]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mcore/mcore.c
Use function_arg_info for TARGET_FUNCTION_(INCOMING_)ARG
[thirdparty/gcc.git] / gcc / config / mcore / mcore.c
CommitLineData
8f90be4c 1/* Output routines for Motorola MCore processor
a5544970 2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
8f90be4c 3
08903e08 4 This file is part of GCC.
8f90be4c 5
08903e08
SB
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published
2f83c7d6 8 by the Free Software Foundation; either version 3, or (at your
08903e08 9 option) any later version.
8f90be4c 10
08903e08
SB
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
8f90be4c 15
08903e08 16 You should have received a copy of the GNU General Public License
2f83c7d6
NC
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
8f90be4c 19
8fcc61f8
RS
20#define IN_TARGET_CODE 1
21
bc27e96c 22#include "config.h"
4bd048ef 23#include "system.h"
4977bab6 24#include "coretypes.h"
c7131fb2 25#include "backend.h"
e11c4407 26#include "target.h"
4816b8e4 27#include "rtl.h"
e11c4407 28#include "tree.h"
c7131fb2 29#include "df.h"
4d0cdd0c 30#include "memmodel.h"
e11c4407
AM
31#include "tm_p.h"
32#include "stringpool.h"
314e6352 33#include "attribs.h"
e11c4407
AM
34#include "emit-rtl.h"
35#include "diagnostic-core.h"
d8a2d370
DN
36#include "stor-layout.h"
37#include "varasm.h"
d8a2d370 38#include "calls.h"
8f90be4c 39#include "mcore.h"
8f90be4c 40#include "output.h"
36566b39 41#include "explow.h"
8f90be4c 42#include "expr.h"
60393bbc 43#include "cfgrtl.h"
9b2b7279 44#include "builtins.h"
0f8012fb 45#include "regs.h"
8f90be4c 46
994c5d85 47/* This file should be included last. */
d58627a0
RS
48#include "target-def.h"
49
8f90be4c
NC
50/* For dumping information about frame sizes. */
51char * mcore_current_function_name = 0;
52long mcore_current_compilation_timestamp = 0;
53
54/* Global variables for machine-dependent things. */
55
8f90be4c
NC
56/* Provides the class number of the smallest class containing
57 reg number. */
5a82ecd9 58const enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
8f90be4c
NC
59{
60 GENERAL_REGS, ONLYR1_REGS, LRW_REGS, LRW_REGS,
61 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
62 LRW_REGS, LRW_REGS, LRW_REGS, LRW_REGS,
63 LRW_REGS, LRW_REGS, LRW_REGS, GENERAL_REGS,
64 GENERAL_REGS, C_REGS, NO_REGS, NO_REGS,
65};
66
f27cd94d
NC
67struct mcore_frame
68{
08903e08
SB
69 int arg_size; /* Stdarg spills (bytes). */
70 int reg_size; /* Non-volatile reg saves (bytes). */
71 int reg_mask; /* Non-volatile reg saves. */
72 int local_size; /* Locals. */
73 int outbound_size; /* Arg overflow on calls out. */
f27cd94d
NC
74 int pad_outbound;
75 int pad_local;
76 int pad_reg;
77 /* Describe the steps we'll use to grow it. */
08903e08 78#define MAX_STACK_GROWS 4 /* Gives us some spare space. */
f27cd94d
NC
79 int growth[MAX_STACK_GROWS];
80 int arg_offset;
81 int reg_offset;
82 int reg_growth;
83 int local_growth;
84};
85
86typedef enum
87{
88 COND_NO,
89 COND_MOV_INSN,
90 COND_CLR_INSN,
91 COND_INC_INSN,
92 COND_DEC_INSN,
93 COND_BRANCH_INSN
94}
95cond_type;
96
08903e08
SB
97static void output_stack_adjust (int, int);
98static int calc_live_regs (int *);
e0416079 99static int try_constant_tricks (HOST_WIDE_INT, HOST_WIDE_INT *, HOST_WIDE_INT *);
ef4bddc2 100static const char * output_inline_const (machine_mode, rtx *);
08903e08 101static void layout_mcore_frame (struct mcore_frame *);
e7056ca4
RS
102static void mcore_setup_incoming_varargs (cumulative_args_t,
103 const function_arg_info &,
104 int *, int);
08903e08 105static cond_type is_cond_candidate (rtx);
6251fe93 106static rtx_insn *emit_new_cond_insn (rtx_insn *, int);
b32d5189 107static rtx_insn *conditionalize_block (rtx_insn *);
08903e08
SB
108static void conditionalize_optimization (void);
109static void mcore_reorg (void);
ef4bddc2 110static rtx handle_structs_in_regs (machine_mode, const_tree, int);
08903e08
SB
111static void mcore_mark_dllexport (tree);
112static void mcore_mark_dllimport (tree);
113static int mcore_dllexport_p (tree);
114static int mcore_dllimport_p (tree);
08903e08 115static tree mcore_handle_naked_attribute (tree *, tree, tree, int, bool *);
ede75ee8 116#ifdef OBJECT_FORMAT_ELF
08903e08 117static void mcore_asm_named_section (const char *,
c18a5b6c 118 unsigned int, tree);
ede75ee8 119#endif
349f851e 120static void mcore_print_operand (FILE *, rtx, int);
cc8ca59e 121static void mcore_print_operand_address (FILE *, machine_mode, rtx);
349f851e 122static bool mcore_print_operand_punct_valid_p (unsigned char code);
08903e08
SB
123static void mcore_unique_section (tree, int);
124static void mcore_encode_section_info (tree, rtx, int);
125static const char *mcore_strip_name_encoding (const char *);
d96be87b
JBG
126static int mcore_const_costs (rtx, RTX_CODE);
127static int mcore_and_cost (rtx);
128static int mcore_ior_cost (rtx);
e548c9df 129static bool mcore_rtx_costs (rtx, machine_mode, int, int,
68f932c4 130 int *, bool);
09a2b93a 131static void mcore_external_libcall (rtx);
586de218 132static bool mcore_return_in_memory (const_tree, const_tree);
d5cc9181 133static int mcore_arg_partial_bytes (cumulative_args_t,
a7c81bc1 134 const function_arg_info &);
d5cc9181 135static rtx mcore_function_arg (cumulative_args_t,
6783fdb7 136 const function_arg_info &);
d5cc9181 137static void mcore_function_arg_advance (cumulative_args_t,
ef4bddc2 138 machine_mode,
4665ac17 139 const_tree, bool);
ef4bddc2 140static unsigned int mcore_function_arg_boundary (machine_mode,
c2ed6cf8 141 const_tree);
71e0af3c
RH
142static void mcore_asm_trampoline_template (FILE *);
143static void mcore_trampoline_init (rtx, tree, rtx);
d45eae79 144static bool mcore_warn_func_return (tree);
c5387660 145static void mcore_option_override (void);
ef4bddc2 146static bool mcore_legitimate_constant_p (machine_mode, rtx);
e7c6980e
AS
147static bool mcore_legitimate_address_p (machine_mode, rtx, bool,
148 addr_space_t);
f939c3e6 149static bool mcore_hard_regno_mode_ok (unsigned int, machine_mode);
99e1629f 150static bool mcore_modes_tieable_p (machine_mode, machine_mode);
5a82ecd9
ILT
151\f
152/* MCore specific attributes. */
153
154static const struct attribute_spec mcore_attribute_table[] =
155{
4849deb1
JJ
156 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
157 affects_type_identity, handler, exclude } */
158 { "dllexport", 0, 0, true, false, false, false, NULL, NULL },
159 { "dllimport", 0, 0, true, false, false, false, NULL, NULL },
160 { "naked", 0, 0, true, false, false, false,
161 mcore_handle_naked_attribute, NULL },
162 { NULL, 0, 0, false, false, false, false, NULL, NULL }
5a82ecd9 163};
672a6f42
NB
164\f
165/* Initialize the GCC target structure. */
09a2b93a
KH
166#undef TARGET_ASM_EXTERNAL_LIBCALL
167#define TARGET_ASM_EXTERNAL_LIBCALL mcore_external_libcall
168
b2ca3702 169#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
08903e08
SB
170#undef TARGET_MERGE_DECL_ATTRIBUTES
171#define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
672a6f42
NB
172#endif
173
301d03af 174#ifdef OBJECT_FORMAT_ELF
08903e08 175#undef TARGET_ASM_UNALIGNED_HI_OP
301d03af 176#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t"
08903e08 177#undef TARGET_ASM_UNALIGNED_SI_OP
301d03af
RS
178#define TARGET_ASM_UNALIGNED_SI_OP "\t.long\t"
179#endif
180
349f851e
NF
181#undef TARGET_PRINT_OPERAND
182#define TARGET_PRINT_OPERAND mcore_print_operand
183#undef TARGET_PRINT_OPERAND_ADDRESS
184#define TARGET_PRINT_OPERAND_ADDRESS mcore_print_operand_address
185#undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
186#define TARGET_PRINT_OPERAND_PUNCT_VALID_P mcore_print_operand_punct_valid_p
187
08903e08
SB
188#undef TARGET_ATTRIBUTE_TABLE
189#define TARGET_ATTRIBUTE_TABLE mcore_attribute_table
190#undef TARGET_ASM_UNIQUE_SECTION
191#define TARGET_ASM_UNIQUE_SECTION mcore_unique_section
ab5c8549
JJ
192#undef TARGET_ASM_FUNCTION_RODATA_SECTION
193#define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
08903e08
SB
194#undef TARGET_ENCODE_SECTION_INFO
195#define TARGET_ENCODE_SECTION_INFO mcore_encode_section_info
196#undef TARGET_STRIP_NAME_ENCODING
197#define TARGET_STRIP_NAME_ENCODING mcore_strip_name_encoding
198#undef TARGET_RTX_COSTS
199#define TARGET_RTX_COSTS mcore_rtx_costs
200#undef TARGET_ADDRESS_COST
b413068c 201#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
08903e08
SB
202#undef TARGET_MACHINE_DEPENDENT_REORG
203#define TARGET_MACHINE_DEPENDENT_REORG mcore_reorg
18dbd950 204
cde0f3fd
PB
205#undef TARGET_PROMOTE_FUNCTION_MODE
206#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
09a2b93a 207#undef TARGET_PROMOTE_PROTOTYPES
586de218 208#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
09a2b93a 209
09a2b93a
KH
210#undef TARGET_RETURN_IN_MEMORY
211#define TARGET_RETURN_IN_MEMORY mcore_return_in_memory
fe984136
RH
212#undef TARGET_MUST_PASS_IN_STACK
213#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
8cd5a4e0
RH
214#undef TARGET_PASS_BY_REFERENCE
215#define TARGET_PASS_BY_REFERENCE hook_pass_by_reference_must_pass_in_stack
78a52f11
RH
216#undef TARGET_ARG_PARTIAL_BYTES
217#define TARGET_ARG_PARTIAL_BYTES mcore_arg_partial_bytes
4665ac17
NF
218#undef TARGET_FUNCTION_ARG
219#define TARGET_FUNCTION_ARG mcore_function_arg
220#undef TARGET_FUNCTION_ARG_ADVANCE
221#define TARGET_FUNCTION_ARG_ADVANCE mcore_function_arg_advance
c2ed6cf8
NF
222#undef TARGET_FUNCTION_ARG_BOUNDARY
223#define TARGET_FUNCTION_ARG_BOUNDARY mcore_function_arg_boundary
09a2b93a
KH
224
225#undef TARGET_SETUP_INCOMING_VARARGS
226#define TARGET_SETUP_INCOMING_VARARGS mcore_setup_incoming_varargs
227
71e0af3c
RH
228#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
229#define TARGET_ASM_TRAMPOLINE_TEMPLATE mcore_asm_trampoline_template
230#undef TARGET_TRAMPOLINE_INIT
231#define TARGET_TRAMPOLINE_INIT mcore_trampoline_init
232
c5387660
JM
233#undef TARGET_OPTION_OVERRIDE
234#define TARGET_OPTION_OVERRIDE mcore_option_override
fd02e833 235
1a627b35
RS
236#undef TARGET_LEGITIMATE_CONSTANT_P
237#define TARGET_LEGITIMATE_CONSTANT_P mcore_legitimate_constant_p
e7c6980e
AS
238#undef TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
239#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P mcore_legitimate_address_p
1a627b35 240
d81db636
SB
241#undef TARGET_LRA_P
242#define TARGET_LRA_P hook_bool_void_false
243
d45eae79
SL
244#undef TARGET_WARN_FUNC_RETURN
245#define TARGET_WARN_FUNC_RETURN mcore_warn_func_return
246
f939c3e6
RS
247#undef TARGET_HARD_REGNO_MODE_OK
248#define TARGET_HARD_REGNO_MODE_OK mcore_hard_regno_mode_ok
249
99e1629f
RS
250#undef TARGET_MODES_TIEABLE_P
251#define TARGET_MODES_TIEABLE_P mcore_modes_tieable_p
252
58e17cf8
RS
253#undef TARGET_CONSTANT_ALIGNMENT
254#define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings
255
1169a206
NC
256#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
257#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
258
f6897b10 259struct gcc_target targetm = TARGET_INITIALIZER;
f27cd94d 260\f
8f90be4c
NC
261/* Adjust the stack and return the number of bytes taken to do it. */
262static void
08903e08 263output_stack_adjust (int direction, int size)
8f90be4c 264{
4816b8e4 265 /* If extending stack a lot, we do it incrementally. */
8f90be4c
NC
266 if (direction < 0 && size > mcore_stack_increment && mcore_stack_increment > 0)
267 {
f1c25d3b 268 rtx tmp = gen_rtx_REG (SImode, 1);
8f90be4c 269 rtx memref;
08903e08 270
8f90be4c
NC
271 emit_insn (gen_movsi (tmp, GEN_INT (mcore_stack_increment)));
272 do
273 {
274 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
f1c25d3b 275 memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
8f90be4c
NC
276 MEM_VOLATILE_P (memref) = 1;
277 emit_insn (gen_movsi (memref, stack_pointer_rtx));
278 size -= mcore_stack_increment;
279 }
280 while (size > mcore_stack_increment);
281
4816b8e4
NC
282 /* SIZE is now the residual for the last adjustment,
283 which doesn't require a probe. */
8f90be4c
NC
284 }
285
286 if (size)
287 {
288 rtx insn;
289 rtx val = GEN_INT (size);
290
291 if (size > 32)
292 {
f1c25d3b 293 rtx nval = gen_rtx_REG (SImode, 1);
8f90be4c
NC
294 emit_insn (gen_movsi (nval, val));
295 val = nval;
296 }
297
298 if (direction > 0)
299 insn = gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
300 else
301 insn = gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, val);
302
303 emit_insn (insn);
304 }
305}
306
4816b8e4
NC
307/* Work out the registers which need to be saved,
308 both as a mask and a count. */
309
8f90be4c 310static int
08903e08 311calc_live_regs (int * count)
8f90be4c
NC
312{
313 int reg;
314 int live_regs_mask = 0;
315
316 * count = 0;
317
318 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
319 {
6fb5fa3c 320 if (df_regs_ever_live_p (reg) && !call_used_regs[reg])
8f90be4c
NC
321 {
322 (*count)++;
323 live_regs_mask |= (1 << reg);
324 }
325 }
326
327 return live_regs_mask;
328}
329
330/* Print the operand address in x to the stream. */
4816b8e4 331
349f851e 332static void
cc8ca59e 333mcore_print_operand_address (FILE * stream, machine_mode /*mode*/, rtx x)
8f90be4c
NC
334{
335 switch (GET_CODE (x))
336 {
337 case REG:
338 fprintf (stream, "(%s)", reg_names[REGNO (x)]);
339 break;
340
341 case PLUS:
342 {
343 rtx base = XEXP (x, 0);
344 rtx index = XEXP (x, 1);
345
346 if (GET_CODE (base) != REG)
347 {
348 /* Ensure that BASE is a register (one of them must be). */
349 rtx temp = base;
350 base = index;
351 index = temp;
352 }
353
354 switch (GET_CODE (index))
355 {
356 case CONST_INT:
fd7b8952
KG
357 fprintf (stream, "(%s," HOST_WIDE_INT_PRINT_DEC ")",
358 reg_names[REGNO(base)], INTVAL (index));
8f90be4c
NC
359 break;
360
361 default:
6e1f65b5 362 gcc_unreachable ();
8f90be4c
NC
363 }
364 }
365
366 break;
367
368 default:
369 output_addr_const (stream, x);
370 break;
371 }
372}
373
349f851e
NF
374static bool
375mcore_print_operand_punct_valid_p (unsigned char code)
376{
377 return (code == '.' || code == '#' || code == '*' || code == '^'
378 || code == '!');
379}
380
8f90be4c
NC
381/* Print operand x (an rtx) in assembler syntax to file stream
382 according to modifier code.
383
112cdef5 384 'R' print the next register or memory location along, i.e. the lsw in
8f90be4c
NC
385 a double word value
386 'O' print a constant without the #
387 'M' print a constant as its negative
388 'P' print log2 of a power of two
389 'Q' print log2 of an inverse of a power of two
390 'U' print register for ldm/stm instruction
4816b8e4
NC
391 'X' print byte number for xtrbN instruction. */
392
349f851e 393static void
08903e08 394mcore_print_operand (FILE * stream, rtx x, int code)
8f90be4c
NC
395{
396 switch (code)
397 {
398 case 'N':
399 if (INTVAL(x) == -1)
400 fprintf (asm_out_file, "32");
401 else
402 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) + 1));
403 break;
404 case 'P':
6e3a343d 405 fprintf (asm_out_file, "%d", exact_log2 (INTVAL (x) & 0xffffffff));
8f90be4c
NC
406 break;
407 case 'Q':
408 fprintf (asm_out_file, "%d", exact_log2 (~INTVAL (x)));
409 break;
410 case 'O':
fd7b8952 411 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
8f90be4c
NC
412 break;
413 case 'M':
fd7b8952 414 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, - INTVAL (x));
8f90be4c
NC
415 break;
416 case 'R':
417 /* Next location along in memory or register. */
418 switch (GET_CODE (x))
419 {
420 case REG:
421 fputs (reg_names[REGNO (x) + 1], (stream));
422 break;
423 case MEM:
b72f00af 424 mcore_print_operand_address
cc8ca59e 425 (stream, GET_MODE (x), XEXP (adjust_address (x, SImode, 4), 0));
8f90be4c
NC
426 break;
427 default:
6e1f65b5 428 gcc_unreachable ();
8f90be4c
NC
429 }
430 break;
431 case 'U':
432 fprintf (asm_out_file, "%s-%s", reg_names[REGNO (x)],
433 reg_names[REGNO (x) + 3]);
434 break;
435 case 'x':
fd7b8952 436 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
8f90be4c
NC
437 break;
438 case 'X':
fd7b8952 439 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3 - INTVAL (x) / 8);
8f90be4c
NC
440 break;
441
442 default:
443 switch (GET_CODE (x))
444 {
445 case REG:
446 fputs (reg_names[REGNO (x)], (stream));
447 break;
448 case MEM:
cc8ca59e 449 output_address (GET_MODE (x), XEXP (x, 0));
8f90be4c
NC
450 break;
451 default:
452 output_addr_const (stream, x);
453 break;
454 }
455 break;
456 }
457}
458
459/* What does a constant cost ? */
4816b8e4 460
3c50106f 461static int
08903e08 462mcore_const_costs (rtx exp, enum rtx_code code)
8f90be4c 463{
6e3a343d 464 HOST_WIDE_INT val = INTVAL (exp);
8f90be4c
NC
465
466 /* Easy constants. */
467 if ( CONST_OK_FOR_I (val)
468 || CONST_OK_FOR_M (val)
469 || CONST_OK_FOR_N (val)
470 || (code == PLUS && CONST_OK_FOR_L (val)))
471 return 1;
472 else if (code == AND
473 && ( CONST_OK_FOR_M (~val)
474 || CONST_OK_FOR_N (~val)))
475 return 2;
476 else if (code == PLUS
477 && ( CONST_OK_FOR_I (-val)
478 || CONST_OK_FOR_M (-val)
479 || CONST_OK_FOR_N (-val)))
480 return 2;
481
482 return 5;
483}
484
485/* What does an and instruction cost - we do this b/c immediates may
486 have been relaxed. We want to ensure that cse will cse relaxed immeds
4816b8e4
NC
487 out. Otherwise we'll get bad code (multiple reloads of the same const). */
488
3c50106f 489static int
08903e08 490mcore_and_cost (rtx x)
8f90be4c 491{
6e3a343d 492 HOST_WIDE_INT val;
8f90be4c
NC
493
494 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
495 return 2;
496
497 val = INTVAL (XEXP (x, 1));
498
4816b8e4 499 /* Do it directly. */
8f90be4c
NC
500 if (CONST_OK_FOR_K (val) || CONST_OK_FOR_M (~val))
501 return 2;
502 /* Takes one instruction to load. */
503 else if (const_ok_for_mcore (val))
504 return 3;
505 /* Takes two instructions to load. */
506 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
507 return 4;
508
4816b8e4 509 /* Takes a lrw to load. */
8f90be4c
NC
510 return 5;
511}
512
4816b8e4
NC
513/* What does an or cost - see and_cost(). */
514
3c50106f 515static int
08903e08 516mcore_ior_cost (rtx x)
8f90be4c 517{
6e3a343d 518 HOST_WIDE_INT val;
8f90be4c
NC
519
520 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
521 return 2;
522
523 val = INTVAL (XEXP (x, 1));
524
4816b8e4 525 /* Do it directly with bclri. */
8f90be4c
NC
526 if (CONST_OK_FOR_M (val))
527 return 2;
4816b8e4 528 /* Takes one instruction to load. */
8f90be4c
NC
529 else if (const_ok_for_mcore (val))
530 return 3;
4816b8e4 531 /* Takes two instructions to load. */
8f90be4c
NC
532 else if (TARGET_HARDLIT && mcore_const_ok_for_inline (val))
533 return 4;
534
4816b8e4 535 /* Takes a lrw to load. */
8f90be4c
NC
536 return 5;
537}
538
3c50106f 539static bool
e548c9df
AM
540mcore_rtx_costs (rtx x, machine_mode mode ATTRIBUTE_UNUSED, int outer_code,
541 int opno ATTRIBUTE_UNUSED,
68f932c4 542 int * total, bool speed ATTRIBUTE_UNUSED)
3c50106f 543{
e548c9df
AM
544 int code = GET_CODE (x);
545
3c50106f
RH
546 switch (code)
547 {
548 case CONST_INT:
5a82ecd9 549 *total = mcore_const_costs (x, (enum rtx_code) outer_code);
3c50106f
RH
550 return true;
551 case CONST:
552 case LABEL_REF:
553 case SYMBOL_REF:
554 *total = 5;
555 return true;
556 case CONST_DOUBLE:
557 *total = 10;
558 return true;
559
560 case AND:
561 *total = COSTS_N_INSNS (mcore_and_cost (x));
562 return true;
563
564 case IOR:
565 *total = COSTS_N_INSNS (mcore_ior_cost (x));
566 return true;
567
568 case DIV:
569 case UDIV:
570 case MOD:
571 case UMOD:
572 case FLOAT:
573 case FIX:
574 *total = COSTS_N_INSNS (100);
575 return true;
576
577 default:
578 return false;
579 }
580}
581
f90b7a5a
PB
582/* Prepare the operands for a comparison. Return whether the branch/setcc
583 should reverse the operands. */
4816b8e4 584
f90b7a5a
PB
585bool
586mcore_gen_compare (enum rtx_code code, rtx op0, rtx op1)
8f90be4c 587{
f90b7a5a
PB
588 rtx cc_reg = gen_rtx_REG (CCmode, CC_REG);
589 bool invert;
590
8f90be4c
NC
591 if (GET_CODE (op1) == CONST_INT)
592 {
6e3a343d 593 HOST_WIDE_INT val = INTVAL (op1);
8f90be4c
NC
594
595 switch (code)
596 {
f90b7a5a
PB
597 case GTU:
598 /* Unsigned > 0 is the same as != 0; everything else is converted
599 below to LEU (reversed cmphs). */
600 if (val == 0)
601 code = NE;
602 break;
603
604 /* Check whether (LE A imm) can become (LT A imm + 1),
605 or (GT A imm) can become (GE A imm + 1). */
606 case GT:
8f90be4c
NC
607 case LE:
608 if (CONST_OK_FOR_J (val + 1))
609 {
f90b7a5a
PB
610 op1 = GEN_INT (val + 1);
611 code = code == LE ? LT : GE;
8f90be4c
NC
612 }
613 break;
614
615 default:
616 break;
617 }
618 }
f90b7a5a 619
8f90be4c
NC
620 if (CONSTANT_P (op1) && GET_CODE (op1) != CONST_INT)
621 op1 = force_reg (SImode, op1);
622
623 /* cmpnei: 0-31 (K immediate)
4816b8e4 624 cmplti: 1-32 (J immediate, 0 using btsti x,31). */
f90b7a5a 625 invert = false;
8f90be4c
NC
626 switch (code)
627 {
4816b8e4 628 case EQ: /* Use inverted condition, cmpne. */
8f90be4c 629 code = NE;
f90b7a5a 630 invert = true;
0c15dfc1 631 /* FALLTHRU */
4816b8e4
NC
632
633 case NE: /* Use normal condition, cmpne. */
8f90be4c
NC
634 if (GET_CODE (op1) == CONST_INT && ! CONST_OK_FOR_K (INTVAL (op1)))
635 op1 = force_reg (SImode, op1);
636 break;
637
4816b8e4 638 case LE: /* Use inverted condition, reversed cmplt. */
8f90be4c 639 code = GT;
f90b7a5a 640 invert = true;
0c15dfc1 641 /* FALLTHRU */
4816b8e4
NC
642
643 case GT: /* Use normal condition, reversed cmplt. */
8f90be4c
NC
644 if (GET_CODE (op1) == CONST_INT)
645 op1 = force_reg (SImode, op1);
646 break;
647
4816b8e4 648 case GE: /* Use inverted condition, cmplt. */
8f90be4c 649 code = LT;
f90b7a5a 650 invert = true;
0c15dfc1 651 /* FALLTHRU */
4816b8e4
NC
652
653 case LT: /* Use normal condition, cmplt. */
8f90be4c 654 if (GET_CODE (op1) == CONST_INT &&
08903e08 655 /* covered by btsti x,31. */
8f90be4c
NC
656 INTVAL (op1) != 0 &&
657 ! CONST_OK_FOR_J (INTVAL (op1)))
658 op1 = force_reg (SImode, op1);
659 break;
660
4816b8e4 661 case GTU: /* Use inverted condition, cmple. */
f90b7a5a 662 /* We coped with unsigned > 0 above. */
6e1f65b5 663 gcc_assert (GET_CODE (op1) != CONST_INT || INTVAL (op1) != 0);
8f90be4c 664 code = LEU;
f90b7a5a 665 invert = true;
0c15dfc1 666 /* FALLTHRU */
4816b8e4 667
14bc6742 668 case LEU: /* Use normal condition, reversed cmphs. */
8f90be4c
NC
669 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
670 op1 = force_reg (SImode, op1);
671 break;
672
4816b8e4 673 case LTU: /* Use inverted condition, cmphs. */
8f90be4c 674 code = GEU;
f90b7a5a 675 invert = true;
0c15dfc1 676 /* FALLTHRU */
4816b8e4
NC
677
678 case GEU: /* Use normal condition, cmphs. */
8f90be4c
NC
679 if (GET_CODE (op1) == CONST_INT && INTVAL (op1) != 0)
680 op1 = force_reg (SImode, op1);
681 break;
682
683 default:
684 break;
685 }
686
f7df4a84 687 emit_insn (gen_rtx_SET (cc_reg, gen_rtx_fmt_ee (code, CCmode, op0, op1)));
f90b7a5a 688 return invert;
8f90be4c
NC
689}
690
8f90be4c 691int
08903e08 692mcore_symbolic_address_p (rtx x)
8f90be4c
NC
693{
694 switch (GET_CODE (x))
695 {
696 case SYMBOL_REF:
697 case LABEL_REF:
698 return 1;
699 case CONST:
700 x = XEXP (x, 0);
701 return ( (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
702 || GET_CODE (XEXP (x, 0)) == LABEL_REF)
703 && GET_CODE (XEXP (x, 1)) == CONST_INT);
704 default:
705 return 0;
706 }
707}
708
8f90be4c 709/* Functions to output assembly code for a function call. */
f27cd94d 710
8f90be4c 711char *
08903e08 712mcore_output_call (rtx operands[], int index)
8f90be4c
NC
713{
714 static char buffer[20];
715 rtx addr = operands [index];
716
717 if (REG_P (addr))
718 {
719 if (TARGET_CG_DATA)
720 {
6e1f65b5 721 gcc_assert (mcore_current_function_name);
8f90be4c
NC
722
723 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
724 "unknown", 1);
725 }
726
727 sprintf (buffer, "jsr\t%%%d", index);
728 }
729 else
730 {
731 if (TARGET_CG_DATA)
732 {
6e1f65b5
NS
733 gcc_assert (mcore_current_function_name);
734 gcc_assert (GET_CODE (addr) == SYMBOL_REF);
8f90be4c 735
6e1f65b5
NS
736 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name,
737 XSTR (addr, 0), 0);
8f90be4c
NC
738 }
739
740 sprintf (buffer, "jbsr\t%%%d", index);
741 }
742
743 return buffer;
744}
745
746/* Can we load a constant with a single instruction ? */
4816b8e4 747
54d58eaf 748int
6e3a343d 749const_ok_for_mcore (HOST_WIDE_INT value)
8f90be4c
NC
750{
751 if (value >= 0 && value <= 127)
752 return 1;
753
754 /* Try exact power of two. */
6e3a343d 755 if (CONST_OK_FOR_M (value))
8f90be4c
NC
756 return 1;
757
14bc6742 758 /* Try exact power of two - 1. */
6e3a343d 759 if (CONST_OK_FOR_N (value) && value != -1)
8f90be4c
NC
760 return 1;
761
762 return 0;
763}
764
765/* Can we load a constant inline with up to 2 instructions ? */
4816b8e4 766
8f90be4c 767int
6e3a343d 768mcore_const_ok_for_inline (HOST_WIDE_INT value)
8f90be4c 769{
6e3a343d 770 HOST_WIDE_INT x, y;
8f90be4c
NC
771
772 return try_constant_tricks (value, & x, & y) > 0;
773}
774
775/* Are we loading the constant using a not ? */
4816b8e4 776
8f90be4c 777int
6e3a343d 778mcore_const_trick_uses_not (HOST_WIDE_INT value)
8f90be4c 779{
6e3a343d 780 HOST_WIDE_INT x, y;
8f90be4c
NC
781
782 return try_constant_tricks (value, & x, & y) == 2;
783}
784
785/* Try tricks to load a constant inline and return the trick number if
786 success (0 is non-inlinable).
4816b8e4
NC
787
788 0: not inlinable
789 1: single instruction (do the usual thing)
790 2: single insn followed by a 'not'
791 3: single insn followed by a subi
792 4: single insn followed by an addi
793 5: single insn followed by rsubi
794 6: single insn followed by bseti
795 7: single insn followed by bclri
796 8: single insn followed by rotli
797 9: single insn followed by lsli
798 10: single insn followed by ixh
799 11: single insn followed by ixw. */
8f90be4c
NC
800
801static int
6e3a343d 802try_constant_tricks (HOST_WIDE_INT value, HOST_WIDE_INT * x, HOST_WIDE_INT * y)
8f90be4c 803{
6e3a343d
NC
804 HOST_WIDE_INT i;
805 unsigned HOST_WIDE_INT bit, shf, rot;
8f90be4c
NC
806
807 if (const_ok_for_mcore (value))
4816b8e4 808 return 1; /* Do the usual thing. */
8f90be4c 809
6e3a343d
NC
810 if (! TARGET_HARDLIT)
811 return 0;
812
813 if (const_ok_for_mcore (~value))
814 {
815 *x = ~value;
816 return 2;
817 }
818
819 for (i = 1; i <= 32; i++)
8f90be4c 820 {
6e3a343d 821 if (const_ok_for_mcore (value - i))
8f90be4c 822 {
6e3a343d
NC
823 *x = value - i;
824 *y = i;
825
826 return 3;
8f90be4c 827 }
6e3a343d
NC
828
829 if (const_ok_for_mcore (value + i))
8f90be4c 830 {
6e3a343d
NC
831 *x = value + i;
832 *y = i;
833
834 return 4;
8f90be4c 835 }
6e3a343d
NC
836 }
837
838 bit = 0x80000000ULL;
839
840 for (i = 0; i <= 31; i++)
841 {
842 if (const_ok_for_mcore (i - value))
8f90be4c 843 {
6e3a343d
NC
844 *x = i - value;
845 *y = i;
846
847 return 5;
8f90be4c 848 }
6e3a343d
NC
849
850 if (const_ok_for_mcore (value & ~bit))
8f90be4c 851 {
6e3a343d
NC
852 *y = bit;
853 *x = value & ~bit;
854 return 6;
8f90be4c 855 }
6e3a343d
NC
856
857 if (const_ok_for_mcore (value | bit))
8f90be4c 858 {
6e3a343d
NC
859 *y = ~bit;
860 *x = value | bit;
861
862 return 7;
8f90be4c 863 }
6e3a343d
NC
864
865 bit >>= 1;
866 }
867
868 shf = value;
869 rot = value;
870
871 for (i = 1; i < 31; i++)
872 {
873 int c;
874
875 /* MCore has rotate left. */
876 c = rot << 31;
877 rot >>= 1;
878 rot &= 0x7FFFFFFF;
879 rot |= c; /* Simulate rotate. */
880
881 if (const_ok_for_mcore (rot))
8f90be4c 882 {
6e3a343d
NC
883 *y = i;
884 *x = rot;
885
886 return 8;
887 }
888
889 if (shf & 1)
890 shf = 0; /* Can't use logical shift, low order bit is one. */
891
892 shf >>= 1;
893
894 if (shf != 0 && const_ok_for_mcore (shf))
895 {
896 *y = i;
897 *x = shf;
898
899 return 9;
8f90be4c
NC
900 }
901 }
6e3a343d
NC
902
903 if ((value % 3) == 0 && const_ok_for_mcore (value / 3))
904 {
905 *x = value / 3;
906
907 return 10;
908 }
909
910 if ((value % 5) == 0 && const_ok_for_mcore (value / 5))
911 {
912 *x = value / 5;
913
914 return 11;
915 }
8f90be4c
NC
916
917 return 0;
918}
919
8f90be4c
NC
920/* Check whether reg is dead at first. This is done by searching ahead
921 for either the next use (i.e., reg is live), a death note, or a set of
922 reg. Don't just use dead_or_set_p() since reload does not always mark
923 deaths (especially if PRESERVE_DEATH_NOTES_REGNO_P is not defined). We
4816b8e4
NC
924 can ignore subregs by extracting the actual register. BRC */
925
8f90be4c 926int
b32d5189 927mcore_is_dead (rtx_insn *first, rtx reg)
8f90be4c 928{
b32d5189 929 rtx_insn *insn;
8f90be4c
NC
930
931 /* For mcore, subregs can't live independently of their parent regs. */
932 if (GET_CODE (reg) == SUBREG)
933 reg = SUBREG_REG (reg);
934
935 /* Dies immediately. */
936 if (dead_or_set_p (first, reg))
937 return 1;
938
939 /* Look for conclusive evidence of live/death, otherwise we have
940 to assume that it is live. */
941 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
942 {
b64925dc 943 if (JUMP_P (insn))
8f90be4c
NC
944 return 0; /* We lose track, assume it is alive. */
945
b64925dc 946 else if (CALL_P (insn))
8f90be4c
NC
947 {
948 /* Call's might use it for target or register parms. */
949 if (reg_referenced_p (reg, PATTERN (insn))
950 || find_reg_fusage (insn, USE, reg))
951 return 0;
952 else if (dead_or_set_p (insn, reg))
953 return 1;
954 }
b64925dc 955 else if (NONJUMP_INSN_P (insn))
8f90be4c
NC
956 {
957 if (reg_referenced_p (reg, PATTERN (insn)))
958 return 0;
959 else if (dead_or_set_p (insn, reg))
960 return 1;
961 }
962 }
963
1e5f1716 964 /* No conclusive evidence either way, we cannot take the chance
8f90be4c
NC
965 that control flow hid the use from us -- "I'm not dead yet". */
966 return 0;
967}
968
8f90be4c 969/* Count the number of ones in mask. */
4816b8e4 970
8f90be4c 971int
6e3a343d 972mcore_num_ones (HOST_WIDE_INT mask)
8f90be4c 973{
4816b8e4 974 /* A trick to count set bits recently posted on comp.compilers. */
8f90be4c
NC
975 mask = (mask >> 1 & 0x55555555) + (mask & 0x55555555);
976 mask = ((mask >> 2) & 0x33333333) + (mask & 0x33333333);
977 mask = ((mask >> 4) + mask) & 0x0f0f0f0f;
978 mask = ((mask >> 8) + mask);
979
980 return (mask + (mask >> 16)) & 0xff;
981}
982
4816b8e4
NC
983/* Count the number of zeros in mask. */
984
8f90be4c 985int
6e3a343d 986mcore_num_zeros (HOST_WIDE_INT mask)
8f90be4c
NC
987{
988 return 32 - mcore_num_ones (mask);
989}
990
991/* Determine byte being masked. */
4816b8e4 992
8f90be4c 993int
08903e08 994mcore_byte_offset (unsigned int mask)
8f90be4c 995{
11f9ed1a 996 if (mask == 0x00ffffffL)
8f90be4c 997 return 0;
11f9ed1a 998 else if (mask == 0xff00ffffL)
8f90be4c 999 return 1;
11f9ed1a 1000 else if (mask == 0xffff00ffL)
8f90be4c 1001 return 2;
11f9ed1a 1002 else if (mask == 0xffffff00L)
8f90be4c
NC
1003 return 3;
1004
1005 return -1;
1006}
1007
1008/* Determine halfword being masked. */
4816b8e4 1009
8f90be4c 1010int
08903e08 1011mcore_halfword_offset (unsigned int mask)
8f90be4c
NC
1012{
1013 if (mask == 0x0000ffffL)
1014 return 0;
11f9ed1a 1015 else if (mask == 0xffff0000L)
8f90be4c
NC
1016 return 1;
1017
1018 return -1;
1019}
1020
1021/* Output a series of bseti's corresponding to mask. */
4816b8e4 1022
f27cd94d 1023const char *
08903e08 1024mcore_output_bseti (rtx dst, int mask)
8f90be4c
NC
1025{
1026 rtx out_operands[2];
1027 int bit;
1028
1029 out_operands[0] = dst;
1030
1031 for (bit = 0; bit < 32; bit++)
1032 {
1033 if ((mask & 0x1) == 0x1)
1034 {
1035 out_operands[1] = GEN_INT (bit);
1036
1037 output_asm_insn ("bseti\t%0,%1", out_operands);
1038 }
1039 mask >>= 1;
1040 }
1041
1042 return "";
1043}
1044
1045/* Output a series of bclri's corresponding to mask. */
4816b8e4 1046
f27cd94d 1047const char *
08903e08 1048mcore_output_bclri (rtx dst, int mask)
8f90be4c
NC
1049{
1050 rtx out_operands[2];
1051 int bit;
1052
1053 out_operands[0] = dst;
1054
1055 for (bit = 0; bit < 32; bit++)
1056 {
1057 if ((mask & 0x1) == 0x0)
1058 {
1059 out_operands[1] = GEN_INT (bit);
1060
1061 output_asm_insn ("bclri\t%0,%1", out_operands);
1062 }
1063
1064 mask >>= 1;
1065 }
1066
1067 return "";
1068}
1069
1070/* Output a conditional move of two constants that are +/- 1 within each
1071 other. See the "movtK" patterns in mcore.md. I'm not sure this is
1072 really worth the effort. */
4816b8e4 1073
f27cd94d 1074const char *
08903e08 1075mcore_output_cmov (rtx operands[], int cmp_t, const char * test)
8f90be4c 1076{
6e3a343d
NC
1077 HOST_WIDE_INT load_value;
1078 HOST_WIDE_INT adjust_value;
8f90be4c
NC
1079 rtx out_operands[4];
1080
1081 out_operands[0] = operands[0];
1082
4816b8e4 1083 /* Check to see which constant is loadable. */
8f90be4c
NC
1084 if (const_ok_for_mcore (INTVAL (operands[1])))
1085 {
1086 out_operands[1] = operands[1];
1087 out_operands[2] = operands[2];
1088 }
1089 else if (const_ok_for_mcore (INTVAL (operands[2])))
1090 {
1091 out_operands[1] = operands[2];
1092 out_operands[2] = operands[1];
1093
4816b8e4 1094 /* Complement test since constants are swapped. */
8f90be4c
NC
1095 cmp_t = (cmp_t == 0);
1096 }
1097 load_value = INTVAL (out_operands[1]);
1098 adjust_value = INTVAL (out_operands[2]);
1099
4816b8e4 1100 /* First output the test if folded into the pattern. */
8f90be4c
NC
1101
1102 if (test)
1103 output_asm_insn (test, operands);
1104
4816b8e4 1105 /* Load the constant - for now, only support constants that can be
8f90be4c
NC
1106 generated with a single instruction. maybe add general inlinable
1107 constants later (this will increase the # of patterns since the
4816b8e4 1108 instruction sequence has a different length attribute). */
8f90be4c
NC
1109 if (load_value >= 0 && load_value <= 127)
1110 output_asm_insn ("movi\t%0,%1", out_operands);
6e3a343d 1111 else if (CONST_OK_FOR_M (load_value))
8f90be4c 1112 output_asm_insn ("bgeni\t%0,%P1", out_operands);
6e3a343d 1113 else if (CONST_OK_FOR_N (load_value))
8f90be4c
NC
1114 output_asm_insn ("bmaski\t%0,%N1", out_operands);
1115
4816b8e4 1116 /* Output the constant adjustment. */
8f90be4c
NC
1117 if (load_value > adjust_value)
1118 {
1119 if (cmp_t)
1120 output_asm_insn ("decf\t%0", out_operands);
1121 else
1122 output_asm_insn ("dect\t%0", out_operands);
1123 }
1124 else
1125 {
1126 if (cmp_t)
1127 output_asm_insn ("incf\t%0", out_operands);
1128 else
1129 output_asm_insn ("inct\t%0", out_operands);
1130 }
1131
1132 return "";
1133}
1134
1135/* Outputs the peephole for moving a constant that gets not'ed followed
4816b8e4
NC
1136 by an and (i.e. combine the not and the and into andn). BRC */
1137
f27cd94d 1138const char *
08903e08 1139mcore_output_andn (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
8f90be4c 1140{
6e3a343d 1141 HOST_WIDE_INT x, y;
8f90be4c 1142 rtx out_operands[3];
f27cd94d 1143 const char * load_op;
8f90be4c 1144 char buf[256];
6e1f65b5 1145 int trick_no;
8f90be4c 1146
6e1f65b5
NS
1147 trick_no = try_constant_tricks (INTVAL (operands[1]), &x, &y);
1148 gcc_assert (trick_no == 2);
8f90be4c
NC
1149
1150 out_operands[0] = operands[0];
6e3a343d 1151 out_operands[1] = GEN_INT (x);
8f90be4c
NC
1152 out_operands[2] = operands[2];
1153
1154 if (x >= 0 && x <= 127)
1155 load_op = "movi\t%0,%1";
4816b8e4
NC
1156
1157 /* Try exact power of two. */
6e3a343d 1158 else if (CONST_OK_FOR_M (x))
8f90be4c 1159 load_op = "bgeni\t%0,%P1";
4816b8e4
NC
1160
1161 /* Try exact power of two - 1. */
6e3a343d 1162 else if (CONST_OK_FOR_N (x))
8f90be4c 1163 load_op = "bmaski\t%0,%N1";
4816b8e4 1164
6e3a343d
NC
1165 else
1166 {
1167 load_op = "BADMOVI-andn\t%0, %1";
1168 gcc_unreachable ();
1169 }
8f90be4c
NC
1170
1171 sprintf (buf, "%s\n\tandn\t%%2,%%0", load_op);
1172 output_asm_insn (buf, out_operands);
1173
1174 return "";
1175}
1176
1177/* Output an inline constant. */
4816b8e4 1178
f27cd94d 1179static const char *
ef4bddc2 1180output_inline_const (machine_mode mode, rtx operands[])
8f90be4c 1181{
6e3a343d 1182 HOST_WIDE_INT x = 0, y = 0;
8f90be4c
NC
1183 int trick_no;
1184 rtx out_operands[3];
1185 char buf[256];
1186 char load_op[256];
f27cd94d 1187 const char *dst_fmt;
6e3a343d 1188 HOST_WIDE_INT value;
8f90be4c
NC
1189
1190 value = INTVAL (operands[1]);
8f90be4c 1191
6e1f65b5
NS
1192 trick_no = try_constant_tricks (value, &x, &y);
1193 /* lrw's are handled separately: Large inlinable constants never get
1194 turned into lrw's. Our caller uses try_constant_tricks to back
1195 off to an lrw rather than calling this routine. */
1196 gcc_assert (trick_no != 0);
1197
8f90be4c
NC
1198 if (trick_no == 1)
1199 x = value;
1200
4816b8e4 1201 /* operands: 0 = dst, 1 = load immed., 2 = immed. adjustment. */
8f90be4c
NC
1202 out_operands[0] = operands[0];
1203 out_operands[1] = GEN_INT (x);
1204
1205 if (trick_no > 2)
1206 out_operands[2] = GEN_INT (y);
1207
4816b8e4 1208 /* Select dst format based on mode. */
8f90be4c
NC
1209 if (mode == DImode && (! TARGET_LITTLE_END))
1210 dst_fmt = "%R0";
1211 else
1212 dst_fmt = "%0";
1213
1214 if (x >= 0 && x <= 127)
1215 sprintf (load_op, "movi\t%s,%%1", dst_fmt);
4816b8e4 1216
8f90be4c 1217 /* Try exact power of two. */
6e3a343d 1218 else if (CONST_OK_FOR_M (x))
8f90be4c 1219 sprintf (load_op, "bgeni\t%s,%%P1", dst_fmt);
4816b8e4
NC
1220
1221 /* Try exact power of two - 1. */
6e3a343d 1222 else if (CONST_OK_FOR_N (x))
8f90be4c 1223 sprintf (load_op, "bmaski\t%s,%%N1", dst_fmt);
4816b8e4 1224
6e3a343d
NC
1225 else
1226 {
1227 sprintf (load_op, "BADMOVI-inline_const %s, %%1", dst_fmt);
1228 gcc_unreachable ();
1229 }
8f90be4c
NC
1230
1231 switch (trick_no)
1232 {
1233 case 1:
1234 strcpy (buf, load_op);
1235 break;
1236 case 2: /* not */
6e3a343d 1237 sprintf (buf, "%s\n\tnot\t%s\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1238 break;
1239 case 3: /* add */
6e3a343d 1240 sprintf (buf, "%s\n\taddi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1241 break;
1242 case 4: /* sub */
6e3a343d 1243 sprintf (buf, "%s\n\tsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1244 break;
1245 case 5: /* rsub */
4816b8e4 1246 /* Never happens unless -mrsubi, see try_constant_tricks(). */
6e3a343d 1247 sprintf (buf, "%s\n\trsubi\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c 1248 break;
6e3a343d
NC
1249 case 6: /* bseti */
1250 sprintf (buf, "%s\n\tbseti\t%s,%%P2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1251 break;
1252 case 7: /* bclr */
6e3a343d 1253 sprintf (buf, "%s\n\tbclri\t%s,%%Q2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1254 break;
1255 case 8: /* rotl */
6e3a343d 1256 sprintf (buf, "%s\n\trotli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1257 break;
1258 case 9: /* lsl */
6e3a343d 1259 sprintf (buf, "%s\n\tlsli\t%s,%%2\t// %ld 0x%lx", load_op, dst_fmt, value, value);
8f90be4c
NC
1260 break;
1261 case 10: /* ixh */
6e3a343d 1262 sprintf (buf, "%s\n\tixh\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
8f90be4c
NC
1263 break;
1264 case 11: /* ixw */
6e3a343d 1265 sprintf (buf, "%s\n\tixw\t%s,%s\t// %ld 0x%lx", load_op, dst_fmt, dst_fmt, value, value);
8f90be4c
NC
1266 break;
1267 default:
1268 return "";
1269 }
1270
1271 output_asm_insn (buf, out_operands);
1272
1273 return "";
1274}
1275
1276/* Output a move of a word or less value. */
4816b8e4 1277
f27cd94d 1278const char *
08903e08 1279mcore_output_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
ef4bddc2 1280 machine_mode mode ATTRIBUTE_UNUSED)
8f90be4c
NC
1281{
1282 rtx dst = operands[0];
1283 rtx src = operands[1];
1284
1285 if (GET_CODE (dst) == REG)
1286 {
1287 if (GET_CODE (src) == REG)
1288 {
1289 if (REGNO (src) == CC_REG) /* r-c */
1290 return "mvc\t%0";
1291 else
1292 return "mov\t%0,%1"; /* r-r*/
1293 }
1294 else if (GET_CODE (src) == MEM)
1295 {
1296 if (GET_CODE (XEXP (src, 0)) == LABEL_REF)
1297 return "lrw\t%0,[%1]"; /* a-R */
1298 else
f0f4da32
RS
1299 switch (GET_MODE (src)) /* r-m */
1300 {
4e10a5a7 1301 case E_SImode:
f0f4da32 1302 return "ldw\t%0,%1";
4e10a5a7 1303 case E_HImode:
f0f4da32 1304 return "ld.h\t%0,%1";
4e10a5a7 1305 case E_QImode:
f0f4da32
RS
1306 return "ld.b\t%0,%1";
1307 default:
6e1f65b5 1308 gcc_unreachable ();
f0f4da32 1309 }
8f90be4c
NC
1310 }
1311 else if (GET_CODE (src) == CONST_INT)
1312 {
6e3a343d 1313 HOST_WIDE_INT x, y;
8f90be4c
NC
1314
1315 if (CONST_OK_FOR_I (INTVAL (src))) /* r-I */
1316 return "movi\t%0,%1";
1317 else if (CONST_OK_FOR_M (INTVAL (src))) /* r-M */
1318 return "bgeni\t%0,%P1\t// %1 %x1";
1319 else if (CONST_OK_FOR_N (INTVAL (src))) /* r-N */
1320 return "bmaski\t%0,%N1\t// %1 %x1";
1321 else if (try_constant_tricks (INTVAL (src), &x, &y)) /* R-P */
1322 return output_inline_const (SImode, operands); /* 1-2 insns */
1323 else
4816b8e4 1324 return "lrw\t%0,%x1\t// %1"; /* Get it from literal pool. */
8f90be4c
NC
1325 }
1326 else
4816b8e4 1327 return "lrw\t%0, %1"; /* Into the literal pool. */
8f90be4c
NC
1328 }
1329 else if (GET_CODE (dst) == MEM) /* m-r */
f0f4da32
RS
1330 switch (GET_MODE (dst))
1331 {
4e10a5a7 1332 case E_SImode:
f0f4da32 1333 return "stw\t%1,%0";
4e10a5a7 1334 case E_HImode:
f0f4da32 1335 return "st.h\t%1,%0";
4e10a5a7 1336 case E_QImode:
f0f4da32
RS
1337 return "st.b\t%1,%0";
1338 default:
6e1f65b5 1339 gcc_unreachable ();
f0f4da32 1340 }
8f90be4c 1341
6e1f65b5 1342 gcc_unreachable ();
8f90be4c
NC
1343}
1344
8f90be4c
NC
1345/* Return a sequence of instructions to perform DI or DF move.
1346 Since the MCORE cannot move a DI or DF in one instruction, we have
1347 to take care when we see overlapping source and dest registers. */
4816b8e4 1348
f27cd94d 1349const char *
ef4bddc2 1350mcore_output_movedouble (rtx operands[], machine_mode mode ATTRIBUTE_UNUSED)
8f90be4c
NC
1351{
1352 rtx dst = operands[0];
1353 rtx src = operands[1];
1354
1355 if (GET_CODE (dst) == REG)
1356 {
1357 if (GET_CODE (src) == REG)
1358 {
1359 int dstreg = REGNO (dst);
1360 int srcreg = REGNO (src);
4816b8e4 1361
8f90be4c
NC
1362 /* Ensure the second source not overwritten. */
1363 if (srcreg + 1 == dstreg)
1364 return "mov %R0,%R1\n\tmov %0,%1";
1365 else
1366 return "mov %0,%1\n\tmov %R0,%R1";
1367 }
1368 else if (GET_CODE (src) == MEM)
1369 {
d72fe292 1370 rtx memexp = XEXP (src, 0);
8f90be4c
NC
1371 int dstreg = REGNO (dst);
1372 int basereg = -1;
1373
1374 if (GET_CODE (memexp) == LABEL_REF)
1375 return "lrw\t%0,[%1]\n\tlrw\t%R0,[%R1]";
1376 else if (GET_CODE (memexp) == REG)
1377 basereg = REGNO (memexp);
1378 else if (GET_CODE (memexp) == PLUS)
1379 {
1380 if (GET_CODE (XEXP (memexp, 0)) == REG)
1381 basereg = REGNO (XEXP (memexp, 0));
1382 else if (GET_CODE (XEXP (memexp, 1)) == REG)
1383 basereg = REGNO (XEXP (memexp, 1));
1384 else
6e1f65b5 1385 gcc_unreachable ();
8f90be4c
NC
1386 }
1387 else
6e1f65b5 1388 gcc_unreachable ();
8f90be4c 1389
4816b8e4 1390 /* ??? length attribute is wrong here. */
8f90be4c
NC
1391 if (dstreg == basereg)
1392 {
4816b8e4 1393 /* Just load them in reverse order. */
8f90be4c 1394 return "ldw\t%R0,%R1\n\tldw\t%0,%1";
4816b8e4 1395
8f90be4c 1396 /* XXX: alternative: move basereg to basereg+1
4816b8e4 1397 and then fall through. */
8f90be4c
NC
1398 }
1399 else
1400 return "ldw\t%0,%1\n\tldw\t%R0,%R1";
1401 }
1402 else if (GET_CODE (src) == CONST_INT)
1403 {
1404 if (TARGET_LITTLE_END)
1405 {
1406 if (CONST_OK_FOR_I (INTVAL (src)))
1407 output_asm_insn ("movi %0,%1", operands);
1408 else if (CONST_OK_FOR_M (INTVAL (src)))
1409 output_asm_insn ("bgeni %0,%P1", operands);
8f90be4c
NC
1410 else if (CONST_OK_FOR_N (INTVAL (src)))
1411 output_asm_insn ("bmaski %0,%N1", operands);
1412 else
6e1f65b5 1413 gcc_unreachable ();
8f90be4c
NC
1414
1415 if (INTVAL (src) < 0)
1416 return "bmaski %R0,32";
1417 else
1418 return "movi %R0,0";
1419 }
1420 else
1421 {
1422 if (CONST_OK_FOR_I (INTVAL (src)))
1423 output_asm_insn ("movi %R0,%1", operands);
1424 else if (CONST_OK_FOR_M (INTVAL (src)))
1425 output_asm_insn ("bgeni %R0,%P1", operands);
8f90be4c
NC
1426 else if (CONST_OK_FOR_N (INTVAL (src)))
1427 output_asm_insn ("bmaski %R0,%N1", operands);
1428 else
6e1f65b5 1429 gcc_unreachable ();
6e3a343d 1430
8f90be4c
NC
1431 if (INTVAL (src) < 0)
1432 return "bmaski %0,32";
1433 else
1434 return "movi %0,0";
1435 }
1436 }
1437 else
6e1f65b5 1438 gcc_unreachable ();
8f90be4c
NC
1439 }
1440 else if (GET_CODE (dst) == MEM && GET_CODE (src) == REG)
1441 return "stw\t%1,%0\n\tstw\t%R1,%R0";
1442 else
6e1f65b5 1443 gcc_unreachable ();
8f90be4c
NC
1444}
1445
1446/* Predicates used by the templates. */
1447
8f90be4c 1448int
08903e08 1449mcore_arith_S_operand (rtx op)
8f90be4c
NC
1450{
1451 if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_M (~INTVAL (op)))
1452 return 1;
1453
1454 return 0;
1455}
1456
4816b8e4
NC
1457/* Expand insert bit field. BRC */
1458
8f90be4c 1459int
08903e08 1460mcore_expand_insv (rtx operands[])
8f90be4c
NC
1461{
1462 int width = INTVAL (operands[1]);
1463 int posn = INTVAL (operands[2]);
1464 int mask;
1465 rtx mreg, sreg, ereg;
1466
1467 /* To get width 1 insv, the test in store_bit_field() (expmed.c, line 191)
1468 for width==1 must be removed. Look around line 368. This is something
4816b8e4 1469 we really want the md part to do. */
8f90be4c
NC
1470 if (width == 1 && GET_CODE (operands[3]) == CONST_INT)
1471 {
4816b8e4
NC
1472 /* Do directly with bseti or bclri. */
1473 /* RBE: 2/97 consider only low bit of constant. */
6e3a343d 1474 if ((INTVAL (operands[3]) & 1) == 0)
8f90be4c
NC
1475 {
1476 mask = ~(1 << posn);
f7df4a84
RS
1477 emit_insn (gen_rtx_SET (operands[0],
1478 gen_rtx_AND (SImode, operands[0],
1479 GEN_INT (mask))));
8f90be4c
NC
1480 }
1481 else
1482 {
1483 mask = 1 << posn;
f7df4a84
RS
1484 emit_insn (gen_rtx_SET (operands[0],
1485 gen_rtx_IOR (SImode, operands[0],
1486 GEN_INT (mask))));
8f90be4c
NC
1487 }
1488
1489 return 1;
1490 }
1491
43a88a8c 1492 /* Look at some bit-field placements that we aren't interested
4816b8e4 1493 in handling ourselves, unless specifically directed to do so. */
8f90be4c
NC
1494 if (! TARGET_W_FIELD)
1495 return 0; /* Generally, give up about now. */
1496
1497 if (width == 8 && posn % 8 == 0)
1498 /* Byte sized and aligned; let caller break it up. */
1499 return 0;
1500
1501 if (width == 16 && posn % 16 == 0)
1502 /* Short sized and aligned; let caller break it up. */
1503 return 0;
1504
1505 /* The general case - we can do this a little bit better than what the
1506 machine independent part tries. This will get rid of all the subregs
1507 that mess up constant folding in combine when working with relaxed
4816b8e4 1508 immediates. */
8f90be4c
NC
1509
1510 /* If setting the entire field, do it directly. */
6e3a343d
NC
1511 if (GET_CODE (operands[3]) == CONST_INT
1512 && INTVAL (operands[3]) == ((1 << width) - 1))
8f90be4c
NC
1513 {
1514 mreg = force_reg (SImode, GEN_INT (INTVAL (operands[3]) << posn));
f7df4a84
RS
1515 emit_insn (gen_rtx_SET (operands[0],
1516 gen_rtx_IOR (SImode, operands[0], mreg)));
8f90be4c
NC
1517 return 1;
1518 }
1519
1520 /* Generate the clear mask. */
1521 mreg = force_reg (SImode, GEN_INT (~(((1 << width) - 1) << posn)));
1522
1523 /* Clear the field, to overlay it later with the source. */
f7df4a84
RS
1524 emit_insn (gen_rtx_SET (operands[0],
1525 gen_rtx_AND (SImode, operands[0], mreg)));
8f90be4c
NC
1526
1527 /* If the source is constant 0, we've nothing to add back. */
1528 if (GET_CODE (operands[3]) == CONST_INT && INTVAL (operands[3]) == 0)
1529 return 1;
1530
1531 /* XXX: Should we worry about more games with constant values?
1532 We've covered the high profile: set/clear single-bit and many-bit
1533 fields. How often do we see "arbitrary bit pattern" constants? */
1534 sreg = copy_to_mode_reg (SImode, operands[3]);
1535
1536 /* Extract src as same width as dst (needed for signed values). We
1537 always have to do this since we widen everything to SImode.
1538 We don't have to mask if we're shifting this up against the
1539 MSB of the register (e.g., the shift will push out any hi-order
4816b8e4 1540 bits. */
f27cd94d 1541 if (width + posn != (int) GET_MODE_SIZE (SImode))
8f90be4c
NC
1542 {
1543 ereg = force_reg (SImode, GEN_INT ((1 << width) - 1));
f7df4a84 1544 emit_insn (gen_rtx_SET (sreg, gen_rtx_AND (SImode, sreg, ereg)));
8f90be4c
NC
1545 }
1546
4816b8e4 1547 /* Insert source value in dest. */
8f90be4c 1548 if (posn != 0)
f7df4a84
RS
1549 emit_insn (gen_rtx_SET (sreg, gen_rtx_ASHIFT (SImode, sreg,
1550 GEN_INT (posn))));
8f90be4c 1551
f7df4a84
RS
1552 emit_insn (gen_rtx_SET (operands[0],
1553 gen_rtx_IOR (SImode, operands[0], sreg)));
8f90be4c
NC
1554
1555 return 1;
1556}
8f90be4c
NC
1557\f
1558/* ??? Block move stuff stolen from m88k. This code has not been
1559 verified for correctness. */
1560
1561/* Emit code to perform a block move. Choose the best method.
1562
1563 OPERANDS[0] is the destination.
1564 OPERANDS[1] is the source.
1565 OPERANDS[2] is the size.
1566 OPERANDS[3] is the alignment safe to use. */
1567
1568/* Emit code to perform a block move with an offset sequence of ldw/st
1569 instructions (..., ldw 0, stw 1, ldw 1, stw 0, ...). SIZE and ALIGN are
1570 known constants. DEST and SRC are registers. OFFSET is the known
1571 starting point for the output pattern. */
1572
ef4bddc2 1573static const machine_mode mode_from_align[] =
8f90be4c
NC
1574{
1575 VOIDmode, QImode, HImode, VOIDmode, SImode,
8f90be4c
NC
1576};
1577
1578static void
88042663 1579block_move_sequence (rtx dst_mem, rtx src_mem, int size, int align)
8f90be4c
NC
1580{
1581 rtx temp[2];
ef4bddc2 1582 machine_mode mode[2];
8f90be4c 1583 int amount[2];
88042663 1584 bool active[2];
8f90be4c
NC
1585 int phase = 0;
1586 int next;
88042663
RH
1587 int offset_ld = 0;
1588 int offset_st = 0;
1589 rtx x;
8f90be4c 1590
88042663
RH
1591 x = XEXP (dst_mem, 0);
1592 if (!REG_P (x))
1593 {
1594 x = force_reg (Pmode, x);
1595 dst_mem = replace_equiv_address (dst_mem, x);
1596 }
8f90be4c 1597
88042663
RH
1598 x = XEXP (src_mem, 0);
1599 if (!REG_P (x))
8f90be4c 1600 {
88042663
RH
1601 x = force_reg (Pmode, x);
1602 src_mem = replace_equiv_address (src_mem, x);
8f90be4c
NC
1603 }
1604
88042663
RH
1605 active[0] = active[1] = false;
1606
8f90be4c
NC
1607 do
1608 {
8f90be4c 1609 next = phase;
88042663 1610 phase ^= 1;
8f90be4c
NC
1611
1612 if (size > 0)
1613 {
88042663
RH
1614 int next_amount;
1615
1616 next_amount = (size >= 4 ? 4 : (size >= 2 ? 2 : 1));
1617 next_amount = MIN (next_amount, align);
1618
1619 amount[next] = next_amount;
1620 mode[next] = mode_from_align[next_amount];
1621 temp[next] = gen_reg_rtx (mode[next]);
1622
1623 x = adjust_address (src_mem, mode[next], offset_ld);
f7df4a84 1624 emit_insn (gen_rtx_SET (temp[next], x));
88042663
RH
1625
1626 offset_ld += next_amount;
1627 size -= next_amount;
1628 active[next] = true;
8f90be4c
NC
1629 }
1630
1631 if (active[phase])
1632 {
88042663 1633 active[phase] = false;
8f90be4c 1634
88042663 1635 x = adjust_address (dst_mem, mode[phase], offset_st);
f7df4a84 1636 emit_insn (gen_rtx_SET (x, temp[phase]));
88042663 1637
8f90be4c
NC
1638 offset_st += amount[phase];
1639 }
1640 }
1641 while (active[next]);
1642}
1643
88042663
RH
1644bool
1645mcore_expand_block_move (rtx *operands)
8f90be4c 1646{
88042663
RH
1647 HOST_WIDE_INT align, bytes, max;
1648
1649 if (GET_CODE (operands[2]) != CONST_INT)
1650 return false;
1651
1652 bytes = INTVAL (operands[2]);
1653 align = INTVAL (operands[3]);
8f90be4c 1654
88042663
RH
1655 if (bytes <= 0)
1656 return false;
1657 if (align > 4)
1658 align = 4;
1659
1660 switch (align)
8f90be4c 1661 {
88042663
RH
1662 case 4:
1663 if (bytes & 1)
1664 max = 4*4;
1665 else if (bytes & 3)
1666 max = 8*4;
1667 else
1668 max = 16*4;
1669 break;
1670 case 2:
1671 max = 4*2;
1672 break;
1673 case 1:
1674 max = 4*1;
1675 break;
1676 default:
6e1f65b5 1677 gcc_unreachable ();
88042663
RH
1678 }
1679
1680 if (bytes <= max)
1681 {
1682 block_move_sequence (operands[0], operands[1], bytes, align);
1683 return true;
8f90be4c
NC
1684 }
1685
88042663 1686 return false;
8f90be4c
NC
1687}
1688\f
1689
1690/* Code to generate prologue and epilogue sequences. */
1691static int number_of_regs_before_varargs;
4816b8e4 1692
bd5bd7ac 1693/* Set by TARGET_SETUP_INCOMING_VARARGS to indicate to prolog that this is
8f90be4c
NC
1694 for a varargs function. */
1695static int current_function_anonymous_args;
1696
8f90be4c
NC
1697#define STACK_BYTES (STACK_BOUNDARY/BITS_PER_UNIT)
1698#define STORE_REACH (64) /* Maximum displace of word store + 4. */
4816b8e4 1699#define ADDI_REACH (32) /* Maximum addi operand. */
8f90be4c 1700
8f90be4c 1701static void
08903e08 1702layout_mcore_frame (struct mcore_frame * infp)
8f90be4c
NC
1703{
1704 int n;
1705 unsigned int i;
1706 int nbytes;
1707 int regarg;
1708 int localregarg;
8f90be4c
NC
1709 int outbounds;
1710 unsigned int growths;
1711 int step;
1712
1713 /* Might have to spill bytes to re-assemble a big argument that
4816b8e4 1714 was passed partially in registers and partially on the stack. */
38173d38 1715 nbytes = crtl->args.pretend_args_size;
8f90be4c
NC
1716
1717 /* Determine how much space for spilled anonymous args (e.g., stdarg). */
1718 if (current_function_anonymous_args)
1719 nbytes += (NPARM_REGS - number_of_regs_before_varargs) * UNITS_PER_WORD;
1720
1721 infp->arg_size = nbytes;
1722
1723 /* How much space to save non-volatile registers we stomp. */
1724 infp->reg_mask = calc_live_regs (& n);
1725 infp->reg_size = n * 4;
1726
14bc6742 1727 /* And the rest of it... locals and space for overflowed outbounds. */
8f90be4c 1728 infp->local_size = get_frame_size ();
38173d38 1729 infp->outbound_size = crtl->outgoing_args_size;
8f90be4c
NC
1730
1731 /* Make sure we have a whole number of words for the locals. */
1732 if (infp->local_size % STACK_BYTES)
1733 infp->local_size = (infp->local_size + STACK_BYTES - 1) & ~ (STACK_BYTES -1);
1734
1735 /* Only thing we know we have to pad is the outbound space, since
1736 we've aligned our locals assuming that base of locals is aligned. */
1737 infp->pad_local = 0;
1738 infp->pad_reg = 0;
1739 infp->pad_outbound = 0;
1740 if (infp->outbound_size % STACK_BYTES)
1741 infp->pad_outbound = STACK_BYTES - (infp->outbound_size % STACK_BYTES);
1742
1743 /* Now we see how we want to stage the prologue so that it does
1744 the most appropriate stack growth and register saves to either:
1745 (1) run fast,
1746 (2) reduce instruction space, or
1747 (3) reduce stack space. */
b6a1cbae 1748 for (i = 0; i < ARRAY_SIZE (infp->growth); i++)
8f90be4c
NC
1749 infp->growth[i] = 0;
1750
1751 regarg = infp->reg_size + infp->arg_size;
1752 localregarg = infp->local_size + regarg;
8f90be4c
NC
1753 outbounds = infp->outbound_size + infp->pad_outbound;
1754 growths = 0;
1755
1756 /* XXX: Consider one where we consider localregarg + outbound too! */
1757
1758 /* Frame of <= 32 bytes and using stm would get <= 2 registers.
1759 use stw's with offsets and buy the frame in one shot. */
1760 if (localregarg <= ADDI_REACH
1761 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1762 {
1763 /* Make sure we'll be aligned. */
1764 if (localregarg % STACK_BYTES)
1765 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1766
1767 step = localregarg + infp->pad_reg;
1768 infp->reg_offset = infp->local_size;
1769
1770 if (outbounds + step <= ADDI_REACH && !frame_pointer_needed)
1771 {
1772 step += outbounds;
1773 infp->reg_offset += outbounds;
1774 outbounds = 0;
1775 }
1776
1777 infp->arg_offset = step - 4;
1778 infp->growth[growths++] = step;
1779 infp->reg_growth = growths;
1780 infp->local_growth = growths;
1781
4816b8e4 1782 /* If we haven't already folded it in. */
8f90be4c
NC
1783 if (outbounds)
1784 infp->growth[growths++] = outbounds;
1785
1786 goto finish;
1787 }
1788
1789 /* Frame can't be done with a single subi, but can be done with 2
1790 insns. If the 'stm' is getting <= 2 registers, we use stw's and
1791 shift some of the stack purchase into the first subi, so both are
1792 single instructions. */
1793 if (localregarg <= STORE_REACH
1794 && (infp->local_size > ADDI_REACH)
1795 && (infp->reg_size <= 8 || (infp->reg_mask & 0xc000) != 0xc000))
1796 {
1797 int all;
1798
1799 /* Make sure we'll be aligned; use either pad_reg or pad_local. */
1800 if (localregarg % STACK_BYTES)
1801 infp->pad_reg = STACK_BYTES - (localregarg % STACK_BYTES);
1802
1803 all = localregarg + infp->pad_reg + infp->pad_local;
1804 step = ADDI_REACH; /* As much up front as we can. */
1805 if (step > all)
1806 step = all;
1807
1808 /* XXX: Consider whether step will still be aligned; we believe so. */
1809 infp->arg_offset = step - 4;
1810 infp->growth[growths++] = step;
1811 infp->reg_growth = growths;
1812 infp->reg_offset = step - infp->pad_reg - infp->reg_size;
1813 all -= step;
1814
4816b8e4 1815 /* Can we fold in any space required for outbounds? */
8f90be4c
NC
1816 if (outbounds + all <= ADDI_REACH && !frame_pointer_needed)
1817 {
1818 all += outbounds;
1819 outbounds = 0;
1820 }
1821
4816b8e4 1822 /* Get the rest of the locals in place. */
8f90be4c
NC
1823 step = all;
1824 infp->growth[growths++] = step;
1825 infp->local_growth = growths;
1826 all -= step;
1827
819bfe0e 1828 gcc_assert (all == 0);
8f90be4c 1829
4816b8e4 1830 /* Finish off if we need to do so. */
8f90be4c
NC
1831 if (outbounds)
1832 infp->growth[growths++] = outbounds;
1833
1834 goto finish;
1835 }
1836
1837 /* Registers + args is nicely aligned, so we'll buy that in one shot.
1838 Then we buy the rest of the frame in 1 or 2 steps depending on
1839 whether we need a frame pointer. */
1840 if ((regarg % STACK_BYTES) == 0)
1841 {
1842 infp->growth[growths++] = regarg;
1843 infp->reg_growth = growths;
1844 infp->arg_offset = regarg - 4;
1845 infp->reg_offset = 0;
1846
1847 if (infp->local_size % STACK_BYTES)
1848 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1849
1850 step = infp->local_size + infp->pad_local;
1851
1852 if (!frame_pointer_needed)
1853 {
1854 step += outbounds;
1855 outbounds = 0;
1856 }
1857
1858 infp->growth[growths++] = step;
1859 infp->local_growth = growths;
1860
4816b8e4 1861 /* If there's any left to be done. */
8f90be4c
NC
1862 if (outbounds)
1863 infp->growth[growths++] = outbounds;
1864
1865 goto finish;
1866 }
1867
1868 /* XXX: optimizations that we'll want to play with....
4816b8e4
NC
1869 -- regarg is not aligned, but it's a small number of registers;
1870 use some of localsize so that regarg is aligned and then
1871 save the registers. */
8f90be4c
NC
1872
1873 /* Simple encoding; plods down the stack buying the pieces as it goes.
4816b8e4
NC
1874 -- does not optimize space consumption.
1875 -- does not attempt to optimize instruction counts.
1876 -- but it is safe for all alignments. */
8f90be4c
NC
1877 if (regarg % STACK_BYTES != 0)
1878 infp->pad_reg = STACK_BYTES - (regarg % STACK_BYTES);
1879
1880 infp->growth[growths++] = infp->arg_size + infp->reg_size + infp->pad_reg;
1881 infp->reg_growth = growths;
1882 infp->arg_offset = infp->growth[0] - 4;
1883 infp->reg_offset = 0;
1884
1885 if (frame_pointer_needed)
1886 {
1887 if (infp->local_size % STACK_BYTES != 0)
1888 infp->pad_local = STACK_BYTES - (infp->local_size % STACK_BYTES);
1889
1890 infp->growth[growths++] = infp->local_size + infp->pad_local;
1891 infp->local_growth = growths;
1892
1893 infp->growth[growths++] = outbounds;
1894 }
1895 else
1896 {
1897 if ((infp->local_size + outbounds) % STACK_BYTES != 0)
1898 infp->pad_local = STACK_BYTES - ((infp->local_size + outbounds) % STACK_BYTES);
1899
1900 infp->growth[growths++] = infp->local_size + infp->pad_local + outbounds;
1901 infp->local_growth = growths;
1902 }
1903
f27cd94d 1904 /* Anything else that we've forgotten?, plus a few consistency checks. */
8f90be4c 1905 finish:
819bfe0e
JM
1906 gcc_assert (infp->reg_offset >= 0);
1907 gcc_assert (growths <= MAX_STACK_GROWS);
8f90be4c
NC
1908
1909 for (i = 0; i < growths; i++)
6e1f65b5 1910 gcc_assert (!(infp->growth[i] % STACK_BYTES));
8f90be4c
NC
1911}
1912
1913/* Define the offset between two registers, one to be eliminated, and
1914 the other its replacement, at the start of a routine. */
4816b8e4 1915
8f90be4c 1916int
08903e08 1917mcore_initial_elimination_offset (int from, int to)
8f90be4c
NC
1918{
1919 int above_frame;
1920 int below_frame;
1921 struct mcore_frame fi;
1922
1923 layout_mcore_frame (& fi);
1924
1925 /* fp to ap */
1926 above_frame = fi.local_size + fi.pad_local + fi.reg_size + fi.pad_reg;
1927 /* sp to fp */
1928 below_frame = fi.outbound_size + fi.pad_outbound;
1929
1930 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
1931 return above_frame;
1932
1933 if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1934 return above_frame + below_frame;
1935
1936 if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
1937 return below_frame;
1938
6e1f65b5 1939 gcc_unreachable ();
8f90be4c
NC
1940}
1941
4816b8e4
NC
1942/* Keep track of some information about varargs for the prolog. */
1943
09a2b93a 1944static void
d5cc9181 1945mcore_setup_incoming_varargs (cumulative_args_t args_so_far_v,
e7056ca4 1946 const function_arg_info &arg,
09a2b93a
KH
1947 int * ptr_pretend_size ATTRIBUTE_UNUSED,
1948 int second_time ATTRIBUTE_UNUSED)
8f90be4c 1949{
d5cc9181
JR
1950 CUMULATIVE_ARGS *args_so_far = get_cumulative_args (args_so_far_v);
1951
8f90be4c
NC
1952 current_function_anonymous_args = 1;
1953
1954 /* We need to know how many argument registers are used before
1955 the varargs start, so that we can push the remaining argument
1956 registers during the prologue. */
e7056ca4
RS
1957 number_of_regs_before_varargs
1958 = *args_so_far + mcore_num_arg_regs (arg.mode, arg.type);
8f90be4c 1959
dab66575 1960 /* There is a bug somewhere in the arg handling code.
8f90be4c
NC
1961 Until I can find it this workaround always pushes the
1962 last named argument onto the stack. */
09a2b93a 1963 number_of_regs_before_varargs = *args_so_far;
8f90be4c
NC
1964
1965 /* The last named argument may be split between argument registers
1966 and the stack. Allow for this here. */
1967 if (number_of_regs_before_varargs > NPARM_REGS)
1968 number_of_regs_before_varargs = NPARM_REGS;
1969}
1970
1971void
08903e08 1972mcore_expand_prolog (void)
8f90be4c
NC
1973{
1974 struct mcore_frame fi;
1975 int space_allocated = 0;
1976 int growth = 0;
1977
1978 /* Find out what we're doing. */
1979 layout_mcore_frame (&fi);
1980
1981 space_allocated = fi.arg_size + fi.reg_size + fi.local_size +
1982 fi.outbound_size + fi.pad_outbound + fi.pad_local + fi.pad_reg;
1983
1984 if (TARGET_CG_DATA)
1985 {
1986 /* Emit a symbol for this routine's frame size. */
1987 rtx x;
8f90be4c
NC
1988
1989 x = DECL_RTL (current_function_decl);
1990
6e1f65b5 1991 gcc_assert (GET_CODE (x) == MEM);
8f90be4c
NC
1992
1993 x = XEXP (x, 0);
1994
6e1f65b5 1995 gcc_assert (GET_CODE (x) == SYMBOL_REF);
8f90be4c 1996
04695783 1997 free (mcore_current_function_name);
8f90be4c 1998
1dcd444b 1999 mcore_current_function_name = xstrdup (XSTR (x, 0));
8f90be4c
NC
2000
2001 ASM_OUTPUT_CG_NODE (asm_out_file, mcore_current_function_name, space_allocated);
2002
e3b5732b 2003 if (cfun->calls_alloca)
8f90be4c
NC
2004 ASM_OUTPUT_CG_EDGE (asm_out_file, mcore_current_function_name, "alloca", 1);
2005
2006 /* 970425: RBE:
2007 We're looking at how the 8byte alignment affects stack layout
2008 and where we had to pad things. This emits information we can
2009 extract which tells us about frame sizes and the like. */
2010 fprintf (asm_out_file,
2011 "\t.equ\t__$frame$info$_%s_$_%d_%d_x%x_%d_%d_%d,0\n",
2012 mcore_current_function_name,
2013 fi.arg_size, fi.reg_size, fi.reg_mask,
2014 fi.local_size, fi.outbound_size,
2015 frame_pointer_needed);
2016 }
2017
2018 if (mcore_naked_function_p ())
2019 return;
2020
2021 /* Handle stdarg+regsaves in one shot: can't be more than 64 bytes. */
08903e08 2022 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
8f90be4c
NC
2023
2024 /* If we have a parameter passed partially in regs and partially in memory,
2025 the registers will have been stored to memory already in function.c. So
2026 we only need to do something here for varargs functions. */
38173d38 2027 if (fi.arg_size != 0 && crtl->args.pretend_args_size == 0)
8f90be4c
NC
2028 {
2029 int offset;
2030 int rn = FIRST_PARM_REG + NPARM_REGS - 1;
2031 int remaining = fi.arg_size;
2032
2033 for (offset = fi.arg_offset; remaining >= 4; offset -= 4, rn--, remaining -= 4)
2034 {
2035 emit_insn (gen_movsi
f1c25d3b 2036 (gen_rtx_MEM (SImode,
0a81f074
RS
2037 plus_constant (Pmode, stack_pointer_rtx,
2038 offset)),
f1c25d3b 2039 gen_rtx_REG (SImode, rn)));
8f90be4c
NC
2040 }
2041 }
2042
4816b8e4 2043 /* Do we need another stack adjustment before we do the register saves? */
8f90be4c 2044 if (growth < fi.reg_growth)
08903e08 2045 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
8f90be4c
NC
2046
2047 if (fi.reg_size != 0)
2048 {
2049 int i;
2050 int offs = fi.reg_offset;
2051
2052 for (i = 15; i >= 0; i--)
2053 {
2054 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2055 {
2056 int first_reg = 15;
2057
2058 while (fi.reg_mask & (1 << first_reg))
2059 first_reg--;
2060 first_reg++;
2061
f1c25d3b
KH
2062 emit_insn (gen_store_multiple (gen_rtx_MEM (SImode, stack_pointer_rtx),
2063 gen_rtx_REG (SImode, first_reg),
8f90be4c
NC
2064 GEN_INT (16 - first_reg)));
2065
2066 i -= (15 - first_reg);
2067 offs += (16 - first_reg) * 4;
2068 }
2069 else if (fi.reg_mask & (1 << i))
2070 {
2071 emit_insn (gen_movsi
f1c25d3b 2072 (gen_rtx_MEM (SImode,
0a81f074
RS
2073 plus_constant (Pmode, stack_pointer_rtx,
2074 offs)),
f1c25d3b 2075 gen_rtx_REG (SImode, i)));
8f90be4c
NC
2076 offs += 4;
2077 }
2078 }
2079 }
2080
2081 /* Figure the locals + outbounds. */
2082 if (frame_pointer_needed)
2083 {
2084 /* If we haven't already purchased to 'fp'. */
2085 if (growth < fi.local_growth)
08903e08 2086 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
8f90be4c
NC
2087
2088 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
2089
4816b8e4 2090 /* ... and then go any remaining distance for outbounds, etc. */
8f90be4c
NC
2091 if (fi.growth[growth])
2092 output_stack_adjust (-1, fi.growth[growth++]);
2093 }
2094 else
2095 {
2096 if (growth < fi.local_growth)
08903e08 2097 output_stack_adjust (-1, fi.growth[growth++]); /* Grows it. */
8f90be4c
NC
2098 if (fi.growth[growth])
2099 output_stack_adjust (-1, fi.growth[growth++]);
2100 }
2101}
2102
2103void
08903e08 2104mcore_expand_epilog (void)
8f90be4c
NC
2105{
2106 struct mcore_frame fi;
2107 int i;
2108 int offs;
2109 int growth = MAX_STACK_GROWS - 1 ;
2110
f27cd94d 2111
8f90be4c
NC
2112 /* Find out what we're doing. */
2113 layout_mcore_frame(&fi);
2114
2115 if (mcore_naked_function_p ())
2116 return;
f27cd94d 2117
8f90be4c
NC
2118 /* If we had a frame pointer, restore the sp from that. */
2119 if (frame_pointer_needed)
2120 {
2121 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
2122 growth = fi.local_growth - 1;
2123 }
2124 else
2125 {
2126 /* XXX: while loop should accumulate and do a single sell. */
2127 while (growth >= fi.local_growth)
2128 {
2129 if (fi.growth[growth] != 0)
2130 output_stack_adjust (1, fi.growth[growth]);
2131 growth--;
2132 }
2133 }
2134
2135 /* Make sure we've shrunk stack back to the point where the registers
2136 were laid down. This is typically 0/1 iterations. Then pull the
4816b8e4 2137 register save information back off the stack. */
8f90be4c
NC
2138 while (growth >= fi.reg_growth)
2139 output_stack_adjust ( 1, fi.growth[growth--]);
2140
2141 offs = fi.reg_offset;
2142
2143 for (i = 15; i >= 0; i--)
2144 {
2145 if (offs == 0 && i == 15 && ((fi.reg_mask & 0xc000) == 0xc000))
2146 {
2147 int first_reg;
2148
2149 /* Find the starting register. */
2150 first_reg = 15;
2151
2152 while (fi.reg_mask & (1 << first_reg))
2153 first_reg--;
2154
2155 first_reg++;
2156
f1c25d3b
KH
2157 emit_insn (gen_load_multiple (gen_rtx_REG (SImode, first_reg),
2158 gen_rtx_MEM (SImode, stack_pointer_rtx),
8f90be4c
NC
2159 GEN_INT (16 - first_reg)));
2160
2161 i -= (15 - first_reg);
2162 offs += (16 - first_reg) * 4;
2163 }
2164 else if (fi.reg_mask & (1 << i))
2165 {
2166 emit_insn (gen_movsi
f1c25d3b
KH
2167 (gen_rtx_REG (SImode, i),
2168 gen_rtx_MEM (SImode,
0a81f074
RS
2169 plus_constant (Pmode, stack_pointer_rtx,
2170 offs))));
8f90be4c
NC
2171 offs += 4;
2172 }
2173 }
2174
2175 /* Give back anything else. */
dab66575 2176 /* XXX: Should accumulate total and then give it back. */
8f90be4c
NC
2177 while (growth >= 0)
2178 output_stack_adjust ( 1, fi.growth[growth--]);
2179}
2180\f
2181/* This code is borrowed from the SH port. */
2182
2183/* The MCORE cannot load a large constant into a register, constants have to
2184 come from a pc relative load. The reference of a pc relative load
0fa2e4df 2185 instruction must be less than 1k in front of the instruction. This
8f90be4c
NC
2186 means that we often have to dump a constant inside a function, and
2187 generate code to branch around it.
2188
2189 It is important to minimize this, since the branches will slow things
2190 down and make things bigger.
2191
2192 Worst case code looks like:
2193
2194 lrw L1,r0
2195 br L2
2196 align
2197 L1: .long value
2198 L2:
2199 ..
2200
2201 lrw L3,r0
2202 br L4
2203 align
2204 L3: .long value
2205 L4:
2206 ..
2207
2208 We fix this by performing a scan before scheduling, which notices which
2209 instructions need to have their operands fetched from the constant table
2210 and builds the table.
2211
2212 The algorithm is:
2213
2214 scan, find an instruction which needs a pcrel move. Look forward, find the
2215 last barrier which is within MAX_COUNT bytes of the requirement.
2216 If there isn't one, make one. Process all the instructions between
2217 the find and the barrier.
2218
2219 In the above example, we can tell that L3 is within 1k of L1, so
2220 the first move can be shrunk from the 2 insn+constant sequence into
2221 just 1 insn, and the constant moved to L3 to make:
2222
2223 lrw L1,r0
2224 ..
2225 lrw L3,r0
2226 bra L4
2227 align
2228 L3:.long value
2229 L4:.long value
2230
2231 Then the second move becomes the target for the shortening process. */
2232
2233typedef struct
2234{
2235 rtx value; /* Value in table. */
2236 rtx label; /* Label of value. */
2237} pool_node;
2238
2239/* The maximum number of constants that can fit into one pool, since
2240 the pc relative range is 0...1020 bytes and constants are at least 4
2a43945f 2241 bytes long. We subtract 4 from the range to allow for the case where
8f90be4c
NC
2242 we need to add a branch/align before the constant pool. */
2243
2244#define MAX_COUNT 1016
2245#define MAX_POOL_SIZE (MAX_COUNT/4)
2246static pool_node pool_vector[MAX_POOL_SIZE];
2247static int pool_size;
2248
2249/* Dump out any constants accumulated in the final pass. These
2250 will only be labels. */
4816b8e4 2251
f27cd94d 2252const char *
08903e08 2253mcore_output_jump_label_table (void)
8f90be4c
NC
2254{
2255 int i;
2256
2257 if (pool_size)
2258 {
2259 fprintf (asm_out_file, "\t.align 2\n");
2260
2261 for (i = 0; i < pool_size; i++)
2262 {
2263 pool_node * p = pool_vector + i;
2264
4977bab6 2265 (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (p->label));
8f90be4c
NC
2266
2267 output_asm_insn (".long %0", &p->value);
2268 }
2269
2270 pool_size = 0;
2271 }
2272
2273 return "";
2274}
2275
8f90be4c 2276/* Check whether insn is a candidate for a conditional. */
4816b8e4 2277
8f90be4c 2278static cond_type
08903e08 2279is_cond_candidate (rtx insn)
8f90be4c
NC
2280{
2281 /* The only things we conditionalize are those that can be directly
2282 changed into a conditional. Only bother with SImode items. If
2283 we wanted to be a little more aggressive, we could also do other
4816b8e4 2284 modes such as DImode with reg-reg move or load 0. */
b64925dc 2285 if (NONJUMP_INSN_P (insn))
8f90be4c
NC
2286 {
2287 rtx pat = PATTERN (insn);
2288 rtx src, dst;
2289
2290 if (GET_CODE (pat) != SET)
2291 return COND_NO;
2292
2293 dst = XEXP (pat, 0);
2294
2295 if ((GET_CODE (dst) != REG &&
2296 GET_CODE (dst) != SUBREG) ||
2297 GET_MODE (dst) != SImode)
2298 return COND_NO;
2299
2300 src = XEXP (pat, 1);
2301
2302 if ((GET_CODE (src) == REG ||
2303 (GET_CODE (src) == SUBREG &&
2304 GET_CODE (SUBREG_REG (src)) == REG)) &&
2305 GET_MODE (src) == SImode)
2306 return COND_MOV_INSN;
2307 else if (GET_CODE (src) == CONST_INT &&
2308 INTVAL (src) == 0)
2309 return COND_CLR_INSN;
2310 else if (GET_CODE (src) == PLUS &&
2311 (GET_CODE (XEXP (src, 0)) == REG ||
2312 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2313 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2314 GET_MODE (XEXP (src, 0)) == SImode &&
2315 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2316 INTVAL (XEXP (src, 1)) == 1)
2317 return COND_INC_INSN;
2318 else if (((GET_CODE (src) == MINUS &&
2319 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2320 INTVAL( XEXP (src, 1)) == 1) ||
2321 (GET_CODE (src) == PLUS &&
2322 GET_CODE (XEXP (src, 1)) == CONST_INT &&
2323 INTVAL (XEXP (src, 1)) == -1)) &&
2324 (GET_CODE (XEXP (src, 0)) == REG ||
2325 (GET_CODE (XEXP (src, 0)) == SUBREG &&
2326 GET_CODE (SUBREG_REG (XEXP (src, 0))) == REG)) &&
2327 GET_MODE (XEXP (src, 0)) == SImode)
2328 return COND_DEC_INSN;
2329
14bc6742 2330 /* Some insns that we don't bother with:
8f90be4c
NC
2331 (set (rx:DI) (ry:DI))
2332 (set (rx:DI) (const_int 0))
2333 */
2334
2335 }
b64925dc
SB
2336 else if (JUMP_P (insn)
2337 && GET_CODE (PATTERN (insn)) == SET
2338 && GET_CODE (XEXP (PATTERN (insn), 1)) == LABEL_REF)
8f90be4c
NC
2339 return COND_BRANCH_INSN;
2340
2341 return COND_NO;
2342}
2343
2344/* Emit a conditional version of insn and replace the old insn with the
2345 new one. Return the new insn if emitted. */
4816b8e4 2346
b32d5189 2347static rtx_insn *
d8485bdb 2348emit_new_cond_insn (rtx_insn *insn, int cond)
8f90be4c
NC
2349{
2350 rtx c_insn = 0;
2351 rtx pat, dst, src;
2352 cond_type num;
2353
2354 if ((num = is_cond_candidate (insn)) == COND_NO)
2355 return NULL;
2356
2357 pat = PATTERN (insn);
2358
b64925dc 2359 if (NONJUMP_INSN_P (insn))
8f90be4c
NC
2360 {
2361 dst = SET_DEST (pat);
2362 src = SET_SRC (pat);
2363 }
2364 else
cd4c46f3
KG
2365 {
2366 dst = JUMP_LABEL (insn);
2367 src = NULL_RTX;
2368 }
8f90be4c
NC
2369
2370 switch (num)
2371 {
2372 case COND_MOV_INSN:
2373 case COND_CLR_INSN:
2374 if (cond)
2375 c_insn = gen_movt0 (dst, src, dst);
2376 else
2377 c_insn = gen_movt0 (dst, dst, src);
2378 break;
2379
2380 case COND_INC_INSN:
2381 if (cond)
2382 c_insn = gen_incscc (dst, dst);
2383 else
2384 c_insn = gen_incscc_false (dst, dst);
2385 break;
2386
2387 case COND_DEC_INSN:
2388 if (cond)
2389 c_insn = gen_decscc (dst, dst);
2390 else
2391 c_insn = gen_decscc_false (dst, dst);
2392 break;
2393
2394 case COND_BRANCH_INSN:
2395 if (cond)
2396 c_insn = gen_branch_true (dst);
2397 else
2398 c_insn = gen_branch_false (dst);
2399 break;
2400
2401 default:
2402 return NULL;
2403 }
2404
2405 /* Only copy the notes if they exist. */
2406 if (rtx_length [GET_CODE (c_insn)] >= 7 && rtx_length [GET_CODE (insn)] >= 7)
2407 {
2408 /* We really don't need to bother with the notes and links at this
2409 point, but go ahead and save the notes. This will help is_dead()
2410 when applying peepholes (links don't matter since they are not
2411 used any more beyond this point for the mcore). */
2412 REG_NOTES (c_insn) = REG_NOTES (insn);
2413 }
2414
2415 if (num == COND_BRANCH_INSN)
2416 {
2417 /* For jumps, we need to be a little bit careful and emit the new jump
2418 before the old one and to update the use count for the target label.
2419 This way, the barrier following the old (uncond) jump will get
2420 deleted, but the label won't. */
2421 c_insn = emit_jump_insn_before (c_insn, insn);
2422
2423 ++ LABEL_NUSES (dst);
2424
2425 JUMP_LABEL (c_insn) = dst;
2426 }
2427 else
2428 c_insn = emit_insn_after (c_insn, insn);
2429
2430 delete_insn (insn);
2431
b32d5189 2432 return as_a <rtx_insn *> (c_insn);
8f90be4c
NC
2433}
2434
2435/* Attempt to change a basic block into a series of conditional insns. This
2436 works by taking the branch at the end of the 1st block and scanning for the
2437 end of the 2nd block. If all instructions in the 2nd block have cond.
2438 versions and the label at the start of block 3 is the same as the target
2439 from the branch at block 1, then conditionalize all insn in block 2 using
2440 the inverse condition of the branch at block 1. (Note I'm bending the
2441 definition of basic block here.)
2442
2443 e.g., change:
2444
2445 bt L2 <-- end of block 1 (delete)
2446 mov r7,r8
2447 addu r7,1
2448 br L3 <-- end of block 2
2449
2450 L2: ... <-- start of block 3 (NUSES==1)
2451 L3: ...
2452
2453 to:
2454
2455 movf r7,r8
2456 incf r7
2457 bf L3
2458
2459 L3: ...
2460
2461 we can delete the L2 label if NUSES==1 and re-apply the optimization
2462 starting at the last instruction of block 2. This may allow an entire
4816b8e4 2463 if-then-else statement to be conditionalized. BRC */
b32d5189
DM
2464static rtx_insn *
2465conditionalize_block (rtx_insn *first)
8f90be4c 2466{
b32d5189 2467 rtx_insn *insn;
8f90be4c 2468 rtx br_pat;
b32d5189
DM
2469 rtx_insn *end_blk_1_br = 0;
2470 rtx_insn *end_blk_2_insn = 0;
2471 rtx_insn *start_blk_3_lab = 0;
8f90be4c
NC
2472 int cond;
2473 int br_lab_num;
2474 int blk_size = 0;
2475
2476
2477 /* Check that the first insn is a candidate conditional jump. This is
2478 the one that we'll eliminate. If not, advance to the next insn to
2479 try. */
b64925dc
SB
2480 if (! JUMP_P (first)
2481 || GET_CODE (PATTERN (first)) != SET
2482 || GET_CODE (XEXP (PATTERN (first), 1)) != IF_THEN_ELSE)
8f90be4c
NC
2483 return NEXT_INSN (first);
2484
2485 /* Extract some information we need. */
2486 end_blk_1_br = first;
2487 br_pat = PATTERN (end_blk_1_br);
2488
2489 /* Complement the condition since we use the reverse cond. for the insns. */
2490 cond = (GET_CODE (XEXP (XEXP (br_pat, 1), 0)) == EQ);
2491
2492 /* Determine what kind of branch we have. */
2493 if (GET_CODE (XEXP (XEXP (br_pat, 1), 1)) == LABEL_REF)
2494 {
2495 /* A normal branch, so extract label out of first arm. */
2496 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 1), 0));
2497 }
2498 else
2499 {
2500 /* An inverse branch, so extract the label out of the 2nd arm
2501 and complement the condition. */
2502 cond = (cond == 0);
2503 br_lab_num = CODE_LABEL_NUMBER (XEXP (XEXP (XEXP (br_pat, 1), 2), 0));
2504 }
2505
2506 /* Scan forward for the start of block 2: it must start with a
2507 label and that label must be the same as the branch target
2508 label from block 1. We don't care about whether block 2 actually
2509 ends with a branch or a label (an uncond. branch is
2510 conditionalizable). */
2511 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
2512 {
2513 enum rtx_code code;
2514
2515 code = GET_CODE (insn);
2516
14bc6742 2517 /* Look for the label at the start of block 3. */
8f90be4c
NC
2518 if (code == CODE_LABEL && CODE_LABEL_NUMBER (insn) == br_lab_num)
2519 break;
2520
2521 /* Skip barriers, notes, and conditionalizable insns. If the
2522 insn is not conditionalizable or makes this optimization fail,
2523 just return the next insn so we can start over from that point. */
2524 if (code != BARRIER && code != NOTE && !is_cond_candidate (insn))
2525 return NEXT_INSN (insn);
2526
112cdef5 2527 /* Remember the last real insn before the label (i.e. end of block 2). */
8f90be4c
NC
2528 if (code == JUMP_INSN || code == INSN)
2529 {
2530 blk_size ++;
2531 end_blk_2_insn = insn;
2532 }
2533 }
2534
2535 if (!insn)
2536 return insn;
2537
2538 /* It is possible for this optimization to slow performance if the blocks
2539 are long. This really depends upon whether the branch is likely taken
2540 or not. If the branch is taken, we slow performance in many cases. But,
2541 if the branch is not taken, we always help performance (for a single
2542 block, but for a double block (i.e. when the optimization is re-applied)
2543 this is not true since the 'right thing' depends on the overall length of
2544 the collapsed block). As a compromise, don't apply this optimization on
2545 blocks larger than size 2 (unlikely for the mcore) when speed is important.
2546 the best threshold depends on the latencies of the instructions (i.e.,
2547 the branch penalty). */
2548 if (optimize > 1 && blk_size > 2)
2549 return insn;
2550
2551 /* At this point, we've found the start of block 3 and we know that
2552 it is the destination of the branch from block 1. Also, all
2553 instructions in the block 2 are conditionalizable. So, apply the
2554 conditionalization and delete the branch. */
2555 start_blk_3_lab = insn;
2556
2557 for (insn = NEXT_INSN (end_blk_1_br); insn != start_blk_3_lab;
2558 insn = NEXT_INSN (insn))
2559 {
b32d5189 2560 rtx_insn *newinsn;
8f90be4c 2561
4654c0cf 2562 if (insn->deleted ())
8f90be4c
NC
2563 continue;
2564
14bc6742 2565 /* Try to form a conditional variant of the instruction and emit it. */
8f90be4c
NC
2566 if ((newinsn = emit_new_cond_insn (insn, cond)))
2567 {
2568 if (end_blk_2_insn == insn)
2569 end_blk_2_insn = newinsn;
2570
2571 insn = newinsn;
2572 }
2573 }
2574
2575 /* Note whether we will delete the label starting blk 3 when the jump
2576 gets deleted. If so, we want to re-apply this optimization at the
2577 last real instruction right before the label. */
2578 if (LABEL_NUSES (start_blk_3_lab) == 1)
2579 {
2580 start_blk_3_lab = 0;
2581 }
2582
2583 /* ??? we probably should redistribute the death notes for this insn, esp.
2584 the death of cc, but it doesn't really matter this late in the game.
2585 The peepholes all use is_dead() which will find the correct death
2586 regardless of whether there is a note. */
2587 delete_insn (end_blk_1_br);
2588
2589 if (! start_blk_3_lab)
2590 return end_blk_2_insn;
2591
4816b8e4 2592 /* Return the insn right after the label at the start of block 3. */
8f90be4c
NC
2593 return NEXT_INSN (start_blk_3_lab);
2594}
2595
2596/* Apply the conditionalization of blocks optimization. This is the
2597 outer loop that traverses through the insns scanning for a branch
2598 that signifies an opportunity to apply the optimization. Note that
2599 this optimization is applied late. If we could apply it earlier,
2600 say before cse 2, it may expose more optimization opportunities.
2601 but, the pay back probably isn't really worth the effort (we'd have
2602 to update all reg/flow/notes/links/etc to make it work - and stick it
4816b8e4
NC
2603 in before cse 2). */
2604
8f90be4c 2605static void
08903e08 2606conditionalize_optimization (void)
8f90be4c 2607{
b32d5189 2608 rtx_insn *insn;
8f90be4c 2609
18dbd950 2610 for (insn = get_insns (); insn; insn = conditionalize_block (insn))
8f90be4c
NC
2611 continue;
2612}
2613
18dbd950 2614/* This is to handle loads from the constant pool. */
4816b8e4 2615
18dbd950 2616static void
08903e08 2617mcore_reorg (void)
8f90be4c
NC
2618{
2619 /* Reset this variable. */
2620 current_function_anonymous_args = 0;
2621
8f90be4c
NC
2622 if (optimize == 0)
2623 return;
2624
2625 /* Conditionalize blocks where we can. */
18dbd950 2626 conditionalize_optimization ();
8f90be4c
NC
2627
2628 /* Literal pool generation is now pushed off until the assembler. */
2629}
2630
2631\f
f0f4da32 2632/* Return true if X is something that can be moved directly into r15. */
8f90be4c 2633
f0f4da32 2634bool
08903e08 2635mcore_r15_operand_p (rtx x)
f0f4da32
RS
2636{
2637 switch (GET_CODE (x))
2638 {
2639 case CONST_INT:
2640 return mcore_const_ok_for_inline (INTVAL (x));
8f90be4c 2641
f0f4da32
RS
2642 case REG:
2643 case SUBREG:
2644 case MEM:
2645 return 1;
2646
2647 default:
2648 return 0;
2649 }
2650}
2651
0a2aaacc 2652/* Implement SECONDARY_RELOAD_CLASS. If RCLASS contains r15, and we can't
f0f4da32 2653 directly move X into it, use r1-r14 as a temporary. */
08903e08 2654
f0f4da32 2655enum reg_class
0a2aaacc 2656mcore_secondary_reload_class (enum reg_class rclass,
ef4bddc2 2657 machine_mode mode ATTRIBUTE_UNUSED, rtx x)
f0f4da32 2658{
0a2aaacc 2659 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], 15)
f0f4da32
RS
2660 && !mcore_r15_operand_p (x))
2661 return LRW_REGS;
2662 return NO_REGS;
2663}
8f90be4c 2664
f0f4da32 2665/* Return the reg_class to use when reloading the rtx X into the class
0a2aaacc 2666 RCLASS. If X is too complex to move directly into r15, prefer to
f0f4da32 2667 use LRW_REGS instead. */
08903e08 2668
8f90be4c 2669enum reg_class
0a2aaacc 2670mcore_reload_class (rtx x, enum reg_class rclass)
8f90be4c 2671{
0a2aaacc 2672 if (reg_class_subset_p (LRW_REGS, rclass) && !mcore_r15_operand_p (x))
f0f4da32 2673 return LRW_REGS;
8f90be4c 2674
0a2aaacc 2675 return rclass;
8f90be4c
NC
2676}
2677
2678/* Tell me if a pair of reg/subreg rtx's actually refer to the same
2679 register. Note that the current version doesn't worry about whether
2680 they are the same mode or note (e.g., a QImode in r2 matches an HImode
2681 in r2 matches an SImode in r2. Might think in the future about whether
2682 we want to be able to say something about modes. */
08903e08 2683
8f90be4c 2684int
08903e08 2685mcore_is_same_reg (rtx x, rtx y)
8f90be4c 2686{
14bc6742 2687 /* Strip any and all of the subreg wrappers. */
8f90be4c
NC
2688 while (GET_CODE (x) == SUBREG)
2689 x = SUBREG_REG (x);
2690
2691 while (GET_CODE (y) == SUBREG)
2692 y = SUBREG_REG (y);
2693
2694 if (GET_CODE(x) == REG && GET_CODE(y) == REG && REGNO(x) == REGNO(y))
2695 return 1;
2696
2697 return 0;
2698}
2699
c5387660
JM
2700static void
2701mcore_option_override (void)
8f90be4c 2702{
8f90be4c
NC
2703 /* Only the m340 supports little endian code. */
2704 if (TARGET_LITTLE_END && ! TARGET_M340)
78fb8038 2705 target_flags |= MASK_M340;
8f90be4c 2706}
fac0f722 2707
8f90be4c 2708\f
8f90be4c
NC
2709/* Compute the number of word sized registers needed to
2710 hold a function argument of mode MODE and type TYPE. */
08903e08 2711
8f90be4c 2712int
ef4bddc2 2713mcore_num_arg_regs (machine_mode mode, const_tree type)
8f90be4c
NC
2714{
2715 int size;
2716
fe984136 2717 if (targetm.calls.must_pass_in_stack (mode, type))
8f90be4c
NC
2718 return 0;
2719
2720 if (type && mode == BLKmode)
2721 size = int_size_in_bytes (type);
2722 else
2723 size = GET_MODE_SIZE (mode);
2724
2725 return ROUND_ADVANCE (size);
2726}
2727
2728static rtx
ef4bddc2 2729handle_structs_in_regs (machine_mode mode, const_tree type, int reg)
8f90be4c
NC
2730{
2731 int size;
2732
696e78bf 2733 /* The MCore ABI defines that a structure whose size is not a whole multiple
8f90be4c
NC
2734 of bytes is passed packed into registers (or spilled onto the stack if
2735 not enough registers are available) with the last few bytes of the
2736 structure being packed, left-justified, into the last register/stack slot.
2737 GCC handles this correctly if the last word is in a stack slot, but we
2738 have to generate a special, PARALLEL RTX if the last word is in an
2739 argument register. */
2740 if (type
2741 && TYPE_MODE (type) == BLKmode
2742 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
2743 && (size = int_size_in_bytes (type)) > UNITS_PER_WORD
2744 && (size % UNITS_PER_WORD != 0)
2745 && (reg + mcore_num_arg_regs (mode, type) <= (FIRST_PARM_REG + NPARM_REGS)))
2746 {
2747 rtx arg_regs [NPARM_REGS];
2748 int nregs;
2749 rtx result;
2750 rtvec rtvec;
2751
2752 for (nregs = 0; size > 0; size -= UNITS_PER_WORD)
2753 {
2754 arg_regs [nregs] =
2755 gen_rtx_EXPR_LIST (SImode, gen_rtx_REG (SImode, reg ++),
2756 GEN_INT (nregs * UNITS_PER_WORD));
2757 nregs ++;
2758 }
2759
2760 /* We assume here that NPARM_REGS == 6. The assert checks this. */
819bfe0e 2761 gcc_assert (ARRAY_SIZE (arg_regs) == 6);
8f90be4c
NC
2762 rtvec = gen_rtvec (nregs, arg_regs[0], arg_regs[1], arg_regs[2],
2763 arg_regs[3], arg_regs[4], arg_regs[5]);
2764
2765 result = gen_rtx_PARALLEL (mode, rtvec);
2766 return result;
2767 }
2768
2769 return gen_rtx_REG (mode, reg);
2770}
2771
2772rtx
cde0f3fd 2773mcore_function_value (const_tree valtype, const_tree func)
8f90be4c 2774{
ef4bddc2 2775 machine_mode mode;
8f90be4c
NC
2776 int unsigned_p;
2777
2778 mode = TYPE_MODE (valtype);
2779
cde0f3fd 2780 /* Since we promote return types, we must promote the mode here too. */
71e0af3c 2781 mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
8f90be4c
NC
2782
2783 return handle_structs_in_regs (mode, valtype, FIRST_RET_REG);
2784}
2785
2786/* Define where to put the arguments to a function.
2787 Value is zero to push the argument on the stack,
2788 or a hard register in which to store the argument.
2789
8f90be4c
NC
2790 CUM is a variable of type CUMULATIVE_ARGS which gives info about
2791 the preceding args and about the function being called.
6783fdb7 2792 ARG is a description of the argument.
8f90be4c
NC
2793
2794 On MCore the first args are normally in registers
2795 and the rest are pushed. Any arg that starts within the first
2796 NPARM_REGS words is at least partially passed in a register unless
2797 its data type forbids. */
08903e08 2798
4665ac17 2799static rtx
6783fdb7 2800mcore_function_arg (cumulative_args_t cum, const function_arg_info &arg)
8f90be4c
NC
2801{
2802 int arg_reg;
2803
6783fdb7 2804 if (!arg.named || arg.end_marker_p ())
8f90be4c
NC
2805 return 0;
2806
6783fdb7 2807 if (targetm.calls.must_pass_in_stack (arg.mode, arg.type))
8f90be4c
NC
2808 return 0;
2809
6783fdb7 2810 arg_reg = ROUND_REG (*get_cumulative_args (cum), arg.mode);
8f90be4c
NC
2811
2812 if (arg_reg < NPARM_REGS)
6783fdb7
RS
2813 return handle_structs_in_regs (arg.mode, arg.type,
2814 FIRST_PARM_REG + arg_reg);
8f90be4c
NC
2815
2816 return 0;
2817}
2818
4665ac17 2819static void
ef4bddc2 2820mcore_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
4665ac17
NF
2821 const_tree type, bool named ATTRIBUTE_UNUSED)
2822{
d5cc9181
JR
2823 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
2824
4665ac17
NF
2825 *cum = (ROUND_REG (*cum, mode)
2826 + (int)named * mcore_num_arg_regs (mode, type));
2827}
2828
c2ed6cf8 2829static unsigned int
ef4bddc2 2830mcore_function_arg_boundary (machine_mode mode,
c2ed6cf8
NF
2831 const_tree type ATTRIBUTE_UNUSED)
2832{
2833 /* Doubles must be aligned to an 8 byte boundary. */
2834 return (mode != BLKmode && GET_MODE_SIZE (mode) == 8
2835 ? BIGGEST_ALIGNMENT
2836 : PARM_BOUNDARY);
2837}
2838
78a52f11 2839/* Returns the number of bytes of argument registers required to hold *part*
a7c81bc1
RS
2840 of argument ARG. If the argument fits entirely in the argument registers,
2841 or entirely on the stack, then 0 is returned. CUM is the number of
2842 argument registers already used by earlier parameters to the function. */
08903e08 2843
78a52f11 2844static int
a7c81bc1 2845mcore_arg_partial_bytes (cumulative_args_t cum, const function_arg_info &arg)
8f90be4c 2846{
a7c81bc1 2847 int reg = ROUND_REG (*get_cumulative_args (cum), arg.mode);
8f90be4c 2848
a7c81bc1 2849 if (!arg.named)
8f90be4c
NC
2850 return 0;
2851
a7c81bc1 2852 if (targetm.calls.must_pass_in_stack (arg.mode, arg.type))
8f90be4c
NC
2853 return 0;
2854
2855 /* REG is not the *hardware* register number of the register that holds
2856 the argument, it is the *argument* register number. So for example,
2857 the first argument to a function goes in argument register 0, which
2858 translates (for the MCore) into hardware register 2. The second
2859 argument goes into argument register 1, which translates into hardware
2860 register 3, and so on. NPARM_REGS is the number of argument registers
2861 supported by the target, not the maximum hardware register number of
2862 the target. */
2863 if (reg >= NPARM_REGS)
2864 return 0;
2865
2866 /* If the argument fits entirely in registers, return 0. */
a7c81bc1 2867 if (reg + mcore_num_arg_regs (arg.mode, arg.type) <= NPARM_REGS)
8f90be4c
NC
2868 return 0;
2869
2870 /* The argument overflows the number of available argument registers.
2871 Compute how many argument registers have not yet been assigned to
2872 hold an argument. */
2873 reg = NPARM_REGS - reg;
2874
2875 /* Return partially in registers and partially on the stack. */
78a52f11 2876 return reg * UNITS_PER_WORD;
8f90be4c
NC
2877}
2878\f
a0ab749a 2879/* Return nonzero if SYMBOL is marked as being dllexport'd. */
08903e08 2880
8f90be4c 2881int
08903e08 2882mcore_dllexport_name_p (const char * symbol)
8f90be4c
NC
2883{
2884 return symbol[0] == '@' && symbol[1] == 'e' && symbol[2] == '.';
2885}
2886
a0ab749a 2887/* Return nonzero if SYMBOL is marked as being dllimport'd. */
08903e08 2888
8f90be4c 2889int
08903e08 2890mcore_dllimport_name_p (const char * symbol)
8f90be4c
NC
2891{
2892 return symbol[0] == '@' && symbol[1] == 'i' && symbol[2] == '.';
2893}
2894
2895/* Mark a DECL as being dllexport'd. */
08903e08 2896
8f90be4c 2897static void
08903e08 2898mcore_mark_dllexport (tree decl)
8f90be4c 2899{
cbd3488b 2900 const char * oldname;
8f90be4c
NC
2901 char * newname;
2902 rtx rtlname;
2903 tree idp;
2904
2905 rtlname = XEXP (DECL_RTL (decl), 0);
2906
6e1f65b5
NS
2907 if (GET_CODE (rtlname) == MEM)
2908 rtlname = XEXP (rtlname, 0);
2909 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2910 oldname = XSTR (rtlname, 0);
8f90be4c
NC
2911
2912 if (mcore_dllexport_name_p (oldname))
2913 return; /* Already done. */
2914
5ead67f6 2915 newname = XALLOCAVEC (char, strlen (oldname) + 4);
8f90be4c
NC
2916 sprintf (newname, "@e.%s", oldname);
2917
2918 /* We pass newname through get_identifier to ensure it has a unique
2919 address. RTL processing can sometimes peek inside the symbol ref
2920 and compare the string's addresses to see if two symbols are
2921 identical. */
2922 /* ??? At least I think that's why we do this. */
2923 idp = get_identifier (newname);
2924
2925 XEXP (DECL_RTL (decl), 0) =
f1c25d3b 2926 gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
8f90be4c
NC
2927}
2928
2929/* Mark a DECL as being dllimport'd. */
08903e08 2930
8f90be4c 2931static void
08903e08 2932mcore_mark_dllimport (tree decl)
8f90be4c 2933{
cbd3488b 2934 const char * oldname;
8f90be4c
NC
2935 char * newname;
2936 tree idp;
2937 rtx rtlname;
2938 rtx newrtl;
2939
2940 rtlname = XEXP (DECL_RTL (decl), 0);
2941
6e1f65b5
NS
2942 if (GET_CODE (rtlname) == MEM)
2943 rtlname = XEXP (rtlname, 0);
2944 gcc_assert (GET_CODE (rtlname) == SYMBOL_REF);
2945 oldname = XSTR (rtlname, 0);
8f90be4c 2946
6e1f65b5
NS
2947 gcc_assert (!mcore_dllexport_name_p (oldname));
2948 if (mcore_dllimport_name_p (oldname))
8f90be4c
NC
2949 return; /* Already done. */
2950
2951 /* ??? One can well ask why we're making these checks here,
2952 and that would be a good question. */
2953
2954 /* Imported variables can't be initialized. */
2955 if (TREE_CODE (decl) == VAR_DECL
2956 && !DECL_VIRTUAL_P (decl)
2957 && DECL_INITIAL (decl))
2958 {
dee15844 2959 error ("initialized variable %q+D is marked dllimport", decl);
8f90be4c
NC
2960 return;
2961 }
2962
2963 /* `extern' needn't be specified with dllimport.
2964 Specify `extern' now and hope for the best. Sigh. */
2965 if (TREE_CODE (decl) == VAR_DECL
2966 /* ??? Is this test for vtables needed? */
2967 && !DECL_VIRTUAL_P (decl))
2968 {
2969 DECL_EXTERNAL (decl) = 1;
2970 TREE_PUBLIC (decl) = 1;
2971 }
2972
5ead67f6 2973 newname = XALLOCAVEC (char, strlen (oldname) + 11);
8f90be4c
NC
2974 sprintf (newname, "@i.__imp_%s", oldname);
2975
2976 /* We pass newname through get_identifier to ensure it has a unique
2977 address. RTL processing can sometimes peek inside the symbol ref
2978 and compare the string's addresses to see if two symbols are
2979 identical. */
2980 /* ??? At least I think that's why we do this. */
2981 idp = get_identifier (newname);
2982
f1c25d3b
KH
2983 newrtl = gen_rtx_MEM (Pmode,
2984 gen_rtx_SYMBOL_REF (Pmode,
8f90be4c
NC
2985 IDENTIFIER_POINTER (idp)));
2986 XEXP (DECL_RTL (decl), 0) = newrtl;
2987}
2988
2989static int
08903e08 2990mcore_dllexport_p (tree decl)
8f90be4c
NC
2991{
2992 if ( TREE_CODE (decl) != VAR_DECL
2993 && TREE_CODE (decl) != FUNCTION_DECL)
2994 return 0;
2995
91d231cb 2996 return lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)) != 0;
8f90be4c
NC
2997}
2998
2999static int
08903e08 3000mcore_dllimport_p (tree decl)
8f90be4c
NC
3001{
3002 if ( TREE_CODE (decl) != VAR_DECL
3003 && TREE_CODE (decl) != FUNCTION_DECL)
3004 return 0;
3005
91d231cb 3006 return lookup_attribute ("dllimport", DECL_ATTRIBUTES (decl)) != 0;
8f90be4c
NC
3007}
3008
fb49053f 3009/* We must mark dll symbols specially. Definitions of dllexport'd objects
14bc6742 3010 install some info in the .drective (PE) or .exports (ELF) sections. */
fb49053f
RH
3011
3012static void
08903e08 3013mcore_encode_section_info (tree decl, rtx rtl ATTRIBUTE_UNUSED, int first ATTRIBUTE_UNUSED)
8f90be4c 3014{
8f90be4c
NC
3015 /* Mark the decl so we can tell from the rtl whether the object is
3016 dllexport'd or dllimport'd. */
3017 if (mcore_dllexport_p (decl))
3018 mcore_mark_dllexport (decl);
3019 else if (mcore_dllimport_p (decl))
3020 mcore_mark_dllimport (decl);
3021
3022 /* It might be that DECL has already been marked as dllimport, but
3023 a subsequent definition nullified that. The attribute is gone
3024 but DECL_RTL still has @i.__imp_foo. We need to remove that. */
3025 else if ((TREE_CODE (decl) == FUNCTION_DECL
3026 || TREE_CODE (decl) == VAR_DECL)
3027 && DECL_RTL (decl) != NULL_RTX
3028 && GET_CODE (DECL_RTL (decl)) == MEM
3029 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == MEM
3030 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == SYMBOL_REF
3031 && mcore_dllimport_name_p (XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0)))
3032 {
3cce094d 3033 const char * oldname = XSTR (XEXP (XEXP (DECL_RTL (decl), 0), 0), 0);
8f90be4c 3034 tree idp = get_identifier (oldname + 9);
f1c25d3b 3035 rtx newrtl = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (idp));
8f90be4c
NC
3036
3037 XEXP (DECL_RTL (decl), 0) = newrtl;
3038
3039 /* We previously set TREE_PUBLIC and DECL_EXTERNAL.
3040 ??? We leave these alone for now. */
3041 }
3042}
3043
772c5265
RH
3044/* Undo the effects of the above. */
3045
3046static const char *
08903e08 3047mcore_strip_name_encoding (const char * str)
772c5265
RH
3048{
3049 return str + (str[0] == '@' ? 3 : 0);
3050}
3051
8f90be4c
NC
3052/* MCore specific attribute support.
3053 dllexport - for exporting a function/variable that will live in a dll
3054 dllimport - for importing a function/variable from a dll
3055 naked - do not create a function prologue/epilogue. */
8f90be4c 3056
91d231cb
JM
3057/* Handle a "naked" attribute; arguments as in
3058 struct attribute_spec.handler. */
08903e08 3059
91d231cb 3060static tree
08903e08
SB
3061mcore_handle_naked_attribute (tree * node, tree name, tree args ATTRIBUTE_UNUSED,
3062 int flags ATTRIBUTE_UNUSED, bool * no_add_attrs)
91d231cb 3063{
d45eae79 3064 if (TREE_CODE (*node) != FUNCTION_DECL)
91d231cb 3065 {
29d08eba
JM
3066 warning (OPT_Wattributes, "%qE attribute only applies to functions",
3067 name);
91d231cb 3068 *no_add_attrs = true;
8f90be4c
NC
3069 }
3070
91d231cb 3071 return NULL_TREE;
8f90be4c
NC
3072}
3073
ae46c4e0
RH
3074/* ??? It looks like this is PE specific? Oh well, this is what the
3075 old code did as well. */
8f90be4c 3076
ae46c4e0 3077static void
08903e08 3078mcore_unique_section (tree decl, int reloc ATTRIBUTE_UNUSED)
8f90be4c
NC
3079{
3080 int len;
0139adca 3081 const char * name;
8f90be4c 3082 char * string;
f27cd94d 3083 const char * prefix;
8f90be4c
NC
3084
3085 name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
3086
3087 /* Strip off any encoding in name. */
772c5265 3088 name = (* targetm.strip_name_encoding) (name);
8f90be4c
NC
3089
3090 /* The object is put in, for example, section .text$foo.
3091 The linker will then ultimately place them in .text
3092 (everything from the $ on is stripped). */
3093 if (TREE_CODE (decl) == FUNCTION_DECL)
3094 prefix = ".text$";
f710504c 3095 /* For compatibility with EPOC, we ignore the fact that the
8f90be4c 3096 section might have relocs against it. */
4e4d733e 3097 else if (decl_readonly_section (decl, 0))
8f90be4c
NC
3098 prefix = ".rdata$";
3099 else
3100 prefix = ".data$";
3101
3102 len = strlen (name) + strlen (prefix);
5ead67f6 3103 string = XALLOCAVEC (char, len + 1);
8f90be4c
NC
3104
3105 sprintf (string, "%s%s", prefix, name);
3106
f961457f 3107 set_decl_section_name (decl, string);
8f90be4c
NC
3108}
3109
3110int
08903e08 3111mcore_naked_function_p (void)
8f90be4c 3112{
91d231cb 3113 return lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE;
8f90be4c 3114}
7c262518 3115
d45eae79
SL
3116static bool
3117mcore_warn_func_return (tree decl)
3118{
3119 /* Naked functions are implemented entirely in assembly, including the
3120 return sequence, so suppress warnings about this. */
3121 return lookup_attribute ("naked", DECL_ATTRIBUTES (decl)) == NULL_TREE;
3122}
3123
ede75ee8 3124#ifdef OBJECT_FORMAT_ELF
7c262518 3125static void
c18a5b6c
MM
3126mcore_asm_named_section (const char *name,
3127 unsigned int flags ATTRIBUTE_UNUSED,
3128 tree decl ATTRIBUTE_UNUSED)
7c262518
RH
3129{
3130 fprintf (asm_out_file, "\t.section %s\n", name);
3131}
ede75ee8 3132#endif /* OBJECT_FORMAT_ELF */
09a2b93a 3133
dc7efe6e
KH
3134/* Worker function for TARGET_ASM_EXTERNAL_LIBCALL. */
3135
09a2b93a
KH
3136static void
3137mcore_external_libcall (rtx fun)
3138{
3139 fprintf (asm_out_file, "\t.import\t");
3140 assemble_name (asm_out_file, XSTR (fun, 0));
3141 fprintf (asm_out_file, "\n");
3142}
3143
dc7efe6e
KH
3144/* Worker function for TARGET_RETURN_IN_MEMORY. */
3145
09a2b93a 3146static bool
586de218 3147mcore_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
09a2b93a 3148{
586de218 3149 const HOST_WIDE_INT size = int_size_in_bytes (type);
78bc94a2 3150 return (size == -1 || size > 2 * UNITS_PER_WORD);
09a2b93a 3151}
71e0af3c
RH
3152
3153/* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.
3154 Output assembler code for a block containing the constant parts
3155 of a trampoline, leaving space for the variable parts.
3156
3157 On the MCore, the trampoline looks like:
3158 lrw r1, function
3159 lrw r13, area
3160 jmp r13
3161 or r0, r0
3162 .literals */
3163
3164static void
3165mcore_asm_trampoline_template (FILE *f)
3166{
3167 fprintf (f, "\t.short 0x7102\n");
3168 fprintf (f, "\t.short 0x7d02\n");
3169 fprintf (f, "\t.short 0x00cd\n");
3170 fprintf (f, "\t.short 0x1e00\n");
3171 fprintf (f, "\t.long 0\n");
3172 fprintf (f, "\t.long 0\n");
3173}
3174
3175/* Worker function for TARGET_TRAMPOLINE_INIT. */
3176
3177static void
3178mcore_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
3179{
3180 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
3181 rtx mem;
3182
3183 emit_block_move (m_tramp, assemble_trampoline_template (),
3184 GEN_INT (2*UNITS_PER_WORD), BLOCK_OP_NORMAL);
3185
3186 mem = adjust_address (m_tramp, SImode, 8);
3187 emit_move_insn (mem, chain_value);
3188 mem = adjust_address (m_tramp, SImode, 12);
3189 emit_move_insn (mem, fnaddr);
3190}
1a627b35
RS
3191
3192/* Implement TARGET_LEGITIMATE_CONSTANT_P
3193
3194 On the MCore, allow anything but a double. */
3195
3196static bool
ef4bddc2 3197mcore_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1a627b35
RS
3198{
3199 return GET_CODE (x) != CONST_DOUBLE;
3200}
e7c6980e
AS
3201
3202/* Helper function for `mcore_legitimate_address_p'. */
3203
3204static bool
3205mcore_reg_ok_for_base_p (const_rtx reg, bool strict_p)
3206{
3207 if (strict_p)
3208 return REGNO_OK_FOR_BASE_P (REGNO (reg));
3209 else
3210 return (REGNO (reg) <= 16 || !HARD_REGISTER_P (reg));
3211}
3212
3213static bool
3214mcore_base_register_rtx_p (const_rtx x, bool strict_p)
3215{
3216 return REG_P(x) && mcore_reg_ok_for_base_p (x, strict_p);
3217}
3218
3219/* A legitimate index for a QI is 0..15, for HI is 0..30, for SI is 0..60,
3220 and for DI is 0..56 because we use two SI loads, etc. */
3221
3222static bool
3223mcore_legitimate_index_p (machine_mode mode, const_rtx op)
3224{
3225 if (CONST_INT_P (op))
3226 {
3227 if (GET_MODE_SIZE (mode) >= 4
3228 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 4) == 0
3229 && ((unsigned HOST_WIDE_INT) INTVAL (op))
3230 <= (unsigned HOST_WIDE_INT) 64 - GET_MODE_SIZE (mode))
3231 return true;
3232 if (GET_MODE_SIZE (mode) == 2
3233 && (((unsigned HOST_WIDE_INT) INTVAL (op)) % 2) == 0
3234 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 30)
3235 return true;
3236 if (GET_MODE_SIZE (mode) == 1
3237 && ((unsigned HOST_WIDE_INT) INTVAL (op)) <= 15)
3238 return true;
3239 }
3240 return false;
3241}
3242
3243
3244/* Worker function for TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P.
3245
3246 Allow REG
3247 REG + disp */
3248
3249static bool
3250mcore_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
3251 addr_space_t as)
3252{
3253 gcc_assert (ADDR_SPACE_GENERIC_P (as));
3254
3255 if (mcore_base_register_rtx_p (x, strict_p))
3256 return true;
3257 else if (GET_CODE (x) == PLUS || GET_CODE (x) == LO_SUM)
3258 {
3259 rtx xop0 = XEXP (x, 0);
3260 rtx xop1 = XEXP (x, 1);
3261 if (mcore_base_register_rtx_p (xop0, strict_p)
3262 && mcore_legitimate_index_p (mode, xop1))
3263 return true;
3264 if (mcore_base_register_rtx_p (xop1, strict_p)
3265 && mcore_legitimate_index_p (mode, xop0))
3266 return true;
3267 }
3268
3269 return false;
3270}
3271
f939c3e6
RS
3272/* Implement TARGET_HARD_REGNO_MODE_OK. We may keep double values in
3273 even registers. */
3274
3275static bool
3276mcore_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
3277{
3278 if (TARGET_8ALIGN && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
3279 return (regno & 1) == 0;
3280
3281 return regno < 18;
3282}
99e1629f
RS
3283
3284/* Implement TARGET_MODES_TIEABLE_P. */
3285
3286static bool
3287mcore_modes_tieable_p (machine_mode mode1, machine_mode mode2)
3288{
3289 return mode1 == mode2 || GET_MODE_CLASS (mode1) == GET_MODE_CLASS (mode2);
3290}