]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/config/s390/s390.h
Update copyright years.
[thirdparty/gcc.git] / gcc / config / s390 / s390.h
CommitLineData
9db1d521 1/* Definitions of target machine for GNU compiler, for IBM S/390
8d9254fc 2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
9db1d521 3 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
0ff3dcd6
AK
4 Ulrich Weigand (uweigand@de.ibm.com).
5 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
9db1d521 6
58add37a 7This file is part of GCC.
9db1d521 8
58add37a
UW
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
2f83c7d6 11Software Foundation; either version 3, or (at your option) any later
58add37a
UW
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
9db1d521
HP
18
19You should have received a copy of the GNU General Public License
2f83c7d6
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
9db1d521
HP
22
23#ifndef _S390_H
24#define _S390_H
25
f13e0d4e
UW
26/* Optional architectural facilities supported by the processor. */
27
28enum processor_flags
29{
30 PF_IEEE_FLOAT = 1,
31 PF_ZARCH = 2,
ec24698e 32 PF_LONG_DISPLACEMENT = 4,
85dae55a 33 PF_EXTIMM = 8,
93538e8e 34 PF_DFP = 16,
65b1d8ea 35 PF_Z10 = 32,
22ac2c2f 36 PF_Z196 = 64,
5a3fe9b6 37 PF_ZEC12 = 128,
55ac540c
AK
38 PF_TX = 256,
39 PF_Z13 = 512,
6654e96f 40 PF_VX = 1024,
e9e8efc9 41 PF_Z14 = 2048,
511ea153
AK
42 PF_VXE = 4096,
43 PF_VXE2 = 8192,
80f8cd77 44 PF_Z15 = 16384
f13e0d4e
UW
45};
46
90c6fd8a
AK
47/* This is necessary to avoid a warning about comparing different enum
48 types. */
80f8cd77 49#define s390_tune_attr ((enum attr_cpu)(s390_tune > PROCESSOR_8561_Z15 ? PROCESSOR_8561_Z15 : s390_tune ))
90c6fd8a 50
963fc8d0
AK
51/* These flags indicate that the generated code should run on a cpu
52 providing the respective hardware facility regardless of the
53 current cpu mode (ESA or z/Architecture). */
54
f13e0d4e
UW
55#define TARGET_CPU_IEEE_FLOAT \
56 (s390_arch_flags & PF_IEEE_FLOAT)
ec47b086
DV
57#define TARGET_CPU_IEEE_FLOAT_P(opts) \
58 (opts->x_s390_arch_flags & PF_IEEE_FLOAT)
f13e0d4e
UW
59#define TARGET_CPU_LONG_DISPLACEMENT \
60 (s390_arch_flags & PF_LONG_DISPLACEMENT)
ec47b086
DV
61#define TARGET_CPU_LONG_DISPLACEMENT_P(opts) \
62 (opts->x_s390_arch_flags & PF_LONG_DISPLACEMENT)
ec24698e 63#define TARGET_CPU_EXTIMM \
ec47b086
DV
64 (s390_arch_flags & PF_EXTIMM)
65#define TARGET_CPU_EXTIMM_P(opts) \
66 (opts->x_s390_arch_flags & PF_EXTIMM)
85dae55a 67#define TARGET_CPU_DFP \
ec47b086
DV
68 (s390_arch_flags & PF_DFP)
69#define TARGET_CPU_DFP_P(opts) \
70 (opts->x_s390_arch_flags & PF_DFP)
93538e8e 71#define TARGET_CPU_Z10 \
ec47b086
DV
72 (s390_arch_flags & PF_Z10)
73#define TARGET_CPU_Z10_P(opts) \
74 (opts->x_s390_arch_flags & PF_Z10)
65b1d8ea 75#define TARGET_CPU_Z196 \
ec47b086
DV
76 (s390_arch_flags & PF_Z196)
77#define TARGET_CPU_Z196_P(opts) \
78 (opts->x_s390_arch_flags & PF_Z196)
22ac2c2f 79#define TARGET_CPU_ZEC12 \
ec47b086
DV
80 (s390_arch_flags & PF_ZEC12)
81#define TARGET_CPU_ZEC12_P(opts) \
82 (opts->x_s390_arch_flags & PF_ZEC12)
5a3fe9b6 83#define TARGET_CPU_HTM \
ec47b086
DV
84 (s390_arch_flags & PF_TX)
85#define TARGET_CPU_HTM_P(opts) \
86 (opts->x_s390_arch_flags & PF_TX)
55ac540c 87#define TARGET_CPU_Z13 \
ec47b086
DV
88 (s390_arch_flags & PF_Z13)
89#define TARGET_CPU_Z13_P(opts) \
6654e96f 90 (opts->x_s390_arch_flags & PF_Z13)
55ac540c 91#define TARGET_CPU_VX \
6654e96f 92 (s390_arch_flags & PF_VX)
ec47b086
DV
93#define TARGET_CPU_VX_P(opts) \
94 (opts->x_s390_arch_flags & PF_VX)
e9e8efc9
AK
95#define TARGET_CPU_Z14 \
96 (s390_arch_flags & PF_Z14)
97#define TARGET_CPU_Z14_P(opts) \
98 (opts->x_s390_arch_flags & PF_Z14)
6654e96f
AK
99#define TARGET_CPU_VXE \
100 (s390_arch_flags & PF_VXE)
101#define TARGET_CPU_VXE_P(opts) \
102 (opts->x_s390_arch_flags & PF_VXE)
80f8cd77
AK
103#define TARGET_CPU_Z15 \
104 (s390_arch_flags & PF_Z15)
105#define TARGET_CPU_Z15_P(opts) \
106 (opts->x_s390_arch_flags & PF_Z15)
511ea153
AK
107#define TARGET_CPU_VXE2 \
108 (s390_arch_flags & PF_VXE2)
109#define TARGET_CPU_VXE2_P(opts) \
110 (opts->x_s390_arch_flags & PF_VXE2)
ec47b086
DV
111
112#define TARGET_HARD_FLOAT_P(opts) (!TARGET_SOFT_FLOAT_P(opts))
f13e0d4e 113
963fc8d0
AK
114/* These flags indicate that the generated code should run on a cpu
115 providing the respective hardware facility when run in
116 z/Architecture mode. */
117
f13e0d4e 118#define TARGET_LONG_DISPLACEMENT \
ec47b086
DV
119 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
120#define TARGET_LONG_DISPLACEMENT_P(opts) \
121 (TARGET_ZARCH_P (opts->x_target_flags) \
122 && TARGET_CPU_LONG_DISPLACEMENT_P (opts))
ec24698e 123#define TARGET_EXTIMM \
ec47b086
DV
124 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
125#define TARGET_EXTIMM_P(opts) \
126 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_EXTIMM_P (opts))
85dae55a 127#define TARGET_DFP \
ec47b086
DV
128 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
129#define TARGET_DFP_P(opts) \
130 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_DFP_P (opts) \
131 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
93538e8e 132#define TARGET_Z10 \
ec47b086
DV
133 (TARGET_ZARCH && TARGET_CPU_Z10)
134#define TARGET_Z10_P(opts) \
135 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z10_P (opts))
65b1d8ea 136#define TARGET_Z196 \
ec47b086
DV
137 (TARGET_ZARCH && TARGET_CPU_Z196)
138#define TARGET_Z196_P(opts) \
139 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z196_P (opts))
22ac2c2f 140#define TARGET_ZEC12 \
ec47b086
DV
141 (TARGET_ZARCH && TARGET_CPU_ZEC12)
142#define TARGET_ZEC12_P(opts) \
143 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_ZEC12_P (opts))
167f68ed 144#define TARGET_HTM (TARGET_OPT_HTM)
ec47b086 145#define TARGET_HTM_P(opts) (TARGET_OPT_HTM_P (opts->x_target_flags))
55ac540c 146#define TARGET_Z13 \
ec47b086
DV
147 (TARGET_ZARCH && TARGET_CPU_Z13)
148#define TARGET_Z13_P(opts) \
149 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z13_P (opts))
55ac540c 150#define TARGET_VX \
ec47b086
DV
151 (TARGET_ZARCH && TARGET_CPU_VX && TARGET_OPT_VX && TARGET_HARD_FLOAT)
152#define TARGET_VX_P(opts) \
153 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_VX_P (opts) \
154 && TARGET_OPT_VX_P (opts->x_target_flags) \
155 && TARGET_HARD_FLOAT_P (opts->x_target_flags))
e9e8efc9
AK
156#define TARGET_Z14 (TARGET_ZARCH && TARGET_CPU_Z14)
157#define TARGET_Z14_P(opts) \
158 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z14_P (opts))
6654e96f
AK
159#define TARGET_VXE \
160 (TARGET_VX && TARGET_CPU_VXE)
161#define TARGET_VXE_P(opts) \
162 (TARGET_VX_P (opts) && TARGET_CPU_VXE_P (opts))
80f8cd77
AK
163#define TARGET_Z15 (TARGET_ZARCH && TARGET_CPU_Z15)
164#define TARGET_Z15_P(opts) \
165 (TARGET_ZARCH_P (opts->x_target_flags) && TARGET_CPU_Z15_P (opts))
511ea153
AK
166#define TARGET_VXE2 \
167 (TARGET_VX && TARGET_CPU_VXE2)
168#define TARGET_VXE2_P(opts) \
169 (TARGET_VX_P (opts) && TARGET_CPU_VXE2_P (opts))
ec47b086
DV
170
171#ifdef HAVE_AS_MACHINE_MACHINEMODE
172#define S390_USE_TARGET_ATTRIBUTE 1
173#else
174#define S390_USE_TARGET_ATTRIBUTE 0
175#endif
176
177#ifdef HAVE_AS_ARCHITECTURE_MODIFIERS
178#define S390_USE_ARCHITECTURE_MODIFIERS 1
179#else
180#define S390_USE_ARCHITECTURE_MODIFIERS 0
181#endif
182
183#if S390_USE_TARGET_ATTRIBUTE
184/* For switching between functions with different target attributes. */
185#define SWITCHABLE_TARGET 1
186#endif
65b1d8ea 187
089b05b1
DV
188#define TARGET_SUPPORTS_WIDE_INT 1
189
55ac540c
AK
190/* Use the ABI introduced with IBM z13:
191 - pass vector arguments <= 16 bytes in VRs
192 - align *all* vector types to 8 bytes */
193#define TARGET_VX_ABI TARGET_VX
65b1d8ea
AK
194
195#define TARGET_AVOID_CMP_AND_BRANCH (s390_tune == PROCESSOR_2817_Z196)
42c78618 196
4de3a1e1
AK
197/* Issue a write prefetch for the +4 cache line. */
198#define TARGET_SETMEM_PREFETCH_DISTANCE 1024
199
200/* Expand to a C expressions evaluating to true if a setmem to VAL of
201 length LEN should be emitted using prefetch instructions. */
202#define TARGET_SETMEM_PFD(VAL,LEN) \
203 (TARGET_Z10 \
204 && (s390_tune < PROCESSOR_2964_Z13 || (VAL) != const0_rtx) \
205 && (!CONST_INT_P (LEN) || INTVAL ((LEN)) > TARGET_SETMEM_PREFETCH_DISTANCE))
206
862a2d83 207/* Run-time target specification. */
9db1d521 208
a771c4b3
UW
209/* Defaults for option flags defined only on some subtargets. */
210#ifndef TARGET_TPF_PROFILING
211#define TARGET_TPF_PROFILING 0
212#endif
213
4798630c
D
214/* This will be overridden by OS headers. */
215#define TARGET_TPF 0
216
862a2d83 217/* Target CPU builtins. */
3af82a61 218#define TARGET_CPU_CPP_BUILTINS() s390_cpu_cpp_builtins (pfile)
9db1d521 219
b4c522fa
IB
220/* Target CPU versions for D. */
221#define TARGET_D_CPU_VERSIONS s390_d_target_versions
222
58d10f89 223#ifdef DEFAULT_TARGET_64BIT
55ac540c 224#define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP \
0ff3dcd6 225 | MASK_OPT_HTM | MASK_OPT_VX)
58d10f89 226#else
85dae55a 227#define TARGET_DEFAULT 0
58d10f89
UW
228#endif
229
f13e0d4e 230/* Support for configure-time defaults. */
0ff3dcd6 231#define OPTION_DEFAULT_SPECS \
f13e0d4e
UW
232 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
233 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
4723f0fb 234 { "tune", "%{!mtune=*:%{!march=*:-mtune=%(VALUE)}}" }
f13e0d4e 235
63281f61 236#ifdef __s390__
cb0edc39
DV
237extern const char *s390_host_detect_local_cpu (int argc, const char **argv);
238# define EXTRA_SPEC_FUNCTIONS \
239 { "local_cpu_detect", s390_host_detect_local_cpu },
240
b1b5aa2f
DV
241#define MARCH_MTUNE_NATIVE_SPECS \
242 "%{mtune=native:%<mtune=native %:local_cpu_detect(tune)} " \
243 "%{march=native:%<march=native" \
244 " %:local_cpu_detect(arch %{mesa|mzarch:mesa_mzarch})}"
63281f61
DV
245#else
246# define MARCH_MTUNE_NATIVE_SPECS ""
247#endif
cb0edc39 248
f13e0d4e 249#ifdef DEFAULT_TARGET_64BIT
b1b5aa2f 250#define S390_TARGET_BITS_STRING "64"
f13e0d4e 251#else
b1b5aa2f
DV
252#define S390_TARGET_BITS_STRING "31"
253#endif
254
255/* Defaulting rules. */
f13e0d4e 256#define DRIVER_SELF_SPECS \
b1b5aa2f
DV
257 MARCH_MTUNE_NATIVE_SPECS, \
258 "%{!m31:%{!m64:-m" S390_TARGET_BITS_STRING "}}", \
f13e0d4e 259 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
6638efce 260 "%{!march=*:-march=z900}"
f13e0d4e 261
638e37c2 262/* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
0387c142
WG
263#define S390_TDC_POSITIVE_ZERO (1 << 11)
264#define S390_TDC_NEGATIVE_ZERO (1 << 10)
265#define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
266#define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
267#define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
268#define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
269#define S390_TDC_POSITIVE_INFINITY (1 << 5)
270#define S390_TDC_NEGATIVE_INFINITY (1 << 4)
271#define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
272#define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
273#define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
274#define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
275
276/* The following values are different for DFP. */
277#define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
278#define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
279#define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
280#define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
281
f4aa3848 282/* For signbit, the BFP-DFP-difference makes no difference. */
0f67fa83 283#define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
0ff3dcd6
AK
284 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
285 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
286 | S390_TDC_NEGATIVE_INFINITY \
287 | S390_TDC_NEGATIVE_QUIET_NAN \
0f67fa83
WG
288 | S390_TDC_NEGATIVE_SIGNALING_NAN )
289
638e37c2
WG
290#define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
291 | S390_TDC_NEGATIVE_INFINITY )
9db1d521
HP
292
293/* Target machine storage layout. */
294
862a2d83 295/* Everything is big-endian. */
9db1d521 296#define BITS_BIG_ENDIAN 1
9db1d521 297#define BYTES_BIG_ENDIAN 1
9db1d521
HP
298#define WORDS_BIG_ENDIAN 1
299
9602b6a1
AK
300#define STACK_SIZE_MODE (Pmode)
301
fe86047c 302#ifndef IN_LIBGCC2
9602b6a1
AK
303
304/* Width of a word, in units (bytes). */
305 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
306
307/* Width of a pointer. To be used instead of UNITS_PER_WORD in
308 ABI-relevant contexts. This always matches
309 GET_MODE_SIZE (Pmode). */
310 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
311 #define MIN_UNITS_PER_WORD 4
312 #define MAX_BITS_PER_WORD 64
313#else
314
315 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
316 the library should export TImode functions or not. Thus, we have
317 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
318 #ifdef __s390x__
319 #define UNITS_PER_WORD 8
320 #else
321 #define UNITS_PER_WORD 4
322 #endif
fe86047c 323#endif
9602b6a1
AK
324
325/* Width of a pointer, in bits. */
326#define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
9db1d521 327
9db1d521 328/* Allocation boundary (in *bits*) for storing arguments in argument list. */
9db1d521
HP
329#define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
330
331/* Boundary (in *bits*) on which stack pointer should be aligned. */
9db1d521
HP
332#define STACK_BOUNDARY 64
333
334/* Allocation boundary (in *bits*) for the code of a function. */
d0de9e13 335#define FUNCTION_BOUNDARY 64
9db1d521
HP
336
337/* There is no point aligning anything to a rounder boundary than this. */
9db1d521
HP
338#define BIGGEST_ALIGNMENT 64
339
340/* Alignment of field after `int : 0' in a structure. */
9db1d521
HP
341#define EMPTY_FIELD_BOUNDARY 32
342
f710504c 343/* Alignment on even addresses for LARL instruction. */
df8a1d28 344#define DATA_ABI_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
9db1d521 345
862a2d83 346/* Alignment is not required by the hardware. */
9db1d521
HP
347#define STRICT_ALIGNMENT 0
348
862a2d83
UW
349/* Mode of stack savearea.
350 FUNCTION is VOIDmode because calling convention maintains SP.
351 BLOCK needs Pmode for SP.
352 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
2d6744f4
AK
353#define STACK_SAVEAREA_MODE(LEVEL) \
354 ((LEVEL) == SAVE_FUNCTION ? VOIDmode \
355 : (LEVEL) == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
862a2d83 356
9db1d521 357
862a2d83 358/* Type layout. */
9db1d521 359
862a2d83
UW
360/* Sizes in bits of the source language data types. */
361#define SHORT_TYPE_SIZE 16
362#define INT_TYPE_SIZE 32
363#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
862a2d83
UW
364#define LONG_LONG_TYPE_SIZE 64
365#define FLOAT_TYPE_SIZE 32
366#define DOUBLE_TYPE_SIZE 64
f61a2c7d
AK
367#define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
368
f61a2c7d
AK
369/* Work around target_flags dependency in ada/targtyps.c. */
370#define WIDEST_HARDWARE_FP_SIZE 64
862a2d83
UW
371
372/* We use "unsigned char" as default. */
373#define DEFAULT_SIGNED_CHAR 0
374
375
376/* Register usage. */
377
378/* We have 16 general purpose registers (registers 0-15),
379 and 16 floating point registers (registers 16-31).
380 (On non-IEEE machines, we have only 4 fp registers.)
c7453384 381
862a2d83
UW
382 Amongst the general purpose registers, some are used
383 for specific purposes:
384 GPR 11: Hard frame pointer (if needed)
385 GPR 12: Global offset table pointer (if needed)
386 GPR 13: Literal pool base register
387 GPR 14: Return address register
388 GPR 15: Stack pointer
c7453384 389
c5aa1d12 390 Registers 32-35 are 'fake' hard registers that do not
862a2d83
UW
391 correspond to actual hardware:
392 Reg 32: Argument pointer
393 Reg 33: Condition code
f4aa3848 394 Reg 34: Frame pointer
c5aa1d12 395 Reg 35: Return address pointer
862a2d83 396
f4aa3848 397 Registers 36 and 37 are mapped to access registers
085261c8
AK
398 0 and 1, used to implement thread-local storage.
399
400 Reg 38-53: Vector registers v16-v31 */
c5aa1d12 401
085261c8 402#define FIRST_PSEUDO_REGISTER 54
862a2d83
UW
403
404/* Standard register usage. */
8e509cf9
UW
405#define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
406#define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
142cd70f 407#define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
8e509cf9 408#define CC_REGNO_P(N) ((N) == 33)
a38e09bc 409#define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
c5aa1d12 410#define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
085261c8
AK
411#define VECTOR_NOFP_REGNO_P(N) ((N) >= 38 && (N) <= 53)
412#define VECTOR_REGNO_P(N) (FP_REGNO_P (N) || VECTOR_NOFP_REGNO_P (N))
8e509cf9
UW
413
414#define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
415#define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
416#define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
417#define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
4888ec5d 418#define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
c5aa1d12 419#define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
085261c8
AK
420#define VECTOR_NOFP_REG_P(X) (REG_P (X) && VECTOR_NOFP_REGNO_P (REGNO (X)))
421#define VECTOR_REG_P(X) (REG_P (X) && VECTOR_REGNO_P (REGNO (X)))
9db1d521 422
862a2d83 423/* Set up fixed registers and calling convention:
9db1d521 424
862a2d83
UW
425 GPRs 0-5 are always call-clobbered,
426 GPRs 6-15 are always call-saved.
427 GPR 12 is fixed if used as GOT pointer.
428 GPR 13 is always fixed (as literal pool pointer).
545d16ff 429 GPR 14 is always fixed on S/390 machines (as return address).
862a2d83
UW
430 GPR 15 is always fixed (as stack pointer).
431 The 'fake' hard registers are call-clobbered and fixed.
c5aa1d12 432 The access registers are call-saved and fixed.
9db1d521 433
862a2d83
UW
434 On 31-bit, FPRs 18-19 are call-clobbered;
435 on 64-bit, FPRs 24-31 are call-clobbered.
085261c8
AK
436 The remaining FPRs are call-saved.
437
438 All non-FP vector registers are call-clobbered v16-v31. */
9db1d521
HP
439
440#define FIXED_REGISTERS \
0ff3dcd6
AK
441{ 0, 0, 0, 0, \
442 0, 0, 0, 0, \
443 0, 0, 0, 0, \
9db1d521 444 0, 1, 1, 1, \
0ff3dcd6
AK
445 0, 0, 0, 0, \
446 0, 0, 0, 0, \
447 0, 0, 0, 0, \
448 0, 0, 0, 0, \
c5aa1d12 449 1, 1, 1, 1, \
085261c8 450 1, 1, \
0ff3dcd6
AK
451 0, 0, 0, 0, \
452 0, 0, 0, 0, \
453 0, 0, 0, 0, \
085261c8 454 0, 0, 0, 0 }
9db1d521 455
4023fb28 456#define CALL_REALLY_USED_REGISTERS \
0ff3dcd6
AK
457{ 1, 1, 1, 1, /* r0 - r15 */ \
458 1, 1, 0, 0, \
459 0, 0, 0, 0, \
4023fb28 460 0, 0, 0, 0, \
0ff3dcd6
AK
461 1, 1, 1, 1, /* f0 (16) - f15 (31) */ \
462 1, 1, 1, 1, \
463 1, 1, 1, 1, \
464 1, 1, 1, 1, \
085261c8 465 1, 1, 1, 1, /* arg, cc, fp, ret addr */ \
0ff3dcd6
AK
466 0, 0, /* a0 (36), a1 (37) */ \
467 1, 1, 1, 1, /* v16 (38) - v23 (45) */ \
c5aa1d12 468 1, 1, 1, 1, \
0ff3dcd6 469 1, 1, 1, 1, /* v24 (46) - v31 (53) */ \
085261c8 470 1, 1, 1, 1 }
9db1d521 471
862a2d83 472/* Preferred register allocation order. */
085261c8
AK
473#define REG_ALLOC_ORDER \
474 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
475 16, 17, 18, 19, 20, 21, 22, 23, \
476 24, 25, 26, 27, 28, 29, 30, 31, \
0ff3dcd6 477 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \
085261c8 478 15, 32, 33, 34, 35, 36, 37 }
9db1d521 479
9db1d521 480
74aa8b4b 481#define HARD_REGNO_RENAME_OK(FROM, TO) \
2d6744f4 482 s390_hard_regno_rename_ok ((FROM), (TO))
7633f08e 483
862a2d83
UW
484/* Maximum number of registers to represent a value of mode MODE
485 in a register of class CLASS. */
0ff3dcd6 486#define CLASS_MAX_NREGS(CLASS, MODE) \
74aa8b4b 487 s390_class_max_nregs ((CLASS), (MODE))
4023fb28 488
eca98038
AK
489/* We can reverse a CC mode safely if we know whether it comes from a
490 floating point compare or not. With the vector modes it is encoded
491 as part of the mode.
492 FIXME: It might make sense to do this for other cc modes as well. */
493#define REVERSIBLE_CC_MODE(MODE) \
494 ((MODE) == CCVIALLmode || (MODE) == CCVIANYmode \
495 || (MODE) == CCVFALLmode || (MODE) == CCVFANYmode)
496
497/* Given a condition code and a mode, return the inverse condition. */
498#define REVERSE_CONDITION(CODE, MODE) s390_reverse_condition (MODE, CODE)
499
500
862a2d83 501/* Register classes. */
c7453384 502
862a2d83
UW
503/* We use the following register classes:
504 GENERAL_REGS All general purpose registers
505 ADDR_REGS All general purpose registers except %r0
0ff3dcd6 506 (These registers can be used in address generation)
862a2d83 507 FP_REGS All floating point registers
c5aa1d12
UW
508 CC_REGS The condition code register
509 ACCESS_REGS The access registers
c7453384 510
862a2d83
UW
511 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
512 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
c5aa1d12
UW
513 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
514 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
c7453384 515
862a2d83
UW
516 NO_REGS No registers
517 ALL_REGS All registers
c7453384 518
862a2d83 519 Note that the 'fake' frame pointer and argument pointer registers
c5aa1d12 520 are included amongst the address registers here. */
9db1d521
HP
521
522enum reg_class
523{
c5aa1d12 524 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
f4aa3848 525 ADDR_CC_REGS, GENERAL_CC_REGS,
4023fb28 526 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
085261c8 527 VEC_REGS, ADDR_VEC_REGS, GENERAL_VEC_REGS,
4023fb28 528 ALL_REGS, LIM_REG_CLASSES
9db1d521 529};
9db1d521
HP
530#define N_REG_CLASSES (int) LIM_REG_CLASSES
531
c5aa1d12
UW
532#define REG_CLASS_NAMES \
533{ "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
534 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
085261c8
AK
535 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", \
536 "VEC_REGS", "ADDR_VEC_REGS", "GENERAL_VEC_REGS", \
537 "ALL_REGS" }
9db1d521 538
862a2d83 539/* Class -> register mapping. */
085261c8
AK
540#define REG_CLASS_CONTENTS \
541{ \
9db1d521 542 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
9dc62c00 543 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
a38e09bc
AK
544 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
545 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
c5aa1d12 546 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
9dc62c00
AK
547 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
548 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
9db1d521 549 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
a38e09bc
AK
550 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
551 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
085261c8
AK
552 { 0xffff0000, 0x003fffc0 }, /* VEC_REGS */ \
553 { 0xfffffffe, 0x003fffcd }, /* ADDR_VEC_REGS */ \
554 { 0xffffffff, 0x003fffcd }, /* GENERAL_VEC_REGS */ \
555 { 0xffffffff, 0x003fffff }, /* ALL_REGS */ \
9db1d521
HP
556}
557
058e97ec
VM
558/* In some case register allocation order is not enough for IRA to
559 generate a good code. The following macro (if defined) increases
560 cost of REGNO for a pseudo approximately by pseudo usage frequency
561 multiplied by the macro value.
562
563 We avoid usage of BASE_REGNUM by nonzero macro value because the
564 reload can decide not to use the hard register because some
565 constant was forced to be in memory. */
566#define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
2d6744f4 567 ((regno) != BASE_REGNUM ? 0.0 : 0.5)
058e97ec 568
862a2d83
UW
569/* Register -> class mapping. */
570extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
571#define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
9db1d521 572
862a2d83
UW
573/* ADDR_REGS can be used as base or index register. */
574#define INDEX_REG_CLASS ADDR_REGS
575#define BASE_REG_CLASS ADDR_REGS
9db1d521 576
862a2d83
UW
577/* Check whether REGNO is a hard register of the suitable class
578 or a pseudo register currently allocated to one such. */
579#define REGNO_OK_FOR_INDEX_P(REGNO) \
0ff3dcd6
AK
580 (((REGNO) < FIRST_PSEUDO_REGISTER \
581 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
93fa8428 582 || ADDR_REGNO_P (reg_renumber[REGNO]))
862a2d83 583#define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
9db1d521 584
9db1d521 585
862a2d83 586/* Stack layout and calling conventions. */
c7453384 587
862a2d83
UW
588/* Our stack grows from higher to lower addresses. However, local variables
589 are accessed by positive offsets, and function arguments are stored at
590 increasing addresses. */
62f9f30b 591#define STACK_GROWS_DOWNWARD 1
63296cb1 592#define FRAME_GROWS_DOWNWARD 1
862a2d83 593/* #undef ARGS_GROW_DOWNWARD */
9db1d521 594
862a2d83
UW
595/* The basic stack layout looks like this: the stack pointer points
596 to the register save area for called functions. Above that area
597 is the location to place outgoing arguments. Above those follow
598 dynamic allocations (alloca), and finally the local variables. */
9db1d521 599
862a2d83
UW
600/* Offset from stack-pointer to first location of outgoing args. */
601#define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
9db1d521 602
862a2d83
UW
603/* Offset from the stack pointer register to an item dynamically
604 allocated on the stack, e.g., by `alloca'. */
63296cb1 605#define STACK_DYNAMIC_OFFSET(FUNDECL) \
38173d38 606 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
9db1d521 607
862a2d83
UW
608/* Offset of first parameter from the argument pointer register value.
609 We have a fake argument pointer register that points directly to
610 the argument area. */
611#define FIRST_PARM_OFFSET(FNDECL) 0
9db1d521 612
f4aa3848 613/* Defining this macro makes __builtin_frame_address(0) and
c6d01079
AK
614 __builtin_return_address(0) work with -fomit-frame-pointer. */
615#define INITIAL_FRAME_ADDRESS_RTX \
0a81f074 616 (plus_constant (Pmode, arg_pointer_rtx, -STACK_POINTER_OFFSET))
c6d01079 617
c7453384 618/* The return address of the current frame is retrieved
4023fb28
UW
619 from the initial value of register RETURN_REGNUM.
620 For frames farther back, we use the stack slot where
621 the corresponding RETURN_REGNUM register was saved. */
c6d01079
AK
622#define DYNAMIC_CHAIN_ADDRESS(FRAME) \
623 (TARGET_PACKED_STACK ? \
0a81f074
RS
624 plus_constant (Pmode, (FRAME), \
625 STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
4023fb28 626
78791a80
AK
627/* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
628 builtin_frame_address. Otherwise arg pointer -
629 STACK_POINTER_OFFSET would be returned for
630 __builtin_frame_address(0) what might result in an address pointing
631 somewhere into the middle of the local variables since the packed
632 stack layout generally does not need all the bytes in the register
633 save area. */
634#define FRAME_ADDR_RTX(FRAME) \
635 DYNAMIC_CHAIN_ADDRESS ((FRAME))
636
c6d01079 637#define RETURN_ADDR_RTX(COUNT, FRAME) \
5d4d885c 638 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
9db1d521 639
862a2d83 640/* In 31-bit mode, we need to mask off the high bit of return addresses. */
a556fd39 641#define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
9db1d521 642
4023fb28 643
862a2d83 644/* Exception handling. */
c7453384 645
862a2d83
UW
646/* Describe calling conventions for DWARF-2 exception handling. */
647#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
4023fb28 648#define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
9db1d521
HP
649#define DWARF_FRAME_RETURN_COLUMN 14
650
651/* Describe how we implement __builtin_eh_return. */
652#define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
a38e09bc 653#define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
f4aa3848 654
18789f4e
UW
655/* Select a format to encode pointers in exception handling data. */
656#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
657 (flag_pic \
658 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
659 : DW_EH_PE_absptr)
660
9602b6a1
AK
661/* Register save slot alignment. */
662#define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
663
f276b762
AK
664/* Let the assembler generate debug line info. */
665#define DWARF2_ASM_LINE_DEBUG_INFO 1
666
085261c8
AK
667/* Define the dwarf register mapping.
668 v16-v31 -> 68-83
669 rX -> X otherwise */
2d6744f4
AK
670#define DBX_REGISTER_NUMBER(regno) \
671 (((regno) >= 38 && (regno) <= 53) ? (regno) + 30 : (regno))
9db1d521 672
862a2d83 673/* Frame registers. */
9db1d521 674
862a2d83
UW
675#define STACK_POINTER_REGNUM 15
676#define FRAME_POINTER_REGNUM 34
677#define HARD_FRAME_POINTER_REGNUM 11
678#define ARG_POINTER_REGNUM 32
a38e09bc 679#define RETURN_ADDRESS_POINTER_REGNUM 35
9db1d521 680
c7453384
EC
681/* The static chain must be call-clobbered, but not used for
682 function argument passing. As register 1 is clobbered by
862a2d83
UW
683 the trampoline code, we only have one option. */
684#define STATIC_CHAIN_REGNUM 0
9db1d521 685
862a2d83
UW
686/* Number of hardware registers that go into the DWARF-2 unwind info.
687 To avoid ABI incompatibility, this number must not change even as
688 'fake' hard registers are added or removed. */
689#define DWARF_FRAME_REGISTERS 34
9db1d521 690
9db1d521 691
862a2d83 692/* Frame pointer and argument pointer elimination. */
9db1d521 693
7633f08e
UW
694#define ELIMINABLE_REGS \
695{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
696 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
697 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
698 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
699 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
700 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
701 { BASE_REGNUM, BASE_REGNUM }}
9db1d521 702
91086990
UW
703#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
704 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
9db1d521 705
9db1d521 706
862a2d83 707/* Stack arguments. */
c7453384 708
862a2d83
UW
709/* We need current_function_outgoing_args to be valid. */
710#define ACCUMULATE_OUTGOING_ARGS 1
9db1d521 711
9db1d521 712
862a2d83 713/* Register arguments. */
c7453384 714
9db1d521
HP
715typedef struct s390_arg_structure
716{
717 int gprs; /* gpr so far */
718 int fprs; /* fpr so far */
085261c8 719 int vrs; /* vr so far */
9db1d521
HP
720}
721CUMULATIVE_ARGS;
722
07711f53 723#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
085261c8
AK
724 ((CUM).gprs=0, (CUM).fprs=0, (CUM).vrs=0)
725
726#define FIRST_VEC_ARG_REGNO 46
727#define LAST_VEC_ARG_REGNO 53
9db1d521 728
96e2afa8
AK
729/* Arguments can be placed in general registers 2 to 6, or in floating
730 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
731 bit. */
085261c8
AK
732#define FUNCTION_ARG_REGNO_P(N) \
733 (((N) >=2 && (N) < 7) || (N) == 16 || (N) == 17 \
734 || (TARGET_64BIT && ((N) == 18 || (N) == 19)) \
735 || (TARGET_VX && ((N) >= FIRST_VEC_ARG_REGNO && (N) <= LAST_VEC_ARG_REGNO)))
9db1d521 736
9db1d521 737
085261c8
AK
738/* Only gpr 2, fpr 0, and v24 are ever used as return registers. */
739#define FUNCTION_VALUE_REGNO_P(N) \
740 ((N) == 2 || (N) == 16 \
741 || (TARGET_VX && (N) == FIRST_VEC_ARG_REGNO))
9db1d521 742
9db1d521 743
862a2d83 744/* Function entry and exit. */
c7453384 745
862a2d83
UW
746/* When returning from a function, the stack pointer does not matter. */
747#define EXIT_IGNORE_STACK 1
9db1d521 748
9db1d521 749
862a2d83 750/* Profiling. */
9db1d521 751
0ff3dcd6 752#define FUNCTION_PROFILER(FILE, LABELNO) \
862a2d83 753 s390_function_profiler ((FILE), ((LABELNO)))
9db1d521 754
c52a375d 755#define PROFILE_BEFORE_PROLOGUE 1
9db1d521 756
9db1d521 757
862a2d83 758/* Trampolines for nested functions. */
9db1d521 759
b81ecf6f
RH
760#define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
761#define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
9db1d521 762
862a2d83 763/* Addressing modes, and classification of registers for them. */
9db1d521 764
862a2d83
UW
765/* Recognize any constant value that is a valid address. */
766#define CONSTANT_ADDRESS_P(X) 0
9db1d521 767
862a2d83
UW
768/* Maximum number of registers that can appear in a valid memory address. */
769#define MAX_REGS_PER_ADDRESS 2
9db1d521 770
963fc8d0 771/* This definition replaces the formerly used 'm' constraint with a
c6c3dba9
PB
772 different constraint letter in order to avoid changing semantics of
773 the 'm' constraint when accepting new address formats in
774 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
775 must not be used in insn definitions or inline assemblies. */
963fc8d0
AK
776#define TARGET_MEM_CONSTRAINT 'e'
777
0b540f12
UW
778/* Try a machine-dependent way of reloading an illegitimate address
779 operand. If we find one, push the reload and jump to WIN. This
780 macro is used in only one place: `find_reloads_address' in reload.c. */
781#define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
2d6744f4
AK
782 do { \
783 rtx new_rtx = legitimize_reload_address ((AD), (MODE), \
784 (OPNUM), (int)(TYPE)); \
785 if (new_rtx) \
786 { \
787 (AD) = new_rtx; \
788 goto WIN; \
789 } \
790 } while (0)
0b540f12 791
862a2d83 792/* Helper macro for s390.c and s390.md to check for symbolic constants. */
2d6744f4
AK
793#define SYMBOLIC_CONST(X) \
794 (GET_CODE (X) == SYMBOL_REF \
795 || GET_CODE (X) == LABEL_REF \
796 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
9db1d521 797
2d6744f4
AK
798#define TLS_SYMBOLIC_CONST(X) \
799 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
800 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
fd3cd001 801
9db1d521 802
862a2d83 803/* Condition codes. */
9db1d521 804
862a2d83
UW
805/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
806 return the mode to be used for the comparison. */
807#define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
c7453384 808
862a2d83 809/* Relative costs of operations. */
9db1d521 810
9db1d521
HP
811/* A C expression for the cost of a branch instruction. A value of 1
812 is the default; other values are interpreted relative to that. */
3d427cc1 813#define BRANCH_COST(speed_p, predictable_p) s390_branch_cost
9db1d521 814
862a2d83
UW
815/* Nonzero if access to memory by bytes is slow and undesirable. */
816#define SLOW_BYTE_ACCESS 1
817
c5443745 818/* An integer expression for the size in bits of the largest integer machine
f4aa3848 819 mode that should actually be used. We allow pairs of registers. */
c5443745
UW
820#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
821
862a2d83 822/* The maximum number of bytes that a single instruction can move quickly
ff482c8d 823 between memory and registers or between two memory locations. */
9602b6a1
AK
824#define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
825#define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
862a2d83 826#define MAX_MOVE_MAX 16
9db1d521 827
862a2d83 828/* Don't perform CSE on function addresses. */
1e8552c2 829#define NO_FUNCTION_CSE 1
862a2d83 830
5f1b2ee6
AK
831/* This value is used in tree-sra to decide whether it might benefical
832 to split a struct move into several word-size moves. For S/390
833 only small values make sense here since struct moves are relatively
073a8998 834 cheap thanks to mvc so the small default value chosen for archs
5f1b2ee6
AK
835 with memmove patterns should be ok. But this value is multiplied
836 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
837 here to compensate for that factor since mvc costs exactly the same
838 on 31 and 64 bit. */
e04ad03d 839#define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
5f1b2ee6 840
862a2d83
UW
841
842/* Sections. */
843
844/* Output before read-only data. */
845#define TEXT_SECTION_ASM_OP ".text"
846
847/* Output before writable (initialized) data. */
848#define DATA_SECTION_ASM_OP ".data"
849
850/* Output before writable (uninitialized) data. */
851#define BSS_SECTION_ASM_OP ".bss"
852
853/* S/390 constant pool breaks the devices in crtstuff.c to control section
854 in where code resides. We have to write it as asm code. */
855#ifndef __s390x__
856#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
857 asm (SECTION_OP "\n\
858 bras\t%r2,1f\n\
8590: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
8601: l\t%r3,0(%r2)\n\
861 bas\t%r14,0(%r3,%r2)\n\
862 .previous");
863#endif
63a1ff86 864
862a2d83
UW
865
866/* Position independent code. */
867
862a2d83
UW
868#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
869
870#define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
63a1ff86 871
935b5226
AK
872#ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
873#define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
874#endif
875
63a1ff86
UW
876
877/* Assembler file format. */
878
879/* Character to start a comment. */
880#define ASM_COMMENT_START "#"
881
882/* Declare an uninitialized external linkage data object. */
2d6744f4
AK
883#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
884 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
63a1ff86
UW
885
886/* Globalizing directive for a label. */
887#define GLOBAL_ASM_OP ".globl "
888
889/* Advance the location counter to a multiple of 2**LOG bytes. */
890#define ASM_OUTPUT_ALIGN(FILE, LOG) \
891 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
892
893/* Advance the location counter by SIZE bytes. */
894#define ASM_OUTPUT_SKIP(FILE, SIZE) \
16998094 895 fprintf ((FILE), "\t.set\t.,.+" HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
63a1ff86 896
63a1ff86
UW
897/* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
898#define LOCAL_LABEL_PREFIX "."
9db1d521 899
5d304e47 900#define LABEL_ALIGN(LABEL) \
2d6744f4 901 s390_label_align ((LABEL))
5d304e47 902
9db1d521
HP
903/* How to refer to registers in assembler output. This sequence is
904 indexed by compiler's hard-register-number (see above). */
9db1d521 905#define REGISTER_NAMES \
085261c8
AK
906 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
907 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
908 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
909 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
910 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1", \
911 "%v16", "%v18", "%v20", "%v22", "%v17", "%v19", "%v21", "%v23", \
912 "%v24", "%v26", "%v28", "%v30", "%v25", "%v27", "%v29", "%v31" \
913 }
914
915#define ADDITIONAL_REGISTER_NAMES \
916 { { "v0", 16 }, { "v2", 17 }, { "v4", 18 }, { "v6", 19 }, \
917 { "v1", 20 }, { "v3", 21 }, { "v5", 22 }, { "v7", 23 }, \
918 { "v8", 24 }, { "v10", 25 }, { "v12", 26 }, { "v14", 27 }, \
919 { "v9", 28 }, { "v11", 29 }, { "v13", 30 }, { "v15", 31 } };
9db1d521 920
63a1ff86 921/* Print operand X (an rtx) in assembler syntax to file FILE. */
2d6744f4
AK
922#define PRINT_OPERAND(FILE, X, CODE) print_operand ((FILE), (X), (CODE))
923#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address ((FILE), (ADDR))
9db1d521 924
63a1ff86
UW
925/* Output an element of a case-vector that is absolute. */
926#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
927do { \
928 char buf[32]; \
9602b6a1 929 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
930 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
931 assemble_name ((FILE), buf); \
932 fputc ('\n', (FILE)); \
933} while (0)
934
935/* Output an element of a case-vector that is relative. */
936#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
937do { \
938 char buf[32]; \
9602b6a1 939 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
63a1ff86
UW
940 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
941 assemble_name ((FILE), buf); \
942 fputc ('-', (FILE)); \
943 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
944 assemble_name ((FILE), buf); \
945 fputc ('\n', (FILE)); \
946} while (0)
947
177bc204
RS
948/* Mark the return register as used by the epilogue so that we can
949 use it in unadorned (return) and (simple_return) instructions. */
950#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_REGNUM)
951
d0de9e13 952#undef ASM_OUTPUT_FUNCTION_LABEL
2d6744f4
AK
953#define ASM_OUTPUT_FUNCTION_LABEL(FILE, NAME, DECL) \
954 s390_asm_output_function_label ((FILE), (NAME), (DECL))
9db1d521 955
ec47b086
DV
956#if S390_USE_TARGET_ATTRIBUTE
957/* Hook to output .machine and .machinemode at start of function. */
958#undef ASM_OUTPUT_FUNCTION_PREFIX
959#define ASM_OUTPUT_FUNCTION_PREFIX s390_asm_output_function_prefix
960
961/* Hook to output .machine and .machinemode at end of function. */
962#undef ASM_DECLARE_FUNCTION_SIZE
963#define ASM_DECLARE_FUNCTION_SIZE s390_asm_declare_function_size
964#endif
965
862a2d83
UW
966/* Miscellaneous parameters. */
967
862a2d83
UW
968/* Specify the machine mode that this machine uses for the index in the
969 tablejump instruction. */
970#define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
971
862a2d83
UW
972/* Specify the machine mode that pointers have.
973 After generation of rtl, the compiler makes no further distinction
974 between pointers and any other objects of this machine mode. */
501623d4 975#define Pmode (TARGET_64BIT ? DImode : SImode)
862a2d83 976
c7453384
EC
977/* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
978#define POINTERS_EXTEND_UNSIGNED -1
979
862a2d83
UW
980/* A function address in a call instruction is a byte address (for
981 indexing purposes) so give the MEM rtx a byte's mode. */
982#define FUNCTION_MODE QImode
983
ec24698e
UW
984/* Specify the value which is used when clz operand is zero. */
985#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
986
0bfc3f69 987/* Machine-specific symbol_ref flags. */
e63d44c2
RD
988#define SYMBOL_FLAG_ALIGN_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
989#define SYMBOL_FLAG_ALIGN_MASK \
990 ((SYMBOL_FLAG_MACH_DEP << 0) | (SYMBOL_FLAG_MACH_DEP << 1))
991
992#define SYMBOL_FLAG_SET_ALIGN(X, A) \
993 (SYMBOL_REF_FLAGS (X) = (SYMBOL_REF_FLAGS (X) & ~SYMBOL_FLAG_ALIGN_MASK) \
994 | (A << SYMBOL_FLAG_ALIGN_SHIFT))
995
996#define SYMBOL_FLAG_GET_ALIGN(X) \
997 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN_MASK) >> SYMBOL_FLAG_ALIGN_SHIFT)
998
999/* Helpers to access symbol_ref flags. They are used in
1000 check_symref_alignment() and larl_operand to detect if the
1001 available alignment matches the required one. We do not use
1002 a positive check like _ALIGN2 because in that case we would have
1003 to annotate every symbol_ref. However, we only want to touch
1004 the symbol_refs that can be misaligned and assume that the others
1005 are correctly aligned. Hence, if a symbol_ref does not have
1006 a _NOTALIGN flag it is supposed to be correctly aligned. */
2d6744f4
AK
1007#define SYMBOL_FLAG_SET_NOTALIGN2(X) SYMBOL_FLAG_SET_ALIGN((X), 1)
1008#define SYMBOL_FLAG_SET_NOTALIGN4(X) SYMBOL_FLAG_SET_ALIGN((X), 2)
1009#define SYMBOL_FLAG_SET_NOTALIGN8(X) SYMBOL_FLAG_SET_ALIGN((X), 3)
e63d44c2
RD
1010
1011#define SYMBOL_FLAG_NOTALIGN2_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4 1012#define SYMBOL_FLAG_NOTALIGN4_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1013 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
2d6744f4
AK
1014#define SYMBOL_FLAG_NOTALIGN8_P(X) (SYMBOL_FLAG_GET_ALIGN(X) == 3 \
1015 || SYMBOL_FLAG_GET_ALIGN(X) == 2 \
e63d44c2 1016 || SYMBOL_FLAG_GET_ALIGN(X) == 1)
0bfc3f69 1017
085261c8
AK
1018/* Check whether integer displacement is in range for a short displacement. */
1019#define SHORT_DISP_IN_RANGE(d) ((d) >= 0 && (d) <= 4095)
1020
0bfc3f69 1021/* Check whether integer displacement is in range. */
2d6744f4
AK
1022#define DISP_IN_RANGE(d) \
1023 (TARGET_LONG_DISPLACEMENT \
1024 ? ((d) >= -524288 && (d) <= 524287) \
1025 : SHORT_DISP_IN_RANGE(d))
0bfc3f69 1026
24a235c8
CB
1027/* Reads can reuse write prefetches, used by tree-ssa-prefetch-loops.c. */
1028#define READ_CAN_USE_WRITE_PREFETCH 1
677f3fa8
JM
1029
1030extern const int processor_flags_table[];
085261c8 1031
52d4aa4f
IL
1032struct s390_processor
1033{
1034 /* The preferred name to be used in user visible output. */
1035 const char *const name;
1036 /* CPU name as it should be passed to Binutils via .machine */
1037 const char *const binutils_name;
1038 const enum processor_type processor;
1039 const struct processor_costs *cost;
1040 int arch_level;
1041};
1042
1043extern const struct s390_processor processor_table[];
1044
085261c8
AK
1045/* The truth element value for vector comparisons. Our instructions
1046 always generate -1 in that case. */
1047#define VECTOR_STORE_FLAG_VALUE(MODE) CONSTM1_RTX (GET_MODE_INNER (MODE))
1048
3af82a61
AK
1049/* Target pragma. */
1050
67914693 1051/* resolve_overloaded_builtin cannot be defined the normal way since
3af82a61
AK
1052 it is defined in code which technically belongs to the
1053 front-end. */
1054#define REGISTER_TARGET_PRAGMAS() \
1055 do { \
1056 s390_register_target_pragmas (); \
1057 } while (0)
1058
84b4c7b5
AK
1059#ifndef USED_FOR_TARGET
1060/* The following structure is embedded in the machine
1061 specific part of struct function. */
1062
1063struct GTY (()) s390_frame_layout
1064{
1065 /* Offset within stack frame. */
1066 HOST_WIDE_INT gprs_offset;
1067 HOST_WIDE_INT f0_offset;
1068 HOST_WIDE_INT f4_offset;
1069 HOST_WIDE_INT f8_offset;
1070 HOST_WIDE_INT backchain_offset;
1071
1072 /* Number of first and last gpr where slots in the register
1073 save area are reserved for. */
1074 int first_save_gpr_slot;
1075 int last_save_gpr_slot;
1076
1077 /* Location (FP register number) where GPRs (r0-r15) should
1078 be saved to.
1079 0 - does not need to be saved at all
1080 -1 - stack slot */
1081#define SAVE_SLOT_NONE 0
1082#define SAVE_SLOT_STACK -1
1083 signed char gpr_save_slots[16];
1084
1085 /* Number of first and last gpr to be saved, restored. */
1086 int first_save_gpr;
1087 int first_restore_gpr;
1088 int last_save_gpr;
1089 int last_restore_gpr;
1090
1091 /* Bits standing for floating point registers. Set, if the
1092 respective register has to be saved. Starting with reg 16 (f0)
1093 at the rightmost bit.
1094 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1095 fpr 15 13 11 9 14 12 10 8 7 5 3 1 6 4 2 0
1096 reg 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 */
1097 unsigned int fpr_bitmap;
1098
1099 /* Number of floating point registers f8-f15 which must be saved. */
1100 int high_fprs;
1101
1102 /* Set if return address needs to be saved.
1103 This flag is set by s390_return_addr_rtx if it could not use
1104 the initial value of r14 and therefore depends on r14 saved
1105 to the stack. */
1106 bool save_return_addr_p;
1107
1108 /* Size of stack frame. */
1109 HOST_WIDE_INT frame_size;
1110};
1111
1112
1113/* Define the structure for the machine field in struct function. */
1114
1115struct GTY(()) machine_function
1116{
1117 struct s390_frame_layout frame_layout;
1118
1119 /* Literal pool base register. */
1120 rtx base_reg;
1121
84b4c7b5
AK
1122 bool has_landing_pad_p;
1123
1124 /* True if the current function may contain a tbegin clobbering
1125 FPRs. */
1126 bool tbegin_p;
1127
1128 /* For -fsplit-stack support: A stack local which holds a pointer to
1129 the stack arguments for a function with a variable number of
1130 arguments. This is set at the start of the function and is used
1131 to initialize the overflow_arg_area field of the va_list
1132 structure. */
1133 rtx split_stack_varargs_pointer;
1134
1135 enum indirect_branch indirect_branch_jump;
1136 enum indirect_branch indirect_branch_call;
1137
1138 enum indirect_branch function_return_mem;
1139 enum indirect_branch function_return_reg;
1140};
1141#endif
1142
1143#define TARGET_INDIRECT_BRANCH_NOBP_RET_OPTION \
1144 (cfun->machine->function_return_reg != indirect_branch_keep \
1145 || cfun->machine->function_return_mem != indirect_branch_keep)
1146
1147#define TARGET_INDIRECT_BRANCH_NOBP_RET \
1148 ((cfun->machine->function_return_reg != indirect_branch_keep \
1149 && !s390_return_addr_from_memory ()) \
1150 || (cfun->machine->function_return_mem != indirect_branch_keep \
1151 && s390_return_addr_from_memory ()))
1152
1153#define TARGET_INDIRECT_BRANCH_NOBP_JUMP \
1154 (cfun->machine->indirect_branch_jump != indirect_branch_keep)
1155
1156#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_THUNK \
1157 (cfun->machine->indirect_branch_jump == indirect_branch_thunk \
1158 || cfun->machine->indirect_branch_jump == indirect_branch_thunk_extern)
1159
1160#define TARGET_INDIRECT_BRANCH_NOBP_JUMP_INLINE_THUNK \
1161 (cfun->machine->indirect_branch_jump == indirect_branch_thunk_inline)
1162
1163#define TARGET_INDIRECT_BRANCH_NOBP_CALL \
1164 (cfun->machine->indirect_branch_call != indirect_branch_keep)
1165
1166#ifndef TARGET_DEFAULT_INDIRECT_BRANCH_TABLE
1167#define TARGET_DEFAULT_INDIRECT_BRANCH_TABLE 0
1168#endif
1169
1170#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EXRL "__s390_indirect_jump_r%d"
1171#define TARGET_INDIRECT_BRANCH_THUNK_NAME_EX "__s390_indirect_jump_r%duse_r%d"
1172
1173#define TARGET_INDIRECT_BRANCH_TABLE s390_indirect_branch_table
1174
1175
085261c8 1176#endif /* S390_H */