]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/m68k/m68k.c
m68k.c: Include rtl-iter.h.
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
CommitLineData
79e68feb 1/* Subroutines for insn-output.c for Motorola 68000 family.
23a5b65a 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
79e68feb 3
7ec022b2 4This file is part of GCC.
79e68feb 5
7ec022b2 6GCC is free software; you can redistribute it and/or modify
79e68feb 7it under the terms of the GNU General Public License as published by
2f83c7d6 8the Free Software Foundation; either version 3, or (at your option)
79e68feb
RS
9any later version.
10
7ec022b2 11GCC is distributed in the hope that it will be useful,
79e68feb
RS
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
2f83c7d6
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
79e68feb 19
79e68feb 20#include "config.h"
f5220a5d 21#include "system.h"
4977bab6
ZW
22#include "coretypes.h"
23#include "tm.h"
da932f04 24#include "tree.h"
d8a2d370
DN
25#include "calls.h"
26#include "stor-layout.h"
27#include "varasm.h"
79e68feb 28#include "rtl.h"
83685514
AM
29#include "hashtab.h"
30#include "hash-set.h"
31#include "vec.h"
32#include "machmode.h"
33#include "hard-reg-set.h"
34#include "input.h"
49ad7cfa 35#include "function.h"
79e68feb 36#include "regs.h"
79e68feb
RS
37#include "insn-config.h"
38#include "conditions.h"
79e68feb
RS
39#include "output.h"
40#include "insn-attr.h"
1d8eaa6b 41#include "recog.h"
718f9c0f 42#include "diagnostic-core.h"
6d5f49b2
RH
43#include "expr.h"
44#include "reload.h"
5505f548 45#include "tm_p.h"
672a6f42
NB
46#include "target.h"
47#include "target-def.h"
2cc07db4 48#include "debug.h"
79e68feb 49#include "flags.h"
6fb5fa3c 50#include "df.h"
b8c96320
MK
51/* ??? Need to add a dependency between m68k.o and sched-int.h. */
52#include "sched-int.h"
53#include "insn-codes.h"
75df395f 54#include "ggc.h"
96e45421 55#include "opts.h"
8b281334 56#include "optabs.h"
9b2b7279 57#include "builtins.h"
82eee4f1 58#include "rtl-iter.h"
79e68feb 59
a4e9467d
RZ
60enum reg_class regno_reg_class[] =
61{
62 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
63 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
64 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
65 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
66 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
67 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
68 ADDR_REGS
69};
70
71
a40ed0f3
KH
72/* The minimum number of integer registers that we want to save with the
73 movem instruction. Using two movel instructions instead of a single
74 moveml is about 15% faster for the 68020 and 68030 at no expense in
75 code size. */
76#define MIN_MOVEM_REGS 3
77
78/* The minimum number of floating point registers that we want to save
79 with the fmovem instruction. */
80#define MIN_FMOVEM_REGS 1
81
ff482c8d 82/* Structure describing stack frame layout. */
3d74bc09
BI
83struct m68k_frame
84{
85 /* Stack pointer to frame pointer offset. */
48ed72a4 86 HOST_WIDE_INT offset;
3d74bc09
BI
87
88 /* Offset of FPU registers. */
89 HOST_WIDE_INT foffset;
90
91 /* Frame size in bytes (rounded up). */
48ed72a4 92 HOST_WIDE_INT size;
3d74bc09
BI
93
94 /* Data and address register. */
48ed72a4
PB
95 int reg_no;
96 unsigned int reg_mask;
3d74bc09
BI
97
98 /* FPU registers. */
48ed72a4
PB
99 int fpu_no;
100 unsigned int fpu_mask;
3d74bc09
BI
101
102 /* Offsets relative to ARG_POINTER. */
48ed72a4
PB
103 HOST_WIDE_INT frame_pointer_offset;
104 HOST_WIDE_INT stack_pointer_offset;
3d74bc09
BI
105
106 /* Function which the above information refers to. */
107 int funcdef_no;
48ed72a4
PB
108};
109
3d74bc09
BI
110/* Current frame information calculated by m68k_compute_frame_layout(). */
111static struct m68k_frame current_frame;
112
fc2241eb
RS
113/* Structure describing an m68k address.
114
115 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
116 with null fields evaluating to 0. Here:
117
118 - BASE satisfies m68k_legitimate_base_reg_p
119 - INDEX satisfies m68k_legitimate_index_reg_p
120 - OFFSET satisfies m68k_legitimate_constant_address_p
121
122 INDEX is either HImode or SImode. The other fields are SImode.
123
124 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
125 the address is (BASE)+. */
126struct m68k_address {
127 enum rtx_code code;
128 rtx base;
129 rtx index;
130 rtx offset;
131 int scale;
132};
133
ac44248e 134static int m68k_sched_adjust_cost (rtx_insn *, rtx, rtx_insn *, int);
96fcacb7 135static int m68k_sched_issue_rate (void);
ac44248e 136static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
b8c96320
MK
137static void m68k_sched_md_init_global (FILE *, int, int);
138static void m68k_sched_md_finish_global (FILE *, int);
139static void m68k_sched_md_init (FILE *, int, int);
140static void m68k_sched_dfa_pre_advance_cycle (void);
141static void m68k_sched_dfa_post_advance_cycle (void);
96fcacb7 142static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
b8c96320 143
7b5cbb57 144static bool m68k_can_eliminate (const int, const int);
5efd84c5 145static void m68k_conditional_register_usage (void);
c6c3dba9 146static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
c5387660 147static void m68k_option_override (void);
03e69b12 148static void m68k_override_options_after_change (void);
8a4a2253
BI
149static rtx find_addr_reg (rtx);
150static const char *singlemove_string (rtx *);
8a4a2253
BI
151static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
152 HOST_WIDE_INT, tree);
8636be86 153static rtx m68k_struct_value_rtx (tree, int);
48ed72a4
PB
154static tree m68k_handle_fndecl_attribute (tree *node, tree name,
155 tree args, int flags,
156 bool *no_add_attrs);
3d74bc09 157static void m68k_compute_frame_layout (void);
48ed72a4 158static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
f7e70894 159static bool m68k_ok_for_sibcall_p (tree, tree);
75df395f 160static bool m68k_tls_symbol_p (rtx);
506d7b68 161static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
68f932c4 162static bool m68k_rtx_costs (rtx, int, int, int, int *, bool);
1c445f03 163#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
511e41e5 164static bool m68k_return_in_memory (const_tree, const_tree);
1c445f03 165#endif
75df395f 166static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
e0601576 167static void m68k_trampoline_init (rtx, tree, rtx);
079e7538 168static int m68k_return_pops_args (tree, tree, int);
7b0f476d 169static rtx m68k_delegitimize_address (rtx);
d5cc9181 170static void m68k_function_arg_advance (cumulative_args_t, enum machine_mode,
13d3961c 171 const_tree, bool);
d5cc9181 172static rtx m68k_function_arg (cumulative_args_t, enum machine_mode,
13d3961c 173 const_tree, bool);
fbbf66e7 174static bool m68k_cannot_force_const_mem (enum machine_mode mode, rtx x);
cb69db4f 175static bool m68k_output_addr_const_extra (FILE *, rtx);
8b281334 176static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
79e68feb 177\f
672a6f42 178/* Initialize the GCC target structure. */
301d03af
RS
179
180#if INT_OP_GROUP == INT_OP_DOT_WORD
181#undef TARGET_ASM_ALIGNED_HI_OP
182#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
183#endif
184
185#if INT_OP_GROUP == INT_OP_NO_DOT
186#undef TARGET_ASM_BYTE_OP
187#define TARGET_ASM_BYTE_OP "\tbyte\t"
188#undef TARGET_ASM_ALIGNED_HI_OP
189#define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
190#undef TARGET_ASM_ALIGNED_SI_OP
191#define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
192#endif
193
194#if INT_OP_GROUP == INT_OP_DC
195#undef TARGET_ASM_BYTE_OP
196#define TARGET_ASM_BYTE_OP "\tdc.b\t"
197#undef TARGET_ASM_ALIGNED_HI_OP
198#define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
199#undef TARGET_ASM_ALIGNED_SI_OP
200#define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
201#endif
202
203#undef TARGET_ASM_UNALIGNED_HI_OP
204#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
205#undef TARGET_ASM_UNALIGNED_SI_OP
206#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
207
c590b625
RH
208#undef TARGET_ASM_OUTPUT_MI_THUNK
209#define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
bdabc150 210#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
3101faab 211#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
c590b625 212
1bc7c5b6
ZW
213#undef TARGET_ASM_FILE_START_APP_OFF
214#define TARGET_ASM_FILE_START_APP_OFF true
215
506d7b68
PB
216#undef TARGET_LEGITIMIZE_ADDRESS
217#define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
218
b8c96320
MK
219#undef TARGET_SCHED_ADJUST_COST
220#define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
221
96fcacb7
MK
222#undef TARGET_SCHED_ISSUE_RATE
223#define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
224
b8c96320
MK
225#undef TARGET_SCHED_VARIABLE_ISSUE
226#define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
227
228#undef TARGET_SCHED_INIT_GLOBAL
229#define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
230
231#undef TARGET_SCHED_FINISH_GLOBAL
232#define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
233
234#undef TARGET_SCHED_INIT
235#define TARGET_SCHED_INIT m68k_sched_md_init
236
237#undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
238#define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
239
240#undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
241#define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
242
96fcacb7
MK
243#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
244#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
245 m68k_sched_first_cycle_multipass_dfa_lookahead
246
c5387660
JM
247#undef TARGET_OPTION_OVERRIDE
248#define TARGET_OPTION_OVERRIDE m68k_option_override
249
03e69b12
MP
250#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
251#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
252
3c50106f
RH
253#undef TARGET_RTX_COSTS
254#define TARGET_RTX_COSTS m68k_rtx_costs
255
48ed72a4
PB
256#undef TARGET_ATTRIBUTE_TABLE
257#define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
258
8636be86 259#undef TARGET_PROMOTE_PROTOTYPES
586de218 260#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
8636be86
KH
261
262#undef TARGET_STRUCT_VALUE_RTX
263#define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
264
7ffb5e78 265#undef TARGET_CANNOT_FORCE_CONST_MEM
fbbf66e7 266#define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
7ffb5e78 267
f7e70894
RS
268#undef TARGET_FUNCTION_OK_FOR_SIBCALL
269#define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
270
1c445f03
NS
271#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
272#undef TARGET_RETURN_IN_MEMORY
273#define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
274#endif
275
75df395f
MK
276#ifdef HAVE_AS_TLS
277#undef TARGET_HAVE_TLS
278#define TARGET_HAVE_TLS (true)
279
280#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
281#define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
282#endif
283
c6c3dba9
PB
284#undef TARGET_LEGITIMATE_ADDRESS_P
285#define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
286
7b5cbb57
AS
287#undef TARGET_CAN_ELIMINATE
288#define TARGET_CAN_ELIMINATE m68k_can_eliminate
289
5efd84c5
NF
290#undef TARGET_CONDITIONAL_REGISTER_USAGE
291#define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
292
e0601576
RH
293#undef TARGET_TRAMPOLINE_INIT
294#define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
295
079e7538
NF
296#undef TARGET_RETURN_POPS_ARGS
297#define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
298
7b0f476d
AS
299#undef TARGET_DELEGITIMIZE_ADDRESS
300#define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
301
13d3961c
NF
302#undef TARGET_FUNCTION_ARG
303#define TARGET_FUNCTION_ARG m68k_function_arg
304
305#undef TARGET_FUNCTION_ARG_ADVANCE
306#define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
307
1a627b35
RS
308#undef TARGET_LEGITIMATE_CONSTANT_P
309#define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
310
cb69db4f
AS
311#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
312#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
313
4c1fd084
RH
314/* The value stored by TAS. */
315#undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
316#define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
317
48ed72a4
PB
318static const struct attribute_spec m68k_attribute_table[] =
319{
62d784f7
KT
320 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
321 affects_type_identity } */
322 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
323 false },
324 { "interrupt_handler", 0, 0, true, false, false,
325 m68k_handle_fndecl_attribute, false },
326 { "interrupt_thread", 0, 0, true, false, false,
327 m68k_handle_fndecl_attribute, false },
328 { NULL, 0, 0, false, false, false, NULL, false }
48ed72a4
PB
329};
330
f6897b10 331struct gcc_target targetm = TARGET_INITIALIZER;
672a6f42 332\f
900ec02d
JB
333/* Base flags for 68k ISAs. */
334#define FL_FOR_isa_00 FL_ISA_68000
335#define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
336/* FL_68881 controls the default setting of -m68881. gcc has traditionally
337 generated 68881 code for 68020 and 68030 targets unless explicitly told
338 not to. */
339#define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
6a2b269b 340 | FL_BITFIELD | FL_68881 | FL_CAS)
900ec02d
JB
341#define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
342#define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
343
344/* Base flags for ColdFire ISAs. */
345#define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
346#define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
347/* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
348#define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
4e2b26aa 349/* ISA_C is not upwardly compatible with ISA_B. */
8c5c99dc 350#define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
900ec02d
JB
351
352enum m68k_isa
353{
354 /* Traditional 68000 instruction sets. */
355 isa_00,
356 isa_10,
357 isa_20,
358 isa_40,
359 isa_cpu32,
360 /* ColdFire instruction set variants. */
361 isa_a,
362 isa_aplus,
363 isa_b,
364 isa_c,
365 isa_max
366};
367
368/* Information about one of the -march, -mcpu or -mtune arguments. */
369struct m68k_target_selection
370{
371 /* The argument being described. */
372 const char *name;
373
374 /* For -mcpu, this is the device selected by the option.
375 For -mtune and -march, it is a representative device
376 for the microarchitecture or ISA respectively. */
377 enum target_device device;
378
379 /* The M68K_DEVICE fields associated with DEVICE. See the comment
380 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
381 const char *family;
382 enum uarch_type microarch;
383 enum m68k_isa isa;
384 unsigned long flags;
385};
386
387/* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
388static const struct m68k_target_selection all_devices[] =
389{
390#define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
391 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
392#include "m68k-devices.def"
393#undef M68K_DEVICE
394 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
395};
396
397/* A list of all ISAs, mapping each one to a representative device.
398 Used for -march selection. */
399static const struct m68k_target_selection all_isas[] =
400{
47c94d21
JM
401#define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
402 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
403#include "m68k-isas.def"
404#undef M68K_ISA
900ec02d
JB
405 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
406};
407
408/* A list of all microarchitectures, mapping each one to a representative
409 device. Used for -mtune selection. */
410static const struct m68k_target_selection all_microarchs[] =
411{
47c94d21
JM
412#define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
413 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
414#include "m68k-microarchs.def"
415#undef M68K_MICROARCH
900ec02d
JB
416 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
417};
418\f
419/* The entries associated with the -mcpu, -march and -mtune settings,
420 or null for options that have not been used. */
421const struct m68k_target_selection *m68k_cpu_entry;
422const struct m68k_target_selection *m68k_arch_entry;
423const struct m68k_target_selection *m68k_tune_entry;
424
425/* Which CPU we are generating code for. */
426enum target_device m68k_cpu;
427
428/* Which microarchitecture to tune for. */
429enum uarch_type m68k_tune;
430
431/* Which FPU to use. */
432enum fpu_type m68k_fpu;
4af06170 433
900ec02d
JB
434/* The set of FL_* flags that apply to the target processor. */
435unsigned int m68k_cpu_flags;
29ca003a 436
03b3e271
KH
437/* The set of FL_* flags that apply to the processor to be tuned for. */
438unsigned int m68k_tune_flags;
439
29ca003a
RS
440/* Asm templates for calling or jumping to an arbitrary symbolic address,
441 or NULL if such calls or jumps are not supported. The address is held
442 in operand 0. */
443const char *m68k_symbolic_call;
444const char *m68k_symbolic_jump;
c47b0cb4
MK
445
446/* Enum variable that corresponds to m68k_symbolic_call values. */
447enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
448
900ec02d 449\f
c5387660 450/* Implement TARGET_OPTION_OVERRIDE. */
ef1dbfb0 451
c5387660
JM
452static void
453m68k_option_override (void)
ef1dbfb0 454{
900ec02d
JB
455 const struct m68k_target_selection *entry;
456 unsigned long target_mask;
457
47c94d21
JM
458 if (global_options_set.x_m68k_arch_option)
459 m68k_arch_entry = &all_isas[m68k_arch_option];
460
461 if (global_options_set.x_m68k_cpu_option)
462 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
463
464 if (global_options_set.x_m68k_tune_option)
465 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
466
900ec02d
JB
467 /* User can choose:
468
469 -mcpu=
470 -march=
471 -mtune=
472
473 -march=ARCH should generate code that runs any processor
474 implementing architecture ARCH. -mcpu=CPU should override -march
475 and should generate code that runs on processor CPU, making free
476 use of any instructions that CPU understands. -mtune=UARCH applies
9f5ed61a 477 on top of -mcpu or -march and optimizes the code for UARCH. It does
900ec02d
JB
478 not change the target architecture. */
479 if (m68k_cpu_entry)
480 {
481 /* Complain if the -march setting is for a different microarchitecture,
482 or includes flags that the -mcpu setting doesn't. */
483 if (m68k_arch_entry
484 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
485 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
486 warning (0, "-mcpu=%s conflicts with -march=%s",
487 m68k_cpu_entry->name, m68k_arch_entry->name);
488
489 entry = m68k_cpu_entry;
490 }
491 else
492 entry = m68k_arch_entry;
493
494 if (!entry)
495 entry = all_devices + TARGET_CPU_DEFAULT;
496
497 m68k_cpu_flags = entry->flags;
498
499 /* Use the architecture setting to derive default values for
500 certain flags. */
501 target_mask = 0;
8785d88c
KH
502
503 /* ColdFire is lenient about alignment. */
504 if (!TARGET_COLDFIRE)
505 target_mask |= MASK_STRICT_ALIGNMENT;
506
900ec02d
JB
507 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
508 target_mask |= MASK_BITFIELD;
509 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
510 target_mask |= MASK_CF_HWDIV;
511 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
512 target_mask |= MASK_HARD_FLOAT;
513 target_flags |= target_mask & ~target_flags_explicit;
514
515 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
516 m68k_cpu = entry->device;
517 if (m68k_tune_entry)
03b3e271
KH
518 {
519 m68k_tune = m68k_tune_entry->microarch;
520 m68k_tune_flags = m68k_tune_entry->flags;
521 }
900ec02d
JB
522#ifdef M68K_DEFAULT_TUNE
523 else if (!m68k_cpu_entry && !m68k_arch_entry)
03b3e271
KH
524 {
525 enum target_device dev;
526 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
3b891d26 527 m68k_tune_flags = all_devices[dev].flags;
03b3e271 528 }
900ec02d
JB
529#endif
530 else
03b3e271
KH
531 {
532 m68k_tune = entry->microarch;
533 m68k_tune_flags = entry->flags;
534 }
900ec02d
JB
535
536 /* Set the type of FPU. */
537 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
538 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
539 : FPUTYPE_68881);
540
a2ef3db7
BI
541 /* Sanity check to ensure that msep-data and mid-sahred-library are not
542 * both specified together. Doing so simply doesn't make sense.
543 */
544 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
545 error ("cannot specify both -msep-data and -mid-shared-library");
546
547 /* If we're generating code for a separate A5 relative data segment,
548 * we've got to enable -fPIC as well. This might be relaxable to
549 * -fpic but it hasn't been tested properly.
550 */
551 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
552 flag_pic = 2;
553
abe92a04
RS
554 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
555 error if the target does not support them. */
556 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
557 error ("-mpcrel -fPIC is not currently supported on selected cpu");
adf2ac37
RH
558
559 /* ??? A historic way of turning on pic, or is this intended to
560 be an embedded thing that doesn't have the same name binding
561 significance that it does on hosted ELF systems? */
562 if (TARGET_PCREL && flag_pic == 0)
563 flag_pic = 1;
564
29ca003a
RS
565 if (!flag_pic)
566 {
c47b0cb4
MK
567 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
568
29ca003a 569 m68k_symbolic_jump = "jra %a0";
29ca003a
RS
570 }
571 else if (TARGET_ID_SHARED_LIBRARY)
572 /* All addresses must be loaded from the GOT. */
573 ;
4e2b26aa 574 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
29ca003a
RS
575 {
576 if (TARGET_PCREL)
c47b0cb4 577 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
4e2b26aa 578 else
c47b0cb4
MK
579 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
580
4e2b26aa
NS
581 if (TARGET_ISAC)
582 /* No unconditional long branch */;
583 else if (TARGET_PCREL)
da398bb5 584 m68k_symbolic_jump = "bra%.l %c0";
29ca003a 585 else
da398bb5 586 m68k_symbolic_jump = "bra%.l %p0";
29ca003a
RS
587 /* Turn off function cse if we are doing PIC. We always want
588 function call to be done as `bsr foo@PLTPC'. */
589 /* ??? It's traditional to do this for -mpcrel too, but it isn't
590 clear how intentional that is. */
591 flag_no_function_cse = 1;
592 }
adf2ac37 593
c47b0cb4
MK
594 switch (m68k_symbolic_call_var)
595 {
596 case M68K_SYMBOLIC_CALL_JSR:
c47b0cb4 597 m68k_symbolic_call = "jsr %a0";
c47b0cb4
MK
598 break;
599
600 case M68K_SYMBOLIC_CALL_BSR_C:
da398bb5 601 m68k_symbolic_call = "bsr%.l %c0";
c47b0cb4
MK
602 break;
603
604 case M68K_SYMBOLIC_CALL_BSR_P:
da398bb5 605 m68k_symbolic_call = "bsr%.l %p0";
c47b0cb4
MK
606 break;
607
608 case M68K_SYMBOLIC_CALL_NONE:
609 gcc_assert (m68k_symbolic_call == NULL);
610 break;
611
612 default:
613 gcc_unreachable ();
614 }
615
aaca7021
RZ
616#ifndef ASM_OUTPUT_ALIGN_WITH_NOP
617 if (align_labels > 2)
618 {
619 warning (0, "-falign-labels=%d is not supported", align_labels);
620 align_labels = 0;
621 }
622 if (align_loops > 2)
623 {
624 warning (0, "-falign-loops=%d is not supported", align_loops);
625 align_loops = 0;
626 }
627#endif
628
8e22f79f
AS
629 if (stack_limit_rtx != NULL_RTX && !TARGET_68020)
630 {
631 warning (0, "-fstack-limit- options are not supported on this cpu");
632 stack_limit_rtx = NULL_RTX;
633 }
634
adf2ac37 635 SUBTARGET_OVERRIDE_OPTIONS;
c47b0cb4
MK
636
637 /* Setup scheduling options. */
826fadba
MK
638 if (TUNE_CFV1)
639 m68k_sched_cpu = CPU_CFV1;
640 else if (TUNE_CFV2)
641 m68k_sched_cpu = CPU_CFV2;
642 else if (TUNE_CFV3)
643 m68k_sched_cpu = CPU_CFV3;
96fcacb7
MK
644 else if (TUNE_CFV4)
645 m68k_sched_cpu = CPU_CFV4;
c47b0cb4
MK
646 else
647 {
648 m68k_sched_cpu = CPU_UNKNOWN;
649 flag_schedule_insns = 0;
650 flag_schedule_insns_after_reload = 0;
651 flag_modulo_sched = 0;
1ee6eb01 652 flag_live_range_shrinkage = 0;
c47b0cb4 653 }
826fadba
MK
654
655 if (m68k_sched_cpu != CPU_UNKNOWN)
656 {
657 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
658 m68k_sched_mac = MAC_CF_EMAC;
659 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
660 m68k_sched_mac = MAC_CF_MAC;
661 else
662 m68k_sched_mac = MAC_NO;
663 }
ef1dbfb0 664}
7eb4f044 665
03e69b12
MP
666/* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
667
668static void
669m68k_override_options_after_change (void)
670{
671 if (m68k_sched_cpu == CPU_UNKNOWN)
672 {
673 flag_schedule_insns = 0;
674 flag_schedule_insns_after_reload = 0;
675 flag_modulo_sched = 0;
1ee6eb01 676 flag_live_range_shrinkage = 0;
03e69b12
MP
677 }
678}
679
7eb4f044
NS
680/* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
681 given argument and NAME is the argument passed to -mcpu. Return NULL
682 if -mcpu was not passed. */
683
684const char *
685m68k_cpp_cpu_ident (const char *prefix)
686{
687 if (!m68k_cpu_entry)
688 return NULL;
689 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
690}
691
692/* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
693 given argument and NAME is the name of the representative device for
694 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
695
696const char *
697m68k_cpp_cpu_family (const char *prefix)
698{
699 if (!m68k_cpu_entry)
700 return NULL;
701 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
702}
79e68feb 703\f
2bccb817
KH
704/* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
705 "interrupt_handler" attribute and interrupt_thread if FUNC has an
706 "interrupt_thread" attribute. Otherwise, return
707 m68k_fk_normal_function. */
a4242737
KH
708
709enum m68k_function_kind
710m68k_get_function_kind (tree func)
48ed72a4
PB
711{
712 tree a;
713
fa157b28
NS
714 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
715
2bccb817
KH
716 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
717 if (a != NULL_TREE)
718 return m68k_fk_interrupt_handler;
719
48ed72a4 720 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
a4242737
KH
721 if (a != NULL_TREE)
722 return m68k_fk_interrupt_handler;
723
724 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
725 if (a != NULL_TREE)
726 return m68k_fk_interrupt_thread;
727
728 return m68k_fk_normal_function;
48ed72a4
PB
729}
730
731/* Handle an attribute requiring a FUNCTION_DECL; arguments as in
732 struct attribute_spec.handler. */
733static tree
734m68k_handle_fndecl_attribute (tree *node, tree name,
735 tree args ATTRIBUTE_UNUSED,
736 int flags ATTRIBUTE_UNUSED,
737 bool *no_add_attrs)
738{
739 if (TREE_CODE (*node) != FUNCTION_DECL)
740 {
29d08eba
JM
741 warning (OPT_Wattributes, "%qE attribute only applies to functions",
742 name);
48ed72a4
PB
743 *no_add_attrs = true;
744 }
745
a4242737
KH
746 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
747 {
748 error ("multiple interrupt attributes not allowed");
749 *no_add_attrs = true;
750 }
751
752 if (!TARGET_FIDOA
753 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
754 {
755 error ("interrupt_thread is available only on fido");
756 *no_add_attrs = true;
757 }
758
48ed72a4
PB
759 return NULL_TREE;
760}
860c4900
BI
761
762static void
3d74bc09 763m68k_compute_frame_layout (void)
860c4900
BI
764{
765 int regno, saved;
a40ed0f3 766 unsigned int mask;
a4242737
KH
767 enum m68k_function_kind func_kind =
768 m68k_get_function_kind (current_function_decl);
769 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
770 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
860c4900 771
3d74bc09
BI
772 /* Only compute the frame once per function.
773 Don't cache information until reload has been completed. */
774 if (current_frame.funcdef_no == current_function_funcdef_no
775 && reload_completed)
776 return;
777
778 current_frame.size = (get_frame_size () + 3) & -4;
860c4900 779
a40ed0f3 780 mask = saved = 0;
a4242737
KH
781
782 /* Interrupt thread does not need to save any register. */
783 if (!interrupt_thread)
784 for (regno = 0; regno < 16; regno++)
785 if (m68k_save_reg (regno, interrupt_handler))
786 {
787 mask |= 1 << (regno - D0_REG);
788 saved++;
789 }
3d74bc09
BI
790 current_frame.offset = saved * 4;
791 current_frame.reg_no = saved;
792 current_frame.reg_mask = mask;
860c4900 793
57047680 794 current_frame.foffset = 0;
a40ed0f3 795 mask = saved = 0;
dcc21c4c 796 if (TARGET_HARD_FLOAT)
860c4900 797 {
a4242737
KH
798 /* Interrupt thread does not need to save any register. */
799 if (!interrupt_thread)
800 for (regno = 16; regno < 24; regno++)
801 if (m68k_save_reg (regno, interrupt_handler))
802 {
803 mask |= 1 << (regno - FP0_REG);
804 saved++;
805 }
dcc21c4c 806 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
3d74bc09 807 current_frame.offset += current_frame.foffset;
860c4900 808 }
57047680
GN
809 current_frame.fpu_no = saved;
810 current_frame.fpu_mask = mask;
3d74bc09
BI
811
812 /* Remember what function this frame refers to. */
813 current_frame.funcdef_no = current_function_funcdef_no;
860c4900
BI
814}
815
7b5cbb57
AS
816/* Worker function for TARGET_CAN_ELIMINATE. */
817
818bool
819m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
820{
821 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
822}
823
860c4900
BI
824HOST_WIDE_INT
825m68k_initial_elimination_offset (int from, int to)
826{
42b67c06
PB
827 int argptr_offset;
828 /* The arg pointer points 8 bytes before the start of the arguments,
829 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
830 frame pointer in most frames. */
831 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
860c4900 832 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
42b67c06 833 return argptr_offset;
860c4900 834
3d74bc09 835 m68k_compute_frame_layout ();
860c4900 836
4761e388
NS
837 gcc_assert (to == STACK_POINTER_REGNUM);
838 switch (from)
839 {
a0a7fbc9 840 case ARG_POINTER_REGNUM:
42b67c06 841 return current_frame.offset + current_frame.size - argptr_offset;
4761e388
NS
842 case FRAME_POINTER_REGNUM:
843 return current_frame.offset + current_frame.size;
844 default:
845 gcc_unreachable ();
846 }
860c4900
BI
847}
848
97c55091
GN
849/* Refer to the array `regs_ever_live' to determine which registers
850 to save; `regs_ever_live[I]' is nonzero if register number I
851 is ever used in the function. This function is responsible for
852 knowing which registers should not be saved even if used.
853 Return true if we need to save REGNO. */
854
48ed72a4
PB
855static bool
856m68k_save_reg (unsigned int regno, bool interrupt_handler)
2cff4a6e 857{
4ab870f5 858 if (flag_pic && regno == PIC_REG)
b86ba8a3 859 {
e3b5732b 860 if (crtl->saves_all_registers)
afcb440c 861 return true;
e3b5732b 862 if (crtl->uses_pic_offset_table)
b86ba8a3 863 return true;
6357eb0d
RS
864 /* Reload may introduce constant pool references into a function
865 that thitherto didn't need a PIC register. Note that the test
866 above will not catch that case because we will only set
e3b5732b 867 crtl->uses_pic_offset_table when emitting
6357eb0d 868 the address reloads. */
e3b5732b 869 if (crtl->uses_const_pool)
6357eb0d 870 return true;
b86ba8a3 871 }
2cff4a6e 872
e3b5732b 873 if (crtl->calls_eh_return)
2cff4a6e
AS
874 {
875 unsigned int i;
876 for (i = 0; ; i++)
877 {
878 unsigned int test = EH_RETURN_DATA_REGNO (i);
879 if (test == INVALID_REGNUM)
880 break;
881 if (test == regno)
48ed72a4 882 return true;
2cff4a6e
AS
883 }
884 }
885
48ed72a4
PB
886 /* Fixed regs we never touch. */
887 if (fixed_regs[regno])
888 return false;
889
890 /* The frame pointer (if it is such) is handled specially. */
891 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
892 return false;
893
894 /* Interrupt handlers must also save call_used_regs
895 if they are live or when calling nested functions. */
896 if (interrupt_handler)
a0a7fbc9 897 {
6fb5fa3c 898 if (df_regs_ever_live_p (regno))
a0a7fbc9 899 return true;
48ed72a4 900
416ff32e 901 if (!crtl->is_leaf && call_used_regs[regno])
a0a7fbc9
AS
902 return true;
903 }
48ed72a4
PB
904
905 /* Never need to save registers that aren't touched. */
6fb5fa3c 906 if (!df_regs_ever_live_p (regno))
48ed72a4
PB
907 return false;
908
b2e08ed4 909 /* Otherwise save everything that isn't call-clobbered. */
48ed72a4 910 return !call_used_regs[regno];
2cff4a6e
AS
911}
912
a40ed0f3
KH
913/* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
914 the lowest memory address. COUNT is the number of registers to be
915 moved, with register REGNO + I being moved if bit I of MASK is set.
916 STORE_P specifies the direction of the move and ADJUST_STACK_P says
917 whether or not this is pre-decrement (if STORE_P) or post-increment
918 (if !STORE_P) operation. */
919
c85e862a 920static rtx_insn *
a40ed0f3
KH
921m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
922 unsigned int count, unsigned int regno,
923 unsigned int mask, bool store_p, bool adjust_stack_p)
924{
925 int i;
926 rtx body, addr, src, operands[2];
927 enum machine_mode mode;
928
929 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
930 mode = reg_raw_mode[regno];
931 i = 0;
932
933 if (adjust_stack_p)
934 {
0a81f074
RS
935 src = plus_constant (Pmode, base,
936 (count
937 * GET_MODE_SIZE (mode)
938 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
a40ed0f3
KH
939 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
940 }
941
942 for (; mask != 0; mask >>= 1, regno++)
943 if (mask & 1)
944 {
0a81f074 945 addr = plus_constant (Pmode, base, offset);
a40ed0f3
KH
946 operands[!store_p] = gen_frame_mem (mode, addr);
947 operands[store_p] = gen_rtx_REG (mode, regno);
948 XVECEXP (body, 0, i++)
949 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
950 offset += GET_MODE_SIZE (mode);
951 }
952 gcc_assert (i == XVECLEN (body, 0));
953
954 return emit_insn (body);
955}
956
957/* Make INSN a frame-related instruction. */
79e68feb 958
08c148a8 959static void
c85e862a 960m68k_set_frame_related (rtx_insn *insn)
a40ed0f3
KH
961{
962 rtx body;
963 int i;
964
965 RTX_FRAME_RELATED_P (insn) = 1;
966 body = PATTERN (insn);
967 if (GET_CODE (body) == PARALLEL)
968 for (i = 0; i < XVECLEN (body, 0); i++)
969 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
970}
971
972/* Emit RTL for the "prologue" define_expand. */
973
974void
975m68k_expand_prologue (void)
79e68feb 976{
860c4900 977 HOST_WIDE_INT fsize_with_regs;
2dc8bd76 978 rtx limit, src, dest;
3d74bc09 979
a40ed0f3 980 m68k_compute_frame_layout ();
3d74bc09 981
a11e0df4 982 if (flag_stack_usage_info)
f69ea688
AS
983 current_function_static_stack_size
984 = current_frame.size + current_frame.offset;
985
a157febd
GK
986 /* If the stack limit is a symbol, we can check it here,
987 before actually allocating the space. */
e3b5732b 988 if (crtl->limit_stack
a157febd 989 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
a40ed0f3 990 {
0a81f074 991 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1a627b35 992 if (!m68k_legitimate_constant_p (Pmode, limit))
a40ed0f3
KH
993 {
994 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
995 limit = gen_rtx_REG (Pmode, D0_REG);
996 }
f90b7a5a
PB
997 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
998 stack_pointer_rtx, limit),
999 stack_pointer_rtx, limit,
1000 const1_rtx));
a40ed0f3 1001 }
79e68feb 1002
a89e3f21 1003 fsize_with_regs = current_frame.size;
dcc21c4c
PB
1004 if (TARGET_COLDFIRE)
1005 {
a40ed0f3
KH
1006 /* ColdFire's move multiple instructions do not allow pre-decrement
1007 addressing. Add the size of movem saves to the initial stack
1008 allocation instead. */
1009 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1010 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1011 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1012 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
dcc21c4c 1013 }
860c4900 1014
79e68feb
RS
1015 if (frame_pointer_needed)
1016 {
a40ed0f3 1017 if (fsize_with_regs == 0 && TUNE_68040)
79e68feb 1018 {
a40ed0f3
KH
1019 /* On the 68040, two separate moves are faster than link.w 0. */
1020 dest = gen_frame_mem (Pmode,
1021 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1022 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1023 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1024 stack_pointer_rtx));
79e68feb 1025 }
a40ed0f3
KH
1026 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1027 m68k_set_frame_related
1028 (emit_insn (gen_link (frame_pointer_rtx,
1029 GEN_INT (-4 - fsize_with_regs))));
d9e88af0 1030 else
a40ed0f3
KH
1031 {
1032 m68k_set_frame_related
1033 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1034 m68k_set_frame_related
1035 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1036 stack_pointer_rtx,
1037 GEN_INT (-fsize_with_regs))));
1038 }
96fcacb7
MK
1039
1040 /* If the frame pointer is needed, emit a special barrier that
1041 will prevent the scheduler from moving stores to the frame
1042 before the stack adjustment. */
1043 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
d9e88af0 1044 }
a40ed0f3
KH
1045 else if (fsize_with_regs != 0)
1046 m68k_set_frame_related
1047 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1048 stack_pointer_rtx,
1049 GEN_INT (-fsize_with_regs))));
860c4900 1050
57047680 1051 if (current_frame.fpu_mask)
79e68feb 1052 {
a40ed0f3 1053 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
dcc21c4c 1054 if (TARGET_68881)
a40ed0f3
KH
1055 m68k_set_frame_related
1056 (m68k_emit_movem (stack_pointer_rtx,
1057 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1058 current_frame.fpu_no, FP0_REG,
1059 current_frame.fpu_mask, true, true));
dcc21c4c
PB
1060 else
1061 {
1062 int offset;
1063
a40ed0f3
KH
1064 /* If we're using moveml to save the integer registers,
1065 the stack pointer will point to the bottom of the moveml
1066 save area. Find the stack offset of the first FP register. */
1067 if (current_frame.reg_no < MIN_MOVEM_REGS)
dcc21c4c
PB
1068 offset = 0;
1069 else
a40ed0f3
KH
1070 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1071 m68k_set_frame_related
1072 (m68k_emit_movem (stack_pointer_rtx, offset,
1073 current_frame.fpu_no, FP0_REG,
1074 current_frame.fpu_mask, true, false));
f277471f 1075 }
79e68feb 1076 }
99df2465 1077
01bbf777 1078 /* If the stack limit is not a symbol, check it here.
a157febd 1079 This has the disadvantage that it may be too late... */
e3b5732b 1080 if (crtl->limit_stack)
a157febd
GK
1081 {
1082 if (REG_P (stack_limit_rtx))
f90b7a5a
PB
1083 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1084 stack_limit_rtx),
1085 stack_pointer_rtx, stack_limit_rtx,
1086 const1_rtx));
1087
a157febd 1088 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
d4ee4d25 1089 warning (0, "stack limit expression is not supported");
a157febd 1090 }
01bbf777 1091
a40ed0f3 1092 if (current_frame.reg_no < MIN_MOVEM_REGS)
79e68feb 1093 {
a40ed0f3 1094 /* Store each register separately in the same order moveml does. */
79e68feb
RS
1095 int i;
1096
a40ed0f3
KH
1097 for (i = 16; i-- > 0; )
1098 if (current_frame.reg_mask & (1 << i))
078e983e 1099 {
a40ed0f3
KH
1100 src = gen_rtx_REG (SImode, D0_REG + i);
1101 dest = gen_frame_mem (SImode,
1102 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1103 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
078e983e 1104 }
79e68feb 1105 }
a40ed0f3 1106 else
79e68feb 1107 {
9425fb04 1108 if (TARGET_COLDFIRE)
a40ed0f3
KH
1109 /* The required register save space has already been allocated.
1110 The first register should be stored at (%sp). */
1111 m68k_set_frame_related
1112 (m68k_emit_movem (stack_pointer_rtx, 0,
1113 current_frame.reg_no, D0_REG,
1114 current_frame.reg_mask, true, false));
afaff477 1115 else
a40ed0f3
KH
1116 m68k_set_frame_related
1117 (m68k_emit_movem (stack_pointer_rtx,
1118 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1119 current_frame.reg_no, D0_REG,
1120 current_frame.reg_mask, true, true));
79e68feb 1121 }
a40ed0f3 1122
75df395f 1123 if (!TARGET_SEP_DATA
e3b5732b 1124 && crtl->uses_pic_offset_table)
2dc8bd76 1125 emit_insn (gen_load_got (pic_offset_table_rtx));
79e68feb
RS
1126}
1127\f
413ac1b2
RS
1128/* Return true if a simple (return) instruction is sufficient for this
1129 instruction (i.e. if no epilogue is needed). */
79e68feb 1130
3d74bc09 1131bool
a2bda628 1132m68k_use_return_insn (void)
79e68feb 1133{
79e68feb 1134 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
3d74bc09 1135 return false;
125ed86f 1136
a0a7fbc9 1137 m68k_compute_frame_layout ();
413ac1b2 1138 return current_frame.offset == 0;
79e68feb
RS
1139}
1140
f7e70894
RS
1141/* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1142 SIBCALL_P says which.
79e68feb
RS
1143
1144 The function epilogue should not depend on the current stack pointer!
1145 It should use the frame pointer only, if there is a frame pointer.
1146 This is mandatory because of alloca; we also take advantage of it to
1147 omit stack adjustments before returning. */
1148
a40ed0f3 1149void
f7e70894 1150m68k_expand_epilogue (bool sibcall_p)
08c148a8 1151{
3d74bc09 1152 HOST_WIDE_INT fsize, fsize_with_regs;
a40ed0f3 1153 bool big, restore_from_sp;
3d74bc09 1154
a0a7fbc9 1155 m68k_compute_frame_layout ();
3d74bc09 1156
3d74bc09 1157 fsize = current_frame.size;
a40ed0f3
KH
1158 big = false;
1159 restore_from_sp = false;
3d74bc09 1160
416ff32e 1161 /* FIXME : crtl->is_leaf below is too strong.
c67ddce5 1162 What we really need to know there is if there could be pending
7a1929e1 1163 stack adjustment needed at that point. */
a40ed0f3 1164 restore_from_sp = (!frame_pointer_needed
416ff32e 1165 || (!cfun->calls_alloca && crtl->is_leaf));
860c4900
BI
1166
1167 /* fsize_with_regs is the size we need to adjust the sp when
97c55091 1168 popping the frame. */
860c4900 1169 fsize_with_regs = fsize;
dcc21c4c
PB
1170 if (TARGET_COLDFIRE && restore_from_sp)
1171 {
a40ed0f3
KH
1172 /* ColdFire's move multiple instructions do not allow post-increment
1173 addressing. Add the size of movem loads to the final deallocation
1174 instead. */
1175 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1176 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1177 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1178 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
dcc21c4c 1179 }
860c4900 1180
3d74bc09 1181 if (current_frame.offset + fsize >= 0x8000
a40ed0f3 1182 && !restore_from_sp
3d74bc09 1183 && (current_frame.reg_mask || current_frame.fpu_mask))
79e68feb 1184 {
a40ed0f3
KH
1185 if (TARGET_COLDFIRE
1186 && (current_frame.reg_no >= MIN_MOVEM_REGS
1187 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1188 {
1189 /* ColdFire's move multiple instructions do not support the
1190 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1191 stack-based restore. */
1192 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1193 GEN_INT (-(current_frame.offset + fsize)));
1194 emit_insn (gen_addsi3 (stack_pointer_rtx,
1195 gen_rtx_REG (Pmode, A1_REG),
1196 frame_pointer_rtx));
1197 restore_from_sp = true;
1198 }
1199 else
1200 {
1201 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1202 fsize = 0;
1203 big = true;
1204 }
79e68feb 1205 }
79e68feb 1206
a40ed0f3
KH
1207 if (current_frame.reg_no < MIN_MOVEM_REGS)
1208 {
1209 /* Restore each register separately in the same order moveml does. */
79e68feb 1210 int i;
a40ed0f3 1211 HOST_WIDE_INT offset;
79e68feb 1212
a40ed0f3 1213 offset = current_frame.offset + fsize;
3d74bc09
BI
1214 for (i = 0; i < 16; i++)
1215 if (current_frame.reg_mask & (1 << i))
79e68feb 1216 {
a40ed0f3
KH
1217 rtx addr;
1218
1219 if (big)
79e68feb 1220 {
a40ed0f3
KH
1221 /* Generate the address -OFFSET(%fp,%a1.l). */
1222 addr = gen_rtx_REG (Pmode, A1_REG);
1223 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
0a81f074 1224 addr = plus_constant (Pmode, addr, -offset);
79e68feb 1225 }
a40ed0f3
KH
1226 else if (restore_from_sp)
1227 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1228 else
0a81f074 1229 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
a40ed0f3
KH
1230 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1231 gen_frame_mem (SImode, addr));
1232 offset -= GET_MODE_SIZE (SImode);
1233 }
79e68feb 1234 }
3d74bc09 1235 else if (current_frame.reg_mask)
79e68feb 1236 {
a40ed0f3
KH
1237 if (big)
1238 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1239 gen_rtx_REG (Pmode, A1_REG),
1240 frame_pointer_rtx),
1241 -(current_frame.offset + fsize),
1242 current_frame.reg_no, D0_REG,
1243 current_frame.reg_mask, false, false);
1244 else if (restore_from_sp)
1245 m68k_emit_movem (stack_pointer_rtx, 0,
1246 current_frame.reg_no, D0_REG,
1247 current_frame.reg_mask, false,
1248 !TARGET_COLDFIRE);
1249 else
1250 m68k_emit_movem (frame_pointer_rtx,
1251 -(current_frame.offset + fsize),
1252 current_frame.reg_no, D0_REG,
1253 current_frame.reg_mask, false, false);
79e68feb 1254 }
a40ed0f3
KH
1255
1256 if (current_frame.fpu_no > 0)
79e68feb
RS
1257 {
1258 if (big)
a40ed0f3
KH
1259 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1260 gen_rtx_REG (Pmode, A1_REG),
1261 frame_pointer_rtx),
1262 -(current_frame.foffset + fsize),
1263 current_frame.fpu_no, FP0_REG,
1264 current_frame.fpu_mask, false, false);
6910dd70 1265 else if (restore_from_sp)
79e68feb 1266 {
dcc21c4c
PB
1267 if (TARGET_COLDFIRE)
1268 {
1269 int offset;
1270
a40ed0f3
KH
1271 /* If we used moveml to restore the integer registers, the
1272 stack pointer will still point to the bottom of the moveml
1273 save area. Find the stack offset of the first FP
1274 register. */
1275 if (current_frame.reg_no < MIN_MOVEM_REGS)
dcc21c4c
PB
1276 offset = 0;
1277 else
a40ed0f3
KH
1278 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1279 m68k_emit_movem (stack_pointer_rtx, offset,
1280 current_frame.fpu_no, FP0_REG,
1281 current_frame.fpu_mask, false, false);
dcc21c4c 1282 }
884b74f0 1283 else
a40ed0f3
KH
1284 m68k_emit_movem (stack_pointer_rtx, 0,
1285 current_frame.fpu_no, FP0_REG,
1286 current_frame.fpu_mask, false, true);
79e68feb
RS
1287 }
1288 else
a40ed0f3
KH
1289 m68k_emit_movem (frame_pointer_rtx,
1290 -(current_frame.foffset + fsize),
1291 current_frame.fpu_no, FP0_REG,
1292 current_frame.fpu_mask, false, false);
79e68feb 1293 }
a40ed0f3 1294
79e68feb 1295 if (frame_pointer_needed)
a40ed0f3 1296 emit_insn (gen_unlink (frame_pointer_rtx));
860c4900 1297 else if (fsize_with_regs)
a40ed0f3
KH
1298 emit_insn (gen_addsi3 (stack_pointer_rtx,
1299 stack_pointer_rtx,
1300 GEN_INT (fsize_with_regs)));
1301
e3b5732b 1302 if (crtl->calls_eh_return)
a40ed0f3
KH
1303 emit_insn (gen_addsi3 (stack_pointer_rtx,
1304 stack_pointer_rtx,
1305 EH_RETURN_STACKADJ_RTX));
1306
f7e70894 1307 if (!sibcall_p)
3810076b 1308 emit_jump_insn (ret_rtx);
79e68feb
RS
1309}
1310\f
8a4a2253 1311/* Return true if X is a valid comparison operator for the dbcc
64a184e9
RS
1312 instruction.
1313
1314 Note it rejects floating point comparison operators.
1315 (In the future we could use Fdbcc).
1316
1317 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1318
1319int
41b6a5e2 1320valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
64a184e9 1321{
64a184e9
RS
1322 switch (GET_CODE (x))
1323 {
64a184e9
RS
1324 case EQ: case NE: case GTU: case LTU:
1325 case GEU: case LEU:
1326 return 1;
1327
1328 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1329 conservative */
1330 case GT: case LT: case GE: case LE:
1331 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1332 default:
1333 return 0;
1334 }
1335}
1336
a0ab749a 1337/* Return nonzero if flags are currently in the 68881 flag register. */
6a0f85e3 1338int
8a4a2253 1339flags_in_68881 (void)
6a0f85e3
TG
1340{
1341 /* We could add support for these in the future */
1342 return cc_status.flags & CC_IN_68881;
1343}
1344
db5e2d51
MK
1345/* Return true if PARALLEL contains register REGNO. */
1346static bool
1347m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1348{
1349 int i;
1350
1351 if (REG_P (parallel) && REGNO (parallel) == regno)
1352 return true;
1353
1354 if (GET_CODE (parallel) != PARALLEL)
1355 return false;
1356
1357 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1358 {
1359 const_rtx x;
1360
1361 x = XEXP (XVECEXP (parallel, 0, i), 0);
1362 if (REG_P (x) && REGNO (x) == regno)
1363 return true;
1364 }
1365
1366 return false;
1367}
1368
fa157b28 1369/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
f7e70894
RS
1370
1371static bool
fa157b28 1372m68k_ok_for_sibcall_p (tree decl, tree exp)
f7e70894 1373{
fa157b28
NS
1374 enum m68k_function_kind kind;
1375
1376 /* We cannot use sibcalls for nested functions because we use the
1377 static chain register for indirect calls. */
1378 if (CALL_EXPR_STATIC_CHAIN (exp))
1379 return false;
1380
db5e2d51
MK
1381 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1382 {
1383 /* Check that the return value locations are the same. For
1384 example that we aren't returning a value from the sibling in
1385 a D0 register but then need to transfer it to a A0 register. */
1386 rtx cfun_value;
1387 rtx call_value;
1388
1389 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1390 cfun->decl);
1391 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1392
1393 /* Check that the values are equal or that the result the callee
1394 function returns is superset of what the current function returns. */
1395 if (!(rtx_equal_p (cfun_value, call_value)
1396 || (REG_P (cfun_value)
1397 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1398 return false;
1399 }
1400
fa157b28
NS
1401 kind = m68k_get_function_kind (current_function_decl);
1402 if (kind == m68k_fk_normal_function)
1403 /* We can always sibcall from a normal function, because it's
1404 undefined if it is calling an interrupt function. */
1405 return true;
1406
1407 /* Otherwise we can only sibcall if the function kind is known to be
1408 the same. */
1409 if (decl && m68k_get_function_kind (decl) == kind)
1410 return true;
1411
1412 return false;
f7e70894
RS
1413}
1414
13d3961c
NF
1415/* On the m68k all args are always pushed. */
1416
1417static rtx
d5cc9181 1418m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
13d3961c
NF
1419 enum machine_mode mode ATTRIBUTE_UNUSED,
1420 const_tree type ATTRIBUTE_UNUSED,
1421 bool named ATTRIBUTE_UNUSED)
1422{
1423 return NULL_RTX;
1424}
1425
1426static void
d5cc9181 1427m68k_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
13d3961c
NF
1428 const_tree type, bool named ATTRIBUTE_UNUSED)
1429{
d5cc9181
JR
1430 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1431
13d3961c
NF
1432 *cum += (mode != BLKmode
1433 ? (GET_MODE_SIZE (mode) + 3) & ~3
1434 : (int_size_in_bytes (type) + 3) & ~3);
1435}
1436
29ca003a
RS
1437/* Convert X to a legitimate function call memory reference and return the
1438 result. */
a2ef3db7 1439
29ca003a
RS
1440rtx
1441m68k_legitimize_call_address (rtx x)
1442{
1443 gcc_assert (MEM_P (x));
1444 if (call_operand (XEXP (x, 0), VOIDmode))
1445 return x;
1446 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
a2ef3db7
BI
1447}
1448
f7e70894
RS
1449/* Likewise for sibling calls. */
1450
1451rtx
1452m68k_legitimize_sibcall_address (rtx x)
1453{
1454 gcc_assert (MEM_P (x));
1455 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1456 return x;
1457
1458 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1459 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1460}
1461
506d7b68
PB
1462/* Convert X to a legitimate address and return it if successful. Otherwise
1463 return X.
1464
1465 For the 68000, we handle X+REG by loading X into a register R and
1466 using R+REG. R will go in an address reg and indexing will be used.
1467 However, if REG is a broken-out memory address or multiplication,
1468 nothing needs to be done because REG can certainly go in an address reg. */
1469
ab7256e4 1470static rtx
506d7b68
PB
1471m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1472{
75df395f
MK
1473 if (m68k_tls_symbol_p (x))
1474 return m68k_legitimize_tls_address (x);
1475
506d7b68
PB
1476 if (GET_CODE (x) == PLUS)
1477 {
1478 int ch = (x) != (oldx);
1479 int copied = 0;
1480
1481#define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1482
1483 if (GET_CODE (XEXP (x, 0)) == MULT)
1484 {
1485 COPY_ONCE (x);
1486 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1487 }
1488 if (GET_CODE (XEXP (x, 1)) == MULT)
1489 {
1490 COPY_ONCE (x);
1491 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1492 }
1493 if (ch)
1494 {
1495 if (GET_CODE (XEXP (x, 1)) == REG
1496 && GET_CODE (XEXP (x, 0)) == REG)
1497 {
1498 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1499 {
1500 COPY_ONCE (x);
1501 x = force_operand (x, 0);
1502 }
1503 return x;
1504 }
1505 if (memory_address_p (mode, x))
1506 return x;
1507 }
1508 if (GET_CODE (XEXP (x, 0)) == REG
1509 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1510 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1511 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1512 {
1513 rtx temp = gen_reg_rtx (Pmode);
1514 rtx val = force_operand (XEXP (x, 1), 0);
1515 emit_move_insn (temp, val);
1516 COPY_ONCE (x);
1517 XEXP (x, 1) = temp;
1518 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1519 && GET_CODE (XEXP (x, 0)) == REG)
1520 x = force_operand (x, 0);
1521 }
1522 else if (GET_CODE (XEXP (x, 1)) == REG
1523 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1524 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1525 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1526 {
1527 rtx temp = gen_reg_rtx (Pmode);
1528 rtx val = force_operand (XEXP (x, 0), 0);
1529 emit_move_insn (temp, val);
1530 COPY_ONCE (x);
1531 XEXP (x, 0) = temp;
1532 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1533 && GET_CODE (XEXP (x, 1)) == REG)
1534 x = force_operand (x, 0);
1535 }
1536 }
1537
1538 return x;
1539}
1540
1541
64a184e9
RS
1542/* Output a dbCC; jCC sequence. Note we do not handle the
1543 floating point version of this sequence (Fdbcc). We also
1544 do not handle alternative conditions when CC_NO_OVERFLOW is
6a0f85e3
TG
1545 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1546 kick those out before we get here. */
64a184e9 1547
1d8eaa6b 1548void
8a4a2253 1549output_dbcc_and_branch (rtx *operands)
64a184e9 1550{
64a184e9
RS
1551 switch (GET_CODE (operands[3]))
1552 {
1553 case EQ:
da398bb5 1554 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
e6d98cb0 1555 break;
64a184e9
RS
1556
1557 case NE:
da398bb5 1558 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
e6d98cb0 1559 break;
64a184e9
RS
1560
1561 case GT:
da398bb5 1562 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
e6d98cb0 1563 break;
64a184e9
RS
1564
1565 case GTU:
da398bb5 1566 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
e6d98cb0 1567 break;
64a184e9
RS
1568
1569 case LT:
da398bb5 1570 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
e6d98cb0 1571 break;
64a184e9
RS
1572
1573 case LTU:
da398bb5 1574 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
e6d98cb0 1575 break;
64a184e9
RS
1576
1577 case GE:
da398bb5 1578 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
e6d98cb0 1579 break;
64a184e9
RS
1580
1581 case GEU:
da398bb5 1582 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
e6d98cb0 1583 break;
64a184e9
RS
1584
1585 case LE:
da398bb5 1586 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
e6d98cb0 1587 break;
64a184e9
RS
1588
1589 case LEU:
da398bb5 1590 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
e6d98cb0 1591 break;
64a184e9
RS
1592
1593 default:
4761e388 1594 gcc_unreachable ();
64a184e9
RS
1595 }
1596
1597 /* If the decrement is to be done in SImode, then we have
7a1929e1 1598 to compensate for the fact that dbcc decrements in HImode. */
64a184e9
RS
1599 switch (GET_MODE (operands[0]))
1600 {
1601 case SImode:
da398bb5 1602 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
64a184e9
RS
1603 break;
1604
1605 case HImode:
1606 break;
1607
1608 default:
4761e388 1609 gcc_unreachable ();
64a184e9
RS
1610 }
1611}
1612
5505f548 1613const char *
4761e388 1614output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
c59c3b1c
RK
1615{
1616 rtx loperands[7];
d9832fd2 1617 enum rtx_code op_code = GET_CODE (op);
c59c3b1c 1618
f710504c 1619 /* This does not produce a useful cc. */
906a2d3c
RK
1620 CC_STATUS_INIT;
1621
d9832fd2
RK
1622 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1623 below. Swap the operands and change the op if these requirements
1624 are not fulfilled. */
1625 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1626 {
1627 rtx tmp = operand1;
1628
1629 operand1 = operand2;
1630 operand2 = tmp;
1631 op_code = swap_condition (op_code);
1632 }
c59c3b1c
RK
1633 loperands[0] = operand1;
1634 if (GET_CODE (operand1) == REG)
1d8eaa6b 1635 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
c59c3b1c 1636 else
b72f00af 1637 loperands[1] = adjust_address (operand1, SImode, 4);
c59c3b1c
RK
1638 if (operand2 != const0_rtx)
1639 {
1640 loperands[2] = operand2;
1641 if (GET_CODE (operand2) == REG)
1d8eaa6b 1642 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
c59c3b1c 1643 else
b72f00af 1644 loperands[3] = adjust_address (operand2, SImode, 4);
c59c3b1c 1645 }
428511bb 1646 loperands[4] = gen_label_rtx ();
c59c3b1c 1647 if (operand2 != const0_rtx)
da398bb5 1648 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
392582fa 1649 else
4a8c52e0 1650 {
9425fb04 1651 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
4a8c52e0
AS
1652 output_asm_insn ("tst%.l %0", loperands);
1653 else
a0a7fbc9 1654 output_asm_insn ("cmp%.w #0,%0", loperands);
4a8c52e0 1655
da398bb5 1656 output_asm_insn ("jne %l4", loperands);
4a8c52e0 1657
9425fb04 1658 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
4a8c52e0
AS
1659 output_asm_insn ("tst%.l %1", loperands);
1660 else
3b4b85c9 1661 output_asm_insn ("cmp%.w #0,%1", loperands);
4a8c52e0
AS
1662 }
1663
c59c3b1c 1664 loperands[5] = dest;
3b4b85c9 1665
d9832fd2 1666 switch (op_code)
c59c3b1c
RK
1667 {
1668 case EQ:
4977bab6 1669 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1670 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1671 output_asm_insn ("seq %5", loperands);
1672 break;
1673
1674 case NE:
4977bab6 1675 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1676 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1677 output_asm_insn ("sne %5", loperands);
1678 break;
1679
1680 case GT:
428511bb 1681 loperands[6] = gen_label_rtx ();
da398bb5 1682 output_asm_insn ("shi %5\n\tjra %l6", loperands);
4977bab6 1683 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1684 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c 1685 output_asm_insn ("sgt %5", loperands);
4977bab6 1686 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1687 CODE_LABEL_NUMBER (loperands[6]));
c59c3b1c
RK
1688 break;
1689
1690 case GTU:
4977bab6 1691 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1692 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1693 output_asm_insn ("shi %5", loperands);
1694 break;
1695
1696 case LT:
428511bb 1697 loperands[6] = gen_label_rtx ();
da398bb5 1698 output_asm_insn ("scs %5\n\tjra %l6", loperands);
4977bab6 1699 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1700 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c 1701 output_asm_insn ("slt %5", loperands);
4977bab6 1702 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1703 CODE_LABEL_NUMBER (loperands[6]));
c59c3b1c
RK
1704 break;
1705
1706 case LTU:
4977bab6 1707 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1708 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1709 output_asm_insn ("scs %5", loperands);
1710 break;
1711
1712 case GE:
428511bb 1713 loperands[6] = gen_label_rtx ();
da398bb5 1714 output_asm_insn ("scc %5\n\tjra %l6", loperands);
4977bab6 1715 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1716 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c 1717 output_asm_insn ("sge %5", loperands);
4977bab6 1718 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1719 CODE_LABEL_NUMBER (loperands[6]));
c59c3b1c
RK
1720 break;
1721
1722 case GEU:
4977bab6 1723 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1724 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1725 output_asm_insn ("scc %5", loperands);
1726 break;
1727
1728 case LE:
428511bb 1729 loperands[6] = gen_label_rtx ();
da398bb5 1730 output_asm_insn ("sls %5\n\tjra %l6", loperands);
4977bab6 1731 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1732 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c 1733 output_asm_insn ("sle %5", loperands);
4977bab6 1734 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1735 CODE_LABEL_NUMBER (loperands[6]));
c59c3b1c
RK
1736 break;
1737
1738 case LEU:
4977bab6 1739 (*targetm.asm_out.internal_label) (asm_out_file, "L",
a0a7fbc9 1740 CODE_LABEL_NUMBER (loperands[4]));
c59c3b1c
RK
1741 output_asm_insn ("sls %5", loperands);
1742 break;
1743
1744 default:
4761e388 1745 gcc_unreachable ();
c59c3b1c
RK
1746 }
1747 return "";
1748}
1749
5505f548 1750const char *
c85e862a 1751output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
79e68feb
RS
1752{
1753 operands[0] = countop;
1754 operands[1] = dataop;
1755
1756 if (GET_CODE (countop) == CONST_INT)
1757 {
1758 register int count = INTVAL (countop);
1759 /* If COUNT is bigger than size of storage unit in use,
1760 advance to the containing unit of same size. */
1761 if (count > signpos)
1762 {
1763 int offset = (count & ~signpos) / 8;
1764 count = count & signpos;
b72f00af 1765 operands[1] = dataop = adjust_address (dataop, QImode, offset);
79e68feb
RS
1766 }
1767 if (count == signpos)
1768 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1769 else
1770 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1771
1772 /* These three statements used to use next_insns_test_no...
1773 but it appears that this should do the same job. */
1774 if (count == 31
1775 && next_insn_tests_no_inequality (insn))
1776 return "tst%.l %1";
1777 if (count == 15
1778 && next_insn_tests_no_inequality (insn))
1779 return "tst%.w %1";
1780 if (count == 7
1781 && next_insn_tests_no_inequality (insn))
1782 return "tst%.b %1";
5083912d
PDM
1783 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1784 On some m68k variants unfortunately that's slower than btst.
1785 On 68000 and higher, that should also work for all HImode operands. */
1786 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1787 {
1788 if (count == 3 && DATA_REG_P (operands[1])
1789 && next_insn_tests_no_inequality (insn))
1790 {
1791 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1792 return "move%.w %1,%%ccr";
1793 }
1794 if (count == 2 && DATA_REG_P (operands[1])
1795 && next_insn_tests_no_inequality (insn))
1796 {
1797 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1798 return "move%.w %1,%%ccr";
1799 }
1800 /* count == 1 followed by bvc/bvs and
1801 count == 0 followed by bcc/bcs are also possible, but need
1802 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1803 }
79e68feb
RS
1804
1805 cc_status.flags = CC_NOT_NEGATIVE;
1806 }
1807 return "btst %0,%1";
1808}
79e68feb 1809\f
fc2241eb
RS
1810/* Return true if X is a legitimate base register. STRICT_P says
1811 whether we need strict checking. */
1812
1813bool
1814m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1815{
1816 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1817 if (!strict_p && GET_CODE (x) == SUBREG)
1818 x = SUBREG_REG (x);
1819
1820 return (REG_P (x)
1821 && (strict_p
1822 ? REGNO_OK_FOR_BASE_P (REGNO (x))
bf32249e 1823 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
fc2241eb
RS
1824}
1825
1826/* Return true if X is a legitimate index register. STRICT_P says
1827 whether we need strict checking. */
1828
1829bool
1830m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1831{
1832 if (!strict_p && GET_CODE (x) == SUBREG)
1833 x = SUBREG_REG (x);
1834
1835 return (REG_P (x)
1836 && (strict_p
1837 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
bf32249e 1838 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
fc2241eb
RS
1839}
1840
1841/* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1842 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1843 ADDRESS if so. STRICT_P says whether we need strict checking. */
1844
1845static bool
1846m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1847{
1848 int scale;
1849
1850 /* Check for a scale factor. */
1851 scale = 1;
1852 if ((TARGET_68020 || TARGET_COLDFIRE)
1853 && GET_CODE (x) == MULT
1854 && GET_CODE (XEXP (x, 1)) == CONST_INT
1855 && (INTVAL (XEXP (x, 1)) == 2
1856 || INTVAL (XEXP (x, 1)) == 4
1857 || (INTVAL (XEXP (x, 1)) == 8
1858 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1859 {
1860 scale = INTVAL (XEXP (x, 1));
1861 x = XEXP (x, 0);
1862 }
1863
1864 /* Check for a word extension. */
1865 if (!TARGET_COLDFIRE
1866 && GET_CODE (x) == SIGN_EXTEND
1867 && GET_MODE (XEXP (x, 0)) == HImode)
1868 x = XEXP (x, 0);
1869
1870 if (m68k_legitimate_index_reg_p (x, strict_p))
1871 {
1872 address->scale = scale;
1873 address->index = x;
1874 return true;
1875 }
1876
1877 return false;
1878}
1879
7ffb5e78
RS
1880/* Return true if X is an illegitimate symbolic constant. */
1881
1882bool
1883m68k_illegitimate_symbolic_constant_p (rtx x)
1884{
1885 rtx base, offset;
1886
1887 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1888 {
1889 split_const (x, &base, &offset);
1890 if (GET_CODE (base) == SYMBOL_REF
1891 && !offset_within_block_p (base, INTVAL (offset)))
1892 return true;
1893 }
75df395f 1894 return m68k_tls_reference_p (x, false);
7ffb5e78
RS
1895}
1896
fbbf66e7
RS
1897/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1898
1899static bool
1900m68k_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1901{
1902 return m68k_illegitimate_symbolic_constant_p (x);
1903}
1904
fc2241eb
RS
1905/* Return true if X is a legitimate constant address that can reach
1906 bytes in the range [X, X + REACH). STRICT_P says whether we need
1907 strict checking. */
1908
1909static bool
1910m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1911{
1912 rtx base, offset;
1913
1914 if (!CONSTANT_ADDRESS_P (x))
1915 return false;
1916
1917 if (flag_pic
1918 && !(strict_p && TARGET_PCREL)
1919 && symbolic_operand (x, VOIDmode))
1920 return false;
1921
1922 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1923 {
1924 split_const (x, &base, &offset);
1925 if (GET_CODE (base) == SYMBOL_REF
1926 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1927 return false;
1928 }
1929
75df395f 1930 return !m68k_tls_reference_p (x, false);
fc2241eb
RS
1931}
1932
1933/* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1934 labels will become jump tables. */
1935
1936static bool
1937m68k_jump_table_ref_p (rtx x)
1938{
1939 if (GET_CODE (x) != LABEL_REF)
1940 return false;
1941
b32d5189
DM
1942 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1943 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
fc2241eb
RS
1944 return true;
1945
b32d5189
DM
1946 insn = next_nonnote_insn (insn);
1947 return insn && JUMP_TABLE_DATA_P (insn);
fc2241eb
RS
1948}
1949
1950/* Return true if X is a legitimate address for values of mode MODE.
1951 STRICT_P says whether strict checking is needed. If the address
1952 is valid, describe its components in *ADDRESS. */
1953
1954static bool
1955m68k_decompose_address (enum machine_mode mode, rtx x,
1956 bool strict_p, struct m68k_address *address)
1957{
1958 unsigned int reach;
1959
1960 memset (address, 0, sizeof (*address));
1961
1962 if (mode == BLKmode)
1963 reach = 1;
1964 else
1965 reach = GET_MODE_SIZE (mode);
1966
1967 /* Check for (An) (mode 2). */
1968 if (m68k_legitimate_base_reg_p (x, strict_p))
1969 {
1970 address->base = x;
1971 return true;
1972 }
1973
1974 /* Check for -(An) and (An)+ (modes 3 and 4). */
1975 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1976 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1977 {
1978 address->code = GET_CODE (x);
1979 address->base = XEXP (x, 0);
1980 return true;
1981 }
1982
1983 /* Check for (d16,An) (mode 5). */
1984 if (GET_CODE (x) == PLUS
1985 && GET_CODE (XEXP (x, 1)) == CONST_INT
1986 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1987 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1988 {
1989 address->base = XEXP (x, 0);
1990 address->offset = XEXP (x, 1);
1991 return true;
1992 }
1993
1994 /* Check for GOT loads. These are (bd,An,Xn) addresses if
1995 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
1996 addresses. */
75df395f
MK
1997 if (GET_CODE (x) == PLUS
1998 && XEXP (x, 0) == pic_offset_table_rtx)
fc2241eb 1999 {
75df395f
MK
2000 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2001 they are invalid in this context. */
2002 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2003 {
2004 address->base = XEXP (x, 0);
2005 address->offset = XEXP (x, 1);
2006 return true;
2007 }
fc2241eb
RS
2008 }
2009
2010 /* The ColdFire FPU only accepts addressing modes 2-5. */
2011 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2012 return false;
2013
2014 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2015 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2016 All these modes are variations of mode 7. */
2017 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2018 {
2019 address->offset = x;
2020 return true;
2021 }
2022
2023 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2024 tablejumps.
2025
2026 ??? do_tablejump creates these addresses before placing the target
2027 label, so we have to assume that unplaced labels are jump table
2028 references. It seems unlikely that we would ever generate indexed
2029 accesses to unplaced labels in other cases. */
2030 if (GET_CODE (x) == PLUS
2031 && m68k_jump_table_ref_p (XEXP (x, 1))
2032 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2033 {
2034 address->offset = XEXP (x, 1);
2035 return true;
2036 }
2037
2038 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2039 (bd,An,Xn.SIZE*SCALE) addresses. */
2040
2041 if (TARGET_68020)
2042 {
2043 /* Check for a nonzero base displacement. */
2044 if (GET_CODE (x) == PLUS
2045 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2046 {
2047 address->offset = XEXP (x, 1);
2048 x = XEXP (x, 0);
2049 }
2050
2051 /* Check for a suppressed index register. */
2052 if (m68k_legitimate_base_reg_p (x, strict_p))
2053 {
2054 address->base = x;
2055 return true;
2056 }
2057
2058 /* Check for a suppressed base register. Do not allow this case
2059 for non-symbolic offsets as it effectively gives gcc freedom
2060 to treat data registers as base registers, which can generate
2061 worse code. */
2062 if (address->offset
2063 && symbolic_operand (address->offset, VOIDmode)
2064 && m68k_decompose_index (x, strict_p, address))
2065 return true;
2066 }
2067 else
2068 {
2069 /* Check for a nonzero base displacement. */
2070 if (GET_CODE (x) == PLUS
2071 && GET_CODE (XEXP (x, 1)) == CONST_INT
2072 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2073 {
2074 address->offset = XEXP (x, 1);
2075 x = XEXP (x, 0);
2076 }
2077 }
2078
2079 /* We now expect the sum of a base and an index. */
2080 if (GET_CODE (x) == PLUS)
2081 {
2082 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2083 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2084 {
2085 address->base = XEXP (x, 0);
2086 return true;
2087 }
2088
2089 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2090 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2091 {
2092 address->base = XEXP (x, 1);
2093 return true;
2094 }
2095 }
2096 return false;
2097}
2098
2099/* Return true if X is a legitimate address for values of mode MODE.
2100 STRICT_P says whether strict checking is needed. */
2101
2102bool
2103m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2104{
2105 struct m68k_address address;
2106
2107 return m68k_decompose_address (mode, x, strict_p, &address);
2108}
2109
2110/* Return true if X is a memory, describing its address in ADDRESS if so.
2111 Apply strict checking if called during or after reload. */
2112
2113static bool
2114m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2115{
2116 return (MEM_P (x)
2117 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2118 reload_in_progress || reload_completed,
2119 address));
2120}
2121
1a627b35
RS
2122/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2123
2124bool
2125m68k_legitimate_constant_p (enum machine_mode mode, rtx x)
2126{
2127 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2128}
2129
fc2241eb
RS
2130/* Return true if X matches the 'Q' constraint. It must be a memory
2131 with a base address and no constant offset or index. */
2132
2133bool
2134m68k_matches_q_p (rtx x)
2135{
2136 struct m68k_address address;
2137
2138 return (m68k_legitimate_mem_p (x, &address)
2139 && address.code == UNKNOWN
2140 && address.base
2141 && !address.offset
2142 && !address.index);
2143}
2144
2145/* Return true if X matches the 'U' constraint. It must be a base address
2146 with a constant offset and no index. */
2147
2148bool
2149m68k_matches_u_p (rtx x)
2150{
2151 struct m68k_address address;
2152
2153 return (m68k_legitimate_mem_p (x, &address)
2154 && address.code == UNKNOWN
2155 && address.base
2156 && address.offset
2157 && !address.index);
2158}
2159
75df395f
MK
2160/* Return GOT pointer. */
2161
2162static rtx
2163m68k_get_gp (void)
2164{
2165 if (pic_offset_table_rtx == NULL_RTX)
2166 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2167
2168 crtl->uses_pic_offset_table = 1;
2169
2170 return pic_offset_table_rtx;
2171}
2172
2173/* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2174 wrappers. */
2175enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2176 RELOC_TLSIE, RELOC_TLSLE };
2177
2178#define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2179
2180/* Wrap symbol X into unspec representing relocation RELOC.
2181 BASE_REG - register that should be added to the result.
2182 TEMP_REG - if non-null, temporary register. */
2183
2184static rtx
2185m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2186{
2187 bool use_x_p;
2188
2189 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2190
2191 if (TARGET_COLDFIRE && use_x_p)
2192 /* When compiling with -mx{got, tls} switch the code will look like this:
2193
2194 move.l <X>@<RELOC>,<TEMP_REG>
2195 add.l <BASE_REG>,<TEMP_REG> */
2196 {
2197 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2198 to put @RELOC after reference. */
2199 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2200 UNSPEC_RELOC32);
2201 x = gen_rtx_CONST (Pmode, x);
2202
2203 if (temp_reg == NULL)
2204 {
2205 gcc_assert (can_create_pseudo_p ());
2206 temp_reg = gen_reg_rtx (Pmode);
2207 }
2208
2209 emit_move_insn (temp_reg, x);
2210 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2211 x = temp_reg;
2212 }
2213 else
2214 {
2215 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2216 UNSPEC_RELOC16);
2217 x = gen_rtx_CONST (Pmode, x);
2218
2219 x = gen_rtx_PLUS (Pmode, base_reg, x);
2220 }
2221
2222 return x;
2223}
2224
2225/* Helper for m68k_unwrap_symbol.
2226 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2227 sets *RELOC_PTR to relocation type for the symbol. */
2228
2229static rtx
2230m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2231 enum m68k_reloc *reloc_ptr)
2232{
2233 if (GET_CODE (orig) == CONST)
2234 {
2235 rtx x;
2236 enum m68k_reloc dummy;
2237
2238 x = XEXP (orig, 0);
2239
2240 if (reloc_ptr == NULL)
2241 reloc_ptr = &dummy;
2242
2243 /* Handle an addend. */
2244 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2245 && CONST_INT_P (XEXP (x, 1)))
2246 x = XEXP (x, 0);
2247
2248 if (GET_CODE (x) == UNSPEC)
2249 {
2250 switch (XINT (x, 1))
2251 {
2252 case UNSPEC_RELOC16:
2253 orig = XVECEXP (x, 0, 0);
2254 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2255 break;
2256
2257 case UNSPEC_RELOC32:
2258 if (unwrap_reloc32_p)
2259 {
2260 orig = XVECEXP (x, 0, 0);
2261 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2262 }
2263 break;
2264
2265 default:
2266 break;
2267 }
2268 }
2269 }
2270
2271 return orig;
2272}
2273
2274/* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2275 UNSPEC_RELOC32 wrappers. */
2276
2277rtx
2278m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2279{
2280 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2281}
2282
75df395f
MK
2283/* Prescan insn before outputing assembler for it. */
2284
2285void
c85e862a 2286m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
75df395f
MK
2287 rtx *operands, int n_operands)
2288{
2289 int i;
2290
2291 /* Combine and, possibly, other optimizations may do good job
2292 converting
2293 (const (unspec [(symbol)]))
2294 into
2295 (const (plus (unspec [(symbol)])
2296 (const_int N))).
2297 The problem with this is emitting @TLS or @GOT decorations.
2298 The decoration is emitted when processing (unspec), so the
2299 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2300
2301 It seems that the easiest solution to this is to convert such
2302 operands to
2303 (const (unspec [(plus (symbol)
2304 (const_int N))])).
2305 Note, that the top level of operand remains intact, so we don't have
2306 to patch up anything outside of the operand. */
2307
82eee4f1 2308 subrtx_var_iterator::array_type array;
75df395f
MK
2309 for (i = 0; i < n_operands; ++i)
2310 {
2311 rtx op;
2312
2313 op = operands[i];
2314
82eee4f1
RS
2315 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2316 {
2317 rtx x = *iter;
2318 if (m68k_unwrap_symbol (x, true) != x)
2319 {
2320 rtx plus;
2321
2322 gcc_assert (GET_CODE (x) == CONST);
2323 plus = XEXP (x, 0);
2324
2325 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2326 {
2327 rtx unspec;
2328 rtx addend;
2329
2330 unspec = XEXP (plus, 0);
2331 gcc_assert (GET_CODE (unspec) == UNSPEC);
2332 addend = XEXP (plus, 1);
2333 gcc_assert (CONST_INT_P (addend));
2334
2335 /* We now have all the pieces, rearrange them. */
2336
2337 /* Move symbol to plus. */
2338 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2339
2340 /* Move plus inside unspec. */
2341 XVECEXP (unspec, 0, 0) = plus;
2342
2343 /* Move unspec to top level of const. */
2344 XEXP (x, 0) = unspec;
2345 }
2346 iter.skip_subrtxes ();
2347 }
2348 }
75df395f
MK
2349 }
2350}
2351
2352/* Move X to a register and add REG_EQUAL note pointing to ORIG.
2353 If REG is non-null, use it; generate new pseudo otherwise. */
2354
2355static rtx
2356m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2357{
c85e862a 2358 rtx_insn *insn;
75df395f
MK
2359
2360 if (reg == NULL_RTX)
2361 {
2362 gcc_assert (can_create_pseudo_p ());
2363 reg = gen_reg_rtx (Pmode);
2364 }
2365
2366 insn = emit_move_insn (reg, x);
2367 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2368 by loop. */
2369 set_unique_reg_note (insn, REG_EQUAL, orig);
2370
2371 return reg;
2372}
2373
2374/* Does the same as m68k_wrap_symbol, but returns a memory reference to
2375 GOT slot. */
2376
2377static rtx
2378m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2379{
2380 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2381
2382 x = gen_rtx_MEM (Pmode, x);
2383 MEM_READONLY_P (x) = 1;
2384
2385 return x;
2386}
2387
79e68feb
RS
2388/* Legitimize PIC addresses. If the address is already
2389 position-independent, we return ORIG. Newly generated
2390 position-independent addresses go to REG. If we need more
2391 than one register, we lose.
2392
2393 An address is legitimized by making an indirect reference
2394 through the Global Offset Table with the name of the symbol
2395 used as an offset.
2396
2397 The assembler and linker are responsible for placing the
2398 address of the symbol in the GOT. The function prologue
2399 is responsible for initializing a5 to the starting address
2400 of the GOT.
2401
2402 The assembler is also responsible for translating a symbol name
2403 into a constant displacement from the start of the GOT.
2404
2405 A quick example may make things a little clearer:
2406
2407 When not generating PIC code to store the value 12345 into _foo
2408 we would generate the following code:
2409
2410 movel #12345, _foo
2411
2412 When generating PIC two transformations are made. First, the compiler
2413 loads the address of foo into a register. So the first transformation makes:
2414
2415 lea _foo, a0
2416 movel #12345, a0@
2417
2418 The code in movsi will intercept the lea instruction and call this
2419 routine which will transform the instructions into:
2420
2421 movel a5@(_foo:w), a0
2422 movel #12345, a0@
2423
2424
2425 That (in a nutshell) is how *all* symbol and label references are
2426 handled. */
2427
2428rtx
8a4a2253
BI
2429legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2430 rtx reg)
79e68feb
RS
2431{
2432 rtx pic_ref = orig;
2433
2434 /* First handle a simple SYMBOL_REF or LABEL_REF */
2435 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2436 {
4761e388 2437 gcc_assert (reg);
79e68feb 2438
75df395f
MK
2439 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2440 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
79e68feb
RS
2441 }
2442 else if (GET_CODE (orig) == CONST)
2443 {
1d8eaa6b 2444 rtx base;
79e68feb 2445
b2e08ed4 2446 /* Make sure this has not already been legitimized. */
75df395f 2447 if (m68k_unwrap_symbol (orig, true) != orig)
79e68feb
RS
2448 return orig;
2449
4761e388 2450 gcc_assert (reg);
79e68feb
RS
2451
2452 /* legitimize both operands of the PLUS */
4761e388
NS
2453 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2454
2455 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2456 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2457 base == reg ? 0 : reg);
79e68feb
RS
2458
2459 if (GET_CODE (orig) == CONST_INT)
0a81f074 2460 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
75df395f
MK
2461 else
2462 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
79e68feb 2463 }
75df395f 2464
79e68feb
RS
2465 return pic_ref;
2466}
2467
75df395f
MK
2468/* The __tls_get_addr symbol. */
2469static GTY(()) rtx m68k_tls_get_addr;
2470
2471/* Return SYMBOL_REF for __tls_get_addr. */
2472
2473static rtx
2474m68k_get_tls_get_addr (void)
2475{
2476 if (m68k_tls_get_addr == NULL_RTX)
2477 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2478
2479 return m68k_tls_get_addr;
2480}
2481
2482/* Return libcall result in A0 instead of usual D0. */
2483static bool m68k_libcall_value_in_a0_p = false;
2484
2485/* Emit instruction sequence that calls __tls_get_addr. X is
2486 the TLS symbol we are referencing and RELOC is the symbol type to use
2487 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2488 emitted. A pseudo register with result of __tls_get_addr call is
2489 returned. */
2490
2491static rtx
2492m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2493{
2494 rtx a0;
c85e862a 2495 rtx_insn *insns;
75df395f
MK
2496 rtx dest;
2497
2498 /* Emit the call sequence. */
2499 start_sequence ();
2500
2501 /* FIXME: Unfortunately, emit_library_call_value does not
2502 consider (plus (%a5) (const (unspec))) to be a good enough
2503 operand for push, so it forces it into a register. The bad
2504 thing about this is that combiner, due to copy propagation and other
2505 optimizations, sometimes can not later fix this. As a consequence,
2506 additional register may be allocated resulting in a spill.
2507 For reference, see args processing loops in
2508 calls.c:emit_library_call_value_1.
2509 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2510 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2511
2512 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2513 is the simpliest way of generating a call. The difference between
2514 __tls_get_addr() and libcall is that the result is returned in D0
2515 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2516 which temporarily switches returning the result to A0. */
2517
2518 m68k_libcall_value_in_a0_p = true;
2519 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2520 Pmode, 1, x, Pmode);
2521 m68k_libcall_value_in_a0_p = false;
2522
2523 insns = get_insns ();
2524 end_sequence ();
2525
2526 gcc_assert (can_create_pseudo_p ());
2527 dest = gen_reg_rtx (Pmode);
2528 emit_libcall_block (insns, dest, a0, eqv);
2529
2530 return dest;
2531}
2532
2533/* The __tls_get_addr symbol. */
2534static GTY(()) rtx m68k_read_tp;
2535
2536/* Return SYMBOL_REF for __m68k_read_tp. */
2537
2538static rtx
2539m68k_get_m68k_read_tp (void)
2540{
2541 if (m68k_read_tp == NULL_RTX)
2542 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2543
2544 return m68k_read_tp;
2545}
2546
2547/* Emit instruction sequence that calls __m68k_read_tp.
2548 A pseudo register with result of __m68k_read_tp call is returned. */
2549
2550static rtx
2551m68k_call_m68k_read_tp (void)
2552{
2553 rtx a0;
2554 rtx eqv;
c85e862a 2555 rtx_insn *insns;
75df395f
MK
2556 rtx dest;
2557
2558 start_sequence ();
2559
2560 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2561 is the simpliest way of generating a call. The difference between
2562 __m68k_read_tp() and libcall is that the result is returned in D0
2563 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2564 which temporarily switches returning the result to A0. */
2565
2566 /* Emit the call sequence. */
2567 m68k_libcall_value_in_a0_p = true;
2568 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2569 Pmode, 0);
2570 m68k_libcall_value_in_a0_p = false;
2571 insns = get_insns ();
2572 end_sequence ();
2573
2574 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2575 share the m68k_read_tp result with other IE/LE model accesses. */
2576 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2577
2578 gcc_assert (can_create_pseudo_p ());
2579 dest = gen_reg_rtx (Pmode);
2580 emit_libcall_block (insns, dest, a0, eqv);
2581
2582 return dest;
2583}
2584
2585/* Return a legitimized address for accessing TLS SYMBOL_REF X.
2586 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2587 ColdFire. */
2588
2589rtx
2590m68k_legitimize_tls_address (rtx orig)
2591{
2592 switch (SYMBOL_REF_TLS_MODEL (orig))
2593 {
2594 case TLS_MODEL_GLOBAL_DYNAMIC:
2595 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2596 break;
2597
2598 case TLS_MODEL_LOCAL_DYNAMIC:
2599 {
2600 rtx eqv;
2601 rtx a0;
2602 rtx x;
2603
2604 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2605 share the LDM result with other LD model accesses. */
2606 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2607 UNSPEC_RELOC32);
2608
2609 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2610
2611 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2612
2613 if (can_create_pseudo_p ())
2614 x = m68k_move_to_reg (x, orig, NULL_RTX);
2615
2616 orig = x;
2617 break;
2618 }
2619
2620 case TLS_MODEL_INITIAL_EXEC:
2621 {
2622 rtx a0;
2623 rtx x;
2624
2625 a0 = m68k_call_m68k_read_tp ();
2626
2627 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2628 x = gen_rtx_PLUS (Pmode, x, a0);
2629
2630 if (can_create_pseudo_p ())
2631 x = m68k_move_to_reg (x, orig, NULL_RTX);
2632
2633 orig = x;
2634 break;
2635 }
2636
2637 case TLS_MODEL_LOCAL_EXEC:
2638 {
2639 rtx a0;
2640 rtx x;
2641
2642 a0 = m68k_call_m68k_read_tp ();
2643
2644 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2645
2646 if (can_create_pseudo_p ())
2647 x = m68k_move_to_reg (x, orig, NULL_RTX);
2648
2649 orig = x;
2650 break;
2651 }
2652
2653 default:
2654 gcc_unreachable ();
2655 }
2656
2657 return orig;
2658}
2659
2660/* Return true if X is a TLS symbol. */
2661
2662static bool
2663m68k_tls_symbol_p (rtx x)
2664{
2665 if (!TARGET_HAVE_TLS)
2666 return false;
2667
2668 if (GET_CODE (x) != SYMBOL_REF)
2669 return false;
2670
2671 return SYMBOL_REF_TLS_MODEL (x) != 0;
2672}
2673
2674/* Helper for m68k_tls_referenced_p. */
2675
2676static int
2677m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2678{
2679 /* Note: this is not the same as m68k_tls_symbol_p. */
2680 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2681 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2682
2683 /* Don't recurse into legitimate TLS references. */
2684 if (m68k_tls_reference_p (*x_ptr, true))
2685 return -1;
2686
2687 return 0;
2688}
2689
2690/* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2691 though illegitimate one.
2692 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2693
2694bool
2695m68k_tls_reference_p (rtx x, bool legitimate_p)
2696{
2697 if (!TARGET_HAVE_TLS)
2698 return false;
2699
2700 if (!legitimate_p)
2701 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2702 else
2703 {
2704 enum m68k_reloc reloc = RELOC_GOT;
2705
2706 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2707 && TLS_RELOC_P (reloc));
2708 }
2709}
2710
79e68feb 2711\f
0ce6f9fb 2712
a0a7fbc9 2713#define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
0ce6f9fb 2714
bda2a571
RS
2715/* Return the type of move that should be used for integer I. */
2716
c47b0cb4
MK
2717M68K_CONST_METHOD
2718m68k_const_method (HOST_WIDE_INT i)
0ce6f9fb 2719{
0ce6f9fb
RK
2720 unsigned u;
2721
6910dd70 2722 if (USE_MOVQ (i))
0ce6f9fb 2723 return MOVQ;
24092242 2724
c16eadc7 2725 /* The ColdFire doesn't have byte or word operations. */
97c55091 2726 /* FIXME: This may not be useful for the m68060 either. */
85dbf7e2 2727 if (!TARGET_COLDFIRE)
24092242
RK
2728 {
2729 /* if -256 < N < 256 but N is not in range for a moveq
7a1929e1 2730 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
24092242
RK
2731 if (USE_MOVQ (i ^ 0xff))
2732 return NOTB;
2733 /* Likewise, try with not.w */
2734 if (USE_MOVQ (i ^ 0xffff))
2735 return NOTW;
2736 /* This is the only value where neg.w is useful */
2737 if (i == -65408)
2738 return NEGW;
24092242 2739 }
28bad6d1 2740
5e04daf3
PB
2741 /* Try also with swap. */
2742 u = i;
2743 if (USE_MOVQ ((u >> 16) | (u << 16)))
2744 return SWAP;
2745
986e74d5 2746 if (TARGET_ISAB)
28bad6d1 2747 {
72edf146 2748 /* Try using MVZ/MVS with an immediate value to load constants. */
28bad6d1
PB
2749 if (i >= 0 && i <= 65535)
2750 return MVZ;
2751 if (i >= -32768 && i <= 32767)
2752 return MVS;
2753 }
2754
0ce6f9fb
RK
2755 /* Otherwise, use move.l */
2756 return MOVL;
2757}
2758
bda2a571
RS
2759/* Return the cost of moving constant I into a data register. */
2760
3c50106f 2761static int
bda2a571 2762const_int_cost (HOST_WIDE_INT i)
0ce6f9fb 2763{
c47b0cb4 2764 switch (m68k_const_method (i))
0ce6f9fb 2765 {
a0a7fbc9
AS
2766 case MOVQ:
2767 /* Constants between -128 and 127 are cheap due to moveq. */
2768 return 0;
2769 case MVZ:
2770 case MVS:
2771 case NOTB:
2772 case NOTW:
2773 case NEGW:
2774 case SWAP:
2775 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2776 return 1;
2777 case MOVL:
2778 return 2;
2779 default:
2780 gcc_unreachable ();
0ce6f9fb
RK
2781 }
2782}
2783
3c50106f 2784static bool
68f932c4
RS
2785m68k_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
2786 int *total, bool speed ATTRIBUTE_UNUSED)
3c50106f
RH
2787{
2788 switch (code)
2789 {
2790 case CONST_INT:
2791 /* Constant zero is super cheap due to clr instruction. */
2792 if (x == const0_rtx)
2793 *total = 0;
2794 else
bda2a571 2795 *total = const_int_cost (INTVAL (x));
3c50106f
RH
2796 return true;
2797
2798 case CONST:
2799 case LABEL_REF:
2800 case SYMBOL_REF:
2801 *total = 3;
2802 return true;
2803
2804 case CONST_DOUBLE:
2805 /* Make 0.0 cheaper than other floating constants to
2806 encourage creating tstsf and tstdf insns. */
2807 if (outer_code == COMPARE
2808 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2809 *total = 4;
2810 else
2811 *total = 5;
2812 return true;
2813
2814 /* These are vaguely right for a 68020. */
2815 /* The costs for long multiply have been adjusted to work properly
2816 in synth_mult on the 68020, relative to an average of the time
2817 for add and the time for shift, taking away a little more because
2818 sometimes move insns are needed. */
a0a7fbc9
AS
2819 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2820 terms. */
fe95f2f7
JB
2821#define MULL_COST \
2822 (TUNE_68060 ? 2 \
2823 : TUNE_68040 ? 5 \
03b3e271
KH
2824 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2825 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2826 : TUNE_CFV2 ? 8 \
fe95f2f7
JB
2827 : TARGET_COLDFIRE ? 3 : 13)
2828
2829#define MULW_COST \
2830 (TUNE_68060 ? 2 \
2831 : TUNE_68040 ? 3 \
03b3e271
KH
2832 : TUNE_68000_10 ? 5 \
2833 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2834 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2835 : TUNE_CFV2 ? 8 \
fe95f2f7
JB
2836 : TARGET_COLDFIRE ? 2 : 8)
2837
2838#define DIVW_COST \
2839 (TARGET_CF_HWDIV ? 11 \
2840 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
3c50106f
RH
2841
2842 case PLUS:
2843 /* An lea costs about three times as much as a simple add. */
2844 if (GET_MODE (x) == SImode
2845 && GET_CODE (XEXP (x, 1)) == REG
2846 && GET_CODE (XEXP (x, 0)) == MULT
2847 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2848 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2849 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2850 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2851 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
eb849993
BI
2852 {
2853 /* lea an@(dx:l:i),am */
2854 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2855 return true;
2856 }
3c50106f
RH
2857 return false;
2858
2859 case ASHIFT:
2860 case ASHIFTRT:
2861 case LSHIFTRT:
fe95f2f7 2862 if (TUNE_68060)
3c50106f
RH
2863 {
2864 *total = COSTS_N_INSNS(1);
2865 return true;
2866 }
fe95f2f7 2867 if (TUNE_68000_10)
3c50106f
RH
2868 {
2869 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2870 {
2871 if (INTVAL (XEXP (x, 1)) < 16)
2872 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2873 else
2874 /* We're using clrw + swap for these cases. */
2875 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2876 }
2877 else
a0a7fbc9 2878 *total = COSTS_N_INSNS (10); /* Worst case. */
3c50106f
RH
2879 return true;
2880 }
2881 /* A shift by a big integer takes an extra instruction. */
2882 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2883 && (INTVAL (XEXP (x, 1)) == 16))
2884 {
2885 *total = COSTS_N_INSNS (2); /* clrw;swap */
2886 return true;
2887 }
2888 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2889 && !(INTVAL (XEXP (x, 1)) > 0
2890 && INTVAL (XEXP (x, 1)) <= 8))
2891 {
eb849993 2892 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
3c50106f
RH
2893 return true;
2894 }
2895 return false;
2896
2897 case MULT:
2898 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2899 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2900 && GET_MODE (x) == SImode)
2901 *total = COSTS_N_INSNS (MULW_COST);
2902 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2903 *total = COSTS_N_INSNS (MULW_COST);
2904 else
2905 *total = COSTS_N_INSNS (MULL_COST);
2906 return true;
2907
2908 case DIV:
2909 case UDIV:
2910 case MOD:
2911 case UMOD:
2912 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2913 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
eb849993
BI
2914 else if (TARGET_CF_HWDIV)
2915 *total = COSTS_N_INSNS (18);
3c50106f
RH
2916 else
2917 *total = COSTS_N_INSNS (43); /* div.l */
2918 return true;
2919
f90b7a5a
PB
2920 case ZERO_EXTRACT:
2921 if (outer_code == COMPARE)
2922 *total = 0;
2923 return false;
2924
3c50106f
RH
2925 default:
2926 return false;
2927 }
2928}
2929
88512ba0 2930/* Return an instruction to move CONST_INT OPERANDS[1] into data register
bda2a571
RS
2931 OPERANDS[0]. */
2932
2933static const char *
8a4a2253 2934output_move_const_into_data_reg (rtx *operands)
0ce6f9fb 2935{
bda2a571 2936 HOST_WIDE_INT i;
0ce6f9fb
RK
2937
2938 i = INTVAL (operands[1]);
c47b0cb4 2939 switch (m68k_const_method (i))
0ce6f9fb 2940 {
28bad6d1 2941 case MVZ:
28bad6d1 2942 return "mvzw %1,%0";
1cbae84f
PB
2943 case MVS:
2944 return "mvsw %1,%0";
a0a7fbc9 2945 case MOVQ:
0ce6f9fb 2946 return "moveq %1,%0";
a0a7fbc9 2947 case NOTB:
66e07510 2948 CC_STATUS_INIT;
1d8eaa6b 2949 operands[1] = GEN_INT (i ^ 0xff);
0ce6f9fb 2950 return "moveq %1,%0\n\tnot%.b %0";
a0a7fbc9 2951 case NOTW:
66e07510 2952 CC_STATUS_INIT;
1d8eaa6b 2953 operands[1] = GEN_INT (i ^ 0xffff);
0ce6f9fb 2954 return "moveq %1,%0\n\tnot%.w %0";
a0a7fbc9 2955 case NEGW:
66e07510 2956 CC_STATUS_INIT;
3b4b85c9 2957 return "moveq #-128,%0\n\tneg%.w %0";
a0a7fbc9 2958 case SWAP:
0ce6f9fb
RK
2959 {
2960 unsigned u = i;
2961
1d8eaa6b 2962 operands[1] = GEN_INT ((u << 16) | (u >> 16));
0ce6f9fb 2963 return "moveq %1,%0\n\tswap %0";
0ce6f9fb 2964 }
a0a7fbc9 2965 case MOVL:
bda2a571 2966 return "move%.l %1,%0";
a0a7fbc9 2967 default:
bda2a571 2968 gcc_unreachable ();
0ce6f9fb
RK
2969 }
2970}
2971
bda2a571 2972/* Return true if I can be handled by ISA B's mov3q instruction. */
5e04daf3 2973
bda2a571
RS
2974bool
2975valid_mov3q_const (HOST_WIDE_INT i)
2976{
2977 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
5e04daf3
PB
2978}
2979
bda2a571
RS
2980/* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2981 I is the value of OPERANDS[1]. */
5e04daf3 2982
bda2a571 2983static const char *
8a4a2253 2984output_move_simode_const (rtx *operands)
02ed0c07 2985{
bda2a571
RS
2986 rtx dest;
2987 HOST_WIDE_INT src;
2988
2989 dest = operands[0];
2990 src = INTVAL (operands[1]);
2991 if (src == 0
2992 && (DATA_REG_P (dest) || MEM_P (dest))
3197c489
RS
2993 /* clr insns on 68000 read before writing. */
2994 && ((TARGET_68010 || TARGET_COLDFIRE)
bda2a571 2995 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
02ed0c07 2996 return "clr%.l %0";
bda2a571 2997 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
a0a7fbc9 2998 return "mov3q%.l %1,%0";
bda2a571 2999 else if (src == 0 && ADDRESS_REG_P (dest))
38198304 3000 return "sub%.l %0,%0";
bda2a571 3001 else if (DATA_REG_P (dest))
02ed0c07 3002 return output_move_const_into_data_reg (operands);
bda2a571 3003 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
5e04daf3 3004 {
bda2a571 3005 if (valid_mov3q_const (src))
5e04daf3
PB
3006 return "mov3q%.l %1,%0";
3007 return "move%.w %1,%0";
3008 }
bda2a571
RS
3009 else if (MEM_P (dest)
3010 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3011 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3012 && IN_RANGE (src, -0x8000, 0x7fff))
5e04daf3 3013 {
bda2a571 3014 if (valid_mov3q_const (src))
5e04daf3
PB
3015 return "mov3q%.l %1,%-";
3016 return "pea %a1";
3017 }
02ed0c07
RK
3018 return "move%.l %1,%0";
3019}
3020
5505f548 3021const char *
8a4a2253 3022output_move_simode (rtx *operands)
f4e80198
RK
3023{
3024 if (GET_CODE (operands[1]) == CONST_INT)
3025 return output_move_simode_const (operands);
3026 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3027 || GET_CODE (operands[1]) == CONST)
3028 && push_operand (operands[0], SImode))
3029 return "pea %a1";
3030 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3031 || GET_CODE (operands[1]) == CONST)
3032 && ADDRESS_REG_P (operands[0]))
3033 return "lea %a1,%0";
3034 return "move%.l %1,%0";
3035}
3036
5505f548 3037const char *
8a4a2253 3038output_move_himode (rtx *operands)
f4e80198
RK
3039{
3040 if (GET_CODE (operands[1]) == CONST_INT)
3041 {
3042 if (operands[1] == const0_rtx
3043 && (DATA_REG_P (operands[0])
3044 || GET_CODE (operands[0]) == MEM)
3197c489
RS
3045 /* clr insns on 68000 read before writing. */
3046 && ((TARGET_68010 || TARGET_COLDFIRE)
f4e80198
RK
3047 || !(GET_CODE (operands[0]) == MEM
3048 && MEM_VOLATILE_P (operands[0]))))
3049 return "clr%.w %0";
38198304
AS
3050 else if (operands[1] == const0_rtx
3051 && ADDRESS_REG_P (operands[0]))
3052 return "sub%.l %0,%0";
f4e80198
RK
3053 else if (DATA_REG_P (operands[0])
3054 && INTVAL (operands[1]) < 128
3055 && INTVAL (operands[1]) >= -128)
a0a7fbc9 3056 return "moveq %1,%0";
f4e80198
RK
3057 else if (INTVAL (operands[1]) < 0x8000
3058 && INTVAL (operands[1]) >= -0x8000)
3059 return "move%.w %1,%0";
3060 }
3061 else if (CONSTANT_P (operands[1]))
3062 return "move%.l %1,%0";
f4e80198
RK
3063 return "move%.w %1,%0";
3064}
3065
5505f548 3066const char *
8a4a2253 3067output_move_qimode (rtx *operands)
f4e80198 3068{
102701ff 3069 /* 68k family always modifies the stack pointer by at least 2, even for
c16eadc7 3070 byte pushes. The 5200 (ColdFire) does not do this. */
4761e388 3071
a0a7fbc9 3072 /* This case is generated by pushqi1 pattern now. */
4761e388
NS
3073 gcc_assert (!(GET_CODE (operands[0]) == MEM
3074 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3075 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3076 && ! ADDRESS_REG_P (operands[1])
3077 && ! TARGET_COLDFIRE));
f4e80198 3078
3197c489 3079 /* clr and st insns on 68000 read before writing. */
f4e80198 3080 if (!ADDRESS_REG_P (operands[0])
3197c489 3081 && ((TARGET_68010 || TARGET_COLDFIRE)
f4e80198
RK
3082 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3083 {
3084 if (operands[1] == const0_rtx)
3085 return "clr%.b %0";
9425fb04 3086 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
f4e80198
RK
3087 && GET_CODE (operands[1]) == CONST_INT
3088 && (INTVAL (operands[1]) & 255) == 255)
3089 {
3090 CC_STATUS_INIT;
3091 return "st %0";
3092 }
3093 }
3094 if (GET_CODE (operands[1]) == CONST_INT
3095 && DATA_REG_P (operands[0])
3096 && INTVAL (operands[1]) < 128
3097 && INTVAL (operands[1]) >= -128)
a0a7fbc9 3098 return "moveq %1,%0";
38198304
AS
3099 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3100 return "sub%.l %0,%0";
f4e80198
RK
3101 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3102 return "move%.l %1,%0";
c16eadc7 3103 /* 68k family (including the 5200 ColdFire) does not support byte moves to
37834fc8
JL
3104 from address registers. */
3105 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
f4e80198
RK
3106 return "move%.w %1,%0";
3107 return "move%.b %1,%0";
3108}
3109
5505f548 3110const char *
8a4a2253 3111output_move_stricthi (rtx *operands)
9b55bf04
RK
3112{
3113 if (operands[1] == const0_rtx
3197c489
RS
3114 /* clr insns on 68000 read before writing. */
3115 && ((TARGET_68010 || TARGET_COLDFIRE)
9b55bf04
RK
3116 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3117 return "clr%.w %0";
3118 return "move%.w %1,%0";
3119}
3120
5505f548 3121const char *
8a4a2253 3122output_move_strictqi (rtx *operands)
9b55bf04
RK
3123{
3124 if (operands[1] == const0_rtx
3197c489
RS
3125 /* clr insns on 68000 read before writing. */
3126 && ((TARGET_68010 || TARGET_COLDFIRE)
9b55bf04
RK
3127 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3128 return "clr%.b %0";
3129 return "move%.b %1,%0";
3130}
3131
79e68feb
RS
3132/* Return the best assembler insn template
3133 for moving operands[1] into operands[0] as a fullword. */
3134
5505f548 3135static const char *
8a4a2253 3136singlemove_string (rtx *operands)
79e68feb 3137{
02ed0c07
RK
3138 if (GET_CODE (operands[1]) == CONST_INT)
3139 return output_move_simode_const (operands);
3140 return "move%.l %1,%0";
79e68feb
RS
3141}
3142
2505bc97 3143
c47b0cb4
MK
3144/* Output assembler or rtl code to perform a doubleword move insn
3145 with operands OPERANDS.
3146 Pointers to 3 helper functions should be specified:
3147 HANDLE_REG_ADJUST to adjust a register by a small value,
3148 HANDLE_COMPADR to compute an address and
3149 HANDLE_MOVSI to move 4 bytes. */
79e68feb 3150
c47b0cb4
MK
3151static void
3152handle_move_double (rtx operands[2],
3153 void (*handle_reg_adjust) (rtx, int),
3154 void (*handle_compadr) (rtx [2]),
3155 void (*handle_movsi) (rtx [2]))
79e68feb 3156{
2505bc97
RS
3157 enum
3158 {
3159 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3160 } optype0, optype1;
79e68feb 3161 rtx latehalf[2];
2505bc97 3162 rtx middlehalf[2];
7f98eeb6 3163 rtx xops[2];
79e68feb 3164 rtx addreg0 = 0, addreg1 = 0;
7f98eeb6 3165 int dest_overlapped_low = 0;
184916bc 3166 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
2505bc97
RS
3167
3168 middlehalf[0] = 0;
3169 middlehalf[1] = 0;
79e68feb
RS
3170
3171 /* First classify both operands. */
3172
3173 if (REG_P (operands[0]))
3174 optype0 = REGOP;
3175 else if (offsettable_memref_p (operands[0]))
3176 optype0 = OFFSOP;
3177 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3178 optype0 = POPOP;
3179 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3180 optype0 = PUSHOP;
3181 else if (GET_CODE (operands[0]) == MEM)
3182 optype0 = MEMOP;
3183 else
3184 optype0 = RNDOP;
3185
3186 if (REG_P (operands[1]))
3187 optype1 = REGOP;
3188 else if (CONSTANT_P (operands[1]))
3189 optype1 = CNSTOP;
3190 else if (offsettable_memref_p (operands[1]))
3191 optype1 = OFFSOP;
3192 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3193 optype1 = POPOP;
3194 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3195 optype1 = PUSHOP;
3196 else if (GET_CODE (operands[1]) == MEM)
3197 optype1 = MEMOP;
3198 else
3199 optype1 = RNDOP;
3200
4761e388
NS
3201 /* Check for the cases that the operand constraints are not supposed
3202 to allow to happen. Generating code for these cases is
3203 painful. */
3204 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
79e68feb
RS
3205
3206 /* If one operand is decrementing and one is incrementing
3207 decrement the former register explicitly
3208 and change that operand into ordinary indexing. */
3209
3210 if (optype0 == PUSHOP && optype1 == POPOP)
3211 {
3212 operands[0] = XEXP (XEXP (operands[0], 0), 0);
c47b0cb4
MK
3213
3214 handle_reg_adjust (operands[0], -size);
3215
2505bc97 3216 if (GET_MODE (operands[1]) == XFmode)
1d8eaa6b 3217 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
2505bc97 3218 else if (GET_MODE (operands[0]) == DFmode)
1d8eaa6b 3219 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
2505bc97 3220 else
1d8eaa6b 3221 operands[0] = gen_rtx_MEM (DImode, operands[0]);
79e68feb
RS
3222 optype0 = OFFSOP;
3223 }
3224 if (optype0 == POPOP && optype1 == PUSHOP)
3225 {
3226 operands[1] = XEXP (XEXP (operands[1], 0), 0);
c47b0cb4
MK
3227
3228 handle_reg_adjust (operands[1], -size);
3229
2505bc97 3230 if (GET_MODE (operands[1]) == XFmode)
1d8eaa6b 3231 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
2505bc97 3232 else if (GET_MODE (operands[1]) == DFmode)
1d8eaa6b 3233 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
2505bc97 3234 else
1d8eaa6b 3235 operands[1] = gen_rtx_MEM (DImode, operands[1]);
79e68feb
RS
3236 optype1 = OFFSOP;
3237 }
3238
3239 /* If an operand is an unoffsettable memory ref, find a register
3240 we can increment temporarily to make it refer to the second word. */
3241
3242 if (optype0 == MEMOP)
3243 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3244
3245 if (optype1 == MEMOP)
3246 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3247
3248 /* Ok, we can do one word at a time.
3249 Normally we do the low-numbered word first,
3250 but if either operand is autodecrementing then we
3251 do the high-numbered word first.
3252
3253 In either case, set up in LATEHALF the operands to use
3254 for the high-numbered word and in some cases alter the
3255 operands in OPERANDS to be suitable for the low-numbered word. */
3256
2505bc97
RS
3257 if (size == 12)
3258 {
3259 if (optype0 == REGOP)
3260 {
1d8eaa6b
AS
3261 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3262 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2505bc97
RS
3263 }
3264 else if (optype0 == OFFSOP)
3265 {
b72f00af
RK
3266 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3267 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2505bc97
RS
3268 }
3269 else
3270 {
c47b0cb4
MK
3271 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3272 latehalf[0] = adjust_address (operands[0], SImode, 0);
2505bc97
RS
3273 }
3274
3275 if (optype1 == REGOP)
3276 {
1d8eaa6b
AS
3277 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3278 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2505bc97
RS
3279 }
3280 else if (optype1 == OFFSOP)
3281 {
b72f00af
RK
3282 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3283 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2505bc97
RS
3284 }
3285 else if (optype1 == CNSTOP)
3286 {
3287 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3288 {
3289 REAL_VALUE_TYPE r;
3290 long l[3];
3291
3292 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3293 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3294 operands[1] = GEN_INT (l[0]);
3295 middlehalf[1] = GEN_INT (l[1]);
3296 latehalf[1] = GEN_INT (l[2]);
3297 }
4761e388 3298 else
2505bc97 3299 {
4761e388
NS
3300 /* No non-CONST_DOUBLE constant should ever appear
3301 here. */
3302 gcc_assert (!CONSTANT_P (operands[1]));
2505bc97
RS
3303 }
3304 }
3305 else
3306 {
c47b0cb4
MK
3307 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3308 latehalf[1] = adjust_address (operands[1], SImode, 0);
2505bc97
RS
3309 }
3310 }
79e68feb 3311 else
2505bc97
RS
3312 /* size is not 12: */
3313 {
3314 if (optype0 == REGOP)
1d8eaa6b 3315 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2505bc97 3316 else if (optype0 == OFFSOP)
b72f00af 3317 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
2505bc97 3318 else
c47b0cb4 3319 latehalf[0] = adjust_address (operands[0], SImode, 0);
2505bc97
RS
3320
3321 if (optype1 == REGOP)
1d8eaa6b 3322 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2505bc97 3323 else if (optype1 == OFFSOP)
b72f00af 3324 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
2505bc97
RS
3325 else if (optype1 == CNSTOP)
3326 split_double (operands[1], &operands[1], &latehalf[1]);
3327 else
c47b0cb4 3328 latehalf[1] = adjust_address (operands[1], SImode, 0);
2505bc97 3329 }
79e68feb 3330
e864837a
AS
3331 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3332 word first. We should use the adjusted operand 1 (which is N+4(REG))
3333 for the low word as well, to compensate for the first decrement of
3334 REG. */
79e68feb 3335 if (optype0 == PUSHOP
e864837a 3336 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
c88aeaf8 3337 operands[1] = middlehalf[1] = latehalf[1];
79e68feb 3338
7f98eeb6
RS
3339 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3340 if the upper part of reg N does not appear in the MEM, arrange to
3341 emit the move late-half first. Otherwise, compute the MEM address
3342 into the upper part of N and use that as a pointer to the memory
3343 operand. */
3344 if (optype0 == REGOP
3345 && (optype1 == OFFSOP || optype1 == MEMOP))
3346 {
1d8eaa6b 3347 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3a58400f
RS
3348
3349 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581 3350 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
7f98eeb6
RS
3351 {
3352 /* If both halves of dest are used in the src memory address,
3a58400f
RS
3353 compute the address into latehalf of dest.
3354 Note that this can't happen if the dest is two data regs. */
4761e388 3355 compadr:
7f98eeb6
RS
3356 xops[0] = latehalf[0];
3357 xops[1] = XEXP (operands[1], 0);
c47b0cb4
MK
3358
3359 handle_compadr (xops);
3360 if (GET_MODE (operands[1]) == XFmode)
7f98eeb6 3361 {
1d8eaa6b 3362 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
b72f00af
RK
3363 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3364 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
7f98eeb6
RS
3365 }
3366 else
3367 {
1d8eaa6b 3368 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
b72f00af 3369 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
7f98eeb6
RS
3370 }
3371 }
3372 else if (size == 12
d7e8d581
RS
3373 && reg_overlap_mentioned_p (middlehalf[0],
3374 XEXP (operands[1], 0)))
7f98eeb6 3375 {
3a58400f
RS
3376 /* Check for two regs used by both source and dest.
3377 Note that this can't happen if the dest is all data regs.
3378 It can happen if the dest is d6, d7, a0.
3379 But in that case, latehalf is an addr reg, so
3380 the code at compadr does ok. */
3381
3382 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581
RS
3383 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3384 goto compadr;
7f98eeb6
RS
3385
3386 /* JRV says this can't happen: */
4761e388 3387 gcc_assert (!addreg0 && !addreg1);
7f98eeb6 3388
7a1929e1 3389 /* Only the middle reg conflicts; simply put it last. */
c47b0cb4
MK
3390 handle_movsi (operands);
3391 handle_movsi (latehalf);
3392 handle_movsi (middlehalf);
3393
3394 return;
7f98eeb6 3395 }
2fb8a81d 3396 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
7f98eeb6
RS
3397 /* If the low half of dest is mentioned in the source memory
3398 address, the arrange to emit the move late half first. */
3399 dest_overlapped_low = 1;
3400 }
3401
79e68feb
RS
3402 /* If one or both operands autodecrementing,
3403 do the two words, high-numbered first. */
3404
3405 /* Likewise, the first move would clobber the source of the second one,
3406 do them in the other order. This happens only for registers;
3407 such overlap can't happen in memory unless the user explicitly
3408 sets it up, and that is an undefined circumstance. */
3409
3410 if (optype0 == PUSHOP || optype1 == PUSHOP
3411 || (optype0 == REGOP && optype1 == REGOP
2505bc97 3412 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
7f98eeb6
RS
3413 || REGNO (operands[0]) == REGNO (latehalf[1])))
3414 || dest_overlapped_low)
79e68feb
RS
3415 {
3416 /* Make any unoffsettable addresses point at high-numbered word. */
3417 if (addreg0)
c47b0cb4 3418 handle_reg_adjust (addreg0, size - 4);
79e68feb 3419 if (addreg1)
c47b0cb4 3420 handle_reg_adjust (addreg1, size - 4);
79e68feb
RS
3421
3422 /* Do that word. */
c47b0cb4 3423 handle_movsi (latehalf);
79e68feb
RS
3424
3425 /* Undo the adds we just did. */
3426 if (addreg0)
c47b0cb4 3427 handle_reg_adjust (addreg0, -4);
79e68feb 3428 if (addreg1)
c47b0cb4 3429 handle_reg_adjust (addreg1, -4);
79e68feb 3430
2505bc97
RS
3431 if (size == 12)
3432 {
c47b0cb4
MK
3433 handle_movsi (middlehalf);
3434
2505bc97 3435 if (addreg0)
c47b0cb4 3436 handle_reg_adjust (addreg0, -4);
2505bc97 3437 if (addreg1)
c47b0cb4 3438 handle_reg_adjust (addreg1, -4);
2505bc97
RS
3439 }
3440
79e68feb 3441 /* Do low-numbered word. */
c47b0cb4
MK
3442
3443 handle_movsi (operands);
3444 return;
79e68feb
RS
3445 }
3446
3447 /* Normal case: do the two words, low-numbered first. */
3448
dcac2e64 3449 m68k_final_prescan_insn (NULL, operands, 2);
c47b0cb4 3450 handle_movsi (operands);
79e68feb 3451
2505bc97
RS
3452 /* Do the middle one of the three words for long double */
3453 if (size == 12)
3454 {
3455 if (addreg0)
c47b0cb4 3456 handle_reg_adjust (addreg0, 4);
2505bc97 3457 if (addreg1)
c47b0cb4 3458 handle_reg_adjust (addreg1, 4);
2505bc97 3459
dcac2e64 3460 m68k_final_prescan_insn (NULL, middlehalf, 2);
c47b0cb4 3461 handle_movsi (middlehalf);
2505bc97
RS
3462 }
3463
79e68feb
RS
3464 /* Make any unoffsettable addresses point at high-numbered word. */
3465 if (addreg0)
c47b0cb4 3466 handle_reg_adjust (addreg0, 4);
79e68feb 3467 if (addreg1)
c47b0cb4 3468 handle_reg_adjust (addreg1, 4);
79e68feb
RS
3469
3470 /* Do that word. */
dcac2e64 3471 m68k_final_prescan_insn (NULL, latehalf, 2);
c47b0cb4 3472 handle_movsi (latehalf);
79e68feb
RS
3473
3474 /* Undo the adds we just did. */
3475 if (addreg0)
c47b0cb4
MK
3476 handle_reg_adjust (addreg0, -(size - 4));
3477 if (addreg1)
3478 handle_reg_adjust (addreg1, -(size - 4));
3479
3480 return;
3481}
3482
3483/* Output assembler code to adjust REG by N. */
3484static void
3485output_reg_adjust (rtx reg, int n)
3486{
3487 const char *s;
3488
3489 gcc_assert (GET_MODE (reg) == SImode
3490 && -12 <= n && n != 0 && n <= 12);
3491
3492 switch (n)
2505bc97 3493 {
c47b0cb4
MK
3494 case 12:
3495 s = "add%.l #12,%0";
3496 break;
3497
3498 case 8:
3499 s = "addq%.l #8,%0";
3500 break;
3501
3502 case 4:
3503 s = "addq%.l #4,%0";
3504 break;
3505
3506 case -12:
3507 s = "sub%.l #12,%0";
3508 break;
3509
3510 case -8:
3511 s = "subq%.l #8,%0";
3512 break;
3513
3514 case -4:
3515 s = "subq%.l #4,%0";
3516 break;
3517
3518 default:
3519 gcc_unreachable ();
3520 s = NULL;
2505bc97 3521 }
c47b0cb4
MK
3522
3523 output_asm_insn (s, &reg);
3524}
3525
3526/* Emit rtl code to adjust REG by N. */
3527static void
3528emit_reg_adjust (rtx reg1, int n)
3529{
3530 rtx reg2;
3531
3532 gcc_assert (GET_MODE (reg1) == SImode
3533 && -12 <= n && n != 0 && n <= 12);
3534
3535 reg1 = copy_rtx (reg1);
3536 reg2 = copy_rtx (reg1);
3537
3538 if (n < 0)
3539 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3540 else if (n > 0)
3541 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3542 else
3543 gcc_unreachable ();
3544}
3545
3546/* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3547static void
3548output_compadr (rtx operands[2])
3549{
3550 output_asm_insn ("lea %a1,%0", operands);
3551}
3552
3553/* Output the best assembler insn for moving operands[1] into operands[0]
3554 as a fullword. */
3555static void
3556output_movsi (rtx operands[2])
3557{
3558 output_asm_insn (singlemove_string (operands), operands);
3559}
3560
3561/* Copy OP and change its mode to MODE. */
3562static rtx
3563copy_operand (rtx op, enum machine_mode mode)
3564{
3565 /* ??? This looks really ugly. There must be a better way
3566 to change a mode on the operand. */
3567 if (GET_MODE (op) != VOIDmode)
2505bc97 3568 {
c47b0cb4
MK
3569 if (REG_P (op))
3570 op = gen_rtx_REG (mode, REGNO (op));
2505bc97 3571 else
c47b0cb4
MK
3572 {
3573 op = copy_rtx (op);
3574 PUT_MODE (op, mode);
3575 }
2505bc97 3576 }
79e68feb 3577
c47b0cb4
MK
3578 return op;
3579}
3580
3581/* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3582static void
3583emit_movsi (rtx operands[2])
3584{
3585 operands[0] = copy_operand (operands[0], SImode);
3586 operands[1] = copy_operand (operands[1], SImode);
3587
3588 emit_insn (gen_movsi (operands[0], operands[1]));
3589}
3590
3591/* Output assembler code to perform a doubleword move insn
3592 with operands OPERANDS. */
3593const char *
3594output_move_double (rtx *operands)
3595{
3596 handle_move_double (operands,
3597 output_reg_adjust, output_compadr, output_movsi);
3598
79e68feb
RS
3599 return "";
3600}
3601
c47b0cb4
MK
3602/* Output rtl code to perform a doubleword move insn
3603 with operands OPERANDS. */
3604void
3605m68k_emit_move_double (rtx operands[2])
3606{
3607 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3608}
dcc21c4c
PB
3609
3610/* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3611 new rtx with the correct mode. */
3612
3613static rtx
3614force_mode (enum machine_mode mode, rtx orig)
3615{
3616 if (mode == GET_MODE (orig))
3617 return orig;
3618
3619 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3620 abort ();
3621
3622 return gen_rtx_REG (mode, REGNO (orig));
3623}
3624
3625static int
3626fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3627{
3628 return reg_renumber && FP_REG_P (op);
3629}
3630
3631/* Emit insns to move operands[1] into operands[0].
3632
3633 Return 1 if we have written out everything that needs to be done to
3634 do the move. Otherwise, return 0 and the caller will emit the move
3635 normally.
3636
3637 Note SCRATCH_REG may not be in the proper mode depending on how it
c0220ea4 3638 will be used. This routine is responsible for creating a new copy
dcc21c4c
PB
3639 of SCRATCH_REG in the proper mode. */
3640
3641int
3642emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3643{
3644 register rtx operand0 = operands[0];
3645 register rtx operand1 = operands[1];
3646 register rtx tem;
3647
3648 if (scratch_reg
3649 && reload_in_progress && GET_CODE (operand0) == REG
3650 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
f2034d06 3651 operand0 = reg_equiv_mem (REGNO (operand0));
dcc21c4c
PB
3652 else if (scratch_reg
3653 && reload_in_progress && GET_CODE (operand0) == SUBREG
3654 && GET_CODE (SUBREG_REG (operand0)) == REG
3655 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3656 {
3657 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3658 the code which tracks sets/uses for delete_output_reload. */
3659 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
f2034d06 3660 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
dcc21c4c 3661 SUBREG_BYTE (operand0));
55a2c322 3662 operand0 = alter_subreg (&temp, true);
dcc21c4c
PB
3663 }
3664
3665 if (scratch_reg
3666 && reload_in_progress && GET_CODE (operand1) == REG
3667 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
f2034d06 3668 operand1 = reg_equiv_mem (REGNO (operand1));
dcc21c4c
PB
3669 else if (scratch_reg
3670 && reload_in_progress && GET_CODE (operand1) == SUBREG
3671 && GET_CODE (SUBREG_REG (operand1)) == REG
3672 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3673 {
3674 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3675 the code which tracks sets/uses for delete_output_reload. */
3676 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
f2034d06 3677 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
dcc21c4c 3678 SUBREG_BYTE (operand1));
55a2c322 3679 operand1 = alter_subreg (&temp, true);
dcc21c4c
PB
3680 }
3681
3682 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3683 && ((tem = find_replacement (&XEXP (operand0, 0)))
3684 != XEXP (operand0, 0)))
3685 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3686 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3687 && ((tem = find_replacement (&XEXP (operand1, 0)))
3688 != XEXP (operand1, 0)))
3689 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3690
3691 /* Handle secondary reloads for loads/stores of FP registers where
3692 the address is symbolic by using the scratch register */
3693 if (fp_reg_operand (operand0, mode)
3694 && ((GET_CODE (operand1) == MEM
3695 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3696 || ((GET_CODE (operand1) == SUBREG
3697 && GET_CODE (XEXP (operand1, 0)) == MEM
3698 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3699 && scratch_reg)
3700 {
3701 if (GET_CODE (operand1) == SUBREG)
3702 operand1 = XEXP (operand1, 0);
3703
3704 /* SCRATCH_REG will hold an address. We want
3705 it in SImode regardless of what mode it was originally given
3706 to us. */
3707 scratch_reg = force_mode (SImode, scratch_reg);
3708
3709 /* D might not fit in 14 bits either; for such cases load D into
3710 scratch reg. */
3711 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3712 {
3713 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3714 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3715 Pmode,
3716 XEXP (XEXP (operand1, 0), 0),
3717 scratch_reg));
3718 }
3719 else
3720 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3721 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3722 gen_rtx_MEM (mode, scratch_reg)));
3723 return 1;
3724 }
3725 else if (fp_reg_operand (operand1, mode)
3726 && ((GET_CODE (operand0) == MEM
3727 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3728 || ((GET_CODE (operand0) == SUBREG)
3729 && GET_CODE (XEXP (operand0, 0)) == MEM
3730 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3731 && scratch_reg)
3732 {
3733 if (GET_CODE (operand0) == SUBREG)
3734 operand0 = XEXP (operand0, 0);
3735
3736 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3737 it in SIMODE regardless of what mode it was originally given
3738 to us. */
3739 scratch_reg = force_mode (SImode, scratch_reg);
3740
3741 /* D might not fit in 14 bits either; for such cases load D into
3742 scratch reg. */
3743 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3744 {
3745 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3746 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3747 0)),
3748 Pmode,
3749 XEXP (XEXP (operand0, 0),
3750 0),
3751 scratch_reg));
3752 }
3753 else
3754 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3755 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3756 operand1));
3757 return 1;
3758 }
3759 /* Handle secondary reloads for loads of FP registers from constant
3760 expressions by forcing the constant into memory.
3761
3762 use scratch_reg to hold the address of the memory location.
3763
3764 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3765 NO_REGS when presented with a const_int and an register class
3766 containing only FP registers. Doing so unfortunately creates
3767 more problems than it solves. Fix this for 2.5. */
3768 else if (fp_reg_operand (operand0, mode)
3769 && CONSTANT_P (operand1)
3770 && scratch_reg)
3771 {
3772 rtx xoperands[2];
3773
3774 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3775 it in SIMODE regardless of what mode it was originally given
3776 to us. */
3777 scratch_reg = force_mode (SImode, scratch_reg);
3778
3779 /* Force the constant into memory and put the address of the
3780 memory location into scratch_reg. */
3781 xoperands[0] = scratch_reg;
3782 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3783 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3784
3785 /* Now load the destination register. */
3786 emit_insn (gen_rtx_SET (mode, operand0,
3787 gen_rtx_MEM (mode, scratch_reg)));
3788 return 1;
3789 }
3790
3791 /* Now have insn-emit do whatever it normally does. */
3792 return 0;
3793}
3794
01e304f8
RZ
3795/* Split one or more DImode RTL references into pairs of SImode
3796 references. The RTL can be REG, offsettable MEM, integer constant, or
3797 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3798 split and "num" is its length. lo_half and hi_half are output arrays
3799 that parallel "operands". */
3800
3801void
3802split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3803{
3804 while (num--)
3805 {
3806 rtx op = operands[num];
3807
3808 /* simplify_subreg refuses to split volatile memory addresses,
3809 but we still have to handle it. */
3810 if (GET_CODE (op) == MEM)
3811 {
3812 lo_half[num] = adjust_address (op, SImode, 4);
3813 hi_half[num] = adjust_address (op, SImode, 0);
3814 }
3815 else
3816 {
3817 lo_half[num] = simplify_gen_subreg (SImode, op,
3818 GET_MODE (op) == VOIDmode
3819 ? DImode : GET_MODE (op), 4);
3820 hi_half[num] = simplify_gen_subreg (SImode, op,
3821 GET_MODE (op) == VOIDmode
3822 ? DImode : GET_MODE (op), 0);
3823 }
3824 }
3825}
3826
a40ed0f3
KH
3827/* Split X into a base and a constant offset, storing them in *BASE
3828 and *OFFSET respectively. */
3829
3830static void
3831m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3832{
3833 *offset = 0;
3834 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3835 {
3836 *offset += INTVAL (XEXP (x, 1));
3837 x = XEXP (x, 0);
3838 }
3839 *base = x;
3840}
3841
3842/* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3843 instruction. STORE_P says whether the move is a load or store.
3844
3845 If the instruction uses post-increment or pre-decrement addressing,
3846 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3847 adjustment. This adjustment will be made by the first element of
3848 PARALLEL, with the loads or stores starting at element 1. If the
3849 instruction does not use post-increment or pre-decrement addressing,
3850 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3851 start at element 0. */
3852
3853bool
3854m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3855 HOST_WIDE_INT automod_offset, bool store_p)
3856{
3857 rtx base, mem_base, set, mem, reg, last_reg;
3858 HOST_WIDE_INT offset, mem_offset;
3859 int i, first, len;
3860 enum reg_class rclass;
3861
3862 len = XVECLEN (pattern, 0);
3863 first = (automod_base != NULL);
3864
3865 if (automod_base)
3866 {
3867 /* Stores must be pre-decrement and loads must be post-increment. */
3868 if (store_p != (automod_offset < 0))
3869 return false;
3870
3871 /* Work out the base and offset for lowest memory location. */
3872 base = automod_base;
3873 offset = (automod_offset < 0 ? automod_offset : 0);
3874 }
3875 else
3876 {
3877 /* Allow any valid base and offset in the first access. */
3878 base = NULL;
3879 offset = 0;
3880 }
3881
3882 last_reg = NULL;
3883 rclass = NO_REGS;
3884 for (i = first; i < len; i++)
3885 {
3886 /* We need a plain SET. */
3887 set = XVECEXP (pattern, 0, i);
3888 if (GET_CODE (set) != SET)
3889 return false;
3890
3891 /* Check that we have a memory location... */
3892 mem = XEXP (set, !store_p);
3893 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3894 return false;
3895
3896 /* ...with the right address. */
3897 if (base == NULL)
3898 {
3899 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3900 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3901 There are no mode restrictions for 680x0 besides the
3902 automodification rules enforced above. */
3903 if (TARGET_COLDFIRE
3904 && !m68k_legitimate_base_reg_p (base, reload_completed))
3905 return false;
3906 }
3907 else
3908 {
3909 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3910 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3911 return false;
3912 }
3913
3914 /* Check that we have a register of the required mode and class. */
3915 reg = XEXP (set, store_p);
3916 if (!REG_P (reg)
3917 || !HARD_REGISTER_P (reg)
3918 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3919 return false;
3920
3921 if (last_reg)
3922 {
3923 /* The register must belong to RCLASS and have a higher number
3924 than the register in the previous SET. */
3925 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3926 || REGNO (last_reg) >= REGNO (reg))
3927 return false;
3928 }
3929 else
3930 {
3931 /* Work out which register class we need. */
3932 if (INT_REGNO_P (REGNO (reg)))
3933 rclass = GENERAL_REGS;
3934 else if (FP_REGNO_P (REGNO (reg)))
3935 rclass = FP_REGS;
3936 else
3937 return false;
3938 }
3939
3940 last_reg = reg;
3941 offset += GET_MODE_SIZE (GET_MODE (reg));
3942 }
3943
3944 /* If we have an automodification, check whether the final offset is OK. */
3945 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3946 return false;
3947
3948 /* Reject unprofitable cases. */
3949 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3950 return false;
3951
3952 return true;
3953}
3954
3955/* Return the assembly code template for a movem or fmovem instruction
3956 whose pattern is given by PATTERN. Store the template's operands
3957 in OPERANDS.
3958
3959 If the instruction uses post-increment or pre-decrement addressing,
3960 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3961 is true if this is a store instruction. */
3962
3963const char *
3964m68k_output_movem (rtx *operands, rtx pattern,
3965 HOST_WIDE_INT automod_offset, bool store_p)
3966{
3967 unsigned int mask;
3968 int i, first;
3969
3970 gcc_assert (GET_CODE (pattern) == PARALLEL);
3971 mask = 0;
3972 first = (automod_offset != 0);
3973 for (i = first; i < XVECLEN (pattern, 0); i++)
3974 {
3975 /* When using movem with pre-decrement addressing, register X + D0_REG
3976 is controlled by bit 15 - X. For all other addressing modes,
3977 register X + D0_REG is controlled by bit X. Confusingly, the
3978 register mask for fmovem is in the opposite order to that for
3979 movem. */
3980 unsigned int regno;
3981
3982 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3983 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3984 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3985 if (automod_offset < 0)
3986 {
3987 if (FP_REGNO_P (regno))
3988 mask |= 1 << (regno - FP0_REG);
3989 else
3990 mask |= 1 << (15 - (regno - D0_REG));
3991 }
3992 else
3993 {
3994 if (FP_REGNO_P (regno))
3995 mask |= 1 << (7 - (regno - FP0_REG));
3996 else
3997 mask |= 1 << (regno - D0_REG);
3998 }
3999 }
4000 CC_STATUS_INIT;
4001
4002 if (automod_offset == 0)
4003 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4004 else if (automod_offset < 0)
4005 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4006 else
4007 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4008 operands[1] = GEN_INT (mask);
4009 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4010 {
4011 if (store_p)
1fae2d80 4012 return "fmovem %1,%a0";
a40ed0f3 4013 else
1fae2d80 4014 return "fmovem %a0,%1";
a40ed0f3
KH
4015 }
4016 else
4017 {
4018 if (store_p)
1fae2d80 4019 return "movem%.l %1,%a0";
a40ed0f3 4020 else
1fae2d80 4021 return "movem%.l %a0,%1";
a40ed0f3
KH
4022 }
4023}
4024
79e68feb
RS
4025/* Return a REG that occurs in ADDR with coefficient 1.
4026 ADDR can be effectively incremented by incrementing REG. */
4027
4028static rtx
8a4a2253 4029find_addr_reg (rtx addr)
79e68feb
RS
4030{
4031 while (GET_CODE (addr) == PLUS)
4032 {
4033 if (GET_CODE (XEXP (addr, 0)) == REG)
4034 addr = XEXP (addr, 0);
4035 else if (GET_CODE (XEXP (addr, 1)) == REG)
4036 addr = XEXP (addr, 1);
4037 else if (CONSTANT_P (XEXP (addr, 0)))
4038 addr = XEXP (addr, 1);
4039 else if (CONSTANT_P (XEXP (addr, 1)))
4040 addr = XEXP (addr, 0);
4041 else
4761e388 4042 gcc_unreachable ();
79e68feb 4043 }
4761e388
NS
4044 gcc_assert (GET_CODE (addr) == REG);
4045 return addr;
79e68feb 4046}
9ee3c687 4047
c16eadc7 4048/* Output assembler code to perform a 32-bit 3-operand add. */
9ee3c687 4049
5505f548 4050const char *
8a4a2253 4051output_addsi3 (rtx *operands)
9ee3c687
JW
4052{
4053 if (! operands_match_p (operands[0], operands[1]))
4054 {
4055 if (!ADDRESS_REG_P (operands[1]))
4056 {
4057 rtx tmp = operands[1];
4058
4059 operands[1] = operands[2];
4060 operands[2] = tmp;
4061 }
4062
4063 /* These insns can result from reloads to access
4064 stack slots over 64k from the frame pointer. */
4065 if (GET_CODE (operands[2]) == CONST_INT
218d5a87 4066 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
8c61b6c1 4067 return "move%.l %2,%0\n\tadd%.l %1,%0";
9ee3c687 4068 if (GET_CODE (operands[2]) == REG)
4b3d1177
KH
4069 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4070 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
9ee3c687
JW
4071 }
4072 if (GET_CODE (operands[2]) == CONST_INT)
4073 {
9ee3c687
JW
4074 if (INTVAL (operands[2]) > 0
4075 && INTVAL (operands[2]) <= 8)
4076 return "addq%.l %2,%0";
4077 if (INTVAL (operands[2]) < 0
4078 && INTVAL (operands[2]) >= -8)
4079 {
c5c76735 4080 operands[2] = GEN_INT (- INTVAL (operands[2]));
9ee3c687
JW
4081 return "subq%.l %2,%0";
4082 }
4083 /* On the CPU32 it is faster to use two addql instructions to
4084 add a small integer (8 < N <= 16) to a register.
7a1929e1 4085 Likewise for subql. */
fe95f2f7 4086 if (TUNE_CPU32 && REG_P (operands[0]))
9ee3c687
JW
4087 {
4088 if (INTVAL (operands[2]) > 8
4089 && INTVAL (operands[2]) <= 16)
4090 {
1d8eaa6b 4091 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
3b4b85c9 4092 return "addq%.l #8,%0\n\taddq%.l %2,%0";
9ee3c687
JW
4093 }
4094 if (INTVAL (operands[2]) < -8
4095 && INTVAL (operands[2]) >= -16)
4096 {
c5c76735 4097 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
3b4b85c9 4098 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
9ee3c687
JW
4099 }
4100 }
9ee3c687
JW
4101 if (ADDRESS_REG_P (operands[0])
4102 && INTVAL (operands[2]) >= -0x8000
4103 && INTVAL (operands[2]) < 0x8000)
4104 {
fe95f2f7 4105 if (TUNE_68040)
9ee3c687
JW
4106 return "add%.w %2,%0";
4107 else
4b3d1177 4108 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
9ee3c687
JW
4109 }
4110 }
4111 return "add%.l %2,%0";
4112}
79e68feb
RS
4113\f
4114/* Store in cc_status the expressions that the condition codes will
4115 describe after execution of an instruction whose pattern is EXP.
4116 Do not alter them if the instruction would not alter the cc's. */
4117
4118/* On the 68000, all the insns to store in an address register fail to
4119 set the cc's. However, in some cases these instructions can make it
4120 possibly invalid to use the saved cc's. In those cases we clear out
4121 some or all of the saved cc's so they won't be used. */
4122
1d8eaa6b 4123void
8a4a2253 4124notice_update_cc (rtx exp, rtx insn)
79e68feb 4125{
1a8965c4 4126 if (GET_CODE (exp) == SET)
79e68feb
RS
4127 {
4128 if (GET_CODE (SET_SRC (exp)) == CALL)
a0a7fbc9 4129 CC_STATUS_INIT;
79e68feb
RS
4130 else if (ADDRESS_REG_P (SET_DEST (exp)))
4131 {
f5963e61 4132 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
79e68feb 4133 cc_status.value1 = 0;
f5963e61 4134 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
79e68feb
RS
4135 cc_status.value2 = 0;
4136 }
f6ab62e8
RS
4137 /* fmoves to memory or data registers do not set the condition
4138 codes. Normal moves _do_ set the condition codes, but not in
4139 a way that is appropriate for comparison with 0, because -0.0
4140 would be treated as a negative nonzero number. Note that it
88512ba0 4141 isn't appropriate to conditionalize this restriction on
f6ab62e8
RS
4142 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4143 we care about the difference between -0.0 and +0.0. */
79e68feb
RS
4144 else if (!FP_REG_P (SET_DEST (exp))
4145 && SET_DEST (exp) != cc0_rtx
4146 && (FP_REG_P (SET_SRC (exp))
4147 || GET_CODE (SET_SRC (exp)) == FIX
f6ab62e8 4148 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
a0a7fbc9 4149 CC_STATUS_INIT;
79e68feb
RS
4150 /* A pair of move insns doesn't produce a useful overall cc. */
4151 else if (!FP_REG_P (SET_DEST (exp))
4152 && !FP_REG_P (SET_SRC (exp))
4153 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4154 && (GET_CODE (SET_SRC (exp)) == REG
4155 || GET_CODE (SET_SRC (exp)) == MEM
4156 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
a0a7fbc9 4157 CC_STATUS_INIT;
e1dff52a 4158 else if (SET_DEST (exp) != pc_rtx)
79e68feb
RS
4159 {
4160 cc_status.flags = 0;
e1dff52a
KH
4161 cc_status.value1 = SET_DEST (exp);
4162 cc_status.value2 = SET_SRC (exp);
79e68feb
RS
4163 }
4164 }
4165 else if (GET_CODE (exp) == PARALLEL
4166 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4167 {
e1dff52a
KH
4168 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4169 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4170
4171 if (ADDRESS_REG_P (dest))
79e68feb 4172 CC_STATUS_INIT;
e1dff52a 4173 else if (dest != pc_rtx)
79e68feb
RS
4174 {
4175 cc_status.flags = 0;
e1dff52a
KH
4176 cc_status.value1 = dest;
4177 cc_status.value2 = src;
79e68feb
RS
4178 }
4179 }
4180 else
4181 CC_STATUS_INIT;
4182 if (cc_status.value2 != 0
4183 && ADDRESS_REG_P (cc_status.value2)
4184 && GET_MODE (cc_status.value2) == QImode)
4185 CC_STATUS_INIT;
1a8965c4 4186 if (cc_status.value2 != 0)
79e68feb
RS
4187 switch (GET_CODE (cc_status.value2))
4188 {
996a5f59 4189 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
79e68feb 4190 case ROTATE: case ROTATERT:
a126dc3a
RH
4191 /* These instructions always clear the overflow bit, and set
4192 the carry to the bit shifted out. */
1afac9a6 4193 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
a126dc3a
RH
4194 break;
4195
4196 case PLUS: case MINUS: case MULT:
4197 case DIV: case UDIV: case MOD: case UMOD: case NEG:
79e68feb
RS
4198 if (GET_MODE (cc_status.value2) != VOIDmode)
4199 cc_status.flags |= CC_NO_OVERFLOW;
4200 break;
4201 case ZERO_EXTEND:
4202 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4203 ends with a move insn moving r2 in r2's mode.
4204 Thus, the cc's are set for r2.
7a1929e1 4205 This can set N bit spuriously. */
79e68feb 4206 cc_status.flags |= CC_NOT_NEGATIVE;
1d8eaa6b
AS
4207
4208 default:
4209 break;
79e68feb
RS
4210 }
4211 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4212 && cc_status.value2
4213 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4214 cc_status.value2 = 0;
1adb2fb9
AS
4215 /* Check for PRE_DEC in dest modifying a register used in src. */
4216 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4217 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4218 && cc_status.value2
4219 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4220 cc_status.value2))
4221 cc_status.value2 = 0;
79e68feb 4222 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
1a8965c4 4223 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
79e68feb 4224 cc_status.flags = CC_IN_68881;
67595cbb
RZ
4225 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4226 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4227 {
4228 cc_status.flags = CC_IN_68881;
695074be
JB
4229 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4230 && FP_REG_P (XEXP (cc_status.value2, 1)))
67595cbb
RZ
4231 cc_status.flags |= CC_REVERSED;
4232 }
79e68feb
RS
4233}
4234\f
5505f548 4235const char *
8a4a2253 4236output_move_const_double (rtx *operands)
79e68feb 4237{
1a8965c4 4238 int code = standard_68881_constant_p (operands[1]);
79e68feb 4239
1a8965c4 4240 if (code != 0)
79e68feb 4241 {
1a8965c4 4242 static char buf[40];
79e68feb 4243
3b4b85c9 4244 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
1a8965c4 4245 return buf;
79e68feb 4246 }
1a8965c4 4247 return "fmove%.d %1,%0";
79e68feb
RS
4248}
4249
5505f548 4250const char *
8a4a2253 4251output_move_const_single (rtx *operands)
79e68feb 4252{
1a8965c4 4253 int code = standard_68881_constant_p (operands[1]);
79e68feb 4254
1a8965c4 4255 if (code != 0)
79e68feb 4256 {
1a8965c4 4257 static char buf[40];
79e68feb 4258
3b4b85c9 4259 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
1a8965c4 4260 return buf;
79e68feb 4261 }
1a8965c4 4262 return "fmove%.s %f1,%0";
79e68feb
RS
4263}
4264
4265/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4266 from the "fmovecr" instruction.
4267 The value, anded with 0xff, gives the code to use in fmovecr
4268 to get the desired constant. */
4269
7a1929e1 4270/* This code has been fixed for cross-compilation. */
c1cfb2ae
RS
4271
4272static int inited_68881_table = 0;
4273
5505f548 4274static const char *const strings_68881[7] = {
c1cfb2ae
RS
4275 "0.0",
4276 "1.0",
4277 "10.0",
4278 "100.0",
4279 "10000.0",
4280 "1e8",
4281 "1e16"
a0a7fbc9 4282};
c1cfb2ae 4283
8b60264b 4284static const int codes_68881[7] = {
c1cfb2ae
RS
4285 0x0f,
4286 0x32,
4287 0x33,
4288 0x34,
4289 0x35,
4290 0x36,
4291 0x37
a0a7fbc9 4292};
c1cfb2ae
RS
4293
4294REAL_VALUE_TYPE values_68881[7];
4295
4296/* Set up values_68881 array by converting the decimal values
7a1929e1 4297 strings_68881 to binary. */
c1cfb2ae
RS
4298
4299void
8a4a2253 4300init_68881_table (void)
c1cfb2ae
RS
4301{
4302 int i;
4303 REAL_VALUE_TYPE r;
4304 enum machine_mode mode;
4305
16d82c3c 4306 mode = SFmode;
c1cfb2ae
RS
4307 for (i = 0; i < 7; i++)
4308 {
4309 if (i == 6)
16d82c3c 4310 mode = DFmode;
c1cfb2ae
RS
4311 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4312 values_68881[i] = r;
4313 }
4314 inited_68881_table = 1;
4315}
79e68feb
RS
4316
4317int
8a4a2253 4318standard_68881_constant_p (rtx x)
79e68feb 4319{
c1cfb2ae
RS
4320 REAL_VALUE_TYPE r;
4321 int i;
79e68feb 4322
e18db50d 4323 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
7a1929e1 4324 used at all on those chips. */
9cf106c8 4325 if (TUNE_68040_60)
79e68feb
RS
4326 return 0;
4327
c1cfb2ae
RS
4328 if (! inited_68881_table)
4329 init_68881_table ();
4330
4331 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4332
64c0b414
AS
4333 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4334 is rejected. */
c1cfb2ae
RS
4335 for (i = 0; i < 6; i++)
4336 {
64c0b414 4337 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
c1cfb2ae
RS
4338 return (codes_68881[i]);
4339 }
4340
79e68feb
RS
4341 if (GET_MODE (x) == SFmode)
4342 return 0;
c1cfb2ae
RS
4343
4344 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4345 return (codes_68881[6]);
4346
79e68feb
RS
4347 /* larger powers of ten in the constants ram are not used
4348 because they are not equal to a `double' C constant. */
4349 return 0;
4350}
4351
4352/* If X is a floating-point constant, return the logarithm of X base 2,
4353 or 0 if X is not a power of 2. */
4354
4355int
8a4a2253 4356floating_exact_log2 (rtx x)
79e68feb 4357{
c1cfb2ae 4358 REAL_VALUE_TYPE r, r1;
eaff3bf8 4359 int exp;
79e68feb 4360
c1cfb2ae 4361 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
79e68feb 4362
eaff3bf8 4363 if (REAL_VALUES_LESS (r, dconst1))
79e68feb
RS
4364 return 0;
4365
eaff3bf8 4366 exp = real_exponent (&r);
6ef9a246 4367 real_2expN (&r1, exp, DFmode);
eaff3bf8
RH
4368 if (REAL_VALUES_EQUAL (r1, r))
4369 return exp;
4370
79e68feb
RS
4371 return 0;
4372}
4373\f
79e68feb
RS
4374/* A C compound statement to output to stdio stream STREAM the
4375 assembler syntax for an instruction operand X. X is an RTL
4376 expression.
4377
4378 CODE is a value that can be used to specify one of several ways
4379 of printing the operand. It is used when identical operands
4380 must be printed differently depending on the context. CODE
4381 comes from the `%' specification that was used to request
4382 printing of the operand. If the specification was just `%DIGIT'
4383 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4384 is the ASCII code for LTR.
4385
4386 If X is a register, this macro should print the register's name.
4387 The names can be found in an array `reg_names' whose type is
4388 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4389
4390 When the machine description has a specification `%PUNCT' (a `%'
4391 followed by a punctuation character), this macro is called with
4392 a null pointer for X and the punctuation character for CODE.
4393
4394 The m68k specific codes are:
4395
4396 '.' for dot needed in Motorola-style opcode names.
4397 '-' for an operand pushing on the stack:
4398 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4399 '+' for an operand pushing on the stack:
4400 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4401 '@' for a reference to the top word on the stack:
4402 sp@, (sp) or (%sp) depending on the style of syntax.
4403 '#' for an immediate operand prefix (# in MIT and Motorola syntax
5ee084df 4404 but & in SGS syntax).
79e68feb
RS
4405 '!' for the cc register (used in an `and to cc' insn).
4406 '$' for the letter `s' in an op code, but only on the 68040.
4407 '&' for the letter `d' in an op code, but only on the 68040.
2ac5f14a 4408 '/' for register prefix needed by longlong.h.
a40ed0f3 4409 '?' for m68k_library_id_string
79e68feb
RS
4410
4411 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4412 'd' to force memory addressing to be absolute, not relative.
4413 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
79e68feb
RS
4414 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4415 or print pair of registers as rx:ry.
29ca003a
RS
4416 'p' print an address with @PLTPC attached, but only if the operand
4417 is not locally-bound. */
79e68feb
RS
4418
4419void
8a4a2253 4420print_operand (FILE *file, rtx op, int letter)
79e68feb 4421{
79e68feb
RS
4422 if (letter == '.')
4423 {
e6d98cb0
BI
4424 if (MOTOROLA)
4425 fprintf (file, ".");
79e68feb
RS
4426 }
4427 else if (letter == '#')
e6d98cb0 4428 asm_fprintf (file, "%I");
79e68feb 4429 else if (letter == '-')
4b3d1177 4430 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
79e68feb 4431 else if (letter == '+')
4b3d1177 4432 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
79e68feb 4433 else if (letter == '@')
4b3d1177 4434 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
79e68feb 4435 else if (letter == '!')
e6d98cb0 4436 asm_fprintf (file, "%Rfpcr");
79e68feb
RS
4437 else if (letter == '$')
4438 {
b101567e 4439 if (TARGET_68040)
e6d98cb0 4440 fprintf (file, "s");
79e68feb
RS
4441 }
4442 else if (letter == '&')
4443 {
b101567e 4444 if (TARGET_68040)
e6d98cb0 4445 fprintf (file, "d");
79e68feb 4446 }
2ac5f14a 4447 else if (letter == '/')
e6d98cb0 4448 asm_fprintf (file, "%R");
a40ed0f3
KH
4449 else if (letter == '?')
4450 asm_fprintf (file, m68k_library_id_string);
29ca003a 4451 else if (letter == 'p')
2c8ec431 4452 {
29ca003a
RS
4453 output_addr_const (file, op);
4454 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4455 fprintf (file, "@PLTPC");
2c8ec431 4456 }
79e68feb
RS
4457 else if (GET_CODE (op) == REG)
4458 {
1a8965c4
AS
4459 if (letter == 'R')
4460 /* Print out the second register name of a register pair.
4461 I.e., R (6) => 7. */
01bbf777 4462 fputs (M68K_REGNAME(REGNO (op) + 1), file);
79e68feb 4463 else
01bbf777 4464 fputs (M68K_REGNAME(REGNO (op)), file);
79e68feb
RS
4465 }
4466 else if (GET_CODE (op) == MEM)
4467 {
4468 output_address (XEXP (op, 0));
4469 if (letter == 'd' && ! TARGET_68020
4470 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4471 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4472 && INTVAL (XEXP (op, 0)) < 0x8000
4473 && INTVAL (XEXP (op, 0)) >= -0x8000))
4b3d1177 4474 fprintf (file, MOTOROLA ? ".l" : ":l");
79e68feb 4475 }
79e68feb
RS
4476 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4477 {
c1cfb2ae 4478 REAL_VALUE_TYPE r;
6ae89ea8 4479 long l;
c1cfb2ae 4480 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
6ae89ea8 4481 REAL_VALUE_TO_TARGET_SINGLE (r, l);
429ce992 4482 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
c1cfb2ae
RS
4483 }
4484 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4485 {
4486 REAL_VALUE_TYPE r;
6ae89ea8 4487 long l[3];
c1cfb2ae 4488 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
6ae89ea8 4489 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
429ce992
AS
4490 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4491 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
79e68feb 4492 }
e2c0a924 4493 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
79e68feb 4494 {
c1cfb2ae 4495 REAL_VALUE_TYPE r;
6ae89ea8 4496 long l[2];
c1cfb2ae 4497 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
6ae89ea8 4498 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
429ce992 4499 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
79e68feb
RS
4500 }
4501 else
4502 {
2c8ec431
DL
4503 /* Use `print_operand_address' instead of `output_addr_const'
4504 to ensure that we print relevant PIC stuff. */
1f85a612 4505 asm_fprintf (file, "%I");
2c8ec431
DL
4506 if (TARGET_PCREL
4507 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4508 print_operand_address (file, op);
4509 else
4510 output_addr_const (file, op);
79e68feb
RS
4511 }
4512}
4513
75df395f
MK
4514/* Return string for TLS relocation RELOC. */
4515
4516static const char *
4517m68k_get_reloc_decoration (enum m68k_reloc reloc)
4518{
4519 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4520 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4521
4522 switch (reloc)
4523 {
4524 case RELOC_GOT:
4525 if (MOTOROLA)
4526 {
4527 if (flag_pic == 1 && TARGET_68020)
4528 return "@GOT.w";
4529 else
4530 return "@GOT";
4531 }
4532 else
4533 {
4534 if (TARGET_68020)
4535 {
4536 switch (flag_pic)
4537 {
4538 case 1:
4539 return ":w";
4540 case 2:
4541 return ":l";
4542 default:
4543 return "";
4544 }
4545 }
4546 }
4547
4548 case RELOC_TLSGD:
4549 return "@TLSGD";
4550
4551 case RELOC_TLSLDM:
4552 return "@TLSLDM";
4553
4554 case RELOC_TLSLDO:
4555 return "@TLSLDO";
4556
4557 case RELOC_TLSIE:
4558 return "@TLSIE";
4559
4560 case RELOC_TLSLE:
4561 return "@TLSLE";
4562
4563 default:
4564 gcc_unreachable ();
4565 }
4566}
4567
cb69db4f 4568/* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
884316ff 4569
cb69db4f 4570static bool
884316ff
JM
4571m68k_output_addr_const_extra (FILE *file, rtx x)
4572{
75df395f
MK
4573 if (GET_CODE (x) == UNSPEC)
4574 {
4575 switch (XINT (x, 1))
4576 {
4577 case UNSPEC_RELOC16:
4578 case UNSPEC_RELOC32:
4579 output_addr_const (file, XVECEXP (x, 0, 0));
f878882b
AS
4580 fputs (m68k_get_reloc_decoration
4581 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
75df395f 4582 return true;
884316ff 4583
75df395f
MK
4584 default:
4585 break;
4586 }
4587 }
4588
4589 return false;
4590}
4591
4592/* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4593
4594static void
4595m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4596{
4597 gcc_assert (size == 4);
4598 fputs ("\t.long\t", file);
4599 output_addr_const (file, x);
4600 fputs ("@TLSLDO+0x8000", file);
884316ff
JM
4601}
4602
7b0f476d
AS
4603/* In the name of slightly smaller debug output, and to cater to
4604 general assembler lossage, recognize various UNSPEC sequences
4605 and turn them back into a direct symbol reference. */
4606
4607static rtx
33d67485 4608m68k_delegitimize_address (rtx orig_x)
7b0f476d 4609{
8390b335
AS
4610 rtx x;
4611 struct m68k_address addr;
4612 rtx unspec;
7b0f476d 4613
33d67485 4614 orig_x = delegitimize_mem_from_attrs (orig_x);
8390b335
AS
4615 x = orig_x;
4616 if (MEM_P (x))
4617 x = XEXP (x, 0);
4618
4619 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
33d67485
AS
4620 return orig_x;
4621
8390b335
AS
4622 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4623 || addr.offset == NULL_RTX
4624 || GET_CODE (addr.offset) != CONST)
4625 return orig_x;
7b0f476d 4626
8390b335
AS
4627 unspec = XEXP (addr.offset, 0);
4628 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4629 unspec = XEXP (unspec, 0);
4630 if (GET_CODE (unspec) != UNSPEC
4631 || (XINT (unspec, 1) != UNSPEC_RELOC16
4632 && XINT (unspec, 1) != UNSPEC_RELOC32))
4633 return orig_x;
4634 x = XVECEXP (unspec, 0, 0);
92cf7399 4635 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
8390b335
AS
4636 if (unspec != XEXP (addr.offset, 0))
4637 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4638 if (addr.index)
7b0f476d 4639 {
8390b335
AS
4640 rtx idx = addr.index;
4641 if (addr.scale != 1)
4642 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4643 x = gen_rtx_PLUS (Pmode, idx, x);
7b0f476d 4644 }
8390b335
AS
4645 if (addr.base)
4646 x = gen_rtx_PLUS (Pmode, addr.base, x);
4647 if (MEM_P (orig_x))
4648 x = replace_equiv_address_nv (orig_x, x);
4649 return x;
7b0f476d
AS
4650}
4651
79e68feb
RS
4652\f
4653/* A C compound statement to output to stdio stream STREAM the
4654 assembler syntax for an instruction operand that is a memory
4655 reference whose address is ADDR. ADDR is an RTL expression.
4656
4657 Note that this contains a kludge that knows that the only reason
4658 we have an address (plus (label_ref...) (reg...)) when not generating
4659 PIC code is in the insn before a tablejump, and we know that m68k.md
4660 generates a label LInnn: on such an insn.
4661
4662 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4663 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4664
79e68feb
RS
4665 This routine is responsible for distinguishing between -fpic and -fPIC
4666 style relocations in an address. When generating -fpic code the
112cdef5
KH
4667 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4668 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
79e68feb
RS
4669
4670void
8a4a2253 4671print_operand_address (FILE *file, rtx addr)
79e68feb 4672{
fc2241eb
RS
4673 struct m68k_address address;
4674
4675 if (!m68k_decompose_address (QImode, addr, true, &address))
4676 gcc_unreachable ();
4677
4678 if (address.code == PRE_DEC)
4b3d1177
KH
4679 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4680 M68K_REGNAME (REGNO (address.base)));
fc2241eb 4681 else if (address.code == POST_INC)
4b3d1177
KH
4682 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4683 M68K_REGNAME (REGNO (address.base)));
fc2241eb
RS
4684 else if (!address.base && !address.index)
4685 {
4686 /* A constant address. */
4687 gcc_assert (address.offset == addr);
4688 if (GET_CODE (addr) == CONST_INT)
4689 {
4690 /* (xxx).w or (xxx).l. */
4691 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4b3d1177 4692 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
a0a7fbc9 4693 else
fc2241eb 4694 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
a0a7fbc9 4695 }
fc2241eb 4696 else if (TARGET_PCREL)
a0a7fbc9 4697 {
fc2241eb
RS
4698 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4699 fputc ('(', file);
4700 output_addr_const (file, addr);
4701 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
a0a7fbc9 4702 }
fc2241eb 4703 else
a0a7fbc9 4704 {
fc2241eb
RS
4705 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4706 name ends in `.<letter>', as the last 2 characters can be
4707 mistaken as a size suffix. Put the name in parentheses. */
4708 if (GET_CODE (addr) == SYMBOL_REF
4709 && strlen (XSTR (addr, 0)) > 2
4710 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
a0a7fbc9 4711 {
fc2241eb
RS
4712 putc ('(', file);
4713 output_addr_const (file, addr);
4714 putc (')', file);
a0a7fbc9
AS
4715 }
4716 else
fc2241eb 4717 output_addr_const (file, addr);
a0a7fbc9 4718 }
fc2241eb
RS
4719 }
4720 else
4721 {
4722 int labelno;
4723
4724 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
44c7bd63 4725 label being accessed, otherwise it is -1. */
fc2241eb
RS
4726 labelno = (address.offset
4727 && !address.base
4728 && GET_CODE (address.offset) == LABEL_REF
4729 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4730 : -1);
4731 if (MOTOROLA)
a0a7fbc9 4732 {
fc2241eb
RS
4733 /* Print the "offset(base" component. */
4734 if (labelno >= 0)
e59d83aa 4735 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
fc2241eb 4736 else
a0a7fbc9 4737 {
fc2241eb 4738 if (address.offset)
75df395f
MK
4739 output_addr_const (file, address.offset);
4740
fc2241eb
RS
4741 putc ('(', file);
4742 if (address.base)
4743 fputs (M68K_REGNAME (REGNO (address.base)), file);
a0a7fbc9 4744 }
fc2241eb
RS
4745 /* Print the ",index" component, if any. */
4746 if (address.index)
a0a7fbc9 4747 {
fc2241eb
RS
4748 if (address.base)
4749 putc (',', file);
4750 fprintf (file, "%s.%c",
4751 M68K_REGNAME (REGNO (address.index)),
4752 GET_MODE (address.index) == HImode ? 'w' : 'l');
4753 if (address.scale != 1)
4754 fprintf (file, "*%d", address.scale);
a0a7fbc9 4755 }
a0a7fbc9 4756 putc (')', file);
a0a7fbc9 4757 }
fc2241eb 4758 else /* !MOTOROLA */
a0a7fbc9 4759 {
fc2241eb
RS
4760 if (!address.offset && !address.index)
4761 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
a0a7fbc9 4762 else
a0a7fbc9 4763 {
fc2241eb
RS
4764 /* Print the "base@(offset" component. */
4765 if (labelno >= 0)
e59d83aa 4766 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
fc2241eb
RS
4767 else
4768 {
4769 if (address.base)
4770 fputs (M68K_REGNAME (REGNO (address.base)), file);
4771 fprintf (file, "@(");
4772 if (address.offset)
75df395f 4773 output_addr_const (file, address.offset);
fc2241eb
RS
4774 }
4775 /* Print the ",index" component, if any. */
4776 if (address.index)
4777 {
4778 fprintf (file, ",%s:%c",
4779 M68K_REGNAME (REGNO (address.index)),
4780 GET_MODE (address.index) == HImode ? 'w' : 'l');
4781 if (address.scale != 1)
4782 fprintf (file, ":%d", address.scale);
4783 }
a0a7fbc9
AS
4784 putc (')', file);
4785 }
a0a7fbc9 4786 }
79e68feb
RS
4787 }
4788}
af13f02d
JW
4789\f
4790/* Check for cases where a clr insns can be omitted from code using
4791 strict_low_part sets. For example, the second clrl here is not needed:
4792 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4793
4794 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4795 insn we are checking for redundancy. TARGET is the register set by the
4796 clear insn. */
4797
8a4a2253 4798bool
c85e862a 4799strict_low_part_peephole_ok (enum machine_mode mode, rtx_insn *first_insn,
8a4a2253 4800 rtx target)
af13f02d 4801{
c85e862a 4802 rtx_insn *p = first_insn;
af13f02d 4803
39250081 4804 while ((p = PREV_INSN (p)))
af13f02d 4805 {
39250081
RZ
4806 if (NOTE_INSN_BASIC_BLOCK_P (p))
4807 return false;
4808
4809 if (NOTE_P (p))
4810 continue;
4811
af13f02d 4812 /* If it isn't an insn, then give up. */
39250081 4813 if (!INSN_P (p))
8a4a2253 4814 return false;
af13f02d
JW
4815
4816 if (reg_set_p (target, p))
4817 {
4818 rtx set = single_set (p);
4819 rtx dest;
4820
4821 /* If it isn't an easy to recognize insn, then give up. */
4822 if (! set)
8a4a2253 4823 return false;
af13f02d
JW
4824
4825 dest = SET_DEST (set);
4826
4827 /* If this sets the entire target register to zero, then our
4828 first_insn is redundant. */
4829 if (rtx_equal_p (dest, target)
4830 && SET_SRC (set) == const0_rtx)
8a4a2253 4831 return true;
af13f02d
JW
4832 else if (GET_CODE (dest) == STRICT_LOW_PART
4833 && GET_CODE (XEXP (dest, 0)) == REG
4834 && REGNO (XEXP (dest, 0)) == REGNO (target)
4835 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4836 <= GET_MODE_SIZE (mode)))
4837 /* This is a strict low part set which modifies less than
4838 we are using, so it is safe. */
4839 ;
4840 else
8a4a2253 4841 return false;
af13f02d 4842 }
af13f02d
JW
4843 }
4844
8a4a2253 4845 return false;
af13f02d 4846}
67cd4f83 4847
2c8ec431
DL
4848/* Operand predicates for implementing asymmetric pc-relative addressing
4849 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
dab66575 4850 when used as a source operand, but not as a destination operand.
2c8ec431
DL
4851
4852 We model this by restricting the meaning of the basic predicates
4853 (general_operand, memory_operand, etc) to forbid the use of this
4854 addressing mode, and then define the following predicates that permit
4855 this addressing mode. These predicates can then be used for the
4856 source operands of the appropriate instructions.
4857
4858 n.b. While it is theoretically possible to change all machine patterns
4859 to use this addressing more where permitted by the architecture,
4860 it has only been implemented for "common" cases: SImode, HImode, and
4861 QImode operands, and only for the principle operations that would
4862 require this addressing mode: data movement and simple integer operations.
4863
4864 In parallel with these new predicates, two new constraint letters
4865 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4866 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4867 In the pcrel case 's' is only valid in combination with 'a' registers.
4868 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4869 of how these constraints are used.
4870
4871 The use of these predicates is strictly optional, though patterns that
4872 don't will cause an extra reload register to be allocated where one
4873 was not necessary:
4874
4875 lea (abc:w,%pc),%a0 ; need to reload address
4876 moveq &1,%d1 ; since write to pc-relative space
4877 movel %d1,%a0@ ; is not allowed
4878 ...
4879 lea (abc:w,%pc),%a1 ; no need to reload address here
4880 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4881
4882 For more info, consult tiemann@cygnus.com.
4883
4884
4885 All of the ugliness with predicates and constraints is due to the
4886 simple fact that the m68k does not allow a pc-relative addressing
4887 mode as a destination. gcc does not distinguish between source and
4888 destination addresses. Hence, if we claim that pc-relative address
331d9186 4889 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
2c8ec431
DL
4890 end up with invalid code. To get around this problem, we left
4891 pc-relative modes as invalid addresses, and then added special
4892 predicates and constraints to accept them.
4893
4894 A cleaner way to handle this is to modify gcc to distinguish
4895 between source and destination addresses. We can then say that
4896 pc-relative is a valid source address but not a valid destination
4897 address, and hopefully avoid a lot of the predicate and constraint
4898 hackery. Unfortunately, this would be a pretty big change. It would
4899 be a useful change for a number of ports, but there aren't any current
4900 plans to undertake this.
4901
4902 ***************************************************************************/
4903
4904
5505f548 4905const char *
8a4a2253 4906output_andsi3 (rtx *operands)
29ae8a3c
RK
4907{
4908 int logval;
4909 if (GET_CODE (operands[2]) == CONST_INT
25c99d8f 4910 && (INTVAL (operands[2]) | 0xffff) == -1
29ae8a3c
RK
4911 && (DATA_REG_P (operands[0])
4912 || offsettable_memref_p (operands[0]))
9425fb04 4913 && !TARGET_COLDFIRE)
29ae8a3c
RK
4914 {
4915 if (GET_CODE (operands[0]) != REG)
b72f00af 4916 operands[0] = adjust_address (operands[0], HImode, 2);
1d8eaa6b 4917 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
29ae8a3c
RK
4918 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4919 CC_STATUS_INIT;
4920 if (operands[2] == const0_rtx)
4921 return "clr%.w %0";
4922 return "and%.w %2,%0";
4923 }
4924 if (GET_CODE (operands[2]) == CONST_INT
c4406f74 4925 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
29ae8a3c
RK
4926 && (DATA_REG_P (operands[0])
4927 || offsettable_memref_p (operands[0])))
4928 {
4929 if (DATA_REG_P (operands[0]))
a0a7fbc9 4930 operands[1] = GEN_INT (logval);
29ae8a3c
RK
4931 else
4932 {
b72f00af 4933 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
1d8eaa6b 4934 operands[1] = GEN_INT (logval % 8);
29ae8a3c
RK
4935 }
4936 /* This does not set condition codes in a standard way. */
4937 CC_STATUS_INIT;
4938 return "bclr %1,%0";
4939 }
4940 return "and%.l %2,%0";
4941}
4942
5505f548 4943const char *
8a4a2253 4944output_iorsi3 (rtx *operands)
29ae8a3c
RK
4945{
4946 register int logval;
4947 if (GET_CODE (operands[2]) == CONST_INT
4948 && INTVAL (operands[2]) >> 16 == 0
4949 && (DATA_REG_P (operands[0])
4950 || offsettable_memref_p (operands[0]))
9425fb04 4951 && !TARGET_COLDFIRE)
29ae8a3c
RK
4952 {
4953 if (GET_CODE (operands[0]) != REG)
b72f00af 4954 operands[0] = adjust_address (operands[0], HImode, 2);
29ae8a3c
RK
4955 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4956 CC_STATUS_INIT;
4957 if (INTVAL (operands[2]) == 0xffff)
4958 return "mov%.w %2,%0";
4959 return "or%.w %2,%0";
4960 }
4961 if (GET_CODE (operands[2]) == CONST_INT
c4406f74 4962 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
29ae8a3c
RK
4963 && (DATA_REG_P (operands[0])
4964 || offsettable_memref_p (operands[0])))
4965 {
4966 if (DATA_REG_P (operands[0]))
b72f00af 4967 operands[1] = GEN_INT (logval);
29ae8a3c
RK
4968 else
4969 {
b72f00af 4970 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
1d8eaa6b 4971 operands[1] = GEN_INT (logval % 8);
29ae8a3c
RK
4972 }
4973 CC_STATUS_INIT;
4974 return "bset %1,%0";
4975 }
4976 return "or%.l %2,%0";
4977}
4978
5505f548 4979const char *
8a4a2253 4980output_xorsi3 (rtx *operands)
29ae8a3c
RK
4981{
4982 register int logval;
4983 if (GET_CODE (operands[2]) == CONST_INT
4984 && INTVAL (operands[2]) >> 16 == 0
4985 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
9425fb04 4986 && !TARGET_COLDFIRE)
29ae8a3c
RK
4987 {
4988 if (! DATA_REG_P (operands[0]))
b72f00af 4989 operands[0] = adjust_address (operands[0], HImode, 2);
29ae8a3c
RK
4990 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4991 CC_STATUS_INIT;
4992 if (INTVAL (operands[2]) == 0xffff)
4993 return "not%.w %0";
4994 return "eor%.w %2,%0";
4995 }
4996 if (GET_CODE (operands[2]) == CONST_INT
c4406f74 4997 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
29ae8a3c
RK
4998 && (DATA_REG_P (operands[0])
4999 || offsettable_memref_p (operands[0])))
5000 {
5001 if (DATA_REG_P (operands[0]))
b72f00af 5002 operands[1] = GEN_INT (logval);
29ae8a3c
RK
5003 else
5004 {
b72f00af 5005 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
1d8eaa6b 5006 operands[1] = GEN_INT (logval % 8);
29ae8a3c
RK
5007 }
5008 CC_STATUS_INIT;
5009 return "bchg %1,%0";
5010 }
5011 return "eor%.l %2,%0";
5012}
7c262518 5013
29ca003a
RS
5014/* Return the instruction that should be used for a call to address X,
5015 which is known to be in operand 0. */
5016
5017const char *
5018output_call (rtx x)
5019{
5020 if (symbolic_operand (x, VOIDmode))
5021 return m68k_symbolic_call;
5022 else
5023 return "jsr %a0";
5024}
5025
f7e70894
RS
5026/* Likewise sibling calls. */
5027
5028const char *
5029output_sibcall (rtx x)
5030{
5031 if (symbolic_operand (x, VOIDmode))
5032 return m68k_symbolic_jump;
5033 else
5034 return "jmp %a0";
5035}
5036
c590b625 5037static void
8a4a2253 5038m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
4ab870f5 5039 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
8a4a2253 5040 tree function)
483ab821 5041{
c85e862a
DM
5042 rtx this_slot, offset, addr, mem, tmp;
5043 rtx_insn *insn;
e0601576
RH
5044
5045 /* Avoid clobbering the struct value reg by using the
5046 static chain reg as a temporary. */
5047 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4ab870f5
RS
5048
5049 /* Pretend to be a post-reload pass while generating rtl. */
4ab870f5 5050 reload_completed = 1;
4ab870f5
RS
5051
5052 /* The "this" pointer is stored at 4(%sp). */
0a81f074
RS
5053 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5054 stack_pointer_rtx, 4));
4ab870f5
RS
5055
5056 /* Add DELTA to THIS. */
5057 if (delta != 0)
5050d266 5058 {
4ab870f5
RS
5059 /* Make the offset a legitimate operand for memory addition. */
5060 offset = GEN_INT (delta);
5061 if ((delta < -8 || delta > 8)
5062 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5063 {
5064 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5065 offset = gen_rtx_REG (Pmode, D0_REG);
5066 }
5067 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5068 copy_rtx (this_slot), offset));
5050d266 5069 }
c590b625 5070
4ab870f5
RS
5071 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5072 if (vcall_offset != 0)
5073 {
5074 /* Set the static chain register to *THIS. */
e0601576
RH
5075 emit_move_insn (tmp, this_slot);
5076 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
4ab870f5
RS
5077
5078 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
0a81f074 5079 addr = plus_constant (Pmode, tmp, vcall_offset);
4ab870f5
RS
5080 if (!m68k_legitimate_address_p (Pmode, addr, true))
5081 {
e0601576
RH
5082 emit_insn (gen_rtx_SET (VOIDmode, tmp, addr));
5083 addr = tmp;
4ab870f5 5084 }
c590b625 5085
4ab870f5
RS
5086 /* Load the offset into %d0 and add it to THIS. */
5087 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5088 gen_rtx_MEM (Pmode, addr));
5089 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5090 copy_rtx (this_slot),
5091 gen_rtx_REG (Pmode, D0_REG)));
5092 }
29ca003a 5093
4ab870f5
RS
5094 /* Jump to the target function. Use a sibcall if direct jumps are
5095 allowed, otherwise load the address into a register first. */
5096 mem = DECL_RTL (function);
5097 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5098 {
5099 gcc_assert (flag_pic);
c590b625 5100
4ab870f5
RS
5101 if (!TARGET_SEP_DATA)
5102 {
5103 /* Use the static chain register as a temporary (call-clobbered)
5104 GOT pointer for this function. We can use the static chain
5105 register because it isn't live on entry to the thunk. */
6fb5fa3c 5106 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
4ab870f5
RS
5107 emit_insn (gen_load_got (pic_offset_table_rtx));
5108 }
e0601576
RH
5109 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5110 mem = replace_equiv_address (mem, tmp);
4ab870f5
RS
5111 }
5112 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5113 SIBLING_CALL_P (insn) = 1;
5114
5115 /* Run just enough of rest_of_compilation. */
5116 insn = get_insns ();
5117 split_all_insns_noflow ();
5118 final_start_function (insn, file, 1);
5119 final (insn, file, 1);
5120 final_end_function ();
5121
5122 /* Clean up the vars set above. */
5123 reload_completed = 0;
4ab870f5
RS
5124
5125 /* Restore the original PIC register. */
5126 if (flag_pic)
6fb5fa3c 5127 SET_REGNO (pic_offset_table_rtx, PIC_REG);
483ab821 5128}
8636be86
KH
5129
5130/* Worker function for TARGET_STRUCT_VALUE_RTX. */
5131
5132static rtx
5133m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5134 int incoming ATTRIBUTE_UNUSED)
5135{
5136 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5137}
cfca21cb
PB
5138
5139/* Return nonzero if register old_reg can be renamed to register new_reg. */
5140int
5141m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5142 unsigned int new_reg)
5143{
5144
5145 /* Interrupt functions can only use registers that have already been
5146 saved by the prologue, even if they would normally be
5147 call-clobbered. */
5148
a4242737
KH
5149 if ((m68k_get_function_kind (current_function_decl)
5150 == m68k_fk_interrupt_handler)
6fb5fa3c 5151 && !df_regs_ever_live_p (new_reg))
cfca21cb
PB
5152 return 0;
5153
5154 return 1;
5155}
70028b61 5156
ffa2596e
RS
5157/* Value is true if hard register REGNO can hold a value of machine-mode
5158 MODE. On the 68000, we let the cpu registers can hold any mode, but
5159 restrict the 68881 registers to floating-point modes. */
5160
70028b61
PB
5161bool
5162m68k_regno_mode_ok (int regno, enum machine_mode mode)
5163{
36e04090 5164 if (DATA_REGNO_P (regno))
70028b61 5165 {
a0a7fbc9
AS
5166 /* Data Registers, can hold aggregate if fits in. */
5167 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5168 return true;
70028b61 5169 }
36e04090 5170 else if (ADDRESS_REGNO_P (regno))
70028b61 5171 {
a0a7fbc9
AS
5172 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5173 return true;
70028b61 5174 }
36e04090 5175 else if (FP_REGNO_P (regno))
70028b61
PB
5176 {
5177 /* FPU registers, hold float or complex float of long double or
a0a7fbc9
AS
5178 smaller. */
5179 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5180 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
dcc21c4c 5181 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
a0a7fbc9 5182 return true;
70028b61
PB
5183 }
5184 return false;
5185}
dcc21c4c 5186
ffa2596e
RS
5187/* Implement SECONDARY_RELOAD_CLASS. */
5188
5189enum reg_class
5190m68k_secondary_reload_class (enum reg_class rclass,
5191 enum machine_mode mode, rtx x)
5192{
5193 int regno;
5194
5195 regno = true_regnum (x);
5196
5197 /* If one operand of a movqi is an address register, the other
5198 operand must be a general register or constant. Other types
5199 of operand must be reloaded through a data register. */
5200 if (GET_MODE_SIZE (mode) == 1
5201 && reg_classes_intersect_p (rclass, ADDR_REGS)
5202 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5203 return DATA_REGS;
5204
5205 /* PC-relative addresses must be loaded into an address register first. */
5206 if (TARGET_PCREL
5207 && !reg_class_subset_p (rclass, ADDR_REGS)
5208 && symbolic_operand (x, VOIDmode))
5209 return ADDR_REGS;
5210
5211 return NO_REGS;
5212}
5213
5214/* Implement PREFERRED_RELOAD_CLASS. */
5215
5216enum reg_class
5217m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5218{
5219 enum reg_class secondary_class;
5220
5221 /* If RCLASS might need a secondary reload, try restricting it to
5222 a class that doesn't. */
5223 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5224 if (secondary_class != NO_REGS
5225 && reg_class_subset_p (secondary_class, rclass))
5226 return secondary_class;
5227
5228 /* Prefer to use moveq for in-range constants. */
5229 if (GET_CODE (x) == CONST_INT
5230 && reg_class_subset_p (DATA_REGS, rclass)
5231 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5232 return DATA_REGS;
5233
5234 /* ??? Do we really need this now? */
5235 if (GET_CODE (x) == CONST_DOUBLE
5236 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5237 {
5238 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5239 return FP_REGS;
5240
5241 return NO_REGS;
5242 }
5243
5244 return rclass;
5245}
5246
dcc21c4c
PB
5247/* Return floating point values in a 68881 register. This makes 68881 code
5248 a little bit faster. It also makes -msoft-float code incompatible with
5249 hard-float code, so people have to be careful not to mix the two.
c0220ea4 5250 For ColdFire it was decided the ABI incompatibility is undesirable.
dcc21c4c
PB
5251 If there is need for a hard-float ABI it is probably worth doing it
5252 properly and also passing function arguments in FP registers. */
5253rtx
5254m68k_libcall_value (enum machine_mode mode)
5255{
5256 switch (mode) {
5257 case SFmode:
5258 case DFmode:
5259 case XFmode:
5260 if (TARGET_68881)
8d989403 5261 return gen_rtx_REG (mode, FP0_REG);
dcc21c4c
PB
5262 break;
5263 default:
5264 break;
5265 }
75df395f
MK
5266
5267 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
dcc21c4c
PB
5268}
5269
db5e2d51
MK
5270/* Location in which function value is returned.
5271 NOTE: Due to differences in ABIs, don't call this function directly,
5272 use FUNCTION_VALUE instead. */
dcc21c4c 5273rtx
586de218 5274m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
dcc21c4c
PB
5275{
5276 enum machine_mode mode;
5277
5278 mode = TYPE_MODE (valtype);
5279 switch (mode) {
5280 case SFmode:
5281 case DFmode:
5282 case XFmode:
5283 if (TARGET_68881)
8d989403 5284 return gen_rtx_REG (mode, FP0_REG);
dcc21c4c
PB
5285 break;
5286 default:
5287 break;
5288 }
5289
576c9028
KH
5290 /* If the function returns a pointer, push that into %a0. */
5291 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5292 /* For compatibility with the large body of existing code which
5293 does not always properly declare external functions returning
5294 pointer types, the m68k/SVR4 convention is to copy the value
5295 returned for pointer functions from a0 to d0 in the function
5296 epilogue, so that callers that have neglected to properly
5297 declare the callee can still find the correct return value in
5298 d0. */
5299 return gen_rtx_PARALLEL
5300 (mode,
5301 gen_rtvec (2,
5302 gen_rtx_EXPR_LIST (VOIDmode,
5303 gen_rtx_REG (mode, A0_REG),
5304 const0_rtx),
5305 gen_rtx_EXPR_LIST (VOIDmode,
5306 gen_rtx_REG (mode, D0_REG),
5307 const0_rtx)));
5308 else if (POINTER_TYPE_P (valtype))
5309 return gen_rtx_REG (mode, A0_REG);
dcc21c4c 5310 else
576c9028 5311 return gen_rtx_REG (mode, D0_REG);
dcc21c4c 5312}
1c445f03
NS
5313
5314/* Worker function for TARGET_RETURN_IN_MEMORY. */
5315#if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5316static bool
511e41e5 5317m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1c445f03
NS
5318{
5319 enum machine_mode mode = TYPE_MODE (type);
5320
5321 if (mode == BLKmode)
5322 return true;
5323
5324 /* If TYPE's known alignment is less than the alignment of MODE that
5325 would contain the structure, then return in memory. We need to
5326 do so to maintain the compatibility between code compiled with
5327 -mstrict-align and that compiled with -mno-strict-align. */
5328 if (AGGREGATE_TYPE_P (type)
5329 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5330 return true;
5331
5332 return false;
5333}
5334#endif
c47b0cb4
MK
5335
5336/* CPU to schedule the program for. */
5337enum attr_cpu m68k_sched_cpu;
5338
826fadba
MK
5339/* MAC to schedule the program for. */
5340enum attr_mac m68k_sched_mac;
5341
c47b0cb4
MK
5342/* Operand type. */
5343enum attr_op_type
5344 {
5345 /* No operand. */
5346 OP_TYPE_NONE,
5347
96fcacb7
MK
5348 /* Integer register. */
5349 OP_TYPE_RN,
5350
5351 /* FP register. */
5352 OP_TYPE_FPN,
c47b0cb4
MK
5353
5354 /* Implicit mem reference (e.g. stack). */
5355 OP_TYPE_MEM1,
5356
5357 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5358 OP_TYPE_MEM234,
5359
5360 /* Memory with offset but without indexing. EA mode 5. */
5361 OP_TYPE_MEM5,
5362
5363 /* Memory with indexing. EA mode 6. */
5364 OP_TYPE_MEM6,
5365
5366 /* Memory referenced by absolute address. EA mode 7. */
5367 OP_TYPE_MEM7,
5368
5369 /* Immediate operand that doesn't require extension word. */
5370 OP_TYPE_IMM_Q,
5371
5372 /* Immediate 16 bit operand. */
5373 OP_TYPE_IMM_W,
5374
5375 /* Immediate 32 bit operand. */
5376 OP_TYPE_IMM_L
5377 };
5378
c47b0cb4
MK
5379/* Return type of memory ADDR_RTX refers to. */
5380static enum attr_op_type
5381sched_address_type (enum machine_mode mode, rtx addr_rtx)
5382{
5383 struct m68k_address address;
5384
96fcacb7
MK
5385 if (symbolic_operand (addr_rtx, VOIDmode))
5386 return OP_TYPE_MEM7;
5387
c47b0cb4
MK
5388 if (!m68k_decompose_address (mode, addr_rtx,
5389 reload_completed, &address))
5390 {
96fcacb7 5391 gcc_assert (!reload_completed);
c47b0cb4
MK
5392 /* Reload will likely fix the address to be in the register. */
5393 return OP_TYPE_MEM234;
5394 }
5395
5396 if (address.scale != 0)
5397 return OP_TYPE_MEM6;
5398
5399 if (address.base != NULL_RTX)
5400 {
5401 if (address.offset == NULL_RTX)
5402 return OP_TYPE_MEM234;
5403
5404 return OP_TYPE_MEM5;
5405 }
5406
5407 gcc_assert (address.offset != NULL_RTX);
5408
5409 return OP_TYPE_MEM7;
5410}
5411
96fcacb7
MK
5412/* Return X or Y (depending on OPX_P) operand of INSN. */
5413static rtx
647d790d 5414sched_get_operand (rtx_insn *insn, bool opx_p)
96fcacb7
MK
5415{
5416 int i;
5417
5418 if (recog_memoized (insn) < 0)
5419 gcc_unreachable ();
5420
5421 extract_constrain_insn_cached (insn);
5422
5423 if (opx_p)
5424 i = get_attr_opx (insn);
5425 else
5426 i = get_attr_opy (insn);
5427
5428 if (i >= recog_data.n_operands)
5429 return NULL;
5430
5431 return recog_data.operand[i];
5432}
5433
5434/* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5435 If ADDRESS_P is true, return type of memory location operand refers to. */
c47b0cb4 5436static enum attr_op_type
647d790d 5437sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
c47b0cb4 5438{
96fcacb7
MK
5439 rtx op;
5440
5441 op = sched_get_operand (insn, opx_p);
5442
5443 if (op == NULL)
5444 {
5445 gcc_assert (!reload_completed);
5446 return OP_TYPE_RN;
5447 }
c47b0cb4
MK
5448
5449 if (address_p)
5450 return sched_address_type (QImode, op);
5451
5452 if (memory_operand (op, VOIDmode))
5453 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5454
5455 if (register_operand (op, VOIDmode))
96fcacb7
MK
5456 {
5457 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5458 || (reload_completed && FP_REG_P (op)))
5459 return OP_TYPE_FPN;
5460
5461 return OP_TYPE_RN;
5462 }
c47b0cb4
MK
5463
5464 if (GET_CODE (op) == CONST_INT)
5465 {
96fcacb7
MK
5466 int ival;
5467
5468 ival = INTVAL (op);
5469
5470 /* Check for quick constants. */
5471 switch (get_attr_type (insn))
5472 {
5473 case TYPE_ALUQ_L:
5474 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5475 return OP_TYPE_IMM_Q;
5476
5477 gcc_assert (!reload_completed);
5478 break;
5479
5480 case TYPE_MOVEQ_L:
5481 if (USE_MOVQ (ival))
5482 return OP_TYPE_IMM_Q;
5483
5484 gcc_assert (!reload_completed);
5485 break;
5486
5487 case TYPE_MOV3Q_L:
5488 if (valid_mov3q_const (ival))
5489 return OP_TYPE_IMM_Q;
5490
5491 gcc_assert (!reload_completed);
5492 break;
5493
5494 default:
5495 break;
5496 }
5497
5498 if (IN_RANGE (ival, -0x8000, 0x7fff))
c47b0cb4
MK
5499 return OP_TYPE_IMM_W;
5500
5501 return OP_TYPE_IMM_L;
5502 }
5503
5504 if (GET_CODE (op) == CONST_DOUBLE)
5505 {
5506 switch (GET_MODE (op))
5507 {
5508 case SFmode:
5509 return OP_TYPE_IMM_W;
5510
5511 case VOIDmode:
5512 case DFmode:
5513 return OP_TYPE_IMM_L;
5514
5515 default:
5516 gcc_unreachable ();
5517 }
5518 }
5519
00b2ef14
MK
5520 if (GET_CODE (op) == CONST
5521 || symbolic_operand (op, VOIDmode)
c47b0cb4
MK
5522 || LABEL_P (op))
5523 {
5524 switch (GET_MODE (op))
5525 {
5526 case QImode:
5527 return OP_TYPE_IMM_Q;
5528
5529 case HImode:
5530 return OP_TYPE_IMM_W;
5531
5532 case SImode:
5533 return OP_TYPE_IMM_L;
5534
5535 default:
75df395f
MK
5536 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5537 /* Just a guess. */
c47b0cb4
MK
5538 return OP_TYPE_IMM_W;
5539
5540 return OP_TYPE_IMM_L;
5541 }
5542 }
5543
96fcacb7 5544 gcc_assert (!reload_completed);
c47b0cb4 5545
96fcacb7
MK
5546 if (FLOAT_MODE_P (GET_MODE (op)))
5547 return OP_TYPE_FPN;
c47b0cb4 5548
96fcacb7 5549 return OP_TYPE_RN;
c47b0cb4
MK
5550}
5551
5552/* Implement opx_type attribute.
5553 Return type of INSN's operand X.
5554 If ADDRESS_P is true, return type of memory location operand refers to. */
5555enum attr_opx_type
647d790d 5556m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
c47b0cb4 5557{
c47b0cb4
MK
5558 switch (sched_attr_op_type (insn, true, address_p != 0))
5559 {
96fcacb7
MK
5560 case OP_TYPE_RN:
5561 return OPX_TYPE_RN;
5562
5563 case OP_TYPE_FPN:
5564 return OPX_TYPE_FPN;
c47b0cb4
MK
5565
5566 case OP_TYPE_MEM1:
5567 return OPX_TYPE_MEM1;
5568
5569 case OP_TYPE_MEM234:
5570 return OPX_TYPE_MEM234;
5571
5572 case OP_TYPE_MEM5:
5573 return OPX_TYPE_MEM5;
5574
5575 case OP_TYPE_MEM6:
5576 return OPX_TYPE_MEM6;
5577
5578 case OP_TYPE_MEM7:
5579 return OPX_TYPE_MEM7;
5580
5581 case OP_TYPE_IMM_Q:
5582 return OPX_TYPE_IMM_Q;
5583
5584 case OP_TYPE_IMM_W:
5585 return OPX_TYPE_IMM_W;
5586
5587 case OP_TYPE_IMM_L:
5588 return OPX_TYPE_IMM_L;
5589
5590 default:
5591 gcc_unreachable ();
c47b0cb4
MK
5592 }
5593}
5594
5595/* Implement opy_type attribute.
5596 Return type of INSN's operand Y.
5597 If ADDRESS_P is true, return type of memory location operand refers to. */
5598enum attr_opy_type
647d790d 5599m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
c47b0cb4 5600{
c47b0cb4
MK
5601 switch (sched_attr_op_type (insn, false, address_p != 0))
5602 {
96fcacb7
MK
5603 case OP_TYPE_RN:
5604 return OPY_TYPE_RN;
5605
5606 case OP_TYPE_FPN:
5607 return OPY_TYPE_FPN;
c47b0cb4
MK
5608
5609 case OP_TYPE_MEM1:
5610 return OPY_TYPE_MEM1;
5611
5612 case OP_TYPE_MEM234:
5613 return OPY_TYPE_MEM234;
5614
5615 case OP_TYPE_MEM5:
5616 return OPY_TYPE_MEM5;
5617
5618 case OP_TYPE_MEM6:
5619 return OPY_TYPE_MEM6;
5620
5621 case OP_TYPE_MEM7:
5622 return OPY_TYPE_MEM7;
5623
5624 case OP_TYPE_IMM_Q:
5625 return OPY_TYPE_IMM_Q;
5626
5627 case OP_TYPE_IMM_W:
5628 return OPY_TYPE_IMM_W;
5629
5630 case OP_TYPE_IMM_L:
5631 return OPY_TYPE_IMM_L;
5632
5633 default:
5634 gcc_unreachable ();
c47b0cb4
MK
5635 }
5636}
5637
96fcacb7
MK
5638/* Return size of INSN as int. */
5639static int
84034c69 5640sched_get_attr_size_int (rtx_insn *insn)
c47b0cb4
MK
5641{
5642 int size;
5643
96fcacb7 5644 switch (get_attr_type (insn))
c47b0cb4 5645 {
96fcacb7
MK
5646 case TYPE_IGNORE:
5647 /* There should be no references to m68k_sched_attr_size for 'ignore'
5648 instructions. */
5649 gcc_unreachable ();
5650 return 0;
5651
5652 case TYPE_MUL_L:
c47b0cb4
MK
5653 size = 2;
5654 break;
5655
5656 default:
5657 size = 1;
5658 break;
5659 }
5660
5661 switch (get_attr_opx_type (insn))
5662 {
5663 case OPX_TYPE_NONE:
96fcacb7
MK
5664 case OPX_TYPE_RN:
5665 case OPX_TYPE_FPN:
c47b0cb4
MK
5666 case OPX_TYPE_MEM1:
5667 case OPX_TYPE_MEM234:
5668 case OPY_TYPE_IMM_Q:
5669 break;
5670
5671 case OPX_TYPE_MEM5:
5672 case OPX_TYPE_MEM6:
5673 /* Here we assume that most absolute references are short. */
5674 case OPX_TYPE_MEM7:
5675 case OPY_TYPE_IMM_W:
5676 ++size;
5677 break;
5678
5679 case OPY_TYPE_IMM_L:
5680 size += 2;
5681 break;
5682
5683 default:
5684 gcc_unreachable ();
5685 }
5686
5687 switch (get_attr_opy_type (insn))
5688 {
5689 case OPY_TYPE_NONE:
96fcacb7
MK
5690 case OPY_TYPE_RN:
5691 case OPY_TYPE_FPN:
c47b0cb4
MK
5692 case OPY_TYPE_MEM1:
5693 case OPY_TYPE_MEM234:
5694 case OPY_TYPE_IMM_Q:
5695 break;
5696
5697 case OPY_TYPE_MEM5:
5698 case OPY_TYPE_MEM6:
5699 /* Here we assume that most absolute references are short. */
5700 case OPY_TYPE_MEM7:
5701 case OPY_TYPE_IMM_W:
5702 ++size;
5703 break;
5704
5705 case OPY_TYPE_IMM_L:
5706 size += 2;
5707 break;
5708
5709 default:
5710 gcc_unreachable ();
5711 }
5712
5713 if (size > 3)
5714 {
96fcacb7 5715 gcc_assert (!reload_completed);
c47b0cb4
MK
5716
5717 size = 3;
5718 }
5719
5720 return size;
5721}
5722
96fcacb7
MK
5723/* Return size of INSN as attribute enum value. */
5724enum attr_size
84034c69 5725m68k_sched_attr_size (rtx_insn *insn)
96fcacb7
MK
5726{
5727 switch (sched_get_attr_size_int (insn))
5728 {
5729 case 1:
5730 return SIZE_1;
5731
5732 case 2:
5733 return SIZE_2;
5734
5735 case 3:
5736 return SIZE_3;
5737
5738 default:
5739 gcc_unreachable ();
96fcacb7
MK
5740 }
5741}
5742
5743/* Return operand X or Y (depending on OPX_P) of INSN,
5744 if it is a MEM, or NULL overwise. */
5745static enum attr_op_type
84034c69 5746sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
96fcacb7
MK
5747{
5748 if (opx_p)
5749 {
5750 switch (get_attr_opx_type (insn))
5751 {
5752 case OPX_TYPE_NONE:
5753 case OPX_TYPE_RN:
5754 case OPX_TYPE_FPN:
5755 case OPX_TYPE_IMM_Q:
5756 case OPX_TYPE_IMM_W:
5757 case OPX_TYPE_IMM_L:
5758 return OP_TYPE_RN;
5759
5760 case OPX_TYPE_MEM1:
5761 case OPX_TYPE_MEM234:
5762 case OPX_TYPE_MEM5:
5763 case OPX_TYPE_MEM7:
5764 return OP_TYPE_MEM1;
5765
5766 case OPX_TYPE_MEM6:
5767 return OP_TYPE_MEM6;
5768
5769 default:
5770 gcc_unreachable ();
96fcacb7
MK
5771 }
5772 }
5773 else
5774 {
5775 switch (get_attr_opy_type (insn))
5776 {
5777 case OPY_TYPE_NONE:
5778 case OPY_TYPE_RN:
5779 case OPY_TYPE_FPN:
5780 case OPY_TYPE_IMM_Q:
5781 case OPY_TYPE_IMM_W:
5782 case OPY_TYPE_IMM_L:
5783 return OP_TYPE_RN;
5784
5785 case OPY_TYPE_MEM1:
5786 case OPY_TYPE_MEM234:
5787 case OPY_TYPE_MEM5:
5788 case OPY_TYPE_MEM7:
5789 return OP_TYPE_MEM1;
5790
5791 case OPY_TYPE_MEM6:
5792 return OP_TYPE_MEM6;
5793
5794 default:
5795 gcc_unreachable ();
96fcacb7
MK
5796 }
5797 }
5798}
5799
c47b0cb4
MK
5800/* Implement op_mem attribute. */
5801enum attr_op_mem
84034c69 5802m68k_sched_attr_op_mem (rtx_insn *insn)
c47b0cb4 5803{
96fcacb7
MK
5804 enum attr_op_type opx;
5805 enum attr_op_type opy;
c47b0cb4 5806
96fcacb7
MK
5807 opx = sched_get_opxy_mem_type (insn, true);
5808 opy = sched_get_opxy_mem_type (insn, false);
c47b0cb4 5809
96fcacb7 5810 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
c47b0cb4
MK
5811 return OP_MEM_00;
5812
96fcacb7 5813 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
c47b0cb4
MK
5814 {
5815 switch (get_attr_opx_access (insn))
5816 {
5817 case OPX_ACCESS_R:
5818 return OP_MEM_10;
5819
5820 case OPX_ACCESS_W:
5821 return OP_MEM_01;
5822
5823 case OPX_ACCESS_RW:
5824 return OP_MEM_11;
5825
5826 default:
96fcacb7 5827 gcc_unreachable ();
c47b0cb4
MK
5828 }
5829 }
5830
96fcacb7 5831 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
c47b0cb4
MK
5832 {
5833 switch (get_attr_opx_access (insn))
5834 {
5835 case OPX_ACCESS_R:
5836 return OP_MEM_I0;
5837
5838 case OPX_ACCESS_W:
5839 return OP_MEM_0I;
5840
5841 case OPX_ACCESS_RW:
5842 return OP_MEM_I1;
5843
5844 default:
96fcacb7 5845 gcc_unreachable ();
c47b0cb4
MK
5846 }
5847 }
5848
96fcacb7 5849 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
c47b0cb4
MK
5850 return OP_MEM_10;
5851
96fcacb7 5852 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
c47b0cb4
MK
5853 {
5854 switch (get_attr_opx_access (insn))
5855 {
5856 case OPX_ACCESS_W:
5857 return OP_MEM_11;
5858
5859 default:
96fcacb7
MK
5860 gcc_assert (!reload_completed);
5861 return OP_MEM_11;
c47b0cb4
MK
5862 }
5863 }
5864
96fcacb7 5865 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
c47b0cb4
MK
5866 {
5867 switch (get_attr_opx_access (insn))
5868 {
5869 case OPX_ACCESS_W:
5870 return OP_MEM_1I;
5871
5872 default:
96fcacb7
MK
5873 gcc_assert (!reload_completed);
5874 return OP_MEM_1I;
c47b0cb4
MK
5875 }
5876 }
5877
96fcacb7 5878 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
c47b0cb4
MK
5879 return OP_MEM_I0;
5880
96fcacb7 5881 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
c47b0cb4
MK
5882 {
5883 switch (get_attr_opx_access (insn))
5884 {
5885 case OPX_ACCESS_W:
5886 return OP_MEM_I1;
5887
5888 default:
96fcacb7
MK
5889 gcc_assert (!reload_completed);
5890 return OP_MEM_I1;
c47b0cb4
MK
5891 }
5892 }
5893
96fcacb7
MK
5894 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5895 gcc_assert (!reload_completed);
5896 return OP_MEM_I1;
c47b0cb4
MK
5897}
5898
96fcacb7
MK
5899/* Data for ColdFire V4 index bypass.
5900 Producer modifies register that is used as index in consumer with
5901 specified scale. */
5902static struct
b8c96320 5903{
96fcacb7
MK
5904 /* Producer instruction. */
5905 rtx pro;
826fadba 5906
96fcacb7
MK
5907 /* Consumer instruction. */
5908 rtx con;
b8c96320 5909
96fcacb7
MK
5910 /* Scale of indexed memory access within consumer.
5911 Or zero if bypass should not be effective at the moment. */
5912 int scale;
5913} sched_cfv4_bypass_data;
b8c96320
MK
5914
5915/* An empty state that is used in m68k_sched_adjust_cost. */
5916static state_t sched_adjust_cost_state;
5917
5918/* Implement adjust_cost scheduler hook.
5919 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5920static int
ac44248e
DM
5921m68k_sched_adjust_cost (rtx_insn *insn, rtx link ATTRIBUTE_UNUSED,
5922 rtx_insn *def_insn, int cost)
b8c96320
MK
5923{
5924 int delay;
5925
5926 if (recog_memoized (def_insn) < 0
5927 || recog_memoized (insn) < 0)
5928 return cost;
5929
96fcacb7
MK
5930 if (sched_cfv4_bypass_data.scale == 1)
5931 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5932 {
5933 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5934 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5935 that the data in sched_cfv4_bypass_data is up to date. */
5936 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5937 && sched_cfv4_bypass_data.con == insn);
5938
5939 if (cost < 3)
5940 cost = 3;
5941
5942 sched_cfv4_bypass_data.pro = NULL;
5943 sched_cfv4_bypass_data.con = NULL;
5944 sched_cfv4_bypass_data.scale = 0;
5945 }
5946 else
5947 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5948 && sched_cfv4_bypass_data.con == NULL
5949 && sched_cfv4_bypass_data.scale == 0);
5950
b8c96320
MK
5951 /* Don't try to issue INSN earlier than DFA permits.
5952 This is especially useful for instructions that write to memory,
5953 as their true dependence (default) latency is better to be set to 0
5954 to workaround alias analysis limitations.
5955 This is, in fact, a machine independent tweak, so, probably,
5956 it should be moved to haifa-sched.c: insn_cost (). */
b8c96320
MK
5957 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5958 if (delay > cost)
5959 cost = delay;
5960
5961 return cost;
5962}
5963
96fcacb7
MK
5964/* Return maximal number of insns that can be scheduled on a single cycle. */
5965static int
5966m68k_sched_issue_rate (void)
5967{
5968 switch (m68k_sched_cpu)
5969 {
5970 case CPU_CFV1:
5971 case CPU_CFV2:
5972 case CPU_CFV3:
5973 return 1;
5974
5975 case CPU_CFV4:
5976 return 2;
5977
5978 default:
5979 gcc_unreachable ();
5980 return 0;
5981 }
5982}
5983
826fadba
MK
5984/* Maximal length of instruction for current CPU.
5985 E.g. it is 3 for any ColdFire core. */
5986static int max_insn_size;
5987
5988/* Data to model instruction buffer of CPU. */
5989struct _sched_ib
5990{
96fcacb7
MK
5991 /* True if instruction buffer model is modeled for current CPU. */
5992 bool enabled_p;
5993
826fadba
MK
5994 /* Size of the instruction buffer in words. */
5995 int size;
5996
5997 /* Number of filled words in the instruction buffer. */
5998 int filled;
5999
6000 /* Additional information about instruction buffer for CPUs that have
6001 a buffer of instruction records, rather then a plain buffer
6002 of instruction words. */
6003 struct _sched_ib_records
6004 {
6005 /* Size of buffer in records. */
6006 int n_insns;
b8c96320 6007
826fadba
MK
6008 /* Array to hold data on adjustements made to the size of the buffer. */
6009 int *adjust;
b8c96320 6010
826fadba
MK
6011 /* Index of the above array. */
6012 int adjust_index;
6013 } records;
6014
6015 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6016 rtx insn;
6017};
6018
6019static struct _sched_ib sched_ib;
b8c96320
MK
6020
6021/* ID of memory unit. */
6022static int sched_mem_unit_code;
6023
6024/* Implementation of the targetm.sched.variable_issue () hook.
6025 It is called after INSN was issued. It returns the number of insns
6026 that can possibly get scheduled on the current cycle.
6027 It is used here to determine the effect of INSN on the instruction
6028 buffer. */
6029static int
6030m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6031 int sched_verbose ATTRIBUTE_UNUSED,
ac44248e 6032 rtx_insn *insn, int can_issue_more)
b8c96320
MK
6033{
6034 int insn_size;
6035
96fcacb7 6036 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
b8c96320 6037 {
826fadba
MK
6038 switch (m68k_sched_cpu)
6039 {
6040 case CPU_CFV1:
6041 case CPU_CFV2:
96fcacb7 6042 insn_size = sched_get_attr_size_int (insn);
826fadba
MK
6043 break;
6044
6045 case CPU_CFV3:
96fcacb7 6046 insn_size = sched_get_attr_size_int (insn);
826fadba
MK
6047
6048 /* ColdFire V3 and V4 cores have instruction buffers that can
6049 accumulate up to 8 instructions regardless of instructions'
6050 sizes. So we should take care not to "prefetch" 24 one-word
6051 or 12 two-words instructions.
6052 To model this behavior we temporarily decrease size of the
6053 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6054 {
6055 int adjust;
6056
6057 adjust = max_insn_size - insn_size;
6058 sched_ib.size -= adjust;
6059
6060 if (sched_ib.filled > sched_ib.size)
6061 sched_ib.filled = sched_ib.size;
6062
6063 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6064 }
6065
6066 ++sched_ib.records.adjust_index;
6067 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6068 sched_ib.records.adjust_index = 0;
6069
6070 /* Undo adjustement we did 7 instructions ago. */
6071 sched_ib.size
6072 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6073
6074 break;
b8c96320 6075
96fcacb7
MK
6076 case CPU_CFV4:
6077 gcc_assert (!sched_ib.enabled_p);
6078 insn_size = 0;
6079 break;
6080
826fadba
MK
6081 default:
6082 gcc_unreachable ();
6083 }
b8c96320 6084
3162fdf4
MK
6085 if (insn_size > sched_ib.filled)
6086 /* Scheduling for register pressure does not always take DFA into
6087 account. Workaround instruction buffer not being filled enough. */
6088 {
60867e8c 6089 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3162fdf4
MK
6090 insn_size = sched_ib.filled;
6091 }
6092
b8c96320
MK
6093 --can_issue_more;
6094 }
6095 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6096 || asm_noperands (PATTERN (insn)) >= 0)
826fadba 6097 insn_size = sched_ib.filled;
b8c96320
MK
6098 else
6099 insn_size = 0;
6100
826fadba 6101 sched_ib.filled -= insn_size;
b8c96320
MK
6102
6103 return can_issue_more;
6104}
6105
96fcacb7
MK
6106/* Return how many instructions should scheduler lookahead to choose the
6107 best one. */
6108static int
6109m68k_sched_first_cycle_multipass_dfa_lookahead (void)
b8c96320 6110{
96fcacb7 6111 return m68k_sched_issue_rate () - 1;
b8c96320
MK
6112}
6113
7ecb00a6 6114/* Implementation of targetm.sched.init_global () hook.
b8c96320
MK
6115 It is invoked once per scheduling pass and is used here
6116 to initialize scheduler constants. */
6117static void
6118m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6119 int sched_verbose ATTRIBUTE_UNUSED,
6120 int n_insns ATTRIBUTE_UNUSED)
6121{
96fcacb7
MK
6122#ifdef ENABLE_CHECKING
6123 /* Check that all instructions have DFA reservations and
6124 that all instructions can be issued from a clean state. */
6125 {
b32d5189 6126 rtx_insn *insn;
96fcacb7 6127 state_t state;
b8c96320 6128
96fcacb7 6129 state = alloca (state_size ());
b8c96320 6130
b32d5189 6131 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
96fcacb7
MK
6132 {
6133 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6134 {
6135 gcc_assert (insn_has_dfa_reservation_p (insn));
b8c96320 6136
96fcacb7
MK
6137 state_reset (state);
6138 if (state_transition (state, insn) >= 0)
6139 gcc_unreachable ();
6140 }
6141 }
6142 }
6143#endif
b8c96320
MK
6144
6145 /* Setup target cpu. */
96fcacb7
MK
6146
6147 /* ColdFire V4 has a set of features to keep its instruction buffer full
6148 (e.g., a separate memory bus for instructions) and, hence, we do not model
6149 buffer for this CPU. */
6150 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6151
b8c96320
MK
6152 switch (m68k_sched_cpu)
6153 {
96fcacb7
MK
6154 case CPU_CFV4:
6155 sched_ib.filled = 0;
6156
6157 /* FALLTHRU */
6158
826fadba
MK
6159 case CPU_CFV1:
6160 case CPU_CFV2:
6161 max_insn_size = 3;
6162 sched_ib.records.n_insns = 0;
6163 sched_ib.records.adjust = NULL;
6164 break;
6165
6166 case CPU_CFV3:
6167 max_insn_size = 3;
6168 sched_ib.records.n_insns = 8;
5ead67f6 6169 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
b8c96320
MK
6170 break;
6171
6172 default:
6173 gcc_unreachable ();
6174 }
6175
826fadba
MK
6176 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6177
b8c96320
MK
6178 sched_adjust_cost_state = xmalloc (state_size ());
6179 state_reset (sched_adjust_cost_state);
6180
6181 start_sequence ();
6182 emit_insn (gen_ib ());
826fadba 6183 sched_ib.insn = get_insns ();
b8c96320
MK
6184 end_sequence ();
6185}
6186
6187/* Scheduling pass is now finished. Free/reset static variables. */
6188static void
6189m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6190 int verbose ATTRIBUTE_UNUSED)
6191{
826fadba 6192 sched_ib.insn = NULL;
b8c96320
MK
6193
6194 free (sched_adjust_cost_state);
6195 sched_adjust_cost_state = NULL;
6196
6197 sched_mem_unit_code = 0;
826fadba
MK
6198
6199 free (sched_ib.records.adjust);
6200 sched_ib.records.adjust = NULL;
6201 sched_ib.records.n_insns = 0;
6202 max_insn_size = 0;
b8c96320
MK
6203}
6204
7ecb00a6 6205/* Implementation of targetm.sched.init () hook.
b8c96320
MK
6206 It is invoked each time scheduler starts on the new block (basic block or
6207 extended basic block). */
6208static void
6209m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6210 int sched_verbose ATTRIBUTE_UNUSED,
6211 int n_insns ATTRIBUTE_UNUSED)
6212{
826fadba
MK
6213 switch (m68k_sched_cpu)
6214 {
6215 case CPU_CFV1:
6216 case CPU_CFV2:
6217 sched_ib.size = 6;
6218 break;
6219
6220 case CPU_CFV3:
6221 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6222
6223 memset (sched_ib.records.adjust, 0,
6224 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6225 sched_ib.records.adjust_index = 0;
6226 break;
6227
96fcacb7
MK
6228 case CPU_CFV4:
6229 gcc_assert (!sched_ib.enabled_p);
6230 sched_ib.size = 0;
6231 break;
6232
826fadba
MK
6233 default:
6234 gcc_unreachable ();
6235 }
6236
96fcacb7
MK
6237 if (sched_ib.enabled_p)
6238 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6239 the first cycle. Workaround that. */
6240 sched_ib.filled = -2;
b8c96320
MK
6241}
6242
6243/* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6244 It is invoked just before current cycle finishes and is used here
6245 to track if instruction buffer got its two words this cycle. */
6246static void
6247m68k_sched_dfa_pre_advance_cycle (void)
6248{
96fcacb7
MK
6249 if (!sched_ib.enabled_p)
6250 return;
6251
b8c96320
MK
6252 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6253 {
826fadba 6254 sched_ib.filled += 2;
b8c96320 6255
826fadba
MK
6256 if (sched_ib.filled > sched_ib.size)
6257 sched_ib.filled = sched_ib.size;
b8c96320
MK
6258 }
6259}
6260
6261/* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6262 It is invoked just after new cycle begins and is used here
6263 to setup number of filled words in the instruction buffer so that
6264 instructions which won't have all their words prefetched would be
6265 stalled for a cycle. */
6266static void
6267m68k_sched_dfa_post_advance_cycle (void)
6268{
6269 int i;
b8c96320 6270
96fcacb7
MK
6271 if (!sched_ib.enabled_p)
6272 return;
6273
b8c96320
MK
6274 /* Setup number of prefetched instruction words in the instruction
6275 buffer. */
826fadba
MK
6276 i = max_insn_size - sched_ib.filled;
6277
6278 while (--i >= 0)
b8c96320 6279 {
826fadba 6280 if (state_transition (curr_state, sched_ib.insn) >= 0)
5f3b7d7c
MK
6281 /* Pick up scheduler state. */
6282 ++sched_ib.filled;
b8c96320
MK
6283 }
6284}
96fcacb7
MK
6285
6286/* Return X or Y (depending on OPX_P) operand of INSN,
6287 if it is an integer register, or NULL overwise. */
6288static rtx
647d790d 6289sched_get_reg_operand (rtx_insn *insn, bool opx_p)
96fcacb7
MK
6290{
6291 rtx op = NULL;
6292
6293 if (opx_p)
6294 {
6295 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6296 {
6297 op = sched_get_operand (insn, true);
6298 gcc_assert (op != NULL);
6299
6300 if (!reload_completed && !REG_P (op))
6301 return NULL;
6302 }
6303 }
6304 else
6305 {
6306 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6307 {
6308 op = sched_get_operand (insn, false);
6309 gcc_assert (op != NULL);
6310
6311 if (!reload_completed && !REG_P (op))
6312 return NULL;
6313 }
6314 }
6315
6316 return op;
6317}
6318
6319/* Return true, if X or Y (depending on OPX_P) operand of INSN
6320 is a MEM. */
6321static bool
84034c69 6322sched_mem_operand_p (rtx_insn *insn, bool opx_p)
96fcacb7
MK
6323{
6324 switch (sched_get_opxy_mem_type (insn, opx_p))
6325 {
6326 case OP_TYPE_MEM1:
6327 case OP_TYPE_MEM6:
6328 return true;
6329
6330 default:
6331 return false;
6332 }
6333}
6334
6335/* Return X or Y (depending on OPX_P) operand of INSN,
6336 if it is a MEM, or NULL overwise. */
6337static rtx
647d790d 6338sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
96fcacb7
MK
6339{
6340 bool opx_p;
6341 bool opy_p;
6342
6343 opx_p = false;
6344 opy_p = false;
6345
6346 if (must_read_p)
6347 {
6348 opx_p = true;
6349 opy_p = true;
6350 }
6351
6352 if (must_write_p)
6353 {
6354 opx_p = true;
6355 opy_p = false;
6356 }
6357
6358 if (opy_p && sched_mem_operand_p (insn, false))
6359 return sched_get_operand (insn, false);
6360
6361 if (opx_p && sched_mem_operand_p (insn, true))
6362 return sched_get_operand (insn, true);
6363
6364 gcc_unreachable ();
6365 return NULL;
6366}
6367
6368/* Return non-zero if PRO modifies register used as part of
6369 address in CON. */
6370int
647d790d 6371m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
96fcacb7
MK
6372{
6373 rtx pro_x;
6374 rtx con_mem_read;
6375
6376 pro_x = sched_get_reg_operand (pro, true);
6377 if (pro_x == NULL)
6378 return 0;
6379
6380 con_mem_read = sched_get_mem_operand (con, true, false);
6381 gcc_assert (con_mem_read != NULL);
6382
6383 if (reg_mentioned_p (pro_x, con_mem_read))
6384 return 1;
6385
6386 return 0;
6387}
6388
6389/* Helper function for m68k_sched_indexed_address_bypass_p.
6390 if PRO modifies register used as index in CON,
6391 return scale of indexed memory access in CON. Return zero overwise. */
6392static int
647d790d 6393sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
96fcacb7
MK
6394{
6395 rtx reg;
6396 rtx mem;
6397 struct m68k_address address;
6398
6399 reg = sched_get_reg_operand (pro, true);
6400 if (reg == NULL)
6401 return 0;
6402
6403 mem = sched_get_mem_operand (con, true, false);
6404 gcc_assert (mem != NULL && MEM_P (mem));
6405
6406 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6407 &address))
6408 gcc_unreachable ();
6409
6410 if (REGNO (reg) == REGNO (address.index))
6411 {
6412 gcc_assert (address.scale != 0);
6413 return address.scale;
6414 }
6415
6416 return 0;
6417}
6418
6419/* Return non-zero if PRO modifies register used
6420 as index with scale 2 or 4 in CON. */
6421int
647d790d 6422m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
96fcacb7
MK
6423{
6424 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6425 && sched_cfv4_bypass_data.con == NULL
6426 && sched_cfv4_bypass_data.scale == 0);
6427
6428 switch (sched_get_indexed_address_scale (pro, con))
6429 {
6430 case 1:
6431 /* We can't have a variable latency bypass, so
6432 remember to adjust the insn cost in adjust_cost hook. */
6433 sched_cfv4_bypass_data.pro = pro;
6434 sched_cfv4_bypass_data.con = con;
6435 sched_cfv4_bypass_data.scale = 1;
6436 return 0;
6437
6438 case 2:
6439 case 4:
6440 return 1;
6441
6442 default:
6443 return 0;
6444 }
6445}
75df395f 6446
e0601576
RH
6447/* We generate a two-instructions program at M_TRAMP :
6448 movea.l &CHAIN_VALUE,%a0
6449 jmp FNADDR
6450 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6451
6452static void
6453m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6454{
6455 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6456 rtx mem;
6457
6458 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6459
6460 mem = adjust_address (m_tramp, HImode, 0);
6461 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6462 mem = adjust_address (m_tramp, SImode, 2);
6463 emit_move_insn (mem, chain_value);
6464
6465 mem = adjust_address (m_tramp, HImode, 6);
6466 emit_move_insn (mem, GEN_INT(0x4EF9));
6467 mem = adjust_address (m_tramp, SImode, 8);
6468 emit_move_insn (mem, fnaddr);
6469
6470 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6471}
6472
079e7538
NF
6473/* On the 68000, the RTS insn cannot pop anything.
6474 On the 68010, the RTD insn may be used to pop them if the number
6475 of args is fixed, but if the number is variable then the caller
6476 must pop them all. RTD can't be used for library calls now
6477 because the library is compiled with the Unix compiler.
6478 Use of RTD is a selectable option, since it is incompatible with
6479 standard Unix calling sequences. If the option is not selected,
6480 the caller must always pop the args. */
6481
6482static int
6483m68k_return_pops_args (tree fundecl, tree funtype, int size)
6484{
6485 return ((TARGET_RTD
6486 && (!fundecl
6487 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
f38958e8 6488 && (!stdarg_p (funtype)))
079e7538
NF
6489 ? size : 0);
6490}
6491
5efd84c5
NF
6492/* Make sure everything's fine if we *don't* have a given processor.
6493 This assumes that putting a register in fixed_regs will keep the
6494 compiler's mitts completely off it. We don't bother to zero it out
6495 of register classes. */
6496
6497static void
6498m68k_conditional_register_usage (void)
6499{
6500 int i;
6501 HARD_REG_SET x;
6502 if (!TARGET_HARD_FLOAT)
6503 {
6504 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6505 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6506 if (TEST_HARD_REG_BIT (x, i))
6507 fixed_regs[i] = call_used_regs[i] = 1;
6508 }
6509 if (flag_pic)
6510 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6511}
6512
8b281334
RH
6513static void
6514m68k_init_sync_libfuncs (void)
6515{
6516 init_sync_libfuncs (UNITS_PER_WORD);
6517}
6518
175aed00
AS
6519/* Implements EPILOGUE_USES. All registers are live on exit from an
6520 interrupt routine. */
6521bool
6522m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6523{
6524 return (reload_completed
6525 && (m68k_get_function_kind (current_function_decl)
6526 == m68k_fk_interrupt_handler));
6527}
6528
75df395f 6529#include "gt-m68k.h"