]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/mips/mips.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / mips / mips.h
CommitLineData
e75b25e7 1/* Definitions of target machine for GNU compiler. MIPS version.
7adcbafe 2 Copyright (C) 1989-2022 Free Software Foundation, Inc.
ae3e1bb4
RK
3 Contributed by A. Lichnewsky (lich@inria.inria.fr).
4 Changed by Michael Meissner (meissner@osf.org).
85f65093 5 64-bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
ae3e1bb4 6 Brendan Eich (brendan@microunity.com).
e75b25e7 7
7ec022b2 8This file is part of GCC.
e75b25e7 9
7ec022b2 10GCC is free software; you can redistribute it and/or modify
e75b25e7 11it under the terms of the GNU General Public License as published by
2f83c7d6 12the Free Software Foundation; either version 3, or (at your option)
e75b25e7
MM
13any later version.
14
7ec022b2 15GCC is distributed in the hope that it will be useful,
e75b25e7
MM
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
2f83c7d6
NC
21along with GCC; see the file COPYING3. If not see
22<http://www.gnu.org/licenses/>. */
e75b25e7
MM
23
24
8cb6400c
RS
25#include "config/vxworks-dummy.h"
26
f770d743
JM
27#ifdef GENERATOR_FILE
28/* This is used in some insn conditions, so needs to be declared, but
29 does not need to be defined. */
30extern int target_flags_explicit;
31#endif
32
e75b25e7
MM
33/* MIPS external variables defined in mips.c. */
34
ac8ab9fe
RS
35/* Which ABI to use. ABI_32 (original 32, or o32), ABI_N32 (n32),
36 ABI_64 (n64) are all defined by SGI. ABI_O64 is o32 extended
85f65093 37 to work on a 64-bit machine. */
b2d8cf33 38
04bd620d
JW
39#define ABI_32 0
40#define ABI_N32 1
41#define ABI_64 2
42#define ABI_EABI 3
a53f72db 43#define ABI_O64 4
0e5a4ad8 44
4ecfc7e3
YS
45enum mips_isa {
46 MIPS_ISA_MIPS1 = 1,
47 MIPS_ISA_MIPS2 = 2,
48 MIPS_ISA_MIPS3 = 3,
49 MIPS_ISA_MIPS4 = 4,
50 MIPS_ISA_MIPS32 = 32,
51 MIPS_ISA_MIPS32R2 = 33,
52 MIPS_ISA_MIPS32R3 = 34,
53 MIPS_ISA_MIPS32R5 = 36,
54 MIPS_ISA_MIPS32R6 = 37,
55 MIPS_ISA_MIPS64 = 64,
56 MIPS_ISA_MIPS64R2 = 65,
57 MIPS_ISA_MIPS64R3 = 66,
58 MIPS_ISA_MIPS64R5 = 68,
59 MIPS_ISA_MIPS64R6 = 69
60};
61
0da4c1ea
RS
62/* Masks that affect tuning.
63
7c507664 64 PTF_AVOID_BRANCHLIKELY_SPEED
0da4c1ea 65 Set if it is usually not profitable to use branch-likely instructions
7c507664
RS
66 for this target when optimizing code for speed, typically because
67 the branches are always predicted taken and so incur a large overhead
68 when not taken.
69
70 PTF_AVOID_BRANCHLIKELY_SIZE
71 As above but when optimizing for size.
72
73 PTF_AVOID_BRANCHLIKELY_ALWAYS
74 As above but regardless of whether we optimize for speed or size.
855e0d0b
SE
75
76 PTF_AVOID_IMADD
77 Set if it is usually not profitable to use the integer MADD or MSUB
78 instructions because of the overhead of getting the result out of
79 the HI/LO registers. */
80
7c507664
RS
81#define PTF_AVOID_BRANCHLIKELY_SPEED 0x1
82#define PTF_AVOID_BRANCHLIKELY_SIZE 0x2
83#define PTF_AVOID_BRANCHLIKELY_ALWAYS (PTF_AVOID_BRANCHLIKELY_SPEED | \
84 PTF_AVOID_BRANCHLIKELY_SIZE)
85#define PTF_AVOID_IMADD 0x4
0da4c1ea 86
05713b80 87/* Information about one recognized processor. Defined here for the
a27fb29b
RS
88 benefit of TARGET_CPU_CPP_BUILTINS. */
89struct mips_cpu_info {
90 /* The 'canonical' name of the processor as far as GCC is concerned.
91 It's typically a manufacturer's prefix followed by a numerical
85f65093 92 designation. It should be lowercase. */
a27fb29b
RS
93 const char *name;
94
95 /* The internal processor number that most closely matches this
96 entry. Several processors can have the same value, if there's no
97 difference between them from GCC's point of view. */
24609606 98 enum processor cpu;
a27fb29b
RS
99
100 /* The ISA level that the processor implements. */
4ecfc7e3 101 enum mips_isa isa;
0da4c1ea
RS
102
103 /* A mask of PTF_* values. */
104 unsigned int tune_flags;
a27fb29b
RS
105};
106
3af42a7b 107#include "config/mips/mips-opts.h"
c93c5160 108
3a6ee9f4
MM
109/* Macros to silence warnings about numbers being signed in traditional
110 C and unsigned in ISO C when compiled on 32-bit hosts. */
111
112#define BITMASK_HIGH (((unsigned long)1) << 31) /* 0x80000000 */
113#define BITMASK_UPPER16 ((unsigned long)0xffff << 16) /* 0xffff0000 */
114#define BITMASK_LOWER16 ((unsigned long)0xffff) /* 0x0000ffff */
115
149e4e00
MM
116\f
117/* Run-time compilation parameters selecting different hardware subsets. */
118
8cb6400c
RS
119/* True if we are generating position-independent VxWorks RTP code. */
120#define TARGET_RTP_PIC (TARGET_VXWORKS_RTP && flag_pic)
121
22219d9b
MF
122/* Compact branches must not be used if the user either selects the
123 'never' policy or the 'optimal' policy on a core that lacks
124 compact branch instructions. */
125#define TARGET_CB_NEVER (mips_cb == MIPS_CB_NEVER \
126 || (mips_cb == MIPS_CB_OPTIMAL \
127 && !ISA_HAS_COMPACT_BRANCHES))
128
129/* Compact branches may be used if the user either selects the
130 'always' policy or the 'optimal' policy on a core that supports
131 compact branch instructions. */
132#define TARGET_CB_MAYBE (TARGET_CB_ALWAYS \
133 || (mips_cb == MIPS_CB_OPTIMAL \
134 && ISA_HAS_COMPACT_BRANCHES))
135
136/* Compact branches must always be generated if the user selects
137 the 'always' policy or the 'optimal' policy om a core that
138 lacks delay slot branch instructions. */
139#define TARGET_CB_ALWAYS (mips_cb == MIPS_CB_ALWAYS \
140 || (mips_cb == MIPS_CB_OPTIMAL \
141 && !ISA_HAS_DELAY_SLOTS))
142
143/* Special handling for JRC that exists in microMIPSR3 as well as R6
144 ISAs with full compact branch support. */
145#define ISA_HAS_JRC ((ISA_HAS_COMPACT_BRANCHES \
146 || TARGET_MICROMIPS) \
147 && mips_cb != MIPS_CB_NEVER)
148
e21d5757
DJ
149/* True if the output file is marked as ".abicalls; .option pic0"
150 (-call_nonpic). */
151#define TARGET_ABICALLS_PIC0 \
152 (TARGET_ABSOLUTE_ABICALLS && TARGET_PLT)
153
154/* True if the output file is marked as ".abicalls; .option pic2" (-KPIC). */
155#define TARGET_ABICALLS_PIC2 \
156 (TARGET_ABICALLS && !TARGET_ABICALLS_PIC0)
157
cafe096b 158/* True if the call patterns should be split into a jalr followed by
14976818 159 an instruction to restore $gp. It is only safe to split the load
0c433c31
RS
160 from the call when every use of $gp is explicit.
161
162 See mips_must_initialize_gp_p for details about how we manage the
163 global pointer. */
cafe096b
EC
164
165#define TARGET_SPLIT_CALLS \
0c433c31 166 (TARGET_EXPLICIT_RELOCS && TARGET_CALL_CLOBBERED_GP && epilogue_completed)
cafe096b 167
d9870b7e
RS
168/* True if we're generating a form of -mabicalls in which we can use
169 operators like %hi and %lo to refer to locally-binding symbols.
170 We can only do this for -mno-shared, and only then if we can use
171 relocation operations instead of assembly macros. It isn't really
172 worth using absolute sequences for 64-bit symbols because GOT
173 accesses are so much shorter. */
174
175#define TARGET_ABSOLUTE_ABICALLS \
176 (TARGET_ABICALLS \
177 && !TARGET_SHARED \
178 && TARGET_EXPLICIT_RELOCS \
179 && !ABI_HAS_64BIT_SYMBOLS)
180
cafe096b
EC
181/* True if we can optimize sibling calls. For simplicity, we only
182 handle cases in which call_insn_operand will reject invalid
183 sibcall addresses. There are two cases in which this isn't true:
184
185 - TARGET_MIPS16. call_insn_operand accepts constant addresses
186 but there is no direct jump instruction. It isn't worth
187 using sibling calls in this case anyway; they would usually
188 be longer than normal calls.
189
14976818
RS
190 - TARGET_USE_GOT && !TARGET_EXPLICIT_RELOCS. call_insn_operand
191 accepts global constants, but all sibcalls must be indirect. */
cafe096b 192#define TARGET_SIBCALLS \
14976818
RS
193 (!TARGET_MIPS16 && (!TARGET_USE_GOT || TARGET_EXPLICIT_RELOCS))
194
195/* True if we need to use a global offset table to access some symbols. */
8cb6400c 196#define TARGET_USE_GOT (TARGET_ABICALLS || TARGET_RTP_PIC)
14976818
RS
197
198/* True if TARGET_USE_GOT and if $gp is a call-clobbered register. */
199#define TARGET_CALL_CLOBBERED_GP (TARGET_ABICALLS && TARGET_OLDABI)
200
201/* True if TARGET_USE_GOT and if $gp is a call-saved register. */
202#define TARGET_CALL_SAVED_GP (TARGET_USE_GOT && !TARGET_CALL_CLOBBERED_GP)
203
0c433c31
RS
204/* True if we should use .cprestore to store to the cprestore slot.
205
206 We continue to use .cprestore for explicit-reloc code so that JALs
207 inside inline asms will work correctly. */
208#define TARGET_CPRESTORE_DIRECTIVE \
209 (TARGET_ABICALLS_PIC2 && !TARGET_MIPS16)
210
211/* True if we can use the J and JAL instructions. */
212#define TARGET_ABSOLUTE_JUMPS \
213 (!flag_pic || TARGET_ABSOLUTE_ABICALLS)
214
8cb6400c
RS
215/* True if indirect calls must use register class PIC_FN_ADDR_REG.
216 This is true for both the PIC and non-PIC VxWorks RTP modes. */
217#define TARGET_USE_PIC_FN_ADDR_REG (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
cafe096b 218
b24513a1 219/* True if .gpword or .gpdword should be used for switch tables. */
e21d5757 220#define TARGET_GPWORD \
b24513a1 221 (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
cafe096b 222
49576e25
RS
223/* True if the output must have a writable .eh_frame.
224 See ASM_PREFERRED_EH_DATA_FORMAT for details. */
225#ifdef HAVE_LD_PERSONALITY_RELAXATION
226#define TARGET_WRITABLE_EH_FRAME 0
227#else
228#define TARGET_WRITABLE_EH_FRAME (flag_pic && TARGET_SHARED)
229#endif
230
293b77b0
CF
231/* Test the assembler to set ISA_HAS_DSP_MULT to DSP Rev 1 or 2. */
232#ifdef HAVE_AS_DSPR1_MULT
233#define ISA_HAS_DSP_MULT ISA_HAS_DSP
234#else
235#define ISA_HAS_DSP_MULT ISA_HAS_DSPR2
236#endif
237
954bdd58 238/* ISA has LSA available. */
0bc8d0b3 239#define ISA_HAS_LSA (mips_isa_rev >= 6 || ISA_HAS_MSA)
954bdd58
MF
240
241/* ISA has DLSA available. */
0bc8d0b3
RS
242#define ISA_HAS_DLSA (TARGET_64BIT \
243 && (mips_isa_rev >= 6 \
244 || ISA_HAS_MSA))
954bdd58 245
30a08286
YS
246/* ISA load/store instructions can handle unaligned address */
247#define ISA_HAS_UNALIGNED_ACCESS (TARGET_UNALIGNED_ACCESS \
248 && (mips_isa_rev >= 6))
249
22c4c869
CM
250/* The ISA compression flags that are currently in effect. */
251#define TARGET_COMPRESSION (target_flags & (MASK_MIPS16 | MASK_MICROMIPS))
252
7cc63a88 253/* Generate mips16 code */
40a350c9 254#define TARGET_MIPS16 ((target_flags & MASK_MIPS16) != 0)
f2d6ca50 255/* Generate mips16e code. Default 16bit ASE for mips32* and mips64* */
4ecfc7e3 256#define GENERATE_MIPS16E (TARGET_MIPS16 && mips_isa >= MIPS_ISA_MIPS32)
e1260576
RS
257/* Generate mips16e register save/restore sequences. */
258#define GENERATE_MIPS16E_SAVE_RESTORE (GENERATE_MIPS16E && mips_abi == ABI_32)
2bcb2ab3 259
c93c5160
RS
260/* True if we're generating a form of MIPS16 code in which general
261 text loads are allowed. */
262#define TARGET_MIPS16_TEXT_LOADS \
263 (TARGET_MIPS16 && mips_code_readable == CODE_READABLE_YES)
264
265/* True if we're generating a form of MIPS16 code in which PC-relative
266 loads are allowed. */
267#define TARGET_MIPS16_PCREL_LOADS \
268 (TARGET_MIPS16 && mips_code_readable >= CODE_READABLE_PCREL)
269
ce3649d2 270/* Generic ISA defines. */
4ecfc7e3
YS
271#define ISA_MIPS1 (mips_isa == MIPS_ISA_MIPS1)
272#define ISA_MIPS2 (mips_isa == MIPS_ISA_MIPS2)
273#define ISA_MIPS3 (mips_isa == MIPS_ISA_MIPS3)
274#define ISA_MIPS4 (mips_isa == MIPS_ISA_MIPS4)
275#define ISA_MIPS32 (mips_isa == MIPS_ISA_MIPS32)
276#define ISA_MIPS32R2 (mips_isa == MIPS_ISA_MIPS32R2)
277#define ISA_MIPS32R3 (mips_isa == MIPS_ISA_MIPS32R3)
278#define ISA_MIPS32R5 (mips_isa == MIPS_ISA_MIPS32R5)
279#define ISA_MIPS32R6 (mips_isa == MIPS_ISA_MIPS32R6)
280#define ISA_MIPS64 (mips_isa == MIPS_ISA_MIPS64)
281#define ISA_MIPS64R2 (mips_isa == MIPS_ISA_MIPS64R2)
282#define ISA_MIPS64R3 (mips_isa == MIPS_ISA_MIPS64R3)
283#define ISA_MIPS64R5 (mips_isa == MIPS_ISA_MIPS64R5)
284#define ISA_MIPS64R6 (mips_isa == MIPS_ISA_MIPS64R6)
ce3649d2 285
7dac2f89 286/* Architecture target defines. */
f2d6ca50
AN
287#define TARGET_LOONGSON_2E (mips_arch == PROCESSOR_LOONGSON_2E)
288#define TARGET_LOONGSON_2F (mips_arch == PROCESSOR_LOONGSON_2F)
289#define TARGET_LOONGSON_2EF (TARGET_LOONGSON_2E || TARGET_LOONGSON_2F)
2b94a36d 290#define TARGET_GS464 (mips_arch == PROCESSOR_GS464)
659ce7cb 291#define TARGET_GS464E (mips_arch == PROCESSOR_GS464E)
8fa1acc7 292#define TARGET_GS264E (mips_arch == PROCESSOR_GS264E)
7dac2f89
EC
293#define TARGET_MIPS3900 (mips_arch == PROCESSOR_R3900)
294#define TARGET_MIPS4000 (mips_arch == PROCESSOR_R4000)
3f7967e3 295#define TARGET_MIPS4120 (mips_arch == PROCESSOR_R4120)
cf768d70 296#define TARGET_MIPS4130 (mips_arch == PROCESSOR_R4130)
5ce6f47b
EC
297#define TARGET_MIPS5400 (mips_arch == PROCESSOR_R5400)
298#define TARGET_MIPS5500 (mips_arch == PROCESSOR_R5500)
107eea2c 299#define TARGET_MIPS5900 (mips_arch == PROCESSOR_R5900)
5fe25f47 300#define TARGET_MIPS7000 (mips_arch == PROCESSOR_R7000)
e5aac417 301#define TARGET_MIPS8000 (mips_arch == PROCESSOR_R8000)
98450f0d 302#define TARGET_MIPS9000 (mips_arch == PROCESSOR_R9000)
38a53a0e 303#define TARGET_OCTEON (mips_arch == PROCESSOR_OCTEON \
ed60a04b
N
304 || mips_arch == PROCESSOR_OCTEON2 \
305 || mips_arch == PROCESSOR_OCTEON3)
306#define TARGET_OCTEON2 (mips_arch == PROCESSOR_OCTEON2 \
307 || mips_arch == PROCESSOR_OCTEON3)
c81d6e2a
JW
308#define TARGET_SB1 (mips_arch == PROCESSOR_SB1 \
309 || mips_arch == PROCESSOR_SB1A)
5ce6f47b 310#define TARGET_SR71K (mips_arch == PROCESSOR_SR71000)
6399761a 311#define TARGET_XLP (mips_arch == PROCESSOR_XLP)
7dac2f89
EC
312
313/* Scheduling target defines. */
f2d6ca50
AN
314#define TUNE_20KC (mips_tune == PROCESSOR_20KC)
315#define TUNE_24K (mips_tune == PROCESSOR_24KC \
316 || mips_tune == PROCESSOR_24KF2_1 \
317 || mips_tune == PROCESSOR_24KF1_1)
318#define TUNE_74K (mips_tune == PROCESSOR_74KC \
319 || mips_tune == PROCESSOR_74KF2_1 \
320 || mips_tune == PROCESSOR_74KF1_1 \
321 || mips_tune == PROCESSOR_74KF3_2)
322#define TUNE_LOONGSON_2EF (mips_tune == PROCESSOR_LOONGSON_2E \
323 || mips_tune == PROCESSOR_LOONGSON_2F)
2b94a36d 324#define TUNE_GS464 (mips_tune == PROCESSOR_GS464)
659ce7cb 325#define TUNE_GS464E (mips_tune == PROCESSOR_GS464E)
8fa1acc7 326#define TUNE_GS264E (mips_tune == PROCESSOR_GS264E)
7a38df19
EC
327#define TUNE_MIPS3000 (mips_tune == PROCESSOR_R3000)
328#define TUNE_MIPS3900 (mips_tune == PROCESSOR_R3900)
329#define TUNE_MIPS4000 (mips_tune == PROCESSOR_R4000)
dc884a86
RS
330#define TUNE_MIPS4120 (mips_tune == PROCESSOR_R4120)
331#define TUNE_MIPS4130 (mips_tune == PROCESSOR_R4130)
7a38df19 332#define TUNE_MIPS5000 (mips_tune == PROCESSOR_R5000)
5ce6f47b
EC
333#define TUNE_MIPS5400 (mips_tune == PROCESSOR_R5400)
334#define TUNE_MIPS5500 (mips_tune == PROCESSOR_R5500)
7a38df19 335#define TUNE_MIPS6000 (mips_tune == PROCESSOR_R6000)
5fe25f47 336#define TUNE_MIPS7000 (mips_tune == PROCESSOR_R7000)
98450f0d 337#define TUNE_MIPS9000 (mips_tune == PROCESSOR_R9000)
38a53a0e 338#define TUNE_OCTEON (mips_tune == PROCESSOR_OCTEON \
ed60a04b
N
339 || mips_tune == PROCESSOR_OCTEON2 \
340 || mips_tune == PROCESSOR_OCTEON3)
c81d6e2a
JW
341#define TUNE_SB1 (mips_tune == PROCESSOR_SB1 \
342 || mips_tune == PROCESSOR_SB1A)
aaaa9efc 343#define TUNE_P5600 (mips_tune == PROCESSOR_P5600)
7ccb4e4e 344#define TUNE_I6400 (mips_tune == PROCESSOR_I6400)
30c0ee9c 345#define TUNE_P6600 (mips_tune == PROCESSOR_P6600)
7dac2f89 346
39ba1719
RS
347/* True if the pre-reload scheduler should try to create chains of
348 multiply-add or multiply-subtract instructions. For example,
349 suppose we have:
350
351 t1 = a * b
352 t2 = t1 + c * d
d0cb84e9
RS
353 t3 = e * f
354 t4 = t3 - g * h
39ba1719 355
d0cb84e9 356 t1 will have a higher priority than t2 and t3 will have a higher
39ba1719
RS
357 priority than t4. However, before reload, there is no dependence
358 between t1 and t3, and they can often have similar priorities.
359 The scheduler will then tend to prefer:
360
361 t1 = a * b
362 t3 = e * f
363 t2 = t1 + c * d
364 t4 = t3 - g * h
365
366 which stops us from making full use of macc/madd-style instructions.
367 This sort of situation occurs frequently in Fourier transforms and
368 in unrolled loops.
369
370 To counter this, the TUNE_MACC_CHAINS code will reorder the ready
371 queue so that chained multiply-add and multiply-subtract instructions
372 appear ahead of any other instruction that is likely to clobber lo.
373 In the example above, if t2 and t3 become ready at the same time,
374 the code ensures that t2 is scheduled first.
375
376 Multiply-accumulate instructions are a bigger win for some targets
377 than others, so this macro is defined on an opt-in basis. */
dc884a86
RS
378#define TUNE_MACC_CHAINS (TUNE_MIPS5500 \
379 || TUNE_MIPS4120 \
d56b9f12 380 || TUNE_MIPS4130 \
aaaa9efc
JP
381 || TUNE_24K \
382 || TUNE_P5600)
39ba1719 383
7f9be256 384#define TARGET_OLDABI (mips_abi == ABI_32 || mips_abi == ABI_O64)
cafe096b
EC
385#define TARGET_NEWABI (mips_abi == ABI_N32 || mips_abi == ABI_64)
386
cc4ebe7d
SL
387/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
388 directly accessible, while the command-line options select
389 TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
390 in use. */
391#define TARGET_HARD_FLOAT (TARGET_HARD_FLOAT_ABI && !TARGET_MIPS16)
392#define TARGET_SOFT_FLOAT (TARGET_SOFT_FLOAT_ABI || TARGET_MIPS16)
068ca03a 393
050af144
MF
394/* TARGET_FLOAT64 represents -mfp64 and TARGET_FLOATXX represents
395 -mfpxx, derive TARGET_FLOAT32 to represent -mfp32. */
396#define TARGET_FLOAT32 (!TARGET_FLOAT64 && !TARGET_FLOATXX)
397
398/* TARGET_O32_FP64A_ABI represents all the conditions that form the
399 o32 FP64A ABI extension (-mabi=32 -mfp64 -mno-odd-spreg). */
400#define TARGET_O32_FP64A_ABI (mips_abi == ABI_32 && TARGET_FLOAT64 \
401 && !TARGET_ODD_SPREG)
402
068ca03a
DD
403/* False if SC acts as a memory barrier with respect to itself,
404 otherwise a SYNC will be emitted after SC for atomic operations
405 that require ordering between the SC and following loads and
406 stores. It does not tell anything about ordering of loads and
407 stores prior to and following the SC, only about the SC itself and
408 those loads and stores follow it. */
6399761a 409#define TARGET_SYNC_AFTER_SC (!TARGET_OCTEON && !TARGET_XLP)
068ca03a 410
a27fb29b
RS
411/* Define preprocessor macros for the -march and -mtune options.
412 PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
413 processor. If INFO's canonical name is "foo", define PREFIX to
414 be "foo", and define an additional macro PREFIX_FOO. */
415#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO) \
416 do \
417 { \
418 char *macro, *p; \
419 \
420 macro = concat ((PREFIX), "_", (INFO)->name, NULL); \
421 for (p = macro; *p != 0; p++) \
14f2a7e2
AP
422 if (*p == '+') \
423 *p = 'P'; \
424 else \
425 *p = TOUPPER (*p); \
a27fb29b
RS
426 \
427 builtin_define (macro); \
428 builtin_define_with_value ((PREFIX), (INFO)->name, 1); \
429 free (macro); \
430 } \
431 while (0)
432
ce3649d2 433/* Target CPU builtins. */
0ea339ea
NS
434#define TARGET_CPU_CPP_BUILTINS() \
435 do \
436 { \
b24513a1 437 builtin_assert ("machine=mips"); \
0ea339ea
NS
438 builtin_assert ("cpu=mips"); \
439 builtin_define ("__mips__"); \
440 builtin_define ("_mips"); \
441 \
a7f051fe
RS
442 /* We do this here because __mips is defined below and so we \
443 can't use builtin_define_std. We don't ever want to define \
444 "mips" for VxWorks because some of the VxWorks headers \
445 construct include filenames from a root directory macro, \
446 an architecture macro and a filename, where the architecture \
447 macro expands to 'mips'. If we define 'mips' to 1, the \
448 architecture macro expands to 1 as well. */ \
449 if (!flag_iso && !TARGET_VXWORKS) \
0ea339ea
NS
450 builtin_define ("mips"); \
451 \
452 if (TARGET_64BIT) \
453 builtin_define ("__mips64"); \
454 \
b24513a1
RO
455 /* Treat _R3000 and _R4000 like register-size \
456 defines, which is how they've historically \
457 been used. */ \
458 if (TARGET_64BIT) \
0ea339ea 459 { \
b24513a1
RO
460 builtin_define_std ("R4000"); \
461 builtin_define ("_R4000"); \
462 } \
463 else \
464 { \
465 builtin_define_std ("R3000"); \
466 builtin_define ("_R3000"); \
0ea339ea 467 } \
b24513a1 468 \
0ea339ea
NS
469 if (TARGET_FLOAT64) \
470 builtin_define ("__mips_fpr=64"); \
050af144
MF
471 else if (TARGET_FLOATXX) \
472 builtin_define ("__mips_fpr=0"); \
0ea339ea
NS
473 else \
474 builtin_define ("__mips_fpr=32"); \
475 \
22c4c869 476 if (mips_base_compression_flags & MASK_MIPS16) \
0ea339ea
NS
477 builtin_define ("__mips16"); \
478 \
479 if (TARGET_MIPS3D) \
480 builtin_define ("__mips3d"); \
481 \
482 if (TARGET_SMARTMIPS) \
483 builtin_define ("__mips_smartmips"); \
484 \
22c4c869
CM
485 if (mips_base_compression_flags & MASK_MICROMIPS) \
486 builtin_define ("__mips_micromips"); \
487 \
5cb5a23f
MR
488 if (TARGET_MCU) \
489 builtin_define ("__mips_mcu"); \
490 \
44b20bb8
CM
491 if (TARGET_EVA) \
492 builtin_define ("__mips_eva"); \
493 \
0ea339ea
NS
494 if (TARGET_DSP) \
495 { \
496 builtin_define ("__mips_dsp"); \
497 if (TARGET_DSPR2) \
498 { \
499 builtin_define ("__mips_dspr2"); \
500 builtin_define ("__mips_dsp_rev=2"); \
501 } \
502 else \
503 builtin_define ("__mips_dsp_rev=1"); \
504 } \
505 \
6cf538da
RS
506 if (ISA_HAS_MSA) \
507 { \
508 builtin_define ("__mips_msa"); \
509 builtin_define ("__mips_msa_width=128"); \
510 } \
511 \
0ea339ea
NS
512 MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info); \
513 MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info); \
514 \
515 if (ISA_MIPS1) \
516 { \
517 builtin_define ("__mips=1"); \
518 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1"); \
519 } \
520 else if (ISA_MIPS2) \
521 { \
522 builtin_define ("__mips=2"); \
523 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2"); \
524 } \
525 else if (ISA_MIPS3) \
526 { \
527 builtin_define ("__mips=3"); \
528 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3"); \
529 } \
530 else if (ISA_MIPS4) \
531 { \
532 builtin_define ("__mips=4"); \
533 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4"); \
534 } \
4ecfc7e3
YS
535 else if (mips_isa >= MIPS_ISA_MIPS32 \
536 && mips_isa < MIPS_ISA_MIPS64) \
0ea339ea
NS
537 { \
538 builtin_define ("__mips=32"); \
0ea339ea
NS
539 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32"); \
540 } \
4ecfc7e3 541 else if (mips_isa >= MIPS_ISA_MIPS64) \
2b3bd040
AB
542 { \
543 builtin_define ("__mips=64"); \
544 builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64"); \
545 } \
ad782bc9
RS
546 if (mips_isa_rev > 0) \
547 builtin_define_with_int_value ("__mips_isa_rev", \
548 mips_isa_rev); \
0ea339ea
NS
549 \
550 switch (mips_abi) \
551 { \
552 case ABI_32: \
553 builtin_define ("_ABIO32=1"); \
554 builtin_define ("_MIPS_SIM=_ABIO32"); \
555 break; \
556 \
557 case ABI_N32: \
558 builtin_define ("_ABIN32=2"); \
559 builtin_define ("_MIPS_SIM=_ABIN32"); \
560 break; \
561 \
562 case ABI_64: \
563 builtin_define ("_ABI64=3"); \
564 builtin_define ("_MIPS_SIM=_ABI64"); \
565 break; \
566 \
567 case ABI_O64: \
568 builtin_define ("_ABIO64=4"); \
569 builtin_define ("_MIPS_SIM=_ABIO64"); \
570 break; \
571 } \
572 \
573 builtin_define_with_int_value ("_MIPS_SZINT", INT_TYPE_SIZE); \
574 builtin_define_with_int_value ("_MIPS_SZLONG", LONG_TYPE_SIZE); \
575 builtin_define_with_int_value ("_MIPS_SZPTR", POINTER_SIZE); \
576 builtin_define_with_int_value ("_MIPS_FPSET", \
577 32 / MAX_FPRS_PER_FMT); \
050af144
MF
578 builtin_define_with_int_value ("_MIPS_SPFPSET", \
579 TARGET_ODD_SPREG ? 32 : 16); \
0ea339ea
NS
580 \
581 /* These defines reflect the ABI in use, not whether the \
582 FPU is directly accessible. */ \
9f946bc1
RS
583 if (TARGET_NO_FLOAT) \
584 builtin_define ("__mips_no_float"); \
585 else if (TARGET_HARD_FLOAT_ABI) \
0ea339ea
NS
586 builtin_define ("__mips_hard_float"); \
587 else \
588 builtin_define ("__mips_soft_float"); \
589 \
590 if (TARGET_SINGLE_FLOAT) \
591 builtin_define ("__mips_single_float"); \
592 \
593 if (TARGET_PAIRED_SINGLE_FLOAT) \
594 builtin_define ("__mips_paired_single_float"); \
595 \
ff3f3951
MR
596 if (mips_abs == MIPS_IEEE_754_2008) \
597 builtin_define ("__mips_abs2008"); \
598 \
599 if (mips_nan == MIPS_IEEE_754_2008) \
600 builtin_define ("__mips_nan2008"); \
601 \
0ea339ea
NS
602 if (TARGET_BIG_ENDIAN) \
603 { \
604 builtin_define_std ("MIPSEB"); \
605 builtin_define ("_MIPSEB"); \
606 } \
607 else \
608 { \
609 builtin_define_std ("MIPSEL"); \
610 builtin_define ("_MIPSEL"); \
611 } \
93581857 612 \
cf51e479
RS
613 /* Whether calls should go through $25. The separate __PIC__ \
614 macro indicates whether abicalls code might use a GOT. */ \
615 if (TARGET_ABICALLS) \
616 builtin_define ("__mips_abicalls"); \
617 \
8ae8bad7
CX
618 /* Whether Loongson vector modes are enabled. */ \
619 if (TARGET_LOONGSON_MMI) \
620 { \
621 builtin_define ("__mips_loongson_vector_rev"); \
622 builtin_define ("__mips_loongson_mmi"); \
623 } \
0ea339ea 624 \
375899d9
CX
625 /* Whether Loongson EXT modes are enabled. */ \
626 if (TARGET_LOONGSON_EXT) \
627 { \
628 builtin_define ("__mips_loongson_ext"); \
d6319811
CX
629 if (TARGET_LOONGSON_EXT2) \
630 { \
631 builtin_define ("__mips_loongson_ext2"); \
632 builtin_define ("__mips_loongson_ext_rev=2"); \
633 } \
634 else \
635 builtin_define ("__mips_loongson_ext_rev=1"); \
375899d9
CX
636 } \
637 \
d97e6aca
AN
638 /* Historical Octeon macro. */ \
639 if (TARGET_OCTEON) \
640 builtin_define ("__OCTEON__"); \
641 \
166c02bd
RS
642 if (TARGET_SYNCI) \
643 builtin_define ("__mips_synci"); \
644 \
0ea339ea
NS
645 /* Macros dependent on the C dialect. */ \
646 if (preprocessing_asm_p ()) \
647 { \
648 builtin_define_std ("LANGUAGE_ASSEMBLY"); \
649 builtin_define ("_LANGUAGE_ASSEMBLY"); \
650 } \
651 else if (c_dialect_cxx ()) \
652 { \
653 builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
654 builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
655 builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
656 } \
657 else \
658 { \
659 builtin_define_std ("LANGUAGE_C"); \
660 builtin_define ("_LANGUAGE_C"); \
661 } \
662 if (c_dialect_objc ()) \
663 { \
664 builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
665 builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
b24513a1 666 /* Bizarre, but retained for backwards compatibility. */ \
0ea339ea
NS
667 builtin_define_std ("LANGUAGE_C"); \
668 builtin_define ("_LANGUAGE_C"); \
669 } \
670 \
671 if (mips_abi == ABI_EABI) \
672 builtin_define ("__mips_eabi"); \
4d210b07
RS
673 \
674 if (TARGET_CACHE_BUILTIN) \
675 builtin_define ("__GCC_HAVE_BUILTIN_MIPS_CACHE"); \
ab6b44cb
MF
676 if (!ISA_HAS_LXC1_SXC1) \
677 builtin_define ("__mips_no_lxc1_sxc1"); \
d821744c
MF
678 if (!ISA_HAS_UNFUSED_MADD4 && !ISA_HAS_FUSED_MADD4) \
679 builtin_define ("__mips_no_madd4"); \
0ea339ea
NS
680 } \
681 while (0)
ce3649d2 682
3785d2b2 683/* Target hooks for D language. */
b4c522fa 684#define TARGET_D_CPU_VERSIONS mips_d_target_versions
3785d2b2 685#define TARGET_D_REGISTER_CPU_TARGET_INFO mips_d_register_target_info
b4c522fa 686
149e4e00
MM
687/* Default target_flags if no switches are specified */
688
689#ifndef TARGET_DEFAULT
690#define TARGET_DEFAULT 0
691#endif
692
404f986e
MM
693#ifndef TARGET_CPU_DEFAULT
694#define TARGET_CPU_DEFAULT 0
695#endif
696
96abdcb1 697#ifndef TARGET_ENDIAN_DEFAULT
96abdcb1 698#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
96abdcb1
ILT
699#endif
700
996ed075
JJ
701#ifdef IN_LIBGCC2
702#undef TARGET_64BIT
703/* Make this compile time constant for libgcc2 */
704#ifdef __mips64
705#define TARGET_64BIT 1
706#else
707#define TARGET_64BIT 0
708#endif
440927ec 709#endif /* IN_LIBGCC2 */
996ed075 710
56e449d3
SL
711/* Force the call stack unwinders in unwind.inc not to be MIPS16 code
712 when compiled with hardware floating point. This is because MIPS16
713 code cannot save and restore the floating-point registers, which is
714 important if in a mixed MIPS16/non-MIPS16 environment. */
715
716#ifdef IN_LIBGCC2
717#if __mips_hard_float
718#define LIBGCC2_UNWIND_ATTRIBUTE __attribute__((__nomips16__))
719#endif
720#endif /* IN_LIBGCC2 */
721
a0cfeb0f
DD
722#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
723
cbab8d02 724#ifndef MULTILIB_ENDIAN_DEFAULT
7f2e00db 725#if TARGET_ENDIAN_DEFAULT == 0
cbab8d02 726#define MULTILIB_ENDIAN_DEFAULT "EL"
7f2e00db 727#else
cbab8d02
GRK
728#define MULTILIB_ENDIAN_DEFAULT "EB"
729#endif
7f2e00db 730#endif
cbab8d02 731
ea09f032 732#ifndef MULTILIB_ISA_DEFAULT
4ecfc7e3 733#if MIPS_ISA_DEFAULT == MIPS_ISA_MIPS1
44e88db2 734#define MULTILIB_ISA_DEFAULT "mips1"
4ecfc7e3 735#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS2
44e88db2 736#define MULTILIB_ISA_DEFAULT "mips2"
4ecfc7e3 737#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS3
44e88db2 738#define MULTILIB_ISA_DEFAULT "mips3"
4ecfc7e3 739#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS4
44e88db2 740#define MULTILIB_ISA_DEFAULT "mips4"
4ecfc7e3 741#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32
44e88db2 742#define MULTILIB_ISA_DEFAULT "mips32"
4ecfc7e3 743#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R2
44e88db2 744#define MULTILIB_ISA_DEFAULT "mips32r2"
4ecfc7e3 745#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS32R6
82f84ecb 746#define MULTILIB_ISA_DEFAULT "mips32r6"
4ecfc7e3 747#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64
44e88db2 748#define MULTILIB_ISA_DEFAULT "mips64"
4ecfc7e3 749#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R2
44e88db2 750#define MULTILIB_ISA_DEFAULT "mips64r2"
4ecfc7e3 751#elif MIPS_ISA_DEFAULT == MIPS_ISA_MIPS64R6
82f84ecb 752#define MULTILIB_ISA_DEFAULT "mips64r6"
44e88db2
RS
753#else
754#define MULTILIB_ISA_DEFAULT "mips1"
755#endif
ea09f032
GRK
756#endif
757
1ab8a8c2
JM
758#ifndef MIPS_ABI_DEFAULT
759#define MIPS_ABI_DEFAULT ABI_32
760#endif
761
762/* Use the most portable ABI flag for the ASM specs. */
763
764#if MIPS_ABI_DEFAULT == ABI_32
765#define MULTILIB_ABI_DEFAULT "mabi=32"
44e88db2 766#elif MIPS_ABI_DEFAULT == ABI_O64
1ab8a8c2 767#define MULTILIB_ABI_DEFAULT "mabi=o64"
44e88db2 768#elif MIPS_ABI_DEFAULT == ABI_N32
1ab8a8c2 769#define MULTILIB_ABI_DEFAULT "mabi=n32"
44e88db2 770#elif MIPS_ABI_DEFAULT == ABI_64
1ab8a8c2 771#define MULTILIB_ABI_DEFAULT "mabi=64"
44e88db2 772#elif MIPS_ABI_DEFAULT == ABI_EABI
1ab8a8c2
JM
773#define MULTILIB_ABI_DEFAULT "mabi=eabi"
774#endif
775
cbab8d02 776#ifndef MULTILIB_DEFAULTS
a27fb29b
RS
777#define MULTILIB_DEFAULTS \
778 { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
7f2e00db
RK
779#endif
780
34bcd7fd
JW
781/* We must pass -EL to the linker by default for little endian embedded
782 targets using linker scripts with a OUTPUT_FORMAT line. Otherwise, the
783 linker will default to using big-endian output files. The OUTPUT_FORMAT
784 line must be in the linker script, otherwise -EB/-EL will not work. */
785
120dc6cd 786#ifndef ENDIAN_SPEC
34bcd7fd 787#if TARGET_ENDIAN_DEFAULT == 0
ac282977 788#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
34bcd7fd 789#else
ac282977 790#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
34bcd7fd
JW
791#endif
792#endif
793
e2c14f5d
RS
794/* A spec condition that matches all non-mips16 -mips arguments. */
795
796#define MIPS_ISA_LEVEL_OPTION_SPEC \
797 "mips1|mips2|mips3|mips4|mips32*|mips64*"
798
799/* A spec condition that matches all non-mips16 architecture arguments. */
800
801#define MIPS_ARCH_OPTION_SPEC \
802 MIPS_ISA_LEVEL_OPTION_SPEC "|march=*"
803
fcd7669c 804/* A spec that infers a -mips argument from an -march argument. */
e2c14f5d
RS
805
806#define MIPS_ISA_LEVEL_SPEC \
807 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
808 %{march=mips1|march=r2000|march=r3000|march=r3900:-mips1} \
809 %{march=mips2|march=r6000:-mips2} \
33db2060 810 %{march=mips3|march=r4*|march=vr4*|march=orion|march=loongson2*:-mips3} \
304b14b1
JK
811 %{march=mips4|march=r8000|march=vr5*|march=rm7000|march=rm9000 \
812 |march=r10000|march=r12000|march=r14000|march=r16000:-mips4} \
9e32002f
RS
813 %{march=mips32|march=4kc|march=4km|march=4kp|march=4ksc:-mips32} \
814 %{march=mips32r2|march=m4k|march=4ke*|march=4ksd|march=24k* \
8ced5d2d
RS
815 |march=34k*|march=74k*|march=m14k*|march=1004k* \
816 |march=interaptiv: -mips32r2} \
2b3bd040 817 %{march=mips32r3: -mips32r3} \
6dd74463 818 %{march=mips32r5|march=p5600|march=m5100|march=m5101: -mips32r5} \
82f84ecb 819 %{march=mips32r6: -mips32r6} \
0051ef59 820 %{march=mips64|march=5k*|march=20k*|march=sb1*|march=sr71000 \
0c72fa78 821 |march=xlr: -mips64} \
8fa1acc7
CX
822 %{march=mips64r2|march=loongson3a|march=gs464|march=gs464e|march=gs264e \
823 |march=octeon|march=xlp: -mips64r2} \
2b3bd040
AB
824 %{march=mips64r3: -mips64r3} \
825 %{march=mips64r5: -mips64r5} \
30c0ee9c 826 %{march=mips64r6|march=i6400|march=i6500|march=p6600: -mips64r6}}"
fcd7669c
MF
827
828/* A spec that injects the default multilib ISA if no architecture is
829 specified. */
830
831#define MIPS_DEFAULT_ISA_LEVEL_SPEC \
832 "%{" MIPS_ISA_LEVEL_OPTION_SPEC ":;: \
0ea339ea
NS
833 %{!march=*: -" MULTILIB_ISA_DEFAULT "}}"
834
7d8bed7b
RS
835/* A spec that infers a -mhard-float or -msoft-float setting from an
836 -march argument. Note that soft-float and hard-float code are not
837 link-compatible. */
838
839#define MIPS_ARCH_FLOAT_SPEC \
3df0998b 840 "%{mhard-float|msoft-float|mno-float|march=mips*:; \
7d8bed7b 841 march=vr41*|march=m4k|march=4k*|march=24kc|march=24kec \
fdd195f4 842 |march=34kc|march=34kn|march=74kc|march=1004kc|march=5kc \
6dd74463 843 |march=m14k*|march=m5101|march=octeon|march=xlr: -msoft-float; \
7d8bed7b
RS
844 march=*: -mhard-float}"
845
0ea339ea
NS
846/* A spec condition that matches 32-bit options. It only works if
847 MIPS_ISA_LEVEL_SPEC has been applied. */
848
849#define MIPS_32BIT_OPTION_SPEC \
850 "mips1|mips2|mips32*|mgp32"
e2c14f5d 851
050af144
MF
852/* A spec condition that matches architectures should be targeted with
853 o32 FPXX for compatibility reasons. */
854#define MIPS_FPXX_OPTION_SPEC \
855 "mips2|mips3|mips4|mips5|mips32|mips32r2|mips32r3|mips32r5| \
856 mips64|mips64r2|mips64r3|mips64r5"
857
965c1798
SE
858/* Infer a -msynci setting from a -mips argument, on the assumption that
859 -msynci is desired where possible. */
860#define MIPS_ISA_SYNCI_SPEC \
82f84ecb
MF
861 "%{msynci|mno-synci:;:%{mips32r2|mips32r3|mips32r5|mips32r6|mips64r2 \
862 |mips64r3|mips64r5|mips64r6:-msynci;:-mno-synci}}"
863
fcd7669c 864/* Infer a -mnan=2008 setting from a -mips argument. */
82f84ecb 865#define MIPS_ISA_NAN2008_SPEC \
6dd74463
PG
866 "%{mnan*:;mips32r6|mips64r6:-mnan=2008;march=m51*: \
867 %{!msoft-float:-mnan=2008}}"
965c1798 868
44e88db2
RS
869#if (MIPS_ABI_DEFAULT == ABI_O64 \
870 || MIPS_ABI_DEFAULT == ABI_N32 \
871 || MIPS_ABI_DEFAULT == ABI_64)
1ab8a8c2
JM
872#define OPT_ARCH64 "mabi=32|mgp32:;"
873#define OPT_ARCH32 "mabi=32|mgp32"
874#else
875#define OPT_ARCH64 "mabi=o64|mabi=n32|mabi=64|mgp64"
876#define OPT_ARCH32 "mabi=o64|mabi=n32|mabi=64|mgp64:;"
877#endif
878
7816bea0
DJ
879/* Support for a compile-time default CPU, et cetera. The rules are:
880 --with-arch is ignored if -march is specified or a -mips is specified
1ab8a8c2
JM
881 (other than -mips16); likewise --with-arch-32 and --with-arch-64.
882 --with-tune is ignored if -mtune is specified; likewise
883 --with-tune-32 and --with-tune-64.
7816bea0
DJ
884 --with-abi is ignored if -mabi is specified.
885 --with-float is ignored if -mhard-float or -msoft-float are
9f0df97a 886 specified.
050af144
MF
887 --with-fpu is ignored if -msoft-float, -msingle-float or -mdouble-float are
888 specified.
ff3f3951 889 --with-nan is ignored if -mnan is specified.
6cf538da
RS
890 --with-fp-32 is ignored if -msoft-float, -msingle-float, -mmsa or -mfp are
891 specified.
050af144
MF
892 --with-odd-spreg-32 is ignored if -msoft-float, -msingle-float, -modd-spreg
893 or -mno-odd-spreg are specified.
9f0df97a
DD
894 --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
895 specified. */
7816bea0 896#define OPTION_DEFAULT_SPECS \
e2c14f5d 897 {"arch", "%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}" }, \
1ab8a8c2
JM
898 {"arch_32", "%{" OPT_ARCH32 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
899 {"arch_64", "%{" OPT_ARCH64 ":%{" MIPS_ARCH_OPTION_SPEC ":;: -march=%(VALUE)}}" }, \
7816bea0 900 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
1ab8a8c2
JM
901 {"tune_32", "%{" OPT_ARCH32 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
902 {"tune_64", "%{" OPT_ARCH64 ":%{!mtune=*:-mtune=%(VALUE)}}" }, \
7816bea0 903 {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
9f0df97a 904 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
050af144 905 {"fpu", "%{!msoft-float:%{!msingle-float:%{!mdouble-float:-m%(VALUE)-float}}}" }, \
ff3f3951 906 {"nan", "%{!mnan=*:-mnan=%(VALUE)}" }, \
050af144 907 {"fp_32", "%{" OPT_ARCH32 \
6cf538da 908 ":%{!msoft-float:%{!msingle-float:%{!mfp*:%{!mmsa:-mfp%(VALUE)}}}}}" }, \
050af144
MF
909 {"odd_spreg_32", "%{" OPT_ARCH32 ":%{!msoft-float:%{!msingle-float:" \
910 "%{!modd-spreg:%{!mno-odd-spreg:-m%(VALUE)}}}}}" }, \
66471b47 911 {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }, \
e21d5757 912 {"llsc", "%{!mllsc:%{!mno-llsc:-m%(VALUE)}}" }, \
b96c5923 913 {"mips-plt", "%{!mplt:%{!mno-plt:-m%(VALUE)}}" }, \
ab6b44cb 914 {"synci", "%{!msynci:%{!mno-synci:-m%(VALUE)}}" }, \
d821744c
MF
915 {"lxc1-sxc1", "%{!mlxc1-sxc1:%{!mno-lxc1-sxc1:-m%(VALUE)}}" }, \
916 {"madd4", "%{!mmadd4:%{!mno-madd4:-m%(VALUE)}}" } \
9f0df97a 917
fcd7669c
MF
918/* A spec that infers the:
919 -mnan=2008 setting from a -mips argument,
8ae8bad7
CX
920 -mdsp setting from a -march argument.
921 -mloongson-mmi setting from a -march argument. */
922#define BASE_DRIVER_SELF_SPECS \
923 MIPS_ISA_NAN2008_SPEC, \
924 MIPS_ASE_DSP_SPEC, \
375899d9 925 MIPS_ASE_LOONGSON_MMI_SPEC, \
8fa1acc7
CX
926 MIPS_ASE_LOONGSON_EXT_SPEC, \
927 MIPS_ASE_MSA_SPEC
928
8ae8bad7
CX
929
930#define MIPS_ASE_DSP_SPEC \
037f9973 931 "%{!mno-dsp: \
8ced5d2d
RS
932 %{march=24ke*|march=34kc*|march=34kf*|march=34kx*|march=1004k* \
933 |march=interaptiv: -mdsp} \
8e932114 934 %{march=74k*|march=m14ke*: %{!mno-dspr2: -mdspr2 -mdsp}}}"
7f75ae86 935
8ae8bad7
CX
936#define MIPS_ASE_LOONGSON_MMI_SPEC \
937 "%{!mno-loongson-mmi: \
938 %{march=loongson2e|march=loongson2f|march=loongson3a: -mloongson-mmi}}"
939
375899d9
CX
940#define MIPS_ASE_LOONGSON_EXT_SPEC \
941 "%{!mno-loongson-ext: \
659ce7cb 942 %{march=loongson3a|march=gs464: -mloongson-ext} \
8fa1acc7
CX
943 %{march=gs464e|march=gs264e: %{!mno-loongson-ext2: \
944 -mloongson-ext2 -mloongson-ext}}}"
945
946#define MIPS_ASE_MSA_SPEC \
947 "%{!mno-msa: \
948 %{march=gs264e: -mmsa}}"
375899d9 949
82f84ecb
MF
950#define DRIVER_SELF_SPECS \
951 MIPS_ISA_LEVEL_SPEC, \
952 BASE_DRIVER_SELF_SPECS
7f75ae86 953
9f0df97a
DD
954#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
955 && ISA_HAS_COND_TRAP)
7816bea0 956
0da4c1ea 957#define GENERATE_BRANCHLIKELY (TARGET_BRANCHLIKELY && !TARGET_MIPS16)
e4f5c5d6 958
a27fb29b
RS
959/* True if the ABI can only work with 64-bit integer registers. We
960 generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
961 otherwise floating-point registers must also be 64-bit. */
7f9be256 962#define ABI_NEEDS_64BIT_REGS (TARGET_NEWABI || mips_abi == ABI_O64)
a27fb29b
RS
963
964/* Likewise for 32-bit regs. */
965#define ABI_NEEDS_32BIT_REGS (mips_abi == ABI_32)
966
2e8a796f
RS
967/* True if the file format uses 64-bit symbols. At present, this is
968 only true for n64, which uses 64-bit ELF. */
969#define FILE_HAS_64BIT_SYMBOLS (mips_abi == ABI_64)
970
971/* True if symbols are 64 bits wide. This is usually determined by
972 the ABI's file format, but it can be overridden by -msym32. Note that
973 overriding the size with -msym32 changes the ABI of relocatable objects,
974 although it doesn't change the ABI of a fully-linked object. */
81a478c8
RS
975#define ABI_HAS_64BIT_SYMBOLS (FILE_HAS_64BIT_SYMBOLS \
976 && Pmode == DImode \
977 && !TARGET_SYM32)
cafe096b 978
85f65093 979/* ISA has instructions for managing 64-bit fp and gp regs (e.g. mips3). */
8f2e3902
EC
980#define ISA_HAS_64BIT_REGS (ISA_MIPS3 \
981 || ISA_MIPS4 \
f2d6ca50 982 || ISA_MIPS64 \
2b3bd040
AB
983 || ISA_MIPS64R2 \
984 || ISA_MIPS64R3 \
82f84ecb
MF
985 || ISA_MIPS64R5 \
986 || ISA_MIPS64R6)
987
988#define ISA_HAS_JR (mips_isa_rev <= 5)
1d5d552e 989
22219d9b
MF
990#define ISA_HAS_DELAY_SLOTS 1
991
992#define ISA_HAS_COMPACT_BRANCHES (mips_isa_rev >= 6)
993
112cdef5 994/* ISA has branch likely instructions (e.g. mips2). */
7dac2f89
EC
995/* Disable branchlikely for tx39 until compare rewrite. They haven't
996 been generated up to this point. */
82f84ecb 997#define ISA_HAS_BRANCHLIKELY (!ISA_MIPS1 && mips_isa_rev <= 5)
1d5d552e 998
050af144
MF
999/* ISA has 32 single-precision registers. */
1000#define ISA_HAS_ODD_SPREG ((mips_isa_rev >= 1 \
2b94a36d 1001 && !TARGET_GS464) \
050af144
MF
1002 || TARGET_FLOAT64 \
1003 || TARGET_MIPS5900)
1004
2f8e468b 1005/* ISA has a three-operand multiplication instruction (usually spelt "mul"). */
3f07249e
RS
1006#define ISA_HAS_MUL3 ((TARGET_MIPS3900 \
1007 || TARGET_MIPS5400 \
1008 || TARGET_MIPS5500 \
0de86a92 1009 || TARGET_MIPS5900 \
3f07249e
RS
1010 || TARGET_MIPS7000 \
1011 || TARGET_MIPS9000 \
1012 || TARGET_MAD \
82f84ecb
MF
1013 || (mips_isa_rev >= 1 \
1014 && mips_isa_rev <= 5)) \
3f07249e
RS
1015 && !TARGET_MIPS16)
1016
d6d3e623 1017/* ISA has a three-operand multiplication instruction. */
aa5409e7
AN
1018#define ISA_HAS_DMUL3 (TARGET_64BIT \
1019 && TARGET_OCTEON \
1020 && !TARGET_MIPS16)
d6d3e623 1021
82f84ecb
MF
1022/* ISA has HI and LO registers. */
1023#define ISA_HAS_HILO (mips_isa_rev <= 5)
1024
0de86a92 1025/* ISA supports instructions DMULT and DMULTU. */
82f84ecb
MF
1026#define ISA_HAS_DMULT (TARGET_64BIT \
1027 && !TARGET_MIPS5900 \
1028 && mips_isa_rev <= 5)
0de86a92 1029
82f84ecb
MF
1030/* ISA supports instructions MULT and MULTU. */
1031#define ISA_HAS_MULT (mips_isa_rev <= 5)
1032
1033/* ISA supports instructions MUL, MULU, MUH, MUHU. */
1034#define ISA_HAS_R6MUL (mips_isa_rev >= 6)
1035
1036/* ISA supports instructions DMUL, DMULU, DMUH, DMUHU. */
1037#define ISA_HAS_R6DMUL (TARGET_64BIT && mips_isa_rev >= 6)
0de86a92 1038
d5432112
TT
1039/* For Loongson, it is preferable to use the Loongson-specific division and
1040 modulo instructions instead of the regular (D)DIV(U) instruction,
1041 because the former are faster and can also have the effect of reducing
1042 code size. */
1043#define ISA_AVOID_DIV_HILO ((TARGET_LOONGSON_2EF \
2b94a36d 1044 || TARGET_GS464) \
d5432112
TT
1045 && !TARGET_MIPS16)
1046
0de86a92 1047/* ISA supports instructions DDIV and DDIVU. */
82f84ecb
MF
1048#define ISA_HAS_DDIV (TARGET_64BIT \
1049 && !TARGET_MIPS5900 \
d5432112 1050 && !ISA_AVOID_DIV_HILO \
82f84ecb 1051 && mips_isa_rev <= 5)
0de86a92
JU
1052
1053/* ISA supports instructions DIV and DIVU.
1054 This is always true, but the macro is needed for ISA_HAS_<D>DIV
1055 in mips.md. */
d5432112
TT
1056#define ISA_HAS_DIV (!ISA_AVOID_DIV_HILO \
1057 && mips_isa_rev <= 5)
44e88db2 1058
82f84ecb
MF
1059/* ISA supports instructions DIV, DIVU, MOD and MODU. */
1060#define ISA_HAS_R6DIV (mips_isa_rev >= 6)
1061
1062/* ISA supports instructions DDIV, DDIVU, DMOD and DMODU. */
1063#define ISA_HAS_R6DDIV (TARGET_64BIT && mips_isa_rev >= 6)
1064
b51469a5
MK
1065/* ISA has the floating-point conditional move instructions introduced
1066 in mips4. */
1067#define ISA_HAS_FP_CONDMOVE ((ISA_MIPS4 \
82f84ecb
MF
1068 || (mips_isa_rev >= 1 \
1069 && mips_isa_rev <= 5)) \
3f07249e 1070 && !TARGET_MIPS5500 \
ce3649d2 1071 && !TARGET_MIPS16)
76ee8042 1072
b51469a5
MK
1073/* ISA has the integer conditional move instructions introduced in mips4 and
1074 ST Loongson 2E/2F. */
107eea2c
JU
1075#define ISA_HAS_CONDMOVE (ISA_HAS_FP_CONDMOVE \
1076 || TARGET_MIPS5900 \
1077 || TARGET_LOONGSON_2EF)
b51469a5 1078
f457938f 1079/* ISA has LDC1 and SDC1. */
04dfc6df
JU
1080#define ISA_HAS_LDC1_SDC1 (!ISA_MIPS1 \
1081 && !TARGET_MIPS5900 \
1082 && !TARGET_MIPS16)
f457938f 1083
76ee8042 1084/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
987ba558 1085 branch on CC, and move (both FP and non-FP) on CC. */
82f84ecb
MF
1086#define ISA_HAS_8CC (ISA_MIPS4 \
1087 || (mips_isa_rev >= 1 \
1088 && mips_isa_rev <= 5))
1089
1090/* ISA has the FP condition code instructions that store the flag in an
1091 FP register. */
1092#define ISA_HAS_CCF (mips_isa_rev >= 6)
1093
1094#define ISA_HAS_SEL (mips_isa_rev >= 6)
76ee8042 1095
4dbe1556
CD
1096/* This is a catch all for other mips4 instructions: indexed load, the
1097 FP madd and msub instructions, and the FP recip and recip sqrt
7cfe3cc1
MR
1098 instructions. Note that this macro should only be used by other
1099 ISA_HAS_* macros. */
3f07249e 1100#define ISA_HAS_FP4 ((ISA_MIPS4 \
f2d6ca50 1101 || ISA_MIPS64 \
82f84ecb
MF
1102 || (mips_isa_rev >= 2 \
1103 && mips_isa_rev <= 5)) \
3f07249e 1104 && !TARGET_MIPS16)
76ee8042 1105
7cfe3cc1
MR
1106/* ISA has floating-point indexed load and store instructions
1107 (LWXC1, LDXC1, SWXC1 and SDXC1). */
ab6b44cb
MF
1108#define ISA_HAS_LXC1_SXC1 (ISA_HAS_FP4 \
1109 && mips_lxc1_sxc1)
7cfe3cc1 1110
e5a2b69d 1111/* ISA has paired-single instructions. */
96902805
JM
1112#define ISA_HAS_PAIRED_SINGLE ((ISA_MIPS64 \
1113 || (mips_isa_rev >= 2 \
1114 && mips_isa_rev <= 5)) \
1115 && !TARGET_OCTEON)
e5a2b69d 1116
a0b6cdee 1117/* ISA has conditional trap instructions. */
ce3649d2
EC
1118#define ISA_HAS_COND_TRAP (!ISA_MIPS1 \
1119 && !TARGET_MIPS16)
1d5d552e 1120
82f84ecb
MF
1121/* ISA has conditional trap with immediate instructions. */
1122#define ISA_HAS_COND_TRAPI (!ISA_MIPS1 \
1123 && mips_isa_rev <= 5 \
1124 && !TARGET_MIPS16)
1125
12bf26b6 1126/* ISA has integer multiply-accumulate instructions, madd and msub. */
82f84ecb
MF
1127#define ISA_HAS_MADD_MSUB (mips_isa_rev >= 1 \
1128 && mips_isa_rev <= 5)
0e5a4ad8 1129
8dd58f01 1130/* Integer multiply-accumulate instructions should be generated. */
855e0d0b 1131#define GENERATE_MADD_MSUB (TARGET_IMADD && !TARGET_MIPS16)
8dd58f01 1132
e5aac417
SE
1133/* ISA has 4 operand fused madd instructions of the form
1134 'd = [+-] (a * b [+-] c)'. */
d821744c
MF
1135#define ISA_HAS_FUSED_MADD4 (mips_madd4 \
1136 && (TARGET_MIPS8000 \
659ce7cb 1137 || TARGET_GS464 \
8fa1acc7
CX
1138 || TARGET_GS464E \
1139 || TARGET_GS264E))
b51469a5 1140
e5aac417
SE
1141/* ISA has 4 operand unfused madd instructions of the form
1142 'd = [+-] (a * b [+-] c)'. */
d821744c
MF
1143#define ISA_HAS_UNFUSED_MADD4 (mips_madd4 \
1144 && ISA_HAS_FP4 \
cedb7e2c 1145 && !TARGET_MIPS8000 \
659ce7cb 1146 && !TARGET_GS464 \
8fa1acc7
CX
1147 && !TARGET_GS464E \
1148 && !TARGET_GS264E)
82f84ecb 1149
e5aac417
SE
1150/* ISA has 3 operand r6 fused madd instructions of the form
1151 'c = c [+-] (a * b)'. */
1152#define ISA_HAS_FUSED_MADDF (mips_isa_rev >= 6)
b51469a5 1153
e5aac417
SE
1154/* ISA has 3 operand loongson fused madd instructions of the form
1155 'c = [+-] (a * b [+-] c)'. */
1156#define ISA_HAS_FUSED_MADD3 TARGET_LOONGSON_2EF
b51469a5 1157
287c5d38
MR
1158/* ISA has floating-point RECIP.fmt and RSQRT.fmt instructions. The
1159 MIPS64 rev. 1 ISA says that RECIP.D and RSQRT.D are unpredictable when
1160 doubles are stored in pairs of FPRs, so for safety's sake, we apply
1161 this restriction to the MIPS IV ISA too. */
1162#define ISA_HAS_FP_RECIP_RSQRT(MODE) \
7cfe3cc1 1163 (((ISA_HAS_FP4 \
287c5d38
MR
1164 && ((MODE) == SFmode \
1165 || ((TARGET_FLOAT64 \
ad782bc9 1166 || mips_isa_rev >= 2) \
287c5d38 1167 && (MODE) == DFmode))) \
82f84ecb
MF
1168 || (((MODE) == SFmode \
1169 || (MODE) == DFmode) \
1170 && (mips_isa_rev >= 6)) \
287c5d38
MR
1171 || (TARGET_SB1 \
1172 && (MODE) == V2SFmode)) \
1173 && !TARGET_MIPS16)
1174
82f84ecb
MF
1175#define ISA_HAS_LWL_LWR (mips_isa_rev <= 5 && !TARGET_MIPS16)
1176
1177#define ISA_HAS_IEEE_754_LEGACY (mips_isa_rev <= 5)
1178
1179#define ISA_HAS_IEEE_754_2008 (mips_isa_rev >= 2)
1180
0e5a4ad8 1181/* ISA has count leading zeroes/ones instruction (not implemented). */
ad782bc9 1182#define ISA_HAS_CLZ_CLO (mips_isa_rev >= 1 && !TARGET_MIPS16)
0e5a4ad8 1183
f70b5dbf 1184/* ISA has count trailing zeroes/ones instruction. */
d6319811
CX
1185#define ISA_HAS_CTZ_CTO (TARGET_LOONGSON_EXT2)
1186
5ce6f47b
EC
1187/* ISA has three operand multiply instructions that put
1188 the high part in an accumulator: mulhi or mulhiu. */
3f07249e
RS
1189#define ISA_HAS_MULHI ((TARGET_MIPS5400 \
1190 || TARGET_MIPS5500 \
1191 || TARGET_SR71K) \
1192 && !TARGET_MIPS16)
5ce6f47b 1193
d2ab0929
MR
1194/* ISA has three operand multiply instructions that negate the
1195 result and put the result in an accumulator. */
3f07249e
RS
1196#define ISA_HAS_MULS ((TARGET_MIPS5400 \
1197 || TARGET_MIPS5500 \
1198 || TARGET_SR71K) \
1199 && !TARGET_MIPS16)
5ce6f47b 1200
d2ab0929
MR
1201/* ISA has three operand multiply instructions that subtract the
1202 result from a 4th operand and put the result in an accumulator. */
3f07249e
RS
1203#define ISA_HAS_MSAC ((TARGET_MIPS5400 \
1204 || TARGET_MIPS5500 \
1205 || TARGET_SR71K) \
1206 && !TARGET_MIPS16)
1207
d2ab0929
MR
1208/* ISA has three operand multiply instructions that add the result
1209 to a 4th operand and put the result in an accumulator. */
3f07249e
RS
1210#define ISA_HAS_MACC ((TARGET_MIPS4120 \
1211 || TARGET_MIPS4130 \
1212 || TARGET_MIPS5400 \
1213 || TARGET_MIPS5500 \
1214 || TARGET_SR71K) \
1215 && !TARGET_MIPS16)
5ce6f47b 1216
0ac40e7a 1217/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions. */
3f07249e
RS
1218#define ISA_HAS_MACCHI ((TARGET_MIPS4120 \
1219 || TARGET_MIPS4130) \
1220 && !TARGET_MIPS16)
1221
1222/* ISA has the "ror" (rotate right) instructions. */
ad782bc9 1223#define ISA_HAS_ROR ((mips_isa_rev >= 2 \
3f07249e
RS
1224 || TARGET_MIPS5400 \
1225 || TARGET_MIPS5500 \
0aa222d1
SL
1226 || TARGET_SR71K \
1227 || TARGET_SMARTMIPS) \
3f07249e 1228 && !TARGET_MIPS16)
5ce6f47b 1229
0f37323c
RS
1230/* ISA has the WSBH (word swap bytes within halfwords) instruction.
1231 64-bit targets also provide DSBH and DSHD. */
ad782bc9 1232#define ISA_HAS_WSBH (mips_isa_rev >= 2 && !TARGET_MIPS16)
0f37323c 1233
4dbe1556 1234/* ISA has data prefetch instructions. This controls use of 'pref'. */
8f2e3902 1235#define ISA_HAS_PREFETCH ((ISA_MIPS4 \
1a0f175d 1236 || TARGET_LOONGSON_2EF \
107eea2c 1237 || TARGET_MIPS5900 \
ad782bc9 1238 || mips_isa_rev >= 1) \
8f2e3902
EC
1239 && !TARGET_MIPS16)
1240
047b52f6
MF
1241/* ISA has data prefetch, LL and SC with limited 9-bit displacement. */
1242#define ISA_HAS_9BIT_DISPLACEMENT (mips_isa_rev >= 6)
82f84ecb 1243
4dbe1556
CD
1244/* ISA has data indexed prefetch instructions. This controls use of
1245 'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
1246 (prefx is a cop1x instruction, so can only be used if FP is
1247 enabled.) */
d6319811
CX
1248#define ISA_HAS_PREFETCHX (ISA_HAS_FP4 \
1249 || TARGET_LOONGSON_EXT \
1250 || TARGET_LOONGSON_EXT2)
4dbe1556 1251
8214bf98
RS
1252/* True if trunc.w.s and trunc.w.d are real (not synthetic)
1253 instructions. Both require TARGET_HARD_FLOAT, and trunc.w.d
1254 also requires TARGET_DOUBLE_FLOAT. */
1255#define ISA_HAS_TRUNC_W (!ISA_MIPS1)
1256
2d2a50c3 1257/* ISA includes the MIPS32r2 seb and seh instructions. */
ad782bc9 1258#define ISA_HAS_SEB_SEH (mips_isa_rev >= 2 && !TARGET_MIPS16)
2d2a50c3 1259
e689b870 1260/* ISA includes the MIPS32/64 rev 2 ext and ins instructions. */
ad782bc9 1261#define ISA_HAS_EXT_INS (mips_isa_rev >= 2 && !TARGET_MIPS16)
e689b870 1262
85f65093 1263/* ISA has instructions for accessing top part of 64-bit fp regs. */
050af144
MF
1264#define ISA_HAS_MXHC1 (!TARGET_FLOAT32 \
1265 && mips_isa_rev >= 2)
6f428062 1266
0aa222d1 1267/* ISA has lwxs instruction (load w/scaled index address. */
22c4c869
CM
1268#define ISA_HAS_LWXS ((TARGET_SMARTMIPS || TARGET_MICROMIPS) \
1269 && !TARGET_MIPS16)
0aa222d1 1270
770da00a
AP
1271/* ISA has lbx, lbux, lhx, lhx, lhux, lwx, lwux, or ldx instruction. */
1272#define ISA_HAS_LBX (TARGET_OCTEON2)
1273#define ISA_HAS_LBUX (ISA_HAS_DSP || TARGET_OCTEON2)
1274#define ISA_HAS_LHX (ISA_HAS_DSP || TARGET_OCTEON2)
1275#define ISA_HAS_LHUX (TARGET_OCTEON2)
1276#define ISA_HAS_LWX (ISA_HAS_DSP || TARGET_OCTEON2)
1277#define ISA_HAS_LWUX (TARGET_OCTEON2 && TARGET_64BIT)
1278#define ISA_HAS_LDX ((ISA_HAS_DSP || TARGET_OCTEON2) \
1279 && TARGET_64BIT)
1280
254d1646
RS
1281/* The DSP ASE is available. */
1282#define ISA_HAS_DSP (TARGET_DSP && !TARGET_MIPS16)
1283
1284/* Revision 2 of the DSP ASE is available. */
1285#define ISA_HAS_DSPR2 (TARGET_DSPR2 && !TARGET_MIPS16)
1286
6cf538da
RS
1287/* The MSA ASE is available. */
1288#define ISA_HAS_MSA (TARGET_MSA && !TARGET_MIPS16)
1289
21c9500d
RS
1290/* True if the result of a load is not available to the next instruction.
1291 A nop will then be needed between instructions like "lw $4,..."
1292 and "addiu $4,$4,1". */
3f07249e 1293#define ISA_HAS_LOAD_DELAY (ISA_MIPS1 \
21c9500d 1294 && !TARGET_MIPS3900 \
107eea2c 1295 && !TARGET_MIPS5900 \
22c4c869
CM
1296 && !TARGET_MIPS16 \
1297 && !TARGET_MICROMIPS)
21c9500d
RS
1298
1299/* Likewise mtc1 and mfc1. */
4ecfc7e3 1300#define ISA_HAS_XFER_DELAY (mips_isa <= MIPS_ISA_MIPS3 \
107eea2c 1301 && !TARGET_MIPS5900 \
58684fa0 1302 && !TARGET_LOONGSON_2EF)
21c9500d
RS
1303
1304/* Likewise floating-point comparisons. */
4ecfc7e3 1305#define ISA_HAS_FCMP_DELAY (mips_isa <= MIPS_ISA_MIPS3 \
107eea2c 1306 && !TARGET_MIPS5900 \
58684fa0 1307 && !TARGET_LOONGSON_2EF)
21c9500d
RS
1308
1309/* True if mflo and mfhi can be immediately followed by instructions
fdcf1e1e
CD
1310 which write to the HI and LO registers.
1311
1312 According to MIPS specifications, MIPS ISAs I, II, and III need
1313 (at least) two instructions between the reads of HI/LO and
1314 instructions which write them, and later ISAs do not. Contradicting
1315 the MIPS specifications, some MIPS IV processor user manuals (e.g.
1316 the UM for the NEC Vr5000) document needing the instructions between
1317 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
1318 MIPS64 and later ISAs to have the interlocks, plus any specific
1319 earlier-ISA CPUs for which CPU documentation declares that the
1320 instructions are really interlocked. */
ad782bc9 1321#define ISA_HAS_HILO_INTERLOCKS (mips_isa_rev >= 1 \
58684fa0 1322 || TARGET_MIPS5500 \
107eea2c 1323 || TARGET_MIPS5900 \
58684fa0 1324 || TARGET_LOONGSON_2EF)
df770e04
DD
1325
1326/* ISA includes synci, jr.hb and jalr.hb. */
ad782bc9 1327#define ISA_HAS_SYNCI (mips_isa_rev >= 2 && !TARGET_MIPS16)
df770e04 1328
8d2fc1c4 1329/* ISA includes sync. */
4ecfc7e3 1330#define ISA_HAS_SYNC ((mips_isa >= MIPS_ISA_MIPS2 || TARGET_MIPS3900) && !TARGET_MIPS16)
e9276c30
RS
1331#define GENERATE_SYNC \
1332 (target_flags_explicit & MASK_LLSC \
1333 ? TARGET_LLSC && !TARGET_MIPS16 \
1334 : ISA_HAS_SYNC)
8d2fc1c4
DD
1335
1336/* ISA includes ll and sc. Note that this implies ISA_HAS_SYNC
1337 because the expanders use both ISA_HAS_SYNC and ISA_HAS_LL_SC
1338 instructions. */
4ecfc7e3 1339#define ISA_HAS_LL_SC (mips_isa >= MIPS_ISA_MIPS2 && !TARGET_MIPS5900 && !TARGET_MIPS16)
e9276c30
RS
1340#define GENERATE_LL_SC \
1341 (target_flags_explicit & MASK_LLSC \
1342 ? TARGET_LLSC && !TARGET_MIPS16 \
1343 : ISA_HAS_LL_SC)
d97e6aca 1344
6399761a
TV
1345#define ISA_HAS_SWAP (TARGET_XLP)
1346#define ISA_HAS_LDADD (TARGET_XLP)
1347
7846e5f9 1348/* ISA includes the baddu instruction. */
aa5409e7 1349#define ISA_HAS_BADDU (TARGET_OCTEON && !TARGET_MIPS16)
7846e5f9 1350
95f6fc60 1351/* ISA includes the bbit* instructions. */
aa5409e7 1352#define ISA_HAS_BBIT (TARGET_OCTEON && !TARGET_MIPS16)
95f6fc60 1353
49912bcd 1354/* ISA includes the cins instruction. */
aa5409e7 1355#define ISA_HAS_CINS (TARGET_OCTEON && !TARGET_MIPS16)
49912bcd 1356
c8424132 1357/* ISA includes the exts instruction. */
aa5409e7 1358#define ISA_HAS_EXTS (TARGET_OCTEON && !TARGET_MIPS16)
c8424132 1359
5299815b 1360/* ISA includes the seq and sne instructions. */
aa5409e7 1361#define ISA_HAS_SEQ_SNE (TARGET_OCTEON && !TARGET_MIPS16)
5299815b 1362
d97e6aca 1363/* ISA includes the pop instruction. */
aa5409e7 1364#define ISA_HAS_POP (TARGET_OCTEON && !TARGET_MIPS16)
4d210b07
RS
1365
1366/* The CACHE instruction is available in non-MIPS16 code. */
4ecfc7e3 1367#define TARGET_CACHE_BUILTIN (mips_isa >= MIPS_ISA_MIPS3)
4d210b07
RS
1368
1369/* The CACHE instruction is available. */
1370#define ISA_HAS_CACHE (TARGET_CACHE_BUILTIN && !TARGET_MIPS16)
e75b25e7 1371\f
59c94430
MM
1372/* Tell collect what flags to pass to nm. */
1373#ifndef NM_FLAGS
2ce3c6c6 1374#define NM_FLAGS "-Bn"
59c94430
MM
1375#endif
1376
e75b25e7 1377\f
4e88bbcd 1378/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
5811cb27
RS
1379 the assembler. It may be overridden by subtargets.
1380
1381 Beginning with gas 2.13, -mdebug must be passed to correctly handle
1382 COFF debugging info. */
1383
4e88bbcd
ILT
1384#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
1385#define SUBTARGET_ASM_DEBUGGING_SPEC "\
bb98bc58
JW
1386%{g} %{g0} %{g1} %{g2} %{g3} \
1387%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
1388%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
180295ed 1389%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3}"
4e88bbcd 1390#endif
bb98bc58 1391
aa0c464a
MF
1392/* FP_ASM_SPEC represents the floating-point options that must be passed
1393 to the assembler when FPXX support exists. Prior to that point the
1394 assembler could accept the options but were not required for
1395 correctness. We only add the options when absolutely necessary
1396 because passing -msoft-float to the assembler will cause it to reject
1397 all hard-float instructions which may require some user code to be
1398 updated. */
1399
1400#ifdef HAVE_AS_DOT_MODULE
1401#define FP_ASM_SPEC "\
1402%{mhard-float} %{msoft-float} \
1403%{msingle-float} %{mdouble-float}"
1404#else
1405#define FP_ASM_SPEC
1406#endif
1407
4e88bbcd
ILT
1408/* SUBTARGET_ASM_SPEC is always passed to the assembler. It may be
1409 overridden by subtargets. */
1410
1411#ifndef SUBTARGET_ASM_SPEC
1412#define SUBTARGET_ASM_SPEC ""
bb98bc58 1413#endif
4e88bbcd 1414
b2bcb32d 1415#undef ASM_SPEC
4e88bbcd 1416#define ASM_SPEC "\
2d2a50c3 1417%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
f2d6ca50 1418%{mips32*} %{mips64*} \
500fc425 1419%{mips16} %{mno-mips16:-no-mips16} \
22c4c869 1420%{mmicromips} %{mno-micromips} \
500fc425
TS
1421%{mips3d} %{mno-mips3d:-no-mips3d} \
1422%{mdmx} %{mno-mdmx:-no-mdmx} \
1423%{mdsp} %{mno-dsp} \
1424%{mdspr2} %{mno-dspr2} \
5cb5a23f 1425%{mmcu} %{mno-mcu} \
44b20bb8 1426%{meva} %{mno-eva} \
0a39d07b 1427%{mvirt} %{mno-virt} \
35773f53 1428%{mxpa} %{mno-xpa} \
9e9e6264
MF
1429%{mcrc} %{mno-crc} \
1430%{mginv} %{mno-ginv} \
6cf538da 1431%{mmsa} %{mno-msa} \
8ae8bad7 1432%{mloongson-mmi} %{mno-loongson-mmi} \
375899d9 1433%{mloongson-ext} %{mno-loongson-ext} \
d6319811 1434%{mloongson-ext2} %{mno-loongson-ext2} \
0aa222d1 1435%{msmartmips} %{mno-smartmips} \
500fc425 1436%{mmt} %{mno-mt} \
fb51a3a8 1437%{mfix-r5900} %{mno-fix-r5900} \
faaa3afb 1438%{mfix-rm7000} %{mno-fix-rm7000} \
0ac40e7a 1439%{mfix-vr4120} %{mfix-vr4130} \
0eda4033 1440%{mfix-24k} \
29cedf8e 1441%{noasmopt:-O0; O0|fno-delayed-branch:-O1; O*:-O2; :-O1} \
4e88bbcd 1442%(subtarget_asm_debugging_spec) \
e21d5757 1443%{mabi=*} %{!mabi=*: %(asm_abi_default_spec)} \
ee692410 1444%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
050af144
MF
1445%{mfp32} %{mfpxx} %{mfp64} %{mnan=*} \
1446%{modd-spreg} %{mno-odd-spreg} \
d9870b7e 1447%{mshared} %{mno-shared} \
acda0e26 1448%{msym32} %{mno-sym32} \
aa0c464a
MF
1449%{mtune=*}" \
1450FP_ASM_SPEC "\
4e88bbcd 1451%(subtarget_asm_spec)"
e75b25e7 1452
31c714e3 1453/* Extra switches sometimes passed to the linker. */
e75b25e7
MM
1454
1455#ifndef LINK_SPEC
31c714e3 1456#define LINK_SPEC "\
120dc6cd 1457%(endian_spec) \
f2d6ca50 1458%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32*} %{mips64*} \
368e0b39 1459%{shared}"
0e5a4ad8
EC
1460#endif /* LINK_SPEC defined */
1461
e75b25e7
MM
1462
1463/* Specs for the compiler proper */
1464
c9db96ce
JR
1465/* SUBTARGET_CC1_SPEC is passed to the compiler proper. It may be
1466 overridden by subtargets. */
1467#ifndef SUBTARGET_CC1_SPEC
1468#define SUBTARGET_CC1_SPEC ""
1469#endif
1470
1471/* CC1_SPEC is the set of arguments to pass to the compiler proper. */
1472
120311ec 1473#undef CC1_SPEC
31c714e3 1474#define CC1_SPEC "\
96abdcb1 1475%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
4e314d1f 1476%(subtarget_cc1_spec)"
e75b25e7 1477
4e88bbcd
ILT
1478/* Preprocessor specs. */
1479
4e88bbcd
ILT
1480/* SUBTARGET_CPP_SPEC is passed to the preprocessor. It may be
1481 overridden by subtargets. */
1482#ifndef SUBTARGET_CPP_SPEC
1483#define SUBTARGET_CPP_SPEC ""
1484#endif
1485
ce3649d2 1486#define CPP_SPEC "%(subtarget_cpp_spec)"
4e88bbcd
ILT
1487
1488/* This macro defines names of additional specifications to put in the specs
1489 that can be used in various specifications like CC1_SPEC. Its definition
1490 is an initializer with a subgrouping for each command option.
1491
1492 Each subgrouping contains a string constant, that defines the
7ec022b2 1493 specification name, and a string constant that used by the GCC driver
4e88bbcd
ILT
1494 program.
1495
1496 Do not define this macro if it does not need to do anything. */
1497
1498#define EXTRA_SPECS \
829245be
KG
1499 { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC }, \
1500 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
829245be
KG
1501 { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC }, \
1502 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
5811cb27 1503 { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT }, \
120dc6cd 1504 { "endian_spec", ENDIAN_SPEC }, \
4e88bbcd
ILT
1505 SUBTARGET_EXTRA_SPECS
1506
1507#ifndef SUBTARGET_EXTRA_SPECS
1508#define SUBTARGET_EXTRA_SPECS
e75b25e7 1509#endif
e75b25e7 1510\f
23532de9 1511#define DBX_DEBUGGING_INFO 1 /* generate stabs (OSF/rose) */
deae8de6
EC
1512#define DWARF2_DEBUGGING_INFO 1 /* dwarf2 debugging info */
1513
1514#ifndef PREFERRED_DEBUGGING_TYPE
1515#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1516#endif
e75b25e7 1517
2e8a796f
RS
1518/* The size of DWARF addresses should be the same as the size of symbols
1519 in the target file format. They shouldn't depend on things like -msym32,
1520 because many DWARF consumers do not allow the mixture of address sizes
1521 that one would then get from linking -msym32 code with -msym64 code.
1522
1523 Note that the default POINTER_SIZE test is not appropriate for MIPS.
1524 EABI64 has 64-bit pointers but uses 32-bit ELF. */
1525#define DWARF2_ADDR_SIZE (FILE_HAS_64BIT_SYMBOLS ? 8 : 4)
d2beeae7 1526
59c94430
MM
1527/* By default, turn on GDB extensions. */
1528#define DEFAULT_GDB_EXTENSIONS 1
1529
fb01ed38
MF
1530/* Registers may have a prefix which can be ignored when matching
1531 user asm and register definitions. */
1532#ifndef REGISTER_PREFIX
1533#define REGISTER_PREFIX "$"
1534#endif
1535
6ae1498b
JW
1536/* Local compiler-generated symbols must have a prefix that the assembler
1537 understands. By default, this is $, although some targets (e.g.,
987ba558 1538 NetBSD-ELF) need to override this. */
6ae1498b
JW
1539
1540#ifndef LOCAL_LABEL_PREFIX
1541#define LOCAL_LABEL_PREFIX "$"
1542#endif
1543
1544/* By default on the mips, external symbols do not have an underscore
987ba558 1545 prepended, but some targets (e.g., NetBSD) require this. */
6ae1498b
JW
1546
1547#ifndef USER_LABEL_PREFIX
1548#define USER_LABEL_PREFIX ""
1549#endif
1550
e75b25e7
MM
1551/* On Sun 4, this limit is 2048. We use 1500 to be safe,
1552 since the length can run past this up to a continuation point. */
44404b8b 1553#undef DBX_CONTIN_LENGTH
e75b25e7
MM
1554#define DBX_CONTIN_LENGTH 1500
1555
987ba558 1556/* How to renumber registers for dbx and gdb. */
48156a39 1557#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[REGNO]
e75b25e7 1558
dfad12b5 1559/* The mapping from gcc register number to DWARF 2 CFA column number. */
48156a39 1560#define DWARF_FRAME_REGNUM(REGNO) mips_dwarf_regno[REGNO]
c8cc5c4a
JM
1561
1562/* The DWARF 2 CFA column which tracks the return address. */
293593b1 1563#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
1f3d0661 1564
469ac993 1565/* Before the prologue, RA lives in r31. */
240930c4 1566#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)
469ac993 1567
9e800206 1568/* Describe how we implement __builtin_eh_return. */
f1d5187e
RS
1569#define EH_RETURN_DATA_REGNO(N) \
1570 ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
1571
9e800206
RH
1572#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
1573
0c433c31
RS
1574#define EH_USES(N) mips_eh_uses (N)
1575
7dac2f89 1576/* Offsets recorded in opcodes are a multiple of this alignment factor.
b3276c7a
GK
1577 The default for this in 64-bit mode is 8, which causes problems with
1578 SFmode register saves. */
85bfab36 1579#define DWARF_CIE_DATA_ALIGNMENT -4
b3276c7a 1580
ab78d4a8
MM
1581/* Correct the offset of automatic variables and arguments. Note that
1582 the MIPS debug format wants all automatic variables and arguments
1583 to be in terms of the virtual frame pointer (stack pointer before
1584 any adjustment in the function), while the MIPS 3.0 linker wants
1585 the frame pointer to be the stack pointer after the initial
1586 adjustment. */
e75b25e7 1587
8f2e3902 1588#define DEBUGGER_AUTO_OFFSET(X) \
f5963e61 1589 mips_debugger_offset (X, (HOST_WIDE_INT) 0)
8f2e3902 1590#define DEBUGGER_ARG_OFFSET(OFFSET, X) \
f5963e61 1591 mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
e75b25e7
MM
1592\f
1593/* Target machine storage layout */
1594
4851a75c 1595#define BITS_BIG_ENDIAN 0
96abdcb1 1596#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
96abdcb1 1597#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
e75b25e7 1598
876c09d3 1599#define MAX_BITS_PER_WORD 64
e75b25e7
MM
1600
1601/* Width of a word, in units (bytes). */
456f6501 1602#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
3b831805 1603#ifndef IN_LIBGCC2
ef0e53ce 1604#define MIN_UNITS_PER_WORD 4
3b831805 1605#endif
876c09d3 1606
6cf538da
RS
1607/* Width of a MSA vector register in bytes. */
1608#define UNITS_PER_MSA_REG 16
1609/* Width of a MSA vector register in bits. */
1610#define BITS_PER_MSA_REG (UNITS_PER_MSA_REG * BITS_PER_UNIT)
1611
876c09d3 1612/* For MIPS, width of a floating point register. */
456f6501 1613#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
e75b25e7 1614
e8ab09c1
SL
1615/* The number of consecutive floating-point registers needed to store the
1616 largest format supported by the FPU. */
1617#define MAX_FPRS_PER_FMT (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1618
1619/* The number of consecutive floating-point registers needed to store the
1620 smallest format supported by the FPU. */
1621#define MIN_FPRS_PER_FMT \
050af144 1622 (TARGET_ODD_SPREG ? 1 : MAX_FPRS_PER_FMT)
3f26edaa 1623
8a381273
AO
1624/* The largest size of value that can be held in floating-point
1625 registers and moved with a single instruction. */
e8ab09c1 1626#define UNITS_PER_HWFPVALUE \
a38e0142 1627 (TARGET_SOFT_FLOAT_ABI ? 0 : MAX_FPRS_PER_FMT * UNITS_PER_FPREG)
8a381273
AO
1628
1629/* The largest size of value that can be held in floating-point
1630 registers. */
0e808055 1631#define UNITS_PER_FPVALUE \
a38e0142 1632 (TARGET_SOFT_FLOAT_ABI ? 0 \
0e808055
RS
1633 : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG \
1634 : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
4d72536e
RS
1635
1636/* The number of bytes in a double. */
1637#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
3f26edaa 1638
dfad12b5 1639/* Set the sizes of the core types. */
e75b25e7 1640#define SHORT_TYPE_SIZE 16
fb8136b2 1641#define INT_TYPE_SIZE 32
456f6501 1642#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
923d630e 1643#define LONG_LONG_TYPE_SIZE 64
e75b25e7 1644
dfad12b5 1645#define FLOAT_TYPE_SIZE 32
e75b25e7 1646#define DOUBLE_TYPE_SIZE 64
7f9be256 1647#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
8a381273 1648
9fc777ad
CF
1649/* Define the sizes of fixed-point types. */
1650#define SHORT_FRACT_TYPE_SIZE 8
1651#define FRACT_TYPE_SIZE 16
1652#define LONG_FRACT_TYPE_SIZE 32
1653#define LONG_LONG_FRACT_TYPE_SIZE 64
1654
1655#define SHORT_ACCUM_TYPE_SIZE 16
1656#define ACCUM_TYPE_SIZE 32
1657#define LONG_ACCUM_TYPE_SIZE 64
1658/* FIXME. LONG_LONG_ACCUM_TYPE_SIZE should be 128 bits, but GCC
1659 doesn't support 128-bit integers for MIPS32 currently. */
1660#define LONG_LONG_ACCUM_TYPE_SIZE (TARGET_64BIT ? 128 : 64)
1661
8a381273
AO
1662/* long double is not a fixed mode, but the idea is that, if we
1663 support long double, we also want a 128-bit integer type. */
1664#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1665
cafe096b 1666/* Width in bits of a pointer. */
1eeed24e 1667#ifndef POINTER_SIZE
cafe096b 1668#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1eeed24e 1669#endif
e75b25e7 1670
e75b25e7 1671/* Allocation boundary (in *bits*) for storing arguments in argument list. */
e64ca6c4 1672#define PARM_BOUNDARY BITS_PER_WORD
cafe096b 1673
e75b25e7
MM
1674/* Allocation boundary (in *bits*) for the code of a function. */
1675#define FUNCTION_BOUNDARY 32
1676
1677/* Alignment of field after `int : 0' in a structure. */
9e95597a 1678#define EMPTY_FIELD_BOUNDARY 32
e75b25e7
MM
1679
1680/* Every structure's size must be a multiple of this. */
1681/* 8 is observed right on a DECstation and on riscos 4.02. */
1682#define STRUCTURE_SIZE_BOUNDARY 8
1683
6cf538da
RS
1684/* There is no point aligning anything to a rounder boundary than
1685 LONG_DOUBLE_TYPE_SIZE, unless under MSA the bigggest alignment is
1686 BITS_PER_MSA_REG. */
1687#define BIGGEST_ALIGNMENT \
1688 (ISA_HAS_MSA ? BITS_PER_MSA_REG : LONG_DOUBLE_TYPE_SIZE)
e75b25e7 1689
dfad12b5 1690/* All accesses must be aligned. */
30a08286 1691#define STRICT_ALIGNMENT (!ISA_HAS_UNALIGNED_ACCESS)
e75b25e7
MM
1692
1693/* Define this if you wish to imitate the way many other C compilers
1694 handle alignment of bitfields and the structures that contain
1695 them.
1696
43a88a8c 1697 The behavior is that the type written for a bit-field (`int',
e75b25e7
MM
1698 `short', or other integer type) imposes an alignment for the
1699 entire structure, as if the structure really did contain an
43a88a8c 1700 ordinary field of that type. In addition, the bit-field is placed
e75b25e7
MM
1701 within the structure so that it would fit within such a field,
1702 not crossing a boundary for it.
1703
43a88a8c 1704 Thus, on most machines, a bit-field whose type is written as `int'
e75b25e7
MM
1705 would not cross a four-byte boundary, and would force four-byte
1706 alignment for the whole structure. (The alignment used may not
1707 be four bytes; it is controlled by the other alignment
1708 parameters.)
1709
1710 If the macro is defined, its definition should be a C expression;
1711 a nonzero value for the expression enables this behavior. */
1712
1713#define PCC_BITFIELD_TYPE_MATTERS 1
1714
e75b25e7
MM
1715/* If defined, a C expression to compute the alignment for a static
1716 variable. TYPE is the data type, and ALIGN is the alignment that
1717 the object would ordinarily have. The value of this macro is used
1718 instead of that alignment to align the object.
1719
1720 If this macro is not defined, then ALIGN is used.
1721
1722 One use of this macro is to increase alignment of medium-size
1723 data to make it all fit in fewer cache lines. Another is to
1724 cause character arrays to be word-aligned so that `strcpy' calls
1725 that copy constants to character arrays can be done inline. */
1726
1727#undef DATA_ALIGNMENT
1728#define DATA_ALIGNMENT(TYPE, ALIGN) \
1729 ((((ALIGN) < BITS_PER_WORD) \
1730 && (TREE_CODE (TYPE) == ARRAY_TYPE \
1731 || TREE_CODE (TYPE) == UNION_TYPE \
1732 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1733
adb417d7
NS
1734/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
1735 character arrays to be word-aligned so that `strcpy' calls that copy
1736 constants to character arrays can be done inline, and 'strcmp' can be
1737 optimised to use word loads. */
1738#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
1739 DATA_ALIGNMENT (TYPE, ALIGN)
1740
648bb159 1741#define PAD_VARARGS_DOWN \
76b0cbf8 1742 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
f5c8ac96 1743
9a63901f
RK
1744/* Define if operations between registers always perform the operation
1745 on the full register even if a narrower mode is specified. */
9e11bfef 1746#define WORD_REGISTER_OPERATIONS 1
9a63901f 1747
85f65093 1748/* When in 64-bit mode, move insns will sign extend SImode and CCmode
dab66575 1749 moves. All other references are zero extended. */
a872728c
JL
1750#define LOAD_EXTEND_OP(MODE) \
1751 (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1752 ? SIGN_EXTEND : ZERO_EXTEND)
2bcb2ab3
GK
1753
1754/* Define this macro if it is advisable to hold scalars in registers
7dac2f89 1755 in a wider mode than that declared by the program. In such cases,
2bcb2ab3
GK
1756 the value is constrained to be within the bounds of the declared
1757 type, but kept valid in the wider mode. The signedness of the
cafe096b 1758 extension may differ from that of the type. */
2bcb2ab3
GK
1759
1760#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
1761 if (GET_MODE_CLASS (MODE) == MODE_INT \
cafe096b
EC
1762 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1763 { \
1764 if ((MODE) == SImode) \
1765 (UNSIGNEDP) = 0; \
1766 (MODE) = Pmode; \
1767 }
1768
0dc31782
RS
1769/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
1770 Extensions of pointers to word_mode must be signed. */
1771#define POINTERS_EXTEND_UNSIGNED false
1772
cafe096b 1773/* Define if loading short immediate values into registers sign extends. */
58f2ae18 1774#define SHORT_IMMEDIATES_SIGN_EXTEND 1
09d8cc0e
ILT
1775
1776/* The [d]clz instructions have the natural values at 0. */
1777
1778#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
6cf538da 1779 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
e75b25e7
MM
1780\f
1781/* Standard register usage. */
1782
dfad12b5 1783/* Number of hardware registers. We have:
e75b25e7 1784
dfad12b5
RS
1785 - 32 integer registers
1786 - 32 floating point registers
1787 - 8 condition code registers
1788 - 2 accumulator registers (hi and lo)
1789 - 32 registers each for coprocessors 0, 2 and 3
0c433c31 1790 - 4 fake registers:
bcbc6b7f
RS
1791 - ARG_POINTER_REGNUM
1792 - FRAME_POINTER_REGNUM
dbc90b65 1793 - GOT_VERSION_REGNUM (see the comment above load_call<mode> for details)
0c433c31
RS
1794 - CPRESTORE_SLOT_REGNUM
1795 - 2 dummy entries that were used at various times in the past.
118ea793
CF
1796 - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1797 - 6 DSP control registers */
e75b25e7 1798
118ea793 1799#define FIRST_PSEUDO_REGISTER 188
e75b25e7 1800
dfad12b5
RS
1801/* By default, fix the kernel registers ($26 and $27), the global
1802 pointer ($28) and the stack pointer ($29). This can change
1803 depending on the command-line options.
e75b25e7 1804
dfad12b5 1805 Regarding coprocessor registers: without evidence to the contrary,
d604bca3 1806 it's best to assume that each coprocessor register has a unique
525c561d 1807 use. This can be overridden, in, e.g., mips_option_override or
5efd84c5
NF
1808 TARGET_CONDITIONAL_REGISTER_USAGE should the assumption be
1809 inappropriate for a particular target. */
d604bca3 1810
e75b25e7
MM
1811#define FIXED_REGISTERS \
1812{ \
1813 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
cafe096b 1814 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, \
e75b25e7
MM
1815 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
d334c3c1 1817 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, \
d604bca3
MH
1818 /* COP0 registers */ \
1819 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1820 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1821 /* COP2 registers */ \
1822 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1823 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1824 /* COP3 registers */ \
1825 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
118ea793
CF
1826 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1827 /* 6 DSP accumulator registers & 6 control registers */ \
1828 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 \
e75b25e7
MM
1829}
1830
1831
dfad12b5
RS
1832/* Set up this array for o32 by default.
1833
1834 Note that we don't mark $31 as a call-clobbered register. The idea is
1835 that it's really the call instructions themselves which clobber $31.
cafe096b
EC
1836 We don't care what the called function does with it afterwards.
1837
1838 This approach makes it easier to implement sibcalls. Unlike normal
1839 calls, sibcalls don't clobber $31, so the register reaches the
1840 called function in tact. EPILOGUE_USES says that $31 is useful
1841 to the called function. */
e75b25e7 1842
2ca2d9ee
EC
1843#define CALL_REALLY_USED_REGISTERS \
1844{ /* General registers. */ \
1845 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
cafe096b 1846 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, \
2ca2d9ee
EC
1847 /* Floating-point registers. */ \
1848 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1849 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1850 /* Others. */ \
dbc90b65 1851 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, \
d604bca3
MH
1852 /* COP0 registers */ \
1853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1855 /* COP2 registers */ \
1856 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1857 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1858 /* COP3 registers */ \
1859 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
118ea793
CF
1860 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1861 /* 6 DSP accumulator registers & 6 control registers */ \
1862 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 \
2ca2d9ee 1863}
e75b25e7
MM
1864
1865/* Internal macros to classify a register number as to whether it's a
1866 general purpose register, a floating point register, a
516a2dfd 1867 multiply/divide register, or a status register. */
e75b25e7
MM
1868
1869#define GP_REG_FIRST 0
1870#define GP_REG_LAST 31
1871#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
1872#define GP_DBX_FIRST 0
e19da24c
CF
1873#define K0_REG_NUM (GP_REG_FIRST + 26)
1874#define K1_REG_NUM (GP_REG_FIRST + 27)
1875#define KERNEL_REG_P(REGNO) (IN_RANGE (REGNO, K0_REG_NUM, K1_REG_NUM))
e75b25e7
MM
1876
1877#define FP_REG_FIRST 32
1878#define FP_REG_LAST 63
1879#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
1880#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1881
1882#define MD_REG_FIRST 64
d334c3c1 1883#define MD_REG_LAST 65
e75b25e7 1884#define MD_REG_NUM (MD_REG_LAST - MD_REG_FIRST + 1)
77d4f3a4 1885#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
e75b25e7 1886
6cf538da
RS
1887#define MSA_REG_FIRST FP_REG_FIRST
1888#define MSA_REG_LAST FP_REG_LAST
1889#define MSA_REG_NUM FP_REG_NUM
1890
aa3e18a0
DD
1891/* The DWARF 2 CFA column which tracks the return address from a
1892 signal handler context. This means that to maintain backwards
1893 compatibility, no hard register can be assigned this column if it
1894 would need to be handled by the DWARF unwinder. */
1895#define DWARF_ALT_FRAME_RETURN_COLUMN 66
1896
225b8835 1897#define ST_REG_FIRST 67
b8eb88d0 1898#define ST_REG_LAST 74
e75b25e7
MM
1899#define ST_REG_NUM (ST_REG_LAST - ST_REG_FIRST + 1)
1900
39dffea3 1901
cafe096b 1902/* FIXME: renumber. */
d604bca3
MH
1903#define COP0_REG_FIRST 80
1904#define COP0_REG_LAST 111
1905#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1906
e19da24c
CF
1907#define COP0_STATUS_REG_NUM (COP0_REG_FIRST + 12)
1908#define COP0_CAUSE_REG_NUM (COP0_REG_FIRST + 13)
1909#define COP0_EPC_REG_NUM (COP0_REG_FIRST + 14)
1910
d604bca3
MH
1911#define COP2_REG_FIRST 112
1912#define COP2_REG_LAST 143
1913#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1914
1915#define COP3_REG_FIRST 144
1916#define COP3_REG_LAST 175
1917#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
2cd45f0e
SE
1918
1919/* These definitions assume that COP0, 2 and 3 are numbered consecutively. */
1920#define ALL_COP_REG_FIRST COP0_REG_FIRST
1921#define ALL_COP_REG_LAST COP3_REG_LAST
1922#define ALL_COP_REG_NUM (ALL_COP_REG_LAST - ALL_COP_REG_FIRST + 1)
d604bca3 1923
118ea793
CF
1924#define DSP_ACC_REG_FIRST 176
1925#define DSP_ACC_REG_LAST 181
1926#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1927
e75b25e7 1928#define AT_REGNUM (GP_REG_FIRST + 1)
48156a39
NS
1929#define HI_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST : MD_REG_FIRST + 1)
1930#define LO_REGNUM (TARGET_BIG_ENDIAN ? MD_REG_FIRST + 1 : MD_REG_FIRST)
b8eb88d0 1931
e19da24c
CF
1932/* A few bitfield locations for the coprocessor registers. */
1933/* Request Interrupt Priority Level is from bit 10 to bit 15 of
1934 the cause register for the EIC interrupt mode. */
1935#define CAUSE_IPL 10
6a2b848b
RS
1936/* COP1 Enable is at bit 29 of the status register. */
1937#define SR_COP1 29
e19da24c
CF
1938/* Interrupt Priority Level is from bit 10 to bit 15 of the status register. */
1939#define SR_IPL 10
0256a844
MF
1940/* Interrupt masks start with IM0 at bit 8 to IM7 at bit 15 of the status
1941 register. */
1942#define SR_IM0 8
e19da24c
CF
1943/* Exception Level is at bit 1 of the status register. */
1944#define SR_EXL 1
1945/* Interrupt Enable is at bit 0 of the status register. */
1946#define SR_IE 0
1947
dfad12b5
RS
1948/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1949 If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
b8eb88d0 1950 should be used instead. */
e75b25e7
MM
1951#define FPSW_REGNUM ST_REG_FIRST
1952
75131237
RK
1953#define GP_REG_P(REGNO) \
1954 ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
2bcb2ab3
GK
1955#define M16_REG_P(REGNO) \
1956 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
22c4c869
CM
1957#define M16STORE_REG_P(REGNO) \
1958 (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 0 || (REGNO) == 17)
75131237
RK
1959#define FP_REG_P(REGNO) \
1960 ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1961#define MD_REG_P(REGNO) \
1962 ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1963#define ST_REG_P(REGNO) \
1964 ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
d604bca3
MH
1965#define COP0_REG_P(REGNO) \
1966 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1967#define COP2_REG_P(REGNO) \
1968 ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1969#define COP3_REG_P(REGNO) \
1970 ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1971#define ALL_COP_REG_P(REGNO) \
1972 ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
118ea793
CF
1973/* Test if REGNO is one of the 6 new DSP accumulators. */
1974#define DSP_ACC_REG_P(REGNO) \
1975 ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1976/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators. */
1977#define ACC_REG_P(REGNO) \
1978 (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
6cf538da
RS
1979#define MSA_REG_P(REGNO) \
1980 ((unsigned int) ((int) (REGNO) - MSA_REG_FIRST) < MSA_REG_NUM)
d604bca3 1981
66083422 1982#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
6cf538da 1983#define MSA_REG_RTX_P(X) (REG_P (X) && MSA_REG_P (REGNO (X)))
5b0f0db6 1984
96a30b18
RS
1985/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)). This is used
1986 to initialize the mips16 gp pseudo register. */
1987#define CONST_GP_P(X) \
1988 (GET_CODE (X) == CONST \
1989 && GET_CODE (XEXP (X, 0)) == UNSPEC \
1990 && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1991
d604bca3
MH
1992/* Return coprocessor number from register number. */
1993
1994#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
1995 (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
1996 : COP3_REG_P (REGNO) ? '3' : '?')
e75b25e7 1997
e75b25e7 1998
ec8a2131
RS
1999#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
2000 mips_hard_regno_rename_ok (OLD_REG, NEW_REG)
2001
050af144
MF
2002/* Select a register mode required for caller save of hard regno REGNO. */
2003#define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
2004 mips_hard_regno_caller_save_mode (REGNO, NREGS, MODE)
2005
e75b25e7 2006/* Register to use for pushing function arguments. */
0fb5ac6f 2007#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
e75b25e7 2008
bcbc6b7f
RS
2009/* These two registers don't really exist: they get eliminated to either
2010 the stack or hard frame pointer. */
2011#define ARG_POINTER_REGNUM 77
2012#define FRAME_POINTER_REGNUM 78
2bcb2ab3
GK
2013
2014/* $30 is not available on the mips16, so we use $17 as the frame
2015 pointer. */
2016#define HARD_FRAME_POINTER_REGNUM \
2017 (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
e75b25e7 2018
e3339d0f
JM
2019#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
2020#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
2021
e75b25e7 2022/* Register in which static-chain is passed to a function. */
e538e028 2023#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 15)
e75b25e7 2024
08d0963a 2025/* Registers used as temporaries in prologue/epilogue code:
be763023 2026
08d0963a
RS
2027 - If a MIPS16 PIC function needs access to _gp, it first loads
2028 the value into MIPS16_PIC_TEMP and then copies it to $gp.
2029
2030 - The prologue can use MIPS_PROLOGUE_TEMP as a general temporary
2031 register. The register must not conflict with MIPS16_PIC_TEMP.
2032
3b601ca3
EB
2033 - If we aren't generating MIPS16 code, the prologue can also use
2034 MIPS_PROLOGUE_TEMP2 as a general temporary register.
2035
08d0963a
RS
2036 - The epilogue can use MIPS_EPILOGUE_TEMP as a general temporary
2037 register.
2038
2039 If we're generating MIPS16 code, these registers must come from the
2040 core set of 8. The prologue registers mustn't conflict with any
2041 incoming arguments, the static chain pointer, or the frame pointer.
2042 The epilogue temporary mustn't conflict with the return registers,
2043 the PIC call register ($25), the frame pointer, the EH stack adjustment,
e19da24c
CF
2044 or the EH data registers.
2045
2046 If we're generating interrupt handlers, we use K0 as a temporary register
2047 in prologue/epilogue code. */
08d0963a
RS
2048
2049#define MIPS16_PIC_TEMP_REGNUM (GP_REG_FIRST + 2)
e19da24c
CF
2050#define MIPS_PROLOGUE_TEMP_REGNUM \
2051 (cfun->machine->interrupt_handler_p ? K0_REG_NUM : GP_REG_FIRST + 3)
3b601ca3
EB
2052#define MIPS_PROLOGUE_TEMP2_REGNUM \
2053 (TARGET_MIPS16 \
2054 ? (gcc_unreachable (), INVALID_REGNUM) \
2055 : cfun->machine->interrupt_handler_p ? K1_REG_NUM : GP_REG_FIRST + 12)
e19da24c
CF
2056#define MIPS_EPILOGUE_TEMP_REGNUM \
2057 (cfun->machine->interrupt_handler_p \
2058 ? K0_REG_NUM \
2059 : GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
be763023 2060
08d0963a 2061#define MIPS16_PIC_TEMP gen_rtx_REG (Pmode, MIPS16_PIC_TEMP_REGNUM)
be763023 2062#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
3b601ca3
EB
2063#define MIPS_PROLOGUE_TEMP2(MODE) \
2064 gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP2_REGNUM)
be763023 2065#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
e75b25e7
MM
2066
2067/* Define this macro if it is as good or better to call a constant
2068 function address than to call an address kept in a register. */
2069#define NO_FUNCTION_CSE 1
2070
f833ffd4
RS
2071/* The ABI-defined global pointer. Sometimes we use a different
2072 register in leaf functions: see PIC_OFFSET_TABLE_REGNUM. */
2073#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
2074
2075/* We normally use $28 as the global pointer. However, when generating
2076 n32/64 PIC, it is better for leaf functions to use a call-clobbered
2077 register instead. They can then avoid saving and restoring $28
2078 and perhaps avoid using a frame at all.
2079
2080 When a leaf function uses something other than $28, mips_expand_prologue
2081 will modify pic_offset_table_rtx in place. Take the register number
2082 from there after reload. */
2083#define PIC_OFFSET_TABLE_REGNUM \
2084 (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
e75b25e7
MM
2085\f
2086/* Define the classes of registers for register constraints in the
2087 machine description. Also define ranges of constants.
2088
2089 One of the classes must always be named ALL_REGS and include all hard regs.
2090 If there is more than one class, another class must be named NO_REGS
2091 and contain no registers.
2092
2093 The name GENERAL_REGS must be the name of a class (or an alias for
2094 another name such as ALL_REGS). This is the class of registers
2095 that is allowed by "g" or "r" in a register constraint.
2096 Also, registers outside this class are allocated only when
2097 instructions express preferences for them.
2098
2099 The classes must be numbered in nondecreasing order; that is,
2100 a larger-numbered class must never be contained completely
2101 in a smaller-numbered class.
2102
2103 For any two classes, it is very desirable that there be another
2104 class that represents their union. */
2105
2106enum reg_class
2107{
2108 NO_REGS, /* no registers in set */
5e7d8b4c 2109 M16_STORE_REGS, /* microMIPS store registers */
2bcb2ab3 2110 M16_REGS, /* mips16 directly accessible registers */
a78cc314 2111 M16_SP_REGS, /* mips16 + $sp */
2bcb2ab3
GK
2112 T_REG, /* mips16 T register ($24) */
2113 M16_T_REGS, /* mips16 registers plus T register */
cafe096b 2114 PIC_FN_ADDR_REG, /* SVR4 PIC function address register */
2feaae20 2115 V1_REG, /* Register $v1 ($3) used for TLS access. */
a78cc314 2116 SPILL_REGS, /* All but $sp and call preserved regs are in here */
cafe096b 2117 LEA_REGS, /* Every GPR except $25 */
e75b25e7
MM
2118 GR_REGS, /* integer registers */
2119 FP_REGS, /* floating point registers */
48156a39
NS
2120 MD0_REG, /* first multiply/divide register */
2121 MD1_REG, /* second multiply/divide register */
e75b25e7 2122 MD_REGS, /* multiply/divide registers (hi/lo) */
d604bca3
MH
2123 COP0_REGS, /* generic coprocessor classes */
2124 COP2_REGS,
2125 COP3_REGS,
e75b25e7 2126 ST_REGS, /* status registers (fp status) */
118ea793
CF
2127 DSP_ACC_REGS, /* DSP accumulator registers */
2128 ACC_REGS, /* Hi/Lo and DSP accumulator registers */
7314c7dd 2129 FRAME_REGS, /* $arg and $frame */
5c0a2e3a
RS
2130 GR_AND_MD0_REGS, /* union classes */
2131 GR_AND_MD1_REGS,
2132 GR_AND_MD_REGS,
2133 GR_AND_ACC_REGS,
e75b25e7
MM
2134 ALL_REGS, /* all registers */
2135 LIM_REG_CLASSES /* max value + 1 */
2136};
2137
2138#define N_REG_CLASSES (int) LIM_REG_CLASSES
2139
2140#define GENERAL_REGS GR_REGS
2141
2142/* An initializer containing the names of the register classes as C
2143 string constants. These names are used in writing some of the
2144 debugging dumps. */
2145
2146#define REG_CLASS_NAMES \
2147{ \
2148 "NO_REGS", \
5e7d8b4c 2149 "M16_STORE_REGS", \
2bcb2ab3 2150 "M16_REGS", \
a78cc314 2151 "M16_SP_REGS", \
2bcb2ab3
GK
2152 "T_REG", \
2153 "M16_T_REGS", \
cafe096b 2154 "PIC_FN_ADDR_REG", \
2feaae20 2155 "V1_REG", \
a78cc314 2156 "SPILL_REGS", \
cafe096b 2157 "LEA_REGS", \
e75b25e7
MM
2158 "GR_REGS", \
2159 "FP_REGS", \
48156a39
NS
2160 "MD0_REG", \
2161 "MD1_REG", \
e75b25e7 2162 "MD_REGS", \
d604bca3
MH
2163 /* coprocessor registers */ \
2164 "COP0_REGS", \
2165 "COP2_REGS", \
2166 "COP3_REGS", \
e75b25e7 2167 "ST_REGS", \
118ea793
CF
2168 "DSP_ACC_REGS", \
2169 "ACC_REGS", \
7314c7dd 2170 "FRAME_REGS", \
5c0a2e3a
RS
2171 "GR_AND_MD0_REGS", \
2172 "GR_AND_MD1_REGS", \
2173 "GR_AND_MD_REGS", \
2174 "GR_AND_ACC_REGS", \
e75b25e7
MM
2175 "ALL_REGS" \
2176}
2177
2178/* An initializer containing the contents of the register classes,
2179 as integers which are bit masks. The Nth integer specifies the
2180 contents of class N. The way the integer MASK is interpreted is
2181 that register R is in the class if `MASK & (1 << R)' is 1.
2182
2183 When the machine has more than 32 registers, an integer does not
2184 suffice. Then the integers are replaced by sub-initializers,
2185 braced groupings containing several integers. Each
2186 sub-initializer must be suitable as an initializer for the type
2187 `HARD_REG_SET' which is defined in `hard-reg-set.h'. */
2188
ec24a740
EC
2189#define REG_CLASS_CONTENTS \
2190{ \
5c0a2e3a 2191 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
5e7d8b4c 2192 { 0x000200fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_STORE_REGS */ \
5c0a2e3a 2193 { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_REGS */ \
a78cc314 2194 { 0x200300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_SP_REGS */ \
5c0a2e3a
RS
2195 { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* T_REG */ \
2196 { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* M16_T_REGS */ \
2197 { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* PIC_FN_ADDR_REG */ \
2198 { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* V1_REG */ \
a78cc314 2199 { 0x0303fffc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* SPILL_REGS */ \
5c0a2e3a
RS
2200 { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* LEA_REGS */ \
2201 { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* GR_REGS */ \
2202 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* FP_REGS */ \
2203 { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* MD0_REG */ \
2204 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* MD1_REG */ \
2205 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* MD_REGS */ \
2206 { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 }, /* COP0_REGS */ \
2207 { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 }, /* COP2_REGS */ \
2208 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff }, /* COP3_REGS */ \
2209 { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 }, /* ST_REGS */ \
2210 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 }, /* DSP_ACC_REGS */ \
2211 { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* ACC_REGS */ \
2212 { 0x00000000, 0x00000000, 0x00006000, 0x00000000, 0x00000000, 0x00000000 }, /* FRAME_REGS */ \
2213 { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD0_REGS */ \
2214 { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD1_REGS */ \
2215 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 }, /* GR_AND_MD_REGS */ \
2216 { 0xffffffff, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 }, /* GR_AND_ACC_REGS */ \
2217 { 0xffffffff, 0xffffffff, 0xffff67ff, 0xffffffff, 0xffffffff, 0x0fffffff } /* ALL_REGS */ \
e75b25e7
MM
2218}
2219
2220
2221/* A C expression whose value is a register class containing hard
2222 register REGNO. In general there is more that one such class;
2223 choose a class which is "minimal", meaning that no smaller class
2224 also contains the register. */
2225
e75b25e7
MM
2226#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
2227
2228/* A macro whose definition is the name of the class to which a
2229 valid base register must belong. A base register is one used in
2230 an address which is the register value plus a displacement. */
2231
a78cc314 2232#define BASE_REG_CLASS (TARGET_MIPS16 ? M16_SP_REGS : GR_REGS)
e75b25e7
MM
2233
2234/* A macro whose definition is the name of the class to which a
2235 valid index register must belong. An index register is one used
2236 in an address where its value is either multiplied by a scale
2237 factor or added to another register (as well as added to a
2238 displacement). */
2239
876c09d3 2240#define INDEX_REG_CLASS NO_REGS
e75b25e7 2241
59dbe1d9
RS
2242/* We generally want to put call-clobbered registers ahead of
2243 call-saved ones. (IRA expects this.) */
2bcb2ab3
GK
2244
2245#define REG_ALLOC_ORDER \
e08be11c
RS
2246{ /* Accumulator registers. When GPRs and accumulators have equal \
2247 cost, we generally prefer to use accumulators. For example, \
2248 a division of multiplication result is better allocated to LO, \
2249 so that we put the MFLO at the point of use instead of at the \
2250 point of definition. It's also needed if we're to take advantage \
2251 of the extra accumulators available with -mdspr2. In some cases, \
2252 it can also help to reduce register pressure. */ \
2253 64, 65,176,177,178,179,180,181, \
2254 /* Call-clobbered GPRs. */ \
2255 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, \
59dbe1d9
RS
2256 24, 25, 31, \
2257 /* The global pointer. This is call-clobbered for o32 and o64 \
2258 abicalls, call-saved for n32 and n64 abicalls, and a program \
2259 invariant otherwise. Putting it between the call-clobbered \
2260 and call-saved registers should cope with all eventualities. */ \
2261 28, \
2262 /* Call-saved GPRs. */ \
2263 16, 17, 18, 19, 20, 21, 22, 23, 30, \
2264 /* GPRs that can never be exposed to the register allocator. */ \
e08be11c 2265 0, 26, 27, 29, \
59dbe1d9 2266 /* Call-clobbered FPRs. */ \
2bcb2ab3 2267 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
59dbe1d9
RS
2268 48, 49, 50, 51, \
2269 /* FPRs that are usually call-saved. The odd ones are actually \
2270 call-clobbered for n32, but listing them ahead of the even \
2271 registers might encourage the register allocator to fragment \
2272 the available FPR pairs. We need paired FPRs to store long \
2273 doubles, so it isn't clear that using a different order \
2274 for n32 would be a win. */ \
2275 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, \
2276 /* None of the remaining classes have defined call-saved \
2277 registers. */ \
e08be11c 2278 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, \
d604bca3
MH
2279 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, \
2280 96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111, \
2281 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, \
2282 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, \
2283 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, \
118ea793 2284 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, \
e08be11c 2285 182,183,184,185,186,187 \
2bcb2ab3
GK
2286}
2287
569b7f6a 2288/* True if VALUE is an unsigned 6-bit number. */
118ea793
CF
2289
2290#define UIMM6_OPERAND(VALUE) \
2291 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
2292
2293/* True if VALUE is a signed 10-bit number. */
2294
2295#define IMM10_OPERAND(VALUE) \
2296 ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
2297
cafe096b
EC
2298/* True if VALUE is a signed 16-bit number. */
2299
2300#define SMALL_OPERAND(VALUE) \
2301 ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
2302
2303/* True if VALUE is an unsigned 16-bit number. */
2304
2305#define SMALL_OPERAND_UNSIGNED(VALUE) \
2306 (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
2307
2308/* True if VALUE can be loaded into a register using LUI. */
2309
2310#define LUI_OPERAND(VALUE) \
2311 (((VALUE) | 0x7fff0000) == 0x7fff0000 \
2312 || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
2313
2314/* Return a value X with the low 16 bits clear, and such that
2315 VALUE - X is a signed 16-bit value. */
2316
2317#define CONST_HIGH_PART(VALUE) \
2318 (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
2319
2320#define CONST_LOW_PART(VALUE) \
2321 ((VALUE) - CONST_HIGH_PART (VALUE))
2322
2323#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
2324#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
2325#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
22c4c869 2326#define UMIPS_12BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -2048, 2047))
82f84ecb 2327#define MIPS_9BIT_OFFSET_P(OFFSET) (IN_RANGE (OFFSET, -256, 255))
cafe096b 2328
46299de9 2329/* The HI and LO registers can only be reloaded via the general
b8eb88d0
ILT
2330 registers. Condition code registers can only be loaded to the
2331 general registers, and from the floating point registers. */
46299de9 2332
225b8835 2333#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
65239d20 2334 mips_secondary_reload_class (CLASS, MODE, X, true)
225b8835 2335#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
65239d20 2336 mips_secondary_reload_class (CLASS, MODE, X, false)
46299de9 2337
e75b25e7
MM
2338/* Return the maximum number of consecutive registers
2339 needed to represent mode MODE in a register of class CLASS. */
2340
d604bca3 2341#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
e75b25e7
MM
2342\f
2343/* Stack layout; function entry, exit and calling. */
2344
62f9f30b 2345#define STACK_GROWS_DOWNWARD 1
e75b25e7 2346
e9230659
HPN
2347#define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
2348 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
b5411fea 2349
ba6adec4
AN
2350/* Size of the area allocated in the frame to save the GP. */
2351
2352#define MIPS_GP_SAVE_AREA_SIZE \
2353 (TARGET_CALL_CLOBBERED_GP ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0)
2354
cafe096b 2355#define RETURN_ADDR_RTX mips_return_addr
39dffea3 2356
57972505
RS
2357/* Mask off the MIPS16 ISA bit in unwind addresses.
2358
2359 The reason for this is a little subtle. When unwinding a call,
2360 we are given the call's return address, which on most targets
2361 is the address of the following instruction. However, what we
2362 actually want to find is the EH region for the call itself.
2363 The target-independent unwind code therefore searches for "RA - 1".
2364
2365 In the MIPS16 case, RA is always an odd-valued (ISA-encoded) address.
2366 RA - 1 is therefore the real (even-valued) start of the return
2367 instruction. EH region labels are usually odd-valued MIPS16 symbols
2368 too, so a search for an even address within a MIPS16 region would
2369 usually work.
2370
2371 However, there is an exception. If the end of an EH region is also
2372 the end of a function, the end label is allowed to be even. This is
2373 necessary because a following non-MIPS16 function may also need EH
2374 information for its first instruction.
2375
2376 Thus a MIPS16 region may be terminated by an ISA-encoded or a
2377 non-ISA-encoded address. This probably isn't ideal, but it is
2378 the traditional (legacy) behavior. It is therefore only safe
2379 to search MIPS EH regions for an _odd-valued_ address.
2380
2381 Masking off the ISA bit means that the target-independent code
2382 will search for "(RA & -2) - 1", which is guaranteed to be odd. */
7f48c9e1
AO
2383#define MASK_RETURN_ADDR GEN_INT (-2)
2384
cafe096b 2385
7f48c9e1
AO
2386/* Similarly, don't use the least-significant bit to tell pointers to
2387 code from vtable index. */
2388
2389#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
2390
dfad12b5 2391/* The eliminations to $17 are only used for mips16 code. See the
2bcb2ab3 2392 definition of HARD_FRAME_POINTER_REGNUM. */
ab78d4a8
MM
2393
2394#define ELIMINABLE_REGS \
2395{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2bcb2ab3
GK
2396 { ARG_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2397 { ARG_POINTER_REGNUM, GP_REG_FIRST + 17}, \
2bcb2ab3
GK
2398 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2399 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30}, \
2400 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
ab78d4a8 2401
b2471838 2402#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
dfad12b5 2403 (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
e75b25e7 2404
dfad12b5 2405/* Allocate stack space for arguments at the beginning of each function. */
f73ad30e 2406#define ACCUMULATE_OUTGOING_ARGS 1
e75b25e7 2407
dfad12b5 2408/* The argument pointer always points to the first argument. */
305aa9e2 2409#define FIRST_PARM_OFFSET(FNDECL) 0
e75b25e7 2410
dfad12b5
RS
2411/* o32 and o64 reserve stack space for all argument registers. */
2412#define REG_PARM_STACK_SPACE(FNDECL) \
7f9be256 2413 (TARGET_OLDABI \
dfad12b5 2414 ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD) \
ac8ab9fe 2415 : 0)
e75b25e7
MM
2416
2417/* Define this if it is the responsibility of the caller to
7dac2f89 2418 allocate the area reserved for arguments passed in registers.
e75b25e7 2419 If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
7dac2f89 2420 of this macro is to determine whether the space is included in
38173d38 2421 `crtl->outgoing_args_size'. */
81464b2c 2422#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
e75b25e7 2423
e64ca6c4 2424#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
e75b25e7 2425\f
e75b25e7
MM
2426/* Symbolic macros for the registers used to return integer and floating
2427 point values. */
2428
2429#define GP_RETURN (GP_REG_FIRST + 2)
2430#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
2431
7f9be256 2432#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
ac8ab9fe 2433
e75b25e7
MM
2434/* Symbolic macros for the first/last argument registers. */
2435
2436#define GP_ARG_FIRST (GP_REG_FIRST + 4)
ac8ab9fe 2437#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7 2438#define FP_ARG_FIRST (FP_REG_FIRST + 12)
ac8ab9fe 2439#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
e75b25e7 2440
6cf538da
RS
2441/* True if MODE is vector and supported in a MSA vector register. */
2442#define MSA_SUPPORTED_MODE_P(MODE) \
2443 (ISA_HAS_MSA \
2444 && GET_MODE_SIZE (MODE) == UNITS_PER_MSA_REG \
2445 && (GET_MODE_CLASS (MODE) == MODE_VECTOR_INT \
2446 || GET_MODE_CLASS (MODE) == MODE_VECTOR_FLOAT))
2447
c2db3f3d
RO
2448/* Temporary register that is used when restoring $gp after a call. $4 and $5
2449 are used for returning complex double values in soft-float code, so $6 is the
2450 first suitable candidate for TARGET_MIPS16. For !TARGET_MIPS16 we can use
2451 $gp itself as the temporary. */
2452#define POST_CALL_TMP_REG \
2453 (TARGET_MIPS16 ? GP_ARG_FIRST + 2 : PIC_OFFSET_TABLE_REGNUM)
2454
46af8e31 2455/* 1 if N is a possible register number for function argument passing.
050af144
MF
2456 We have no FP argument registers when soft-float. Special handling
2457 is required for O32 where only even numbered registers are used for
2458 O32-FPXX and O32-FP64. */
46af8e31
JW
2459
2460#define FUNCTION_ARG_REGNO_P(N) \
8bf3ccbb 2461 ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
050af144
MF
2462 || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST) \
2463 && (mips_abi != ABI_32 \
2464 || TARGET_FLOAT32 \
2465 || ((N) % 2 == 0)))) \
8bf3ccbb 2466 && !fixed_regs[N])
e75b25e7 2467\f
dfad12b5 2468/* This structure has to cope with two different argument allocation
b11a9d5f
RS
2469 schemes. Most MIPS ABIs view the arguments as a structure, of which
2470 the first N words go in registers and the rest go on the stack. If I
2471 < N, the Ith word might go in Ith integer argument register or in a
2472 floating-point register. For these ABIs, we only need to remember
2473 the offset of the current argument into the structure.
4d72536e
RS
2474
2475 The EABI instead allocates the integer and floating-point arguments
2476 separately. The first N words of FP arguments go in FP registers,
2477 the rest go on the stack. Likewise, the first N words of the other
2478 arguments go in integer registers, and the rest go on the stack. We
2479 need to maintain three counts: the number of integer registers used,
2480 the number of floating-point registers used, and the number of words
2481 passed on the stack.
2482
2483 We could keep separate information for the two ABIs (a word count for
2484 the standard ABIs, and three separate counts for the EABI). But it
2485 seems simpler to view the standard ABIs as forms of EABI that do not
2486 allocate floating-point registers.
2487
2488 So for the standard ABIs, the first N words are allocated to integer
65239d20
RS
2489 registers, and mips_function_arg decides on an argument-by-argument
2490 basis whether that argument should really go in an integer register,
2491 or in a floating-point one. */
e75b25e7
MM
2492
2493typedef struct mips_args {
4d72536e
RS
2494 /* Always true for varargs functions. Otherwise true if at least
2495 one argument has been passed in an integer register. */
2496 int gp_reg_found;
2497
2498 /* The number of arguments seen so far. */
2499 unsigned int arg_number;
2500
b11a9d5f
RS
2501 /* The number of integer registers used so far. For all ABIs except
2502 EABI, this is the number of words that have been added to the
2503 argument structure, limited to MAX_ARGS_IN_REGISTERS. */
bb63e5a0 2504 unsigned int num_gprs;
4d72536e
RS
2505
2506 /* For EABI, the number of floating-point registers used so far. */
bb63e5a0 2507 unsigned int num_fprs;
4d72536e
RS
2508
2509 /* The number of words passed on the stack. */
2510 unsigned int stack_words;
2511
2512 /* On the mips16, we need to keep track of which floating point
2513 arguments were passed in general registers, but would have been
85f65093
KH
2514 passed in the FP regs if this were a 32-bit function, so that we
2515 can move them to the FP regs if we wind up calling a 32-bit
4d72536e
RS
2516 function. We record this information in fp_code, encoded in base
2517 four. A zero digit means no floating point argument, a one digit
2518 means an SFmode argument, and a two digit means a DFmode argument,
2519 and a three digit is not used. The low order digit is the first
2520 argument. Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
2521 an SFmode argument. ??? A more sophisticated approach will be
2522 needed if MIPS_ABI != ABI_32. */
2523 int fp_code;
2524
2525 /* True if the function has a prototype. */
2526 int prototype;
e75b25e7
MM
2527} CUMULATIVE_ARGS;
2528
2529/* Initialize a variable CUM of type CUMULATIVE_ARGS
2530 for a call to a function whose data type is FNTYPE.
ce6e2d90 2531 For a library call, FNTYPE is 0. */
e75b25e7 2532
0f6937fe 2533#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
65239d20 2534 mips_init_cumulative_args (&CUM, FNTYPE)
e75b25e7 2535
65239d20 2536#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
76b0cbf8 2537 (mips_pad_reg_upward (MODE, TYPE) ? PAD_UPWARD : PAD_DOWNWARD)
ac8ab9fe 2538
4d72536e
RS
2539/* True if using EABI and varargs can be passed in floating-point
2540 registers. Under these conditions, we need a more complex form
2541 of va_list, which tracks GPR, FPR and stack arguments separately. */
2542#define EABI_FLOAT_VARARGS_P \
2543 (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
2544
e75b25e7 2545\f
e19da24c 2546#define EPILOGUE_USES(REGNO) mips_epilogue_uses (REGNO)
cafe096b 2547
ac8ab9fe
RS
2548/* Treat LOC as a byte offset from the stack pointer and round it up
2549 to the next fully-aligned offset. */
e64ca6c4 2550#define MIPS_STACK_ALIGN(LOC) \
3a1d601a 2551 (TARGET_NEWABI ? ROUND_UP ((LOC), 16) : ROUND_UP ((LOC), 8))
e75b25e7
MM
2552
2553\f
2554/* Output assembler code to FILE to increment profiler label # LABELNO
2555 for profiling a function entry. */
2556
c376dbfb 2557#define FUNCTION_PROFILER(FILE, LABELNO) mips_function_profiler ((FILE))
e75b25e7 2558
d9dced13
RS
2559/* The profiler preserves all interesting registers, including $31. */
2560#define MIPS_SAVE_REG_FOR_PROFILING_P(REGNO) false
2561
f50c57ba
JW
2562/* No mips port has ever used the profiler counter word, so don't emit it
2563 or the label for it. */
2564
2565#define NO_PROFILE_COUNTERS 1
2566
d8d5b1e1
MM
2567/* Define this macro if the code for function profiling should come
2568 before the function prologue. Normally, the profiling code comes
2569 after. */
2570
2571/* #define PROFILE_BEFORE_PROLOGUE */
2572
e75b25e7
MM
2573/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2574 the stack pointer does not matter. The value is tested only in
2575 functions that have frame pointers.
2576 No definition is equivalent to always zero. */
2577
2578#define EXIT_IGNORE_STACK 1
2579
2580\f
c640a3bd 2581/* Trampolines are a block of code followed by two pointers. */
e75b25e7 2582
c640a3bd
RS
2583#define TRAMPOLINE_SIZE \
2584 (mips_trampoline_code_size () + GET_MODE_SIZE (ptr_mode) * 2)
e75b25e7 2585
c640a3bd
RS
2586/* Forcing a 64-bit alignment for 32-bit targets allows us to load two
2587 pointers from a single LUI base. */
e75b25e7 2588
c640a3bd 2589#define TRAMPOLINE_ALIGNMENT 64
e75b25e7 2590
a1d29c8c 2591/* mips_trampoline_init calls this library function to flush
c85f7c16
JL
2592 program and data caches. */
2593
2594#ifndef CACHE_FLUSH_FUNC
2595#define CACHE_FLUSH_FUNC "_flush_cache"
2596#endif
2597
d9dced13
RS
2598#define MIPS_ICACHE_SYNC(ADDR, SIZE) \
2599 /* Flush both caches. We need to flush the data cache in case \
2600 the system has a write-back cache. */ \
2601 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func), \
db69559b 2602 LCT_NORMAL, VOIDmode, ADDR, Pmode, SIZE, Pmode, \
d9dced13
RS
2603 GEN_INT (3), TYPE_MODE (integer_type_node))
2604
e75b25e7
MM
2605\f
2606/* Addressing modes, and classification of registers for them. */
2607
bcbc6b7f
RS
2608#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2609#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2610 mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
e75b25e7
MM
2611\f
2612/* Maximum number of registers that can appear in a valid memory address. */
2613
2614#define MAX_REGS_PER_ADDRESS 1
2615
cafe096b
EC
2616/* Check for constness inline but use mips_legitimate_address_p
2617 to check whether a constant really is an address. */
2618
2619#define CONSTANT_ADDRESS_P(X) \
c6c3dba9 2620 (CONSTANT_P (X) && memory_address_p (SImode, X))
cafe096b 2621
9c9e7632
GK
2622/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2623 'the start of the function that this code is output in'. */
2624
66d4b733
TV
2625#define ASM_OUTPUT_LABELREF(FILE,NAME) \
2626 do { \
2627 if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
2628 asm_fprintf ((FILE), "%U%s", \
2629 XSTR (XEXP (DECL_RTL (current_function_decl), \
2630 0), 0)); \
2631 else \
2632 asm_fprintf ((FILE), "%U%s", (NAME)); \
2633 } while (0)
e75b25e7 2634\f
4dbdb061
JW
2635/* Flag to mark a function decl symbol that requires a long call. */
2636#define SYMBOL_FLAG_LONG_CALL (SYMBOL_FLAG_MACH_DEP << 0)
2637#define SYMBOL_REF_LONG_CALL_P(X) \
2638 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2639
08d0963a
RS
2640/* This flag marks functions that cannot be lazily bound. */
2641#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
2642#define SYMBOL_REF_BIND_NOW_P(RTX) \
2643 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
2644
c93c5160
RS
2645/* True if we're generating a form of MIPS16 code in which jump tables
2646 are stored in the text section and encoded as 16-bit PC-relative
2647 offsets. This is only possible when general text loads are allowed,
545ca0f2
JB
2648 since the table access itself will be an "lh" instruction. If the
2649 PC-relative offsets grow too large, 32-bit offsets are used instead. */
c93c5160 2650#define TARGET_MIPS16_SHORT_JUMP_TABLES TARGET_MIPS16_TEXT_LOADS
2bcb2ab3 2651
c93c5160
RS
2652#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16_SHORT_JUMP_TABLES
2653
ca97b221 2654#define CASE_VECTOR_MODE (TARGET_MIPS16_SHORT_JUMP_TABLES ? SImode : ptr_mode)
545ca0f2
JB
2655
2656/* Only use short offsets if their range will not overflow. */
2657#define CASE_VECTOR_SHORTEN_MODE(MIN, MAX, BODY) \
ca97b221
RS
2658 (!TARGET_MIPS16_SHORT_JUMP_TABLES ? ptr_mode \
2659 : ((MIN) >= -32768 && (MAX) < 32768) ? HImode \
2660 : SImode)
c93c5160
RS
2661
2662#define CASE_VECTOR_PC_RELATIVE TARGET_MIPS16_SHORT_JUMP_TABLES
e75b25e7 2663
e75b25e7 2664/* Define this as 1 if `char' should by default be signed; else as 0. */
6639753e 2665#ifndef DEFAULT_SIGNED_CHAR
e75b25e7 2666#define DEFAULT_SIGNED_CHAR 1
6639753e 2667#endif
e75b25e7 2668
a1c6b246
RS
2669/* Although LDC1 and SDC1 provide 64-bit moves on 32-bit targets,
2670 we generally don't want to use them for copying arbitrary data.
2671 A single N-word move is usually the same cost as N single-word moves. */
2672#define MOVE_MAX UNITS_PER_WORD
6cf538da 2673/* We don't modify it for MSA as it is only used by the classic reload. */
876c09d3 2674#define MAX_MOVE_MAX 8
e75b25e7
MM
2675
2676/* Define this macro as a C expression which is nonzero if
2677 accessing less than a word of memory (i.e. a `char' or a
2678 `short') is no faster than accessing a word of memory, i.e., if
2679 such access require more than one instruction or if there is no
2680 difference in cost between byte and (aligned) word loads.
2681
2682 On RISC machines, it tends to generate better code to define
64e7e238
SL
2683 this as 1, since it avoids making a QI or HI mode register.
2684
2685 But, generating word accesses for -mips16 is generally bad as shifts
2686 (often extended) would be needed for byte accesses. */
2687#define SLOW_BYTE_ACCESS (!TARGET_MIPS16)
e75b25e7 2688
49042313 2689/* Standard MIPS integer shifts truncate the shift amount to the
8ae8bad7 2690 width of the shifted operand. However, Loongson MMI shifts
49042313 2691 do not truncate the shift amount at all. */
8ae8bad7 2692#define SHIFT_COUNT_TRUNCATED (!TARGET_LOONGSON_MMI)
e75b25e7 2693
cafe096b 2694
e75b25e7
MM
2695/* Specify the machine mode that pointers have.
2696 After generation of rtl, the compiler makes no further distinction
cafe096b 2697 between pointers and any other objects of this machine mode. */
876c09d3 2698
1eeed24e 2699#ifndef Pmode
cafe096b 2700#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
1eeed24e 2701#endif
e75b25e7 2702
cafe096b
EC
2703/* Give call MEMs SImode since it is the "most permissive" mode
2704 for both 32-bit and 64-bit targets. */
e75b25e7 2705
cafe096b 2706#define FUNCTION_MODE SImode
e75b25e7 2707
e75b25e7 2708\f
4b11e406
RS
2709/* We allocate $fcc registers by hand and can't cope with moves of
2710 CCmode registers to and from pseudos (or memory). */
7506f491
DE
2711#define AVOID_CCMODE_COPIES
2712
e75b25e7
MM
2713/* A C expression for the cost of a branch instruction. A value of
2714 1 is the default; other values are interpreted relative to that. */
2715
3a4fd356 2716#define BRANCH_COST(speed_p, predictable_p) mips_branch_cost
c1bd2d66 2717#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
e75b25e7 2718
da734fa1
RS
2719/* The MIPS port has several functions that return an instruction count.
2720 Multiplying the count by this value gives the number of bytes that
2721 the instructions occupy. */
2722#define BASE_INSN_LENGTH (TARGET_MIPS16 ? 2 : 4)
2723
2724/* The length of a NOP in bytes. */
2725#define NOP_INSN_LENGTH (TARGET_COMPRESSION ? 2 : 4)
2726
0ff83799
MM
2727/* If defined, modifies the length assigned to instruction INSN as a
2728 function of the context in which it is used. LENGTH is an lvalue
2729 that contains the initially computed length of the insn and should
2730 be updated with the correct length of the insn. */
2731#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2732 ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
a8c1d5f8
RS
2733
2734/* Return the asm template for a non-MIPS16 conditional branch instruction.
2735 OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2736 its operands. */
2737#define MIPS_BRANCH(OPCODE, OPERANDS) \
2738 "%*" OPCODE "%?\t" OPERANDS "%/"
d9870b7e 2739
22219d9b
MF
2740#define MIPS_BRANCH_C(OPCODE, OPERANDS) \
2741 "%*" OPCODE "%:\t" OPERANDS
2742
0c433c31
RS
2743/* Return an asm string that forces INSN to be treated as an absolute
2744 J or JAL instruction instead of an assembler macro. */
2745#define MIPS_ABSOLUTE_JUMP(INSN) \
2746 (TARGET_ABICALLS_PIC2 \
2747 ? ".option\tpic0\n\t" INSN "\n\t.option\tpic2" \
2748 : INSN)
2749
e75b25e7
MM
2750\f
2751/* Control the assembler format that we output. */
2752
e75b25e7
MM
2753/* Output to assembler file text saying following lines
2754 may contain character constants, extra white space, comments, etc. */
2755
b2bcb32d 2756#ifndef ASM_APP_ON
e75b25e7 2757#define ASM_APP_ON " #APP\n"
b2bcb32d 2758#endif
e75b25e7
MM
2759
2760/* Output to assembler file text saying following lines
2761 no longer contain unusual constructs. */
2762
b2bcb32d 2763#ifndef ASM_APP_OFF
e75b25e7 2764#define ASM_APP_OFF " #NO_APP\n"
b2bcb32d 2765#endif
e75b25e7 2766
5b9cc93e
RS
2767#define REGISTER_NAMES \
2768{ "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", \
2769 "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", \
2770 "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", \
2771 "$24", "$25", "$26", "$27", "$28", "$sp", "$fp", "$31", \
2772 "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", \
2773 "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", \
2774 "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", \
2775 "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", \
2776 "hi", "lo", "", "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4", \
0c433c31 2777 "$fcc5","$fcc6","$fcc7","", "$cprestore", "$arg", "$frame", "$fakec", \
5b9cc93e
RS
2778 "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7", \
2779 "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2780 "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2781 "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2782 "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7", \
2783 "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2784 "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2785 "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2786 "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7", \
2787 "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2788 "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
118ea793
CF
2789 "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2790 "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2791 "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
5b9cc93e
RS
2792
2793/* List the "software" names for each register. Also list the numerical
2794 names for $fp and $sp. */
e75b25e7
MM
2795
2796#define ADDITIONAL_REGISTER_NAMES \
2797{ \
e75b25e7
MM
2798 { "$29", 29 + GP_REG_FIRST }, \
2799 { "$30", 30 + GP_REG_FIRST }, \
e75b25e7
MM
2800 { "at", 1 + GP_REG_FIRST }, \
2801 { "v0", 2 + GP_REG_FIRST }, \
2802 { "v1", 3 + GP_REG_FIRST }, \
2803 { "a0", 4 + GP_REG_FIRST }, \
2804 { "a1", 5 + GP_REG_FIRST }, \
2805 { "a2", 6 + GP_REG_FIRST }, \
2806 { "a3", 7 + GP_REG_FIRST }, \
2807 { "t0", 8 + GP_REG_FIRST }, \
2808 { "t1", 9 + GP_REG_FIRST }, \
2809 { "t2", 10 + GP_REG_FIRST }, \
2810 { "t3", 11 + GP_REG_FIRST }, \
2811 { "t4", 12 + GP_REG_FIRST }, \
2812 { "t5", 13 + GP_REG_FIRST }, \
2813 { "t6", 14 + GP_REG_FIRST }, \
2814 { "t7", 15 + GP_REG_FIRST }, \
2815 { "s0", 16 + GP_REG_FIRST }, \
2816 { "s1", 17 + GP_REG_FIRST }, \
2817 { "s2", 18 + GP_REG_FIRST }, \
2818 { "s3", 19 + GP_REG_FIRST }, \
2819 { "s4", 20 + GP_REG_FIRST }, \
2820 { "s5", 21 + GP_REG_FIRST }, \
2821 { "s6", 22 + GP_REG_FIRST }, \
2822 { "s7", 23 + GP_REG_FIRST }, \
2823 { "t8", 24 + GP_REG_FIRST }, \
2824 { "t9", 25 + GP_REG_FIRST }, \
2825 { "k0", 26 + GP_REG_FIRST }, \
2826 { "k1", 27 + GP_REG_FIRST }, \
2827 { "gp", 28 + GP_REG_FIRST }, \
2828 { "sp", 29 + GP_REG_FIRST }, \
2829 { "fp", 30 + GP_REG_FIRST }, \
6cf538da
RS
2830 { "ra", 31 + GP_REG_FIRST }, \
2831 { "$w0", 0 + FP_REG_FIRST }, \
2832 { "$w1", 1 + FP_REG_FIRST }, \
2833 { "$w2", 2 + FP_REG_FIRST }, \
2834 { "$w3", 3 + FP_REG_FIRST }, \
2835 { "$w4", 4 + FP_REG_FIRST }, \
2836 { "$w5", 5 + FP_REG_FIRST }, \
2837 { "$w6", 6 + FP_REG_FIRST }, \
2838 { "$w7", 7 + FP_REG_FIRST }, \
2839 { "$w8", 8 + FP_REG_FIRST }, \
2840 { "$w9", 9 + FP_REG_FIRST }, \
2841 { "$w10", 10 + FP_REG_FIRST }, \
2842 { "$w11", 11 + FP_REG_FIRST }, \
2843 { "$w12", 12 + FP_REG_FIRST }, \
2844 { "$w13", 13 + FP_REG_FIRST }, \
2845 { "$w14", 14 + FP_REG_FIRST }, \
2846 { "$w15", 15 + FP_REG_FIRST }, \
2847 { "$w16", 16 + FP_REG_FIRST }, \
2848 { "$w17", 17 + FP_REG_FIRST }, \
2849 { "$w18", 18 + FP_REG_FIRST }, \
2850 { "$w19", 19 + FP_REG_FIRST }, \
2851 { "$w20", 20 + FP_REG_FIRST }, \
2852 { "$w21", 21 + FP_REG_FIRST }, \
2853 { "$w22", 22 + FP_REG_FIRST }, \
2854 { "$w23", 23 + FP_REG_FIRST }, \
2855 { "$w24", 24 + FP_REG_FIRST }, \
2856 { "$w25", 25 + FP_REG_FIRST }, \
2857 { "$w26", 26 + FP_REG_FIRST }, \
2858 { "$w27", 27 + FP_REG_FIRST }, \
2859 { "$w28", 28 + FP_REG_FIRST }, \
2860 { "$w29", 29 + FP_REG_FIRST }, \
2861 { "$w30", 30 + FP_REG_FIRST }, \
2862 { "$w31", 31 + FP_REG_FIRST } \
e75b25e7
MM
2863}
2864
e75b25e7
MM
2865#define DBR_OUTPUT_SEQEND(STREAM) \
2866do \
2867 { \
cf5fb4b0
RS
2868 /* Undo the effect of '%*'. */ \
2869 mips_pop_asm_switch (&mips_nomacro); \
2870 mips_pop_asm_switch (&mips_noreorder); \
2871 /* Emit a blank line after the delay slot for emphasis. */ \
e75b25e7
MM
2872 fputs ("\n", STREAM); \
2873 } \
2874while (0)
2875
9ec36da5 2876/* The MIPS implementation uses some labels for its own purpose. The
e75b25e7
MM
2877 following lists what labels are created, and are all formed by the
2878 pattern $L[a-z].*. The machine independent portion of GCC creates
2879 labels matching: $L[A-Z][0-9]+ and $L[0-9]+.
2880
c5b7917e 2881 LM[0-9]+ Silicon Graphics/ECOFF stabs label before each stmt.
e75b25e7
MM
2882 $Lb[0-9]+ Begin blocks for MIPS debug support
2883 $Lc[0-9]+ Label for use in s<xx> operation.
33005162 2884 $Le[0-9]+ End blocks for MIPS debug support */
e75b25e7 2885
44404b8b 2886#undef ASM_DECLARE_OBJECT_NAME
c1115ccd 2887#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
586de218 2888 mips_declare_object (STREAM, NAME, "", ":\n")
31c714e3 2889
506a61b1
KG
2890/* Globalizing directive for a label. */
2891#define GLOBAL_ASM_OP "\t.globl\t"
e75b25e7 2892
31c714e3 2893/* This says how to define a global common symbol. */
e75b25e7 2894
35f5add9 2895#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
e75b25e7 2896
112cdef5 2897/* This says how to define a local common symbol (i.e., not visible to
31c714e3 2898 linker). */
e75b25e7 2899
48b2e0a7
RS
2900#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2901#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2902 mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2903#endif
e75b25e7
MM
2904
2905/* This says how to output an external. It would be possible not to
2906 output anything and let undefined symbol become external. However
2907 the assembler uses length information on externals to allocate in
2908 data/sdata bss/sbss, thereby saving exec time. */
2909
4d9f4c46 2910#undef ASM_OUTPUT_EXTERNAL
e75b25e7
MM
2911#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2912 mips_output_external(STREAM,DECL,NAME)
2913
e75b25e7
MM
2914/* This is how to declare a function name. The actual work of
2915 emitting the label is moved to function_prologue, so that we can
2916 get the line number correctly emitted before the .ent directive,
789b7de5 2917 and after any .file directives. Define as empty so that the function
4e314d1f
EC
2918 is not declared before the .ent directive elsewhere. */
2919
44404b8b 2920#undef ASM_DECLARE_FUNCTION_NAME
33005162 2921#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
4e314d1f 2922
e75b25e7
MM
2923/* This is how to store into the string LABEL
2924 the symbol_ref name of an internal numbered label where
2925 PREFIX is the class of label and NUM is the number within the class.
2926 This is suitable for output with `assemble_name'. */
2927
44404b8b 2928#undef ASM_GENERATE_INTERNAL_LABEL
e75b25e7 2929#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
4f70758f 2930 sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
e75b25e7 2931
370d36c6
RS
2932/* Print debug labels as "foo = ." rather than "foo:" because they should
2933 represent a byte pointer rather than an ISA-encoded address. This is
2934 particularly important for code like:
2935
2936 $LFBxxx = .
2937 .cfi_startproc
2938 ...
2939 .section .gcc_except_table,...
2940 ...
2941 .uleb128 foo-$LFBxxx
2942
2943 The .uleb128 requies $LFBxxx to match the FDE start address, which is
2944 likewise a byte pointer rather than an ISA-encoded address.
2945
2946 At the time of writing, this hook is not used for the function end
2947 label:
2948
2949 $LFExxx:
2950 .end foo
2951
2952 But this doesn't matter, because GAS doesn't treat a pre-.end label
2953 as a MIPS16 one anyway. */
2954
2955#define ASM_OUTPUT_DEBUG_LABEL(FILE, PREFIX, NUM) \
2956 fprintf (FILE, "%s%s%d = .\n", LOCAL_LABEL_PREFIX, PREFIX, NUM)
2957
e75b25e7
MM
2958/* This is how to output an element of a case-vector that is absolute. */
2959
2960#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
6ae1498b 2961 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 2962 ptr_mode == DImode ? ".dword" : ".word", \
6ae1498b 2963 LOCAL_LABEL_PREFIX, \
876c09d3 2964 VALUE)
e75b25e7 2965
827555ea
RS
2966/* This is how to output an element of a case-vector. We can make the
2967 entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2968 is supported. */
e75b25e7 2969
33f7f353 2970#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
e0bfcea5 2971do { \
c93c5160 2972 if (TARGET_MIPS16_SHORT_JUMP_TABLES) \
545ca0f2
JB
2973 { \
2974 if (GET_MODE (BODY) == HImode) \
2975 fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n", \
2976 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2977 else \
2978 fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
2979 LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL); \
2980 } \
cafe096b 2981 else if (TARGET_GPWORD) \
6ae1498b 2982 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 2983 ptr_mode == DImode ? ".gpdword" : ".gpword", \
6ae1498b 2984 LOCAL_LABEL_PREFIX, VALUE); \
8cb6400c
RS
2985 else if (TARGET_RTP_PIC) \
2986 { \
2987 /* Make the entry relative to the start of the function. */ \
2988 rtx fnsym = XEXP (DECL_RTL (current_function_decl), 0); \
2989 fprintf (STREAM, "\t%s\t%sL%d-", \
2990 Pmode == DImode ? ".dword" : ".word", \
2991 LOCAL_LABEL_PREFIX, VALUE); \
2992 assemble_name (STREAM, XSTR (fnsym, 0)); \
2993 fprintf (STREAM, "\n"); \
2994 } \
516a2dfd 2995 else \
b2d8cf33 2996 fprintf (STREAM, "\t%s\t%sL%d\n", \
cafe096b 2997 ptr_mode == DImode ? ".dword" : ".word", \
b2d8cf33 2998 LOCAL_LABEL_PREFIX, VALUE); \
e0bfcea5
ILT
2999} while (0)
3000
2fe2aba3
MR
3001/* Mark inline jump tables as data for the purpose of disassembly. For
3002 simplicity embed the jump table's label number in the local symbol
3003 produced so that multiple jump tables within a single function end
3004 up marked with unique symbols. Retain the alignment setting from
3005 `elfos.h' as we are replacing the definition from there. */
3006
3007#undef ASM_OUTPUT_BEFORE_CASE_LABEL
3008#define ASM_OUTPUT_BEFORE_CASE_LABEL(STREAM, PREFIX, NUM, TABLE) \
3009 do \
3010 { \
3011 ASM_OUTPUT_ALIGN ((STREAM), 2); \
3012 if (JUMP_TABLES_IN_TEXT_SECTION) \
3013 mips_set_text_contents_type (STREAM, "__jump_", NUM, FALSE); \
3014 } \
9739c3d3 3015 while (0)
2fe2aba3
MR
3016
3017/* Reset text marking to code after an inline jump table. Like with
3018 the beginning of a jump table use the label number to keep symbols
3019 unique. */
3020
3021#define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
3022 do \
3023 if (JUMP_TABLES_IN_TEXT_SECTION) \
3024 mips_set_text_contents_type (STREAM, "__jend_", NUM, TRUE); \
65f371e4 3025 while (0)
2fe2aba3 3026
e75b25e7
MM
3027/* This is how to output an assembler line
3028 that says to advance the location counter
3029 to a multiple of 2**LOG bytes. */
3030
3031#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
a688e0b7 3032 fprintf (STREAM, "\t.align\t%d\n", (LOG))
e75b25e7 3033
38e01259 3034/* This is how to output an assembler line to advance the location
e75b25e7
MM
3035 counter by SIZE bytes. */
3036
44404b8b 3037#undef ASM_OUTPUT_SKIP
e75b25e7 3038#define ASM_OUTPUT_SKIP(STREAM,SIZE) \
16998094 3039 fprintf (STREAM, "\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
e75b25e7 3040
e75b25e7 3041/* This is how to output a string. */
44404b8b 3042#undef ASM_OUTPUT_ASCII
65239d20 3043#define ASM_OUTPUT_ASCII mips_output_ascii
e75b25e7 3044
e75b25e7 3045\f
b82b0773
MM
3046/* Default to -G 8 */
3047#ifndef MIPS_DEFAULT_GVALUE
3048#define MIPS_DEFAULT_GVALUE 8
3049#endif
e75b25e7 3050
f3b39eba
MM
3051/* Define the strings to put out for each section in the object file. */
3052#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
3053#define DATA_SECTION_ASM_OP "\t.data" /* large data */
2017ed61
EC
3054
3055#undef READONLY_DATA_SECTION_ASM_OP
d48bc59a 3056#define READONLY_DATA_SECTION_ASM_OP "\t.rdata" /* read-only data */
e75b25e7 3057\f
e75b25e7
MM
3058#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
3059do \
3060 { \
f29adf5b
SL
3061 fprintf (STREAM, "\t%s\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
3062 TARGET_64BIT ? "daddiu" : "addiu", \
e75b25e7
MM
3063 reg_names[STACK_POINTER_REGNUM], \
3064 reg_names[STACK_POINTER_REGNUM], \
876c09d3 3065 TARGET_64BIT ? "sd" : "sw", \
e75b25e7
MM
3066 reg_names[REGNO], \
3067 reg_names[STACK_POINTER_REGNUM]); \
3068 } \
3069while (0)
3070
3071#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
3072do \
3073 { \
cf5fb4b0 3074 mips_push_asm_switch (&mips_noreorder); \
876c09d3
JW
3075 fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n", \
3076 TARGET_64BIT ? "ld" : "lw", \
e75b25e7
MM
3077 reg_names[REGNO], \
3078 reg_names[STACK_POINTER_REGNUM], \
876c09d3 3079 TARGET_64BIT ? "daddu" : "addu", \
e75b25e7
MM
3080 reg_names[STACK_POINTER_REGNUM], \
3081 reg_names[STACK_POINTER_REGNUM]); \
cf5fb4b0 3082 mips_pop_asm_switch (&mips_noreorder); \
e75b25e7
MM
3083 } \
3084while (0)
3085
4baed42f
DE
3086/* How to start an assembler comment.
3087 The leading space is important (the mips native assembler requires it). */
e75b25e7 3088#ifndef ASM_COMMENT_START
4baed42f 3089#define ASM_COMMENT_START " #"
e75b25e7 3090#endif
3f1f8d8c 3091\f
498887c8 3092#undef SIZE_TYPE
cafe096b 3093#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
3f1f8d8c 3094
498887c8 3095#undef PTRDIFF_TYPE
cafe096b 3096#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
cfa31150 3097
58df0b91
SD
3098/* The minimum alignment of any expanded block move. */
3099#define MIPS_MIN_MOVE_MEM_ALIGN 16
3100
a1c6b246 3101/* The maximum number of bytes that can be copied by one iteration of
76715c32 3102 a cpymemsi loop; see mips_block_move_loop. */
a1c6b246
RS
3103#define MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER \
3104 (UNITS_PER_WORD * 4)
3105
3106/* The maximum number of bytes that can be copied by a straight-line
76715c32 3107 implementation of cpymemsi; see mips_block_move_straight. We want
a1c6b246
RS
3108 to make sure that any loop-based implementation will iterate at
3109 least twice. */
3110#define MIPS_MAX_MOVE_BYTES_STRAIGHT \
3111 (MIPS_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
3112
cfa31150
SL
3113/* The base cost of a memcpy call, for MOVE_RATIO and friends. These
3114 values were determined experimentally by benchmarking with CSiBE.
3115 In theory, the call overhead is higher for TARGET_ABICALLS (especially
3116 for o32 where we have to restore $gp afterwards as well as make an
3117 indirect call), but in practice, bumping this up higher for
3118 TARGET_ABICALLS doesn't make much difference to code size. */
3119
3120#define MIPS_CALL_RATIO 8
3121
76715c32 3122/* Any loop-based implementation of cpymemsi will have at least
a1c6b246
RS
3123 MIPS_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
3124 moves, so allow individual copies of fewer elements.
3125
76715c32 3126 When cpymemsi is not available, use a value approximating
a1c6b246
RS
3127 the length of a memcpy call sequence, so that move_by_pieces
3128 will generate inline code if it is shorter than a function call.
3129 Since move_by_pieces_ninsns counts memory-to-memory moves, but
3130 we'll have to generate a load/store pair for each, halve the
3131 value of MIPS_CALL_RATIO to take that into account. */
3132
e04ad03d 3133#define MOVE_RATIO(speed) \
76715c32 3134 (HAVE_cpymemsi \
a1c6b246
RS
3135 ? MIPS_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
3136 : MIPS_CALL_RATIO / 2)
3137
cfa31150
SL
3138/* For CLEAR_RATIO, when optimizing for size, give a better estimate
3139 of the length of a memset call, but use the default otherwise. */
3140
e04ad03d
JH
3141#define CLEAR_RATIO(speed)\
3142 ((speed) ? 15 : MIPS_CALL_RATIO)
cfa31150
SL
3143
3144/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
3145 optimizing for size adjust the ratio to account for the overhead of
3146 loading the constant and replicating it across the word. */
3147
e04ad03d
JH
3148#define SET_RATIO(speed) \
3149 ((speed) ? 15 : MIPS_CALL_RATIO - 2)
2bcb2ab3 3150\f
3c0121e4
AO
3151/* Since the bits of the _init and _fini function is spread across
3152 many object files, each potentially with its own GP, we must assume
3153 we need to load our GP. We don't preserve $gp or $ra, since each
3154 init/fini chunk is supposed to initialize $gp, and crti/crtn
3155 already take care of preserving $ra and, when appropriate, $gp. */
27d54b2a 3156#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
3c0121e4
AO
3157#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3158 asm (SECTION_OP "\n\
1274718f
CLT
3159 .set push\n\
3160 .set nomips16\n\
3c0121e4
AO
3161 .set noreorder\n\
3162 bal 1f\n\
3163 nop\n\
31641: .cpload $31\n\
3165 .set reorder\n\
8d92d274
PJ
3166 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3167 jalr $25\n\
1274718f 3168 .set pop\n\
3c0121e4 3169 " TEXT_SECTION_ASM_OP);
8d92d274 3170#elif (defined _ABIN32 && _MIPS_SIM == _ABIN32)
3c0121e4
AO
3171#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3172 asm (SECTION_OP "\n\
1274718f
CLT
3173 .set push\n\
3174 .set nomips16\n\
3c0121e4
AO
3175 .set noreorder\n\
3176 bal 1f\n\
3177 nop\n\
31781: .set reorder\n\
3179 .cpsetup $31, $2, 1b\n\
8d92d274
PJ
3180 la $25, " USER_LABEL_PREFIX #FUNC "\n\
3181 jalr $25\n\
3182 .set pop\n\
3183 " TEXT_SECTION_ASM_OP);
3184#elif (defined _ABI64 && _MIPS_SIM == _ABI64)
3185#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3186 asm (SECTION_OP "\n\
3187 .set push\n\
3188 .set nomips16\n\
3189 .set noreorder\n\
3190 bal 1f\n\
3191 nop\n\
31921: .set reorder\n\
3193 .cpsetup $31, $2, 1b\n\
3194 dla $25, " USER_LABEL_PREFIX #FUNC "\n\
3195 jalr $25\n\
1274718f 3196 .set pop\n\
3c0121e4
AO
3197 " TEXT_SECTION_ASM_OP);
3198#endif
69229b81
DJ
3199
3200#ifndef HAVE_AS_TLS
3201#define HAVE_AS_TLS 0
3202#endif
8d2fc1c4 3203
ff3f3951
MR
3204#ifndef HAVE_AS_NAN
3205#define HAVE_AS_NAN 0
3206#endif
3207
ab77a036 3208#ifndef USED_FOR_TARGET
cf5fb4b0
RS
3209/* Information about ".set noFOO; ...; .set FOO" blocks. */
3210struct mips_asm_switch {
3211 /* The FOO in the description above. */
3212 const char *name;
3213
3214 /* The current block nesting level, or 0 if we aren't in a block. */
3215 int nesting_level;
3216};
3217
ab77a036 3218extern const enum reg_class mips_regno_to_class[];
ab77a036
RS
3219extern const char *current_function_file; /* filename current function is in */
3220extern int num_source_filenames; /* current .file # */
cf5fb4b0
RS
3221extern struct mips_asm_switch mips_noreorder;
3222extern struct mips_asm_switch mips_nomacro;
3223extern struct mips_asm_switch mips_noat;
ab77a036
RS
3224extern int mips_dbx_regno[];
3225extern int mips_dwarf_regno[];
3226extern bool mips_split_p[];
08d0963a 3227extern bool mips_split_hi_p[];
ddaf8125
RS
3228extern bool mips_use_pcrel_pool_p[];
3229extern const char *mips_lo_relocs[];
3230extern const char *mips_hi_relocs[];
24609606
RS
3231extern enum processor mips_arch; /* which cpu to codegen for */
3232extern enum processor mips_tune; /* which cpu to schedule for */
ab77a036 3233extern int mips_isa; /* architectural level */
ad782bc9 3234extern int mips_isa_rev;
ab77a036
RS
3235extern const struct mips_cpu_info *mips_arch_info;
3236extern const struct mips_cpu_info *mips_tune_info;
22c4c869 3237extern unsigned int mips_base_compression_flags;
5aa62249 3238extern GTY(()) struct target_globals *mips16_globals;
ba57dd12 3239extern GTY(()) struct target_globals *micromips_globals;
d41c8b4c
SE
3240
3241/* Information about a function's frame layout. */
3242struct GTY(()) mips_frame_info {
3243 /* The size of the frame in bytes. */
3244 HOST_WIDE_INT total_size;
3245
3246 /* The number of bytes allocated to variables. */
3247 HOST_WIDE_INT var_size;
3248
3249 /* The number of bytes allocated to outgoing function arguments. */
3250 HOST_WIDE_INT args_size;
3251
3252 /* The number of bytes allocated to the .cprestore slot, or 0 if there
3253 is no such slot. */
3254 HOST_WIDE_INT cprestore_size;
3255
3256 /* Bit X is set if the function saves or restores GPR X. */
3257 unsigned int mask;
3258
3259 /* Likewise FPR X. */
3260 unsigned int fmask;
3261
3262 /* Likewise doubleword accumulator X ($acX). */
3263 unsigned int acc_mask;
3264
3265 /* The number of GPRs, FPRs, doubleword accumulators and COP0
3266 registers saved. */
3267 unsigned int num_gp;
3268 unsigned int num_fp;
3269 unsigned int num_acc;
3270 unsigned int num_cop0_regs;
3271
3272 /* The offset of the topmost GPR, FPR, accumulator and COP0-register
3273 save slots from the top of the frame, or zero if no such slots are
3274 needed. */
3275 HOST_WIDE_INT gp_save_offset;
3276 HOST_WIDE_INT fp_save_offset;
3277 HOST_WIDE_INT acc_save_offset;
3278 HOST_WIDE_INT cop0_save_offset;
3279
3280 /* Likewise, but giving offsets from the bottom of the frame. */
3281 HOST_WIDE_INT gp_sp_offset;
3282 HOST_WIDE_INT fp_sp_offset;
3283 HOST_WIDE_INT acc_sp_offset;
3284 HOST_WIDE_INT cop0_sp_offset;
3285
3286 /* Similar, but the value passed to _mcount. */
3287 HOST_WIDE_INT ra_fp_offset;
3288
3289 /* The offset of arg_pointer_rtx from the bottom of the frame. */
3290 HOST_WIDE_INT arg_pointer_offset;
3291
3292 /* The offset of hard_frame_pointer_rtx from the bottom of the frame. */
3293 HOST_WIDE_INT hard_frame_pointer_offset;
3294};
3295
3296/* Enumeration for masked vectored (VI) and non-masked (EIC) interrupts. */
3297enum mips_int_mask
3298{
3299 INT_MASK_EIC = -1,
3300 INT_MASK_SW0 = 0,
3301 INT_MASK_SW1 = 1,
3302 INT_MASK_HW0 = 2,
3303 INT_MASK_HW1 = 3,
3304 INT_MASK_HW2 = 4,
3305 INT_MASK_HW3 = 5,
3306 INT_MASK_HW4 = 6,
3307 INT_MASK_HW5 = 7
3308};
3309
3310/* Enumeration to mark the existence of the shadow register set.
3311 SHADOW_SET_INTSTACK indicates a shadow register set with a valid stack
3312 pointer. */
3313enum mips_shadow_set
3314{
3315 SHADOW_SET_NO,
3316 SHADOW_SET_YES,
3317 SHADOW_SET_INTSTACK
3318};
3319
3320struct GTY(()) machine_function {
3321 /* The next floating-point condition-code register to allocate
3322 for ISA_HAS_8CC targets, relative to ST_REG_FIRST. */
3323 unsigned int next_fcc;
3324
3325 /* The register returned by mips16_gp_pseudo_reg; see there for details. */
3326 rtx mips16_gp_pseudo_rtx;
3327
3328 /* The number of extra stack bytes taken up by register varargs.
3329 This area is allocated by the callee at the very top of the frame. */
3330 int varargs_size;
3331
3332 /* The current frame information, calculated by mips_compute_frame_info. */
3333 struct mips_frame_info frame;
3334
3335 /* The register to use as the function's global pointer, or INVALID_REGNUM
3336 if the function doesn't need one. */
3337 unsigned int global_pointer;
3338
3339 /* How many instructions it takes to load a label into $AT, or 0 if
3340 this property hasn't yet been calculated. */
3341 unsigned int load_label_num_insns;
3342
3343 /* True if mips_adjust_insn_length should ignore an instruction's
3344 hazard attribute. */
3345 bool ignore_hazard_length_p;
3346
3347 /* True if the whole function is suitable for .set noreorder and
3348 .set nomacro. */
3349 bool all_noreorder_p;
3350
3351 /* True if the function has "inflexible" and "flexible" references
3352 to the global pointer. See mips_cfun_has_inflexible_gp_ref_p
3353 and mips_cfun_has_flexible_gp_ref_p for details. */
3354 bool has_inflexible_gp_insn_p;
3355 bool has_flexible_gp_insn_p;
3356
3357 /* True if the function's prologue must load the global pointer
3358 value into pic_offset_table_rtx and store the same value in
3359 the function's cprestore slot (if any). Even if this value
3360 is currently false, we may decide to set it to true later;
3361 see mips_must_initialize_gp_p () for details. */
3362 bool must_initialize_gp_p;
3363
3364 /* True if the current function must restore $gp after any potential
3365 clobber. This value is only meaningful during the first post-epilogue
3366 split_insns pass; see mips_must_initialize_gp_p () for details. */
3367 bool must_restore_gp_when_clobbered_p;
3368
3369 /* True if this is an interrupt handler. */
3370 bool interrupt_handler_p;
3371
3372 /* Records the way in which interrupts should be masked. Only used if
3373 interrupts are not kept masked. */
3374 enum mips_int_mask int_mask;
3375
3376 /* Records if this is an interrupt handler that uses shadow registers. */
3377 enum mips_shadow_set use_shadow_register_set;
3378
3379 /* True if this is an interrupt handler that should keep interrupts
3380 masked. */
3381 bool keep_interrupts_masked_p;
3382
3383 /* True if this is an interrupt handler that should use DERET
3384 instead of ERET. */
3385 bool use_debug_exception_return_p;
3386
3387 /* True if at least one of the formal parameters to a function must be
3388 written to the frame header (probably so its address can be taken). */
3389 bool does_not_use_frame_header;
3390
3391 /* True if none of the functions that are called by this function need
3392 stack space allocated for their arguments. */
3393 bool optimize_call_stack;
0bfbc166
SE
3394
3395 /* True if one of the functions calling this function may not allocate
3396 a frame header. */
3397 bool callers_may_not_allocate_frame;
3398
3399 /* True if GCC stored callee saved registers in the frame header. */
3400 bool use_frame_header_for_callee_saved_regs;
d41c8b4c 3401};
ab77a036 3402#endif
58684fa0
MK
3403
3404/* Enable querying of DFA units. */
3405#define CPU_UNITS_QUERY 1
1afc5373
CF
3406
3407#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
3408 mips_final_prescan_insn (INSN, OPVEC, NOPERANDS)
28143fdd 3409
49576e25
RS
3410/* As on most targets, we want the .eh_frame section to be read-only where
3411 possible. And as on most targets, this means two things:
3412
3413 (a) Non-locally-binding pointers must have an indirect encoding,
3414 so that the addresses in the .eh_frame section itself become
3415 locally-binding.
3416
3417 (b) A shared library's .eh_frame section must encode locally-binding
3418 pointers in a relative (relocation-free) form.
3419
3420 However, MIPS has traditionally not allowed directives like:
3421
3422 .long x-.
3423
3424 in cases where "x" is in a different section, or is not defined in the
3425 same assembly file. We are therefore unable to emit the PC-relative
3426 form required by (b) at assembly time.
3427
3428 Fortunately, the linker is able to convert absolute addresses into
3429 PC-relative addresses on our behalf. Unfortunately, only certain
3430 versions of the linker know how to do this for indirect pointers,
3431 and for personality data. We must fall back on using writable
3432 .eh_frame sections for shared libraries if the linker does not
3433 support this feature. */
3434#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
3435 (((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_absptr)
5aa62249
RS
3436
3437/* For switching between MIPS16 and non-MIPS16 modes. */
3438#define SWITCHABLE_TARGET 1
81a478c8
RS
3439
3440/* Several named MIPS patterns depend on Pmode. These patterns have the
3441 form <NAME>_si for Pmode == SImode and <NAME>_di for Pmode == DImode.
3442 Add the appropriate suffix to generator function NAME and invoke it
3443 with arguments ARGS. */
3444#define PMODE_INSN(NAME, ARGS) \
3445 (Pmode == SImode ? NAME ## _si ARGS : NAME ## _di ARGS)
8cfebf86
SE
3446
3447/* If we are *not* using multilibs and the default ABI is not ABI_32 we
3448 need to change these from /lib and /usr/lib. */
3449#if MIPS_ABI_DEFAULT == ABI_N32
3450#define STANDARD_STARTFILE_PREFIX_1 "/lib32/"
3451#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib32/"
3452#elif MIPS_ABI_DEFAULT == ABI_64
3453#define STANDARD_STARTFILE_PREFIX_1 "/lib64/"
3454#define STANDARD_STARTFILE_PREFIX_2 "/usr/lib64/"
3455#endif
abf96035
PG
3456
3457/* Load store bonding is not supported by micromips and fix_24k. The
3458 performance can be degraded for those targets. Hence, do not bond for
3459 micromips or fix_24k. */
3460#define ENABLE_LD_ST_PAIRS \
30c0ee9c
MF
3461 (TARGET_LOAD_STORE_PAIRS \
3462 && (TUNE_P5600 || TUNE_I6400 || TUNE_P6600) \
abf96035 3463 && !TARGET_MICROMIPS && !TARGET_FIX_24K)
a3c1e1f2
DM
3464
3465#define NEED_INDICATE_EXEC_STACK 0