]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gas/doc/c-i386.texi
Replace deprecated tcl case statements with switch statements
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
CommitLineData
b3adc24a 1@c Copyright (C) 1991-2020 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
a9660a6f 126@code{znver2},
7b458c12
L
127@code{btver1},
128@code{btver2},
9103f4f4
L
129@code{generic32} and
130@code{generic64}.
131
34bca508 132In addition to the basic instruction set, the assembler can be told to
6305a203
L
133accept various extension mnemonics. For example,
134@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
135@var{vmx}. The following extensions are currently supported:
309d3373
JB
136@code{8087},
137@code{287},
138@code{387},
1848e567 139@code{687},
309d3373 140@code{no87},
1848e567
L
141@code{no287},
142@code{no387},
143@code{no687},
d871f3f4
L
144@code{cmov},
145@code{nocmov},
146@code{fxsr},
147@code{nofxsr},
6305a203 148@code{mmx},
309d3373 149@code{nommx},
6305a203
L
150@code{sse},
151@code{sse2},
152@code{sse3},
153@code{ssse3},
154@code{sse4.1},
155@code{sse4.2},
156@code{sse4},
309d3373 157@code{nosse},
1848e567
L
158@code{nosse2},
159@code{nosse3},
160@code{nossse3},
161@code{nosse4.1},
162@code{nosse4.2},
163@code{nosse4},
c0f3af97 164@code{avx},
6c30d220 165@code{avx2},
1848e567
L
166@code{noavx},
167@code{noavx2},
e2e1fcde
L
168@code{adx},
169@code{rdseed},
170@code{prfchw},
5c111e37 171@code{smap},
7e8b059b 172@code{mpx},
a0046408 173@code{sha},
8bc52696 174@code{rdpid},
6b40c462 175@code{ptwrite},
603555e5 176@code{cet},
48521003 177@code{gfni},
8dcf1fad 178@code{vaes},
ff1982d5 179@code{vpclmulqdq},
1dfc6506
L
180@code{prefetchwt1},
181@code{clflushopt},
182@code{se1},
c5e7287a 183@code{clwb},
c0a30a9f
L
184@code{movdiri},
185@code{movdir64b},
5d79adc4 186@code{enqcmd},
43234a1e
L
187@code{avx512f},
188@code{avx512cd},
189@code{avx512er},
190@code{avx512pf},
1dfc6506
L
191@code{avx512vl},
192@code{avx512bw},
193@code{avx512dq},
2cc1b5aa 194@code{avx512ifma},
14f195c9 195@code{avx512vbmi},
920d2ddc 196@code{avx512_4fmaps},
47acf0bd 197@code{avx512_4vnniw},
620214f7 198@code{avx512_vpopcntdq},
53467f57 199@code{avx512_vbmi2},
8cfcb765 200@code{avx512_vnni},
ee6872be 201@code{avx512_bitalg},
d6aab7a1 202@code{avx512_bf16},
144b71e2
L
203@code{noavx512f},
204@code{noavx512cd},
205@code{noavx512er},
206@code{noavx512pf},
207@code{noavx512vl},
208@code{noavx512bw},
209@code{noavx512dq},
210@code{noavx512ifma},
211@code{noavx512vbmi},
920d2ddc 212@code{noavx512_4fmaps},
47acf0bd 213@code{noavx512_4vnniw},
620214f7 214@code{noavx512_vpopcntdq},
53467f57 215@code{noavx512_vbmi2},
8cfcb765 216@code{noavx512_vnni},
ee6872be 217@code{noavx512_bitalg},
9186c494 218@code{noavx512_vp2intersect},
d6aab7a1 219@code{noavx512_bf16},
dd455cf5 220@code{noenqcmd},
6305a203 221@code{vmx},
8729a6f6 222@code{vmfunc},
6305a203 223@code{smx},
f03fe4c1 224@code{xsave},
c7b8aa3a 225@code{xsaveopt},
1dfc6506
L
226@code{xsavec},
227@code{xsaves},
c0f3af97 228@code{aes},
594ab6a3 229@code{pclmul},
c7b8aa3a
L
230@code{fsgsbase},
231@code{rdrnd},
232@code{f16c},
6c30d220 233@code{bmi2},
c0f3af97 234@code{fma},
f1f8f695
L
235@code{movbe},
236@code{ept},
6c30d220 237@code{lzcnt},
42164a71
L
238@code{hle},
239@code{rtm},
6c30d220 240@code{invpcid},
bd5295b2 241@code{clflush},
9916071f 242@code{mwaitx},
029f3522 243@code{clzero},
3233d7d0 244@code{wbnoinvd},
be3a8dca 245@code{pconfig},
de89d0a3 246@code{waitpkg},
c48935d7 247@code{cldemote},
142861df
JB
248@code{rdpru},
249@code{mcommit},
f88c9eb0 250@code{lwp},
5dd85c99
SP
251@code{fma4},
252@code{xop},
60aa667e 253@code{cx16},
bd5295b2 254@code{syscall},
1b7f3fb0 255@code{rdtscp},
6305a203
L
256@code{3dnow},
257@code{3dnowa},
258@code{sse4a},
259@code{sse5},
260@code{svme},
261@code{abm} and
262@code{padlock}.
309d3373
JB
263Note that rather than extending a basic instruction set, the extension
264mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
265
266When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
267@code{.arch} directive will take precedent.
268
269@cindex @samp{-mtune=} option, i386
270@cindex @samp{-mtune=} option, x86-64
271@item -mtune=@var{CPU}
272This option specifies a processor to optimize for. When used in
273conjunction with the @option{-march} option, only instructions
274of the processor specified by the @option{-march} option will be
275generated.
276
6305a203
L
277Valid @var{CPU} values are identical to the processor list of
278@option{-march=@var{CPU}}.
9103f4f4 279
c0f3af97
L
280@cindex @samp{-msse2avx} option, i386
281@cindex @samp{-msse2avx} option, x86-64
282@item -msse2avx
283This option specifies that the assembler should encode SSE instructions
284with VEX prefix.
285
daf50ae7
L
286@cindex @samp{-msse-check=} option, i386
287@cindex @samp{-msse-check=} option, x86-64
288@item -msse-check=@var{none}
1f9bb1ca
AS
289@itemx -msse-check=@var{warning}
290@itemx -msse-check=@var{error}
9aff4b7a 291These options control if the assembler should check SSE instructions.
daf50ae7
L
292@option{-msse-check=@var{none}} will make the assembler not to check SSE
293instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 294will make the assembler issue a warning for any SSE instruction.
daf50ae7 295@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 296for any SSE instruction.
daf50ae7 297
539f890d
L
298@cindex @samp{-mavxscalar=} option, i386
299@cindex @samp{-mavxscalar=} option, x86-64
300@item -mavxscalar=@var{128}
1f9bb1ca 301@itemx -mavxscalar=@var{256}
2aab8acd 302These options control how the assembler should encode scalar AVX
539f890d
L
303instructions. @option{-mavxscalar=@var{128}} will encode scalar
304AVX instructions with 128bit vector length, which is the default.
305@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
306with 256bit vector length.
307
4970191f
JB
308WARNING: Don't use this for production code - due to CPU errata the
309resulting code may not work on certain models.
310
03751133
L
311@cindex @samp{-mvexwig=} option, i386
312@cindex @samp{-mvexwig=} option, x86-64
313@item -mvexwig=@var{0}
314@itemx -mvexwig=@var{1}
315These options control how the assembler should encode VEX.W-ignored (WIG)
316VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
317instructions with vex.w = 0, which is the default.
318@option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
319vex.w = 1.
320
4970191f
JB
321WARNING: Don't use this for production code - due to CPU errata the
322resulting code may not work on certain models.
323
43234a1e
L
324@cindex @samp{-mevexlig=} option, i386
325@cindex @samp{-mevexlig=} option, x86-64
326@item -mevexlig=@var{128}
327@itemx -mevexlig=@var{256}
328@itemx -mevexlig=@var{512}
329These options control how the assembler should encode length-ignored
330(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
331EVEX instructions with 128bit vector length, which is the default.
332@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
333encode LIG EVEX instructions with 256bit and 512bit vector length,
334respectively.
335
336@cindex @samp{-mevexwig=} option, i386
337@cindex @samp{-mevexwig=} option, x86-64
338@item -mevexwig=@var{0}
339@itemx -mevexwig=@var{1}
340These options control how the assembler should encode w-ignored (WIG)
341EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
342EVEX instructions with evex.w = 0, which is the default.
343@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
344evex.w = 1.
345
1efbbeb4
L
346@cindex @samp{-mmnemonic=} option, i386
347@cindex @samp{-mmnemonic=} option, x86-64
348@item -mmnemonic=@var{att}
1f9bb1ca 349@itemx -mmnemonic=@var{intel}
34bca508 350This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
351The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
352take precedent.
353
354@cindex @samp{-msyntax=} option, i386
355@cindex @samp{-msyntax=} option, x86-64
356@item -msyntax=@var{att}
1f9bb1ca 357@itemx -msyntax=@var{intel}
34bca508 358This option specifies instruction syntax when processing instructions.
1efbbeb4
L
359The @code{.att_syntax} and @code{.intel_syntax} directives will
360take precedent.
361
362@cindex @samp{-mnaked-reg} option, i386
363@cindex @samp{-mnaked-reg} option, x86-64
364@item -mnaked-reg
33eaf5de 365This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 366The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 367
7e8b059b
L
368@cindex @samp{-madd-bnd-prefix} option, i386
369@cindex @samp{-madd-bnd-prefix} option, x86-64
370@item -madd-bnd-prefix
371This option forces the assembler to add BND prefix to all branches, even
372if such prefix was not explicitly specified in the source code.
373
8dcea932
L
374@cindex @samp{-mshared} option, i386
375@cindex @samp{-mshared} option, x86-64
376@item -mno-shared
377On ELF target, the assembler normally optimizes out non-PLT relocations
378against defined non-weak global branch targets with default visibility.
379The @samp{-mshared} option tells the assembler to generate code which
380may go into a shared library where all non-weak global branch targets
381with default visibility can be preempted. The resulting code is
382slightly bigger. This option only affects the handling of branch
383instructions.
384
167ad85b
TG
385@cindex @samp{-mbig-obj} option, x86-64
386@item -mbig-obj
387On x86-64 PE/COFF target this option forces the use of big object file
388format, which allows more than 32768 sections.
389
d022bddd
IT
390@cindex @samp{-momit-lock-prefix=} option, i386
391@cindex @samp{-momit-lock-prefix=} option, x86-64
392@item -momit-lock-prefix=@var{no}
393@itemx -momit-lock-prefix=@var{yes}
394These options control how the assembler should encode lock prefix.
395This option is intended as a workaround for processors, that fail on
396lock prefix. This option can only be safely used with single-core,
397single-thread computers
398@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
399@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
400which is the default.
401
e4e00185
AS
402@cindex @samp{-mfence-as-lock-add=} option, i386
403@cindex @samp{-mfence-as-lock-add=} option, x86-64
404@item -mfence-as-lock-add=@var{no}
405@itemx -mfence-as-lock-add=@var{yes}
406These options control how the assembler should encode lfence, mfence and
407sfence.
408@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
409sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
410@samp{lock addl $0x0, (%esp)} in 32-bit mode.
411@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
412sfence as usual, which is the default.
413
0cb4071e
L
414@cindex @samp{-mrelax-relocations=} option, i386
415@cindex @samp{-mrelax-relocations=} option, x86-64
416@item -mrelax-relocations=@var{no}
417@itemx -mrelax-relocations=@var{yes}
418These options control whether the assembler should generate relax
419relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
420R_X86_64_REX_GOTPCRELX, in 64-bit mode.
421@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
422@option{-mrelax-relocations=@var{no}} will not generate relax
423relocations. The default can be controlled by a configure option
424@option{--enable-x86-relax-relocations}.
425
e379e5f3
L
426@cindex @samp{-malign-branch-boundary=} option, i386
427@cindex @samp{-malign-branch-boundary=} option, x86-64
428@item -malign-branch-boundary=@var{NUM}
429This option controls how the assembler should align branches with segment
430prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
431no less than 16. Branches will be aligned within @var{NUM} byte
432boundary. @option{-malign-branch-boundary=0}, which is the default,
433doesn't align branches.
434
435@cindex @samp{-malign-branch=} option, i386
436@cindex @samp{-malign-branch=} option, x86-64
437@item -malign-branch=@var{TYPE}[+@var{TYPE}...]
438This option specifies types of branches to align. @var{TYPE} is
439combination of @samp{jcc}, which aligns conditional jumps,
440@samp{fused}, which aligns fused conditional jumps, @samp{jmp},
441which aligns unconditional jumps, @samp{call} which aligns calls,
442@samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
443jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
444
445@cindex @samp{-malign-branch-prefix-size=} option, i386
446@cindex @samp{-malign-branch-prefix-size=} option, x86-64
447@item -malign-branch-prefix-size=@var{NUM}
448This option specifies the maximum number of prefixes on an instruction
449to align branches. @var{NUM} should be between 0 and 5. The default
450@var{NUM} is 5.
451
76cf450b
L
452@cindex @samp{-mbranches-within-32B-boundaries} option, i386
453@cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
454@item -mbranches-within-32B-boundaries
455This option aligns conditional jumps, fused conditional jumps and
456unconditional jumps within 32 byte boundary with up to 5 segment prefixes
457on an instruction. It is equivalent to
458@option{-malign-branch-boundary=32}
459@option{-malign-branch=jcc+fused+jmp}
460@option{-malign-branch-prefix-size=5}.
461The default doesn't align branches.
462
b4a3a7b4
L
463@cindex @samp{-mx86-used-note=} option, i386
464@cindex @samp{-mx86-used-note=} option, x86-64
465@item -mx86-used-note=@var{no}
466@itemx -mx86-used-note=@var{yes}
467These options control whether the assembler should generate
468GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
469GNU property notes. The default can be controlled by the
470@option{--enable-x86-used-note} configure option.
471
d3d3c6db
IT
472@cindex @samp{-mevexrcig=} option, i386
473@cindex @samp{-mevexrcig=} option, x86-64
474@item -mevexrcig=@var{rne}
475@itemx -mevexrcig=@var{rd}
476@itemx -mevexrcig=@var{ru}
477@itemx -mevexrcig=@var{rz}
478These options control how the assembler should encode SAE-only
479EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
480of EVEX instruction with 00, which is the default.
481@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
482and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
483with 01, 10 and 11 RC bits, respectively.
484
5db04b09
L
485@cindex @samp{-mamd64} option, x86-64
486@cindex @samp{-mintel64} option, x86-64
487@item -mamd64
488@itemx -mintel64
489This option specifies that the assembler should accept only AMD64 or
490Intel64 ISA in 64-bit mode. The default is to accept both.
491
b6f8c7c4
L
492@cindex @samp{-O0} option, i386
493@cindex @samp{-O0} option, x86-64
494@cindex @samp{-O} option, i386
495@cindex @samp{-O} option, x86-64
496@cindex @samp{-O1} option, i386
497@cindex @samp{-O1} option, x86-64
498@cindex @samp{-O2} option, i386
499@cindex @samp{-O2} option, x86-64
500@cindex @samp{-Os} option, i386
501@cindex @samp{-Os} option, x86-64
502@item -O0 | -O | -O1 | -O2 | -Os
503Optimize instruction encoding with smaller instruction size. @samp{-O}
504and @samp{-O1} encode 64-bit register load instructions with 64-bit
505immediate as 32-bit register load instructions with 31-bit or 32-bits
99112332 506immediates, encode 64-bit register clearing instructions with 32-bit
a0a1771e
JB
507register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
508register clearing instructions with 128-bit VEX vector register
509clearing instructions, encode 128-bit/256-bit EVEX vector
97ed31ae 510register load/store instructions with VEX vector register load/store
a0a1771e
JB
511instructions, and encode 128-bit/256-bit EVEX packed integer logical
512instructions with 128-bit/256-bit VEX packed integer logical.
513
514@samp{-O2} includes @samp{-O1} optimization plus encodes
515256-bit/512-bit EVEX vector register clearing instructions with 128-bit
79dec6b7
JB
516EVEX vector register clearing instructions. In 64-bit mode VEX encoded
517instructions with commutative source operands will also have their
518source operands swapped if this allows using the 2-byte VEX prefix form
5641ec01
JB
519instead of the 3-byte one. Certain forms of AND as well as OR with the
520same (register) operand specified twice will also be changed to TEST.
a0a1771e 521
b6f8c7c4
L
522@samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
523and 64-bit register tests with immediate as 8-bit register test with
524immediate. @samp{-O0} turns off this optimization.
525
55b62671 526@end table
731caf76 527@c man end
e413e4e9 528
a6c24e68
NC
529@node i386-Directives
530@section x86 specific Directives
531
532@cindex machine directives, x86
533@cindex x86 machine directives
534@table @code
535
536@cindex @code{lcomm} directive, COFF
537@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
538Reserve @var{length} (an absolute expression) bytes for a local common
539denoted by @var{symbol}. The section and value of @var{symbol} are
540those of the new local common. The addresses are allocated in the bss
704209c0
NC
541section, so that at run-time the bytes start off zeroed. Since
542@var{symbol} is not declared global, it is normally not visible to
543@code{@value{LD}}. The optional third parameter, @var{alignment},
544specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
545
546This directive is only available for COFF based x86 targets.
547
102e9361
NC
548@cindex @code{largecomm} directive, ELF
549@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
550This directive behaves in the same way as the @code{comm} directive
551except that the data is placed into the @var{.lbss} section instead of
552the @var{.bss} section @ref{Comm}.
553
554The directive is intended to be used for data which requires a large
555amount of space, and it is only available for ELF based x86_64
556targets.
557
f2f51cd5
NC
558@cindex @code{value} directive
559@item .value @var{expression} [, @var{expression}]
560This directive behaves in the same way as the @code{.short} directive,
561taking a series of comma separated expressions and storing them as
562two-byte wide values into the current section.
563
a6c24e68 564@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
565
566@end table
567
252b5132 568@node i386-Syntax
7c31ae13
NC
569@section i386 Syntactical Considerations
570@menu
571* i386-Variations:: AT&T Syntax versus Intel Syntax
572* i386-Chars:: Special Characters
573@end menu
574
575@node i386-Variations
576@subsection AT&T Syntax versus Intel Syntax
252b5132 577
e413e4e9
AM
578@cindex i386 intel_syntax pseudo op
579@cindex intel_syntax pseudo op, i386
580@cindex i386 att_syntax pseudo op
581@cindex att_syntax pseudo op, i386
252b5132
RH
582@cindex i386 syntax compatibility
583@cindex syntax compatibility, i386
55b62671
AJ
584@cindex x86-64 intel_syntax pseudo op
585@cindex intel_syntax pseudo op, x86-64
586@cindex x86-64 att_syntax pseudo op
587@cindex att_syntax pseudo op, x86-64
588@cindex x86-64 syntax compatibility
589@cindex syntax compatibility, x86-64
e413e4e9
AM
590
591@code{@value{AS}} now supports assembly using Intel assembler syntax.
592@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
593back to the usual AT&T mode for compatibility with the output of
594@code{@value{GCC}}. Either of these directives may have an optional
595argument, @code{prefix}, or @code{noprefix} specifying whether registers
596require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
597different from Intel syntax. We mention these differences because
598almost all 80386 documents use Intel syntax. Notable differences
599between the two syntaxes are:
600
601@cindex immediate operands, i386
602@cindex i386 immediate operands
603@cindex register operands, i386
604@cindex i386 register operands
605@cindex jump/call operands, i386
606@cindex i386 jump/call operands
607@cindex operand delimiters, i386
55b62671
AJ
608
609@cindex immediate operands, x86-64
610@cindex x86-64 immediate operands
611@cindex register operands, x86-64
612@cindex x86-64 register operands
613@cindex jump/call operands, x86-64
614@cindex x86-64 jump/call operands
615@cindex operand delimiters, x86-64
252b5132
RH
616@itemize @bullet
617@item
618AT&T immediate operands are preceded by @samp{$}; Intel immediate
619operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
620AT&T register operands are preceded by @samp{%}; Intel register operands
621are undelimited. AT&T absolute (as opposed to PC relative) jump/call
622operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
623
624@cindex i386 source, destination operands
625@cindex source, destination operands; i386
55b62671
AJ
626@cindex x86-64 source, destination operands
627@cindex source, destination operands; x86-64
252b5132
RH
628@item
629AT&T and Intel syntax use the opposite order for source and destination
630operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
631@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
632previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
633instructions with 2 immediate operands, such as the @samp{enter}
634instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
635
636@cindex mnemonic suffixes, i386
637@cindex sizes operands, i386
638@cindex i386 size suffixes
55b62671
AJ
639@cindex mnemonic suffixes, x86-64
640@cindex sizes operands, x86-64
641@cindex x86-64 size suffixes
252b5132
RH
642@item
643In AT&T syntax the size of memory operands is determined from the last
644character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671 645@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
aa108c0c
LC
646(32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
647of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
648(256-bit vector) and zmm (512-bit vector) memory references, only when there's
649no other way to disambiguate an instruction. Intel syntax accomplishes this by
650prefixing memory operands (@emph{not} the instruction mnemonics) with
651@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
652@samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
653syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
654syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
655@samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
252b5132 656
4b06377f
L
657In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
658instruction with the 64-bit displacement or immediate operand.
659
252b5132
RH
660@cindex return instructions, i386
661@cindex i386 jump, call, return
55b62671
AJ
662@cindex return instructions, x86-64
663@cindex x86-64 jump, call, return
252b5132
RH
664@item
665Immediate form long jumps and calls are
666@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
667Intel syntax is
668@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
669instruction
670is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
671@samp{ret far @var{stack-adjust}}.
672
673@cindex sections, i386
674@cindex i386 sections
55b62671
AJ
675@cindex sections, x86-64
676@cindex x86-64 sections
252b5132
RH
677@item
678The AT&T assembler does not provide support for multiple section
679programs. Unix style systems expect all programs to be single sections.
680@end itemize
681
7c31ae13
NC
682@node i386-Chars
683@subsection Special Characters
684
685@cindex line comment character, i386
686@cindex i386 line comment character
687The presence of a @samp{#} appearing anywhere on a line indicates the
688start of a comment that extends to the end of that line.
689
690If a @samp{#} appears as the first character of a line then the whole
691line is treated as a comment, but in this case the line can also be a
692logical line number directive (@pxref{Comments}) or a preprocessor
693control command (@pxref{Preprocessing}).
694
a05a5b64 695If the @option{--divide} command-line option has not been specified
7c31ae13
NC
696then the @samp{/} character appearing anywhere on a line also
697introduces a line comment.
698
699@cindex line separator, i386
700@cindex statement separator, i386
701@cindex i386 line separator
702The @samp{;} character can be used to separate statements on the same
703line.
704
252b5132 705@node i386-Mnemonics
d3b47e2b
L
706@section i386-Mnemonics
707@subsection Instruction Naming
252b5132
RH
708
709@cindex i386 instruction naming
710@cindex instruction naming, i386
55b62671
AJ
711@cindex x86-64 instruction naming
712@cindex instruction naming, x86-64
713
252b5132 714Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
715specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
716and @samp{q} specify byte, word, long and quadruple word operands. If
717no suffix is specified by an instruction then @code{@value{AS}} tries to
718fill in the missing suffix based on the destination register operand
719(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
720to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
721@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
722assembler which assumes that a missing mnemonic suffix implies long
723operand size. (This incompatibility does not affect compiler output
724since compilers always explicitly specify the mnemonic suffix.)
252b5132 725
c006a730
JB
726When there is no sizing suffix and no (suitable) register operands to
727deduce the size of memory operands, with a few exceptions and where long
728operand size is possible in the first place, operand size will default
729to long in 32- and 64-bit modes. Similarly it will default to short in
73016-bit mode. Noteworthy exceptions are
731
732@itemize @bullet
733@item
734Instructions with an implicit on-stack operand as well as branches,
735which default to quad in 64-bit mode.
736
737@item
738Sign- and zero-extending moves, which default to byte size source
739operands.
740
741@item
742Floating point insns with integer operands, which default to short (for
743perhaps historical reasons).
744
745@item
746CRC32 with a 64-bit destination, which defaults to a quad source
747operand.
748
749@end itemize
750
252b5132
RH
751Almost all instructions have the same names in AT&T and Intel format.
752There are a few exceptions. The sign extend and zero extend
753instructions need two sizes to specify them. They need a size to
754sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
755is accomplished by using two instruction mnemonic suffixes in AT&T
756syntax. Base names for sign extend and zero extend are
757@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
758and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
759are tacked on to this base name, the @emph{from} suffix before the
760@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
761``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
762thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
763@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
764@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
765quadruple word).
252b5132 766
b6169b20
L
767@cindex encoding options, i386
768@cindex encoding options, x86-64
769
86fa6981
L
770Different encoding options can be specified via pseudo prefixes:
771
772@itemize @bullet
773@item
774@samp{@{disp8@}} -- prefer 8-bit displacement.
775
776@item
777@samp{@{disp32@}} -- prefer 32-bit displacement.
778
779@item
780@samp{@{load@}} -- prefer load-form instruction.
781
782@item
783@samp{@{store@}} -- prefer store-form instruction.
784
785@item
42e04b36 786@samp{@{vex@}} -- encode with VEX prefix.
86fa6981
L
787
788@item
42e04b36 789@samp{@{vex3@}} -- encode with 3-byte VEX prefix.
86fa6981
L
790
791@item
792@samp{@{evex@}} -- encode with EVEX prefix.
6b6b6807
L
793
794@item
795@samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
796instructions (x86-64 only). Note that this differs from the @samp{rex}
797prefix which generates REX prefix unconditionally.
b6f8c7c4
L
798
799@item
800@samp{@{nooptimize@}} -- disable instruction size optimization.
86fa6981 801@end itemize
b6169b20 802
252b5132
RH
803@cindex conversion instructions, i386
804@cindex i386 conversion instructions
55b62671
AJ
805@cindex conversion instructions, x86-64
806@cindex x86-64 conversion instructions
252b5132
RH
807The Intel-syntax conversion instructions
808
809@itemize @bullet
810@item
811@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
812
813@item
814@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
815
816@item
817@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
818
819@item
820@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
821
822@item
823@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
824(x86-64 only),
825
826@item
d5f0cf92 827@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 828@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
829@end itemize
830
831@noindent
55b62671
AJ
832are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
833@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
834instructions.
252b5132
RH
835
836@cindex jump instructions, i386
837@cindex call instructions, i386
55b62671
AJ
838@cindex jump instructions, x86-64
839@cindex call instructions, x86-64
252b5132
RH
840Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
841AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
842convention.
843
d3b47e2b 844@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
845
846@cindex i386 mnemonic compatibility
847@cindex mnemonic compatibility, i386
848
849@code{@value{AS}} supports assembly using Intel mnemonic.
850@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
851@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
852syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
853Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
854@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
855@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
856assembler with different mnemonics from those in Intel IA32 specification.
857@code{@value{GCC}} generates those instructions with AT&T mnemonic.
858
252b5132
RH
859@node i386-Regs
860@section Register Naming
861
862@cindex i386 registers
863@cindex registers, i386
55b62671
AJ
864@cindex x86-64 registers
865@cindex registers, x86-64
252b5132
RH
866Register operands are always prefixed with @samp{%}. The 80386 registers
867consist of
868
869@itemize @bullet
870@item
871the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
872@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
873frame pointer), and @samp{%esp} (the stack pointer).
874
875@item
876the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
877@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
878
879@item
880the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
881@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
882are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
883@samp{%cx}, and @samp{%dx})
884
885@item
886the 6 section registers @samp{%cs} (code section), @samp{%ds}
887(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
888and @samp{%gs}.
889
890@item
4bde3cdd
UD
891the 5 processor control registers @samp{%cr0}, @samp{%cr2},
892@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
893
894@item
895the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
896@samp{%db3}, @samp{%db6}, and @samp{%db7}.
897
898@item
899the 2 test registers @samp{%tr6} and @samp{%tr7}.
900
901@item
902the 8 floating point register stack @samp{%st} or equivalently
903@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
904@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
905These registers are overloaded by 8 MMX registers @samp{%mm0},
906@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
907@samp{%mm6} and @samp{%mm7}.
908
909@item
4bde3cdd 910the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
911@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
912@end itemize
913
914The AMD x86-64 architecture extends the register set by:
915
916@itemize @bullet
917@item
918enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
919accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
920@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
921pointer)
922
923@item
924the 8 extended registers @samp{%r8}--@samp{%r15}.
925
926@item
4bde3cdd 927the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
928
929@item
4bde3cdd 930the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
931
932@item
4bde3cdd 933the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
934
935@item
936the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
937
938@item
939the 8 debug registers: @samp{%db8}--@samp{%db15}.
940
941@item
4bde3cdd
UD
942the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
943@end itemize
944
945With the AVX extensions more registers were made available:
946
947@itemize @bullet
948
949@item
950the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
951available in 32-bit mode). The bottom 128 bits are overlaid with the
952@samp{xmm0}--@samp{xmm15} registers.
953
954@end itemize
955
956The AVX2 extensions made in 64-bit mode more registers available:
957
958@itemize @bullet
959
960@item
961the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
962registers @samp{%ymm16}--@samp{%ymm31}.
963
964@end itemize
965
966The AVX512 extensions added the following registers:
967
968@itemize @bullet
969
970@item
971the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
972available in 32-bit mode). The bottom 128 bits are overlaid with the
973@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
974overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
975
976@item
977the 8 mask registers @samp{%k0}--@samp{%k7}.
978
252b5132
RH
979@end itemize
980
981@node i386-Prefixes
982@section Instruction Prefixes
983
984@cindex i386 instruction prefixes
985@cindex instruction prefixes, i386
986@cindex prefixes, i386
987Instruction prefixes are used to modify the following instruction. They
988are used to repeat string instructions, to provide section overrides, to
989perform bus lock operations, and to change operand and address sizes.
990(Most instructions that normally operate on 32-bit operands will use
99116-bit operands if the instruction has an ``operand size'' prefix.)
992Instruction prefixes are best written on the same line as the instruction
993they act upon. For example, the @samp{scas} (scan string) instruction is
994repeated with:
995
996@smallexample
997 repne scas %es:(%edi),%al
998@end smallexample
999
1000You may also place prefixes on the lines immediately preceding the
1001instruction, but this circumvents checks that @code{@value{AS}} does
1002with prefixes, and will not work with all prefixes.
1003
1004Here is a list of instruction prefixes:
1005
1006@cindex section override prefixes, i386
1007@itemize @bullet
1008@item
1009Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1010@samp{fs}, @samp{gs}. These are automatically added by specifying
1011using the @var{section}:@var{memory-operand} form for memory references.
1012
1013@cindex size prefixes, i386
1014@item
1015Operand/Address size prefixes @samp{data16} and @samp{addr16}
1016change 32-bit operands/addresses into 16-bit operands/addresses,
1017while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1018@code{.code16} section) into 32-bit operands/addresses. These prefixes
1019@emph{must} appear on the same line of code as the instruction they
1020modify. For example, in a 16-bit @code{.code16} section, you might
1021write:
1022
1023@smallexample
1024 addr32 jmpl *(%ebx)
1025@end smallexample
1026
1027@cindex bus lock prefixes, i386
1028@cindex inhibiting interrupts, i386
1029@item
1030The bus lock prefix @samp{lock} inhibits interrupts during execution of
1031the instruction it precedes. (This is only valid with certain
1032instructions; see a 80386 manual for details).
1033
1034@cindex coprocessor wait, i386
1035@item
1036The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1037complete the current instruction. This should never be needed for the
103880386/80387 combination.
1039
1040@cindex repeat prefixes, i386
1041@item
1042The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1043to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1044times if the current address size is 16-bits).
55b62671
AJ
1045@cindex REX prefixes, i386
1046@item
1047The @samp{rex} family of prefixes is used by x86-64 to encode
1048extensions to i386 instruction set. The @samp{rex} prefix has four
1049bits --- an operand size overwrite (@code{64}) used to change operand size
1050from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1051register set.
1052
1053You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1054instruction emits @samp{rex} prefix with all the bits set. By omitting
1055the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1056prefixes as well. Normally, there is no need to write the prefixes
1057explicitly, since gas will automatically generate them based on the
1058instruction operands.
252b5132
RH
1059@end itemize
1060
1061@node i386-Memory
1062@section Memory References
1063
1064@cindex i386 memory references
1065@cindex memory references, i386
55b62671
AJ
1066@cindex x86-64 memory references
1067@cindex memory references, x86-64
252b5132
RH
1068An Intel syntax indirect memory reference of the form
1069
1070@smallexample
1071@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1072@end smallexample
1073
1074@noindent
1075is translated into the AT&T syntax
1076
1077@smallexample
1078@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1079@end smallexample
1080
1081@noindent
1082where @var{base} and @var{index} are the optional 32-bit base and
1083index registers, @var{disp} is the optional displacement, and
1084@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1085to calculate the address of the operand. If no @var{scale} is
1086specified, @var{scale} is taken to be 1. @var{section} specifies the
1087optional section register for the memory operand, and may override the
1088default section register (see a 80386 manual for section register
1089defaults). Note that section overrides in AT&T syntax @emph{must}
1090be preceded by a @samp{%}. If you specify a section override which
1091coincides with the default section register, @code{@value{AS}} does @emph{not}
1092output any section register override prefixes to assemble the given
1093instruction. Thus, section overrides can be specified to emphasize which
1094section register is used for a given memory operand.
1095
1096Here are some examples of Intel and AT&T style memory references:
1097
1098@table @asis
1099@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1100@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1101missing, and the default section is used (@samp{%ss} for addressing with
1102@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1103
1104@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1105@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1106@samp{foo}. All other fields are missing. The section register here
1107defaults to @samp{%ds}.
1108
1109@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1110This uses the value pointed to by @samp{foo} as a memory operand.
1111Note that @var{base} and @var{index} are both missing, but there is only
1112@emph{one} @samp{,}. This is a syntactic exception.
1113
1114@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1115This selects the contents of the variable @samp{foo} with section
1116register @var{section} being @samp{%gs}.
1117@end table
1118
1119Absolute (as opposed to PC relative) call and jump operands must be
1120prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1121always chooses PC relative addressing for jump/call labels.
1122
1123Any instruction that has a memory operand, but no register operand,
55b62671
AJ
1124@emph{must} specify its size (byte, word, long, or quadruple) with an
1125instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1126respectively).
1127
1128The x86-64 architecture adds an RIP (instruction pointer relative)
1129addressing. This addressing mode is specified by using @samp{rip} as a
1130base register. Only constant offsets are valid. For example:
1131
1132@table @asis
1133@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1134Points to the address 1234 bytes past the end of the current
1135instruction.
1136
1137@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1138Points to the @code{symbol} in RIP relative way, this is shorter than
1139the default absolute addressing.
1140@end table
1141
1142Other addressing modes remain unchanged in x86-64 architecture, except
1143registers used are 64-bit instead of 32-bit.
252b5132 1144
fddf5b5b 1145@node i386-Jumps
252b5132
RH
1146@section Handling of Jump Instructions
1147
1148@cindex jump optimization, i386
1149@cindex i386 jump optimization
55b62671
AJ
1150@cindex jump optimization, x86-64
1151@cindex x86-64 jump optimization
252b5132
RH
1152Jump instructions are always optimized to use the smallest possible
1153displacements. This is accomplished by using byte (8-bit) displacement
1154jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 1155is insufficient a long displacement is used. We do not support
252b5132
RH
1156word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1157instruction with the @samp{data16} instruction prefix), since the 80386
1158insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1159is added. (See also @pxref{i386-Arch})
252b5132
RH
1160
1161Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1162@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1163displacements, so that if you use these instructions (@code{@value{GCC}} does
1164not use them) you may get an error message (and incorrect code). The AT&T
116580386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1166to
1167
1168@smallexample
1169 jcxz cx_zero
1170 jmp cx_nonzero
1171cx_zero: jmp foo
1172cx_nonzero:
1173@end smallexample
1174
1175@node i386-Float
1176@section Floating Point
1177
1178@cindex i386 floating point
1179@cindex floating point, i386
55b62671
AJ
1180@cindex x86-64 floating point
1181@cindex floating point, x86-64
252b5132
RH
1182All 80387 floating point types except packed BCD are supported.
1183(BCD support may be added without much difficulty). These data
1184types are 16-, 32-, and 64- bit integers, and single (32-bit),
1185double (64-bit), and extended (80-bit) precision floating point.
1186Each supported type has an instruction mnemonic suffix and a constructor
1187associated with it. Instruction mnemonic suffixes specify the operand's
1188data type. Constructors build these data types into memory.
1189
1190@cindex @code{float} directive, i386
1191@cindex @code{single} directive, i386
1192@cindex @code{double} directive, i386
1193@cindex @code{tfloat} directive, i386
55b62671
AJ
1194@cindex @code{float} directive, x86-64
1195@cindex @code{single} directive, x86-64
1196@cindex @code{double} directive, x86-64
1197@cindex @code{tfloat} directive, x86-64
252b5132
RH
1198@itemize @bullet
1199@item
1200Floating point constructors are @samp{.float} or @samp{.single},
1201@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1202These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1203and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1204only supports this format via the @samp{fldt} (load 80-bit real to stack
1205top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1206
1207@cindex @code{word} directive, i386
1208@cindex @code{long} directive, i386
1209@cindex @code{int} directive, i386
1210@cindex @code{quad} directive, i386
55b62671
AJ
1211@cindex @code{word} directive, x86-64
1212@cindex @code{long} directive, x86-64
1213@cindex @code{int} directive, x86-64
1214@cindex @code{quad} directive, x86-64
252b5132
RH
1215@item
1216Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1217@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1218corresponding instruction mnemonic suffixes are @samp{s} (single),
1219@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1220the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1221quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1222stack) instructions.
1223@end itemize
1224
1225Register to register operations should not use instruction mnemonic suffixes.
1226@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1227wrote @samp{fst %st, %st(1)}, since all register to register operations
1228use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1229which converts @samp{%st} from 80-bit to 64-bit floating point format,
1230then stores the result in the 4 byte location @samp{mem})
1231
1232@node i386-SIMD
1233@section Intel's MMX and AMD's 3DNow! SIMD Operations
1234
1235@cindex MMX, i386
1236@cindex 3DNow!, i386
1237@cindex SIMD, i386
55b62671
AJ
1238@cindex MMX, x86-64
1239@cindex 3DNow!, x86-64
1240@cindex SIMD, x86-64
252b5132
RH
1241
1242@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1243instructions for integer data), available on Intel's Pentium MMX
1244processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1245Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1246instruction set (SIMD instructions for 32-bit floating point data)
1247available on AMD's K6-2 processor and possibly others in the future.
1248
1249Currently, @code{@value{AS}} does not support Intel's floating point
1250SIMD, Katmai (KNI).
1251
1252The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1253@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
125416-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1255floating point values. The MMX registers cannot be used at the same time
1256as the floating point stack.
1257
1258See Intel and AMD documentation, keeping in mind that the operand order in
1259instructions is reversed from the Intel syntax.
1260
f88c9eb0
SP
1261@node i386-LWP
1262@section AMD's Lightweight Profiling Instructions
1263
1264@cindex LWP, i386
1265@cindex LWP, x86-64
1266
1267@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1268instruction set, available on AMD's Family 15h (Orochi) processors.
1269
1270LWP enables applications to collect and manage performance data, and
1271react to performance events. The collection of performance data
1272requires no context switches. LWP runs in the context of a thread and
1273so several counters can be used independently across multiple threads.
1274LWP can be used in both 64-bit and legacy 32-bit modes.
1275
1276For detailed information on the LWP instruction set, see the
1277@cite{AMD Lightweight Profiling Specification} available at
1278@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1279
87973e9f
QN
1280@node i386-BMI
1281@section Bit Manipulation Instructions
1282
1283@cindex BMI, i386
1284@cindex BMI, x86-64
1285
1286@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1287
1288BMI instructions provide several instructions implementing individual
1289bit manipulation operations such as isolation, masking, setting, or
34bca508 1290resetting.
87973e9f
QN
1291
1292@c Need to add a specification citation here when available.
1293
2a2a0f38
QN
1294@node i386-TBM
1295@section AMD's Trailing Bit Manipulation Instructions
1296
1297@cindex TBM, i386
1298@cindex TBM, x86-64
1299
1300@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1301instruction set, available on AMD's BDVER2 processors (Trinity and
1302Viperfish).
1303
1304TBM instructions provide instructions implementing individual bit
1305manipulation operations such as isolating, masking, setting, resetting,
1306complementing, and operations on trailing zeros and ones.
1307
1308@c Need to add a specification citation here when available.
87973e9f 1309
252b5132
RH
1310@node i386-16bit
1311@section Writing 16-bit Code
1312
1313@cindex i386 16-bit code
1314@cindex 16-bit code, i386
1315@cindex real-mode code, i386
eecb386c 1316@cindex @code{code16gcc} directive, i386
252b5132
RH
1317@cindex @code{code16} directive, i386
1318@cindex @code{code32} directive, i386
55b62671
AJ
1319@cindex @code{code64} directive, i386
1320@cindex @code{code64} directive, x86-64
1321While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1322or 64-bit x86-64 code depending on the default configuration,
252b5132 1323it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1324mode code segments. To do this, put a @samp{.code16} or
1325@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1326be run in 16-bit mode. You can switch @code{@value{AS}} to writing
132732-bit code with the @samp{.code32} directive or 64-bit code with the
1328@samp{.code64} directive.
eecb386c
AM
1329
1330@samp{.code16gcc} provides experimental support for generating 16-bit
1331code from gcc, and differs from @samp{.code16} in that @samp{call},
1332@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1333@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1334default to 32-bit size. This is so that the stack pointer is
1335manipulated in the same way over function calls, allowing access to
1336function parameters at the same stack offsets as in 32-bit mode.
1337@samp{.code16gcc} also automatically adds address size prefixes where
1338necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1339
1340The code which @code{@value{AS}} generates in 16-bit mode will not
1341necessarily run on a 16-bit pre-80386 processor. To write code that
1342runs on such a processor, you must refrain from using @emph{any} 32-bit
1343constructs which require @code{@value{AS}} to output address or operand
1344size prefixes.
1345
1346Note that writing 16-bit code instructions by explicitly specifying a
1347prefix or an instruction mnemonic suffix within a 32-bit code section
1348generates different machine instructions than those generated for a
134916-bit code segment. In a 32-bit code section, the following code
1350generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1351value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1352
1353@smallexample
1354 pushw $4
1355@end smallexample
1356
1357The same code in a 16-bit code section would generate the machine
b45619c0 1358opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1359is correct since the processor default operand size is assumed to be 16
1360bits in a 16-bit code section.
1361
e413e4e9
AM
1362@node i386-Arch
1363@section Specifying CPU Architecture
1364
1365@cindex arch directive, i386
1366@cindex i386 arch directive
55b62671
AJ
1367@cindex arch directive, x86-64
1368@cindex x86-64 arch directive
e413e4e9
AM
1369
1370@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1371(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1372directive enables a warning when gas detects an instruction that is not
1373supported on the CPU specified. The choices for @var{cpu_type} are:
1374
1375@multitable @columnfractions .20 .20 .20 .20
1376@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1377@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1378@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1379@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
d871f3f4 1380@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1543849b 1381@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1382@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
a9660a6f 1383@item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{btver1}
d871f3f4
L
1384@item @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1385@item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1386@item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1387@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1388@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1389@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1390@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1391@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1392@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1393@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1394@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1395@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1396@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1397@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1398@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1399@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
9186c494 1400@item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
d777820b 1401@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
c48935d7 1402@item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
d777820b 1403@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
5d79adc4 1404@item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd}
1ceab344 1405@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1406@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1407@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
142861df
JB
1408@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1409@item @samp{.mcommit}
e413e4e9
AM
1410@end multitable
1411
fddf5b5b
AM
1412Apart from the warning, there are only two other effects on
1413@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1414@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1415will automatically use a two byte opcode sequence. The larger three
1416byte opcode sequence is used on the 486 (and when no architecture is
1417specified) because it executes faster on the 486. Note that you can
1418explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1419Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1420@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1421conditional jumps will be promoted when necessary to a two instruction
1422sequence consisting of a conditional jump of the opposite sense around
1423an unconditional jump to the target.
1424
5c6af06e
JB
1425Following the CPU architecture (but not a sub-architecture, which are those
1426starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1427control automatic promotion of conditional jumps. @samp{jumps} is the
1428default, and enables jump promotion; All external jumps will be of the long
1429variety, and file-local jumps will be promoted as necessary.
1430(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1431byte offset jumps, and warns about file-local conditional jumps that
1432@code{@value{AS}} promotes.
fddf5b5b
AM
1433Unconditional jumps are treated as for @samp{jumps}.
1434
1435For example
1436
1437@smallexample
1438 .arch i8086,nojumps
1439@end smallexample
e413e4e9 1440
5c9352f3
AM
1441@node i386-Bugs
1442@section AT&T Syntax bugs
1443
1444The UnixWare assembler, and probably other AT&T derived ix86 Unix
1445assemblers, generate floating point instructions with reversed source
1446and destination registers in certain cases. Unfortunately, gcc and
1447possibly many other programs use this reversed syntax, so we're stuck
1448with it.
1449
1450For example
1451
1452@smallexample
1453 fsub %st,%st(3)
1454@end smallexample
1455@noindent
1456results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1457than the expected @samp{%st(3) - %st}. This happens with all the
1458non-commutative arithmetic floating point operations with two register
1459operands where the source register is @samp{%st} and the destination
1460register is @samp{%st(i)}.
1461
252b5132
RH
1462@node i386-Notes
1463@section Notes
1464
1465@cindex i386 @code{mul}, @code{imul} instructions
1466@cindex @code{mul} instruction, i386
1467@cindex @code{imul} instruction, i386
55b62671
AJ
1468@cindex @code{mul} instruction, x86-64
1469@cindex @code{imul} instruction, x86-64
252b5132 1470There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1471instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1472multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1473for @samp{imul}) can be output only in the one operand form. Thus,
1474@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1475the expanding multiply would clobber the @samp{%edx} register, and this
1476would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
147764-bit product in @samp{%edx:%eax}.
1478
1479We have added a two operand form of @samp{imul} when the first operand
1480is an immediate mode expression and the second operand is a register.
1481This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1482example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1483$69, %eax, %eax}.
1484