]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
gdb/
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
2da5c037 1@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000,
aa820537 2@c 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
f7e42eb4 3@c Free Software Foundation, Inc.
252b5132
RH
4@c This is part of the GAS manual.
5@c For copying conditions, see the file as.texinfo.
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
252b5132
RH
27* i386-Syntax:: AT&T Syntax versus Intel Syntax
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
252b5132 36* i386-16bit:: Writing 16-bit Code
e413e4e9 37* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
38* i386-Bugs:: AT&T Syntax bugs
39* i386-Notes:: Notes
40@end menu
41
42@node i386-Options
43@section Options
44
55b62671
AJ
45@cindex options for i386
46@cindex options for x86-64
47@cindex i386 options
48@cindex x86-64 options
49
50The i386 version of @code{@value{AS}} has a few machine
51dependent options:
52
53@table @code
54@cindex @samp{--32} option, i386
55@cindex @samp{--32} option, x86-64
56@cindex @samp{--64} option, i386
57@cindex @samp{--64} option, x86-64
58@item --32 | --64
59Select the word size, either 32 bits or 64 bits. Selecting 32-bit
60implies Intel i386 architecture, while 64-bit implies AMD x86-64
61architecture.
62
63These options are only available with the ELF object file format, and
64require that the necessary BFD support has been included (on a 32-bit
65platform you have to add --enable-64-bit-bfd to configure enable 64-bit
66usage and use x86-64 as target platform).
12b55ccc
L
67
68@item -n
69By default, x86 GAS replaces multiple nop instructions used for
70alignment within code sections with multi-byte nop instructions such
71as leal 0(%esi,1),%esi. This switch disables the optimization.
b3b91714
AM
72
73@cindex @samp{--divide} option, i386
74@item --divide
75On SVR4-derived platforms, the character @samp{/} is treated as a comment
76character, which means that it cannot be used in expressions. The
77@samp{--divide} option turns @samp{/} into a normal character. This does
78not disable @samp{/} at the beginning of a line starting a comment, or
79affect using @samp{#} for starting a comment.
80
9103f4f4
L
81@cindex @samp{-march=} option, i386
82@cindex @samp{-march=} option, x86-64
6305a203
L
83@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
84This option specifies the target processor. The assembler will
85issue an error message if an attempt is made to assemble an instruction
86which will not execute on the target processor. The following
87processor names are recognized:
9103f4f4
L
88@code{i8086},
89@code{i186},
90@code{i286},
91@code{i386},
92@code{i486},
93@code{i586},
94@code{i686},
95@code{pentium},
96@code{pentiumpro},
97@code{pentiumii},
98@code{pentiumiii},
99@code{pentium4},
100@code{prescott},
101@code{nocona},
ef05d495
L
102@code{core},
103@code{core2},
bd5295b2 104@code{corei7},
8a9036a4 105@code{l1om},
9103f4f4
L
106@code{k6},
107@code{k6_2},
108@code{athlon},
9103f4f4
L
109@code{opteron},
110@code{k8},
1ceab344 111@code{amdfam10},
68339fdf 112@code{bdver1},
9103f4f4
L
113@code{generic32} and
114@code{generic64}.
115
6305a203
L
116In addition to the basic instruction set, the assembler can be told to
117accept various extension mnemonics. For example,
118@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
119@var{vmx}. The following extensions are currently supported:
309d3373
JB
120@code{8087},
121@code{287},
122@code{387},
123@code{no87},
6305a203 124@code{mmx},
309d3373 125@code{nommx},
6305a203
L
126@code{sse},
127@code{sse2},
128@code{sse3},
129@code{ssse3},
130@code{sse4.1},
131@code{sse4.2},
132@code{sse4},
309d3373 133@code{nosse},
c0f3af97 134@code{avx},
309d3373 135@code{noavx},
6305a203
L
136@code{vmx},
137@code{smx},
f03fe4c1 138@code{xsave},
c0f3af97 139@code{aes},
594ab6a3 140@code{pclmul},
c0f3af97 141@code{fma},
f1f8f695
L
142@code{movbe},
143@code{ept},
bd5295b2 144@code{clflush},
f88c9eb0 145@code{lwp},
5dd85c99
SP
146@code{fma4},
147@code{xop},
bd5295b2 148@code{syscall},
1b7f3fb0 149@code{rdtscp},
6305a203
L
150@code{3dnow},
151@code{3dnowa},
152@code{sse4a},
153@code{sse5},
154@code{svme},
155@code{abm} and
156@code{padlock}.
309d3373
JB
157Note that rather than extending a basic instruction set, the extension
158mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
159
160When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
161@code{.arch} directive will take precedent.
162
163@cindex @samp{-mtune=} option, i386
164@cindex @samp{-mtune=} option, x86-64
165@item -mtune=@var{CPU}
166This option specifies a processor to optimize for. When used in
167conjunction with the @option{-march} option, only instructions
168of the processor specified by the @option{-march} option will be
169generated.
170
6305a203
L
171Valid @var{CPU} values are identical to the processor list of
172@option{-march=@var{CPU}}.
9103f4f4 173
c0f3af97
L
174@cindex @samp{-msse2avx} option, i386
175@cindex @samp{-msse2avx} option, x86-64
176@item -msse2avx
177This option specifies that the assembler should encode SSE instructions
178with VEX prefix.
179
daf50ae7
L
180@cindex @samp{-msse-check=} option, i386
181@cindex @samp{-msse-check=} option, x86-64
182@item -msse-check=@var{none}
1f9bb1ca
AS
183@itemx -msse-check=@var{warning}
184@itemx -msse-check=@var{error}
daf50ae7
L
185These options control if the assembler should check SSE intructions.
186@option{-msse-check=@var{none}} will make the assembler not to check SSE
187instructions, which is the default. @option{-msse-check=@var{warning}}
188will make the assembler issue a warning for any SSE intruction.
189@option{-msse-check=@var{error}} will make the assembler issue an error
190for any SSE intruction.
191
539f890d
L
192@cindex @samp{-mavxscalar=} option, i386
193@cindex @samp{-mavxscalar=} option, x86-64
194@item -mavxscalar=@var{128}
1f9bb1ca 195@itemx -mavxscalar=@var{256}
539f890d
L
196This options control how the assembler should encode scalar AVX
197instructions. @option{-mavxscalar=@var{128}} will encode scalar
198AVX instructions with 128bit vector length, which is the default.
199@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
200with 256bit vector length.
201
1efbbeb4
L
202@cindex @samp{-mmnemonic=} option, i386
203@cindex @samp{-mmnemonic=} option, x86-64
204@item -mmnemonic=@var{att}
1f9bb1ca 205@itemx -mmnemonic=@var{intel}
1efbbeb4
L
206This option specifies instruction mnemonic for matching instructions.
207The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
208take precedent.
209
210@cindex @samp{-msyntax=} option, i386
211@cindex @samp{-msyntax=} option, x86-64
212@item -msyntax=@var{att}
1f9bb1ca 213@itemx -msyntax=@var{intel}
1efbbeb4
L
214This option specifies instruction syntax when processing instructions.
215The @code{.att_syntax} and @code{.intel_syntax} directives will
216take precedent.
217
218@cindex @samp{-mnaked-reg} option, i386
219@cindex @samp{-mnaked-reg} option, x86-64
220@item -mnaked-reg
221This opetion specifies that registers don't require a @samp{%} prefix.
e1d4d893 222The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 223
55b62671 224@end table
e413e4e9 225
a6c24e68
NC
226@node i386-Directives
227@section x86 specific Directives
228
229@cindex machine directives, x86
230@cindex x86 machine directives
231@table @code
232
233@cindex @code{lcomm} directive, COFF
234@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
235Reserve @var{length} (an absolute expression) bytes for a local common
236denoted by @var{symbol}. The section and value of @var{symbol} are
237those of the new local common. The addresses are allocated in the bss
704209c0
NC
238section, so that at run-time the bytes start off zeroed. Since
239@var{symbol} is not declared global, it is normally not visible to
240@code{@value{LD}}. The optional third parameter, @var{alignment},
241specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
242
243This directive is only available for COFF based x86 targets.
244
245@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
246@c .largecomm
247
248@end table
249
252b5132
RH
250@node i386-Syntax
251@section AT&T Syntax versus Intel Syntax
252
e413e4e9
AM
253@cindex i386 intel_syntax pseudo op
254@cindex intel_syntax pseudo op, i386
255@cindex i386 att_syntax pseudo op
256@cindex att_syntax pseudo op, i386
252b5132
RH
257@cindex i386 syntax compatibility
258@cindex syntax compatibility, i386
55b62671
AJ
259@cindex x86-64 intel_syntax pseudo op
260@cindex intel_syntax pseudo op, x86-64
261@cindex x86-64 att_syntax pseudo op
262@cindex att_syntax pseudo op, x86-64
263@cindex x86-64 syntax compatibility
264@cindex syntax compatibility, x86-64
e413e4e9
AM
265
266@code{@value{AS}} now supports assembly using Intel assembler syntax.
267@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
268back to the usual AT&T mode for compatibility with the output of
269@code{@value{GCC}}. Either of these directives may have an optional
270argument, @code{prefix}, or @code{noprefix} specifying whether registers
271require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
272different from Intel syntax. We mention these differences because
273almost all 80386 documents use Intel syntax. Notable differences
274between the two syntaxes are:
275
276@cindex immediate operands, i386
277@cindex i386 immediate operands
278@cindex register operands, i386
279@cindex i386 register operands
280@cindex jump/call operands, i386
281@cindex i386 jump/call operands
282@cindex operand delimiters, i386
55b62671
AJ
283
284@cindex immediate operands, x86-64
285@cindex x86-64 immediate operands
286@cindex register operands, x86-64
287@cindex x86-64 register operands
288@cindex jump/call operands, x86-64
289@cindex x86-64 jump/call operands
290@cindex operand delimiters, x86-64
252b5132
RH
291@itemize @bullet
292@item
293AT&T immediate operands are preceded by @samp{$}; Intel immediate
294operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
295AT&T register operands are preceded by @samp{%}; Intel register operands
296are undelimited. AT&T absolute (as opposed to PC relative) jump/call
297operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
298
299@cindex i386 source, destination operands
300@cindex source, destination operands; i386
55b62671
AJ
301@cindex x86-64 source, destination operands
302@cindex source, destination operands; x86-64
252b5132
RH
303@item
304AT&T and Intel syntax use the opposite order for source and destination
305operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
306@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
307previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
308instructions with 2 immediate operands, such as the @samp{enter}
309instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
310
311@cindex mnemonic suffixes, i386
312@cindex sizes operands, i386
313@cindex i386 size suffixes
55b62671
AJ
314@cindex mnemonic suffixes, x86-64
315@cindex sizes operands, x86-64
316@cindex x86-64 size suffixes
252b5132
RH
317@item
318In AT&T syntax the size of memory operands is determined from the last
319character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
320@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
321(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
322this by prefixing memory operands (@emph{not} the instruction mnemonics) with
323@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
324Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
325syntax.
252b5132 326
4b06377f
L
327In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
328instruction with the 64-bit displacement or immediate operand.
329
252b5132
RH
330@cindex return instructions, i386
331@cindex i386 jump, call, return
55b62671
AJ
332@cindex return instructions, x86-64
333@cindex x86-64 jump, call, return
252b5132
RH
334@item
335Immediate form long jumps and calls are
336@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
337Intel syntax is
338@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
339instruction
340is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
341@samp{ret far @var{stack-adjust}}.
342
343@cindex sections, i386
344@cindex i386 sections
55b62671
AJ
345@cindex sections, x86-64
346@cindex x86-64 sections
252b5132
RH
347@item
348The AT&T assembler does not provide support for multiple section
349programs. Unix style systems expect all programs to be single sections.
350@end itemize
351
352@node i386-Mnemonics
353@section Instruction Naming
354
355@cindex i386 instruction naming
356@cindex instruction naming, i386
55b62671
AJ
357@cindex x86-64 instruction naming
358@cindex instruction naming, x86-64
359
252b5132 360Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
361specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
362and @samp{q} specify byte, word, long and quadruple word operands. If
363no suffix is specified by an instruction then @code{@value{AS}} tries to
364fill in the missing suffix based on the destination register operand
365(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
366to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
367@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
368assembler which assumes that a missing mnemonic suffix implies long
369operand size. (This incompatibility does not affect compiler output
370since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
371
372Almost all instructions have the same names in AT&T and Intel format.
373There are a few exceptions. The sign extend and zero extend
374instructions need two sizes to specify them. They need a size to
375sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
376is accomplished by using two instruction mnemonic suffixes in AT&T
377syntax. Base names for sign extend and zero extend are
378@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
379and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
380are tacked on to this base name, the @emph{from} suffix before the
381@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
382``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
383thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
384@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
385@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
386quadruple word).
252b5132 387
b6169b20
L
388@cindex encoding options, i386
389@cindex encoding options, x86-64
390
391Different encoding options can be specified via optional mnemonic
392suffix. @samp{.s} suffix swaps 2 register operands in encoding when
393moving from one register to another.
394
252b5132
RH
395@cindex conversion instructions, i386
396@cindex i386 conversion instructions
55b62671
AJ
397@cindex conversion instructions, x86-64
398@cindex x86-64 conversion instructions
252b5132
RH
399The Intel-syntax conversion instructions
400
401@itemize @bullet
402@item
403@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
404
405@item
406@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
407
408@item
409@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
410
411@item
412@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
413
414@item
415@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
416(x86-64 only),
417
418@item
d5f0cf92 419@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 420@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
421@end itemize
422
423@noindent
55b62671
AJ
424are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
425@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
426instructions.
252b5132
RH
427
428@cindex jump instructions, i386
429@cindex call instructions, i386
55b62671
AJ
430@cindex jump instructions, x86-64
431@cindex call instructions, x86-64
252b5132
RH
432Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
433AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
434convention.
435
1efbbeb4
L
436@section AT&T Mnemonic versus Intel Mnemonic
437
438@cindex i386 mnemonic compatibility
439@cindex mnemonic compatibility, i386
440
441@code{@value{AS}} supports assembly using Intel mnemonic.
442@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
443@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
444syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
445Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
446@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
447@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
448assembler with different mnemonics from those in Intel IA32 specification.
449@code{@value{GCC}} generates those instructions with AT&T mnemonic.
450
252b5132
RH
451@node i386-Regs
452@section Register Naming
453
454@cindex i386 registers
455@cindex registers, i386
55b62671
AJ
456@cindex x86-64 registers
457@cindex registers, x86-64
252b5132
RH
458Register operands are always prefixed with @samp{%}. The 80386 registers
459consist of
460
461@itemize @bullet
462@item
463the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
464@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
465frame pointer), and @samp{%esp} (the stack pointer).
466
467@item
468the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
469@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
470
471@item
472the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
473@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
474are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
475@samp{%cx}, and @samp{%dx})
476
477@item
478the 6 section registers @samp{%cs} (code section), @samp{%ds}
479(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
480and @samp{%gs}.
481
482@item
483the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
484@samp{%cr3}.
485
486@item
487the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
488@samp{%db3}, @samp{%db6}, and @samp{%db7}.
489
490@item
491the 2 test registers @samp{%tr6} and @samp{%tr7}.
492
493@item
494the 8 floating point register stack @samp{%st} or equivalently
495@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
496@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
497These registers are overloaded by 8 MMX registers @samp{%mm0},
498@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
499@samp{%mm6} and @samp{%mm7}.
500
501@item
502the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
503@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
504@end itemize
505
506The AMD x86-64 architecture extends the register set by:
507
508@itemize @bullet
509@item
510enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
511accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
512@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
513pointer)
514
515@item
516the 8 extended registers @samp{%r8}--@samp{%r15}.
517
518@item
519the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
520
521@item
522the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
523
524@item
525the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
526
527@item
528the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
529
530@item
531the 8 debug registers: @samp{%db8}--@samp{%db15}.
532
533@item
534the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
252b5132
RH
535@end itemize
536
537@node i386-Prefixes
538@section Instruction Prefixes
539
540@cindex i386 instruction prefixes
541@cindex instruction prefixes, i386
542@cindex prefixes, i386
543Instruction prefixes are used to modify the following instruction. They
544are used to repeat string instructions, to provide section overrides, to
545perform bus lock operations, and to change operand and address sizes.
546(Most instructions that normally operate on 32-bit operands will use
54716-bit operands if the instruction has an ``operand size'' prefix.)
548Instruction prefixes are best written on the same line as the instruction
549they act upon. For example, the @samp{scas} (scan string) instruction is
550repeated with:
551
552@smallexample
553 repne scas %es:(%edi),%al
554@end smallexample
555
556You may also place prefixes on the lines immediately preceding the
557instruction, but this circumvents checks that @code{@value{AS}} does
558with prefixes, and will not work with all prefixes.
559
560Here is a list of instruction prefixes:
561
562@cindex section override prefixes, i386
563@itemize @bullet
564@item
565Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
566@samp{fs}, @samp{gs}. These are automatically added by specifying
567using the @var{section}:@var{memory-operand} form for memory references.
568
569@cindex size prefixes, i386
570@item
571Operand/Address size prefixes @samp{data16} and @samp{addr16}
572change 32-bit operands/addresses into 16-bit operands/addresses,
573while @samp{data32} and @samp{addr32} change 16-bit ones (in a
574@code{.code16} section) into 32-bit operands/addresses. These prefixes
575@emph{must} appear on the same line of code as the instruction they
576modify. For example, in a 16-bit @code{.code16} section, you might
577write:
578
579@smallexample
580 addr32 jmpl *(%ebx)
581@end smallexample
582
583@cindex bus lock prefixes, i386
584@cindex inhibiting interrupts, i386
585@item
586The bus lock prefix @samp{lock} inhibits interrupts during execution of
587the instruction it precedes. (This is only valid with certain
588instructions; see a 80386 manual for details).
589
590@cindex coprocessor wait, i386
591@item
592The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
593complete the current instruction. This should never be needed for the
59480386/80387 combination.
595
596@cindex repeat prefixes, i386
597@item
598The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
599to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
600times if the current address size is 16-bits).
55b62671
AJ
601@cindex REX prefixes, i386
602@item
603The @samp{rex} family of prefixes is used by x86-64 to encode
604extensions to i386 instruction set. The @samp{rex} prefix has four
605bits --- an operand size overwrite (@code{64}) used to change operand size
606from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
607register set.
608
609You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
610instruction emits @samp{rex} prefix with all the bits set. By omitting
611the @code{64}, @code{x}, @code{y} or @code{z} you may write other
612prefixes as well. Normally, there is no need to write the prefixes
613explicitly, since gas will automatically generate them based on the
614instruction operands.
252b5132
RH
615@end itemize
616
617@node i386-Memory
618@section Memory References
619
620@cindex i386 memory references
621@cindex memory references, i386
55b62671
AJ
622@cindex x86-64 memory references
623@cindex memory references, x86-64
252b5132
RH
624An Intel syntax indirect memory reference of the form
625
626@smallexample
627@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
628@end smallexample
629
630@noindent
631is translated into the AT&T syntax
632
633@smallexample
634@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
635@end smallexample
636
637@noindent
638where @var{base} and @var{index} are the optional 32-bit base and
639index registers, @var{disp} is the optional displacement, and
640@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
641to calculate the address of the operand. If no @var{scale} is
642specified, @var{scale} is taken to be 1. @var{section} specifies the
643optional section register for the memory operand, and may override the
644default section register (see a 80386 manual for section register
645defaults). Note that section overrides in AT&T syntax @emph{must}
646be preceded by a @samp{%}. If you specify a section override which
647coincides with the default section register, @code{@value{AS}} does @emph{not}
648output any section register override prefixes to assemble the given
649instruction. Thus, section overrides can be specified to emphasize which
650section register is used for a given memory operand.
651
652Here are some examples of Intel and AT&T style memory references:
653
654@table @asis
655@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
656@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
657missing, and the default section is used (@samp{%ss} for addressing with
658@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
659
660@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
661@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
662@samp{foo}. All other fields are missing. The section register here
663defaults to @samp{%ds}.
664
665@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
666This uses the value pointed to by @samp{foo} as a memory operand.
667Note that @var{base} and @var{index} are both missing, but there is only
668@emph{one} @samp{,}. This is a syntactic exception.
669
670@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
671This selects the contents of the variable @samp{foo} with section
672register @var{section} being @samp{%gs}.
673@end table
674
675Absolute (as opposed to PC relative) call and jump operands must be
676prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
677always chooses PC relative addressing for jump/call labels.
678
679Any instruction that has a memory operand, but no register operand,
55b62671
AJ
680@emph{must} specify its size (byte, word, long, or quadruple) with an
681instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
682respectively).
683
684The x86-64 architecture adds an RIP (instruction pointer relative)
685addressing. This addressing mode is specified by using @samp{rip} as a
686base register. Only constant offsets are valid. For example:
687
688@table @asis
689@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
690Points to the address 1234 bytes past the end of the current
691instruction.
692
693@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
694Points to the @code{symbol} in RIP relative way, this is shorter than
695the default absolute addressing.
696@end table
697
698Other addressing modes remain unchanged in x86-64 architecture, except
699registers used are 64-bit instead of 32-bit.
252b5132 700
fddf5b5b 701@node i386-Jumps
252b5132
RH
702@section Handling of Jump Instructions
703
704@cindex jump optimization, i386
705@cindex i386 jump optimization
55b62671
AJ
706@cindex jump optimization, x86-64
707@cindex x86-64 jump optimization
252b5132
RH
708Jump instructions are always optimized to use the smallest possible
709displacements. This is accomplished by using byte (8-bit) displacement
710jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 711is insufficient a long displacement is used. We do not support
252b5132
RH
712word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
713instruction with the @samp{data16} instruction prefix), since the 80386
714insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 715is added. (See also @pxref{i386-Arch})
252b5132
RH
716
717Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
718@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
719displacements, so that if you use these instructions (@code{@value{GCC}} does
720not use them) you may get an error message (and incorrect code). The AT&T
72180386 assembler tries to get around this problem by expanding @samp{jcxz foo}
722to
723
724@smallexample
725 jcxz cx_zero
726 jmp cx_nonzero
727cx_zero: jmp foo
728cx_nonzero:
729@end smallexample
730
731@node i386-Float
732@section Floating Point
733
734@cindex i386 floating point
735@cindex floating point, i386
55b62671
AJ
736@cindex x86-64 floating point
737@cindex floating point, x86-64
252b5132
RH
738All 80387 floating point types except packed BCD are supported.
739(BCD support may be added without much difficulty). These data
740types are 16-, 32-, and 64- bit integers, and single (32-bit),
741double (64-bit), and extended (80-bit) precision floating point.
742Each supported type has an instruction mnemonic suffix and a constructor
743associated with it. Instruction mnemonic suffixes specify the operand's
744data type. Constructors build these data types into memory.
745
746@cindex @code{float} directive, i386
747@cindex @code{single} directive, i386
748@cindex @code{double} directive, i386
749@cindex @code{tfloat} directive, i386
55b62671
AJ
750@cindex @code{float} directive, x86-64
751@cindex @code{single} directive, x86-64
752@cindex @code{double} directive, x86-64
753@cindex @code{tfloat} directive, x86-64
252b5132
RH
754@itemize @bullet
755@item
756Floating point constructors are @samp{.float} or @samp{.single},
757@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
758These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
759and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
760only supports this format via the @samp{fldt} (load 80-bit real to stack
761top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
762
763@cindex @code{word} directive, i386
764@cindex @code{long} directive, i386
765@cindex @code{int} directive, i386
766@cindex @code{quad} directive, i386
55b62671
AJ
767@cindex @code{word} directive, x86-64
768@cindex @code{long} directive, x86-64
769@cindex @code{int} directive, x86-64
770@cindex @code{quad} directive, x86-64
252b5132
RH
771@item
772Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
773@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
774corresponding instruction mnemonic suffixes are @samp{s} (single),
775@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
776the 64-bit @samp{q} format is only present in the @samp{fildq} (load
777quad integer to stack top) and @samp{fistpq} (store quad integer and pop
778stack) instructions.
779@end itemize
780
781Register to register operations should not use instruction mnemonic suffixes.
782@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
783wrote @samp{fst %st, %st(1)}, since all register to register operations
784use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
785which converts @samp{%st} from 80-bit to 64-bit floating point format,
786then stores the result in the 4 byte location @samp{mem})
787
788@node i386-SIMD
789@section Intel's MMX and AMD's 3DNow! SIMD Operations
790
791@cindex MMX, i386
792@cindex 3DNow!, i386
793@cindex SIMD, i386
55b62671
AJ
794@cindex MMX, x86-64
795@cindex 3DNow!, x86-64
796@cindex SIMD, x86-64
252b5132
RH
797
798@code{@value{AS}} supports Intel's MMX instruction set (SIMD
799instructions for integer data), available on Intel's Pentium MMX
800processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 801Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
802instruction set (SIMD instructions for 32-bit floating point data)
803available on AMD's K6-2 processor and possibly others in the future.
804
805Currently, @code{@value{AS}} does not support Intel's floating point
806SIMD, Katmai (KNI).
807
808The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
809@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
81016-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
811floating point values. The MMX registers cannot be used at the same time
812as the floating point stack.
813
814See Intel and AMD documentation, keeping in mind that the operand order in
815instructions is reversed from the Intel syntax.
816
f88c9eb0
SP
817@node i386-LWP
818@section AMD's Lightweight Profiling Instructions
819
820@cindex LWP, i386
821@cindex LWP, x86-64
822
823@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
824instruction set, available on AMD's Family 15h (Orochi) processors.
825
826LWP enables applications to collect and manage performance data, and
827react to performance events. The collection of performance data
828requires no context switches. LWP runs in the context of a thread and
829so several counters can be used independently across multiple threads.
830LWP can be used in both 64-bit and legacy 32-bit modes.
831
832For detailed information on the LWP instruction set, see the
833@cite{AMD Lightweight Profiling Specification} available at
834@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
835
252b5132
RH
836@node i386-16bit
837@section Writing 16-bit Code
838
839@cindex i386 16-bit code
840@cindex 16-bit code, i386
841@cindex real-mode code, i386
eecb386c 842@cindex @code{code16gcc} directive, i386
252b5132
RH
843@cindex @code{code16} directive, i386
844@cindex @code{code32} directive, i386
55b62671
AJ
845@cindex @code{code64} directive, i386
846@cindex @code{code64} directive, x86-64
847While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
848or 64-bit x86-64 code depending on the default configuration,
252b5132 849it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
850mode code segments. To do this, put a @samp{.code16} or
851@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
852be run in 16-bit mode. You can switch @code{@value{AS}} to writing
85332-bit code with the @samp{.code32} directive or 64-bit code with the
854@samp{.code64} directive.
eecb386c
AM
855
856@samp{.code16gcc} provides experimental support for generating 16-bit
857code from gcc, and differs from @samp{.code16} in that @samp{call},
858@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
859@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
860default to 32-bit size. This is so that the stack pointer is
861manipulated in the same way over function calls, allowing access to
862function parameters at the same stack offsets as in 32-bit mode.
863@samp{.code16gcc} also automatically adds address size prefixes where
864necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
865
866The code which @code{@value{AS}} generates in 16-bit mode will not
867necessarily run on a 16-bit pre-80386 processor. To write code that
868runs on such a processor, you must refrain from using @emph{any} 32-bit
869constructs which require @code{@value{AS}} to output address or operand
870size prefixes.
871
872Note that writing 16-bit code instructions by explicitly specifying a
873prefix or an instruction mnemonic suffix within a 32-bit code section
874generates different machine instructions than those generated for a
87516-bit code segment. In a 32-bit code section, the following code
876generates the machine opcode bytes @samp{66 6a 04}, which pushes the
877value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
878
879@smallexample
880 pushw $4
881@end smallexample
882
883The same code in a 16-bit code section would generate the machine
b45619c0 884opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
885is correct since the processor default operand size is assumed to be 16
886bits in a 16-bit code section.
887
888@node i386-Bugs
889@section AT&T Syntax bugs
890
891The UnixWare assembler, and probably other AT&T derived ix86 Unix
892assemblers, generate floating point instructions with reversed source
893and destination registers in certain cases. Unfortunately, gcc and
894possibly many other programs use this reversed syntax, so we're stuck
895with it.
896
897For example
898
899@smallexample
900 fsub %st,%st(3)
901@end smallexample
902@noindent
903results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
904than the expected @samp{%st(3) - %st}. This happens with all the
905non-commutative arithmetic floating point operations with two register
906operands where the source register is @samp{%st} and the destination
907register is @samp{%st(i)}.
908
e413e4e9
AM
909@node i386-Arch
910@section Specifying CPU Architecture
911
912@cindex arch directive, i386
913@cindex i386 arch directive
55b62671
AJ
914@cindex arch directive, x86-64
915@cindex x86-64 arch directive
e413e4e9
AM
916
917@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 918(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
919directive enables a warning when gas detects an instruction that is not
920supported on the CPU specified. The choices for @var{cpu_type} are:
921
922@multitable @columnfractions .20 .20 .20 .20
923@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
924@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 925@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 926@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
8a9036a4 927@item @samp{corei7} @tab @samp{l1om}
1543849b 928@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
68339fdf 929@item @samp{amdfam10} @tab @samp{bdver1}
1ceab344 930@item @samp{generic32} @tab @samp{generic64}
9103f4f4 931@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 932@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c0f3af97 933@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.xsave}
f1f8f695 934@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.movbe}
df6d8da1 935@item @samp{.ept} @tab @samp{.clflush}
1ceab344 936@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 937@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
f0ae4a24 938@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop}
1ceab344 939@item @samp{.padlock}
e413e4e9
AM
940@end multitable
941
fddf5b5b
AM
942Apart from the warning, there are only two other effects on
943@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
944@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
945will automatically use a two byte opcode sequence. The larger three
946byte opcode sequence is used on the 486 (and when no architecture is
947specified) because it executes faster on the 486. Note that you can
948explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
949Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
950@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
951conditional jumps will be promoted when necessary to a two instruction
952sequence consisting of a conditional jump of the opposite sense around
953an unconditional jump to the target.
954
5c6af06e
JB
955Following the CPU architecture (but not a sub-architecture, which are those
956starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
957control automatic promotion of conditional jumps. @samp{jumps} is the
958default, and enables jump promotion; All external jumps will be of the long
959variety, and file-local jumps will be promoted as necessary.
960(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
961byte offset jumps, and warns about file-local conditional jumps that
962@code{@value{AS}} promotes.
fddf5b5b
AM
963Unconditional jumps are treated as for @samp{jumps}.
964
965For example
966
967@smallexample
968 .arch i8086,nojumps
969@end smallexample
e413e4e9 970
252b5132
RH
971@node i386-Notes
972@section Notes
973
974@cindex i386 @code{mul}, @code{imul} instructions
975@cindex @code{mul} instruction, i386
976@cindex @code{imul} instruction, i386
55b62671
AJ
977@cindex @code{mul} instruction, x86-64
978@cindex @code{imul} instruction, x86-64
252b5132 979There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 980instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
981multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
982for @samp{imul}) can be output only in the one operand form. Thus,
983@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
984the expanding multiply would clobber the @samp{%edx} register, and this
985would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
98664-bit product in @samp{%edx:%eax}.
987
988We have added a two operand form of @samp{imul} when the first operand
989is an immediate mode expression and the second operand is a register.
990This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
991example, can be done with @samp{imul $69, %eax} rather than @samp{imul
992$69, %eax, %eax}.
993