]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/config/tc-vax.c
I think this solves the MAKEINFO and BISON rooting problems.
[thirdparty/binutils-gdb.git] / gas / config / tc-vax.c
CommitLineData
fecd2382
RP
1/* vax.c - vax-specific -
2 Copyright (C) 1987, 1991 Free Software Foundation, Inc.
3
4This file is part of GAS, the GNU Assembler.
5
6GAS is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GAS is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GAS; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20/* $Id$ */
21
22/* JF I moved almost all the vax specific stuff into this one file 'cuz RMS
23 seems to think its a good idea. I hope I managed to get all the VAX-isms */
24
25
26#include "as.h"
27
28#include "read.h"
29#include "flonum.h"
30#include "vax-inst.h"
31#include "obstack.h" /* For FRAG_APPEND_1_CHAR macro in "frags.h" */
32#include "frags.h"
33#include "expr.h"
34#include "symbols.h"
35
36/* These chars start a comment anywhere in a source file (except inside
37 another comment */
38const char comment_chars[] = "#";
39
40/* These chars only start a comment at the beginning of a line. */
41/* Note that for the VAX the are the same as comment_chars above. */
42const char line_comment_chars[] = "#";
43
44/* Chars that can be used to separate mant from exp in floating point nums */
45const char EXP_CHARS[] = "eE";
46
47/* Chars that mean this number is a floating point constant */
48/* as in 0f123.456 */
49/* or 0H1.234E-12 (see exp chars above) */
50const char FLT_CHARS[] = "dDfFgGhH";
51
52/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
53 changed in read.c . Ideally it shouldn't have to know about it at all,
54 but nothing is ideal around here.
55 */
56
57static expressionS /* Hold details of an operand expression */
58 exp_of_operand[VIT_MAX_OPERANDS];
59
60static struct vit
61 v; /* A vax instruction after decoding. */
62
63LITTLENUM_TYPE big_operand_bits[VIT_MAX_OPERANDS][SIZE_OF_LARGE_NUMBER];
64 /* Hold details of big operands. */
65FLONUM_TYPE float_operand[VIT_MAX_OPERANDS];
66 /* Above is made to point into */
67 /* big_operand_bits by md_begin(). */
68\f
69/*
70 * For VAX, relative addresses of "just the right length" are easy.
71 * The branch displacement is always the last operand, even in
72 * synthetic instructions.
73 * For VAX, we encode the relax_substateTs (in e.g. fr_substate) as:
74 *
75 * 4 3 2 1 0 bit number
76 * ---/ /--+-------+-------+-------+-------+-------+
77 * | what state ? | how long ? |
78 * ---/ /--+-------+-------+-------+-------+-------+
79 *
80 * The "how long" bits are 00=byte, 01=word, 10=long.
81 * This is a Un*x convention.
82 * Not all lengths are legit for a given value of (what state).
83 * The "how long" refers merely to the displacement length.
84 * The address usually has some constant bytes in it as well.
85 *
86
87groups for VAX address relaxing.
88
891. "foo" pc-relative.
90 length of byte, word, long
91
922a. J<cond> where <cond> is a simple flag test.
93 length of byte, word, long.
94 VAX opcodes are: (Hex)
95 bneq/bnequ 12
96 beql/beqlu 13
97 bgtr 14
98 bleq 15
99 bgeq 18
100 blss 19
101 bgtru 1a
102 blequ 1b
103 bvc 1c
104 bvs 1d
105 bgequ/bcc 1e
106 blssu/bcs 1f
107 Always, you complement 0th bit to reverse condition.
108 Always, 1-byte opcode, then 1-byte displacement.
109
1102b. J<cond> where cond tests a memory bit.
111 length of byte, word, long.
112 Vax opcodes are: (Hex)
113 bbs e0
114 bbc e1
115 bbss e2
116 bbcs e3
117 bbsc e4
118 bbcc e5
119 bbssi e6
120 bbcci e7
121 Always, you complement 0th bit to reverse condition.
122 Always, 1-byte opcde, longword-address, byte-address, 1-byte-displacement
123
1242c. J<cond> where cond tests low-order memory bit
125 length of byte,word,long.
126 Vax opcodes are: (Hex)
127 blbs e8
128 blbc e9
129 Always, you complement 0th bit to reverse condition.
130 Always, 1-byte opcode, longword-address, 1-byte displacement.
131
1323. Jbs/Jbr.
133 length of byte,word,long.
134 Vax opcodes are: (Hex)
135 bsbb 10
136 brb 11
137 These are like (2) but there is no condition to reverse.
138 Always, 1 byte opcode, then displacement/absolute.
139
1404a. JacbX
141 length of word, long.
142 Vax opcodes are: (Hex)
143 acbw 3d
144 acbf 4f
145 acbd 6f
146 abcb 9d
147 acbl f1
148 acbg 4ffd
149 acbh 6ffd
150 Always, we cannot reverse the sense of the branch; we have a word
151 displacement.
152 The double-byte op-codes don't hurt: we never want to modify the
153 opcode, so we don't care how many bytes are between the opcode and
154 the operand.
155
1564b. JXobXXX
157 length of long, long, byte.
158 Vax opcodes are: (Hex)
159 aoblss f2
160 aobleq f3
161 sobgeq f4
162 sobgtr f5
163 Always, we cannot reverse the sense of the branch; we have a byte
164 displacement.
165
166The only time we need to modify the opcode is for class 2 instructions.
167After relax() we may complement the lowest order bit of such instruction
168to reverse sense of branch.
169
170For class 2 instructions, we store context of "where is the opcode literal".
171We can change an opcode's lowest order bit without breaking anything else.
172
173We sometimes store context in the operand literal. This way we can figure out
174after relax() what the original addressing mode was.
175*/
176\f
177 /* These displacements are relative to */
178 /* the start address of the displacement. */
179 /* The first letter is Byte, Word. */
180 /* 2nd letter is Forward, Backward. */
181#define BF (1+ 127)
182#define BB (1+-128)
183#define WF (2+ 32767)
184#define WB (2+-32768)
185 /* Dont need LF, LB because they always */
186 /* reach. [They are coded as 0.] */
187
188
189#define C(a,b) ENCODE_RELAX(a,b)
190 /* This macro has no side-effects. */
191#define ENCODE_RELAX(what,length) (((what) << 2) + (length))
192
193const relax_typeS
194md_relax_table[] =
195{
196 {
197 1, 1, 0, 0
198 }, /* error sentinel 0,0 */
199 {
200 1, 1, 0, 0
201 }, /* unused 0,1 */
202 {
203 1, 1, 0, 0
204 }, /* unused 0,2 */
205 {
206 1, 1, 0, 0
207 }, /* unused 0,3 */
208 {
209 BF + 1, BB + 1, 2, C (1, 1)
210 }, /* B^"foo" 1,0 */
211 {
212 WF + 1, WB + 1, 3, C (1, 2)
213 }, /* W^"foo" 1,1 */
214 {
215 0, 0, 5, 0
216 }, /* L^"foo" 1,2 */
217 {
218 1, 1, 0, 0
219 }, /* unused 1,3 */
220 {
221 BF, BB, 1, C (2, 1)
222 }, /* b<cond> B^"foo" 2,0 */
223 {
224 WF + 2, WB + 2, 4, C (2, 2)
225 }, /* br.+? brw X 2,1 */
226 {
227 0, 0, 7, 0
228 }, /* br.+? jmp X 2,2 */
229 {
230 1, 1, 0, 0
231 }, /* unused 2,3 */
232 {
233 BF, BB, 1, C (3, 1)
234 }, /* brb B^foo 3,0 */
235 {
236 WF, WB, 2, C (3, 2)
237 }, /* brw W^foo 3,1 */
238 {
239 0, 0, 5, 0
240 }, /* Jmp L^foo 3,2 */
241 {
242 1, 1, 0, 0
243 }, /* unused 3,3 */
244 {
245 1, 1, 0, 0
246 }, /* unused 4,0 */
247 {
248 WF, WB, 2, C (4, 2)
249 }, /* acb_ ^Wfoo 4,1 */
250 {
251 0, 0, 10, 0
252 }, /* acb_,br,jmp L^foo4,2 */
253 {
254 1, 1, 0, 0
255 }, /* unused 4,3 */
256 {
257 BF, BB, 1, C (5, 1)
258 }, /* Xob___,,foo 5,0 */
259 {
260 WF + 4, WB + 4, 6, C (5, 2)
261 }, /* Xob.+2,brb.+3,brw5,1 */
262 {
263 0, 0, 9, 0
264 }, /* Xob.+2,brb.+6,jmp5,2 */
265};
266
267#undef C
268#undef BF
269#undef BB
270#undef WF
271#undef WB
272
273void float_cons ();
274
275const pseudo_typeS md_pseudo_table[] =
276{
277 {"dfloat", float_cons, 'd'},
278 {"ffloat", float_cons, 'f'},
279 {"gfloat", float_cons, 'g'},
280 {"hfloat", float_cons, 'h'},
281 {0}
282};
283
284#define STATE_PC_RELATIVE (1)
285#define STATE_CONDITIONAL_BRANCH (2)
286#define STATE_ALWAYS_BRANCH (3) /* includes BSB... */
287#define STATE_COMPLEX_BRANCH (4)
288#define STATE_COMPLEX_HOP (5)
289
290#define STATE_BYTE (0)
291#define STATE_WORD (1)
292#define STATE_LONG (2)
293#define STATE_UNDF (3) /* Symbol undefined in pass1 */
294
295
296#define min(a, b) ((a) < (b) ? (a) : (b))
297\f
298
299void
300md_begin ()
301{
302 char *vip_begin ();
303 char *errtxt;
304 FLONUM_TYPE *fP;
305 int i;
306
307 if (*(errtxt = vip_begin (TRUE, "$", "*", "`")))
308 {
309 as_fatal("VIP_BEGIN error:%s", errtxt);
310 }
311
312 for (i = 0, fP = float_operand;
313 fP < float_operand + VIT_MAX_OPERANDS;
314 i++, fP++)
315 {
316 fP->low = &big_operand_bits[i][0];
317 fP->high = &big_operand_bits[i][SIZE_OF_LARGE_NUMBER - 1];
318 }
319}
320
321void
322md_end ()
323{
324 vip_end ();
325}
326\f
327void /* Knows about order of bytes in address. */
328md_number_to_chars (con, value, nbytes)
329 char con[]; /* Return 'nbytes' of chars here. */
330 long value; /* The value of the bits. */
331 int nbytes; /* Number of bytes in the output. */
332{
333 int n;
334 long v;
335
336 n = nbytes;
337 v = value;
338 while (nbytes--)
339 {
340 *con++ = value; /* Lint wants & MASK_CHAR. */
341 value >>= BITS_PER_CHAR;
342 }
343 /* XXX line number probably botched for this warning message. */
344 if (value != 0 && value != -1)
345 as_bad("Displacement (%ld) long for instruction field length (%d).", v, n);
346}
347
348/* Fix up some data or instructions after we find out the value of a symbol
349 that they reference. */
350
351void /* Knows about order of bytes in address. */
352md_apply_fix(fixP, value)
353 fixS *fixP; /* Fixup struct pointer */
354 long value; /* The value of the bits. */
355{
356 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
357 int nbytes; /* Number of bytes in the output. */
358
359 nbytes = fixP->fx_size;
360 while (nbytes--)
361 {
362 *buf++ = value; /* Lint wants & MASK_CHAR. */
363 value >>= BITS_PER_CHAR;
364 }
365}
366
367long /* Knows about the byte order in a word. */
368md_chars_to_number (con, nbytes)
369 unsigned char con[]; /* Low order byte 1st. */
370 int nbytes; /* Number of bytes in the input. */
371{
372 long retval;
373 for (retval = 0, con += nbytes - 1; nbytes--; con--)
374 {
375 retval <<= BITS_PER_CHAR;
376 retval |= *con;
377 }
378 return retval;
379}
380\f
381/* vax:md_assemble() emit frags for 1 instruction */
382
383void
384md_assemble (instruction_string)
385 char *instruction_string; /* A string: assemble 1 instruction. */
386{
387 char *p;
388 register struct vop *operandP;/* An operand. Scans all operands. */
389 char *save_input_line_pointer;
390 char c_save; /* What used to live after an expression. */
391 struct frag *fragP; /* Fragment of code we just made. */
392 register int goofed; /* TRUE: instruction_string bad for all passes. */
393 register struct vop *end_operandP; /* -> slot just after last operand */
394 /* Limit of the for (each operand). */
395 register expressionS *expP; /* -> expression values for this operand */
396
397 /* These refer to an instruction operand expression. */
398 segT to_seg; /* Target segment of the address. */
399 register valueT this_add_number;
400 register struct symbol *this_add_symbol; /* +ve (minuend) symbol. */
401 register struct symbol *this_subtract_symbol; /* -ve(subtrahend) symbol. */
402
403 long opcode_as_number; /* As a number. */
404 char *opcode_as_chars; /* Least significant byte 1st. */
405 /* As an array of characters. */
406 char *opcode_low_byteP; /* Least significant byte 1st */
407 struct details *detP; /* The details of an ADxxx frag. */
408 int length; /* length (bytes) meant by vop_short. */
409 int at; /* 0, or 1 if '@' is in addressing mode. */
410 int nbytes; /* From vop_nbytes: vax_operand_width (in bytes) */
411 FLONUM_TYPE *floatP;
412 char *vip ();
413 LITTLENUM_TYPE literal_float[8];
414 /* Big enough for any floating point literal. */
415
416 if (*(p = vip (&v, instruction_string)))
417 {
418 as_fatal("vax_assemble\"%s\" in=\"%s\"", p, instruction_string);
419 }
420 /*
421 * Now we try to find as many as_warn()s as we can. If we do any as_warn()s
422 * then goofed=TRUE. Notice that we don't make any frags yet.
423 * Should goofed be TRUE, then this instruction will wedge in any pass,
424 * and we can safely flush it, without causing interpass symbol phase
425 * errors. That is, without changing label values in different passes.
426 */
427 if (goofed = (*v.vit_error))
428 {
429 as_warn ("Ignoring statement due to \"%s\"", v.vit_error);
430 }
431 /*
432 * We need to use expression() and friends, which require us to diddle
433 * input_line_pointer. So we save it and restore it later.
434 */
435 save_input_line_pointer = input_line_pointer;
436 for (operandP = v.vit_operand,
437 expP = exp_of_operand,
438 floatP = float_operand,
439 end_operandP = v.vit_operand + v.vit_operands;
440
441 operandP < end_operandP;
442
443 operandP++,
444 expP++,
445 floatP++
446 ) /* for each operand */
447 {
448 if (*(operandP->vop_error))
449 {
450 as_warn ("Ignoring statement because \"%s\"", (operandP->vop_error));
451 goofed = TRUE;
452 }
453 else
454 { /* statement has no syntax goofs: lets sniff the expression */
455 int can_be_short; /* TRUE if a bignum can be reduced to a short literal. */
456
457 input_line_pointer = operandP->vop_expr_begin;
458 c_save = operandP->vop_expr_end[1];
459 operandP->vop_expr_end[1] = '\0';
460 /* If to_seg == SEG_PASS1, expression() will have set need_pass_2 = TRUE. */
461 switch (to_seg = expression (expP))
462 {
463 case SEG_ABSENT:
464 /* for BSD4.2 compatibility, missing expression is absolute 0 */
465 to_seg = expP->X_seg = SEG_ABSOLUTE;
466 expP->X_add_number = 0;
467 /* for SEG_ABSOLUTE, we shouldnt need to set X_subtract_symbol, X_add_symbol to any particular value. */
468 /* But, we will program defensively. Since this situation occurs */
469 /* rarely so it costs us little to do, and stops Dean */
470 /* worrying about the origin of random bits in expressionS's. */
471 expP->X_add_symbol = NULL;
472 expP->X_subtract_symbol = NULL;
473 case SEG_TEXT:
474 case SEG_DATA:
475 case SEG_BSS:
476 case SEG_ABSOLUTE:
477 case SEG_UNKNOWN:
478 break;
479
480 case SEG_DIFFERENCE:
481 case SEG_PASS1:
482 /*
483 * Major bug. We can't handle the case of a
484 * SEG_DIFFERENCE expression in a VIT_OPCODE_SYNTHETIC
485 * variable-length instruction.
486 * We don't have a frag type that is smart enough to
487 * relax a SEG_DIFFERENCE, and so we just force all
488 * SEG_DIFFERENCEs to behave like SEG_PASS1s.
489 * Clearly, if there is a demand we can invent a new or
490 * modified frag type and then coding up a frag for this
491 * case will be easy. SEG_DIFFERENCE was invented for the
492 * .words after a CASE opcode, and was never intended for
493 * instruction operands.
494 */
495 need_pass_2 = TRUE;
496 as_warn("Can't relocate expression");
497 break;
498
499 case SEG_BIG:
500 /* Preserve the bits. */
501 if (expP->X_add_number > 0)
502 {
503 bignum_copy (generic_bignum, expP->X_add_number,
504 floatP->low, SIZE_OF_LARGE_NUMBER);
505 }
506 else
507 {
508 know (expP->X_add_number < 0);
509 flonum_copy (&generic_floating_point_number,
510 floatP);
511 if (strchr ("s i", operandP->vop_short))
512 { /* Could possibly become S^# */
513 flonum_gen2vax (-expP->X_add_number, floatP, literal_float);
514 switch (-expP->X_add_number)
515 {
516 case 'f':
517 can_be_short =
518 (literal_float[0] & 0xFC0F) == 0x4000
519 && literal_float[1] == 0;
520 break;
521
522 case 'd':
523 can_be_short =
524 (literal_float[0] & 0xFC0F) == 0x4000
525 && literal_float[1] == 0
526 && literal_float[2] == 0
527 && literal_float[3] == 0;
528 break;
529
530 case 'g':
531 can_be_short =
532 (literal_float[0] & 0xFF81) == 0x4000
533 && literal_float[1] == 0
534 && literal_float[2] == 0
535 && literal_float[3] == 0;
536 break;
537
538 case 'h':
539 can_be_short =
540 (literal_float[0] & 0xFFF8) == 0x4000
541 && (literal_float[1] & 0xE000) == 0
542 && literal_float[2] == 0
543 && literal_float[3] == 0
544 && literal_float[4] == 0
545 && literal_float[5] == 0
546 && literal_float[6] == 0
547 && literal_float[7] == 0;
548 break;
549
550 default:
551 BAD_CASE (-expP->X_add_number);
552 break;
553 } /* switch (float type) */
554 } /* if (could want to become S^#...) */
555 } /* bignum or flonum ? */
556
557 if (operandP->vop_short == 's'
558 || operandP->vop_short == 'i'
559 || (operandP->vop_short == ' '
560 && operandP->vop_reg == 0xF
561 && (operandP->vop_mode & 0xE) == 0x8))
562 {
563 /* Saw a '#'. */
564 if (operandP->vop_short == ' ')
565 { /* We must chose S^ or I^. */
566 if (expP->X_add_number > 0)
567 { /* Bignum: Short literal impossible. */
568 operandP->vop_short = 'i';
569 operandP->vop_mode = 8;
570 operandP->vop_reg = 0xF; /* VAX PC. */
571 }
572 else
573 { /* Flonum: Try to do it. */
574 if (can_be_short)
575 {
576 operandP->vop_short = 's';
577 operandP->vop_mode = 0;
578 operandP->vop_ndx = -1;
579 operandP->vop_reg = -1;
580 /* JF hope this is the right thing */
581 expP->X_seg = SEG_ABSOLUTE;
582 }
583 else
584 {
585 operandP->vop_short = 'i';
586 operandP->vop_mode = 8;
587 operandP->vop_reg = 0xF; /* VAX PC */
588 }
589 } /* bignum or flonum ? */
590 } /* if #, but no S^ or I^ seen. */
591 /* No more ' ' case: either 's' or 'i'. */
592 if (operandP->vop_short == 's')
593 {
594 /* Wants to be a short literal. */
595 if (expP->X_add_number > 0)
596 {
597 as_warn ("Bignum not permitted in short literal. Immediate mode assumed.");
598 operandP->vop_short = 'i';
599 operandP->vop_mode = 8;
600 operandP->vop_reg = 0xF; /* VAX PC. */
601 }
602 else
603 {
604 if (!can_be_short)
605 {
606 as_warn ("Can't do flonum short literal: immediate mode used.");
607 operandP->vop_short = 'i';
608 operandP->vop_mode = 8;
609 operandP->vop_reg = 0xF; /* VAX PC. */
610 }
611 else
612 { /* Encode short literal now. */
613 register int temp;
614
615 switch (-expP->X_add_number)
616 {
617 case 'f':
618 case 'd':
619 temp = literal_float[0] >> 4;
620 break;
621
622 case 'g':
623 temp = literal_float[0] >> 1;
624 break;
625
626 case 'h':
627 temp = ((literal_float[0] << 3) & 070)
628 | ((literal_float[1] >> 13) & 07);
629 break;
630
631 default:
632 BAD_CASE (-expP->X_add_number);
633 break;
634 }
635
636 floatP->low[0] = temp & 077;
637 floatP->low[1] = 0;
638 } /* if can be short literal float */
639 } /* flonum or bignum ? */
640 }
641 else
642 { /* I^# seen: set it up if float. */
643 if (expP->X_add_number < 0)
644 {
645 bcopy (literal_float, floatP->low, sizeof (literal_float));
646 }
647 } /* if S^# seen. */
648 }
649 else
650 {
651 as_warn ("A bignum/flonum may not be a displacement: 0x%x used",
652 expP->X_add_number = 0x80000000);
653 /* Chosen so luser gets the most offset bits to patch later. */
654 }
655 expP->X_add_number = floatP->low[0]
656 | ((LITTLENUM_MASK & (floatP->low[1])) << LITTLENUM_NUMBER_OF_BITS);
657/*
658 * For the SEG_BIG case we have:
659 * If vop_short == 's' then a short floating literal is in the
660 * lowest 6 bits of floatP -> low [0], which is
661 * big_operand_bits [---] [0].
662 * If vop_short == 'i' then the appropriate number of elements
663 * of big_operand_bits [---] [...] are set up with the correct
664 * bits.
665 * Also, just in case width is byte word or long, we copy the lowest
666 * 32 bits of the number to X_add_number.
667 */
668 break;
669
670 default:
671 BAD_CASE (to_seg);
672 break;
673 }
674 if (input_line_pointer != operandP->vop_expr_end + 1)
675 {
676 as_warn ("Junk at end of expression \"%s\"", input_line_pointer);
677 goofed = TRUE;
678 }
679 operandP->vop_expr_end[1] = c_save;
680 }
681 } /* for(each operand) */
682 input_line_pointer = save_input_line_pointer;
683
684 if (!need_pass_2 && !goofed)
685 {
686 /* We saw no errors in any operands - try to make frag(s) */
687 int is_undefined; /* True if operand expression's */
688 /* segment not known yet. */
689 int length_code;
690
691 /* Emit op-code. */
692 /* Remember where it is, in case we want to modify the op-code later. */
693 opcode_low_byteP = frag_more (v.vit_opcode_nbytes);
694 bcopy (v.vit_opcode, opcode_low_byteP, v.vit_opcode_nbytes);
695 opcode_as_number = md_chars_to_number (opcode_as_chars = v.vit_opcode, 4);
696 for (operandP = v.vit_operand,
697 expP = exp_of_operand,
698 floatP = float_operand,
699 end_operandP = v.vit_operand + v.vit_operands;
700
701 operandP < end_operandP;
702
703 operandP++,
704 floatP++,
705 expP++
706 ) /* for each operand */
707 {
708 if (operandP->vop_ndx >= 0)
709 {
710 /* indexed addressing byte */
711 /* Legality of indexed mode already checked: it is OK */
712 FRAG_APPEND_1_CHAR (0x40 + operandP->vop_ndx);
713 } /* if(vop_ndx>=0) */
714
715 /* Here to make main operand frag(s). */
716 this_add_number = expP->X_add_number;
717 this_add_symbol = expP->X_add_symbol;
718 this_subtract_symbol = expP->X_subtract_symbol;
719 to_seg = expP->X_seg;
720 is_undefined = (to_seg == SEG_UNKNOWN);
721 know (to_seg == SEG_UNKNOWN
722 ||to_seg == SEG_ABSOLUTE
723 ||to_seg == SEG_DATA
724 ||to_seg == SEG_TEXT
725 ||to_seg == SEG_BSS
726 ||to_seg == SEG_BIG
727 );
728 at = operandP->vop_mode & 1;
729 length = operandP->vop_short == 'b' ? 1 : operandP->vop_short == 'w' ? 2 : operandP->vop_short == 'l' ? 4 : 0;
730 nbytes = operandP->vop_nbytes;
731 if (operandP->vop_access == 'b')
732 {
733 if (to_seg == now_seg || is_undefined)
734 { /* If is_undefined, then it might BECOME now_seg. */
735 if (nbytes)
736 {
737 p = frag_more (nbytes);
738 fix_new (frag_now, p - frag_now->fr_literal, nbytes,
739 this_add_symbol, 0, this_add_number, 1);
740 }
741 else
742 { /* to_seg==now_seg || to_seg == SEG_UNKNOWN */
743 /* nbytes==0 */
744 length_code = is_undefined ? STATE_UNDF : STATE_BYTE;
745 if (opcode_as_number & VIT_OPCODE_SPECIAL)
746 {
747 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
748 {
749 /* br or jsb */
750 frag_var (rs_machine_dependent, 5, 1,
751 ENCODE_RELAX (STATE_ALWAYS_BRANCH, length_code),
752 this_add_symbol, this_add_number,
753 opcode_low_byteP);
754 }
755 else
756 {
757 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
758 {
759 length_code = STATE_WORD; /* JF: There is no state_byte for this one! */
760 frag_var (rs_machine_dependent, 10, 2,
761 ENCODE_RELAX (STATE_COMPLEX_BRANCH, length_code),
762 this_add_symbol, this_add_number,
763 opcode_low_byteP);
764 }
765 else
766 {
767 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
768 frag_var (rs_machine_dependent, 9, 1,
769 ENCODE_RELAX (STATE_COMPLEX_HOP, length_code),
770 this_add_symbol, this_add_number,
771 opcode_low_byteP);
772 }
773 }
774 }
775 else
776 {
777 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
778 frag_var (rs_machine_dependent, 7, 1,
779 ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, length_code),
780 this_add_symbol, this_add_number,
781 opcode_low_byteP);
782 }
783 }
784 }
785 else
786 { /* to_seg != now_seg && to_seg != SEG_UNKNOWN */
787/*
788 * --- SEG FLOAT MAY APPEAR HERE ----
789 */
790 if (to_seg == SEG_ABSOLUTE)
791 {
792 if (nbytes)
793 {
794 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
795 p = frag_more (nbytes);
796 /* Conventional relocation. */
797 fix_new (frag_now, p - frag_now->fr_literal,
798 nbytes, &abs_symbol, 0, this_add_number, 1);
799 }
800 else
801 {
802 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
803 if (opcode_as_number & VIT_OPCODE_SPECIAL)
804 {
805 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
806 {
807 /* br or jsb */
808 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
809 know (opcode_as_chars[1] == 0);
810 p = frag_more (5);
811 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
812 md_number_to_chars (p + 1, this_add_number, 4);
813 /* Now (eg) JMP @#foo or JSB @#foo. */
814 }
815 else
816 {
817 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
818 {
819 p = frag_more (10);
820 p[0] = 2;
821 p[1] = 0;
822 p[2] = VAX_BRB;
823 p[3] = 6;
824 p[4] = VAX_JMP;
825 p[5] = VAX_ABSOLUTE_MODE; /* @#... */
826 md_number_to_chars (p + 6, this_add_number, 4);
827 /*
828 * Now (eg) ACBx 1f
829 * BRB 2f
830 * 1: JMP @#foo
831 * 2:
832 */
833 }
834 else
835 {
836 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
837 p = frag_more (9);
838 p[0] = 2;
839 p[1] = VAX_BRB;
840 p[2] = 6;
841 p[3] = VAX_JMP;
842 p[4] = VAX_PC_RELATIVE_MODE + 1; /* @#... */
843 md_number_to_chars (p + 5, this_add_number, 4);
844 /*
845 * Now (eg) xOBxxx 1f
846 * BRB 2f
847 * 1: JMP @#foo
848 * 2:
849 */
850 }
851 }
852 }
853 else
854 {
855 /* b<cond> */
856 *opcode_low_byteP ^= 1; /* To reverse the condition in a VAX branch, complement the lowest order bit. */
857 p = frag_more (7);
858 p[0] = 6;
859 p[1] = VAX_JMP;
860 p[2] = VAX_ABSOLUTE_MODE; /* @#... */
861 md_number_to_chars (p + 3, this_add_number, 4);
862 /*
863 * Now (eg) BLEQ 1f
864 * JMP @#foo
865 * 1:
866 */
867 }
868 }
869 }
870 else
871 { /* to_seg != now_seg && to_seg != SEG_UNKNOWN && to_Seg != SEG_ABSOLUTE */
872 if (nbytes > 0)
873 {
874 /* Pc-relative. Conventional relocation. */
875 know (!(opcode_as_number & VIT_OPCODE_SYNTHETIC));
876 p = frag_more (nbytes);
877 fix_new (frag_now, p - frag_now->fr_literal,
878 nbytes, &abs_symbol, 0, this_add_number, 1);
879 }
880 else
881 {
882 know (opcode_as_number & VIT_OPCODE_SYNTHETIC);
883 if (opcode_as_number & VIT_OPCODE_SPECIAL)
884 {
885 if (operandP->vop_width == VAX_WIDTH_UNCONDITIONAL_JUMP)
886 {
887 /* br or jsb */
888 know (opcode_as_chars[1] == 0);
889 *opcode_low_byteP = opcode_as_chars[0] + VAX_WIDEN_LONG;
890 p = frag_more (5);
891 p[0] = VAX_PC_RELATIVE_MODE;
892 fix_new (frag_now,
893 p + 1 - frag_now->fr_literal, 4,
894 this_add_symbol, 0,
895 this_add_number, 1);
896 /* Now eg JMP foo or JSB foo. */
897 }
898 else
899 {
900 if (operandP->vop_width == VAX_WIDTH_WORD_JUMP)
901 {
902 p = frag_more (10);
903 p[0] = 0;
904 p[1] = 2;
905 p[2] = VAX_BRB;
906 p[3] = 6;
907 p[4] = VAX_JMP;
908 p[5] = VAX_PC_RELATIVE_MODE;
909 fix_new (frag_now,
910 p + 6 - frag_now->fr_literal, 4,
911 this_add_symbol, 0,
912 this_add_number, 1);
913 /*
914 * Now (eg) ACBx 1f
915 * BRB 2f
916 * 1: JMP foo
917 * 2:
918 */
919 }
920 else
921 {
922 know (operandP->vop_width == VAX_WIDTH_BYTE_JUMP);
923 p = frag_more (10);
924 p[0] = 2;
925 p[1] = VAX_BRB;
926 p[2] = 6;
927 p[3] = VAX_JMP;
928 p[4] = VAX_PC_RELATIVE_MODE;
929 fix_new (frag_now,
930 p + 5 - frag_now->fr_literal,
931 4, this_add_symbol, 0,
932 this_add_number, 1);
933 /*
934 * Now (eg) xOBxxx 1f
935 * BRB 2f
936 * 1: JMP foo
937 * 2:
938 */
939 }
940 }
941 }
942 else
943 {
944 know (operandP->vop_width == VAX_WIDTH_CONDITIONAL_JUMP);
945 *opcode_low_byteP ^= 1; /* Reverse branch condition. */
946 p = frag_more (7);
947 p[0] = 6;
948 p[1] = VAX_JMP;
949 p[2] = VAX_PC_RELATIVE_MODE;
950 fix_new (frag_now, p + 3 - frag_now->fr_literal,
951 4, this_add_symbol, 0,
952 this_add_number, 1);
953 }
954 }
955 }
956 }
957 }
958 else
959 {
960 know (operandP->vop_access != 'b'); /* So it is ordinary operand. */
961 know (operandP->vop_access != ' '); /* ' ' target-independent: elsewhere. */
962 know (operandP->vop_access == 'a' || operandP->vop_access == 'm' || operandP->vop_access == 'r' || operandP->vop_access == 'v' || operandP->vop_access == 'w');
963 if (operandP->vop_short == 's')
964 {
965 if (to_seg == SEG_ABSOLUTE)
966 {
967 if (this_add_number < 0 || this_add_number >= 64)
968 {
969 as_warn ("Short literal overflow(%d.), immediate mode assumed.", this_add_number);
970 operandP->vop_short = 'i';
971 operandP->vop_mode = 8;
972 operandP->vop_reg = 0xF;
973 }
974 }
975 else
976 {
977 as_warn ("Forced short literal to immediate mode. now_seg=%s to_seg=%s", segment_name(now_seg), segment_name(to_seg));
978 operandP->vop_short = 'i';
979 operandP->vop_mode = 8;
980 operandP->vop_reg = 0xF;
981 }
982 }
983 if (operandP->vop_reg >= 0 && (operandP->vop_mode < 8 || (operandP->vop_reg != 0xF && operandP->vop_mode < 10)))
984 { /* One byte operand. */
985 know (operandP->vop_mode > 3);
986 FRAG_APPEND_1_CHAR (operandP->vop_mode << 4 | operandP->vop_reg);
987 /* All 1-bytes except S^# happen here. */
988 }
989 else
990 { /* {@}{q^}foo{(Rn)} or S^#foo */
991 if (operandP->vop_reg == -1 && operandP->vop_short != 's')
992 { /* "{@}{q^}foo" */
993 if (to_seg == now_seg)
994 {
995 if (length == 0)
996 {
997 know (operandP->vop_short == ' ');
998 p = frag_var (rs_machine_dependent, 10, 2,
999 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE),
1000 this_add_symbol, this_add_number,
1001 opcode_low_byteP);
1002 know (operandP->vop_mode == 10 + at);
1003 *p = at << 4;
1004 /* At is the only context we need to carry to */
1005 /* other side of relax() process. */
1006 /* Must be in the correct bit position of VAX */
1007 /* operand spec. byte. */
1008 }
1009 else
1010 {
1011 know (length);
1012 know (operandP->vop_short != ' ');
1013 p = frag_more (length + 1);
1014 /* JF is this array stuff really going to work? */
1015 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1016 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1017 length, this_add_symbol, 0,
1018 this_add_number, 1);
1019 }
1020 }
1021 else
1022 { /* to_seg != now_seg */
1023 if (this_add_symbol == NULL)
1024 {
1025 know (to_seg == SEG_ABSOLUTE);
1026 /* Do @#foo: simpler relocation than foo-.(pc) anyway. */
1027 p = frag_more (5);
1028 p[0] = VAX_ABSOLUTE_MODE; /* @#... */
1029 md_number_to_chars (p + 1, this_add_number, 4);
1030 if (length && length != 4)
1031 {
1032 as_warn ("Length specification ignored. Address mode 9F used");
1033 }
1034 }
1035 else
1036 {
1037 /* {@}{q^}other_seg */
1038 know ((length == 0 && operandP->vop_short == ' ')
1039 ||(length > 0 && operandP->vop_short != ' '));
1040 if (is_undefined)
1041 {
1042 /*
1043 * We have a SEG_UNKNOWN symbol. It might
1044 * turn out to be in the same segment as
1045 * the instruction, permitting relaxation.
1046 */
1047 p = frag_var (rs_machine_dependent, 5, 2,
1048 ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF),
1049 this_add_symbol, this_add_number,
1050 0);
1051 p[0] = at << 4;
1052 }
1053 else
1054 {
1055 if (length == 0)
1056 {
1057 know (operandP->vop_short == ' ');
1058 length = 4; /* Longest possible. */
1059 }
1060 p = frag_more (length + 1);
1061 p[0] = 0xF | ((at + "?\12\14?\16"[length]) << 4);
1062 md_number_to_chars (p + 1, this_add_number, length);
1063 fix_new (frag_now,
1064 p + 1 - frag_now->fr_literal,
1065 length, this_add_symbol, 0,
1066 this_add_number, 1);
1067 }
1068 }
1069 }
1070 }
1071 else
1072 { /* {@}{q^}foo(Rn) or S^# or I^# or # */
1073 if (operandP->vop_mode < 0xA)
1074 { /* # or S^# or I^# */
1075 /* know( (length == 0 && operandP->vop_short == ' ')
1076 || (length > 0 && operandP->vop_short != ' ')); */
1077 if (length == 0
1078 && to_seg == SEG_ABSOLUTE
1079 && operandP->vop_mode == 8 /* No '@'. */
1080 && this_add_number < 64
1081 && this_add_number >= 0)
1082 {
1083 operandP->vop_short = 's';
1084 }
1085 if (operandP->vop_short == 's')
1086 {
1087 FRAG_APPEND_1_CHAR (this_add_number);
1088 }
1089 else
1090 { /* I^#... */
1091 know (nbytes);
1092 p = frag_more (nbytes + 1);
1093 know (operandP->vop_reg == 0xF);
1094 p[0] = (operandP->vop_mode << 4) | 0xF;
1095 if (to_seg == SEG_ABSOLUTE)
1096 {
1097/*
1098 * If nbytes > 4, then we are scrod. We don't know if the
1099 * high order bytes are to be 0xFF or 0x00.
1100 * BSD4.2 & RMS say use 0x00. OK --- but this
1101 * assembler needs ANOTHER rewrite to
1102 * cope properly with this bug.
1103 */
1104 md_number_to_chars (p + 1, this_add_number, min (4, nbytes));
1105 if (nbytes > 4)
1106 {
1107 bzero (p + 5, nbytes - 4);
1108 }
1109 }
1110 else
1111 {
1112 if (to_seg == SEG_BIG)
1113 {
1114/*
1115 * Problem here is to get the bytes in the right order.
1116 * We stored our constant as LITTLENUMs, not bytes.
1117 */
1118 LITTLENUM_TYPE *lP;
1119
1120 lP = floatP->low;
1121 if (nbytes & 1)
1122 {
1123 know (nbytes == 1);
1124 p[1] = *lP;
1125 }
1126 else
1127 {
1128 for (p++; nbytes; nbytes -= 2, p += 2, lP++)
1129 {
1130 md_number_to_chars (p, *lP, 2);
1131 }
1132 }
1133 }
1134 else
1135 {
1136 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1137 nbytes, this_add_symbol, 0,
1138 this_add_number, 0);
1139 }
1140 }
1141 }
1142 }
1143 else
1144 { /* {@}{q^}foo(Rn) */
1145 know ((length == 0 && operandP->vop_short == ' ')
1146 ||(length > 0 && operandP->vop_short != ' '));
1147 if (length == 0)
1148 {
1149 if (to_seg == SEG_ABSOLUTE)
1150 {
1151 register long test;
1152
1153 test = this_add_number;
1154
1155 if (test < 0)
1156 test = ~test;
1157
1158 length = test & 0xffff8000 ? 4
1159 : test & 0xffffff80 ? 2
1160 : 1;
1161 }
1162 else
1163 {
1164 length = 4;
1165 }
1166 }
1167 p = frag_more (1 + length);
1168 know (operandP->vop_reg >= 0);
1169 p[0] = operandP->vop_reg
1170 | ((at | "?\12\14?\16"[length]) << 4);
1171 if (to_seg == SEG_ABSOLUTE)
1172 {
1173 md_number_to_chars (p + 1, this_add_number, length);
1174 }
1175 else
1176 {
1177 fix_new (frag_now, p + 1 - frag_now->fr_literal,
1178 length, this_add_symbol, 0,
1179 this_add_number, 0);
1180 }
1181 }
1182 }
1183 } /* if(single-byte-operand) */
1184 }
1185 } /* for(operandP) */
1186 } /* if(!need_pass_2&&!goofed) */
1187} /* vax_assemble() */
1188\f
1189/*
1190 * md_estimate_size_before_relax()
1191 *
1192 * Called just before relax().
1193 * Any symbol that is now undefined will not become defined.
1194 * Return the correct fr_subtype in the frag.
1195 * Return the initial "guess for fr_var" to caller.
1196 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
1197 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
1198 * Although it may not be explicit in the frag, pretend fr_var starts with a
1199 * 0 value.
1200 */
1201int
1202md_estimate_size_before_relax (fragP, segment)
1203 register fragS *fragP;
1204 register segT segment;
1205{
1206 register char *p;
1207 register int old_fr_fix;
1208
1209 old_fr_fix = fragP->fr_fix;
1210 switch (fragP->fr_subtype)
1211 {
1212 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_UNDF):
1213 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1214 { /* A relaxable case. */
1215 fragP->fr_subtype = ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE);
1216 }
1217 else
1218 {
1219 p = fragP->fr_literal + old_fr_fix;
1220 p[0] |= VAX_PC_RELATIVE_MODE; /* Preserve @ bit. */
1221 fragP->fr_fix += 1 + 4;
1222 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, 0,
1223 fragP->fr_offset, 1);
1224 frag_wane (fragP);
1225 }
1226 break;
1227
1228 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_UNDF):
1229 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1230 {
1231 fragP->fr_subtype = ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE);
1232 }
1233 else
1234 {
1235 p = fragP->fr_literal + old_fr_fix;
1236 *fragP->fr_opcode ^= 1; /* Reverse sense of branch. */
1237 p[0] = 6;
1238 p[1] = VAX_JMP;
1239 p[2] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1240 fragP->fr_fix += 1 + 1 + 1 + 4;
1241 fix_new (fragP, old_fr_fix + 3, 4, fragP->fr_symbol, 0,
1242 fragP->fr_offset, 1);
1243 frag_wane (fragP);
1244 }
1245 break;
1246
1247 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_UNDF):
1248 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1249 {
1250 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD);
1251 }
1252 else
1253 {
1254 p = fragP->fr_literal + old_fr_fix;
1255 p[0] = 2;
1256 p[1] = 0;
1257 p[2] = VAX_BRB;
1258 p[3] = 6;
1259 p[4] = VAX_JMP;
1260 p[5] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1261 fragP->fr_fix += 2 + 2 + 1 + 1 + 4;
1262 fix_new (fragP, old_fr_fix + 6, 4, fragP->fr_symbol, 0,
1263 fragP->fr_offset, 1);
1264 frag_wane (fragP);
1265 }
1266 break;
1267
1268 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_UNDF):
1269 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1270 {
1271 fragP->fr_subtype = ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE);
1272 }
1273 else
1274 {
1275 p = fragP->fr_literal + old_fr_fix;
1276 p[0] = 2;
1277 p[1] = VAX_BRB;
1278 p[2] = 6;
1279 p[3] = VAX_JMP;
1280 p[4] = VAX_PC_RELATIVE_MODE; /* ...(pc) */
1281 fragP->fr_fix += 1 + 2 + 1 + 1 + 4;
1282 fix_new (fragP, old_fr_fix + 5, 4, fragP->fr_symbol, 0,
1283 fragP->fr_offset, 1);
1284 frag_wane (fragP);
1285 }
1286 break;
1287
1288 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_UNDF):
1289 if (S_GET_SEGMENT(fragP->fr_symbol) == segment)
1290 {
1291 fragP->fr_subtype = ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE);
1292 }
1293 else
1294 {
1295 p = fragP->fr_literal + old_fr_fix;
1296 *fragP->fr_opcode += VAX_WIDEN_LONG;
1297 p[0] = VAX_PC_RELATIVE_MODE; /* ...(PC) */
1298 fragP->fr_fix += 1 + 4;
1299 fix_new (fragP, old_fr_fix + 1, 4, fragP->fr_symbol, 0,
1300 fragP->fr_offset, 1);
1301 frag_wane (fragP);
1302 }
1303 break;
1304
1305 default:
1306 break;
1307 }
1308 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
1309} /* md_estimate_size_before_relax() */
1310\f
1311/*
1312 * md_convert_frag();
1313 *
1314 * Called after relax() is finished.
1315 * In: Address of frag.
1316 * fr_type == rs_machine_dependent.
1317 * fr_subtype is what the address relaxed to.
1318 *
1319 * Out: Any fixSs and constants are set up.
1320 * Caller will turn frag into a ".space 0".
1321 */
1322void
1323md_convert_frag (fragP)
1324 register fragS *fragP;
1325{
1326 register char *addressP; /* -> _var to change. */
1327 register char *opcodeP; /* -> opcode char(s) to change. */
1328 register short int length_code; /* 2=long 1=word 0=byte */
1329 register short int extension; /* Size of relaxed address. */
1330 /* Added to fr_fix: incl. ALL var chars. */
1331 register symbolS *symbolP;
1332 register long where;
1333 register long address_of_var;
1334 /* Where, in file space, is _var of *fragP? */
1335 register long target_address;
1336 /* Where, in file space, does addr point? */
1337
1338 know (fragP->fr_type == rs_machine_dependent);
1339 length_code = fragP->fr_subtype & 3; /* depends on ENCODE_RELAX() */
1340 know (length_code >= 0 && length_code < 3);
1341 where = fragP->fr_fix;
1342 addressP = fragP->fr_literal + where;
1343 opcodeP = fragP->fr_opcode;
1344 symbolP = fragP->fr_symbol;
1345 know (symbolP);
1346 target_address = symbolP->sy_value + fragP->fr_offset;
1347 address_of_var = fragP->fr_address + where;
1348 switch (fragP->fr_subtype)
1349 {
1350 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_BYTE):
1351 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1352 addressP[0] |= 0xAF; /* Byte displacement. */
1353 addressP[1] = target_address - (address_of_var + 2);
1354 extension = 2;
1355 break;
1356
1357 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_WORD):
1358 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1359 addressP[0] |= 0xCF; /* Word displacement. */
1360 md_number_to_chars (addressP + 1, target_address - (address_of_var + 3), 2);
1361 extension = 3;
1362 break;
1363
1364 case ENCODE_RELAX (STATE_PC_RELATIVE, STATE_LONG):
1365 know (*addressP == 0 || *addressP == 0x10); /* '@' bit. */
1366 addressP[0] |= 0xEF; /* Long word displacement. */
1367 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1368 extension = 5;
1369 break;
1370
1371 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_BYTE):
1372 addressP[0] = target_address - (address_of_var + 1);
1373 extension = 1;
1374 break;
1375
1376 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_WORD):
1377 opcodeP[0] ^= 1; /* Reverse sense of test. */
1378 addressP[0] = 3;
1379 addressP[1] = VAX_BRB + VAX_WIDEN_WORD;
1380 md_number_to_chars (addressP + 2, target_address - (address_of_var + 4), 2);
1381 extension = 4;
1382 break;
1383
1384 case ENCODE_RELAX (STATE_CONDITIONAL_BRANCH, STATE_LONG):
1385 opcodeP[0] ^= 1; /* Reverse sense of test. */
1386 addressP[0] = 6;
1387 addressP[1] = VAX_JMP;
1388 addressP[2] = VAX_PC_RELATIVE_MODE;
1389 md_number_to_chars (addressP + 3, target_address, 4);
1390 extension = 7;
1391 break;
1392
1393 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_BYTE):
1394 addressP[0] = target_address - (address_of_var + 1);
1395 extension = 1;
1396 break;
1397
1398 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_WORD):
1399 opcodeP[0] += VAX_WIDEN_WORD; /* brb -> brw, bsbb -> bsbw */
1400 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1401 extension = 2;
1402 break;
1403
1404 case ENCODE_RELAX (STATE_ALWAYS_BRANCH, STATE_LONG):
1405 opcodeP[0] += VAX_WIDEN_LONG; /* brb -> jmp, bsbb -> jsb */
1406 addressP[0] = VAX_PC_RELATIVE_MODE;
1407 md_number_to_chars (addressP + 1, target_address - (address_of_var + 5), 4);
1408 extension = 5;
1409 break;
1410
1411 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_WORD):
1412 md_number_to_chars (addressP, target_address - (address_of_var + 2), 2);
1413 extension = 2;
1414 break;
1415
1416 case ENCODE_RELAX (STATE_COMPLEX_BRANCH, STATE_LONG):
1417 addressP[0] = 2;
1418 addressP[1] = 0;
1419 addressP[2] = VAX_BRB;
1420 addressP[3] = 6;
1421 addressP[4] = VAX_JMP;
1422 addressP[5] = VAX_PC_RELATIVE_MODE;
1423 md_number_to_chars (addressP + 6, target_address, 4);
1424 extension = 10;
1425 break;
1426
1427 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_BYTE):
1428 addressP[0] = target_address - (address_of_var + 1);
1429 extension = 1;
1430 break;
1431
1432 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_WORD):
1433 addressP[0] = 2;
1434 addressP[1] = VAX_BRB;
1435 addressP[2] = 3;
1436 addressP[3] = VAX_BRW;
1437 md_number_to_chars (addressP + 4, target_address - (address_of_var + 6), 2);
1438 extension = 6;
1439 break;
1440
1441 case ENCODE_RELAX (STATE_COMPLEX_HOP, STATE_LONG):
1442 addressP[0] = 2;
1443 addressP[1] = VAX_BRB;
1444 addressP[2] = 6;
1445 addressP[3] = VAX_JMP;
1446 addressP[4] = VAX_PC_RELATIVE_MODE;
1447 md_number_to_chars (addressP + 5, target_address, 4);
1448 extension = 9;
1449 break;
1450
1451 default:
1452 BAD_CASE (fragP->fr_subtype);
1453 break;
1454 }
1455 fragP->fr_fix += extension;
1456}
1457
1458/* Translate internal format of relocation info into target format.
1459
1460 On vax: first 4 bytes are normal unsigned long, next three bytes
1461 are symbolnum, least sig. byte first. Last byte is broken up with
1462 the upper nibble as nuthin, bit 3 as extern, bits 2 & 1 as length, and
1463 bit 0 as pcrel. */
1464void
1465md_ri_to_chars (the_bytes, ri)
1466 char *the_bytes;
1467 struct reloc_info_generic ri;
1468{
1469 /* this is easy */
1470 md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
1471 /* now the fun stuff */
1472 the_bytes[6] = (ri.r_symbolnum >> 16) & 0x0ff;
1473 the_bytes[5] = (ri.r_symbolnum >> 8) & 0x0ff;
1474 the_bytes[4] = ri.r_symbolnum & 0x0ff;
1475 the_bytes[7] = (((ri.r_extern << 3) & 0x08) | ((ri.r_length << 1) & 0x06) |
1476 ((ri.r_pcrel << 0) & 0x01)) & 0x0F;
1477}
1478\f
1479/*
1480 * BUGS, GRIPES, APOLOGIA, etc.
1481 *
1482 * The opcode table 'votstrs' needs to be sorted on opcode frequency.
1483 * That is, AFTER we hash it with hash_...(), we want most-used opcodes
1484 * to come out of the hash table faster.
1485 *
1486 * I am sorry to inflict
1487 * yet another VAX assembler on the world, but RMS says we must
1488 * do everything from scratch, to prevent pin-heads restricting
1489 * this software.
1490 */
1491
1492/*
1493 * This is a vaguely modular set of routines in C to parse VAX
1494 * assembly code using DEC mnemonics. It is NOT un*x specific.
1495 *
1496 * The idea here is that the assembler has taken care of all:
1497 * labels
1498 * macros
1499 * listing
1500 * pseudo-ops
1501 * line continuation
1502 * comments
1503 * condensing any whitespace down to exactly one space
1504 * and all we have to do is parse 1 line into a vax instruction
1505 * partially formed. We will accept a line, and deliver:
1506 * an error message (hopefully empty)
1507 * a skeleton VAX instruction (tree structure)
1508 * textual pointers to all the operand expressions
1509 * a warning message that notes a silly operand (hopefully empty)
1510 */
1511\f
1512/*
1513 * E D I T H I S T O R Y
1514 *
1515 * 17may86 Dean Elsner. Bug if line ends immediately after opcode.
1516 * 30apr86 Dean Elsner. New vip_op() uses arg block so change call.
1517 * 6jan86 Dean Elsner. Crock vip_begin() to call vip_op_defaults().
1518 * 2jan86 Dean Elsner. Invent synthetic opcodes.
1519 * Widen vax_opcodeT to 32 bits. Use a bit for VIT_OPCODE_SYNTHETIC,
1520 * which means this is not a real opcode, it is like a macro; it will
1521 * be relax()ed into 1 or more instructions.
1522 * Use another bit for VIT_OPCODE_SPECIAL if the op-code is not optimised
1523 * like a regular branch instruction. Option added to vip_begin():
1524 * exclude synthetic opcodes. Invent synthetic_votstrs[].
1525 * 31dec85 Dean Elsner. Invent vit_opcode_nbytes.
1526 * Also make vit_opcode into a char[]. We now have n-byte vax opcodes,
1527 * so caller's don't have to know the difference between a 1-byte & a
1528 * 2-byte op-code. Still need vax_opcodeT concept, so we know how
1529 * big an object must be to hold an op.code.
1530 * 30dec85 Dean Elsner. Widen typedef vax_opcodeT in "vax-inst.h"
1531 * because vax opcodes may be 16 bits. Our crufty C compiler was
1532 * happily initialising 8-bit vot_codes with 16-bit numbers!
1533 * (Wouldn't the 'phone company like to compress data so easily!)
1534 * 29dec85 Dean Elsner. New static table vax_operand_width_size[].
1535 * Invented so we know hw many bytes a "I^#42" needs in its immediate
1536 * operand. Revised struct vop in "vax-inst.h": explicitly include
1537 * byte length of each operand, and it's letter-code datum type.
1538 * 17nov85 Dean Elsner. Name Change.
1539 * Due to ar(1) truncating names, we learned the hard way that
1540 * "vax-inst-parse.c" -> "vax-inst-parse." dropping the "o" off
1541 * the archived object name. SO... we shortened the name of this
1542 * source file, and changed the makefile.
1543 */
1544
1545static char *op_hash = NULL; /* handle of the OPCODE hash table */
1546 /* NULL means any use before vip_begin() */
1547 /* will crash */
1548
1549/*
1550 * In: 1 character, from "bdfghloqpw" being the data-type of an operand
1551 * of a vax instruction.
1552 *
1553 * Out: the length of an operand of that type, in bytes.
1554 * Special branch operands types "-?!" have length 0.
1555 */
1556
1557static const short int vax_operand_width_size[256] =
1558{
1559
1560#define _ 0
1561 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1562 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1563 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1564 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1565 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1566 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1567 _, _, 1, _, 8, _, 4, 8, 16, _, _, _, 4, _, _, 16, /* ..b.d.fgh...l..o */
1568 _, 8, _, _, _, _, _, 2, _, _, _, _, _, _, _, _, /* .q.....w........ */
1569 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1570 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1571 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1572 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1573 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1574 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1575 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _,
1576 _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _};
1577#undef _
1578\f
1579/*
1580 * This perversion encodes all the vax opcodes as a bunch of strings.
1581 * RMS says we should build our hash-table at run-time. Hmm.
1582 * Please would someone arrange these in decreasing frequency of opcode?
1583 * Because of the way hash_...() works, the most frequently used opcode
1584 * should be textually first and so on.
1585 *
1586 * Input for this table was 'vax.opcodes', awk(1)ed by 'vax.opcodes.c.awk' .
1587 * So change 'vax.opcodes', then re-generate this table.
1588 */
1589
1590#include "vax-opcode.h"
1591\f
1592/*
1593 * This is a table of optional op-codes. All of them represent
1594 * 'synthetic' instructions that seem popular.
1595 *
1596 * Here we make some pseudo op-codes. Every code has a bit set to say
1597 * it is synthetic. This lets you catch them if you want to
1598 * ban these opcodes. They are mnemonics for "elastic" instructions
1599 * that are supposed to assemble into the fewest bytes needed to do a
1600 * branch, or to do a conditional branch, or whatever.
1601 *
1602 * The opcode is in the usual place [low-order n*8 bits]. This means
1603 * that if you mask off the bucky bits, the usual rules apply about
1604 * how long the opcode is.
1605 *
1606 * All VAX branch displacements come at the end of the instruction.
1607 * For simple branches (1-byte opcode + 1-byte displacement) the last
1608 * operand is coded 'b?' where the "data type" '?' is a clue that we
1609 * may reverse the sense of the branch (complement lowest order bit)
1610 * and branch around a jump. This is by far the most common case.
1611 * That is why the VIT_OPCODE_SYNTHETIC bit is set: it says this is
1612 * a 0-byte op-code followed by 2 or more bytes of operand address.
1613 *
1614 * If the op-code has VIT_OPCODE_SPECIAL set, then we have a more unusual
1615 * case.
1616 *
1617 * For JBSB & JBR the treatment is the similar, except (1) we have a 'bw'
1618 * option before (2) we can directly JSB/JMP because there is no condition.
1619 * These operands have 'b-' as their access/data type.
1620 *
1621 * That leaves a bunch of random opcodes: JACBx, JxOBxxx. In these
1622 * cases, we do the same idea. JACBxxx are all marked with a 'b!'
1623 * JAOBxxx & JSOBxxx are marked with a 'b:'.
1624 *
1625 */
1626#if (VIT_OPCODE_SYNTHETIC != 0x80000000)
1627You have just broken the encoding below, which assumes the sign bit
1628 means 'I am an imaginary instruction'.
1629#endif
1630
1631#if (VIT_OPCODE_SPECIAL != 0x40000000)
1632 You have just broken the encoding below, which assumes the 0x40 M bit means
1633 'I am not to be "optimised" the way normal branches are'.
1634#endif
1635
1636static const struct vot
1637 synthetic_votstrs[] =
1638{
1639 {"jbsb",
1640 {"b-", 0xC0000010}}, /* BSD 4.2 */
1641 /* jsb used already */
1642 {"jbr",
1643 {"b-", 0xC0000011}}, /* BSD 4.2 */
1644 {"jr",
1645 {"b-", 0xC0000011}}, /* consistent */
1646 {"jneq",
1647 {"b?", 0x80000012}},
1648 {"jnequ",
1649 {"b?", 0x80000012}},
1650 {"jeql",
1651 {"b?", 0x80000013}},
1652 {"jeqlu",
1653 {"b?", 0x80000013}},
1654 {"jgtr",
1655 {"b?", 0x80000014}},
1656 {"jleq",
1657 {"b?", 0x80000015}},
1658 /* un-used opcodes here */
1659 {"jgeq",
1660 {"b?", 0x80000018}},
1661 {"jlss",
1662 {"b?", 0x80000019}},
1663 {"jgtru",
1664 {"b?", 0x8000001a}},
1665 {"jlequ",
1666 {"b?", 0x8000001b}},
1667 {"jvc",
1668 {"b?", 0x8000001c}},
1669 {"jvs",
1670 {"b?", 0x8000001d}},
1671 {"jgequ",
1672 {"b?", 0x8000001e}},
1673 {"jcc",
1674 {"b?", 0x8000001e}},
1675 {"jlssu",
1676 {"b?", 0x8000001f}},
1677 {"jcs",
1678 {"b?", 0x8000001f}},
1679
1680 {"jacbw",
1681 {"rwrwmwb!", 0xC000003d}},
1682 {"jacbf",
1683 {"rfrfmfb!", 0xC000004f}},
1684 {"jacbd",
1685 {"rdrdmdb!", 0xC000006f}},
1686 {"jacbb",
1687 {"rbrbmbb!", 0xC000009d}},
1688 {"jacbl",
1689 {"rlrlmlb!", 0xC00000f1}},
1690 {"jacbg",
1691 {"rgrgmgb!", 0xC0004ffd}},
1692 {"jacbh",
1693 {"rhrhmhb!", 0xC0006ffd}},
1694
1695 {"jbs",
1696 {"rlvbb?", 0x800000e0}},
1697 {"jbc",
1698 {"rlvbb?", 0x800000e1}},
1699 {"jbss",
1700 {"rlvbb?", 0x800000e2}},
1701 {"jbcs",
1702 {"rlvbb?", 0x800000e3}},
1703 {"jbsc",
1704 {"rlvbb?", 0x800000e4}},
1705 {"jbcc",
1706 {"rlvbb?", 0x800000e5}},
1707 {"jbssi",
1708 {"rlvbb?", 0x800000e6}},
1709 {"jbcci",
1710 {"rlvbb?", 0x800000e7}},
1711 {"jlbs",
1712 {"rlb?", 0x800000e8}}, /* JF changed from rlvbb? */
1713 {"jlbc",
1714 {"rlb?", 0x800000e9}}, /* JF changed from rlvbb? */
1715
1716 {"jaoblss",
1717 {"rlmlb:", 0xC00000f2}},
1718 {"jaobleq",
1719 {"rlmlb:", 0xC00000f3}},
1720 {"jsobgeq",
1721 {"mlb:", 0xC00000f4}}, /* JF was rlmlb: */
1722 {"jsobgtr",
1723 {"mlb:", 0xC00000f5}}, /* JF was rlmlb: */
1724
1725/* CASEx has no branch addresses in our conception of it. */
1726/* You should use ".word ..." statements after the "case ...". */
1727
1728 {"", ""} /* empty is end sentinel */
1729
1730}; /* synthetic_votstrs */
1731\f
1732/*
1733 * v i p _ b e g i n ( )
1734 *
1735 * Call me once before you decode any lines.
1736 * I decode votstrs into a hash table at op_hash (which I create).
1737 * I return an error text: hopefully "".
1738 * If you want, I will include the 'synthetic' jXXX instructions in the
1739 * instruction table.
1740 * You must nominate metacharacters for eg DEC's "#", "@", "^".
1741 */
1742
1743char *
1744vip_begin (synthetic_too, immediate, indirect, displen)
1745 int synthetic_too; /* TRUE means include jXXX op-codes. */
1746 char *immediate, *indirect, *displen;
1747{
1748 register const struct vot *vP; /* scan votstrs */
1749 register char *retval; /* error text */
1750
1751 char *hash_insert (); /* */
1752 char *hash_new (); /* lies */
1753
1754 if ((op_hash = hash_new ()))
1755 {
1756 retval = ""; /* OK so far */
1757 for (vP = votstrs; *vP->vot_name && !*retval; vP++)
1758 {
1759 retval = hash_insert (op_hash, vP->vot_name, &vP->vot_detail);
1760 }
1761 if (synthetic_too)
1762 {
1763 for (vP = synthetic_votstrs; *vP->vot_name && !*retval; vP++)
1764 {
1765 retval = hash_insert (op_hash, vP->vot_name, &vP->vot_detail);
1766 }
1767 }
1768 }
1769 else
1770 {
1771 retval = "virtual memory exceeded";
1772 }
1773#ifndef CONST_TABLE
1774 vip_op_defaults (immediate, indirect, displen);
1775#endif
1776
1777 return (retval);
1778}
1779
1780
1781/*
1782 * v i p _ e n d ( )
1783 *
1784 * Call me once after you have decoded all lines.
1785 * I do any cleaning-up needed.
1786 *
1787 * We don't have to do any cleanup ourselves: all of our operand
1788 * symbol table is static, and free()ing it is naughty.
1789 */
1790vip_end ()
1791{
1792}
1793\f
1794/*
1795 * v i p ( )
1796 *
1797 * This converts a string into a vax instruction.
1798 * The string must be a bare single instruction in dec-vax (with BSD4 frobs)
1799 * format.
1800 * It provides some error messages: at most one fatal error message (which
1801 * stops the scan) and at most one warning message for each operand.
1802 * The vax instruction is returned in exploded form, since we have no
1803 * knowledge of how you parse (or evaluate) your expressions.
1804 * We do however strip off and decode addressing modes and operation
1805 * mnemonic.
1806 *
1807 * The exploded instruction is returned to a struct vit of your choice.
1808 * #include "vax-inst.h" to know what a struct vit is.
1809 *
1810 * This function's value is a string. If it is not "" then an internal
1811 * logic error was found: read this code to assign meaning to the string.
1812 * No argument string should generate such an error string:
1813 * it means a bug in our code, not in the user's text.
1814 *
1815 * You MUST have called vip_begin() once and vip_end() never before using
1816 * this function.
1817 */
1818
1819char * /* "" or bug string */
1820vip (vitP, instring)
1821 struct vit *vitP; /* We build an exploded instruction here. */
1822 char *instring; /* Text of a vax instruction: we modify. */
1823{
1824 register struct vot_wot *vwP; /* How to bit-encode this opcode. */
1825 register char *p; /* 1/skip whitespace.2/scan vot_how */
1826 register char *q; /* */
1827 register char *bug; /* "" or program logic error */
1828 register unsigned char count; /* counts number of operands seen */
1829 register struct vop *operandp;/* scan operands in struct vit */
1830 register char *alloperr; /* error over all operands */
1831 register char c; /* Remember char, (we clobber it */
1832 /* with '\0' temporarily). */
1833 register vax_opcodeT oc; /* Op-code of this instruction. */
1834
1835 struct vot_wot *hash_find ();
1836 char *vip_op ();
1837
1838 bug = "";
1839 if (*instring == ' ')
1840 ++instring; /* Skip leading whitespace. */
1841 for (p = instring; *p && *p != ' '; p++)
1842 ; /* MUST end in end-of-string or exactly 1 space. */
1843 /* Scanned up to end of operation-code. */
1844 /* Operation-code is ended with whitespace. */
1845 if (p - instring == 0)
1846 {
1847 vitP->vit_error = "No operator";
1848 count = 0;
1849 bzero (vitP->vit_opcode, sizeof (vitP->vit_opcode));
1850 }
1851 else
1852 {
1853 c = *p;
1854 *p = '\0';
1855 /*
1856 * Here with instring pointing to what better be an op-name, and p
1857 * pointing to character just past that.
1858 * We trust instring points to an op-name, with no whitespace.
1859 */
1860 vwP = hash_find (op_hash, instring);
1861 *p = c; /* Restore char after op-code. */
1862 if (vwP == 0)
1863 {
1864 vitP->vit_error = "Unknown operator";
1865 count = 0;
1866 bzero (vitP->vit_opcode, sizeof (vitP->vit_opcode));
1867 }
1868 else
1869 {
1870 /*
1871 * We found a match! So lets pick up as many operands as the
1872 * instruction wants, and even gripe if there are too many.
1873 * We expect comma to seperate each operand.
1874 * We let instring track the text, while p tracks a part of the
1875 * struct vot.
1876 */
1877 /*
1878 * The lines below know about 2-byte opcodes starting FD,FE or FF.
1879 * They also understand synthetic opcodes. Note:
1880 * we return 32 bits of opcode, including bucky bits, BUT
1881 * an opcode length is either 8 or 16 bits for vit_opcode_nbytes.
1882 */
1883 oc = vwP->vot_code; /* The op-code. */
1884 vitP->vit_opcode_nbytes = (oc & 0xFF) >= 0xFD ? 2 : 1;
1885 md_number_to_chars (vitP->vit_opcode, oc, 4);
1886 count = 0; /* no operands seen yet */
1887 instring = p; /* point just past operation code */
1888 alloperr = "";
1889 for (p = vwP->vot_how, operandp = vitP->vit_operand;
1890 !*alloperr && !*bug && *p;
1891 operandp++, p += 2
1892 )
1893 {
1894 /*
1895 * Here to parse one operand. Leave instring pointing just
1896 * past any one ',' that marks the end of this operand.
1897 */
1898 if (!p[1])
1899 bug = "p"; /* ODD(!!) number of bytes in vot_how?? */
1900 else if (*instring)
1901 {
1902 for (q = instring; (c = *q) && c != ','; q++)
1903 ;
1904 /*
1905 * Q points to ',' or '\0' that ends argument. C is that
1906 * character.
1907 */
1908 *q = 0;
1909 operandp->vop_width = p[1];
1910 operandp->vop_nbytes = vax_operand_width_size[p[1]];
1911 operandp->vop_access = p[0];
1912 bug = vip_op (instring, operandp);
1913 *q = c; /* Restore input text. */
1914 if (*(operandp->vop_error))
1915 alloperr = "Bad operand";
1916 instring = q + (c ? 1 : 0); /* next operand (if any) */
1917 count++; /* won another argument, may have an operr */
1918 }
1919 else
1920 alloperr = "Not enough operands";
1921 }
1922 if (!*alloperr)
1923 {
1924 if (*instring == ' ')
1925 instring++; /* Skip whitespace. */
1926 if (*instring)
1927 alloperr = "Too many operands";
1928 }
1929 vitP->vit_error = alloperr;
1930 }
1931 }
1932 vitP->vit_operands = count;
1933 return (bug);
1934}
1935\f
1936#ifdef test
1937
1938/*
1939 * Test program for above.
1940 */
1941
1942struct vit myvit; /* build an exploded vax instruction here */
1943char answer[100]; /* human types a line of vax assembler here */
1944char *mybug; /* "" or an internal logic diagnostic */
1945int mycount; /* number of operands */
1946struct vop *myvop; /* scan operands from myvit */
1947int mysynth; /* TRUE means want synthetic opcodes. */
1948char my_immediate[200];
1949char my_indirect[200];
1950char my_displen[200];
1951
1952char *vip ();
1953
1954main ()
1955{
1956 char *p;
1957 char *vip_begin ();
1958
1959 printf ("0 means no synthetic instructions. ");
1960 printf ("Value for vip_begin? ");
1961 gets (answer);
1962 sscanf (answer, "%d", &mysynth);
1963 printf ("Synthetic opcodes %s be included.\n", mysynth ? "will" : "will not");
1964 printf ("enter immediate symbols eg enter # ");
1965 gets (my_immediate);
1966 printf ("enter indirect symbols eg enter @ ");
1967 gets (my_indirect);
1968 printf ("enter displen symbols eg enter ^ ");
1969 gets (my_displen);
1970 if (*(p = vip_begin (mysynth, my_immediate, my_indirect, my_displen)))
1971 {
1972 error ("vip_begin=%s", p);
1973 }
1974 printf ("An empty input line will quit you from the vax instruction parser\n");
1975 for (;;)
1976 {
1977 printf ("vax instruction: ");
1978 fflush (stdout);
1979 gets (answer);
1980 if (!*answer)
1981 {
1982 break; /* out of for each input text loop */
1983 }
1984 mybug = vip (&myvit, answer);
1985 if (*mybug)
1986 {
1987 printf ("BUG:\"%s\"\n", mybug);
1988 }
1989 if (*myvit.vit_error)
1990 {
1991 printf ("ERR:\"%s\"\n", myvit.vit_error);
1992 }
1993 printf ("opcode=");
1994 for (mycount = myvit.vit_opcode_nbytes, p = myvit.vit_opcode;
1995 mycount;
1996 mycount--, p++
1997 )
1998 {
1999 printf ("%02x ", *p & 0xFF);
2000 }
2001 printf (" operand count=%d.\n", mycount = myvit.vit_operands);
2002 for (myvop = myvit.vit_operand; mycount; mycount--, myvop++)
2003 {
2004 printf ("mode=%xx reg=%xx ndx=%xx len='%c'=%c%c%d. expr=\"",
2005 myvop->vop_mode, myvop->vop_reg, myvop->vop_ndx,
2006 myvop->vop_short, myvop->vop_access, myvop->vop_width,
2007 myvop->vop_nbytes);
2008 for (p = myvop->vop_expr_begin; p <= myvop->vop_expr_end; p++)
2009 {
2010 putchar (*p);
2011 }
2012 printf ("\"\n");
2013 if (*myvop->vop_error)
2014 {
2015 printf (" err:\"%s\"\n", myvop->vop_error);
2016 }
2017 if (*myvop->vop_warn)
2018 {
2019 printf (" wrn:\"%s\"\n", myvop->vop_warn);
2020 }
2021 }
2022 }
2023 vip_end ();
2024 exit ();
2025}
2026
2027#endif /* #ifdef test */
2028
2029/* end of vax_ins_parse.c */
2030
2031 /* JF this used to be a separate file also */
2032/* vax_reg_parse.c - convert a VAX register name to a number */
2033
2034/* Copyright (C) 1987 Free Software Foundation, Inc. A part of GNU. */
2035
2036/*
2037 * v a x _ r e g _ p a r s e ( )
2038 *
2039 * Take 3 char.s, the last of which may be `\0` (non-existent)
2040 * and return the VAX register number that they represent.
2041 *
2042 * Return -1 if they don't form a register name. Good names return
2043 * a number from 0:15 inclusive.
2044 *
2045 * Case is not important in a name.
2046 *
2047 * Register names understood are:
2048 *
2049 * R0
2050 * R1
2051 * R2
2052 * R3
2053 * R4
2054 * R5
2055 * R6
2056 * R7
2057 * R8
2058 * R9
2059 * R10
2060 * R11
2061 * R12 AP
2062 * R13 FP
2063 * R14 SP
2064 * R15 PC
2065 *
2066 */
2067
2068#include <ctype.h>
2069#define AP (12)
2070#define FP (13)
2071#define SP (14)
2072#define PC (15)
2073\f
2074int /* return -1 or 0:15 */
2075vax_reg_parse (c1, c2, c3) /* 3 chars of register name */
2076 char c1, c2, c3; /* c3 == 0 if 2-character reg name */
2077{
2078 register int retval; /* return -1:15 */
2079
2080 retval = -1;
2081
2082 if (isupper (c1))
2083 c1 = tolower (c1);
2084 if (isupper (c2))
2085 c2 = tolower (c2);
2086 if (isdigit (c2) && c1 == 'r')
2087 {
2088 retval = c2 - '0';
2089 if (isdigit (c3))
2090 {
2091 retval = retval * 10 + c3 - '0';
2092 retval = (retval > 15) ? -1 : retval;
2093 /* clamp the register value to 1 hex digit */
2094 }
2095 else if (c3)
2096 retval = -1; /* c3 must be '\0' or a digit */
2097 }
2098 else if (c3) /* There are no three letter regs */
2099 retval = -1;
2100 else if (c2 == 'p')
2101 {
2102 switch (c1)
2103 {
2104 case 's':
2105 retval = SP;
2106 break;
2107 case 'f':
2108 retval = FP;
2109 break;
2110 case 'a':
2111 retval = AP;
2112 break;
2113 default:
2114 retval = -1;
2115 }
2116 }
2117 else if (c1 == 'p' && c2 == 'c')
2118 retval = PC;
2119 else
2120 retval = -1;
2121 return (retval);
2122}
2123
2124/*
2125 * v i p _ o p ( )
2126 *
2127 * Parse a vax operand in DEC assembler notation.
2128 * For speed, expect a string of whitespace to be reduced to a single ' '.
2129 * This is the case for GNU AS, and is easy for other DEC-compatible
2130 * assemblers.
2131 *
2132 * Knowledge about DEC VAX assembler operand notation lives here.
2133 * This doesn't even know what a register name is, except it believes
2134 * all register names are 2 or 3 characters, and lets vax_reg_parse() say
2135 * what number each name represents.
2136 * It does, however, know that PC, SP etc are special registers so it can
2137 * detect addressing modes that are silly for those registers.
2138 *
2139 * Where possible, it delivers 1 fatal or 1 warning message if the operand
2140 * is suspect. Exactly what we test for is still evolving.
2141 */
2142
2143/*
2144 * B u g s
2145 *
2146 * Arg block.
2147 *
2148 * There were a number of 'mismatched argument type' bugs to vip_op.
2149 * The most general solution is to typedef each (of many) arguments.
2150 * We used instead a typedef'd argument block. This is less modular
2151 * than using seperate return pointers for each result, but runs faster
2152 * on most engines, and seems to keep programmers happy. It will have
2153 * to be done properly if we ever want to use vip_op as a general-purpose
2154 * module (it was designed to be).
2155 *
2156 * G^
2157 *
2158 * Doesn't support DEC "G^" format operands. These always take 5 bytes
2159 * to express, and code as modes 8F or 9F. Reason: "G^" deprives you of
2160 * optimising to (say) a "B^" if you are lucky in the way you link.
2161 * When someone builds a linker smart enough to convert "G^" to "B^", "W^"
2162 * whenever possible, then we should implement it.
2163 * If there is some other use for "G^", feel free to code it in!
2164 *
2165 *
2166 * speed
2167 *
2168 * If I nested if()s more, I could avoid testing (*err) which would save
2169 * time, space and page faults. I didn't nest all those if()s for clarity
2170 * and because I think the mode testing can be re-arranged 1st to test the
2171 * commoner constructs 1st. Does anybody have statistics on this?
2172 *
2173 *
2174 *
2175 * error messages
2176 *
2177 * In future, we should be able to 'compose' error messages in a scratch area
2178 * and give the user MUCH more informative error messages. Although this takes
2179 * a little more code at run-time, it will make this module much more self-
2180 * documenting. As an example of what sucks now: most error messages have
2181 * hardwired into them the DEC VAX metacharacters "#^@" which are nothing like
2182 * the Un*x characters "$`*", that most users will expect from this AS.
2183 */
2184\f
2185/*
2186 * The input is a string, ending with '\0'.
2187 *
2188 * We also require a 'hint' of what kind of operand is expected: so
2189 * we can remind caller not to write into literals for instance.
2190 *
2191 * The output is a skeletal instruction.
2192 *
2193 * The algorithm has two parts.
2194 * 1. extract the syntactic features (parse off all the @^#-()+[] mode crud);
2195 * 2. express the @^#-()+[] as some parameters suited to further analysis.
2196 *
2197 * 2nd step is where we detect the googles of possible invalid combinations
2198 * a human (or compiler) might write. Note that if we do a half-way
2199 * decent assembler, we don't know how long to make (eg) displacement
2200 * fields when we first meet them (because they may not have defined values).
2201 * So we must wait until we know how many bits are needed for each address,
2202 * then we can know both length and opcodes of instructions.
2203 * For reason(s) above, we will pass to our caller a 'broken' instruction
2204 * of these major components, from which our caller can generate instructions:
2205 * - displacement length I^ S^ L^ B^ W^ unspecified
2206 * - mode (many)
2207 * - register R0-R15 or absent
2208 * - index register R0-R15 or absent
2209 * - expression text what we don't parse
2210 * - error text(s) why we couldn't understand the operand
2211 */
2212
2213/*
2214 * To decode output of this, test errtxt. If errtxt[0] == '\0', then
2215 * we had no errors that prevented parsing. Also, if we ever report
2216 * an internal bug, errtxt[0] is set non-zero. So one test tells you
2217 * if the other outputs are to be taken seriously.
2218 */
2219
2220
2221 /* vax registers we need to know */
2222/* JF #define SP (14)
2223/* JF for one big happy file #define PC (15) */
2224
2225 /* useful ideas */
2226/* #define TRUE (1) */
2227/* #define FALSE (0) */
2228\f
2229/*
2230 * Because this module is useful for both VMS and UN*X style assemblers
2231 * and because of the variety of UN*X assemblers we must recognise
2232 * the different conventions for assembler operand notation. For example
2233 * VMS says "#42" for immediate mode, while most UN*X say "$42".
2234 * We permit arbitrary sets of (single) characters to represent the
2235 * 3 concepts that DEC writes '#', '@', '^'.
2236 */
2237
2238 /* character tests */
2239#define VIP_IMMEDIATE 01 /* Character is like DEC # */
2240#define VIP_INDIRECT 02 /* Char is like DEC @ */
2241#define VIP_DISPLEN 04 /* Char is like DEC ^ */
2242
2243#define IMMEDIATEP(c) (vip_metacharacters [(c)&0xff]&VIP_IMMEDIATE)
2244#define INDIRECTP(c) (vip_metacharacters [(c)&0xff]&VIP_INDIRECT)
2245#define DISPLENP(c) (vip_metacharacters [(c)&0xff]&VIP_DISPLEN)
2246
2247/* We assume 8 bits per byte. Use vip_op_defaults() to set these up BEFORE we
2248 * are ever called.
2249 */
2250
2251#if defined(CONST_TABLE)
2252#define _ 0,
2253#define I VIP_IMMEDIATE,
2254#define S VIP_INDIRECT,
2255#define D VIP_DISPLEN,
2256static const char
2257vip_metacharacters[256] = {
2258_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*^@ ^A ^B ^C ^D ^E ^F ^G ^H ^I ^J ^K ^L ^M ^N ^O*/
2259_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*^P ^Q ^R ^S ^T ^U ^V ^W ^X ^Y ^Z ^[ ^\ ^] ^^ ^_*/
2260_ _ _ _ I _ _ _ _ _ S _ _ _ _ _/*sp ! " # $ % & ' ( ) * + , - . /*/
2261_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*0 1 2 3 4 5 6 7 8 9 : ; < = > ?*/
2262_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*@ A B C D E F G H I J K L M N O*/
2263_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*P Q R S T U V W X Y Z [ \ ] ^ _*/
2264D _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*` a b c d e f g h i j k l m n o*/
2265_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _/*p q r s t u v w x y z { | } ~ ^?*/
2266
2267_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2268_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2269_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2270_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2271_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2272_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2273_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2274_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2275};
2276#undef _
2277#undef I
2278#undef S
2279#undef D
2280#else
2281static char vip_metacharacters[256];
2282
2283/* Macro is faster under GCC; The constant table is faster yet, but only works with ASCII */
2284#if 0
2285static
2286#ifdef __GNUC__
2287inline
2288#endif
2289static void
2290vip_op_1(bit,syms)
2291int bit;
2292char *syms;
2293{
2294 unsigned char t;
2295
2296 while(t= *syms++)
2297 vip_metacharacters[t]|=bit;
2298}
2299#else
2300#define vip_op_1(bit,syms) { \
2301 unsigned char t; \
2302 char *table=vip_metacharacters; \
2303 while(t= *syms++) \
2304 table[t]|=bit; \
2305 }
2306#endif
2307
2308vip_op_defaults (immediate, indirect, displen) /* can be called any time */
2309 char *immediate, /* Strings of characters for each job. */
2310 *indirect, *displen; /* more arguments may appear in future! */
2311{
2312 vip_op_1 (VIP_IMMEDIATE, immediate);
2313 vip_op_1 (VIP_INDIRECT, indirect);
2314 vip_op_1 (VIP_DISPLEN, displen);
2315}
2316#endif
2317
2318\f
2319/*
2320 * Dec defines the semantics of address modes (and values)
2321 * by a two-letter code, explained here.
2322 *
2323 * letter 1: access type
2324 *
2325 * a address calculation - no data access, registers forbidden
2326 * b branch displacement
2327 * m read - let go of bus - write back "modify"
2328 * r read
2329 * v bit field address: like 'a' but registers are OK
2330 * w write
2331 * space no operator (eg ".long foo") [our convention]
2332 *
2333 * letter 2: data type (i.e. width, alignment)
2334 *
2335 * b byte
2336 * d double precision floating point (D format)
2337 * f single precision floating point (F format)
2338 * g G format floating
2339 * h H format floating
2340 * l longword
2341 * o octaword
2342 * q quadword
2343 * w word
2344 * ? simple synthetic branch operand
2345 * - unconditional synthetic JSB/JSR operand
2346 * ! complex synthetic branch operand
2347 *
2348 * The '-?!' letter 2's are not for external consumption. They are used
2349 * for various assemblers. Generally, all unknown widths are assumed 0.
2350 * We don't limit your choice of width character.
2351 *
2352 * DEC operands are hard work to parse. For example, '@' as the first
2353 * character means indirect (deferred) mode but elswhere it is a shift
2354 * operator.
2355 * The long-winded explanation of how this is supposed to work is
2356 * cancelled. Read a DEC vax manual.
2357 * We try hard not to parse anything that MIGHT be part of the expression
2358 * buried in that syntax. For example if we see @...(Rn) we don't check
2359 * for '-' before the '(' because mode @-(Rn) does not exist.
2360 *
2361 * After parsing we have:
2362 *
2363 * at TRUE if leading '@' (or Un*x '*')
2364 * len takes one value from " bilsw". eg B^ -> 'b'.
2365 * hash TRUE if leading '#' (or Un*x '$')
2366 * expr_begin, expr_end the expression we did not parse
2367 * even though we don't interpret it, we make use
2368 * of its presence or absence.
2369 * sign -1: -(Rn) 0: absent +1: (Rn)+
2370 * paren TRUE if () are around register
2371 * reg major register number 0:15 -1 means absent
2372 * ndx index register number 0:15 -1 means absent
2373 *
2374 * Again, I dare not explain it: just trace ALL the code!
2375 */
2376\f
2377char * /* (code here) bug message, "" = OK */
2378 /* our code bug, NOT bad assembly language */
2379vip_op (optext, vopP)
2380 char *optext; /* user's input string e.g.: */
2381 /* "@B^foo@bar(AP)[FP]:" */
2382 struct vop *vopP; /* In: vop_access, vop_width. */
2383 /* Out: _ndx, _reg, _mode, _short, _warn, */
2384 /* _error _expr_begin, _expr_end, _nbytes. */
2385 /* vop_nbytes : number of bytes in a datum. */
2386{
2387 char *p; /* track operand text forward */
2388 char *q; /* track operand text backward */
2389 int at; /* TRUE if leading '@' ('*') seen */
2390 char len; /* one of " bilsw" */
2391 int hash; /* TRUE if leading '#' ('$') seen */
2392 int sign; /* -1, 0 or +1 */
2393 int paren; /* TRUE if () surround register */
2394 int reg; /* register number, -1:absent */
2395 int ndx; /* index register number -1:absent */
2396 char *bug; /* report any logic error in here, ""==OK */
2397 char *err; /* report illegal operand, ""==OK */
2398 /* " " is a FAKE error: means we won */
2399 /* ANY err that begins with ' ' is a fake. */
2400 /* " " is converted to "" before return */
2401 char *wrn; /* warn about weird modes pf address */
2402 char *oldq; /* preserve q in case we backup */
2403 int mode; /* build up 4-bit operand mode here */
2404 /* note: index mode is in ndx, this is */
2405 /* the major mode of operand address */
2406/*
2407 * Notice how we move wrong-arg-type bugs INSIDE this module: if we
2408 * get the types wrong below, we lose at compile time rather than at
2409 * lint or run time.
2410 */
2411 char access; /* vop_access. */
2412 char width; /* vop_width. */
2413
2414 int vax_reg_parse (); /* returns 0:15 or -1 if not a register */
2415
2416 access = vopP->vop_access;
2417 width = vopP->vop_width;
2418 bug = /* none of our code bugs (yet) */
2419 err = /* no user text errors */
2420 wrn = ""; /* no warnings even */
2421
2422 p = optext;
2423
2424 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2425 p++; /* skip over whitespace */
2426
2427 if (at = INDIRECTP (*p))
2428 { /* TRUE if *p=='@'(or '*' for Un*x) */
2429 p++; /* at is determined */
2430 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2431 p++; /* skip over whitespace */
2432 }
2433
2434 /*
2435 * This code is subtle. It tries to detect all legal (letter)'^'
2436 * but it doesn't waste time explicitly testing for premature '\0' because
2437 * this case is rejected as a mismatch against either (letter) or '^'.
2438 */
2439 {
2440 register char c;
2441
2442 c = *p;
2443 if (isupper (c))
2444 c = tolower (c);
2445 if (DISPLENP (p[1]) && strchr ("bilws", len = c))
2446 p += 2; /* skip (letter) '^' */
2447 else /* no (letter) '^' seen */
2448 len = ' '; /* len is determined */
2449 }
2450
2451 if (*p == ' ') /* Expect all whitespace reduced to ' '. */
2452 p++; /* skip over whitespace */
2453
2454 if (hash = IMMEDIATEP (*p)) /* TRUE if *p=='#' ('$' for Un*x) */
2455 p++; /* hash is determined */
2456
2457 /*
2458 * p points to what may be the beginning of an expression.
2459 * We have peeled off the front all that is peelable.
2460 * We know at, len, hash.
2461 *
2462 * Lets point q at the end of the text and parse that (backwards).
2463 */
2464
2465 for (q = p; *q; q++)
2466 ;
2467 q--; /* now q points at last char of text */
2468\f
2469 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2470 q--;
2471 /* reverse over whitespace, but don't */
2472 /* run back over *p */
2473
2474 /*
2475 * As a matter of policy here, we look for [Rn], although both Rn and S^#
2476 * forbid [Rn]. This is because it is easy, and because only a sick
2477 * cyborg would have [...] trailing an expression in a VAX-like assembler.
2478 * A meticulous parser would first check for Rn followed by '(' or '['
2479 * and not parse a trailing ']' if it found another. We just ban expressions
2480 * ending in ']'.
2481 */
2482 if (*q == ']')
2483 {
2484 while (q >= p && *q != '[')
2485 q--;
2486 /* either q<p or we got matching '[' */
2487 if (q < p)
2488 err = "no '[' to match ']'";
2489 else
2490 {
2491 /*
2492 * Confusers like "[]" will eventually lose with a bad register
2493 * name error. So again we don't need to check for early '\0'.
2494 */
2495 if (q[3] == ']')
2496 ndx = vax_reg_parse (q[1], q[2], 0);
2497 else if (q[4] == ']')
2498 ndx = vax_reg_parse (q[1], q[2], q[3]);
2499 else
2500 ndx = -1;
2501 /*
2502 * Since we saw a ']' we will demand a register name in the [].
2503 * If luser hasn't given us one: be rude.
2504 */
2505 if (ndx < 0)
2506 err = "bad register in []";
2507 else if (ndx == PC)
2508 err = "[PC] index banned";
2509 else
2510 q--; /* point q just before "[...]" */
2511 }
2512 }
2513 else
2514 ndx = -1; /* no ']', so no iNDeX register */
2515
2516 /*
2517 * If err = "..." then we lost: run away.
2518 * Otherwise ndx == -1 if there was no "[...]".
2519 * Otherwise, ndx is index register number, and q points before "[...]".
2520 */
2521\f
2522 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2523 q--;
2524 /* reverse over whitespace, but don't */
2525 /* run back over *p */
2526 if (!*err)
2527 {
2528 sign = 0; /* no ()+ or -() seen yet */
2529
2530 if (q > p + 3 && *q == '+' && q[-1] == ')')
2531 {
2532 sign = 1; /* we saw a ")+" */
2533 q--; /* q points to ')' */
2534 }
2535
2536 if (*q == ')' && q > p + 2)
2537 {
2538 paren = TRUE; /* assume we have "(...)" */
2539 while (q >= p && *q != '(')
2540 q--;
2541 /* either q<p or we got matching '(' */
2542 if (q < p)
2543 err = "no '(' to match ')'";
2544 else
2545 {
2546 /*
2547 * Confusers like "()" will eventually lose with a bad register
2548 * name error. So again we don't need to check for early '\0'.
2549 */
2550 if (q[3] == ')')
2551 reg = vax_reg_parse (q[1], q[2], 0);
2552 else if (q[4] == ')')
2553 reg = vax_reg_parse (q[1], q[2], q[3]);
2554 else
2555 reg = -1;
2556 /*
2557 * Since we saw a ')' we will demand a register name in the ')'.
2558 * This is nasty: why can't our hypothetical assembler permit
2559 * parenthesised expressions? BECAUSE I AM LAZY! That is why.
2560 * Abuse luser if we didn't spy a register name.
2561 */
2562 if (reg < 0)
2563 {
2564 /* JF allow parenthasized expressions. I hope this works */
2565 paren = FALSE;
2566 while (*q != ')')
2567 q++;
2568 /* err = "unknown register in ()"; */
2569 }
2570 else
2571 q--; /* point just before '(' of "(...)" */
2572 /*
2573 * If err == "..." then we lost. Run away.
2574 * Otherwise if reg >= 0 then we saw (Rn).
2575 */
2576 }
2577 /*
2578 * If err == "..." then we lost.
2579 * Otherwise paren==TRUE and reg = register in "()".
2580 */
2581 }
2582 else
2583 paren = FALSE;
2584 /*
2585 * If err == "..." then we lost.
2586 * Otherwise, q points just before "(Rn)", if any.
2587 * If there was a "(...)" then paren==TRUE, and reg is the register.
2588 */
2589\f
2590 /*
2591 * We should only seek '-' of "-(...)" if:
2592 * we saw "(...)" paren == TRUE
2593 * we have no errors so far ! *err
2594 * we did not see '+' of "(...)+" sign < 1
2595 * We don't check len. We want a specific error message later if
2596 * user tries "x^...-(Rn)". This is a feature not a bug.
2597 */
2598 if (!*err)
2599 {
2600 if (paren && sign < 1)/* !sign is adequate test */
2601 {
2602 if (*q == '-')
2603 {
2604 sign = -1;
2605 q--;
2606 }
2607 }
2608 /*
2609 * We have back-tracked over most
2610 * of the crud at the end of an operand.
2611 * Unless err, we know: sign, paren. If paren, we know reg.
2612 * The last case is of an expression "Rn".
2613 * This is worth hunting for if !err, !paren.
2614 * We wouldn't be here if err.
2615 * We remember to save q, in case we didn't want "Rn" anyway.
2616 */
2617 if (!paren)
2618 {
2619 if (*q == ' ' && q >= p) /* Expect all whitespace reduced to ' '. */
2620 q--;
2621 /* reverse over whitespace, but don't */
2622 /* run back over *p */
2623 if (q > p && q < p + 3) /* room for Rn or Rnn exactly? */
2624 reg = vax_reg_parse (p[0], p[1], q < p + 2 ? 0 : p[2]);
2625 else
2626 reg = -1; /* always comes here if no register at all */
2627 /*
2628 * Here with a definitive reg value.
2629 */
2630 if (reg >= 0)
2631 {
2632 oldq = q;
2633 q = p - 1;
2634 }
2635 }
2636 }
2637 }
2638 /*
2639 * have reg. -1:absent; else 0:15
2640 */
2641
2642 /*
2643 * We have: err, at, len, hash, ndx, sign, paren, reg.
2644 * Also, any remaining expression is from *p through *q inclusive.
2645 * Should there be no expression, q==p-1. So expression length = q-p+1.
2646 * This completes the first part: parsing the operand text.
2647 */
2648\f
2649 /*
2650 * We now want to boil the data down, checking consistency on the way.
2651 * We want: len, mode, reg, ndx, err, p, q, wrn, bug.
2652 * We will deliver a 4-bit reg, and a 4-bit mode.
2653 */
2654
2655 /*
2656 * Case of branch operand. Different. No L^B^W^I^S^ allowed for instance.
2657 *
2658 * in: at ?
2659 * len ?
2660 * hash ?
2661 * p:q ?
2662 * sign ?
2663 * paren ?
2664 * reg ?
2665 * ndx ?
2666 *
2667 * out: mode 0
2668 * reg -1
2669 * len ' '
2670 * p:q whatever was input
2671 * ndx -1
2672 * err " " or error message, and other outputs trashed
2673 */
2674 /* branch operands have restricted forms */
2675 if (!*err && access == 'b')
2676 {
2677 if (at || hash || sign || paren || ndx >= 0 || reg >= 0 || len != ' ')
2678 err = "invalid branch operand";
2679 else
2680 err = " ";
2681 }
2682\f
2683/* Since nobody seems to use it: comment this 'feature'(?) out for now. */
2684#ifdef NEVER
2685 /*
2686 * Case of stand-alone operand. e.g. ".long foo"
2687 *
2688 * in: at ?
2689 * len ?
2690 * hash ?
2691 * p:q ?
2692 * sign ?
2693 * paren ?
2694 * reg ?
2695 * ndx ?
2696 *
2697 * out: mode 0
2698 * reg -1
2699 * len ' '
2700 * p:q whatever was input
2701 * ndx -1
2702 * err " " or error message, and other outputs trashed
2703 */
2704 if (!*err)
2705 {
2706 if (access == ' ')
2707 { /* addresses have restricted forms */
2708 if (at)
2709 err = "address prohibits @";
2710 else
2711 {
2712 if (hash)
2713 err = "address prohibits #";
2714 else
2715 {
2716 if (sign)
2717 {
2718 if (sign < 0)
2719 err = "address prohibits -()";
2720 else
2721 err = "address prohibits ()+";
2722 }
2723 else
2724 {
2725 if (paren)
2726 err = "address prohibits ()";
2727 else
2728 {
2729 if (ndx >= 0)
2730 err = "address prohibits []";
2731 else
2732 {
2733 if (reg >= 0)
2734 err = "address prohibits register";
2735 else
2736 {
2737 if (len != ' ')
2738 err = "address prohibits displacement length specifier";
2739 else
2740 {
2741 err = " "; /* succeed */
2742 mode = 0;
2743 }
2744 }
2745 }
2746 }
2747 }
2748 }
2749 }
2750 }
2751 }
2752#endif /*#Ifdef NEVER*/
2753\f
2754 /*
2755 * Case of S^#.
2756 *
2757 * in: at FALSE
2758 * len 's' definition
2759 * hash TRUE demand
2760 * p:q demand not empty
2761 * sign 0 by paren==FALSE
2762 * paren FALSE by "()" scan logic because "S^" seen
2763 * reg -1 or nn by mistake
2764 * ndx -1
2765 *
2766 * out: mode 0
2767 * reg -1
2768 * len 's'
2769 * exp
2770 * ndx -1
2771 */
2772 if (!*err && len == 's')
2773 {
2774 if (!hash || paren || at || ndx >= 0)
2775 err = "invalid operand of S^#";
2776 else
2777 {
2778 if (reg >= 0)
2779 {
2780 /*
2781 * SHIT! we saw S^#Rnn ! put the Rnn back in
2782 * expression. KLUDGE! Use oldq so we don't
2783 * need to know exact length of reg name.
2784 */
2785 q = oldq;
2786 reg = 0;
2787 }
2788 /*
2789 * We have all the expression we will ever get.
2790 */
2791 if (p > q)
2792 err = "S^# needs expression";
2793 else if (access == 'r')
2794 {
2795 err = " "; /* WIN! */
2796 mode = 0;
2797 }
2798 else
2799 err = "S^# may only read-access";
2800 }
2801 }
2802\f
2803 /*
2804 * Case of -(Rn), which is weird case.
2805 *
2806 * in: at FALSE
2807 * len '
2808 * hash FALSE
2809 * p:q q<p
2810 * sign -1 by definition
2811 * paren TRUE by definition
2812 * reg present by definition
2813 * ndx optional
2814 *
2815 * out: mode 7
2816 * reg present
2817 * len ' '
2818 * exp "" enforce empty expression
2819 * ndx optional warn if same as reg
2820 */
2821 if (!*err && sign < 0)
2822 {
2823 if (len != ' ' || hash || at || p <= q)
2824 err = "invalid operand of -()";
2825 else
2826 {
2827 err = " "; /* win */
2828 mode = 7;
2829 if (reg == PC)
2830 wrn = "-(PC) unpredictable";
2831 else if (reg == ndx)
2832 wrn = "[]index same as -()register: unpredictable";
2833 }
2834 }
2835\f
2836 /*
2837 * We convert "(Rn)" to "@Rn" for our convenience.
2838 * (I hope this is convenient: has someone got a better way to parse this?)
2839 * A side-effect of this is that "@Rn" is a valid operand.
2840 */
2841 if (paren && !sign && !hash && !at && len == ' ' && p > q)
2842 {
2843 at = TRUE;
2844 paren = FALSE;
2845 }
2846
2847 /*
2848 * Case of (Rn)+, which is slightly different.
2849 *
2850 * in: at
2851 * len ' '
2852 * hash FALSE
2853 * p:q q<p
2854 * sign +1 by definition
2855 * paren TRUE by definition
2856 * reg present by definition
2857 * ndx optional
2858 *
2859 * out: mode 8+@
2860 * reg present
2861 * len ' '
2862 * exp "" enforce empty expression
2863 * ndx optional warn if same as reg
2864 */
2865 if (!*err && sign > 0)
2866 {
2867 if (len != ' ' || hash || p <= q)
2868 err = "invalid operand of ()+";
2869 else
2870 {
2871 err = " "; /* win */
2872 mode = 8 + (at ? 1 : 0);
2873 if (reg == PC)
2874 wrn = "(PC)+ unpredictable";
2875 else if (reg == ndx)
2876 wrn = "[]index same as ()+register: unpredictable";
2877 }
2878 }
2879\f
2880 /*
2881 * Case of #, without S^.
2882 *
2883 * in: at
2884 * len ' ' or 'i'
2885 * hash TRUE by definition
2886 * p:q
2887 * sign 0
2888 * paren FALSE
2889 * reg absent
2890 * ndx optional
2891 *
2892 * out: mode 8+@
2893 * reg PC
2894 * len ' ' or 'i'
2895 * exp
2896 * ndx optional
2897 */
2898 if (!*err && hash)
2899 {
2900 if (len != 'i' && len != ' ')
2901 err = "# conflicts length";
2902 else if (paren)
2903 err = "# bars register";
2904 else
2905 {
2906 if (reg >= 0)
2907 {
2908 /*
2909 * SHIT! we saw #Rnn! Put the Rnn back into the expression.
2910 * By using oldq, we don't need to know how long Rnn was.
2911 * KLUDGE!
2912 */
2913 q = oldq;
2914 reg = -1; /* no register any more */
2915 }
2916 err = " "; /* win */
2917
2918 /* JF a bugfix, I think! */
2919 if(at && access=='a')
2920 vopP->vop_nbytes=4;
2921
2922 mode = (at ? 9 : 8);
2923 reg = PC;
2924 if ((access == 'm' || access == 'w') && !at)
2925 wrn = "writing or modifying # is unpredictable";
2926 }
2927 }
2928 /*
2929 * If !*err, then sign == 0
2930 * hash == FALSE
2931 */
2932\f
2933 /*
2934 * Case of Rn. We seperate this one because it has a few special
2935 * errors the remaining modes lack.
2936 *
2937 * in: at optional
2938 * len ' '
2939 * hash FALSE by program logic
2940 * p:q empty
2941 * sign 0 by program logic
2942 * paren FALSE by definition
2943 * reg present by definition
2944 * ndx optional
2945 *
2946 * out: mode 5+@
2947 * reg present
2948 * len ' ' enforce no length
2949 * exp "" enforce empty expression
2950 * ndx optional warn if same as reg
2951 */
2952 if (!*err && !paren && reg >= 0)
2953 {
2954 if (len != ' ')
2955 err = "length not needed";
2956 else if (at)
2957 {
2958 err = " "; /* win */
2959 mode = 6; /* @Rn */
2960 }
2961 else if (ndx >= 0)
2962 err = "can't []index a register, because it has no address";
2963 else if (access == 'a')
2964 err = "a register has no address";
2965 else
2966 {
2967 /*
2968 * Idea here is to detect from length of datum
2969 * and from register number if we will touch PC.
2970 * Warn if we do.
2971 * vop_nbytes is number of bytes in operand.
2972 * Compute highest byte affected, compare to PC0.
2973 */
2974 if ((vopP->vop_nbytes + reg * 4) > 60)
2975 wrn = "PC part of operand unpredictable";
2976 err = " "; /* win */
2977 mode = 5; /* Rn */
2978 }
2979 }
2980 /*
2981 * If !*err, sign == 0
2982 * hash == FALSE
2983 * paren == TRUE OR reg==-1
2984 */
2985\f
2986 /*
2987 * Rest of cases fit into one bunch.
2988 *
2989 * in: at optional
2990 * len ' ' or 'b' or 'w' or 'l'
2991 * hash FALSE by program logic
2992 * p:q expected (empty is not an error)
2993 * sign 0 by program logic
2994 * paren optional
2995 * reg optional
2996 * ndx optional
2997 *
2998 * out: mode 10 + @ + len
2999 * reg optional
3000 * len ' ' or 'b' or 'w' or 'l'
3001 * exp maybe empty
3002 * ndx optional warn if same as reg
3003 */
3004 if (!*err)
3005 {
3006 err = " "; /* win (always) */
3007 mode = 10 + (at ? 1 : 0);
3008 switch (len)
3009 {
3010 case 'l':
3011 mode += 2;
3012 case 'w':
3013 mode += 2;
3014 case ' ': /* assumed B^ until our caller changes it */
3015 case 'b':
3016 break;
3017 }
3018 }
3019
3020 /*
3021 * here with completely specified mode
3022 * len
3023 * reg
3024 * expression p,q
3025 * ndx
3026 */
3027
3028 if (*err == ' ')
3029 err = ""; /* " " is no longer an error */
3030
3031 vopP->vop_mode = mode;
3032 vopP->vop_reg = reg;
3033 vopP->vop_short = len;
3034 vopP->vop_expr_begin = p;
3035 vopP->vop_expr_end = q;
3036 vopP->vop_ndx = ndx;
3037 vopP->vop_error = err;
3038 vopP->vop_warn = wrn;
3039 return (bug);
3040
3041} /* vip_op() */
3042\f
3043/*
3044
3045Summary of vip_op outputs.
3046
3047 mode reg len ndx
3048(Rn) => @Rn
3049{@}Rn 5+@ n ' ' optional
3050branch operand 0 -1 ' ' -1
3051S^#foo 0 -1 's' -1
3052-(Rn) 7 n ' ' optional
3053{@}(Rn)+ 8+@ n ' ' optional
3054{@}#foo, no S^ 8+@ PC " i" optional
3055{@}{q^}{(Rn)} 10+@+q option " bwl" optional
3056
3057*/
3058\f
3059#ifdef TEST /* #Define to use this testbed. */
3060
3061/*
3062 * Follows a test program for this function.
3063 * We declare arrays non-local in case some of our tiny-minded machines
3064 * default to small stacks. Also, helps with some debuggers.
3065 */
3066
3067#include <stdio.h>
3068
3069char answer[100]; /* human types into here */
3070char *p; /* */
3071char *myerr;
3072char *mywrn;
3073char *mybug;
3074char myaccess;
3075char mywidth;
3076char mymode;
3077char myreg;
3078char mylen;
3079char *myleft;
3080char *myright;
3081char myndx;
3082int my_operand_length;
3083char my_immediate[200];
3084char my_indirect[200];
3085char my_displen[200];
3086
3087main ()
3088{
3089 char *vip_op (); /* make cc happy */
3090
3091 printf ("enter immediate symbols eg enter # ");
3092 gets (my_immediate);
3093 printf ("enter indirect symbols eg enter @ ");
3094 gets (my_indirect);
3095 printf ("enter displen symbols eg enter ^ ");
3096 gets (my_displen);
3097 vip_op_defaults (my_immediate, my_indirect, my_displen);
3098 for (;;)
3099 {
3100 printf ("access,width (eg 'ab' or 'wh') [empty line to quit] : ");
3101 fflush (stdout);
3102 gets (answer);
3103 if (!answer[0])
3104 exit (0);
3105 myaccess = answer[0];
3106 mywidth = answer[1];
3107 switch (mywidth)
3108 {
3109 case 'b':
3110 my_operand_length = 1;
3111 break;
3112 case 'd':
3113 my_operand_length = 8;
3114 break;
3115 case 'f':
3116 my_operand_length = 4;
3117 break;
3118 case 'g':
3119 my_operand_length = 16;
3120 break;
3121 case 'h':
3122 my_operand_length = 32;
3123 break;
3124 case 'l':
3125 my_operand_length = 4;
3126 break;
3127 case 'o':
3128 my_operand_length = 16;
3129 break;
3130 case 'q':
3131 my_operand_length = 8;
3132 break;
3133 case 'w':
3134 my_operand_length = 2;
3135 break;
3136 case '!':
3137 case '?':
3138 case '-':
3139 my_operand_length = 0;
3140 break;
3141
3142 default:
3143 my_operand_length = 2;
3144 printf ("I dn't understand access width %c\n", mywidth);
3145 break;
3146 }
3147 printf ("VAX assembler instruction operand: ");
3148 fflush (stdout);
3149 gets (answer);
3150 mybug = vip_op (answer, myaccess, mywidth, my_operand_length,
3151 &mymode, &myreg, &mylen, &myleft, &myright, &myndx,
3152 &myerr, &mywrn);
3153 if (*myerr)
3154 {
3155 printf ("error: \"%s\"\n", myerr);
3156 if (*mybug)
3157 printf (" bug: \"%s\"\n", mybug);
3158 }
3159 else
3160 {
3161 if (*mywrn)
3162 printf ("warning: \"%s\"\n", mywrn);
3163 mumble ("mode", mymode);
3164 mumble ("register", myreg);
3165 mumble ("index", myndx);
3166 printf ("width:'%c' ", mylen);
3167 printf ("expression: \"");
3168 while (myleft <= myright)
3169 putchar (*myleft++);
3170 printf ("\"\n");
3171 }
3172 }
3173}
3174
3175mumble (text, value)
3176 char *text;
3177 int value;
3178{
3179 printf ("%s:", text);
3180 if (value >= 0)
3181 printf ("%xx", value);
3182 else
3183 printf ("ABSENT");
3184 printf (" ");
3185}
3186
3187#endif /* ifdef TEST */
3188
3189/* end: vip_op.c */
3190
3191const int md_short_jump_size = 3;
3192const int md_long_jump_size = 6;
3193const int md_reloc_size = 8; /* Size of relocation record */
3194
3195void
3196md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3197 char *ptr;
3198 long from_addr, to_addr;
3199 fragS *frag;
3200 symbolS *to_symbol;
3201{
3202 long offset;
3203
3204 offset = to_addr - (from_addr + 1);
3205 *ptr++ = 0x31;
3206 md_number_to_chars (ptr, offset, 2);
3207}
3208
3209void
3210md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3211 char *ptr;
3212 long from_addr, to_addr;
3213 fragS *frag;
3214 symbolS *to_symbol;
3215{
3216 long offset;
3217
3218 offset = to_addr - to_symbol->sy_value;
3219 *ptr++ = 0x17;
3220 *ptr++ = 0x9F;
3221 md_number_to_chars (ptr, offset, 4);
3222 fix_new (frag, ptr - frag->fr_literal, 4, to_symbol, (symbolS *) 0, (long) 0, 0);
3223}
3224
3225int
3226md_parse_option (argP, cntP, vecP)
3227 char **argP;
3228 int *cntP;
3229 char ***vecP;
3230{
3231 char *temp_name; /* name for -t or -d options */
3232 char opt;
3233
3234 switch (**argP)
3235 {
3236 case 'J':
3237 /* as_warn ("I can do better than -J!"); */
3238 break;
3239
3240 case 'S':
3241 as_warn ("SYMBOL TABLE not implemented");
3242 break; /* SYMBOL TABLE not implemented */
3243
3244 case 'T':
3245 as_warn ("TOKEN TRACE not implemented");
3246 break; /* TOKEN TRACE not implemented */
3247
3248 case 'd':
3249 case 't':
3250 opt= **argP;
3251 if (**argP)
3252 { /* Rest of argument is filename. */
3253 temp_name = *argP;
3254 while (**argP)
3255 (*argP)++;
3256 }
3257 else if (*cntP)
3258 {
3259 while (**argP)
3260 (*argP)++;
3261 --(*cntP);
3262 temp_name = *++(*vecP);
3263 **vecP = NULL; /* Remember this is not a file-name. */
3264 }
3265 else
3266 {
3267 as_warn ("I expected a filename after -%c.",opt);
3268 temp_name = "{absent}";
3269 }
3270
3271 if(opt=='d')
3272 as_warn ("Displacement length %s ignored!", temp_name);
3273 else
3274 as_warn ("I don't need or use temp. file \"%s\".", temp_name);
3275 break;
3276
3277 case 'V':
3278 as_warn ("I don't use an interpass file! -V ignored");
3279 break;
3280
3281#ifdef VMS
3282 case '+': /* For g++ */
3283 break;
3284
3285 case 'h': /* No hashing of mixed-case names */
3286 break;
3287
3288 case 'H': /* Show new symbol after hash truncation */
3289 break;
3290#endif
3291
3292 default:
3293 return 0;
3294
3295 }
3296 return 1;
3297}
3298
3299/* We have no need to default values of symbols. */
3300
3301/* ARGSUSED */
3302symbolS *
3303md_undefined_symbol (name)
3304 char *name;
3305{
3306 return 0;
3307}
3308
3309/* Parse an operand that is machine-specific.
3310 We just return without modifying the expression if we have nothing
3311 to do. */
3312
3313/* ARGSUSED */
3314void
3315md_operand (expressionP)
3316 expressionS *expressionP;
3317{
3318}
3319
3320/* Round up a section size to the appropriate boundary. */
3321long
3322md_section_align (segment, size)
3323 segT segment;
3324 long size;
3325{
3326 return size; /* Byte alignment is fine */
3327}
3328
3329/* Exactly what point is a PC-relative offset relative TO?
3330 On the vax, they're relative to the address of the offset, plus
3331 its size. (??? Is this right? FIXME-SOON) */
3332long
3333md_pcrel_from (fixP)
3334 fixS *fixP;
3335{
3336 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
3337}