]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
rs6000.c (rs6000_expand_binop_builtin): Revert back to if statements, including unpack.
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
fa49fd0f 1/* Common subexpression elimination library for GNU compiler.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
fa49fd0f 3
1322177d 4This file is part of GCC.
fa49fd0f 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
fa49fd0f 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
fa49fd0f
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
fa49fd0f
RK
19
20#include "config.h"
21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
fa49fd0f 25#include "rtl.h"
957060b5 26#include "tree.h"
c7131fb2 27#include "df.h"
4d0cdd0c 28#include "memmodel.h"
fa49fd0f 29#include "tm_p.h"
957060b5 30#include "regs.h"
78528714 31#include "emit-rtl.h"
7ee2468b 32#include "dumpfile.h"
fa49fd0f 33#include "cselib.h"
c65ecebc 34#include "params.h"
fa49fd0f 35
fba4cb03 36/* A list of cselib_val structures. */
a78a26f1
ML
37struct elt_list
38{
39 struct elt_list *next;
40 cselib_val *elt;
fba4cb03
LB
41};
42
463301c3 43static bool cselib_record_memory;
457eeaae 44static bool cselib_preserve_constants;
0f68ba3e 45static bool cselib_any_perm_equivs;
4a8fb1a1 46static inline void promote_debug_loc (struct elt_loc_list *l);
7080f735 47static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
6f2ffb4b 48static void new_elt_loc_list (cselib_val *, rtx);
7080f735
AJ
49static void unchain_one_value (cselib_val *);
50static void unchain_one_elt_list (struct elt_list **);
51static void unchain_one_elt_loc_list (struct elt_loc_list **);
7080f735 52static void remove_useless_values (void);
ef4bddc2
RS
53static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
7080f735
AJ
55static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56static cselib_val *cselib_lookup_mem (rtx, int);
ef4bddc2 57static void cselib_invalidate_regno (unsigned int, machine_mode);
7080f735 58static void cselib_invalidate_mem (rtx);
7080f735 59static void cselib_record_set (rtx, cselib_val *, cselib_val *);
dd60a84c 60static void cselib_record_sets (rtx_insn *);
fa49fd0f 61
b5b8b0ac
AO
62struct expand_value_data
63{
64 bitmap regs_active;
65 cselib_expand_callback callback;
66 void *callback_arg;
864ddef7 67 bool dummy;
b5b8b0ac
AO
68};
69
70static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
71
fa49fd0f
RK
72/* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
80
8d67ee55 81struct cselib_hasher : nofree_ptr_hash <cselib_val>
4a8fb1a1 82{
67f58944 83 struct key {
f956adb9
RS
84 /* The rtx value and its mode (needed separately for constant
85 integers). */
ef4bddc2 86 machine_mode mode;
f956adb9
RS
87 rtx x;
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
ef4bddc2 89 machine_mode memmode;
f956adb9 90 };
67f58944
TS
91 typedef key *compare_type;
92 static inline hashval_t hash (const cselib_val *);
93 static inline bool equal (const cselib_val *, const key *);
4a8fb1a1
LC
94};
95
96/* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
99
100inline hashval_t
67f58944 101cselib_hasher::hash (const cselib_val *v)
4a8fb1a1
LC
102{
103 return v->hash;
104}
105
106/* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
110
111inline bool
67f58944 112cselib_hasher::equal (const cselib_val *v, const key *x_arg)
4a8fb1a1
LC
113{
114 struct elt_loc_list *l;
f956adb9 115 rtx x = x_arg->x;
ef4bddc2
RS
116 machine_mode mode = x_arg->mode;
117 machine_mode memmode = x_arg->memmode;
4a8fb1a1
LC
118
119 if (mode != GET_MODE (v->val_rtx))
120 return false;
121
0618dee5
AO
122 if (GET_CODE (x) == VALUE)
123 return x == v->val_rtx;
124
4a8fb1a1
LC
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l = v->locs; l; l = l->next)
005f12bf 128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
4a8fb1a1
LC
129 {
130 promote_debug_loc (l);
131 return true;
132 }
133
134 return false;
135}
136
fa49fd0f 137/* A table that enables us to look up elts by their value. */
c203e8a7 138static hash_table<cselib_hasher> *cselib_hash_table;
fa49fd0f 139
0618dee5 140/* A table to hold preserved values. */
c203e8a7 141static hash_table<cselib_hasher> *cselib_preserved_hash_table;
0618dee5 142
fa49fd0f
RK
143/* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
12ea1b95 145static rtx_insn *cselib_current_insn;
fa49fd0f 146
5440c0e7
AO
147/* The unique id that the next create value will take. */
148static unsigned int next_uid;
fa49fd0f
RK
149
150/* The number of registers we had when the varrays were last resized. */
151static unsigned int cselib_nregs;
152
5847e8da
AO
153/* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
156
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
162
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
170
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
174
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
180
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
187 values. */
fa49fd0f 188static int n_useless_values;
5847e8da
AO
189static int n_useless_debug_values;
190
191/* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193static int n_debug_values;
fa49fd0f
RK
194
195/* Number of useless values before we remove them from the hash table. */
196#define MAX_USELESS_VALUES 32
197
60fa6660
AO
198/* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
204 element. */
5211d65a
KH
205static struct elt_list **reg_values;
206static unsigned int reg_values_size;
6790d1ab 207#define REG_VALUES(i) reg_values[i]
fa49fd0f 208
31825e57 209/* The largest number of hard regs used by any entry added to the
eb232f4e 210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
31825e57
DM
211static unsigned int max_value_regs;
212
fa49fd0f 213/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
eb232f4e 214 in cselib_clear_table() for fast emptying. */
6790d1ab
JH
215static unsigned int *used_regs;
216static unsigned int n_used_regs;
fa49fd0f
RK
217
218/* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
e2500fed 220static GTY(()) rtx callmem;
fa49fd0f 221
fa49fd0f
RK
222/* Set by discard_useless_locs if it deleted the last location of any
223 value. */
224static int values_became_useless;
7101fb18
JH
225
226/* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228static cselib_val dummy_val;
229
457eeaae
JJ
230/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
232 eliminated. */
233static cselib_val *cfa_base_preserved_val;
5a9fbcf1 234static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
457eeaae 235
7080f735 236/* Used to list all values that contain memory reference.
7101fb18
JH
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239static cselib_val *first_containing_mem = &dummy_val;
a78a26f1 240
fcb87c50
MM
241static object_allocator<elt_list> elt_list_pool ("elt_list");
242static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
243static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
a78a26f1 244
fcb87c50 245static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
6fb5fa3c
DB
246
247/* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249void (*cselib_discard_hook) (cselib_val *);
b5b8b0ac
AO
250
251/* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
255 instruction. */
46665961 256void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
b5b8b0ac
AO
257 int n_sets);
258
259#define PRESERVED_VALUE_P(RTX) \
c3284718 260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
b5b8b0ac 261
0fe03ac3 262#define SP_BASED_VALUE_P(RTX) \
c3284718 263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
0fe03ac3 264
fa49fd0f
RK
265\f
266
267/* Allocate a struct elt_list and fill in its two elements with the
268 arguments. */
269
6a59927d 270static inline struct elt_list *
7080f735 271new_elt_list (struct elt_list *next, cselib_val *elt)
fa49fd0f 272{
fb0b2914 273 elt_list *el = elt_list_pool.allocate ();
fa49fd0f
RK
274 el->next = next;
275 el->elt = elt;
276 return el;
277}
278
6f2ffb4b
AO
279/* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
280 list. */
fa49fd0f 281
6f2ffb4b
AO
282static inline void
283new_elt_loc_list (cselib_val *val, rtx loc)
fa49fd0f 284{
6f2ffb4b
AO
285 struct elt_loc_list *el, *next = val->locs;
286
287 gcc_checking_assert (!next || !next->setting_insn
288 || !DEBUG_INSN_P (next->setting_insn)
289 || cselib_current_insn == next->setting_insn);
5847e8da
AO
290
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
294 n_debug_values++;
295
6f2ffb4b
AO
296 val = canonical_cselib_val (val);
297 next = val->locs;
298
299 if (GET_CODE (loc) == VALUE)
300 {
301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
302
303 gcc_checking_assert (PRESERVED_VALUE_P (loc)
304 == PRESERVED_VALUE_P (val->val_rtx));
305
306 if (val->val_rtx == loc)
307 return;
308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
309 {
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
312 return;
313 }
314
315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
316
317 if (CSELIB_VAL_PTR (loc)->locs)
318 {
319 /* Bring all locs from LOC to VAL. */
320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
321 {
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el->loc && GET_CODE (el->loc) == VALUE)
325 {
326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
327 == loc);
328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
329 }
330 }
331 el->next = val->locs;
332 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
faead9f7
AO
333 }
334
335 if (CSELIB_VAL_PTR (loc)->addr_list)
336 {
337 /* Bring in addr_list into canonical node. */
338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
339 while (last->next)
340 last = last->next;
341 last->next = val->addr_list;
342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
343 CSELIB_VAL_PTR (loc)->addr_list = NULL;
344 }
345
346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
347 && val->next_containing_mem == NULL)
348 {
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
351 MEMs. */
352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
353 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
6f2ffb4b
AO
354 }
355
356 /* Chain LOC back to VAL. */
fb0b2914 357 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
358 el->loc = val->val_rtx;
359 el->setting_insn = cselib_current_insn;
360 el->next = NULL;
361 CSELIB_VAL_PTR (loc)->locs = el;
362 }
363
fb0b2914 364 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
365 el->loc = loc;
366 el->setting_insn = cselib_current_insn;
367 el->next = next;
368 val->locs = el;
fa49fd0f
RK
369}
370
5847e8da
AO
371/* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
373 count. */
374
375static inline void
376promote_debug_loc (struct elt_loc_list *l)
377{
ce8fe26d 378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
5847e8da
AO
379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
380 {
381 n_debug_values--;
382 l->setting_insn = cselib_current_insn;
dc2a58da
JJ
383 if (cselib_preserve_constants && l->next)
384 {
385 gcc_assert (l->next->setting_insn
386 && DEBUG_INSN_P (l->next->setting_insn)
387 && !l->next->next);
388 l->next->setting_insn = cselib_current_insn;
389 }
390 else
391 gcc_assert (!l->next);
5847e8da
AO
392 }
393}
394
fa49fd0f
RK
395/* The elt_list at *PL is no longer needed. Unchain it and free its
396 storage. */
397
6a59927d 398static inline void
7080f735 399unchain_one_elt_list (struct elt_list **pl)
fa49fd0f
RK
400{
401 struct elt_list *l = *pl;
402
403 *pl = l->next;
fb0b2914 404 elt_list_pool.remove (l);
fa49fd0f
RK
405}
406
407/* Likewise for elt_loc_lists. */
408
409static void
7080f735 410unchain_one_elt_loc_list (struct elt_loc_list **pl)
fa49fd0f
RK
411{
412 struct elt_loc_list *l = *pl;
413
414 *pl = l->next;
fb0b2914 415 elt_loc_list_pool.remove (l);
fa49fd0f
RK
416}
417
418/* Likewise for cselib_vals. This also frees the addr_list associated with
419 V. */
420
421static void
7080f735 422unchain_one_value (cselib_val *v)
fa49fd0f
RK
423{
424 while (v->addr_list)
425 unchain_one_elt_list (&v->addr_list);
426
fb0b2914 427 cselib_val_pool.remove (v);
fa49fd0f
RK
428}
429
430/* Remove all entries from the hash table. Also used during
b5b8b0ac 431 initialization. */
fa49fd0f 432
eb232f4e
SB
433void
434cselib_clear_table (void)
b5b8b0ac 435{
5440c0e7 436 cselib_reset_table (1);
b5b8b0ac
AO
437}
438
0e224656
AO
439/* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
457eeaae 441
0e224656
AO
442static bool
443invariant_or_equiv_p (cselib_val *v)
457eeaae 444{
6f2ffb4b 445 struct elt_loc_list *l;
457eeaae 446
0e224656
AO
447 if (v == cfa_base_preserved_val)
448 return true;
449
450 /* Keep VALUE equivalences around. */
451 for (l = v->locs; l; l = l->next)
452 if (GET_CODE (l->loc) == VALUE)
453 return true;
454
457eeaae
JJ
455 if (v->locs != NULL
456 && v->locs->next == NULL)
457 {
458 if (CONSTANT_P (v->locs->loc)
459 && (GET_CODE (v->locs->loc) != CONST
460 || !references_value_p (v->locs->loc, 0)))
0e224656 461 return true;
6f2ffb4b
AO
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v->locs->loc) == ENTRY_VALUE
468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
0e224656
AO
469 return true;
470
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v->locs->loc) == PLUS
473 && CONST_INT_P (XEXP (v->locs->loc, 1))
474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
476 return true;
457eeaae 477 }
6f2ffb4b 478
0e224656
AO
479 return false;
480}
481
482/* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
484
4a8fb1a1
LC
485int
486preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
0e224656 487{
4a8fb1a1 488 cselib_val *v = *x;
457eeaae 489
0618dee5
AO
490 if (invariant_or_equiv_p (v))
491 {
67f58944 492 cselib_hasher::key lookup = {
f956adb9
RS
493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
494 };
0618dee5 495 cselib_val **slot
c203e8a7 496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
0618dee5
AO
497 v->hash, INSERT);
498 gcc_assert (!*slot);
499 *slot = v;
500 }
501
c203e8a7 502 cselib_hash_table->clear_slot (x);
0618dee5 503
457eeaae
JJ
504 return 1;
505}
506
b5b8b0ac
AO
507/* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
509
510void
5440c0e7 511cselib_reset_table (unsigned int num)
fa49fd0f
RK
512{
513 unsigned int i;
514
31825e57
DM
515 max_value_regs = 0;
516
457eeaae
JJ
517 if (cfa_base_preserved_val)
518 {
9de9cbaf 519 unsigned int regno = cfa_base_preserved_regno;
457eeaae
JJ
520 unsigned int new_used_regs = 0;
521 for (i = 0; i < n_used_regs; i++)
522 if (used_regs[i] == regno)
523 {
524 new_used_regs = 1;
525 continue;
526 }
527 else
528 REG_VALUES (used_regs[i]) = 0;
529 gcc_assert (new_used_regs == 1);
530 n_used_regs = new_used_regs;
531 used_regs[0] = regno;
532 max_value_regs
533 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
534 }
535 else
536 {
537 for (i = 0; i < n_used_regs; i++)
538 REG_VALUES (used_regs[i]) = 0;
539 n_used_regs = 0;
540 }
fa49fd0f 541
457eeaae 542 if (cselib_preserve_constants)
c203e8a7
TS
543 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
544 (NULL);
457eeaae 545 else
0f68ba3e 546 {
c203e8a7 547 cselib_hash_table->empty ();
0f68ba3e
AO
548 gcc_checking_assert (!cselib_any_perm_equivs);
549 }
fa49fd0f 550
fa49fd0f 551 n_useless_values = 0;
5847e8da
AO
552 n_useless_debug_values = 0;
553 n_debug_values = 0;
fa49fd0f 554
5440c0e7 555 next_uid = num;
7101fb18
JH
556
557 first_containing_mem = &dummy_val;
fa49fd0f
RK
558}
559
b5b8b0ac
AO
560/* Return the number of the next value that will be generated. */
561
562unsigned int
5440c0e7 563cselib_get_next_uid (void)
b5b8b0ac 564{
5440c0e7 565 return next_uid;
b5b8b0ac
AO
566}
567
4deef538
AO
568/* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
569 INSERTing if requested. When X is part of the address of a MEM,
f956adb9 570 MEMMODE should specify the mode of the MEM. */
4deef538 571
4a8fb1a1 572static cselib_val **
ef4bddc2
RS
573cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
574 enum insert_option insert, machine_mode memmode)
4deef538 575{
0618dee5 576 cselib_val **slot = NULL;
67f58944 577 cselib_hasher::key lookup = { mode, x, memmode };
0618dee5 578 if (cselib_preserve_constants)
c203e8a7
TS
579 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
580 NO_INSERT);
0618dee5 581 if (!slot)
c203e8a7 582 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
4deef538
AO
583 return slot;
584}
585
fa49fd0f
RK
586/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
587 only return true for values which point to a cselib_val whose value
588 element has been set to zero, which implies the cselib_val will be
589 removed. */
590
591int
4f588890 592references_value_p (const_rtx x, int only_useless)
fa49fd0f 593{
4f588890 594 const enum rtx_code code = GET_CODE (x);
fa49fd0f
RK
595 const char *fmt = GET_RTX_FORMAT (code);
596 int i, j;
597
598 if (GET_CODE (x) == VALUE
6f2ffb4b
AO
599 && (! only_useless ||
600 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
fa49fd0f
RK
601 return 1;
602
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 {
605 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
606 return 1;
607 else if (fmt[i] == 'E')
608 for (j = 0; j < XVECLEN (x, i); j++)
609 if (references_value_p (XVECEXP (x, i, j), only_useless))
610 return 1;
611 }
612
613 return 0;
614}
615
616/* For all locations found in X, delete locations that reference useless
617 values (i.e. values without any location). Called through
618 htab_traverse. */
619
4a8fb1a1
LC
620int
621discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 622{
4a8fb1a1 623 cselib_val *v = *x;
fa49fd0f 624 struct elt_loc_list **p = &v->locs;
5847e8da 625 bool had_locs = v->locs != NULL;
21afc57d 626 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f
RK
627
628 while (*p)
629 {
630 if (references_value_p ((*p)->loc, 1))
631 unchain_one_elt_loc_list (p);
632 else
633 p = &(*p)->next;
634 }
635
b5b8b0ac 636 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 637 {
5847e8da
AO
638 if (setting_insn && DEBUG_INSN_P (setting_insn))
639 n_useless_debug_values++;
640 else
641 n_useless_values++;
fa49fd0f
RK
642 values_became_useless = 1;
643 }
644 return 1;
645}
646
647/* If X is a value with no locations, remove it from the hashtable. */
648
4a8fb1a1
LC
649int
650discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 651{
4a8fb1a1 652 cselib_val *v = *x;
fa49fd0f 653
b5b8b0ac 654 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 655 {
6fb5fa3c
DB
656 if (cselib_discard_hook)
657 cselib_discard_hook (v);
658
757bbef8 659 CSELIB_VAL_PTR (v->val_rtx) = NULL;
c203e8a7 660 cselib_hash_table->clear_slot (x);
fa49fd0f
RK
661 unchain_one_value (v);
662 n_useless_values--;
663 }
664
665 return 1;
666}
667
668/* Clean out useless values (i.e. those which no longer have locations
669 associated with them) from the hash table. */
670
671static void
7080f735 672remove_useless_values (void)
fa49fd0f 673{
7101fb18 674 cselib_val **p, *v;
5847e8da 675
fa49fd0f
RK
676 /* First pass: eliminate locations that reference the value. That in
677 turn can make more values useless. */
678 do
679 {
680 values_became_useless = 0;
c203e8a7 681 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
fa49fd0f
RK
682 }
683 while (values_became_useless);
684
685 /* Second pass: actually remove the values. */
fa49fd0f 686
7101fb18
JH
687 p = &first_containing_mem;
688 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
faead9f7 689 if (v->locs && v == canonical_cselib_val (v))
7101fb18
JH
690 {
691 *p = v;
692 p = &(*p)->next_containing_mem;
693 }
694 *p = &dummy_val;
695
5847e8da
AO
696 n_useless_values += n_useless_debug_values;
697 n_debug_values -= n_useless_debug_values;
698 n_useless_debug_values = 0;
699
c203e8a7 700 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
3e2a0bd2 701
341c100f 702 gcc_assert (!n_useless_values);
fa49fd0f
RK
703}
704
b5b8b0ac
AO
705/* Arrange for a value to not be removed from the hash table even if
706 it becomes useless. */
707
708void
709cselib_preserve_value (cselib_val *v)
710{
711 PRESERVED_VALUE_P (v->val_rtx) = 1;
712}
713
714/* Test whether a value is preserved. */
715
716bool
717cselib_preserved_value_p (cselib_val *v)
718{
719 return PRESERVED_VALUE_P (v->val_rtx);
720}
721
457eeaae
JJ
722/* Arrange for a REG value to be assumed constant through the whole function,
723 never invalidated and preserved across cselib_reset_table calls. */
724
725void
9de9cbaf 726cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
457eeaae
JJ
727{
728 if (cselib_preserve_constants
729 && v->locs
730 && REG_P (v->locs->loc))
9de9cbaf
JJ
731 {
732 cfa_base_preserved_val = v;
733 cfa_base_preserved_regno = regno;
734 }
457eeaae
JJ
735}
736
b5b8b0ac
AO
737/* Clean all non-constant expressions in the hash table, but retain
738 their values. */
739
740void
0de3e43f 741cselib_preserve_only_values (void)
b5b8b0ac
AO
742{
743 int i;
744
b5b8b0ac
AO
745 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
746 cselib_invalidate_regno (i, reg_raw_mode[i]);
747
748 cselib_invalidate_mem (callmem);
749
750 remove_useless_values ();
751
752 gcc_assert (first_containing_mem == &dummy_val);
753}
754
0fe03ac3
JJ
755/* Arrange for a value to be marked as based on stack pointer
756 for find_base_term purposes. */
757
758void
759cselib_set_value_sp_based (cselib_val *v)
760{
761 SP_BASED_VALUE_P (v->val_rtx) = 1;
762}
763
764/* Test whether a value is based on stack pointer for
765 find_base_term purposes. */
766
767bool
768cselib_sp_based_value_p (cselib_val *v)
769{
770 return SP_BASED_VALUE_P (v->val_rtx);
771}
772
60fa6660
AO
773/* Return the mode in which a register was last set. If X is not a
774 register, return its mode. If the mode in which the register was
775 set is not known, or the value was already clobbered, return
776 VOIDmode. */
777
ef4bddc2 778machine_mode
4f588890 779cselib_reg_set_mode (const_rtx x)
60fa6660 780{
f8cfc6aa 781 if (!REG_P (x))
60fa6660
AO
782 return GET_MODE (x);
783
784 if (REG_VALUES (REGNO (x)) == NULL
785 || REG_VALUES (REGNO (x))->elt == NULL)
786 return VOIDmode;
787
757bbef8 788 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
60fa6660
AO
789}
790
4deef538
AO
791/* If x is a PLUS or an autoinc operation, expand the operation,
792 storing the offset, if any, in *OFF. */
793
794static rtx
ef4bddc2 795autoinc_split (rtx x, rtx *off, machine_mode memmode)
4deef538
AO
796{
797 switch (GET_CODE (x))
798 {
799 case PLUS:
800 *off = XEXP (x, 1);
801 return XEXP (x, 0);
802
803 case PRE_DEC:
804 if (memmode == VOIDmode)
805 return x;
806
807 *off = GEN_INT (-GET_MODE_SIZE (memmode));
808 return XEXP (x, 0);
4deef538
AO
809
810 case PRE_INC:
811 if (memmode == VOIDmode)
812 return x;
813
814 *off = GEN_INT (GET_MODE_SIZE (memmode));
815 return XEXP (x, 0);
816
817 case PRE_MODIFY:
818 return XEXP (x, 1);
819
820 case POST_DEC:
821 case POST_INC:
822 case POST_MODIFY:
823 return XEXP (x, 0);
824
825 default:
826 return x;
827 }
828}
829
830/* Return nonzero if we can prove that X and Y contain the same value,
831 taking our gathered information into account. MEMMODE holds the
832 mode of the enclosing MEM, if any, as required to deal with autoinc
833 addressing modes. If X and Y are not (known to be) part of
834 addresses, MEMMODE should be VOIDmode. */
835
08e5cf22 836int
005f12bf 837rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
fa49fd0f
RK
838{
839 enum rtx_code code;
840 const char *fmt;
841 int i;
7080f735 842
f8cfc6aa 843 if (REG_P (x) || MEM_P (x))
fa49fd0f 844 {
4deef538 845 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
fa49fd0f
RK
846
847 if (e)
757bbef8 848 x = e->val_rtx;
fa49fd0f
RK
849 }
850
f8cfc6aa 851 if (REG_P (y) || MEM_P (y))
fa49fd0f 852 {
4deef538 853 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
fa49fd0f
RK
854
855 if (e)
757bbef8 856 y = e->val_rtx;
fa49fd0f
RK
857 }
858
859 if (x == y)
860 return 1;
861
fa49fd0f
RK
862 if (GET_CODE (x) == VALUE)
863 {
6f2ffb4b 864 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
fa49fd0f
RK
865 struct elt_loc_list *l;
866
6f2ffb4b
AO
867 if (GET_CODE (y) == VALUE)
868 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
869
005f12bf
JJ
870 if (depth == 128)
871 return 0;
872
fa49fd0f
RK
873 for (l = e->locs; l; l = l->next)
874 {
875 rtx t = l->loc;
876
6f2ffb4b
AO
877 /* Avoid infinite recursion. We know we have the canonical
878 value, so we can just skip any values in the equivalence
879 list. */
880 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 881 continue;
005f12bf 882 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
fa49fd0f
RK
883 return 1;
884 }
7080f735 885
fa49fd0f
RK
886 return 0;
887 }
6f2ffb4b 888 else if (GET_CODE (y) == VALUE)
fa49fd0f 889 {
6f2ffb4b 890 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
fa49fd0f
RK
891 struct elt_loc_list *l;
892
005f12bf
JJ
893 if (depth == 128)
894 return 0;
895
fa49fd0f
RK
896 for (l = e->locs; l; l = l->next)
897 {
898 rtx t = l->loc;
899
6f2ffb4b 900 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 901 continue;
005f12bf 902 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
fa49fd0f
RK
903 return 1;
904 }
7080f735 905
fa49fd0f
RK
906 return 0;
907 }
908
4deef538 909 if (GET_MODE (x) != GET_MODE (y))
fa49fd0f
RK
910 return 0;
911
4deef538
AO
912 if (GET_CODE (x) != GET_CODE (y))
913 {
914 rtx xorig = x, yorig = y;
915 rtx xoff = NULL, yoff = NULL;
916
917 x = autoinc_split (x, &xoff, memmode);
918 y = autoinc_split (y, &yoff, memmode);
919
920 if (!xoff != !yoff)
921 return 0;
922
005f12bf 923 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
4deef538
AO
924 return 0;
925
926 /* Don't recurse if nothing changed. */
927 if (x != xorig || y != yorig)
005f12bf 928 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
4deef538
AO
929
930 return 0;
931 }
932
37cf6116
RH
933 /* These won't be handled correctly by the code below. */
934 switch (GET_CODE (x))
935 {
807e902e 936 CASE_CONST_UNIQUE:
0ca5af51 937 case DEBUG_EXPR:
37cf6116
RH
938 return 0;
939
c8a27c40
JJ
940 case DEBUG_IMPLICIT_PTR:
941 return DEBUG_IMPLICIT_PTR_DECL (x)
942 == DEBUG_IMPLICIT_PTR_DECL (y);
943
ddb555ed
JJ
944 case DEBUG_PARAMETER_REF:
945 return DEBUG_PARAMETER_REF_DECL (x)
946 == DEBUG_PARAMETER_REF_DECL (y);
947
a58a8e4b 948 case ENTRY_VALUE:
2b80199f
JJ
949 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
950 use rtx_equal_for_cselib_1 to compare the operands. */
951 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
a58a8e4b 952
37cf6116 953 case LABEL_REF:
04a121a7 954 return label_ref_label (x) == label_ref_label (y);
37cf6116 955
9fccb335
RS
956 case REG:
957 return REGNO (x) == REGNO (y);
958
4deef538
AO
959 case MEM:
960 /* We have to compare any autoinc operations in the addresses
961 using this MEM's mode. */
005f12bf
JJ
962 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
963 depth);
4deef538 964
37cf6116
RH
965 default:
966 break;
967 }
7080f735 968
fa49fd0f
RK
969 code = GET_CODE (x);
970 fmt = GET_RTX_FORMAT (code);
971
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
973 {
974 int j;
975
976 switch (fmt[i])
977 {
978 case 'w':
979 if (XWINT (x, i) != XWINT (y, i))
980 return 0;
981 break;
982
983 case 'n':
984 case 'i':
985 if (XINT (x, i) != XINT (y, i))
986 return 0;
987 break;
988
989 case 'V':
990 case 'E':
991 /* Two vectors must have the same length. */
992 if (XVECLEN (x, i) != XVECLEN (y, i))
993 return 0;
994
995 /* And the corresponding elements must match. */
996 for (j = 0; j < XVECLEN (x, i); j++)
4deef538 997 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
005f12bf 998 XVECEXP (y, i, j), memmode, depth))
fa49fd0f
RK
999 return 0;
1000 break;
1001
1002 case 'e':
29c1846b
R
1003 if (i == 1
1004 && targetm.commutative_p (x, UNKNOWN)
005f12bf
JJ
1005 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1006 depth)
1007 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1008 depth))
29c1846b 1009 return 1;
005f12bf
JJ
1010 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1011 depth))
fa49fd0f
RK
1012 return 0;
1013 break;
1014
1015 case 'S':
1016 case 's':
1017 if (strcmp (XSTR (x, i), XSTR (y, i)))
1018 return 0;
1019 break;
1020
1021 case 'u':
1022 /* These are just backpointers, so they don't matter. */
1023 break;
1024
1025 case '0':
1026 case 't':
1027 break;
1028
1029 /* It is believed that rtx's at this level will never
1030 contain anything but integers and other rtx's,
1031 except for within LABEL_REFs and SYMBOL_REFs. */
1032 default:
341c100f 1033 gcc_unreachable ();
fa49fd0f
RK
1034 }
1035 }
1036 return 1;
1037}
1038
fa49fd0f
RK
1039/* Hash an rtx. Return 0 if we couldn't hash the rtx.
1040 For registers and memory locations, we look up their cselib_val structure
1041 and return its VALUE element.
1042 Possible reasons for return 0 are: the object is volatile, or we couldn't
1043 find a register or memory location in the table and CREATE is zero. If
1044 CREATE is nonzero, table elts are created for regs and mem.
29c1846b
R
1045 N.B. this hash function returns the same hash value for RTXes that
1046 differ only in the order of operands, thus it is suitable for comparisons
1047 that take commutativity into account.
1048 If we wanted to also support associative rules, we'd have to use a different
1049 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
4deef538
AO
1050 MEMMODE indicates the mode of an enclosing MEM, and it's only
1051 used to compute autoinc values.
29c1846b
R
1052 We used to have a MODE argument for hashing for CONST_INTs, but that
1053 didn't make sense, since it caused spurious hash differences between
1054 (set (reg:SI 1) (const_int))
1055 (plus:SI (reg:SI 2) (reg:SI 1))
1056 and
1057 (plus:SI (reg:SI 2) (const_int))
1058 If the mode is important in any context, it must be checked specifically
1059 in a comparison anyway, since relying on hash differences is unsafe. */
fa49fd0f
RK
1060
1061static unsigned int
ef4bddc2 1062cselib_hash_rtx (rtx x, int create, machine_mode memmode)
fa49fd0f
RK
1063{
1064 cselib_val *e;
1065 int i, j;
1066 enum rtx_code code;
1067 const char *fmt;
1068 unsigned int hash = 0;
1069
fa49fd0f
RK
1070 code = GET_CODE (x);
1071 hash += (unsigned) code + (unsigned) GET_MODE (x);
1072
1073 switch (code)
1074 {
7483eef8
AO
1075 case VALUE:
1076 e = CSELIB_VAL_PTR (x);
1077 return e->hash;
1078
fa49fd0f
RK
1079 case MEM:
1080 case REG:
4deef538 1081 e = cselib_lookup (x, GET_MODE (x), create, memmode);
fa49fd0f
RK
1082 if (! e)
1083 return 0;
1084
5440c0e7 1085 return e->hash;
fa49fd0f 1086
0ca5af51 1087 case DEBUG_EXPR:
e4fb38bd
JJ
1088 hash += ((unsigned) DEBUG_EXPR << 7)
1089 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
0ca5af51
AO
1090 return hash ? hash : (unsigned int) DEBUG_EXPR;
1091
c8a27c40
JJ
1092 case DEBUG_IMPLICIT_PTR:
1093 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1094 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1095 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1096
ddb555ed
JJ
1097 case DEBUG_PARAMETER_REF:
1098 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1099 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1100 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1101
a58a8e4b 1102 case ENTRY_VALUE:
2b80199f
JJ
1103 /* ENTRY_VALUEs are function invariant, thus try to avoid
1104 recursing on argument if ENTRY_VALUE is one of the
1105 forms emitted by expand_debug_expr, otherwise
1106 ENTRY_VALUE hash would depend on the current value
1107 in some register or memory. */
1108 if (REG_P (ENTRY_VALUE_EXP (x)))
1109 hash += (unsigned int) REG
1110 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1111 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1112 else if (MEM_P (ENTRY_VALUE_EXP (x))
1113 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1114 hash += (unsigned int) MEM
1115 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1116 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1117 else
1118 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
a58a8e4b
JJ
1119 return hash ? hash : (unsigned int) ENTRY_VALUE;
1120
fa49fd0f 1121 case CONST_INT:
a8acccdd 1122 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
dc76f41c 1123 return hash ? hash : (unsigned int) CONST_INT;
fa49fd0f 1124
807e902e
KZ
1125 case CONST_WIDE_INT:
1126 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1127 hash += CONST_WIDE_INT_ELT (x, i);
1128 return hash;
1129
fa49fd0f
RK
1130 case CONST_DOUBLE:
1131 /* This is like the general case, except that it only counts
1132 the integers representing the constant. */
1133 hash += (unsigned) code + (unsigned) GET_MODE (x);
807e902e 1134 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
fa49fd0f
RK
1135 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1136 + (unsigned) CONST_DOUBLE_HIGH (x));
807e902e
KZ
1137 else
1138 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
dc76f41c 1139 return hash ? hash : (unsigned int) CONST_DOUBLE;
fa49fd0f 1140
091a3ac7
CF
1141 case CONST_FIXED:
1142 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1143 hash += fixed_hash (CONST_FIXED_VALUE (x));
1144 return hash ? hash : (unsigned int) CONST_FIXED;
1145
69ef87e2
AH
1146 case CONST_VECTOR:
1147 {
1148 int units;
1149 rtx elt;
1150
1151 units = CONST_VECTOR_NUNITS (x);
1152
1153 for (i = 0; i < units; ++i)
1154 {
1155 elt = CONST_VECTOR_ELT (x, i);
4deef538 1156 hash += cselib_hash_rtx (elt, 0, memmode);
69ef87e2
AH
1157 }
1158
1159 return hash;
1160 }
1161
fa49fd0f
RK
1162 /* Assume there is only one rtx object for any given label. */
1163 case LABEL_REF:
4c6669c2
RS
1164 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1165 differences and differences between each stage's debugging dumps. */
1166 hash += (((unsigned int) LABEL_REF << 7)
04a121a7 1167 + CODE_LABEL_NUMBER (label_ref_label (x)));
dc76f41c 1168 return hash ? hash : (unsigned int) LABEL_REF;
fa49fd0f
RK
1169
1170 case SYMBOL_REF:
4c6669c2
RS
1171 {
1172 /* Don't hash on the symbol's address to avoid bootstrap differences.
1173 Different hash values may cause expressions to be recorded in
1174 different orders and thus different registers to be used in the
1175 final assembler. This also avoids differences in the dump files
1176 between various stages. */
1177 unsigned int h = 0;
1178 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1179
1180 while (*p)
1181 h += (h << 7) + *p++; /* ??? revisit */
1182
1183 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1184 return hash ? hash : (unsigned int) SYMBOL_REF;
1185 }
fa49fd0f
RK
1186
1187 case PRE_DEC:
1188 case PRE_INC:
4deef538
AO
1189 /* We can't compute these without knowing the MEM mode. */
1190 gcc_assert (memmode != VOIDmode);
1191 i = GET_MODE_SIZE (memmode);
1192 if (code == PRE_DEC)
1193 i = -i;
1194 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1195 like (mem:MEMMODE (plus (reg) (const_int I))). */
1196 hash += (unsigned) PLUS - (unsigned)code
1197 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1198 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1199 return hash ? hash : 1 + (unsigned) PLUS;
1200
1201 case PRE_MODIFY:
1202 gcc_assert (memmode != VOIDmode);
1203 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1204
fa49fd0f
RK
1205 case POST_DEC:
1206 case POST_INC:
1207 case POST_MODIFY:
4deef538
AO
1208 gcc_assert (memmode != VOIDmode);
1209 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1210
fa49fd0f
RK
1211 case PC:
1212 case CC0:
1213 case CALL:
1214 case UNSPEC_VOLATILE:
1215 return 0;
1216
1217 case ASM_OPERANDS:
1218 if (MEM_VOLATILE_P (x))
1219 return 0;
1220
1221 break;
7080f735 1222
fa49fd0f
RK
1223 default:
1224 break;
1225 }
1226
1227 i = GET_RTX_LENGTH (code) - 1;
1228 fmt = GET_RTX_FORMAT (code);
1229 for (; i >= 0; i--)
1230 {
341c100f 1231 switch (fmt[i])
fa49fd0f 1232 {
341c100f 1233 case 'e':
fa49fd0f 1234 {
341c100f 1235 rtx tem = XEXP (x, i);
4deef538 1236 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
b8698a0f 1237
fa49fd0f
RK
1238 if (tem_hash == 0)
1239 return 0;
b8698a0f 1240
fa49fd0f
RK
1241 hash += tem_hash;
1242 }
341c100f
NS
1243 break;
1244 case 'E':
1245 for (j = 0; j < XVECLEN (x, i); j++)
1246 {
1247 unsigned int tem_hash
4deef538 1248 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
b8698a0f 1249
341c100f
NS
1250 if (tem_hash == 0)
1251 return 0;
b8698a0f 1252
341c100f
NS
1253 hash += tem_hash;
1254 }
1255 break;
fa49fd0f 1256
341c100f
NS
1257 case 's':
1258 {
1259 const unsigned char *p = (const unsigned char *) XSTR (x, i);
b8698a0f 1260
341c100f
NS
1261 if (p)
1262 while (*p)
1263 hash += *p++;
1264 break;
1265 }
b8698a0f 1266
341c100f
NS
1267 case 'i':
1268 hash += XINT (x, i);
1269 break;
1270
1271 case '0':
1272 case 't':
1273 /* unused */
1274 break;
b8698a0f 1275
341c100f
NS
1276 default:
1277 gcc_unreachable ();
fa49fd0f 1278 }
fa49fd0f
RK
1279 }
1280
dc76f41c 1281 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
fa49fd0f
RK
1282}
1283
1284/* Create a new value structure for VALUE and initialize it. The mode of the
1285 value is MODE. */
1286
6a59927d 1287static inline cselib_val *
ef4bddc2 1288new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
fa49fd0f 1289{
fb0b2914 1290 cselib_val *e = cselib_val_pool.allocate ();
fa49fd0f 1291
5440c0e7
AO
1292 gcc_assert (hash);
1293 gcc_assert (next_uid);
fa49fd0f 1294
5440c0e7
AO
1295 e->hash = hash;
1296 e->uid = next_uid++;
d67fb775
SB
1297 /* We use an alloc pool to allocate this RTL construct because it
1298 accounts for about 8% of the overall memory usage. We know
1299 precisely when we can have VALUE RTXen (when cselib is active)
daa956d0 1300 so we don't need to put them in garbage collected memory.
d67fb775 1301 ??? Why should a VALUE be an RTX in the first place? */
fb0b2914 1302 e->val_rtx = (rtx_def*) value_pool.allocate ();
757bbef8
SB
1303 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1304 PUT_CODE (e->val_rtx, VALUE);
1305 PUT_MODE (e->val_rtx, mode);
1306 CSELIB_VAL_PTR (e->val_rtx) = e;
fa49fd0f
RK
1307 e->addr_list = 0;
1308 e->locs = 0;
7101fb18 1309 e->next_containing_mem = 0;
b5b8b0ac 1310
4a3c9687 1311 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac 1312 {
5440c0e7 1313 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
b5b8b0ac
AO
1314 if (flag_dump_noaddr || flag_dump_unnumbered)
1315 fputs ("# ", dump_file);
1316 else
1317 fprintf (dump_file, "%p ", (void*)e);
1318 print_rtl_single (dump_file, x);
1319 fputc ('\n', dump_file);
1320 }
1321
fa49fd0f
RK
1322 return e;
1323}
1324
1325/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1326 contains the data at this address. X is a MEM that represents the
1327 value. Update the two value structures to represent this situation. */
1328
1329static void
7080f735 1330add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
fa49fd0f 1331{
faead9f7 1332 addr_elt = canonical_cselib_val (addr_elt);
a4f436ff
JJ
1333 mem_elt = canonical_cselib_val (mem_elt);
1334
fa49fd0f 1335 /* Avoid duplicates. */
bd68a3a7
RH
1336 addr_space_t as = MEM_ADDR_SPACE (x);
1337 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
3c0cb5de 1338 if (MEM_P (l->loc)
bd68a3a7
RH
1339 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1340 && MEM_ADDR_SPACE (l->loc) == as)
5847e8da
AO
1341 {
1342 promote_debug_loc (l);
1343 return;
1344 }
fa49fd0f 1345
fa49fd0f 1346 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
6f2ffb4b
AO
1347 new_elt_loc_list (mem_elt,
1348 replace_equiv_address_nv (x, addr_elt->val_rtx));
7101fb18
JH
1349 if (mem_elt->next_containing_mem == NULL)
1350 {
1351 mem_elt->next_containing_mem = first_containing_mem;
1352 first_containing_mem = mem_elt;
1353 }
fa49fd0f
RK
1354}
1355
1356/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1357 If CREATE, make a new one if we haven't seen it before. */
1358
1359static cselib_val *
7080f735 1360cselib_lookup_mem (rtx x, int create)
fa49fd0f 1361{
ef4bddc2
RS
1362 machine_mode mode = GET_MODE (x);
1363 machine_mode addr_mode;
4a8fb1a1 1364 cselib_val **slot;
fa49fd0f
RK
1365 cselib_val *addr;
1366 cselib_val *mem_elt;
fa49fd0f
RK
1367
1368 if (MEM_VOLATILE_P (x) || mode == BLKmode
463301c3 1369 || !cselib_record_memory
fa49fd0f
RK
1370 || (FLOAT_MODE_P (mode) && flag_float_store))
1371 return 0;
1372
4deef538
AO
1373 addr_mode = GET_MODE (XEXP (x, 0));
1374 if (addr_mode == VOIDmode)
1375 addr_mode = Pmode;
1376
fa49fd0f 1377 /* Look up the value for the address. */
4deef538 1378 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
fa49fd0f
RK
1379 if (! addr)
1380 return 0;
faead9f7 1381 addr = canonical_cselib_val (addr);
bd68a3a7 1382
fa49fd0f 1383 /* Find a value that describes a value of our mode at that address. */
bd68a3a7
RH
1384 addr_space_t as = MEM_ADDR_SPACE (x);
1385 for (elt_list *l = addr->addr_list; l; l = l->next)
757bbef8 1386 if (GET_MODE (l->elt->val_rtx) == mode)
5847e8da 1387 {
bd68a3a7
RH
1388 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1389 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1390 {
1391 promote_debug_loc (l->elt->locs);
1392 return l->elt;
1393 }
5847e8da 1394 }
fa49fd0f
RK
1395
1396 if (! create)
1397 return 0;
1398
5440c0e7 1399 mem_elt = new_cselib_val (next_uid, mode, x);
fa49fd0f 1400 add_mem_for_addr (addr, mem_elt, x);
f956adb9 1401 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
fa49fd0f
RK
1402 *slot = mem_elt;
1403 return mem_elt;
1404}
1405
073a8998 1406/* Search through the possible substitutions in P. We prefer a non reg
6fb5fa3c
DB
1407 substitution because this allows us to expand the tree further. If
1408 we find, just a reg, take the lowest regno. There may be several
1409 non-reg results, we just take the first one because they will all
1410 expand to the same place. */
1411
b8698a0f 1412static rtx
b5b8b0ac
AO
1413expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1414 int max_depth)
6fb5fa3c
DB
1415{
1416 rtx reg_result = NULL;
1417 unsigned int regno = UINT_MAX;
1418 struct elt_loc_list *p_in = p;
1419
67b977ad 1420 for (; p; p = p->next)
6fb5fa3c 1421 {
67b977ad
JJ
1422 /* Return these right away to avoid returning stack pointer based
1423 expressions for frame pointer and vice versa, which is something
1424 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1425 for more details. */
1426 if (REG_P (p->loc)
1427 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1428 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1429 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1430 || REGNO (p->loc) == cfa_base_preserved_regno))
1431 return p->loc;
6fb5fa3c
DB
1432 /* Avoid infinite recursion trying to expand a reg into a
1433 the same reg. */
b8698a0f
L
1434 if ((REG_P (p->loc))
1435 && (REGNO (p->loc) < regno)
b5b8b0ac 1436 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
6fb5fa3c
DB
1437 {
1438 reg_result = p->loc;
1439 regno = REGNO (p->loc);
1440 }
1441 /* Avoid infinite recursion and do not try to expand the
1442 value. */
b8698a0f 1443 else if (GET_CODE (p->loc) == VALUE
6fb5fa3c
DB
1444 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1445 continue;
1446 else if (!REG_P (p->loc))
1447 {
8dd5516b 1448 rtx result, note;
4a3c9687 1449 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1450 {
1451 print_inline_rtx (dump_file, p->loc, 0);
1452 fprintf (dump_file, "\n");
1453 }
8dd5516b
JJ
1454 if (GET_CODE (p->loc) == LO_SUM
1455 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1456 && p->setting_insn
1457 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1458 && XEXP (note, 0) == XEXP (p->loc, 1))
1459 return XEXP (p->loc, 1);
b5b8b0ac 1460 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
6fb5fa3c
DB
1461 if (result)
1462 return result;
1463 }
b8698a0f 1464
6fb5fa3c 1465 }
b8698a0f 1466
6fb5fa3c
DB
1467 if (regno != UINT_MAX)
1468 {
1469 rtx result;
4a3c9687 1470 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1471 fprintf (dump_file, "r%d\n", regno);
1472
b5b8b0ac 1473 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
6fb5fa3c
DB
1474 if (result)
1475 return result;
1476 }
1477
4a3c9687 1478 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1479 {
1480 if (reg_result)
1481 {
1482 print_inline_rtx (dump_file, reg_result, 0);
1483 fprintf (dump_file, "\n");
1484 }
b8698a0f 1485 else
6fb5fa3c
DB
1486 fprintf (dump_file, "NULL\n");
1487 }
1488 return reg_result;
1489}
1490
1491
1492/* Forward substitute and expand an expression out to its roots.
1493 This is the opposite of common subexpression. Because local value
1494 numbering is such a weak optimization, the expanded expression is
1495 pretty much unique (not from a pointer equals point of view but
b8698a0f 1496 from a tree shape point of view.
6fb5fa3c
DB
1497
1498 This function returns NULL if the expansion fails. The expansion
1499 will fail if there is no value number for one of the operands or if
1500 one of the operands has been overwritten between the current insn
1501 and the beginning of the basic block. For instance x has no
1502 expansion in:
1503
1504 r1 <- r1 + 3
1505 x <- r1 + 8
1506
1507 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1508 It is clear on return. */
1509
1510rtx
1511cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
b5b8b0ac
AO
1512{
1513 struct expand_value_data evd;
1514
1515 evd.regs_active = regs_active;
1516 evd.callback = NULL;
1517 evd.callback_arg = NULL;
864ddef7 1518 evd.dummy = false;
b5b8b0ac
AO
1519
1520 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1521}
1522
1523/* Same as cselib_expand_value_rtx, but using a callback to try to
0b7e34d7
AO
1524 resolve some expressions. The CB function should return ORIG if it
1525 can't or does not want to deal with a certain RTX. Any other
1526 return value, including NULL, will be used as the expansion for
1527 VALUE, without any further changes. */
b5b8b0ac
AO
1528
1529rtx
1530cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1531 cselib_expand_callback cb, void *data)
1532{
1533 struct expand_value_data evd;
1534
1535 evd.regs_active = regs_active;
1536 evd.callback = cb;
1537 evd.callback_arg = data;
864ddef7 1538 evd.dummy = false;
b5b8b0ac
AO
1539
1540 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1541}
1542
864ddef7
JJ
1543/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1544 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1545 would return NULL or non-NULL, without allocating new rtx. */
1546
1547bool
1548cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1549 cselib_expand_callback cb, void *data)
1550{
1551 struct expand_value_data evd;
1552
1553 evd.regs_active = regs_active;
1554 evd.callback = cb;
1555 evd.callback_arg = data;
1556 evd.dummy = true;
1557
1558 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1559}
1560
0b7e34d7
AO
1561/* Internal implementation of cselib_expand_value_rtx and
1562 cselib_expand_value_rtx_cb. */
1563
b5b8b0ac
AO
1564static rtx
1565cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1566 int max_depth)
6fb5fa3c
DB
1567{
1568 rtx copy, scopy;
1569 int i, j;
1570 RTX_CODE code;
1571 const char *format_ptr;
ef4bddc2 1572 machine_mode mode;
6fb5fa3c
DB
1573
1574 code = GET_CODE (orig);
1575
1576 /* For the context of dse, if we end up expand into a huge tree, we
1577 will not have a useful address, so we might as well just give up
1578 quickly. */
1579 if (max_depth <= 0)
1580 return NULL;
1581
1582 switch (code)
1583 {
1584 case REG:
1585 {
1586 struct elt_list *l = REG_VALUES (REGNO (orig));
1587
1588 if (l && l->elt == NULL)
1589 l = l->next;
1590 for (; l; l = l->next)
1591 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1592 {
1593 rtx result;
5a9fbcf1 1594 unsigned regno = REGNO (orig);
b8698a0f 1595
6fb5fa3c 1596 /* The only thing that we are not willing to do (this
6ed3da00 1597 is requirement of dse and if others potential uses
6fb5fa3c
DB
1598 need this function we should add a parm to control
1599 it) is that we will not substitute the
1600 STACK_POINTER_REGNUM, FRAME_POINTER or the
1601 HARD_FRAME_POINTER.
1602
cea618ac 1603 These expansions confuses the code that notices that
6fb5fa3c
DB
1604 stores into the frame go dead at the end of the
1605 function and that the frame is not effected by calls
1606 to subroutines. If you allow the
1607 STACK_POINTER_REGNUM substitution, then dse will
1608 think that parameter pushing also goes dead which is
1609 wrong. If you allow the FRAME_POINTER or the
1610 HARD_FRAME_POINTER then you lose the opportunity to
1611 make the frame assumptions. */
1612 if (regno == STACK_POINTER_REGNUM
1613 || regno == FRAME_POINTER_REGNUM
5a9fbcf1
AO
1614 || regno == HARD_FRAME_POINTER_REGNUM
1615 || regno == cfa_base_preserved_regno)
6fb5fa3c
DB
1616 return orig;
1617
b5b8b0ac 1618 bitmap_set_bit (evd->regs_active, regno);
6fb5fa3c 1619
4a3c9687 1620 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1621 fprintf (dump_file, "expanding: r%d into: ", regno);
1622
b5b8b0ac
AO
1623 result = expand_loc (l->elt->locs, evd, max_depth);
1624 bitmap_clear_bit (evd->regs_active, regno);
6fb5fa3c
DB
1625
1626 if (result)
1627 return result;
b8698a0f 1628 else
6fb5fa3c
DB
1629 return orig;
1630 }
f0bc3323 1631 return orig;
6fb5fa3c 1632 }
b8698a0f 1633
d8116890 1634 CASE_CONST_ANY:
6fb5fa3c
DB
1635 case SYMBOL_REF:
1636 case CODE_LABEL:
1637 case PC:
1638 case CC0:
1639 case SCRATCH:
1640 /* SCRATCH must be shared because they represent distinct values. */
1641 return orig;
1642 case CLOBBER:
1643 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1644 return orig;
1645 break;
1646
1647 case CONST:
1648 if (shared_const_p (orig))
1649 return orig;
1650 break;
1651
8dd5516b 1652 case SUBREG:
6fb5fa3c 1653 {
0b7e34d7
AO
1654 rtx subreg;
1655
1656 if (evd->callback)
1657 {
1658 subreg = evd->callback (orig, evd->regs_active, max_depth,
1659 evd->callback_arg);
1660 if (subreg != orig)
1661 return subreg;
1662 }
1663
1664 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1665 max_depth - 1);
8dd5516b
JJ
1666 if (!subreg)
1667 return NULL;
1668 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1669 GET_MODE (SUBREG_REG (orig)),
1670 SUBREG_BYTE (orig));
0b7e34d7
AO
1671 if (scopy == NULL
1672 || (GET_CODE (scopy) == SUBREG
1673 && !REG_P (SUBREG_REG (scopy))
1674 && !MEM_P (SUBREG_REG (scopy))))
1675 return NULL;
1676
8dd5516b 1677 return scopy;
6fb5fa3c 1678 }
8dd5516b
JJ
1679
1680 case VALUE:
b5b8b0ac
AO
1681 {
1682 rtx result;
0b7e34d7 1683
4a3c9687 1684 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac
AO
1685 {
1686 fputs ("\nexpanding ", dump_file);
1687 print_rtl_single (dump_file, orig);
1688 fputs (" into...", dump_file);
1689 }
8dd5516b 1690
0b7e34d7 1691 if (evd->callback)
b5b8b0ac
AO
1692 {
1693 result = evd->callback (orig, evd->regs_active, max_depth,
1694 evd->callback_arg);
0b7e34d7
AO
1695
1696 if (result != orig)
1697 return result;
b5b8b0ac 1698 }
8dd5516b 1699
0b7e34d7 1700 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
b5b8b0ac
AO
1701 return result;
1702 }
0ca5af51
AO
1703
1704 case DEBUG_EXPR:
1705 if (evd->callback)
1706 return evd->callback (orig, evd->regs_active, max_depth,
1707 evd->callback_arg);
1708 return orig;
1709
6fb5fa3c
DB
1710 default:
1711 break;
1712 }
1713
1714 /* Copy the various flags, fields, and other information. We assume
1715 that all fields need copying, and then clear the fields that should
1716 not be copied. That is the sensible default behavior, and forces
1717 us to explicitly document why we are *not* copying a flag. */
864ddef7
JJ
1718 if (evd->dummy)
1719 copy = NULL;
1720 else
1721 copy = shallow_copy_rtx (orig);
6fb5fa3c 1722
8dd5516b 1723 format_ptr = GET_RTX_FORMAT (code);
6fb5fa3c 1724
8dd5516b 1725 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6fb5fa3c
DB
1726 switch (*format_ptr++)
1727 {
1728 case 'e':
1729 if (XEXP (orig, i) != NULL)
1730 {
b5b8b0ac
AO
1731 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1732 max_depth - 1);
6fb5fa3c
DB
1733 if (!result)
1734 return NULL;
864ddef7
JJ
1735 if (copy)
1736 XEXP (copy, i) = result;
6fb5fa3c
DB
1737 }
1738 break;
1739
1740 case 'E':
1741 case 'V':
1742 if (XVEC (orig, i) != NULL)
1743 {
864ddef7
JJ
1744 if (copy)
1745 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1746 for (j = 0; j < XVECLEN (orig, i); j++)
6fb5fa3c 1747 {
b5b8b0ac
AO
1748 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1749 evd, max_depth - 1);
6fb5fa3c
DB
1750 if (!result)
1751 return NULL;
864ddef7
JJ
1752 if (copy)
1753 XVECEXP (copy, i, j) = result;
6fb5fa3c
DB
1754 }
1755 }
1756 break;
1757
1758 case 't':
1759 case 'w':
1760 case 'i':
1761 case 's':
1762 case 'S':
1763 case 'T':
1764 case 'u':
1765 case 'B':
1766 case '0':
1767 /* These are left unchanged. */
1768 break;
1769
1770 default:
1771 gcc_unreachable ();
1772 }
1773
864ddef7
JJ
1774 if (evd->dummy)
1775 return orig;
1776
8dd5516b
JJ
1777 mode = GET_MODE (copy);
1778 /* If an operand has been simplified into CONST_INT, which doesn't
1779 have a mode and the mode isn't derivable from whole rtx's mode,
1780 try simplify_*_operation first with mode from original's operand
1781 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1782 scopy = copy;
1783 switch (GET_RTX_CLASS (code))
1784 {
1785 case RTX_UNARY:
1786 if (CONST_INT_P (XEXP (copy, 0))
1787 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1788 {
1789 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1790 GET_MODE (XEXP (orig, 0)));
1791 if (scopy)
1792 return scopy;
1793 }
1794 break;
1795 case RTX_COMM_ARITH:
1796 case RTX_BIN_ARITH:
1797 /* These expressions can derive operand modes from the whole rtx's mode. */
1798 break;
1799 case RTX_TERNARY:
1800 case RTX_BITFIELD_OPS:
1801 if (CONST_INT_P (XEXP (copy, 0))
1802 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1803 {
1804 scopy = simplify_ternary_operation (code, mode,
1805 GET_MODE (XEXP (orig, 0)),
1806 XEXP (copy, 0), XEXP (copy, 1),
1807 XEXP (copy, 2));
1808 if (scopy)
1809 return scopy;
1810 }
1811 break;
1812 case RTX_COMPARE:
1813 case RTX_COMM_COMPARE:
1814 if (CONST_INT_P (XEXP (copy, 0))
1815 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1816 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1817 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1818 {
1819 scopy = simplify_relational_operation (code, mode,
1820 (GET_MODE (XEXP (orig, 0))
1821 != VOIDmode)
1822 ? GET_MODE (XEXP (orig, 0))
1823 : GET_MODE (XEXP (orig, 1)),
1824 XEXP (copy, 0),
1825 XEXP (copy, 1));
1826 if (scopy)
1827 return scopy;
1828 }
1829 break;
1830 default:
1831 break;
1832 }
6fb5fa3c
DB
1833 scopy = simplify_rtx (copy);
1834 if (scopy)
3af4ba41 1835 return scopy;
6fb5fa3c
DB
1836 return copy;
1837}
1838
fa49fd0f
RK
1839/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1840 with VALUE expressions. This way, it becomes independent of changes
1841 to registers and memory.
1842 X isn't actually modified; if modifications are needed, new rtl is
4deef538
AO
1843 allocated. However, the return value can share rtl with X.
1844 If X is within a MEM, MEMMODE must be the mode of the MEM. */
fa49fd0f 1845
91700444 1846rtx
ef4bddc2 1847cselib_subst_to_values (rtx x, machine_mode memmode)
fa49fd0f
RK
1848{
1849 enum rtx_code code = GET_CODE (x);
1850 const char *fmt = GET_RTX_FORMAT (code);
1851 cselib_val *e;
1852 struct elt_list *l;
1853 rtx copy = x;
1854 int i;
1855
1856 switch (code)
1857 {
1858 case REG:
60fa6660
AO
1859 l = REG_VALUES (REGNO (x));
1860 if (l && l->elt == NULL)
1861 l = l->next;
1862 for (; l; l = l->next)
757bbef8
SB
1863 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1864 return l->elt->val_rtx;
fa49fd0f 1865
341c100f 1866 gcc_unreachable ();
fa49fd0f
RK
1867
1868 case MEM:
1869 e = cselib_lookup_mem (x, 0);
4deef538
AO
1870 /* This used to happen for autoincrements, but we deal with them
1871 properly now. Remove the if stmt for the next release. */
fa49fd0f 1872 if (! e)
91700444 1873 {
4deef538 1874 /* Assign a value that doesn't match any other. */
5440c0e7 1875 e = new_cselib_val (next_uid, GET_MODE (x), x);
91700444 1876 }
757bbef8 1877 return e->val_rtx;
fa49fd0f 1878
509f4495
JJ
1879 case ENTRY_VALUE:
1880 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1881 if (! e)
1882 break;
1883 return e->val_rtx;
1884
d8116890 1885 CASE_CONST_ANY:
fa49fd0f
RK
1886 return x;
1887
4deef538 1888 case PRE_DEC:
91700444 1889 case PRE_INC:
4deef538
AO
1890 gcc_assert (memmode != VOIDmode);
1891 i = GET_MODE_SIZE (memmode);
1892 if (code == PRE_DEC)
1893 i = -i;
0a81f074
RS
1894 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1895 XEXP (x, 0), i),
4deef538
AO
1896 memmode);
1897
1898 case PRE_MODIFY:
1899 gcc_assert (memmode != VOIDmode);
1900 return cselib_subst_to_values (XEXP (x, 1), memmode);
1901
91700444 1902 case POST_DEC:
4deef538 1903 case POST_INC:
91700444 1904 case POST_MODIFY:
4deef538
AO
1905 gcc_assert (memmode != VOIDmode);
1906 return cselib_subst_to_values (XEXP (x, 0), memmode);
7080f735 1907
fa49fd0f
RK
1908 default:
1909 break;
1910 }
1911
1912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1913 {
1914 if (fmt[i] == 'e')
1915 {
4deef538 1916 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
fa49fd0f 1917
bd7960b1
RS
1918 if (t != XEXP (x, i))
1919 {
1920 if (x == copy)
1921 copy = shallow_copy_rtx (x);
1922 XEXP (copy, i) = t;
1923 }
fa49fd0f
RK
1924 }
1925 else if (fmt[i] == 'E')
1926 {
bd7960b1 1927 int j;
fa49fd0f
RK
1928
1929 for (j = 0; j < XVECLEN (x, i); j++)
1930 {
4deef538 1931 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
fa49fd0f 1932
bd7960b1 1933 if (t != XVECEXP (x, i, j))
fa49fd0f 1934 {
bd7960b1
RS
1935 if (XVEC (x, i) == XVEC (copy, i))
1936 {
1937 if (x == copy)
1938 copy = shallow_copy_rtx (x);
1939 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1940 }
1941 XVECEXP (copy, i, j) = t;
fa49fd0f 1942 }
fa49fd0f
RK
1943 }
1944 }
1945 }
1946
1947 return copy;
1948}
1949
9a76e83d
JJ
1950/* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1951
1952rtx
ef4bddc2 1953cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
9a76e83d
JJ
1954{
1955 rtx ret;
1956 gcc_assert (!cselib_current_insn);
1957 cselib_current_insn = insn;
1958 ret = cselib_subst_to_values (x, memmode);
1959 cselib_current_insn = NULL;
1960 return ret;
1961}
1962
4deef538
AO
1963/* Look up the rtl expression X in our tables and return the value it
1964 has. If CREATE is zero, we return NULL if we don't know the value.
1965 Otherwise, we create a new one if possible, using mode MODE if X
1966 doesn't have a mode (i.e. because it's a constant). When X is part
1967 of an address, MEMMODE should be the mode of the enclosing MEM if
1968 we're tracking autoinc expressions. */
fa49fd0f 1969
5847e8da 1970static cselib_val *
ef4bddc2
RS
1971cselib_lookup_1 (rtx x, machine_mode mode,
1972 int create, machine_mode memmode)
fa49fd0f 1973{
4a8fb1a1 1974 cselib_val **slot;
fa49fd0f
RK
1975 cselib_val *e;
1976 unsigned int hashval;
1977
1978 if (GET_MODE (x) != VOIDmode)
1979 mode = GET_MODE (x);
1980
1981 if (GET_CODE (x) == VALUE)
1982 return CSELIB_VAL_PTR (x);
1983
f8cfc6aa 1984 if (REG_P (x))
fa49fd0f
RK
1985 {
1986 struct elt_list *l;
1987 unsigned int i = REGNO (x);
1988
60fa6660
AO
1989 l = REG_VALUES (i);
1990 if (l && l->elt == NULL)
1991 l = l->next;
1992 for (; l; l = l->next)
757bbef8 1993 if (mode == GET_MODE (l->elt->val_rtx))
5847e8da
AO
1994 {
1995 promote_debug_loc (l->elt->locs);
1996 return l->elt;
1997 }
fa49fd0f
RK
1998
1999 if (! create)
5847e8da 2000 return 0;
fa49fd0f 2001
31825e57
DM
2002 if (i < FIRST_PSEUDO_REGISTER)
2003 {
66fd46b6 2004 unsigned int n = hard_regno_nregs[i][mode];
31825e57
DM
2005
2006 if (n > max_value_regs)
2007 max_value_regs = n;
2008 }
2009
5440c0e7 2010 e = new_cselib_val (next_uid, GET_MODE (x), x);
6f2ffb4b 2011 new_elt_loc_list (e, x);
b4206259
RS
2012
2013 scalar_int_mode int_mode;
fa49fd0f 2014 if (REG_VALUES (i) == 0)
60fa6660
AO
2015 {
2016 /* Maintain the invariant that the first entry of
2017 REG_VALUES, if present, must be the value used to set the
2018 register, or NULL. */
6790d1ab 2019 used_regs[n_used_regs++] = i;
60fa6660
AO
2020 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2021 }
509f4495 2022 else if (cselib_preserve_constants
b4206259 2023 && is_int_mode (mode, &int_mode))
509f4495
JJ
2024 {
2025 /* During var-tracking, try harder to find equivalences
2026 for SUBREGs. If a setter sets say a DImode register
2027 and user uses that register only in SImode, add a lowpart
2028 subreg location. */
2029 struct elt_list *lwider = NULL;
b4206259 2030 scalar_int_mode lmode;
509f4495
JJ
2031 l = REG_VALUES (i);
2032 if (l && l->elt == NULL)
2033 l = l->next;
2034 for (; l; l = l->next)
b4206259
RS
2035 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2036 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
509f4495 2037 && (lwider == NULL
b4206259 2038 || GET_MODE_SIZE (lmode)
509f4495
JJ
2039 < GET_MODE_SIZE (GET_MODE (lwider->elt->val_rtx))))
2040 {
2041 struct elt_loc_list *el;
2042 if (i < FIRST_PSEUDO_REGISTER
b4206259 2043 && hard_regno_nregs[i][lmode] != 1)
509f4495
JJ
2044 continue;
2045 for (el = l->elt->locs; el; el = el->next)
2046 if (!REG_P (el->loc))
2047 break;
2048 if (el)
2049 lwider = l;
2050 }
2051 if (lwider)
2052 {
b4206259 2053 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
509f4495
JJ
2054 GET_MODE (lwider->elt->val_rtx));
2055 if (sub)
6f2ffb4b 2056 new_elt_loc_list (e, sub);
509f4495
JJ
2057 }
2058 }
60fa6660 2059 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
f956adb9 2060 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
fa49fd0f 2061 *slot = e;
5847e8da 2062 return e;
fa49fd0f
RK
2063 }
2064
3c0cb5de 2065 if (MEM_P (x))
5847e8da 2066 return cselib_lookup_mem (x, create);
fa49fd0f 2067
4deef538 2068 hashval = cselib_hash_rtx (x, create, memmode);
fa49fd0f
RK
2069 /* Can't even create if hashing is not possible. */
2070 if (! hashval)
5847e8da 2071 return 0;
fa49fd0f 2072
f956adb9 2073 slot = cselib_find_slot (mode, x, hashval,
4deef538 2074 create ? INSERT : NO_INSERT, memmode);
fa49fd0f 2075 if (slot == 0)
5847e8da 2076 return 0;
fa49fd0f
RK
2077
2078 e = (cselib_val *) *slot;
2079 if (e)
5847e8da 2080 return e;
fa49fd0f 2081
b5b8b0ac 2082 e = new_cselib_val (hashval, mode, x);
fa49fd0f
RK
2083
2084 /* We have to fill the slot before calling cselib_subst_to_values:
2085 the hash table is inconsistent until we do so, and
2086 cselib_subst_to_values will need to do lookups. */
4a8fb1a1 2087 *slot = e;
6f2ffb4b 2088 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
5847e8da
AO
2089 return e;
2090}
2091
2092/* Wrapper for cselib_lookup, that indicates X is in INSN. */
2093
2094cselib_val *
ef4bddc2
RS
2095cselib_lookup_from_insn (rtx x, machine_mode mode,
2096 int create, machine_mode memmode, rtx_insn *insn)
5847e8da
AO
2097{
2098 cselib_val *ret;
2099
2100 gcc_assert (!cselib_current_insn);
2101 cselib_current_insn = insn;
2102
4deef538 2103 ret = cselib_lookup (x, mode, create, memmode);
5847e8da
AO
2104
2105 cselib_current_insn = NULL;
2106
2107 return ret;
2108}
2109
2110/* Wrapper for cselib_lookup_1, that logs the lookup result and
2111 maintains invariants related with debug insns. */
2112
2113cselib_val *
ef4bddc2
RS
2114cselib_lookup (rtx x, machine_mode mode,
2115 int create, machine_mode memmode)
5847e8da 2116{
4deef538 2117 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
5847e8da
AO
2118
2119 /* ??? Should we return NULL if we're not to create an entry, the
2120 found loc is a debug loc and cselib_current_insn is not DEBUG?
2121 If so, we should also avoid converting val to non-DEBUG; probably
2122 easiest setting cselib_current_insn to NULL before the call
2123 above. */
2124
4a3c9687 2125 if (dump_file && (dump_flags & TDF_CSELIB))
5847e8da
AO
2126 {
2127 fputs ("cselib lookup ", dump_file);
2128 print_inline_rtx (dump_file, x, 2);
2129 fprintf (dump_file, " => %u:%u\n",
2130 ret ? ret->uid : 0,
2131 ret ? ret->hash : 0);
2132 }
2133
2134 return ret;
fa49fd0f
RK
2135}
2136
2137/* Invalidate any entries in reg_values that overlap REGNO. This is called
2138 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2139 is used to determine how many hard registers are being changed. If MODE
2140 is VOIDmode, then only REGNO is being changed; this is used when
2141 invalidating call clobbered registers across a call. */
2142
2143static void
ef4bddc2 2144cselib_invalidate_regno (unsigned int regno, machine_mode mode)
fa49fd0f
RK
2145{
2146 unsigned int endregno;
2147 unsigned int i;
2148
2149 /* If we see pseudos after reload, something is _wrong_. */
341c100f
NS
2150 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2151 || reg_renumber[regno] < 0);
fa49fd0f
RK
2152
2153 /* Determine the range of registers that must be invalidated. For
2154 pseudos, only REGNO is affected. For hard regs, we must take MODE
2155 into account, and we must also invalidate lower register numbers
2156 if they contain values that overlap REGNO. */
291aac59 2157 if (regno < FIRST_PSEUDO_REGISTER)
31825e57 2158 {
341c100f 2159 gcc_assert (mode != VOIDmode);
7080f735 2160
31825e57
DM
2161 if (regno < max_value_regs)
2162 i = 0;
2163 else
2164 i = regno - max_value_regs;
fa49fd0f 2165
09e18274 2166 endregno = end_hard_regno (mode, regno);
31825e57
DM
2167 }
2168 else
2169 {
2170 i = regno;
2171 endregno = regno + 1;
2172 }
2173
2174 for (; i < endregno; i++)
fa49fd0f
RK
2175 {
2176 struct elt_list **l = &REG_VALUES (i);
2177
2178 /* Go through all known values for this reg; if it overlaps the range
2179 we're invalidating, remove the value. */
2180 while (*l)
2181 {
2182 cselib_val *v = (*l)->elt;
5847e8da 2183 bool had_locs;
21afc57d 2184 rtx_insn *setting_insn;
fa49fd0f
RK
2185 struct elt_loc_list **p;
2186 unsigned int this_last = i;
2187
60fa6660 2188 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
09e18274 2189 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
fa49fd0f 2190
9de9cbaf
JJ
2191 if (this_last < regno || v == NULL
2192 || (v == cfa_base_preserved_val
2193 && i == cfa_base_preserved_regno))
fa49fd0f
RK
2194 {
2195 l = &(*l)->next;
2196 continue;
2197 }
2198
2199 /* We have an overlap. */
60fa6660
AO
2200 if (*l == REG_VALUES (i))
2201 {
2202 /* Maintain the invariant that the first entry of
2203 REG_VALUES, if present, must be the value used to set
2204 the register, or NULL. This is also nice because
2205 then we won't push the same regno onto user_regs
2206 multiple times. */
2207 (*l)->elt = NULL;
2208 l = &(*l)->next;
2209 }
2210 else
2211 unchain_one_elt_list (l);
fa49fd0f 2212
6f2ffb4b
AO
2213 v = canonical_cselib_val (v);
2214
5847e8da
AO
2215 had_locs = v->locs != NULL;
2216 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2217
fa49fd0f
RK
2218 /* Now, we clear the mapping from value to reg. It must exist, so
2219 this code will crash intentionally if it doesn't. */
2220 for (p = &v->locs; ; p = &(*p)->next)
2221 {
2222 rtx x = (*p)->loc;
2223
f8cfc6aa 2224 if (REG_P (x) && REGNO (x) == i)
fa49fd0f
RK
2225 {
2226 unchain_one_elt_loc_list (p);
2227 break;
2228 }
2229 }
5847e8da
AO
2230
2231 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2232 {
2233 if (setting_insn && DEBUG_INSN_P (setting_insn))
2234 n_useless_debug_values++;
2235 else
2236 n_useless_values++;
2237 }
fa49fd0f
RK
2238 }
2239 }
2240}
9ddb66ca 2241\f
7101fb18
JH
2242/* Invalidate any locations in the table which are changed because of a
2243 store to MEM_RTX. If this is called because of a non-const call
2244 instruction, MEM_RTX is (mem:BLK const0_rtx). */
fa49fd0f 2245
7101fb18 2246static void
7080f735 2247cselib_invalidate_mem (rtx mem_rtx)
fa49fd0f 2248{
7101fb18 2249 cselib_val **vp, *v, *next;
c65ecebc 2250 int num_mems = 0;
9ddb66ca
JH
2251 rtx mem_addr;
2252
2253 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2254 mem_rtx = canon_rtx (mem_rtx);
fa49fd0f 2255
7101fb18
JH
2256 vp = &first_containing_mem;
2257 for (v = *vp; v != &dummy_val; v = next)
fa49fd0f 2258 {
7101fb18
JH
2259 bool has_mem = false;
2260 struct elt_loc_list **p = &v->locs;
5847e8da 2261 bool had_locs = v->locs != NULL;
21afc57d 2262 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f 2263
7101fb18 2264 while (*p)
fa49fd0f 2265 {
7101fb18
JH
2266 rtx x = (*p)->loc;
2267 cselib_val *addr;
2268 struct elt_list **mem_chain;
2269
2270 /* MEMs may occur in locations only at the top level; below
2271 that every MEM or REG is substituted by its VALUE. */
3c0cb5de 2272 if (!MEM_P (x))
fa49fd0f 2273 {
7101fb18
JH
2274 p = &(*p)->next;
2275 continue;
2276 }
c65ecebc 2277 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
bd280792
JR
2278 && ! canon_anti_dependence (x, false, mem_rtx,
2279 GET_MODE (mem_rtx), mem_addr))
7101fb18
JH
2280 {
2281 has_mem = true;
c65ecebc 2282 num_mems++;
7101fb18
JH
2283 p = &(*p)->next;
2284 continue;
fa49fd0f
RK
2285 }
2286
7101fb18
JH
2287 /* This one overlaps. */
2288 /* We must have a mapping from this MEM's address to the
2289 value (E). Remove that, too. */
4deef538 2290 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
faead9f7
AO
2291 addr = canonical_cselib_val (addr);
2292 gcc_checking_assert (v == canonical_cselib_val (v));
7101fb18
JH
2293 mem_chain = &addr->addr_list;
2294 for (;;)
2295 {
faead9f7
AO
2296 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2297
2298 if (canon == v)
7101fb18
JH
2299 {
2300 unchain_one_elt_list (mem_chain);
2301 break;
2302 }
fa49fd0f 2303
faead9f7
AO
2304 /* Record canonicalized elt. */
2305 (*mem_chain)->elt = canon;
2306
7101fb18
JH
2307 mem_chain = &(*mem_chain)->next;
2308 }
fa49fd0f 2309
7101fb18
JH
2310 unchain_one_elt_loc_list (p);
2311 }
fa49fd0f 2312
b5b8b0ac 2313 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
5847e8da
AO
2314 {
2315 if (setting_insn && DEBUG_INSN_P (setting_insn))
2316 n_useless_debug_values++;
2317 else
2318 n_useless_values++;
2319 }
fa49fd0f 2320
7101fb18
JH
2321 next = v->next_containing_mem;
2322 if (has_mem)
2323 {
2324 *vp = v;
2325 vp = &(*vp)->next_containing_mem;
2326 }
2327 else
2328 v->next_containing_mem = NULL;
2329 }
2330 *vp = &dummy_val;
fa49fd0f
RK
2331}
2332
0d87c765 2333/* Invalidate DEST, which is being assigned to or clobbered. */
fa49fd0f 2334
0d87c765
RH
2335void
2336cselib_invalidate_rtx (rtx dest)
fa49fd0f 2337{
46d096a3
SB
2338 while (GET_CODE (dest) == SUBREG
2339 || GET_CODE (dest) == ZERO_EXTRACT
2340 || GET_CODE (dest) == STRICT_LOW_PART)
fa49fd0f
RK
2341 dest = XEXP (dest, 0);
2342
f8cfc6aa 2343 if (REG_P (dest))
fa49fd0f 2344 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
3c0cb5de 2345 else if (MEM_P (dest))
fa49fd0f 2346 cselib_invalidate_mem (dest);
0d87c765
RH
2347}
2348
2349/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2350
2351static void
7bc980e1 2352cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
0d87c765
RH
2353 void *data ATTRIBUTE_UNUSED)
2354{
2355 cselib_invalidate_rtx (dest);
fa49fd0f
RK
2356}
2357
2358/* Record the result of a SET instruction. DEST is being set; the source
2359 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2360 describes its address. */
2361
2362static void
7080f735 2363cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
fa49fd0f 2364{
fa49fd0f
RK
2365 if (src_elt == 0 || side_effects_p (dest))
2366 return;
2367
dc8afb70 2368 if (REG_P (dest))
fa49fd0f 2369 {
dc8afb70 2370 unsigned int dreg = REGNO (dest);
31825e57
DM
2371 if (dreg < FIRST_PSEUDO_REGISTER)
2372 {
dc8afb70 2373 unsigned int n = REG_NREGS (dest);
31825e57
DM
2374
2375 if (n > max_value_regs)
2376 max_value_regs = n;
2377 }
2378
60fa6660
AO
2379 if (REG_VALUES (dreg) == 0)
2380 {
6790d1ab 2381 used_regs[n_used_regs++] = dreg;
60fa6660
AO
2382 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2383 }
2384 else
2385 {
341c100f
NS
2386 /* The register should have been invalidated. */
2387 gcc_assert (REG_VALUES (dreg)->elt == 0);
2388 REG_VALUES (dreg)->elt = src_elt;
60fa6660
AO
2389 }
2390
b5b8b0ac 2391 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f 2392 n_useless_values--;
6f2ffb4b 2393 new_elt_loc_list (src_elt, dest);
fa49fd0f 2394 }
3c0cb5de 2395 else if (MEM_P (dest) && dest_addr_elt != 0
463301c3 2396 && cselib_record_memory)
fa49fd0f 2397 {
b5b8b0ac 2398 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f
RK
2399 n_useless_values--;
2400 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2401 }
2402}
2403
6f2ffb4b
AO
2404/* Make ELT and X's VALUE equivalent to each other at INSN. */
2405
2406void
12ea1b95 2407cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
6f2ffb4b
AO
2408{
2409 cselib_val *nelt;
12ea1b95 2410 rtx_insn *save_cselib_current_insn = cselib_current_insn;
6f2ffb4b
AO
2411
2412 gcc_checking_assert (elt);
2413 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2414 gcc_checking_assert (!side_effects_p (x));
2415
2416 cselib_current_insn = insn;
2417
2418 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2419
2420 if (nelt != elt)
2421 {
0f68ba3e
AO
2422 cselib_any_perm_equivs = true;
2423
6f2ffb4b
AO
2424 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2425 cselib_preserve_value (nelt);
2426
2427 new_elt_loc_list (nelt, elt->val_rtx);
2428 }
2429
2430 cselib_current_insn = save_cselib_current_insn;
2431}
2432
0f68ba3e
AO
2433/* Return TRUE if any permanent equivalences have been recorded since
2434 the table was last initialized. */
2435bool
2436cselib_have_permanent_equivalences (void)
2437{
2438 return cselib_any_perm_equivs;
2439}
2440
fa49fd0f
RK
2441/* There is no good way to determine how many elements there can be
2442 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2443#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2444
4deef538
AO
2445struct cselib_record_autoinc_data
2446{
2447 struct cselib_set *sets;
2448 int n_sets;
2449};
2450
2451/* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2452 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2453
2454static int
2455cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2456 rtx dest, rtx src, rtx srcoff, void *arg)
2457{
2458 struct cselib_record_autoinc_data *data;
2459 data = (struct cselib_record_autoinc_data *)arg;
2460
2461 data->sets[data->n_sets].dest = dest;
2462
2463 if (srcoff)
2464 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2465 else
2466 data->sets[data->n_sets].src = src;
2467
2468 data->n_sets++;
2469
8d8e205b 2470 return 0;
4deef538
AO
2471}
2472
2473/* Record the effects of any sets and autoincs in INSN. */
fa49fd0f 2474static void
dd60a84c 2475cselib_record_sets (rtx_insn *insn)
fa49fd0f
RK
2476{
2477 int n_sets = 0;
2478 int i;
b5b8b0ac 2479 struct cselib_set sets[MAX_SETS];
fa49fd0f 2480 rtx body = PATTERN (insn);
b7933c21 2481 rtx cond = 0;
4deef538
AO
2482 int n_sets_before_autoinc;
2483 struct cselib_record_autoinc_data data;
fa49fd0f
RK
2484
2485 body = PATTERN (insn);
b7933c21
BS
2486 if (GET_CODE (body) == COND_EXEC)
2487 {
2488 cond = COND_EXEC_TEST (body);
2489 body = COND_EXEC_CODE (body);
2490 }
2491
fa49fd0f
RK
2492 /* Find all sets. */
2493 if (GET_CODE (body) == SET)
2494 {
2495 sets[0].src = SET_SRC (body);
2496 sets[0].dest = SET_DEST (body);
2497 n_sets = 1;
2498 }
2499 else if (GET_CODE (body) == PARALLEL)
2500 {
2501 /* Look through the PARALLEL and record the values being
2502 set, if possible. Also handle any CLOBBERs. */
2503 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2504 {
2505 rtx x = XVECEXP (body, 0, i);
2506
2507 if (GET_CODE (x) == SET)
2508 {
2509 sets[n_sets].src = SET_SRC (x);
2510 sets[n_sets].dest = SET_DEST (x);
2511 n_sets++;
2512 }
2513 }
2514 }
2515
8dd5516b
JJ
2516 if (n_sets == 1
2517 && MEM_P (sets[0].src)
2518 && !cselib_record_memory
2519 && MEM_READONLY_P (sets[0].src))
2520 {
2521 rtx note = find_reg_equal_equiv_note (insn);
2522
2523 if (note && CONSTANT_P (XEXP (note, 0)))
2524 sets[0].src = XEXP (note, 0);
2525 }
2526
4deef538
AO
2527 data.sets = sets;
2528 data.n_sets = n_sets_before_autoinc = n_sets;
8d8e205b 2529 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
4deef538
AO
2530 n_sets = data.n_sets;
2531
fa49fd0f
RK
2532 /* Look up the values that are read. Do this before invalidating the
2533 locations that are written. */
2534 for (i = 0; i < n_sets; i++)
2535 {
2536 rtx dest = sets[i].dest;
2537
2538 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2539 the low part after invalidating any knowledge about larger modes. */
2540 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2541 sets[i].dest = dest = XEXP (dest, 0);
2542
2543 /* We don't know how to record anything but REG or MEM. */
f8cfc6aa 2544 if (REG_P (dest)
3c0cb5de 2545 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f 2546 {
b7933c21
BS
2547 rtx src = sets[i].src;
2548 if (cond)
be9ed5d5 2549 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
4deef538 2550 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
3c0cb5de 2551 if (MEM_P (dest))
d4ebfa65 2552 {
ef4bddc2 2553 machine_mode address_mode = get_address_mode (dest);
d4ebfa65
BE
2554
2555 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
4deef538
AO
2556 address_mode, 1,
2557 GET_MODE (dest));
d4ebfa65 2558 }
fa49fd0f
RK
2559 else
2560 sets[i].dest_addr_elt = 0;
2561 }
2562 }
2563
b5b8b0ac
AO
2564 if (cselib_record_sets_hook)
2565 cselib_record_sets_hook (insn, sets, n_sets);
2566
fa49fd0f
RK
2567 /* Invalidate all locations written by this insn. Note that the elts we
2568 looked up in the previous loop aren't affected, just some of their
2569 locations may go away. */
0d87c765 2570 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
fa49fd0f 2571
4deef538
AO
2572 for (i = n_sets_before_autoinc; i < n_sets; i++)
2573 cselib_invalidate_rtx (sets[i].dest);
2574
b7048ab7
RH
2575 /* If this is an asm, look for duplicate sets. This can happen when the
2576 user uses the same value as an output multiple times. This is valid
2577 if the outputs are not actually used thereafter. Treat this case as
2578 if the value isn't actually set. We do this by smashing the destination
2579 to pc_rtx, so that we won't record the value later. */
2580 if (n_sets >= 2 && asm_noperands (body) >= 0)
2581 {
2582 for (i = 0; i < n_sets; i++)
2583 {
2584 rtx dest = sets[i].dest;
3c0cb5de 2585 if (REG_P (dest) || MEM_P (dest))
b7048ab7
RH
2586 {
2587 int j;
2588 for (j = i + 1; j < n_sets; j++)
2589 if (rtx_equal_p (dest, sets[j].dest))
2590 {
2591 sets[i].dest = pc_rtx;
2592 sets[j].dest = pc_rtx;
2593 }
2594 }
2595 }
2596 }
2597
fa49fd0f
RK
2598 /* Now enter the equivalences in our tables. */
2599 for (i = 0; i < n_sets; i++)
2600 {
2601 rtx dest = sets[i].dest;
f8cfc6aa 2602 if (REG_P (dest)
3c0cb5de 2603 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f
RK
2604 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2605 }
2606}
2607
40155239
JJ
2608/* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2609
2610bool
8df68a82 2611fp_setter_insn (rtx_insn *insn)
40155239
JJ
2612{
2613 rtx expr, pat = NULL_RTX;
2614
2615 if (!RTX_FRAME_RELATED_P (insn))
2616 return false;
2617
2618 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2619 if (expr)
2620 pat = XEXP (expr, 0);
2621 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2622 return false;
2623
2624 /* Don't return true for frame pointer restores in the epilogue. */
2625 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2626 return false;
2627 return true;
2628}
2629
fa49fd0f
RK
2630/* Record the effects of INSN. */
2631
2632void
dd60a84c 2633cselib_process_insn (rtx_insn *insn)
fa49fd0f
RK
2634{
2635 int i;
2636 rtx x;
2637
2638 cselib_current_insn = insn;
2639
f1257268 2640 /* Forget everything at a CODE_LABEL or a setjmp. */
f5d30aa6
JJ
2641 if ((LABEL_P (insn)
2642 || (CALL_P (insn)
f1257268 2643 && find_reg_note (insn, REG_SETJMP, NULL)))
f5d30aa6 2644 && !cselib_preserve_constants)
fa49fd0f 2645 {
5440c0e7 2646 cselib_reset_table (next_uid);
12ea1b95 2647 cselib_current_insn = NULL;
fa49fd0f
RK
2648 return;
2649 }
2650
2651 if (! INSN_P (insn))
2652 {
12ea1b95 2653 cselib_current_insn = NULL;
fa49fd0f
RK
2654 return;
2655 }
2656
2657 /* If this is a call instruction, forget anything stored in a
2658 call clobbered register, or, if this is not a const call, in
2659 memory. */
4b4bf941 2660 if (CALL_P (insn))
fa49fd0f
RK
2661 {
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7e42db17
DJ
2663 if (call_used_regs[i]
2664 || (REG_VALUES (i) && REG_VALUES (i)->elt
b8698a0f 2665 && HARD_REGNO_CALL_PART_CLOBBERED (i,
757bbef8 2666 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
291aac59 2667 cselib_invalidate_regno (i, reg_raw_mode[i]);
fa49fd0f 2668
becfd6e5
KZ
2669 /* Since it is not clear how cselib is going to be used, be
2670 conservative here and treat looping pure or const functions
2671 as if they were regular functions. */
2672 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2673 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
fa49fd0f 2674 cselib_invalidate_mem (callmem);
007b405b
JDA
2675 else
2676 /* For const/pure calls, invalidate any argument slots because
2677 they are owned by the callee. */
2678 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2679 if (GET_CODE (XEXP (x, 0)) == USE
2680 && MEM_P (XEXP (XEXP (x, 0), 0)))
2681 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
fa49fd0f
RK
2682 }
2683
2684 cselib_record_sets (insn);
2685
fa49fd0f
RK
2686 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2687 after we have processed the insn. */
4b4bf941 2688 if (CALL_P (insn))
f5d30aa6
JJ
2689 {
2690 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2691 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2692 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2693 /* Flush evertything on setjmp. */
2694 if (cselib_preserve_constants
2695 && find_reg_note (insn, REG_SETJMP, NULL))
2696 {
2697 cselib_preserve_only_values ();
2698 cselib_reset_table (next_uid);
2699 }
2700 }
fa49fd0f 2701
40155239
JJ
2702 /* On setter of the hard frame pointer if frame_pointer_needed,
2703 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2704 VALUEs are distinct. */
2705 if (reload_completed
2706 && frame_pointer_needed
2707 && fp_setter_insn (insn))
2708 cselib_invalidate_rtx (stack_pointer_rtx);
2709
12ea1b95 2710 cselib_current_insn = NULL;
fa49fd0f 2711
80662856
AO
2712 if (n_useless_values > MAX_USELESS_VALUES
2713 /* remove_useless_values is linear in the hash table size. Avoid
2714 quadratic behavior for very large hashtables with very few
2715 useless elements. */
2716 && ((unsigned int)n_useless_values
c203e8a7 2717 > (cselib_hash_table->elements () - n_debug_values) / 4))
80662856 2718 remove_useless_values ();
fa49fd0f
RK
2719}
2720
fa49fd0f
RK
2721/* Initialize cselib for one pass. The caller must also call
2722 init_alias_analysis. */
2723
2724void
457eeaae 2725cselib_init (int record_what)
fa49fd0f 2726{
457eeaae
JJ
2727 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2728 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
0f68ba3e 2729 cselib_any_perm_equivs = false;
ac3768f6
SB
2730
2731 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2732 see canon_true_dependence. This is only created once. */
fa49fd0f 2733 if (! callmem)
ac3768f6 2734 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
fa49fd0f
RK
2735
2736 cselib_nregs = max_reg_num ();
6790d1ab
JH
2737
2738 /* We preserve reg_values to allow expensive clearing of the whole thing.
2739 Reallocate it however if it happens to be too large. */
2740 if (!reg_values || reg_values_size < cselib_nregs
2741 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
e2500fed 2742 {
04695783 2743 free (reg_values);
6790d1ab
JH
2744 /* Some space for newly emit instructions so we don't end up
2745 reallocating in between passes. */
2746 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
5ed6ace5 2747 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
e2500fed 2748 }
5ed6ace5 2749 used_regs = XNEWVEC (unsigned int, cselib_nregs);
6790d1ab 2750 n_used_regs = 0;
c203e8a7 2751 cselib_hash_table = new hash_table<cselib_hasher> (31);
0618dee5 2752 if (cselib_preserve_constants)
c203e8a7 2753 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31);
5440c0e7 2754 next_uid = 1;
fa49fd0f
RK
2755}
2756
2757/* Called when the current user is done with cselib. */
2758
2759void
7080f735 2760cselib_finish (void)
fa49fd0f 2761{
0618dee5 2762 bool preserved = cselib_preserve_constants;
6fb5fa3c 2763 cselib_discard_hook = NULL;
457eeaae 2764 cselib_preserve_constants = false;
0f68ba3e 2765 cselib_any_perm_equivs = false;
457eeaae 2766 cfa_base_preserved_val = NULL;
9de9cbaf 2767 cfa_base_preserved_regno = INVALID_REGNUM;
fb0b2914
ML
2768 elt_list_pool.release ();
2769 elt_loc_list_pool.release ();
2770 cselib_val_pool.release ();
a78a26f1 2771 value_pool.release ();
eb232f4e 2772 cselib_clear_table ();
c203e8a7
TS
2773 delete cselib_hash_table;
2774 cselib_hash_table = NULL;
0618dee5 2775 if (preserved)
c203e8a7
TS
2776 delete cselib_preserved_hash_table;
2777 cselib_preserved_hash_table = NULL;
0fc0c4c9 2778 free (used_regs);
e2500fed 2779 used_regs = 0;
e2500fed 2780 n_useless_values = 0;
5847e8da
AO
2781 n_useless_debug_values = 0;
2782 n_debug_values = 0;
5440c0e7 2783 next_uid = 0;
fa49fd0f 2784}
e2500fed 2785
4a8fb1a1 2786/* Dump the cselib_val *X to FILE *OUT. */
b5b8b0ac 2787
4a8fb1a1
LC
2788int
2789dump_cselib_val (cselib_val **x, FILE *out)
b5b8b0ac 2790{
4a8fb1a1 2791 cselib_val *v = *x;
b5b8b0ac
AO
2792 bool need_lf = true;
2793
2794 print_inline_rtx (out, v->val_rtx, 0);
2795
2796 if (v->locs)
2797 {
2798 struct elt_loc_list *l = v->locs;
2799 if (need_lf)
2800 {
2801 fputc ('\n', out);
2802 need_lf = false;
2803 }
2804 fputs (" locs:", out);
2805 do
2806 {
42286976
JJ
2807 if (l->setting_insn)
2808 fprintf (out, "\n from insn %i ",
2809 INSN_UID (l->setting_insn));
2810 else
2811 fprintf (out, "\n ");
b5b8b0ac
AO
2812 print_inline_rtx (out, l->loc, 4);
2813 }
2814 while ((l = l->next));
2815 fputc ('\n', out);
2816 }
2817 else
2818 {
2819 fputs (" no locs", out);
2820 need_lf = true;
2821 }
2822
2823 if (v->addr_list)
2824 {
2825 struct elt_list *e = v->addr_list;
2826 if (need_lf)
2827 {
2828 fputc ('\n', out);
2829 need_lf = false;
2830 }
2831 fputs (" addr list:", out);
2832 do
2833 {
2834 fputs ("\n ", out);
2835 print_inline_rtx (out, e->elt->val_rtx, 2);
2836 }
2837 while ((e = e->next));
2838 fputc ('\n', out);
2839 }
2840 else
2841 {
2842 fputs (" no addrs", out);
2843 need_lf = true;
2844 }
2845
2846 if (v->next_containing_mem == &dummy_val)
2847 fputs (" last mem\n", out);
2848 else if (v->next_containing_mem)
2849 {
2850 fputs (" next mem ", out);
2851 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2852 fputc ('\n', out);
2853 }
2854 else if (need_lf)
2855 fputc ('\n', out);
2856
2857 return 1;
2858}
2859
2860/* Dump to OUT everything in the CSELIB table. */
2861
2862void
2863dump_cselib_table (FILE *out)
2864{
2865 fprintf (out, "cselib hash table:\n");
c203e8a7 2866 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
0618dee5 2867 fprintf (out, "cselib preserved hash table:\n");
c203e8a7 2868 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
b5b8b0ac
AO
2869 if (first_containing_mem != &dummy_val)
2870 {
2871 fputs ("first mem ", out);
2872 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2873 fputc ('\n', out);
2874 }
5440c0e7 2875 fprintf (out, "next uid %i\n", next_uid);
b5b8b0ac
AO
2876}
2877
e2500fed 2878#include "gt-cselib.h"