]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Add an objfile getter to gdb.Type
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
82704155 1@c Copyright (C) 1991-2019 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
43234a1e
L
186@code{avx512f},
187@code{avx512cd},
188@code{avx512er},
189@code{avx512pf},
1dfc6506
L
190@code{avx512vl},
191@code{avx512bw},
192@code{avx512dq},
2cc1b5aa 193@code{avx512ifma},
14f195c9 194@code{avx512vbmi},
920d2ddc 195@code{avx512_4fmaps},
47acf0bd 196@code{avx512_4vnniw},
620214f7 197@code{avx512_vpopcntdq},
53467f57 198@code{avx512_vbmi2},
8cfcb765 199@code{avx512_vnni},
ee6872be 200@code{avx512_bitalg},
d6aab7a1 201@code{avx512_bf16},
144b71e2
L
202@code{noavx512f},
203@code{noavx512cd},
204@code{noavx512er},
205@code{noavx512pf},
206@code{noavx512vl},
207@code{noavx512bw},
208@code{noavx512dq},
209@code{noavx512ifma},
210@code{noavx512vbmi},
920d2ddc 211@code{noavx512_4fmaps},
47acf0bd 212@code{noavx512_4vnniw},
620214f7 213@code{noavx512_vpopcntdq},
53467f57 214@code{noavx512_vbmi2},
8cfcb765 215@code{noavx512_vnni},
ee6872be 216@code{noavx512_bitalg},
d6aab7a1 217@code{noavx512_bf16},
6305a203 218@code{vmx},
8729a6f6 219@code{vmfunc},
6305a203 220@code{smx},
f03fe4c1 221@code{xsave},
c7b8aa3a 222@code{xsaveopt},
1dfc6506
L
223@code{xsavec},
224@code{xsaves},
c0f3af97 225@code{aes},
594ab6a3 226@code{pclmul},
c7b8aa3a
L
227@code{fsgsbase},
228@code{rdrnd},
229@code{f16c},
6c30d220 230@code{bmi2},
c0f3af97 231@code{fma},
f1f8f695
L
232@code{movbe},
233@code{ept},
6c30d220 234@code{lzcnt},
42164a71
L
235@code{hle},
236@code{rtm},
6c30d220 237@code{invpcid},
bd5295b2 238@code{clflush},
9916071f 239@code{mwaitx},
029f3522 240@code{clzero},
3233d7d0 241@code{wbnoinvd},
be3a8dca 242@code{pconfig},
de89d0a3 243@code{waitpkg},
c48935d7 244@code{cldemote},
f88c9eb0 245@code{lwp},
5dd85c99
SP
246@code{fma4},
247@code{xop},
60aa667e 248@code{cx16},
bd5295b2 249@code{syscall},
1b7f3fb0 250@code{rdtscp},
6305a203
L
251@code{3dnow},
252@code{3dnowa},
253@code{sse4a},
254@code{sse5},
255@code{svme},
256@code{abm} and
257@code{padlock}.
309d3373
JB
258Note that rather than extending a basic instruction set, the extension
259mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
260
261When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
262@code{.arch} directive will take precedent.
263
264@cindex @samp{-mtune=} option, i386
265@cindex @samp{-mtune=} option, x86-64
266@item -mtune=@var{CPU}
267This option specifies a processor to optimize for. When used in
268conjunction with the @option{-march} option, only instructions
269of the processor specified by the @option{-march} option will be
270generated.
271
6305a203
L
272Valid @var{CPU} values are identical to the processor list of
273@option{-march=@var{CPU}}.
9103f4f4 274
c0f3af97
L
275@cindex @samp{-msse2avx} option, i386
276@cindex @samp{-msse2avx} option, x86-64
277@item -msse2avx
278This option specifies that the assembler should encode SSE instructions
279with VEX prefix.
280
daf50ae7
L
281@cindex @samp{-msse-check=} option, i386
282@cindex @samp{-msse-check=} option, x86-64
283@item -msse-check=@var{none}
1f9bb1ca
AS
284@itemx -msse-check=@var{warning}
285@itemx -msse-check=@var{error}
9aff4b7a 286These options control if the assembler should check SSE instructions.
daf50ae7
L
287@option{-msse-check=@var{none}} will make the assembler not to check SSE
288instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 289will make the assembler issue a warning for any SSE instruction.
daf50ae7 290@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 291for any SSE instruction.
daf50ae7 292
539f890d
L
293@cindex @samp{-mavxscalar=} option, i386
294@cindex @samp{-mavxscalar=} option, x86-64
295@item -mavxscalar=@var{128}
1f9bb1ca 296@itemx -mavxscalar=@var{256}
2aab8acd 297These options control how the assembler should encode scalar AVX
539f890d
L
298instructions. @option{-mavxscalar=@var{128}} will encode scalar
299AVX instructions with 128bit vector length, which is the default.
300@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
301with 256bit vector length.
302
03751133
L
303@cindex @samp{-mvexwig=} option, i386
304@cindex @samp{-mvexwig=} option, x86-64
305@item -mvexwig=@var{0}
306@itemx -mvexwig=@var{1}
307These options control how the assembler should encode VEX.W-ignored (WIG)
308VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
309instructions with vex.w = 0, which is the default.
310@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
311vex.w = 1.
312
43234a1e
L
313@cindex @samp{-mevexlig=} option, i386
314@cindex @samp{-mevexlig=} option, x86-64
315@item -mevexlig=@var{128}
316@itemx -mevexlig=@var{256}
317@itemx -mevexlig=@var{512}
318These options control how the assembler should encode length-ignored
319(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
320EVEX instructions with 128bit vector length, which is the default.
321@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
322encode LIG EVEX instructions with 256bit and 512bit vector length,
323respectively.
324
325@cindex @samp{-mevexwig=} option, i386
326@cindex @samp{-mevexwig=} option, x86-64
327@item -mevexwig=@var{0}
328@itemx -mevexwig=@var{1}
329These options control how the assembler should encode w-ignored (WIG)
330EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
331EVEX instructions with evex.w = 0, which is the default.
332@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
333evex.w = 1.
334
1efbbeb4
L
335@cindex @samp{-mmnemonic=} option, i386
336@cindex @samp{-mmnemonic=} option, x86-64
337@item -mmnemonic=@var{att}
1f9bb1ca 338@itemx -mmnemonic=@var{intel}
34bca508 339This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
340The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
341take precedent.
342
343@cindex @samp{-msyntax=} option, i386
344@cindex @samp{-msyntax=} option, x86-64
345@item -msyntax=@var{att}
1f9bb1ca 346@itemx -msyntax=@var{intel}
34bca508 347This option specifies instruction syntax when processing instructions.
1efbbeb4
L
348The @code{.att_syntax} and @code{.intel_syntax} directives will
349take precedent.
350
351@cindex @samp{-mnaked-reg} option, i386
352@cindex @samp{-mnaked-reg} option, x86-64
353@item -mnaked-reg
33eaf5de 354This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 355The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 356
7e8b059b
L
357@cindex @samp{-madd-bnd-prefix} option, i386
358@cindex @samp{-madd-bnd-prefix} option, x86-64
359@item -madd-bnd-prefix
360This option forces the assembler to add BND prefix to all branches, even
361if such prefix was not explicitly specified in the source code.
362
8dcea932
L
363@cindex @samp{-mshared} option, i386
364@cindex @samp{-mshared} option, x86-64
365@item -mno-shared
366On ELF target, the assembler normally optimizes out non-PLT relocations
367against defined non-weak global branch targets with default visibility.
368The @samp{-mshared} option tells the assembler to generate code which
369may go into a shared library where all non-weak global branch targets
370with default visibility can be preempted. The resulting code is
371slightly bigger. This option only affects the handling of branch
372instructions.
373
167ad85b
TG
374@cindex @samp{-mbig-obj} option, x86-64
375@item -mbig-obj
376On x86-64 PE/COFF target this option forces the use of big object file
377format, which allows more than 32768 sections.
378
d022bddd
IT
379@cindex @samp{-momit-lock-prefix=} option, i386
380@cindex @samp{-momit-lock-prefix=} option, x86-64
381@item -momit-lock-prefix=@var{no}
382@itemx -momit-lock-prefix=@var{yes}
383These options control how the assembler should encode lock prefix.
384This option is intended as a workaround for processors, that fail on
385lock prefix. This option can only be safely used with single-core,
386single-thread computers
387@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
388@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
389which is the default.
390
e4e00185
AS
391@cindex @samp{-mfence-as-lock-add=} option, i386
392@cindex @samp{-mfence-as-lock-add=} option, x86-64
393@item -mfence-as-lock-add=@var{no}
394@itemx -mfence-as-lock-add=@var{yes}
395These options control how the assembler should encode lfence, mfence and
396sfence.
397@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
398sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
399@samp{lock addl $0x0, (%esp)} in 32-bit mode.
400@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
401sfence as usual, which is the default.
402
0cb4071e
L
403@cindex @samp{-mrelax-relocations=} option, i386
404@cindex @samp{-mrelax-relocations=} option, x86-64
405@item -mrelax-relocations=@var{no}
406@itemx -mrelax-relocations=@var{yes}
407These options control whether the assembler should generate relax
408relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
409R_X86_64_REX_GOTPCRELX, in 64-bit mode.
410@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
411@option{-mrelax-relocations=@var{no}} will not generate relax
412relocations. The default can be controlled by a configure option
413@option{--enable-x86-relax-relocations}.
414
b4a3a7b4
L
415@cindex @samp{-mx86-used-note=} option, i386
416@cindex @samp{-mx86-used-note=} option, x86-64
417@item -mx86-used-note=@var{no}
418@itemx -mx86-used-note=@var{yes}
419These options control whether the assembler should generate
420GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
421GNU property notes. The default can be controlled by the
422@option{--enable-x86-used-note} configure option.
423
d3d3c6db
IT
424@cindex @samp{-mevexrcig=} option, i386
425@cindex @samp{-mevexrcig=} option, x86-64
426@item -mevexrcig=@var{rne}
427@itemx -mevexrcig=@var{rd}
428@itemx -mevexrcig=@var{ru}
429@itemx -mevexrcig=@var{rz}
430These options control how the assembler should encode SAE-only
431EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
432of EVEX instruction with 00, which is the default.
433@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
434and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
435with 01, 10 and 11 RC bits, respectively.
436
5db04b09
L
437@cindex @samp{-mamd64} option, x86-64
438@cindex @samp{-mintel64} option, x86-64
439@item -mamd64
440@itemx -mintel64
441This option specifies that the assembler should accept only AMD64 or
442Intel64 ISA in 64-bit mode. The default is to accept both.
443
b6f8c7c4
L
444@cindex @samp{-O0} option, i386
445@cindex @samp{-O0} option, x86-64
446@cindex @samp{-O} option, i386
447@cindex @samp{-O} option, x86-64
448@cindex @samp{-O1} option, i386
449@cindex @samp{-O1} option, x86-64
450@cindex @samp{-O2} option, i386
451@cindex @samp{-O2} option, x86-64
452@cindex @samp{-Os} option, i386
453@cindex @samp{-Os} option, x86-64
454@item -O0 | -O | -O1 | -O2 | -Os
455Optimize instruction encoding with smaller instruction size. @samp{-O}
456and @samp{-O1} encode 64-bit register load instructions with 64-bit
457immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332
L
458immediates, encode 64-bit register clearing instructions with 32-bit
459register clearing instructions and encode 256-bit/512-bit VEX/EVEX
460vector register clearing instructions with 128-bit VEX vector register
97ed31ae
L
461clearing instructions as well as encode 128-bit/256-bit EVEX vector
462register load/store instructions with VEX vector register load/store
463instructions. @samp{-O2} includes @samp{-O1} optimization plus
99112332
L
464encodes 256-bit/512-bit EVEX vector register clearing instructions with
465128-bit EVEX vector register clearing instructions.
b6f8c7c4
L
466@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
467and 64-bit register tests with immediate as 8-bit register test with
468immediate. @samp{-O0} turns off this optimization.
469
55b62671 470@end table
731caf76 471@c man end
e413e4e9 472
a6c24e68
NC
473@node i386-Directives
474@section x86 specific Directives
475
476@cindex machine directives, x86
477@cindex x86 machine directives
478@table @code
479
480@cindex @code{lcomm} directive, COFF
481@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
482Reserve @var{length} (an absolute expression) bytes for a local common
483denoted by @var{symbol}. The section and value of @var{symbol} are
484those of the new local common. The addresses are allocated in the bss
704209c0
NC
485section, so that at run-time the bytes start off zeroed. Since
486@var{symbol} is not declared global, it is normally not visible to
487@code{@value{LD}}. The optional third parameter, @var{alignment},
488specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
489
490This directive is only available for COFF based x86 targets.
491
102e9361
NC
492@cindex @code{largecomm} directive, ELF
493@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
494This directive behaves in the same way as the @code{comm} directive
495except that the data is placed into the @var{.lbss} section instead of
496the @var{.bss} section @ref{Comm}.
497
498The directive is intended to be used for data which requires a large
499amount of space, and it is only available for ELF based x86_64
500targets.
501
a6c24e68 502@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
503
504@end table
505
252b5132 506@node i386-Syntax
7c31ae13
NC
507@section i386 Syntactical Considerations
508@menu
509* i386-Variations:: AT&T Syntax versus Intel Syntax
510* i386-Chars:: Special Characters
511@end menu
512
513@node i386-Variations
514@subsection AT&T Syntax versus Intel Syntax
252b5132 515
e413e4e9
AM
516@cindex i386 intel_syntax pseudo op
517@cindex intel_syntax pseudo op, i386
518@cindex i386 att_syntax pseudo op
519@cindex att_syntax pseudo op, i386
252b5132
RH
520@cindex i386 syntax compatibility
521@cindex syntax compatibility, i386
55b62671
AJ
522@cindex x86-64 intel_syntax pseudo op
523@cindex intel_syntax pseudo op, x86-64
524@cindex x86-64 att_syntax pseudo op
525@cindex att_syntax pseudo op, x86-64
526@cindex x86-64 syntax compatibility
527@cindex syntax compatibility, x86-64
e413e4e9
AM
528
529@code{@value{AS}} now supports assembly using Intel assembler syntax.
530@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
531back to the usual AT&T mode for compatibility with the output of
532@code{@value{GCC}}. Either of these directives may have an optional
533argument, @code{prefix}, or @code{noprefix} specifying whether registers
534require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
535different from Intel syntax. We mention these differences because
536almost all 80386 documents use Intel syntax. Notable differences
537between the two syntaxes are:
538
539@cindex immediate operands, i386
540@cindex i386 immediate operands
541@cindex register operands, i386
542@cindex i386 register operands
543@cindex jump/call operands, i386
544@cindex i386 jump/call operands
545@cindex operand delimiters, i386
55b62671
AJ
546
547@cindex immediate operands, x86-64
548@cindex x86-64 immediate operands
549@cindex register operands, x86-64
550@cindex x86-64 register operands
551@cindex jump/call operands, x86-64
552@cindex x86-64 jump/call operands
553@cindex operand delimiters, x86-64
252b5132
RH
554@itemize @bullet
555@item
556AT&T immediate operands are preceded by @samp{$}; Intel immediate
557operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
558AT&T register operands are preceded by @samp{%}; Intel register operands
559are undelimited. AT&T absolute (as opposed to PC relative) jump/call
560operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
561
562@cindex i386 source, destination operands
563@cindex source, destination operands; i386
55b62671
AJ
564@cindex x86-64 source, destination operands
565@cindex source, destination operands; x86-64
252b5132
RH
566@item
567AT&T and Intel syntax use the opposite order for source and destination
568operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
569@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
570previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
571instructions with 2 immediate operands, such as the @samp{enter}
572instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
573
574@cindex mnemonic suffixes, i386
575@cindex sizes operands, i386
576@cindex i386 size suffixes
55b62671
AJ
577@cindex mnemonic suffixes, x86-64
578@cindex sizes operands, x86-64
579@cindex x86-64 size suffixes
252b5132
RH
580@item
581In AT&T syntax the size of memory operands is determined from the last
582character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
583@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
584(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
585this by prefixing memory operands (@emph{not} the instruction mnemonics) with
586@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
587Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
588syntax.
252b5132 589
4b06377f
L
590In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
591instruction with the 64-bit displacement or immediate operand.
592
252b5132
RH
593@cindex return instructions, i386
594@cindex i386 jump, call, return
55b62671
AJ
595@cindex return instructions, x86-64
596@cindex x86-64 jump, call, return
252b5132
RH
597@item
598Immediate form long jumps and calls are
599@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
600Intel syntax is
601@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
602instruction
603is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
604@samp{ret far @var{stack-adjust}}.
605
606@cindex sections, i386
607@cindex i386 sections
55b62671
AJ
608@cindex sections, x86-64
609@cindex x86-64 sections
252b5132
RH
610@item
611The AT&T assembler does not provide support for multiple section
612programs. Unix style systems expect all programs to be single sections.
613@end itemize
614
7c31ae13
NC
615@node i386-Chars
616@subsection Special Characters
617
618@cindex line comment character, i386
619@cindex i386 line comment character
620The presence of a @samp{#} appearing anywhere on a line indicates the
621start of a comment that extends to the end of that line.
622
623If a @samp{#} appears as the first character of a line then the whole
624line is treated as a comment, but in this case the line can also be a
625logical line number directive (@pxref{Comments}) or a preprocessor
626control command (@pxref{Preprocessing}).
627
a05a5b64 628If the @option{--divide} command-line option has not been specified
7c31ae13
NC
629then the @samp{/} character appearing anywhere on a line also
630introduces a line comment.
631
632@cindex line separator, i386
633@cindex statement separator, i386
634@cindex i386 line separator
635The @samp{;} character can be used to separate statements on the same
636line.
637
252b5132 638@node i386-Mnemonics
d3b47e2b
L
639@section i386-Mnemonics
640@subsection Instruction Naming
252b5132
RH
641
642@cindex i386 instruction naming
643@cindex instruction naming, i386
55b62671
AJ
644@cindex x86-64 instruction naming
645@cindex instruction naming, x86-64
646
252b5132 647Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
648specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
649and @samp{q} specify byte, word, long and quadruple word operands. If
650no suffix is specified by an instruction then @code{@value{AS}} tries to
651fill in the missing suffix based on the destination register operand
652(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
653to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
654@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
655assembler which assumes that a missing mnemonic suffix implies long
656operand size. (This incompatibility does not affect compiler output
657since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
658
659Almost all instructions have the same names in AT&T and Intel format.
660There are a few exceptions. The sign extend and zero extend
661instructions need two sizes to specify them. They need a size to
662sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
663is accomplished by using two instruction mnemonic suffixes in AT&T
664syntax. Base names for sign extend and zero extend are
665@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
666and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
667are tacked on to this base name, the @emph{from} suffix before the
668@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
669``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
670thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
671@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
672@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
673quadruple word).
252b5132 674
b6169b20
L
675@cindex encoding options, i386
676@cindex encoding options, x86-64
677
86fa6981
L
678Different encoding options can be specified via pseudo prefixes:
679
680@itemize @bullet
681@item
682@samp{@{disp8@}} -- prefer 8-bit displacement.
683
684@item
685@samp{@{disp32@}} -- prefer 32-bit displacement.
686
687@item
688@samp{@{load@}} -- prefer load-form instruction.
689
690@item
691@samp{@{store@}} -- prefer store-form instruction.
692
693@item
694@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
695
696@item
697@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
698
699@item
700@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
701
702@item
703@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
704instructions (x86-64 only). Note that this differs from the @samp{rex}
705prefix which generates REX prefix unconditionally.
b6f8c7c4
L
706
707@item
708@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 709@end itemize
b6169b20 710
252b5132
RH
711@cindex conversion instructions, i386
712@cindex i386 conversion instructions
55b62671
AJ
713@cindex conversion instructions, x86-64
714@cindex x86-64 conversion instructions
252b5132
RH
715The Intel-syntax conversion instructions
716
717@itemize @bullet
718@item
719@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
720
721@item
722@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
723
724@item
725@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
726
727@item
728@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
729
730@item
731@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
732(x86-64 only),
733
734@item
d5f0cf92 735@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 736@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
737@end itemize
738
739@noindent
55b62671
AJ
740are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
741@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
742instructions.
252b5132
RH
743
744@cindex jump instructions, i386
745@cindex call instructions, i386
55b62671
AJ
746@cindex jump instructions, x86-64
747@cindex call instructions, x86-64
252b5132
RH
748Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
749AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
750convention.
751
d3b47e2b 752@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
753
754@cindex i386 mnemonic compatibility
755@cindex mnemonic compatibility, i386
756
757@code{@value{AS}} supports assembly using Intel mnemonic.
758@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
759@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
760syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
761Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
762@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
763@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
764assembler with different mnemonics from those in Intel IA32 specification.
765@code{@value{GCC}} generates those instructions with AT&T mnemonic.
766
252b5132
RH
767@node i386-Regs
768@section Register Naming
769
770@cindex i386 registers
771@cindex registers, i386
55b62671
AJ
772@cindex x86-64 registers
773@cindex registers, x86-64
252b5132
RH
774Register operands are always prefixed with @samp{%}. The 80386 registers
775consist of
776
777@itemize @bullet
778@item
779the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
780@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
781frame pointer), and @samp{%esp} (the stack pointer).
782
783@item
784the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
785@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
786
787@item
788the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
789@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
790are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
791@samp{%cx}, and @samp{%dx})
792
793@item
794the 6 section registers @samp{%cs} (code section), @samp{%ds}
795(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
796and @samp{%gs}.
797
798@item
4bde3cdd
UD
799the 5 processor control registers @samp{%cr0}, @samp{%cr2},
800@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
801
802@item
803the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
804@samp{%db3}, @samp{%db6}, and @samp{%db7}.
805
806@item
807the 2 test registers @samp{%tr6} and @samp{%tr7}.
808
809@item
810the 8 floating point register stack @samp{%st} or equivalently
811@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
812@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
813These registers are overloaded by 8 MMX registers @samp{%mm0},
814@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
815@samp{%mm6} and @samp{%mm7}.
816
817@item
4bde3cdd 818the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
819@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
820@end itemize
821
822The AMD x86-64 architecture extends the register set by:
823
824@itemize @bullet
825@item
826enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
827accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
828@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
829pointer)
830
831@item
832the 8 extended registers @samp{%r8}--@samp{%r15}.
833
834@item
4bde3cdd 835the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
836
837@item
4bde3cdd 838the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
839
840@item
4bde3cdd 841the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
842
843@item
844the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
845
846@item
847the 8 debug registers: @samp{%db8}--@samp{%db15}.
848
849@item
4bde3cdd
UD
850the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
851@end itemize
852
853With the AVX extensions more registers were made available:
854
855@itemize @bullet
856
857@item
858the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
859available in 32-bit mode). The bottom 128 bits are overlaid with the
860@samp{xmm0}--@samp{xmm15} registers.
861
862@end itemize
863
864The AVX2 extensions made in 64-bit mode more registers available:
865
866@itemize @bullet
867
868@item
869the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
870registers @samp{%ymm16}--@samp{%ymm31}.
871
872@end itemize
873
874The AVX512 extensions added the following registers:
875
876@itemize @bullet
877
878@item
879the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
880available in 32-bit mode). The bottom 128 bits are overlaid with the
881@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
882overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
883
884@item
885the 8 mask registers @samp{%k0}--@samp{%k7}.
886
252b5132
RH
887@end itemize
888
889@node i386-Prefixes
890@section Instruction Prefixes
891
892@cindex i386 instruction prefixes
893@cindex instruction prefixes, i386
894@cindex prefixes, i386
895Instruction prefixes are used to modify the following instruction. They
896are used to repeat string instructions, to provide section overrides, to
897perform bus lock operations, and to change operand and address sizes.
898(Most instructions that normally operate on 32-bit operands will use
89916-bit operands if the instruction has an ``operand size'' prefix.)
900Instruction prefixes are best written on the same line as the instruction
901they act upon. For example, the @samp{scas} (scan string) instruction is
902repeated with:
903
904@smallexample
905 repne scas %es:(%edi),%al
906@end smallexample
907
908You may also place prefixes on the lines immediately preceding the
909instruction, but this circumvents checks that @code{@value{AS}} does
910with prefixes, and will not work with all prefixes.
911
912Here is a list of instruction prefixes:
913
914@cindex section override prefixes, i386
915@itemize @bullet
916@item
917Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
918@samp{fs}, @samp{gs}. These are automatically added by specifying
919using the @var{section}:@var{memory-operand} form for memory references.
920
921@cindex size prefixes, i386
922@item
923Operand/Address size prefixes @samp{data16} and @samp{addr16}
924change 32-bit operands/addresses into 16-bit operands/addresses,
925while @samp{data32} and @samp{addr32} change 16-bit ones (in a
926@code{.code16} section) into 32-bit operands/addresses. These prefixes
927@emph{must} appear on the same line of code as the instruction they
928modify. For example, in a 16-bit @code{.code16} section, you might
929write:
930
931@smallexample
932 addr32 jmpl *(%ebx)
933@end smallexample
934
935@cindex bus lock prefixes, i386
936@cindex inhibiting interrupts, i386
937@item
938The bus lock prefix @samp{lock} inhibits interrupts during execution of
939the instruction it precedes. (This is only valid with certain
940instructions; see a 80386 manual for details).
941
942@cindex coprocessor wait, i386
943@item
944The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
945complete the current instruction. This should never be needed for the
94680386/80387 combination.
947
948@cindex repeat prefixes, i386
949@item
950The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
951to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
952times if the current address size is 16-bits).
55b62671
AJ
953@cindex REX prefixes, i386
954@item
955The @samp{rex} family of prefixes is used by x86-64 to encode
956extensions to i386 instruction set. The @samp{rex} prefix has four
957bits --- an operand size overwrite (@code{64}) used to change operand size
958from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
959register set.
960
961You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
962instruction emits @samp{rex} prefix with all the bits set. By omitting
963the @code{64}, @code{x}, @code{y} or @code{z} you may write other
964prefixes as well. Normally, there is no need to write the prefixes
965explicitly, since gas will automatically generate them based on the
966instruction operands.
252b5132
RH
967@end itemize
968
969@node i386-Memory
970@section Memory References
971
972@cindex i386 memory references
973@cindex memory references, i386
55b62671
AJ
974@cindex x86-64 memory references
975@cindex memory references, x86-64
252b5132
RH
976An Intel syntax indirect memory reference of the form
977
978@smallexample
979@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
980@end smallexample
981
982@noindent
983is translated into the AT&T syntax
984
985@smallexample
986@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
987@end smallexample
988
989@noindent
990where @var{base} and @var{index} are the optional 32-bit base and
991index registers, @var{disp} is the optional displacement, and
992@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
993to calculate the address of the operand. If no @var{scale} is
994specified, @var{scale} is taken to be 1. @var{section} specifies the
995optional section register for the memory operand, and may override the
996default section register (see a 80386 manual for section register
997defaults). Note that section overrides in AT&T syntax @emph{must}
998be preceded by a @samp{%}. If you specify a section override which
999coincides with the default section register, @code{@value{AS}} does @emph{not}
1000output any section register override prefixes to assemble the given
1001instruction. Thus, section overrides can be specified to emphasize which
1002section register is used for a given memory operand.
1003
1004Here are some examples of Intel and AT&T style memory references:
1005
1006@table @asis
1007@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1008@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1009missing, and the default section is used (@samp{%ss} for addressing with
1010@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1011
1012@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1013@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1014@samp{foo}. All other fields are missing. The section register here
1015defaults to @samp{%ds}.
1016
1017@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1018This uses the value pointed to by @samp{foo} as a memory operand.
1019Note that @var{base} and @var{index} are both missing, but there is only
1020@emph{one} @samp{,}. This is a syntactic exception.
1021
1022@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1023This selects the contents of the variable @samp{foo} with section
1024register @var{section} being @samp{%gs}.
1025@end table
1026
1027Absolute (as opposed to PC relative) call and jump operands must be
1028prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1029always chooses PC relative addressing for jump/call labels.
1030
1031Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1032@emph{must} specify its size (byte, word, long, or quadruple) with an
1033instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1034respectively).
1035
1036The x86-64 architecture adds an RIP (instruction pointer relative)
1037addressing. This addressing mode is specified by using @samp{rip} as a
1038base register. Only constant offsets are valid. For example:
1039
1040@table @asis
1041@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1042Points to the address 1234 bytes past the end of the current
1043instruction.
1044
1045@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1046Points to the @code{symbol} in RIP relative way, this is shorter than
1047the default absolute addressing.
1048@end table
1049
1050Other addressing modes remain unchanged in x86-64 architecture, except
1051registers used are 64-bit instead of 32-bit.
252b5132 1052
fddf5b5b 1053@node i386-Jumps
252b5132
RH
1054@section Handling of Jump Instructions
1055
1056@cindex jump optimization, i386
1057@cindex i386 jump optimization
55b62671
AJ
1058@cindex jump optimization, x86-64
1059@cindex x86-64 jump optimization
252b5132
RH
1060Jump instructions are always optimized to use the smallest possible
1061displacements. This is accomplished by using byte (8-bit) displacement
1062jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1063is insufficient a long displacement is used. We do not support
252b5132
RH
1064word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1065instruction with the @samp{data16} instruction prefix), since the 80386
1066insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1067is added. (See also @pxref{i386-Arch})
252b5132
RH
1068
1069Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1070@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1071displacements, so that if you use these instructions (@code{@value{GCC}} does
1072not use them) you may get an error message (and incorrect code). The AT&T
107380386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1074to
1075
1076@smallexample
1077 jcxz cx_zero
1078 jmp cx_nonzero
1079cx_zero: jmp foo
1080cx_nonzero:
1081@end smallexample
1082
1083@node i386-Float
1084@section Floating Point
1085
1086@cindex i386 floating point
1087@cindex floating point, i386
55b62671
AJ
1088@cindex x86-64 floating point
1089@cindex floating point, x86-64
252b5132
RH
1090All 80387 floating point types except packed BCD are supported.
1091(BCD support may be added without much difficulty). These data
1092types are 16-, 32-, and 64- bit integers, and single (32-bit),
1093double (64-bit), and extended (80-bit) precision floating point.
1094Each supported type has an instruction mnemonic suffix and a constructor
1095associated with it. Instruction mnemonic suffixes specify the operand's
1096data type. Constructors build these data types into memory.
1097
1098@cindex @code{float} directive, i386
1099@cindex @code{single} directive, i386
1100@cindex @code{double} directive, i386
1101@cindex @code{tfloat} directive, i386
55b62671
AJ
1102@cindex @code{float} directive, x86-64
1103@cindex @code{single} directive, x86-64
1104@cindex @code{double} directive, x86-64
1105@cindex @code{tfloat} directive, x86-64
252b5132
RH
1106@itemize @bullet
1107@item
1108Floating point constructors are @samp{.float} or @samp{.single},
1109@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1110These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1111and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1112only supports this format via the @samp{fldt} (load 80-bit real to stack
1113top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1114
1115@cindex @code{word} directive, i386
1116@cindex @code{long} directive, i386
1117@cindex @code{int} directive, i386
1118@cindex @code{quad} directive, i386
55b62671
AJ
1119@cindex @code{word} directive, x86-64
1120@cindex @code{long} directive, x86-64
1121@cindex @code{int} directive, x86-64
1122@cindex @code{quad} directive, x86-64
252b5132
RH
1123@item
1124Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1125@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1126corresponding instruction mnemonic suffixes are @samp{s} (single),
1127@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1128the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1129quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1130stack) instructions.
1131@end itemize
1132
1133Register to register operations should not use instruction mnemonic suffixes.
1134@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1135wrote @samp{fst %st, %st(1)}, since all register to register operations
1136use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1137which converts @samp{%st} from 80-bit to 64-bit floating point format,
1138then stores the result in the 4 byte location @samp{mem})
1139
1140@node i386-SIMD
1141@section Intel's MMX and AMD's 3DNow! SIMD Operations
1142
1143@cindex MMX, i386
1144@cindex 3DNow!, i386
1145@cindex SIMD, i386
55b62671
AJ
1146@cindex MMX, x86-64
1147@cindex 3DNow!, x86-64
1148@cindex SIMD, x86-64
252b5132
RH
1149
1150@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1151instructions for integer data), available on Intel's Pentium MMX
1152processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1153Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1154instruction set (SIMD instructions for 32-bit floating point data)
1155available on AMD's K6-2 processor and possibly others in the future.
1156
1157Currently, @code{@value{AS}} does not support Intel's floating point
1158SIMD, Katmai (KNI).
1159
1160The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1161@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
116216-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1163floating point values. The MMX registers cannot be used at the same time
1164as the floating point stack.
1165
1166See Intel and AMD documentation, keeping in mind that the operand order in
1167instructions is reversed from the Intel syntax.
1168
f88c9eb0
SP
1169@node i386-LWP
1170@section AMD's Lightweight Profiling Instructions
1171
1172@cindex LWP, i386
1173@cindex LWP, x86-64
1174
1175@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1176instruction set, available on AMD's Family 15h (Orochi) processors.
1177
1178LWP enables applications to collect and manage performance data, and
1179react to performance events. The collection of performance data
1180requires no context switches. LWP runs in the context of a thread and
1181so several counters can be used independently across multiple threads.
1182LWP can be used in both 64-bit and legacy 32-bit modes.
1183
1184For detailed information on the LWP instruction set, see the
1185@cite{AMD Lightweight Profiling Specification} available at
1186@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1187
87973e9f
QN
1188@node i386-BMI
1189@section Bit Manipulation Instructions
1190
1191@cindex BMI, i386
1192@cindex BMI, x86-64
1193
1194@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1195
1196BMI instructions provide several instructions implementing individual
1197bit manipulation operations such as isolation, masking, setting, or
34bca508 1198resetting.
87973e9f
QN
1199
1200@c Need to add a specification citation here when available.
1201
2a2a0f38
QN
1202@node i386-TBM
1203@section AMD's Trailing Bit Manipulation Instructions
1204
1205@cindex TBM, i386
1206@cindex TBM, x86-64
1207
1208@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1209instruction set, available on AMD's BDVER2 processors (Trinity and
1210Viperfish).
1211
1212TBM instructions provide instructions implementing individual bit
1213manipulation operations such as isolating, masking, setting, resetting,
1214complementing, and operations on trailing zeros and ones.
1215
1216@c Need to add a specification citation here when available.
87973e9f 1217
252b5132
RH
1218@node i386-16bit
1219@section Writing 16-bit Code
1220
1221@cindex i386 16-bit code
1222@cindex 16-bit code, i386
1223@cindex real-mode code, i386
eecb386c 1224@cindex @code{code16gcc} directive, i386
252b5132
RH
1225@cindex @code{code16} directive, i386
1226@cindex @code{code32} directive, i386
55b62671
AJ
1227@cindex @code{code64} directive, i386
1228@cindex @code{code64} directive, x86-64
1229While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1230or 64-bit x86-64 code depending on the default configuration,
252b5132 1231it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1232mode code segments. To do this, put a @samp{.code16} or
1233@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1234be run in 16-bit mode. You can switch @code{@value{AS}} to writing
123532-bit code with the @samp{.code32} directive or 64-bit code with the
1236@samp{.code64} directive.
eecb386c
AM
1237
1238@samp{.code16gcc} provides experimental support for generating 16-bit
1239code from gcc, and differs from @samp{.code16} in that @samp{call},
1240@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1241@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1242default to 32-bit size. This is so that the stack pointer is
1243manipulated in the same way over function calls, allowing access to
1244function parameters at the same stack offsets as in 32-bit mode.
1245@samp{.code16gcc} also automatically adds address size prefixes where
1246necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1247
1248The code which @code{@value{AS}} generates in 16-bit mode will not
1249necessarily run on a 16-bit pre-80386 processor. To write code that
1250runs on such a processor, you must refrain from using @emph{any} 32-bit
1251constructs which require @code{@value{AS}} to output address or operand
1252size prefixes.
1253
1254Note that writing 16-bit code instructions by explicitly specifying a
1255prefix or an instruction mnemonic suffix within a 32-bit code section
1256generates different machine instructions than those generated for a
125716-bit code segment. In a 32-bit code section, the following code
1258generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1259value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1260
1261@smallexample
1262 pushw $4
1263@end smallexample
1264
1265The same code in a 16-bit code section would generate the machine
b45619c0 1266opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1267is correct since the processor default operand size is assumed to be 16
1268bits in a 16-bit code section.
1269
e413e4e9
AM
1270@node i386-Arch
1271@section Specifying CPU Architecture
1272
1273@cindex arch directive, i386
1274@cindex i386 arch directive
55b62671
AJ
1275@cindex arch directive, x86-64
1276@cindex x86-64 arch directive
e413e4e9
AM
1277
1278@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1279(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1280directive enables a warning when gas detects an instruction that is not
1281supported on the CPU specified. The choices for @var{cpu_type} are:
1282
1283@multitable @columnfractions .20 .20 .20 .20
1284@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1285@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1286@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1287@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1288@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1289@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1290@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1291@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1292@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1293@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1294@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1295@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1296@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1297@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1298@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1299@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1300@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1301@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1302@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1303@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1304@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1305@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1306@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1307@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
d6aab7a1 1308@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16}
d777820b 1309@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1310@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1311@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
c0a30a9f 1312@item @samp{.movdiri} @tab @samp{.movdir64b}
1ceab344 1313@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1314@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1315@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1316@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1317@end multitable
1318
fddf5b5b
AM
1319Apart from the warning, there are only two other effects on
1320@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1321@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1322will automatically use a two byte opcode sequence. The larger three
1323byte opcode sequence is used on the 486 (and when no architecture is
1324specified) because it executes faster on the 486. Note that you can
1325explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1326Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1327@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1328conditional jumps will be promoted when necessary to a two instruction
1329sequence consisting of a conditional jump of the opposite sense around
1330an unconditional jump to the target.
1331
5c6af06e
JB
1332Following the CPU architecture (but not a sub-architecture, which are those
1333starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1334control automatic promotion of conditional jumps. @samp{jumps} is the
1335default, and enables jump promotion; All external jumps will be of the long
1336variety, and file-local jumps will be promoted as necessary.
1337(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1338byte offset jumps, and warns about file-local conditional jumps that
1339@code{@value{AS}} promotes.
fddf5b5b
AM
1340Unconditional jumps are treated as for @samp{jumps}.
1341
1342For example
1343
1344@smallexample
1345 .arch i8086,nojumps
1346@end smallexample
e413e4e9 1347
5c9352f3
AM
1348@node i386-Bugs
1349@section AT&T Syntax bugs
1350
1351The UnixWare assembler, and probably other AT&T derived ix86 Unix
1352assemblers, generate floating point instructions with reversed source
1353and destination registers in certain cases. Unfortunately, gcc and
1354possibly many other programs use this reversed syntax, so we're stuck
1355with it.
1356
1357For example
1358
1359@smallexample
1360 fsub %st,%st(3)
1361@end smallexample
1362@noindent
1363results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1364than the expected @samp{%st(3) - %st}. This happens with all the
1365non-commutative arithmetic floating point operations with two register
1366operands where the source register is @samp{%st} and the destination
1367register is @samp{%st(i)}.
1368
252b5132
RH
1369@node i386-Notes
1370@section Notes
1371
1372@cindex i386 @code{mul}, @code{imul} instructions
1373@cindex @code{mul} instruction, i386
1374@cindex @code{imul} instruction, i386
55b62671
AJ
1375@cindex @code{mul} instruction, x86-64
1376@cindex @code{imul} instruction, x86-64
252b5132 1377There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1378instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1379multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1380for @samp{imul}) can be output only in the one operand form. Thus,
1381@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1382the expanding multiply would clobber the @samp{%edx} register, and this
1383would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
138464-bit product in @samp{%edx:%eax}.
1385
1386We have added a two operand form of @samp{imul} when the first operand
1387is an immediate mode expression and the second operand is a register.
1388This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1389example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1390$69, %eax, %eax}.
1391