]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/m68k/m68k.c
(GCC_PASSES): Revert previous change; use cc1$(exeext).
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
CommitLineData
79e68feb 1/* Subroutines for insn-output.c for Motorola 68000 family.
7bc88d49 2 Copyright (C) 1987, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
79e68feb
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
0e29e3c9
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
79e68feb
RS
20
21
22/* Some output-actions in m68k.md need these. */
23#include <stdio.h>
24#include "config.h"
25#include "rtl.h"
26#include "regs.h"
27#include "hard-reg-set.h"
28#include "real.h"
29#include "insn-config.h"
30#include "conditions.h"
31#include "insn-flags.h"
32#include "output.h"
33#include "insn-attr.h"
34
35/* Needed for use_return_insn. */
36#include "flags.h"
37
38#ifdef SUPPORT_SUN_FPA
39
40/* Index into this array by (register number >> 3) to find the
41 smallest class which contains that register. */
42enum reg_class regno_reg_class[]
43 = { DATA_REGS, ADDR_REGS, FP_REGS,
44 LO_FPA_REGS, LO_FPA_REGS, FPA_REGS, FPA_REGS };
45
46#endif /* defined SUPPORT_SUN_FPA */
47
9eb4f6fc
RS
48/* This flag is used to communicate between movhi and ASM_OUTPUT_CASE_END,
49 if SGS_SWITCH_TABLE. */
50int switch_table_difference_label_flag;
51
79e68feb
RS
52static rtx find_addr_reg ();
53rtx legitimize_pic_address ();
54\f
55
ef1dbfb0
RK
56/* Alignment to use for loops and jumps */
57/* Specify power of two alignment used for loops. */
58char *m68k_align_loops_string;
59/* Specify power of two alignment used for non-loop jumps. */
60char *m68k_align_jumps_string;
61/* Specify power of two alignment used for functions. */
62char *m68k_align_funcs_string;
63
64/* Specify power of two alignment used for loops. */
65int m68k_align_loops;
66/* Specify power of two alignment used for non-loop jumps. */
67int m68k_align_jumps;
68/* Specify power of two alignment used for functions. */
69int m68k_align_funcs;
70
2b3600ac
JL
71/* Nonzero if the last compare/test insn had FP operands. The
72 sCC expanders peek at this to determine what to do for the
73 68060, which has no fsCC instructions. */
74int m68k_last_compare_had_fp_operands;
ef1dbfb0
RK
75
76/* Sometimes certain combinations of command options do not make
77 sense on a particular target machine. You can define a macro
78 `OVERRIDE_OPTIONS' to take account of this. This macro, if
79 defined, is executed once just after all the command options have
80 been parsed.
81
82 Don't use this macro to turn on various extra optimizations for
83 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
84
85void
86override_options ()
87{
88 int def_align;
89
90 def_align = 1;
91
92 /* Validate -malign-loops= value, or provide default */
93 if (m68k_align_loops_string)
94 {
95 m68k_align_loops = atoi (m68k_align_loops_string);
96 if (m68k_align_loops < 1 || m68k_align_loops > MAX_CODE_ALIGN)
97 fatal ("-malign-loops=%d is not between 1 and %d",
98 m68k_align_loops, MAX_CODE_ALIGN);
99 }
100 else
101 m68k_align_loops = def_align;
102
103 /* Validate -malign-jumps= value, or provide default */
104 if (m68k_align_jumps_string)
105 {
106 m68k_align_jumps = atoi (m68k_align_jumps_string);
107 if (m68k_align_jumps < 1 || m68k_align_jumps > MAX_CODE_ALIGN)
108 fatal ("-malign-jumps=%d is not between 1 and %d",
109 m68k_align_jumps, MAX_CODE_ALIGN);
110 }
111 else
112 m68k_align_jumps = def_align;
113
114 /* Validate -malign-functions= value, or provide default */
115 if (m68k_align_funcs_string)
116 {
117 m68k_align_funcs = atoi (m68k_align_funcs_string);
118 if (m68k_align_funcs < 1 || m68k_align_funcs > MAX_CODE_ALIGN)
119 fatal ("-malign-functions=%d is not between 1 and %d",
120 m68k_align_funcs, MAX_CODE_ALIGN);
121 }
122 else
123 m68k_align_funcs = def_align;
124}
125\f
79e68feb
RS
126/* Emit a (use pic_offset_table_rtx) if we used PIC relocation in the
127 function at any time during the compilation process. In the future
64a184e9 128 we should try and eliminate the USE if we can easily determine that
79e68feb
RS
129 all PIC references were deleted from the current function. That would
130 save an address register */
131
6317749b 132void
64a184e9 133finalize_pic ()
79e68feb
RS
134{
135 if (flag_pic && current_function_uses_pic_offset_table)
adedad3e
RK
136 {
137 rtx insn = gen_rtx (USE, VOIDmode, pic_offset_table_rtx);
138 emit_insn_after (insn, get_insns ());
139 emit_insn (insn);
140 }
79e68feb
RS
141}
142
143\f
144/* This function generates the assembly code for function entry.
145 STREAM is a stdio stream to output the code to.
146 SIZE is an int: how many units of temporary storage to allocate.
147 Refer to the array `regs_ever_live' to determine which registers
148 to save; `regs_ever_live[I]' is nonzero if register number I
149 is ever used in the function. This function is responsible for
150 knowing which registers should not be saved even if used. */
151
152
153/* Note that the order of the bit mask for fmovem is the opposite
154 of the order for movem! */
155
156
157void
158output_function_prologue (stream, size)
159 FILE *stream;
160 int size;
161{
162 register int regno;
163 register int mask = 0;
164 int num_saved_regs = 0;
165 extern char call_used_regs[];
166 int fsize = (size + 3) & -4;
167
168
169 if (frame_pointer_needed)
170 {
2d0933a2 171 if (fsize == 0 && TARGET_68040)
e4e873f1
RK
172 {
173 /* on the 68040, pea + move is faster than link.w 0 */
174#ifdef MOTOROLA
175 asm_fprintf (stream, "\tpea (%s)\n\tmove.l %s,%s\n",
176 reg_names[FRAME_POINTER_REGNUM], reg_names[STACK_POINTER_REGNUM],
177 reg_names[FRAME_POINTER_REGNUM]);
178#else
2d0933a2 179 asm_fprintf (stream, "\tpea %s@\n\tmovel %s,%s\n",
e4e873f1
RK
180 reg_names[FRAME_POINTER_REGNUM], reg_names[STACK_POINTER_REGNUM],
181 reg_names[FRAME_POINTER_REGNUM]);
182#endif
183 }
184 else if (fsize < 0x8000)
79e68feb
RS
185 {
186#ifdef MOTOROLA
338818c7 187 asm_fprintf (stream, "\tlink.w %s,%0I%d\n",
79e68feb
RS
188 reg_names[FRAME_POINTER_REGNUM], -fsize);
189#else
338818c7 190 asm_fprintf (stream, "\tlink %s,%0I%d\n",
79e68feb
RS
191 reg_names[FRAME_POINTER_REGNUM], -fsize);
192#endif
193 }
194 else if (TARGET_68020)
195 {
196#ifdef MOTOROLA
338818c7 197 asm_fprintf (stream, "\tlink.l %s,%0I%d\n",
79e68feb
RS
198 reg_names[FRAME_POINTER_REGNUM], -fsize);
199#else
338818c7 200 asm_fprintf (stream, "\tlink %s,%0I%d\n",
79e68feb
RS
201 reg_names[FRAME_POINTER_REGNUM], -fsize);
202#endif
203 }
204 else
205 {
e4e873f1 206 /* Adding negative number is faster on the 68040. */
79e68feb 207#ifdef MOTOROLA
cffd0d74 208 asm_fprintf (stream, "\tlink.w %s,%0I0\n\tadd.l %0I%d,%Rsp\n",
79e68feb
RS
209 reg_names[FRAME_POINTER_REGNUM], -fsize);
210#else
cffd0d74 211 asm_fprintf (stream, "\tlink %s,%0I0\n\taddl %0I%d,%Rsp\n",
79e68feb
RS
212 reg_names[FRAME_POINTER_REGNUM], -fsize);
213#endif
214 }
215 }
216 else if (fsize)
217 {
afaff477 218 if (fsize + 4 < 0x8000)
79e68feb 219 {
7bc88d49
RK
220#ifdef NO_ADDSUB_Q
221 if (fsize + 4 <= 8)
afaff477 222 {
7bc88d49
RK
223 if (!TARGET_5200)
224 {
225 /* asm_fprintf() cannot handle %. */
2d0933a2 226#ifdef MOTOROLA
7bc88d49 227 asm_fprintf (stream, "\tsubq.w %OI%d,%Rsp\n", fsize + 4);
2d0933a2 228#else
7bc88d49 229 asm_fprintf (stream, "\tsubqw %OI%d,%Rsp\n", fsize + 4);
2d0933a2 230#endif
7bc88d49
RK
231 }
232 else
233 {
a7e2b014 234 /* asm_fprintf() cannot handle %. */
7bc88d49
RK
235#ifdef MOTOROLA
236 asm_fprintf (stream, "\tsubq.l %OI%d,%Rsp\n", fsize + 4);
237#else
238 asm_fprintf (stream, "\tsubql %OI%d,%Rsp\n", fsize + 4);
239#endif
240 }
afaff477 241 }
7bc88d49
RK
242 else if (fsize + 4 <= 16 && TARGET_CPU32)
243 {
244 /* On the CPU32 it is faster to use two subqw instructions to
245 subtract a small integer (8 < N <= 16) to a register. */
246 /* asm_fprintf() cannot handle %. */
247#ifdef MOTOROLA
248 asm_fprintf (stream, "\tsubq.w %OI8,%Rsp\n\tsubq.w %OI%d,%Rsp\n",
249 fsize + 4);
250#else
251 asm_fprintf (stream, "\tsubqw %OI8,%Rsp\n\tsubqw %OI%d,%Rsp\n",
252 fsize + 4);
253#endif
254 }
255 else
256#endif /* NO_ADDSUB_Q */
257 if (TARGET_68040)
afaff477 258 {
7bc88d49 259 /* Adding negative number is faster on the 68040. */
afaff477
RK
260 /* asm_fprintf() cannot handle %. */
261#ifdef MOTOROLA
262 asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", - (fsize + 4));
263#else
264 asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", - (fsize + 4));
7bc88d49
RK
265#endif
266 }
267 else
268 {
7bc88d49
RK
269#ifdef MOTOROLA
270 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", - (fsize + 4));
271#else
272 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", - (fsize + 4));
afaff477
RK
273#endif
274 }
79e68feb
RS
275 }
276 else
277 {
2d0933a2
RK
278 /* asm_fprintf() cannot handle %. */
279#ifdef MOTOROLA
280 asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", - (fsize + 4));
281#else
282 asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", - (fsize + 4));
283#endif
79e68feb
RS
284 }
285 }
286#ifdef SUPPORT_SUN_FPA
287 for (regno = 24; regno < 56; regno++)
288 if (regs_ever_live[regno] && ! call_used_regs[regno])
289 {
290#ifdef MOTOROLA
291 asm_fprintf (stream, "\tfpmovd %s,-(%Rsp)\n",
292 reg_names[regno]);
293#else
294 asm_fprintf (stream, "\tfpmoved %s,%Rsp@-\n",
295 reg_names[regno]);
296#endif
297 }
298#endif
f277471f 299 if (TARGET_68881)
79e68feb 300 {
f277471f
RK
301 for (regno = 16; regno < 24; regno++)
302 if (regs_ever_live[regno] && ! call_used_regs[regno])
303 mask |= 1 << (regno - 16);
304 if ((mask & 0xff) != 0)
305 {
79e68feb 306#ifdef MOTOROLA
f277471f 307 asm_fprintf (stream, "\tfmovm %0I0x%x,-(%Rsp)\n", mask & 0xff);
79e68feb 308#else
f277471f 309 asm_fprintf (stream, "\tfmovem %0I0x%x,%Rsp@-\n", mask & 0xff);
79e68feb 310#endif
f277471f
RK
311 }
312 mask = 0;
79e68feb 313 }
79e68feb
RS
314 for (regno = 0; regno < 16; regno++)
315 if (regs_ever_live[regno] && ! call_used_regs[regno])
316 {
317 mask |= 1 << (15 - regno);
318 num_saved_regs++;
319 }
320 if (frame_pointer_needed)
321 {
322 mask &= ~ (1 << (15 - FRAME_POINTER_REGNUM));
323 num_saved_regs--;
324 }
99df2465
RS
325
326#if NEED_PROBE
a7e2b014
RK
327#ifdef MOTOROLA
328#ifdef CRDS
329 asm_fprintf (stream, "\ttstl %d(%Rsp)\n", NEED_PROBE - num_saved_regs * 4);
330#else
331 asm_fprintf (stream, "\ttst.l %d(%Rsp)\n", NEED_PROBE - num_saved_regs * 4);
332#endif
333#else
81bd5278 334 asm_fprintf (stream, "\ttstl %Rsp@(%d)\n", NEED_PROBE - num_saved_regs * 4);
a7e2b014 335#endif
99df2465
RS
336#endif
337
79e68feb
RS
338 if (num_saved_regs <= 2)
339 {
340 /* Store each separately in the same order moveml uses.
341 Using two movel instructions instead of a single moveml
342 is about 15% faster for the 68020 and 68030 at no expense
343 in code size */
344
345 int i;
346
347 /* Undo the work from above. */
348 for (i = 0; i< 16; i++)
349 if (mask & (1 << i))
350 asm_fprintf (stream,
351#ifdef MOTOROLA
64a184e9 352 "\t%Omove.l %s,-(%Rsp)\n",
79e68feb
RS
353#else
354 "\tmovel %s,%Rsp@-\n",
355#endif
356 reg_names[15 - i]);
357 }
358 else if (mask)
359 {
afaff477
RK
360 if (TARGET_5200)
361 {
362 /* The coldfire does not support the predecrement form of the
363 movml instruction, so we must adjust the stack pointer and
364 then use the plain address register indirect mode. We also
365 have to invert the register save mask to use the new mode.
366
367 FIXME: if num_saved_regs was calculated earlier, we could
368 combine the stack pointer adjustment with any adjustment
369 done when the initial stack frame is created. This would
370 save an instruction */
371
372 int newmask = 0;
373 int i;
374
375 for (i = 0; i < 16; i++)
376 if (mask & (1 << i))
377 newmask |= (1 << (15-i));
378
379#ifdef MOTOROLA
de649959 380 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", -num_saved_regs*4);
afaff477
RK
381 asm_fprintf (stream, "\tmovm.l %0I0x%x,(%Rsp)\n", newmask);
382#else
de649959 383 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", -num_saved_regs*4);
afaff477
RK
384 asm_fprintf (stream, "\tmoveml %0I0x%x,%Rsp@\n", newmask);
385#endif
386 }
387 else
388 {
79e68feb 389#ifdef MOTOROLA
afaff477 390 asm_fprintf (stream, "\tmovm.l %0I0x%x,-(%Rsp)\n", mask);
79e68feb 391#else
afaff477 392 asm_fprintf (stream, "\tmoveml %0I0x%x,%Rsp@-\n", mask);
79e68feb 393#endif
afaff477 394 }
79e68feb
RS
395 }
396 if (flag_pic && current_function_uses_pic_offset_table)
397 {
398#ifdef MOTOROLA
66c432a7 399 asm_fprintf (stream, "\t%Olea (%Rpc, %U_GLOBAL_OFFSET_TABLE_@GOTPC), %s\n",
79e68feb
RS
400 reg_names[PIC_OFFSET_TABLE_REGNUM]);
401#else
cffd0d74 402 asm_fprintf (stream, "\tmovel %0I__GLOBAL_OFFSET_TABLE_, %s\n",
79e68feb
RS
403 reg_names[PIC_OFFSET_TABLE_REGNUM]);
404 asm_fprintf (stream, "\tlea %Rpc@(0,%s:l),%s\n",
405 reg_names[PIC_OFFSET_TABLE_REGNUM],
406 reg_names[PIC_OFFSET_TABLE_REGNUM]);
407#endif
408 }
409}
410\f
411/* Return true if this function's epilogue can be output as RTL. */
412
413int
414use_return_insn ()
415{
416 int regno;
417
418 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
419 return 0;
420
421 /* Copied from output_function_epilogue (). We should probably create a
422 separate layout routine to perform the common work. */
423
424 for (regno = 0 ; regno < FIRST_PSEUDO_REGISTER ; regno++)
425 if (regs_ever_live[regno] && ! call_used_regs[regno])
426 return 0;
427
428 return 1;
429}
430
431/* This function generates the assembly code for function exit,
432 on machines that need it. Args are same as for FUNCTION_PROLOGUE.
433
434 The function epilogue should not depend on the current stack pointer!
435 It should use the frame pointer only, if there is a frame pointer.
436 This is mandatory because of alloca; we also take advantage of it to
437 omit stack adjustments before returning. */
438
439void
440output_function_epilogue (stream, size)
441 FILE *stream;
442 int size;
443{
444 register int regno;
445 register int mask, fmask;
446 register int nregs;
447 int offset, foffset, fpoffset;
448 extern char call_used_regs[];
449 int fsize = (size + 3) & -4;
450 int big = 0;
451 rtx insn = get_last_insn ();
6910dd70 452 int restore_from_sp = 0;
79e68feb
RS
453
454 /* If the last insn was a BARRIER, we don't have to write any code. */
455 if (GET_CODE (insn) == NOTE)
456 insn = prev_nonnote_insn (insn);
457 if (insn && GET_CODE (insn) == BARRIER)
cffd0d74
RS
458 {
459 /* Output just a no-op so that debuggers don't get confused
460 about which function the pc is in at this address. */
461 asm_fprintf (stream, "\tnop\n");
462 return;
463 }
79e68feb 464
b69649e4
RK
465#ifdef FUNCTION_BLOCK_PROFILER_EXIT
466 if (profile_block_flag == 2)
467 {
468 FUNCTION_BLOCK_PROFILER_EXIT (stream);
469 }
470#endif
471
79e68feb
RS
472#ifdef FUNCTION_EXTRA_EPILOGUE
473 FUNCTION_EXTRA_EPILOGUE (stream, size);
474#endif
475 nregs = 0; fmask = 0; fpoffset = 0;
476#ifdef SUPPORT_SUN_FPA
477 for (regno = 24 ; regno < 56 ; regno++)
478 if (regs_ever_live[regno] && ! call_used_regs[regno])
479 nregs++;
480 fpoffset = nregs * 8;
481#endif
482 nregs = 0;
f277471f
RK
483 if (TARGET_68881)
484 {
485 for (regno = 16; regno < 24; regno++)
486 if (regs_ever_live[regno] && ! call_used_regs[regno])
487 {
488 nregs++;
489 fmask |= 1 << (23 - regno);
490 }
491 }
79e68feb
RS
492 foffset = fpoffset + nregs * 12;
493 nregs = 0; mask = 0;
494 if (frame_pointer_needed)
495 regs_ever_live[FRAME_POINTER_REGNUM] = 0;
496 for (regno = 0; regno < 16; regno++)
497 if (regs_ever_live[regno] && ! call_used_regs[regno])
498 {
499 nregs++;
500 mask |= 1 << regno;
501 }
502 offset = foffset + nregs * 4;
c67ddce5
RK
503 /* FIXME : leaf_function_p below is too strong.
504 What we really need to know there is if there could be pending
505 stack adjustment needed at that point. */
6910dd70
RK
506 restore_from_sp = ! frame_pointer_needed
507 || (! current_function_calls_alloca && leaf_function_p ());
79e68feb 508 if (offset + fsize >= 0x8000
6910dd70 509 && ! restore_from_sp
79e68feb
RS
510 && (mask || fmask || fpoffset))
511 {
512#ifdef MOTOROLA
e7eefaec 513 asm_fprintf (stream, "\t%Omove.l %0I%d,%Ra1\n", -fsize);
79e68feb 514#else
e7eefaec 515 asm_fprintf (stream, "\tmovel %0I%d,%Ra1\n", -fsize);
79e68feb
RS
516#endif
517 fsize = 0, big = 1;
518 }
afaff477 519 if (TARGET_5200 || nregs <= 2)
79e68feb
RS
520 {
521 /* Restore each separately in the same order moveml does.
522 Using two movel instructions instead of a single moveml
523 is about 15% faster for the 68020 and 68030 at no expense
524 in code size. */
525
526 int i;
527
528 /* Undo the work from above. */
529 for (i = 0; i< 16; i++)
530 if (mask & (1 << i))
531 {
532 if (big)
533 {
534#ifdef MOTOROLA
e7eefaec 535 asm_fprintf (stream, "\t%Omove.l -%d(%s,%Ra1.l),%s\n",
79e68feb
RS
536 offset + fsize,
537 reg_names[FRAME_POINTER_REGNUM],
538 reg_names[i]);
539#else
e7eefaec 540 asm_fprintf (stream, "\tmovel %s@(-%d,%Ra1:l),%s\n",
79e68feb
RS
541 reg_names[FRAME_POINTER_REGNUM],
542 offset + fsize, reg_names[i]);
543#endif
544 }
6910dd70 545 else if (restore_from_sp)
79e68feb
RS
546 {
547#ifdef MOTOROLA
64a184e9 548 asm_fprintf (stream, "\t%Omove.l (%Rsp)+,%s\n",
79e68feb
RS
549 reg_names[i]);
550#else
551 asm_fprintf (stream, "\tmovel %Rsp@+,%s\n",
552 reg_names[i]);
553#endif
554 }
555 else
556 {
557#ifdef MOTOROLA
64a184e9 558 asm_fprintf (stream, "\t%Omove.l -%d(%s),%s\n",
79e68feb
RS
559 offset + fsize,
560 reg_names[FRAME_POINTER_REGNUM],
561 reg_names[i]);
562#else
563 asm_fprintf (stream, "\tmovel %s@(-%d),%s\n",
564 reg_names[FRAME_POINTER_REGNUM],
565 offset + fsize, reg_names[i]);
566#endif
567 }
568 offset = offset - 4;
569 }
570 }
571 else if (mask)
572 {
573 if (big)
574 {
575#ifdef MOTOROLA
e7eefaec 576 asm_fprintf (stream, "\tmovm.l -%d(%s,%Ra1.l),%0I0x%x\n",
79e68feb
RS
577 offset + fsize,
578 reg_names[FRAME_POINTER_REGNUM],
579 mask);
580#else
e7eefaec 581 asm_fprintf (stream, "\tmoveml %s@(-%d,%Ra1:l),%0I0x%x\n",
79e68feb
RS
582 reg_names[FRAME_POINTER_REGNUM],
583 offset + fsize, mask);
584#endif
585 }
6910dd70 586 else if (restore_from_sp)
79e68feb
RS
587 {
588#ifdef MOTOROLA
cffd0d74 589 asm_fprintf (stream, "\tmovm.l (%Rsp)+,%0I0x%x\n", mask);
79e68feb 590#else
cffd0d74 591 asm_fprintf (stream, "\tmoveml %Rsp@+,%0I0x%x\n", mask);
79e68feb
RS
592#endif
593 }
594 else
595 {
596#ifdef MOTOROLA
cffd0d74 597 asm_fprintf (stream, "\tmovm.l -%d(%s),%0I0x%x\n",
79e68feb
RS
598 offset + fsize,
599 reg_names[FRAME_POINTER_REGNUM],
600 mask);
601#else
cffd0d74 602 asm_fprintf (stream, "\tmoveml %s@(-%d),%0I0x%x\n",
79e68feb
RS
603 reg_names[FRAME_POINTER_REGNUM],
604 offset + fsize, mask);
605#endif
606 }
607 }
608 if (fmask)
609 {
610 if (big)
611 {
612#ifdef MOTOROLA
e7eefaec 613 asm_fprintf (stream, "\tfmovm -%d(%s,%Ra1.l),%0I0x%x\n",
79e68feb
RS
614 foffset + fsize,
615 reg_names[FRAME_POINTER_REGNUM],
616 fmask);
617#else
e7eefaec 618 asm_fprintf (stream, "\tfmovem %s@(-%d,%Ra1:l),%0I0x%x\n",
79e68feb
RS
619 reg_names[FRAME_POINTER_REGNUM],
620 foffset + fsize, fmask);
621#endif
622 }
6910dd70 623 else if (restore_from_sp)
79e68feb
RS
624 {
625#ifdef MOTOROLA
cffd0d74 626 asm_fprintf (stream, "\tfmovm (%Rsp)+,%0I0x%x\n", fmask);
79e68feb 627#else
cffd0d74 628 asm_fprintf (stream, "\tfmovem %Rsp@+,%0I0x%x\n", fmask);
79e68feb
RS
629#endif
630 }
631 else
632 {
633#ifdef MOTOROLA
cffd0d74 634 asm_fprintf (stream, "\tfmovm -%d(%s),%0I0x%x\n",
79e68feb
RS
635 foffset + fsize,
636 reg_names[FRAME_POINTER_REGNUM],
637 fmask);
638#else
cffd0d74 639 asm_fprintf (stream, "\tfmovem %s@(-%d),%0I0x%x\n",
79e68feb
RS
640 reg_names[FRAME_POINTER_REGNUM],
641 foffset + fsize, fmask);
642#endif
643 }
644 }
645 if (fpoffset != 0)
646 for (regno = 55; regno >= 24; regno--)
647 if (regs_ever_live[regno] && ! call_used_regs[regno])
648 {
649 if (big)
650 {
651#ifdef MOTOROLA
e7eefaec 652 asm_fprintf (stream, "\tfpmovd -%d(%s,%Ra1.l), %s\n",
79e68feb
RS
653 fpoffset + fsize,
654 reg_names[FRAME_POINTER_REGNUM],
655 reg_names[regno]);
656#else
e7eefaec 657 asm_fprintf (stream, "\tfpmoved %s@(-%d,%Ra1:l), %s\n",
79e68feb
RS
658 reg_names[FRAME_POINTER_REGNUM],
659 fpoffset + fsize, reg_names[regno]);
660#endif
661 }
6910dd70 662 else if (restore_from_sp)
79e68feb
RS
663 {
664#ifdef MOTOROLA
665 asm_fprintf (stream, "\tfpmovd (%Rsp)+,%s\n",
666 reg_names[regno]);
667#else
668 asm_fprintf (stream, "\tfpmoved %Rsp@+, %s\n",
669 reg_names[regno]);
670#endif
671 }
672 else
673 {
674#ifdef MOTOROLA
675 asm_fprintf (stream, "\tfpmovd -%d(%s), %s\n",
676 fpoffset + fsize,
677 reg_names[FRAME_POINTER_REGNUM],
678 reg_names[regno]);
679#else
680 asm_fprintf (stream, "\tfpmoved %s@(-%d), %s\n",
681 reg_names[FRAME_POINTER_REGNUM],
682 fpoffset + fsize, reg_names[regno]);
683#endif
684 }
685 fpoffset -= 8;
686 }
687 if (frame_pointer_needed)
688 fprintf (stream, "\tunlk %s\n",
689 reg_names[FRAME_POINTER_REGNUM]);
690 else if (fsize)
691 {
7bc88d49
RK
692#ifdef NO_ADDSUB_Q
693 if (fsize + 4 <= 8)
79e68feb 694 {
7bc88d49
RK
695 if (!TARGET_5200)
696 {
2d0933a2 697#ifdef MOTOROLA
7bc88d49 698 asm_fprintf (stream, "\taddq.w %OI%d,%Rsp\n", fsize + 4);
2d0933a2 699#else
7bc88d49 700 asm_fprintf (stream, "\taddqw %OI%d,%Rsp\n", fsize + 4);
2d0933a2 701#endif
afaff477
RK
702 }
703 else
704 {
7bc88d49
RK
705#ifdef MOTOROLA
706 asm_fprintf (stream, "\taddq.l %OI%d,%Rsp\n", fsize + 4);
707#else
708 asm_fprintf (stream, "\taddql %OI%d,%Rsp\n", fsize + 4);
709#endif
710 }
711 }
712 else if (fsize + 4 <= 16 && TARGET_CPU32)
713 {
714 /* On the CPU32 it is faster to use two addqw instructions to
715 add a small integer (8 < N <= 16) to a register. */
a7e2b014 716 /* asm_fprintf() cannot handle %. */
7bc88d49
RK
717#ifdef MOTOROLA
718 asm_fprintf (stream, "\taddq.w %OI8,%Rsp\n\taddq.w %OI%d,%Rsp\n",
719 fsize + 4);
720#else
721 asm_fprintf (stream, "\taddqw %OI8,%Rsp\n\taddqw %OI%d,%Rsp\n",
722 fsize + 4);
723#endif
724 }
725 else
726#endif /* NO_ADDSUB_Q */
727 if (fsize + 4 < 0x8000)
728 {
729 if (TARGET_68040)
730 {
afaff477
RK
731 /* asm_fprintf() cannot handle %. */
732#ifdef MOTOROLA
733 asm_fprintf (stream, "\tadd.w %0I%d,%Rsp\n", fsize + 4);
734#else
735 asm_fprintf (stream, "\taddw %0I%d,%Rsp\n", fsize + 4);
7bc88d49
RK
736#endif
737 }
738 else
739 {
7bc88d49
RK
740#ifdef MOTOROLA
741 asm_fprintf (stream, "\tlea (%d,%Rsp),%Rsp\n", fsize + 4);
742#else
743 asm_fprintf (stream, "\tlea %Rsp@(%d),%Rsp\n", fsize + 4);
afaff477
RK
744#endif
745 }
79e68feb
RS
746 }
747 else
748 {
2d0933a2
RK
749 /* asm_fprintf() cannot handle %. */
750#ifdef MOTOROLA
751 asm_fprintf (stream, "\tadd.l %0I%d,%Rsp\n", fsize + 4);
752#else
753 asm_fprintf (stream, "\taddl %0I%d,%Rsp\n", fsize + 4);
754#endif
79e68feb
RS
755 }
756 }
757 if (current_function_pops_args)
338818c7 758 asm_fprintf (stream, "\trtd %0I%d\n", current_function_pops_args);
79e68feb
RS
759 else
760 fprintf (stream, "\trts\n");
761}
762\f
763/* Similar to general_operand, but exclude stack_pointer_rtx. */
764
765int
766not_sp_operand (op, mode)
767 register rtx op;
768 enum machine_mode mode;
769{
770 return op != stack_pointer_rtx && general_operand (op, mode);
771}
772
64a184e9
RS
773/* Return TRUE if X is a valid comparison operator for the dbcc
774 instruction.
775
776 Note it rejects floating point comparison operators.
777 (In the future we could use Fdbcc).
778
779 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
780
781int
782valid_dbcc_comparison_p (x, mode)
783 rtx x;
784 enum machine_mode mode;
785{
64a184e9
RS
786 switch (GET_CODE (x))
787 {
64a184e9
RS
788 case EQ: case NE: case GTU: case LTU:
789 case GEU: case LEU:
790 return 1;
791
792 /* Reject some when CC_NO_OVERFLOW is set. This may be over
793 conservative */
794 case GT: case LT: case GE: case LE:
795 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
796 default:
797 return 0;
798 }
799}
800
6a0f85e3
TG
801/* Return non-zero if flags are currently in the 68881 flag register. */
802int
803flags_in_68881 ()
804{
805 /* We could add support for these in the future */
806 return cc_status.flags & CC_IN_68881;
807}
808
64a184e9
RS
809/* Output a dbCC; jCC sequence. Note we do not handle the
810 floating point version of this sequence (Fdbcc). We also
811 do not handle alternative conditions when CC_NO_OVERFLOW is
6a0f85e3
TG
812 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
813 kick those out before we get here. */
64a184e9
RS
814
815output_dbcc_and_branch (operands)
816 rtx *operands;
817{
64a184e9
RS
818 switch (GET_CODE (operands[3]))
819 {
820 case EQ:
821#ifdef MOTOROLA
822 output_asm_insn ("dbeq %0,%l1\n\tjbeq %l2", operands);
823#else
824 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
825#endif
826 break;
827
828 case NE:
829#ifdef MOTOROLA
830 output_asm_insn ("dbne %0,%l1\n\tjbne %l2", operands);
831#else
832 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
833#endif
834 break;
835
836 case GT:
837#ifdef MOTOROLA
838 output_asm_insn ("dbgt %0,%l1\n\tjbgt %l2", operands);
839#else
840 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
841#endif
842 break;
843
844 case GTU:
845#ifdef MOTOROLA
846 output_asm_insn ("dbhi %0,%l1\n\tjbhi %l2", operands);
847#else
848 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
849#endif
850 break;
851
852 case LT:
853#ifdef MOTOROLA
854 output_asm_insn ("dblt %0,%l1\n\tjblt %l2", operands);
855#else
856 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
857#endif
858 break;
859
860 case LTU:
861#ifdef MOTOROLA
862 output_asm_insn ("dbcs %0,%l1\n\tjbcs %l2", operands);
863#else
864 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
865#endif
866 break;
867
868 case GE:
869#ifdef MOTOROLA
870 output_asm_insn ("dbge %0,%l1\n\tjbge %l2", operands);
871#else
872 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
873#endif
874 break;
875
876 case GEU:
877#ifdef MOTOROLA
878 output_asm_insn ("dbcc %0,%l1\n\tjbcc %l2", operands);
879#else
880 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
881#endif
882 break;
883
884 case LE:
885#ifdef MOTOROLA
886 output_asm_insn ("dble %0,%l1\n\tjble %l2", operands);
887#else
888 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
889#endif
890 break;
891
892 case LEU:
893#ifdef MOTOROLA
894 output_asm_insn ("dbls %0,%l1\n\tjbls %l2", operands);
895#else
896 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
897#endif
898 break;
899
900 default:
901 abort ();
902 }
903
904 /* If the decrement is to be done in SImode, then we have
905 to compensate for the fact that dbcc decrements in HImode. */
906 switch (GET_MODE (operands[0]))
907 {
908 case SImode:
909#ifdef MOTOROLA
910 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjbpl %l1", operands);
911#else
912 output_asm_insn ("clr%.w %0\n\tsubq%.l %#1,%0\n\tjpl %l1", operands);
913#endif
914 break;
915
916 case HImode:
917 break;
918
919 default:
920 abort ();
921 }
922}
923
c59c3b1c
RK
924char *
925output_scc_di(op, operand1, operand2, dest)
926 rtx op;
927 rtx operand1;
928 rtx operand2;
929 rtx dest;
930{
931 rtx loperands[7];
d9832fd2 932 enum rtx_code op_code = GET_CODE (op);
c59c3b1c 933
906a2d3c
RK
934 /* This does not produce a usefull cc. */
935 CC_STATUS_INIT;
936
d9832fd2
RK
937 /* The m68k cmp.l instruction requires operand1 to be a reg as used
938 below. Swap the operands and change the op if these requirements
939 are not fulfilled. */
940 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
941 {
942 rtx tmp = operand1;
943
944 operand1 = operand2;
945 operand2 = tmp;
946 op_code = swap_condition (op_code);
947 }
c59c3b1c
RK
948 loperands[0] = operand1;
949 if (GET_CODE (operand1) == REG)
950 loperands[1] = gen_rtx (REG, SImode, REGNO (operand1) + 1);
951 else
952 loperands[1] = adj_offsettable_operand (operand1, 4);
953 if (operand2 != const0_rtx)
954 {
955 loperands[2] = operand2;
956 if (GET_CODE (operand2) == REG)
957 loperands[3] = gen_rtx (REG, SImode, REGNO (operand2) + 1);
958 else
959 loperands[3] = adj_offsettable_operand (operand2, 4);
960 }
961 loperands[4] = gen_label_rtx();
962 if (operand2 != const0_rtx)
963#ifdef MOTOROLA
f2121711 964#ifdef SGS_CMP_ORDER
c59c3b1c
RK
965 output_asm_insn ("cmp%.l %0,%2\n\tjbne %l4\n\tcmp%.l %1,%3", loperands);
966#else
f2121711
RK
967 output_asm_insn ("cmp%.l %2,%0\n\tjbne %l4\n\tcmp%.l %3,%1", loperands);
968#endif
969#else
970#ifdef SGS_CMP_ORDER
c59c3b1c 971 output_asm_insn ("cmp%.l %0,%2\n\tjne %l4\n\tcmp%.l %1,%3", loperands);
f2121711
RK
972#else
973 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
974#endif
c59c3b1c
RK
975#endif
976 else
977#ifdef MOTOROLA
978 output_asm_insn ("tst%.l %0\n\tjbne %l4\n\ttst%.l %1", loperands);
979#else
980 output_asm_insn ("tst%.l %0\n\tjne %l4\n\ttst%.l %1", loperands);
981#endif
982 loperands[5] = dest;
983
d9832fd2 984 switch (op_code)
c59c3b1c
RK
985 {
986 case EQ:
987 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
988 CODE_LABEL_NUMBER (loperands[4]));
989 output_asm_insn ("seq %5", loperands);
990 break;
991
992 case NE:
993 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
994 CODE_LABEL_NUMBER (loperands[4]));
995 output_asm_insn ("sne %5", loperands);
996 break;
997
998 case GT:
999 loperands[6] = gen_label_rtx();
1000#ifdef MOTOROLA
1001 output_asm_insn ("shi %5\n\tjbra %l6", loperands);
1002#else
1003 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1004#endif
1005 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1006 CODE_LABEL_NUMBER (loperands[4]));
1007 output_asm_insn ("sgt %5", loperands);
1008 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1009 CODE_LABEL_NUMBER (loperands[6]));
1010 break;
1011
1012 case GTU:
1013 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1014 CODE_LABEL_NUMBER (loperands[4]));
1015 output_asm_insn ("shi %5", loperands);
1016 break;
1017
1018 case LT:
1019 loperands[6] = gen_label_rtx();
1020#ifdef MOTOROLA
1021 output_asm_insn ("scs %5\n\tjbra %l6", loperands);
1022#else
1023 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1024#endif
1025 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1026 CODE_LABEL_NUMBER (loperands[4]));
1027 output_asm_insn ("slt %5", loperands);
1028 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1029 CODE_LABEL_NUMBER (loperands[6]));
1030 break;
1031
1032 case LTU:
1033 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1034 CODE_LABEL_NUMBER (loperands[4]));
1035 output_asm_insn ("scs %5", loperands);
1036 break;
1037
1038 case GE:
1039 loperands[6] = gen_label_rtx();
1040#ifdef MOTOROLA
1041 output_asm_insn ("scc %5\n\tjbra %l6", loperands);
1042#else
1043 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1044#endif
1045 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1046 CODE_LABEL_NUMBER (loperands[4]));
1047 output_asm_insn ("sge %5", loperands);
1048 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1049 CODE_LABEL_NUMBER (loperands[6]));
1050 break;
1051
1052 case GEU:
1053 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1054 CODE_LABEL_NUMBER (loperands[4]));
1055 output_asm_insn ("scc %5", loperands);
1056 break;
1057
1058 case LE:
1059 loperands[6] = gen_label_rtx();
1060#ifdef MOTOROLA
1061 output_asm_insn ("sls %5\n\tjbra %l6", loperands);
1062#else
1063 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1064#endif
1065 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1066 CODE_LABEL_NUMBER (loperands[4]));
1067 output_asm_insn ("sle %5", loperands);
1068 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1069 CODE_LABEL_NUMBER (loperands[6]));
1070 break;
1071
1072 case LEU:
1073 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L",
1074 CODE_LABEL_NUMBER (loperands[4]));
1075 output_asm_insn ("sls %5", loperands);
1076 break;
1077
1078 default:
1079 abort ();
1080 }
1081 return "";
1082}
1083
79e68feb
RS
1084char *
1085output_btst (operands, countop, dataop, insn, signpos)
1086 rtx *operands;
1087 rtx countop, dataop;
1088 rtx insn;
1089 int signpos;
1090{
1091 operands[0] = countop;
1092 operands[1] = dataop;
1093
1094 if (GET_CODE (countop) == CONST_INT)
1095 {
1096 register int count = INTVAL (countop);
1097 /* If COUNT is bigger than size of storage unit in use,
1098 advance to the containing unit of same size. */
1099 if (count > signpos)
1100 {
1101 int offset = (count & ~signpos) / 8;
1102 count = count & signpos;
1103 operands[1] = dataop = adj_offsettable_operand (dataop, offset);
1104 }
1105 if (count == signpos)
1106 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1107 else
1108 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1109
1110 /* These three statements used to use next_insns_test_no...
1111 but it appears that this should do the same job. */
1112 if (count == 31
1113 && next_insn_tests_no_inequality (insn))
1114 return "tst%.l %1";
1115 if (count == 15
1116 && next_insn_tests_no_inequality (insn))
1117 return "tst%.w %1";
1118 if (count == 7
1119 && next_insn_tests_no_inequality (insn))
1120 return "tst%.b %1";
1121
1122 cc_status.flags = CC_NOT_NEGATIVE;
1123 }
1124 return "btst %0,%1";
1125}
1126\f
1127/* Returns 1 if OP is either a symbol reference or a sum of a symbol
1128 reference and a constant. */
1129
1130int
1131symbolic_operand (op, mode)
1132 register rtx op;
1133 enum machine_mode mode;
1134{
1135 switch (GET_CODE (op))
1136 {
1137 case SYMBOL_REF:
1138 case LABEL_REF:
1139 return 1;
1140
1141 case CONST:
1142 op = XEXP (op, 0);
1143 return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
1144 || GET_CODE (XEXP (op, 0)) == LABEL_REF)
1145 && GET_CODE (XEXP (op, 1)) == CONST_INT);
1146
1147#if 0 /* Deleted, with corresponding change in m68k.h,
1148 so as to fit the specs. No CONST_DOUBLE is ever symbolic. */
1149 case CONST_DOUBLE:
1150 return GET_MODE (op) == mode;
1151#endif
1152
1153 default:
1154 return 0;
1155 }
1156}
16f323be
RK
1157\f
1158/* Check for sign_extend or zero_extend. Used for bit-count operands. */
1159
1160int
1161extend_operator(x, mode)
1162 rtx x;
1163 enum machine_mode mode;
1164{
c59c3b1c 1165 if (mode != VOIDmode && GET_MODE(x) != mode)
16f323be
RK
1166 return 0;
1167 switch (GET_CODE(x))
1168 {
1169 case SIGN_EXTEND :
1170 case ZERO_EXTEND :
16f323be
RK
1171 return 1;
1172 default :
1173 return 0;
1174 }
1175}
79e68feb
RS
1176
1177\f
1178/* Legitimize PIC addresses. If the address is already
1179 position-independent, we return ORIG. Newly generated
1180 position-independent addresses go to REG. If we need more
1181 than one register, we lose.
1182
1183 An address is legitimized by making an indirect reference
1184 through the Global Offset Table with the name of the symbol
1185 used as an offset.
1186
1187 The assembler and linker are responsible for placing the
1188 address of the symbol in the GOT. The function prologue
1189 is responsible for initializing a5 to the starting address
1190 of the GOT.
1191
1192 The assembler is also responsible for translating a symbol name
1193 into a constant displacement from the start of the GOT.
1194
1195 A quick example may make things a little clearer:
1196
1197 When not generating PIC code to store the value 12345 into _foo
1198 we would generate the following code:
1199
1200 movel #12345, _foo
1201
1202 When generating PIC two transformations are made. First, the compiler
1203 loads the address of foo into a register. So the first transformation makes:
1204
1205 lea _foo, a0
1206 movel #12345, a0@
1207
1208 The code in movsi will intercept the lea instruction and call this
1209 routine which will transform the instructions into:
1210
1211 movel a5@(_foo:w), a0
1212 movel #12345, a0@
1213
1214
1215 That (in a nutshell) is how *all* symbol and label references are
1216 handled. */
1217
1218rtx
1219legitimize_pic_address (orig, mode, reg)
1220 rtx orig, reg;
1221 enum machine_mode mode;
1222{
1223 rtx pic_ref = orig;
1224
1225 /* First handle a simple SYMBOL_REF or LABEL_REF */
1226 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1227 {
1228 if (reg == 0)
1229 abort ();
1230
1231 pic_ref = gen_rtx (MEM, Pmode,
1232 gen_rtx (PLUS, Pmode,
1233 pic_offset_table_rtx, orig));
1234 current_function_uses_pic_offset_table = 1;
1235 RTX_UNCHANGING_P (pic_ref) = 1;
1236 emit_move_insn (reg, pic_ref);
1237 return reg;
1238 }
1239 else if (GET_CODE (orig) == CONST)
1240 {
1241 rtx base, offset;
1242
1243 /* Make sure this is CONST has not already been legitimized */
1244 if (GET_CODE (XEXP (orig, 0)) == PLUS
1245 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
1246 return orig;
1247
1248 if (reg == 0)
1249 abort ();
1250
1251 /* legitimize both operands of the PLUS */
1252 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1253 {
1254 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
1255 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
1256 base == reg ? 0 : reg);
1257 }
1258 else abort ();
1259
1260 if (GET_CODE (orig) == CONST_INT)
1261 return plus_constant_for_output (base, INTVAL (orig));
1262 pic_ref = gen_rtx (PLUS, Pmode, base, orig);
1263 /* Likewise, should we set special REG_NOTEs here? */
1264 }
1265 return pic_ref;
1266}
1267
1268\f
0ce6f9fb
RK
1269typedef enum { MOVL, SWAP, NEGW, NOTW, NOTB, MOVQ } CONST_METHOD;
1270
6910dd70 1271#define USE_MOVQ(i) ((unsigned)((i) + 128) <= 255)
0ce6f9fb
RK
1272
1273CONST_METHOD
1274const_method (constant)
1275 rtx constant;
1276{
1277 int i;
1278 unsigned u;
1279
1280 i = INTVAL (constant);
6910dd70 1281 if (USE_MOVQ (i))
0ce6f9fb 1282 return MOVQ;
24092242
RK
1283
1284 /* The Coldfire doesn't have byte or word operations. */
1285 /* FIXME: This may not be useful for the m68060 either */
1286 if (!TARGET_5200)
1287 {
1288 /* if -256 < N < 256 but N is not in range for a moveq
1289 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
1290 if (USE_MOVQ (i ^ 0xff))
1291 return NOTB;
1292 /* Likewise, try with not.w */
1293 if (USE_MOVQ (i ^ 0xffff))
1294 return NOTW;
1295 /* This is the only value where neg.w is useful */
1296 if (i == -65408)
1297 return NEGW;
1298 /* Try also with swap */
1299 u = i;
1300 if (USE_MOVQ ((u >> 16) | (u << 16)))
1301 return SWAP;
1302 }
0ce6f9fb
RK
1303 /* Otherwise, use move.l */
1304 return MOVL;
1305}
1306
1307const_int_cost (constant)
1308 rtx constant;
1309{
1310 switch (const_method (constant))
1311 {
1312 case MOVQ :
1313 /* Constants between -128 and 127 are cheap due to moveq */
1314 return 0;
1315 case NOTB :
1316 case NOTW :
1317 case NEGW :
1318 case SWAP :
1319 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap */
1320 return 1;
1321 case MOVL :
1322 return 2;
1323 default :
1324 abort ();
1325 }
1326}
1327
1328char *
1329output_move_const_into_data_reg (operands)
1330 rtx *operands;
1331{
1332 int i;
1333
1334 i = INTVAL (operands[1]);
1335 switch (const_method (operands[1]))
1336 {
1337 case MOVQ :
1338#if defined (MOTOROLA) && !defined (CRDS)
1339 return "moveq%.l %1,%0";
1340#else
1341 return "moveq %1,%0";
1342#endif
1343 case NOTB :
1344 operands[1] = gen_rtx (CONST_INT, VOIDmode, i ^ 0xff);
1345#if defined (MOTOROLA) && !defined (CRDS)
1346 return "moveq%.l %1,%0\n\tnot%.b %0";
1347#else
1348 return "moveq %1,%0\n\tnot%.b %0";
1349#endif
1350 case NOTW :
1351 operands[1] = gen_rtx (CONST_INT, VOIDmode, i ^ 0xffff);
1352#if defined (MOTOROLA) && !defined (CRDS)
1353 return "moveq%.l %1,%0\n\tnot%.w %0";
1354#else
1355 return "moveq %1,%0\n\tnot%.w %0";
1356#endif
1357 case NEGW :
1358#if defined (MOTOROLA) && !defined (CRDS)
1359 return "moveq%.l %#-128,%0\n\tneg%.w %0";
1360#else
1361 return "moveq %#-128,%0\n\tneg%.w %0";
1362#endif
1363 case SWAP :
1364 {
1365 unsigned u = i;
1366
1367 operands[1] = gen_rtx (CONST_INT, VOIDmode, (u << 16) | (u >> 16));
1368#if defined (MOTOROLA) && !defined (CRDS)
1369 return "moveq%.l %1,%0\n\tswap %0";
1370#else
1371 return "moveq %1,%0\n\tswap %0";
1372#endif
1373 }
1374 case MOVL :
1375 return "move%.l %1,%0";
1376 default :
1377 abort ();
1378 }
1379}
1380
02ed0c07
RK
1381char *
1382output_move_simode_const (operands)
1383 rtx *operands;
1384{
1385 if (operands[1] == const0_rtx
1386 && (DATA_REG_P (operands[0])
1387 || GET_CODE (operands[0]) == MEM)
1388 /* clr insns on 68000 read before writing.
c67ddce5 1389 This isn't so on the 68010, but we have no TARGET_68010. */
0cb7cfed 1390 && ((TARGET_68020 || TARGET_5200)
02ed0c07
RK
1391 || !(GET_CODE (operands[0]) == MEM
1392 && MEM_VOLATILE_P (operands[0]))))
1393 return "clr%.l %0";
1394 else if (DATA_REG_P (operands[0]))
1395 return output_move_const_into_data_reg (operands);
1396 else if (ADDRESS_REG_P (operands[0])
1397 && INTVAL (operands[1]) < 0x8000
1398 && INTVAL (operands[1]) >= -0x8000)
1399 return "move%.w %1,%0";
1400 else if (GET_CODE (operands[0]) == MEM
1401 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
1402 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1403 && INTVAL (operands[1]) < 0x8000
1404 && INTVAL (operands[1]) >= -0x8000)
1405 return "pea %a1";
1406 return "move%.l %1,%0";
1407}
1408
79e68feb
RS
1409/* Return the best assembler insn template
1410 for moving operands[1] into operands[0] as a fullword. */
1411
1412static char *
1413singlemove_string (operands)
1414 rtx *operands;
1415{
1416#ifdef SUPPORT_SUN_FPA
1417 if (FPA_REG_P (operands[0]) || FPA_REG_P (operands[1]))
1418 return "fpmoves %1,%0";
1419#endif
02ed0c07
RK
1420 if (GET_CODE (operands[1]) == CONST_INT)
1421 return output_move_simode_const (operands);
1422 return "move%.l %1,%0";
79e68feb
RS
1423}
1424
2505bc97 1425
79e68feb
RS
1426/* Output assembler code to perform a doubleword move insn
1427 with operands OPERANDS. */
1428
1429char *
1430output_move_double (operands)
1431 rtx *operands;
1432{
2505bc97
RS
1433 enum
1434 {
1435 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
1436 } optype0, optype1;
79e68feb 1437 rtx latehalf[2];
2505bc97 1438 rtx middlehalf[2];
7f98eeb6 1439 rtx xops[2];
79e68feb 1440 rtx addreg0 = 0, addreg1 = 0;
7f98eeb6 1441 int dest_overlapped_low = 0;
184916bc 1442 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
2505bc97
RS
1443
1444 middlehalf[0] = 0;
1445 middlehalf[1] = 0;
79e68feb
RS
1446
1447 /* First classify both operands. */
1448
1449 if (REG_P (operands[0]))
1450 optype0 = REGOP;
1451 else if (offsettable_memref_p (operands[0]))
1452 optype0 = OFFSOP;
1453 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
1454 optype0 = POPOP;
1455 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
1456 optype0 = PUSHOP;
1457 else if (GET_CODE (operands[0]) == MEM)
1458 optype0 = MEMOP;
1459 else
1460 optype0 = RNDOP;
1461
1462 if (REG_P (operands[1]))
1463 optype1 = REGOP;
1464 else if (CONSTANT_P (operands[1]))
1465 optype1 = CNSTOP;
1466 else if (offsettable_memref_p (operands[1]))
1467 optype1 = OFFSOP;
1468 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
1469 optype1 = POPOP;
1470 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
1471 optype1 = PUSHOP;
1472 else if (GET_CODE (operands[1]) == MEM)
1473 optype1 = MEMOP;
1474 else
1475 optype1 = RNDOP;
1476
1477 /* Check for the cases that the operand constraints are not
1478 supposed to allow to happen. Abort if we get one,
1479 because generating code for these cases is painful. */
1480
1481 if (optype0 == RNDOP || optype1 == RNDOP)
1482 abort ();
1483
1484 /* If one operand is decrementing and one is incrementing
1485 decrement the former register explicitly
1486 and change that operand into ordinary indexing. */
1487
1488 if (optype0 == PUSHOP && optype1 == POPOP)
1489 {
1490 operands[0] = XEXP (XEXP (operands[0], 0), 0);
2505bc97
RS
1491 if (size == 12)
1492 output_asm_insn ("sub%.l %#12,%0", operands);
1493 else
1494 output_asm_insn ("subq%.l %#8,%0", operands);
1495 if (GET_MODE (operands[1]) == XFmode)
1496 operands[0] = gen_rtx (MEM, XFmode, operands[0]);
1497 else if (GET_MODE (operands[0]) == DFmode)
1498 operands[0] = gen_rtx (MEM, DFmode, operands[0]);
1499 else
1500 operands[0] = gen_rtx (MEM, DImode, operands[0]);
79e68feb
RS
1501 optype0 = OFFSOP;
1502 }
1503 if (optype0 == POPOP && optype1 == PUSHOP)
1504 {
1505 operands[1] = XEXP (XEXP (operands[1], 0), 0);
2505bc97
RS
1506 if (size == 12)
1507 output_asm_insn ("sub%.l %#12,%1", operands);
1508 else
1509 output_asm_insn ("subq%.l %#8,%1", operands);
1510 if (GET_MODE (operands[1]) == XFmode)
1511 operands[1] = gen_rtx (MEM, XFmode, operands[1]);
1512 else if (GET_MODE (operands[1]) == DFmode)
1513 operands[1] = gen_rtx (MEM, DFmode, operands[1]);
1514 else
1515 operands[1] = gen_rtx (MEM, DImode, operands[1]);
79e68feb
RS
1516 optype1 = OFFSOP;
1517 }
1518
1519 /* If an operand is an unoffsettable memory ref, find a register
1520 we can increment temporarily to make it refer to the second word. */
1521
1522 if (optype0 == MEMOP)
1523 addreg0 = find_addr_reg (XEXP (operands[0], 0));
1524
1525 if (optype1 == MEMOP)
1526 addreg1 = find_addr_reg (XEXP (operands[1], 0));
1527
1528 /* Ok, we can do one word at a time.
1529 Normally we do the low-numbered word first,
1530 but if either operand is autodecrementing then we
1531 do the high-numbered word first.
1532
1533 In either case, set up in LATEHALF the operands to use
1534 for the high-numbered word and in some cases alter the
1535 operands in OPERANDS to be suitable for the low-numbered word. */
1536
2505bc97
RS
1537 if (size == 12)
1538 {
1539 if (optype0 == REGOP)
1540 {
1541 latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
1542 middlehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
1543 }
1544 else if (optype0 == OFFSOP)
1545 {
1546 middlehalf[0] = adj_offsettable_operand (operands[0], 4);
1547 latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
1548 }
1549 else
1550 {
1551 middlehalf[0] = operands[0];
1552 latehalf[0] = operands[0];
1553 }
1554
1555 if (optype1 == REGOP)
1556 {
1557 latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
1558 middlehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
1559 }
1560 else if (optype1 == OFFSOP)
1561 {
1562 middlehalf[1] = adj_offsettable_operand (operands[1], 4);
1563 latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
1564 }
1565 else if (optype1 == CNSTOP)
1566 {
1567 if (GET_CODE (operands[1]) == CONST_DOUBLE)
1568 {
1569 REAL_VALUE_TYPE r;
1570 long l[3];
1571
1572 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
1573 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
1574 operands[1] = GEN_INT (l[0]);
1575 middlehalf[1] = GEN_INT (l[1]);
1576 latehalf[1] = GEN_INT (l[2]);
1577 }
1578 else if (CONSTANT_P (operands[1]))
1579 {
1580 /* actually, no non-CONST_DOUBLE constant should ever
1581 appear here. */
1582 abort ();
1583 if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) < 0)
1584 latehalf[1] = constm1_rtx;
1585 else
1586 latehalf[1] = const0_rtx;
1587 }
1588 }
1589 else
1590 {
1591 middlehalf[1] = operands[1];
1592 latehalf[1] = operands[1];
1593 }
1594 }
79e68feb 1595 else
2505bc97
RS
1596 /* size is not 12: */
1597 {
1598 if (optype0 == REGOP)
1599 latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
1600 else if (optype0 == OFFSOP)
1601 latehalf[0] = adj_offsettable_operand (operands[0], size - 4);
1602 else
1603 latehalf[0] = operands[0];
1604
1605 if (optype1 == REGOP)
1606 latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
1607 else if (optype1 == OFFSOP)
1608 latehalf[1] = adj_offsettable_operand (operands[1], size - 4);
1609 else if (optype1 == CNSTOP)
1610 split_double (operands[1], &operands[1], &latehalf[1]);
1611 else
1612 latehalf[1] = operands[1];
1613 }
79e68feb
RS
1614
1615 /* If insn is effectively movd N(sp),-(sp) then we will do the
1616 high word first. We should use the adjusted operand 1 (which is N+4(sp))
1617 for the low word as well, to compensate for the first decrement of sp. */
1618 if (optype0 == PUSHOP
1619 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
1620 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
c88aeaf8 1621 operands[1] = middlehalf[1] = latehalf[1];
79e68feb 1622
7f98eeb6
RS
1623 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
1624 if the upper part of reg N does not appear in the MEM, arrange to
1625 emit the move late-half first. Otherwise, compute the MEM address
1626 into the upper part of N and use that as a pointer to the memory
1627 operand. */
1628 if (optype0 == REGOP
1629 && (optype1 == OFFSOP || optype1 == MEMOP))
1630 {
3a58400f
RS
1631 rtx testlow = gen_rtx (REG, SImode, REGNO (operands[0]));
1632
1633 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581 1634 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
7f98eeb6
RS
1635 {
1636 /* If both halves of dest are used in the src memory address,
3a58400f
RS
1637 compute the address into latehalf of dest.
1638 Note that this can't happen if the dest is two data regs. */
7f98eeb6
RS
1639compadr:
1640 xops[0] = latehalf[0];
1641 xops[1] = XEXP (operands[1], 0);
d7e8d581 1642 output_asm_insn ("lea %a1,%0", xops);
7f98eeb6
RS
1643 if( GET_MODE (operands[1]) == XFmode )
1644 {
1645 operands[1] = gen_rtx (MEM, XFmode, latehalf[0]);
1646 middlehalf[1] = adj_offsettable_operand (operands[1], size-8);
1647 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1648 }
1649 else
1650 {
1651 operands[1] = gen_rtx (MEM, DImode, latehalf[0]);
1652 latehalf[1] = adj_offsettable_operand (operands[1], size-4);
1653 }
1654 }
1655 else if (size == 12
d7e8d581
RS
1656 && reg_overlap_mentioned_p (middlehalf[0],
1657 XEXP (operands[1], 0)))
7f98eeb6 1658 {
3a58400f
RS
1659 /* Check for two regs used by both source and dest.
1660 Note that this can't happen if the dest is all data regs.
1661 It can happen if the dest is d6, d7, a0.
1662 But in that case, latehalf is an addr reg, so
1663 the code at compadr does ok. */
1664
1665 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
d7e8d581
RS
1666 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
1667 goto compadr;
7f98eeb6
RS
1668
1669 /* JRV says this can't happen: */
1670 if (addreg0 || addreg1)
d7e8d581 1671 abort ();
7f98eeb6
RS
1672
1673 /* Only the middle reg conflicts; simply put it last. */
1674 output_asm_insn (singlemove_string (operands), operands);
1675 output_asm_insn (singlemove_string (latehalf), latehalf);
1676 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1677 return "";
1678 }
2fb8a81d 1679 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
7f98eeb6
RS
1680 /* If the low half of dest is mentioned in the source memory
1681 address, the arrange to emit the move late half first. */
1682 dest_overlapped_low = 1;
1683 }
1684
79e68feb
RS
1685 /* If one or both operands autodecrementing,
1686 do the two words, high-numbered first. */
1687
1688 /* Likewise, the first move would clobber the source of the second one,
1689 do them in the other order. This happens only for registers;
1690 such overlap can't happen in memory unless the user explicitly
1691 sets it up, and that is an undefined circumstance. */
1692
1693 if (optype0 == PUSHOP || optype1 == PUSHOP
1694 || (optype0 == REGOP && optype1 == REGOP
2505bc97 1695 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
7f98eeb6
RS
1696 || REGNO (operands[0]) == REGNO (latehalf[1])))
1697 || dest_overlapped_low)
79e68feb
RS
1698 {
1699 /* Make any unoffsettable addresses point at high-numbered word. */
1700 if (addreg0)
2505bc97
RS
1701 {
1702 if (size == 12)
07eced4d 1703 output_asm_insn ("addq%.l %#8,%0", &addreg0);
2505bc97 1704 else
07eced4d 1705 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2505bc97 1706 }
79e68feb 1707 if (addreg1)
2505bc97
RS
1708 {
1709 if (size == 12)
07eced4d 1710 output_asm_insn ("addq%.l %#8,%0", &addreg1);
2505bc97 1711 else
07eced4d 1712 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2505bc97 1713 }
79e68feb
RS
1714
1715 /* Do that word. */
1716 output_asm_insn (singlemove_string (latehalf), latehalf);
1717
1718 /* Undo the adds we just did. */
1719 if (addreg0)
07eced4d 1720 output_asm_insn ("subq%.l %#4,%0", &addreg0);
79e68feb 1721 if (addreg1)
07eced4d 1722 output_asm_insn ("subq%.l %#4,%0", &addreg1);
79e68feb 1723
2505bc97
RS
1724 if (size == 12)
1725 {
1726 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1727 if (addreg0)
07eced4d 1728 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2505bc97 1729 if (addreg1)
07eced4d 1730 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2505bc97
RS
1731 }
1732
79e68feb
RS
1733 /* Do low-numbered word. */
1734 return singlemove_string (operands);
1735 }
1736
1737 /* Normal case: do the two words, low-numbered first. */
1738
1739 output_asm_insn (singlemove_string (operands), operands);
1740
2505bc97
RS
1741 /* Do the middle one of the three words for long double */
1742 if (size == 12)
1743 {
1744 if (addreg0)
07eced4d 1745 output_asm_insn ("addq%.l %#4,%0", &addreg0);
2505bc97 1746 if (addreg1)
07eced4d 1747 output_asm_insn ("addq%.l %#4,%0", &addreg1);
2505bc97
RS
1748
1749 output_asm_insn (singlemove_string (middlehalf), middlehalf);
1750 }
1751
79e68feb
RS
1752 /* Make any unoffsettable addresses point at high-numbered word. */
1753 if (addreg0)
07eced4d 1754 output_asm_insn ("addq%.l %#4,%0", &addreg0);
79e68feb 1755 if (addreg1)
07eced4d 1756 output_asm_insn ("addq%.l %#4,%0", &addreg1);
79e68feb
RS
1757
1758 /* Do that word. */
1759 output_asm_insn (singlemove_string (latehalf), latehalf);
1760
1761 /* Undo the adds we just did. */
1762 if (addreg0)
2505bc97
RS
1763 {
1764 if (size == 12)
07eced4d 1765 output_asm_insn ("subq%.l %#8,%0", &addreg0);
2505bc97 1766 else
07eced4d 1767 output_asm_insn ("subq%.l %#4,%0", &addreg0);
2505bc97 1768 }
79e68feb 1769 if (addreg1)
2505bc97
RS
1770 {
1771 if (size == 12)
07eced4d 1772 output_asm_insn ("subq%.l %#8,%0", &addreg1);
2505bc97 1773 else
07eced4d 1774 output_asm_insn ("subq%.l %#4,%0", &addreg1);
2505bc97 1775 }
79e68feb
RS
1776
1777 return "";
1778}
1779
1780/* Return a REG that occurs in ADDR with coefficient 1.
1781 ADDR can be effectively incremented by incrementing REG. */
1782
1783static rtx
1784find_addr_reg (addr)
1785 rtx addr;
1786{
1787 while (GET_CODE (addr) == PLUS)
1788 {
1789 if (GET_CODE (XEXP (addr, 0)) == REG)
1790 addr = XEXP (addr, 0);
1791 else if (GET_CODE (XEXP (addr, 1)) == REG)
1792 addr = XEXP (addr, 1);
1793 else if (CONSTANT_P (XEXP (addr, 0)))
1794 addr = XEXP (addr, 1);
1795 else if (CONSTANT_P (XEXP (addr, 1)))
1796 addr = XEXP (addr, 0);
1797 else
1798 abort ();
1799 }
1800 if (GET_CODE (addr) == REG)
1801 return addr;
1802 abort ();
1803}
1804\f
1805/* Store in cc_status the expressions that the condition codes will
1806 describe after execution of an instruction whose pattern is EXP.
1807 Do not alter them if the instruction would not alter the cc's. */
1808
1809/* On the 68000, all the insns to store in an address register fail to
1810 set the cc's. However, in some cases these instructions can make it
1811 possibly invalid to use the saved cc's. In those cases we clear out
1812 some or all of the saved cc's so they won't be used. */
1813
1814notice_update_cc (exp, insn)
1815 rtx exp;
1816 rtx insn;
1817{
1818 /* If the cc is being set from the fpa and the expression is not an
1819 explicit floating point test instruction (which has code to deal with
1820 this), reinit the CC. */
1821 if (((cc_status.value1 && FPA_REG_P (cc_status.value1))
1822 || (cc_status.value2 && FPA_REG_P (cc_status.value2)))
1823 && !(GET_CODE (exp) == PARALLEL
1824 && GET_CODE (XVECEXP (exp, 0, 0)) == SET
1825 && XEXP (XVECEXP (exp, 0, 0), 0) == cc0_rtx))
1826 {
1827 CC_STATUS_INIT;
1828 }
1829 else if (GET_CODE (exp) == SET)
1830 {
1831 if (GET_CODE (SET_SRC (exp)) == CALL)
1832 {
1833 CC_STATUS_INIT;
1834 }
1835 else if (ADDRESS_REG_P (SET_DEST (exp)))
1836 {
1837 if (cc_status.value1
1838 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1))
1839 cc_status.value1 = 0;
1840 if (cc_status.value2
1841 && reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2))
1842 cc_status.value2 = 0;
1843 }
1844 else if (!FP_REG_P (SET_DEST (exp))
1845 && SET_DEST (exp) != cc0_rtx
1846 && (FP_REG_P (SET_SRC (exp))
1847 || GET_CODE (SET_SRC (exp)) == FIX
1848 || GET_CODE (SET_SRC (exp)) == FLOAT_TRUNCATE
1849 || GET_CODE (SET_SRC (exp)) == FLOAT_EXTEND))
1850 {
1851 CC_STATUS_INIT;
1852 }
1853 /* A pair of move insns doesn't produce a useful overall cc. */
1854 else if (!FP_REG_P (SET_DEST (exp))
1855 && !FP_REG_P (SET_SRC (exp))
1856 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
1857 && (GET_CODE (SET_SRC (exp)) == REG
1858 || GET_CODE (SET_SRC (exp)) == MEM
1859 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
1860 {
1861 CC_STATUS_INIT;
1862 }
1863 else if (GET_CODE (SET_SRC (exp)) == CALL)
1864 {
1865 CC_STATUS_INIT;
1866 }
1867 else if (XEXP (exp, 0) != pc_rtx)
1868 {
1869 cc_status.flags = 0;
1870 cc_status.value1 = XEXP (exp, 0);
1871 cc_status.value2 = XEXP (exp, 1);
1872 }
1873 }
1874 else if (GET_CODE (exp) == PARALLEL
1875 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
1876 {
1877 if (ADDRESS_REG_P (XEXP (XVECEXP (exp, 0, 0), 0)))
1878 CC_STATUS_INIT;
1879 else if (XEXP (XVECEXP (exp, 0, 0), 0) != pc_rtx)
1880 {
1881 cc_status.flags = 0;
1882 cc_status.value1 = XEXP (XVECEXP (exp, 0, 0), 0);
1883 cc_status.value2 = XEXP (XVECEXP (exp, 0, 0), 1);
1884 }
1885 }
1886 else
1887 CC_STATUS_INIT;
1888 if (cc_status.value2 != 0
1889 && ADDRESS_REG_P (cc_status.value2)
1890 && GET_MODE (cc_status.value2) == QImode)
1891 CC_STATUS_INIT;
1892 if (cc_status.value2 != 0
1893 && !(cc_status.value1 && FPA_REG_P (cc_status.value1)))
1894 switch (GET_CODE (cc_status.value2))
1895 {
1896 case PLUS: case MINUS: case MULT:
1897 case DIV: case UDIV: case MOD: case UMOD: case NEG:
b757e352 1898#if 0 /* These instructions always clear the overflow bit */
996a5f59 1899 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
79e68feb 1900 case ROTATE: case ROTATERT:
b757e352 1901#endif
79e68feb
RS
1902 if (GET_MODE (cc_status.value2) != VOIDmode)
1903 cc_status.flags |= CC_NO_OVERFLOW;
1904 break;
1905 case ZERO_EXTEND:
1906 /* (SET r1 (ZERO_EXTEND r2)) on this machine
1907 ends with a move insn moving r2 in r2's mode.
1908 Thus, the cc's are set for r2.
1909 This can set N bit spuriously. */
1910 cc_status.flags |= CC_NOT_NEGATIVE;
1911 }
1912 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
1913 && cc_status.value2
1914 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
1915 cc_status.value2 = 0;
1916 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
1917 || (cc_status.value2 && FP_REG_P (cc_status.value2)))
1918 && !((cc_status.value1 && FPA_REG_P (cc_status.value1))
1919 || (cc_status.value2 && FPA_REG_P (cc_status.value2))))
1920 cc_status.flags = CC_IN_68881;
1921}
1922\f
1923char *
1924output_move_const_double (operands)
1925 rtx *operands;
1926{
1927#ifdef SUPPORT_SUN_FPA
64a184e9 1928 if (TARGET_FPA && FPA_REG_P (operands[0]))
79e68feb
RS
1929 {
1930 int code = standard_sun_fpa_constant_p (operands[1]);
1931
1932 if (code != 0)
1933 {
1934 static char buf[40];
1935
1936 sprintf (buf, "fpmove%%.d %%%%%d,%%0", code & 0x1ff);
1937 return buf;
1938 }
1939 return "fpmove%.d %1,%0";
1940 }
1941 else
1942#endif
1943 {
1944 int code = standard_68881_constant_p (operands[1]);
1945
1946 if (code != 0)
1947 {
1948 static char buf[40];
1949
1950 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
1951 return buf;
1952 }
1953 return "fmove%.d %1,%0";
1954 }
1955}
1956
1957char *
1958output_move_const_single (operands)
1959 rtx *operands;
1960{
1961#ifdef SUPPORT_SUN_FPA
1962 if (TARGET_FPA)
1963 {
1964 int code = standard_sun_fpa_constant_p (operands[1]);
1965
1966 if (code != 0)
1967 {
1968 static char buf[40];
1969
1970 sprintf (buf, "fpmove%%.s %%%%%d,%%0", code & 0x1ff);
1971 return buf;
1972 }
1973 return "fpmove%.s %1,%0";
1974 }
1975 else
1976#endif /* defined SUPPORT_SUN_FPA */
1977 {
1978 int code = standard_68881_constant_p (operands[1]);
1979
1980 if (code != 0)
1981 {
1982 static char buf[40];
1983
1984 sprintf (buf, "fmovecr %%#0x%x,%%0", code & 0xff);
1985 return buf;
1986 }
1987 return "fmove%.s %f1,%0";
1988 }
1989}
1990
1991/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
1992 from the "fmovecr" instruction.
1993 The value, anded with 0xff, gives the code to use in fmovecr
1994 to get the desired constant. */
1995
c1cfb2ae
RS
1996/* This code has been fixed for cross-compilation. */
1997
1998static int inited_68881_table = 0;
1999
2000char *strings_68881[7] = {
2001 "0.0",
2002 "1.0",
2003 "10.0",
2004 "100.0",
2005 "10000.0",
2006 "1e8",
2007 "1e16"
2008 };
2009
2010int codes_68881[7] = {
2011 0x0f,
2012 0x32,
2013 0x33,
2014 0x34,
2015 0x35,
2016 0x36,
2017 0x37
2018 };
2019
2020REAL_VALUE_TYPE values_68881[7];
2021
2022/* Set up values_68881 array by converting the decimal values
2023 strings_68881 to binary. */
2024
2025void
2026init_68881_table ()
2027{
2028 int i;
2029 REAL_VALUE_TYPE r;
2030 enum machine_mode mode;
2031
16d82c3c 2032 mode = SFmode;
c1cfb2ae
RS
2033 for (i = 0; i < 7; i++)
2034 {
2035 if (i == 6)
16d82c3c 2036 mode = DFmode;
c1cfb2ae
RS
2037 r = REAL_VALUE_ATOF (strings_68881[i], mode);
2038 values_68881[i] = r;
2039 }
2040 inited_68881_table = 1;
2041}
79e68feb
RS
2042
2043int
2044standard_68881_constant_p (x)
2045 rtx x;
2046{
c1cfb2ae
RS
2047 REAL_VALUE_TYPE r;
2048 int i;
2049 enum machine_mode mode;
79e68feb 2050
a5d54cc5
RK
2051#ifdef NO_ASM_FMOVECR
2052 return 0;
2053#endif
2054
2296cba3 2055 /* fmovecr must be emulated on the 68040, so it shouldn't be used at all. */
79e68feb
RS
2056 if (TARGET_68040)
2057 return 0;
2058
c1cfb2ae 2059#ifndef REAL_ARITHMETIC
79e68feb
RS
2060#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2061 if (! flag_pretend_float)
2062 return 0;
c1cfb2ae 2063#endif
79e68feb
RS
2064#endif
2065
c1cfb2ae
RS
2066 if (! inited_68881_table)
2067 init_68881_table ();
2068
2069 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2070
2071 for (i = 0; i < 6; i++)
2072 {
2073 if (REAL_VALUES_EQUAL (r, values_68881[i]))
2074 return (codes_68881[i]);
2075 }
2076
79e68feb
RS
2077 if (GET_MODE (x) == SFmode)
2078 return 0;
c1cfb2ae
RS
2079
2080 if (REAL_VALUES_EQUAL (r, values_68881[6]))
2081 return (codes_68881[6]);
2082
79e68feb
RS
2083 /* larger powers of ten in the constants ram are not used
2084 because they are not equal to a `double' C constant. */
2085 return 0;
2086}
2087
2088/* If X is a floating-point constant, return the logarithm of X base 2,
2089 or 0 if X is not a power of 2. */
2090
2091int
2092floating_exact_log2 (x)
2093 rtx x;
2094{
c1cfb2ae 2095 REAL_VALUE_TYPE r, r1;
79e68feb
RS
2096 int i;
2097
c1cfb2ae 2098#ifndef REAL_ARITHMETIC
79e68feb
RS
2099#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2100 if (! flag_pretend_float)
2101 return 0;
c1cfb2ae 2102#endif
79e68feb
RS
2103#endif
2104
c1cfb2ae 2105 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
79e68feb 2106
c1cfb2ae 2107 if (REAL_VALUES_LESS (r, dconst0))
79e68feb
RS
2108 return 0;
2109
6b62e557 2110 r1 = dconst1;
c1cfb2ae
RS
2111 i = 0;
2112 while (REAL_VALUES_LESS (r1, r))
2113 {
2114 r1 = REAL_VALUE_LDEXP (dconst1, i);
2115 if (REAL_VALUES_EQUAL (r1, r))
2116 return i;
2117 i = i + 1;
2118 }
79e68feb
RS
2119 return 0;
2120}
2121\f
2122#ifdef SUPPORT_SUN_FPA
2123/* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
2124 from the Sun FPA's constant RAM.
2125 The value returned, anded with 0x1ff, gives the code to use in fpmove
2126 to get the desired constant. */
c1cfb2ae
RS
2127
2128static int inited_FPA_table = 0;
2129
2130char *strings_FPA[38] = {
2131/* small rationals */
2132 "0.0",
2133 "1.0",
2134 "0.5",
2135 "-1.0",
2136 "2.0",
2137 "3.0",
2138 "4.0",
2139 "8.0",
2140 "0.25",
2141 "0.125",
2142 "10.0",
2143 "-0.5",
2144/* Decimal equivalents of double precision values */
2145 "2.718281828459045091", /* D_E */
2146 "6.283185307179586477", /* 2 pi */
2147 "3.141592653589793116", /* D_PI */
2148 "1.570796326794896619", /* pi/2 */
2149 "1.414213562373095145", /* D_SQRT2 */
2150 "0.7071067811865475244", /* 1/sqrt(2) */
2151 "-1.570796326794896619", /* -pi/2 */
2152 "1.442695040888963387", /* D_LOG2ofE */
2153 "3.321928024887362182", /* D_LOG2of10 */
2154 "0.6931471805599452862", /* D_LOGEof2 */
2155 "2.302585092994045901", /* D_LOGEof10 */
2156 "0.3010299956639811980", /* D_LOG10of2 */
2157 "0.4342944819032518167", /* D_LOG10ofE */
2158/* Decimal equivalents of single precision values */
2159 "2.718281745910644531", /* S_E */
2160 "6.283185307179586477", /* 2 pi */
2161 "3.141592741012573242", /* S_PI */
2162 "1.570796326794896619", /* pi/2 */
2163 "1.414213538169860840", /* S_SQRT2 */
2164 "0.7071067811865475244", /* 1/sqrt(2) */
2165 "-1.570796326794896619", /* -pi/2 */
2166 "1.442695021629333496", /* S_LOG2ofE */
2167 "3.321928024291992188", /* S_LOG2of10 */
2168 "0.6931471824645996094", /* S_LOGEof2 */
2169 "2.302585124969482442", /* S_LOGEof10 */
2170 "0.3010300099849700928", /* S_LOG10of2 */
2171 "0.4342944920063018799", /* S_LOG10ofE */
2172};
2173
2174
2175int codes_FPA[38] = {
2176/* small rationals */
2177 0x200,
2178 0xe,
2179 0xf,
2180 0x10,
2181 0x11,
2182 0xb1,
2183 0x12,
2184 0x13,
2185 0x15,
2186 0x16,
2187 0x17,
2188 0x2e,
2189/* double precision */
2190 0x8,
2191 0x9,
2192 0xa,
2193 0xb,
2194 0xc,
2195 0xd,
2196 0x27,
2197 0x28,
2198 0x29,
2199 0x2a,
2200 0x2b,
2201 0x2c,
2202 0x2d,
2203/* single precision */
2204 0x8,
2205 0x9,
2206 0xa,
2207 0xb,
2208 0xc,
2209 0xd,
2210 0x27,
2211 0x28,
2212 0x29,
2213 0x2a,
2214 0x2b,
2215 0x2c,
2216 0x2d
2217 };
2218
2219REAL_VALUE_TYPE values_FPA[38];
2220
2221/* This code has been fixed for cross-compilation. */
2222
2223void
2224init_FPA_table ()
2225{
2226 enum machine_mode mode;
2227 int i;
2228 REAL_VALUE_TYPE r;
2229
2230 mode = DFmode;
2231 for (i = 0; i < 38; i++)
2232 {
2233 if (i == 25)
2234 mode = SFmode;
2235 r = REAL_VALUE_ATOF (strings_FPA[i], mode);
2236 values_FPA[i] = r;
2237 }
2238 inited_FPA_table = 1;
2239}
2240
79e68feb
RS
2241
2242int
2243standard_sun_fpa_constant_p (x)
2244 rtx x;
2245{
c1cfb2ae
RS
2246 REAL_VALUE_TYPE r;
2247 int i;
79e68feb 2248
c1cfb2ae 2249#ifndef REAL_ARITHMETIC
79e68feb
RS
2250#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
2251 if (! flag_pretend_float)
2252 return 0;
2253#endif
c1cfb2ae
RS
2254#endif
2255
2256 if (! inited_FPA_table)
2257 init_FPA_table ();
2258
2259 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2260
2261 for (i=0; i<12; i++)
2262 {
2263 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2264 return (codes_FPA[i]);
2265 }
79e68feb 2266
64a184e9 2267 if (GET_MODE (x) == SFmode)
79e68feb 2268 {
c1cfb2ae
RS
2269 for (i=25; i<38; i++)
2270 {
2271 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2272 return (codes_FPA[i]);
2273 }
79e68feb
RS
2274 }
2275 else
2276 {
c1cfb2ae
RS
2277 for (i=12; i<25; i++)
2278 {
2279 if (REAL_VALUES_EQUAL (r, values_FPA[i]))
2280 return (codes_FPA[i]);
2281 }
79e68feb
RS
2282 }
2283 return 0x0;
2284}
2285#endif /* define SUPPORT_SUN_FPA */
2286\f
2287/* A C compound statement to output to stdio stream STREAM the
2288 assembler syntax for an instruction operand X. X is an RTL
2289 expression.
2290
2291 CODE is a value that can be used to specify one of several ways
2292 of printing the operand. It is used when identical operands
2293 must be printed differently depending on the context. CODE
2294 comes from the `%' specification that was used to request
2295 printing of the operand. If the specification was just `%DIGIT'
2296 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2297 is the ASCII code for LTR.
2298
2299 If X is a register, this macro should print the register's name.
2300 The names can be found in an array `reg_names' whose type is
2301 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
2302
2303 When the machine description has a specification `%PUNCT' (a `%'
2304 followed by a punctuation character), this macro is called with
2305 a null pointer for X and the punctuation character for CODE.
2306
2307 The m68k specific codes are:
2308
2309 '.' for dot needed in Motorola-style opcode names.
2310 '-' for an operand pushing on the stack:
2311 sp@-, -(sp) or -(%sp) depending on the style of syntax.
2312 '+' for an operand pushing on the stack:
2313 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
2314 '@' for a reference to the top word on the stack:
2315 sp@, (sp) or (%sp) depending on the style of syntax.
2316 '#' for an immediate operand prefix (# in MIT and Motorola syntax
a7e2b014 2317 but & in SGS syntax, $ in CRDS/UNOS syntax).
79e68feb
RS
2318 '!' for the cc register (used in an `and to cc' insn).
2319 '$' for the letter `s' in an op code, but only on the 68040.
2320 '&' for the letter `d' in an op code, but only on the 68040.
2ac5f14a 2321 '/' for register prefix needed by longlong.h.
79e68feb
RS
2322
2323 'b' for byte insn (no effect, on the Sun; this is for the ISI).
2324 'd' to force memory addressing to be absolute, not relative.
2325 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
2326 'w' for FPA insn (print a CONST_DOUBLE as a SunFPA constant rather
2327 than directly). Second part of 'y' below.
2328 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
2329 or print pair of registers as rx:ry.
2330 'y' for a FPA insn (print pair of registers as rx:ry). This also outputs
2331 CONST_DOUBLE's as SunFPA constant RAM registers if
2332 possible, so it should not be used except for the SunFPA.
2333
2334 */
2335
2336void
2337print_operand (file, op, letter)
2338 FILE *file; /* file to write to */
2339 rtx op; /* operand to print */
2340 int letter; /* %<letter> or 0 */
2341{
2342 int i;
2343
2344 if (letter == '.')
2345 {
a7e2b014 2346#if defined (MOTOROLA) && !defined (CRDS)
79e68feb
RS
2347 asm_fprintf (file, ".");
2348#endif
2349 }
2350 else if (letter == '#')
2351 {
cffd0d74 2352 asm_fprintf (file, "%0I");
79e68feb
RS
2353 }
2354 else if (letter == '-')
2355 {
2356#ifdef MOTOROLA
2357 asm_fprintf (file, "-(%Rsp)");
2358#else
2359 asm_fprintf (file, "%Rsp@-");
2360#endif
2361 }
2362 else if (letter == '+')
2363 {
2364#ifdef MOTOROLA
2365 asm_fprintf (file, "(%Rsp)+");
2366#else
2367 asm_fprintf (file, "%Rsp@+");
2368#endif
2369 }
2370 else if (letter == '@')
2371 {
2372#ifdef MOTOROLA
2373 asm_fprintf (file, "(%Rsp)");
2374#else
2375 asm_fprintf (file, "%Rsp@");
2376#endif
2377 }
2378 else if (letter == '!')
2379 {
cffd0d74 2380 asm_fprintf (file, "%Rfpcr");
79e68feb
RS
2381 }
2382 else if (letter == '$')
2383 {
2384 if (TARGET_68040_ONLY)
2385 {
2386 fprintf (file, "s");
2387 }
2388 }
2389 else if (letter == '&')
2390 {
2391 if (TARGET_68040_ONLY)
2392 {
2393 fprintf (file, "d");
2394 }
2395 }
2ac5f14a
ILT
2396 else if (letter == '/')
2397 {
2398 asm_fprintf (file, "%R");
2399 }
79e68feb
RS
2400 else if (GET_CODE (op) == REG)
2401 {
f4a6e73b 2402#ifdef SUPPORT_SUN_FPA
79e68feb
RS
2403 if (REGNO (op) < 16
2404 && (letter == 'y' || letter == 'x')
2405 && GET_MODE (op) == DFmode)
2406 {
2407 fprintf (file, "%s:%s", reg_names[REGNO (op)],
2408 reg_names[REGNO (op)+1]);
2409 }
2410 else
f4a6e73b 2411#endif
79e68feb 2412 {
7f49c331
RK
2413 if (letter == 'R')
2414 /* Print out the second register name of a register pair.
2415 I.e., R (6) => 7. */
2416 fputs (reg_names[REGNO (op) + 1], file);
2417 else
2418 fputs (reg_names[REGNO (op)], file);
79e68feb
RS
2419 }
2420 }
2421 else if (GET_CODE (op) == MEM)
2422 {
2423 output_address (XEXP (op, 0));
2424 if (letter == 'd' && ! TARGET_68020
2425 && CONSTANT_ADDRESS_P (XEXP (op, 0))
2426 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
2427 && INTVAL (XEXP (op, 0)) < 0x8000
2428 && INTVAL (XEXP (op, 0)) >= -0x8000))
2429 {
3f889ae8
RK
2430#ifdef MOTOROLA
2431 fprintf (file, ".l");
2432#else
79e68feb 2433 fprintf (file, ":l");
3f889ae8 2434#endif
79e68feb
RS
2435 }
2436 }
2437#ifdef SUPPORT_SUN_FPA
2438 else if ((letter == 'y' || letter == 'w')
64a184e9 2439 && GET_CODE (op) == CONST_DOUBLE
79e68feb
RS
2440 && (i = standard_sun_fpa_constant_p (op)))
2441 {
2442 fprintf (file, "%%%d", i & 0x1ff);
2443 }
2444#endif
2445 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
2446 {
c1cfb2ae
RS
2447 REAL_VALUE_TYPE r;
2448 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2449 ASM_OUTPUT_FLOAT_OPERAND (letter, file, r);
2450 }
2451 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
2452 {
2453 REAL_VALUE_TYPE r;
2454 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2455 ASM_OUTPUT_LONG_DOUBLE_OPERAND (file, r);
79e68feb 2456 }
e2c0a924 2457 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
79e68feb 2458 {
c1cfb2ae
RS
2459 REAL_VALUE_TYPE r;
2460 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
2461 ASM_OUTPUT_DOUBLE_OPERAND (file, r);
79e68feb
RS
2462 }
2463 else
2464 {
cffd0d74 2465 asm_fprintf (file, "%0I"); output_addr_const (file, op);
79e68feb
RS
2466 }
2467}
2468
2469\f
2470/* A C compound statement to output to stdio stream STREAM the
2471 assembler syntax for an instruction operand that is a memory
2472 reference whose address is ADDR. ADDR is an RTL expression.
2473
2474 Note that this contains a kludge that knows that the only reason
2475 we have an address (plus (label_ref...) (reg...)) when not generating
2476 PIC code is in the insn before a tablejump, and we know that m68k.md
2477 generates a label LInnn: on such an insn.
2478
2479 It is possible for PIC to generate a (plus (label_ref...) (reg...))
2480 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
2481
2482 Some SGS assemblers have a bug such that "Lnnn-LInnn-2.b(pc,d0.l*2)"
2483 fails to assemble. Luckily "Lnnn(pc,d0.l*2)" produces the results
2484 we want. This difference can be accommodated by using an assembler
2485 define such "LDnnn" to be either "Lnnn-LInnn-2.b", "Lnnn", or any other
2486 string, as necessary. This is accomplished via the ASM_OUTPUT_CASE_END
ad7c12b2 2487 macro. See m68k/sgs.h for an example; for versions without the bug.
f4a6e73b
RK
2488 Some assemblers refuse all the above solutions. The workaround is to
2489 emit "K(pc,d0.l*2)" with K being a small constant known to give the
2490 right behaviour.
79e68feb
RS
2491
2492 They also do not like things like "pea 1.w", so we simple leave off
2493 the .w on small constants.
2494
2495 This routine is responsible for distinguishing between -fpic and -fPIC
2496 style relocations in an address. When generating -fpic code the
2497 offset is output in word mode (eg movel a5@(_foo:w), a0). When generating
2498 -fPIC code the offset is output in long mode (eg movel a5@(_foo:l), a0) */
2499
f4a6e73b
RK
2500#ifndef ASM_OUTPUT_CASE_FETCH
2501#ifdef MOTOROLA
2502#ifdef SGS
2503#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2504 asm_fprintf (file, "%LLD%d(%Rpc,%s.", labelno, regname)
2505#else
2506#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2507 asm_fprintf (file, "%LL%d-%LLI%d.b(%Rpc,%s.", labelno, labelno, regname)
2508#endif
2509#else
2510#define ASM_OUTPUT_CASE_FETCH(file, labelno, regname)\
2511 asm_fprintf (file, "%Rpc@(%LL%d-%LLI%d-2:b,%s:", labelno, labelno, regname)
2512#endif
2513#endif /* ASM_OUTPUT_CASE_FETCH */
2514
79e68feb
RS
2515void
2516print_operand_address (file, addr)
2517 FILE *file;
2518 rtx addr;
2519{
2520 register rtx reg1, reg2, breg, ireg;
2521 rtx offset;
2522
2523 switch (GET_CODE (addr))
2524 {
2525 case REG:
2526#ifdef MOTOROLA
2527 fprintf (file, "(%s)", reg_names[REGNO (addr)]);
2528#else
2529 fprintf (file, "%s@", reg_names[REGNO (addr)]);
2530#endif
2531 break;
2532 case PRE_DEC:
2533#ifdef MOTOROLA
2534 fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
2535#else
2536 fprintf (file, "%s@-", reg_names[REGNO (XEXP (addr, 0))]);
2537#endif
2538 break;
2539 case POST_INC:
2540#ifdef MOTOROLA
2541 fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
2542#else
2543 fprintf (file, "%s@+", reg_names[REGNO (XEXP (addr, 0))]);
2544#endif
2545 break;
2546 case PLUS:
2547 reg1 = reg2 = ireg = breg = offset = 0;
2548 if (CONSTANT_ADDRESS_P (XEXP (addr, 0)))
2549 {
2550 offset = XEXP (addr, 0);
2551 addr = XEXP (addr, 1);
2552 }
2553 else if (CONSTANT_ADDRESS_P (XEXP (addr, 1)))
2554 {
2555 offset = XEXP (addr, 1);
2556 addr = XEXP (addr, 0);
2557 }
2558 if (GET_CODE (addr) != PLUS)
2559 {
2560 ;
2561 }
2562 else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND)
2563 {
2564 reg1 = XEXP (addr, 0);
2565 addr = XEXP (addr, 1);
2566 }
2567 else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND)
2568 {
2569 reg1 = XEXP (addr, 1);
2570 addr = XEXP (addr, 0);
2571 }
2572 else if (GET_CODE (XEXP (addr, 0)) == MULT)
2573 {
2574 reg1 = XEXP (addr, 0);
2575 addr = XEXP (addr, 1);
2576 }
2577 else if (GET_CODE (XEXP (addr, 1)) == MULT)
2578 {
2579 reg1 = XEXP (addr, 1);
2580 addr = XEXP (addr, 0);
2581 }
2582 else if (GET_CODE (XEXP (addr, 0)) == REG)
2583 {
2584 reg1 = XEXP (addr, 0);
2585 addr = XEXP (addr, 1);
2586 }
2587 else if (GET_CODE (XEXP (addr, 1)) == REG)
2588 {
2589 reg1 = XEXP (addr, 1);
2590 addr = XEXP (addr, 0);
2591 }
2592 if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT
2593 || GET_CODE (addr) == SIGN_EXTEND)
2594 {
2595 if (reg1 == 0)
2596 {
2597 reg1 = addr;
2598 }
2599 else
2600 {
2601 reg2 = addr;
2602 }
2603 addr = 0;
2604 }
2605#if 0 /* for OLD_INDEXING */
2606 else if (GET_CODE (addr) == PLUS)
2607 {
2608 if (GET_CODE (XEXP (addr, 0)) == REG)
2609 {
2610 reg2 = XEXP (addr, 0);
2611 addr = XEXP (addr, 1);
2612 }
2613 else if (GET_CODE (XEXP (addr, 1)) == REG)
2614 {
2615 reg2 = XEXP (addr, 1);
2616 addr = XEXP (addr, 0);
2617 }
2618 }
2619#endif
2620 if (offset != 0)
2621 {
2622 if (addr != 0)
2623 {
2624 abort ();
2625 }
2626 addr = offset;
2627 }
2628 if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND
2629 || GET_CODE (reg1) == MULT))
2630 || (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2))))
2631 {
2632 breg = reg2;
2633 ireg = reg1;
2634 }
2635 else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1)))
2636 {
2637 breg = reg1;
2638 ireg = reg2;
2639 }
2640 if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2641 && ! (flag_pic && ireg == pic_offset_table_rtx))
79e68feb
RS
2642 {
2643 int scale = 1;
2644 if (GET_CODE (ireg) == MULT)
2645 {
2646 scale = INTVAL (XEXP (ireg, 1));
2647 ireg = XEXP (ireg, 0);
2648 }
2649 if (GET_CODE (ireg) == SIGN_EXTEND)
2650 {
f4a6e73b 2651 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2652 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2653 reg_names[REGNO (XEXP (ireg, 0))]);
f4a6e73b 2654 fprintf (file, "w");
79e68feb
RS
2655 }
2656 else
2657 {
f4a6e73b 2658 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2659 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2660 reg_names[REGNO (ireg)]);
f4a6e73b 2661 fprintf (file, "l");
79e68feb
RS
2662 }
2663 if (scale != 1)
2664 {
2665#ifdef MOTOROLA
2666 fprintf (file, "*%d", scale);
2667#else
2668 fprintf (file, ":%d", scale);
2669#endif
2670 }
2671 putc (')', file);
2672 break;
2673 }
2674 if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2675 && ! (flag_pic && breg == pic_offset_table_rtx))
79e68feb 2676 {
f4a6e73b 2677 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2678 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2679 reg_names[REGNO (breg)]);
f4a6e73b 2680 fprintf (file, "l)");
79e68feb
RS
2681 break;
2682 }
2683 if (ireg != 0 || breg != 0)
2684 {
2685 int scale = 1;
2686 if (breg == 0)
2687 {
2688 abort ();
2689 }
2690 if (! flag_pic && addr && GET_CODE (addr) == LABEL_REF)
2691 {
2692 abort ();
2693 }
2694#ifdef MOTOROLA
2695 if (addr != 0)
2696 {
2697 output_addr_const (file, addr);
66c432a7
RS
2698 if (flag_pic && (breg == pic_offset_table_rtx))
2699 fprintf (file, "@GOT");
79e68feb
RS
2700 }
2701 fprintf (file, "(%s", reg_names[REGNO (breg)]);
2702 if (ireg != 0)
2703 {
2704 putc (',', file);
2705 }
2706#else
2707 fprintf (file, "%s@(", reg_names[REGNO (breg)]);
2708 if (addr != 0)
2709 {
2710 output_addr_const (file, addr);
2711 if ((flag_pic == 1) && (breg == pic_offset_table_rtx))
2712 fprintf (file, ":w");
2713 if ((flag_pic == 2) && (breg == pic_offset_table_rtx))
2714 fprintf (file, ":l");
2715 }
2716 if (addr != 0 && ireg != 0)
2717 {
2718 putc (',', file);
2719 }
2720#endif
2721 if (ireg != 0 && GET_CODE (ireg) == MULT)
2722 {
2723 scale = INTVAL (XEXP (ireg, 1));
2724 ireg = XEXP (ireg, 0);
2725 }
2726 if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND)
2727 {
2728#ifdef MOTOROLA
2729 fprintf (file, "%s.w", reg_names[REGNO (XEXP (ireg, 0))]);
2730#else
2731 fprintf (file, "%s:w", reg_names[REGNO (XEXP (ireg, 0))]);
2732#endif
2733 }
2734 else if (ireg != 0)
2735 {
2736#ifdef MOTOROLA
2737 fprintf (file, "%s.l", reg_names[REGNO (ireg)]);
2738#else
2739 fprintf (file, "%s:l", reg_names[REGNO (ireg)]);
2740#endif
2741 }
2742 if (scale != 1)
2743 {
2744#ifdef MOTOROLA
2745 fprintf (file, "*%d", scale);
2746#else
2747 fprintf (file, ":%d", scale);
2748#endif
2749 }
2750 putc (')', file);
2751 break;
2752 }
2753 else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF
63d415c0 2754 && ! (flag_pic && reg1 == pic_offset_table_rtx))
79e68feb 2755 {
f4a6e73b 2756 ASM_OUTPUT_CASE_FETCH (file,
79e68feb
RS
2757 CODE_LABEL_NUMBER (XEXP (addr, 0)),
2758 reg_names[REGNO (reg1)]);
f4a6e73b 2759 fprintf (file, "l)");
79e68feb
RS
2760 break;
2761 }
2762 /* FALL-THROUGH (is this really what we want? */
2763 default:
2764 if (GET_CODE (addr) == CONST_INT
2765 && INTVAL (addr) < 0x8000
2766 && INTVAL (addr) >= -0x8000)
2767 {
2768#ifdef MOTOROLA
2769#ifdef SGS
2770 /* Many SGS assemblers croak on size specifiers for constants. */
2771 fprintf (file, "%d", INTVAL (addr));
2772#else
2773 fprintf (file, "%d.w", INTVAL (addr));
2774#endif
2775#else
2776 fprintf (file, "%d:w", INTVAL (addr));
2777#endif
2778 }
2779 else
2780 {
2781 output_addr_const (file, addr);
2782 }
2783 break;
2784 }
2785}
af13f02d
JW
2786\f
2787/* Check for cases where a clr insns can be omitted from code using
2788 strict_low_part sets. For example, the second clrl here is not needed:
2789 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
2790
2791 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
2792 insn we are checking for redundancy. TARGET is the register set by the
2793 clear insn. */
2794
2795int
2796strict_low_part_peephole_ok (mode, first_insn, target)
2797 enum machine_mode mode;
2798 rtx first_insn;
2799 rtx target;
2800{
2801 rtx p;
2802
2803 p = prev_nonnote_insn (first_insn);
2804
2805 while (p)
2806 {
2807 /* If it isn't an insn, then give up. */
2808 if (GET_CODE (p) != INSN)
2809 return 0;
2810
2811 if (reg_set_p (target, p))
2812 {
2813 rtx set = single_set (p);
2814 rtx dest;
2815
2816 /* If it isn't an easy to recognize insn, then give up. */
2817 if (! set)
2818 return 0;
2819
2820 dest = SET_DEST (set);
2821
2822 /* If this sets the entire target register to zero, then our
2823 first_insn is redundant. */
2824 if (rtx_equal_p (dest, target)
2825 && SET_SRC (set) == const0_rtx)
2826 return 1;
2827 else if (GET_CODE (dest) == STRICT_LOW_PART
2828 && GET_CODE (XEXP (dest, 0)) == REG
2829 && REGNO (XEXP (dest, 0)) == REGNO (target)
2830 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
2831 <= GET_MODE_SIZE (mode)))
2832 /* This is a strict low part set which modifies less than
2833 we are using, so it is safe. */
2834 ;
2835 else
2836 return 0;
2837 }
2838
2839 p = prev_nonnote_insn (p);
2840
2841 }
2842
2843 return 0;
2844}
67cd4f83
TG
2845
2846/* Accept integer operands in the range 0..0xffffffff. We have to check the
2847 range carefully since this predicate is used in DImode contexts. Also, we
2848 need some extra crud to make it work when hosted on 64-bit machines. */
2849
2850int
2851const_uint32_operand (op, mode)
2852 rtx op;
2853 enum machine_mode mode;
2854{
2855#if HOST_BITS_PER_WIDE_INT > 32
2856 /* All allowed constants will fit a CONST_INT. */
2857 return (GET_CODE (op) == CONST_INT
2858 && (INTVAL (op) >= 0 && INTVAL (op) <= 0xffffffffL));
2859#else
fd25a29a 2860 return ((GET_CODE (op) == CONST_INT && INTVAL (op) >= 0)
67cd4f83
TG
2861 || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0));
2862#endif
2863}
2864
2865/* Accept integer operands in the range -0x80000000..0x7fffffff. We have
2866 to check the range carefully since this predicate is used in DImode
2867 contexts. */
2868
2869int
2870const_sint32_operand (op, mode)
2871 rtx op;
2872 enum machine_mode mode;
2873{
2874 /* All allowed constants will fit a CONST_INT. */
2875 return (GET_CODE (op) == CONST_INT
2876 && (INTVAL (op) >= (-0x7fffffff - 1) && INTVAL (op) <= 0x7fffffff));
2877}