this is a 2-byte branch. */
17858 addr = fragp->fr_address + fragp->fr_fix + 2;
17859
17860 /* We try to avoid the infinite loop by not adding 2 more bytes for
17861 long branches. */
17862
17863 val -= addr;
17864
17865 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17866 if (type == 'D')
17867 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17868 else if (type == 'E')
17869 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17870 else
17871 abort ();
17872 }
17873 else
17874 /* If the symbol is not defined or it's in a different segment,
17875 we emit a normal 32-bit branch. */
17876 toofar = TRUE;
17877
17878 if (fragp && update
17879 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17880 fragp->fr_subtype
17881 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17882 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17883
17884 if (toofar)
17885 return 4;
17886
17887 return 2;
17888}
17889
252b5132
RH
17890/* Estimate the size of a frag before relaxing. Unless this is the
17891 mips16, we are not really relaxing here, and the final size is
17892 encoded in the subtype information. For the mips16, we have to
17893 decide whether we are using an extended opcode or not. */
17894
252b5132 17895int
17a2f251 17896md_estimate_size_before_relax (fragS *fragp, asection *segtype)
252b5132 17897{
5919d012 17898 int change;
252b5132 17899
4a6a3df4
AO
17900 if (RELAX_BRANCH_P (fragp->fr_subtype))
17901 {
17902
b34976b6
AM
17903 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17904
4a6a3df4
AO
17905 return fragp->fr_var;
17906 }
17907
252b5132 17908 if (RELAX_MIPS16_P (fragp->fr_subtype))
8507b6e7
MR
17909 {
17910 /* We don't want to modify the EXTENDED bit here; it might get us
17911 into infinite loops. We change it only in mips_relax_frag(). */
17912 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
25499ac7 17913 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
8507b6e7
MR
17914 else
17915 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17916 }
252b5132 17917
df58fc94
RS
17918 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17919 {
17920 int length = 4;
17921
17922 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17923 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17924 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17925 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17926 fragp->fr_var = length;
17927
17928 return length;
17929 }
17930
ce8ad872 17931 if (mips_pic == VXWORKS_PIC)
0a44bf69
RS
17932 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17933 change = 0;
ce8ad872
MR
17934 else if (RELAX_PIC (fragp->fr_subtype))
17935 change = pic_need_relax (fragp->fr_symbol);
252b5132 17936 else
ce8ad872 17937 change = nopic_need_relax (fragp->fr_symbol, 0);
252b5132
RH
17938
17939 if (change)
17940 {
4d7206a2 17941 fragp->fr_subtype |= RELAX_USE_SECOND;
4d7206a2 17942 return -RELAX_FIRST (fragp->fr_subtype);
252b5132 17943 }
4d7206a2
RS
17944 else
17945 return -RELAX_SECOND (fragp->fr_subtype);
252b5132
RH
17946}
17947
17948/* This is called to see whether a reloc against a defined symbol
de7e6852 17949 should be converted into a reloc against a section. */
252b5132
RH
17950
17951int
17a2f251 17952mips_fix_adjustable (fixS *fixp)
252b5132 17953{
252b5132
RH
17954 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17955 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17956 return 0;
a161fe53 17957
252b5132
RH
17958 if (fixp->fx_addsy == NULL)
17959 return 1;
a161fe53 17960
2f0c68f2
CM
17961 /* Allow relocs used for EH tables. */
17962 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17963 return 1;
17964
de7e6852
RS
17965 /* If symbol SYM is in a mergeable section, relocations of the form
17966 SYM + 0 can usually be made section-relative. The mergeable data
17967 is then identified by the section offset rather than by the symbol.
17968
17969 However, if we're generating REL LO16 relocations, the offset is split
33eaf5de 17970 between the LO16 and partnering high part relocation. The linker will
de7e6852
RS
17971 need to recalculate the complete offset in order to correctly identify
17972 the merge data.
17973
33eaf5de 17974 The linker has traditionally not looked for the partnering high part
de7e6852
RS
17975 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17976 placed anywhere. Rather than break backwards compatibility by changing
17977 this, it seems better not to force the issue, and instead keep the
17978 original symbol. This will work with either linker behavior. */
738e5348 17979 if ((lo16_reloc_p (fixp->fx_r_type)
704803a9 17980 || reloc_needs_lo_p (fixp->fx_r_type))
de7e6852
RS
17981 && HAVE_IN_PLACE_ADDENDS
17982 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17983 return 0;
17984
97f50151
MR
17985 /* There is no place to store an in-place offset for JALR relocations. */
17986 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17987 return 0;
17988
17989 /* Likewise an in-range offset of limited PC-relative relocations may
2de39019 17990 overflow the in-place relocatable field if recalculated against the
7361da2c
AB
17991 start address of the symbol's containing section.
17992
17993 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17994 section relative to allow linker relaxations to be performed later on. */
97f50151 17995 if (limited_pcrel_reloc_p (fixp->fx_r_type)
912815f0 17996 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
1180b5a4
RS
17997 return 0;
17998
b314ec0e
RS
17999 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18000 to a floating-point stub. The same is true for non-R_MIPS16_26
18001 relocations against MIPS16 functions; in this case, the stub becomes
18002 the function's canonical address.
18003
18004 Floating-point stubs are stored in unique .mips16.call.* or
18005 .mips16.fn.* sections. If a stub T for function F is in section S,
18006 the first relocation in section S must be against F; this is how the
18007 linker determines the target function. All relocations that might
18008 resolve to T must also be against F. We therefore have the following
18009 restrictions, which are given in an intentionally-redundant way:
18010
18011 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18012 symbols.
18013
18014 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18015 if that stub might be used.
18016
18017 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18018 symbols.
18019
18020 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18021 that stub might be used.
18022
18023 There is a further restriction:
18024
df58fc94 18025 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
0e9c5a5c 18026 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
c9775dde
MR
18027 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18028 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18029 against MIPS16 or microMIPS symbols because we need to keep the
18030 MIPS16 or microMIPS symbol for the purpose of mode mismatch
a6ebf616
MR
18031 detection and JAL or BAL to JALX instruction conversion in the
18032 linker.
b314ec0e 18033
df58fc94 18034 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
507dcb32 18035 against a MIPS16 symbol. We deal with (5) by additionally leaving
0e9c5a5c 18036 alone any jump and branch relocations against a microMIPS symbol.
b314ec0e
RS
18037
18038 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18039 relocation against some symbol R, no relocation against R may be
18040 reduced. (Note that this deals with (2) as well as (1) because
18041 relocations against global symbols will never be reduced on ELF
18042 targets.) This approach is a little simpler than trying to detect
18043 stub sections, and gives the "all or nothing" per-symbol consistency
18044 that we have for MIPS16 symbols. */
f3ded42a 18045 if (fixp->fx_subsy == NULL
30c09090 18046 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
44d3da23 18047 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
0e9c5a5c
MR
18048 && (jmp_reloc_p (fixp->fx_r_type)
18049 || b_reloc_p (fixp->fx_r_type)))
44d3da23 18050 || *symbol_get_tc (fixp->fx_addsy)))
252b5132 18051 return 0;
a161fe53 18052
252b5132
RH
18053 return 1;
18054}
18055
18056/* Translate internal representation of relocation info to BFD target
18057 format. */
18058
18059arelent **
17a2f251 18060tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
18061{
18062 static arelent *retval[4];
18063 arelent *reloc;
18064 bfd_reloc_code_real_type code;
18065
4b0cff4e 18066 memset (retval, 0, sizeof(retval));
325801bd
TS
18067 reloc = retval[0] = XCNEW (arelent);
18068 reloc->sym_ptr_ptr = XNEW (asymbol *);
49309057 18069 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
18070 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18071
bad36eac
DJ
18072 if (fixp->fx_pcrel)
18073 {
df58fc94 18074 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
c9775dde 18075 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
df58fc94
RS
18076 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18077 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
b47468a6 18078 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
7361da2c
AB
18079 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18080 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18081 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18082 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18083 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18084 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18085 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
bad36eac
DJ
18086
18087 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18088 Relocations want only the symbol offset. */
51f6035b
MR
18089 switch (fixp->fx_r_type)
18090 {
18091 case BFD_RELOC_MIPS_18_PCREL_S3:
18092 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18093 break;
18094 default:
18095 reloc->addend = fixp->fx_addnumber + reloc->address;
18096 break;
18097 }
bad36eac 18098 }
17c6c9d9
MR
18099 else if (HAVE_IN_PLACE_ADDENDS
18100 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18101 && (read_compressed_insn (fixp->fx_frag->fr_literal
18102 + fixp->fx_where, 4) >> 26) == 0x3c)
18103 {
18104 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18105 addend accordingly. */
18106 reloc->addend = fixp->fx_addnumber >> 1;
18107 }
bad36eac
DJ
18108 else
18109 reloc->addend = fixp->fx_addnumber;
252b5132 18110
438c16b8
TS
18111 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18112 entry to be used in the relocation's section offset. */
18113 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
252b5132
RH
18114 {
18115 reloc->address = reloc->addend;
18116 reloc->addend = 0;
18117 }
18118
252b5132 18119 code = fixp->fx_r_type;
252b5132 18120
bad36eac 18121 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
252b5132
RH
18122 if (reloc->howto == NULL)
18123 {
18124 as_bad_where (fixp->fx_file, fixp->fx_line,
1661c76c
RS
18125 _("cannot represent %s relocation in this object file"
18126 " format"),
252b5132
RH
18127 bfd_get_reloc_code_name (code));
18128 retval[0] = NULL;
18129 }
18130
18131 return retval;
18132}
18133
18134/* Relax a machine dependent frag. This returns the amount by which
18135 the current size of the frag should change. */
18136
18137int
17a2f251 18138mips_relax_frag (asection *sec, fragS *fragp, long stretch)
252b5132 18139{
4a6a3df4
AO
18140 if (RELAX_BRANCH_P (fragp->fr_subtype))
18141 {
18142 offsetT old_var = fragp->fr_var;
b34976b6
AM
18143
18144 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
4a6a3df4
AO
18145
18146 return fragp->fr_var - old_var;
18147 }
18148
df58fc94
RS
18149 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18150 {
18151 offsetT old_var = fragp->fr_var;
18152 offsetT new_var = 4;
18153
18154 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18155 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18156 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18157 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18158 fragp->fr_var = new_var;
18159
18160 return new_var - old_var;
18161 }
18162
252b5132
RH
18163 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18164 return 0;
18165
8507b6e7 18166 if (!mips16_extended_frag (fragp, sec, stretch))
252b5132 18167 {
8507b6e7
MR
18168 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18169 {
18170 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
25499ac7 18171 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
8507b6e7
MR
18172 }
18173 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18174 {
18175 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18176 return -2;
18177 }
18178 else
18179 return 0;
18180 }
18181 else if (!mips16_macro_frag (fragp, sec, stretch))
18182 {
18183 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18184 {
18185 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18186 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
25499ac7 18187 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
8507b6e7
MR
18188 }
18189 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18190 {
18191 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18192 return 2;
18193 }
18194 else
252b5132 18195 return 0;
252b5132
RH
18196 }
18197 else
18198 {
8507b6e7 18199 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
252b5132 18200 return 0;
8507b6e7
MR
18201 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18202 {
18203 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18204 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18205 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
8507b6e7
MR
18206 }
18207 else
18208 {
18209 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
25499ac7 18210 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
8507b6e7 18211 }
252b5132
RH
18212 }
18213
18214 return 0;
18215}
18216
18217/* Convert a machine dependent frag. */
18218
18219void
17a2f251 18220md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
252b5132 18221{
4a6a3df4
AO
18222 if (RELAX_BRANCH_P (fragp->fr_subtype))
18223 {
4d68580a 18224 char *buf;
4a6a3df4 18225 unsigned long insn;
4a6a3df4 18226 fixS *fixp;
b34976b6 18227
4d68580a
RS
18228 buf = fragp->fr_literal + fragp->fr_fix;
18229 insn = read_insn (buf);
b34976b6 18230
4a6a3df4
AO
18231 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18232 {
18233 /* We generate a fixup instead of applying it right now
18234 because, if there are linker relaxations, we're going to
18235 need the relocations. */
bbd27b76
MR
18236 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18237 fragp->fr_symbol, fragp->fr_offset,
18238 TRUE, BFD_RELOC_16_PCREL_S2);
4a6a3df4
AO
18239 fixp->fx_file = fragp->fr_file;
18240 fixp->fx_line = fragp->fr_line;
b34976b6 18241
4d68580a 18242 buf = write_insn (buf, insn);
4a6a3df4
AO
18243 }
18244 else
18245 {
18246 int i;
18247
18248 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18249 _("relaxed out-of-range branch into a jump"));
4a6a3df4
AO
18250
18251 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18252 goto uncond;
18253
18254 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18255 {
18256 /* Reverse the branch. */
18257 switch ((insn >> 28) & 0xf)
18258 {
18259 case 4:
56d438b1
CF
18260 if ((insn & 0xff000000) == 0x47000000
18261 || (insn & 0xff600000) == 0x45600000)
18262 {
18263 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18264 reversed by tweaking bit 23. */
18265 insn ^= 0x00800000;
18266 }
18267 else
18268 {
18269 /* bc[0-3][tf]l? instructions can have the condition
18270 reversed by tweaking a single TF bit, and their
18271 opcodes all have 0x4???????. */
18272 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18273 insn ^= 0x00010000;
18274 }
4a6a3df4
AO
18275 break;
18276
18277 case 0:
18278 /* bltz 0x04000000 bgez 0x04010000
54f4ddb3 18279 bltzal 0x04100000 bgezal 0x04110000 */
9c2799c2 18280 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
4a6a3df4
AO
18281 insn ^= 0x00010000;
18282 break;
b34976b6 18283
4a6a3df4
AO
18284 case 1:
18285 /* beq 0x10000000 bne 0x14000000
54f4ddb3 18286 blez 0x18000000 bgtz 0x1c000000 */
4a6a3df4
AO
18287 insn ^= 0x04000000;
18288 break;
18289
18290 default:
18291 abort ();
18292 }
18293 }
18294
18295 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18296 {
18297 /* Clear the and-link bit. */
9c2799c2 18298 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
4a6a3df4 18299
54f4ddb3
TS
18300 /* bltzal 0x04100000 bgezal 0x04110000
18301 bltzall 0x04120000 bgezall 0x04130000 */
4a6a3df4
AO
18302 insn &= ~0x00100000;
18303 }
18304
18305 /* Branch over the branch (if the branch was likely) or the
18306 full jump (not likely case). Compute the offset from the
18307 current instruction to branch to. */
18308 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18309 i = 16;
18310 else
18311 {
18312 /* How many bytes in instructions we've already emitted? */
4d68580a 18313 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18314 /* How many bytes in instructions from here to the end? */
18315 i = fragp->fr_var - i;
18316 }
18317 /* Convert to instruction count. */
18318 i >>= 2;
18319 /* Branch counts from the next instruction. */
b34976b6 18320 i--;
4a6a3df4
AO
18321 insn |= i;
18322 /* Branch over the jump. */
4d68580a 18323 buf = write_insn (buf, insn);
4a6a3df4 18324
54f4ddb3 18325 /* nop */
4d68580a 18326 buf = write_insn (buf, 0);
4a6a3df4
AO
18327
18328 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18329 {
18330 /* beql $0, $0, 2f */
18331 insn = 0x50000000;
18332 /* Compute the PC offset from the current instruction to
18333 the end of the variable frag. */
18334 /* How many bytes in instructions we've already emitted? */
4d68580a 18335 i = buf - fragp->fr_literal - fragp->fr_fix;
4a6a3df4
AO
18336 /* How many bytes in instructions from here to the end? */
18337 i = fragp->fr_var - i;
18338 /* Convert to instruction count. */
18339 i >>= 2;
18340 /* Don't decrement i, because we want to branch over the
18341 delay slot. */
4a6a3df4 18342 insn |= i;
4a6a3df4 18343
4d68580a
RS
18344 buf = write_insn (buf, insn);
18345 buf = write_insn (buf, 0);
4a6a3df4
AO
18346 }
18347
18348 uncond:
ce8ad872 18349 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
4a6a3df4
AO
18350 {
18351 /* j or jal. */
18352 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18353 ? 0x0c000000 : 0x08000000);
4a6a3df4 18354
bbd27b76
MR
18355 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18356 fragp->fr_symbol, fragp->fr_offset,
18357 FALSE, BFD_RELOC_MIPS_JMP);
4a6a3df4
AO
18358 fixp->fx_file = fragp->fr_file;
18359 fixp->fx_line = fragp->fr_line;
18360
4d68580a 18361 buf = write_insn (buf, insn);
4a6a3df4
AO
18362 }
18363 else
18364 {
66b3e8da
MR
18365 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18366
4a6a3df4 18367 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
66b3e8da
MR
18368 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18369 insn |= at << OP_SH_RT;
4a6a3df4 18370
bbd27b76
MR
18371 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18372 fragp->fr_symbol, fragp->fr_offset,
18373 FALSE, BFD_RELOC_MIPS_GOT16);
4a6a3df4
AO
18374 fixp->fx_file = fragp->fr_file;
18375 fixp->fx_line = fragp->fr_line;
18376
4d68580a 18377 buf = write_insn (buf, insn);
b34976b6 18378
4a6a3df4 18379 if (mips_opts.isa == ISA_MIPS1)
4d68580a
RS
18380 /* nop */
18381 buf = write_insn (buf, 0);
4a6a3df4
AO
18382
18383 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
66b3e8da
MR
18384 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18385 insn |= at << OP_SH_RS | at << OP_SH_RT;
4a6a3df4 18386
bbd27b76
MR
18387 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18388 fragp->fr_symbol, fragp->fr_offset,
18389 FALSE, BFD_RELOC_LO16);
4a6a3df4
AO
18390 fixp->fx_file = fragp->fr_file;
18391 fixp->fx_line = fragp->fr_line;
b34976b6 18392
4d68580a 18393 buf = write_insn (buf, insn);
4a6a3df4
AO
18394
18395 /* j(al)r $at. */
18396 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
66b3e8da 18397 insn = 0x0000f809;
4a6a3df4 18398 else
66b3e8da
MR
18399 insn = 0x00000008;
18400 insn |= at << OP_SH_RS;
4a6a3df4 18401
4d68580a 18402 buf = write_insn (buf, insn);
4a6a3df4
AO
18403 }
18404 }
18405
4a6a3df4 18406 fragp->fr_fix += fragp->fr_var;
4d68580a 18407 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
4a6a3df4
AO
18408 return;
18409 }
18410
df58fc94
RS
18411 /* Relax microMIPS branches. */
18412 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18413 {
4d68580a 18414 char *buf = fragp->fr_literal + fragp->fr_fix;
df58fc94 18415 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
8484fb75 18416 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
7bd374a4 18417 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
ce8ad872 18418 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
df58fc94
RS
18419 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18420 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
2309ddf2 18421 bfd_boolean short_ds;
df58fc94 18422 unsigned long insn;
df58fc94
RS
18423 fixS *fixp;
18424
df58fc94
RS
18425 fragp->fr_fix += fragp->fr_var;
18426
18427 /* Handle 16-bit branches that fit or are forced to fit. */
18428 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18429 {
18430 /* We generate a fixup instead of applying it right now,
18431 because if there is linker relaxation, we're going to
18432 need the relocations. */
834a65aa
MR
18433 switch (type)
18434 {
18435 case 'D':
18436 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18437 fragp->fr_symbol, fragp->fr_offset,
18438 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18439 break;
18440 case 'E':
18441 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18442 fragp->fr_symbol, fragp->fr_offset,
18443 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18444 break;
18445 default:
18446 abort ();
18447 }
df58fc94
RS
18448
18449 fixp->fx_file = fragp->fr_file;
18450 fixp->fx_line = fragp->fr_line;
18451
18452 /* These relocations can have an addend that won't fit in
18453 2 octets. */
18454 fixp->fx_no_overflow = 1;
18455
18456 return;
18457 }
18458
2309ddf2 18459 /* Handle 32-bit branches that fit or are forced to fit. */
df58fc94
RS
18460 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18461 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18462 {
18463 /* We generate a fixup instead of applying it right now,
18464 because if there is linker relaxation, we're going to
18465 need the relocations. */
bbd27b76
MR
18466 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18467 fragp->fr_symbol, fragp->fr_offset,
18468 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18469 fixp->fx_file = fragp->fr_file;
18470 fixp->fx_line = fragp->fr_line;
18471
18472 if (type == 0)
7bd374a4
MR
18473 {
18474 insn = read_compressed_insn (buf, 4);
18475 buf += 4;
18476
18477 if (nods)
18478 {
18479 /* Check the short-delay-slot bit. */
18480 if (!al || (insn & 0x02000000) != 0)
18481 buf = write_compressed_insn (buf, 0x0c00, 2);
18482 else
18483 buf = write_compressed_insn (buf, 0x00000000, 4);
18484 }
18485
18486 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18487 return;
18488 }
df58fc94
RS
18489 }
18490
18491 /* Relax 16-bit branches to 32-bit branches. */
18492 if (type != 0)
18493 {
4d68580a 18494 insn = read_compressed_insn (buf, 2);
df58fc94
RS
18495
18496 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18497 insn = 0x94000000; /* beq */
18498 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18499 {
18500 unsigned long regno;
18501
18502 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18503 regno = micromips_to_32_reg_d_map [regno];
18504 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18505 insn |= regno << MICROMIPSOP_SH_RS;
18506 }
18507 else
18508 abort ();
18509
18510 /* Nothing else to do, just write it out. */
18511 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18512 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18513 {
4d68580a 18514 buf = write_compressed_insn (buf, insn, 4);
7bd374a4
MR
18515 if (nods)
18516 buf = write_compressed_insn (buf, 0x0c00, 2);
4d68580a 18517 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18518 return;
18519 }
18520 }
18521 else
4d68580a 18522 insn = read_compressed_insn (buf, 4);
df58fc94
RS
18523
18524 /* Relax 32-bit branches to a sequence of instructions. */
18525 as_warn_where (fragp->fr_file, fragp->fr_line,
1661c76c 18526 _("relaxed out-of-range branch into a jump"));
df58fc94 18527
2309ddf2 18528 /* Set the short-delay-slot bit. */
7bd374a4 18529 short_ds = !al || (insn & 0x02000000) != 0;
df58fc94
RS
18530
18531 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18532 {
18533 symbolS *l;
18534
18535 /* Reverse the branch. */
18536 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18537 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18538 insn ^= 0x20000000;
18539 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18540 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18541 || (insn & 0xffe00000) == 0x40800000 /* blez */
18542 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18543 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18544 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18545 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18546 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18547 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18548 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18549 insn ^= 0x00400000;
18550 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18551 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18552 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18553 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18554 insn ^= 0x00200000;
56d438b1
CF
18555 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18556 BNZ.df */
18557 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18558 BNZ.V */
18559 insn ^= 0x00800000;
df58fc94
RS
18560 else
18561 abort ();
18562
18563 if (al)
18564 {
18565 /* Clear the and-link and short-delay-slot bits. */
18566 gas_assert ((insn & 0xfda00000) == 0x40200000);
18567
18568 /* bltzal 0x40200000 bgezal 0x40600000 */
18569 /* bltzals 0x42200000 bgezals 0x42600000 */
18570 insn &= ~0x02200000;
18571 }
18572
18573 /* Make a label at the end for use with the branch. */
18574 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18575 micromips_label_inc ();
f3ded42a 18576 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
df58fc94
RS
18577
18578 /* Refer to it. */
4d68580a
RS
18579 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18580 BFD_RELOC_MICROMIPS_16_PCREL_S1);
df58fc94
RS
18581 fixp->fx_file = fragp->fr_file;
18582 fixp->fx_line = fragp->fr_line;
18583
18584 /* Branch over the jump. */
4d68580a 18585 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18586
df58fc94 18587 if (!compact)
8484fb75
MR
18588 {
18589 /* nop */
18590 if (insn32)
18591 buf = write_compressed_insn (buf, 0x00000000, 4);
18592 else
18593 buf = write_compressed_insn (buf, 0x0c00, 2);
18594 }
df58fc94
RS
18595 }
18596
ce8ad872 18597 if (!pic)
df58fc94 18598 {
7bd374a4
MR
18599 unsigned long jal = (short_ds || nods
18600 ? 0x74000000 : 0xf4000000); /* jal/s */
2309ddf2 18601
df58fc94
RS
18602 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18603 insn = al ? jal : 0xd4000000;
18604
bbd27b76
MR
18605 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18606 fragp->fr_symbol, fragp->fr_offset,
18607 FALSE, BFD_RELOC_MICROMIPS_JMP);
df58fc94
RS
18608 fixp->fx_file = fragp->fr_file;
18609 fixp->fx_line = fragp->fr_line;
18610
4d68580a 18611 buf = write_compressed_insn (buf, insn, 4);
8484fb75 18612
7bd374a4 18613 if (compact || nods)
8484fb75
MR
18614 {
18615 /* nop */
18616 if (insn32)
18617 buf = write_compressed_insn (buf, 0x00000000, 4);
18618 else
18619 buf = write_compressed_insn (buf, 0x0c00, 2);
18620 }
df58fc94
RS
18621 }
18622 else
18623 {
18624 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18625
18626 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18627 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18628 insn |= at << MICROMIPSOP_SH_RT;
18629
bbd27b76
MR
18630 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18631 fragp->fr_symbol, fragp->fr_offset,
18632 FALSE, BFD_RELOC_MICROMIPS_GOT16);
df58fc94
RS
18633 fixp->fx_file = fragp->fr_file;
18634 fixp->fx_line = fragp->fr_line;
18635
4d68580a 18636 buf = write_compressed_insn (buf, insn, 4);
df58fc94
RS
18637
18638 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18639 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18640 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18641
bbd27b76
MR
18642 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18643 fragp->fr_symbol, fragp->fr_offset,
18644 FALSE, BFD_RELOC_MICROMIPS_LO16);
df58fc94
RS
18645 fixp->fx_file = fragp->fr_file;
18646 fixp->fx_line = fragp->fr_line;
18647
4d68580a 18648 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18649
8484fb75
MR
18650 if (insn32)
18651 {
18652 /* jr/jalr $at */
18653 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18654 insn |= at << MICROMIPSOP_SH_RS;
18655
18656 buf = write_compressed_insn (buf, insn, 4);
df58fc94 18657
7bd374a4 18658 if (compact || nods)
8484fb75
MR
18659 /* nop */
18660 buf = write_compressed_insn (buf, 0x00000000, 4);
18661 }
18662 else
18663 {
18664 /* jr/jrc/jalr/jalrs $at */
18665 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
7bd374a4 18666 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
8484fb75
MR
18667
18668 insn = al ? jalr : jr;
18669 insn |= at << MICROMIPSOP_SH_MJ;
18670
18671 buf = write_compressed_insn (buf, insn, 2);
7bd374a4
MR
18672 if (al && nods)
18673 {
18674 /* nop */
18675 if (short_ds)
18676 buf = write_compressed_insn (buf, 0x0c00, 2);
18677 else
18678 buf = write_compressed_insn (buf, 0x00000000, 4);
18679 }
8484fb75 18680 }
df58fc94
RS
18681 }
18682
4d68580a 18683 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
df58fc94
RS
18684 return;
18685 }
18686
252b5132
RH
18687 if (RELAX_MIPS16_P (fragp->fr_subtype))
18688 {
18689 int type;
3ccad066 18690 const struct mips_int_operand *operand;
252b5132 18691 offsetT val;
5c04167a 18692 char *buf;
8507b6e7 18693 unsigned int user_length;
9d862524 18694 bfd_boolean need_reloc;
252b5132 18695 unsigned long insn;
8507b6e7 18696 bfd_boolean mac;
5c04167a 18697 bfd_boolean ext;
88a7ef16 18698 segT symsec;
252b5132
RH
18699
18700 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
3ccad066 18701 operand = mips16_immed_operand (type, FALSE);
252b5132 18702
8507b6e7 18703 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
5c04167a 18704 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
88a7ef16 18705 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
9d862524
MR
18706
18707 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18708 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
8507b6e7 18709 || (operand->root.type == OP_PCREL && !mac
9d862524
MR
18710 ? asec != symsec
18711 : !bfd_is_abs_section (symsec)));
18712
8507b6e7 18713 if (operand->root.type == OP_PCREL && !mac)
252b5132 18714 {
3ccad066 18715 const struct mips_pcrel_operand *pcrel_op;
252b5132 18716
3ccad066 18717 pcrel_op = (const struct mips_pcrel_operand *) operand;
252b5132 18718
14f72d45 18719 if (pcrel_op->include_isa_bit && !need_reloc)
252b5132 18720 {
37b2d327
MR
18721 if (!mips_ignore_branch_isa
18722 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
14f72d45
MR
18723 as_bad_where (fragp->fr_file, fragp->fr_line,
18724 _("branch to a symbol in another ISA mode"));
18725 else if ((fragp->fr_offset & 0x1) != 0)
18726 as_bad_where (fragp->fr_file, fragp->fr_line,
18727 _("branch to misaligned address (0x%lx)"),
18728 (long) val);
252b5132 18729 }
252b5132 18730
14f72d45 18731 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
252b5132
RH
18732
18733 /* Make sure the section winds up with the alignment we have
18734 assumed. */
3ccad066
RS
18735 if (operand->shift > 0)
18736 record_alignment (asec, operand->shift);
252b5132
RH
18737 }
18738
8507b6e7
MR
18739 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18740 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18741 {
18742 if (mac)
18743 as_warn_where (fragp->fr_file, fragp->fr_line,
18744 _("macro instruction expanded into multiple "
18745 "instructions in a branch delay slot"));
18746 else if (ext)
18747 as_warn_where (fragp->fr_file, fragp->fr_line,
18748 _("extended instruction in a branch delay slot"));
18749 }
18750 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
252b5132 18751 as_warn_where (fragp->fr_file, fragp->fr_line,
8507b6e7
MR
18752 _("macro instruction expanded into multiple "
18753 "instructions"));
252b5132 18754
5c04167a 18755 buf = fragp->fr_literal + fragp->fr_fix;
252b5132 18756
4d68580a 18757 insn = read_compressed_insn (buf, 2);
5c04167a
RS
18758 if (ext)
18759 insn |= MIPS16_EXTEND;
252b5132 18760
5c04167a
RS
18761 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18762 user_length = 4;
18763 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18764 user_length = 2;
18765 else
18766 user_length = 0;
18767
8507b6e7 18768 if (mac)
c9775dde 18769 {
8507b6e7
MR
18770 unsigned long reg;
18771 unsigned long new;
18772 unsigned long op;
25499ac7 18773 bfd_boolean e2;
8507b6e7
MR
18774
18775 gas_assert (type == 'A' || type == 'B' || type == 'E');
18776 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
c9775dde 18777
25499ac7
MR
18778 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18779
8507b6e7 18780 if (need_reloc)
c9775dde 18781 {
8507b6e7
MR
18782 fixS *fixp;
18783
18784 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18785
18786 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18787 fragp->fr_symbol, fragp->fr_offset,
18788 FALSE, BFD_RELOC_MIPS16_HI16_S);
18789 fixp->fx_file = fragp->fr_file;
18790 fixp->fx_line = fragp->fr_line;
18791
25499ac7 18792 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
8507b6e7
MR
18793 fragp->fr_symbol, fragp->fr_offset,
18794 FALSE, BFD_RELOC_MIPS16_LO16);
18795 fixp->fx_file = fragp->fr_file;
18796 fixp->fx_line = fragp->fr_line;
18797
18798 val = 0;
18799 }
18800
18801 switch (insn & 0xf800)
18802 {
18803 case 0x0800: /* ADDIU */
18804 reg = (insn >> 8) & 0x7;
18805 op = 0xf0004800 | (reg << 8);
c9775dde 18806 break;
8507b6e7
MR
18807 case 0xb000: /* LW */
18808 reg = (insn >> 8) & 0x7;
18809 op = 0xf0009800 | (reg << 8) | (reg << 5);
c9775dde 18810 break;
8507b6e7
MR
18811 case 0xf800: /* I64 */
18812 reg = (insn >> 5) & 0x7;
18813 switch (insn & 0x0700)
18814 {
18815 case 0x0400: /* LD */
18816 op = 0xf0003800 | (reg << 8) | (reg << 5);
18817 break;
18818 case 0x0600: /* DADDIU */
18819 op = 0xf000fd00 | (reg << 5);
18820 break;
18821 default:
18822 abort ();
18823 }
18824 break;
18825 default:
18826 abort ();
c9775dde 18827 }
8507b6e7 18828
25499ac7 18829 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
8507b6e7
MR
18830 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18831 buf = write_compressed_insn (buf, new, 4);
25499ac7
MR
18832 if (!e2)
18833 {
18834 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18835 buf = write_compressed_insn (buf, new, 4);
18836 }
8507b6e7
MR
18837 op |= mips16_immed_extend (val, 16);
18838 buf = write_compressed_insn (buf, op, 4);
18839
25499ac7 18840 fragp->fr_fix += e2 ? 8 : 12;
8507b6e7
MR
18841 }
18842 else
18843 {
18844 unsigned int length = ext ? 4 : 2;
18845
18846 if (need_reloc)
c9775dde 18847 {
8507b6e7 18848 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
8507b6e7 18849 fixS *fixp;
c9775dde 18850
8507b6e7
MR
18851 switch (type)
18852 {
18853 case 'p':
18854 case 'q':
18855 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18856 break;
18857 default:
18858 break;
18859 }
18860 if (mac || reloc == BFD_RELOC_NONE)
18861 as_bad_where (fragp->fr_file, fragp->fr_line,
18862 _("unsupported relocation"));
18863 else if (ext)
18864 {
bbd27b76
MR
18865 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18866 fragp->fr_symbol, fragp->fr_offset,
18867 TRUE, reloc);
8507b6e7
MR
18868 fixp->fx_file = fragp->fr_file;
18869 fixp->fx_line = fragp->fr_line;
18870 }
18871 else
18872 as_bad_where (fragp->fr_file, fragp->fr_line,
18873 _("invalid unextended operand value"));
c9775dde 18874 }
eefc3365 18875 else
8507b6e7
MR
18876 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18877 BFD_RELOC_UNUSED, val, user_length, &insn);
252b5132 18878
8507b6e7
MR
18879 gas_assert (mips16_opcode_length (insn) == length);
18880 write_compressed_insn (buf, insn, length);
18881 fragp->fr_fix += length;
18882 }
252b5132
RH
18883 }
18884 else
18885 {
df58fc94
RS
18886 relax_substateT subtype = fragp->fr_subtype;
18887 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18888 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
4d7206a2
RS
18889 int first, second;
18890 fixS *fixp;
252b5132 18891
df58fc94
RS
18892 first = RELAX_FIRST (subtype);
18893 second = RELAX_SECOND (subtype);
4d7206a2 18894 fixp = (fixS *) fragp->fr_opcode;
252b5132 18895
df58fc94
RS
18896 /* If the delay slot chosen does not match the size of the instruction,
18897 then emit a warning. */
18898 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18899 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18900 {
18901 relax_substateT s;
18902 const char *msg;
18903
18904 s = subtype & (RELAX_DELAY_SLOT_16BIT
18905 | RELAX_DELAY_SLOT_SIZE_FIRST
18906 | RELAX_DELAY_SLOT_SIZE_SECOND);
18907 msg = macro_warning (s);
18908 if (msg != NULL)
db9b2be4 18909 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94
RS
18910 subtype &= ~s;
18911 }
18912
584892a6 18913 /* Possibly emit a warning if we've chosen the longer option. */
df58fc94 18914 if (use_second == second_longer)
584892a6 18915 {
df58fc94
RS
18916 relax_substateT s;
18917 const char *msg;
18918
18919 s = (subtype
18920 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18921 msg = macro_warning (s);
18922 if (msg != NULL)
db9b2be4 18923 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
df58fc94 18924 subtype &= ~s;
584892a6
RS
18925 }
18926
4d7206a2
RS
18927 /* Go through all the fixups for the first sequence. Disable them
18928 (by marking them as done) if we're going to use the second
18929 sequence instead. */
18930 while (fixp
18931 && fixp->fx_frag == fragp
18932 && fixp->fx_where < fragp->fr_fix - second)
18933 {
df58fc94 18934 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18935 fixp->fx_done = 1;
18936 fixp = fixp->fx_next;
18937 }
252b5132 18938
4d7206a2
RS
18939 /* Go through the fixups for the second sequence. Disable them if
18940 we're going to use the first sequence, otherwise adjust their
18941 addresses to account for the relaxation. */
18942 while (fixp && fixp->fx_frag == fragp)
18943 {
df58fc94 18944 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18945 fixp->fx_where -= first;
18946 else
18947 fixp->fx_done = 1;
18948 fixp = fixp->fx_next;
18949 }
18950
18951 /* Now modify the frag contents. */
df58fc94 18952 if (subtype & RELAX_USE_SECOND)
4d7206a2
RS
18953 {
18954 char *start;
18955
18956 start = fragp->fr_literal + fragp->fr_fix - first - second;
18957 memmove (start, start + first, second);
18958 fragp->fr_fix -= first;
18959 }
18960 else
18961 fragp->fr_fix -= second;
252b5132
RH
18962 }
18963}
18964
252b5132
RH
18965/* This function is called after the relocs have been generated.
18966 We've been storing mips16 text labels as odd. Here we convert them
18967 back to even for the convenience of the debugger. */
18968
18969void
17a2f251 18970mips_frob_file_after_relocs (void)
252b5132
RH
18971{
18972 asymbol **syms;
18973 unsigned int count, i;
18974
252b5132
RH
18975 syms = bfd_get_outsymbols (stdoutput);
18976 count = bfd_get_symcount (stdoutput);
18977 for (i = 0; i < count; i++, syms++)
df58fc94
RS
18978 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18979 && ((*syms)->value & 1) != 0)
18980 {
18981 (*syms)->value &= ~1;
18982 /* If the symbol has an odd size, it was probably computed
18983 incorrectly, so adjust that as well. */
18984 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18985 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18986 }
252b5132
RH
18987}
18988
a1facbec
MR
18989/* This function is called whenever a label is defined, including fake
18990 labels instantiated off the dot special symbol. It is used when
18991 handling branch delays; if a branch has a label, we assume we cannot
18992 move it. This also bumps the value of the symbol by 1 in compressed
18993 code. */
252b5132 18994
e1b47bd5 18995static void
a1facbec 18996mips_record_label (symbolS *sym)
252b5132 18997{
a8dbcb85 18998 segment_info_type *si = seg_info (now_seg);
252b5132
RH
18999 struct insn_label_list *l;
19000
19001 if (free_insn_labels == NULL)
325801bd 19002 l = XNEW (struct insn_label_list);
252b5132
RH
19003 else
19004 {
19005 l = free_insn_labels;
19006 free_insn_labels = l->next;
19007 }
19008
19009 l->label = sym;
a8dbcb85
TS
19010 l->next = si->label_list;
19011 si->label_list = l;
a1facbec 19012}
07a53e5c 19013
a1facbec
MR
19014/* This function is called as tc_frob_label() whenever a label is defined
19015 and adds a DWARF-2 record we only want for true labels. */
19016
19017void
19018mips_define_label (symbolS *sym)
19019{
19020 mips_record_label (sym);
07a53e5c 19021 dwarf2_emit_label (sym);
252b5132 19022}
e1b47bd5
RS
19023
19024/* This function is called by tc_new_dot_label whenever a new dot symbol
19025 is defined. */
19026
19027void
19028mips_add_dot_label (symbolS *sym)
19029{
19030 mips_record_label (sym);
19031 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19032 mips_compressed_mark_label (sym);
19033}
252b5132 19034\f
351cdf24
MF
19035/* Converting ASE flags from internal to .MIPS.abiflags values. */
19036static unsigned int
19037mips_convert_ase_flags (int ase)
19038{
19039 unsigned int ext_ases = 0;
19040
19041 if (ase & ASE_DSP)
19042 ext_ases |= AFL_ASE_DSP;
19043 if (ase & ASE_DSPR2)
19044 ext_ases |= AFL_ASE_DSPR2;
8f4f9071
MF
19045 if (ase & ASE_DSPR3)
19046 ext_ases |= AFL_ASE_DSPR3;
351cdf24
MF
19047 if (ase & ASE_EVA)
19048 ext_ases |= AFL_ASE_EVA;
19049 if (ase & ASE_MCU)
19050 ext_ases |= AFL_ASE_MCU;
19051 if (ase & ASE_MDMX)
19052 ext_ases |= AFL_ASE_MDMX;
19053 if (ase & ASE_MIPS3D)
19054 ext_ases |= AFL_ASE_MIPS3D;
19055 if (ase & ASE_MT)
19056 ext_ases |= AFL_ASE_MT;
19057 if (ase & ASE_SMARTMIPS)
19058 ext_ases |= AFL_ASE_SMARTMIPS;
19059 if (ase & ASE_VIRT)
19060 ext_ases |= AFL_ASE_VIRT;
19061 if (ase & ASE_MSA)
19062 ext_ases |= AFL_ASE_MSA;
19063 if (ase & ASE_XPA)
19064 ext_ases |= AFL_ASE_XPA;
25499ac7
MR
19065 if (ase & ASE_MIPS16E2)
19066 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
730c3174
SE
19067 if (ase & ASE_CRC)
19068 ext_ases |= AFL_ASE_CRC;
6f20c942
FS
19069 if (ase & ASE_GINV)
19070 ext_ases |= AFL_ASE_GINV;
8095d2f7
CX
19071 if (ase & ASE_LOONGSON_MMI)
19072 ext_ases |= AFL_ASE_LOONGSON_MMI;
716c08de
CX
19073 if (ase & ASE_LOONGSON_CAM)
19074 ext_ases |= AFL_ASE_LOONGSON_CAM;
bdc6c06e
CX
19075 if (ase & ASE_LOONGSON_EXT)
19076 ext_ases |= AFL_ASE_LOONGSON_EXT;
a693765e
CX
19077 if (ase & ASE_LOONGSON_EXT2)
19078 ext_ases |= AFL_ASE_LOONGSON_EXT2;
351cdf24
MF
19079
19080 return ext_ases;
19081}
252b5132
RH
19082/* Some special processing for a MIPS ELF file. */
19083
19084void
17a2f251 19085mips_elf_final_processing (void)
252b5132 19086{
351cdf24
MF
19087 int fpabi;
19088 Elf_Internal_ABIFlags_v0 flags;
19089
19090 flags.version = 0;
19091 flags.isa_rev = 0;
19092 switch (file_mips_opts.isa)
19093 {
19094 case INSN_ISA1:
19095 flags.isa_level = 1;
19096 break;
19097 case INSN_ISA2:
19098 flags.isa_level = 2;
19099 break;
19100 case INSN_ISA3:
19101 flags.isa_level = 3;
19102 break;
19103 case INSN_ISA4:
19104 flags.isa_level = 4;
19105 break;
19106 case INSN_ISA5:
19107 flags.isa_level = 5;
19108 break;
19109 case INSN_ISA32:
19110 flags.isa_level = 32;
19111 flags.isa_rev = 1;
19112 break;
19113 case INSN_ISA32R2:
19114 flags.isa_level = 32;
19115 flags.isa_rev = 2;
19116 break;
19117 case INSN_ISA32R3:
19118 flags.isa_level = 32;
19119 flags.isa_rev = 3;
19120 break;
19121 case INSN_ISA32R5:
19122 flags.isa_level = 32;
19123 flags.isa_rev = 5;
19124 break;
09c14161
MF
19125 case INSN_ISA32R6:
19126 flags.isa_level = 32;
19127 flags.isa_rev = 6;
19128 break;
351cdf24
MF
19129 case INSN_ISA64:
19130 flags.isa_level = 64;
19131 flags.isa_rev = 1;
19132 break;
19133 case INSN_ISA64R2:
19134 flags.isa_level = 64;
19135 flags.isa_rev = 2;
19136 break;
19137 case INSN_ISA64R3:
19138 flags.isa_level = 64;
19139 flags.isa_rev = 3;
19140 break;
19141 case INSN_ISA64R5:
19142 flags.isa_level = 64;
19143 flags.isa_rev = 5;
19144 break;
09c14161
MF
19145 case INSN_ISA64R6:
19146 flags.isa_level = 64;
19147 flags.isa_rev = 6;
19148 break;
351cdf24
MF
19149 }
19150
19151 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19152 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19153 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19154 : (file_mips_opts.fp == 64) ? AFL_REG_64
19155 : AFL_REG_32;
19156 flags.cpr2_size = AFL_REG_NONE;
19157 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19158 Tag_GNU_MIPS_ABI_FP);
19159 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19160 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19161 if (file_ase_mips16)
19162 flags.ases |= AFL_ASE_MIPS16;
19163 if (file_ase_micromips)
19164 flags.ases |= AFL_ASE_MICROMIPS;
19165 flags.flags1 = 0;
19166 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19167 || file_mips_opts.fp == 64)
19168 && file_mips_opts.oddspreg)
19169 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19170 flags.flags2 = 0;
19171
19172 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19173 ((Elf_External_ABIFlags_v0 *)
19174 mips_flags_frag));
19175
252b5132 19176 /* Write out the register information. */
316f5878 19177 if (mips_abi != N64_ABI)
252b5132
RH
19178 {
19179 Elf32_RegInfo s;
19180
19181 s.ri_gprmask = mips_gprmask;
19182 s.ri_cprmask[0] = mips_cprmask[0];
19183 s.ri_cprmask[1] = mips_cprmask[1];
19184 s.ri_cprmask[2] = mips_cprmask[2];
19185 s.ri_cprmask[3] = mips_cprmask[3];
19186 /* The gp_value field is set by the MIPS ELF backend. */
19187
19188 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19189 ((Elf32_External_RegInfo *)
19190 mips_regmask_frag));
19191 }
19192 else
19193 {
19194 Elf64_Internal_RegInfo s;
19195
19196 s.ri_gprmask = mips_gprmask;
19197 s.ri_pad = 0;
19198 s.ri_cprmask[0] = mips_cprmask[0];
19199 s.ri_cprmask[1] = mips_cprmask[1];
19200 s.ri_cprmask[2] = mips_cprmask[2];
19201 s.ri_cprmask[3] = mips_cprmask[3];
19202 /* The gp_value field is set by the MIPS ELF backend. */
19203
19204 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19205 ((Elf64_External_RegInfo *)
19206 mips_regmask_frag));
19207 }
19208
19209 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19210 sort of BFD interface for this. */
19211 if (mips_any_noreorder)
19212 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19213 if (mips_pic != NO_PIC)
143d77c5 19214 {
8b828383 19215 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
143d77c5
EC
19216 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19217 }
19218 if (mips_abicalls)
19219 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
252b5132 19220
b015e599
AP
19221 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19222 defined at present; this might need to change in future. */
a4672219
TS
19223 if (file_ase_mips16)
19224 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
df58fc94
RS
19225 if (file_ase_micromips)
19226 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
919731af 19227 if (file_mips_opts.ase & ASE_MDMX)
deec1734 19228 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
1f25f5d3 19229
bdaaa2e1 19230 /* Set the MIPS ELF ABI flags. */
316f5878 19231 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
252b5132 19232 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
316f5878 19233 else if (mips_abi == O64_ABI)
252b5132 19234 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
316f5878 19235 else if (mips_abi == EABI_ABI)
252b5132 19236 {
bad1aba3 19237 if (file_mips_opts.gp == 64)
252b5132
RH
19238 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19239 else
19240 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19241 }
be00bddd 19242
defc8e2b 19243 /* Nothing to do for N32_ABI or N64_ABI. */
252b5132
RH
19244
19245 if (mips_32bitmode)
19246 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
ad3fea08 19247
7361da2c 19248 if (mips_nan2008 == 1)
ba92f887
MR
19249 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19250
ad3fea08 19251 /* 32 bit code with 64 bit FP registers. */
351cdf24
MF
19252 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19253 Tag_GNU_MIPS_ABI_FP);
19254 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
f1c38003 19255 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
252b5132 19256}
252b5132 19257\f
beae10d5 19258typedef struct proc {
9b2f1d35
EC
19259 symbolS *func_sym;
19260 symbolS *func_end_sym;
beae10d5
KH
19261 unsigned long reg_mask;
19262 unsigned long reg_offset;
19263 unsigned long fpreg_mask;
19264 unsigned long fpreg_offset;
19265 unsigned long frame_offset;
19266 unsigned long frame_reg;
19267 unsigned long pc_reg;
19268} procS;
252b5132
RH
19269
19270static procS cur_proc;
19271static procS *cur_proc_ptr;
19272static int numprocs;
19273
df58fc94
RS
19274/* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19275 as "2", and a normal nop as "0". */
19276
19277#define NOP_OPCODE_MIPS 0
19278#define NOP_OPCODE_MIPS16 1
19279#define NOP_OPCODE_MICROMIPS 2
742a56fe
RS
19280
19281char
19282mips_nop_opcode (void)
19283{
df58fc94
RS
19284 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19285 return NOP_OPCODE_MICROMIPS;
19286 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19287 return NOP_OPCODE_MIPS16;
19288 else
19289 return NOP_OPCODE_MIPS;
742a56fe
RS
19290}
19291
df58fc94
RS
19292/* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19293 32-bit microMIPS NOPs here (if applicable). */
a19d8eb0 19294
0a9ef439 19295void
17a2f251 19296mips_handle_align (fragS *fragp)
a19d8eb0 19297{
df58fc94 19298 char nop_opcode;
742a56fe 19299 char *p;
c67a084a
NC
19300 int bytes, size, excess;
19301 valueT opcode;
742a56fe 19302
0a9ef439
RH
19303 if (fragp->fr_type != rs_align_code)
19304 return;
19305
742a56fe 19306 p = fragp->fr_literal + fragp->fr_fix;
df58fc94
RS
19307 nop_opcode = *p;
19308 switch (nop_opcode)
a19d8eb0 19309 {
df58fc94
RS
19310 case NOP_OPCODE_MICROMIPS:
19311 opcode = micromips_nop32_insn.insn_opcode;
19312 size = 4;
19313 break;
19314 case NOP_OPCODE_MIPS16:
c67a084a
NC
19315 opcode = mips16_nop_insn.insn_opcode;
19316 size = 2;
df58fc94
RS
19317 break;
19318 case NOP_OPCODE_MIPS:
19319 default:
c67a084a
NC
19320 opcode = nop_insn.insn_opcode;
19321 size = 4;
df58fc94 19322 break;
c67a084a 19323 }
a19d8eb0 19324
c67a084a
NC
19325 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19326 excess = bytes % size;
df58fc94
RS
19327
19328 /* Handle the leading part if we're not inserting a whole number of
19329 instructions, and make it the end of the fixed part of the frag.
19330 Try to fit in a short microMIPS NOP if applicable and possible,
19331 and use zeroes otherwise. */
19332 gas_assert (excess < 4);
19333 fragp->fr_fix += excess;
19334 switch (excess)
c67a084a 19335 {
df58fc94
RS
19336 case 3:
19337 *p++ = '\0';
19338 /* Fall through. */
19339 case 2:
833794fc 19340 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
df58fc94 19341 {
4d68580a 19342 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
df58fc94
RS
19343 break;
19344 }
19345 *p++ = '\0';
19346 /* Fall through. */
19347 case 1:
19348 *p++ = '\0';
19349 /* Fall through. */
19350 case 0:
19351 break;
a19d8eb0 19352 }
c67a084a
NC
19353
19354 md_number_to_chars (p, opcode, size);
19355 fragp->fr_var = size;
a19d8eb0
CP
19356}
19357
252b5132 19358static long
17a2f251 19359get_number (void)
252b5132
RH
19360{
19361 int negative = 0;
19362 long val = 0;
19363
19364 if (*input_line_pointer == '-')
19365 {
19366 ++input_line_pointer;
19367 negative = 1;
19368 }
3882b010 19369 if (!ISDIGIT (*input_line_pointer))
956cd1d6 19370 as_bad (_("expected simple number"));
252b5132
RH
19371 if (input_line_pointer[0] == '0')
19372 {
19373 if (input_line_pointer[1] == 'x')
19374 {
19375 input_line_pointer += 2;
3882b010 19376 while (ISXDIGIT (*input_line_pointer))
252b5132
RH
19377 {
19378 val <<= 4;
19379 val |= hex_value (*input_line_pointer++);
19380 }
19381 return negative ? -val : val;
19382 }
19383 else
19384 {
19385 ++input_line_pointer;
3882b010 19386 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19387 {
19388 val <<= 3;
19389 val |= *input_line_pointer++ - '0';
19390 }
19391 return negative ? -val : val;
19392 }
19393 }
3882b010 19394 if (!ISDIGIT (*input_line_pointer))
252b5132
RH
19395 {
19396 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19397 *input_line_pointer, *input_line_pointer);
956cd1d6 19398 as_warn (_("invalid number"));
252b5132
RH
19399 return -1;
19400 }
3882b010 19401 while (ISDIGIT (*input_line_pointer))
252b5132
RH
19402 {
19403 val *= 10;
19404 val += *input_line_pointer++ - '0';
19405 }
19406 return negative ? -val : val;
19407}
19408
19409/* The .file directive; just like the usual .file directive, but there
c5dd6aab
DJ
19410 is an initial number which is the ECOFF file index. In the non-ECOFF
19411 case .file implies DWARF-2. */
19412
19413static void
17a2f251 19414s_mips_file (int x ATTRIBUTE_UNUSED)
c5dd6aab 19415{
ecb4347a
DJ
19416 static int first_file_directive = 0;
19417
c5dd6aab
DJ
19418 if (ECOFF_DEBUGGING)
19419 {
19420 get_number ();
19421 s_app_file (0);
19422 }
19423 else
ecb4347a
DJ
19424 {
19425 char *filename;
19426
68d20676 19427 filename = dwarf2_directive_filename ();
ecb4347a
DJ
19428
19429 /* Versions of GCC up to 3.1 start files with a ".file"
19430 directive even for stabs output. Make sure that this
19431 ".file" is handled. Note that you need a version of GCC
19432 after 3.1 in order to support DWARF-2 on MIPS. */
19433 if (filename != NULL && ! first_file_directive)
19434 {
19435 (void) new_logical_line (filename, -1);
c04f5787 19436 s_app_file_string (filename, 0);
ecb4347a
DJ
19437 }
19438 first_file_directive = 1;
19439 }
c5dd6aab
DJ
19440}
19441
19442/* The .loc directive, implying DWARF-2. */
252b5132
RH
19443
19444static void
17a2f251 19445s_mips_loc (int x ATTRIBUTE_UNUSED)
252b5132 19446{
c5dd6aab
DJ
19447 if (!ECOFF_DEBUGGING)
19448 dwarf2_directive_loc (0);
252b5132
RH
19449}
19450
252b5132
RH
19451/* The .end directive. */
19452
19453static void
17a2f251 19454s_mips_end (int x ATTRIBUTE_UNUSED)
252b5132
RH
19455{
19456 symbolS *p;
252b5132 19457
7a621144
DJ
19458 /* Following functions need their own .frame and .cprestore directives. */
19459 mips_frame_reg_valid = 0;
19460 mips_cprestore_valid = 0;
19461
252b5132
RH
19462 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19463 {
19464 p = get_symbol ();
19465 demand_empty_rest_of_line ();
19466 }
19467 else
19468 p = NULL;
19469
14949570 19470 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
252b5132
RH
19471 as_warn (_(".end not in text section"));
19472
19473 if (!cur_proc_ptr)
19474 {
1661c76c 19475 as_warn (_(".end directive without a preceding .ent directive"));
252b5132
RH
19476 demand_empty_rest_of_line ();
19477 return;
19478 }
19479
19480 if (p != NULL)
19481 {
9c2799c2 19482 gas_assert (S_GET_NAME (p));
9b2f1d35 19483 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
1661c76c 19484 as_warn (_(".end symbol does not match .ent symbol"));
ecb4347a
DJ
19485
19486 if (debug_type == DEBUG_STABS)
19487 stabs_generate_asm_endfunc (S_GET_NAME (p),
19488 S_GET_NAME (p));
252b5132
RH
19489 }
19490 else
19491 as_warn (_(".end directive missing or unknown symbol"));
19492
9b2f1d35
EC
19493 /* Create an expression to calculate the size of the function. */
19494 if (p && cur_proc_ptr)
19495 {
19496 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
325801bd 19497 expressionS *exp = XNEW (expressionS);
9b2f1d35
EC
19498
19499 obj->size = exp;
19500 exp->X_op = O_subtract;
19501 exp->X_add_symbol = symbol_temp_new_now ();
19502 exp->X_op_symbol = p;
19503 exp->X_add_number = 0;
19504
19505 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19506 }
19507
5ff6a06c
MR
19508#ifdef md_flush_pending_output
19509 md_flush_pending_output ();
19510#endif
19511
ecb4347a 19512 /* Generate a .pdr section. */
f3ded42a 19513 if (!ECOFF_DEBUGGING && mips_flag_pdr)
ecb4347a
DJ
19514 {
19515 segT saved_seg = now_seg;
19516 subsegT saved_subseg = now_subseg;
ecb4347a
DJ
19517 expressionS exp;
19518 char *fragp;
252b5132 19519
9c2799c2 19520 gas_assert (pdr_seg);
ecb4347a 19521 subseg_set (pdr_seg, 0);
252b5132 19522
ecb4347a
DJ
19523 /* Write the symbol. */
19524 exp.X_op = O_symbol;
19525 exp.X_add_symbol = p;
19526 exp.X_add_number = 0;
19527 emit_expr (&exp, 4);
252b5132 19528
ecb4347a 19529 fragp = frag_more (7 * 4);
252b5132 19530
17a2f251
TS
19531 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19532 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19533 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19534 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19535 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19536 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19537 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
252b5132 19538
ecb4347a
DJ
19539 subseg_set (saved_seg, saved_subseg);
19540 }
252b5132
RH
19541
19542 cur_proc_ptr = NULL;
19543}
19544
19545/* The .aent and .ent directives. */
19546
19547static void
17a2f251 19548s_mips_ent (int aent)
252b5132 19549{
252b5132 19550 symbolS *symbolP;
252b5132
RH
19551
19552 symbolP = get_symbol ();
19553 if (*input_line_pointer == ',')
f9419b05 19554 ++input_line_pointer;
252b5132 19555 SKIP_WHITESPACE ();
3882b010 19556 if (ISDIGIT (*input_line_pointer)
d9a62219 19557 || *input_line_pointer == '-')
874e8986 19558 get_number ();
252b5132 19559
14949570 19560 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
1661c76c 19561 as_warn (_(".ent or .aent not in text section"));
252b5132
RH
19562
19563 if (!aent && cur_proc_ptr)
9a41af64 19564 as_warn (_("missing .end"));
252b5132
RH
19565
19566 if (!aent)
19567 {
7a621144
DJ
19568 /* This function needs its own .frame and .cprestore directives. */
19569 mips_frame_reg_valid = 0;
19570 mips_cprestore_valid = 0;
19571
252b5132
RH
19572 cur_proc_ptr = &cur_proc;
19573 memset (cur_proc_ptr, '\0', sizeof (procS));
19574
9b2f1d35 19575 cur_proc_ptr->func_sym = symbolP;
252b5132 19576
f9419b05 19577 ++numprocs;
ecb4347a
DJ
19578
19579 if (debug_type == DEBUG_STABS)
19580 stabs_generate_asm_func (S_GET_NAME (symbolP),
19581 S_GET_NAME (symbolP));
252b5132
RH
19582 }
19583
7c0fc524
MR
19584 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19585
252b5132
RH
19586 demand_empty_rest_of_line ();
19587}
19588
19589/* The .frame directive. If the mdebug section is present (IRIX 5 native)
bdaaa2e1 19590 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
252b5132 19591 s_mips_frame is used so that we can set the PDR information correctly.
bdaaa2e1 19592 We can't use the ecoff routines because they make reference to the ecoff
252b5132
RH
19593 symbol table (in the mdebug section). */
19594
19595static void
17a2f251 19596s_mips_frame (int ignore ATTRIBUTE_UNUSED)
252b5132 19597{
f3ded42a
RS
19598 if (ECOFF_DEBUGGING)
19599 s_ignore (ignore);
19600 else
ecb4347a
DJ
19601 {
19602 long val;
252b5132 19603
ecb4347a
DJ
19604 if (cur_proc_ptr == (procS *) NULL)
19605 {
19606 as_warn (_(".frame outside of .ent"));
19607 demand_empty_rest_of_line ();
19608 return;
19609 }
252b5132 19610
ecb4347a
DJ
19611 cur_proc_ptr->frame_reg = tc_get_register (1);
19612
19613 SKIP_WHITESPACE ();
19614 if (*input_line_pointer++ != ','
19615 || get_absolute_expression_and_terminator (&val) != ',')
19616 {
1661c76c 19617 as_warn (_("bad .frame directive"));
ecb4347a
DJ
19618 --input_line_pointer;
19619 demand_empty_rest_of_line ();
19620 return;
19621 }
252b5132 19622
ecb4347a
DJ
19623 cur_proc_ptr->frame_offset = val;
19624 cur_proc_ptr->pc_reg = tc_get_register (0);
252b5132 19625
252b5132 19626 demand_empty_rest_of_line ();
252b5132 19627 }
252b5132
RH
19628}
19629
bdaaa2e1
KH
19630/* The .fmask and .mask directives. If the mdebug section is present
19631 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
252b5132 19632 embedded targets, s_mips_mask is used so that we can set the PDR
bdaaa2e1 19633 information correctly. We can't use the ecoff routines because they
252b5132
RH
19634 make reference to the ecoff symbol table (in the mdebug section). */
19635
19636static void
17a2f251 19637s_mips_mask (int reg_type)
252b5132 19638{
f3ded42a
RS
19639 if (ECOFF_DEBUGGING)
19640 s_ignore (reg_type);
19641 else
252b5132 19642 {
ecb4347a 19643 long mask, off;
252b5132 19644
ecb4347a
DJ
19645 if (cur_proc_ptr == (procS *) NULL)
19646 {
19647 as_warn (_(".mask/.fmask outside of .ent"));
19648 demand_empty_rest_of_line ();
19649 return;
19650 }
252b5132 19651
ecb4347a
DJ
19652 if (get_absolute_expression_and_terminator (&mask) != ',')
19653 {
1661c76c 19654 as_warn (_("bad .mask/.fmask directive"));
ecb4347a
DJ
19655 --input_line_pointer;
19656 demand_empty_rest_of_line ();
19657 return;
19658 }
252b5132 19659
ecb4347a
DJ
19660 off = get_absolute_expression ();
19661
19662 if (reg_type == 'F')
19663 {
19664 cur_proc_ptr->fpreg_mask = mask;
19665 cur_proc_ptr->fpreg_offset = off;
19666 }
19667 else
19668 {
19669 cur_proc_ptr->reg_mask = mask;
19670 cur_proc_ptr->reg_offset = off;
19671 }
19672
19673 demand_empty_rest_of_line ();
252b5132 19674 }
252b5132
RH
19675}
19676
316f5878
RS
19677/* A table describing all the processors gas knows about. Names are
19678 matched in the order listed.
e7af610e 19679
316f5878
RS
19680 To ease comparison, please keep this table in the same order as
19681 gcc's mips_cpu_info_table[]. */
e972090a
NC
19682static const struct mips_cpu_info mips_cpu_info_table[] =
19683{
316f5878 19684 /* Entries for generic ISAs */
d16afab6
RS
19685 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19686 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19687 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19688 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19689 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19690 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19691 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
ae52f483
AB
19692 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19693 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
7361da2c 19694 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
d16afab6
RS
19695 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19696 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
ae52f483
AB
19697 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19698 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
7361da2c 19699 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
316f5878
RS
19700
19701 /* MIPS I */
d16afab6
RS
19702 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19703 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19704 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
316f5878
RS
19705
19706 /* MIPS II */
d16afab6 19707 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
316f5878
RS
19708
19709 /* MIPS III */
d16afab6
RS
19710 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19711 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19712 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19713 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19714 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19715 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19716 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19717 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19718 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19719 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19720 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19721 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19722 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
b15591bb 19723 /* ST Microelectronics Loongson 2E and 2F cores */
d16afab6 19724 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
8095d2f7 19725 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
316f5878
RS
19726
19727 /* MIPS IV */
d16afab6
RS
19728 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19729 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19730 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19731 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19732 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19733 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19734 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19735 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19736 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19737 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19738 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19739 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19740 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19741 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19742 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
316f5878
RS
19743
19744 /* MIPS 32 */
d16afab6
RS
19745 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19746 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19747 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19748 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
ad3fea08
TS
19749
19750 /* MIPS 32 Release 2 */
d16afab6
RS
19751 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19752 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19753 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19754 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19755 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19756 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19757 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19758 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19759 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19760 ISA_MIPS32R2, CPU_MIPS32R2 },
19761 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19762 ISA_MIPS32R2, CPU_MIPS32R2 },
19763 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19764 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19765 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19766 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19767 /* Deprecated forms of the above. */
d16afab6
RS
19768 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19769 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19770 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
d16afab6
RS
19771 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19772 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19773 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19774 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19775 /* Deprecated forms of the above. */
d16afab6
RS
19776 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19777 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19778 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
d16afab6
RS
19779 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19780 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19781 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19782 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19783 /* Deprecated forms of the above. */
d16afab6
RS
19784 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19785 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
711eefe4 19786 /* 34Kn is a 34kc without DSP. */
d16afab6 19787 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
01fd108f 19788 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
d16afab6
RS
19789 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19790 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19791 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19792 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19793 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
0fdf1951 19794 /* Deprecated forms of the above. */
d16afab6
RS
19795 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19796 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
30f8113a 19797 /* 1004K cores are multiprocessor versions of the 34K. */
d16afab6
RS
19798 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19799 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19800 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19801 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
77403ce9
RS
19802 /* interaptiv is the new name for 1004kf */
19803 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
38bf472a
MR
19804 { "interaptiv-mr2", 0,
19805 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19806 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
c6e5c03a
RS
19807 /* M5100 family */
19808 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19809 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
bbaa46c0 19810 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
134c0c8b 19811 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
32b26a03 19812
316f5878 19813 /* MIPS 64 */
d16afab6
RS
19814 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19815 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19816 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19817 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
ad3fea08 19818
c7a23324 19819 /* Broadcom SB-1 CPU core */
d16afab6 19820 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
1e85aad8 19821 /* Broadcom SB-1A CPU core */
d16afab6 19822 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
3739860c 19823
ed163775 19824 /* MIPS 64 Release 2 */
716c08de 19825 /* Loongson CPU core */
ac8cb70f 19826 /* -march=loongson3a is an alias of -march=gs464 for compatibility */
bdc6c06e 19827 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
ac8cb70f
CX
19828 ISA_MIPS64R2, CPU_GS464 },
19829 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19830 ISA_MIPS64R2, CPU_GS464 },
bd782c07
CX
19831 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19832 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
9108bc33
CX
19833 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
19834 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
ed163775 19835
967344c6 19836 /* Cavium Networks Octeon CPU core */
d16afab6
RS
19837 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19838 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19839 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
2c629856 19840 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
967344c6 19841
52b6b6b9 19842 /* RMI Xlr */
d16afab6 19843 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
52b6b6b9 19844
55a36193
MK
19845 /* Broadcom XLP.
19846 XLP is mostly like XLR, with the prominent exception that it is
19847 MIPS64R2 rather than MIPS64. */
d16afab6 19848 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
55a36193 19849
a4968f42 19850 /* MIPS 64 Release 6 */
7ef0d297 19851 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
a4968f42 19852 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
7ef0d297 19853
316f5878 19854 /* End marker */
d16afab6 19855 { NULL, 0, 0, 0, 0 }
316f5878 19856};
e7af610e 19857
84ea6cf2 19858
316f5878
RS
19859/* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19860 with a final "000" replaced by "k". Ignore case.
e7af610e 19861
316f5878 19862 Note: this function is shared between GCC and GAS. */
c6c98b38 19863
b34976b6 19864static bfd_boolean
17a2f251 19865mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19866{
19867 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19868 given++, canonical++;
19869
19870 return ((*given == 0 && *canonical == 0)
19871 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19872}
19873
19874
19875/* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19876 CPU name. We've traditionally allowed a lot of variation here.
19877
19878 Note: this function is shared between GCC and GAS. */
19879
b34976b6 19880static bfd_boolean
17a2f251 19881mips_matching_cpu_name_p (const char *canonical, const char *given)
316f5878
RS
19882{
19883 /* First see if the name matches exactly, or with a final "000"
19884 turned into "k". */
19885 if (mips_strict_matching_cpu_name_p (canonical, given))
b34976b6 19886 return TRUE;
316f5878
RS
19887
19888 /* If not, try comparing based on numerical designation alone.
19889 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19890 if (TOLOWER (*given) == 'r')
19891 given++;
19892 if (!ISDIGIT (*given))
b34976b6 19893 return FALSE;
316f5878
RS
19894
19895 /* Skip over some well-known prefixes in the canonical name,
19896 hoping to find a number there too. */
19897 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19898 canonical += 2;
19899 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19900 canonical += 2;
19901 else if (TOLOWER (canonical[0]) == 'r')
19902 canonical += 1;
19903
19904 return mips_strict_matching_cpu_name_p (canonical, given);
19905}
19906
19907
19908/* Parse an option that takes the name of a processor as its argument.
19909 OPTION is the name of the option and CPU_STRING is the argument.
19910 Return the corresponding processor enumeration if the CPU_STRING is
19911 recognized, otherwise report an error and return null.
19912
19913 A similar function exists in GCC. */
e7af610e
NC
19914
19915static const struct mips_cpu_info *
17a2f251 19916mips_parse_cpu (const char *option, const char *cpu_string)
e7af610e 19917{
316f5878 19918 const struct mips_cpu_info *p;
e7af610e 19919
316f5878
RS
19920 /* 'from-abi' selects the most compatible architecture for the given
19921 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19922 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19923 version. Look first at the -mgp options, if given, otherwise base
19924 the choice on MIPS_DEFAULT_64BIT.
e7af610e 19925
316f5878
RS
19926 Treat NO_ABI like the EABIs. One reason to do this is that the
19927 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19928 architecture. This code picks MIPS I for 'mips' and MIPS III for
19929 'mips64', just as we did in the days before 'from-abi'. */
19930 if (strcasecmp (cpu_string, "from-abi") == 0)
19931 {
19932 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19933 return mips_cpu_info_from_isa (ISA_MIPS1);
19934
19935 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19936 return mips_cpu_info_from_isa (ISA_MIPS3);
19937
bad1aba3 19938 if (file_mips_opts.gp >= 0)
19939 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
0b35dfee 19940 ? ISA_MIPS1 : ISA_MIPS3);
316f5878
RS
19941
19942 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19943 ? ISA_MIPS3
19944 : ISA_MIPS1);
19945 }
19946
19947 /* 'default' has traditionally been a no-op. Probably not very useful. */
19948 if (strcasecmp (cpu_string, "default") == 0)
19949 return 0;
19950
19951 for (p = mips_cpu_info_table; p->name != 0; p++)
19952 if (mips_matching_cpu_name_p (p->name, cpu_string))
19953 return p;
19954
1661c76c 19955 as_bad (_("bad value (%s) for %s"), cpu_string, option);
316f5878 19956 return 0;
e7af610e
NC
19957}
19958
316f5878
RS
19959/* Return the canonical processor information for ISA (a member of the
19960 ISA_MIPS* enumeration). */
19961
e7af610e 19962static const struct mips_cpu_info *
17a2f251 19963mips_cpu_info_from_isa (int isa)
e7af610e
NC
19964{
19965 int i;
19966
19967 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
ad3fea08 19968 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
316f5878 19969 && isa == mips_cpu_info_table[i].isa)
e7af610e
NC
19970 return (&mips_cpu_info_table[i]);
19971
e972090a 19972 return NULL;
e7af610e 19973}
fef14a42
TS
19974
19975static const struct mips_cpu_info *
17a2f251 19976mips_cpu_info_from_arch (int arch)
fef14a42
TS
19977{
19978 int i;
19979
19980 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19981 if (arch == mips_cpu_info_table[i].cpu)
19982 return (&mips_cpu_info_table[i]);
19983
19984 return NULL;
19985}
316f5878
RS
19986\f
19987static void
17a2f251 19988show (FILE *stream, const char *string, int *col_p, int *first_p)
316f5878
RS
19989{
19990 if (*first_p)
19991 {
19992 fprintf (stream, "%24s", "");
19993 *col_p = 24;
19994 }
19995 else
19996 {
19997 fprintf (stream, ", ");
19998 *col_p += 2;
19999 }
e7af610e 20000
316f5878
RS
20001 if (*col_p + strlen (string) > 72)
20002 {
20003 fprintf (stream, "\n%24s", "");
20004 *col_p = 24;
20005 }
20006
20007 fprintf (stream, "%s", string);
20008 *col_p += strlen (string);
20009
20010 *first_p = 0;
20011}
20012
20013void
17a2f251 20014md_show_usage (FILE *stream)
e7af610e 20015{
316f5878
RS
20016 int column, first;
20017 size_t i;
20018
20019 fprintf (stream, _("\
20020MIPS options:\n\
316f5878
RS
20021-EB generate big endian output\n\
20022-EL generate little endian output\n\
20023-g, -g2 do not remove unneeded NOPs or swap branches\n\
20024-G NUM allow referencing objects up to NUM bytes\n\
20025 implicitly with the gp register [default 8]\n"));
20026 fprintf (stream, _("\
20027-mips1 generate MIPS ISA I instructions\n\
20028-mips2 generate MIPS ISA II instructions\n\
20029-mips3 generate MIPS ISA III instructions\n\
20030-mips4 generate MIPS ISA IV instructions\n\
20031-mips5 generate MIPS ISA V instructions\n\
20032-mips32 generate MIPS32 ISA instructions\n\
af7ee8bf 20033-mips32r2 generate MIPS32 release 2 ISA instructions\n\
ae52f483
AB
20034-mips32r3 generate MIPS32 release 3 ISA instructions\n\
20035-mips32r5 generate MIPS32 release 5 ISA instructions\n\
7361da2c 20036-mips32r6 generate MIPS32 release 6 ISA instructions\n\
316f5878 20037-mips64 generate MIPS64 ISA instructions\n\
5f74bc13 20038-mips64r2 generate MIPS64 release 2 ISA instructions\n\
ae52f483
AB
20039-mips64r3 generate MIPS64 release 3 ISA instructions\n\
20040-mips64r5 generate MIPS64 release 5 ISA instructions\n\
7361da2c 20041-mips64r6 generate MIPS64 release 6 ISA instructions\n\
316f5878
RS
20042-march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20043
20044 first = 1;
e7af610e
NC
20045
20046 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
316f5878
RS
20047 show (stream, mips_cpu_info_table[i].name, &column, &first);
20048 show (stream, "from-abi", &column, &first);
20049 fputc ('\n', stream);
e7af610e 20050
316f5878
RS
20051 fprintf (stream, _("\
20052-mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20053-no-mCPU don't generate code specific to CPU.\n\
20054 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20055
20056 first = 1;
20057
20058 show (stream, "3900", &column, &first);
20059 show (stream, "4010", &column, &first);
20060 show (stream, "4100", &column, &first);
20061 show (stream, "4650", &column, &first);
20062 fputc ('\n', stream);
20063
20064 fprintf (stream, _("\
20065-mips16 generate mips16 instructions\n\
20066-no-mips16 do not generate mips16 instructions\n"));
20067 fprintf (stream, _("\
f866b262
MR
20068-mmips16e2 generate MIPS16e2 instructions\n\
20069-mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20070 fprintf (stream, _("\
df58fc94
RS
20071-mmicromips generate microMIPS instructions\n\
20072-mno-micromips do not generate microMIPS instructions\n"));
20073 fprintf (stream, _("\
e16bfa71 20074-msmartmips generate smartmips instructions\n\
3739860c 20075-mno-smartmips do not generate smartmips instructions\n"));
e16bfa71 20076 fprintf (stream, _("\
74cd071d
CF
20077-mdsp generate DSP instructions\n\
20078-mno-dsp do not generate DSP instructions\n"));
20079 fprintf (stream, _("\
8b082fb1
TS
20080-mdspr2 generate DSP R2 instructions\n\
20081-mno-dspr2 do not generate DSP R2 instructions\n"));
20082 fprintf (stream, _("\
8f4f9071
MF
20083-mdspr3 generate DSP R3 instructions\n\
20084-mno-dspr3 do not generate DSP R3 instructions\n"));
20085 fprintf (stream, _("\
ef2e4d86
CF
20086-mmt generate MT instructions\n\
20087-mno-mt do not generate MT instructions\n"));
20088 fprintf (stream, _("\
dec0624d
MR
20089-mmcu generate MCU instructions\n\
20090-mno-mcu do not generate MCU instructions\n"));
20091 fprintf (stream, _("\
56d438b1
CF
20092-mmsa generate MSA instructions\n\
20093-mno-msa do not generate MSA instructions\n"));
20094 fprintf (stream, _("\
7d64c587
AB
20095-mxpa generate eXtended Physical Address (XPA) instructions\n\
20096-mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20097 fprintf (stream, _("\
b015e599
AP
20098-mvirt generate Virtualization instructions\n\
20099-mno-virt do not generate Virtualization instructions\n"));
20100 fprintf (stream, _("\
730c3174
SE
20101-mcrc generate CRC instructions\n\
20102-mno-crc do not generate CRC instructions\n"));
20103 fprintf (stream, _("\
6f20c942
FS
20104-mginv generate Global INValidate (GINV) instructions\n\
20105-mno-ginv do not generate Global INValidate instructions\n"));
20106 fprintf (stream, _("\
8095d2f7
CX
20107-mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20108-mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20109 fprintf (stream, _("\
716c08de
CX
20110-mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20111-mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20112 fprintf (stream, _("\
bdc6c06e
CX
20113-mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20114-mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20115 fprintf (stream, _("\
a693765e
CX
20116-mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20117-mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20118 fprintf (stream, _("\
833794fc
MR
20119-minsn32 only generate 32-bit microMIPS instructions\n\
20120-mno-insn32 generate all microMIPS instructions\n"));
20121 fprintf (stream, _("\
c67a084a
NC
20122-mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20123-mfix-loongson2f-nop work around Loongson2F NOP errata\n\
d766e8ec 20124-mfix-vr4120 work around certain VR4120 errata\n\
7d8e00cf 20125-mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
6a32d874 20126-mfix-24k insert a nop after ERET and DERET instructions\n\
d954098f 20127-mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
316f5878
RS
20128-mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20129-mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
aed1a261 20130-msym32 assume all symbols have 32-bit values\n\
092a534f
MR
20131-O0 do not remove unneeded NOPs, do not swap branches\n\
20132-O, -O1 remove unneeded NOPs, do not swap branches\n\
20133-O2 remove unneeded NOPs and swap branches\n\
316f5878
RS
20134--trap, --no-break trap exception on div by 0 and mult overflow\n\
20135--break, --no-trap break exception on div by 0 and mult overflow\n"));
037b32b9
AN
20136 fprintf (stream, _("\
20137-mhard-float allow floating-point instructions\n\
20138-msoft-float do not allow floating-point instructions\n\
20139-msingle-float only allow 32-bit floating-point operations\n\
20140-mdouble-float allow 32-bit and 64-bit floating-point operations\n\
3bf0dbfb 20141--[no-]construct-floats [dis]allow floating point values to be constructed\n\
ba92f887 20142--[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
8b10b0b3
MR
20143-mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20144-mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
ba92f887
MR
20145-mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20146
20147 first = 1;
20148
20149 show (stream, "legacy", &column, &first);
20150 show (stream, "2008", &column, &first);
20151
20152 fputc ('\n', stream);
20153
316f5878
RS
20154 fprintf (stream, _("\
20155-KPIC, -call_shared generate SVR4 position independent code\n\
861fb55a 20156-call_nonpic generate non-PIC code that can operate with DSOs\n\
0c000745 20157-mvxworks-pic generate VxWorks position independent code\n\
861fb55a 20158-non_shared do not generate code that can operate with DSOs\n\
316f5878 20159-xgot assume a 32 bit GOT\n\
dcd410fe 20160-mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
bbe506e8 20161-mshared, -mno-shared disable/enable .cpload optimization for\n\
d821e36b 20162 position dependent (non shared) code\n\
316f5878
RS
20163-mabi=ABI create ABI conformant object file for:\n"));
20164
20165 first = 1;
20166
20167 show (stream, "32", &column, &first);
20168 show (stream, "o64", &column, &first);
20169 show (stream, "n32", &column, &first);
20170 show (stream, "64", &column, &first);
20171 show (stream, "eabi", &column, &first);
20172
20173 fputc ('\n', stream);
20174
20175 fprintf (stream, _("\
b4f6242e
MR
20176-32 create o32 ABI object file%s\n"),
20177 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20178 fprintf (stream, _("\
20179-n32 create n32 ABI object file%s\n"),
20180 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20181 fprintf (stream, _("\
20182-64 create 64 ABI object file%s\n"),
20183 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
e7af610e 20184}
14e777e0 20185
1575952e 20186#ifdef TE_IRIX
14e777e0 20187enum dwarf2_format
413a266c 20188mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
14e777e0 20189{
369943fe 20190 if (HAVE_64BIT_SYMBOLS)
1575952e 20191 return dwarf2_format_64bit_irix;
14e777e0
KB
20192 else
20193 return dwarf2_format_32bit;
20194}
1575952e 20195#endif
73369e65
EC
20196
20197int
20198mips_dwarf2_addr_size (void)
20199{
6b6b3450 20200 if (HAVE_64BIT_OBJECTS)
73369e65 20201 return 8;
73369e65
EC
20202 else
20203 return 4;
20204}
5862107c
EC
20205
20206/* Standard calling conventions leave the CFA at SP on entry. */
20207void
20208mips_cfi_frame_initial_instructions (void)
20209{
20210 cfi_add_CFA_def_cfa_register (SP);
20211}
20212
707bfff6
TS
20213int
20214tc_mips_regname_to_dw2regnum (char *regname)
20215{
20216 unsigned int regnum = -1;
20217 unsigned int reg;
20218
20219 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20220 regnum = reg;
20221
20222 return regnum;
20223}
263b2574 20224
20225/* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20226 Given a symbolic attribute NAME, return the proper integer value.
20227 Returns -1 if the attribute is not known. */
20228
20229int
20230mips_convert_symbolic_attribute (const char *name)
20231{
20232 static const struct
20233 {
20234 const char * name;
20235 const int tag;
20236 }
20237 attribute_table[] =
20238 {
20239#define T(tag) {#tag, tag}
20240 T (Tag_GNU_MIPS_ABI_FP),
20241 T (Tag_GNU_MIPS_ABI_MSA),
20242#undef T
20243 };
20244 unsigned int i;
20245
20246 if (name == NULL)
20247 return -1;
20248
20249 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20250 if (streq (name, attribute_table[i].name))
20251 return attribute_table[i].tag;
20252
20253 return -1;
20254}
fd5c94ab
RS
20255
20256void
20257md_mips_end (void)
20258{
351cdf24
MF
20259 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20260
fd5c94ab
RS
20261 mips_emit_delays ();
20262 if (cur_proc_ptr)
20263 as_warn (_("missing .end at end of assembly"));
919731af 20264
20265 /* Just in case no code was emitted, do the consistency check. */
20266 file_mips_check_options ();
351cdf24
MF
20267
20268 /* Set a floating-point ABI if the user did not. */
20269 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20270 {
20271 /* Perform consistency checks on the floating-point ABI. */
20272 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20273 Tag_GNU_MIPS_ABI_FP);
20274 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20275 check_fpabi (fpabi);
20276 }
20277 else
20278 {
20279 /* Soft-float gets precedence over single-float, the two options should
20280 not be used together so this should not matter. */
20281 if (file_mips_opts.soft_float == 1)
20282 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20283 /* Single-float gets precedence over all double_float cases. */
20284 else if (file_mips_opts.single_float == 1)
20285 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20286 else
20287 {
20288 switch (file_mips_opts.fp)
20289 {
20290 case 32:
20291 if (file_mips_opts.gp == 32)
20292 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20293 break;
20294 case 0:
20295 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20296 break;
20297 case 64:
20298 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20299 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20300 else if (file_mips_opts.gp == 32)
20301 fpabi = Val_GNU_MIPS_ABI_FP_64;
20302 else
20303 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20304 break;
20305 }
20306 }
20307
20308 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20309 Tag_GNU_MIPS_ABI_FP, fpabi);
20310 }
fd5c94ab 20311}
2f0c68f2
CM
20312
20313/* Returns the relocation type required for a particular CFI encoding. */
20314
20315bfd_reloc_code_real_type
20316mips_cfi_reloc_for_encoding (int encoding)
20317{
20318 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20319 return BFD_RELOC_32_PCREL;
20320 else return BFD_RELOC_NONE;
20321}