]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Add Intel MCU support to gas
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b90efa5b 1@c Copyright (C) 1991-2015 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
77as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
78
79@cindex @samp{--divide} option, i386
80@item --divide
81On SVR4-derived platforms, the character @samp{/} is treated as a comment
82character, which means that it cannot be used in expressions. The
83@samp{--divide} option turns @samp{/} into a normal character. This does
84not disable @samp{/} at the beginning of a line starting a comment, or
85affect using @samp{#} for starting a comment.
86
9103f4f4
L
87@cindex @samp{-march=} option, i386
88@cindex @samp{-march=} option, x86-64
6305a203
L
89@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
90This option specifies the target processor. The assembler will
91issue an error message if an attempt is made to assemble an instruction
92which will not execute on the target processor. The following
34bca508 93processor names are recognized:
9103f4f4
L
94@code{i8086},
95@code{i186},
96@code{i286},
97@code{i386},
98@code{i486},
99@code{i586},
100@code{i686},
101@code{pentium},
102@code{pentiumpro},
103@code{pentiumii},
104@code{pentiumiii},
105@code{pentium4},
106@code{prescott},
107@code{nocona},
ef05d495
L
108@code{core},
109@code{core2},
bd5295b2 110@code{corei7},
8a9036a4 111@code{l1om},
7a9068fe 112@code{k1om},
81486035 113@code{iamcu},
9103f4f4
L
114@code{k6},
115@code{k6_2},
116@code{athlon},
9103f4f4
L
117@code{opteron},
118@code{k8},
1ceab344 119@code{amdfam10},
68339fdf 120@code{bdver1},
af2f724e 121@code{bdver2},
5e5c50d3 122@code{bdver3},
c7b0bd56 123@code{bdver4},
029f3522 124@code{znver1},
7b458c12
L
125@code{btver1},
126@code{btver2},
9103f4f4
L
127@code{generic32} and
128@code{generic64}.
129
34bca508 130In addition to the basic instruction set, the assembler can be told to
6305a203
L
131accept various extension mnemonics. For example,
132@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
133@var{vmx}. The following extensions are currently supported:
309d3373
JB
134@code{8087},
135@code{287},
136@code{387},
137@code{no87},
6305a203 138@code{mmx},
309d3373 139@code{nommx},
6305a203
L
140@code{sse},
141@code{sse2},
142@code{sse3},
143@code{ssse3},
144@code{sse4.1},
145@code{sse4.2},
146@code{sse4},
309d3373 147@code{nosse},
c0f3af97 148@code{avx},
6c30d220 149@code{avx2},
e2e1fcde
L
150@code{adx},
151@code{rdseed},
152@code{prfchw},
5c111e37 153@code{smap},
7e8b059b 154@code{mpx},
a0046408 155@code{sha},
1dfc6506
L
156@code{prefetchwt1},
157@code{clflushopt},
158@code{se1},
c5e7287a 159@code{clwb},
9d8596f0 160@code{pcommit},
43234a1e
L
161@code{avx512f},
162@code{avx512cd},
163@code{avx512er},
164@code{avx512pf},
1dfc6506
L
165@code{avx512vl},
166@code{avx512bw},
167@code{avx512dq},
2cc1b5aa 168@code{avx512ifma},
14f195c9 169@code{avx512vbmi},
309d3373 170@code{noavx},
6305a203 171@code{vmx},
8729a6f6 172@code{vmfunc},
6305a203 173@code{smx},
f03fe4c1 174@code{xsave},
c7b8aa3a 175@code{xsaveopt},
1dfc6506
L
176@code{xsavec},
177@code{xsaves},
c0f3af97 178@code{aes},
594ab6a3 179@code{pclmul},
c7b8aa3a
L
180@code{fsgsbase},
181@code{rdrnd},
182@code{f16c},
6c30d220 183@code{bmi2},
c0f3af97 184@code{fma},
f1f8f695
L
185@code{movbe},
186@code{ept},
6c30d220 187@code{lzcnt},
42164a71
L
188@code{hle},
189@code{rtm},
6c30d220 190@code{invpcid},
bd5295b2 191@code{clflush},
029f3522 192@code{clzero},
f88c9eb0 193@code{lwp},
5dd85c99
SP
194@code{fma4},
195@code{xop},
60aa667e 196@code{cx16},
bd5295b2 197@code{syscall},
1b7f3fb0 198@code{rdtscp},
6305a203
L
199@code{3dnow},
200@code{3dnowa},
201@code{sse4a},
202@code{sse5},
203@code{svme},
204@code{abm} and
205@code{padlock}.
309d3373
JB
206Note that rather than extending a basic instruction set, the extension
207mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
208
209When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
210@code{.arch} directive will take precedent.
211
212@cindex @samp{-mtune=} option, i386
213@cindex @samp{-mtune=} option, x86-64
214@item -mtune=@var{CPU}
215This option specifies a processor to optimize for. When used in
216conjunction with the @option{-march} option, only instructions
217of the processor specified by the @option{-march} option will be
218generated.
219
6305a203
L
220Valid @var{CPU} values are identical to the processor list of
221@option{-march=@var{CPU}}.
9103f4f4 222
c0f3af97
L
223@cindex @samp{-msse2avx} option, i386
224@cindex @samp{-msse2avx} option, x86-64
225@item -msse2avx
226This option specifies that the assembler should encode SSE instructions
227with VEX prefix.
228
daf50ae7
L
229@cindex @samp{-msse-check=} option, i386
230@cindex @samp{-msse-check=} option, x86-64
231@item -msse-check=@var{none}
1f9bb1ca
AS
232@itemx -msse-check=@var{warning}
233@itemx -msse-check=@var{error}
9aff4b7a 234These options control if the assembler should check SSE instructions.
daf50ae7
L
235@option{-msse-check=@var{none}} will make the assembler not to check SSE
236instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 237will make the assembler issue a warning for any SSE instruction.
daf50ae7 238@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 239for any SSE instruction.
daf50ae7 240
539f890d
L
241@cindex @samp{-mavxscalar=} option, i386
242@cindex @samp{-mavxscalar=} option, x86-64
243@item -mavxscalar=@var{128}
1f9bb1ca 244@itemx -mavxscalar=@var{256}
2aab8acd 245These options control how the assembler should encode scalar AVX
539f890d
L
246instructions. @option{-mavxscalar=@var{128}} will encode scalar
247AVX instructions with 128bit vector length, which is the default.
248@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
249with 256bit vector length.
250
43234a1e
L
251@cindex @samp{-mevexlig=} option, i386
252@cindex @samp{-mevexlig=} option, x86-64
253@item -mevexlig=@var{128}
254@itemx -mevexlig=@var{256}
255@itemx -mevexlig=@var{512}
256These options control how the assembler should encode length-ignored
257(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
258EVEX instructions with 128bit vector length, which is the default.
259@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
260encode LIG EVEX instructions with 256bit and 512bit vector length,
261respectively.
262
263@cindex @samp{-mevexwig=} option, i386
264@cindex @samp{-mevexwig=} option, x86-64
265@item -mevexwig=@var{0}
266@itemx -mevexwig=@var{1}
267These options control how the assembler should encode w-ignored (WIG)
268EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
269EVEX instructions with evex.w = 0, which is the default.
270@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
271evex.w = 1.
272
1efbbeb4
L
273@cindex @samp{-mmnemonic=} option, i386
274@cindex @samp{-mmnemonic=} option, x86-64
275@item -mmnemonic=@var{att}
1f9bb1ca 276@itemx -mmnemonic=@var{intel}
34bca508 277This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
278The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
279take precedent.
280
281@cindex @samp{-msyntax=} option, i386
282@cindex @samp{-msyntax=} option, x86-64
283@item -msyntax=@var{att}
1f9bb1ca 284@itemx -msyntax=@var{intel}
34bca508 285This option specifies instruction syntax when processing instructions.
1efbbeb4
L
286The @code{.att_syntax} and @code{.intel_syntax} directives will
287take precedent.
288
289@cindex @samp{-mnaked-reg} option, i386
290@cindex @samp{-mnaked-reg} option, x86-64
291@item -mnaked-reg
292This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 293The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 294
7e8b059b
L
295@cindex @samp{-madd-bnd-prefix} option, i386
296@cindex @samp{-madd-bnd-prefix} option, x86-64
297@item -madd-bnd-prefix
298This option forces the assembler to add BND prefix to all branches, even
299if such prefix was not explicitly specified in the source code.
300
573cc2e5
L
301@cindex @samp{-mno-shared} option, i386
302@cindex @samp{-mno-shared} option, x86-64
303@item -mno-shared
304On ELF target, the assembler normally generates code which can go into a
305shared library where non-weak symbols can be preempted. The
306@samp{-mno-shared} option tells the assembler to generate code not for
307a shared library, where non-weak symbols won't be preempted. The
308resulting code is slightly smaller. This option mainly affects the
309handling of branch instructions.
310
167ad85b
TG
311@cindex @samp{-mbig-obj} option, x86-64
312@item -mbig-obj
313On x86-64 PE/COFF target this option forces the use of big object file
314format, which allows more than 32768 sections.
315
d022bddd
IT
316@cindex @samp{-momit-lock-prefix=} option, i386
317@cindex @samp{-momit-lock-prefix=} option, x86-64
318@item -momit-lock-prefix=@var{no}
319@itemx -momit-lock-prefix=@var{yes}
320These options control how the assembler should encode lock prefix.
321This option is intended as a workaround for processors, that fail on
322lock prefix. This option can only be safely used with single-core,
323single-thread computers
324@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
325@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
326which is the default.
327
d3d3c6db
IT
328@cindex @samp{-mevexrcig=} option, i386
329@cindex @samp{-mevexrcig=} option, x86-64
330@item -mevexrcig=@var{rne}
331@itemx -mevexrcig=@var{rd}
332@itemx -mevexrcig=@var{ru}
333@itemx -mevexrcig=@var{rz}
334These options control how the assembler should encode SAE-only
335EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
336of EVEX instruction with 00, which is the default.
337@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
338and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
339with 01, 10 and 11 RC bits, respectively.
340
55b62671 341@end table
731caf76 342@c man end
e413e4e9 343
a6c24e68
NC
344@node i386-Directives
345@section x86 specific Directives
346
347@cindex machine directives, x86
348@cindex x86 machine directives
349@table @code
350
351@cindex @code{lcomm} directive, COFF
352@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
353Reserve @var{length} (an absolute expression) bytes for a local common
354denoted by @var{symbol}. The section and value of @var{symbol} are
355those of the new local common. The addresses are allocated in the bss
704209c0
NC
356section, so that at run-time the bytes start off zeroed. Since
357@var{symbol} is not declared global, it is normally not visible to
358@code{@value{LD}}. The optional third parameter, @var{alignment},
359specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
360
361This directive is only available for COFF based x86 targets.
362
363@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
364@c .largecomm
365
366@end table
367
252b5132 368@node i386-Syntax
7c31ae13
NC
369@section i386 Syntactical Considerations
370@menu
371* i386-Variations:: AT&T Syntax versus Intel Syntax
372* i386-Chars:: Special Characters
373@end menu
374
375@node i386-Variations
376@subsection AT&T Syntax versus Intel Syntax
252b5132 377
e413e4e9
AM
378@cindex i386 intel_syntax pseudo op
379@cindex intel_syntax pseudo op, i386
380@cindex i386 att_syntax pseudo op
381@cindex att_syntax pseudo op, i386
252b5132
RH
382@cindex i386 syntax compatibility
383@cindex syntax compatibility, i386
55b62671
AJ
384@cindex x86-64 intel_syntax pseudo op
385@cindex intel_syntax pseudo op, x86-64
386@cindex x86-64 att_syntax pseudo op
387@cindex att_syntax pseudo op, x86-64
388@cindex x86-64 syntax compatibility
389@cindex syntax compatibility, x86-64
e413e4e9
AM
390
391@code{@value{AS}} now supports assembly using Intel assembler syntax.
392@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
393back to the usual AT&T mode for compatibility with the output of
394@code{@value{GCC}}. Either of these directives may have an optional
395argument, @code{prefix}, or @code{noprefix} specifying whether registers
396require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
397different from Intel syntax. We mention these differences because
398almost all 80386 documents use Intel syntax. Notable differences
399between the two syntaxes are:
400
401@cindex immediate operands, i386
402@cindex i386 immediate operands
403@cindex register operands, i386
404@cindex i386 register operands
405@cindex jump/call operands, i386
406@cindex i386 jump/call operands
407@cindex operand delimiters, i386
55b62671
AJ
408
409@cindex immediate operands, x86-64
410@cindex x86-64 immediate operands
411@cindex register operands, x86-64
412@cindex x86-64 register operands
413@cindex jump/call operands, x86-64
414@cindex x86-64 jump/call operands
415@cindex operand delimiters, x86-64
252b5132
RH
416@itemize @bullet
417@item
418AT&T immediate operands are preceded by @samp{$}; Intel immediate
419operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
420AT&T register operands are preceded by @samp{%}; Intel register operands
421are undelimited. AT&T absolute (as opposed to PC relative) jump/call
422operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
423
424@cindex i386 source, destination operands
425@cindex source, destination operands; i386
55b62671
AJ
426@cindex x86-64 source, destination operands
427@cindex source, destination operands; x86-64
252b5132
RH
428@item
429AT&T and Intel syntax use the opposite order for source and destination
430operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
431@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
432previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
433instructions with 2 immediate operands, such as the @samp{enter}
434instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
435
436@cindex mnemonic suffixes, i386
437@cindex sizes operands, i386
438@cindex i386 size suffixes
55b62671
AJ
439@cindex mnemonic suffixes, x86-64
440@cindex sizes operands, x86-64
441@cindex x86-64 size suffixes
252b5132
RH
442@item
443In AT&T syntax the size of memory operands is determined from the last
444character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
445@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
446(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
447this by prefixing memory operands (@emph{not} the instruction mnemonics) with
448@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
449Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
450syntax.
252b5132 451
4b06377f
L
452In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
453instruction with the 64-bit displacement or immediate operand.
454
252b5132
RH
455@cindex return instructions, i386
456@cindex i386 jump, call, return
55b62671
AJ
457@cindex return instructions, x86-64
458@cindex x86-64 jump, call, return
252b5132
RH
459@item
460Immediate form long jumps and calls are
461@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
462Intel syntax is
463@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
464instruction
465is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
466@samp{ret far @var{stack-adjust}}.
467
468@cindex sections, i386
469@cindex i386 sections
55b62671
AJ
470@cindex sections, x86-64
471@cindex x86-64 sections
252b5132
RH
472@item
473The AT&T assembler does not provide support for multiple section
474programs. Unix style systems expect all programs to be single sections.
475@end itemize
476
7c31ae13
NC
477@node i386-Chars
478@subsection Special Characters
479
480@cindex line comment character, i386
481@cindex i386 line comment character
482The presence of a @samp{#} appearing anywhere on a line indicates the
483start of a comment that extends to the end of that line.
484
485If a @samp{#} appears as the first character of a line then the whole
486line is treated as a comment, but in this case the line can also be a
487logical line number directive (@pxref{Comments}) or a preprocessor
488control command (@pxref{Preprocessing}).
489
490If the @option{--divide} command line option has not been specified
491then the @samp{/} character appearing anywhere on a line also
492introduces a line comment.
493
494@cindex line separator, i386
495@cindex statement separator, i386
496@cindex i386 line separator
497The @samp{;} character can be used to separate statements on the same
498line.
499
252b5132 500@node i386-Mnemonics
d3b47e2b
L
501@section i386-Mnemonics
502@subsection Instruction Naming
252b5132
RH
503
504@cindex i386 instruction naming
505@cindex instruction naming, i386
55b62671
AJ
506@cindex x86-64 instruction naming
507@cindex instruction naming, x86-64
508
252b5132 509Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
510specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
511and @samp{q} specify byte, word, long and quadruple word operands. If
512no suffix is specified by an instruction then @code{@value{AS}} tries to
513fill in the missing suffix based on the destination register operand
514(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
515to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
516@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
517assembler which assumes that a missing mnemonic suffix implies long
518operand size. (This incompatibility does not affect compiler output
519since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
520
521Almost all instructions have the same names in AT&T and Intel format.
522There are a few exceptions. The sign extend and zero extend
523instructions need two sizes to specify them. They need a size to
524sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
525is accomplished by using two instruction mnemonic suffixes in AT&T
526syntax. Base names for sign extend and zero extend are
527@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
528and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
529are tacked on to this base name, the @emph{from} suffix before the
530@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
531``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
532thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
533@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
534@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
535quadruple word).
252b5132 536
b6169b20
L
537@cindex encoding options, i386
538@cindex encoding options, x86-64
539
540Different encoding options can be specified via optional mnemonic
541suffix. @samp{.s} suffix swaps 2 register operands in encoding when
a501d77e
L
542moving from one register to another. @samp{.d8} or @samp{.d32} suffix
543prefers 8bit or 32bit displacement in encoding.
b6169b20 544
252b5132
RH
545@cindex conversion instructions, i386
546@cindex i386 conversion instructions
55b62671
AJ
547@cindex conversion instructions, x86-64
548@cindex x86-64 conversion instructions
252b5132
RH
549The Intel-syntax conversion instructions
550
551@itemize @bullet
552@item
553@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
554
555@item
556@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
557
558@item
559@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
560
561@item
562@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
563
564@item
565@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
566(x86-64 only),
567
568@item
d5f0cf92 569@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 570@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
571@end itemize
572
573@noindent
55b62671
AJ
574are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
575@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
576instructions.
252b5132
RH
577
578@cindex jump instructions, i386
579@cindex call instructions, i386
55b62671
AJ
580@cindex jump instructions, x86-64
581@cindex call instructions, x86-64
252b5132
RH
582Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
583AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
584convention.
585
d3b47e2b 586@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
587
588@cindex i386 mnemonic compatibility
589@cindex mnemonic compatibility, i386
590
591@code{@value{AS}} supports assembly using Intel mnemonic.
592@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
593@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
594syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
595Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
596@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
597@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
598assembler with different mnemonics from those in Intel IA32 specification.
599@code{@value{GCC}} generates those instructions with AT&T mnemonic.
600
252b5132
RH
601@node i386-Regs
602@section Register Naming
603
604@cindex i386 registers
605@cindex registers, i386
55b62671
AJ
606@cindex x86-64 registers
607@cindex registers, x86-64
252b5132
RH
608Register operands are always prefixed with @samp{%}. The 80386 registers
609consist of
610
611@itemize @bullet
612@item
613the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
614@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
615frame pointer), and @samp{%esp} (the stack pointer).
616
617@item
618the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
619@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
620
621@item
622the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
623@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
624are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
625@samp{%cx}, and @samp{%dx})
626
627@item
628the 6 section registers @samp{%cs} (code section), @samp{%ds}
629(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
630and @samp{%gs}.
631
632@item
633the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
634@samp{%cr3}.
635
636@item
637the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
638@samp{%db3}, @samp{%db6}, and @samp{%db7}.
639
640@item
641the 2 test registers @samp{%tr6} and @samp{%tr7}.
642
643@item
644the 8 floating point register stack @samp{%st} or equivalently
645@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
646@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
647These registers are overloaded by 8 MMX registers @samp{%mm0},
648@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
649@samp{%mm6} and @samp{%mm7}.
650
651@item
652the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
653@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
654@end itemize
655
656The AMD x86-64 architecture extends the register set by:
657
658@itemize @bullet
659@item
660enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
661accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
662@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
663pointer)
664
665@item
666the 8 extended registers @samp{%r8}--@samp{%r15}.
667
668@item
669the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
670
671@item
672the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
673
674@item
675the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
676
677@item
678the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
679
680@item
681the 8 debug registers: @samp{%db8}--@samp{%db15}.
682
683@item
684the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
685@end itemize
686
687@node i386-Prefixes
688@section Instruction Prefixes
689
690@cindex i386 instruction prefixes
691@cindex instruction prefixes, i386
692@cindex prefixes, i386
693Instruction prefixes are used to modify the following instruction. They
694are used to repeat string instructions, to provide section overrides, to
695perform bus lock operations, and to change operand and address sizes.
696(Most instructions that normally operate on 32-bit operands will use
69716-bit operands if the instruction has an ``operand size'' prefix.)
698Instruction prefixes are best written on the same line as the instruction
699they act upon. For example, the @samp{scas} (scan string) instruction is
700repeated with:
701
702@smallexample
703 repne scas %es:(%edi),%al
704@end smallexample
705
706You may also place prefixes on the lines immediately preceding the
707instruction, but this circumvents checks that @code{@value{AS}} does
708with prefixes, and will not work with all prefixes.
709
710Here is a list of instruction prefixes:
711
712@cindex section override prefixes, i386
713@itemize @bullet
714@item
715Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
716@samp{fs}, @samp{gs}. These are automatically added by specifying
717using the @var{section}:@var{memory-operand} form for memory references.
718
719@cindex size prefixes, i386
720@item
721Operand/Address size prefixes @samp{data16} and @samp{addr16}
722change 32-bit operands/addresses into 16-bit operands/addresses,
723while @samp{data32} and @samp{addr32} change 16-bit ones (in a
724@code{.code16} section) into 32-bit operands/addresses. These prefixes
725@emph{must} appear on the same line of code as the instruction they
726modify. For example, in a 16-bit @code{.code16} section, you might
727write:
728
729@smallexample
730 addr32 jmpl *(%ebx)
731@end smallexample
732
733@cindex bus lock prefixes, i386
734@cindex inhibiting interrupts, i386
735@item
736The bus lock prefix @samp{lock} inhibits interrupts during execution of
737the instruction it precedes. (This is only valid with certain
738instructions; see a 80386 manual for details).
739
740@cindex coprocessor wait, i386
741@item
742The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
743complete the current instruction. This should never be needed for the
74480386/80387 combination.
745
746@cindex repeat prefixes, i386
747@item
748The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
749to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
750times if the current address size is 16-bits).
55b62671
AJ
751@cindex REX prefixes, i386
752@item
753The @samp{rex} family of prefixes is used by x86-64 to encode
754extensions to i386 instruction set. The @samp{rex} prefix has four
755bits --- an operand size overwrite (@code{64}) used to change operand size
756from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
757register set.
758
759You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
760instruction emits @samp{rex} prefix with all the bits set. By omitting
761the @code{64}, @code{x}, @code{y} or @code{z} you may write other
762prefixes as well. Normally, there is no need to write the prefixes
763explicitly, since gas will automatically generate them based on the
764instruction operands.
252b5132
RH
765@end itemize
766
767@node i386-Memory
768@section Memory References
769
770@cindex i386 memory references
771@cindex memory references, i386
55b62671
AJ
772@cindex x86-64 memory references
773@cindex memory references, x86-64
252b5132
RH
774An Intel syntax indirect memory reference of the form
775
776@smallexample
777@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
778@end smallexample
779
780@noindent
781is translated into the AT&T syntax
782
783@smallexample
784@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
785@end smallexample
786
787@noindent
788where @var{base} and @var{index} are the optional 32-bit base and
789index registers, @var{disp} is the optional displacement, and
790@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
791to calculate the address of the operand. If no @var{scale} is
792specified, @var{scale} is taken to be 1. @var{section} specifies the
793optional section register for the memory operand, and may override the
794default section register (see a 80386 manual for section register
795defaults). Note that section overrides in AT&T syntax @emph{must}
796be preceded by a @samp{%}. If you specify a section override which
797coincides with the default section register, @code{@value{AS}} does @emph{not}
798output any section register override prefixes to assemble the given
799instruction. Thus, section overrides can be specified to emphasize which
800section register is used for a given memory operand.
801
802Here are some examples of Intel and AT&T style memory references:
803
804@table @asis
805@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
806@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
807missing, and the default section is used (@samp{%ss} for addressing with
808@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
809
810@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
811@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
812@samp{foo}. All other fields are missing. The section register here
813defaults to @samp{%ds}.
814
815@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
816This uses the value pointed to by @samp{foo} as a memory operand.
817Note that @var{base} and @var{index} are both missing, but there is only
818@emph{one} @samp{,}. This is a syntactic exception.
819
820@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
821This selects the contents of the variable @samp{foo} with section
822register @var{section} being @samp{%gs}.
823@end table
824
825Absolute (as opposed to PC relative) call and jump operands must be
826prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
827always chooses PC relative addressing for jump/call labels.
828
829Any instruction that has a memory operand, but no register operand,
55b62671
AJ
830@emph{must} specify its size (byte, word, long, or quadruple) with an
831instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
832respectively).
833
834The x86-64 architecture adds an RIP (instruction pointer relative)
835addressing. This addressing mode is specified by using @samp{rip} as a
836base register. Only constant offsets are valid. For example:
837
838@table @asis
839@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
840Points to the address 1234 bytes past the end of the current
841instruction.
842
843@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
844Points to the @code{symbol} in RIP relative way, this is shorter than
845the default absolute addressing.
846@end table
847
848Other addressing modes remain unchanged in x86-64 architecture, except
849registers used are 64-bit instead of 32-bit.
252b5132 850
fddf5b5b 851@node i386-Jumps
252b5132
RH
852@section Handling of Jump Instructions
853
854@cindex jump optimization, i386
855@cindex i386 jump optimization
55b62671
AJ
856@cindex jump optimization, x86-64
857@cindex x86-64 jump optimization
252b5132
RH
858Jump instructions are always optimized to use the smallest possible
859displacements. This is accomplished by using byte (8-bit) displacement
860jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 861is insufficient a long displacement is used. We do not support
252b5132
RH
862word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
863instruction with the @samp{data16} instruction prefix), since the 80386
864insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 865is added. (See also @pxref{i386-Arch})
252b5132
RH
866
867Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
868@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
869displacements, so that if you use these instructions (@code{@value{GCC}} does
870not use them) you may get an error message (and incorrect code). The AT&T
87180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
872to
873
874@smallexample
875 jcxz cx_zero
876 jmp cx_nonzero
877cx_zero: jmp foo
878cx_nonzero:
879@end smallexample
880
881@node i386-Float
882@section Floating Point
883
884@cindex i386 floating point
885@cindex floating point, i386
55b62671
AJ
886@cindex x86-64 floating point
887@cindex floating point, x86-64
252b5132
RH
888All 80387 floating point types except packed BCD are supported.
889(BCD support may be added without much difficulty). These data
890types are 16-, 32-, and 64- bit integers, and single (32-bit),
891double (64-bit), and extended (80-bit) precision floating point.
892Each supported type has an instruction mnemonic suffix and a constructor
893associated with it. Instruction mnemonic suffixes specify the operand's
894data type. Constructors build these data types into memory.
895
896@cindex @code{float} directive, i386
897@cindex @code{single} directive, i386
898@cindex @code{double} directive, i386
899@cindex @code{tfloat} directive, i386
55b62671
AJ
900@cindex @code{float} directive, x86-64
901@cindex @code{single} directive, x86-64
902@cindex @code{double} directive, x86-64
903@cindex @code{tfloat} directive, x86-64
252b5132
RH
904@itemize @bullet
905@item
906Floating point constructors are @samp{.float} or @samp{.single},
907@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
908These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
909and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
910only supports this format via the @samp{fldt} (load 80-bit real to stack
911top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
912
913@cindex @code{word} directive, i386
914@cindex @code{long} directive, i386
915@cindex @code{int} directive, i386
916@cindex @code{quad} directive, i386
55b62671
AJ
917@cindex @code{word} directive, x86-64
918@cindex @code{long} directive, x86-64
919@cindex @code{int} directive, x86-64
920@cindex @code{quad} directive, x86-64
252b5132
RH
921@item
922Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
923@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
924corresponding instruction mnemonic suffixes are @samp{s} (single),
925@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
926the 64-bit @samp{q} format is only present in the @samp{fildq} (load
927quad integer to stack top) and @samp{fistpq} (store quad integer and pop
928stack) instructions.
929@end itemize
930
931Register to register operations should not use instruction mnemonic suffixes.
932@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
933wrote @samp{fst %st, %st(1)}, since all register to register operations
934use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
935which converts @samp{%st} from 80-bit to 64-bit floating point format,
936then stores the result in the 4 byte location @samp{mem})
937
938@node i386-SIMD
939@section Intel's MMX and AMD's 3DNow! SIMD Operations
940
941@cindex MMX, i386
942@cindex 3DNow!, i386
943@cindex SIMD, i386
55b62671
AJ
944@cindex MMX, x86-64
945@cindex 3DNow!, x86-64
946@cindex SIMD, x86-64
252b5132
RH
947
948@code{@value{AS}} supports Intel's MMX instruction set (SIMD
949instructions for integer data), available on Intel's Pentium MMX
950processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 951Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
952instruction set (SIMD instructions for 32-bit floating point data)
953available on AMD's K6-2 processor and possibly others in the future.
954
955Currently, @code{@value{AS}} does not support Intel's floating point
956SIMD, Katmai (KNI).
957
958The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
959@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
96016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
961floating point values. The MMX registers cannot be used at the same time
962as the floating point stack.
963
964See Intel and AMD documentation, keeping in mind that the operand order in
965instructions is reversed from the Intel syntax.
966
f88c9eb0
SP
967@node i386-LWP
968@section AMD's Lightweight Profiling Instructions
969
970@cindex LWP, i386
971@cindex LWP, x86-64
972
973@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
974instruction set, available on AMD's Family 15h (Orochi) processors.
975
976LWP enables applications to collect and manage performance data, and
977react to performance events. The collection of performance data
978requires no context switches. LWP runs in the context of a thread and
979so several counters can be used independently across multiple threads.
980LWP can be used in both 64-bit and legacy 32-bit modes.
981
982For detailed information on the LWP instruction set, see the
983@cite{AMD Lightweight Profiling Specification} available at
984@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
985
87973e9f
QN
986@node i386-BMI
987@section Bit Manipulation Instructions
988
989@cindex BMI, i386
990@cindex BMI, x86-64
991
992@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
993
994BMI instructions provide several instructions implementing individual
995bit manipulation operations such as isolation, masking, setting, or
34bca508 996resetting.
87973e9f
QN
997
998@c Need to add a specification citation here when available.
999
2a2a0f38
QN
1000@node i386-TBM
1001@section AMD's Trailing Bit Manipulation Instructions
1002
1003@cindex TBM, i386
1004@cindex TBM, x86-64
1005
1006@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1007instruction set, available on AMD's BDVER2 processors (Trinity and
1008Viperfish).
1009
1010TBM instructions provide instructions implementing individual bit
1011manipulation operations such as isolating, masking, setting, resetting,
1012complementing, and operations on trailing zeros and ones.
1013
1014@c Need to add a specification citation here when available.
87973e9f 1015
252b5132
RH
1016@node i386-16bit
1017@section Writing 16-bit Code
1018
1019@cindex i386 16-bit code
1020@cindex 16-bit code, i386
1021@cindex real-mode code, i386
eecb386c 1022@cindex @code{code16gcc} directive, i386
252b5132
RH
1023@cindex @code{code16} directive, i386
1024@cindex @code{code32} directive, i386
55b62671
AJ
1025@cindex @code{code64} directive, i386
1026@cindex @code{code64} directive, x86-64
1027While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1028or 64-bit x86-64 code depending on the default configuration,
252b5132 1029it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1030mode code segments. To do this, put a @samp{.code16} or
1031@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1032be run in 16-bit mode. You can switch @code{@value{AS}} to writing
103332-bit code with the @samp{.code32} directive or 64-bit code with the
1034@samp{.code64} directive.
eecb386c
AM
1035
1036@samp{.code16gcc} provides experimental support for generating 16-bit
1037code from gcc, and differs from @samp{.code16} in that @samp{call},
1038@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1039@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1040default to 32-bit size. This is so that the stack pointer is
1041manipulated in the same way over function calls, allowing access to
1042function parameters at the same stack offsets as in 32-bit mode.
1043@samp{.code16gcc} also automatically adds address size prefixes where
1044necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1045
1046The code which @code{@value{AS}} generates in 16-bit mode will not
1047necessarily run on a 16-bit pre-80386 processor. To write code that
1048runs on such a processor, you must refrain from using @emph{any} 32-bit
1049constructs which require @code{@value{AS}} to output address or operand
1050size prefixes.
1051
1052Note that writing 16-bit code instructions by explicitly specifying a
1053prefix or an instruction mnemonic suffix within a 32-bit code section
1054generates different machine instructions than those generated for a
105516-bit code segment. In a 32-bit code section, the following code
1056generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1057value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1058
1059@smallexample
1060 pushw $4
1061@end smallexample
1062
1063The same code in a 16-bit code section would generate the machine
b45619c0 1064opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1065is correct since the processor default operand size is assumed to be 16
1066bits in a 16-bit code section.
1067
e413e4e9
AM
1068@node i386-Arch
1069@section Specifying CPU Architecture
1070
1071@cindex arch directive, i386
1072@cindex i386 arch directive
55b62671
AJ
1073@cindex arch directive, x86-64
1074@cindex x86-64 arch directive
e413e4e9
AM
1075
1076@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1077(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1078directive enables a warning when gas detects an instruction that is not
1079supported on the CPU specified. The choices for @var{cpu_type} are:
1080
1081@multitable @columnfractions .20 .20 .20 .20
1082@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1083@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1084@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1085@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1086@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1087@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1088@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1089@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1090@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1091@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1092@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1093@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1094@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1095@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1096@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1097@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1098@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1099@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1100@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1101@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1102@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
14f195c9 1103@item @samp{.avx512vbmi} @tab @samp{.clwb} @tab @samp{.pcommit}
1ceab344 1104@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1105@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1106@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
029f3522 1107@item @samp{.padlock} @tab @samp{.clzero}
e413e4e9
AM
1108@end multitable
1109
fddf5b5b
AM
1110Apart from the warning, there are only two other effects on
1111@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1112@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1113will automatically use a two byte opcode sequence. The larger three
1114byte opcode sequence is used on the 486 (and when no architecture is
1115specified) because it executes faster on the 486. Note that you can
1116explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1117Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1118@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1119conditional jumps will be promoted when necessary to a two instruction
1120sequence consisting of a conditional jump of the opposite sense around
1121an unconditional jump to the target.
1122
5c6af06e
JB
1123Following the CPU architecture (but not a sub-architecture, which are those
1124starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1125control automatic promotion of conditional jumps. @samp{jumps} is the
1126default, and enables jump promotion; All external jumps will be of the long
1127variety, and file-local jumps will be promoted as necessary.
1128(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1129byte offset jumps, and warns about file-local conditional jumps that
1130@code{@value{AS}} promotes.
fddf5b5b
AM
1131Unconditional jumps are treated as for @samp{jumps}.
1132
1133For example
1134
1135@smallexample
1136 .arch i8086,nojumps
1137@end smallexample
e413e4e9 1138
5c9352f3
AM
1139@node i386-Bugs
1140@section AT&T Syntax bugs
1141
1142The UnixWare assembler, and probably other AT&T derived ix86 Unix
1143assemblers, generate floating point instructions with reversed source
1144and destination registers in certain cases. Unfortunately, gcc and
1145possibly many other programs use this reversed syntax, so we're stuck
1146with it.
1147
1148For example
1149
1150@smallexample
1151 fsub %st,%st(3)
1152@end smallexample
1153@noindent
1154results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1155than the expected @samp{%st(3) - %st}. This happens with all the
1156non-commutative arithmetic floating point operations with two register
1157operands where the source register is @samp{%st} and the destination
1158register is @samp{%st(i)}.
1159
252b5132
RH
1160@node i386-Notes
1161@section Notes
1162
1163@cindex i386 @code{mul}, @code{imul} instructions
1164@cindex @code{mul} instruction, i386
1165@cindex @code{imul} instruction, i386
55b62671
AJ
1166@cindex @code{mul} instruction, x86-64
1167@cindex @code{imul} instruction, x86-64
252b5132 1168There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1169instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1170multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1171for @samp{imul}) can be output only in the one operand form. Thus,
1172@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1173the expanding multiply would clobber the @samp{%edx} register, and this
1174would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
117564-bit product in @samp{%edx:%eax}.
1176
1177We have added a two operand form of @samp{imul} when the first operand
1178is an immediate mode expression and the second operand is a register.
1179This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1180example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1181$69, %eax, %eax}.
1182