]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
poly_int: GET_MODE_BITSIZE
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
fa49fd0f 1/* Common subexpression elimination library for GNU compiler.
85ec4feb 2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
fa49fd0f 3
1322177d 4This file is part of GCC.
fa49fd0f 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
fa49fd0f 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
fa49fd0f
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
fa49fd0f
RK
19
20#include "config.h"
21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
fa49fd0f 25#include "rtl.h"
957060b5 26#include "tree.h"
c7131fb2 27#include "df.h"
4d0cdd0c 28#include "memmodel.h"
fa49fd0f 29#include "tm_p.h"
957060b5 30#include "regs.h"
78528714 31#include "emit-rtl.h"
7ee2468b 32#include "dumpfile.h"
fa49fd0f 33#include "cselib.h"
c65ecebc 34#include "params.h"
fa49fd0f 35
fba4cb03 36/* A list of cselib_val structures. */
a78a26f1
ML
37struct elt_list
38{
39 struct elt_list *next;
40 cselib_val *elt;
fba4cb03
LB
41};
42
463301c3 43static bool cselib_record_memory;
457eeaae 44static bool cselib_preserve_constants;
0f68ba3e 45static bool cselib_any_perm_equivs;
4a8fb1a1 46static inline void promote_debug_loc (struct elt_loc_list *l);
7080f735 47static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
6f2ffb4b 48static void new_elt_loc_list (cselib_val *, rtx);
7080f735
AJ
49static void unchain_one_value (cselib_val *);
50static void unchain_one_elt_list (struct elt_list **);
51static void unchain_one_elt_loc_list (struct elt_loc_list **);
7080f735 52static void remove_useless_values (void);
ef4bddc2
RS
53static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
7080f735
AJ
55static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56static cselib_val *cselib_lookup_mem (rtx, int);
ef4bddc2 57static void cselib_invalidate_regno (unsigned int, machine_mode);
7080f735 58static void cselib_invalidate_mem (rtx);
7080f735 59static void cselib_record_set (rtx, cselib_val *, cselib_val *);
dd60a84c 60static void cselib_record_sets (rtx_insn *);
fa49fd0f 61
b5b8b0ac
AO
62struct expand_value_data
63{
64 bitmap regs_active;
65 cselib_expand_callback callback;
66 void *callback_arg;
864ddef7 67 bool dummy;
b5b8b0ac
AO
68};
69
70static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
71
fa49fd0f
RK
72/* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
80
8d67ee55 81struct cselib_hasher : nofree_ptr_hash <cselib_val>
4a8fb1a1 82{
67f58944 83 struct key {
f956adb9
RS
84 /* The rtx value and its mode (needed separately for constant
85 integers). */
ef4bddc2 86 machine_mode mode;
f956adb9
RS
87 rtx x;
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
ef4bddc2 89 machine_mode memmode;
f956adb9 90 };
67f58944
TS
91 typedef key *compare_type;
92 static inline hashval_t hash (const cselib_val *);
93 static inline bool equal (const cselib_val *, const key *);
4a8fb1a1
LC
94};
95
96/* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
99
100inline hashval_t
67f58944 101cselib_hasher::hash (const cselib_val *v)
4a8fb1a1
LC
102{
103 return v->hash;
104}
105
106/* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
110
111inline bool
67f58944 112cselib_hasher::equal (const cselib_val *v, const key *x_arg)
4a8fb1a1
LC
113{
114 struct elt_loc_list *l;
f956adb9 115 rtx x = x_arg->x;
ef4bddc2
RS
116 machine_mode mode = x_arg->mode;
117 machine_mode memmode = x_arg->memmode;
4a8fb1a1
LC
118
119 if (mode != GET_MODE (v->val_rtx))
120 return false;
121
0618dee5
AO
122 if (GET_CODE (x) == VALUE)
123 return x == v->val_rtx;
124
4a8fb1a1
LC
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l = v->locs; l; l = l->next)
005f12bf 128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
4a8fb1a1
LC
129 {
130 promote_debug_loc (l);
131 return true;
132 }
133
134 return false;
135}
136
fa49fd0f 137/* A table that enables us to look up elts by their value. */
c203e8a7 138static hash_table<cselib_hasher> *cselib_hash_table;
fa49fd0f 139
0618dee5 140/* A table to hold preserved values. */
c203e8a7 141static hash_table<cselib_hasher> *cselib_preserved_hash_table;
0618dee5 142
fa49fd0f
RK
143/* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
12ea1b95 145static rtx_insn *cselib_current_insn;
fa49fd0f 146
5440c0e7
AO
147/* The unique id that the next create value will take. */
148static unsigned int next_uid;
fa49fd0f
RK
149
150/* The number of registers we had when the varrays were last resized. */
151static unsigned int cselib_nregs;
152
5847e8da
AO
153/* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
156
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
162
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
170
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
174
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
180
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
187 values. */
fa49fd0f 188static int n_useless_values;
5847e8da
AO
189static int n_useless_debug_values;
190
191/* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193static int n_debug_values;
fa49fd0f
RK
194
195/* Number of useless values before we remove them from the hash table. */
196#define MAX_USELESS_VALUES 32
197
60fa6660
AO
198/* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
204 element. */
5211d65a
KH
205static struct elt_list **reg_values;
206static unsigned int reg_values_size;
6790d1ab 207#define REG_VALUES(i) reg_values[i]
fa49fd0f 208
31825e57 209/* The largest number of hard regs used by any entry added to the
eb232f4e 210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
31825e57
DM
211static unsigned int max_value_regs;
212
fa49fd0f 213/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
eb232f4e 214 in cselib_clear_table() for fast emptying. */
6790d1ab
JH
215static unsigned int *used_regs;
216static unsigned int n_used_regs;
fa49fd0f
RK
217
218/* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
e2500fed 220static GTY(()) rtx callmem;
fa49fd0f 221
fa49fd0f
RK
222/* Set by discard_useless_locs if it deleted the last location of any
223 value. */
224static int values_became_useless;
7101fb18
JH
225
226/* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228static cselib_val dummy_val;
229
457eeaae
JJ
230/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
232 eliminated. */
233static cselib_val *cfa_base_preserved_val;
5a9fbcf1 234static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
457eeaae 235
7080f735 236/* Used to list all values that contain memory reference.
7101fb18
JH
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239static cselib_val *first_containing_mem = &dummy_val;
a78a26f1 240
fcb87c50
MM
241static object_allocator<elt_list> elt_list_pool ("elt_list");
242static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
243static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
a78a26f1 244
fcb87c50 245static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
6fb5fa3c
DB
246
247/* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249void (*cselib_discard_hook) (cselib_val *);
b5b8b0ac
AO
250
251/* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
255 instruction. */
46665961 256void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
b5b8b0ac
AO
257 int n_sets);
258
259#define PRESERVED_VALUE_P(RTX) \
c3284718 260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
b5b8b0ac 261
0fe03ac3 262#define SP_BASED_VALUE_P(RTX) \
c3284718 263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
0fe03ac3 264
fa49fd0f
RK
265\f
266
267/* Allocate a struct elt_list and fill in its two elements with the
268 arguments. */
269
6a59927d 270static inline struct elt_list *
7080f735 271new_elt_list (struct elt_list *next, cselib_val *elt)
fa49fd0f 272{
fb0b2914 273 elt_list *el = elt_list_pool.allocate ();
fa49fd0f
RK
274 el->next = next;
275 el->elt = elt;
276 return el;
277}
278
6f2ffb4b
AO
279/* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
280 list. */
fa49fd0f 281
6f2ffb4b
AO
282static inline void
283new_elt_loc_list (cselib_val *val, rtx loc)
fa49fd0f 284{
6f2ffb4b
AO
285 struct elt_loc_list *el, *next = val->locs;
286
287 gcc_checking_assert (!next || !next->setting_insn
288 || !DEBUG_INSN_P (next->setting_insn)
289 || cselib_current_insn == next->setting_insn);
5847e8da
AO
290
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
294 n_debug_values++;
295
6f2ffb4b
AO
296 val = canonical_cselib_val (val);
297 next = val->locs;
298
299 if (GET_CODE (loc) == VALUE)
300 {
301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
302
303 gcc_checking_assert (PRESERVED_VALUE_P (loc)
304 == PRESERVED_VALUE_P (val->val_rtx));
305
306 if (val->val_rtx == loc)
307 return;
308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
309 {
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
312 return;
313 }
314
315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
316
317 if (CSELIB_VAL_PTR (loc)->locs)
318 {
319 /* Bring all locs from LOC to VAL. */
320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
321 {
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el->loc && GET_CODE (el->loc) == VALUE)
325 {
326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
327 == loc);
328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
329 }
330 }
331 el->next = val->locs;
332 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
faead9f7
AO
333 }
334
335 if (CSELIB_VAL_PTR (loc)->addr_list)
336 {
337 /* Bring in addr_list into canonical node. */
338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
339 while (last->next)
340 last = last->next;
341 last->next = val->addr_list;
342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
343 CSELIB_VAL_PTR (loc)->addr_list = NULL;
344 }
345
346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
347 && val->next_containing_mem == NULL)
348 {
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
351 MEMs. */
352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
353 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
6f2ffb4b
AO
354 }
355
356 /* Chain LOC back to VAL. */
fb0b2914 357 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
358 el->loc = val->val_rtx;
359 el->setting_insn = cselib_current_insn;
360 el->next = NULL;
361 CSELIB_VAL_PTR (loc)->locs = el;
362 }
363
fb0b2914 364 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
365 el->loc = loc;
366 el->setting_insn = cselib_current_insn;
367 el->next = next;
368 val->locs = el;
fa49fd0f
RK
369}
370
5847e8da
AO
371/* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
373 count. */
374
375static inline void
376promote_debug_loc (struct elt_loc_list *l)
377{
ce8fe26d 378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
5847e8da
AO
379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
380 {
381 n_debug_values--;
382 l->setting_insn = cselib_current_insn;
dc2a58da
JJ
383 if (cselib_preserve_constants && l->next)
384 {
385 gcc_assert (l->next->setting_insn
386 && DEBUG_INSN_P (l->next->setting_insn)
387 && !l->next->next);
388 l->next->setting_insn = cselib_current_insn;
389 }
390 else
391 gcc_assert (!l->next);
5847e8da
AO
392 }
393}
394
fa49fd0f
RK
395/* The elt_list at *PL is no longer needed. Unchain it and free its
396 storage. */
397
6a59927d 398static inline void
7080f735 399unchain_one_elt_list (struct elt_list **pl)
fa49fd0f
RK
400{
401 struct elt_list *l = *pl;
402
403 *pl = l->next;
fb0b2914 404 elt_list_pool.remove (l);
fa49fd0f
RK
405}
406
407/* Likewise for elt_loc_lists. */
408
409static void
7080f735 410unchain_one_elt_loc_list (struct elt_loc_list **pl)
fa49fd0f
RK
411{
412 struct elt_loc_list *l = *pl;
413
414 *pl = l->next;
fb0b2914 415 elt_loc_list_pool.remove (l);
fa49fd0f
RK
416}
417
418/* Likewise for cselib_vals. This also frees the addr_list associated with
419 V. */
420
421static void
7080f735 422unchain_one_value (cselib_val *v)
fa49fd0f
RK
423{
424 while (v->addr_list)
425 unchain_one_elt_list (&v->addr_list);
426
fb0b2914 427 cselib_val_pool.remove (v);
fa49fd0f
RK
428}
429
430/* Remove all entries from the hash table. Also used during
b5b8b0ac 431 initialization. */
fa49fd0f 432
eb232f4e
SB
433void
434cselib_clear_table (void)
b5b8b0ac 435{
5440c0e7 436 cselib_reset_table (1);
b5b8b0ac
AO
437}
438
0e224656
AO
439/* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
457eeaae 441
0e224656
AO
442static bool
443invariant_or_equiv_p (cselib_val *v)
457eeaae 444{
6f2ffb4b 445 struct elt_loc_list *l;
457eeaae 446
0e224656
AO
447 if (v == cfa_base_preserved_val)
448 return true;
449
450 /* Keep VALUE equivalences around. */
451 for (l = v->locs; l; l = l->next)
452 if (GET_CODE (l->loc) == VALUE)
453 return true;
454
457eeaae
JJ
455 if (v->locs != NULL
456 && v->locs->next == NULL)
457 {
458 if (CONSTANT_P (v->locs->loc)
459 && (GET_CODE (v->locs->loc) != CONST
460 || !references_value_p (v->locs->loc, 0)))
0e224656 461 return true;
6f2ffb4b
AO
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v->locs->loc) == ENTRY_VALUE
468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
0e224656
AO
469 return true;
470
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v->locs->loc) == PLUS
473 && CONST_INT_P (XEXP (v->locs->loc, 1))
474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
476 return true;
457eeaae 477 }
6f2ffb4b 478
0e224656
AO
479 return false;
480}
481
482/* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
484
4a8fb1a1
LC
485int
486preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
0e224656 487{
4a8fb1a1 488 cselib_val *v = *x;
457eeaae 489
0618dee5
AO
490 if (invariant_or_equiv_p (v))
491 {
67f58944 492 cselib_hasher::key lookup = {
f956adb9
RS
493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
494 };
0618dee5 495 cselib_val **slot
c203e8a7 496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
0618dee5
AO
497 v->hash, INSERT);
498 gcc_assert (!*slot);
499 *slot = v;
500 }
501
c203e8a7 502 cselib_hash_table->clear_slot (x);
0618dee5 503
457eeaae
JJ
504 return 1;
505}
506
b5b8b0ac
AO
507/* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
509
510void
5440c0e7 511cselib_reset_table (unsigned int num)
fa49fd0f
RK
512{
513 unsigned int i;
514
31825e57
DM
515 max_value_regs = 0;
516
457eeaae
JJ
517 if (cfa_base_preserved_val)
518 {
9de9cbaf 519 unsigned int regno = cfa_base_preserved_regno;
457eeaae
JJ
520 unsigned int new_used_regs = 0;
521 for (i = 0; i < n_used_regs; i++)
522 if (used_regs[i] == regno)
523 {
524 new_used_regs = 1;
525 continue;
526 }
527 else
528 REG_VALUES (used_regs[i]) = 0;
529 gcc_assert (new_used_regs == 1);
530 n_used_regs = new_used_regs;
531 used_regs[0] = regno;
532 max_value_regs
ad474626
RS
533 = hard_regno_nregs (regno,
534 GET_MODE (cfa_base_preserved_val->locs->loc));
457eeaae
JJ
535 }
536 else
537 {
538 for (i = 0; i < n_used_regs; i++)
539 REG_VALUES (used_regs[i]) = 0;
540 n_used_regs = 0;
541 }
fa49fd0f 542
457eeaae 543 if (cselib_preserve_constants)
c203e8a7
TS
544 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
545 (NULL);
457eeaae 546 else
0f68ba3e 547 {
c203e8a7 548 cselib_hash_table->empty ();
0f68ba3e
AO
549 gcc_checking_assert (!cselib_any_perm_equivs);
550 }
fa49fd0f 551
fa49fd0f 552 n_useless_values = 0;
5847e8da
AO
553 n_useless_debug_values = 0;
554 n_debug_values = 0;
fa49fd0f 555
5440c0e7 556 next_uid = num;
7101fb18
JH
557
558 first_containing_mem = &dummy_val;
fa49fd0f
RK
559}
560
b5b8b0ac
AO
561/* Return the number of the next value that will be generated. */
562
563unsigned int
5440c0e7 564cselib_get_next_uid (void)
b5b8b0ac 565{
5440c0e7 566 return next_uid;
b5b8b0ac
AO
567}
568
4deef538
AO
569/* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
570 INSERTing if requested. When X is part of the address of a MEM,
f956adb9 571 MEMMODE should specify the mode of the MEM. */
4deef538 572
4a8fb1a1 573static cselib_val **
ef4bddc2
RS
574cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
575 enum insert_option insert, machine_mode memmode)
4deef538 576{
0618dee5 577 cselib_val **slot = NULL;
67f58944 578 cselib_hasher::key lookup = { mode, x, memmode };
0618dee5 579 if (cselib_preserve_constants)
c203e8a7
TS
580 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
581 NO_INSERT);
0618dee5 582 if (!slot)
c203e8a7 583 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
4deef538
AO
584 return slot;
585}
586
fa49fd0f
RK
587/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
588 only return true for values which point to a cselib_val whose value
589 element has been set to zero, which implies the cselib_val will be
590 removed. */
591
592int
4f588890 593references_value_p (const_rtx x, int only_useless)
fa49fd0f 594{
4f588890 595 const enum rtx_code code = GET_CODE (x);
fa49fd0f
RK
596 const char *fmt = GET_RTX_FORMAT (code);
597 int i, j;
598
599 if (GET_CODE (x) == VALUE
6f2ffb4b
AO
600 && (! only_useless ||
601 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
fa49fd0f
RK
602 return 1;
603
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
607 return 1;
608 else if (fmt[i] == 'E')
609 for (j = 0; j < XVECLEN (x, i); j++)
610 if (references_value_p (XVECEXP (x, i, j), only_useless))
611 return 1;
612 }
613
614 return 0;
615}
616
617/* For all locations found in X, delete locations that reference useless
618 values (i.e. values without any location). Called through
619 htab_traverse. */
620
4a8fb1a1
LC
621int
622discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 623{
4a8fb1a1 624 cselib_val *v = *x;
fa49fd0f 625 struct elt_loc_list **p = &v->locs;
5847e8da 626 bool had_locs = v->locs != NULL;
21afc57d 627 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f
RK
628
629 while (*p)
630 {
631 if (references_value_p ((*p)->loc, 1))
632 unchain_one_elt_loc_list (p);
633 else
634 p = &(*p)->next;
635 }
636
b5b8b0ac 637 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 638 {
5847e8da
AO
639 if (setting_insn && DEBUG_INSN_P (setting_insn))
640 n_useless_debug_values++;
641 else
642 n_useless_values++;
fa49fd0f
RK
643 values_became_useless = 1;
644 }
645 return 1;
646}
647
648/* If X is a value with no locations, remove it from the hashtable. */
649
4a8fb1a1
LC
650int
651discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 652{
4a8fb1a1 653 cselib_val *v = *x;
fa49fd0f 654
b5b8b0ac 655 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 656 {
6fb5fa3c
DB
657 if (cselib_discard_hook)
658 cselib_discard_hook (v);
659
757bbef8 660 CSELIB_VAL_PTR (v->val_rtx) = NULL;
c203e8a7 661 cselib_hash_table->clear_slot (x);
fa49fd0f
RK
662 unchain_one_value (v);
663 n_useless_values--;
664 }
665
666 return 1;
667}
668
669/* Clean out useless values (i.e. those which no longer have locations
670 associated with them) from the hash table. */
671
672static void
7080f735 673remove_useless_values (void)
fa49fd0f 674{
7101fb18 675 cselib_val **p, *v;
5847e8da 676
fa49fd0f
RK
677 /* First pass: eliminate locations that reference the value. That in
678 turn can make more values useless. */
679 do
680 {
681 values_became_useless = 0;
c203e8a7 682 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
fa49fd0f
RK
683 }
684 while (values_became_useless);
685
686 /* Second pass: actually remove the values. */
fa49fd0f 687
7101fb18
JH
688 p = &first_containing_mem;
689 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
faead9f7 690 if (v->locs && v == canonical_cselib_val (v))
7101fb18
JH
691 {
692 *p = v;
693 p = &(*p)->next_containing_mem;
694 }
695 *p = &dummy_val;
696
5847e8da
AO
697 n_useless_values += n_useless_debug_values;
698 n_debug_values -= n_useless_debug_values;
699 n_useless_debug_values = 0;
700
c203e8a7 701 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
3e2a0bd2 702
341c100f 703 gcc_assert (!n_useless_values);
fa49fd0f
RK
704}
705
b5b8b0ac
AO
706/* Arrange for a value to not be removed from the hash table even if
707 it becomes useless. */
708
709void
710cselib_preserve_value (cselib_val *v)
711{
712 PRESERVED_VALUE_P (v->val_rtx) = 1;
713}
714
715/* Test whether a value is preserved. */
716
717bool
718cselib_preserved_value_p (cselib_val *v)
719{
720 return PRESERVED_VALUE_P (v->val_rtx);
721}
722
457eeaae
JJ
723/* Arrange for a REG value to be assumed constant through the whole function,
724 never invalidated and preserved across cselib_reset_table calls. */
725
726void
9de9cbaf 727cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
457eeaae
JJ
728{
729 if (cselib_preserve_constants
730 && v->locs
731 && REG_P (v->locs->loc))
9de9cbaf
JJ
732 {
733 cfa_base_preserved_val = v;
734 cfa_base_preserved_regno = regno;
735 }
457eeaae
JJ
736}
737
b5b8b0ac
AO
738/* Clean all non-constant expressions in the hash table, but retain
739 their values. */
740
741void
0de3e43f 742cselib_preserve_only_values (void)
b5b8b0ac
AO
743{
744 int i;
745
b5b8b0ac
AO
746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
747 cselib_invalidate_regno (i, reg_raw_mode[i]);
748
749 cselib_invalidate_mem (callmem);
750
751 remove_useless_values ();
752
753 gcc_assert (first_containing_mem == &dummy_val);
754}
755
0fe03ac3
JJ
756/* Arrange for a value to be marked as based on stack pointer
757 for find_base_term purposes. */
758
759void
760cselib_set_value_sp_based (cselib_val *v)
761{
762 SP_BASED_VALUE_P (v->val_rtx) = 1;
763}
764
765/* Test whether a value is based on stack pointer for
766 find_base_term purposes. */
767
768bool
769cselib_sp_based_value_p (cselib_val *v)
770{
771 return SP_BASED_VALUE_P (v->val_rtx);
772}
773
60fa6660
AO
774/* Return the mode in which a register was last set. If X is not a
775 register, return its mode. If the mode in which the register was
776 set is not known, or the value was already clobbered, return
777 VOIDmode. */
778
ef4bddc2 779machine_mode
4f588890 780cselib_reg_set_mode (const_rtx x)
60fa6660 781{
f8cfc6aa 782 if (!REG_P (x))
60fa6660
AO
783 return GET_MODE (x);
784
785 if (REG_VALUES (REGNO (x)) == NULL
786 || REG_VALUES (REGNO (x))->elt == NULL)
787 return VOIDmode;
788
757bbef8 789 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
60fa6660
AO
790}
791
4deef538
AO
792/* If x is a PLUS or an autoinc operation, expand the operation,
793 storing the offset, if any, in *OFF. */
794
795static rtx
ef4bddc2 796autoinc_split (rtx x, rtx *off, machine_mode memmode)
4deef538
AO
797{
798 switch (GET_CODE (x))
799 {
800 case PLUS:
801 *off = XEXP (x, 1);
802 return XEXP (x, 0);
803
804 case PRE_DEC:
805 if (memmode == VOIDmode)
806 return x;
807
808 *off = GEN_INT (-GET_MODE_SIZE (memmode));
809 return XEXP (x, 0);
4deef538
AO
810
811 case PRE_INC:
812 if (memmode == VOIDmode)
813 return x;
814
815 *off = GEN_INT (GET_MODE_SIZE (memmode));
816 return XEXP (x, 0);
817
818 case PRE_MODIFY:
819 return XEXP (x, 1);
820
821 case POST_DEC:
822 case POST_INC:
823 case POST_MODIFY:
824 return XEXP (x, 0);
825
826 default:
827 return x;
828 }
829}
830
831/* Return nonzero if we can prove that X and Y contain the same value,
832 taking our gathered information into account. MEMMODE holds the
833 mode of the enclosing MEM, if any, as required to deal with autoinc
834 addressing modes. If X and Y are not (known to be) part of
835 addresses, MEMMODE should be VOIDmode. */
836
08e5cf22 837int
005f12bf 838rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
fa49fd0f
RK
839{
840 enum rtx_code code;
841 const char *fmt;
842 int i;
7080f735 843
f8cfc6aa 844 if (REG_P (x) || MEM_P (x))
fa49fd0f 845 {
4deef538 846 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
fa49fd0f
RK
847
848 if (e)
757bbef8 849 x = e->val_rtx;
fa49fd0f
RK
850 }
851
f8cfc6aa 852 if (REG_P (y) || MEM_P (y))
fa49fd0f 853 {
4deef538 854 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
fa49fd0f
RK
855
856 if (e)
757bbef8 857 y = e->val_rtx;
fa49fd0f
RK
858 }
859
860 if (x == y)
861 return 1;
862
fa49fd0f
RK
863 if (GET_CODE (x) == VALUE)
864 {
6f2ffb4b 865 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
fa49fd0f
RK
866 struct elt_loc_list *l;
867
6f2ffb4b
AO
868 if (GET_CODE (y) == VALUE)
869 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
870
005f12bf
JJ
871 if (depth == 128)
872 return 0;
873
fa49fd0f
RK
874 for (l = e->locs; l; l = l->next)
875 {
876 rtx t = l->loc;
877
6f2ffb4b
AO
878 /* Avoid infinite recursion. We know we have the canonical
879 value, so we can just skip any values in the equivalence
880 list. */
881 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 882 continue;
005f12bf 883 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
fa49fd0f
RK
884 return 1;
885 }
7080f735 886
fa49fd0f
RK
887 return 0;
888 }
6f2ffb4b 889 else if (GET_CODE (y) == VALUE)
fa49fd0f 890 {
6f2ffb4b 891 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
fa49fd0f
RK
892 struct elt_loc_list *l;
893
005f12bf
JJ
894 if (depth == 128)
895 return 0;
896
fa49fd0f
RK
897 for (l = e->locs; l; l = l->next)
898 {
899 rtx t = l->loc;
900
6f2ffb4b 901 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 902 continue;
005f12bf 903 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
fa49fd0f
RK
904 return 1;
905 }
7080f735 906
fa49fd0f
RK
907 return 0;
908 }
909
4deef538 910 if (GET_MODE (x) != GET_MODE (y))
fa49fd0f
RK
911 return 0;
912
4deef538
AO
913 if (GET_CODE (x) != GET_CODE (y))
914 {
915 rtx xorig = x, yorig = y;
916 rtx xoff = NULL, yoff = NULL;
917
918 x = autoinc_split (x, &xoff, memmode);
919 y = autoinc_split (y, &yoff, memmode);
920
921 if (!xoff != !yoff)
922 return 0;
923
005f12bf 924 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
4deef538
AO
925 return 0;
926
927 /* Don't recurse if nothing changed. */
928 if (x != xorig || y != yorig)
005f12bf 929 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
4deef538
AO
930
931 return 0;
932 }
933
37cf6116
RH
934 /* These won't be handled correctly by the code below. */
935 switch (GET_CODE (x))
936 {
807e902e 937 CASE_CONST_UNIQUE:
0ca5af51 938 case DEBUG_EXPR:
37cf6116
RH
939 return 0;
940
c8a27c40
JJ
941 case DEBUG_IMPLICIT_PTR:
942 return DEBUG_IMPLICIT_PTR_DECL (x)
943 == DEBUG_IMPLICIT_PTR_DECL (y);
944
ddb555ed
JJ
945 case DEBUG_PARAMETER_REF:
946 return DEBUG_PARAMETER_REF_DECL (x)
947 == DEBUG_PARAMETER_REF_DECL (y);
948
a58a8e4b 949 case ENTRY_VALUE:
2b80199f
JJ
950 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
951 use rtx_equal_for_cselib_1 to compare the operands. */
952 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
a58a8e4b 953
37cf6116 954 case LABEL_REF:
04a121a7 955 return label_ref_label (x) == label_ref_label (y);
37cf6116 956
9fccb335
RS
957 case REG:
958 return REGNO (x) == REGNO (y);
959
4deef538
AO
960 case MEM:
961 /* We have to compare any autoinc operations in the addresses
962 using this MEM's mode. */
005f12bf
JJ
963 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
964 depth);
4deef538 965
37cf6116
RH
966 default:
967 break;
968 }
7080f735 969
fa49fd0f
RK
970 code = GET_CODE (x);
971 fmt = GET_RTX_FORMAT (code);
972
973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 {
975 int j;
976
977 switch (fmt[i])
978 {
979 case 'w':
980 if (XWINT (x, i) != XWINT (y, i))
981 return 0;
982 break;
983
984 case 'n':
985 case 'i':
986 if (XINT (x, i) != XINT (y, i))
987 return 0;
988 break;
989
91914e56
RS
990 case 'p':
991 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
992 return 0;
993 break;
994
fa49fd0f
RK
995 case 'V':
996 case 'E':
997 /* Two vectors must have the same length. */
998 if (XVECLEN (x, i) != XVECLEN (y, i))
999 return 0;
1000
1001 /* And the corresponding elements must match. */
1002 for (j = 0; j < XVECLEN (x, i); j++)
4deef538 1003 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
005f12bf 1004 XVECEXP (y, i, j), memmode, depth))
fa49fd0f
RK
1005 return 0;
1006 break;
1007
1008 case 'e':
29c1846b
R
1009 if (i == 1
1010 && targetm.commutative_p (x, UNKNOWN)
005f12bf
JJ
1011 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1012 depth)
1013 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1014 depth))
29c1846b 1015 return 1;
005f12bf
JJ
1016 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1017 depth))
fa49fd0f
RK
1018 return 0;
1019 break;
1020
1021 case 'S':
1022 case 's':
1023 if (strcmp (XSTR (x, i), XSTR (y, i)))
1024 return 0;
1025 break;
1026
1027 case 'u':
1028 /* These are just backpointers, so they don't matter. */
1029 break;
1030
1031 case '0':
1032 case 't':
1033 break;
1034
1035 /* It is believed that rtx's at this level will never
1036 contain anything but integers and other rtx's,
1037 except for within LABEL_REFs and SYMBOL_REFs. */
1038 default:
341c100f 1039 gcc_unreachable ();
fa49fd0f
RK
1040 }
1041 }
1042 return 1;
1043}
1044
fa49fd0f
RK
1045/* Hash an rtx. Return 0 if we couldn't hash the rtx.
1046 For registers and memory locations, we look up their cselib_val structure
1047 and return its VALUE element.
1048 Possible reasons for return 0 are: the object is volatile, or we couldn't
1049 find a register or memory location in the table and CREATE is zero. If
1050 CREATE is nonzero, table elts are created for regs and mem.
29c1846b
R
1051 N.B. this hash function returns the same hash value for RTXes that
1052 differ only in the order of operands, thus it is suitable for comparisons
1053 that take commutativity into account.
1054 If we wanted to also support associative rules, we'd have to use a different
1055 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
4deef538
AO
1056 MEMMODE indicates the mode of an enclosing MEM, and it's only
1057 used to compute autoinc values.
29c1846b
R
1058 We used to have a MODE argument for hashing for CONST_INTs, but that
1059 didn't make sense, since it caused spurious hash differences between
1060 (set (reg:SI 1) (const_int))
1061 (plus:SI (reg:SI 2) (reg:SI 1))
1062 and
1063 (plus:SI (reg:SI 2) (const_int))
1064 If the mode is important in any context, it must be checked specifically
1065 in a comparison anyway, since relying on hash differences is unsafe. */
fa49fd0f
RK
1066
1067static unsigned int
ef4bddc2 1068cselib_hash_rtx (rtx x, int create, machine_mode memmode)
fa49fd0f
RK
1069{
1070 cselib_val *e;
1071 int i, j;
1072 enum rtx_code code;
1073 const char *fmt;
1074 unsigned int hash = 0;
1075
fa49fd0f
RK
1076 code = GET_CODE (x);
1077 hash += (unsigned) code + (unsigned) GET_MODE (x);
1078
1079 switch (code)
1080 {
7483eef8
AO
1081 case VALUE:
1082 e = CSELIB_VAL_PTR (x);
1083 return e->hash;
1084
fa49fd0f
RK
1085 case MEM:
1086 case REG:
4deef538 1087 e = cselib_lookup (x, GET_MODE (x), create, memmode);
fa49fd0f
RK
1088 if (! e)
1089 return 0;
1090
5440c0e7 1091 return e->hash;
fa49fd0f 1092
0ca5af51 1093 case DEBUG_EXPR:
e4fb38bd
JJ
1094 hash += ((unsigned) DEBUG_EXPR << 7)
1095 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
0ca5af51
AO
1096 return hash ? hash : (unsigned int) DEBUG_EXPR;
1097
c8a27c40
JJ
1098 case DEBUG_IMPLICIT_PTR:
1099 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1100 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1101 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1102
ddb555ed
JJ
1103 case DEBUG_PARAMETER_REF:
1104 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1105 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1106 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1107
a58a8e4b 1108 case ENTRY_VALUE:
2b80199f
JJ
1109 /* ENTRY_VALUEs are function invariant, thus try to avoid
1110 recursing on argument if ENTRY_VALUE is one of the
1111 forms emitted by expand_debug_expr, otherwise
1112 ENTRY_VALUE hash would depend on the current value
1113 in some register or memory. */
1114 if (REG_P (ENTRY_VALUE_EXP (x)))
1115 hash += (unsigned int) REG
1116 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1117 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1118 else if (MEM_P (ENTRY_VALUE_EXP (x))
1119 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1120 hash += (unsigned int) MEM
1121 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1122 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1123 else
1124 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
a58a8e4b
JJ
1125 return hash ? hash : (unsigned int) ENTRY_VALUE;
1126
fa49fd0f 1127 case CONST_INT:
a8acccdd 1128 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
dc76f41c 1129 return hash ? hash : (unsigned int) CONST_INT;
fa49fd0f 1130
807e902e
KZ
1131 case CONST_WIDE_INT:
1132 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1133 hash += CONST_WIDE_INT_ELT (x, i);
1134 return hash;
1135
0c12fc9b
RS
1136 case CONST_POLY_INT:
1137 {
1138 inchash::hash h;
1139 h.add_int (hash);
1140 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1141 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1142 return h.end ();
1143 }
1144
fa49fd0f
RK
1145 case CONST_DOUBLE:
1146 /* This is like the general case, except that it only counts
1147 the integers representing the constant. */
1148 hash += (unsigned) code + (unsigned) GET_MODE (x);
807e902e 1149 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
fa49fd0f
RK
1150 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1151 + (unsigned) CONST_DOUBLE_HIGH (x));
807e902e
KZ
1152 else
1153 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
dc76f41c 1154 return hash ? hash : (unsigned int) CONST_DOUBLE;
fa49fd0f 1155
091a3ac7
CF
1156 case CONST_FIXED:
1157 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1158 hash += fixed_hash (CONST_FIXED_VALUE (x));
1159 return hash ? hash : (unsigned int) CONST_FIXED;
1160
69ef87e2
AH
1161 case CONST_VECTOR:
1162 {
1163 int units;
1164 rtx elt;
1165
16c78b66 1166 units = const_vector_encoded_nelts (x);
69ef87e2
AH
1167
1168 for (i = 0; i < units; ++i)
1169 {
16c78b66 1170 elt = CONST_VECTOR_ENCODED_ELT (x, i);
4deef538 1171 hash += cselib_hash_rtx (elt, 0, memmode);
69ef87e2
AH
1172 }
1173
1174 return hash;
1175 }
1176
fa49fd0f
RK
1177 /* Assume there is only one rtx object for any given label. */
1178 case LABEL_REF:
4c6669c2
RS
1179 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1180 differences and differences between each stage's debugging dumps. */
1181 hash += (((unsigned int) LABEL_REF << 7)
04a121a7 1182 + CODE_LABEL_NUMBER (label_ref_label (x)));
dc76f41c 1183 return hash ? hash : (unsigned int) LABEL_REF;
fa49fd0f
RK
1184
1185 case SYMBOL_REF:
4c6669c2
RS
1186 {
1187 /* Don't hash on the symbol's address to avoid bootstrap differences.
1188 Different hash values may cause expressions to be recorded in
1189 different orders and thus different registers to be used in the
1190 final assembler. This also avoids differences in the dump files
1191 between various stages. */
1192 unsigned int h = 0;
1193 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1194
1195 while (*p)
1196 h += (h << 7) + *p++; /* ??? revisit */
1197
1198 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1199 return hash ? hash : (unsigned int) SYMBOL_REF;
1200 }
fa49fd0f
RK
1201
1202 case PRE_DEC:
1203 case PRE_INC:
4deef538
AO
1204 /* We can't compute these without knowing the MEM mode. */
1205 gcc_assert (memmode != VOIDmode);
1206 i = GET_MODE_SIZE (memmode);
1207 if (code == PRE_DEC)
1208 i = -i;
1209 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1210 like (mem:MEMMODE (plus (reg) (const_int I))). */
1211 hash += (unsigned) PLUS - (unsigned)code
1212 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1213 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1214 return hash ? hash : 1 + (unsigned) PLUS;
1215
1216 case PRE_MODIFY:
1217 gcc_assert (memmode != VOIDmode);
1218 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1219
fa49fd0f
RK
1220 case POST_DEC:
1221 case POST_INC:
1222 case POST_MODIFY:
4deef538
AO
1223 gcc_assert (memmode != VOIDmode);
1224 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1225
fa49fd0f
RK
1226 case PC:
1227 case CC0:
1228 case CALL:
1229 case UNSPEC_VOLATILE:
1230 return 0;
1231
1232 case ASM_OPERANDS:
1233 if (MEM_VOLATILE_P (x))
1234 return 0;
1235
1236 break;
7080f735 1237
fa49fd0f
RK
1238 default:
1239 break;
1240 }
1241
1242 i = GET_RTX_LENGTH (code) - 1;
1243 fmt = GET_RTX_FORMAT (code);
1244 for (; i >= 0; i--)
1245 {
341c100f 1246 switch (fmt[i])
fa49fd0f 1247 {
341c100f 1248 case 'e':
fa49fd0f 1249 {
341c100f 1250 rtx tem = XEXP (x, i);
4deef538 1251 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
b8698a0f 1252
fa49fd0f
RK
1253 if (tem_hash == 0)
1254 return 0;
b8698a0f 1255
fa49fd0f
RK
1256 hash += tem_hash;
1257 }
341c100f
NS
1258 break;
1259 case 'E':
1260 for (j = 0; j < XVECLEN (x, i); j++)
1261 {
1262 unsigned int tem_hash
4deef538 1263 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
b8698a0f 1264
341c100f
NS
1265 if (tem_hash == 0)
1266 return 0;
b8698a0f 1267
341c100f
NS
1268 hash += tem_hash;
1269 }
1270 break;
fa49fd0f 1271
341c100f
NS
1272 case 's':
1273 {
1274 const unsigned char *p = (const unsigned char *) XSTR (x, i);
b8698a0f 1275
341c100f
NS
1276 if (p)
1277 while (*p)
1278 hash += *p++;
1279 break;
1280 }
b8698a0f 1281
341c100f
NS
1282 case 'i':
1283 hash += XINT (x, i);
1284 break;
1285
91914e56
RS
1286 case 'p':
1287 hash += constant_lower_bound (SUBREG_BYTE (x));
1288 break;
1289
341c100f
NS
1290 case '0':
1291 case 't':
1292 /* unused */
1293 break;
b8698a0f 1294
341c100f
NS
1295 default:
1296 gcc_unreachable ();
fa49fd0f 1297 }
fa49fd0f
RK
1298 }
1299
dc76f41c 1300 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
fa49fd0f
RK
1301}
1302
1303/* Create a new value structure for VALUE and initialize it. The mode of the
1304 value is MODE. */
1305
6a59927d 1306static inline cselib_val *
ef4bddc2 1307new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
fa49fd0f 1308{
fb0b2914 1309 cselib_val *e = cselib_val_pool.allocate ();
fa49fd0f 1310
5440c0e7
AO
1311 gcc_assert (hash);
1312 gcc_assert (next_uid);
fa49fd0f 1313
5440c0e7
AO
1314 e->hash = hash;
1315 e->uid = next_uid++;
d67fb775
SB
1316 /* We use an alloc pool to allocate this RTL construct because it
1317 accounts for about 8% of the overall memory usage. We know
1318 precisely when we can have VALUE RTXen (when cselib is active)
daa956d0 1319 so we don't need to put them in garbage collected memory.
d67fb775 1320 ??? Why should a VALUE be an RTX in the first place? */
fb0b2914 1321 e->val_rtx = (rtx_def*) value_pool.allocate ();
757bbef8
SB
1322 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1323 PUT_CODE (e->val_rtx, VALUE);
1324 PUT_MODE (e->val_rtx, mode);
1325 CSELIB_VAL_PTR (e->val_rtx) = e;
fa49fd0f
RK
1326 e->addr_list = 0;
1327 e->locs = 0;
7101fb18 1328 e->next_containing_mem = 0;
b5b8b0ac 1329
4a3c9687 1330 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac 1331 {
5440c0e7 1332 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
b5b8b0ac
AO
1333 if (flag_dump_noaddr || flag_dump_unnumbered)
1334 fputs ("# ", dump_file);
1335 else
1336 fprintf (dump_file, "%p ", (void*)e);
1337 print_rtl_single (dump_file, x);
1338 fputc ('\n', dump_file);
1339 }
1340
fa49fd0f
RK
1341 return e;
1342}
1343
1344/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1345 contains the data at this address. X is a MEM that represents the
1346 value. Update the two value structures to represent this situation. */
1347
1348static void
7080f735 1349add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
fa49fd0f 1350{
faead9f7 1351 addr_elt = canonical_cselib_val (addr_elt);
a4f436ff
JJ
1352 mem_elt = canonical_cselib_val (mem_elt);
1353
fa49fd0f 1354 /* Avoid duplicates. */
bd68a3a7
RH
1355 addr_space_t as = MEM_ADDR_SPACE (x);
1356 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
3c0cb5de 1357 if (MEM_P (l->loc)
bd68a3a7
RH
1358 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1359 && MEM_ADDR_SPACE (l->loc) == as)
5847e8da
AO
1360 {
1361 promote_debug_loc (l);
1362 return;
1363 }
fa49fd0f 1364
fa49fd0f 1365 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
6f2ffb4b
AO
1366 new_elt_loc_list (mem_elt,
1367 replace_equiv_address_nv (x, addr_elt->val_rtx));
7101fb18
JH
1368 if (mem_elt->next_containing_mem == NULL)
1369 {
1370 mem_elt->next_containing_mem = first_containing_mem;
1371 first_containing_mem = mem_elt;
1372 }
fa49fd0f
RK
1373}
1374
1375/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1376 If CREATE, make a new one if we haven't seen it before. */
1377
1378static cselib_val *
7080f735 1379cselib_lookup_mem (rtx x, int create)
fa49fd0f 1380{
ef4bddc2
RS
1381 machine_mode mode = GET_MODE (x);
1382 machine_mode addr_mode;
4a8fb1a1 1383 cselib_val **slot;
fa49fd0f
RK
1384 cselib_val *addr;
1385 cselib_val *mem_elt;
fa49fd0f
RK
1386
1387 if (MEM_VOLATILE_P (x) || mode == BLKmode
463301c3 1388 || !cselib_record_memory
fa49fd0f
RK
1389 || (FLOAT_MODE_P (mode) && flag_float_store))
1390 return 0;
1391
4deef538
AO
1392 addr_mode = GET_MODE (XEXP (x, 0));
1393 if (addr_mode == VOIDmode)
1394 addr_mode = Pmode;
1395
fa49fd0f 1396 /* Look up the value for the address. */
4deef538 1397 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
fa49fd0f
RK
1398 if (! addr)
1399 return 0;
faead9f7 1400 addr = canonical_cselib_val (addr);
bd68a3a7 1401
fa49fd0f 1402 /* Find a value that describes a value of our mode at that address. */
bd68a3a7
RH
1403 addr_space_t as = MEM_ADDR_SPACE (x);
1404 for (elt_list *l = addr->addr_list; l; l = l->next)
757bbef8 1405 if (GET_MODE (l->elt->val_rtx) == mode)
5847e8da 1406 {
bd68a3a7
RH
1407 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1408 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1409 {
1410 promote_debug_loc (l->elt->locs);
1411 return l->elt;
1412 }
5847e8da 1413 }
fa49fd0f
RK
1414
1415 if (! create)
1416 return 0;
1417
5440c0e7 1418 mem_elt = new_cselib_val (next_uid, mode, x);
fa49fd0f 1419 add_mem_for_addr (addr, mem_elt, x);
f956adb9 1420 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
fa49fd0f
RK
1421 *slot = mem_elt;
1422 return mem_elt;
1423}
1424
073a8998 1425/* Search through the possible substitutions in P. We prefer a non reg
6fb5fa3c
DB
1426 substitution because this allows us to expand the tree further. If
1427 we find, just a reg, take the lowest regno. There may be several
1428 non-reg results, we just take the first one because they will all
1429 expand to the same place. */
1430
b8698a0f 1431static rtx
b5b8b0ac
AO
1432expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1433 int max_depth)
6fb5fa3c
DB
1434{
1435 rtx reg_result = NULL;
1436 unsigned int regno = UINT_MAX;
1437 struct elt_loc_list *p_in = p;
1438
67b977ad 1439 for (; p; p = p->next)
6fb5fa3c 1440 {
67b977ad
JJ
1441 /* Return these right away to avoid returning stack pointer based
1442 expressions for frame pointer and vice versa, which is something
1443 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1444 for more details. */
1445 if (REG_P (p->loc)
1446 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1447 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1448 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1449 || REGNO (p->loc) == cfa_base_preserved_regno))
1450 return p->loc;
6fb5fa3c
DB
1451 /* Avoid infinite recursion trying to expand a reg into a
1452 the same reg. */
b8698a0f
L
1453 if ((REG_P (p->loc))
1454 && (REGNO (p->loc) < regno)
b5b8b0ac 1455 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
6fb5fa3c
DB
1456 {
1457 reg_result = p->loc;
1458 regno = REGNO (p->loc);
1459 }
1460 /* Avoid infinite recursion and do not try to expand the
1461 value. */
b8698a0f 1462 else if (GET_CODE (p->loc) == VALUE
6fb5fa3c
DB
1463 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1464 continue;
1465 else if (!REG_P (p->loc))
1466 {
8dd5516b 1467 rtx result, note;
4a3c9687 1468 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1469 {
1470 print_inline_rtx (dump_file, p->loc, 0);
1471 fprintf (dump_file, "\n");
1472 }
8dd5516b
JJ
1473 if (GET_CODE (p->loc) == LO_SUM
1474 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1475 && p->setting_insn
1476 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1477 && XEXP (note, 0) == XEXP (p->loc, 1))
1478 return XEXP (p->loc, 1);
b5b8b0ac 1479 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
6fb5fa3c
DB
1480 if (result)
1481 return result;
1482 }
b8698a0f 1483
6fb5fa3c 1484 }
b8698a0f 1485
6fb5fa3c
DB
1486 if (regno != UINT_MAX)
1487 {
1488 rtx result;
4a3c9687 1489 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1490 fprintf (dump_file, "r%d\n", regno);
1491
b5b8b0ac 1492 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
6fb5fa3c
DB
1493 if (result)
1494 return result;
1495 }
1496
4a3c9687 1497 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1498 {
1499 if (reg_result)
1500 {
1501 print_inline_rtx (dump_file, reg_result, 0);
1502 fprintf (dump_file, "\n");
1503 }
b8698a0f 1504 else
6fb5fa3c
DB
1505 fprintf (dump_file, "NULL\n");
1506 }
1507 return reg_result;
1508}
1509
1510
1511/* Forward substitute and expand an expression out to its roots.
1512 This is the opposite of common subexpression. Because local value
1513 numbering is such a weak optimization, the expanded expression is
1514 pretty much unique (not from a pointer equals point of view but
b8698a0f 1515 from a tree shape point of view.
6fb5fa3c
DB
1516
1517 This function returns NULL if the expansion fails. The expansion
1518 will fail if there is no value number for one of the operands or if
1519 one of the operands has been overwritten between the current insn
1520 and the beginning of the basic block. For instance x has no
1521 expansion in:
1522
1523 r1 <- r1 + 3
1524 x <- r1 + 8
1525
1526 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1527 It is clear on return. */
1528
1529rtx
1530cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
b5b8b0ac
AO
1531{
1532 struct expand_value_data evd;
1533
1534 evd.regs_active = regs_active;
1535 evd.callback = NULL;
1536 evd.callback_arg = NULL;
864ddef7 1537 evd.dummy = false;
b5b8b0ac
AO
1538
1539 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1540}
1541
1542/* Same as cselib_expand_value_rtx, but using a callback to try to
0b7e34d7
AO
1543 resolve some expressions. The CB function should return ORIG if it
1544 can't or does not want to deal with a certain RTX. Any other
1545 return value, including NULL, will be used as the expansion for
1546 VALUE, without any further changes. */
b5b8b0ac
AO
1547
1548rtx
1549cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1550 cselib_expand_callback cb, void *data)
1551{
1552 struct expand_value_data evd;
1553
1554 evd.regs_active = regs_active;
1555 evd.callback = cb;
1556 evd.callback_arg = data;
864ddef7 1557 evd.dummy = false;
b5b8b0ac
AO
1558
1559 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1560}
1561
864ddef7
JJ
1562/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1563 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1564 would return NULL or non-NULL, without allocating new rtx. */
1565
1566bool
1567cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1568 cselib_expand_callback cb, void *data)
1569{
1570 struct expand_value_data evd;
1571
1572 evd.regs_active = regs_active;
1573 evd.callback = cb;
1574 evd.callback_arg = data;
1575 evd.dummy = true;
1576
1577 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1578}
1579
0b7e34d7
AO
1580/* Internal implementation of cselib_expand_value_rtx and
1581 cselib_expand_value_rtx_cb. */
1582
b5b8b0ac
AO
1583static rtx
1584cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1585 int max_depth)
6fb5fa3c
DB
1586{
1587 rtx copy, scopy;
1588 int i, j;
1589 RTX_CODE code;
1590 const char *format_ptr;
ef4bddc2 1591 machine_mode mode;
6fb5fa3c
DB
1592
1593 code = GET_CODE (orig);
1594
1595 /* For the context of dse, if we end up expand into a huge tree, we
1596 will not have a useful address, so we might as well just give up
1597 quickly. */
1598 if (max_depth <= 0)
1599 return NULL;
1600
1601 switch (code)
1602 {
1603 case REG:
1604 {
1605 struct elt_list *l = REG_VALUES (REGNO (orig));
1606
1607 if (l && l->elt == NULL)
1608 l = l->next;
1609 for (; l; l = l->next)
1610 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1611 {
1612 rtx result;
5a9fbcf1 1613 unsigned regno = REGNO (orig);
b8698a0f 1614
6fb5fa3c 1615 /* The only thing that we are not willing to do (this
6ed3da00 1616 is requirement of dse and if others potential uses
6fb5fa3c
DB
1617 need this function we should add a parm to control
1618 it) is that we will not substitute the
1619 STACK_POINTER_REGNUM, FRAME_POINTER or the
1620 HARD_FRAME_POINTER.
1621
cea618ac 1622 These expansions confuses the code that notices that
6fb5fa3c
DB
1623 stores into the frame go dead at the end of the
1624 function and that the frame is not effected by calls
1625 to subroutines. If you allow the
1626 STACK_POINTER_REGNUM substitution, then dse will
1627 think that parameter pushing also goes dead which is
1628 wrong. If you allow the FRAME_POINTER or the
1629 HARD_FRAME_POINTER then you lose the opportunity to
1630 make the frame assumptions. */
1631 if (regno == STACK_POINTER_REGNUM
1632 || regno == FRAME_POINTER_REGNUM
5a9fbcf1
AO
1633 || regno == HARD_FRAME_POINTER_REGNUM
1634 || regno == cfa_base_preserved_regno)
6fb5fa3c
DB
1635 return orig;
1636
b5b8b0ac 1637 bitmap_set_bit (evd->regs_active, regno);
6fb5fa3c 1638
4a3c9687 1639 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1640 fprintf (dump_file, "expanding: r%d into: ", regno);
1641
b5b8b0ac
AO
1642 result = expand_loc (l->elt->locs, evd, max_depth);
1643 bitmap_clear_bit (evd->regs_active, regno);
6fb5fa3c
DB
1644
1645 if (result)
1646 return result;
b8698a0f 1647 else
6fb5fa3c
DB
1648 return orig;
1649 }
f0bc3323 1650 return orig;
6fb5fa3c 1651 }
b8698a0f 1652
d8116890 1653 CASE_CONST_ANY:
6fb5fa3c
DB
1654 case SYMBOL_REF:
1655 case CODE_LABEL:
1656 case PC:
1657 case CC0:
1658 case SCRATCH:
1659 /* SCRATCH must be shared because they represent distinct values. */
1660 return orig;
1661 case CLOBBER:
1662 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1663 return orig;
1664 break;
1665
1666 case CONST:
1667 if (shared_const_p (orig))
1668 return orig;
1669 break;
1670
8dd5516b 1671 case SUBREG:
6fb5fa3c 1672 {
0b7e34d7
AO
1673 rtx subreg;
1674
1675 if (evd->callback)
1676 {
1677 subreg = evd->callback (orig, evd->regs_active, max_depth,
1678 evd->callback_arg);
1679 if (subreg != orig)
1680 return subreg;
1681 }
1682
1683 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1684 max_depth - 1);
8dd5516b
JJ
1685 if (!subreg)
1686 return NULL;
1687 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1688 GET_MODE (SUBREG_REG (orig)),
1689 SUBREG_BYTE (orig));
0b7e34d7
AO
1690 if (scopy == NULL
1691 || (GET_CODE (scopy) == SUBREG
1692 && !REG_P (SUBREG_REG (scopy))
1693 && !MEM_P (SUBREG_REG (scopy))))
1694 return NULL;
1695
8dd5516b 1696 return scopy;
6fb5fa3c 1697 }
8dd5516b
JJ
1698
1699 case VALUE:
b5b8b0ac
AO
1700 {
1701 rtx result;
0b7e34d7 1702
4a3c9687 1703 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac
AO
1704 {
1705 fputs ("\nexpanding ", dump_file);
1706 print_rtl_single (dump_file, orig);
1707 fputs (" into...", dump_file);
1708 }
8dd5516b 1709
0b7e34d7 1710 if (evd->callback)
b5b8b0ac
AO
1711 {
1712 result = evd->callback (orig, evd->regs_active, max_depth,
1713 evd->callback_arg);
0b7e34d7
AO
1714
1715 if (result != orig)
1716 return result;
b5b8b0ac 1717 }
8dd5516b 1718
0b7e34d7 1719 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
b5b8b0ac
AO
1720 return result;
1721 }
0ca5af51
AO
1722
1723 case DEBUG_EXPR:
1724 if (evd->callback)
1725 return evd->callback (orig, evd->regs_active, max_depth,
1726 evd->callback_arg);
1727 return orig;
1728
6fb5fa3c
DB
1729 default:
1730 break;
1731 }
1732
1733 /* Copy the various flags, fields, and other information. We assume
1734 that all fields need copying, and then clear the fields that should
1735 not be copied. That is the sensible default behavior, and forces
1736 us to explicitly document why we are *not* copying a flag. */
864ddef7
JJ
1737 if (evd->dummy)
1738 copy = NULL;
1739 else
1740 copy = shallow_copy_rtx (orig);
6fb5fa3c 1741
8dd5516b 1742 format_ptr = GET_RTX_FORMAT (code);
6fb5fa3c 1743
8dd5516b 1744 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6fb5fa3c
DB
1745 switch (*format_ptr++)
1746 {
1747 case 'e':
1748 if (XEXP (orig, i) != NULL)
1749 {
b5b8b0ac
AO
1750 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1751 max_depth - 1);
6fb5fa3c
DB
1752 if (!result)
1753 return NULL;
864ddef7
JJ
1754 if (copy)
1755 XEXP (copy, i) = result;
6fb5fa3c
DB
1756 }
1757 break;
1758
1759 case 'E':
1760 case 'V':
1761 if (XVEC (orig, i) != NULL)
1762 {
864ddef7
JJ
1763 if (copy)
1764 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1765 for (j = 0; j < XVECLEN (orig, i); j++)
6fb5fa3c 1766 {
b5b8b0ac
AO
1767 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1768 evd, max_depth - 1);
6fb5fa3c
DB
1769 if (!result)
1770 return NULL;
864ddef7
JJ
1771 if (copy)
1772 XVECEXP (copy, i, j) = result;
6fb5fa3c
DB
1773 }
1774 }
1775 break;
1776
1777 case 't':
1778 case 'w':
1779 case 'i':
1780 case 's':
1781 case 'S':
1782 case 'T':
1783 case 'u':
1784 case 'B':
1785 case '0':
1786 /* These are left unchanged. */
1787 break;
1788
1789 default:
1790 gcc_unreachable ();
1791 }
1792
864ddef7
JJ
1793 if (evd->dummy)
1794 return orig;
1795
8dd5516b
JJ
1796 mode = GET_MODE (copy);
1797 /* If an operand has been simplified into CONST_INT, which doesn't
1798 have a mode and the mode isn't derivable from whole rtx's mode,
1799 try simplify_*_operation first with mode from original's operand
1800 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1801 scopy = copy;
1802 switch (GET_RTX_CLASS (code))
1803 {
1804 case RTX_UNARY:
1805 if (CONST_INT_P (XEXP (copy, 0))
1806 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1807 {
1808 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1809 GET_MODE (XEXP (orig, 0)));
1810 if (scopy)
1811 return scopy;
1812 }
1813 break;
1814 case RTX_COMM_ARITH:
1815 case RTX_BIN_ARITH:
1816 /* These expressions can derive operand modes from the whole rtx's mode. */
1817 break;
1818 case RTX_TERNARY:
1819 case RTX_BITFIELD_OPS:
1820 if (CONST_INT_P (XEXP (copy, 0))
1821 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1822 {
1823 scopy = simplify_ternary_operation (code, mode,
1824 GET_MODE (XEXP (orig, 0)),
1825 XEXP (copy, 0), XEXP (copy, 1),
1826 XEXP (copy, 2));
1827 if (scopy)
1828 return scopy;
1829 }
1830 break;
1831 case RTX_COMPARE:
1832 case RTX_COMM_COMPARE:
1833 if (CONST_INT_P (XEXP (copy, 0))
1834 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1835 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1836 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1837 {
1838 scopy = simplify_relational_operation (code, mode,
1839 (GET_MODE (XEXP (orig, 0))
1840 != VOIDmode)
1841 ? GET_MODE (XEXP (orig, 0))
1842 : GET_MODE (XEXP (orig, 1)),
1843 XEXP (copy, 0),
1844 XEXP (copy, 1));
1845 if (scopy)
1846 return scopy;
1847 }
1848 break;
1849 default:
1850 break;
1851 }
6fb5fa3c
DB
1852 scopy = simplify_rtx (copy);
1853 if (scopy)
3af4ba41 1854 return scopy;
6fb5fa3c
DB
1855 return copy;
1856}
1857
fa49fd0f
RK
1858/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1859 with VALUE expressions. This way, it becomes independent of changes
1860 to registers and memory.
1861 X isn't actually modified; if modifications are needed, new rtl is
4deef538
AO
1862 allocated. However, the return value can share rtl with X.
1863 If X is within a MEM, MEMMODE must be the mode of the MEM. */
fa49fd0f 1864
91700444 1865rtx
ef4bddc2 1866cselib_subst_to_values (rtx x, machine_mode memmode)
fa49fd0f
RK
1867{
1868 enum rtx_code code = GET_CODE (x);
1869 const char *fmt = GET_RTX_FORMAT (code);
1870 cselib_val *e;
1871 struct elt_list *l;
1872 rtx copy = x;
1873 int i;
1874
1875 switch (code)
1876 {
1877 case REG:
60fa6660
AO
1878 l = REG_VALUES (REGNO (x));
1879 if (l && l->elt == NULL)
1880 l = l->next;
1881 for (; l; l = l->next)
757bbef8
SB
1882 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1883 return l->elt->val_rtx;
fa49fd0f 1884
341c100f 1885 gcc_unreachable ();
fa49fd0f
RK
1886
1887 case MEM:
1888 e = cselib_lookup_mem (x, 0);
4deef538
AO
1889 /* This used to happen for autoincrements, but we deal with them
1890 properly now. Remove the if stmt for the next release. */
fa49fd0f 1891 if (! e)
91700444 1892 {
4deef538 1893 /* Assign a value that doesn't match any other. */
5440c0e7 1894 e = new_cselib_val (next_uid, GET_MODE (x), x);
91700444 1895 }
757bbef8 1896 return e->val_rtx;
fa49fd0f 1897
509f4495
JJ
1898 case ENTRY_VALUE:
1899 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1900 if (! e)
1901 break;
1902 return e->val_rtx;
1903
d8116890 1904 CASE_CONST_ANY:
fa49fd0f
RK
1905 return x;
1906
4deef538 1907 case PRE_DEC:
91700444 1908 case PRE_INC:
4deef538
AO
1909 gcc_assert (memmode != VOIDmode);
1910 i = GET_MODE_SIZE (memmode);
1911 if (code == PRE_DEC)
1912 i = -i;
0a81f074
RS
1913 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1914 XEXP (x, 0), i),
4deef538
AO
1915 memmode);
1916
1917 case PRE_MODIFY:
1918 gcc_assert (memmode != VOIDmode);
1919 return cselib_subst_to_values (XEXP (x, 1), memmode);
1920
91700444 1921 case POST_DEC:
4deef538 1922 case POST_INC:
91700444 1923 case POST_MODIFY:
4deef538
AO
1924 gcc_assert (memmode != VOIDmode);
1925 return cselib_subst_to_values (XEXP (x, 0), memmode);
7080f735 1926
fa49fd0f
RK
1927 default:
1928 break;
1929 }
1930
1931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1932 {
1933 if (fmt[i] == 'e')
1934 {
4deef538 1935 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
fa49fd0f 1936
bd7960b1
RS
1937 if (t != XEXP (x, i))
1938 {
1939 if (x == copy)
1940 copy = shallow_copy_rtx (x);
1941 XEXP (copy, i) = t;
1942 }
fa49fd0f
RK
1943 }
1944 else if (fmt[i] == 'E')
1945 {
bd7960b1 1946 int j;
fa49fd0f
RK
1947
1948 for (j = 0; j < XVECLEN (x, i); j++)
1949 {
4deef538 1950 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
fa49fd0f 1951
bd7960b1 1952 if (t != XVECEXP (x, i, j))
fa49fd0f 1953 {
bd7960b1
RS
1954 if (XVEC (x, i) == XVEC (copy, i))
1955 {
1956 if (x == copy)
1957 copy = shallow_copy_rtx (x);
1958 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1959 }
1960 XVECEXP (copy, i, j) = t;
fa49fd0f 1961 }
fa49fd0f
RK
1962 }
1963 }
1964 }
1965
1966 return copy;
1967}
1968
9a76e83d
JJ
1969/* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1970
1971rtx
ef4bddc2 1972cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
9a76e83d
JJ
1973{
1974 rtx ret;
1975 gcc_assert (!cselib_current_insn);
1976 cselib_current_insn = insn;
1977 ret = cselib_subst_to_values (x, memmode);
1978 cselib_current_insn = NULL;
1979 return ret;
1980}
1981
4deef538
AO
1982/* Look up the rtl expression X in our tables and return the value it
1983 has. If CREATE is zero, we return NULL if we don't know the value.
1984 Otherwise, we create a new one if possible, using mode MODE if X
1985 doesn't have a mode (i.e. because it's a constant). When X is part
1986 of an address, MEMMODE should be the mode of the enclosing MEM if
1987 we're tracking autoinc expressions. */
fa49fd0f 1988
5847e8da 1989static cselib_val *
ef4bddc2
RS
1990cselib_lookup_1 (rtx x, machine_mode mode,
1991 int create, machine_mode memmode)
fa49fd0f 1992{
4a8fb1a1 1993 cselib_val **slot;
fa49fd0f
RK
1994 cselib_val *e;
1995 unsigned int hashval;
1996
1997 if (GET_MODE (x) != VOIDmode)
1998 mode = GET_MODE (x);
1999
2000 if (GET_CODE (x) == VALUE)
2001 return CSELIB_VAL_PTR (x);
2002
f8cfc6aa 2003 if (REG_P (x))
fa49fd0f
RK
2004 {
2005 struct elt_list *l;
2006 unsigned int i = REGNO (x);
2007
60fa6660
AO
2008 l = REG_VALUES (i);
2009 if (l && l->elt == NULL)
2010 l = l->next;
2011 for (; l; l = l->next)
757bbef8 2012 if (mode == GET_MODE (l->elt->val_rtx))
5847e8da
AO
2013 {
2014 promote_debug_loc (l->elt->locs);
2015 return l->elt;
2016 }
fa49fd0f
RK
2017
2018 if (! create)
5847e8da 2019 return 0;
fa49fd0f 2020
31825e57
DM
2021 if (i < FIRST_PSEUDO_REGISTER)
2022 {
ad474626 2023 unsigned int n = hard_regno_nregs (i, mode);
31825e57
DM
2024
2025 if (n > max_value_regs)
2026 max_value_regs = n;
2027 }
2028
5440c0e7 2029 e = new_cselib_val (next_uid, GET_MODE (x), x);
6f2ffb4b 2030 new_elt_loc_list (e, x);
b4206259
RS
2031
2032 scalar_int_mode int_mode;
fa49fd0f 2033 if (REG_VALUES (i) == 0)
60fa6660
AO
2034 {
2035 /* Maintain the invariant that the first entry of
2036 REG_VALUES, if present, must be the value used to set the
2037 register, or NULL. */
6790d1ab 2038 used_regs[n_used_regs++] = i;
60fa6660
AO
2039 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2040 }
509f4495 2041 else if (cselib_preserve_constants
b4206259 2042 && is_int_mode (mode, &int_mode))
509f4495
JJ
2043 {
2044 /* During var-tracking, try harder to find equivalences
2045 for SUBREGs. If a setter sets say a DImode register
2046 and user uses that register only in SImode, add a lowpart
2047 subreg location. */
2048 struct elt_list *lwider = NULL;
b4206259 2049 scalar_int_mode lmode;
509f4495
JJ
2050 l = REG_VALUES (i);
2051 if (l && l->elt == NULL)
2052 l = l->next;
2053 for (; l; l = l->next)
b4206259
RS
2054 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2055 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
509f4495 2056 && (lwider == NULL
bd4288c0
RS
2057 || partial_subreg_p (lmode,
2058 GET_MODE (lwider->elt->val_rtx))))
509f4495
JJ
2059 {
2060 struct elt_loc_list *el;
2061 if (i < FIRST_PSEUDO_REGISTER
ad474626 2062 && hard_regno_nregs (i, lmode) != 1)
509f4495
JJ
2063 continue;
2064 for (el = l->elt->locs; el; el = el->next)
2065 if (!REG_P (el->loc))
2066 break;
2067 if (el)
2068 lwider = l;
2069 }
2070 if (lwider)
2071 {
b4206259 2072 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
509f4495
JJ
2073 GET_MODE (lwider->elt->val_rtx));
2074 if (sub)
6f2ffb4b 2075 new_elt_loc_list (e, sub);
509f4495
JJ
2076 }
2077 }
60fa6660 2078 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
f956adb9 2079 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
fa49fd0f 2080 *slot = e;
5847e8da 2081 return e;
fa49fd0f
RK
2082 }
2083
3c0cb5de 2084 if (MEM_P (x))
5847e8da 2085 return cselib_lookup_mem (x, create);
fa49fd0f 2086
4deef538 2087 hashval = cselib_hash_rtx (x, create, memmode);
fa49fd0f
RK
2088 /* Can't even create if hashing is not possible. */
2089 if (! hashval)
5847e8da 2090 return 0;
fa49fd0f 2091
f956adb9 2092 slot = cselib_find_slot (mode, x, hashval,
4deef538 2093 create ? INSERT : NO_INSERT, memmode);
fa49fd0f 2094 if (slot == 0)
5847e8da 2095 return 0;
fa49fd0f
RK
2096
2097 e = (cselib_val *) *slot;
2098 if (e)
5847e8da 2099 return e;
fa49fd0f 2100
b5b8b0ac 2101 e = new_cselib_val (hashval, mode, x);
fa49fd0f
RK
2102
2103 /* We have to fill the slot before calling cselib_subst_to_values:
2104 the hash table is inconsistent until we do so, and
2105 cselib_subst_to_values will need to do lookups. */
4a8fb1a1 2106 *slot = e;
6f2ffb4b 2107 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
5847e8da
AO
2108 return e;
2109}
2110
2111/* Wrapper for cselib_lookup, that indicates X is in INSN. */
2112
2113cselib_val *
ef4bddc2
RS
2114cselib_lookup_from_insn (rtx x, machine_mode mode,
2115 int create, machine_mode memmode, rtx_insn *insn)
5847e8da
AO
2116{
2117 cselib_val *ret;
2118
2119 gcc_assert (!cselib_current_insn);
2120 cselib_current_insn = insn;
2121
4deef538 2122 ret = cselib_lookup (x, mode, create, memmode);
5847e8da
AO
2123
2124 cselib_current_insn = NULL;
2125
2126 return ret;
2127}
2128
2129/* Wrapper for cselib_lookup_1, that logs the lookup result and
2130 maintains invariants related with debug insns. */
2131
2132cselib_val *
ef4bddc2
RS
2133cselib_lookup (rtx x, machine_mode mode,
2134 int create, machine_mode memmode)
5847e8da 2135{
4deef538 2136 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
5847e8da
AO
2137
2138 /* ??? Should we return NULL if we're not to create an entry, the
2139 found loc is a debug loc and cselib_current_insn is not DEBUG?
2140 If so, we should also avoid converting val to non-DEBUG; probably
2141 easiest setting cselib_current_insn to NULL before the call
2142 above. */
2143
4a3c9687 2144 if (dump_file && (dump_flags & TDF_CSELIB))
5847e8da
AO
2145 {
2146 fputs ("cselib lookup ", dump_file);
2147 print_inline_rtx (dump_file, x, 2);
2148 fprintf (dump_file, " => %u:%u\n",
2149 ret ? ret->uid : 0,
2150 ret ? ret->hash : 0);
2151 }
2152
2153 return ret;
fa49fd0f
RK
2154}
2155
2156/* Invalidate any entries in reg_values that overlap REGNO. This is called
2157 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2158 is used to determine how many hard registers are being changed. If MODE
2159 is VOIDmode, then only REGNO is being changed; this is used when
2160 invalidating call clobbered registers across a call. */
2161
2162static void
ef4bddc2 2163cselib_invalidate_regno (unsigned int regno, machine_mode mode)
fa49fd0f
RK
2164{
2165 unsigned int endregno;
2166 unsigned int i;
2167
2168 /* If we see pseudos after reload, something is _wrong_. */
341c100f
NS
2169 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2170 || reg_renumber[regno] < 0);
fa49fd0f
RK
2171
2172 /* Determine the range of registers that must be invalidated. For
2173 pseudos, only REGNO is affected. For hard regs, we must take MODE
2174 into account, and we must also invalidate lower register numbers
2175 if they contain values that overlap REGNO. */
291aac59 2176 if (regno < FIRST_PSEUDO_REGISTER)
31825e57 2177 {
341c100f 2178 gcc_assert (mode != VOIDmode);
7080f735 2179
31825e57
DM
2180 if (regno < max_value_regs)
2181 i = 0;
2182 else
2183 i = regno - max_value_regs;
fa49fd0f 2184
09e18274 2185 endregno = end_hard_regno (mode, regno);
31825e57
DM
2186 }
2187 else
2188 {
2189 i = regno;
2190 endregno = regno + 1;
2191 }
2192
2193 for (; i < endregno; i++)
fa49fd0f
RK
2194 {
2195 struct elt_list **l = &REG_VALUES (i);
2196
2197 /* Go through all known values for this reg; if it overlaps the range
2198 we're invalidating, remove the value. */
2199 while (*l)
2200 {
2201 cselib_val *v = (*l)->elt;
5847e8da 2202 bool had_locs;
21afc57d 2203 rtx_insn *setting_insn;
fa49fd0f
RK
2204 struct elt_loc_list **p;
2205 unsigned int this_last = i;
2206
60fa6660 2207 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
09e18274 2208 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
fa49fd0f 2209
9de9cbaf
JJ
2210 if (this_last < regno || v == NULL
2211 || (v == cfa_base_preserved_val
2212 && i == cfa_base_preserved_regno))
fa49fd0f
RK
2213 {
2214 l = &(*l)->next;
2215 continue;
2216 }
2217
2218 /* We have an overlap. */
60fa6660
AO
2219 if (*l == REG_VALUES (i))
2220 {
2221 /* Maintain the invariant that the first entry of
2222 REG_VALUES, if present, must be the value used to set
2223 the register, or NULL. This is also nice because
2224 then we won't push the same regno onto user_regs
2225 multiple times. */
2226 (*l)->elt = NULL;
2227 l = &(*l)->next;
2228 }
2229 else
2230 unchain_one_elt_list (l);
fa49fd0f 2231
6f2ffb4b
AO
2232 v = canonical_cselib_val (v);
2233
5847e8da
AO
2234 had_locs = v->locs != NULL;
2235 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2236
fa49fd0f
RK
2237 /* Now, we clear the mapping from value to reg. It must exist, so
2238 this code will crash intentionally if it doesn't. */
2239 for (p = &v->locs; ; p = &(*p)->next)
2240 {
2241 rtx x = (*p)->loc;
2242
f8cfc6aa 2243 if (REG_P (x) && REGNO (x) == i)
fa49fd0f
RK
2244 {
2245 unchain_one_elt_loc_list (p);
2246 break;
2247 }
2248 }
5847e8da
AO
2249
2250 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2251 {
2252 if (setting_insn && DEBUG_INSN_P (setting_insn))
2253 n_useless_debug_values++;
2254 else
2255 n_useless_values++;
2256 }
fa49fd0f
RK
2257 }
2258 }
2259}
9ddb66ca 2260\f
7101fb18
JH
2261/* Invalidate any locations in the table which are changed because of a
2262 store to MEM_RTX. If this is called because of a non-const call
2263 instruction, MEM_RTX is (mem:BLK const0_rtx). */
fa49fd0f 2264
7101fb18 2265static void
7080f735 2266cselib_invalidate_mem (rtx mem_rtx)
fa49fd0f 2267{
7101fb18 2268 cselib_val **vp, *v, *next;
c65ecebc 2269 int num_mems = 0;
9ddb66ca
JH
2270 rtx mem_addr;
2271
2272 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2273 mem_rtx = canon_rtx (mem_rtx);
fa49fd0f 2274
7101fb18
JH
2275 vp = &first_containing_mem;
2276 for (v = *vp; v != &dummy_val; v = next)
fa49fd0f 2277 {
7101fb18
JH
2278 bool has_mem = false;
2279 struct elt_loc_list **p = &v->locs;
5847e8da 2280 bool had_locs = v->locs != NULL;
21afc57d 2281 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f 2282
7101fb18 2283 while (*p)
fa49fd0f 2284 {
7101fb18
JH
2285 rtx x = (*p)->loc;
2286 cselib_val *addr;
2287 struct elt_list **mem_chain;
2288
2289 /* MEMs may occur in locations only at the top level; below
2290 that every MEM or REG is substituted by its VALUE. */
3c0cb5de 2291 if (!MEM_P (x))
fa49fd0f 2292 {
7101fb18
JH
2293 p = &(*p)->next;
2294 continue;
2295 }
c65ecebc 2296 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
bd280792
JR
2297 && ! canon_anti_dependence (x, false, mem_rtx,
2298 GET_MODE (mem_rtx), mem_addr))
7101fb18
JH
2299 {
2300 has_mem = true;
c65ecebc 2301 num_mems++;
7101fb18
JH
2302 p = &(*p)->next;
2303 continue;
fa49fd0f
RK
2304 }
2305
7101fb18
JH
2306 /* This one overlaps. */
2307 /* We must have a mapping from this MEM's address to the
2308 value (E). Remove that, too. */
4deef538 2309 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
faead9f7
AO
2310 addr = canonical_cselib_val (addr);
2311 gcc_checking_assert (v == canonical_cselib_val (v));
7101fb18
JH
2312 mem_chain = &addr->addr_list;
2313 for (;;)
2314 {
faead9f7
AO
2315 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2316
2317 if (canon == v)
7101fb18
JH
2318 {
2319 unchain_one_elt_list (mem_chain);
2320 break;
2321 }
fa49fd0f 2322
faead9f7
AO
2323 /* Record canonicalized elt. */
2324 (*mem_chain)->elt = canon;
2325
7101fb18
JH
2326 mem_chain = &(*mem_chain)->next;
2327 }
fa49fd0f 2328
7101fb18
JH
2329 unchain_one_elt_loc_list (p);
2330 }
fa49fd0f 2331
b5b8b0ac 2332 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
5847e8da
AO
2333 {
2334 if (setting_insn && DEBUG_INSN_P (setting_insn))
2335 n_useless_debug_values++;
2336 else
2337 n_useless_values++;
2338 }
fa49fd0f 2339
7101fb18
JH
2340 next = v->next_containing_mem;
2341 if (has_mem)
2342 {
2343 *vp = v;
2344 vp = &(*vp)->next_containing_mem;
2345 }
2346 else
2347 v->next_containing_mem = NULL;
2348 }
2349 *vp = &dummy_val;
fa49fd0f
RK
2350}
2351
0d87c765 2352/* Invalidate DEST, which is being assigned to or clobbered. */
fa49fd0f 2353
0d87c765
RH
2354void
2355cselib_invalidate_rtx (rtx dest)
fa49fd0f 2356{
46d096a3
SB
2357 while (GET_CODE (dest) == SUBREG
2358 || GET_CODE (dest) == ZERO_EXTRACT
2359 || GET_CODE (dest) == STRICT_LOW_PART)
fa49fd0f
RK
2360 dest = XEXP (dest, 0);
2361
f8cfc6aa 2362 if (REG_P (dest))
fa49fd0f 2363 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
3c0cb5de 2364 else if (MEM_P (dest))
fa49fd0f 2365 cselib_invalidate_mem (dest);
0d87c765
RH
2366}
2367
2368/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2369
2370static void
7bc980e1 2371cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
0d87c765
RH
2372 void *data ATTRIBUTE_UNUSED)
2373{
2374 cselib_invalidate_rtx (dest);
fa49fd0f
RK
2375}
2376
2377/* Record the result of a SET instruction. DEST is being set; the source
2378 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2379 describes its address. */
2380
2381static void
7080f735 2382cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
fa49fd0f 2383{
fa49fd0f
RK
2384 if (src_elt == 0 || side_effects_p (dest))
2385 return;
2386
dc8afb70 2387 if (REG_P (dest))
fa49fd0f 2388 {
dc8afb70 2389 unsigned int dreg = REGNO (dest);
31825e57
DM
2390 if (dreg < FIRST_PSEUDO_REGISTER)
2391 {
dc8afb70 2392 unsigned int n = REG_NREGS (dest);
31825e57
DM
2393
2394 if (n > max_value_regs)
2395 max_value_regs = n;
2396 }
2397
60fa6660
AO
2398 if (REG_VALUES (dreg) == 0)
2399 {
6790d1ab 2400 used_regs[n_used_regs++] = dreg;
60fa6660
AO
2401 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2402 }
2403 else
2404 {
341c100f
NS
2405 /* The register should have been invalidated. */
2406 gcc_assert (REG_VALUES (dreg)->elt == 0);
2407 REG_VALUES (dreg)->elt = src_elt;
60fa6660
AO
2408 }
2409
b5b8b0ac 2410 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f 2411 n_useless_values--;
6f2ffb4b 2412 new_elt_loc_list (src_elt, dest);
fa49fd0f 2413 }
3c0cb5de 2414 else if (MEM_P (dest) && dest_addr_elt != 0
463301c3 2415 && cselib_record_memory)
fa49fd0f 2416 {
b5b8b0ac 2417 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f
RK
2418 n_useless_values--;
2419 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2420 }
2421}
2422
6f2ffb4b
AO
2423/* Make ELT and X's VALUE equivalent to each other at INSN. */
2424
2425void
12ea1b95 2426cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
6f2ffb4b
AO
2427{
2428 cselib_val *nelt;
12ea1b95 2429 rtx_insn *save_cselib_current_insn = cselib_current_insn;
6f2ffb4b
AO
2430
2431 gcc_checking_assert (elt);
2432 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2433 gcc_checking_assert (!side_effects_p (x));
2434
2435 cselib_current_insn = insn;
2436
2437 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2438
2439 if (nelt != elt)
2440 {
0f68ba3e
AO
2441 cselib_any_perm_equivs = true;
2442
6f2ffb4b
AO
2443 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2444 cselib_preserve_value (nelt);
2445
2446 new_elt_loc_list (nelt, elt->val_rtx);
2447 }
2448
2449 cselib_current_insn = save_cselib_current_insn;
2450}
2451
0f68ba3e
AO
2452/* Return TRUE if any permanent equivalences have been recorded since
2453 the table was last initialized. */
2454bool
2455cselib_have_permanent_equivalences (void)
2456{
2457 return cselib_any_perm_equivs;
2458}
2459
fa49fd0f
RK
2460/* There is no good way to determine how many elements there can be
2461 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2462#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2463
4deef538
AO
2464struct cselib_record_autoinc_data
2465{
2466 struct cselib_set *sets;
2467 int n_sets;
2468};
2469
2470/* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2471 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2472
2473static int
2474cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2475 rtx dest, rtx src, rtx srcoff, void *arg)
2476{
2477 struct cselib_record_autoinc_data *data;
2478 data = (struct cselib_record_autoinc_data *)arg;
2479
2480 data->sets[data->n_sets].dest = dest;
2481
2482 if (srcoff)
2483 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2484 else
2485 data->sets[data->n_sets].src = src;
2486
2487 data->n_sets++;
2488
8d8e205b 2489 return 0;
4deef538
AO
2490}
2491
2492/* Record the effects of any sets and autoincs in INSN. */
fa49fd0f 2493static void
dd60a84c 2494cselib_record_sets (rtx_insn *insn)
fa49fd0f
RK
2495{
2496 int n_sets = 0;
2497 int i;
b5b8b0ac 2498 struct cselib_set sets[MAX_SETS];
fa49fd0f 2499 rtx body = PATTERN (insn);
b7933c21 2500 rtx cond = 0;
4deef538
AO
2501 int n_sets_before_autoinc;
2502 struct cselib_record_autoinc_data data;
fa49fd0f
RK
2503
2504 body = PATTERN (insn);
b7933c21
BS
2505 if (GET_CODE (body) == COND_EXEC)
2506 {
2507 cond = COND_EXEC_TEST (body);
2508 body = COND_EXEC_CODE (body);
2509 }
2510
fa49fd0f
RK
2511 /* Find all sets. */
2512 if (GET_CODE (body) == SET)
2513 {
2514 sets[0].src = SET_SRC (body);
2515 sets[0].dest = SET_DEST (body);
2516 n_sets = 1;
2517 }
2518 else if (GET_CODE (body) == PARALLEL)
2519 {
2520 /* Look through the PARALLEL and record the values being
2521 set, if possible. Also handle any CLOBBERs. */
2522 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2523 {
2524 rtx x = XVECEXP (body, 0, i);
2525
2526 if (GET_CODE (x) == SET)
2527 {
2528 sets[n_sets].src = SET_SRC (x);
2529 sets[n_sets].dest = SET_DEST (x);
2530 n_sets++;
2531 }
2532 }
2533 }
2534
8dd5516b
JJ
2535 if (n_sets == 1
2536 && MEM_P (sets[0].src)
2537 && !cselib_record_memory
2538 && MEM_READONLY_P (sets[0].src))
2539 {
2540 rtx note = find_reg_equal_equiv_note (insn);
2541
2542 if (note && CONSTANT_P (XEXP (note, 0)))
2543 sets[0].src = XEXP (note, 0);
2544 }
2545
4deef538
AO
2546 data.sets = sets;
2547 data.n_sets = n_sets_before_autoinc = n_sets;
8d8e205b 2548 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
4deef538
AO
2549 n_sets = data.n_sets;
2550
fa49fd0f
RK
2551 /* Look up the values that are read. Do this before invalidating the
2552 locations that are written. */
2553 for (i = 0; i < n_sets; i++)
2554 {
2555 rtx dest = sets[i].dest;
2556
2557 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2558 the low part after invalidating any knowledge about larger modes. */
2559 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2560 sets[i].dest = dest = XEXP (dest, 0);
2561
2562 /* We don't know how to record anything but REG or MEM. */
f8cfc6aa 2563 if (REG_P (dest)
3c0cb5de 2564 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f 2565 {
b7933c21
BS
2566 rtx src = sets[i].src;
2567 if (cond)
be9ed5d5 2568 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
4deef538 2569 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
3c0cb5de 2570 if (MEM_P (dest))
d4ebfa65 2571 {
ef4bddc2 2572 machine_mode address_mode = get_address_mode (dest);
d4ebfa65
BE
2573
2574 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
4deef538
AO
2575 address_mode, 1,
2576 GET_MODE (dest));
d4ebfa65 2577 }
fa49fd0f
RK
2578 else
2579 sets[i].dest_addr_elt = 0;
2580 }
2581 }
2582
b5b8b0ac
AO
2583 if (cselib_record_sets_hook)
2584 cselib_record_sets_hook (insn, sets, n_sets);
2585
fa49fd0f
RK
2586 /* Invalidate all locations written by this insn. Note that the elts we
2587 looked up in the previous loop aren't affected, just some of their
2588 locations may go away. */
0d87c765 2589 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
fa49fd0f 2590
4deef538
AO
2591 for (i = n_sets_before_autoinc; i < n_sets; i++)
2592 cselib_invalidate_rtx (sets[i].dest);
2593
b7048ab7
RH
2594 /* If this is an asm, look for duplicate sets. This can happen when the
2595 user uses the same value as an output multiple times. This is valid
2596 if the outputs are not actually used thereafter. Treat this case as
2597 if the value isn't actually set. We do this by smashing the destination
2598 to pc_rtx, so that we won't record the value later. */
2599 if (n_sets >= 2 && asm_noperands (body) >= 0)
2600 {
2601 for (i = 0; i < n_sets; i++)
2602 {
2603 rtx dest = sets[i].dest;
3c0cb5de 2604 if (REG_P (dest) || MEM_P (dest))
b7048ab7
RH
2605 {
2606 int j;
2607 for (j = i + 1; j < n_sets; j++)
2608 if (rtx_equal_p (dest, sets[j].dest))
2609 {
2610 sets[i].dest = pc_rtx;
2611 sets[j].dest = pc_rtx;
2612 }
2613 }
2614 }
2615 }
2616
fa49fd0f
RK
2617 /* Now enter the equivalences in our tables. */
2618 for (i = 0; i < n_sets; i++)
2619 {
2620 rtx dest = sets[i].dest;
f8cfc6aa 2621 if (REG_P (dest)
3c0cb5de 2622 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f
RK
2623 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2624 }
2625}
2626
40155239
JJ
2627/* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2628
2629bool
8df68a82 2630fp_setter_insn (rtx_insn *insn)
40155239
JJ
2631{
2632 rtx expr, pat = NULL_RTX;
2633
2634 if (!RTX_FRAME_RELATED_P (insn))
2635 return false;
2636
2637 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2638 if (expr)
2639 pat = XEXP (expr, 0);
2640 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2641 return false;
2642
2643 /* Don't return true for frame pointer restores in the epilogue. */
2644 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2645 return false;
2646 return true;
2647}
2648
fa49fd0f
RK
2649/* Record the effects of INSN. */
2650
2651void
dd60a84c 2652cselib_process_insn (rtx_insn *insn)
fa49fd0f
RK
2653{
2654 int i;
2655 rtx x;
2656
2657 cselib_current_insn = insn;
2658
f1257268 2659 /* Forget everything at a CODE_LABEL or a setjmp. */
f5d30aa6
JJ
2660 if ((LABEL_P (insn)
2661 || (CALL_P (insn)
f1257268 2662 && find_reg_note (insn, REG_SETJMP, NULL)))
f5d30aa6 2663 && !cselib_preserve_constants)
fa49fd0f 2664 {
5440c0e7 2665 cselib_reset_table (next_uid);
12ea1b95 2666 cselib_current_insn = NULL;
fa49fd0f
RK
2667 return;
2668 }
2669
2670 if (! INSN_P (insn))
2671 {
12ea1b95 2672 cselib_current_insn = NULL;
fa49fd0f
RK
2673 return;
2674 }
2675
2676 /* If this is a call instruction, forget anything stored in a
2677 call clobbered register, or, if this is not a const call, in
2678 memory. */
4b4bf941 2679 if (CALL_P (insn))
fa49fd0f
RK
2680 {
2681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7e42db17
DJ
2682 if (call_used_regs[i]
2683 || (REG_VALUES (i) && REG_VALUES (i)->elt
80ec73f4
RS
2684 && (targetm.hard_regno_call_part_clobbered
2685 (i, GET_MODE (REG_VALUES (i)->elt->val_rtx)))))
291aac59 2686 cselib_invalidate_regno (i, reg_raw_mode[i]);
fa49fd0f 2687
becfd6e5
KZ
2688 /* Since it is not clear how cselib is going to be used, be
2689 conservative here and treat looping pure or const functions
2690 as if they were regular functions. */
2691 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2692 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
fa49fd0f 2693 cselib_invalidate_mem (callmem);
007b405b
JDA
2694 else
2695 /* For const/pure calls, invalidate any argument slots because
2696 they are owned by the callee. */
2697 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2698 if (GET_CODE (XEXP (x, 0)) == USE
2699 && MEM_P (XEXP (XEXP (x, 0), 0)))
2700 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
fa49fd0f
RK
2701 }
2702
2703 cselib_record_sets (insn);
2704
fa49fd0f
RK
2705 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2706 after we have processed the insn. */
4b4bf941 2707 if (CALL_P (insn))
f5d30aa6
JJ
2708 {
2709 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2710 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2711 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2712 /* Flush evertything on setjmp. */
2713 if (cselib_preserve_constants
2714 && find_reg_note (insn, REG_SETJMP, NULL))
2715 {
2716 cselib_preserve_only_values ();
2717 cselib_reset_table (next_uid);
2718 }
2719 }
fa49fd0f 2720
40155239
JJ
2721 /* On setter of the hard frame pointer if frame_pointer_needed,
2722 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2723 VALUEs are distinct. */
2724 if (reload_completed
2725 && frame_pointer_needed
2726 && fp_setter_insn (insn))
2727 cselib_invalidate_rtx (stack_pointer_rtx);
2728
12ea1b95 2729 cselib_current_insn = NULL;
fa49fd0f 2730
80662856
AO
2731 if (n_useless_values > MAX_USELESS_VALUES
2732 /* remove_useless_values is linear in the hash table size. Avoid
2733 quadratic behavior for very large hashtables with very few
2734 useless elements. */
2735 && ((unsigned int)n_useless_values
c203e8a7 2736 > (cselib_hash_table->elements () - n_debug_values) / 4))
80662856 2737 remove_useless_values ();
fa49fd0f
RK
2738}
2739
fa49fd0f
RK
2740/* Initialize cselib for one pass. The caller must also call
2741 init_alias_analysis. */
2742
2743void
457eeaae 2744cselib_init (int record_what)
fa49fd0f 2745{
457eeaae
JJ
2746 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2747 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
0f68ba3e 2748 cselib_any_perm_equivs = false;
ac3768f6
SB
2749
2750 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2751 see canon_true_dependence. This is only created once. */
fa49fd0f 2752 if (! callmem)
ac3768f6 2753 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
fa49fd0f
RK
2754
2755 cselib_nregs = max_reg_num ();
6790d1ab
JH
2756
2757 /* We preserve reg_values to allow expensive clearing of the whole thing.
2758 Reallocate it however if it happens to be too large. */
2759 if (!reg_values || reg_values_size < cselib_nregs
2760 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
e2500fed 2761 {
04695783 2762 free (reg_values);
6790d1ab
JH
2763 /* Some space for newly emit instructions so we don't end up
2764 reallocating in between passes. */
2765 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
5ed6ace5 2766 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
e2500fed 2767 }
5ed6ace5 2768 used_regs = XNEWVEC (unsigned int, cselib_nregs);
6790d1ab 2769 n_used_regs = 0;
c203e8a7 2770 cselib_hash_table = new hash_table<cselib_hasher> (31);
0618dee5 2771 if (cselib_preserve_constants)
c203e8a7 2772 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31);
5440c0e7 2773 next_uid = 1;
fa49fd0f
RK
2774}
2775
2776/* Called when the current user is done with cselib. */
2777
2778void
7080f735 2779cselib_finish (void)
fa49fd0f 2780{
0618dee5 2781 bool preserved = cselib_preserve_constants;
6fb5fa3c 2782 cselib_discard_hook = NULL;
457eeaae 2783 cselib_preserve_constants = false;
0f68ba3e 2784 cselib_any_perm_equivs = false;
457eeaae 2785 cfa_base_preserved_val = NULL;
9de9cbaf 2786 cfa_base_preserved_regno = INVALID_REGNUM;
fb0b2914
ML
2787 elt_list_pool.release ();
2788 elt_loc_list_pool.release ();
2789 cselib_val_pool.release ();
a78a26f1 2790 value_pool.release ();
eb232f4e 2791 cselib_clear_table ();
c203e8a7
TS
2792 delete cselib_hash_table;
2793 cselib_hash_table = NULL;
0618dee5 2794 if (preserved)
c203e8a7
TS
2795 delete cselib_preserved_hash_table;
2796 cselib_preserved_hash_table = NULL;
0fc0c4c9 2797 free (used_regs);
e2500fed 2798 used_regs = 0;
e2500fed 2799 n_useless_values = 0;
5847e8da
AO
2800 n_useless_debug_values = 0;
2801 n_debug_values = 0;
5440c0e7 2802 next_uid = 0;
fa49fd0f 2803}
e2500fed 2804
4a8fb1a1 2805/* Dump the cselib_val *X to FILE *OUT. */
b5b8b0ac 2806
4a8fb1a1
LC
2807int
2808dump_cselib_val (cselib_val **x, FILE *out)
b5b8b0ac 2809{
4a8fb1a1 2810 cselib_val *v = *x;
b5b8b0ac
AO
2811 bool need_lf = true;
2812
2813 print_inline_rtx (out, v->val_rtx, 0);
2814
2815 if (v->locs)
2816 {
2817 struct elt_loc_list *l = v->locs;
2818 if (need_lf)
2819 {
2820 fputc ('\n', out);
2821 need_lf = false;
2822 }
2823 fputs (" locs:", out);
2824 do
2825 {
42286976
JJ
2826 if (l->setting_insn)
2827 fprintf (out, "\n from insn %i ",
2828 INSN_UID (l->setting_insn));
2829 else
2830 fprintf (out, "\n ");
b5b8b0ac
AO
2831 print_inline_rtx (out, l->loc, 4);
2832 }
2833 while ((l = l->next));
2834 fputc ('\n', out);
2835 }
2836 else
2837 {
2838 fputs (" no locs", out);
2839 need_lf = true;
2840 }
2841
2842 if (v->addr_list)
2843 {
2844 struct elt_list *e = v->addr_list;
2845 if (need_lf)
2846 {
2847 fputc ('\n', out);
2848 need_lf = false;
2849 }
2850 fputs (" addr list:", out);
2851 do
2852 {
2853 fputs ("\n ", out);
2854 print_inline_rtx (out, e->elt->val_rtx, 2);
2855 }
2856 while ((e = e->next));
2857 fputc ('\n', out);
2858 }
2859 else
2860 {
2861 fputs (" no addrs", out);
2862 need_lf = true;
2863 }
2864
2865 if (v->next_containing_mem == &dummy_val)
2866 fputs (" last mem\n", out);
2867 else if (v->next_containing_mem)
2868 {
2869 fputs (" next mem ", out);
2870 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2871 fputc ('\n', out);
2872 }
2873 else if (need_lf)
2874 fputc ('\n', out);
2875
2876 return 1;
2877}
2878
2879/* Dump to OUT everything in the CSELIB table. */
2880
2881void
2882dump_cselib_table (FILE *out)
2883{
2884 fprintf (out, "cselib hash table:\n");
c203e8a7 2885 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
0618dee5 2886 fprintf (out, "cselib preserved hash table:\n");
c203e8a7 2887 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
b5b8b0ac
AO
2888 if (first_containing_mem != &dummy_val)
2889 {
2890 fputs ("first mem ", out);
2891 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2892 fputc ('\n', out);
2893 }
5440c0e7 2894 fprintf (out, "next uid %i\n", next_uid);
b5b8b0ac
AO
2895}
2896
e2500fed 2897#include "gt-cselib.h"