]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cfgcleanup.c
return auto_vec from more dominance functions
[thirdparty/gcc.git] / gcc / cfgcleanup.c
CommitLineData
402209ff 1/* Control flow optimization code for GNU compiler.
99dee823 2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
402209ff
JH
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
402209ff
JH
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
402209ff 19
1ea7e6ad 20/* This file contains optimizer of the control flow. The main entry point is
402209ff
JH
21 cleanup_cfg. Following optimizations are performed:
22
23 - Unreachable blocks removal
d1a6adeb 24 - Edge forwarding (edge to the forwarder block is forwarded to its
eaec9b3d 25 successor. Simplification of the branch instruction is performed by
402209ff 26 underlying infrastructure so branch can be converted to simplejump or
f5143c46 27 eliminated).
402209ff
JH
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
31
32#include "config.h"
33#include "system.h"
4977bab6 34#include "coretypes.h"
c7131fb2 35#include "backend.h"
957060b5 36#include "target.h"
402209ff 37#include "rtl.h"
957060b5
AM
38#include "tree.h"
39#include "cfghooks.h"
c7131fb2 40#include "df.h"
4d0cdd0c 41#include "memmodel.h"
957060b5 42#include "tm_p.h"
402209ff 43#include "insn-config.h"
957060b5 44#include "emit-rtl.h"
8ecba28a 45#include "cselib.h"
ef330312
PB
46#include "tree-pass.h"
47#include "cfgloop.h"
60393bbc
AM
48#include "cfgrtl.h"
49#include "cfganal.h"
50#include "cfgbuild.h"
51#include "cfgcleanup.h"
c1e3e2d9 52#include "dce.h"
7d817ebc 53#include "dbgcnt.h"
a2250fe9 54#include "rtl-iter.h"
4b1a1d98 55#include "regs.h"
5a5a3bc5 56#include "function-abi.h"
402209ff 57
2dd2d53e 58#define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
c22cacf3 59
7cf240d5
JH
60/* Set to true when we are running first pass of try_optimize_cfg loop. */
61static bool first_pass;
c1e3e2d9 62
073a8998 63/* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
bd2c6270 64static bool crossjumps_occurred;
c1e3e2d9 65
4ec5d4f5
BS
66/* Set to true if we couldn't run an optimization due to stale liveness
67 information; we should run df_analyze to enable more opportunities. */
68static bool block_was_dirty;
69
bf22920b 70static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
d329e058 71static bool try_crossjump_bb (int, basic_block);
c2fc5456 72static bool outgoing_edges_match (int, basic_block, basic_block);
da5477a9 73static enum replace_direction old_insns_match_p (int, rtx_insn *, rtx_insn *);
d329e058 74
d329e058
AJ
75static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
76static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
d329e058
AJ
77static bool try_optimize_cfg (int);
78static bool try_simplify_condjump (basic_block);
79static bool try_forward_edges (int, basic_block);
6fb5fa3c 80static edge thread_jump (edge, basic_block);
d329e058
AJ
81static bool mark_effect (rtx, bitmap);
82static void notice_new_block (basic_block);
83static void update_forwarder_flag (basic_block);
c2fc5456 84static void merge_memattrs (rtx, rtx);
635559ab
JH
85\f
86/* Set flags for newly created block. */
87
88static void
d329e058 89notice_new_block (basic_block bb)
635559ab
JH
90{
91 if (!bb)
92 return;
5f0d2358 93
635559ab 94 if (forwarder_block_p (bb))
2dd2d53e 95 bb->flags |= BB_FORWARDER_BLOCK;
635559ab
JH
96}
97
98/* Recompute forwarder flag after block has been modified. */
99
100static void
d329e058 101update_forwarder_flag (basic_block bb)
635559ab
JH
102{
103 if (forwarder_block_p (bb))
2dd2d53e 104 bb->flags |= BB_FORWARDER_BLOCK;
635559ab 105 else
2dd2d53e 106 bb->flags &= ~BB_FORWARDER_BLOCK;
635559ab 107}
402209ff
JH
108\f
109/* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
111
112static bool
d329e058 113try_simplify_condjump (basic_block cbranch_block)
402209ff
JH
114{
115 basic_block jump_block, jump_dest_block, cbranch_dest_block;
116 edge cbranch_jump_edge, cbranch_fallthru_edge;
da5477a9 117 rtx_insn *cbranch_insn;
402209ff
JH
118
119 /* Verify that there are exactly two successors. */
628f6a4e 120 if (EDGE_COUNT (cbranch_block->succs) != 2)
402209ff
JH
121 return false;
122
123 /* Verify that we've got a normal conditional branch at the end
124 of the block. */
a813c111 125 cbranch_insn = BB_END (cbranch_block);
402209ff
JH
126 if (!any_condjump_p (cbranch_insn))
127 return false;
128
129 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
130 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
131
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block = cbranch_fallthru_edge->dest;
c5cbcccf 136 if (!single_pred_p (jump_block)
fefa31b5 137 || jump_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
635559ab 138 || !FORWARDER_BLOCK_P (jump_block))
402209ff 139 return false;
c5cbcccf 140 jump_dest_block = single_succ (jump_block);
402209ff 141
750054a2
CT
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
c22cacf3 144 and cold sections.
8e8d5162
CT
145
146 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
8e8d5162 150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
750054a2 151
87c8b4be
CT
152 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
153 || (cbranch_jump_edge->flags & EDGE_CROSSING))
750054a2
CT
154 return false;
155
402209ff
JH
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block = cbranch_jump_edge->dest;
159
fefa31b5 160 if (cbranch_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
1a8fb012 161 || jump_dest_block == EXIT_BLOCK_PTR_FOR_FN (cfun)
2f52c531 162 || !can_fallthru (jump_block, cbranch_dest_block))
402209ff
JH
163 return false;
164
ca6c03ca 165 /* Invert the conditional branch. */
1476d1bd
MM
166 if (!invert_jump (as_a <rtx_jump_insn *> (cbranch_insn),
167 block_label (jump_dest_block), 0))
ca6c03ca 168 return false;
402209ff 169
c263766c
RH
170 if (dump_file)
171 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
a813c111 172 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
402209ff
JH
173
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
178 cbranch_dest_block);
179 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
180 jump_dest_block);
181 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
182 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
b446e5a2 183 update_br_prob_note (cbranch_block);
402209ff
JH
184
185 /* Delete the block with the unconditional jump, and clean up the mess. */
f470c378
ZD
186 delete_basic_block (jump_block);
187 tidy_fallthru_edge (cbranch_jump_edge);
261139ce 188 update_forwarder_flag (cbranch_block);
402209ff
JH
189
190 return true;
191}
192\f
8ecba28a
JH
193/* Attempt to prove that operation is NOOP using CSElib or mark the effect
194 on register. Used by jump threading. */
5f0d2358 195
8ecba28a 196static bool
d329e058 197mark_effect (rtx exp, regset nonequal)
8ecba28a 198{
9f16e871 199 rtx dest;
8ecba28a
JH
200 switch (GET_CODE (exp))
201 {
202 /* In case we do clobber the register, mark it as equal, as we know the
c22cacf3 203 value is dead so it don't have to match. */
f87c27b4 204 case CLOBBER:
07a737f3
RS
205 dest = XEXP (exp, 0);
206 if (REG_P (dest))
207 bitmap_clear_range (nonequal, REGNO (dest), REG_NREGS (dest));
f87c27b4 208 return false;
5f0d2358 209
f87c27b4
KH
210 case SET:
211 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
8ecba28a 212 return false;
f87c27b4
KH
213 dest = SET_DEST (exp);
214 if (dest == pc_rtx)
8ecba28a 215 return false;
f87c27b4
KH
216 if (!REG_P (dest))
217 return true;
07a737f3 218 bitmap_set_range (nonequal, REGNO (dest), REG_NREGS (dest));
f87c27b4
KH
219 return false;
220
221 default:
222 return false;
8ecba28a
JH
223 }
224}
fe477d8b 225
a2250fe9
RS
226/* Return true if X contains a register in NONEQUAL. */
227static bool
228mentions_nonequal_regs (const_rtx x, regset nonequal)
fe477d8b 229{
a2250fe9
RS
230 subrtx_iterator::array_type array;
231 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
fe477d8b 232 {
a2250fe9
RS
233 const_rtx x = *iter;
234 if (REG_P (x))
fe477d8b 235 {
53d1bae9
RS
236 unsigned int end_regno = END_REGNO (x);
237 for (unsigned int regno = REGNO (x); regno < end_regno; ++regno)
238 if (REGNO_REG_SET_P (nonequal, regno))
239 return true;
fe477d8b
JH
240 }
241 }
a2250fe9 242 return false;
fe477d8b 243}
a2250fe9 244
8ecba28a 245/* Attempt to prove that the basic block B will have no side effects and
95bd1dd7 246 always continues in the same edge if reached via E. Return the edge
8ecba28a
JH
247 if exist, NULL otherwise. */
248
249static edge
6fb5fa3c 250thread_jump (edge e, basic_block b)
8ecba28a 251{
da5477a9
DM
252 rtx set1, set2, cond1, cond2;
253 rtx_insn *insn;
8ecba28a
JH
254 enum rtx_code code1, code2, reversed_code2;
255 bool reverse1 = false;
3cd8c58a 256 unsigned i;
8ecba28a
JH
257 regset nonequal;
258 bool failed = false;
a2041967 259 reg_set_iterator rsi;
8ecba28a 260
216779db
IL
261 /* Jump threading may cause fixup_partitions to introduce new crossing edges,
262 which is not allowed after reload. */
263 gcc_checking_assert (!reload_completed || !crtl->has_bb_partition);
264
2dd2d53e 265 if (b->flags & BB_NONTHREADABLE_BLOCK)
1540f9eb
JH
266 return NULL;
267
8ecba28a
JH
268 /* At the moment, we do handle only conditional jumps, but later we may
269 want to extend this code to tablejumps and others. */
628f6a4e 270 if (EDGE_COUNT (e->src->succs) != 2)
8ecba28a 271 return NULL;
628f6a4e 272 if (EDGE_COUNT (b->succs) != 2)
1540f9eb 273 {
2dd2d53e 274 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
275 return NULL;
276 }
8ecba28a
JH
277
278 /* Second branch must end with onlyjump, as we will eliminate the jump. */
a813c111 279 if (!any_condjump_p (BB_END (e->src)))
8ecba28a 280 return NULL;
f87c27b4 281
a813c111 282 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
1540f9eb 283 {
2dd2d53e 284 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
285 return NULL;
286 }
8ecba28a 287
a813c111
SB
288 set1 = pc_set (BB_END (e->src));
289 set2 = pc_set (BB_END (b));
8ecba28a 290 if (((e->flags & EDGE_FALLTHRU) != 0)
68f3f6f1 291 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
8ecba28a
JH
292 reverse1 = true;
293
294 cond1 = XEXP (SET_SRC (set1), 0);
295 cond2 = XEXP (SET_SRC (set2), 0);
296 if (reverse1)
a813c111 297 code1 = reversed_comparison_code (cond1, BB_END (e->src));
8ecba28a
JH
298 else
299 code1 = GET_CODE (cond1);
300
301 code2 = GET_CODE (cond2);
a813c111 302 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
8ecba28a
JH
303
304 if (!comparison_dominates_p (code1, code2)
305 && !comparison_dominates_p (code1, reversed_code2))
306 return NULL;
307
308 /* Ensure that the comparison operators are equivalent.
95bd1dd7 309 ??? This is far too pessimistic. We should allow swapped operands,
8ecba28a
JH
310 different CCmodes, or for example comparisons for interval, that
311 dominate even when operands are not equivalent. */
312 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
313 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
314 return NULL;
315
23c64481
JJ
316 /* Punt if BB_END (e->src) is doloop-like conditional jump that modifies
317 the registers used in cond1. */
318 if (modified_in_p (cond1, BB_END (e->src)))
319 return NULL;
320
8ecba28a
JH
321 /* Short circuit cases where block B contains some side effects, as we can't
322 safely bypass it. */
a813c111 323 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
8ecba28a
JH
324 insn = NEXT_INSN (insn))
325 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
1540f9eb 326 {
2dd2d53e 327 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
328 return NULL;
329 }
8ecba28a 330
457eeaae 331 cselib_init (0);
8ecba28a
JH
332
333 /* First process all values computed in the source basic block. */
3cd8c58a
NS
334 for (insn = NEXT_INSN (BB_HEAD (e->src));
335 insn != NEXT_INSN (BB_END (e->src));
8ecba28a
JH
336 insn = NEXT_INSN (insn))
337 if (INSN_P (insn))
338 cselib_process_insn (insn);
339
8bdbfff5 340 nonequal = BITMAP_ALLOC (NULL);
8ecba28a 341 CLEAR_REG_SET (nonequal);
5f0d2358 342
8ecba28a
JH
343 /* Now assume that we've continued by the edge E to B and continue
344 processing as if it were same basic block.
8ecba28a 345 Our goal is to prove that whole block is an NOOP. */
5f0d2358 346
3cd8c58a
NS
347 for (insn = NEXT_INSN (BB_HEAD (b));
348 insn != NEXT_INSN (BB_END (b)) && !failed;
8ecba28a 349 insn = NEXT_INSN (insn))
f87c27b4 350 {
becba8a7
JJ
351 /* cond2 must not mention any register that is not equal to the
352 former block. Check this before processing that instruction,
353 as BB_END (b) could contain also clobbers. */
354 if (insn == BB_END (b)
355 && mentions_nonequal_regs (cond2, nonequal))
356 goto failed_exit;
357
f87c27b4
KH
358 if (INSN_P (insn))
359 {
360 rtx pat = PATTERN (insn);
361
362 if (GET_CODE (pat) == PARALLEL)
363 {
3cd8c58a 364 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
f87c27b4
KH
365 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
366 }
367 else
368 failed |= mark_effect (pat, nonequal);
369 }
5f0d2358 370
f87c27b4
KH
371 cselib_process_insn (insn);
372 }
8ecba28a
JH
373
374 /* Later we should clear nonequal of dead registers. So far we don't
375 have life information in cfg_cleanup. */
376 if (failed)
1540f9eb 377 {
2dd2d53e 378 b->flags |= BB_NONTHREADABLE_BLOCK;
1540f9eb
JH
379 goto failed_exit;
380 }
8ecba28a 381
a2041967
KH
382 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
383 goto failed_exit;
8ecba28a 384
8bdbfff5 385 BITMAP_FREE (nonequal);
8ecba28a
JH
386 cselib_finish ();
387 if ((comparison_dominates_p (code1, code2) != 0)
4deaa2f8 388 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
8ecba28a
JH
389 return BRANCH_EDGE (b);
390 else
391 return FALLTHRU_EDGE (b);
392
393failed_exit:
8bdbfff5 394 BITMAP_FREE (nonequal);
8ecba28a
JH
395 cselib_finish ();
396 return NULL;
397}
398\f
402209ff 399/* Attempt to forward edges leaving basic block B.
eaec9b3d 400 Return true if successful. */
402209ff
JH
401
402static bool
d329e058 403try_forward_edges (int mode, basic_block b)
402209ff
JH
404{
405 bool changed = false;
628f6a4e
BE
406 edge_iterator ei;
407 edge e, *threaded_edges = NULL;
402209ff 408
628f6a4e 409 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
402209ff
JH
410 {
411 basic_block target, first;
8a829274
EB
412 location_t goto_locus;
413 int counter;
8ecba28a 414 bool threaded = false;
bcb3bc6d 415 int nthreaded_edges = 0;
4ec5d4f5 416 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
687d5dfe 417 bool new_target_threaded = false;
402209ff 418
402209ff
JH
419 /* Skip complex edges because we don't know how to update them.
420
c22cacf3
MS
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
402209ff 424 if (e->flags & EDGE_COMPLEX)
628f6a4e
BE
425 {
426 ei_next (&ei);
427 continue;
428 }
402209ff
JH
429
430 target = first = e->dest;
24bd1a0b 431 counter = NUM_FIXED_BLOCKS;
7241571e 432 goto_locus = e->goto_locus;
402209ff 433
0cae8d31 434 while (counter < n_basic_blocks_for_fn (cfun))
402209ff 435 {
8ecba28a 436 basic_block new_target = NULL;
4ec5d4f5 437 may_thread |= (target->flags & BB_MODIFIED) != 0;
8ecba28a
JH
438
439 if (FORWARDER_BLOCK_P (target)
fefa31b5 440 && single_succ (target) != EXIT_BLOCK_PTR_FOR_FN (cfun))
8ecba28a
JH
441 {
442 /* Bypass trivial infinite loops. */
c5cbcccf
ZD
443 new_target = single_succ (target);
444 if (target == new_target)
0cae8d31 445 counter = n_basic_blocks_for_fn (cfun);
7241571e
JJ
446 else if (!optimize)
447 {
448 /* When not optimizing, ensure that edges or forwarder
449 blocks with different locus are not optimized out. */
8a829274
EB
450 location_t new_locus = single_succ_edge (target)->goto_locus;
451 location_t locus = goto_locus;
7241571e 452
ffa4602f
EB
453 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
454 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
5368224f 455 && new_locus != locus)
50a36e42
EB
456 new_target = NULL;
457 else
7241571e 458 {
ffa4602f 459 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
50a36e42 460 locus = new_locus;
7241571e 461
da5477a9 462 rtx_insn *last = BB_END (target);
11321111
AO
463 if (DEBUG_INSN_P (last))
464 last = prev_nondebug_insn (last);
ffa4602f
EB
465 if (last && INSN_P (last))
466 new_locus = INSN_LOCATION (last);
467 else
468 new_locus = UNKNOWN_LOCATION;
11321111 469
ffa4602f
EB
470 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus) != UNKNOWN_LOCATION
5368224f 472 && new_locus != locus)
50a36e42
EB
473 new_target = NULL;
474 else
475 {
ffa4602f 476 if (LOCATION_LOCUS (new_locus) != UNKNOWN_LOCATION)
50a36e42
EB
477 locus = new_locus;
478
479 goto_locus = locus;
480 }
7241571e
JJ
481 }
482 }
8ecba28a 483 }
5f0d2358 484
8ecba28a
JH
485 /* Allow to thread only over one edge at time to simplify updating
486 of probabilities. */
7cf240d5 487 else if ((mode & CLEANUP_THREADING) && may_thread)
8ecba28a 488 {
6fb5fa3c 489 edge t = thread_jump (e, target);
1c570418 490 if (t)
8ecba28a 491 {
bcb3bc6d 492 if (!threaded_edges)
0cae8d31
DM
493 threaded_edges = XNEWVEC (edge,
494 n_basic_blocks_for_fn (cfun));
3b3b1e32
RH
495 else
496 {
497 int i;
498
499 /* Detect an infinite loop across blocks not
500 including the start block. */
501 for (i = 0; i < nthreaded_edges; ++i)
502 if (threaded_edges[i] == t)
503 break;
504 if (i < nthreaded_edges)
b90e45ae 505 {
0cae8d31 506 counter = n_basic_blocks_for_fn (cfun);
b90e45ae
JH
507 break;
508 }
3b3b1e32
RH
509 }
510
511 /* Detect an infinite loop across the start block. */
512 if (t->dest == b)
513 break;
514
0cae8d31
DM
515 gcc_assert (nthreaded_edges
516 < (n_basic_blocks_for_fn (cfun)
517 - NUM_FIXED_BLOCKS));
1c570418 518 threaded_edges[nthreaded_edges++] = t;
3b3b1e32
RH
519
520 new_target = t->dest;
521 new_target_threaded = true;
8ecba28a
JH
522 }
523 }
5f0d2358 524
8ecba28a
JH
525 if (!new_target)
526 break;
402209ff 527
8ecba28a 528 counter++;
687d5dfe
JH
529 /* Do not turn non-crossing jump to crossing. Depending on target
530 it may require different instruction pattern. */
531 if ((e->flags & EDGE_CROSSING)
532 || BB_PARTITION (first) == BB_PARTITION (new_target))
533 {
534 target = new_target;
535 threaded |= new_target_threaded;
536 }
f87c27b4 537 }
402209ff 538
0cae8d31 539 if (counter >= n_basic_blocks_for_fn (cfun))
402209ff 540 {
c263766c
RH
541 if (dump_file)
542 fprintf (dump_file, "Infinite loop in BB %i.\n",
0b17ab2f 543 target->index);
402209ff
JH
544 }
545 else if (target == first)
546 ; /* We didn't do anything. */
547 else
548 {
549 /* Save the values now, as the edge may get removed. */
ef30ab83 550 profile_count edge_count = e->count ();
1c570418 551 int n = 0;
402209ff 552
7241571e
JJ
553 e->goto_locus = goto_locus;
554
6ee3c8e4 555 /* Don't force if target is exit block. */
fefa31b5 556 if (threaded && target != EXIT_BLOCK_PTR_FOR_FN (cfun))
402209ff 557 {
8ecba28a 558 notice_new_block (redirect_edge_and_branch_force (e, target));
c263766c
RH
559 if (dump_file)
560 fprintf (dump_file, "Conditionals threaded.\n");
402209ff 561 }
8ecba28a 562 else if (!redirect_edge_and_branch (e, target))
402209ff 563 {
c263766c
RH
564 if (dump_file)
565 fprintf (dump_file,
5f0d2358 566 "Forwarding edge %i->%i to %i failed.\n",
0b17ab2f 567 b->index, e->dest->index, target->index);
628f6a4e 568 ei_next (&ei);
8ecba28a 569 continue;
402209ff 570 }
5f0d2358 571
8ecba28a
JH
572 /* We successfully forwarded the edge. Now update profile
573 data: for each edge we traversed in the chain, remove
574 the original edge's execution count. */
8ecba28a
JH
575 do
576 {
577 edge t;
5f0d2358 578
c5cbcccf 579 if (!single_succ_p (first))
3b3b1e32 580 {
341c100f 581 gcc_assert (n < nthreaded_edges);
3b3b1e32 582 t = threaded_edges [n++];
341c100f 583 gcc_assert (t->src == first);
e7a74006 584 update_bb_profile_for_threading (first, edge_count, t);
b446e5a2 585 update_br_prob_note (first);
3b3b1e32 586 }
8ecba28a 587 else
bcb3bc6d 588 {
15db5571 589 first->count -= edge_count;
bcb3bc6d
JH
590 /* It is possible that as the result of
591 threading we've removed edge as it is
592 threaded to the fallthru edge. Avoid
593 getting out of sync. */
594 if (n < nthreaded_edges
595 && first == threaded_edges [n]->src)
596 n++;
c5cbcccf 597 t = single_succ_edge (first);
f87c27b4 598 }
5f0d2358 599
8ecba28a
JH
600 first = t->dest;
601 }
602 while (first != target);
603
604 changed = true;
628f6a4e 605 continue;
402209ff 606 }
628f6a4e 607 ei_next (&ei);
402209ff
JH
608 }
609
04695783 610 free (threaded_edges);
402209ff
JH
611 return changed;
612}
613\f
402209ff
JH
614
615/* Blocks A and B are to be merged into a single block. A has no incoming
616 fallthru edge, so it can be moved before B without adding or modifying
617 any jumps (aside from the jump from A to B). */
618
4262e623 619static void
d329e058 620merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
402209ff 621{
da5477a9 622 rtx_insn *barrier;
402209ff 623
750054a2
CT
624 /* If we are partitioning hot/cold basic blocks, we don't want to
625 mess up unconditional or indirect jumps that cross between hot
8e8d5162 626 and cold sections.
c22cacf3 627
8e8d5162 628 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
629 be optimizable (or blocks that appear to be mergeable), but which really
630 must be left untouched (they are required to make it safely across
631 partition boundaries). See the comments at the top of
8e8d5162
CT
632 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
633
87c8b4be 634 if (BB_PARTITION (a) != BB_PARTITION (b))
750054a2
CT
635 return;
636
a813c111 637 barrier = next_nonnote_insn (BB_END (a));
341c100f 638 gcc_assert (BARRIER_P (barrier));
53c17031 639 delete_insn (barrier);
402209ff 640
402209ff 641 /* Scramble the insn chain. */
a813c111
SB
642 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
643 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
6fb5fa3c 644 df_set_bb_dirty (a);
402209ff 645
c263766c
RH
646 if (dump_file)
647 fprintf (dump_file, "Moved block %d before %d and merged.\n",
0b17ab2f 648 a->index, b->index);
402209ff 649
bf77398c 650 /* Swap the records for the two blocks around. */
402209ff 651
918ed612
ZD
652 unlink_block (a);
653 link_block (a, b->prev_bb);
654
402209ff 655 /* Now blocks A and B are contiguous. Merge them. */
bc35512f 656 merge_blocks (a, b);
402209ff
JH
657}
658
659/* Blocks A and B are to be merged into a single block. B has no outgoing
660 fallthru edge, so it can be moved after A without adding or modifying
661 any jumps (aside from the jump from A to B). */
662
4262e623 663static void
d329e058 664merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
402209ff 665{
da5477a9 666 rtx_insn *barrier, *real_b_end;
dfe08bc4 667 rtx_insn *label;
8942ee0f 668 rtx_jump_table_data *table;
402209ff 669
750054a2
CT
670 /* If we are partitioning hot/cold basic blocks, we don't want to
671 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
672 and cold sections.
673
8e8d5162 674 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
675 be optimizable (or blocks that appear to be mergeable), but which really
676 must be left untouched (they are required to make it safely across
677 partition boundaries). See the comments at the top of
8e8d5162
CT
678 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
679
87c8b4be 680 if (BB_PARTITION (a) != BB_PARTITION (b))
750054a2
CT
681 return;
682
a813c111 683 real_b_end = BB_END (b);
402209ff 684
ee735eef
JZ
685 /* If there is a jump table following block B temporarily add the jump table
686 to block B so that it will also be moved to the correct location. */
a813c111 687 if (tablejump_p (BB_END (b), &label, &table)
dfe08bc4 688 && prev_active_insn (label) == BB_END (b))
402209ff 689 {
1130d5e3 690 BB_END (b) = table;
402209ff
JH
691 }
692
693 /* There had better have been a barrier there. Delete it. */
a813c111 694 barrier = NEXT_INSN (BB_END (b));
4b4bf941 695 if (barrier && BARRIER_P (barrier))
53c17031 696 delete_insn (barrier);
402209ff 697
402209ff
JH
698
699 /* Scramble the insn chain. */
a813c111 700 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
402209ff 701
f62ce55b 702 /* Restore the real end of b. */
1130d5e3 703 BB_END (b) = real_b_end;
f62ce55b 704
c263766c
RH
705 if (dump_file)
706 fprintf (dump_file, "Moved block %d after %d and merged.\n",
0b17ab2f 707 b->index, a->index);
2150ad33
RH
708
709 /* Now blocks A and B are contiguous. Merge them. */
bc35512f 710 merge_blocks (a, b);
402209ff
JH
711}
712
713/* Attempt to merge basic blocks that are potentially non-adjacent.
ec3ae3da
JH
714 Return NULL iff the attempt failed, otherwise return basic block
715 where cleanup_cfg should continue. Because the merging commonly
716 moves basic block away or introduces another optimization
e0bb17a8 717 possibility, return basic block just before B so cleanup_cfg don't
ec3ae3da
JH
718 need to iterate.
719
720 It may be good idea to return basic block before C in the case
721 C has been moved after B and originally appeared earlier in the
4d6922ee 722 insn sequence, but we have no information available about the
ec3ae3da
JH
723 relative ordering of these two. Hopefully it is not too common. */
724
725static basic_block
bc35512f 726merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
402209ff 727{
ec3ae3da 728 basic_block next;
402209ff 729
750054a2
CT
730 /* If we are partitioning hot/cold basic blocks, we don't want to
731 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
732 and cold sections.
733
8e8d5162 734 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
735 be optimizable (or blocks that appear to be mergeable), but which really
736 must be left untouched (they are required to make it safely across
737 partition boundaries). See the comments at the top of
8e8d5162
CT
738 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
739
87c8b4be 740 if (BB_PARTITION (b) != BB_PARTITION (c))
750054a2 741 return NULL;
c22cacf3 742
402209ff
JH
743 /* If B has a fallthru edge to C, no need to move anything. */
744 if (e->flags & EDGE_FALLTHRU)
745 {
0b17ab2f 746 int b_index = b->index, c_index = c->index;
7d776ee2
RG
747
748 /* Protect the loop latches. */
749 if (current_loops && c->loop_father->latch == c)
750 return NULL;
751
bc35512f 752 merge_blocks (b, c);
635559ab 753 update_forwarder_flag (b);
402209ff 754
c263766c
RH
755 if (dump_file)
756 fprintf (dump_file, "Merged %d and %d without moving.\n",
f87c27b4 757 b_index, c_index);
402209ff 758
fefa31b5 759 return b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? b : b->prev_bb;
402209ff 760 }
5f0d2358 761
402209ff
JH
762 /* Otherwise we will need to move code around. Do that only if expensive
763 transformations are allowed. */
764 else if (mode & CLEANUP_EXPENSIVE)
765 {
4262e623
JH
766 edge tmp_edge, b_fallthru_edge;
767 bool c_has_outgoing_fallthru;
768 bool b_has_incoming_fallthru;
402209ff
JH
769
770 /* Avoid overactive code motion, as the forwarder blocks should be
c22cacf3 771 eliminated by edge redirection instead. One exception might have
402209ff
JH
772 been if B is a forwarder block and C has no fallthru edge, but
773 that should be cleaned up by bb-reorder instead. */
635559ab 774 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
ec3ae3da 775 return NULL;
402209ff
JH
776
777 /* We must make sure to not munge nesting of lexical blocks,
778 and loop notes. This is done by squeezing out all the notes
779 and leaving them there to lie. Not ideal, but functional. */
780
0fd4b31d 781 tmp_edge = find_fallthru_edge (c->succs);
402209ff 782 c_has_outgoing_fallthru = (tmp_edge != NULL);
402209ff 783
0fd4b31d 784 tmp_edge = find_fallthru_edge (b->preds);
402209ff 785 b_has_incoming_fallthru = (tmp_edge != NULL);
4262e623 786 b_fallthru_edge = tmp_edge;
ec3ae3da 787 next = b->prev_bb;
912b79e7
JH
788 if (next == c)
789 next = next->prev_bb;
4262e623
JH
790
791 /* Otherwise, we're going to try to move C after B. If C does
792 not have an outgoing fallthru, then it can be moved
793 immediately after B without introducing or modifying jumps. */
794 if (! c_has_outgoing_fallthru)
795 {
796 merge_blocks_move_successor_nojumps (b, c);
fefa31b5 797 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
4262e623 798 }
402209ff
JH
799
800 /* If B does not have an incoming fallthru, then it can be moved
801 immediately before C without introducing or modifying jumps.
802 C cannot be the first block, so we do not have to worry about
803 accessing a non-existent block. */
402209ff 804
4262e623
JH
805 if (b_has_incoming_fallthru)
806 {
473fb060 807 basic_block bb;
5f0d2358 808
fefa31b5 809 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
ec3ae3da 810 return NULL;
7dddfb65
JH
811 bb = force_nonfallthru (b_fallthru_edge);
812 if (bb)
813 notice_new_block (bb);
4262e623 814 }
5f0d2358 815
4262e623 816 merge_blocks_move_predecessor_nojumps (b, c);
fefa31b5 817 return next == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? next->next_bb : next;
402209ff 818 }
5f0d2358 819
10d6c0d0 820 return NULL;
402209ff
JH
821}
822\f
c2fc5456
R
823
824/* Removes the memory attributes of MEM expression
825 if they are not equal. */
826
893479de 827static void
c2fc5456
R
828merge_memattrs (rtx x, rtx y)
829{
830 int i;
831 int j;
832 enum rtx_code code;
833 const char *fmt;
834
835 if (x == y)
836 return;
837 if (x == 0 || y == 0)
838 return;
839
840 code = GET_CODE (x);
841
842 if (code != GET_CODE (y))
843 return;
844
845 if (GET_MODE (x) != GET_MODE (y))
846 return;
847
96b3c03f 848 if (code == MEM && !mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
c2fc5456
R
849 {
850 if (! MEM_ATTRS (x))
851 MEM_ATTRS (y) = 0;
852 else if (! MEM_ATTRS (y))
853 MEM_ATTRS (x) = 0;
c22cacf3 854 else
c2fc5456 855 {
c2fc5456
R
856 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
857 {
858 set_mem_alias_set (x, 0);
859 set_mem_alias_set (y, 0);
860 }
c22cacf3 861
c2fc5456
R
862 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
863 {
864 set_mem_expr (x, 0);
865 set_mem_expr (y, 0);
527210c4
RS
866 clear_mem_offset (x);
867 clear_mem_offset (y);
c2fc5456 868 }
527210c4
RS
869 else if (MEM_OFFSET_KNOWN_P (x) != MEM_OFFSET_KNOWN_P (y)
870 || (MEM_OFFSET_KNOWN_P (x)
d05d7551 871 && maybe_ne (MEM_OFFSET (x), MEM_OFFSET (y))))
c2fc5456 872 {
527210c4
RS
873 clear_mem_offset (x);
874 clear_mem_offset (y);
c2fc5456 875 }
c22cacf3 876
d05d7551
RS
877 if (!MEM_SIZE_KNOWN_P (x))
878 clear_mem_size (y);
879 else if (!MEM_SIZE_KNOWN_P (y))
880 clear_mem_size (x);
881 else if (known_le (MEM_SIZE (x), MEM_SIZE (y)))
882 set_mem_size (x, MEM_SIZE (y));
883 else if (known_le (MEM_SIZE (y), MEM_SIZE (x)))
884 set_mem_size (y, MEM_SIZE (x));
c2fc5456 885 else
f5541398 886 {
d05d7551 887 /* The sizes aren't ordered, so we can't merge them. */
f5541398
RS
888 clear_mem_size (x);
889 clear_mem_size (y);
890 }
c2fc5456
R
891
892 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
893 set_mem_align (y, MEM_ALIGN (x));
894 }
895 }
84cf4ab6
JJ
896 if (code == MEM)
897 {
898 if (MEM_READONLY_P (x) != MEM_READONLY_P (y))
899 {
900 MEM_READONLY_P (x) = 0;
901 MEM_READONLY_P (y) = 0;
902 }
903 if (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y))
904 {
905 MEM_NOTRAP_P (x) = 0;
906 MEM_NOTRAP_P (y) = 0;
907 }
908 if (MEM_VOLATILE_P (x) != MEM_VOLATILE_P (y))
909 {
910 MEM_VOLATILE_P (x) = 1;
911 MEM_VOLATILE_P (y) = 1;
912 }
913 }
c22cacf3 914
c2fc5456
R
915 fmt = GET_RTX_FORMAT (code);
916 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
917 {
918 switch (fmt[i])
919 {
920 case 'E':
921 /* Two vectors must have the same length. */
922 if (XVECLEN (x, i) != XVECLEN (y, i))
923 return;
924
925 for (j = 0; j < XVECLEN (x, i); j++)
926 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
927
928 break;
929
930 case 'e':
931 merge_memattrs (XEXP (x, i), XEXP (y, i));
932 }
933 }
934 return;
935}
936
937
472c95f5
TV
938 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
939 different single sets S1 and S2. */
c2fc5456
R
940
941static bool
472c95f5
TV
942equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
943{
944 int i;
945 rtx e1, e2;
946
947 if (p1 == s1 && p2 == s2)
948 return true;
949
950 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
951 return false;
952
953 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
954 return false;
955
956 for (i = 0; i < XVECLEN (p1, 0); i++)
957 {
958 e1 = XVECEXP (p1, 0, i);
959 e2 = XVECEXP (p2, 0, i);
960 if (e1 == s1 && e2 == s2)
961 continue;
962 if (reload_completed
963 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
964 continue;
965
21c0a521 966 return false;
472c95f5
TV
967 }
968
969 return true;
970}
971
3e87f2d6
SC
972
973/* NOTE1 is the REG_EQUAL note, if any, attached to an insn
974 that is a single_set with a SET_SRC of SRC1. Similarly
975 for NOTE2/SRC2.
976
977 So effectively NOTE1/NOTE2 are an alternate form of
978 SRC1/SRC2 respectively.
979
980 Return nonzero if SRC1 or NOTE1 has the same constant
981 integer value as SRC2 or NOTE2. Else return zero. */
982static int
983values_equal_p (rtx note1, rtx note2, rtx src1, rtx src2)
984{
985 if (note1
986 && note2
987 && CONST_INT_P (XEXP (note1, 0))
988 && rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0)))
989 return 1;
990
991 if (!note1
992 && !note2
993 && CONST_INT_P (src1)
994 && CONST_INT_P (src2)
995 && rtx_equal_p (src1, src2))
996 return 1;
997
998 if (note1
999 && CONST_INT_P (src2)
1000 && rtx_equal_p (XEXP (note1, 0), src2))
1001 return 1;
1002
1003 if (note2
1004 && CONST_INT_P (src1)
1005 && rtx_equal_p (XEXP (note2, 0), src1))
1006 return 1;
1007
1008 return 0;
1009}
1010
472c95f5
TV
1011/* Examine register notes on I1 and I2 and return:
1012 - dir_forward if I1 can be replaced by I2, or
1013 - dir_backward if I2 can be replaced by I1, or
1014 - dir_both if both are the case. */
1015
1016static enum replace_direction
da5477a9 1017can_replace_by (rtx_insn *i1, rtx_insn *i2)
472c95f5
TV
1018{
1019 rtx s1, s2, d1, d2, src1, src2, note1, note2;
1020 bool c1, c2;
1021
1022 /* Check for 2 sets. */
1023 s1 = single_set (i1);
1024 s2 = single_set (i2);
1025 if (s1 == NULL_RTX || s2 == NULL_RTX)
1026 return dir_none;
1027
1028 /* Check that the 2 sets set the same dest. */
1029 d1 = SET_DEST (s1);
1030 d2 = SET_DEST (s2);
1031 if (!(reload_completed
1032 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1033 return dir_none;
1034
1035 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1036 set dest to the same value. */
1037 note1 = find_reg_equal_equiv_note (i1);
1038 note2 = find_reg_equal_equiv_note (i2);
3e87f2d6
SC
1039
1040 src1 = SET_SRC (s1);
1041 src2 = SET_SRC (s2);
1042
1043 if (!values_equal_p (note1, note2, src1, src2))
472c95f5
TV
1044 return dir_none;
1045
1046 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1047 return dir_none;
1048
1049 /* Although the 2 sets set dest to the same value, we cannot replace
1050 (set (dest) (const_int))
1051 by
1052 (set (dest) (reg))
1053 because we don't know if the reg is live and has the same value at the
1054 location of replacement. */
472c95f5
TV
1055 c1 = CONST_INT_P (src1);
1056 c2 = CONST_INT_P (src2);
1057 if (c1 && c2)
1058 return dir_both;
1059 else if (c2)
1060 return dir_forward;
1061 else if (c1)
1062 return dir_backward;
1063
1064 return dir_none;
1065}
1066
1067/* Merges directions A and B. */
1068
1069static enum replace_direction
1070merge_dir (enum replace_direction a, enum replace_direction b)
1071{
1072 /* Implements the following table:
1073 |bo fw bw no
1074 ---+-----------
1075 bo |bo fw bw no
1076 fw |-- fw no no
1077 bw |-- -- bw no
1078 no |-- -- -- no. */
1079
1080 if (a == b)
1081 return a;
1082
1083 if (a == dir_both)
1084 return b;
1085 if (b == dir_both)
1086 return a;
1087
1088 return dir_none;
1089}
1090
aade772d
JJ
1091/* Array of flags indexed by reg note kind, true if the given
1092 reg note is CFA related. */
1093static const bool reg_note_cfa_p[] = {
1094#undef REG_CFA_NOTE
1095#define DEF_REG_NOTE(NAME) false,
1096#define REG_CFA_NOTE(NAME) true,
1097#include "reg-notes.def"
1098#undef REG_CFA_NOTE
1099#undef DEF_REG_NOTE
1100 false
1101};
1102
1103/* Return true if I1 and I2 have identical CFA notes (the same order
1104 and equivalent content). */
1105
1106static bool
1107insns_have_identical_cfa_notes (rtx_insn *i1, rtx_insn *i2)
1108{
1109 rtx n1, n2;
1110 for (n1 = REG_NOTES (i1), n2 = REG_NOTES (i2); ;
1111 n1 = XEXP (n1, 1), n2 = XEXP (n2, 1))
1112 {
1113 /* Skip over reg notes not related to CFI information. */
1114 while (n1 && !reg_note_cfa_p[REG_NOTE_KIND (n1)])
1115 n1 = XEXP (n1, 1);
1116 while (n2 && !reg_note_cfa_p[REG_NOTE_KIND (n2)])
1117 n2 = XEXP (n2, 1);
1118 if (n1 == NULL_RTX && n2 == NULL_RTX)
1119 return true;
1120 if (n1 == NULL_RTX || n2 == NULL_RTX)
1121 return false;
1122 if (XEXP (n1, 0) == XEXP (n2, 0))
1123 ;
1124 else if (XEXP (n1, 0) == NULL_RTX || XEXP (n2, 0) == NULL_RTX)
1125 return false;
1126 else if (!(reload_completed
1127 ? rtx_renumbered_equal_p (XEXP (n1, 0), XEXP (n2, 0))
1128 : rtx_equal_p (XEXP (n1, 0), XEXP (n2, 0))))
1129 return false;
1130 }
1131}
1132
472c95f5
TV
1133/* Examine I1 and I2 and return:
1134 - dir_forward if I1 can be replaced by I2, or
1135 - dir_backward if I2 can be replaced by I1, or
1136 - dir_both if both are the case. */
1137
1138static enum replace_direction
da5477a9 1139old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx_insn *i1, rtx_insn *i2)
c2fc5456
R
1140{
1141 rtx p1, p2;
1142
1143 /* Verify that I1 and I2 are equivalent. */
1144 if (GET_CODE (i1) != GET_CODE (i2))
472c95f5 1145 return dir_none;
c2fc5456 1146
ba21aba3
DD
1147 /* __builtin_unreachable() may lead to empty blocks (ending with
1148 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1149 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
472c95f5 1150 return dir_both;
ba21aba3 1151
9a08d230
RH
1152 /* ??? Do not allow cross-jumping between different stack levels. */
1153 p1 = find_reg_note (i1, REG_ARGS_SIZE, NULL);
1154 p2 = find_reg_note (i2, REG_ARGS_SIZE, NULL);
42aa5124
RH
1155 if (p1 && p2)
1156 {
1157 p1 = XEXP (p1, 0);
1158 p2 = XEXP (p2, 0);
1159 if (!rtx_equal_p (p1, p2))
1160 return dir_none;
1161
1162 /* ??? Worse, this adjustment had better be constant lest we
1163 have differing incoming stack levels. */
1164 if (!frame_pointer_needed
68184180 1165 && known_eq (find_args_size_adjust (i1), HOST_WIDE_INT_MIN))
42aa5124
RH
1166 return dir_none;
1167 }
1168 else if (p1 || p2)
9a08d230
RH
1169 return dir_none;
1170
aade772d
JJ
1171 /* Do not allow cross-jumping between frame related insns and other
1172 insns. */
1173 if (RTX_FRAME_RELATED_P (i1) != RTX_FRAME_RELATED_P (i2))
1174 return dir_none;
1175
7752e522 1176 p1 = PATTERN (i1);
c2fc5456
R
1177 p2 = PATTERN (i2);
1178
1179 if (GET_CODE (p1) != GET_CODE (p2))
472c95f5 1180 return dir_none;
c2fc5456
R
1181
1182 /* If this is a CALL_INSN, compare register usage information.
1183 If we don't check this on stack register machines, the two
1184 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1185 numbers of stack registers in the same basic block.
1186 If we don't check this on machines with delay slots, a delay slot may
1187 be filled that clobbers a parameter expected by the subroutine.
1188
1189 ??? We take the simple route for now and assume that if they're
31ce8a53 1190 equal, they were constructed identically.
c2fc5456 1191
31ce8a53
BS
1192 Also check for identical exception regions. */
1193
1194 if (CALL_P (i1))
1195 {
1196 /* Ensure the same EH region. */
1197 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1198 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1199
1200 if (!n1 && n2)
472c95f5 1201 return dir_none;
31ce8a53
BS
1202
1203 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
472c95f5 1204 return dir_none;
31ce8a53
BS
1205
1206 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
c22cacf3 1207 CALL_INSN_FUNCTION_USAGE (i2))
31ce8a53 1208 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
472c95f5 1209 return dir_none;
68a9738a
JJ
1210
1211 /* For address sanitizer, never crossjump __asan_report_* builtins,
1212 otherwise errors might be reported on incorrect lines. */
de5a5fa1 1213 if (flag_sanitize & SANITIZE_ADDRESS)
68a9738a
JJ
1214 {
1215 rtx call = get_call_rtx_from (i1);
1216 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
1217 {
1218 rtx symbol = XEXP (XEXP (call, 0), 0);
1219 if (SYMBOL_REF_DECL (symbol)
1220 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
1221 {
1222 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
1223 == BUILT_IN_NORMAL)
1224 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
1225 >= BUILT_IN_ASAN_REPORT_LOAD1
1226 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
8946c29e 1227 <= BUILT_IN_ASAN_STOREN)
68a9738a
JJ
1228 return dir_none;
1229 }
1230 }
1231 }
4b1a1d98 1232
01699686 1233 if (insn_callee_abi (i1) != insn_callee_abi (i2))
4b1a1d98 1234 return dir_none;
31ce8a53 1235 }
c2fc5456 1236
aade772d
JJ
1237 /* If both i1 and i2 are frame related, verify all the CFA notes
1238 in the same order and with the same content. */
1239 if (RTX_FRAME_RELATED_P (i1) && !insns_have_identical_cfa_notes (i1, i2))
1240 return dir_none;
1241
c2fc5456
R
1242#ifdef STACK_REGS
1243 /* If cross_jump_death_matters is not 0, the insn's mode
1244 indicates whether or not the insn contains any stack-like
1245 regs. */
1246
1247 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1248 {
1249 /* If register stack conversion has already been done, then
c22cacf3
MS
1250 death notes must also be compared before it is certain that
1251 the two instruction streams match. */
c2fc5456
R
1252
1253 rtx note;
1254 HARD_REG_SET i1_regset, i2_regset;
1255
1256 CLEAR_HARD_REG_SET (i1_regset);
1257 CLEAR_HARD_REG_SET (i2_regset);
1258
1259 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1260 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1261 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1262
1263 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1264 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1265 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1266
a8579651 1267 if (i1_regset != i2_regset)
472c95f5 1268 return dir_none;
c2fc5456
R
1269 }
1270#endif
1271
1272 if (reload_completed
1273 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
472c95f5 1274 return dir_both;
c2fc5456 1275
472c95f5 1276 return can_replace_by (i1, i2);
c2fc5456
R
1277}
1278\f
31ce8a53
BS
1279/* When comparing insns I1 and I2 in flow_find_cross_jump or
1280 flow_find_head_matching_sequence, ensure the notes match. */
1281
1282static void
da5477a9 1283merge_notes (rtx_insn *i1, rtx_insn *i2)
31ce8a53
BS
1284{
1285 /* If the merged insns have different REG_EQUAL notes, then
1286 remove them. */
1287 rtx equiv1 = find_reg_equal_equiv_note (i1);
1288 rtx equiv2 = find_reg_equal_equiv_note (i2);
1289
1290 if (equiv1 && !equiv2)
1291 remove_note (i1, equiv1);
1292 else if (!equiv1 && equiv2)
1293 remove_note (i2, equiv2);
1294 else if (equiv1 && equiv2
1295 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1296 {
1297 remove_note (i1, equiv1);
1298 remove_note (i2, equiv2);
1299 }
1300}
1301
823918ae
TV
1302 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1303 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1304 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1305 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1306 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1307
1308static void
da5477a9 1309walk_to_nondebug_insn (rtx_insn **i1, basic_block *bb1, bool follow_fallthru,
823918ae
TV
1310 bool *did_fallthru)
1311{
1312 edge fallthru;
1313
1314 *did_fallthru = false;
1315
1316 /* Ignore notes. */
1317 while (!NONDEBUG_INSN_P (*i1))
1318 {
1319 if (*i1 != BB_HEAD (*bb1))
1320 {
1321 *i1 = PREV_INSN (*i1);
1322 continue;
1323 }
1324
1325 if (!follow_fallthru)
1326 return;
1327
1328 fallthru = find_fallthru_edge ((*bb1)->preds);
fefa31b5 1329 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
823918ae
TV
1330 || !single_succ_p (fallthru->src))
1331 return;
1332
1333 *bb1 = fallthru->src;
1334 *i1 = BB_END (*bb1);
1335 *did_fallthru = true;
1336 }
1337}
1338
c2fc5456 1339/* Look through the insns at the end of BB1 and BB2 and find the longest
472c95f5
TV
1340 sequence that are either equivalent, or allow forward or backward
1341 replacement. Store the first insns for that sequence in *F1 and *F2 and
1342 return the sequence length.
1343
1344 DIR_P indicates the allowed replacement direction on function entry, and
1345 the actual replacement direction on function exit. If NULL, only equivalent
1346 sequences are allowed.
c2fc5456
R
1347
1348 To simplify callers of this function, if the blocks match exactly,
1349 store the head of the blocks in *F1 and *F2. */
1350
31ce8a53 1351int
da5477a9
DM
1352flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx_insn **f1,
1353 rtx_insn **f2, enum replace_direction *dir_p)
c2fc5456 1354{
da5477a9 1355 rtx_insn *i1, *i2, *last1, *last2, *afterlast1, *afterlast2;
c2fc5456 1356 int ninsns = 0;
472c95f5 1357 enum replace_direction dir, last_dir, afterlast_dir;
823918ae 1358 bool follow_fallthru, did_fallthru;
472c95f5
TV
1359
1360 if (dir_p)
1361 dir = *dir_p;
1362 else
1363 dir = dir_both;
1364 afterlast_dir = dir;
1365 last_dir = afterlast_dir;
c2fc5456
R
1366
1367 /* Skip simple jumps at the end of the blocks. Complex jumps still
1368 need to be compared for equivalence, which we'll do below. */
1369
1370 i1 = BB_END (bb1);
da5477a9 1371 last1 = afterlast1 = last2 = afterlast2 = NULL;
c2fc5456
R
1372 if (onlyjump_p (i1)
1373 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1374 {
1375 last1 = i1;
1376 i1 = PREV_INSN (i1);
1377 }
1378
1379 i2 = BB_END (bb2);
1380 if (onlyjump_p (i2)
1381 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1382 {
1383 last2 = i2;
a0cbe71e
JJ
1384 /* Count everything except for unconditional jump as insn.
1385 Don't count any jumps if dir_p is NULL. */
1386 if (!simplejump_p (i2) && !returnjump_p (i2) && last1 && dir_p)
c2fc5456
R
1387 ninsns++;
1388 i2 = PREV_INSN (i2);
1389 }
1390
1391 while (true)
1392 {
823918ae
TV
1393 /* In the following example, we can replace all jumps to C by jumps to A.
1394
1395 This removes 4 duplicate insns.
1396 [bb A] insn1 [bb C] insn1
1397 insn2 insn2
1398 [bb B] insn3 insn3
1399 insn4 insn4
1400 jump_insn jump_insn
1401
1402 We could also replace all jumps to A by jumps to C, but that leaves B
1403 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1404 step, all jumps to B would be replaced with jumps to the middle of C,
1405 achieving the same result with more effort.
1406 So we allow only the first possibility, which means that we don't allow
1407 fallthru in the block that's being replaced. */
1408
1409 follow_fallthru = dir_p && dir != dir_forward;
1410 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1411 if (did_fallthru)
1412 dir = dir_backward;
1413
1414 follow_fallthru = dir_p && dir != dir_backward;
1415 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1416 if (did_fallthru)
1417 dir = dir_forward;
c2fc5456
R
1418
1419 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1420 break;
1421
ba61fc53
JH
1422 /* Do not turn corssing edge to non-crossing or vice versa after
1423 reload. */
1424 if (BB_PARTITION (BLOCK_FOR_INSN (i1))
1425 != BB_PARTITION (BLOCK_FOR_INSN (i2))
1426 && reload_completed)
1427 break;
1428
472c95f5
TV
1429 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1430 if (dir == dir_none || (!dir_p && dir != dir_both))
c2fc5456
R
1431 break;
1432
1433 merge_memattrs (i1, i2);
1434
1435 /* Don't begin a cross-jump with a NOTE insn. */
1436 if (INSN_P (i1))
1437 {
31ce8a53 1438 merge_notes (i1, i2);
c2fc5456
R
1439
1440 afterlast1 = last1, afterlast2 = last2;
1441 last1 = i1, last2 = i2;
472c95f5
TV
1442 afterlast_dir = last_dir;
1443 last_dir = dir;
a0cbe71e 1444 if (active_insn_p (i1))
2a562b0a 1445 ninsns++;
c2fc5456
R
1446 }
1447
1448 i1 = PREV_INSN (i1);
1449 i2 = PREV_INSN (i2);
1450 }
1451
c2fc5456
R
1452 /* Include preceding notes and labels in the cross-jump. One,
1453 this may bring us to the head of the blocks as requested above.
1454 Two, it keeps line number notes as matched as may be. */
1455 if (ninsns)
1456 {
823918ae 1457 bb1 = BLOCK_FOR_INSN (last1);
b5b8b0ac 1458 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
c2fc5456
R
1459 last1 = PREV_INSN (last1);
1460
1461 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1462 last1 = PREV_INSN (last1);
1463
823918ae 1464 bb2 = BLOCK_FOR_INSN (last2);
b5b8b0ac 1465 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
c2fc5456
R
1466 last2 = PREV_INSN (last2);
1467
1468 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1469 last2 = PREV_INSN (last2);
1470
1471 *f1 = last1;
1472 *f2 = last2;
1473 }
1474
472c95f5
TV
1475 if (dir_p)
1476 *dir_p = last_dir;
c2fc5456
R
1477 return ninsns;
1478}
1479
31ce8a53
BS
1480/* Like flow_find_cross_jump, except start looking for a matching sequence from
1481 the head of the two blocks. Do not include jumps at the end.
1482 If STOP_AFTER is nonzero, stop after finding that many matching
b59e0455
JJ
1483 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1484 non-zero, only count active insns. */
31ce8a53
BS
1485
1486int
da5477a9
DM
1487flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx_insn **f1,
1488 rtx_insn **f2, int stop_after)
31ce8a53 1489{
da5477a9 1490 rtx_insn *i1, *i2, *last1, *last2, *beforelast1, *beforelast2;
31ce8a53
BS
1491 int ninsns = 0;
1492 edge e;
1493 edge_iterator ei;
1494 int nehedges1 = 0, nehedges2 = 0;
1495
1496 FOR_EACH_EDGE (e, ei, bb1->succs)
1497 if (e->flags & EDGE_EH)
1498 nehedges1++;
1499 FOR_EACH_EDGE (e, ei, bb2->succs)
1500 if (e->flags & EDGE_EH)
1501 nehedges2++;
1502
1503 i1 = BB_HEAD (bb1);
1504 i2 = BB_HEAD (bb2);
da5477a9 1505 last1 = beforelast1 = last2 = beforelast2 = NULL;
31ce8a53
BS
1506
1507 while (true)
1508 {
4ec5d4f5 1509 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
31ce8a53 1510 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
4ec5d4f5
BS
1511 {
1512 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1513 break;
1514 i1 = NEXT_INSN (i1);
1515 }
31ce8a53
BS
1516
1517 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
4ec5d4f5
BS
1518 {
1519 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1520 break;
1521 i2 = NEXT_INSN (i2);
1522 }
31ce8a53 1523
662592e1
BS
1524 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1525 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1526 break;
1527
31ce8a53
BS
1528 if (NOTE_P (i1) || NOTE_P (i2)
1529 || JUMP_P (i1) || JUMP_P (i2))
1530 break;
1531
1532 /* A sanity check to make sure we're not merging insns with different
1533 effects on EH. If only one of them ends a basic block, it shouldn't
1534 have an EH edge; if both end a basic block, there should be the same
1535 number of EH edges. */
1536 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1537 && nehedges1 > 0)
1538 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1539 && nehedges2 > 0)
1540 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1541 && nehedges1 != nehedges2))
1542 break;
1543
472c95f5 1544 if (old_insns_match_p (0, i1, i2) != dir_both)
31ce8a53
BS
1545 break;
1546
1547 merge_memattrs (i1, i2);
1548
1549 /* Don't begin a cross-jump with a NOTE insn. */
1550 if (INSN_P (i1))
1551 {
1552 merge_notes (i1, i2);
1553
1554 beforelast1 = last1, beforelast2 = last2;
1555 last1 = i1, last2 = i2;
b59e0455 1556 if (!stop_after || active_insn_p (i1))
a0cbe71e 1557 ninsns++;
31ce8a53
BS
1558 }
1559
1560 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1561 || (stop_after > 0 && ninsns == stop_after))
1562 break;
1563
1564 i1 = NEXT_INSN (i1);
1565 i2 = NEXT_INSN (i2);
1566 }
1567
31ce8a53
BS
1568 if (ninsns)
1569 {
1570 *f1 = last1;
1571 *f2 = last2;
1572 }
1573
1574 return ninsns;
1575}
1576
c2fc5456
R
1577/* Return true iff outgoing edges of BB1 and BB2 match, together with
1578 the branch instruction. This means that if we commonize the control
1579 flow before end of the basic block, the semantic remains unchanged.
402209ff
JH
1580
1581 We may assume that there exists one edge with a common destination. */
1582
1583static bool
c2fc5456 1584outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
402209ff 1585{
0dd0e980
JH
1586 int nehedges1 = 0, nehedges2 = 0;
1587 edge fallthru1 = 0, fallthru2 = 0;
1588 edge e1, e2;
628f6a4e 1589 edge_iterator ei;
0dd0e980 1590
6626665f 1591 /* If we performed shrink-wrapping, edges to the exit block can
484db665
BS
1592 only be distinguished for JUMP_INSNs. The two paths may differ in
1593 whether they went through the prologue. Sibcalls are fine, we know
1594 that we either didn't need or inserted an epilogue before them. */
1595 if (crtl->shrink_wrapped
fefa31b5
DM
1596 && single_succ_p (bb1)
1597 && single_succ (bb1) == EXIT_BLOCK_PTR_FOR_FN (cfun)
b532a785
JJ
1598 && (!JUMP_P (BB_END (bb1))
1599 /* Punt if the only successor is a fake edge to exit, the jump
1600 must be some weird one. */
1601 || (single_succ_edge (bb1)->flags & EDGE_FAKE) != 0)
484db665
BS
1602 && !(CALL_P (BB_END (bb1)) && SIBLING_CALL_P (BB_END (bb1))))
1603 return false;
b532a785 1604
c04cf67b
RH
1605 /* If BB1 has only one successor, we may be looking at either an
1606 unconditional jump, or a fake edge to exit. */
c5cbcccf
ZD
1607 if (single_succ_p (bb1)
1608 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
4b4bf941 1609 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
c5cbcccf
ZD
1610 return (single_succ_p (bb2)
1611 && (single_succ_edge (bb2)->flags
1612 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
4b4bf941 1613 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
402209ff
JH
1614
1615 /* Match conditional jumps - this may get tricky when fallthru and branch
1616 edges are crossed. */
628f6a4e 1617 if (EDGE_COUNT (bb1->succs) == 2
a813c111
SB
1618 && any_condjump_p (BB_END (bb1))
1619 && onlyjump_p (BB_END (bb1)))
402209ff 1620 {
c2fc5456
R
1621 edge b1, f1, b2, f2;
1622 bool reverse, match;
1623 rtx set1, set2, cond1, cond2;
1624 enum rtx_code code1, code2;
1625
628f6a4e 1626 if (EDGE_COUNT (bb2->succs) != 2
a813c111
SB
1627 || !any_condjump_p (BB_END (bb2))
1628 || !onlyjump_p (BB_END (bb2)))
0a2ed1f1 1629 return false;
c2fc5456
R
1630
1631 b1 = BRANCH_EDGE (bb1);
1632 b2 = BRANCH_EDGE (bb2);
1633 f1 = FALLTHRU_EDGE (bb1);
1634 f2 = FALLTHRU_EDGE (bb2);
1635
1636 /* Get around possible forwarders on fallthru edges. Other cases
c22cacf3 1637 should be optimized out already. */
c2fc5456
R
1638 if (FORWARDER_BLOCK_P (f1->dest))
1639 f1 = single_succ_edge (f1->dest);
1640
1641 if (FORWARDER_BLOCK_P (f2->dest))
1642 f2 = single_succ_edge (f2->dest);
1643
1644 /* To simplify use of this function, return false if there are
1645 unneeded forwarder blocks. These will get eliminated later
1646 during cleanup_cfg. */
1647 if (FORWARDER_BLOCK_P (f1->dest)
1648 || FORWARDER_BLOCK_P (f2->dest)
1649 || FORWARDER_BLOCK_P (b1->dest)
1650 || FORWARDER_BLOCK_P (b2->dest))
1651 return false;
1652
1653 if (f1->dest == f2->dest && b1->dest == b2->dest)
1654 reverse = false;
1655 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1656 reverse = true;
1657 else
1658 return false;
1659
1660 set1 = pc_set (BB_END (bb1));
1661 set2 = pc_set (BB_END (bb2));
1662 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1663 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1664 reverse = !reverse;
1665
1666 cond1 = XEXP (SET_SRC (set1), 0);
1667 cond2 = XEXP (SET_SRC (set2), 0);
1668 code1 = GET_CODE (cond1);
1669 if (reverse)
1670 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1671 else
1672 code2 = GET_CODE (cond2);
1673
1674 if (code2 == UNKNOWN)
1675 return false;
1676
1677 /* Verify codes and operands match. */
1678 match = ((code1 == code2
1679 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1680 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1681 || (code1 == swap_condition (code2)
1682 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1683 XEXP (cond2, 0))
1684 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1685 XEXP (cond2, 1))));
1686
1687 /* If we return true, we will join the blocks. Which means that
1688 we will only have one branch prediction bit to work with. Thus
1689 we require the existing branches to have probabilities that are
1690 roughly similar. */
1691 if (match
efd8f750
JH
1692 && optimize_bb_for_speed_p (bb1)
1693 && optimize_bb_for_speed_p (bb2))
c2fc5456 1694 {
357067f2 1695 profile_probability prob2;
c2fc5456
R
1696
1697 if (b1->dest == b2->dest)
1698 prob2 = b2->probability;
1699 else
1700 /* Do not use f2 probability as f2 may be forwarded. */
357067f2 1701 prob2 = b2->probability.invert ();
c2fc5456
R
1702
1703 /* Fail if the difference in probabilities is greater than 50%.
1704 This rules out two well-predicted branches with opposite
1705 outcomes. */
357067f2 1706 if (b1->probability.differs_lot_from_p (prob2))
c2fc5456
R
1707 {
1708 if (dump_file)
357067f2
JH
1709 {
1710 fprintf (dump_file,
1711 "Outcomes of branch in bb %i and %i differ too"
1712 " much (", bb1->index, bb2->index);
1713 b1->probability.dump (dump_file);
1714 prob2.dump (dump_file);
1715 fprintf (dump_file, ")\n");
1716 }
c2fc5456
R
1717 return false;
1718 }
1719 }
1720
1721 if (dump_file && match)
1722 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1723 bb1->index, bb2->index);
1724
1725 return match;
402209ff
JH
1726 }
1727
09da1532 1728 /* Generic case - we are seeing a computed jump, table jump or trapping
0dd0e980
JH
1729 instruction. */
1730
39811184
JZ
1731 /* Check whether there are tablejumps in the end of BB1 and BB2.
1732 Return true if they are identical. */
1733 {
dfe08bc4 1734 rtx_insn *label1, *label2;
8942ee0f 1735 rtx_jump_table_data *table1, *table2;
39811184 1736
a813c111
SB
1737 if (tablejump_p (BB_END (bb1), &label1, &table1)
1738 && tablejump_p (BB_END (bb2), &label2, &table2)
39811184
JZ
1739 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1740 {
1741 /* The labels should never be the same rtx. If they really are same
1742 the jump tables are same too. So disable crossjumping of blocks BB1
1743 and BB2 because when deleting the common insns in the end of BB1
6de9cd9a 1744 by delete_basic_block () the jump table would be deleted too. */
4af16369 1745 /* If LABEL2 is referenced in BB1->END do not do anything
39811184
JZ
1746 because we would loose information when replacing
1747 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
a813c111 1748 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
39811184
JZ
1749 {
1750 /* Set IDENTICAL to true when the tables are identical. */
1751 bool identical = false;
1752 rtx p1, p2;
1753
1754 p1 = PATTERN (table1);
1755 p2 = PATTERN (table2);
1756 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1757 {
1758 identical = true;
1759 }
1760 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1761 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1762 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1763 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1764 {
1765 int i;
1766
1767 identical = true;
1768 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1769 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1770 identical = false;
1771 }
1772
c2fc5456 1773 if (identical)
39811184 1774 {
39811184
JZ
1775 bool match;
1776
c2fc5456 1777 /* Temporarily replace references to LABEL1 with LABEL2
39811184 1778 in BB1->END so that we could compare the instructions. */
a2b7026c 1779 replace_label_in_insn (BB_END (bb1), label1, label2, false);
39811184 1780
472c95f5
TV
1781 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1782 == dir_both);
c263766c
RH
1783 if (dump_file && match)
1784 fprintf (dump_file,
39811184
JZ
1785 "Tablejumps in bb %i and %i match.\n",
1786 bb1->index, bb2->index);
1787
c2fc5456
R
1788 /* Set the original label in BB1->END because when deleting
1789 a block whose end is a tablejump, the tablejump referenced
1790 from the instruction is deleted too. */
a2b7026c 1791 replace_label_in_insn (BB_END (bb1), label2, label1, false);
c2fc5456 1792
39811184
JZ
1793 return match;
1794 }
1795 }
1796 return false;
1797 }
1798 }
39811184 1799
d41d6122
TJ
1800 /* Find the last non-debug non-note instruction in each bb, except
1801 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1802 handles that case specially. old_insns_match_p does not handle
1803 other types of instruction notes. */
da5477a9
DM
1804 rtx_insn *last1 = BB_END (bb1);
1805 rtx_insn *last2 = BB_END (bb2);
d41d6122
TJ
1806 while (!NOTE_INSN_BASIC_BLOCK_P (last1) &&
1807 (DEBUG_INSN_P (last1) || NOTE_P (last1)))
1808 last1 = PREV_INSN (last1);
1809 while (!NOTE_INSN_BASIC_BLOCK_P (last2) &&
1810 (DEBUG_INSN_P (last2) || NOTE_P (last2)))
1811 last2 = PREV_INSN (last2);
1812 gcc_assert (last1 && last2);
1813
0dd0e980 1814 /* First ensure that the instructions match. There may be many outgoing
39811184 1815 edges so this test is generally cheaper. */
206604dc 1816 if (old_insns_match_p (mode, last1, last2) != dir_both)
0dd0e980
JH
1817 return false;
1818
1819 /* Search the outgoing edges, ensure that the counts do match, find possible
1820 fallthru and exception handling edges since these needs more
1821 validation. */
628f6a4e
BE
1822 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1823 return false;
1824
206604dc 1825 bool nonfakeedges = false;
628f6a4e 1826 FOR_EACH_EDGE (e1, ei, bb1->succs)
0dd0e980 1827 {
628f6a4e 1828 e2 = EDGE_SUCC (bb2, ei.index);
c22cacf3 1829
206604dc
JJ
1830 if ((e1->flags & EDGE_FAKE) == 0)
1831 nonfakeedges = true;
1832
0dd0e980
JH
1833 if (e1->flags & EDGE_EH)
1834 nehedges1++;
5f0d2358 1835
0dd0e980
JH
1836 if (e2->flags & EDGE_EH)
1837 nehedges2++;
5f0d2358 1838
0dd0e980
JH
1839 if (e1->flags & EDGE_FALLTHRU)
1840 fallthru1 = e1;
1841 if (e2->flags & EDGE_FALLTHRU)
1842 fallthru2 = e2;
1843 }
5f0d2358 1844
0dd0e980 1845 /* If number of edges of various types does not match, fail. */
628f6a4e 1846 if (nehedges1 != nehedges2
5f0d2358 1847 || (fallthru1 != 0) != (fallthru2 != 0))
0dd0e980
JH
1848 return false;
1849
206604dc
JJ
1850 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1851 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1852 attempt to optimize, as the two basic blocks might have different
1853 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1854 traps there should be REG_ARG_SIZE notes, they could be missing
1855 for __builtin_unreachable () uses though. */
1856 if (!nonfakeedges
1857 && !ACCUMULATE_OUTGOING_ARGS
1858 && (!INSN_P (last1)
1859 || !find_reg_note (last1, REG_ARGS_SIZE, NULL)))
1860 return false;
1861
0dd0e980
JH
1862 /* fallthru edges must be forwarded to the same destination. */
1863 if (fallthru1)
1864 {
1865 basic_block d1 = (forwarder_block_p (fallthru1->dest)
c5cbcccf 1866 ? single_succ (fallthru1->dest): fallthru1->dest);
0dd0e980 1867 basic_block d2 = (forwarder_block_p (fallthru2->dest)
c5cbcccf 1868 ? single_succ (fallthru2->dest): fallthru2->dest);
5f0d2358 1869
0dd0e980
JH
1870 if (d1 != d2)
1871 return false;
1872 }
5f0d2358 1873
5f77fbd4
JJ
1874 /* Ensure the same EH region. */
1875 {
e600df51
JJ
1876 rtx n1 = find_reg_note (last1, REG_EH_REGION, 0);
1877 rtx n2 = find_reg_note (last2, REG_EH_REGION, 0);
5f0d2358 1878
5f77fbd4
JJ
1879 if (!n1 && n2)
1880 return false;
1881
1882 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1883 return false;
1884 }
5f0d2358 1885
38109dab
GL
1886 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1887 version of sequence abstraction. */
1888 FOR_EACH_EDGE (e1, ei, bb2->succs)
1889 {
1890 edge e2;
1891 edge_iterator ei;
1892 basic_block d1 = e1->dest;
1893
1894 if (FORWARDER_BLOCK_P (d1))
1895 d1 = EDGE_SUCC (d1, 0)->dest;
1896
1897 FOR_EACH_EDGE (e2, ei, bb1->succs)
1898 {
1899 basic_block d2 = e2->dest;
1900 if (FORWARDER_BLOCK_P (d2))
1901 d2 = EDGE_SUCC (d2, 0)->dest;
1902 if (d1 == d2)
1903 break;
1904 }
1905
1906 if (!e2)
1907 return false;
1908 }
1909
0dd0e980 1910 return true;
402209ff
JH
1911}
1912
38109dab
GL
1913/* Returns true if BB basic block has a preserve label. */
1914
1915static bool
1916block_has_preserve_label (basic_block bb)
1917{
1918 return (bb
1919 && block_label (bb)
1920 && LABEL_PRESERVE_P (block_label (bb)));
1921}
1922
402209ff
JH
1923/* E1 and E2 are edges with the same destination block. Search their
1924 predecessors for common code. If found, redirect control flow from
bf22920b
TV
1925 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1926 or the other way around (dir_backward). DIR specifies the allowed
1927 replacement direction. */
402209ff
JH
1928
1929static bool
bf22920b
TV
1930try_crossjump_to_edge (int mode, edge e1, edge e2,
1931 enum replace_direction dir)
402209ff 1932{
c2fc5456 1933 int nmatch;
402209ff 1934 basic_block src1 = e1->src, src2 = e2->src;
39587bb9 1935 basic_block redirect_to, redirect_from, to_remove;
823918ae 1936 basic_block osrc1, osrc2, redirect_edges_to, tmp;
da5477a9 1937 rtx_insn *newpos1, *newpos2;
402209ff 1938 edge s;
628f6a4e 1939 edge_iterator ei;
c2fc5456 1940
da5477a9 1941 newpos1 = newpos2 = NULL;
6de9cd9a 1942
402209ff
JH
1943 /* Search backward through forwarder blocks. We don't need to worry
1944 about multiple entry or chained forwarders, as they will be optimized
1945 away. We do this to look past the unconditional jump following a
1946 conditional jump that is required due to the current CFG shape. */
c5cbcccf 1947 if (single_pred_p (src1)
635559ab 1948 && FORWARDER_BLOCK_P (src1))
c5cbcccf 1949 e1 = single_pred_edge (src1), src1 = e1->src;
5f0d2358 1950
c5cbcccf 1951 if (single_pred_p (src2)
635559ab 1952 && FORWARDER_BLOCK_P (src2))
c5cbcccf 1953 e2 = single_pred_edge (src2), src2 = e2->src;
402209ff
JH
1954
1955 /* Nothing to do if we reach ENTRY, or a common source block. */
fefa31b5
DM
1956 if (src1 == ENTRY_BLOCK_PTR_FOR_FN (cfun) || src2
1957 == ENTRY_BLOCK_PTR_FOR_FN (cfun))
402209ff
JH
1958 return false;
1959 if (src1 == src2)
1960 return false;
1961
1962 /* Seeing more than 1 forwarder blocks would confuse us later... */
635559ab 1963 if (FORWARDER_BLOCK_P (e1->dest)
c5cbcccf 1964 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
402209ff 1965 return false;
5f0d2358 1966
635559ab 1967 if (FORWARDER_BLOCK_P (e2->dest)
c5cbcccf 1968 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
402209ff
JH
1969 return false;
1970
1971 /* Likewise with dead code (possibly newly created by the other optimizations
1972 of cfg_cleanup). */
628f6a4e 1973 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
402209ff
JH
1974 return false;
1975
ba61fc53
JH
1976 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
1977 if (BB_PARTITION (src1) != BB_PARTITION (src2)
1978 && reload_completed)
1979 return false;
1980
402209ff 1981 /* Look for the common insn sequence, part the first ... */
c2fc5456 1982 if (!outgoing_edges_match (mode, src1, src2))
402209ff
JH
1983 return false;
1984
1985 /* ... and part the second. */
472c95f5 1986 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
12183e0f 1987
823918ae
TV
1988 osrc1 = src1;
1989 osrc2 = src2;
1990 if (newpos1 != NULL_RTX)
1991 src1 = BLOCK_FOR_INSN (newpos1);
1992 if (newpos2 != NULL_RTX)
1993 src2 = BLOCK_FOR_INSN (newpos2);
1994
dd68669b
JL
1995 /* Check that SRC1 and SRC2 have preds again. They may have changed
1996 above due to the call to flow_find_cross_jump. */
1997 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1998 return false;
1999
bf22920b
TV
2000 if (dir == dir_backward)
2001 {
ba61fc53
JH
2002 std::swap (osrc1, osrc2);
2003 std::swap (src1, src2);
2004 std::swap (e1, e2);
2005 std::swap (newpos1, newpos2);
bf22920b
TV
2006 }
2007
12183e0f
PH
2008 /* Don't proceed with the crossjump unless we found a sufficient number
2009 of matching instructions or the 'from' block was totally matched
2010 (such that its predecessors will hopefully be redirected and the
2011 block removed). */
028d4092 2012 if ((nmatch < param_min_crossjump_insns)
c2fc5456 2013 && (newpos1 != BB_HEAD (src1)))
7d22e898 2014 return false;
402209ff 2015
75c40d56 2016 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
38109dab
GL
2017 if (block_has_preserve_label (e1->dest)
2018 && (e1->flags & EDGE_ABNORMAL))
2019 return false;
2020
39811184
JZ
2021 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2022 will be deleted.
2023 If we have tablejumps in the end of SRC1 and SRC2
2024 they have been already compared for equivalence in outgoing_edges_match ()
2025 so replace the references to TABLE1 by references to TABLE2. */
21c0a521 2026 {
dfe08bc4 2027 rtx_insn *label1, *label2;
8942ee0f 2028 rtx_jump_table_data *table1, *table2;
39811184 2029
823918ae
TV
2030 if (tablejump_p (BB_END (osrc1), &label1, &table1)
2031 && tablejump_p (BB_END (osrc2), &label2, &table2)
39811184
JZ
2032 && label1 != label2)
2033 {
da5477a9 2034 rtx_insn *insn;
39811184
JZ
2035
2036 /* Replace references to LABEL1 with LABEL2. */
39811184
JZ
2037 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2038 {
2039 /* Do not replace the label in SRC1->END because when deleting
2040 a block whose end is a tablejump, the tablejump referenced
2041 from the instruction is deleted too. */
823918ae 2042 if (insn != BB_END (osrc1))
a2b7026c 2043 replace_label_in_insn (insn, label1, label2, true);
39811184
JZ
2044 }
2045 }
21c0a521 2046 }
10d6c0d0 2047
b604fe9b
SB
2048 /* Avoid splitting if possible. We must always split when SRC2 has
2049 EH predecessor edges, or we may end up with basic blocks with both
2050 normal and EH predecessor edges. */
c2fc5456 2051 if (newpos2 == BB_HEAD (src2)
b604fe9b 2052 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
402209ff
JH
2053 redirect_to = src2;
2054 else
2055 {
c2fc5456 2056 if (newpos2 == BB_HEAD (src2))
b604fe9b
SB
2057 {
2058 /* Skip possible basic block header. */
c2fc5456
R
2059 if (LABEL_P (newpos2))
2060 newpos2 = NEXT_INSN (newpos2);
b5b8b0ac
AO
2061 while (DEBUG_INSN_P (newpos2))
2062 newpos2 = NEXT_INSN (newpos2);
c2fc5456
R
2063 if (NOTE_P (newpos2))
2064 newpos2 = NEXT_INSN (newpos2);
b5b8b0ac
AO
2065 while (DEBUG_INSN_P (newpos2))
2066 newpos2 = NEXT_INSN (newpos2);
b604fe9b
SB
2067 }
2068
c263766c
RH
2069 if (dump_file)
2070 fprintf (dump_file, "Splitting bb %i before %i insns\n",
0b17ab2f 2071 src2->index, nmatch);
c2fc5456 2072 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
402209ff
JH
2073 }
2074
c263766c 2075 if (dump_file)
c2fc5456
R
2076 fprintf (dump_file,
2077 "Cross jumping from bb %i to bb %i; %i common insns\n",
2078 src1->index, src2->index, nmatch);
402209ff 2079
6fc0bb99 2080 /* We may have some registers visible through the block. */
6fb5fa3c 2081 df_set_bb_dirty (redirect_to);
402209ff 2082
823918ae
TV
2083 if (osrc2 == src2)
2084 redirect_edges_to = redirect_to;
2085 else
2086 redirect_edges_to = osrc2;
2087
e7a74006 2088 /* Recompute the counts of destinations of outgoing edges. */
823918ae 2089 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
402209ff
JH
2090 {
2091 edge s2;
628f6a4e 2092 edge_iterator ei;
402209ff
JH
2093 basic_block d = s->dest;
2094
635559ab 2095 if (FORWARDER_BLOCK_P (d))
c5cbcccf 2096 d = single_succ (d);
5f0d2358 2097
628f6a4e 2098 FOR_EACH_EDGE (s2, ei, src1->succs)
402209ff
JH
2099 {
2100 basic_block d2 = s2->dest;
635559ab 2101 if (FORWARDER_BLOCK_P (d2))
c5cbcccf 2102 d2 = single_succ (d2);
402209ff
JH
2103 if (d == d2)
2104 break;
2105 }
5f0d2358 2106
402209ff 2107 /* Take care to update possible forwarder blocks. We verified
c22cacf3
MS
2108 that there is no more than one in the chain, so we can't run
2109 into infinite loop. */
635559ab 2110 if (FORWARDER_BLOCK_P (s->dest))
e7a74006 2111 s->dest->count += s->count ();
5f0d2358 2112
635559ab 2113 if (FORWARDER_BLOCK_P (s2->dest))
e7a74006 2114 s2->dest->count -= s->count ();
5f0d2358 2115
97c07987
JH
2116 s->probability = s->probability.combine_with_count
2117 (redirect_edges_to->count,
2118 s2->probability, src1->count);
402209ff
JH
2119 }
2120
e7a74006 2121 /* Adjust count for the block. An earlier jump
52982a97
EB
2122 threading pass may have left the profile in an inconsistent
2123 state (see update_bb_profile_for_threading) so we must be
2124 prepared for overflows. */
823918ae
TV
2125 tmp = redirect_to;
2126 do
2127 {
2128 tmp->count += src1->count;
823918ae
TV
2129 if (tmp == redirect_edges_to)
2130 break;
2131 tmp = find_fallthru_edge (tmp->succs)->dest;
2132 }
2133 while (true);
2134 update_br_prob_note (redirect_edges_to);
402209ff
JH
2135
2136 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2137
c2fc5456
R
2138 /* Skip possible basic block header. */
2139 if (LABEL_P (newpos1))
2140 newpos1 = NEXT_INSN (newpos1);
b5b8b0ac
AO
2141
2142 while (DEBUG_INSN_P (newpos1))
2143 newpos1 = NEXT_INSN (newpos1);
2144
cd9c1ca8 2145 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
c2fc5456
R
2146 newpos1 = NEXT_INSN (newpos1);
2147
dfd2c92f
EB
2148 /* Skip also prologue and function markers. */
2149 while (DEBUG_INSN_P (newpos1)
2150 || (NOTE_P (newpos1)
2151 && (NOTE_KIND (newpos1) == NOTE_INSN_PROLOGUE_END
2152 || NOTE_KIND (newpos1) == NOTE_INSN_FUNCTION_BEG)))
b5b8b0ac
AO
2153 newpos1 = NEXT_INSN (newpos1);
2154
c2fc5456 2155 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
c5cbcccf 2156 to_remove = single_succ (redirect_from);
402209ff 2157
c5cbcccf 2158 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
f470c378 2159 delete_basic_block (to_remove);
402209ff 2160
39587bb9 2161 update_forwarder_flag (redirect_from);
7cbd12b8
JJ
2162 if (redirect_to != src2)
2163 update_forwarder_flag (src2);
635559ab 2164
402209ff
JH
2165 return true;
2166}
2167
2168/* Search the predecessors of BB for common insn sequences. When found,
2169 share code between them by redirecting control flow. Return true if
2170 any changes made. */
2171
2172static bool
d329e058 2173try_crossjump_bb (int mode, basic_block bb)
402209ff 2174{
628f6a4e 2175 edge e, e2, fallthru;
402209ff 2176 bool changed;
628f6a4e 2177 unsigned max, ix, ix2;
402209ff 2178
f63d1bf7 2179 /* Nothing to do if there is not at least two incoming edges. */
628f6a4e 2180 if (EDGE_COUNT (bb->preds) < 2)
402209ff
JH
2181 return false;
2182
bbcb0c05
SB
2183 /* Don't crossjump if this block ends in a computed jump,
2184 unless we are optimizing for size. */
efd8f750 2185 if (optimize_bb_for_size_p (bb)
fefa31b5 2186 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
bbcb0c05
SB
2187 && computed_jump_p (BB_END (bb)))
2188 return false;
2189
750054a2
CT
2190 /* If we are partitioning hot/cold basic blocks, we don't want to
2191 mess up unconditional or indirect jumps that cross between hot
c22cacf3
MS
2192 and cold sections.
2193
8e8d5162 2194 Basic block partitioning may result in some jumps that appear to
c22cacf3
MS
2195 be optimizable (or blocks that appear to be mergeable), but which really
2196 must be left untouched (they are required to make it safely across
2197 partition boundaries). See the comments at the top of
8e8d5162
CT
2198 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2199
c22cacf3
MS
2200 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2201 BB_PARTITION (EDGE_PRED (bb, 1)->src)
87c8b4be 2202 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
750054a2
CT
2203 return false;
2204
402209ff
JH
2205 /* It is always cheapest to redirect a block that ends in a branch to
2206 a block that falls through into BB, as that adds no branches to the
2207 program. We'll try that combination first. */
5f24e0dc 2208 fallthru = NULL;
028d4092 2209 max = param_max_crossjump_edges;
628f6a4e
BE
2210
2211 if (EDGE_COUNT (bb->preds) > max)
2212 return false;
2213
0fd4b31d 2214 fallthru = find_fallthru_edge (bb->preds);
402209ff
JH
2215
2216 changed = false;
0248bceb 2217 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
402209ff 2218 {
0248bceb 2219 e = EDGE_PRED (bb, ix);
628f6a4e 2220 ix++;
402209ff 2221
c1e3e2d9
SB
2222 /* As noted above, first try with the fallthru predecessor (or, a
2223 fallthru predecessor if we are in cfglayout mode). */
402209ff
JH
2224 if (fallthru)
2225 {
2226 /* Don't combine the fallthru edge into anything else.
2227 If there is a match, we'll do it the other way around. */
2228 if (e == fallthru)
2229 continue;
7cf240d5
JH
2230 /* If nothing changed since the last attempt, there is nothing
2231 we can do. */
2232 if (!first_pass
4ec5d4f5
BS
2233 && !((e->src->flags & BB_MODIFIED)
2234 || (fallthru->src->flags & BB_MODIFIED)))
7cf240d5 2235 continue;
402209ff 2236
bf22920b 2237 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
402209ff
JH
2238 {
2239 changed = true;
628f6a4e 2240 ix = 0;
402209ff
JH
2241 continue;
2242 }
2243 }
2244
2245 /* Non-obvious work limiting check: Recognize that we're going
2246 to call try_crossjump_bb on every basic block. So if we have
2247 two blocks with lots of outgoing edges (a switch) and they
2248 share lots of common destinations, then we would do the
2249 cross-jump check once for each common destination.
2250
2251 Now, if the blocks actually are cross-jump candidates, then
2252 all of their destinations will be shared. Which means that
2253 we only need check them for cross-jump candidacy once. We
2254 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2255 choosing to do the check from the block for which the edge
2256 in question is the first successor of A. */
628f6a4e 2257 if (EDGE_SUCC (e->src, 0) != e)
402209ff
JH
2258 continue;
2259
0248bceb 2260 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
402209ff 2261 {
0248bceb 2262 e2 = EDGE_PRED (bb, ix2);
402209ff
JH
2263
2264 if (e2 == e)
2265 continue;
2266
2267 /* We've already checked the fallthru edge above. */
2268 if (e2 == fallthru)
2269 continue;
2270
402209ff
JH
2271 /* The "first successor" check above only prevents multiple
2272 checks of crossjump(A,B). In order to prevent redundant
2273 checks of crossjump(B,A), require that A be the block
2274 with the lowest index. */
0b17ab2f 2275 if (e->src->index > e2->src->index)
402209ff
JH
2276 continue;
2277
7cf240d5
JH
2278 /* If nothing changed since the last attempt, there is nothing
2279 we can do. */
2280 if (!first_pass
4ec5d4f5
BS
2281 && !((e->src->flags & BB_MODIFIED)
2282 || (e2->src->flags & BB_MODIFIED)))
7cf240d5
JH
2283 continue;
2284
bf22920b
TV
2285 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2286 direction. */
2287 if (try_crossjump_to_edge (mode, e, e2, dir_both))
402209ff
JH
2288 {
2289 changed = true;
628f6a4e 2290 ix = 0;
402209ff
JH
2291 break;
2292 }
2293 }
2294 }
2295
c1e3e2d9 2296 if (changed)
bd2c6270 2297 crossjumps_occurred = true;
c1e3e2d9 2298
402209ff
JH
2299 return changed;
2300}
2301
4ec5d4f5
BS
2302/* Search the successors of BB for common insn sequences. When found,
2303 share code between them by moving it across the basic block
2304 boundary. Return true if any changes made. */
2305
2306static bool
2307try_head_merge_bb (basic_block bb)
2308{
2309 basic_block final_dest_bb = NULL;
2310 int max_match = INT_MAX;
2311 edge e0;
da5477a9 2312 rtx_insn **headptr, **currptr, **nextptr;
4ec5d4f5
BS
2313 bool changed, moveall;
2314 unsigned ix;
da5477a9 2315 rtx_insn *e0_last_head;
61aa0978
DM
2316 rtx cond;
2317 rtx_insn *move_before;
4ec5d4f5 2318 unsigned nedges = EDGE_COUNT (bb->succs);
da5477a9 2319 rtx_insn *jump = BB_END (bb);
4ec5d4f5
BS
2320 regset live, live_union;
2321
2322 /* Nothing to do if there is not at least two outgoing edges. */
2323 if (nedges < 2)
2324 return false;
2325
2326 /* Don't crossjump if this block ends in a computed jump,
2327 unless we are optimizing for size. */
2328 if (optimize_bb_for_size_p (bb)
fefa31b5 2329 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
4ec5d4f5
BS
2330 && computed_jump_p (BB_END (bb)))
2331 return false;
2332
2333 cond = get_condition (jump, &move_before, true, false);
2334 if (cond == NULL_RTX)
bd1cd0d0 2335 move_before = jump;
4ec5d4f5
BS
2336
2337 for (ix = 0; ix < nedges; ix++)
fefa31b5 2338 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
4ec5d4f5
BS
2339 return false;
2340
2341 for (ix = 0; ix < nedges; ix++)
2342 {
2343 edge e = EDGE_SUCC (bb, ix);
2344 basic_block other_bb = e->dest;
2345
2346 if (df_get_bb_dirty (other_bb))
2347 {
2348 block_was_dirty = true;
2349 return false;
2350 }
2351
2352 if (e->flags & EDGE_ABNORMAL)
2353 return false;
2354
2355 /* Normally, all destination blocks must only be reachable from this
2356 block, i.e. they must have one incoming edge.
2357
2358 There is one special case we can handle, that of multiple consecutive
2359 jumps where the first jumps to one of the targets of the second jump.
2360 This happens frequently in switch statements for default labels.
2361 The structure is as follows:
2362 FINAL_DEST_BB
2363 ....
2364 if (cond) jump A;
2365 fall through
2366 BB
2367 jump with targets A, B, C, D...
2368 A
2369 has two incoming edges, from FINAL_DEST_BB and BB
2370
2371 In this case, we can try to move the insns through BB and into
2372 FINAL_DEST_BB. */
2373 if (EDGE_COUNT (other_bb->preds) != 1)
2374 {
2375 edge incoming_edge, incoming_bb_other_edge;
2376 edge_iterator ei;
2377
2378 if (final_dest_bb != NULL
2379 || EDGE_COUNT (other_bb->preds) != 2)
2380 return false;
2381
2382 /* We must be able to move the insns across the whole block. */
2383 move_before = BB_HEAD (bb);
2384 while (!NONDEBUG_INSN_P (move_before))
2385 move_before = NEXT_INSN (move_before);
2386
2387 if (EDGE_COUNT (bb->preds) != 1)
2388 return false;
2389 incoming_edge = EDGE_PRED (bb, 0);
2390 final_dest_bb = incoming_edge->src;
2391 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2392 return false;
2393 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2394 if (incoming_bb_other_edge != incoming_edge)
2395 break;
2396 if (incoming_bb_other_edge->dest != other_bb)
2397 return false;
2398 }
2399 }
2400
2401 e0 = EDGE_SUCC (bb, 0);
da5477a9 2402 e0_last_head = NULL;
4ec5d4f5
BS
2403 changed = false;
2404
2405 for (ix = 1; ix < nedges; ix++)
2406 {
2407 edge e = EDGE_SUCC (bb, ix);
da5477a9 2408 rtx_insn *e0_last, *e_last;
4ec5d4f5
BS
2409 int nmatch;
2410
2411 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2412 &e0_last, &e_last, 0);
2413 if (nmatch == 0)
2414 return false;
2415
2416 if (nmatch < max_match)
2417 {
2418 max_match = nmatch;
2419 e0_last_head = e0_last;
2420 }
2421 }
2422
2423 /* If we matched an entire block, we probably have to avoid moving the
2424 last insn. */
2425 if (max_match > 0
2426 && e0_last_head == BB_END (e0->dest)
2427 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2428 || control_flow_insn_p (e0_last_head)))
2429 {
2430 max_match--;
2431 if (max_match == 0)
2432 return false;
ec2d7121 2433 e0_last_head = prev_real_nondebug_insn (e0_last_head);
4ec5d4f5
BS
2434 }
2435
2436 if (max_match == 0)
2437 return false;
2438
2439 /* We must find a union of the live registers at each of the end points. */
2440 live = BITMAP_ALLOC (NULL);
2441 live_union = BITMAP_ALLOC (NULL);
2442
da5477a9
DM
2443 currptr = XNEWVEC (rtx_insn *, nedges);
2444 headptr = XNEWVEC (rtx_insn *, nedges);
2445 nextptr = XNEWVEC (rtx_insn *, nedges);
4ec5d4f5
BS
2446
2447 for (ix = 0; ix < nedges; ix++)
2448 {
2449 int j;
2450 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
da5477a9 2451 rtx_insn *head = BB_HEAD (merge_bb);
4ec5d4f5 2452
b59e0455
JJ
2453 while (!NONDEBUG_INSN_P (head))
2454 head = NEXT_INSN (head);
4ec5d4f5
BS
2455 headptr[ix] = head;
2456 currptr[ix] = head;
2457
2458 /* Compute the end point and live information */
2459 for (j = 1; j < max_match; j++)
b59e0455
JJ
2460 do
2461 head = NEXT_INSN (head);
2462 while (!NONDEBUG_INSN_P (head));
4ec5d4f5
BS
2463 simulate_backwards_to_point (merge_bb, live, head);
2464 IOR_REG_SET (live_union, live);
2465 }
2466
2467 /* If we're moving across two blocks, verify the validity of the
2468 first move, then adjust the target and let the loop below deal
2469 with the final move. */
2470 if (final_dest_bb != NULL)
2471 {
61aa0978 2472 rtx_insn *move_upto;
4ec5d4f5
BS
2473
2474 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2475 jump, e0->dest, live_union,
2476 NULL, &move_upto);
2477 if (!moveall)
2478 {
2479 if (move_upto == NULL_RTX)
2480 goto out;
2481
2482 while (e0_last_head != move_upto)
2483 {
2484 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2485 live_union);
2486 e0_last_head = PREV_INSN (e0_last_head);
2487 }
2488 }
2489 if (e0_last_head == NULL_RTX)
2490 goto out;
2491
2492 jump = BB_END (final_dest_bb);
2493 cond = get_condition (jump, &move_before, true, false);
2494 if (cond == NULL_RTX)
bd1cd0d0 2495 move_before = jump;
4ec5d4f5
BS
2496 }
2497
2498 do
2499 {
61aa0978 2500 rtx_insn *move_upto;
4ec5d4f5
BS
2501 moveall = can_move_insns_across (currptr[0], e0_last_head,
2502 move_before, jump, e0->dest, live_union,
2503 NULL, &move_upto);
2504 if (!moveall && move_upto == NULL_RTX)
2505 {
2506 if (jump == move_before)
2507 break;
2508
2509 /* Try again, using a different insertion point. */
2510 move_before = jump;
2511
4ec5d4f5
BS
2512 continue;
2513 }
2514
2515 if (final_dest_bb && !moveall)
2516 /* We haven't checked whether a partial move would be OK for the first
2517 move, so we have to fail this case. */
2518 break;
2519
2520 changed = true;
2521 for (;;)
2522 {
2523 if (currptr[0] == move_upto)
2524 break;
2525 for (ix = 0; ix < nedges; ix++)
2526 {
da5477a9 2527 rtx_insn *curr = currptr[ix];
4ec5d4f5
BS
2528 do
2529 curr = NEXT_INSN (curr);
2530 while (!NONDEBUG_INSN_P (curr));
2531 currptr[ix] = curr;
2532 }
2533 }
2534
2535 /* If we can't currently move all of the identical insns, remember
2536 each insn after the range that we'll merge. */
2537 if (!moveall)
2538 for (ix = 0; ix < nedges; ix++)
2539 {
da5477a9 2540 rtx_insn *curr = currptr[ix];
4ec5d4f5
BS
2541 do
2542 curr = NEXT_INSN (curr);
2543 while (!NONDEBUG_INSN_P (curr));
2544 nextptr[ix] = curr;
2545 }
2546
2547 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2548 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2549 if (final_dest_bb != NULL)
2550 df_set_bb_dirty (final_dest_bb);
2551 df_set_bb_dirty (bb);
2552 for (ix = 1; ix < nedges; ix++)
2553 {
2554 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2555 delete_insn_chain (headptr[ix], currptr[ix], false);
2556 }
2557 if (!moveall)
2558 {
2559 if (jump == move_before)
2560 break;
2561
2562 /* For the unmerged insns, try a different insertion point. */
2563 move_before = jump;
2564
4ec5d4f5
BS
2565 for (ix = 0; ix < nedges; ix++)
2566 currptr[ix] = headptr[ix] = nextptr[ix];
2567 }
2568 }
2569 while (!moveall);
2570
2571 out:
2572 free (currptr);
2573 free (headptr);
2574 free (nextptr);
2575
bd2c6270 2576 crossjumps_occurred |= changed;
4ec5d4f5
BS
2577
2578 return changed;
2579}
2580
7752e522
JJ
2581/* Return true if BB contains just bb note, or bb note followed
2582 by only DEBUG_INSNs. */
2583
2584static bool
2585trivially_empty_bb_p (basic_block bb)
2586{
da5477a9 2587 rtx_insn *insn = BB_END (bb);
7752e522
JJ
2588
2589 while (1)
2590 {
2591 if (insn == BB_HEAD (bb))
2592 return true;
2593 if (!DEBUG_INSN_P (insn))
2594 return false;
2595 insn = PREV_INSN (insn);
2596 }
2597}
2598
45676a7c
SB
2599/* Return true if BB contains just a return and possibly a USE of the
2600 return value. Fill in *RET and *USE with the return and use insns
2ea0d750 2601 if any found, otherwise NULL. All CLOBBERs are ignored. */
45676a7c
SB
2602
2603static bool
2604bb_is_just_return (basic_block bb, rtx_insn **ret, rtx_insn **use)
2605{
2606 *ret = *use = NULL;
2607 rtx_insn *insn;
2608
2609 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2610 return false;
2611
2612 FOR_BB_INSNS (bb, insn)
2613 if (NONDEBUG_INSN_P (insn))
2614 {
2ea0d750
SB
2615 rtx pat = PATTERN (insn);
2616
2617 if (!*ret && ANY_RETURN_P (pat))
45676a7c 2618 *ret = insn;
2ea0d750
SB
2619 else if (!*ret && !*use && GET_CODE (pat) == USE
2620 && REG_P (XEXP (pat, 0))
2621 && REG_FUNCTION_VALUE_P (XEXP (pat, 0)))
45676a7c 2622 *use = insn;
2ea0d750 2623 else if (GET_CODE (pat) != CLOBBER)
45676a7c
SB
2624 return false;
2625 }
2626
2627 return !!*ret;
2628}
2629
402209ff
JH
2630/* Do simple CFG optimizations - basic block merging, simplifying of jump
2631 instructions etc. Return nonzero if changes were made. */
2632
2633static bool
d329e058 2634try_optimize_cfg (int mode)
402209ff 2635{
402209ff
JH
2636 bool changed_overall = false;
2637 bool changed;
2638 int iterations = 0;
ec3ae3da 2639 basic_block bb, b, next;
402209ff 2640
6fb5fa3c 2641 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
38c1593d
JH
2642 clear_bb_flags ();
2643
bd2c6270 2644 crossjumps_occurred = false;
c1e3e2d9 2645
11cd3bed 2646 FOR_EACH_BB_FN (bb, cfun)
2dd2d53e
SB
2647 update_forwarder_flag (bb);
2648
245f1bfa 2649 if (! targetm.cannot_modify_jumps_p ())
402209ff 2650 {
7cf240d5 2651 first_pass = true;
e4ec2cac
AO
2652 /* Attempt to merge blocks as made possible by edge removal. If
2653 a block has only one successor, and the successor has only
2654 one predecessor, they may be combined. */
2655 do
402209ff 2656 {
4ec5d4f5 2657 block_was_dirty = false;
e4ec2cac
AO
2658 changed = false;
2659 iterations++;
2660
c263766c
RH
2661 if (dump_file)
2662 fprintf (dump_file,
e4ec2cac
AO
2663 "\n\ntry_optimize_cfg iteration %i\n\n",
2664 iterations);
402209ff 2665
fefa31b5
DM
2666 for (b = ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb; b
2667 != EXIT_BLOCK_PTR_FOR_FN (cfun);)
402209ff 2668 {
e0082a72 2669 basic_block c;
e4ec2cac
AO
2670 edge s;
2671 bool changed_here = false;
5f0d2358 2672
468059bc
DD
2673 /* Delete trivially dead basic blocks. This is either
2674 blocks with no predecessors, or empty blocks with no
1e211590
DD
2675 successors. However if the empty block with no
2676 successors is the successor of the ENTRY_BLOCK, it is
2677 kept. This ensures that the ENTRY_BLOCK will have a
2678 successor which is a precondition for many RTL
2679 passes. Empty blocks may result from expanding
468059bc
DD
2680 __builtin_unreachable (). */
2681 if (EDGE_COUNT (b->preds) == 0
1e211590 2682 || (EDGE_COUNT (b->succs) == 0
7752e522 2683 && trivially_empty_bb_p (b)
fefa31b5
DM
2684 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->dest
2685 != b))
e4ec2cac 2686 {
f6366fc7 2687 c = b->prev_bb;
f1de5107 2688 if (EDGE_COUNT (b->preds) > 0)
3b5fda81
JJ
2689 {
2690 edge e;
2691 edge_iterator ei;
2692
f1de5107
JJ
2693 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2694 {
c758576a
JJ
2695 rtx_insn *insn;
2696 for (insn = BB_FOOTER (b);
2697 insn; insn = NEXT_INSN (insn))
2698 if (BARRIER_P (insn))
2699 break;
2700 if (insn)
f1de5107 2701 FOR_EACH_EDGE (e, ei, b->preds)
c758576a 2702 if ((e->flags & EDGE_FALLTHRU))
f1de5107 2703 {
c758576a
JJ
2704 if (BB_FOOTER (b)
2705 && BB_FOOTER (e->src) == NULL)
f1de5107 2706 {
d8ce2eae
DM
2707 BB_FOOTER (e->src) = BB_FOOTER (b);
2708 BB_FOOTER (b) = NULL;
f1de5107
JJ
2709 }
2710 else
c758576a 2711 emit_barrier_after_bb (e->src);
f1de5107
JJ
2712 }
2713 }
2714 else
2715 {
da5477a9 2716 rtx_insn *last = get_last_bb_insn (b);
f1de5107
JJ
2717 if (last && BARRIER_P (last))
2718 FOR_EACH_EDGE (e, ei, b->preds)
2719 if ((e->flags & EDGE_FALLTHRU))
2720 emit_barrier_after (BB_END (e->src));
2721 }
3b5fda81 2722 }
f470c378 2723 delete_basic_block (b);
bef16e87 2724 changed = true;
6626665f 2725 /* Avoid trying to remove the exit block. */
fefa31b5 2726 b = (c == ENTRY_BLOCK_PTR_FOR_FN (cfun) ? c->next_bb : c);
83bd032b 2727 continue;
e4ec2cac 2728 }
402209ff 2729
6ce2bcb7 2730 /* Remove code labels no longer used. */
c5cbcccf
ZD
2731 if (single_pred_p (b)
2732 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2733 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
4b4bf941 2734 && LABEL_P (BB_HEAD (b))
6c979aa1 2735 && !LABEL_PRESERVE_P (BB_HEAD (b))
e4ec2cac
AO
2736 /* If the previous block ends with a branch to this
2737 block, we can't delete the label. Normally this
2738 is a condjump that is yet to be simplified, but
2739 if CASE_DROPS_THRU, this can be a tablejump with
2740 some element going to the same place as the
2741 default (fallthru). */
fefa31b5 2742 && (single_pred (b) == ENTRY_BLOCK_PTR_FOR_FN (cfun)
c5cbcccf 2743 || !JUMP_P (BB_END (single_pred (b)))
a813c111 2744 || ! label_is_jump_target_p (BB_HEAD (b),
c5cbcccf 2745 BB_END (single_pred (b)))))
e4ec2cac 2746 {
03fbe718 2747 delete_insn (BB_HEAD (b));
c263766c
RH
2748 if (dump_file)
2749 fprintf (dump_file, "Deleted label in block %i.\n",
0b17ab2f 2750 b->index);
e4ec2cac 2751 }
402209ff 2752
e4ec2cac 2753 /* If we fall through an empty block, we can remove it. */
9be94227 2754 if (!(mode & (CLEANUP_CFGLAYOUT | CLEANUP_NO_INSN_DEL))
c5cbcccf
ZD
2755 && single_pred_p (b)
2756 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
4b4bf941 2757 && !LABEL_P (BB_HEAD (b))
e4ec2cac
AO
2758 && FORWARDER_BLOCK_P (b)
2759 /* Note that forwarder_block_p true ensures that
2760 there is a successor for this block. */
c5cbcccf 2761 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
0cae8d31 2762 && n_basic_blocks_for_fn (cfun) > NUM_FIXED_BLOCKS + 1)
e4ec2cac 2763 {
c263766c
RH
2764 if (dump_file)
2765 fprintf (dump_file,
e4ec2cac 2766 "Deleting fallthru block %i.\n",
0b17ab2f 2767 b->index);
e4ec2cac 2768
fefa31b5
DM
2769 c = ((b->prev_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2770 ? b->next_bb : b->prev_bb);
c5cbcccf
ZD
2771 redirect_edge_succ_nodup (single_pred_edge (b),
2772 single_succ (b));
f470c378 2773 delete_basic_block (b);
e4ec2cac
AO
2774 changed = true;
2775 b = c;
1e211590 2776 continue;
e4ec2cac 2777 }
5f0d2358 2778
50a36e42 2779 /* Merge B with its single successor, if any. */
c5cbcccf
ZD
2780 if (single_succ_p (b)
2781 && (s = single_succ_edge (b))
ec3ae3da 2782 && !(s->flags & EDGE_COMPLEX)
fefa31b5 2783 && (c = s->dest) != EXIT_BLOCK_PTR_FOR_FN (cfun)
c5cbcccf 2784 && single_pred_p (c)
bc35512f
JH
2785 && b != c)
2786 {
2787 /* When not in cfg_layout mode use code aware of reordering
2788 INSN. This code possibly creates new basic blocks so it
2789 does not fit merge_blocks interface and is kept here in
2790 hope that it will become useless once more of compiler
2791 is transformed to use cfg_layout mode. */
c22cacf3 2792
bc35512f
JH
2793 if ((mode & CLEANUP_CFGLAYOUT)
2794 && can_merge_blocks_p (b, c))
2795 {
2796 merge_blocks (b, c);
2797 update_forwarder_flag (b);
2798 changed_here = true;
2799 }
2800 else if (!(mode & CLEANUP_CFGLAYOUT)
2801 /* If the jump insn has side effects,
2802 we can't kill the edge. */
4b4bf941 2803 && (!JUMP_P (BB_END (b))
e24e7211 2804 || (reload_completed
a813c111 2805 ? simplejump_p (BB_END (b))
e4efa971
JH
2806 : (onlyjump_p (BB_END (b))
2807 && !tablejump_p (BB_END (b),
2808 NULL, NULL))))
bc35512f
JH
2809 && (next = merge_blocks_move (s, b, c, mode)))
2810 {
2811 b = next;
2812 changed_here = true;
2813 }
ec3ae3da 2814 }
e4ec2cac 2815
45676a7c
SB
2816 /* Try to change a branch to a return to just that return. */
2817 rtx_insn *ret, *use;
2818 if (single_succ_p (b)
2819 && onlyjump_p (BB_END (b))
2820 && bb_is_just_return (single_succ (b), &ret, &use))
2821 {
2822 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2823 PATTERN (ret), 0))
2824 {
2825 if (use)
2826 emit_insn_before (copy_insn (PATTERN (use)),
2827 BB_END (b));
2828 if (dump_file)
2829 fprintf (dump_file, "Changed jump %d->%d to return.\n",
2830 b->index, single_succ (b)->index);
2831 redirect_edge_succ (single_succ_edge (b),
2832 EXIT_BLOCK_PTR_FOR_FN (cfun));
2833 single_succ_edge (b)->flags &= ~EDGE_CROSSING;
2834 changed_here = true;
2835 }
2836 }
2837
2838 /* Try to change a conditional branch to a return to the
2839 respective conditional return. */
2840 if (EDGE_COUNT (b->succs) == 2
2841 && any_condjump_p (BB_END (b))
2842 && bb_is_just_return (BRANCH_EDGE (b)->dest, &ret, &use))
2843 {
2844 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2845 PATTERN (ret), 0))
2846 {
2847 if (use)
2848 emit_insn_before (copy_insn (PATTERN (use)),
2849 BB_END (b));
2850 if (dump_file)
2851 fprintf (dump_file, "Changed conditional jump %d->%d "
2852 "to conditional return.\n",
2853 b->index, BRANCH_EDGE (b)->dest->index);
2854 redirect_edge_succ (BRANCH_EDGE (b),
2855 EXIT_BLOCK_PTR_FOR_FN (cfun));
2856 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2857 changed_here = true;
2858 }
2859 }
2860
2861 /* Try to flip a conditional branch that falls through to
2862 a return so that it becomes a conditional return and a
2863 new jump to the original branch target. */
2864 if (EDGE_COUNT (b->succs) == 2
ac2a4c0d 2865 && BRANCH_EDGE (b)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
45676a7c
SB
2866 && any_condjump_p (BB_END (b))
2867 && bb_is_just_return (FALLTHRU_EDGE (b)->dest, &ret, &use))
2868 {
2869 if (invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2870 JUMP_LABEL (BB_END (b)), 0))
2871 {
2872 basic_block new_ft = BRANCH_EDGE (b)->dest;
2873 if (redirect_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2874 PATTERN (ret), 0))
2875 {
2876 if (use)
2877 emit_insn_before (copy_insn (PATTERN (use)),
2878 BB_END (b));
2879 if (dump_file)
2880 fprintf (dump_file, "Changed conditional jump "
2881 "%d->%d to conditional return, adding "
2882 "fall-through jump.\n",
2883 b->index, BRANCH_EDGE (b)->dest->index);
2884 redirect_edge_succ (BRANCH_EDGE (b),
2885 EXIT_BLOCK_PTR_FOR_FN (cfun));
2886 BRANCH_EDGE (b)->flags &= ~EDGE_CROSSING;
2887 std::swap (BRANCH_EDGE (b)->probability,
2888 FALLTHRU_EDGE (b)->probability);
2889 update_br_prob_note (b);
2890 basic_block jb = force_nonfallthru (FALLTHRU_EDGE (b));
2891 notice_new_block (jb);
2892 if (!redirect_jump (as_a <rtx_jump_insn *> (BB_END (jb)),
2893 block_label (new_ft), 0))
2894 gcc_unreachable ();
2895 redirect_edge_succ (single_succ_edge (jb), new_ft);
2896 changed_here = true;
2897 }
2898 else
2899 {
2900 /* Invert the jump back to what it was. This should
2901 never fail. */
2902 if (!invert_jump (as_a <rtx_jump_insn *> (BB_END (b)),
2903 JUMP_LABEL (BB_END (b)), 0))
2904 gcc_unreachable ();
2905 }
2906 }
2907 }
2908
e4ec2cac 2909 /* Simplify branch over branch. */
bc35512f
JH
2910 if ((mode & CLEANUP_EXPENSIVE)
2911 && !(mode & CLEANUP_CFGLAYOUT)
2912 && try_simplify_condjump (b))
38c1593d 2913 changed_here = true;
402209ff 2914
e4ec2cac
AO
2915 /* If B has a single outgoing edge, but uses a
2916 non-trivial jump instruction without side-effects, we
2917 can either delete the jump entirely, or replace it
3348b696 2918 with a simple unconditional jump. */
c5cbcccf 2919 if (single_succ_p (b)
fefa31b5 2920 && single_succ (b) != EXIT_BLOCK_PTR_FOR_FN (cfun)
a813c111 2921 && onlyjump_p (BB_END (b))
339ba33b 2922 && !CROSSING_JUMP_P (BB_END (b))
c5cbcccf
ZD
2923 && try_redirect_by_replacing_jump (single_succ_edge (b),
2924 single_succ (b),
20b4e8ae 2925 (mode & CLEANUP_CFGLAYOUT) != 0))
e4ec2cac 2926 {
e4ec2cac
AO
2927 update_forwarder_flag (b);
2928 changed_here = true;
2929 }
402209ff 2930
e4ec2cac
AO
2931 /* Simplify branch to branch. */
2932 if (try_forward_edges (mode, b))
afe8b6ec
EB
2933 {
2934 update_forwarder_flag (b);
2935 changed_here = true;
2936 }
402209ff 2937
e4ec2cac
AO
2938 /* Look for shared code between blocks. */
2939 if ((mode & CLEANUP_CROSSJUMP)
2940 && try_crossjump_bb (mode, b))
2941 changed_here = true;
402209ff 2942
4ec5d4f5
BS
2943 if ((mode & CLEANUP_CROSSJUMP)
2944 /* This can lengthen register lifetimes. Do it only after
2945 reload. */
2946 && reload_completed
2947 && try_head_merge_bb (b))
2948 changed_here = true;
2949
e4ec2cac
AO
2950 /* Don't get confused by the index shift caused by
2951 deleting blocks. */
2952 if (!changed_here)
e0082a72 2953 b = b->next_bb;
e4ec2cac
AO
2954 else
2955 changed = true;
2956 }
402209ff 2957
e4ec2cac 2958 if ((mode & CLEANUP_CROSSJUMP)
fefa31b5 2959 && try_crossjump_bb (mode, EXIT_BLOCK_PTR_FOR_FN (cfun)))
402209ff 2960 changed = true;
402209ff 2961
4ec5d4f5
BS
2962 if (block_was_dirty)
2963 {
2964 /* This should only be set by head-merging. */
2965 gcc_assert (mode & CLEANUP_CROSSJUMP);
2966 df_analyze ();
2967 }
2968
e4ec2cac 2969 if (changed)
600b5b1d
TJ
2970 {
2971 /* Edge forwarding in particular can cause hot blocks previously
2972 reached by both hot and cold blocks to become dominated only
2973 by cold blocks. This will cause the verification below to fail,
2974 and lead to now cold code in the hot section. This is not easy
2975 to detect and fix during edge forwarding, and in some cases
2976 is only visible after newly unreachable blocks are deleted,
2977 which will be done in fixup_partitions. */
3ff0dc17 2978 if ((mode & CLEANUP_NO_PARTITIONING) == 0)
3211aea2
JH
2979 {
2980 fixup_partitions ();
2981 checking_verify_flow_info ();
2982 }
600b5b1d 2983 }
402209ff 2984
e4ec2cac 2985 changed_overall |= changed;
7cf240d5 2986 first_pass = false;
e4ec2cac
AO
2987 }
2988 while (changed);
402209ff 2989 }
ca6c03ca 2990
04a90bec 2991 FOR_ALL_BB_FN (b, cfun)
2dd2d53e 2992 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
635559ab 2993
402209ff
JH
2994 return changed_overall;
2995}
2996\f
6d2f8887 2997/* Delete all unreachable basic blocks. */
4262e623 2998
969d70ca 2999bool
d329e058 3000delete_unreachable_blocks (void)
402209ff 3001{
402209ff 3002 bool changed = false;
b5b8b0ac 3003 basic_block b, prev_bb;
402209ff
JH
3004
3005 find_unreachable_blocks ();
3006
65f4b875
AO
3007 /* When we're in GIMPLE mode and there may be debug bind insns, we
3008 should delete blocks in reverse dominator order, so as to get a
3009 chance to substitute all released DEFs into debug bind stmts. If
3010 we don't have dominators information, walking blocks backward
3011 gets us a better chance of retaining most debug information than
b5b8b0ac 3012 otherwise. */
65f4b875 3013 if (MAY_HAVE_DEBUG_BIND_INSNS && current_ir_type () == IR_GIMPLE
b5b8b0ac 3014 && dom_info_available_p (CDI_DOMINATORS))
402209ff 3015 {
fefa31b5
DM
3016 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3017 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
b5b8b0ac
AO
3018 {
3019 prev_bb = b->prev_bb;
3020
3021 if (!(b->flags & BB_REACHABLE))
3022 {
3023 /* Speed up the removal of blocks that don't dominate
3024 others. Walking backwards, this should be the common
3025 case. */
3026 if (!first_dom_son (CDI_DOMINATORS, b))
3027 delete_basic_block (b);
3028 else
3029 {
53c55d32 3030 auto_vec<basic_block> h
b5b8b0ac
AO
3031 = get_all_dominated_blocks (CDI_DOMINATORS, b);
3032
9771b263 3033 while (h.length ())
b5b8b0ac 3034 {
9771b263 3035 b = h.pop ();
b5b8b0ac
AO
3036
3037 prev_bb = b->prev_bb;
0b17ab2f 3038
b5b8b0ac
AO
3039 gcc_assert (!(b->flags & BB_REACHABLE));
3040
3041 delete_basic_block (b);
3042 }
b5b8b0ac
AO
3043 }
3044
3045 changed = true;
3046 }
3047 }
3048 }
3049 else
3050 {
fefa31b5
DM
3051 for (b = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
3052 b != ENTRY_BLOCK_PTR_FOR_FN (cfun); b = prev_bb)
6a58eee9 3053 {
b5b8b0ac
AO
3054 prev_bb = b->prev_bb;
3055
3056 if (!(b->flags & BB_REACHABLE))
3057 {
3058 delete_basic_block (b);
3059 changed = true;
3060 }
6a58eee9 3061 }
402209ff
JH
3062 }
3063
3064 if (changed)
3065 tidy_fallthru_edges ();
3066 return changed;
3067}
6fb5fa3c
DB
3068
3069/* Delete any jump tables never referenced. We can't delete them at the
29f3fd5b
SB
3070 time of removing tablejump insn as they are referenced by the preceding
3071 insns computing the destination, so we delay deleting and garbagecollect
3072 them once life information is computed. */
6fb5fa3c
DB
3073void
3074delete_dead_jumptables (void)
3075{
3076 basic_block bb;
3077
29f3fd5b
SB
3078 /* A dead jump table does not belong to any basic block. Scan insns
3079 between two adjacent basic blocks. */
11cd3bed 3080 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c 3081 {
da5477a9 3082 rtx_insn *insn, *next;
29f3fd5b
SB
3083
3084 for (insn = NEXT_INSN (BB_END (bb));
3085 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
3086 insn = next)
57d6c446 3087 {
29f3fd5b
SB
3088 next = NEXT_INSN (insn);
3089 if (LABEL_P (insn)
3090 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
3091 && JUMP_TABLE_DATA_P (next))
3092 {
da5477a9 3093 rtx_insn *label = insn, *jump = next;
29f3fd5b
SB
3094
3095 if (dump_file)
3096 fprintf (dump_file, "Dead jumptable %i removed\n",
3097 INSN_UID (insn));
3098
3099 next = NEXT_INSN (next);
3100 delete_insn (jump);
3101 delete_insn (label);
3102 }
6fb5fa3c
DB
3103 }
3104 }
3105}
3106
402209ff
JH
3107\f
3108/* Tidy the CFG by deleting unreachable code and whatnot. */
3109
3110bool
d329e058 3111cleanup_cfg (int mode)
402209ff 3112{
402209ff
JH
3113 bool changed = false;
3114
aeceeb06
SB
3115 /* Set the cfglayout mode flag here. We could update all the callers
3116 but that is just inconvenient, especially given that we eventually
3117 want to have cfglayout mode as the default. */
3118 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3119 mode |= CLEANUP_CFGLAYOUT;
3120
402209ff 3121 timevar_push (TV_CLEANUP_CFG);
3dec4024
JH
3122 if (delete_unreachable_blocks ())
3123 {
3124 changed = true;
3125 /* We've possibly created trivially dead code. Cleanup it right
95bd1dd7 3126 now to introduce more opportunities for try_optimize_cfg. */
6fb5fa3c 3127 if (!(mode & (CLEANUP_NO_INSN_DEL))
3dec4024 3128 && !reload_completed)
62e5bf5d 3129 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3dec4024 3130 }
bf77398c
ZD
3131
3132 compact_blocks ();
3133
c1e3e2d9
SB
3134 /* To tail-merge blocks ending in the same noreturn function (e.g.
3135 a call to abort) we have to insert fake edges to exit. Do this
3136 here once. The fake edges do not interfere with any other CFG
3137 cleanups. */
3138 if (mode & CLEANUP_CROSSJUMP)
3139 add_noreturn_fake_exit_edges ();
3140
7d817ebc
DE
3141 if (!dbg_cnt (cfg_cleanup))
3142 return changed;
3143
3dec4024
JH
3144 while (try_optimize_cfg (mode))
3145 {
3146 delete_unreachable_blocks (), changed = true;
c1e3e2d9 3147 if (!(mode & CLEANUP_NO_INSN_DEL))
3dec4024 3148 {
c1e3e2d9
SB
3149 /* Try to remove some trivially dead insns when doing an expensive
3150 cleanup. But delete_trivially_dead_insns doesn't work after
3151 reload (it only handles pseudos) and run_fast_dce is too costly
3152 to run in every iteration.
3153
3154 For effective cross jumping, we really want to run a fast DCE to
3155 clean up any dead conditions, or they get in the way of performing
3156 useful tail merges.
3157
3158 Other transformations in cleanup_cfg are not so sensitive to dead
3159 code, so delete_trivially_dead_insns or even doing nothing at all
3160 is good enough. */
3161 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
3162 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3dec4024 3163 break;
bd2c6270 3164 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occurred)
f1f10541
RS
3165 {
3166 run_fast_dce ();
3167 mode &= ~CLEANUP_FORCE_FAST_DCE;
3168 }
3dec4024
JH
3169 }
3170 else
3171 break;
3dec4024 3172 }
402209ff 3173
c1e3e2d9
SB
3174 if (mode & CLEANUP_CROSSJUMP)
3175 remove_fake_exit_edges ();
3176
f1f10541
RS
3177 if (mode & CLEANUP_FORCE_FAST_DCE)
3178 run_fast_dce ();
3179
29f3fd5b
SB
3180 /* Don't call delete_dead_jumptables in cfglayout mode, because
3181 that function assumes that jump tables are in the insns stream.
3182 But we also don't _have_ to delete dead jumptables in cfglayout
3183 mode because we shouldn't even be looking at things that are
3184 not in a basic block. Dead jumptables are cleaned up when
3185 going out of cfglayout mode. */
3186 if (!(mode & CLEANUP_CFGLAYOUT))
6fb5fa3c
DB
3187 delete_dead_jumptables ();
3188
7d776ee2
RG
3189 /* ??? We probably do this way too often. */
3190 if (current_loops
3191 && (changed
3192 || (mode & CLEANUP_CFG_CHANGED)))
3193 {
7d776ee2
RG
3194 timevar_push (TV_REPAIR_LOOPS);
3195 /* The above doesn't preserve dominance info if available. */
3196 gcc_assert (!dom_info_available_p (CDI_DOMINATORS));
3197 calculate_dominance_info (CDI_DOMINATORS);
01cb1ef5 3198 fix_loop_structure (NULL);
7d776ee2
RG
3199 free_dominance_info (CDI_DOMINATORS);
3200 timevar_pop (TV_REPAIR_LOOPS);
3201 }
3202
402209ff
JH
3203 timevar_pop (TV_CLEANUP_CFG);
3204
402209ff
JH
3205 return changed;
3206}
ef330312 3207\f
27a4cd48
DM
3208namespace {
3209
3210const pass_data pass_data_jump =
11a687e7 3211{
27a4cd48
DM
3212 RTL_PASS, /* type */
3213 "jump", /* name */
3214 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3215 TV_JUMP, /* tv_id */
3216 0, /* properties_required */
3217 0, /* properties_provided */
3218 0, /* properties_destroyed */
3219 0, /* todo_flags_start */
3bea341f 3220 0, /* todo_flags_finish */
11a687e7 3221};
27a4cd48
DM
3222
3223class pass_jump : public rtl_opt_pass
3224{
3225public:
c3284718
RS
3226 pass_jump (gcc::context *ctxt)
3227 : rtl_opt_pass (pass_data_jump, ctxt)
27a4cd48
DM
3228 {}
3229
3230 /* opt_pass methods: */
be55bfe6 3231 virtual unsigned int execute (function *);
27a4cd48
DM
3232
3233}; // class pass_jump
3234
be55bfe6
TS
3235unsigned int
3236pass_jump::execute (function *)
3237{
3238 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3239 if (dump_file)
3240 dump_flow_info (dump_file, dump_flags);
3241 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
3242 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
3243 return 0;
3244}
3245
27a4cd48
DM
3246} // anon namespace
3247
3248rtl_opt_pass *
3249make_pass_jump (gcc::context *ctxt)
3250{
3251 return new pass_jump (ctxt);
3252}
11a687e7 3253\f
27a4cd48
DM
3254namespace {
3255
216779db 3256const pass_data pass_data_jump_after_combine =
98fe146e
IL
3257{
3258 RTL_PASS, /* type */
216779db 3259 "jump_after_combine", /* name */
98fe146e
IL
3260 OPTGROUP_NONE, /* optinfo_flags */
3261 TV_JUMP, /* tv_id */
3262 0, /* properties_required */
3263 0, /* properties_provided */
3264 0, /* properties_destroyed */
3265 0, /* todo_flags_start */
3266 0, /* todo_flags_finish */
3267};
3268
216779db 3269class pass_jump_after_combine : public rtl_opt_pass
98fe146e
IL
3270{
3271public:
216779db
IL
3272 pass_jump_after_combine (gcc::context *ctxt)
3273 : rtl_opt_pass (pass_data_jump_after_combine, ctxt)
98fe146e
IL
3274 {}
3275
3276 /* opt_pass methods: */
d19df8b2 3277 virtual bool gate (function *) { return flag_thread_jumps; }
98fe146e
IL
3278 virtual unsigned int execute (function *);
3279
216779db 3280}; // class pass_jump_after_combine
98fe146e
IL
3281
3282unsigned int
216779db 3283pass_jump_after_combine::execute (function *)
98fe146e 3284{
e2d3e85c
IL
3285 /* Jump threading does not keep dominators up-to-date. */
3286 free_dominance_info (CDI_DOMINATORS);
d19df8b2 3287 cleanup_cfg (CLEANUP_THREADING);
98fe146e
IL
3288 return 0;
3289}
3290
3291} // anon namespace
3292
3293rtl_opt_pass *
216779db 3294make_pass_jump_after_combine (gcc::context *ctxt)
98fe146e 3295{
216779db 3296 return new pass_jump_after_combine (ctxt);
98fe146e
IL
3297}
3298
3299namespace {
3300
27a4cd48 3301const pass_data pass_data_jump2 =
ef330312 3302{
27a4cd48
DM
3303 RTL_PASS, /* type */
3304 "jump2", /* name */
3305 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3306 TV_JUMP, /* tv_id */
3307 0, /* properties_required */
3308 0, /* properties_provided */
3309 0, /* properties_destroyed */
3310 0, /* todo_flags_start */
3bea341f 3311 0, /* todo_flags_finish */
ef330312 3312};
27a4cd48
DM
3313
3314class pass_jump2 : public rtl_opt_pass
3315{
3316public:
c3284718
RS
3317 pass_jump2 (gcc::context *ctxt)
3318 : rtl_opt_pass (pass_data_jump2, ctxt)
27a4cd48
DM
3319 {}
3320
3321 /* opt_pass methods: */
be55bfe6
TS
3322 virtual unsigned int execute (function *)
3323 {
3324 cleanup_cfg (flag_crossjumping ? CLEANUP_CROSSJUMP : 0);
3325 return 0;
3326 }
27a4cd48
DM
3327
3328}; // class pass_jump2
3329
3330} // anon namespace
3331
3332rtl_opt_pass *
3333make_pass_jump2 (gcc::context *ctxt)
3334{
3335 return new pass_jump2 (ctxt);
3336}