]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/m68k/m68k.c
(movqi+2): Add address registers.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
CommitLineData
79e68feb 1/* Subroutines for insn-output.c for Motorola 68000 family.
7bc88d49 2 Copyright (C) 1987, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
79e68feb
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
0e29e3c9
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
79e68feb
RS
20
21
22/* Some output-actions in m68k.md need these. */
23#include <stdio.h>
24#include "config.h"
25#include "rtl.h"
26#include "regs.h"
27#include "hard-reg-set.h"
28#include "real.h"
29#include "insn-config.h"
30#include "conditions.h"
31#include "insn-flags.h"
32#include "output.h"
33#include "insn-attr.h"
34
35/* Needed for use_return_insn. */
36#include "flags.h"
37
38#ifdef SUPPORT_SUN_FPA
39
40/* Index into this array by (register number >> 3) to find the
41 smallest class which contains that register. */
42enum reg_class regno_reg_class[]
43 = { DATA_REGS, ADDR_REGS, FP_REGS,
44 LO_FPA_REGS, LO_FPA_REGS, FPA_REGS, FPA_REGS };
45
46#endif /* defined SUPPORT_SUN_FPA */
47
9eb4f6fc
RS
48/* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
49 if SGS_SWITCH_TABLE. */
50int switch_table_difference_label_flag;
51
79e68feb
RS
52static rtx find_addr_reg ();
53rtx legitimize_pic_address ();
54\f
55
ef1dbfb0
RK
56/* Alignment to use for loops and jumps */
57/* Specify power of two alignment used for loops. */
58char *m68k_align_loops_string;
59/* Specify power of two alignment used for non-loop jumps. */
60char *m68k_align_jumps_string;
61/* Specify power of two alignment used for functions. */
62char *m68k_align_funcs_string;
63
64/* Specify power of two alignment used for loops. */
65int m68k_align_loops;
66/* Specify power of two alignment used for non-loop jumps. */
67int m68k_align_jumps;
68/* Specify power of two alignment used for functions. */
69int m68k_align_funcs;
70
2b3600ac
JL
71/* Nonzero if the last compare/test insn had FP operands. The
72 sCC expanders peek at this to determine what to do for the
73 68060, which has no fsCC instructions. */
74int m68k_last_compare_had_fp_operands;
ef1dbfb0
RK
75
76/* Sometimes certain combinations of command options do not make
77 sense on a particular target machine. You can define a macro
78 `OVERRIDE_OPTIONS' to take account of this. This macro, if
79 defined, is executed once just after all the command options have
80 been parsed.
81
82 Don't use this macro to turn on various extra optimizations for
83 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
84
85void
86override_options ()
87{
88 int def_align;
89
90 def_align = 1;
91
92 /* Validate -malign-loops= value, or provide default */
93 if (m68k_align_loops_string)
94 {
95 m68k_align_loops = atoi (m68k_align_loops_string);
96 if (m68k_align_loops < 1 || m68k_align_loops > MAX_CODE_ALIGN)
97 fatal ("-malign-loops=%d is not between 1 and %d",
98 m68k_align_loops, MAX_CODE_ALIGN);
99 }
100 else
101 m68k_align_loops = def_align;
102
103 /* Validate -malign-jumps= value, or provide default */
104 if (m68k_align_jumps_string)
105 {
106 m68k_align_jumps = atoi (m68k_align_jumps_string);
107 if (m68k_align_jumps < 1 || m68k_align_jumps > MAX_CODE_ALIGN)
108 fatal ("-malign-jumps=%d is not between 1 and %d",
109 m68k_align_jumps, MAX_CODE_ALIGN);
110 }
111 else
112 m68k_align_jumps = def_align;
113
114 /* Validate -malign-functions= value, or provide default */
115 if (m68k_align_funcs_string)
116 {
117 m68k_align_funcs = atoi (m68k_align_funcs_string);
118 if (m68k_align_funcs < 1 || m68k_align_funcs > MAX_CODE_ALIGN)
119 fatal ("-malign-functions=%d is not between 1 and %d",
120 m68k_align_funcs, MAX_CODE_ALIGN);
121 }
122 else
123 m68k_align_funcs = def_align;
124}
125\f
79e68feb
RS
126/* Emit a (use pic_offset_table_rtx) if we used PIC relocation in the
127 function at any time during the compilation process. In the future
64a184e9 128 we should try and eliminate the USE if we can easily determine that
79e68feb
RS
129 all PIC references were deleted from the current function. That would
130 save an address register */
131
6317749b 132void
64a184e9 133finalize_pic ()
79e68feb
RS
134{
135 if (flag_pic && current_function_uses_pic_offset_table)
adedad3e
RK
136 {
137 rtx insn = gen_rtx (USE, VOIDmode, pic_offset_table_rtx);
138 emit_insn_after (insn, get_insns ());
139 emit_insn (insn);
140 }
79e68feb
RS
141}
142
143\f
144/* This function generates the assembly code for function entry.
145 STREAM is a stdio stream to output the code to.
146 SIZE is an int: how many units of temporary storage to allocate.
147 Refer to the array `regs_ever_live' to determine which registers
148 to save; `regs_ever_live[I]' is nonzero if register number I
149 is ever used in the function. This function is responsible for
150 knowing which registers should not be saved even if used. */
151
152
153/* Note that the order of the bit mask for fmovem is the opposite
154 of the order for movem! */
155
156
157void
158output_function_prologue (stream, size)
159 FILE *stream;
160 int size;
161{
162 register int regno;
163 register int mask = 0;
164 int num_saved_regs = 0;
165 extern char call_used_regs[];
166 int fsize = (size + 3) & -4;
167
168
169 if (frame_pointer_needed)
170 {
2d0933a2 171 if (fsize == 0 && TARGET_68040)
e4e873f1
RK
172 {
173 /* on the 68040, pea + move is faster than link.w 0 */
174#ifdef MOTOROLA
175 asm_fprintf (stream, "\tpea (%s)\n\tmove.l %s,%s\n",
176 reg_names[FRAME_POINTER_REGNUM], reg_names[STACK_POINTER_REGNUM],
177 reg_names[FRAME_POINTER_REGNUM]);
178#else
2d0933a2 179 asm_fprintf (stream, "\tpea %s@\n\tmovel %s,%s\n",
e4e873f1
RK
180 reg_names[FRAME_POINTER_REGNUM], reg_names[STACK_POINTER_REGNUM],
181 reg_names[FRAME_POINTER_REGNUM]);
182#endif
183 }
184 else if (fsize < 0x8000)
79e68feb
RS
185 {
186#ifdef MOTOROLA
338818c7 187 asm_fprintf (stream, "\tlink.w %s,%0I%d\n",
79e68feb
RS
188 reg_names[FRAME_POINTER_REGNUM], -fsize);
189#else
338818c7 190 asm_fprintf (stream, "\tlink %s,%0I%d\n",
79e68feb
RS
191 reg_names[FRAME_POINTER_REGNUM], -fsize);
192#endif
193 }
194 else if (TARGET_68020)
195 {
196#ifdef MOTOROLA
338818c7 197 asm_fprintf (stream, "\tlink.l %s,%0I%d\n",
79e68feb
RS
198 reg_names[FRAME_POINTER_REGNUM], -fsize);
199#else
338818c7 200 asm_fprintf (stream, "\tlink %s,%0I%d\n",
79e68feb
RS
201 reg_names[FRAME_POINTER_REGNUM], -fsize);
202#endif
203 }
204 else
205 {
e4e873f1 206 /* Adding negative number is faster on the 68040. */
79e68feb 207#ifdef MOTOROLA
cffd0d74 208 asm_fprintf (stream, "\tlink.w %s,%0I0\n\tadd.l %0I%d,%Rsp\n",
79e68feb
RS
209 reg_names[FRAME_POINTER_REGNUM], -fsize);
210#else
cffd0d74 211 asm_fprintf (stream, "\tlink %s,%0I0\n\taddl %0I%d,%Rsp\n",
79e68feb
RS
212 reg_names[FRAME_POINTER_REGNUM], -fsize);
213#endif
214 }
215 }
216 else if (fsize)
217 {
afaff477 218 if (fsize + 4 < 0x8000)
79e68feb 219 {
7bc88d49
RK
220#ifdef NO_ADDSUB_Q
221 if (fsize + 4 <= 8)
afaff477 222 {
7bc88d49
RK
223 if (!TARGET_5200)
224 {
225 /* asm_fprintf() cannot handle %. */
2d0933a2 226#ifdef MOTOROLA
7bc88d49 227 asm_fprintf (stream, "\tsubq.w %OI%d,%Rsp\n", fsize + 4);
2d0933a2 228#else
7bc88d49 229 asm_fprintf (stream, "\tsubqw %OI%d,%Rsp\n", fsize + 4);
2d0933a2 230#endif
7bc88d49
RK
231 }
232 else
233 {
a7e2b014 234 /* asm_fprintf() cannot handle %. */
7bc88d49
RK
235#ifdef MOTOROLA
236 asm_fprintf (stream, "\tsubq.l %OI%d,%Rsp\n", fsize + 4);
237#else
238 asm_fprintf (stream, "\tsubql %OI%d,%Rsp\n", fsize + 4);
239#endif
240 }
afaff477 241 }
7bc88d49
RK
242 else if (fsize + 4 <= 16 && TARGET_CPU32)
243 {
244 /* On the CPU32 it is faster to use two subqw instructions to
245 subtract a small integer (8 < N <= 16) to a register. */
246 /* asm_fprintf() cannot handle %. */
247#ifdef MOTOROLA
248 asm_fprintf (stream, "\tsubq.w %OI8,%Rsp\n\tsubq.w %OI%d,%Rsp\n",
249 fsize + 4);
250#else
251 asm_fprintf (stream, "\tsubqw %OI8,%Rsp\n\tsubqw %OI%d,%Rsp\n",
252 fsize + 4);
253#endif
254 }
255 else
256#endif /* NO_ADDSUB_Q */
257 if (TARGET_68040)
afaff477 258 {
7bc88d49 259 /* Adding negative number is faster on the 68040. */
afaff477
RK
260 /* asm_fprintf() cannot handle %. */
261#ifdef MOTOROLA
262 asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", - (fsize + 4));
263#else
264 asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", - (fsize + 4));
7bc88d49
RK
265#endif
266 }
267 else
268 {
7bc88d49
RK
269#ifdef MOTOROLA
270 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", - (fsize + 4));
271#else
272 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", - (fsize + 4));
afaff477
RK
273#endif
274 }
79e68feb
RS
275 }
276 else
277 {
2d0933a2
RK
278 /* asm_fprintf() cannot handle %. */
279#ifdef MOTOROLA
280 asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", - (fsize + 4));
281#else
282 asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", - (fsize + 4));
283#endif
79e68feb
RS
284 }
285 }
286#ifdef SUPPORT_SUN_FPA
287 for (regno = 24; regno < 56; regno++)
288 if (regs_ever_live[regno] && ! call_used_regs[regno])
289 {
290#ifdef MOTOROLA
291 asm_fprintf (stream, "\tfpmovd %s,-(%Rsp)\n",
292 reg_names[regno]);
293#else
294 asm_fprintf (stream, "\tfpmoved %s,%Rsp@-\n",
295 reg_names[regno]);
296#endif
297 }
298#endif
f277471f 299 if (TARGET_68881)
79e68feb 300 {
f277471f
RK
301 for (regno = 16; regno < 24; regno++)
302 if (regs_ever_live[regno] && ! call_used_regs[regno])
303 mask |= 1 << (regno - 16);
304 if ((mask & 0xff) != 0)
305 {
79e68feb 306#ifdef MOTOROLA
f277471f 307 asm_fprintf (stream, "\tfmovm %0I0x%x,-(%Rsp)\n", mask & 0xff);
79e68feb 308#else
f277471f 309 asm_fprintf (stream, "\tfmovem %0I0x%x,%Rsp@-\n", mask & 0xff);
79e68feb 310#endif
f277471f
RK
311 }
312 mask = 0;
79e68feb 313 }
79e68feb
RS
314 for (regno = 0; regno < 16; regno++)
315 if (regs_ever_live[regno] && ! call_used_regs[regno])
316 {
317 mask |= 1 << (15 - regno);
318 num_saved_regs++;
319 }
320 if (frame_pointer_needed)
321 {
322 mask &= ~ (1 << (15 - FRAME_POINTER_REGNUM));
323 num_saved_regs--;
324 }
99df2465
RS
325
326#if NEED_PROBE
a7e2b014
RK
327#ifdef MOTOROLA
328#ifdef CRDS
329 asm_fprintf (stream, "\ttstl %d(%Rsp)\n", NEED_PROBE - num_saved_regs * 4);
330#else
331 asm_fprintf (stream, "\ttst.l %d(%Rsp)\n", NEED_PROBE - num_saved_regs * 4);
332#endif
333#else
81bd5278 334 asm_fprintf (stream, "\ttstl %Rsp@(%d)\n", NEED_PROBE - num_saved_regs * 4);
a7e2b014 335#endif
99df2465
RS
336#endif
337
79e68feb
RS
338 if (num_saved_regs <= 2)
339 {
340 /* Store each separately in the same order moveml uses.
341 Using two movel instructions instead of a single moveml
342 is about 15% faster for the 68020 and 68030 at no expense
343 in code size */
344
345 int i;
346
347 /* Undo the work from above. */
348 for (i = 0; i< 16; i++)
349 if (mask & (1 << i))
350 asm_fprintf (stream,
351#ifdef MOTOROLA
64a184e9 352 "\t%Omove.l %s,-(%Rsp)\n",
79e68feb
RS
353#else
354 "\tmovel %s,%Rsp@-\n",
355#endif
356 reg_names[15 - i]);
357 }
358 else if (mask)
359 {
afaff477
RK
360 if (TARGET_5200)
361 {
362 /* The coldfire does not support the predecrement form of the
363 movml instruction, so we must adjust the stack pointer and
364 then use the plain address register indirect mode. We also
365 have to invert the register save mask to use the new mode.
366
367 FIXME: if num_saved_regs was calculated earlier, we could
368 combine the stack pointer adjustment with any adjustment
369 done when the initial stack frame is created. This would
370 save an instruction */
371
372 int newmask = 0;
373 int i;
374
375 for (i = 0; i < 16; i++)
376 if (mask & (1 << i))
377 newmask |= (1 << (15-i));
378
379#ifdef MOTOROLA
de649959 380 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", -num_saved_regs*4);
afaff477
RK
381 asm_fprintf (stream, "\tmovm.l %0I0x%x,(%Rsp)\n", newmask);
382#else
de649959 383 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", -num_saved_regs*4);
afaff477
RK
384 asm_fprintf (stream, "\tmoveml %0I0x%x,%Rsp@\n", newmask);
385#endif
386 }
387 else
388 {
79e68feb 389#ifdef MOTOROLA
afaff477 390 asm_fprintf (stream, "\tmovm.l %0I0x%x,-(%Rsp)\n", mask);
79e68feb 391#else
afaff477 392 asm_fprintf (stream, "\tmoveml %0I0x%x,%Rsp@-\n", mask);
79e68feb 393#endif
afaff477 394 }
79e68feb
RS
395 }
396 if (flag_pic && current_function_uses_pic_offset_table)
397 {
398#ifdef MOTOROLA
66c432a7 399 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
79e68feb
RS
400 reg_names[PIC_OFFSET_TABLE_REGNUM]);
401#else
cffd0d74 402 asm_fprintf (stream, "\tmovel %0I__GLOBAL_OFFSET_TABLE_, %s\n",
79e68feb
RS
403 reg_names[PIC_OFFSET_TABLE_REGNUM]);
404 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
405 reg_names[PIC_OFFSET_TABLE_REGNUM],
406 reg_names[PIC_OFFSET_TABLE_REGNUM]);
407#endif
408 }
409}
410\f
411/* Return true if this function's epilogue can be output as RTL. */
412
413int
414use_return_insn ()
415{
416 int regno;
417
418 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
419 return 0;
420
421 /* Copied from output_function_epilogue (). We should probably create a
422 separate layout routine to perform the common work. */
423
424 for (regno = 0 ; regno < FIRST_PSEUDO_REGISTER ; regno++)
425 if (regs_ever_live[regno] && ! call_used_regs[regno])
426 return 0;
427
428 return 1;
429}
430
431/* This function generates the assembly code for function exit,
432 on machines that need it. Args are same as for FUNCTION_PROLOGUE.
433
434 The function epilogue should not depend on the current stack pointer!
435 It should use the frame pointer only, if there is a frame pointer.
436 This is mandatory because of alloca; we also take advantage of it to
437 omit stack adjustments before returning. */
438
439void
440output_function_epilogue (stream, size)
441 FILE *stream;
442 int size;
443{
444 register int regno;
445 register int mask, fmask;
446 register int nregs;
447 int offset, foffset, fpoffset;
448 extern char call_used_regs[];
449 int fsize = (size + 3) & -4;
450 int big = 0;
451 rtx insn = get_last_insn ();
6910dd70 452 int restore_from_sp = 0;
79e68feb
RS
453
454 /* If the last insn was a BARRIER, we don't have to write any code. */
455 if (GET_CODE (insn) == NOTE)
456 insn = prev_nonnote_insn (insn);
457 if (insn && GET_CODE (insn) == BARRIER)
cffd0d74
RS
458 {
459 /* Output just a no-op so that debuggers don't get confused
460 about which function the pc is in at this address. */
461 asm_fprintf (stream, "\tnop\n");
462 return;
463 }
79e68feb 464
b69649e4
RK
465#ifdef FUNCTION_BLOCK_PROFILER_EXIT
466 if (profile_block_flag == 2)
467 {
468 FUNCTION_BLOCK_PROFILER_EXIT (stream);
469 }
470#endif
471
79e68feb
RS
472#ifdef FUNCTION_EXTRA_EPILOGUE
473 FUNCTION_EXTRA_EPILOGUE (stream, size);
474#endif
475 nregs = 0; fmask = 0; fpoffset = 0;
476#ifdef SUPPORT_SUN_FPA
477 for (regno = 24 ; regno < 56 ; regno++)
478 if (regs_ever_live[regno] && ! call_used_regs[regno])
479 nregs++;
480 fpoffset = nregs * 8;
481#endif
482 nregs = 0;
f277471f
RK
483 if (TARGET_68881)
484 {
485 for (regno = 16; regno < 24; regno++)
486 if (regs_ever_live[regno] && ! call_used_regs[regno])
487 {
488 nregs++;
489 fmask |= 1 << (23 - regno);
490 }
491 }
79e68feb
RS
492 foffset = fpoffset + nregs * 12;
493 nregs = 0; mask = 0;
494 if (frame_pointer_needed)
495 regs_ever_live[FRAME_POINTER_REGNUM] = 0;
496 for (regno = 0; regno < 16; regno++)
497 if (regs_ever_live[regno] && ! call_used_regs[regno])
498 {
499 nregs++;
500 mask |= 1 << regno;
501 }
502 offset = foffset + nregs * 4;
c67ddce5
RK
503 /* FIXME : leaf_function_p below is too strong.
504 What we really need to know there is if there could be pending
505 stack adjustment needed at that point. */
6910dd70
RK
506 restore_from_sp = ! frame_pointer_needed
507 || (! current_function_calls_alloca && leaf_function_p ());
79e68feb 508 if (offset + fsize >= 0x8000
6910dd70 509 && ! restore_from_sp
79e68feb
RS
510 && (mask || fmask || fpoffset))
511 {
512#ifdef MOTOROLA
e7eefaec 513 asm_fprintf (stream, "\t%Omove.l %0I%d,%Ra1\n", -fsize);
79e68feb 514#else
e7eefaec 515 asm_fprintf (stream, "\tmovel %0I%d,%Ra1\n", -fsize);
79e68feb
RS
516#endif
517 fsize = 0, big = 1;
518 }
afaff477 519 if (TARGET_5200 || nregs <= 2)
79e68feb
RS
520 {
521 /* Restore each separately in the same order moveml does.
522 Using two movel instructions instead of a single moveml
523 is about 15% faster for the 68020 and 68030 at no expense
524 in code size. */
525
526 int i;
527
528 /* Undo the work from above. */
529 for (i = 0; i< 16; i++)
530 if (mask & (1 << i))
531 {
532 if (big)
533 {
534#ifdef MOTOROLA
e7eefaec 535 asm_fprintf (stream, "\t%Omove.l -%d(%s,%Ra1.l),%s\n",
79e68feb
RS
536 offset + fsize,
537 reg_names[FRAME_POINTER_REGNUM],
538 reg_names[i]);
539#else
e7eefaec 540 asm_fprintf (stream, "\tmovel %s@(-%d,%Ra1:l),%s\n",
79e68feb
RS
541 reg_names[FRAME_POINTER_REGNUM],
542 offset + fsize, reg_names[i]);
543#endif
544 }
6910dd70 545 else if (restore_from_sp)
79e68feb
RS
546 {
547#ifdef MOTOROLA
64a184e9 548 asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
79e68feb
RS
549 reg_names[i]);
550#else
551 asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
552 reg_names[i]);
553#endif
554 }
555 else
556 {
557#ifdef MOTOROLA
64a184e9 558 asm_fprintf (stream, "\t%Omove.l -%d(%s),%s\n",
79e68feb
RS
559 offset + fsize,
560 reg_names[FRAME_POINTER_REGNUM],
561 reg_names[i]);
562#else
563 asm_fprintf (stream, "\tmovel %s@(-%d),%s\n",
564 reg_names[FRAME_POINTER_REGNUM],
565 offset + fsize, reg_names[i]);
566#endif
567 }
568 offset = offset - 4;
569 }
570 }
571 else if (mask)
572 {
573 if (big)
574 {
575#ifdef MOTOROLA
e7eefaec 576 asm_fprintf (stream, "\tmovm.l -%d(%s,%Ra1.l),%0I0x%x\n",
79e68feb
RS
577 offset + fsize,
578 reg_names[FRAME_POINTER_REGNUM],
579 mask);
580#else
e7eefaec 581 asm_fprintf (stream, "\tmoveml %s@(-%d,%Ra1:l),%0I0x%x\n",
79e68feb
RS
582 reg_names[FRAME_POINTER_REGNUM],
583 offset + fsize, mask);
584#endif
585 }
6910dd70 586 else if (restore_from_sp)
79e68feb
RS
587 {
588#ifdef MOTOROLA
cffd0d74 589 asm_fprintf (stream, "\tmovm.l (%Rsp)+,%0I0x%x\n", mask);
79e68feb 590#else
cffd0d74 591 asm_fprintf (stream, "\tmoveml %Rsp@+,%0I0x%x\n", mask);
79e68feb
RS
592#endif
593 }
594 else
595 {
596#ifdef MOTOROLA
cffd0d74 597 asm_fprintf (stream, "\tmovm.l -%d(%s),%0I0x%x\n",
79e68feb
RS
598 offset + fsize,
599 reg_names[FRAME_POINTER_REGNUM],
600 mask);
601#else
cffd0d74 602 asm_fprintf (stream, "\tmoveml %s@(-%d),%0I0x%x\n",
79e68feb
RS
603 reg_names[FRAME_POINTER_REGNUM],
604 offset + fsize, mask);
605#endif
606 }
607 }
608 if (fmask)
609 {
610 if (big)
611 {
612#ifdef MOTOROLA
e7eefaec 613 asm_fprintf (stream, "\tfmovm -%d(%s,%Ra1.l),%0I0x%x\n",
79e68feb
RS
614 foffset + fsize,
615 reg_names[FRAME_POINTER_REGNUM],
616 fmask);
617#else
e7eefaec 618 asm_fprintf (stream, "\tfmovem %s@(-%d,%Ra1:l),%0I0x%x\n",
79e68feb
RS
619 reg_names[FRAME_POINTER_REGNUM],
620 foffset + fsize, fmask);
621#endif
622 }
6910dd70 623 else if (restore_from_sp)
79e68feb
RS
624 {
625#ifdef MOTOROLA
cffd0d74 626 asm_fprintf (stream, "\tfmovm (%Rsp)+,%0I0x%x\n", fmask);
79e68feb 627#else
cffd0d74 628 asm_fprintf (stream, "\tfmovem %Rsp@+,%0I0x%x\n", fmask);
79e68feb
RS
629#endif
630 }
631 else
632 {
633#ifdef MOTOROLA
cffd0d74 634 asm_fprintf (stream, "\tfmovm -%d(%s),%0I0x%x\n",
79e68feb
RS
635 foffset + fsize,
636 reg_names[FRAME_POINTER_REGNUM],
637 fmask);
638#else
cffd0d74 639 asm_fprintf (stream, "\tfmovem %s@(-%d),%0I0x%x\n",
79e68feb
RS
640 reg_names[FRAME_POINTER_REGNUM],
641 foffset + fsize, fmask);
642#endif
643 }
644 }
645 if (fpoffset != 0)
646 for (regno = 55; regno >= 24; regno--)
647 if (regs_ever_live[regno] && ! call_used_regs[regno])
648 {
649 if (big)
650 {
651#ifdef MOTOROLA
e7eefaec 652 asm_fprintf (stream, "\tfpmovd -%d(%s,%Ra1.l), %s\n",
79e68feb
RS
653 fpoffset + fsize,
654 reg_names[FRAME_POINTER_REGNUM],
655 reg_names[regno]);
656#else
e7eefaec 657 asm_fprintf (stream, "\tfpmoved %s@(-%d,%Ra1:l), %s\n",
79e68feb
RS
658 reg_names[FRAME_POINTER_REGNUM],
659 fpoffset + fsize, reg_names[regno]);
660#endif
661 }
6910dd70 662 else if (restore_from_sp)
79e68feb
RS
663 {
664#ifdef MOTOROLA
665 asm_fprintf (stream, "\tfpmovd (%Rsp)+,%s\n",
666 reg_names[regno]);
667#else
668 asm_fprintf (stream, "\tfpmoved %Rsp@+, %s\n",
669 reg_names[regno]);
670#endif
671 }
672 else
673 {
674#ifdef MOTOROLA
675 asm_fprintf (stream, "\tfpmovd -%d(%s), %s\n",
676 fpoffset + fsize,
677 reg_names[FRAME_POINTER_REGNUM],
678 reg_names[regno]);
679#else
680 asm_fprintf (stream, "\tfpmoved %s@(-%d), %s\n",
681 reg_names[FRAME_POINTER_REGNUM],
682 fpoffset + fsize, reg_names[regno]);
683#endif
684 }
685 fpoffset -= 8;
686 }
687 if (frame_pointer_needed)
688 fprintf (stream, "\tunlk %s\n",
689 reg_names[FRAME_POINTER_REGNUM]);
690 else if (fsize)
691 {
7bc88d49
RK
692#ifdef NO_ADDSUB_Q
693 if (fsize + 4 <= 8)
79e68feb 694 {
7bc88d49
RK
695 if (!TARGET_5200)
696 {
2d0933a2 697#ifdef MOTOROLA
7bc88d49 698 asm_fprintf (stream, "\taddq.w %OI%d,%Rsp\n", fsize + 4);
2d0933a2 699#else
7bc88d49 700 asm_fprintf (stream, "\taddqw %OI%d,%Rsp\n", fsize + 4);
2d0933a2 701#endif
afaff477
RK
702 }
703 else
704 {
7bc88d49
RK
705#ifdef MOTOROLA
706 asm_fprintf (stream, "\taddq.l %OI%d,%Rsp\n", fsize + 4);
707#else
708 asm_fprintf (stream, "\taddql %OI%d,%Rsp\n", fsize + 4);
709#endif
710 }
711 }
712 else if (fsize + 4 <= 16 && TARGET_CPU32)
713 {
714 /* On the CPU32 it is faster to use two addqw instructions to
715 add a small integer (8 < N <= 16) to a register. */
a7e2b014 716 /* asm_fprintf() cannot handle %. */
7bc88d49
RK
717#ifdef MOTOROLA
718 asm_fprintf (stream, "\taddq.w %OI8,%Rsp\n\taddq.w %OI%d,%Rsp\n",
719 fsize + 4);
720#else
721 asm_fprintf (stream, "\taddqw %OI8,%Rsp\n\taddqw %OI%d,%Rsp\n",
722 fsize + 4);
723#endif
724 }
725 else
726#endif /* NO_ADDSUB_Q */
727 if (fsize + 4 < 0x8000)
728 {
729 if (TARGET_68040)
730 {
afaff477
RK
731 /* asm_fprintf() cannot handle %. */
732#ifdef MOTOROLA
733 asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", fsize + 4);
734#else
735 asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", fsize + 4);
7bc88d49
RK
736#endif
737 }
738 else
739 {
7bc88d49
RK
740#ifdef MOTOROLA
741 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", fsize + 4);
742#else
743 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", fsize + 4);
afaff477
RK
744#endif
745 }
79e68feb
RS
746 }
747 else
748 {
2d0933a2
RK
749 /* asm_fprintf() cannot handle %. */
750#ifdef MOTOROLA
751 asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", fsize + 4);
752#else
753 asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", fsize + 4);
754#endif
79e68feb
RS
755 }
756 }
757 if (current_function_pops_args)
338818c7 758 asm_fprintf (stream, "\trtd %0I%d\n", current_function_pops_args);
79e68feb
RS
759 else
760 fprintf (stream, "\trts\n");
761}
762\f
763/* Similar to general_operand, but exclude stack_pointer_rtx. */
764
765int
766not_sp_operand (op, mode)
767 register rtx op;
768 enum machine_mode mode;
769{
770 return op != stack_pointer_rtx && general_operand (op, mode);
771}
772
64a184e9
RS
773/* Return TRUE if X is a valid comparison operator for the dbcc
774 instruction.
775
776 Note it rejects floating point comparison operators.
777 (In the future we could use Fdbcc).
778
779 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
780
781int
782valid_dbcc_comparison_p (x, mode)
783 rtx x;
784 enum machine_mode mode;
785{
64a184e9
RS
786 switch (GET_CODE (x))
787 {
64a184e9
RS
788 case EQ: case NE: case GTU: case LTU:
789 case GEU: case LEU:
790 return 1;
791
792 /* Reject some when CC_NO_OVERFLOW is set. This may be over
793 conservative */
794 case GT: case LT: case GE: case LE:
795 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
796 default:
797 return 0;
798 }
799}
800
6a0f85e3
TG
801/* Return non-zero if flags are currently in the 68881 flag register. */
802int
803flags_in_68881 ()
804{
805 /* We could add support for these in the future */
806 return cc_status.flags & CC_IN_68881;
807}
808
64a184e9
RS
809/* Output a dbCC; jCC sequence. Note we do not handle the
810 floating point version of this sequence (Fdbcc). We also
811 do not handle alternative conditions when CC_NO_OVERFLOW is
6a0f85e3
TG
812 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
813 kick those out before we get here. */
64a184e9
RS
814
815output_dbcc_and_branch (operands)
816 rtx *operands;
817{
64a184e9
RS
818 switch (GET_CODE (operands[3]))
819 {
820 case EQ:
821#ifdef MOTOROLA
822 output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
823#else
824 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
825#endif
826 break;
827
828 case NE:
829#ifdef MOTOROLA
830 output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
831#else
832 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
833#endif
834 break;
835
836 case GT:
837#ifdef MOTOROLA
838 output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
839#else
840 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
841#endif
842 break;
843
844 case GTU:
845#ifdef MOTOROLA
846 output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
847#else
848 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
849#endif
850 break;
851
852 case LT:
853#ifdef MOTOROLA
854 output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
855#else
856 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
857#endif
858 break;
859
860 case LTU:
861#ifdef MOTOROLA
862 output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
863#else
864 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
865#endif
866 break;
867
868 case GE:
869#ifdef MOTOROLA
870 output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
871#else
872 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
873#endif
874 break;
875
876 case GEU:
877#ifdef MOTOROLA
878 output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
879#else
880 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
881#endif
882 break;
883
884 case LE:
885#ifdef MOTOROLA
886 output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
887#else
888 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
889#endif
890 break;
891
892 case LEU:
893#ifdef MOTOROLA
894 output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
895#else
896 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
897#endif
898 break;
899
900 default:
901 abort ();
902 }
903
904 /* If the decrement is to be done in SImode, then we have
905 to compensate for the fact that dbcc decrements in HImode. */
906 switch (GET_MODE (operands[0]))
907 {
908 case SImode:
909#ifdef MOTOROLA
910 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
911#else
912 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
913#endif
914 break;
915
916 case HImode:
917 break;
918
919 default:
920 abort ();
921 }
922}
923
c59c3b1c
RK
924char *
925output_scc_di(op, operand1, operand2, dest)
926 rtx op;
927 rtx operand1;
928 rtx operand2;
929 rtx dest;
930{
931 rtx loperands[7];
d9832fd2 932 enum rtx_code op_code = GET_CODE (op);
c59c3b1c 933
906a2d3c
RK
934 /* This does not produce a usefull cc. */
935 CC_STATUS_INIT;
936
d9832fd2
RK
937 /* The m68k cmp.l instruction requires operand1 to be a reg as used
938 below. Swap the operands and change the op if these requirements
939 are not fulfilled. */
940 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
941 {
942 rtx tmp = operand1;
943
944 operand1 = operand2;
945 operand2 = tmp;
946 op_code = swap_condition (op_code);
947 }
c59c3b1c
RK
948 loperands[0] = operand1;
949 if (GET_CODE (operand1) == REG)
950 loperands[1] = gen_rtx (REG, SImode, REGNO (operand1) + 1);
951 else
952 loperands[1] = adj_offsettable_operand (operand1, 4);
953 if (operand2 != const0_rtx)
954 {
955 loperands[2] = operand2;
956 if (GET_CODE (operand2) == REG)
957 loperands[3] = gen_rtx (REG, SImode, REGNO (operand2) + 1);
958 else
959 loperands[3] = adj_offsettable_operand (operand2, 4);
960 }
961 loperands[4] = gen_label_rtx();
962 if (operand2 != const0_rtx)
963#ifdef MOTOROLA
f2121711 964#ifdef SGS_CMP_ORDER
c59c3b1c
RK
965 output_asm_insn ("cmp%.l %0,%2\n\tjbne %l4\n\tcmp%.l %1,%3", loperands);
966#else
f2121711
RK
967 output_asm_insn ("cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1", loperands);
968#endif
969#else
970#ifdef SGS_CMP_ORDER
c59c3b1c 971 output_asm_insn ("cmp%.l %0,%2\n\tjne %l4\n\tcmp%.l %1,%3", loperands);
f2121711
RK
972#else
973 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
974#endif
c59c3b1c
RK
975#endif
976 else
977#ifdef MOTOROLA
978 output_asm_insn ("tst%.l %0\n\tjbne %l4\n\ttst%.l %1", loperands);
979#else
980 output_asm_insn ("tst%.l %0\n\tjne %l4\n\ttst%.l %1", loperands);
981#endif
982 loperands[5] = dest;
983
d9832fd2 984 switch (op_code)
c59c3b1c
RK
985 {
986 case EQ:
987 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
988 CODE_LABEL_NUMBER (loperands[4]));
989 output_asm_insn ("seq %5", loperands);
990 break;
991
992 case NE:
993 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
994 CODE_LABEL_NUMBER (loperands[4]));
995 output_asm_insn ("sne %5", loperands);
996 break;
997
998 case GT:
999 loperands[6] = gen_label_rtx();
1000#ifdef MOTOROLA
1001 output_asm_insn ("shi %5\n\tjbra %l6", loperands);
1002#else
1003 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1004#endif
1005 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1006 CODE_LABEL_NUMBER (loperands[4]));
1007 output_asm_insn ("sgt %5", loperands);
1008 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1009 CODE_LABEL_NUMBER (loperands[6]));
1010 break;
1011
1012 case GTU:
1013 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1014 CODE_LABEL_NUMBER (loperands[4]));
1015 output_asm_insn ("shi %5", loperands);
1016 break;
1017
1018 case LT:
1019 loperands[6] = gen_label_rtx();
1020#ifdef MOTOROLA
1021 output_asm_insn ("scs %5\n\tjbra %l6", loperands);
1022#else
1023 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1024#endif
1025 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1026 CODE_LABEL_NUMBER (loperands[4]));
1027 output_asm_insn ("slt %5", loperands);
1028 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1029 CODE_LABEL_NUMBER (loperands[6]));
1030 break;
1031
1032 case LTU:
1033 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1034 CODE_LABEL_NUMBER (loperands[4]));
1035 output_asm_insn ("scs %5", loperands);
1036 break;
1037
1038 case GE:
1039 loperands[6] = gen_label_rtx();
1040#ifdef MOTOROLA
1041 output_asm_insn ("scc %5\n\tjbra %l6", loperands);
1042#else
1043 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1044#endif
1045 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1046 CODE_LABEL_NUMBER (loperands[4]));
1047 output_asm_insn ("sge %5", loperands);
1048 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1049 CODE_LABEL_NUMBER (loperands[6]));
1050 break;
1051
1052 case GEU:
1053 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1054 CODE_LABEL_NUMBER (loperands[4]));
1055 output_asm_insn ("scc %5", loperands);
1056 break;
1057
1058 case LE:
1059 loperands[6] = gen_label_rtx();
1060#ifdef MOTOROLA
1061 output_asm_insn ("sls %5\n\tjbra %l6", loperands);
1062#else
1063 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1064#endif
1065 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1066 CODE_LABEL_NUMBER (loperands[4]));
1067 output_asm_insn ("sle %5", loperands);
1068 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1069 CODE_LABEL_NUMBER (loperands[6]));
1070 break;
1071
1072 case LEU:
1073 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1074 CODE_LABEL_NUMBER (loperands[4]));
1075 output_asm_insn ("sls %5", loperands);
1076 break;
1077
1078 default:
1079 abort ();
1080 }
1081 return "";
1082}
1083
79e68feb
RS
1084char *
1085output_btst (operands, countop, dataop, insn, signpos)
1086 rtx *operands;
1087 rtx countop, dataop;
1088 rtx insn;
1089 int signpos;
1090{
1091 operands[0] = countop;
1092 operands[1] = dataop;
1093
1094 if (GET_CODE (countop) == CONST_INT)
1095 {
1096 register int count = INTVAL (countop);
1097 /* If COUNT is bigger than size of storage unit in use,
1098 advance to the containing unit of same size. */
1099 if (count > signpos)
1100 {
1101 int offset = (count & ~signpos) / 8;
1102 count = count & signpos;
1103 operands[1] = dataop = adj_offsettable_operand (dataop, offset);
1104 }
1105 if (count == signpos)
1106 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1107 else
1108 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1109
1110 /* These three statements used to use next_insns_test_no...
1111 but it appears that this should do the same job. */
1112 if (count == 31
1113 && next_insn_tests_no_inequality (insn))
1114 return "tst%.l %1";
1115 if (count == 15
1116 && next_insn_tests_no_inequality (insn))
1117 return "tst%.w %1";
1118 if (count == 7
1119 && next_insn_tests_no_inequality (insn))
1120 return "tst%.b %1";
1121
1122 cc_status.flags = CC_NOT_NEGATIVE;
1123 }
1124 return "btst %0,%1";
1125}
1126\f
1127/* Returns 1 if OP is either a symbol reference or a sum of a symbol
1128 reference and a constant. */
1129
1130int
1131symbolic_operand (op, mode)
1132 register rtx op;
1133 enum machine_mode mode;
1134{
1135 switch (GET_CODE (op))
1136 {
1137 case SYMBOL_REF:
1138 case LABEL_REF:
1139 return 1;
1140
1141 case CONST:
1142 op = XEXP (op, 0);
1143 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1144 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1145 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1146
1147#if 0 /* Deleted, with corresponding change in m68k.h,
1148 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1149 case CONST_DOUBLE:
1150 return GET_MODE (op) == mode;
1151#endif
1152
1153 default:
1154 return 0;
1155 }
1156}
16f323be
RK
1157\f
1158/* Check for sign_extend or zero_extend. Used for bit-count operands. */
1159
1160int
1161extend_operator(x, mode)
1162 rtx x;
1163 enum machine_mode mode;
1164{
c59c3b1c 1165 if (mode != VOIDmode && GET_MODE(x) != mode)
16f323be
RK
1166 return 0;
1167 switch (GET_CODE(x))
1168 {
1169 case SIGN_EXTEND :
1170 case ZERO_EXTEND :
16f323be
RK
1171 return 1;
1172 default :
1173 return 0;
1174 }
1175}
79e68feb
RS
1176
1177\f
1178/* Legitimize PIC addresses. If the address is already
1179 position-independent, we return ORIG. Newly generated
1180 position-independent addresses go to REG. If we need more
1181 than one register, we lose.
1182
1183 An address is legitimized by making an indirect reference
1184 through the Global Offset Table with the name of the symbol
1185 used as an offset.
1186
1187 The assembler and linker are responsible for placing the
1188 address of the symbol in the GOT. The function prologue
1189 is responsible for initializing a5 to the starting address
1190 of the GOT.
1191
1192 The assembler is also responsible for translating a symbol name
1193 into a constant displacement from the start of the GOT.
1194
1195 A quick example may make things a little clearer:
1196
1197 When not generating PIC code to store the value 12345 into _foo
1198 we would generate the following code:
1199
1200 movel #12345, _foo
1201
1202 When generating PIC two transformations are made. First, the compiler
1203 loads the address of foo into a register. So the first transformation makes:
1204
1205 lea _foo, a0
1206 movel #12345, a0@
1207
1208 The code in movsi will intercept the lea instruction and call this
1209 routine which will transform the instructions into:
1210
1211 movel a5@(_foo:w), a0
1212 movel #12345, a0@
1213
1214
1215 That (in a nutshell) is how *all* symbol and label references are
1216 handled. */
1217
1218rtx
1219legitimize_pic_address (orig, mode, reg)
1220 rtx orig, reg;
1221 enum machine_mode mode;
1222{
1223 rtx pic_ref = orig;
1224
1225 /* First handle a simple SYMBOL_REF or LABEL_REF */
1226 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1227 {
1228 if (reg == 0)
1229 abort ();
1230
1231 pic_ref = gen_rtx (MEM, Pmode,
1232 gen_rtx (PLUS, Pmode,
1233 pic_offset_table_rtx, orig));
1234 current_function_uses_pic_offset_table = 1;
1235 RTX_UNCHANGING_P (pic_ref) = 1;
1236 emit_move_insn (reg, pic_ref);
1237 return reg;
1238 }
1239 else if (GET_CODE (orig) == CONST)
1240 {
1241 rtx base, offset;
1242
1243 /* Make sure this is CONST has not already been legitimized */
1244 if (GET_CODE (XEXP (orig, 0)) == PLUS
1245 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1246 return orig;
1247
1248 if (reg == 0)
1249 abort ();
1250
1251 /* legitimize both operands of the PLUS */
1252 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1253 {
1254 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1255 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1256 base == reg ? 0 : reg);
1257 }
1258 else abort ();
1259
1260 if (GET_CODE (orig) == CONST_INT)
1261 return plus_constant_for_output (base, INTVAL (orig));
1262 pic_ref = gen_rtx (PLUS, Pmode, base, orig);
1263 /* Likewise, should we set special REG_NOTEs here? */
1264 }
1265 return pic_ref;
1266}
1267
1268\f
0ce6f9fb
RK
1269typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ } CONST_METHOD;
1270
6910dd70 1271#define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
0ce6f9fb
RK
1272
1273CONST_METHOD
1274const_method (constant)
1275 rtx constant;
1276{
1277 int i;
1278 unsigned u;
1279
1280 i = INTVAL (constant);
6910dd70 1281 if (USE_MOVQ (i))
0ce6f9fb 1282 return MOVQ;
24092242
RK
1283
1284 /* The Coldfire doesn't have byte or word operations. */
1285 /* FIXME: This may not be useful for the m68060 either */
1286 if (!TARGET_5200)
1287 {
1288 /* if -256 < N < 256 but N is not in range for a moveq
1289 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1290 if (USE_MOVQ (i ^ 0xff))
1291 return NOTB;
1292 /* Likewise, try with not.w */
1293 if (USE_MOVQ (i ^ 0xffff))
1294 return NOTW;
1295 /* This is the only value where neg.w is useful */
1296 if (i == -65408)
1297 return NEGW;
1298 /* Try also with swap */
1299 u = i;
1300 if (USE_MOVQ ((u >> 16) | (u << 16)))
1301 return SWAP;
1302 }
0ce6f9fb
RK
1303 /* Otherwise, use move.l */
1304 return MOVL;
1305}
1306
1307const_int_cost (constant)
1308 rtx constant;
1309{
1310 switch (const_method (constant))
1311 {
1312 case MOVQ :
1313 /* Constants between -128 and 127 are cheap due to moveq */
1314 return 0;
1315 case NOTB :
1316 case NOTW :
1317 case NEGW :
1318 case SWAP :
1319 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1320 return 1;
1321 case MOVL :
1322 return 2;
1323 default :
1324 abort ();
1325 }
1326}
1327
1328char *
1329output_move_const_into_data_reg (operands)
1330 rtx *operands;
1331{
1332 int i;
1333
1334 i = INTVAL (operands[1]);
1335 switch (const_method (operands[1]))
1336 {
1337 case MOVQ :
1338#if defined (MOTOROLA) && !defined (CRDS)
1339 return "moveq%.l %1,%0";
1340#else
1341 return "moveq %1,%0";
1342#endif
1343 case NOTB :
1344 operands[1] = gen_rtx (CONST_INT, VOIDmode, i ^ 0xff);
1345#if defined (MOTOROLA) && !defined (CRDS)
1346 return "moveq%.l %1,%0\n\tnot%.b %0";
1347#else
1348 return "moveq %1,%0\n\tnot%.b %0";
1349#endif
1350 case NOTW :
1351 operands[1] = gen_rtx (CONST_INT, VOIDmode, i ^ 0xffff);
1352#if defined (MOTOROLA) && !defined (CRDS)
1353 return "moveq%.l %1,%0\n\tnot%.w %0";
1354#else
1355 return "moveq %1,%0\n\tnot%.w %0";
1356#endif
1357 case NEGW :
1358#if defined (MOTOROLA) && !defined (CRDS)
1359 return "moveq%.l %#-128,%0\n\tneg%.w %0";
1360#else
1361 return "moveq %#-128,%0\n\tneg%.w %0";
1362#endif
1363 case SWAP :
1364 {
1365 unsigned u = i;
1366
1367 operands[1] = gen_rtx (CONST_INT, VOIDmode, (u << 16) | (u >> 16));
1368#if defined (MOTOROLA) && !defined (CRDS)
1369 return "moveq%.l %1,%0\n\tswap %0";
1370#else
1371 return "moveq %1,%0\n\tswap %0";
1372#endif
1373 }
1374 case MOVL :
1375 return "move%.l %1,%0";
1376 default :
1377 abort ();
1378 }
1379}
1380
02ed0c07
RK
1381char *
1382output_move_simode_const (operands)
1383 rtx *operands;
1384{
1385 if (operands[1] == const0_rtx
1386 && (DATA_REG_P (operands[0])
1387 || GET_CODE (operands[0]) == MEM)
1388 /* clr insns on 68000 read before writing.
c67ddce5 1389 This isn't so on the 68010, but we have no TARGET_68010. */
0cb7cfed 1390 && ((TARGET_68020 || TARGET_5200)
02ed0c07
RK
1391 || !(GET_CODE (operands[0]) == MEM
1392 && MEM_VOLATILE_P (operands[0]))))
1393 return "clr%.l %0";
1394 else if (DATA_REG_P (operands[0]))
1395 return output_move_const_into_data_reg (operands);
1396 else if (ADDRESS_REG_P (operands[0])
1397 && INTVAL (operands[1]) < 0x8000
1398 && INTVAL (operands[1]) >= -0x8000)
1399 return "move%.w %1,%0";
1400 else if (GET_CODE (operands[0]) == MEM
1401 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1402 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1403 && INTVAL (operands[1]) < 0x8000
1404 && INTVAL (operands[1]) >= -0x8000)
1405 return "pea %a1";
1406 return "move%.l %1,%0";
1407}
1408
f4e80198
RK
1409char *
1410output_move_simode (operands)
1411 rtx *operands;
1412{
1413 if (GET_CODE (operands[1]) == CONST_INT)
1414 return output_move_simode_const (operands);
1415 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1416 || GET_CODE (operands[1]) == CONST)
1417 && push_operand (operands[0], SImode))
1418 return "pea %a1";
1419 else if ((GET_CODE (operands[1]) == SYMBOL_REF
1420 || GET_CODE (operands[1]) == CONST)
1421 && ADDRESS_REG_P (operands[0]))
1422 return "lea %a1,%0";
1423 return "move%.l %1,%0";
1424}
1425
1426char *
1427output_move_himode (operands)
1428 rtx *operands;
1429{
1430 if (GET_CODE (operands[1]) == CONST_INT)
1431 {
1432 if (operands[1] == const0_rtx
1433 && (DATA_REG_P (operands[0])
1434 || GET_CODE (operands[0]) == MEM)
1435 /* clr insns on 68000 read before writing.
1436 This isn't so on the 68010, but we have no TARGET_68010. */
1437 && ((TARGET_68020 || TARGET_5200)
1438 || !(GET_CODE (operands[0]) == MEM
1439 && MEM_VOLATILE_P (operands[0]))))
1440 return "clr%.w %0";
1441 else if (DATA_REG_P (operands[0])
1442 && INTVAL (operands[1]) < 128
1443 && INTVAL (operands[1]) >= -128)
1444 {
1445#if defined(MOTOROLA) && !defined(CRDS)
1446 return "moveq%.l %1,%0";
1447#else
1448 return "moveq %1,%0";
1449#endif
1450 }
1451 else if (INTVAL (operands[1]) < 0x8000
1452 && INTVAL (operands[1]) >= -0x8000)
1453 return "move%.w %1,%0";
1454 }
1455 else if (CONSTANT_P (operands[1]))
1456 return "move%.l %1,%0";
1457#ifndef SGS_NO_LI
1458 /* Recognize the insn before a tablejump, one that refers
1459 to a table of offsets. Such an insn will need to refer
1460 to a label on the insn. So output one. Use the label-number
1461 of the table of offsets to generate this label. This code,
1462 and similar code below, assumes that there will be at most one
1463 reference to each table. */
1464 if (GET_CODE (operands[1]) == MEM
1465 && GET_CODE (XEXP (operands[1], 0)) == PLUS
1466 && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF
1467 && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS)
1468 {
1469 rtx labelref = XEXP (XEXP (operands[1], 0), 1);
1470#if defined (MOTOROLA) && !defined (SGS_SWITCH_TABLES)
1471#ifdef SGS
1472 asm_fprintf (asm_out_file, "\tset %LLI%d,.+2\n",
1473 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1474#else /* not SGS */
1475 asm_fprintf (asm_out_file, "\t.set %LLI%d,.+2\n",
1476 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1477#endif /* not SGS */
1478#else /* SGS_SWITCH_TABLES or not MOTOROLA */
1479 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LI",
1480 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
1481#ifdef SGS_SWITCH_TABLES
1482 /* Set flag saying we need to define the symbol
1483 LD%n (with value L%n-LI%n) at the end of the switch table. */
1484 switch_table_difference_label_flag = 1;
1485#endif /* SGS_SWITCH_TABLES */
1486#endif /* SGS_SWITCH_TABLES or not MOTOROLA */
1487 }
1488#endif /* SGS_NO_LI */
1489 return "move%.w %1,%0";
1490}
1491
1492char *
1493output_move_qimode (operands)
1494 rtx *operands;
1495{
1496 rtx xoperands[4];
1497
1498 /* This is probably useless, since it loses for pushing a struct
1499 of several bytes a byte at a time. */
1500 if (GET_CODE (operands[0]) == MEM
1501 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1502 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
1503 && ! ADDRESS_REG_P (operands[1]))
1504 {
1505 xoperands[1] = operands[1];
1506 xoperands[2]
1507 = gen_rtx (MEM, QImode,
1508 gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx));
1509 /* Just pushing a byte puts it in the high byte of the halfword. */
1510 /* We must put it in the low-order, high-numbered byte. */
3879920c
RK
1511 if (!reg_mentioned_p (stack_pointer_rtx, operands[1]))
1512 {
1513 xoperands[3] = stack_pointer_rtx;
1514#ifndef NO_ADDSUB_Q
1515 output_asm_insn ("subq%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1516#else
1517 output_asm_insn ("sub%.l %#2,%3\n\tmove%.b %1,%2", xoperands);
1518#endif
1519 }
1520 else
1521 output_asm_insn ("move%.b %1,%-\n\tmove%.b %@,%2", xoperands);
f4e80198
RK
1522 return "";
1523 }
1524
1525 /* clr and st insns on 68000 read before writing.
1526 This isn't so on the 68010, but we have no TARGET_68010. */
1527 if (!ADDRESS_REG_P (operands[0])
1528 && ((TARGET_68020 || TARGET_5200)
1529 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
1530 {
1531 if (operands[1] == const0_rtx)
1532 return "clr%.b %0";
1533 if ((!TARGET_5200 || DATA_REG_P (operands[0]))
1534 && GET_CODE (operands[1]) == CONST_INT
1535 && (INTVAL (operands[1]) & 255) == 255)
1536 {
1537 CC_STATUS_INIT;
1538 return "st %0";
1539 }
1540 }
1541 if (GET_CODE (operands[1]) == CONST_INT
1542 && DATA_REG_P (operands[0])
1543 && INTVAL (operands[1]) < 128
1544 && INTVAL (operands[1]) >= -128)
1545 {
1546#if defined(MOTOROLA) && !defined(CRDS)
1547 return "moveq%.l %1,%0";
1548#else
1549 return "moveq %1,%0";
1550#endif
1551 }
1552 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
1553 return "move%.l %1,%0";
1554 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
1555 return "move%.w %1,%0";
1556 return "move%.b %1,%0";
1557}
1558
79e68feb
RS
1559/* Return the best assembler insn template
1560 for moving operands[1] into operands[0] as a fullword. */
1561
1562static char *
1563singlemove_string (operands)
1564 rtx *operands;
1565{
1566#ifdef SUPPORT_SUN_FPA
1567 if (FPA_REG_P (operands[0]) || FPA_REG_P (operands[1]))
1568 return "fpmoves %1,%0";
1569#endif
02ed0c07
RK
1570 if (GET_CODE (operands[1]) == CONST_INT)
1571 return output_move_simode_const (operands);
1572 return "move%.l %1,%0";
79e68feb
RS
1573}
1574
2505bc97 1575
79e68feb
RS
1576/* Output assembler code to perform a doubleword move insn
1577 with operands OPERANDS. */
1578
1579char *
1580output_move_double (operands)
1581 rtx *operands;
1582{
2505bc97
RS
1583 enum
1584 {
1585 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
1586 } optype0, optype1;
79e68feb 1587 rtx latehalf[2];
2505bc97 1588 rtx middlehalf[2];
7f98eeb6 1589 rtx xops[2];
79e68feb 1590 rtx addreg0 = 0, addreg1 = 0;
7f98eeb6 1591 int dest_overlapped_low = 0;
184916bc 1592 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
2505bc97
RS
1593
1594 middlehalf[0] = 0;
1595 middlehalf[1] = 0;
79e68feb
RS
1596
1597 /* First classify both operands. */
1598
1599 if (REG_P (operands[0]))
1600 optype0 = REGOP;
1601 else if (offsettable_memref_p (operands[0]))
1602 optype0 = OFFSOP;
1603 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1604 optype0 = POPOP;
1605 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1606 optype0 = PUSHOP;
1607 else if (GET_CODE (operands[0]) == MEM)
1608 optype0 = MEMOP;
1609 else
1610 optype0 = RNDOP;
1611
1612 if (REG_P (operands[1]))
1613 optype1 = REGOP;
1614 else if (CONSTANT_P (operands[1]))
1615 optype1 = CNSTOP;
1616 else if (offsettable_memref_p (operands[1]))
1617 optype1 = OFFSOP;
1618 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1619 optype1 = POPOP;
1620 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1621 optype1 = PUSHOP;
1622 else if (GET_CODE (operands[1]) == MEM)
1623 optype1 = MEMOP;
1624 else
1625 optype1 = RNDOP;
1626
1627 /* Check for the cases that the operand constraints are not
1628 supposed to allow to happen. Abort if we get one,
1629 because generating code for these cases is painful. */
1630
1631 if (optype0 == RNDOP || optype1 == RNDOP)
1632 abort ();
1633
1634 /* If one operand is decrementing and one is incrementing
1635 decrement the former register explicitly
1636 and change that operand into ordinary indexing. */
1637
1638 if (optype0 == PUSHOP && optype1 == POPOP)
1639 {
1640 operands[0] = XEXP (XEXP (operands[0], 0), 0);
2505bc97
RS
1641 if (size == 12)
1642 output_asm_insn ("sub%.l %#12,%0", operands);
1643 else
1644 output_asm_insn ("subq%.l %#8,%0", operands);
1645 if (GET_MODE (operands[1]) == XFmode)
1646 operands[0] = gen_rtx (MEM, XFmode, operands[0]);
1647 else if (GET_MODE (operands[0]) == DFmode)
1648 operands[0] = gen_rtx (MEM, DFmode, operands[0]);
1649 else
1650 operands[0] = gen_rtx (MEM, DImode, operands[0]);
79e68feb
RS
1651 optype0 = OFFSOP;
1652 }
1653 if (optype0 == POPOP && optype1 == PUSHOP)
1654 {
1655 operands[1] = XEXP (XEXP (operands[1], 0), 0);
2505bc97
RS
1656 if (size == 12)
1657 output_asm_insn ("sub%.l %#12,%1", operands);
1658 else
1659 output_asm_insn ("subq%.l %#8,%1", operands);
1660 if (GET_MODE (operands[1]) == XFmode)
1661 operands[1] = gen_rtx (MEM, XFmode, operands[1]);
1662 else if (GET_MODE (operands[1]) == DFmode)
1663 operands[1] = gen_rtx (MEM, DFmode, operands[1]);
1664 else
1665 operands[1] = gen_rtx (MEM, DImode, operands[1]);
79e68feb
RS
1666 optype1 = OFFSOP;
1667 }
1668
1669 /* If an operand is an unoffsettable memory ref, find a register
1670 we can increment temporarily to make it refer to the second word. */
1671
1672 if (optype0 == MEMOP)
1673 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1674
1675 if (optype1 == MEMOP)
1676 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1677
1678 /* Ok, we can do one word at a time.
1679 Normally we do the low-numbered word first,
1680 but if either operand is autodecrementing then we
1681 do the high-numbered word first.
1682
1683 In either case, set up in LATEHALF the operands to use
1684 for the high-numbered word and in some cases alter the
1685 operands in OPERANDS to be suitable for the low-numbered word. */
1686
2505bc97
RS
1687 if (size == 12)
1688 {
1689 if (optype0 == REGOP)
1690 {
1691 latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
1692 middlehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
1693 }
1694 else if (optype0 == OFFSOP)
1695 {
1696 middlehalf[0] = adj_offsettable_operand (operands[0], 4);
1697 latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
1698 }
1699 else
1700 {
1701 middlehalf[0] = operands[0];
1702 latehalf[0] = operands[0];
1703 }
1704
1705 if (optype1 == REGOP)
1706 {
1707 latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
1708 middlehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
1709 }
1710 else if (optype1 == OFFSOP)
1711 {
1712 middlehalf[1] = adj_offsettable_operand (operands[1], 4);
1713 latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
1714 }
1715 else if (optype1 == CNSTOP)
1716 {
1717 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1718 {
1719 REAL_VALUE_TYPE r;
1720 long l[3];
1721
1722 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1723 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
1724 operands[1] = GEN_INT (l[0]);
1725 middlehalf[1] = GEN_INT (l[1]);
1726 latehalf[1] = GEN_INT (l[2]);
1727 }
1728 else if (CONSTANT_P (operands[1]))
1729 {
1730 /* actually, no non-CONST_DOUBLE constant should ever
1731 appear here. */
1732 abort ();
1733 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
1734 latehalf[1] = constm1_rtx;
1735 else
1736 latehalf[1] = const0_rtx;
1737 }
1738 }
1739 else
1740 {
1741 middlehalf[1] = operands[1];
1742 latehalf[1] = operands[1];
1743 }
1744 }
79e68feb 1745 else
2505bc97
RS
1746 /* size is not 12: */
1747 {
1748 if (optype0 == REGOP)
1749 latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
1750 else if (optype0 == OFFSOP)
1751 latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
1752 else
1753 latehalf[0] = operands[0];
1754
1755 if (optype1 == REGOP)
1756 latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
1757 else if (optype1 == OFFSOP)
1758 latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
1759 else if (optype1 == CNSTOP)
1760 split_double (operands[1], &operands[1], &latehalf[1]);
1761 else
1762 latehalf[1] = operands[1];
1763 }
79e68feb
RS
1764
1765 /* If insn is effectively movd N(sp),-(sp) then we will do the
1766 high word first. We should use the adjusted operand 1 (which is N+4(sp))
1767 for the low word as well, to compensate for the first decrement of sp. */
1768 if (optype0 == PUSHOP
1769 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1770 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
c88aeaf8 1771 operands[1] = middlehalf[1] = latehalf[1];
79e68feb 1772
7f98eeb6
RS
1773 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
1774 if the upper part of reg N does not appear in the MEM, arrange to
1775 emit the move late-half first. Otherwise, compute the MEM address
1776 into the upper part of N and use that as a pointer to the memory
1777 operand. */
1778 if (optype0 == REGOP
1779 && (optype1 == OFFSOP || optype1 == MEMOP))
1780 {
3a58400f
RS
1781 rtx testlow = gen_rtx (REG, SImode, REGNO (operands[0]));
1782
1783 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581 1784 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
7f98eeb6
RS
1785 {
1786 /* If both halves of dest are used in the src memory address,
3a58400f
RS
1787 compute the address into latehalf of dest.
1788 Note that this can't happen if the dest is two data regs. */
7f98eeb6
RS
1789compadr:
1790 xops[0] = latehalf[0];
1791 xops[1] = XEXP (operands[1], 0);
d7e8d581 1792 output_asm_insn ("lea %a1,%0", xops);
7f98eeb6
RS
1793 if( GET_MODE (operands[1]) == XFmode )
1794 {
1795 operands[1] = gen_rtx (MEM, XFmode, latehalf[0]);
1796 middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
1797 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1798 }
1799 else
1800 {
1801 operands[1] = gen_rtx (MEM, DImode, latehalf[0]);
1802 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1803 }
1804 }
1805 else if (size == 12
d7e8d581
RS
1806 && reg_overlap_mentioned_p (middlehalf[0],
1807 XEXP (operands[1], 0)))
7f98eeb6 1808 {
3a58400f
RS
1809 /* Check for two regs used by both source and dest.
1810 Note that this can't happen if the dest is all data regs.
1811 It can happen if the dest is d6, d7, a0.
1812 But in that case, latehalf is an addr reg, so
1813 the code at compadr does ok. */
1814
1815 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581
RS
1816 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
1817 goto compadr;
7f98eeb6
RS
1818
1819 /* JRV says this can't happen: */
1820 if (addreg0 || addreg1)
d7e8d581 1821 abort ();
7f98eeb6
RS
1822
1823 /* Only the middle reg conflicts; simply put it last. */
1824 output_asm_insn (singlemove_string (operands), operands);
1825 output_asm_insn (singlemove_string (latehalf), latehalf);
1826 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1827 return "";
1828 }
2fb8a81d 1829 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
7f98eeb6
RS
1830 /* If the low half of dest is mentioned in the source memory
1831 address, the arrange to emit the move late half first. */
1832 dest_overlapped_low = 1;
1833 }
1834
79e68feb
RS
1835 /* If one or both operands autodecrementing,
1836 do the two words, high-numbered first. */
1837
1838 /* Likewise, the first move would clobber the source of the second one,
1839 do them in the other order. This happens only for registers;
1840 such overlap can't happen in memory unless the user explicitly
1841 sets it up, and that is an undefined circumstance. */
1842
1843 if (optype0 == PUSHOP || optype1 == PUSHOP
1844 || (optype0 == REGOP && optype1 == REGOP
2505bc97 1845 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
7f98eeb6
RS
1846 || REGNO (operands[0]) == REGNO (latehalf[1])))
1847 || dest_overlapped_low)
79e68feb
RS
1848 {
1849 /* Make any unoffsettable addresses point at high-numbered word. */
1850 if (addreg0)
2505bc97
RS
1851 {
1852 if (size == 12)
07eced4d 1853 output_asm_insn ("addq%.l %#8,%0", &addreg0);
2505bc97 1854 else
07eced4d 1855 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2505bc97 1856 }
79e68feb 1857 if (addreg1)
2505bc97
RS
1858 {
1859 if (size == 12)
07eced4d 1860 output_asm_insn ("addq%.l %#8,%0", &addreg1);
2505bc97 1861 else
07eced4d 1862 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2505bc97 1863 }
79e68feb
RS
1864
1865 /* Do that word. */
1866 output_asm_insn (singlemove_string (latehalf), latehalf);
1867
1868 /* Undo the adds we just did. */
1869 if (addreg0)
07eced4d 1870 output_asm_insn ("subq%.l %#4,%0", &addreg0);
79e68feb 1871 if (addreg1)
07eced4d 1872 output_asm_insn ("subq%.l %#4,%0", &addreg1);
79e68feb 1873
2505bc97
RS
1874 if (size == 12)
1875 {
1876 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1877 if (addreg0)
07eced4d 1878 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2505bc97 1879 if (addreg1)
07eced4d 1880 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2505bc97
RS
1881 }
1882
79e68feb
RS
1883 /* Do low-numbered word. */
1884 return singlemove_string (operands);
1885 }
1886
1887 /* Normal case: do the two words, low-numbered first. */
1888
1889 output_asm_insn (singlemove_string (operands), operands);
1890
2505bc97
RS
1891 /* Do the middle one of the three words for long double */
1892 if (size == 12)
1893 {
1894 if (addreg0)
07eced4d 1895 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2505bc97 1896 if (addreg1)
07eced4d 1897 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2505bc97
RS
1898
1899 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1900 }
1901
79e68feb
RS
1902 /* Make any unoffsettable addresses point at high-numbered word. */
1903 if (addreg0)
07eced4d 1904 output_asm_insn ("addq%.l %#4,%0", &addreg0);
79e68feb 1905 if (addreg1)
07eced4d 1906 output_asm_insn ("addq%.l %#4,%0", &addreg1);
79e68feb
RS
1907
1908 /* Do that word. */
1909 output_asm_insn (singlemove_string (latehalf), latehalf);
1910
1911 /* Undo the adds we just did. */
1912 if (addreg0)
2505bc97
RS
1913 {
1914 if (size == 12)
07eced4d 1915 output_asm_insn ("subq%.l %#8,%0", &addreg0);
2505bc97 1916 else
07eced4d 1917 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2505bc97 1918 }
79e68feb 1919 if (addreg1)
2505bc97
RS
1920 {
1921 if (size == 12)
07eced4d 1922 output_asm_insn ("subq%.l %#8,%0", &addreg1);
2505bc97 1923 else
07eced4d 1924 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2505bc97 1925 }
79e68feb
RS
1926
1927 return "";
1928}
1929
1930/* Return a REG that occurs in ADDR with coefficient 1.
1931 ADDR can be effectively incremented by incrementing REG. */
1932
1933static rtx
1934find_addr_reg (addr)
1935 rtx addr;
1936{
1937 while (GET_CODE (addr) == PLUS)
1938 {
1939 if (GET_CODE (XEXP (addr, 0)) == REG)
1940 addr = XEXP (addr, 0);
1941 else if (GET_CODE (XEXP (addr, 1)) == REG)
1942 addr = XEXP (addr, 1);
1943 else if (CONSTANT_P (XEXP (addr, 0)))
1944 addr = XEXP (addr, 1);
1945 else if (CONSTANT_P (XEXP (addr, 1)))
1946 addr = XEXP (addr, 0);
1947 else
1948 abort ();
1949 }
1950 if (GET_CODE (addr) == REG)
1951 return addr;
1952 abort ();
1953}
1954\f
1955/* Store in cc_status the expressions that the condition codes will
1956 describe after execution of an instruction whose pattern is EXP.
1957 Do not alter them if the instruction would not alter the cc's. */
1958
1959/* On the 68000, all the insns to store in an address register fail to
1960 set the cc's. However, in some cases these instructions can make it
1961 possibly invalid to use the saved cc's. In those cases we clear out
1962 some or all of the saved cc's so they won't be used. */
1963
1964notice_update_cc (exp, insn)
1965 rtx exp;
1966 rtx insn;
1967{
1968 /* If the cc is being set from the fpa and the expression is not an
1969 explicit floating point test instruction (which has code to deal with
1970 this), reinit the CC. */
1971 if (((cc_status.value1 && FPA_REG_P (cc_status.value1))
1972 || (cc_status.value2 && FPA_REG_P (cc_status.value2)))
1973 && !(GET_CODE (exp) == PARALLEL
1974 && GET_CODE (XVECEXP (exp, 0, 0)) == SET
1975 && XEXP (XVECEXP (exp, 0, 0), 0) == cc0_rtx))
1976 {
1977 CC_STATUS_INIT;
1978 }
1979 else if (GET_CODE (exp) == SET)
1980 {
1981 if (GET_CODE (SET_SRC (exp)) == CALL)
1982 {
1983 CC_STATUS_INIT;
1984 }
1985 else if (ADDRESS_REG_P (SET_DEST (exp)))
1986 {
1987 if (cc_status.value1
1988 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
1989 cc_status.value1 = 0;
1990 if (cc_status.value2
1991 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
1992 cc_status.value2 = 0;
1993 }
1994 else if (!FP_REG_P (SET_DEST (exp))
1995 && SET_DEST (exp) != cc0_rtx
1996 && (FP_REG_P (SET_SRC (exp))
1997 || GET_CODE (SET_SRC (exp)) == FIX
1998 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
1999 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
2000 {
2001 CC_STATUS_INIT;
2002 }
2003 /* A pair of move insns doesn't produce a useful overall cc. */
2004 else if (!FP_REG_P (SET_DEST (exp))
2005 && !FP_REG_P (SET_SRC (exp))
2006 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
2007 && (GET_CODE (SET_SRC (exp)) == REG
2008 || GET_CODE (SET_SRC (exp)) == MEM
2009 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
2010 {
2011 CC_STATUS_INIT;
2012 }
2013 else if (GET_CODE (SET_SRC (exp)) == CALL)
2014 {
2015 CC_STATUS_INIT;
2016 }
2017 else if (XEXP (exp, 0) != pc_rtx)
2018 {
2019 cc_status.flags = 0;
2020 cc_status.value1 = XEXP (exp, 0);
2021 cc_status.value2 = XEXP (exp, 1);
2022 }
2023 }
2024 else if (GET_CODE (exp) == PARALLEL
2025 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
2026 {
2027 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
2028 CC_STATUS_INIT;
2029 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
2030 {
2031 cc_status.flags = 0;
2032 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
2033 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
2034 }
2035 }
2036 else
2037 CC_STATUS_INIT;
2038 if (cc_status.value2 != 0
2039 && ADDRESS_REG_P (cc_status.value2)
2040 && GET_MODE (cc_status.value2) == QImode)
2041 CC_STATUS_INIT;
2042 if (cc_status.value2 != 0
2043 && !(cc_status.value1 && FPA_REG_P (cc_status.value1)))
2044 switch (GET_CODE (cc_status.value2))
2045 {
2046 case PLUS: case MINUS: case MULT:
2047 case DIV: case UDIV: case MOD: case UMOD: case NEG:
b757e352 2048#if 0 /* These instructions always clear the overflow bit */
996a5f59 2049 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
79e68feb 2050 case ROTATE: case ROTATERT:
b757e352 2051#endif
79e68feb
RS
2052 if (GET_MODE (cc_status.value2) != VOIDmode)
2053 cc_status.flags |= CC_NO_OVERFLOW;
2054 break;
2055 case ZERO_EXTEND:
2056 /* (SET r1 (ZERO_EXTEND r2)) on this machine
2057 ends with a move insn moving r2 in r2's mode.
2058 Thus, the cc's are set for r2.
2059 This can set N bit spuriously. */
2060 cc_status.flags |= CC_NOT_NEGATIVE;
2061 }
2062 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
2063 && cc_status.value2
2064 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
2065 cc_status.value2 = 0;
2066 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
2067 || (cc_status.value2 && FP_REG_P (cc_status.value2)))
2068 && !((cc_status.value1 && FPA_REG_P (cc_status.value1))
2069 || (cc_status.value2 && FPA_REG_P (cc_status.value2))))
2070 cc_status.flags = CC_IN_68881;
2071}
2072\f
2073char *
2074output_move_const_double (operands)
2075 rtx *operands;
2076{
2077#ifdef SUPPORT_SUN_FPA
64a184e9 2078 if (TARGET_FPA && FPA_REG_P (operands[0]))
79e68feb
RS
2079 {
2080 int code = standard_sun_fpa_constant_p (operands[1]);
2081
2082 if (code != 0)
2083 {
2084 static char buf[40];
2085
2086 sprintf (buf, "fpmove%%.d %%%%%d,%%0", code & 0x1ff);
2087 return buf;
2088 }
2089 return "fpmove%.d %1,%0";
2090 }
2091 else
2092#endif
2093 {
2094 int code = standard_68881_constant_p (operands[1]);
2095
2096 if (code != 0)
2097 {
2098 static char buf[40];
2099
2100 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2101 return buf;
2102 }
2103 return "fmove%.d %1,%0";
2104 }
2105}
2106
2107char *
2108output_move_const_single (operands)
2109 rtx *operands;
2110{
2111#ifdef SUPPORT_SUN_FPA
2112 if (TARGET_FPA)
2113 {
2114 int code = standard_sun_fpa_constant_p (operands[1]);
2115
2116 if (code != 0)
2117 {
2118 static char buf[40];
2119
2120 sprintf (buf, "fpmove%%.s %%%%%d,%%0", code & 0x1ff);
2121 return buf;
2122 }
2123 return "fpmove%.s %1,%0";
2124 }
2125 else
2126#endif /* defined SUPPORT_SUN_FPA */
2127 {
2128 int code = standard_68881_constant_p (operands[1]);
2129
2130 if (code != 0)
2131 {
2132 static char buf[40];
2133
2134 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
2135 return buf;
2136 }
2137 return "fmove%.s %f1,%0";
2138 }
2139}
2140
2141/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2142 from the "fmovecr" instruction.
2143 The value, anded with 0xff, gives the code to use in fmovecr
2144 to get the desired constant. */
2145
c1cfb2ae
RS
2146/* This code has been fixed for cross-compilation. */
2147
2148static int inited_68881_table = 0;
2149
2150char *strings_68881[7] = {
2151 "0.0",
2152 "1.0",
2153 "10.0",
2154 "100.0",
2155 "10000.0",
2156 "1e8",
2157 "1e16"
2158 };
2159
2160int codes_68881[7] = {
2161 0x0f,
2162 0x32,
2163 0x33,
2164 0x34,
2165 0x35,
2166 0x36,
2167 0x37
2168 };
2169
2170REAL_VALUE_TYPE values_68881[7];
2171
2172/* Set up values_68881 array by converting the decimal values
2173 strings_68881 to binary. */
2174
2175void
2176init_68881_table ()
2177{
2178 int i;
2179 REAL_VALUE_TYPE r;
2180 enum machine_mode mode;
2181
16d82c3c 2182 mode = SFmode;
c1cfb2ae
RS
2183 for (i = 0; i < 7; i++)
2184 {
2185 if (i == 6)
16d82c3c 2186 mode = DFmode;
c1cfb2ae
RS
2187 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2188 values_68881[i] = r;
2189 }
2190 inited_68881_table = 1;
2191}
79e68feb
RS
2192
2193int
2194standard_68881_constant_p (x)
2195 rtx x;
2196{
c1cfb2ae
RS
2197 REAL_VALUE_TYPE r;
2198 int i;
2199 enum machine_mode mode;
79e68feb 2200
a5d54cc5
RK
2201#ifdef NO_ASM_FMOVECR
2202 return 0;
2203#endif
2204
2296cba3 2205 /* fmovecr must be emulated on the 68040, so it shouldn't be used at all. */
79e68feb
RS
2206 if (TARGET_68040)
2207 return 0;
2208
c1cfb2ae 2209#ifndef REAL_ARITHMETIC
79e68feb
RS
2210#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2211 if (! flag_pretend_float)
2212 return 0;
c1cfb2ae 2213#endif
79e68feb
RS
2214#endif
2215
c1cfb2ae
RS
2216 if (! inited_68881_table)
2217 init_68881_table ();
2218
2219 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2220
2221 for (i = 0; i < 6; i++)
2222 {
2223 if (REAL_VALUES_EQUAL (r, values_68881[i]))
2224 return (codes_68881[i]);
2225 }
2226
79e68feb
RS
2227 if (GET_MODE (x) == SFmode)
2228 return 0;
c1cfb2ae
RS
2229
2230 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2231 return (codes_68881[6]);
2232
79e68feb
RS
2233 /* larger powers of ten in the constants ram are not used
2234 because they are not equal to a `double' C constant. */
2235 return 0;
2236}
2237
2238/* If X is a floating-point constant, return the logarithm of X base 2,
2239 or 0 if X is not a power of 2. */
2240
2241int
2242floating_exact_log2 (x)
2243 rtx x;
2244{
c1cfb2ae 2245 REAL_VALUE_TYPE r, r1;
79e68feb
RS
2246 int i;
2247
c1cfb2ae 2248#ifndef REAL_ARITHMETIC
79e68feb
RS
2249#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2250 if (! flag_pretend_float)
2251 return 0;
c1cfb2ae 2252#endif
79e68feb
RS
2253#endif
2254
c1cfb2ae 2255 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
79e68feb 2256
c1cfb2ae 2257 if (REAL_VALUES_LESS (r, dconst0))
79e68feb
RS
2258 return 0;
2259
6b62e557 2260 r1 = dconst1;
c1cfb2ae
RS
2261 i = 0;
2262 while (REAL_VALUES_LESS (r1, r))
2263 {
2264 r1 = REAL_VALUE_LDEXP (dconst1, i);
2265 if (REAL_VALUES_EQUAL (r1, r))
2266 return i;
2267 i = i + 1;
2268 }
79e68feb
RS
2269 return 0;
2270}
2271\f
2272#ifdef SUPPORT_SUN_FPA
2273/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2274 from the Sun FPA's constant RAM.
2275 The value returned, anded with 0x1ff, gives the code to use in fpmove
2276 to get the desired constant. */
c1cfb2ae
RS
2277
2278static int inited_FPA_table = 0;
2279
2280char *strings_FPA[38] = {
2281/* small rationals */
2282 "0.0",
2283 "1.0",
2284 "0.5",
2285 "-1.0",
2286 "2.0",
2287 "3.0",
2288 "4.0",
2289 "8.0",
2290 "0.25",
2291 "0.125",
2292 "10.0",
2293 "-0.5",
2294/* Decimal equivalents of double precision values */
2295 "2.718281828459045091", /* D_E */
2296 "6.283185307179586477", /* 2 pi */
2297 "3.141592653589793116", /* D_PI */
2298 "1.570796326794896619", /* pi/2 */
2299 "1.414213562373095145", /* D_SQRT2 */
2300 "0.7071067811865475244", /* 1/sqrt(2) */
2301 "-1.570796326794896619", /* -pi/2 */
2302 "1.442695040888963387", /* D_LOG2ofE */
2303 "3.321928024887362182", /* D_LOG2of10 */
2304 "0.6931471805599452862", /* D_LOGEof2 */
2305 "2.302585092994045901", /* D_LOGEof10 */
2306 "0.3010299956639811980", /* D_LOG10of2 */
2307 "0.4342944819032518167", /* D_LOG10ofE */
2308/* Decimal equivalents of single precision values */
2309 "2.718281745910644531", /* S_E */
2310 "6.283185307179586477", /* 2 pi */
2311 "3.141592741012573242", /* S_PI */
2312 "1.570796326794896619", /* pi/2 */
2313 "1.414213538169860840", /* S_SQRT2 */
2314 "0.7071067811865475244", /* 1/sqrt(2) */
2315 "-1.570796326794896619", /* -pi/2 */
2316 "1.442695021629333496", /* S_LOG2ofE */
2317 "3.321928024291992188", /* S_LOG2of10 */
2318 "0.6931471824645996094", /* S_LOGEof2 */
2319 "2.302585124969482442", /* S_LOGEof10 */
2320 "0.3010300099849700928", /* S_LOG10of2 */
2321 "0.4342944920063018799", /* S_LOG10ofE */
2322};
2323
2324
2325int codes_FPA[38] = {
2326/* small rationals */
2327 0x200,
2328 0xe,
2329 0xf,
2330 0x10,
2331 0x11,
2332 0xb1,
2333 0x12,
2334 0x13,
2335 0x15,
2336 0x16,
2337 0x17,
2338 0x2e,
2339/* double precision */
2340 0x8,
2341 0x9,
2342 0xa,
2343 0xb,
2344 0xc,
2345 0xd,
2346 0x27,
2347 0x28,
2348 0x29,
2349 0x2a,
2350 0x2b,
2351 0x2c,
2352 0x2d,
2353/* single precision */
2354 0x8,
2355 0x9,
2356 0xa,
2357 0xb,
2358 0xc,
2359 0xd,
2360 0x27,
2361 0x28,
2362 0x29,
2363 0x2a,
2364 0x2b,
2365 0x2c,
2366 0x2d
2367 };
2368
2369REAL_VALUE_TYPE values_FPA[38];
2370
2371/* This code has been fixed for cross-compilation. */
2372
2373void
2374init_FPA_table ()
2375{
2376 enum machine_mode mode;
2377 int i;
2378 REAL_VALUE_TYPE r;
2379
2380 mode = DFmode;
2381 for (i = 0; i < 38; i++)
2382 {
2383 if (i == 25)
2384 mode = SFmode;
2385 r = REAL_VALUE_ATOF (strings_FPA[i], mode);
2386 values_FPA[i] = r;
2387 }
2388 inited_FPA_table = 1;
2389}
2390
79e68feb
RS
2391
2392int
2393standard_sun_fpa_constant_p (x)
2394 rtx x;
2395{
c1cfb2ae
RS
2396 REAL_VALUE_TYPE r;
2397 int i;
79e68feb 2398
c1cfb2ae 2399#ifndef REAL_ARITHMETIC
79e68feb
RS
2400#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2401 if (! flag_pretend_float)
2402 return 0;
2403#endif
c1cfb2ae
RS
2404#endif
2405
2406 if (! inited_FPA_table)
2407 init_FPA_table ();
2408
2409 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2410
2411 for (i=0; i<12; i++)
2412 {
2413 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2414 return (codes_FPA[i]);
2415 }
79e68feb 2416
64a184e9 2417 if (GET_MODE (x) == SFmode)
79e68feb 2418 {
c1cfb2ae
RS
2419 for (i=25; i<38; i++)
2420 {
2421 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2422 return (codes_FPA[i]);
2423 }
79e68feb
RS
2424 }
2425 else
2426 {
c1cfb2ae
RS
2427 for (i=12; i<25; i++)
2428 {
2429 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2430 return (codes_FPA[i]);
2431 }
79e68feb
RS
2432 }
2433 return 0x0;
2434}
2435#endif /* define SUPPORT_SUN_FPA */
2436\f
2437/* A C compound statement to output to stdio stream STREAM the
2438 assembler syntax for an instruction operand X. X is an RTL
2439 expression.
2440
2441 CODE is a value that can be used to specify one of several ways
2442 of printing the operand. It is used when identical operands
2443 must be printed differently depending on the context. CODE
2444 comes from the `%' specification that was used to request
2445 printing of the operand. If the specification was just `%DIGIT'
2446 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2447 is the ASCII code for LTR.
2448
2449 If X is a register, this macro should print the register's name.
2450 The names can be found in an array `reg_names' whose type is
2451 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2452
2453 When the machine description has a specification `%PUNCT' (a `%'
2454 followed by a punctuation character), this macro is called with
2455 a null pointer for X and the punctuation character for CODE.
2456
2457 The m68k specific codes are:
2458
2459 '.' for dot needed in Motorola-style opcode names.
2460 '-' for an operand pushing on the stack:
2461 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2462 '+' for an operand pushing on the stack:
2463 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2464 '@' for a reference to the top word on the stack:
2465 sp@, (sp) or (%sp) depending on the style of syntax.
2466 '#' for an immediate operand prefix (# in MIT and Motorola syntax
a7e2b014 2467 but & in SGS syntax, $ in CRDS/UNOS syntax).
79e68feb
RS
2468 '!' for the cc register (used in an `and to cc' insn).
2469 '$' for the letter `s' in an op code, but only on the 68040.
2470 '&' for the letter `d' in an op code, but only on the 68040.
2ac5f14a 2471 '/' for register prefix needed by longlong.h.
79e68feb
RS
2472
2473 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2474 'd' to force memory addressing to be absolute, not relative.
2475 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2476 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
2477 than directly). Second part of 'y' below.
2478 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2479 or print pair of registers as rx:ry.
2480 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
2481 CONST_DOUBLE's as SunFPA constant RAM registers if
2482 possible, so it should not be used except for the SunFPA.
2483
2484 */
2485
2486void
2487print_operand (file, op, letter)
2488 FILE *file; /* file to write to */
2489 rtx op; /* operand to print */
2490 int letter; /* %<letter> or 0 */
2491{
2492 int i;
2493
2494 if (letter == '.')
2495 {
a7e2b014 2496#if defined (MOTOROLA) && !defined (CRDS)
79e68feb
RS
2497 asm_fprintf (file, ".");
2498#endif
2499 }
2500 else if (letter == '#')
2501 {
cffd0d74 2502 asm_fprintf (file, "%0I");
79e68feb
RS
2503 }
2504 else if (letter == '-')
2505 {
2506#ifdef MOTOROLA
2507 asm_fprintf (file, "-(%Rsp)");
2508#else
2509 asm_fprintf (file, "%Rsp@-");
2510#endif
2511 }
2512 else if (letter == '+')
2513 {
2514#ifdef MOTOROLA
2515 asm_fprintf (file, "(%Rsp)+");
2516#else
2517 asm_fprintf (file, "%Rsp@+");
2518#endif
2519 }
2520 else if (letter == '@')
2521 {
2522#ifdef MOTOROLA
2523 asm_fprintf (file, "(%Rsp)");
2524#else
2525 asm_fprintf (file, "%Rsp@");
2526#endif
2527 }
2528 else if (letter == '!')
2529 {
cffd0d74 2530 asm_fprintf (file, "%Rfpcr");
79e68feb
RS
2531 }
2532 else if (letter == '$')
2533 {
2534 if (TARGET_68040_ONLY)
2535 {
2536 fprintf (file, "s");
2537 }
2538 }
2539 else if (letter == '&')
2540 {
2541 if (TARGET_68040_ONLY)
2542 {
2543 fprintf (file, "d");
2544 }
2545 }
2ac5f14a
ILT
2546 else if (letter == '/')
2547 {
2548 asm_fprintf (file, "%R");
2549 }
79e68feb
RS
2550 else if (GET_CODE (op) == REG)
2551 {
f4a6e73b 2552#ifdef SUPPORT_SUN_FPA
79e68feb
RS
2553 if (REGNO (op) < 16
2554 && (letter == 'y' || letter == 'x')
2555 && GET_MODE (op) == DFmode)
2556 {
2557 fprintf (file, "%s:%s", reg_names[REGNO (op)],
2558 reg_names[REGNO (op)+1]);
2559 }
2560 else
f4a6e73b 2561#endif
79e68feb 2562 {
7f49c331
RK
2563 if (letter == 'R')
2564 /* Print out the second register name of a register pair.
2565 I.e., R (6) => 7. */
2566 fputs (reg_names[REGNO (op) + 1], file);
2567 else
2568 fputs (reg_names[REGNO (op)], file);
79e68feb
RS
2569 }
2570 }
2571 else if (GET_CODE (op) == MEM)
2572 {
2573 output_address (XEXP (op, 0));
2574 if (letter == 'd' && ! TARGET_68020
2575 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2576 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2577 && INTVAL (XEXP (op, 0)) < 0x8000
2578 && INTVAL (XEXP (op, 0)) >= -0x8000))
2579 {
3f889ae8
RK
2580#ifdef MOTOROLA
2581 fprintf (file, ".l");
2582#else
79e68feb 2583 fprintf (file, ":l");
3f889ae8 2584#endif
79e68feb
RS
2585 }
2586 }
2587#ifdef SUPPORT_SUN_FPA
2588 else if ((letter == 'y' || letter == 'w')
64a184e9 2589 && GET_CODE (op) == CONST_DOUBLE
79e68feb
RS
2590 && (i = standard_sun_fpa_constant_p (op)))
2591 {
2592 fprintf (file, "%%%d", i & 0x1ff);
2593 }
2594#endif
2595 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2596 {
c1cfb2ae
RS
2597 REAL_VALUE_TYPE r;
2598 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2599 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2600 }
2601 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2602 {
2603 REAL_VALUE_TYPE r;
2604 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2605 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
79e68feb 2606 }
e2c0a924 2607 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
79e68feb 2608 {
c1cfb2ae
RS
2609 REAL_VALUE_TYPE r;
2610 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2611 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
79e68feb
RS
2612 }
2613 else
2614 {
cffd0d74 2615 asm_fprintf (file, "%0I"); output_addr_const (file, op);
79e68feb
RS
2616 }
2617}
2618
2619\f
2620/* A C compound statement to output to stdio stream STREAM the
2621 assembler syntax for an instruction operand that is a memory
2622 reference whose address is ADDR. ADDR is an RTL expression.
2623
2624 Note that this contains a kludge that knows that the only reason
2625 we have an address (plus (label_ref...) (reg...)) when not generating
2626 PIC code is in the insn before a tablejump, and we know that m68k.md
2627 generates a label LInnn: on such an insn.
2628
2629 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2630 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2631
2632 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2633 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2634 we want. This difference can be accommodated by using an assembler
2635 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2636 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
ad7c12b2 2637 macro. See m68k/sgs.h for an example; for versions without the bug.
f4a6e73b
RK
2638 Some assemblers refuse all the above solutions. The workaround is to
2639 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2640 right behaviour.
79e68feb
RS
2641
2642 They also do not like things like "pea 1.w", so we simple leave off
2643 the .w on small constants.
2644
2645 This routine is responsible for distinguishing between -fpic and -fPIC
2646 style relocations in an address. When generating -fpic code the
2647 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2648 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2649
f4a6e73b
RK
2650#ifndef ASM_OUTPUT_CASE_FETCH
2651#ifdef MOTOROLA
2652#ifdef SGS
2653#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2654 asm_fprintf (file, "%LLD%d(%Rpc,%s.", labelno, regname)
2655#else
2656#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2657 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2658#endif
2659#else
2660#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2661 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2662#endif
2663#endif /* ASM_OUTPUT_CASE_FETCH */
2664
79e68feb
RS
2665void
2666print_operand_address (file, addr)
2667 FILE *file;
2668 rtx addr;
2669{
2670 register rtx reg1, reg2, breg, ireg;
2671 rtx offset;
2672
2673 switch (GET_CODE (addr))
2674 {
2675 case REG:
2676#ifdef MOTOROLA
2677 fprintf (file, "(%s)", reg_names[REGNO (addr)]);
2678#else
2679 fprintf (file, "%s@", reg_names[REGNO (addr)]);
2680#endif
2681 break;
2682 case PRE_DEC:
2683#ifdef MOTOROLA
2684 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
2685#else
2686 fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
2687#endif
2688 break;
2689 case POST_INC:
2690#ifdef MOTOROLA
2691 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
2692#else
2693 fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
2694#endif
2695 break;
2696 case PLUS:
2697 reg1 = reg2 = ireg = breg = offset = 0;
2698 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
2699 {
2700 offset = XEXP (addr, 0);
2701 addr = XEXP (addr, 1);
2702 }
2703 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
2704 {
2705 offset = XEXP (addr, 1);
2706 addr = XEXP (addr, 0);
2707 }
2708 if (GET_CODE (addr) != PLUS)
2709 {
2710 ;
2711 }
2712 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
2713 {
2714 reg1 = XEXP (addr, 0);
2715 addr = XEXP (addr, 1);
2716 }
2717 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
2718 {
2719 reg1 = XEXP (addr, 1);
2720 addr = XEXP (addr, 0);
2721 }
2722 else if (GET_CODE (XEXP (addr, 0)) == MULT)
2723 {
2724 reg1 = XEXP (addr, 0);
2725 addr = XEXP (addr, 1);
2726 }
2727 else if (GET_CODE (XEXP (addr, 1)) == MULT)
2728 {
2729 reg1 = XEXP (addr, 1);
2730 addr = XEXP (addr, 0);
2731 }
2732 else if (GET_CODE (XEXP (addr, 0)) == REG)
2733 {
2734 reg1 = XEXP (addr, 0);
2735 addr = XEXP (addr, 1);
2736 }
2737 else if (GET_CODE (XEXP (addr, 1)) == REG)
2738 {
2739 reg1 = XEXP (addr, 1);
2740 addr = XEXP (addr, 0);
2741 }
2742 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
2743 || GET_CODE (addr) == SIGN_EXTEND)
2744 {
2745 if (reg1 == 0)
2746 {
2747 reg1 = addr;
2748 }
2749 else
2750 {
2751 reg2 = addr;
2752 }
2753 addr = 0;
2754 }
2755#if 0 /* for OLD_INDEXING */
2756 else if (GET_CODE (addr) == PLUS)
2757 {
2758 if (GET_CODE (XEXP (addr, 0)) == REG)
2759 {
2760 reg2 = XEXP (addr, 0);
2761 addr = XEXP (addr, 1);
2762 }
2763 else if (GET_CODE (XEXP (addr, 1)) == REG)
2764 {
2765 reg2 = XEXP (addr, 1);
2766 addr = XEXP (addr, 0);
2767 }
2768 }
2769#endif
2770 if (offset != 0)
2771 {
2772 if (addr != 0)
2773 {
2774 abort ();
2775 }
2776 addr = offset;
2777 }
2778 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
2779 || GET_CODE (reg1) == MULT))
2780 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
2781 {
2782 breg = reg2;
2783 ireg = reg1;
2784 }
2785 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
2786 {
2787 breg = reg1;
2788 ireg = reg2;
2789 }
2790 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2791 && ! (flag_pic && ireg == pic_offset_table_rtx))
79e68feb
RS
2792 {
2793 int scale = 1;
2794 if (GET_CODE (ireg) == MULT)
2795 {
2796 scale = INTVAL (XEXP (ireg, 1));
2797 ireg = XEXP (ireg, 0);
2798 }
2799 if (GET_CODE (ireg) == SIGN_EXTEND)
2800 {
f4a6e73b 2801 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2802 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2803 reg_names[REGNO (XEXP (ireg, 0))]);
f4a6e73b 2804 fprintf (file, "w");
79e68feb
RS
2805 }
2806 else
2807 {
f4a6e73b 2808 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2809 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2810 reg_names[REGNO (ireg)]);
f4a6e73b 2811 fprintf (file, "l");
79e68feb
RS
2812 }
2813 if (scale != 1)
2814 {
2815#ifdef MOTOROLA
2816 fprintf (file, "*%d", scale);
2817#else
2818 fprintf (file, ":%d", scale);
2819#endif
2820 }
2821 putc (')', file);
2822 break;
2823 }
2824 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2825 && ! (flag_pic && breg == pic_offset_table_rtx))
79e68feb 2826 {
f4a6e73b 2827 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2828 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2829 reg_names[REGNO (breg)]);
f4a6e73b 2830 fprintf (file, "l)");
79e68feb
RS
2831 break;
2832 }
2833 if (ireg != 0 || breg != 0)
2834 {
2835 int scale = 1;
2836 if (breg == 0)
2837 {
2838 abort ();
2839 }
2840 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
2841 {
2842 abort ();
2843 }
2844#ifdef MOTOROLA
2845 if (addr != 0)
2846 {
2847 output_addr_const (file, addr);
66c432a7
RS
2848 if (flag_pic && (breg == pic_offset_table_rtx))
2849 fprintf (file, "@GOT");
79e68feb
RS
2850 }
2851 fprintf (file, "(%s", reg_names[REGNO (breg)]);
2852 if (ireg != 0)
2853 {
2854 putc (',', file);
2855 }
2856#else
2857 fprintf (file, "%s@(", reg_names[REGNO (breg)]);
2858 if (addr != 0)
2859 {
2860 output_addr_const (file, addr);
2861 if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
2862 fprintf (file, ":w");
2863 if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
2864 fprintf (file, ":l");
2865 }
2866 if (addr != 0 && ireg != 0)
2867 {
2868 putc (',', file);
2869 }
2870#endif
2871 if (ireg != 0 && GET_CODE (ireg) == MULT)
2872 {
2873 scale = INTVAL (XEXP (ireg, 1));
2874 ireg = XEXP (ireg, 0);
2875 }
2876 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
2877 {
2878#ifdef MOTOROLA
2879 fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
2880#else
2881 fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
2882#endif
2883 }
2884 else if (ireg != 0)
2885 {
2886#ifdef MOTOROLA
2887 fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
2888#else
2889 fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
2890#endif
2891 }
2892 if (scale != 1)
2893 {
2894#ifdef MOTOROLA
2895 fprintf (file, "*%d", scale);
2896#else
2897 fprintf (file, ":%d", scale);
2898#endif
2899 }
2900 putc (')', file);
2901 break;
2902 }
2903 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2904 && ! (flag_pic && reg1 == pic_offset_table_rtx))
79e68feb 2905 {
f4a6e73b 2906 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2907 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2908 reg_names[REGNO (reg1)]);
f4a6e73b 2909 fprintf (file, "l)");
79e68feb
RS
2910 break;
2911 }
2912 /* FALL-THROUGH (is this really what we want? */
2913 default:
2914 if (GET_CODE (addr) == CONST_INT
2915 && INTVAL (addr) < 0x8000
2916 && INTVAL (addr) >= -0x8000)
2917 {
2918#ifdef MOTOROLA
2919#ifdef SGS
2920 /* Many SGS assemblers croak on size specifiers for constants. */
2921 fprintf (file, "%d", INTVAL (addr));
2922#else
2923 fprintf (file, "%d.w", INTVAL (addr));
2924#endif
2925#else
2926 fprintf (file, "%d:w", INTVAL (addr));
2927#endif
2928 }
2929 else
2930 {
2931 output_addr_const (file, addr);
2932 }
2933 break;
2934 }
2935}
af13f02d
JW
2936\f
2937/* Check for cases where a clr insns can be omitted from code using
2938 strict_low_part sets. For example, the second clrl here is not needed:
2939 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
2940
2941 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
2942 insn we are checking for redundancy. TARGET is the register set by the
2943 clear insn. */
2944
2945int
2946strict_low_part_peephole_ok (mode, first_insn, target)
2947 enum machine_mode mode;
2948 rtx first_insn;
2949 rtx target;
2950{
2951 rtx p;
2952
2953 p = prev_nonnote_insn (first_insn);
2954
2955 while (p)
2956 {
2957 /* If it isn't an insn, then give up. */
2958 if (GET_CODE (p) != INSN)
2959 return 0;
2960
2961 if (reg_set_p (target, p))
2962 {
2963 rtx set = single_set (p);
2964 rtx dest;
2965
2966 /* If it isn't an easy to recognize insn, then give up. */
2967 if (! set)
2968 return 0;
2969
2970 dest = SET_DEST (set);
2971
2972 /* If this sets the entire target register to zero, then our
2973 first_insn is redundant. */
2974 if (rtx_equal_p (dest, target)
2975 && SET_SRC (set) == const0_rtx)
2976 return 1;
2977 else if (GET_CODE (dest) == STRICT_LOW_PART
2978 && GET_CODE (XEXP (dest, 0)) == REG
2979 && REGNO (XEXP (dest, 0)) == REGNO (target)
2980 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
2981 <= GET_MODE_SIZE (mode)))
2982 /* This is a strict low part set which modifies less than
2983 we are using, so it is safe. */
2984 ;
2985 else
2986 return 0;
2987 }
2988
2989 p = prev_nonnote_insn (p);
2990
2991 }
2992
2993 return 0;
2994}
67cd4f83
TG
2995
2996/* Accept integer operands in the range 0..0xffffffff. We have to check the
2997 range carefully since this predicate is used in DImode contexts. Also, we
2998 need some extra crud to make it work when hosted on 64-bit machines. */
2999
3000int
3001const_uint32_operand (op, mode)
3002 rtx op;
3003 enum machine_mode mode;
3004{
3005#if HOST_BITS_PER_WIDE_INT > 32
3006 /* All allowed constants will fit a CONST_INT. */
3007 return (GET_CODE (op) == CONST_INT
3008 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
3009#else
fd25a29a 3010 return ((GET_CODE (op) == CONST_INT && INTVAL (op) >= 0)
67cd4f83
TG
3011 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
3012#endif
3013}
3014
3015/* Accept integer operands in the range -0x80000000..0x7fffffff. We have
3016 to check the range carefully since this predicate is used in DImode
3017 contexts. */
3018
3019int
3020const_sint32_operand (op, mode)
3021 rtx op;
3022 enum machine_mode mode;
3023{
3024 /* All allowed constants will fit a CONST_INT. */
3025 return (GET_CODE (op) == CONST_INT
3026 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
3027}