]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521 1/* Definitions of target machine for GNU compiler, for IBM S/390
85ec4feb 2 Copyright (C) 1999-2018 Free Software Foundation, Inc.
9db1d521 3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
f314b9b1 4 Ulrich Weigand (uweigand@de.ibm.com).
963fc8d0 5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
9db1d521 6
58add37a 7This file is part of GCC.
9db1d521 8
58add37a
UW
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
2f83c7d6 11Software Foundation; either version 3, or (at your option) any later
58add37a
UW
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
9db1d521
HP
18
19You should have received a copy of the GNU General Public License
2f83c7d6
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
9db1d521
HP
22
23#ifndef _S390_H
24#define _S390_H
25
f13e0d4e
UW
26/* Optional architectural facilities supported by the processor. */
27
28enum processor_flags
29{
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
ec24698e 32 PF_LONG_DISPLACEMENT = 4,
85dae55a 33 PF_EXTIMM = 8,
93538e8e 34 PF_DFP = 16,
65b1d8ea 35 PF_Z10 = 32,
22ac2c2f 36 PF_Z196 = 64,
5a3fe9b6 37 PF_ZEC12 = 128,
55ac540c
AK
38 PF_TX = 256,
39 PF_Z13 = 512,
6654e96f
AK
40 PF_VX = 1024,
41 PF_ARCH12 = 2048,
42 PF_VXE = 4096
f13e0d4e
UW
43};
44
90c6fd8a
AK
45/* This is necessary to avoid a warning about comparing different enum
46 types. */
6654e96f 47#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_2964_Z13 ? PROCESSOR_2964_Z13 : s390_tune ))
90c6fd8a 48
963fc8d0
AK
49/* These flags indicate that the generated code should run on a cpu
50 providing the respective hardware facility regardless of the
51 current cpu mode (ESA or z/Architecture). */
52
f13e0d4e
UW
53#define TARGET_CPU_IEEE_FLOAT \
54 (s390_arch_flags & PF_IEEE_FLOAT)
ec47b086
DV
55#define TARGET_CPU_IEEE_FLOAT_P(opts) \
56 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
f13e0d4e
UW
57#define TARGET_CPU_ZARCH \
58 (s390_arch_flags & PF_ZARCH)
ec47b086
DV
59#define TARGET_CPU_ZARCH_P(opts) \
60 (opts->x_s390_arch_flags & PF_ZARCH)
f13e0d4e
UW
61#define TARGET_CPU_LONG_DISPLACEMENT \
62 (s390_arch_flags & PF_LONG_DISPLACEMENT)
ec47b086
DV
63#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
64 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
ec24698e 65#define TARGET_CPU_EXTIMM \
ec47b086
DV
66 (s390_arch_flags & PF_EXTIMM)
67#define TARGET_CPU_EXTIMM_P(opts) \
68 (opts->x_s390_arch_flags & PF_EXTIMM)
85dae55a 69#define TARGET_CPU_DFP \
ec47b086
DV
70 (s390_arch_flags & PF_DFP)
71#define TARGET_CPU_DFP_P(opts) \
72 (opts->x_s390_arch_flags & PF_DFP)
93538e8e 73#define TARGET_CPU_Z10 \
ec47b086
DV
74 (s390_arch_flags & PF_Z10)
75#define TARGET_CPU_Z10_P(opts) \
76 (opts->x_s390_arch_flags & PF_Z10)
65b1d8ea 77#define TARGET_CPU_Z196 \
ec47b086
DV
78 (s390_arch_flags & PF_Z196)
79#define TARGET_CPU_Z196_P(opts) \
80 (opts->x_s390_arch_flags & PF_Z196)
22ac2c2f 81#define TARGET_CPU_ZEC12 \
ec47b086
DV
82 (s390_arch_flags & PF_ZEC12)
83#define TARGET_CPU_ZEC12_P(opts) \
84 (opts->x_s390_arch_flags & PF_ZEC12)
5a3fe9b6 85#define TARGET_CPU_HTM \
ec47b086
DV
86 (s390_arch_flags & PF_TX)
87#define TARGET_CPU_HTM_P(opts) \
88 (opts->x_s390_arch_flags & PF_TX)
55ac540c 89#define TARGET_CPU_Z13 \
ec47b086
DV
90 (s390_arch_flags & PF_Z13)
91#define TARGET_CPU_Z13_P(opts) \
6654e96f 92 (opts->x_s390_arch_flags & PF_Z13)
55ac540c 93#define TARGET_CPU_VX \
6654e96f 94 (s390_arch_flags & PF_VX)
ec47b086
DV
95#define TARGET_CPU_VX_P(opts) \
96 (opts->x_s390_arch_flags & PF_VX)
6654e96f
AK
97#define TARGET_CPU_ARCH12 \
98 (s390_arch_flags & PF_ARCH12)
99#define TARGET_CPU_ARCH12_P(opts) \
100 (opts->x_s390_arch_flags & PF_ARCH12)
101#define TARGET_CPU_VXE \
102 (s390_arch_flags & PF_VXE)
103#define TARGET_CPU_VXE_P(opts) \
104 (opts->x_s390_arch_flags & PF_VXE)
ec47b086
DV
105
106#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
f13e0d4e 107
963fc8d0
AK
108/* These flags indicate that the generated code should run on a cpu
109 providing the respective hardware facility when run in
110 z/Architecture mode. */
111
f13e0d4e 112#define TARGET_LONG_DISPLACEMENT \
ec47b086
DV
113 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
114#define TARGET_LONG_DISPLACEMENT_P(opts) \
115 (TARGET_ZARCH_P (opts->x_target_flags) \
116 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
ec24698e 117#define TARGET_EXTIMM \
ec47b086
DV
118 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
119#define TARGET_EXTIMM_P(opts) \
120 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
85dae55a 121#define TARGET_DFP \
ec47b086
DV
122 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
123#define TARGET_DFP_P(opts) \
124 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
125 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
93538e8e 126#define TARGET_Z10 \
ec47b086
DV
127 (TARGET_ZARCH && TARGET_CPU_Z10)
128#define TARGET_Z10_P(opts) \
129 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
65b1d8ea 130#define TARGET_Z196 \
ec47b086
DV
131 (TARGET_ZARCH && TARGET_CPU_Z196)
132#define TARGET_Z196_P(opts) \
133 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
22ac2c2f 134#define TARGET_ZEC12 \
ec47b086
DV
135 (TARGET_ZARCH && TARGET_CPU_ZEC12)
136#define TARGET_ZEC12_P(opts) \
137 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
167f68ed 138#define TARGET_HTM (TARGET_OPT_HTM)
ec47b086 139#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
55ac540c 140#define TARGET_Z13 \
ec47b086
DV
141 (TARGET_ZARCH && TARGET_CPU_Z13)
142#define TARGET_Z13_P(opts) \
143 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
55ac540c 144#define TARGET_VX \
ec47b086
DV
145 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
146#define TARGET_VX_P(opts) \
147 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
148 && TARGET_OPT_VX_P (opts->x_target_flags) \
149 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
6654e96f
AK
150#define TARGET_ARCH12 (TARGET_ZARCH && TARGET_CPU_ARCH12)
151#define TARGET_ARCH12_P(opts) \
152 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ARCH12_P (opts))
153#define TARGET_VXE \
154 (TARGET_VX && TARGET_CPU_VXE)
155#define TARGET_VXE_P(opts) \
156 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
ec47b086
DV
157
158#ifdef HAVE_AS_MACHINE_MACHINEMODE
159#define S390_USE_TARGET_ATTRIBUTE 1
160#else
161#define S390_USE_TARGET_ATTRIBUTE 0
162#endif
163
164#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
165#define S390_USE_ARCHITECTURE_MODIFIERS 1
166#else
167#define S390_USE_ARCHITECTURE_MODIFIERS 0
168#endif
169
170#if S390_USE_TARGET_ATTRIBUTE
171/* For switching between functions with different target attributes. */
172#define SWITCHABLE_TARGET 1
173#endif
65b1d8ea 174
089b05b1
DV
175#define TARGET_SUPPORTS_WIDE_INT 1
176
55ac540c
AK
177/* Use the ABI introduced with IBM z13:
178 - pass vector arguments <= 16 bytes in VRs
179 - align *all* vector types to 8 bytes */
180#define TARGET_VX_ABI TARGET_VX
65b1d8ea
AK
181
182#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
42c78618 183
862a2d83 184/* Run-time target specification. */
9db1d521 185
a771c4b3
UW
186/* Defaults for option flags defined only on some subtargets. */
187#ifndef TARGET_TPF_PROFILING
188#define TARGET_TPF_PROFILING 0
189#endif
190
4798630c
D
191/* This will be overridden by OS headers. */
192#define TARGET_TPF 0
193
862a2d83 194/* Target CPU builtins. */
3af82a61 195#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
9db1d521 196
58d10f89 197#ifdef DEFAULT_TARGET_64BIT
55ac540c
AK
198#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
199 | MASK_OPT_HTM | MASK_OPT_VX)
58d10f89 200#else
85dae55a 201#define TARGET_DEFAULT 0
58d10f89
UW
202#endif
203
f13e0d4e
UW
204/* Support for configure-time defaults. */
205#define OPTION_DEFAULT_SPECS \
206 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
207 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
208 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
209
63281f61 210#ifdef __s390__
cb0edc39
DV
211extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
212# define EXTRA_SPEC_FUNCTIONS \
213 { "local_cpu_detect", s390_host_detect_local_cpu },
214
b1b5aa2f
DV
215#define MARCH_MTUNE_NATIVE_SPECS \
216 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
217 "%{march=native:%<march=native" \
218 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
63281f61
DV
219#else
220# define MARCH_MTUNE_NATIVE_SPECS ""
221#endif
cb0edc39 222
f13e0d4e 223#ifdef DEFAULT_TARGET_64BIT
b1b5aa2f 224#define S390_TARGET_BITS_STRING "64"
f13e0d4e 225#else
b1b5aa2f
DV
226#define S390_TARGET_BITS_STRING "31"
227#endif
228
229/* Defaulting rules. */
f13e0d4e 230#define DRIVER_SELF_SPECS \
b1b5aa2f
DV
231 MARCH_MTUNE_NATIVE_SPECS, \
232 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
f13e0d4e 233 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
6638efce 234 "%{!march=*:-march=z900}"
f13e0d4e 235
638e37c2 236/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
0387c142
WG
237#define S390_TDC_POSITIVE_ZERO (1 << 11)
238#define S390_TDC_NEGATIVE_ZERO (1 << 10)
239#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
240#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
241#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
242#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
243#define S390_TDC_POSITIVE_INFINITY (1 << 5)
244#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
245#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
246#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
247#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
248#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
249
250/* The following values are different for DFP. */
251#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
252#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
253#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
254#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
255
f4aa3848 256/* For signbit, the BFP-DFP-difference makes no difference. */
0f67fa83 257#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
0387c142
WG
258 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
259 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
0f67fa83
WG
260 | S390_TDC_NEGATIVE_INFINITY \
261 | S390_TDC_NEGATIVE_QUIET_NAN \
262 | S390_TDC_NEGATIVE_SIGNALING_NAN )
263
638e37c2
WG
264#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
265 | S390_TDC_NEGATIVE_INFINITY )
9db1d521
HP
266
267/* Target machine storage layout. */
268
862a2d83 269/* Everything is big-endian. */
9db1d521 270#define BITS_BIG_ENDIAN 1
9db1d521 271#define BYTES_BIG_ENDIAN 1
9db1d521
HP
272#define WORDS_BIG_ENDIAN 1
273
9602b6a1
AK
274#define STACK_SIZE_MODE (Pmode)
275
fe86047c 276#ifndef IN_LIBGCC2
9602b6a1
AK
277
278/* Width of a word, in units (bytes). */
279 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
280
281/* Width of a pointer. To be used instead of UNITS_PER_WORD in
282 ABI-relevant contexts. This always matches
283 GET_MODE_SIZE (Pmode). */
284 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
285 #define MIN_UNITS_PER_WORD 4
286 #define MAX_BITS_PER_WORD 64
287#else
288
289 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
290 the library should export TImode functions or not. Thus, we have
291 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
292 #ifdef __s390x__
293 #define UNITS_PER_WORD 8
294 #else
295 #define UNITS_PER_WORD 4
296 #endif
fe86047c 297#endif
9602b6a1
AK
298
299/* Width of a pointer, in bits. */
300#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
9db1d521 301
9db1d521 302/* Allocation boundary (in *bits*) for storing arguments in argument list. */
9db1d521
HP
303#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
304
305/* Boundary (in *bits*) on which stack pointer should be aligned. */
9db1d521
HP
306#define STACK_BOUNDARY 64
307
308/* Allocation boundary (in *bits*) for the code of a function. */
d0de9e13 309#define FUNCTION_BOUNDARY 64
9db1d521
HP
310
311/* There is no point aligning anything to a rounder boundary than this. */
9db1d521
HP
312#define BIGGEST_ALIGNMENT 64
313
314/* Alignment of field after `int : 0' in a structure. */
9db1d521
HP
315#define EMPTY_FIELD_BOUNDARY 32
316
f710504c 317/* Alignment on even addresses for LARL instruction. */
df8a1d28 318#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
9db1d521 319
862a2d83 320/* Alignment is not required by the hardware. */
9db1d521
HP
321#define STRICT_ALIGNMENT 0
322
862a2d83
UW
323/* Mode of stack savearea.
324 FUNCTION is VOIDmode because calling convention maintains SP.
325 BLOCK needs Pmode for SP.
326 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
2d6744f4
AK
327#define STACK_SAVEAREA_MODE(LEVEL) \
328 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
329 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
862a2d83 330
9db1d521 331
862a2d83 332/* Type layout. */
9db1d521 333
862a2d83
UW
334/* Sizes in bits of the source language data types. */
335#define SHORT_TYPE_SIZE 16
336#define INT_TYPE_SIZE 32
337#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
862a2d83
UW
338#define LONG_LONG_TYPE_SIZE 64
339#define FLOAT_TYPE_SIZE 32
340#define DOUBLE_TYPE_SIZE 64
f61a2c7d
AK
341#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
342
f61a2c7d
AK
343/* Work around target_flags dependency in ada/targtyps.c. */
344#define WIDEST_HARDWARE_FP_SIZE 64
862a2d83
UW
345
346/* We use "unsigned char" as default. */
347#define DEFAULT_SIGNED_CHAR 0
348
349
350/* Register usage. */
351
352/* We have 16 general purpose registers (registers 0-15),
353 and 16 floating point registers (registers 16-31).
354 (On non-IEEE machines, we have only 4 fp registers.)
c7453384 355
862a2d83
UW
356 Amongst the general purpose registers, some are used
357 for specific purposes:
358 GPR 11: Hard frame pointer (if needed)
359 GPR 12: Global offset table pointer (if needed)
360 GPR 13: Literal pool base register
361 GPR 14: Return address register
362 GPR 15: Stack pointer
c7453384 363
c5aa1d12 364 Registers 32-35 are 'fake' hard registers that do not
862a2d83
UW
365 correspond to actual hardware:
366 Reg 32: Argument pointer
367 Reg 33: Condition code
f4aa3848 368 Reg 34: Frame pointer
c5aa1d12 369 Reg 35: Return address pointer
862a2d83 370
f4aa3848 371 Registers 36 and 37 are mapped to access registers
085261c8
AK
372 0 and 1, used to implement thread-local storage.
373
374 Reg 38-53: Vector registers v16-v31 */
c5aa1d12 375
085261c8 376#define FIRST_PSEUDO_REGISTER 54
862a2d83
UW
377
378/* Standard register usage. */
8e509cf9
UW
379#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
380#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
142cd70f 381#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
8e509cf9 382#define CC_REGNO_P(N) ((N) == 33)
a38e09bc 383#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
c5aa1d12 384#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
085261c8
AK
385#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
386#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
8e509cf9
UW
387
388#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
389#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
390#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
391#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
4888ec5d 392#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
c5aa1d12 393#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
085261c8
AK
394#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
395#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
9db1d521 396
862a2d83 397/* Set up fixed registers and calling convention:
9db1d521 398
862a2d83
UW
399 GPRs 0-5 are always call-clobbered,
400 GPRs 6-15 are always call-saved.
401 GPR 12 is fixed if used as GOT pointer.
402 GPR 13 is always fixed (as literal pool pointer).
545d16ff 403 GPR 14 is always fixed on S/390 machines (as return address).
862a2d83
UW
404 GPR 15 is always fixed (as stack pointer).
405 The 'fake' hard registers are call-clobbered and fixed.
c5aa1d12 406 The access registers are call-saved and fixed.
9db1d521 407
862a2d83
UW
408 On 31-bit, FPRs 18-19 are call-clobbered;
409 on 64-bit, FPRs 24-31 are call-clobbered.
085261c8
AK
410 The remaining FPRs are call-saved.
411
412 All non-FP vector registers are call-clobbered v16-v31. */
9db1d521
HP
413
414#define FIXED_REGISTERS \
415{ 0, 0, 0, 0, \
416 0, 0, 0, 0, \
417 0, 0, 0, 0, \
418 0, 1, 1, 1, \
419 0, 0, 0, 0, \
420 0, 0, 0, 0, \
421 0, 0, 0, 0, \
422 0, 0, 0, 0, \
c5aa1d12 423 1, 1, 1, 1, \
085261c8
AK
424 1, 1, \
425 0, 0, 0, 0, \
426 0, 0, 0, 0, \
427 0, 0, 0, 0, \
428 0, 0, 0, 0 }
9db1d521 429
9db1d521
HP
430#define CALL_USED_REGISTERS \
431{ 1, 1, 1, 1, \
432 1, 1, 0, 0, \
433 0, 0, 0, 0, \
434 0, 1, 1, 1, \
4023fb28
UW
435 1, 1, 1, 1, \
436 1, 1, 1, 1, \
437 1, 1, 1, 1, \
438 1, 1, 1, 1, \
c5aa1d12 439 1, 1, 1, 1, \
085261c8
AK
440 1, 1, \
441 1, 1, 1, 1, \
442 1, 1, 1, 1, \
443 1, 1, 1, 1, \
444 1, 1, 1, 1 }
4023fb28 445
4023fb28 446#define CALL_REALLY_USED_REGISTERS \
085261c8 447{ 1, 1, 1, 1, /* r0 - r15 */ \
9db1d521 448 1, 1, 0, 0, \
4023fb28
UW
449 0, 0, 0, 0, \
450 0, 0, 0, 0, \
085261c8 451 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
9db1d521
HP
452 1, 1, 1, 1, \
453 1, 1, 1, 1, \
454 1, 1, 1, 1, \
085261c8
AK
455 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
456 0, 0, /* a0 (36), a1 (37) */ \
457 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
c5aa1d12 458 1, 1, 1, 1, \
085261c8
AK
459 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
460 1, 1, 1, 1 }
9db1d521 461
862a2d83 462/* Preferred register allocation order. */
085261c8
AK
463#define REG_ALLOC_ORDER \
464 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
465 16, 17, 18, 19, 20, 21, 22, 23, \
466 24, 25, 26, 27, 28, 29, 30, 31, \
467 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
468 15, 32, 33, 34, 35, 36, 37 }
9db1d521 469
9db1d521 470
74aa8b4b 471#define HARD_REGNO_RENAME_OK(FROM, TO) \
2d6744f4 472 s390_hard_regno_rename_ok ((FROM), (TO))
7633f08e 473
862a2d83
UW
474/* Maximum number of registers to represent a value of mode MODE
475 in a register of class CLASS. */
476#define CLASS_MAX_NREGS(CLASS, MODE) \
74aa8b4b 477 s390_class_max_nregs ((CLASS), (MODE))
4023fb28 478
eca98038
AK
479/* We can reverse a CC mode safely if we know whether it comes from a
480 floating point compare or not. With the vector modes it is encoded
481 as part of the mode.
482 FIXME: It might make sense to do this for other cc modes as well. */
483#define REVERSIBLE_CC_MODE(MODE) \
484 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
485 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
486
487/* Given a condition code and a mode, return the inverse condition. */
488#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
489
490
862a2d83 491/* Register classes. */
c7453384 492
862a2d83
UW
493/* We use the following register classes:
494 GENERAL_REGS All general purpose registers
495 ADDR_REGS All general purpose registers except %r0
496 (These registers can be used in address generation)
497 FP_REGS All floating point registers
c5aa1d12
UW
498 CC_REGS The condition code register
499 ACCESS_REGS The access registers
c7453384 500
862a2d83
UW
501 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
502 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
c5aa1d12
UW
503 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
504 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
c7453384 505
862a2d83
UW
506 NO_REGS No registers
507 ALL_REGS All registers
c7453384 508
862a2d83 509 Note that the 'fake' frame pointer and argument pointer registers
c5aa1d12 510 are included amongst the address registers here. */
9db1d521
HP
511
512enum reg_class
513{
c5aa1d12 514 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
f4aa3848 515 ADDR_CC_REGS, GENERAL_CC_REGS,
4023fb28 516 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
085261c8 517 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
4023fb28 518 ALL_REGS, LIM_REG_CLASSES
9db1d521 519};
9db1d521
HP
520#define N_REG_CLASSES (int) LIM_REG_CLASSES
521
c5aa1d12
UW
522#define REG_CLASS_NAMES \
523{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
524 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
085261c8
AK
525 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
526 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
527 "ALL_REGS" }
9db1d521 528
862a2d83 529/* Class -> register mapping. */
085261c8
AK
530#define REG_CLASS_CONTENTS \
531{ \
9db1d521 532 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
9dc62c00 533 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
a38e09bc
AK
534 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
535 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
c5aa1d12 536 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
9dc62c00
AK
537 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
538 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
9db1d521 539 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
a38e09bc
AK
540 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
541 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
085261c8
AK
542 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
543 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
544 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
545 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
9db1d521
HP
546}
547
058e97ec
VM
548/* In some case register allocation order is not enough for IRA to
549 generate a good code. The following macro (if defined) increases
550 cost of REGNO for a pseudo approximately by pseudo usage frequency
551 multiplied by the macro value.
552
553 We avoid usage of BASE_REGNUM by nonzero macro value because the
554 reload can decide not to use the hard register because some
555 constant was forced to be in memory. */
556#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
2d6744f4 557 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
058e97ec 558
862a2d83
UW
559/* Register -> class mapping. */
560extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
561#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
9db1d521 562
862a2d83
UW
563/* ADDR_REGS can be used as base or index register. */
564#define INDEX_REG_CLASS ADDR_REGS
565#define BASE_REG_CLASS ADDR_REGS
9db1d521 566
862a2d83
UW
567/* Check whether REGNO is a hard register of the suitable class
568 or a pseudo register currently allocated to one such. */
569#define REGNO_OK_FOR_INDEX_P(REGNO) \
570 (((REGNO) < FIRST_PSEUDO_REGISTER \
93fa8428
AK
571 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
572 || ADDR_REGNO_P (reg_renumber[REGNO]))
862a2d83 573#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
9db1d521 574
9db1d521 575
862a2d83 576/* Stack layout and calling conventions. */
c7453384 577
862a2d83
UW
578/* Our stack grows from higher to lower addresses. However, local variables
579 are accessed by positive offsets, and function arguments are stored at
580 increasing addresses. */
62f9f30b 581#define STACK_GROWS_DOWNWARD 1
63296cb1 582#define FRAME_GROWS_DOWNWARD 1
862a2d83 583/* #undef ARGS_GROW_DOWNWARD */
9db1d521 584
862a2d83
UW
585/* The basic stack layout looks like this: the stack pointer points
586 to the register save area for called functions. Above that area
587 is the location to place outgoing arguments. Above those follow
588 dynamic allocations (alloca), and finally the local variables. */
9db1d521 589
862a2d83
UW
590/* Offset from stack-pointer to first location of outgoing args. */
591#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
9db1d521 592
862a2d83
UW
593/* Offset from the stack pointer register to an item dynamically
594 allocated on the stack, e.g., by `alloca'. */
63296cb1 595#define STACK_DYNAMIC_OFFSET(FUNDECL) \
38173d38 596 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
9db1d521 597
862a2d83
UW
598/* Offset of first parameter from the argument pointer register value.
599 We have a fake argument pointer register that points directly to
600 the argument area. */
601#define FIRST_PARM_OFFSET(FNDECL) 0
9db1d521 602
f4aa3848 603/* Defining this macro makes __builtin_frame_address(0) and
c6d01079
AK
604 __builtin_return_address(0) work with -fomit-frame-pointer. */
605#define INITIAL_FRAME_ADDRESS_RTX \
0a81f074 606 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
c6d01079 607
c7453384 608/* The return address of the current frame is retrieved
4023fb28
UW
609 from the initial value of register RETURN_REGNUM.
610 For frames farther back, we use the stack slot where
611 the corresponding RETURN_REGNUM register was saved. */
c6d01079
AK
612#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
613 (TARGET_PACKED_STACK ? \
0a81f074
RS
614 plus_constant (Pmode, (FRAME), \
615 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
4023fb28 616
78791a80
AK
617/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
618 builtin_frame_address. Otherwise arg pointer -
619 STACK_POINTER_OFFSET would be returned for
620 __builtin_frame_address(0) what might result in an address pointing
621 somewhere into the middle of the local variables since the packed
622 stack layout generally does not need all the bytes in the register
623 save area. */
624#define FRAME_ADDR_RTX(FRAME) \
625 DYNAMIC_CHAIN_ADDRESS ((FRAME))
626
c6d01079 627#define RETURN_ADDR_RTX(COUNT, FRAME) \
5d4d885c 628 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
9db1d521 629
862a2d83 630/* In 31-bit mode, we need to mask off the high bit of return addresses. */
a556fd39 631#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
9db1d521 632
4023fb28 633
862a2d83 634/* Exception handling. */
c7453384 635
862a2d83
UW
636/* Describe calling conventions for DWARF-2 exception handling. */
637#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
4023fb28 638#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
9db1d521
HP
639#define DWARF_FRAME_RETURN_COLUMN 14
640
641/* Describe how we implement __builtin_eh_return. */
642#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
a38e09bc 643#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
f4aa3848 644
18789f4e
UW
645/* Select a format to encode pointers in exception handling data. */
646#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
647 (flag_pic \
648 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
649 : DW_EH_PE_absptr)
650
9602b6a1
AK
651/* Register save slot alignment. */
652#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
653
f276b762
AK
654/* Let the assembler generate debug line info. */
655#define DWARF2_ASM_LINE_DEBUG_INFO 1
656
085261c8
AK
657/* Define the dwarf register mapping.
658 v16-v31 -> 68-83
659 rX -> X otherwise */
2d6744f4
AK
660#define DBX_REGISTER_NUMBER(regno) \
661 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
9db1d521 662
862a2d83 663/* Frame registers. */
9db1d521 664
862a2d83
UW
665#define STACK_POINTER_REGNUM 15
666#define FRAME_POINTER_REGNUM 34
667#define HARD_FRAME_POINTER_REGNUM 11
668#define ARG_POINTER_REGNUM 32
a38e09bc 669#define RETURN_ADDRESS_POINTER_REGNUM 35
9db1d521 670
c7453384
EC
671/* The static chain must be call-clobbered, but not used for
672 function argument passing. As register 1 is clobbered by
862a2d83
UW
673 the trampoline code, we only have one option. */
674#define STATIC_CHAIN_REGNUM 0
9db1d521 675
862a2d83
UW
676/* Number of hardware registers that go into the DWARF-2 unwind info.
677 To avoid ABI incompatibility, this number must not change even as
678 'fake' hard registers are added or removed. */
679#define DWARF_FRAME_REGISTERS 34
9db1d521 680
9db1d521 681
862a2d83 682/* Frame pointer and argument pointer elimination. */
9db1d521 683
7633f08e
UW
684#define ELIMINABLE_REGS \
685{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
686 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
687 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
688 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
689 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
690 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
691 { BASE_REGNUM, BASE_REGNUM }}
9db1d521 692
91086990
UW
693#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
694 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
9db1d521 695
9db1d521 696
862a2d83 697/* Stack arguments. */
c7453384 698
862a2d83
UW
699/* We need current_function_outgoing_args to be valid. */
700#define ACCUMULATE_OUTGOING_ARGS 1
9db1d521 701
9db1d521 702
862a2d83 703/* Register arguments. */
c7453384 704
9db1d521
HP
705typedef struct s390_arg_structure
706{
707 int gprs; /* gpr so far */
708 int fprs; /* fpr so far */
085261c8 709 int vrs; /* vr so far */
9db1d521
HP
710}
711CUMULATIVE_ARGS;
712
07711f53 713#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
085261c8
AK
714 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
715
716#define FIRST_VEC_ARG_REGNO 46
717#define LAST_VEC_ARG_REGNO 53
9db1d521 718
96e2afa8
AK
719/* Arguments can be placed in general registers 2 to 6, or in floating
720 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
721 bit. */
085261c8
AK
722#define FUNCTION_ARG_REGNO_P(N) \
723 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
724 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
725 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
9db1d521 726
9db1d521 727
085261c8
AK
728/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
729#define FUNCTION_VALUE_REGNO_P(N) \
730 ((N) == 2 || (N) == 16 \
731 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
9db1d521 732
9db1d521 733
862a2d83 734/* Function entry and exit. */
c7453384 735
862a2d83
UW
736/* When returning from a function, the stack pointer does not matter. */
737#define EXIT_IGNORE_STACK 1
9db1d521 738
9db1d521 739
862a2d83 740/* Profiling. */
9db1d521
HP
741
742#define FUNCTION_PROFILER(FILE, LABELNO) \
862a2d83 743 s390_function_profiler ((FILE), ((LABELNO)))
9db1d521 744
c52a375d 745#define PROFILE_BEFORE_PROLOGUE 1
9db1d521 746
9db1d521 747
862a2d83 748/* Trampolines for nested functions. */
9db1d521 749
b81ecf6f
RH
750#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
751#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
9db1d521 752
862a2d83 753/* Addressing modes, and classification of registers for them. */
9db1d521 754
862a2d83
UW
755/* Recognize any constant value that is a valid address. */
756#define CONSTANT_ADDRESS_P(X) 0
9db1d521 757
862a2d83
UW
758/* Maximum number of registers that can appear in a valid memory address. */
759#define MAX_REGS_PER_ADDRESS 2
9db1d521 760
963fc8d0 761/* This definition replaces the formerly used 'm' constraint with a
c6c3dba9
PB
762 different constraint letter in order to avoid changing semantics of
763 the 'm' constraint when accepting new address formats in
764 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
765 must not be used in insn definitions or inline assemblies. */
963fc8d0
AK
766#define TARGET_MEM_CONSTRAINT 'e'
767
0b540f12
UW
768/* Try a machine-dependent way of reloading an illegitimate address
769 operand. If we find one, push the reload and jump to WIN. This
770 macro is used in only one place: `find_reloads_address' in reload.c. */
771#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
2d6744f4
AK
772 do { \
773 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
774 (OPNUM), (int)(TYPE)); \
775 if (new_rtx) \
776 { \
777 (AD) = new_rtx; \
778 goto WIN; \
779 } \
780 } while (0)
0b540f12 781
862a2d83 782/* Helper macro for s390.c and s390.md to check for symbolic constants. */
2d6744f4
AK
783#define SYMBOLIC_CONST(X) \
784 (GET_CODE (X) == SYMBOL_REF \
785 || GET_CODE (X) == LABEL_REF \
786 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
9db1d521 787
2d6744f4
AK
788#define TLS_SYMBOLIC_CONST(X) \
789 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
790 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
fd3cd001 791
9db1d521 792
862a2d83 793/* Condition codes. */
9db1d521 794
862a2d83
UW
795/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
796 return the mode to be used for the comparison. */
797#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
c7453384 798
862a2d83 799/* Relative costs of operations. */
9db1d521 800
9db1d521
HP
801/* A C expression for the cost of a branch instruction. A value of 1
802 is the default; other values are interpreted relative to that. */
3d427cc1 803#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
9db1d521 804
862a2d83
UW
805/* Nonzero if access to memory by bytes is slow and undesirable. */
806#define SLOW_BYTE_ACCESS 1
807
c5443745 808/* An integer expression for the size in bits of the largest integer machine
f4aa3848 809 mode that should actually be used. We allow pairs of registers. */
c5443745
UW
810#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
811
862a2d83 812/* The maximum number of bytes that a single instruction can move quickly
ff482c8d 813 between memory and registers or between two memory locations. */
9602b6a1
AK
814#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
815#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862a2d83 816#define MAX_MOVE_MAX 16
9db1d521 817
862a2d83 818/* Don't perform CSE on function addresses. */
1e8552c2 819#define NO_FUNCTION_CSE 1
862a2d83 820
5f1b2ee6
AK
821/* This value is used in tree-sra to decide whether it might benefical
822 to split a struct move into several word-size moves. For S/390
823 only small values make sense here since struct moves are relatively
073a8998 824 cheap thanks to mvc so the small default value chosen for archs
5f1b2ee6
AK
825 with memmove patterns should be ok. But this value is multiplied
826 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
827 here to compensate for that factor since mvc costs exactly the same
828 on 31 and 64 bit. */
e04ad03d 829#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
5f1b2ee6 830
862a2d83
UW
831
832/* Sections. */
833
834/* Output before read-only data. */
835#define TEXT_SECTION_ASM_OP ".text"
836
837/* Output before writable (initialized) data. */
838#define DATA_SECTION_ASM_OP ".data"
839
840/* Output before writable (uninitialized) data. */
841#define BSS_SECTION_ASM_OP ".bss"
842
843/* S/390 constant pool breaks the devices in crtstuff.c to control section
844 in where code resides. We have to write it as asm code. */
845#ifndef __s390x__
846#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
847 asm (SECTION_OP "\n\
848 bras\t%r2,1f\n\
8490: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
8501: l\t%r3,0(%r2)\n\
851 bas\t%r14,0(%r3,%r2)\n\
852 .previous");
853#endif
63a1ff86 854
862a2d83
UW
855
856/* Position independent code. */
857
862a2d83
UW
858#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
859
860#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
63a1ff86 861
935b5226
AK
862#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
863#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
864#endif
865
63a1ff86
UW
866
867/* Assembler file format. */
868
869/* Character to start a comment. */
870#define ASM_COMMENT_START "#"
871
872/* Declare an uninitialized external linkage data object. */
2d6744f4
AK
873#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
874 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
63a1ff86
UW
875
876/* Globalizing directive for a label. */
877#define GLOBAL_ASM_OP ".globl "
878
879/* Advance the location counter to a multiple of 2**LOG bytes. */
880#define ASM_OUTPUT_ALIGN(FILE, LOG) \
881 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
882
883/* Advance the location counter by SIZE bytes. */
884#define ASM_OUTPUT_SKIP(FILE, SIZE) \
16998094 885 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
63a1ff86 886
63a1ff86
UW
887/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
888#define LOCAL_LABEL_PREFIX "."
9db1d521 889
5d304e47 890#define LABEL_ALIGN(LABEL) \
2d6744f4 891 s390_label_align ((LABEL))
5d304e47 892
9db1d521
HP
893/* How to refer to registers in assembler output. This sequence is
894 indexed by compiler's hard-register-number (see above). */
9db1d521 895#define REGISTER_NAMES \
085261c8
AK
896 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
897 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
898 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
899 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
900 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
901 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
902 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
903 }
904
905#define ADDITIONAL_REGISTER_NAMES \
906 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
907 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
908 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
909 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
9db1d521 910
63a1ff86 911/* Print operand X (an rtx) in assembler syntax to file FILE. */
2d6744f4
AK
912#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
913#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
9db1d521 914
63a1ff86
UW
915/* Output an element of a case-vector that is absolute. */
916#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
917do { \
918 char buf[32]; \
9602b6a1 919 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
920 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
921 assemble_name ((FILE), buf); \
922 fputc ('\n', (FILE)); \
923} while (0)
924
925/* Output an element of a case-vector that is relative. */
926#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
927do { \
928 char buf[32]; \
9602b6a1 929 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
930 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
931 assemble_name ((FILE), buf); \
932 fputc ('-', (FILE)); \
933 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
934 assemble_name ((FILE), buf); \
935 fputc ('\n', (FILE)); \
936} while (0)
937
177bc204
RS
938/* Mark the return register as used by the epilogue so that we can
939 use it in unadorned (return) and (simple_return) instructions. */
940#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
941
d0de9e13 942#undef ASM_OUTPUT_FUNCTION_LABEL
2d6744f4
AK
943#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
944 s390_asm_output_function_label ((FILE), (NAME), (DECL))
9db1d521 945
ec47b086
DV
946#if S390_USE_TARGET_ATTRIBUTE
947/* Hook to output .machine and .machinemode at start of function. */
948#undef ASM_OUTPUT_FUNCTION_PREFIX
949#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
950
951/* Hook to output .machine and .machinemode at end of function. */
952#undef ASM_DECLARE_FUNCTION_SIZE
953#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
954#endif
955
862a2d83
UW
956/* Miscellaneous parameters. */
957
862a2d83
UW
958/* Specify the machine mode that this machine uses for the index in the
959 tablejump instruction. */
960#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
961
862a2d83
UW
962/* Specify the machine mode that pointers have.
963 After generation of rtl, the compiler makes no further distinction
964 between pointers and any other objects of this machine mode. */
501623d4 965#define Pmode (TARGET_64BIT ? DImode : SImode)
862a2d83 966
c7453384
EC
967/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
968#define POINTERS_EXTEND_UNSIGNED -1
969
862a2d83
UW
970/* A function address in a call instruction is a byte address (for
971 indexing purposes) so give the MEM rtx a byte's mode. */
972#define FUNCTION_MODE QImode
973
ec24698e
UW
974/* Specify the value which is used when clz operand is zero. */
975#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
976
0bfc3f69 977/* Machine-specific symbol_ref flags. */
e63d44c2
RD
978#define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
979#define SYMBOL_FLAG_ALIGN_MASK \
980 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
981
982#define SYMBOL_FLAG_SET_ALIGN(X, A) \
983 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
984 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
985
986#define SYMBOL_FLAG_GET_ALIGN(X) \
987 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
988
989/* Helpers to access symbol_ref flags. They are used in
990 check_symref_alignment() and larl_operand to detect if the
991 available alignment matches the required one. We do not use
992 a positive check like _ALIGN2 because in that case we would have
993 to annotate every symbol_ref. However, we only want to touch
994 the symbol_refs that can be misaligned and assume that the others
995 are correctly aligned. Hence, if a symbol_ref does not have
996 a _NOTALIGN flag it is supposed to be correctly aligned. */
2d6744f4
AK
997#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
998#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
999#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
e63d44c2
RD
1000
1001#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4 1002#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1003 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4
AK
1004#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1005 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1006 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
0bfc3f69 1007
085261c8
AK
1008/* Check whether integer displacement is in range for a short displacement. */
1009#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1010
0bfc3f69 1011/* Check whether integer displacement is in range. */
2d6744f4
AK
1012#define DISP_IN_RANGE(d) \
1013 (TARGET_LONG_DISPLACEMENT \
1014 ? ((d) >= -524288 && (d) <= 524287) \
1015 : SHORT_DISP_IN_RANGE(d))
0bfc3f69 1016
24a235c8
CB
1017/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1018#define READ_CAN_USE_WRITE_PREFETCH 1
677f3fa8
JM
1019
1020extern const int processor_flags_table[];
085261c8
AK
1021
1022/* The truth element value for vector comparisons. Our instructions
1023 always generate -1 in that case. */
1024#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1025
3af82a61
AK
1026/* Target pragma. */
1027
1028/* resolve_overloaded_builtin can not be defined the normal way since
1029 it is defined in code which technically belongs to the
1030 front-end. */
1031#define REGISTER_TARGET_PRAGMAS() \
1032 do { \
1033 s390_register_target_pragmas (); \
1034 } while (0)
1035
085261c8 1036#endif /* S390_H */