]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-arm.texi
aarch64: Add support for Neoverse V1 CPU
[thirdparty/binutils-gdb.git] / gas / doc / c-arm.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1996-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
4
5@ifset GENERIC
6@page
7@node ARM-Dependent
8@chapter ARM Dependent Features
9@end ifset
10
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter ARM Dependent Features
14@end ifclear
15
16@cindex ARM support
17@cindex Thumb support
18@menu
19* ARM Options:: Options
20* ARM Syntax:: Syntax
21* ARM Floating Point:: Floating Point
22* ARM Directives:: ARM Machine Directives
23* ARM Opcodes:: Opcodes
6057a28f 24* ARM Mapping Symbols:: Mapping Symbols
7da4f750 25* ARM Unwinding Tutorial:: Unwinding
252b5132
RH
26@end menu
27
28@node ARM Options
29@section Options
30@cindex ARM options (none)
31@cindex options for ARM (none)
adcf07e6 32
252b5132 33@table @code
adcf07e6 34
a05a5b64 35@cindex @code{-mcpu=} command-line option, ARM
92081f48 36@item -mcpu=@var{processor}[+@var{extension}@dots{}]
252b5132
RH
37This option specifies the target processor. The assembler will issue an
38error message if an attempt is made to assemble an instruction which
03b1477f 39will not execute on the target processor. The following processor names are
34bca508 40recognized:
03b1477f
RE
41@code{arm1},
42@code{arm2},
43@code{arm250},
44@code{arm3},
45@code{arm6},
46@code{arm60},
47@code{arm600},
48@code{arm610},
49@code{arm620},
50@code{arm7},
51@code{arm7m},
52@code{arm7d},
53@code{arm7dm},
54@code{arm7di},
55@code{arm7dmi},
56@code{arm70},
57@code{arm700},
58@code{arm700i},
59@code{arm710},
60@code{arm710t},
61@code{arm720},
62@code{arm720t},
63@code{arm740t},
64@code{arm710c},
65@code{arm7100},
66@code{arm7500},
67@code{arm7500fe},
68@code{arm7t},
69@code{arm7tdmi},
1ff4677c 70@code{arm7tdmi-s},
03b1477f
RE
71@code{arm8},
72@code{arm810},
73@code{strongarm},
74@code{strongarm1},
75@code{strongarm110},
76@code{strongarm1100},
77@code{strongarm1110},
78@code{arm9},
79@code{arm920},
80@code{arm920t},
81@code{arm922t},
82@code{arm940t},
83@code{arm9tdmi},
7fac0536
NC
84@code{fa526} (Faraday FA526 processor),
85@code{fa626} (Faraday FA626 processor),
03b1477f 86@code{arm9e},
7de9afa2 87@code{arm926e},
1ff4677c 88@code{arm926ej-s},
03b1477f
RE
89@code{arm946e-r0},
90@code{arm946e},
db8ac8f9 91@code{arm946e-s},
03b1477f
RE
92@code{arm966e-r0},
93@code{arm966e},
db8ac8f9
PB
94@code{arm966e-s},
95@code{arm968e-s},
03b1477f 96@code{arm10t},
db8ac8f9 97@code{arm10tdmi},
03b1477f
RE
98@code{arm10e},
99@code{arm1020},
100@code{arm1020t},
7de9afa2 101@code{arm1020e},
db8ac8f9 102@code{arm1022e},
1ff4677c 103@code{arm1026ej-s},
4a58c4bd
NC
104@code{fa606te} (Faraday FA606TE processor),
105@code{fa616te} (Faraday FA616TE processor),
7fac0536 106@code{fa626te} (Faraday FA626TE processor),
4a58c4bd 107@code{fmp626} (Faraday FMP626 processor),
7fac0536 108@code{fa726te} (Faraday FA726TE processor),
1ff4677c
RE
109@code{arm1136j-s},
110@code{arm1136jf-s},
db8ac8f9
PB
111@code{arm1156t2-s},
112@code{arm1156t2f-s},
0dd132b6
NC
113@code{arm1176jz-s},
114@code{arm1176jzf-s},
115@code{mpcore},
116@code{mpcorenovfp},
b38f9f31 117@code{cortex-a5},
c90460e4 118@code{cortex-a7},
62b3e311 119@code{cortex-a8},
15290f0a 120@code{cortex-a9},
dbb1f804 121@code{cortex-a15},
ed5491b9 122@code{cortex-a17},
6735952f 123@code{cortex-a32},
43cdc0a8 124@code{cortex-a35},
4469186b 125@code{cortex-a53},
15a7695f 126@code{cortex-a55},
4469186b
KT
127@code{cortex-a57},
128@code{cortex-a72},
362a3eba 129@code{cortex-a73},
15a7695f 130@code{cortex-a75},
7ebd1359 131@code{cortex-a76},
0535e5d7
DZ
132@code{cortex-a76ae},
133@code{cortex-a77},
ef8df4ca 134@code{ares},
62b3e311 135@code{cortex-r4},
307c948d 136@code{cortex-r4f},
70a8bc5b 137@code{cortex-r5},
138@code{cortex-r7},
5f474010 139@code{cortex-r8},
0cda1e19 140@code{cortex-r52},
0535e5d7 141@code{cortex-m35p},
b19ea8d2 142@code{cortex-m33},
ce1b0a45 143@code{cortex-m23},
a715796b 144@code{cortex-m7},
7ef07ba0 145@code{cortex-m4},
62b3e311 146@code{cortex-m3},
5b19eaba
NC
147@code{cortex-m1},
148@code{cortex-m0},
ce32bd10 149@code{cortex-m0plus},
246496bb 150@code{exynos-m1},
ea0d6bb9
PT
151@code{marvell-pj4},
152@code{marvell-whitney},
83f43c83 153@code{neoverse-n1},
f3034e25 154@code{neoverse-n2},
ea0d6bb9
PT
155@code{xgene1},
156@code{xgene2},
03b1477f
RE
157@code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
158@code{i80200} (Intel XScale processor)
334fe02b 159@code{iwmmxt} (Intel XScale processor with Wireless MMX technology coprocessor)
03b1477f 160and
34bca508 161@code{xscale}.
03b1477f
RE
162The special name @code{all} may be used to allow the
163assembler to accept instructions valid for any ARM processor.
164
34bca508
L
165In addition to the basic instruction set, the assembler can be told to
166accept various extension mnemonics that extend the processor using the
03b1477f 167co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
34bca508 168is equivalent to specifying @code{-mcpu=ep9312}.
69133863 169
34bca508 170Multiple extensions may be specified, separated by a @code{+}. The
69133863
MGD
171extensions should be specified in ascending alphabetical order.
172
34bca508 173Some extensions may be restricted to particular architectures; this is
60e5ef9f
MGD
174documented in the list of extensions below.
175
34bca508
L
176Extension mnemonics may also be removed from those the assembler accepts.
177This is done be prepending @code{no} to the option that adds the extension.
178Extensions that are removed should be listed after all extensions which have
179been added, again in ascending alphabetical order. For example,
69133863
MGD
180@code{-mcpu=ep9312+nomaverick} is equivalent to specifying @code{-mcpu=arm920}.
181
182
eea54501 183The following extensions are currently supported:
aab2c27d 184@code{bf16} (BFloat16 extensions for v8.6-A architecture),
616ce08e 185@code{i8mm} (Int8 Matrix Multiply extensions for v8.6-A architecture),
ea0d6bb9 186@code{crc}
bca38921 187@code{crypto} (Cryptography Extensions for v8-A architecture, implies @code{fp+simd}),
c604a79a 188@code{dotprod} (Dot Product Extensions for v8.2-A architecture, implies @code{fp+simd}),
bca38921 189@code{fp} (Floating Point Extensions for v8-A architecture),
01f48020
TC
190@code{fp16} (FP16 Extensions for v8.2-A architecture, implies @code{fp}),
191@code{fp16fml} (FP16 Floating Point Multiplication Variant Extensions for v8.2-A architecture, implies @code{fp16}),
bca38921 192@code{idiv} (Integer Divide Extensions for v7-A and v7-R architectures),
69133863
MGD
193@code{iwmmxt},
194@code{iwmmxt2},
ea0d6bb9 195@code{xscale},
69133863 196@code{maverick},
ea0d6bb9
PT
197@code{mp} (Multiprocessing Extensions for v7-A and v7-R
198architectures),
b2a5fbdc 199@code{os} (Operating System for v6M architecture),
dad0c3bf
SD
200@code{predres} (Execution and Data Prediction Restriction Instruction for
201v8-A architectures, added by default from v8.5-A),
7fadb25d
SD
202@code{sb} (Speculation Barrier Instruction for v8-A architectures, added by
203default from v8.5-A),
f4c65163 204@code{sec} (Security Extensions for v6K and v7-A architectures),
bca38921 205@code{simd} (Advanced SIMD Extensions for v8-A architecture, implies @code{fp}),
34bca508 206@code{virt} (Virtualization Extensions for v7-A architecture, implies
90ec0d68 207@code{idiv}),
33eaf5de 208@code{pan} (Privileged Access Never Extensions for v8-A architecture),
4d1464f2
MW
209@code{ras} (Reliability, Availability and Serviceability extensions
210for v8-A architecture),
d6b4b13e
MW
211@code{rdma} (ARMv8.1 Advanced SIMD extensions for v8-A architecture, implies
212@code{simd})
03b1477f 213and
69133863 214@code{xscale}.
03b1477f 215
a05a5b64 216@cindex @code{-march=} command-line option, ARM
92081f48 217@item -march=@var{architecture}[+@var{extension}@dots{}]
252b5132
RH
218This option specifies the target architecture. The assembler will issue
219an error message if an attempt is made to assemble an instruction which
34bca508
L
220will not execute on the target architecture. The following architecture
221names are recognized:
03b1477f
RE
222@code{armv1},
223@code{armv2},
224@code{armv2a},
225@code{armv2s},
226@code{armv3},
227@code{armv3m},
228@code{armv4},
229@code{armv4xm},
230@code{armv4t},
231@code{armv4txm},
232@code{armv5},
233@code{armv5t},
234@code{armv5txm},
235@code{armv5te},
09d92015 236@code{armv5texp},
c5f98204 237@code{armv6},
1ddd7f43 238@code{armv6j},
0dd132b6
NC
239@code{armv6k},
240@code{armv6z},
f33026a9 241@code{armv6kz},
b2a5fbdc
MGD
242@code{armv6-m},
243@code{armv6s-m},
62b3e311 244@code{armv7},
c450d570 245@code{armv7-a},
c9fb6e58 246@code{armv7ve},
c450d570
PB
247@code{armv7-r},
248@code{armv7-m},
9e3c6df6 249@code{armv7e-m},
bca38921 250@code{armv8-a},
a5932920 251@code{armv8.1-a},
56a1b672 252@code{armv8.2-a},
a12fd8e1 253@code{armv8.3-a},
ced40572 254@code{armv8-r},
dec41383 255@code{armv8.4-a},
23f233a5 256@code{armv8.5-a},
34ef62f4
AV
257@code{armv8-m.base},
258@code{armv8-m.main},
e0991585 259@code{armv8.1-m.main},
aab2c27d 260@code{armv8.6-a},
34ef62f4 261@code{iwmmxt},
ea0d6bb9 262@code{iwmmxt2}
03b1477f
RE
263and
264@code{xscale}.
265If both @code{-mcpu} and
266@code{-march} are specified, the assembler will use
267the setting for @code{-mcpu}.
268
34ef62f4
AV
269The architecture option can be extended with a set extension options. These
270extensions are context sensitive, i.e. the same extension may mean different
271things when used with different architectures. When used together with a
272@code{-mfpu} option, the union of both feature enablement is taken.
273See their availability and meaning below:
274
275For @code{armv5te}, @code{armv5texp}, @code{armv5tej}, @code{armv6}, @code{armv6j}, @code{armv6k}, @code{armv6z}, @code{armv6kz}, @code{armv6zk}, @code{armv6t2}, @code{armv6kt2} and @code{armv6zt2}:
276
277@code{+fp}: Enables VFPv2 instructions.
278@code{+nofp}: Disables all FPU instrunctions.
279
280For @code{armv7}:
281
282@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
283@code{+nofp}: Disables all FPU instructions.
284
285For @code{armv7-a}:
286
287@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
288@code{+vfpv3-d16}: Alias for @code{+fp}.
289@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
290@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
291conversion instructions and 16 double-word registers.
292@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
293instructions and 32 double-word registers.
294@code{+vfpv4-d16}: Enables VFPv4 instructions with 16 double-word registers.
295@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
296@code{+simd}: Enables VFPv3 and NEONv1 instructions with 32 double-word
297registers.
298@code{+neon}: Alias for @code{+simd}.
299@code{+neon-vfpv3}: Alias for @code{+simd}.
300@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
301NEONv1 instructions with 32 double-word registers.
302@code{+neon-vfpv4}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
303double-word registers.
304@code{+mp}: Enables Multiprocessing Extensions.
305@code{+sec}: Enables Security Extensions.
306@code{+nofp}: Disables all FPU and NEON instructions.
307@code{+nosimd}: Disables all NEON instructions.
308
309For @code{armv7ve}:
310
311@code{+fp}: Enables VFPv4 instructions with 16 double-word registers.
312@code{+vfpv4-d16}: Alias for @code{+fp}.
313@code{+vfpv3-d16}: Enables VFPv3 instructions with 16 double-word registers.
314@code{+vfpv3}: Enables VFPv3 instructions with 32 double-word registers.
315@code{+vfpv3-d16-fp16}: Enables VFPv3 with half precision floating-point
316conversion instructions and 16 double-word registers.
317@code{+vfpv3-fp16}: Enables VFPv3 with half precision floating-point conversion
318instructions and 32 double-word registers.
319@code{+vfpv4}: Enables VFPv4 instructions with 32 double-word registers.
320@code{+simd}: Enables VFPv4 and NEONv1 with Fused-MAC instructions and 32
321double-word registers.
322@code{+neon-vfpv4}: Alias for @code{+simd}.
323@code{+neon}: Enables VFPv3 and NEONv1 instructions with 32 double-word
324registers.
325@code{+neon-vfpv3}: Alias for @code{+neon}.
326@code{+neon-fp16}: Enables VFPv3, half precision floating-point conversion and
327NEONv1 instructions with 32 double-word registers.
328double-word registers.
329@code{+nofp}: Disables all FPU and NEON instructions.
330@code{+nosimd}: Disables all NEON instructions.
331
332For @code{armv7-r}:
333
334@code{+fp.sp}: Enables single-precision only VFPv3 instructions with 16
335double-word registers.
336@code{+vfpv3xd}: Alias for @code{+fp.sp}.
337@code{+fp}: Enables VFPv3 instructions with 16 double-word registers.
338@code{+vfpv3-d16}: Alias for @code{+fp}.
339@code{+vfpv3xd-fp16}: Enables single-precision only VFPv3 and half
340floating-point conversion instructions with 16 double-word registers.
341@code{+vfpv3-d16-fp16}: Enables VFPv3 and half precision floating-point
342conversion instructions with 16 double-word registers.
343@code{+idiv}: Enables integer division instructions in ARM mode.
344@code{+nofp}: Disables all FPU instructions.
345
346For @code{armv7e-m}:
347
348@code{+fp}: Enables single-precision only VFPv4 instructions with 16
349double-word registers.
350@code{+vfpvf4-sp-d16}: Alias for @code{+fp}.
351@code{+fpv5}: Enables single-precision only VFPv5 instructions with 16
352double-word registers.
353@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
354@code{+fpv5-d16"}: Alias for @code{+fp.dp}.
355@code{+nofp}: Disables all FPU instructions.
356
357For @code{armv8-m.main}:
358
359@code{+dsp}: Enables DSP Extension.
360@code{+fp}: Enables single-precision only VFPv5 instructions with 16
361double-word registers.
362@code{+fp.dp}: Enables VFPv5 instructions with 16 double-word registers.
4934a27c
MM
363@code{+cdecp0} (CDE extensions for v8-m architecture with coprocessor 0),
364@code{+cdecp1} (CDE extensions for v8-m architecture with coprocessor 1),
365@code{+cdecp2} (CDE extensions for v8-m architecture with coprocessor 2),
366@code{+cdecp3} (CDE extensions for v8-m architecture with coprocessor 3),
367@code{+cdecp4} (CDE extensions for v8-m architecture with coprocessor 4),
368@code{+cdecp5} (CDE extensions for v8-m architecture with coprocessor 5),
369@code{+cdecp6} (CDE extensions for v8-m architecture with coprocessor 6),
370@code{+cdecp7} (CDE extensions for v8-m architecture with coprocessor 7),
34ef62f4
AV
371@code{+nofp}: Disables all FPU instructions.
372@code{+nodsp}: Disables DSP Extension.
373
e0991585
AV
374For @code{armv8.1-m.main}:
375
376@code{+dsp}: Enables DSP Extension.
377@code{+fp}: Enables single and half precision scalar Floating Point Extensions
378for Armv8.1-M Mainline with 16 double-word registers.
379@code{+fp.dp}: Enables double precision scalar Floating Point Extensions for
380Armv8.1-M Mainline, implies @code{+fp}.
a7ad558c
AV
381@code{+mve}: Enables integer only M-profile Vector Extension for
382Armv8.1-M Mainline, implies @code{+dsp}.
383@code{+mve.fp}: Enables Floating Point M-profile Vector Extension for
384Armv8.1-M Mainline, implies @code{+mve} and @code{+fp}.
e0991585
AV
385@code{+nofp}: Disables all FPU instructions.
386@code{+nodsp}: Disables DSP Extension.
a7ad558c 387@code{+nomve}: Disables all M-profile Vector Extensions.
e0991585 388
34ef62f4
AV
389For @code{armv8-a}:
390
391@code{+crc}: Enables CRC32 Extension.
392@code{+simd}: Enables VFP and NEON for Armv8-A.
393@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
394@code{+simd}.
395@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
396@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
397for Armv8-A.
398@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
399@code{+nocrypto}: Disables Cryptography Extensions.
400
401For @code{armv8.1-a}:
402
403@code{+simd}: Enables VFP and NEON for Armv8.1-A.
404@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
405@code{+simd}.
406@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
407@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
408for Armv8-A.
409@code{+nofp}: Disables all FPU, NEON and Cryptography Extensions.
410@code{+nocrypto}: Disables Cryptography Extensions.
411
412For @code{armv8.2-a} and @code{armv8.3-a}:
413
414@code{+simd}: Enables VFP and NEON for Armv8.1-A.
415@code{+fp16}: Enables FP16 Extension for Armv8.2-A, implies @code{+simd}.
416@code{+fp16fml}: Enables FP16 Floating Point Multiplication Variant Extensions
417for Armv8.2-A, implies @code{+fp16}.
418@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
419@code{+simd}.
420@code{+dotprod}: Enables Dot Product Extensions for Armv8.2-A, implies
421@code{+simd}.
422@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
423@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
424for Armv8-A.
425@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
426@code{+nocrypto}: Disables Cryptography Extensions.
427
428For @code{armv8.4-a}:
429
430@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
431Armv8.2-A.
432@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
433Variant Extensions for Armv8.2-A, implies @code{+simd}.
434@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
435@code{+simd}.
436@code{+sb}: Enables Speculation Barrier Instruction for Armv8-A.
437@code{+predres}: Enables Execution and Data Prediction Restriction Instruction
438for Armv8-A.
439@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
440@code{+nocryptp}: Disables Cryptography Extensions.
441
442For @code{armv8.5-a}:
443
444@code{+simd}: Enables VFP and NEON for Armv8.1-A and Dot Product Extensions for
445Armv8.2-A.
446@code{+fp16}: Enables FP16 Floating Point and Floating Point Multiplication
447Variant Extensions for Armv8.2-A, implies @code{+simd}.
448@code{+crypto}: Enables Cryptography Extensions for Armv8-A, implies
449@code{+simd}.
450@code{+nofp}: Disables all FPU, NEON, Cryptography and Dot Product Extensions.
451@code{+nocryptp}: Disables Cryptography Extensions.
452
03b1477f 453
a05a5b64 454@cindex @code{-mfpu=} command-line option, ARM
03b1477f
RE
455@item -mfpu=@var{floating-point-format}
456
457This option specifies the floating point format to assemble for. The
458assembler will issue an error message if an attempt is made to assemble
34bca508 459an instruction which will not execute on the target floating point unit.
03b1477f
RE
460The following format options are recognized:
461@code{softfpa},
462@code{fpe},
bc89618b
RE
463@code{fpe2},
464@code{fpe3},
03b1477f
RE
465@code{fpa},
466@code{fpa10},
467@code{fpa11},
468@code{arm7500fe},
469@code{softvfp},
470@code{softvfp+vfp},
471@code{vfp},
472@code{vfp10},
473@code{vfp10-r0},
474@code{vfp9},
475@code{vfpxd},
62f3b8c8
PB
476@code{vfpv2},
477@code{vfpv3},
478@code{vfpv3-fp16},
479@code{vfpv3-d16},
480@code{vfpv3-d16-fp16},
481@code{vfpv3xd},
482@code{vfpv3xd-d16},
483@code{vfpv4},
484@code{vfpv4-d16},
f0cd0667 485@code{fpv4-sp-d16},
a715796b
TG
486@code{fpv5-sp-d16},
487@code{fpv5-d16},
bca38921 488@code{fp-armv8},
09d92015
MM
489@code{arm1020t},
490@code{arm1020e},
b1cc4aeb 491@code{arm1136jf-s},
62f3b8c8
PB
492@code{maverick},
493@code{neon},
d5e0ba9c
RE
494@code{neon-vfpv3},
495@code{neon-fp16},
bca38921
MGD
496@code{neon-vfpv4},
497@code{neon-fp-armv8},
081e4c7d
MW
498@code{crypto-neon-fp-armv8},
499@code{neon-fp-armv8.1}
d6b4b13e 500and
081e4c7d 501@code{crypto-neon-fp-armv8.1}.
03b1477f
RE
502
503In addition to determining which instructions are assembled, this option
504also affects the way in which the @code{.double} assembler directive behaves
505when assembling little-endian code.
506
34bca508 507The default is dependent on the processor selected. For Architecture 5 or
d5e0ba9c 508later, the default is to assemble for VFP instructions; for earlier
03b1477f 509architectures the default is to assemble for FPA instructions.
adcf07e6 510
5312fe52
BW
511@cindex @code{-mfp16-format=} command-line option
512@item -mfp16-format=@var{format}
513This option specifies the half-precision floating point format to use
514when assembling floating point numbers emitted by the @code{.float16}
515directive.
516The following format options are recognized:
517@code{ieee},
518@code{alternative}.
519If @code{ieee} is specified then the IEEE 754-2008 half-precision floating
520point format is used, if @code{alternative} is specified then the Arm
521alternative half-precision format is used. If this option is set on the
522command line then the format is fixed and cannot be changed with
523the @code{float16_format} directive. If this value is not set then
524the IEEE 754-2008 format is used until the format is explicitly set with
525the @code{float16_format} directive.
526
a05a5b64 527@cindex @code{-mthumb} command-line option, ARM
252b5132 528@item -mthumb
03b1477f 529This option specifies that the assembler should start assembling Thumb
34bca508 530instructions; that is, it should behave as though the file starts with a
03b1477f 531@code{.code 16} directive.
adcf07e6 532
a05a5b64 533@cindex @code{-mthumb-interwork} command-line option, ARM
252b5132
RH
534@item -mthumb-interwork
535This option specifies that the output generated by the assembler should
fc6141f0
NC
536be marked as supporting interworking. It also affects the behaviour
537of the @code{ADR} and @code{ADRL} pseudo opcodes.
adcf07e6 538
a05a5b64 539@cindex @code{-mimplicit-it} command-line option, ARM
52970753
NC
540@item -mimplicit-it=never
541@itemx -mimplicit-it=always
542@itemx -mimplicit-it=arm
543@itemx -mimplicit-it=thumb
544The @code{-mimplicit-it} option controls the behavior of the assembler when
545conditional instructions are not enclosed in IT blocks.
546There are four possible behaviors.
547If @code{never} is specified, such constructs cause a warning in ARM
548code and an error in Thumb-2 code.
549If @code{always} is specified, such constructs are accepted in both
550ARM and Thumb-2 code, where the IT instruction is added implicitly.
551If @code{arm} is specified, such constructs are accepted in ARM code
552and cause an error in Thumb-2 code.
553If @code{thumb} is specified, such constructs cause a warning in ARM
554code and are accepted in Thumb-2 code. If you omit this option, the
555behavior is equivalent to @code{-mimplicit-it=arm}.
e07e6e58 556
a05a5b64
TP
557@cindex @code{-mapcs-26} command-line option, ARM
558@cindex @code{-mapcs-32} command-line option, ARM
5a5829dd
NS
559@item -mapcs-26
560@itemx -mapcs-32
561These options specify that the output generated by the assembler should
252b5132
RH
562be marked as supporting the indicated version of the Arm Procedure.
563Calling Standard.
adcf07e6 564
a05a5b64 565@cindex @code{-matpcs} command-line option, ARM
077b8428 566@item -matpcs
34bca508 567This option specifies that the output generated by the assembler should
077b8428
NC
568be marked as supporting the Arm/Thumb Procedure Calling Standard. If
569enabled this option will cause the assembler to create an empty
570debugging section in the object file called .arm.atpcs. Debuggers can
571use this to determine the ABI being used by.
572
a05a5b64 573@cindex @code{-mapcs-float} command-line option, ARM
252b5132 574@item -mapcs-float
1be59579 575This indicates the floating point variant of the APCS should be
252b5132 576used. In this variant floating point arguments are passed in FP
550262c4 577registers rather than integer registers.
adcf07e6 578
a05a5b64 579@cindex @code{-mapcs-reentrant} command-line option, ARM
252b5132
RH
580@item -mapcs-reentrant
581This indicates that the reentrant variant of the APCS should be used.
582This variant supports position independent code.
adcf07e6 583
a05a5b64 584@cindex @code{-mfloat-abi=} command-line option, ARM
33a392fb
PB
585@item -mfloat-abi=@var{abi}
586This option specifies that the output generated by the assembler should be
587marked as using specified floating point ABI.
588The following values are recognized:
589@code{soft},
590@code{softfp}
591and
592@code{hard}.
593
a05a5b64 594@cindex @code{-eabi=} command-line option, ARM
d507cf36
PB
595@item -meabi=@var{ver}
596This option specifies which EABI version the produced object files should
597conform to.
b45619c0 598The following values are recognized:
3a4a14e9
PB
599@code{gnu},
600@code{4}
d507cf36 601and
3a4a14e9 602@code{5}.
d507cf36 603
a05a5b64 604@cindex @code{-EB} command-line option, ARM
252b5132
RH
605@item -EB
606This option specifies that the output generated by the assembler should
607be marked as being encoded for a big-endian processor.
adcf07e6 608
080bb7bb
NC
609Note: If a program is being built for a system with big-endian data
610and little-endian instructions then it should be assembled with the
611@option{-EB} option, (all of it, code and data) and then linked with
612the @option{--be8} option. This will reverse the endianness of the
613instructions back to little-endian, but leave the data as big-endian.
614
a05a5b64 615@cindex @code{-EL} command-line option, ARM
252b5132
RH
616@item -EL
617This option specifies that the output generated by the assembler should
618be marked as being encoded for a little-endian processor.
adcf07e6 619
a05a5b64 620@cindex @code{-k} command-line option, ARM
252b5132
RH
621@cindex PIC code generation for ARM
622@item -k
a349d9dd
PB
623This option specifies that the output of the assembler should be marked
624as position-independent code (PIC).
adcf07e6 625
a05a5b64 626@cindex @code{--fix-v4bx} command-line option, ARM
845b51d6
PB
627@item --fix-v4bx
628Allow @code{BX} instructions in ARMv4 code. This is intended for use with
629the linker option of the same name.
630
a05a5b64 631@cindex @code{-mwarn-deprecated} command-line option, ARM
278df34e
NS
632@item -mwarn-deprecated
633@itemx -mno-warn-deprecated
634Enable or disable warnings about using deprecated options or
635features. The default is to warn.
636
a05a5b64 637@cindex @code{-mccs} command-line option, ARM
2e6976a8
DG
638@item -mccs
639Turns on CodeComposer Studio assembly syntax compatibility mode.
640
a05a5b64 641@cindex @code{-mwarn-syms} command-line option, ARM
8b2d793c
NC
642@item -mwarn-syms
643@itemx -mno-warn-syms
644Enable or disable warnings about symbols that match the names of ARM
645instructions. The default is to warn.
646
252b5132
RH
647@end table
648
649
650@node ARM Syntax
651@section Syntax
652@menu
cab7e4d9 653* ARM-Instruction-Set:: Instruction Set
252b5132
RH
654* ARM-Chars:: Special Characters
655* ARM-Regs:: Register Names
b6895b4f 656* ARM-Relocations:: Relocations
99f1a7a7 657* ARM-Neon-Alignment:: NEON Alignment Specifiers
252b5132
RH
658@end menu
659
cab7e4d9
NC
660@node ARM-Instruction-Set
661@subsection Instruction Set Syntax
662Two slightly different syntaxes are support for ARM and THUMB
663instructions. The default, @code{divided}, uses the old style where
664ARM and THUMB instructions had their own, separate syntaxes. The new,
665@code{unified} syntax, which can be selected via the @code{.syntax}
666directive, and has the following main features:
667
9e6f3811
AS
668@itemize @bullet
669@item
cab7e4d9
NC
670Immediate operands do not require a @code{#} prefix.
671
9e6f3811 672@item
cab7e4d9
NC
673The @code{IT} instruction may appear, and if it does it is validated
674against subsequent conditional affixes. In ARM mode it does not
675generate machine code, in THUMB mode it does.
676
9e6f3811 677@item
cab7e4d9
NC
678For ARM instructions the conditional affixes always appear at the end
679of the instruction. For THUMB instructions conditional affixes can be
680used, but only inside the scope of an @code{IT} instruction.
681
9e6f3811 682@item
cab7e4d9
NC
683All of the instructions new to the V6T2 architecture (and later) are
684available. (Only a few such instructions can be written in the
685@code{divided} syntax).
686
9e6f3811 687@item
cab7e4d9
NC
688The @code{.N} and @code{.W} suffixes are recognized and honored.
689
9e6f3811 690@item
cab7e4d9
NC
691All instructions set the flags if and only if they have an @code{s}
692affix.
9e6f3811 693@end itemize
cab7e4d9 694
252b5132
RH
695@node ARM-Chars
696@subsection Special Characters
697
698@cindex line comment character, ARM
699@cindex ARM line comment character
7c31ae13
NC
700The presence of a @samp{@@} anywhere on a line indicates the start of
701a comment that extends to the end of that line.
702
703If a @samp{#} appears as the first character of a line then the whole
704line is treated as a comment, but in this case the line could also be
705a logical line number directive (@pxref{Comments}) or a preprocessor
706control command (@pxref{Preprocessing}).
550262c4
NC
707
708@cindex line separator, ARM
709@cindex statement separator, ARM
710@cindex ARM line separator
a349d9dd
PB
711The @samp{;} character can be used instead of a newline to separate
712statements.
550262c4
NC
713
714@cindex immediate character, ARM
715@cindex ARM immediate character
716Either @samp{#} or @samp{$} can be used to indicate immediate operands.
252b5132
RH
717
718@cindex identifiers, ARM
719@cindex ARM identifiers
720*TODO* Explain about /data modifier on symbols.
721
722@node ARM-Regs
723@subsection Register Names
724
725@cindex ARM register names
726@cindex register names, ARM
727*TODO* Explain about ARM register naming, and the predefined names.
728
b6895b4f
PB
729@node ARM-Relocations
730@subsection ARM relocation generation
731
732@cindex data relocations, ARM
733@cindex ARM data relocations
734Specific data relocations can be generated by putting the relocation name
735in parentheses after the symbol name. For example:
736
737@smallexample
738 .word foo(TARGET1)
739@end smallexample
740
741This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
742@var{foo}.
743The following relocations are supported:
744@code{GOT},
745@code{GOTOFF},
746@code{TARGET1},
747@code{TARGET2},
748@code{SBREL},
749@code{TLSGD},
750@code{TLSLDM},
751@code{TLSLDO},
0855e32b
NS
752@code{TLSDESC},
753@code{TLSCALL},
b43420e6
NC
754@code{GOTTPOFF},
755@code{GOT_PREL}
b6895b4f
PB
756and
757@code{TPOFF}.
758
759For compatibility with older toolchains the assembler also accepts
3da1d841
NC
760@code{(PLT)} after branch targets. On legacy targets this will
761generate the deprecated @samp{R_ARM_PLT32} relocation. On EABI
762targets it will encode either the @samp{R_ARM_CALL} or
763@samp{R_ARM_JUMP24} relocation, as appropriate.
b6895b4f
PB
764
765@cindex MOVW and MOVT relocations, ARM
766Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
767by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
b45619c0 768respectively. For example to load the 32-bit address of foo into r0:
252b5132 769
b6895b4f
PB
770@smallexample
771 MOVW r0, #:lower16:foo
772 MOVT r0, #:upper16:foo
773@end smallexample
252b5132 774
72d98d16
MG
775Relocations @samp{R_ARM_THM_ALU_ABS_G0_NC}, @samp{R_ARM_THM_ALU_ABS_G1_NC},
776@samp{R_ARM_THM_ALU_ABS_G2_NC} and @samp{R_ARM_THM_ALU_ABS_G3_NC} can be
777generated by prefixing the value with @samp{#:lower0_7:#},
778@samp{#:lower8_15:#}, @samp{#:upper0_7:#} and @samp{#:upper8_15:#}
779respectively. For example to load the 32-bit address of foo into r0:
780
781@smallexample
782 MOVS r0, #:upper8_15:#foo
783 LSLS r0, r0, #8
784 ADDS r0, #:upper0_7:#foo
785 LSLS r0, r0, #8
786 ADDS r0, #:lower8_15:#foo
787 LSLS r0, r0, #8
788 ADDS r0, #:lower0_7:#foo
789@end smallexample
790
ba724cfc
NC
791@node ARM-Neon-Alignment
792@subsection NEON Alignment Specifiers
793
794@cindex alignment for NEON instructions
795Some NEON load/store instructions allow an optional address
796alignment qualifier.
797The ARM documentation specifies that this is indicated by
798@samp{@@ @var{align}}. However GAS already interprets
799the @samp{@@} character as a "line comment" start,
800so @samp{: @var{align}} is used instead. For example:
801
802@smallexample
803 vld1.8 @{q0@}, [r0, :128]
804@end smallexample
805
806@node ARM Floating Point
807@section Floating Point
808
809@cindex floating point, ARM (@sc{ieee})
810@cindex ARM floating point (@sc{ieee})
811The ARM family uses @sc{ieee} floating-point numbers.
812
252b5132
RH
813@node ARM Directives
814@section ARM Machine Directives
815
816@cindex machine directives, ARM
817@cindex ARM machine directives
818@table @code
819
4a6bc624
NS
820@c AAAAAAAAAAAAAAAAAAAAAAAAA
821
2b841ec2 822@ifclear ELF
4a6bc624
NS
823@cindex @code{.2byte} directive, ARM
824@cindex @code{.4byte} directive, ARM
825@cindex @code{.8byte} directive, ARM
826@item .2byte @var{expression} [, @var{expression}]*
827@itemx .4byte @var{expression} [, @var{expression}]*
828@itemx .8byte @var{expression} [, @var{expression}]*
829These directives write 2, 4 or 8 byte values to the output section.
2b841ec2 830@end ifclear
4a6bc624
NS
831
832@cindex @code{.align} directive, ARM
adcf07e6
NC
833@item .align @var{expression} [, @var{expression}]
834This is the generic @var{.align} directive. For the ARM however if the
835first argument is zero (ie no alignment is needed) the assembler will
836behave as if the argument had been 2 (ie pad to the next four byte
062b7c0c 837boundary). This is for compatibility with ARM's own assembler.
adcf07e6 838
4a6bc624
NS
839@cindex @code{.arch} directive, ARM
840@item .arch @var{name}
841Select the target architecture. Valid values for @var{name} are the same as
54691107
TP
842for the @option{-march} command-line option without the instruction set
843extension.
252b5132 844
34bca508 845Specifying @code{.arch} clears any previously selected architecture
69133863
MGD
846extensions.
847
848@cindex @code{.arch_extension} directive, ARM
849@item .arch_extension @var{name}
34bca508
L
850Add or remove an architecture extension to the target architecture. Valid
851values for @var{name} are the same as those accepted as architectural
a05a5b64 852extensions by the @option{-mcpu} and @option{-march} command-line options.
69133863
MGD
853
854@code{.arch_extension} may be used multiple times to add or remove extensions
855incrementally to the architecture being compiled for.
856
4a6bc624
NS
857@cindex @code{.arm} directive, ARM
858@item .arm
859This performs the same action as @var{.code 32}.
252b5132 860
4a6bc624 861@c BBBBBBBBBBBBBBBBBBBBBBBBBB
0bbf2aa4 862
4a6bc624
NS
863@cindex @code{.bss} directive, ARM
864@item .bss
865This directive switches to the @code{.bss} section.
0bbf2aa4 866
4a6bc624
NS
867@c CCCCCCCCCCCCCCCCCCCCCCCCCC
868
869@cindex @code{.cantunwind} directive, ARM
870@item .cantunwind
871Prevents unwinding through the current function. No personality routine
872or exception table data is required or permitted.
873
874@cindex @code{.code} directive, ARM
875@item .code @code{[16|32]}
876This directive selects the instruction set being generated. The value 16
877selects Thumb, with the value 32 selecting ARM.
878
879@cindex @code{.cpu} directive, ARM
880@item .cpu @var{name}
881Select the target processor. Valid values for @var{name} are the same as
54691107
TP
882for the @option{-mcpu} command-line option without the instruction set
883extension.
4a6bc624 884
34bca508 885Specifying @code{.cpu} clears any previously selected architecture
69133863
MGD
886extensions.
887
4a6bc624
NS
888@c DDDDDDDDDDDDDDDDDDDDDDDDDD
889
890@cindex @code{.dn} and @code{.qn} directives, ARM
f467aa98 891@item @var{name} .dn @var{register name} [@var{.type}] [[@var{index}]]
1f9bb1ca 892@itemx @var{name} .qn @var{register name} [@var{.type}] [[@var{index}]]
23753660
JB
893
894The @code{dn} and @code{qn} directives are used to create typed
895and/or indexed register aliases for use in Advanced SIMD Extension
896(Neon) instructions. The former should be used to create aliases
897of double-precision registers, and the latter to create aliases of
898quad-precision registers.
899
900If these directives are used to create typed aliases, those aliases can
901be used in Neon instructions instead of writing types after the mnemonic
902or after each operand. For example:
903
904@smallexample
905 x .dn d2.f32
906 y .dn d3.f32
907 z .dn d4.f32[1]
908 vmul x,y,z
909@end smallexample
910
911This is equivalent to writing the following:
912
913@smallexample
914 vmul.f32 d2,d3,d4[1]
915@end smallexample
916
917Aliases created using @code{dn} or @code{qn} can be destroyed using
918@code{unreq}.
919
4a6bc624 920@c EEEEEEEEEEEEEEEEEEEEEEEEEE
252b5132 921
4a6bc624
NS
922@cindex @code{.eabi_attribute} directive, ARM
923@item .eabi_attribute @var{tag}, @var{value}
924Set the EABI object attribute @var{tag} to @var{value}.
252b5132 925
4a6bc624
NS
926The @var{tag} is either an attribute number, or one of the following:
927@code{Tag_CPU_raw_name}, @code{Tag_CPU_name}, @code{Tag_CPU_arch},
928@code{Tag_CPU_arch_profile}, @code{Tag_ARM_ISA_use},
75375b3e 929@code{Tag_THUMB_ISA_use}, @code{Tag_FP_arch}, @code{Tag_WMMX_arch},
a7ad558c 930@code{Tag_Advanced_SIMD_arch}, @code{Tag_MVE_arch}, @code{Tag_PCS_config},
4a6bc624
NS
931@code{Tag_ABI_PCS_R9_use}, @code{Tag_ABI_PCS_RW_data},
932@code{Tag_ABI_PCS_RO_data}, @code{Tag_ABI_PCS_GOT_use},
933@code{Tag_ABI_PCS_wchar_t}, @code{Tag_ABI_FP_rounding},
934@code{Tag_ABI_FP_denormal}, @code{Tag_ABI_FP_exceptions},
935@code{Tag_ABI_FP_user_exceptions}, @code{Tag_ABI_FP_number_model},
75375b3e 936@code{Tag_ABI_align_needed}, @code{Tag_ABI_align_preserved},
4a6bc624
NS
937@code{Tag_ABI_enum_size}, @code{Tag_ABI_HardFP_use},
938@code{Tag_ABI_VFP_args}, @code{Tag_ABI_WMMX_args},
939@code{Tag_ABI_optimization_goals}, @code{Tag_ABI_FP_optimization_goals},
940@code{Tag_compatibility}, @code{Tag_CPU_unaligned_access},
75375b3e 941@code{Tag_FP_HP_extension}, @code{Tag_ABI_FP_16bit_format},
cd21e546 942@code{Tag_MPextension_use}, @code{Tag_DIV_use},
4a6bc624
NS
943@code{Tag_nodefaults}, @code{Tag_also_compatible_with},
944@code{Tag_conformance}, @code{Tag_T2EE_use},
cd21e546 945@code{Tag_Virtualization_use}
4a6bc624
NS
946
947The @var{value} is either a @code{number}, @code{"string"}, or
948@code{number, "string"} depending on the tag.
949
75375b3e 950Note - the following legacy values are also accepted by @var{tag}:
34bca508 951@code{Tag_VFP_arch}, @code{Tag_ABI_align8_needed},
75375b3e
MGD
952@code{Tag_ABI_align8_preserved}, @code{Tag_VFP_HP_extension},
953
4a6bc624
NS
954@cindex @code{.even} directive, ARM
955@item .even
956This directive aligns to an even-numbered address.
957
958@cindex @code{.extend} directive, ARM
959@cindex @code{.ldouble} directive, ARM
960@item .extend @var{expression} [, @var{expression}]*
961@itemx .ldouble @var{expression} [, @var{expression}]*
962These directives write 12byte long double floating-point values to the
963output section. These are not compatible with current ARM processors
964or ABIs.
965
966@c FFFFFFFFFFFFFFFFFFFFFFFFFF
967
5312fe52
BW
968@cindex @code{.float16} directive, ARM
969@item .float16 @var{value [,...,value_n]}
970Place the half precision floating point representation of one or more
971floating-point values into the current section. The exact format of the
972encoding is specified by @code{.float16_format}. If the format has not
973been explicitly set yet (either via the @code{.float16_format} directive or
974the command line option) then the IEEE 754-2008 format is used.
975
976@cindex @code{.float16_format} directive, ARM
977@item .float16_format @var{format}
978Set the format to use when encoding float16 values emitted by
979the @code{.float16} directive.
980Once the format has been set it cannot be changed.
981@code{format} should be one of the following: @code{ieee} (encode in
982the IEEE 754-2008 half precision format) or @code{alternative} (encode in
983the Arm alternative half precision format).
984
4a6bc624
NS
985@anchor{arm_fnend}
986@cindex @code{.fnend} directive, ARM
987@item .fnend
988Marks the end of a function with an unwind table entry. The unwind index
989table entry is created when this directive is processed.
252b5132 990
4a6bc624
NS
991If no personality routine has been specified then standard personality
992routine 0 or 1 will be used, depending on the number of unwind opcodes
993required.
994
995@anchor{arm_fnstart}
996@cindex @code{.fnstart} directive, ARM
997@item .fnstart
998Marks the start of a function with an unwind table entry.
999
1000@cindex @code{.force_thumb} directive, ARM
252b5132
RH
1001@item .force_thumb
1002This directive forces the selection of Thumb instructions, even if the
1003target processor does not support those instructions
1004
4a6bc624
NS
1005@cindex @code{.fpu} directive, ARM
1006@item .fpu @var{name}
1007Select the floating-point unit to assemble for. Valid values for @var{name}
a05a5b64 1008are the same as for the @option{-mfpu} command-line option.
252b5132 1009
4a6bc624
NS
1010@c GGGGGGGGGGGGGGGGGGGGGGGGGG
1011@c HHHHHHHHHHHHHHHHHHHHHHHHHH
e1da3f5b 1012
4a6bc624
NS
1013@cindex @code{.handlerdata} directive, ARM
1014@item .handlerdata
1015Marks the end of the current function, and the start of the exception table
1016entry for that function. Anything between this directive and the
1017@code{.fnend} directive will be added to the exception table entry.
1018
1019Must be preceded by a @code{.personality} or @code{.personalityindex}
1020directive.
1021
1022@c IIIIIIIIIIIIIIIIIIIIIIIIII
c921be7d
NC
1023
1024@cindex @code{.inst} directive, ARM
1025@item .inst @var{opcode} [ , @dots{} ]
1f9bb1ca
AS
1026@itemx .inst.n @var{opcode} [ , @dots{} ]
1027@itemx .inst.w @var{opcode} [ , @dots{} ]
c921be7d
NC
1028Generates the instruction corresponding to the numerical value @var{opcode}.
1029@code{.inst.n} and @code{.inst.w} allow the Thumb instruction size to be
1030specified explicitly, overriding the normal encoding rules.
1031
4a6bc624
NS
1032@c JJJJJJJJJJJJJJJJJJJJJJJJJJ
1033@c KKKKKKKKKKKKKKKKKKKKKKKKKK
1034@c LLLLLLLLLLLLLLLLLLLLLLLLLL
1035
1036@item .ldouble @var{expression} [, @var{expression}]*
1037See @code{.extend}.
5395a469 1038
252b5132
RH
1039@cindex @code{.ltorg} directive, ARM
1040@item .ltorg
1041This directive causes the current contents of the literal pool to be
1042dumped into the current section (which is assumed to be the .text
1043section) at the current location (aligned to a word boundary).
3d0c9500
NC
1044@code{GAS} maintains a separate literal pool for each section and each
1045sub-section. The @code{.ltorg} directive will only affect the literal
1046pool of the current section and sub-section. At the end of assembly
1047all remaining, un-empty literal pools will automatically be dumped.
1048
1049Note - older versions of @code{GAS} would dump the current literal
1050pool any time a section change occurred. This is no longer done, since
1051it prevents accurate control of the placement of literal pools.
252b5132 1052
4a6bc624 1053@c MMMMMMMMMMMMMMMMMMMMMMMMMM
252b5132 1054
4a6bc624
NS
1055@cindex @code{.movsp} directive, ARM
1056@item .movsp @var{reg} [, #@var{offset}]
1057Tell the unwinder that @var{reg} contains an offset from the current
1058stack pointer. If @var{offset} is not specified then it is assumed to be
1059zero.
7ed4c4c5 1060
4a6bc624
NS
1061@c NNNNNNNNNNNNNNNNNNNNNNNNNN
1062@c OOOOOOOOOOOOOOOOOOOOOOOOOO
7ed4c4c5 1063
4a6bc624
NS
1064@cindex @code{.object_arch} directive, ARM
1065@item .object_arch @var{name}
1066Override the architecture recorded in the EABI object attribute section.
1067Valid values for @var{name} are the same as for the @code{.arch} directive.
1068Typically this is useful when code uses runtime detection of CPU features.
7ed4c4c5 1069
4a6bc624
NS
1070@c PPPPPPPPPPPPPPPPPPPPPPPPPP
1071
1072@cindex @code{.packed} directive, ARM
1073@item .packed @var{expression} [, @var{expression}]*
1074This directive writes 12-byte packed floating-point values to the
1075output section. These are not compatible with current ARM processors
1076or ABIs.
1077
ea4cff4f 1078@anchor{arm_pad}
4a6bc624
NS
1079@cindex @code{.pad} directive, ARM
1080@item .pad #@var{count}
1081Generate unwinder annotations for a stack adjustment of @var{count} bytes.
1082A positive value indicates the function prologue allocated stack space by
1083decrementing the stack pointer.
7ed4c4c5
NC
1084
1085@cindex @code{.personality} directive, ARM
1086@item .personality @var{name}
1087Sets the personality routine for the current function to @var{name}.
1088
1089@cindex @code{.personalityindex} directive, ARM
1090@item .personalityindex @var{index}
1091Sets the personality routine for the current function to the EABI standard
1092routine number @var{index}
1093
4a6bc624
NS
1094@cindex @code{.pool} directive, ARM
1095@item .pool
1096This is a synonym for .ltorg.
7ed4c4c5 1097
4a6bc624
NS
1098@c QQQQQQQQQQQQQQQQQQQQQQQQQQ
1099@c RRRRRRRRRRRRRRRRRRRRRRRRRR
1100
1101@cindex @code{.req} directive, ARM
1102@item @var{name} .req @var{register name}
1103This creates an alias for @var{register name} called @var{name}. For
1104example:
1105
1106@smallexample
1107 foo .req r0
1108@end smallexample
1109
1110@c SSSSSSSSSSSSSSSSSSSSSSSSSS
7ed4c4c5 1111
7da4f750 1112@anchor{arm_save}
7ed4c4c5
NC
1113@cindex @code{.save} directive, ARM
1114@item .save @var{reglist}
1115Generate unwinder annotations to restore the registers in @var{reglist}.
1116The format of @var{reglist} is the same as the corresponding store-multiple
1117instruction.
1118
1119@smallexample
1120@exdent @emph{core registers}
1121 .save @{r4, r5, r6, lr@}
1122 stmfd sp!, @{r4, r5, r6, lr@}
1123@exdent @emph{FPA registers}
1124 .save f4, 2
1125 sfmfd f4, 2, [sp]!
1126@exdent @emph{VFP registers}
1127 .save @{d8, d9, d10@}
fa073d69 1128 fstmdx sp!, @{d8, d9, d10@}
7ed4c4c5
NC
1129@exdent @emph{iWMMXt registers}
1130 .save @{wr10, wr11@}
1131 wstrd wr11, [sp, #-8]!
1132 wstrd wr10, [sp, #-8]!
1133or
1134 .save wr11
1135 wstrd wr11, [sp, #-8]!
1136 .save wr10
1137 wstrd wr10, [sp, #-8]!
1138@end smallexample
1139
7da4f750 1140@anchor{arm_setfp}
7ed4c4c5
NC
1141@cindex @code{.setfp} directive, ARM
1142@item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
4a6bc624 1143Make all unwinder annotations relative to a frame pointer. Without this
7ed4c4c5
NC
1144the unwinder will use offsets from the stack pointer.
1145
a5b82cbe 1146The syntax of this directive is the same as the @code{add} or @code{mov}
7ed4c4c5
NC
1147instruction used to set the frame pointer. @var{spreg} must be either
1148@code{sp} or mentioned in a previous @code{.movsp} directive.
1149
1150@smallexample
1151.movsp ip
1152mov ip, sp
1153@dots{}
1154.setfp fp, ip, #4
a5b82cbe 1155add fp, ip, #4
7ed4c4c5
NC
1156@end smallexample
1157
4a6bc624
NS
1158@cindex @code{.secrel32} directive, ARM
1159@item .secrel32 @var{expression} [, @var{expression}]*
1160This directive emits relocations that evaluate to the section-relative
1161offset of each expression's symbol. This directive is only supported
1162for PE targets.
1163
cab7e4d9
NC
1164@cindex @code{.syntax} directive, ARM
1165@item .syntax [@code{unified} | @code{divided}]
1166This directive sets the Instruction Set Syntax as described in the
1167@ref{ARM-Instruction-Set} section.
1168
4a6bc624
NS
1169@c TTTTTTTTTTTTTTTTTTTTTTTTTT
1170
1171@cindex @code{.thumb} directive, ARM
1172@item .thumb
1173This performs the same action as @var{.code 16}.
1174
1175@cindex @code{.thumb_func} directive, ARM
1176@item .thumb_func
1177This directive specifies that the following symbol is the name of a
1178Thumb encoded function. This information is necessary in order to allow
1179the assembler and linker to generate correct code for interworking
1180between Arm and Thumb instructions and should be used even if
1181interworking is not going to be performed. The presence of this
1182directive also implies @code{.thumb}
1183
33eaf5de 1184This directive is not necessary when generating EABI objects. On these
4a6bc624
NS
1185targets the encoding is implicit when generating Thumb code.
1186
1187@cindex @code{.thumb_set} directive, ARM
1188@item .thumb_set
1189This performs the equivalent of a @code{.set} directive in that it
1190creates a symbol which is an alias for another symbol (possibly not yet
1191defined). This directive also has the added property in that it marks
1192the aliased symbol as being a thumb function entry point, in the same
1193way that the @code{.thumb_func} directive does.
1194
0855e32b
NS
1195@cindex @code{.tlsdescseq} directive, ARM
1196@item .tlsdescseq @var{tls-variable}
1197This directive is used to annotate parts of an inlined TLS descriptor
1198trampoline. Normally the trampoline is provided by the linker, and
1199this directive is not needed.
1200
4a6bc624
NS
1201@c UUUUUUUUUUUUUUUUUUUUUUUUUU
1202
1203@cindex @code{.unreq} directive, ARM
1204@item .unreq @var{alias-name}
1205This undefines a register alias which was previously defined using the
1206@code{req}, @code{dn} or @code{qn} directives. For example:
1207
1208@smallexample
1209 foo .req r0
1210 .unreq foo
1211@end smallexample
1212
1213An error occurs if the name is undefined. Note - this pseudo op can
1214be used to delete builtin in register name aliases (eg 'r0'). This
1215should only be done if it is really necessary.
1216
7ed4c4c5 1217@cindex @code{.unwind_raw} directive, ARM
4a6bc624 1218@item .unwind_raw @var{offset}, @var{byte1}, @dots{}
33eaf5de 1219Insert one of more arbitrary unwind opcode bytes, which are known to adjust
7ed4c4c5
NC
1220the stack pointer by @var{offset} bytes.
1221
1222For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
1223@code{.save @{r0@}}
1224
4a6bc624 1225@c VVVVVVVVVVVVVVVVVVVVVVVVVV
ee065d83 1226
4a6bc624
NS
1227@cindex @code{.vsave} directive, ARM
1228@item .vsave @var{vfp-reglist}
1229Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
1230using FLDMD. Also works for VFPv3 registers
1231that are to be restored using VLDM.
1232The format of @var{vfp-reglist} is the same as the corresponding store-multiple
1233instruction.
ee065d83 1234
4a6bc624
NS
1235@smallexample
1236@exdent @emph{VFP registers}
1237 .vsave @{d8, d9, d10@}
1238 fstmdd sp!, @{d8, d9, d10@}
1239@exdent @emph{VFPv3 registers}
1240 .vsave @{d15, d16, d17@}
1241 vstm sp!, @{d15, d16, d17@}
1242@end smallexample
e04befd0 1243
4a6bc624
NS
1244Since FLDMX and FSTMX are now deprecated, this directive should be
1245used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
e04befd0 1246
4a6bc624
NS
1247@c WWWWWWWWWWWWWWWWWWWWWWWWWW
1248@c XXXXXXXXXXXXXXXXXXXXXXXXXX
1249@c YYYYYYYYYYYYYYYYYYYYYYYYYY
1250@c ZZZZZZZZZZZZZZZZZZZZZZZZZZ
ee065d83 1251
252b5132
RH
1252@end table
1253
1254@node ARM Opcodes
1255@section Opcodes
1256
1257@cindex ARM opcodes
1258@cindex opcodes for ARM
49a5575c
NC
1259@code{@value{AS}} implements all the standard ARM opcodes. It also
1260implements several pseudo opcodes, including several synthetic load
34bca508 1261instructions.
252b5132 1262
49a5575c
NC
1263@table @code
1264
1265@cindex @code{NOP} pseudo op, ARM
1266@item NOP
1267@smallexample
1268 nop
1269@end smallexample
252b5132 1270
49a5575c
NC
1271This pseudo op will always evaluate to a legal ARM instruction that does
1272nothing. Currently it will evaluate to MOV r0, r0.
252b5132 1273
49a5575c 1274@cindex @code{LDR reg,=<label>} pseudo op, ARM
34bca508 1275@item LDR
252b5132
RH
1276@smallexample
1277 ldr <register> , = <expression>
1278@end smallexample
1279
1280If expression evaluates to a numeric constant then a MOV or MVN
1281instruction will be used in place of the LDR instruction, if the
1282constant can be generated by either of these instructions. Otherwise
1283the constant will be placed into the nearest literal pool (if it not
1284already there) and a PC relative LDR instruction will be generated.
1285
49a5575c
NC
1286@cindex @code{ADR reg,<label>} pseudo op, ARM
1287@item ADR
1288@smallexample
1289 adr <register> <label>
1290@end smallexample
1291
1292This instruction will load the address of @var{label} into the indicated
1293register. The instruction will evaluate to a PC relative ADD or SUB
1294instruction depending upon where the label is located. If the label is
1295out of range, or if it is not defined in the same file (and section) as
1296the ADR instruction, then an error will be generated. This instruction
1297will not make use of the literal pool.
1298
fc6141f0
NC
1299If @var{label} is a thumb function symbol, and thumb interworking has
1300been enabled via the @option{-mthumb-interwork} option then the bottom
1301bit of the value stored into @var{register} will be set. This allows
1302the following sequence to work as expected:
1303
1304@smallexample
1305 adr r0, thumb_function
1306 blx r0
1307@end smallexample
1308
49a5575c 1309@cindex @code{ADRL reg,<label>} pseudo op, ARM
34bca508 1310@item ADRL
49a5575c
NC
1311@smallexample
1312 adrl <register> <label>
1313@end smallexample
1314
1315This instruction will load the address of @var{label} into the indicated
a349d9dd 1316register. The instruction will evaluate to one or two PC relative ADD
49a5575c
NC
1317or SUB instructions depending upon where the label is located. If a
1318second instruction is not needed a NOP instruction will be generated in
1319its place, so that this instruction is always 8 bytes long.
1320
1321If the label is out of range, or if it is not defined in the same file
1322(and section) as the ADRL instruction, then an error will be generated.
1323This instruction will not make use of the literal pool.
1324
fc6141f0
NC
1325If @var{label} is a thumb function symbol, and thumb interworking has
1326been enabled via the @option{-mthumb-interwork} option then the bottom
1327bit of the value stored into @var{register} will be set.
1328
49a5575c
NC
1329@end table
1330
252b5132
RH
1331For information on the ARM or Thumb instruction sets, see @cite{ARM
1332Software Development Toolkit Reference Manual}, Advanced RISC Machines
1333Ltd.
1334
6057a28f
NC
1335@node ARM Mapping Symbols
1336@section Mapping Symbols
1337
1338The ARM ELF specification requires that special symbols be inserted
1339into object files to mark certain features:
1340
1341@table @code
1342
1343@cindex @code{$a}
1344@item $a
1345At the start of a region of code containing ARM instructions.
1346
1347@cindex @code{$t}
1348@item $t
1349At the start of a region of code containing THUMB instructions.
1350
1351@cindex @code{$d}
1352@item $d
1353At the start of a region of data.
1354
1355@end table
1356
1357The assembler will automatically insert these symbols for you - there
1358is no need to code them yourself. Support for tagging symbols ($b,
1359$f, $p and $m) which is also mentioned in the current ARM ELF
1360specification is not implemented. This is because they have been
1361dropped from the new EABI and so tools cannot rely upon their
1362presence.
1363
7da4f750
MM
1364@node ARM Unwinding Tutorial
1365@section Unwinding
1366
1367The ABI for the ARM Architecture specifies a standard format for
1368exception unwind information. This information is used when an
1369exception is thrown to determine where control should be transferred.
1370In particular, the unwind information is used to determine which
1371function called the function that threw the exception, and which
1372function called that one, and so forth. This information is also used
1373to restore the values of callee-saved registers in the function
1374catching the exception.
1375
1376If you are writing functions in assembly code, and those functions
1377call other functions that throw exceptions, you must use assembly
1378pseudo ops to ensure that appropriate exception unwind information is
1379generated. Otherwise, if one of the functions called by your assembly
1380code throws an exception, the run-time library will be unable to
1381unwind the stack through your assembly code and your program will not
1382behave correctly.
1383
1384To illustrate the use of these pseudo ops, we will examine the code
1385that G++ generates for the following C++ input:
1386
1387@verbatim
1388void callee (int *);
1389
34bca508
L
1390int
1391caller ()
7da4f750
MM
1392{
1393 int i;
1394 callee (&i);
34bca508 1395 return i;
7da4f750
MM
1396}
1397@end verbatim
1398
1399This example does not show how to throw or catch an exception from
1400assembly code. That is a much more complex operation and should
1401always be done in a high-level language, such as C++, that directly
1402supports exceptions.
1403
1404The code generated by one particular version of G++ when compiling the
1405example above is:
1406
1407@verbatim
1408_Z6callerv:
1409 .fnstart
1410.LFB2:
1411 @ Function supports interworking.
1412 @ args = 0, pretend = 0, frame = 8
1413 @ frame_needed = 1, uses_anonymous_args = 0
1414 stmfd sp!, {fp, lr}
1415 .save {fp, lr}
1416.LCFI0:
1417 .setfp fp, sp, #4
1418 add fp, sp, #4
1419.LCFI1:
1420 .pad #8
1421 sub sp, sp, #8
1422.LCFI2:
1423 sub r3, fp, #8
1424 mov r0, r3
1425 bl _Z6calleePi
1426 ldr r3, [fp, #-8]
1427 mov r0, r3
1428 sub sp, fp, #4
1429 ldmfd sp!, {fp, lr}
1430 bx lr
1431.LFE2:
1432 .fnend
1433@end verbatim
1434
1435Of course, the sequence of instructions varies based on the options
1436you pass to GCC and on the version of GCC in use. The exact
1437instructions are not important since we are focusing on the pseudo ops
1438that are used to generate unwind information.
1439
1440An important assumption made by the unwinder is that the stack frame
1441does not change during the body of the function. In particular, since
1442we assume that the assembly code does not itself throw an exception,
1443the only point where an exception can be thrown is from a call, such
1444as the @code{bl} instruction above. At each call site, the same saved
1445registers (including @code{lr}, which indicates the return address)
1446must be located in the same locations relative to the frame pointer.
1447
1448The @code{.fnstart} (@pxref{arm_fnstart,,.fnstart pseudo op}) pseudo
1449op appears immediately before the first instruction of the function
1450while the @code{.fnend} (@pxref{arm_fnend,,.fnend pseudo op}) pseudo
1451op appears immediately after the last instruction of the function.
34bca508 1452These pseudo ops specify the range of the function.
7da4f750
MM
1453
1454Only the order of the other pseudos ops (e.g., @code{.setfp} or
1455@code{.pad}) matters; their exact locations are irrelevant. In the
1456example above, the compiler emits the pseudo ops with particular
1457instructions. That makes it easier to understand the code, but it is
1458not required for correctness. It would work just as well to emit all
1459of the pseudo ops other than @code{.fnend} in the same order, but
1460immediately after @code{.fnstart}.
1461
1462The @code{.save} (@pxref{arm_save,,.save pseudo op}) pseudo op
1463indicates registers that have been saved to the stack so that they can
1464be restored before the function returns. The argument to the
1465@code{.save} pseudo op is a list of registers to save. If a register
1466is ``callee-saved'' (as specified by the ABI) and is modified by the
1467function you are writing, then your code must save the value before it
1468is modified and restore the original value before the function
1469returns. If an exception is thrown, the run-time library restores the
1470values of these registers from their locations on the stack before
1471returning control to the exception handler. (Of course, if an
1472exception is not thrown, the function that contains the @code{.save}
1473pseudo op restores these registers in the function epilogue, as is
1474done with the @code{ldmfd} instruction above.)
1475
1476You do not have to save callee-saved registers at the very beginning
1477of the function and you do not need to use the @code{.save} pseudo op
1478immediately following the point at which the registers are saved.
1479However, if you modify a callee-saved register, you must save it on
1480the stack before modifying it and before calling any functions which
1481might throw an exception. And, you must use the @code{.save} pseudo
1482op to indicate that you have done so.
1483
1484The @code{.pad} (@pxref{arm_pad,,.pad}) pseudo op indicates a
1485modification of the stack pointer that does not save any registers.
1486The argument is the number of bytes (in decimal) that are subtracted
1487from the stack pointer. (On ARM CPUs, the stack grows downwards, so
1488subtracting from the stack pointer increases the size of the stack.)
1489
1490The @code{.setfp} (@pxref{arm_setfp,,.setfp pseudo op}) pseudo op
1491indicates the register that contains the frame pointer. The first
1492argument is the register that is set, which is typically @code{fp}.
1493The second argument indicates the register from which the frame
1494pointer takes its value. The third argument, if present, is the value
1495(in decimal) added to the register specified by the second argument to
1496compute the value of the frame pointer. You should not modify the
1497frame pointer in the body of the function.
1498
1499If you do not use a frame pointer, then you should not use the
1500@code{.setfp} pseudo op. If you do not use a frame pointer, then you
1501should avoid modifying the stack pointer outside of the function
1502prologue. Otherwise, the run-time library will be unable to find
1503saved registers when it is unwinding the stack.
1504
1505The pseudo ops described above are sufficient for writing assembly
1506code that calls functions which may throw exceptions. If you need to
1507know more about the object-file format used to represent unwind
1508information, you may consult the @cite{Exception Handling ABI for the
1509ARM Architecture} available from @uref{http://infocenter.arm.com}.
91f68a68 1510