]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
poly_int: ira subreg liveness tracking
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
fa49fd0f 1/* Common subexpression elimination library for GNU compiler.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
fa49fd0f 3
1322177d 4This file is part of GCC.
fa49fd0f 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
fa49fd0f 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
fa49fd0f
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
fa49fd0f
RK
19
20#include "config.h"
21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
957060b5 24#include "target.h"
fa49fd0f 25#include "rtl.h"
957060b5 26#include "tree.h"
c7131fb2 27#include "df.h"
4d0cdd0c 28#include "memmodel.h"
fa49fd0f 29#include "tm_p.h"
957060b5 30#include "regs.h"
78528714 31#include "emit-rtl.h"
7ee2468b 32#include "dumpfile.h"
fa49fd0f 33#include "cselib.h"
c65ecebc 34#include "params.h"
fa49fd0f 35
fba4cb03 36/* A list of cselib_val structures. */
a78a26f1
ML
37struct elt_list
38{
39 struct elt_list *next;
40 cselib_val *elt;
fba4cb03
LB
41};
42
463301c3 43static bool cselib_record_memory;
457eeaae 44static bool cselib_preserve_constants;
0f68ba3e 45static bool cselib_any_perm_equivs;
4a8fb1a1 46static inline void promote_debug_loc (struct elt_loc_list *l);
7080f735 47static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
6f2ffb4b 48static void new_elt_loc_list (cselib_val *, rtx);
7080f735
AJ
49static void unchain_one_value (cselib_val *);
50static void unchain_one_elt_list (struct elt_list **);
51static void unchain_one_elt_loc_list (struct elt_loc_list **);
7080f735 52static void remove_useless_values (void);
ef4bddc2
RS
53static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
7080f735
AJ
55static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56static cselib_val *cselib_lookup_mem (rtx, int);
ef4bddc2 57static void cselib_invalidate_regno (unsigned int, machine_mode);
7080f735 58static void cselib_invalidate_mem (rtx);
7080f735 59static void cselib_record_set (rtx, cselib_val *, cselib_val *);
dd60a84c 60static void cselib_record_sets (rtx_insn *);
fa49fd0f 61
b5b8b0ac
AO
62struct expand_value_data
63{
64 bitmap regs_active;
65 cselib_expand_callback callback;
66 void *callback_arg;
864ddef7 67 bool dummy;
b5b8b0ac
AO
68};
69
70static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
71
fa49fd0f
RK
72/* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
80
8d67ee55 81struct cselib_hasher : nofree_ptr_hash <cselib_val>
4a8fb1a1 82{
67f58944 83 struct key {
f956adb9
RS
84 /* The rtx value and its mode (needed separately for constant
85 integers). */
ef4bddc2 86 machine_mode mode;
f956adb9
RS
87 rtx x;
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
ef4bddc2 89 machine_mode memmode;
f956adb9 90 };
67f58944
TS
91 typedef key *compare_type;
92 static inline hashval_t hash (const cselib_val *);
93 static inline bool equal (const cselib_val *, const key *);
4a8fb1a1
LC
94};
95
96/* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
99
100inline hashval_t
67f58944 101cselib_hasher::hash (const cselib_val *v)
4a8fb1a1
LC
102{
103 return v->hash;
104}
105
106/* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
110
111inline bool
67f58944 112cselib_hasher::equal (const cselib_val *v, const key *x_arg)
4a8fb1a1
LC
113{
114 struct elt_loc_list *l;
f956adb9 115 rtx x = x_arg->x;
ef4bddc2
RS
116 machine_mode mode = x_arg->mode;
117 machine_mode memmode = x_arg->memmode;
4a8fb1a1
LC
118
119 if (mode != GET_MODE (v->val_rtx))
120 return false;
121
0618dee5
AO
122 if (GET_CODE (x) == VALUE)
123 return x == v->val_rtx;
124
4a8fb1a1
LC
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l = v->locs; l; l = l->next)
005f12bf 128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
4a8fb1a1
LC
129 {
130 promote_debug_loc (l);
131 return true;
132 }
133
134 return false;
135}
136
fa49fd0f 137/* A table that enables us to look up elts by their value. */
c203e8a7 138static hash_table<cselib_hasher> *cselib_hash_table;
fa49fd0f 139
0618dee5 140/* A table to hold preserved values. */
c203e8a7 141static hash_table<cselib_hasher> *cselib_preserved_hash_table;
0618dee5 142
fa49fd0f
RK
143/* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
12ea1b95 145static rtx_insn *cselib_current_insn;
fa49fd0f 146
5440c0e7
AO
147/* The unique id that the next create value will take. */
148static unsigned int next_uid;
fa49fd0f
RK
149
150/* The number of registers we had when the varrays were last resized. */
151static unsigned int cselib_nregs;
152
5847e8da
AO
153/* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
156
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
162
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
170
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
174
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
180
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
187 values. */
fa49fd0f 188static int n_useless_values;
5847e8da
AO
189static int n_useless_debug_values;
190
191/* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193static int n_debug_values;
fa49fd0f
RK
194
195/* Number of useless values before we remove them from the hash table. */
196#define MAX_USELESS_VALUES 32
197
60fa6660
AO
198/* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
204 element. */
5211d65a
KH
205static struct elt_list **reg_values;
206static unsigned int reg_values_size;
6790d1ab 207#define REG_VALUES(i) reg_values[i]
fa49fd0f 208
31825e57 209/* The largest number of hard regs used by any entry added to the
eb232f4e 210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
31825e57
DM
211static unsigned int max_value_regs;
212
fa49fd0f 213/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
eb232f4e 214 in cselib_clear_table() for fast emptying. */
6790d1ab
JH
215static unsigned int *used_regs;
216static unsigned int n_used_regs;
fa49fd0f
RK
217
218/* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
e2500fed 220static GTY(()) rtx callmem;
fa49fd0f 221
fa49fd0f
RK
222/* Set by discard_useless_locs if it deleted the last location of any
223 value. */
224static int values_became_useless;
7101fb18
JH
225
226/* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228static cselib_val dummy_val;
229
457eeaae
JJ
230/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
232 eliminated. */
233static cselib_val *cfa_base_preserved_val;
5a9fbcf1 234static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
457eeaae 235
7080f735 236/* Used to list all values that contain memory reference.
7101fb18
JH
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239static cselib_val *first_containing_mem = &dummy_val;
a78a26f1 240
fcb87c50
MM
241static object_allocator<elt_list> elt_list_pool ("elt_list");
242static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
243static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
a78a26f1 244
fcb87c50 245static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
6fb5fa3c
DB
246
247/* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249void (*cselib_discard_hook) (cselib_val *);
b5b8b0ac
AO
250
251/* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
255 instruction. */
46665961 256void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
b5b8b0ac
AO
257 int n_sets);
258
259#define PRESERVED_VALUE_P(RTX) \
c3284718 260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
b5b8b0ac 261
0fe03ac3 262#define SP_BASED_VALUE_P(RTX) \
c3284718 263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
0fe03ac3 264
fa49fd0f
RK
265\f
266
267/* Allocate a struct elt_list and fill in its two elements with the
268 arguments. */
269
6a59927d 270static inline struct elt_list *
7080f735 271new_elt_list (struct elt_list *next, cselib_val *elt)
fa49fd0f 272{
fb0b2914 273 elt_list *el = elt_list_pool.allocate ();
fa49fd0f
RK
274 el->next = next;
275 el->elt = elt;
276 return el;
277}
278
6f2ffb4b
AO
279/* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
280 list. */
fa49fd0f 281
6f2ffb4b
AO
282static inline void
283new_elt_loc_list (cselib_val *val, rtx loc)
fa49fd0f 284{
6f2ffb4b
AO
285 struct elt_loc_list *el, *next = val->locs;
286
287 gcc_checking_assert (!next || !next->setting_insn
288 || !DEBUG_INSN_P (next->setting_insn)
289 || cselib_current_insn == next->setting_insn);
5847e8da
AO
290
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
294 n_debug_values++;
295
6f2ffb4b
AO
296 val = canonical_cselib_val (val);
297 next = val->locs;
298
299 if (GET_CODE (loc) == VALUE)
300 {
301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
302
303 gcc_checking_assert (PRESERVED_VALUE_P (loc)
304 == PRESERVED_VALUE_P (val->val_rtx));
305
306 if (val->val_rtx == loc)
307 return;
308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
309 {
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
312 return;
313 }
314
315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
316
317 if (CSELIB_VAL_PTR (loc)->locs)
318 {
319 /* Bring all locs from LOC to VAL. */
320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
321 {
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el->loc && GET_CODE (el->loc) == VALUE)
325 {
326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
327 == loc);
328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
329 }
330 }
331 el->next = val->locs;
332 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
faead9f7
AO
333 }
334
335 if (CSELIB_VAL_PTR (loc)->addr_list)
336 {
337 /* Bring in addr_list into canonical node. */
338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
339 while (last->next)
340 last = last->next;
341 last->next = val->addr_list;
342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
343 CSELIB_VAL_PTR (loc)->addr_list = NULL;
344 }
345
346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
347 && val->next_containing_mem == NULL)
348 {
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
351 MEMs. */
352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
353 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
6f2ffb4b
AO
354 }
355
356 /* Chain LOC back to VAL. */
fb0b2914 357 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
358 el->loc = val->val_rtx;
359 el->setting_insn = cselib_current_insn;
360 el->next = NULL;
361 CSELIB_VAL_PTR (loc)->locs = el;
362 }
363
fb0b2914 364 el = elt_loc_list_pool.allocate ();
6f2ffb4b
AO
365 el->loc = loc;
366 el->setting_insn = cselib_current_insn;
367 el->next = next;
368 val->locs = el;
fa49fd0f
RK
369}
370
5847e8da
AO
371/* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
373 count. */
374
375static inline void
376promote_debug_loc (struct elt_loc_list *l)
377{
ce8fe26d 378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
5847e8da
AO
379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
380 {
381 n_debug_values--;
382 l->setting_insn = cselib_current_insn;
dc2a58da
JJ
383 if (cselib_preserve_constants && l->next)
384 {
385 gcc_assert (l->next->setting_insn
386 && DEBUG_INSN_P (l->next->setting_insn)
387 && !l->next->next);
388 l->next->setting_insn = cselib_current_insn;
389 }
390 else
391 gcc_assert (!l->next);
5847e8da
AO
392 }
393}
394
fa49fd0f
RK
395/* The elt_list at *PL is no longer needed. Unchain it and free its
396 storage. */
397
6a59927d 398static inline void
7080f735 399unchain_one_elt_list (struct elt_list **pl)
fa49fd0f
RK
400{
401 struct elt_list *l = *pl;
402
403 *pl = l->next;
fb0b2914 404 elt_list_pool.remove (l);
fa49fd0f
RK
405}
406
407/* Likewise for elt_loc_lists. */
408
409static void
7080f735 410unchain_one_elt_loc_list (struct elt_loc_list **pl)
fa49fd0f
RK
411{
412 struct elt_loc_list *l = *pl;
413
414 *pl = l->next;
fb0b2914 415 elt_loc_list_pool.remove (l);
fa49fd0f
RK
416}
417
418/* Likewise for cselib_vals. This also frees the addr_list associated with
419 V. */
420
421static void
7080f735 422unchain_one_value (cselib_val *v)
fa49fd0f
RK
423{
424 while (v->addr_list)
425 unchain_one_elt_list (&v->addr_list);
426
fb0b2914 427 cselib_val_pool.remove (v);
fa49fd0f
RK
428}
429
430/* Remove all entries from the hash table. Also used during
b5b8b0ac 431 initialization. */
fa49fd0f 432
eb232f4e
SB
433void
434cselib_clear_table (void)
b5b8b0ac 435{
5440c0e7 436 cselib_reset_table (1);
b5b8b0ac
AO
437}
438
0e224656
AO
439/* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
457eeaae 441
0e224656
AO
442static bool
443invariant_or_equiv_p (cselib_val *v)
457eeaae 444{
6f2ffb4b 445 struct elt_loc_list *l;
457eeaae 446
0e224656
AO
447 if (v == cfa_base_preserved_val)
448 return true;
449
450 /* Keep VALUE equivalences around. */
451 for (l = v->locs; l; l = l->next)
452 if (GET_CODE (l->loc) == VALUE)
453 return true;
454
457eeaae
JJ
455 if (v->locs != NULL
456 && v->locs->next == NULL)
457 {
458 if (CONSTANT_P (v->locs->loc)
459 && (GET_CODE (v->locs->loc) != CONST
460 || !references_value_p (v->locs->loc, 0)))
0e224656 461 return true;
6f2ffb4b
AO
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v->locs->loc) == ENTRY_VALUE
468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
0e224656
AO
469 return true;
470
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v->locs->loc) == PLUS
473 && CONST_INT_P (XEXP (v->locs->loc, 1))
474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
476 return true;
457eeaae 477 }
6f2ffb4b 478
0e224656
AO
479 return false;
480}
481
482/* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
484
4a8fb1a1
LC
485int
486preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
0e224656 487{
4a8fb1a1 488 cselib_val *v = *x;
457eeaae 489
0618dee5
AO
490 if (invariant_or_equiv_p (v))
491 {
67f58944 492 cselib_hasher::key lookup = {
f956adb9
RS
493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
494 };
0618dee5 495 cselib_val **slot
c203e8a7 496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
0618dee5
AO
497 v->hash, INSERT);
498 gcc_assert (!*slot);
499 *slot = v;
500 }
501
c203e8a7 502 cselib_hash_table->clear_slot (x);
0618dee5 503
457eeaae
JJ
504 return 1;
505}
506
b5b8b0ac
AO
507/* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
509
510void
5440c0e7 511cselib_reset_table (unsigned int num)
fa49fd0f
RK
512{
513 unsigned int i;
514
31825e57
DM
515 max_value_regs = 0;
516
457eeaae
JJ
517 if (cfa_base_preserved_val)
518 {
9de9cbaf 519 unsigned int regno = cfa_base_preserved_regno;
457eeaae
JJ
520 unsigned int new_used_regs = 0;
521 for (i = 0; i < n_used_regs; i++)
522 if (used_regs[i] == regno)
523 {
524 new_used_regs = 1;
525 continue;
526 }
527 else
528 REG_VALUES (used_regs[i]) = 0;
529 gcc_assert (new_used_regs == 1);
530 n_used_regs = new_used_regs;
531 used_regs[0] = regno;
532 max_value_regs
ad474626
RS
533 = hard_regno_nregs (regno,
534 GET_MODE (cfa_base_preserved_val->locs->loc));
457eeaae
JJ
535 }
536 else
537 {
538 for (i = 0; i < n_used_regs; i++)
539 REG_VALUES (used_regs[i]) = 0;
540 n_used_regs = 0;
541 }
fa49fd0f 542
457eeaae 543 if (cselib_preserve_constants)
c203e8a7
TS
544 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
545 (NULL);
457eeaae 546 else
0f68ba3e 547 {
c203e8a7 548 cselib_hash_table->empty ();
0f68ba3e
AO
549 gcc_checking_assert (!cselib_any_perm_equivs);
550 }
fa49fd0f 551
fa49fd0f 552 n_useless_values = 0;
5847e8da
AO
553 n_useless_debug_values = 0;
554 n_debug_values = 0;
fa49fd0f 555
5440c0e7 556 next_uid = num;
7101fb18
JH
557
558 first_containing_mem = &dummy_val;
fa49fd0f
RK
559}
560
b5b8b0ac
AO
561/* Return the number of the next value that will be generated. */
562
563unsigned int
5440c0e7 564cselib_get_next_uid (void)
b5b8b0ac 565{
5440c0e7 566 return next_uid;
b5b8b0ac
AO
567}
568
4deef538
AO
569/* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
570 INSERTing if requested. When X is part of the address of a MEM,
f956adb9 571 MEMMODE should specify the mode of the MEM. */
4deef538 572
4a8fb1a1 573static cselib_val **
ef4bddc2
RS
574cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
575 enum insert_option insert, machine_mode memmode)
4deef538 576{
0618dee5 577 cselib_val **slot = NULL;
67f58944 578 cselib_hasher::key lookup = { mode, x, memmode };
0618dee5 579 if (cselib_preserve_constants)
c203e8a7
TS
580 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
581 NO_INSERT);
0618dee5 582 if (!slot)
c203e8a7 583 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
4deef538
AO
584 return slot;
585}
586
fa49fd0f
RK
587/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
588 only return true for values which point to a cselib_val whose value
589 element has been set to zero, which implies the cselib_val will be
590 removed. */
591
592int
4f588890 593references_value_p (const_rtx x, int only_useless)
fa49fd0f 594{
4f588890 595 const enum rtx_code code = GET_CODE (x);
fa49fd0f
RK
596 const char *fmt = GET_RTX_FORMAT (code);
597 int i, j;
598
599 if (GET_CODE (x) == VALUE
6f2ffb4b
AO
600 && (! only_useless ||
601 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
fa49fd0f
RK
602 return 1;
603
604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 {
606 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
607 return 1;
608 else if (fmt[i] == 'E')
609 for (j = 0; j < XVECLEN (x, i); j++)
610 if (references_value_p (XVECEXP (x, i, j), only_useless))
611 return 1;
612 }
613
614 return 0;
615}
616
617/* For all locations found in X, delete locations that reference useless
618 values (i.e. values without any location). Called through
619 htab_traverse. */
620
4a8fb1a1
LC
621int
622discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 623{
4a8fb1a1 624 cselib_val *v = *x;
fa49fd0f 625 struct elt_loc_list **p = &v->locs;
5847e8da 626 bool had_locs = v->locs != NULL;
21afc57d 627 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f
RK
628
629 while (*p)
630 {
631 if (references_value_p ((*p)->loc, 1))
632 unchain_one_elt_loc_list (p);
633 else
634 p = &(*p)->next;
635 }
636
b5b8b0ac 637 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 638 {
5847e8da
AO
639 if (setting_insn && DEBUG_INSN_P (setting_insn))
640 n_useless_debug_values++;
641 else
642 n_useless_values++;
fa49fd0f
RK
643 values_became_useless = 1;
644 }
645 return 1;
646}
647
648/* If X is a value with no locations, remove it from the hashtable. */
649
4a8fb1a1
LC
650int
651discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f 652{
4a8fb1a1 653 cselib_val *v = *x;
fa49fd0f 654
b5b8b0ac 655 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 656 {
6fb5fa3c
DB
657 if (cselib_discard_hook)
658 cselib_discard_hook (v);
659
757bbef8 660 CSELIB_VAL_PTR (v->val_rtx) = NULL;
c203e8a7 661 cselib_hash_table->clear_slot (x);
fa49fd0f
RK
662 unchain_one_value (v);
663 n_useless_values--;
664 }
665
666 return 1;
667}
668
669/* Clean out useless values (i.e. those which no longer have locations
670 associated with them) from the hash table. */
671
672static void
7080f735 673remove_useless_values (void)
fa49fd0f 674{
7101fb18 675 cselib_val **p, *v;
5847e8da 676
fa49fd0f
RK
677 /* First pass: eliminate locations that reference the value. That in
678 turn can make more values useless. */
679 do
680 {
681 values_became_useless = 0;
c203e8a7 682 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
fa49fd0f
RK
683 }
684 while (values_became_useless);
685
686 /* Second pass: actually remove the values. */
fa49fd0f 687
7101fb18
JH
688 p = &first_containing_mem;
689 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
faead9f7 690 if (v->locs && v == canonical_cselib_val (v))
7101fb18
JH
691 {
692 *p = v;
693 p = &(*p)->next_containing_mem;
694 }
695 *p = &dummy_val;
696
5847e8da
AO
697 n_useless_values += n_useless_debug_values;
698 n_debug_values -= n_useless_debug_values;
699 n_useless_debug_values = 0;
700
c203e8a7 701 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
3e2a0bd2 702
341c100f 703 gcc_assert (!n_useless_values);
fa49fd0f
RK
704}
705
b5b8b0ac
AO
706/* Arrange for a value to not be removed from the hash table even if
707 it becomes useless. */
708
709void
710cselib_preserve_value (cselib_val *v)
711{
712 PRESERVED_VALUE_P (v->val_rtx) = 1;
713}
714
715/* Test whether a value is preserved. */
716
717bool
718cselib_preserved_value_p (cselib_val *v)
719{
720 return PRESERVED_VALUE_P (v->val_rtx);
721}
722
457eeaae
JJ
723/* Arrange for a REG value to be assumed constant through the whole function,
724 never invalidated and preserved across cselib_reset_table calls. */
725
726void
9de9cbaf 727cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
457eeaae
JJ
728{
729 if (cselib_preserve_constants
730 && v->locs
731 && REG_P (v->locs->loc))
9de9cbaf
JJ
732 {
733 cfa_base_preserved_val = v;
734 cfa_base_preserved_regno = regno;
735 }
457eeaae
JJ
736}
737
b5b8b0ac
AO
738/* Clean all non-constant expressions in the hash table, but retain
739 their values. */
740
741void
0de3e43f 742cselib_preserve_only_values (void)
b5b8b0ac
AO
743{
744 int i;
745
b5b8b0ac
AO
746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
747 cselib_invalidate_regno (i, reg_raw_mode[i]);
748
749 cselib_invalidate_mem (callmem);
750
751 remove_useless_values ();
752
753 gcc_assert (first_containing_mem == &dummy_val);
754}
755
0fe03ac3
JJ
756/* Arrange for a value to be marked as based on stack pointer
757 for find_base_term purposes. */
758
759void
760cselib_set_value_sp_based (cselib_val *v)
761{
762 SP_BASED_VALUE_P (v->val_rtx) = 1;
763}
764
765/* Test whether a value is based on stack pointer for
766 find_base_term purposes. */
767
768bool
769cselib_sp_based_value_p (cselib_val *v)
770{
771 return SP_BASED_VALUE_P (v->val_rtx);
772}
773
60fa6660
AO
774/* Return the mode in which a register was last set. If X is not a
775 register, return its mode. If the mode in which the register was
776 set is not known, or the value was already clobbered, return
777 VOIDmode. */
778
ef4bddc2 779machine_mode
4f588890 780cselib_reg_set_mode (const_rtx x)
60fa6660 781{
f8cfc6aa 782 if (!REG_P (x))
60fa6660
AO
783 return GET_MODE (x);
784
785 if (REG_VALUES (REGNO (x)) == NULL
786 || REG_VALUES (REGNO (x))->elt == NULL)
787 return VOIDmode;
788
757bbef8 789 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
60fa6660
AO
790}
791
4deef538
AO
792/* If x is a PLUS or an autoinc operation, expand the operation,
793 storing the offset, if any, in *OFF. */
794
795static rtx
ef4bddc2 796autoinc_split (rtx x, rtx *off, machine_mode memmode)
4deef538
AO
797{
798 switch (GET_CODE (x))
799 {
800 case PLUS:
801 *off = XEXP (x, 1);
802 return XEXP (x, 0);
803
804 case PRE_DEC:
805 if (memmode == VOIDmode)
806 return x;
807
808 *off = GEN_INT (-GET_MODE_SIZE (memmode));
809 return XEXP (x, 0);
4deef538
AO
810
811 case PRE_INC:
812 if (memmode == VOIDmode)
813 return x;
814
815 *off = GEN_INT (GET_MODE_SIZE (memmode));
816 return XEXP (x, 0);
817
818 case PRE_MODIFY:
819 return XEXP (x, 1);
820
821 case POST_DEC:
822 case POST_INC:
823 case POST_MODIFY:
824 return XEXP (x, 0);
825
826 default:
827 return x;
828 }
829}
830
831/* Return nonzero if we can prove that X and Y contain the same value,
832 taking our gathered information into account. MEMMODE holds the
833 mode of the enclosing MEM, if any, as required to deal with autoinc
834 addressing modes. If X and Y are not (known to be) part of
835 addresses, MEMMODE should be VOIDmode. */
836
08e5cf22 837int
005f12bf 838rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
fa49fd0f
RK
839{
840 enum rtx_code code;
841 const char *fmt;
842 int i;
7080f735 843
f8cfc6aa 844 if (REG_P (x) || MEM_P (x))
fa49fd0f 845 {
4deef538 846 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
fa49fd0f
RK
847
848 if (e)
757bbef8 849 x = e->val_rtx;
fa49fd0f
RK
850 }
851
f8cfc6aa 852 if (REG_P (y) || MEM_P (y))
fa49fd0f 853 {
4deef538 854 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
fa49fd0f
RK
855
856 if (e)
757bbef8 857 y = e->val_rtx;
fa49fd0f
RK
858 }
859
860 if (x == y)
861 return 1;
862
fa49fd0f
RK
863 if (GET_CODE (x) == VALUE)
864 {
6f2ffb4b 865 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
fa49fd0f
RK
866 struct elt_loc_list *l;
867
6f2ffb4b
AO
868 if (GET_CODE (y) == VALUE)
869 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
870
005f12bf
JJ
871 if (depth == 128)
872 return 0;
873
fa49fd0f
RK
874 for (l = e->locs; l; l = l->next)
875 {
876 rtx t = l->loc;
877
6f2ffb4b
AO
878 /* Avoid infinite recursion. We know we have the canonical
879 value, so we can just skip any values in the equivalence
880 list. */
881 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 882 continue;
005f12bf 883 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
fa49fd0f
RK
884 return 1;
885 }
7080f735 886
fa49fd0f
RK
887 return 0;
888 }
6f2ffb4b 889 else if (GET_CODE (y) == VALUE)
fa49fd0f 890 {
6f2ffb4b 891 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
fa49fd0f
RK
892 struct elt_loc_list *l;
893
005f12bf
JJ
894 if (depth == 128)
895 return 0;
896
fa49fd0f
RK
897 for (l = e->locs; l; l = l->next)
898 {
899 rtx t = l->loc;
900
6f2ffb4b 901 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
fa49fd0f 902 continue;
005f12bf 903 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
fa49fd0f
RK
904 return 1;
905 }
7080f735 906
fa49fd0f
RK
907 return 0;
908 }
909
4deef538 910 if (GET_MODE (x) != GET_MODE (y))
fa49fd0f
RK
911 return 0;
912
4deef538
AO
913 if (GET_CODE (x) != GET_CODE (y))
914 {
915 rtx xorig = x, yorig = y;
916 rtx xoff = NULL, yoff = NULL;
917
918 x = autoinc_split (x, &xoff, memmode);
919 y = autoinc_split (y, &yoff, memmode);
920
921 if (!xoff != !yoff)
922 return 0;
923
005f12bf 924 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
4deef538
AO
925 return 0;
926
927 /* Don't recurse if nothing changed. */
928 if (x != xorig || y != yorig)
005f12bf 929 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
4deef538
AO
930
931 return 0;
932 }
933
37cf6116
RH
934 /* These won't be handled correctly by the code below. */
935 switch (GET_CODE (x))
936 {
807e902e 937 CASE_CONST_UNIQUE:
0ca5af51 938 case DEBUG_EXPR:
37cf6116
RH
939 return 0;
940
c8a27c40
JJ
941 case DEBUG_IMPLICIT_PTR:
942 return DEBUG_IMPLICIT_PTR_DECL (x)
943 == DEBUG_IMPLICIT_PTR_DECL (y);
944
ddb555ed
JJ
945 case DEBUG_PARAMETER_REF:
946 return DEBUG_PARAMETER_REF_DECL (x)
947 == DEBUG_PARAMETER_REF_DECL (y);
948
a58a8e4b 949 case ENTRY_VALUE:
2b80199f
JJ
950 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
951 use rtx_equal_for_cselib_1 to compare the operands. */
952 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
a58a8e4b 953
37cf6116 954 case LABEL_REF:
04a121a7 955 return label_ref_label (x) == label_ref_label (y);
37cf6116 956
9fccb335
RS
957 case REG:
958 return REGNO (x) == REGNO (y);
959
4deef538
AO
960 case MEM:
961 /* We have to compare any autoinc operations in the addresses
962 using this MEM's mode. */
005f12bf
JJ
963 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
964 depth);
4deef538 965
37cf6116
RH
966 default:
967 break;
968 }
7080f735 969
fa49fd0f
RK
970 code = GET_CODE (x);
971 fmt = GET_RTX_FORMAT (code);
972
973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 {
975 int j;
976
977 switch (fmt[i])
978 {
979 case 'w':
980 if (XWINT (x, i) != XWINT (y, i))
981 return 0;
982 break;
983
984 case 'n':
985 case 'i':
986 if (XINT (x, i) != XINT (y, i))
987 return 0;
988 break;
989
990 case 'V':
991 case 'E':
992 /* Two vectors must have the same length. */
993 if (XVECLEN (x, i) != XVECLEN (y, i))
994 return 0;
995
996 /* And the corresponding elements must match. */
997 for (j = 0; j < XVECLEN (x, i); j++)
4deef538 998 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
005f12bf 999 XVECEXP (y, i, j), memmode, depth))
fa49fd0f
RK
1000 return 0;
1001 break;
1002
1003 case 'e':
29c1846b
R
1004 if (i == 1
1005 && targetm.commutative_p (x, UNKNOWN)
005f12bf
JJ
1006 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1007 depth)
1008 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1009 depth))
29c1846b 1010 return 1;
005f12bf
JJ
1011 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1012 depth))
fa49fd0f
RK
1013 return 0;
1014 break;
1015
1016 case 'S':
1017 case 's':
1018 if (strcmp (XSTR (x, i), XSTR (y, i)))
1019 return 0;
1020 break;
1021
1022 case 'u':
1023 /* These are just backpointers, so they don't matter. */
1024 break;
1025
1026 case '0':
1027 case 't':
1028 break;
1029
1030 /* It is believed that rtx's at this level will never
1031 contain anything but integers and other rtx's,
1032 except for within LABEL_REFs and SYMBOL_REFs. */
1033 default:
341c100f 1034 gcc_unreachable ();
fa49fd0f
RK
1035 }
1036 }
1037 return 1;
1038}
1039
fa49fd0f
RK
1040/* Hash an rtx. Return 0 if we couldn't hash the rtx.
1041 For registers and memory locations, we look up their cselib_val structure
1042 and return its VALUE element.
1043 Possible reasons for return 0 are: the object is volatile, or we couldn't
1044 find a register or memory location in the table and CREATE is zero. If
1045 CREATE is nonzero, table elts are created for regs and mem.
29c1846b
R
1046 N.B. this hash function returns the same hash value for RTXes that
1047 differ only in the order of operands, thus it is suitable for comparisons
1048 that take commutativity into account.
1049 If we wanted to also support associative rules, we'd have to use a different
1050 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
4deef538
AO
1051 MEMMODE indicates the mode of an enclosing MEM, and it's only
1052 used to compute autoinc values.
29c1846b
R
1053 We used to have a MODE argument for hashing for CONST_INTs, but that
1054 didn't make sense, since it caused spurious hash differences between
1055 (set (reg:SI 1) (const_int))
1056 (plus:SI (reg:SI 2) (reg:SI 1))
1057 and
1058 (plus:SI (reg:SI 2) (const_int))
1059 If the mode is important in any context, it must be checked specifically
1060 in a comparison anyway, since relying on hash differences is unsafe. */
fa49fd0f
RK
1061
1062static unsigned int
ef4bddc2 1063cselib_hash_rtx (rtx x, int create, machine_mode memmode)
fa49fd0f
RK
1064{
1065 cselib_val *e;
1066 int i, j;
1067 enum rtx_code code;
1068 const char *fmt;
1069 unsigned int hash = 0;
1070
fa49fd0f
RK
1071 code = GET_CODE (x);
1072 hash += (unsigned) code + (unsigned) GET_MODE (x);
1073
1074 switch (code)
1075 {
7483eef8
AO
1076 case VALUE:
1077 e = CSELIB_VAL_PTR (x);
1078 return e->hash;
1079
fa49fd0f
RK
1080 case MEM:
1081 case REG:
4deef538 1082 e = cselib_lookup (x, GET_MODE (x), create, memmode);
fa49fd0f
RK
1083 if (! e)
1084 return 0;
1085
5440c0e7 1086 return e->hash;
fa49fd0f 1087
0ca5af51 1088 case DEBUG_EXPR:
e4fb38bd
JJ
1089 hash += ((unsigned) DEBUG_EXPR << 7)
1090 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
0ca5af51
AO
1091 return hash ? hash : (unsigned int) DEBUG_EXPR;
1092
c8a27c40
JJ
1093 case DEBUG_IMPLICIT_PTR:
1094 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1095 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1096 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1097
ddb555ed
JJ
1098 case DEBUG_PARAMETER_REF:
1099 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1100 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1101 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1102
a58a8e4b 1103 case ENTRY_VALUE:
2b80199f
JJ
1104 /* ENTRY_VALUEs are function invariant, thus try to avoid
1105 recursing on argument if ENTRY_VALUE is one of the
1106 forms emitted by expand_debug_expr, otherwise
1107 ENTRY_VALUE hash would depend on the current value
1108 in some register or memory. */
1109 if (REG_P (ENTRY_VALUE_EXP (x)))
1110 hash += (unsigned int) REG
1111 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1112 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1113 else if (MEM_P (ENTRY_VALUE_EXP (x))
1114 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1115 hash += (unsigned int) MEM
1116 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1117 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1118 else
1119 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
a58a8e4b
JJ
1120 return hash ? hash : (unsigned int) ENTRY_VALUE;
1121
fa49fd0f 1122 case CONST_INT:
a8acccdd 1123 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
dc76f41c 1124 return hash ? hash : (unsigned int) CONST_INT;
fa49fd0f 1125
807e902e
KZ
1126 case CONST_WIDE_INT:
1127 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1128 hash += CONST_WIDE_INT_ELT (x, i);
1129 return hash;
1130
0c12fc9b
RS
1131 case CONST_POLY_INT:
1132 {
1133 inchash::hash h;
1134 h.add_int (hash);
1135 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1136 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
1137 return h.end ();
1138 }
1139
fa49fd0f
RK
1140 case CONST_DOUBLE:
1141 /* This is like the general case, except that it only counts
1142 the integers representing the constant. */
1143 hash += (unsigned) code + (unsigned) GET_MODE (x);
807e902e 1144 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
fa49fd0f
RK
1145 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1146 + (unsigned) CONST_DOUBLE_HIGH (x));
807e902e
KZ
1147 else
1148 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
dc76f41c 1149 return hash ? hash : (unsigned int) CONST_DOUBLE;
fa49fd0f 1150
091a3ac7
CF
1151 case CONST_FIXED:
1152 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1153 hash += fixed_hash (CONST_FIXED_VALUE (x));
1154 return hash ? hash : (unsigned int) CONST_FIXED;
1155
69ef87e2
AH
1156 case CONST_VECTOR:
1157 {
1158 int units;
1159 rtx elt;
1160
1161 units = CONST_VECTOR_NUNITS (x);
1162
1163 for (i = 0; i < units; ++i)
1164 {
1165 elt = CONST_VECTOR_ELT (x, i);
4deef538 1166 hash += cselib_hash_rtx (elt, 0, memmode);
69ef87e2
AH
1167 }
1168
1169 return hash;
1170 }
1171
fa49fd0f
RK
1172 /* Assume there is only one rtx object for any given label. */
1173 case LABEL_REF:
4c6669c2
RS
1174 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1175 differences and differences between each stage's debugging dumps. */
1176 hash += (((unsigned int) LABEL_REF << 7)
04a121a7 1177 + CODE_LABEL_NUMBER (label_ref_label (x)));
dc76f41c 1178 return hash ? hash : (unsigned int) LABEL_REF;
fa49fd0f
RK
1179
1180 case SYMBOL_REF:
4c6669c2
RS
1181 {
1182 /* Don't hash on the symbol's address to avoid bootstrap differences.
1183 Different hash values may cause expressions to be recorded in
1184 different orders and thus different registers to be used in the
1185 final assembler. This also avoids differences in the dump files
1186 between various stages. */
1187 unsigned int h = 0;
1188 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1189
1190 while (*p)
1191 h += (h << 7) + *p++; /* ??? revisit */
1192
1193 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1194 return hash ? hash : (unsigned int) SYMBOL_REF;
1195 }
fa49fd0f
RK
1196
1197 case PRE_DEC:
1198 case PRE_INC:
4deef538
AO
1199 /* We can't compute these without knowing the MEM mode. */
1200 gcc_assert (memmode != VOIDmode);
1201 i = GET_MODE_SIZE (memmode);
1202 if (code == PRE_DEC)
1203 i = -i;
1204 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1205 like (mem:MEMMODE (plus (reg) (const_int I))). */
1206 hash += (unsigned) PLUS - (unsigned)code
1207 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1208 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1209 return hash ? hash : 1 + (unsigned) PLUS;
1210
1211 case PRE_MODIFY:
1212 gcc_assert (memmode != VOIDmode);
1213 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1214
fa49fd0f
RK
1215 case POST_DEC:
1216 case POST_INC:
1217 case POST_MODIFY:
4deef538
AO
1218 gcc_assert (memmode != VOIDmode);
1219 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1220
fa49fd0f
RK
1221 case PC:
1222 case CC0:
1223 case CALL:
1224 case UNSPEC_VOLATILE:
1225 return 0;
1226
1227 case ASM_OPERANDS:
1228 if (MEM_VOLATILE_P (x))
1229 return 0;
1230
1231 break;
7080f735 1232
fa49fd0f
RK
1233 default:
1234 break;
1235 }
1236
1237 i = GET_RTX_LENGTH (code) - 1;
1238 fmt = GET_RTX_FORMAT (code);
1239 for (; i >= 0; i--)
1240 {
341c100f 1241 switch (fmt[i])
fa49fd0f 1242 {
341c100f 1243 case 'e':
fa49fd0f 1244 {
341c100f 1245 rtx tem = XEXP (x, i);
4deef538 1246 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
b8698a0f 1247
fa49fd0f
RK
1248 if (tem_hash == 0)
1249 return 0;
b8698a0f 1250
fa49fd0f
RK
1251 hash += tem_hash;
1252 }
341c100f
NS
1253 break;
1254 case 'E':
1255 for (j = 0; j < XVECLEN (x, i); j++)
1256 {
1257 unsigned int tem_hash
4deef538 1258 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
b8698a0f 1259
341c100f
NS
1260 if (tem_hash == 0)
1261 return 0;
b8698a0f 1262
341c100f
NS
1263 hash += tem_hash;
1264 }
1265 break;
fa49fd0f 1266
341c100f
NS
1267 case 's':
1268 {
1269 const unsigned char *p = (const unsigned char *) XSTR (x, i);
b8698a0f 1270
341c100f
NS
1271 if (p)
1272 while (*p)
1273 hash += *p++;
1274 break;
1275 }
b8698a0f 1276
341c100f
NS
1277 case 'i':
1278 hash += XINT (x, i);
1279 break;
1280
1281 case '0':
1282 case 't':
1283 /* unused */
1284 break;
b8698a0f 1285
341c100f
NS
1286 default:
1287 gcc_unreachable ();
fa49fd0f 1288 }
fa49fd0f
RK
1289 }
1290
dc76f41c 1291 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
fa49fd0f
RK
1292}
1293
1294/* Create a new value structure for VALUE and initialize it. The mode of the
1295 value is MODE. */
1296
6a59927d 1297static inline cselib_val *
ef4bddc2 1298new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
fa49fd0f 1299{
fb0b2914 1300 cselib_val *e = cselib_val_pool.allocate ();
fa49fd0f 1301
5440c0e7
AO
1302 gcc_assert (hash);
1303 gcc_assert (next_uid);
fa49fd0f 1304
5440c0e7
AO
1305 e->hash = hash;
1306 e->uid = next_uid++;
d67fb775
SB
1307 /* We use an alloc pool to allocate this RTL construct because it
1308 accounts for about 8% of the overall memory usage. We know
1309 precisely when we can have VALUE RTXen (when cselib is active)
daa956d0 1310 so we don't need to put them in garbage collected memory.
d67fb775 1311 ??? Why should a VALUE be an RTX in the first place? */
fb0b2914 1312 e->val_rtx = (rtx_def*) value_pool.allocate ();
757bbef8
SB
1313 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1314 PUT_CODE (e->val_rtx, VALUE);
1315 PUT_MODE (e->val_rtx, mode);
1316 CSELIB_VAL_PTR (e->val_rtx) = e;
fa49fd0f
RK
1317 e->addr_list = 0;
1318 e->locs = 0;
7101fb18 1319 e->next_containing_mem = 0;
b5b8b0ac 1320
4a3c9687 1321 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac 1322 {
5440c0e7 1323 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
b5b8b0ac
AO
1324 if (flag_dump_noaddr || flag_dump_unnumbered)
1325 fputs ("# ", dump_file);
1326 else
1327 fprintf (dump_file, "%p ", (void*)e);
1328 print_rtl_single (dump_file, x);
1329 fputc ('\n', dump_file);
1330 }
1331
fa49fd0f
RK
1332 return e;
1333}
1334
1335/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1336 contains the data at this address. X is a MEM that represents the
1337 value. Update the two value structures to represent this situation. */
1338
1339static void
7080f735 1340add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
fa49fd0f 1341{
faead9f7 1342 addr_elt = canonical_cselib_val (addr_elt);
a4f436ff
JJ
1343 mem_elt = canonical_cselib_val (mem_elt);
1344
fa49fd0f 1345 /* Avoid duplicates. */
bd68a3a7
RH
1346 addr_space_t as = MEM_ADDR_SPACE (x);
1347 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
3c0cb5de 1348 if (MEM_P (l->loc)
bd68a3a7
RH
1349 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1350 && MEM_ADDR_SPACE (l->loc) == as)
5847e8da
AO
1351 {
1352 promote_debug_loc (l);
1353 return;
1354 }
fa49fd0f 1355
fa49fd0f 1356 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
6f2ffb4b
AO
1357 new_elt_loc_list (mem_elt,
1358 replace_equiv_address_nv (x, addr_elt->val_rtx));
7101fb18
JH
1359 if (mem_elt->next_containing_mem == NULL)
1360 {
1361 mem_elt->next_containing_mem = first_containing_mem;
1362 first_containing_mem = mem_elt;
1363 }
fa49fd0f
RK
1364}
1365
1366/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1367 If CREATE, make a new one if we haven't seen it before. */
1368
1369static cselib_val *
7080f735 1370cselib_lookup_mem (rtx x, int create)
fa49fd0f 1371{
ef4bddc2
RS
1372 machine_mode mode = GET_MODE (x);
1373 machine_mode addr_mode;
4a8fb1a1 1374 cselib_val **slot;
fa49fd0f
RK
1375 cselib_val *addr;
1376 cselib_val *mem_elt;
fa49fd0f
RK
1377
1378 if (MEM_VOLATILE_P (x) || mode == BLKmode
463301c3 1379 || !cselib_record_memory
fa49fd0f
RK
1380 || (FLOAT_MODE_P (mode) && flag_float_store))
1381 return 0;
1382
4deef538
AO
1383 addr_mode = GET_MODE (XEXP (x, 0));
1384 if (addr_mode == VOIDmode)
1385 addr_mode = Pmode;
1386
fa49fd0f 1387 /* Look up the value for the address. */
4deef538 1388 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
fa49fd0f
RK
1389 if (! addr)
1390 return 0;
faead9f7 1391 addr = canonical_cselib_val (addr);
bd68a3a7 1392
fa49fd0f 1393 /* Find a value that describes a value of our mode at that address. */
bd68a3a7
RH
1394 addr_space_t as = MEM_ADDR_SPACE (x);
1395 for (elt_list *l = addr->addr_list; l; l = l->next)
757bbef8 1396 if (GET_MODE (l->elt->val_rtx) == mode)
5847e8da 1397 {
bd68a3a7
RH
1398 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1399 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1400 {
1401 promote_debug_loc (l->elt->locs);
1402 return l->elt;
1403 }
5847e8da 1404 }
fa49fd0f
RK
1405
1406 if (! create)
1407 return 0;
1408
5440c0e7 1409 mem_elt = new_cselib_val (next_uid, mode, x);
fa49fd0f 1410 add_mem_for_addr (addr, mem_elt, x);
f956adb9 1411 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
fa49fd0f
RK
1412 *slot = mem_elt;
1413 return mem_elt;
1414}
1415
073a8998 1416/* Search through the possible substitutions in P. We prefer a non reg
6fb5fa3c
DB
1417 substitution because this allows us to expand the tree further. If
1418 we find, just a reg, take the lowest regno. There may be several
1419 non-reg results, we just take the first one because they will all
1420 expand to the same place. */
1421
b8698a0f 1422static rtx
b5b8b0ac
AO
1423expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1424 int max_depth)
6fb5fa3c
DB
1425{
1426 rtx reg_result = NULL;
1427 unsigned int regno = UINT_MAX;
1428 struct elt_loc_list *p_in = p;
1429
67b977ad 1430 for (; p; p = p->next)
6fb5fa3c 1431 {
67b977ad
JJ
1432 /* Return these right away to avoid returning stack pointer based
1433 expressions for frame pointer and vice versa, which is something
1434 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1435 for more details. */
1436 if (REG_P (p->loc)
1437 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1438 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1439 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1440 || REGNO (p->loc) == cfa_base_preserved_regno))
1441 return p->loc;
6fb5fa3c
DB
1442 /* Avoid infinite recursion trying to expand a reg into a
1443 the same reg. */
b8698a0f
L
1444 if ((REG_P (p->loc))
1445 && (REGNO (p->loc) < regno)
b5b8b0ac 1446 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
6fb5fa3c
DB
1447 {
1448 reg_result = p->loc;
1449 regno = REGNO (p->loc);
1450 }
1451 /* Avoid infinite recursion and do not try to expand the
1452 value. */
b8698a0f 1453 else if (GET_CODE (p->loc) == VALUE
6fb5fa3c
DB
1454 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1455 continue;
1456 else if (!REG_P (p->loc))
1457 {
8dd5516b 1458 rtx result, note;
4a3c9687 1459 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1460 {
1461 print_inline_rtx (dump_file, p->loc, 0);
1462 fprintf (dump_file, "\n");
1463 }
8dd5516b
JJ
1464 if (GET_CODE (p->loc) == LO_SUM
1465 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1466 && p->setting_insn
1467 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1468 && XEXP (note, 0) == XEXP (p->loc, 1))
1469 return XEXP (p->loc, 1);
b5b8b0ac 1470 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
6fb5fa3c
DB
1471 if (result)
1472 return result;
1473 }
b8698a0f 1474
6fb5fa3c 1475 }
b8698a0f 1476
6fb5fa3c
DB
1477 if (regno != UINT_MAX)
1478 {
1479 rtx result;
4a3c9687 1480 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1481 fprintf (dump_file, "r%d\n", regno);
1482
b5b8b0ac 1483 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
6fb5fa3c
DB
1484 if (result)
1485 return result;
1486 }
1487
4a3c9687 1488 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1489 {
1490 if (reg_result)
1491 {
1492 print_inline_rtx (dump_file, reg_result, 0);
1493 fprintf (dump_file, "\n");
1494 }
b8698a0f 1495 else
6fb5fa3c
DB
1496 fprintf (dump_file, "NULL\n");
1497 }
1498 return reg_result;
1499}
1500
1501
1502/* Forward substitute and expand an expression out to its roots.
1503 This is the opposite of common subexpression. Because local value
1504 numbering is such a weak optimization, the expanded expression is
1505 pretty much unique (not from a pointer equals point of view but
b8698a0f 1506 from a tree shape point of view.
6fb5fa3c
DB
1507
1508 This function returns NULL if the expansion fails. The expansion
1509 will fail if there is no value number for one of the operands or if
1510 one of the operands has been overwritten between the current insn
1511 and the beginning of the basic block. For instance x has no
1512 expansion in:
1513
1514 r1 <- r1 + 3
1515 x <- r1 + 8
1516
1517 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1518 It is clear on return. */
1519
1520rtx
1521cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
b5b8b0ac
AO
1522{
1523 struct expand_value_data evd;
1524
1525 evd.regs_active = regs_active;
1526 evd.callback = NULL;
1527 evd.callback_arg = NULL;
864ddef7 1528 evd.dummy = false;
b5b8b0ac
AO
1529
1530 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1531}
1532
1533/* Same as cselib_expand_value_rtx, but using a callback to try to
0b7e34d7
AO
1534 resolve some expressions. The CB function should return ORIG if it
1535 can't or does not want to deal with a certain RTX. Any other
1536 return value, including NULL, will be used as the expansion for
1537 VALUE, without any further changes. */
b5b8b0ac
AO
1538
1539rtx
1540cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1541 cselib_expand_callback cb, void *data)
1542{
1543 struct expand_value_data evd;
1544
1545 evd.regs_active = regs_active;
1546 evd.callback = cb;
1547 evd.callback_arg = data;
864ddef7 1548 evd.dummy = false;
b5b8b0ac
AO
1549
1550 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1551}
1552
864ddef7
JJ
1553/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1554 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1555 would return NULL or non-NULL, without allocating new rtx. */
1556
1557bool
1558cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1559 cselib_expand_callback cb, void *data)
1560{
1561 struct expand_value_data evd;
1562
1563 evd.regs_active = regs_active;
1564 evd.callback = cb;
1565 evd.callback_arg = data;
1566 evd.dummy = true;
1567
1568 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1569}
1570
0b7e34d7
AO
1571/* Internal implementation of cselib_expand_value_rtx and
1572 cselib_expand_value_rtx_cb. */
1573
b5b8b0ac
AO
1574static rtx
1575cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1576 int max_depth)
6fb5fa3c
DB
1577{
1578 rtx copy, scopy;
1579 int i, j;
1580 RTX_CODE code;
1581 const char *format_ptr;
ef4bddc2 1582 machine_mode mode;
6fb5fa3c
DB
1583
1584 code = GET_CODE (orig);
1585
1586 /* For the context of dse, if we end up expand into a huge tree, we
1587 will not have a useful address, so we might as well just give up
1588 quickly. */
1589 if (max_depth <= 0)
1590 return NULL;
1591
1592 switch (code)
1593 {
1594 case REG:
1595 {
1596 struct elt_list *l = REG_VALUES (REGNO (orig));
1597
1598 if (l && l->elt == NULL)
1599 l = l->next;
1600 for (; l; l = l->next)
1601 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1602 {
1603 rtx result;
5a9fbcf1 1604 unsigned regno = REGNO (orig);
b8698a0f 1605
6fb5fa3c 1606 /* The only thing that we are not willing to do (this
6ed3da00 1607 is requirement of dse and if others potential uses
6fb5fa3c
DB
1608 need this function we should add a parm to control
1609 it) is that we will not substitute the
1610 STACK_POINTER_REGNUM, FRAME_POINTER or the
1611 HARD_FRAME_POINTER.
1612
cea618ac 1613 These expansions confuses the code that notices that
6fb5fa3c
DB
1614 stores into the frame go dead at the end of the
1615 function and that the frame is not effected by calls
1616 to subroutines. If you allow the
1617 STACK_POINTER_REGNUM substitution, then dse will
1618 think that parameter pushing also goes dead which is
1619 wrong. If you allow the FRAME_POINTER or the
1620 HARD_FRAME_POINTER then you lose the opportunity to
1621 make the frame assumptions. */
1622 if (regno == STACK_POINTER_REGNUM
1623 || regno == FRAME_POINTER_REGNUM
5a9fbcf1
AO
1624 || regno == HARD_FRAME_POINTER_REGNUM
1625 || regno == cfa_base_preserved_regno)
6fb5fa3c
DB
1626 return orig;
1627
b5b8b0ac 1628 bitmap_set_bit (evd->regs_active, regno);
6fb5fa3c 1629
4a3c9687 1630 if (dump_file && (dump_flags & TDF_CSELIB))
6fb5fa3c
DB
1631 fprintf (dump_file, "expanding: r%d into: ", regno);
1632
b5b8b0ac
AO
1633 result = expand_loc (l->elt->locs, evd, max_depth);
1634 bitmap_clear_bit (evd->regs_active, regno);
6fb5fa3c
DB
1635
1636 if (result)
1637 return result;
b8698a0f 1638 else
6fb5fa3c
DB
1639 return orig;
1640 }
f0bc3323 1641 return orig;
6fb5fa3c 1642 }
b8698a0f 1643
d8116890 1644 CASE_CONST_ANY:
6fb5fa3c
DB
1645 case SYMBOL_REF:
1646 case CODE_LABEL:
1647 case PC:
1648 case CC0:
1649 case SCRATCH:
1650 /* SCRATCH must be shared because they represent distinct values. */
1651 return orig;
1652 case CLOBBER:
1653 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1654 return orig;
1655 break;
1656
1657 case CONST:
1658 if (shared_const_p (orig))
1659 return orig;
1660 break;
1661
8dd5516b 1662 case SUBREG:
6fb5fa3c 1663 {
0b7e34d7
AO
1664 rtx subreg;
1665
1666 if (evd->callback)
1667 {
1668 subreg = evd->callback (orig, evd->regs_active, max_depth,
1669 evd->callback_arg);
1670 if (subreg != orig)
1671 return subreg;
1672 }
1673
1674 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1675 max_depth - 1);
8dd5516b
JJ
1676 if (!subreg)
1677 return NULL;
1678 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1679 GET_MODE (SUBREG_REG (orig)),
1680 SUBREG_BYTE (orig));
0b7e34d7
AO
1681 if (scopy == NULL
1682 || (GET_CODE (scopy) == SUBREG
1683 && !REG_P (SUBREG_REG (scopy))
1684 && !MEM_P (SUBREG_REG (scopy))))
1685 return NULL;
1686
8dd5516b 1687 return scopy;
6fb5fa3c 1688 }
8dd5516b
JJ
1689
1690 case VALUE:
b5b8b0ac
AO
1691 {
1692 rtx result;
0b7e34d7 1693
4a3c9687 1694 if (dump_file && (dump_flags & TDF_CSELIB))
b5b8b0ac
AO
1695 {
1696 fputs ("\nexpanding ", dump_file);
1697 print_rtl_single (dump_file, orig);
1698 fputs (" into...", dump_file);
1699 }
8dd5516b 1700
0b7e34d7 1701 if (evd->callback)
b5b8b0ac
AO
1702 {
1703 result = evd->callback (orig, evd->regs_active, max_depth,
1704 evd->callback_arg);
0b7e34d7
AO
1705
1706 if (result != orig)
1707 return result;
b5b8b0ac 1708 }
8dd5516b 1709
0b7e34d7 1710 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
b5b8b0ac
AO
1711 return result;
1712 }
0ca5af51
AO
1713
1714 case DEBUG_EXPR:
1715 if (evd->callback)
1716 return evd->callback (orig, evd->regs_active, max_depth,
1717 evd->callback_arg);
1718 return orig;
1719
6fb5fa3c
DB
1720 default:
1721 break;
1722 }
1723
1724 /* Copy the various flags, fields, and other information. We assume
1725 that all fields need copying, and then clear the fields that should
1726 not be copied. That is the sensible default behavior, and forces
1727 us to explicitly document why we are *not* copying a flag. */
864ddef7
JJ
1728 if (evd->dummy)
1729 copy = NULL;
1730 else
1731 copy = shallow_copy_rtx (orig);
6fb5fa3c 1732
8dd5516b 1733 format_ptr = GET_RTX_FORMAT (code);
6fb5fa3c 1734
8dd5516b 1735 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6fb5fa3c
DB
1736 switch (*format_ptr++)
1737 {
1738 case 'e':
1739 if (XEXP (orig, i) != NULL)
1740 {
b5b8b0ac
AO
1741 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1742 max_depth - 1);
6fb5fa3c
DB
1743 if (!result)
1744 return NULL;
864ddef7
JJ
1745 if (copy)
1746 XEXP (copy, i) = result;
6fb5fa3c
DB
1747 }
1748 break;
1749
1750 case 'E':
1751 case 'V':
1752 if (XVEC (orig, i) != NULL)
1753 {
864ddef7
JJ
1754 if (copy)
1755 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1756 for (j = 0; j < XVECLEN (orig, i); j++)
6fb5fa3c 1757 {
b5b8b0ac
AO
1758 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1759 evd, max_depth - 1);
6fb5fa3c
DB
1760 if (!result)
1761 return NULL;
864ddef7
JJ
1762 if (copy)
1763 XVECEXP (copy, i, j) = result;
6fb5fa3c
DB
1764 }
1765 }
1766 break;
1767
1768 case 't':
1769 case 'w':
1770 case 'i':
1771 case 's':
1772 case 'S':
1773 case 'T':
1774 case 'u':
1775 case 'B':
1776 case '0':
1777 /* These are left unchanged. */
1778 break;
1779
1780 default:
1781 gcc_unreachable ();
1782 }
1783
864ddef7
JJ
1784 if (evd->dummy)
1785 return orig;
1786
8dd5516b
JJ
1787 mode = GET_MODE (copy);
1788 /* If an operand has been simplified into CONST_INT, which doesn't
1789 have a mode and the mode isn't derivable from whole rtx's mode,
1790 try simplify_*_operation first with mode from original's operand
1791 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1792 scopy = copy;
1793 switch (GET_RTX_CLASS (code))
1794 {
1795 case RTX_UNARY:
1796 if (CONST_INT_P (XEXP (copy, 0))
1797 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1798 {
1799 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1800 GET_MODE (XEXP (orig, 0)));
1801 if (scopy)
1802 return scopy;
1803 }
1804 break;
1805 case RTX_COMM_ARITH:
1806 case RTX_BIN_ARITH:
1807 /* These expressions can derive operand modes from the whole rtx's mode. */
1808 break;
1809 case RTX_TERNARY:
1810 case RTX_BITFIELD_OPS:
1811 if (CONST_INT_P (XEXP (copy, 0))
1812 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1813 {
1814 scopy = simplify_ternary_operation (code, mode,
1815 GET_MODE (XEXP (orig, 0)),
1816 XEXP (copy, 0), XEXP (copy, 1),
1817 XEXP (copy, 2));
1818 if (scopy)
1819 return scopy;
1820 }
1821 break;
1822 case RTX_COMPARE:
1823 case RTX_COMM_COMPARE:
1824 if (CONST_INT_P (XEXP (copy, 0))
1825 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1826 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1827 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1828 {
1829 scopy = simplify_relational_operation (code, mode,
1830 (GET_MODE (XEXP (orig, 0))
1831 != VOIDmode)
1832 ? GET_MODE (XEXP (orig, 0))
1833 : GET_MODE (XEXP (orig, 1)),
1834 XEXP (copy, 0),
1835 XEXP (copy, 1));
1836 if (scopy)
1837 return scopy;
1838 }
1839 break;
1840 default:
1841 break;
1842 }
6fb5fa3c
DB
1843 scopy = simplify_rtx (copy);
1844 if (scopy)
3af4ba41 1845 return scopy;
6fb5fa3c
DB
1846 return copy;
1847}
1848
fa49fd0f
RK
1849/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1850 with VALUE expressions. This way, it becomes independent of changes
1851 to registers and memory.
1852 X isn't actually modified; if modifications are needed, new rtl is
4deef538
AO
1853 allocated. However, the return value can share rtl with X.
1854 If X is within a MEM, MEMMODE must be the mode of the MEM. */
fa49fd0f 1855
91700444 1856rtx
ef4bddc2 1857cselib_subst_to_values (rtx x, machine_mode memmode)
fa49fd0f
RK
1858{
1859 enum rtx_code code = GET_CODE (x);
1860 const char *fmt = GET_RTX_FORMAT (code);
1861 cselib_val *e;
1862 struct elt_list *l;
1863 rtx copy = x;
1864 int i;
1865
1866 switch (code)
1867 {
1868 case REG:
60fa6660
AO
1869 l = REG_VALUES (REGNO (x));
1870 if (l && l->elt == NULL)
1871 l = l->next;
1872 for (; l; l = l->next)
757bbef8
SB
1873 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1874 return l->elt->val_rtx;
fa49fd0f 1875
341c100f 1876 gcc_unreachable ();
fa49fd0f
RK
1877
1878 case MEM:
1879 e = cselib_lookup_mem (x, 0);
4deef538
AO
1880 /* This used to happen for autoincrements, but we deal with them
1881 properly now. Remove the if stmt for the next release. */
fa49fd0f 1882 if (! e)
91700444 1883 {
4deef538 1884 /* Assign a value that doesn't match any other. */
5440c0e7 1885 e = new_cselib_val (next_uid, GET_MODE (x), x);
91700444 1886 }
757bbef8 1887 return e->val_rtx;
fa49fd0f 1888
509f4495
JJ
1889 case ENTRY_VALUE:
1890 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1891 if (! e)
1892 break;
1893 return e->val_rtx;
1894
d8116890 1895 CASE_CONST_ANY:
fa49fd0f
RK
1896 return x;
1897
4deef538 1898 case PRE_DEC:
91700444 1899 case PRE_INC:
4deef538
AO
1900 gcc_assert (memmode != VOIDmode);
1901 i = GET_MODE_SIZE (memmode);
1902 if (code == PRE_DEC)
1903 i = -i;
0a81f074
RS
1904 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1905 XEXP (x, 0), i),
4deef538
AO
1906 memmode);
1907
1908 case PRE_MODIFY:
1909 gcc_assert (memmode != VOIDmode);
1910 return cselib_subst_to_values (XEXP (x, 1), memmode);
1911
91700444 1912 case POST_DEC:
4deef538 1913 case POST_INC:
91700444 1914 case POST_MODIFY:
4deef538
AO
1915 gcc_assert (memmode != VOIDmode);
1916 return cselib_subst_to_values (XEXP (x, 0), memmode);
7080f735 1917
fa49fd0f
RK
1918 default:
1919 break;
1920 }
1921
1922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1923 {
1924 if (fmt[i] == 'e')
1925 {
4deef538 1926 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
fa49fd0f 1927
bd7960b1
RS
1928 if (t != XEXP (x, i))
1929 {
1930 if (x == copy)
1931 copy = shallow_copy_rtx (x);
1932 XEXP (copy, i) = t;
1933 }
fa49fd0f
RK
1934 }
1935 else if (fmt[i] == 'E')
1936 {
bd7960b1 1937 int j;
fa49fd0f
RK
1938
1939 for (j = 0; j < XVECLEN (x, i); j++)
1940 {
4deef538 1941 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
fa49fd0f 1942
bd7960b1 1943 if (t != XVECEXP (x, i, j))
fa49fd0f 1944 {
bd7960b1
RS
1945 if (XVEC (x, i) == XVEC (copy, i))
1946 {
1947 if (x == copy)
1948 copy = shallow_copy_rtx (x);
1949 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1950 }
1951 XVECEXP (copy, i, j) = t;
fa49fd0f 1952 }
fa49fd0f
RK
1953 }
1954 }
1955 }
1956
1957 return copy;
1958}
1959
9a76e83d
JJ
1960/* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1961
1962rtx
ef4bddc2 1963cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
9a76e83d
JJ
1964{
1965 rtx ret;
1966 gcc_assert (!cselib_current_insn);
1967 cselib_current_insn = insn;
1968 ret = cselib_subst_to_values (x, memmode);
1969 cselib_current_insn = NULL;
1970 return ret;
1971}
1972
4deef538
AO
1973/* Look up the rtl expression X in our tables and return the value it
1974 has. If CREATE is zero, we return NULL if we don't know the value.
1975 Otherwise, we create a new one if possible, using mode MODE if X
1976 doesn't have a mode (i.e. because it's a constant). When X is part
1977 of an address, MEMMODE should be the mode of the enclosing MEM if
1978 we're tracking autoinc expressions. */
fa49fd0f 1979
5847e8da 1980static cselib_val *
ef4bddc2
RS
1981cselib_lookup_1 (rtx x, machine_mode mode,
1982 int create, machine_mode memmode)
fa49fd0f 1983{
4a8fb1a1 1984 cselib_val **slot;
fa49fd0f
RK
1985 cselib_val *e;
1986 unsigned int hashval;
1987
1988 if (GET_MODE (x) != VOIDmode)
1989 mode = GET_MODE (x);
1990
1991 if (GET_CODE (x) == VALUE)
1992 return CSELIB_VAL_PTR (x);
1993
f8cfc6aa 1994 if (REG_P (x))
fa49fd0f
RK
1995 {
1996 struct elt_list *l;
1997 unsigned int i = REGNO (x);
1998
60fa6660
AO
1999 l = REG_VALUES (i);
2000 if (l && l->elt == NULL)
2001 l = l->next;
2002 for (; l; l = l->next)
757bbef8 2003 if (mode == GET_MODE (l->elt->val_rtx))
5847e8da
AO
2004 {
2005 promote_debug_loc (l->elt->locs);
2006 return l->elt;
2007 }
fa49fd0f
RK
2008
2009 if (! create)
5847e8da 2010 return 0;
fa49fd0f 2011
31825e57
DM
2012 if (i < FIRST_PSEUDO_REGISTER)
2013 {
ad474626 2014 unsigned int n = hard_regno_nregs (i, mode);
31825e57
DM
2015
2016 if (n > max_value_regs)
2017 max_value_regs = n;
2018 }
2019
5440c0e7 2020 e = new_cselib_val (next_uid, GET_MODE (x), x);
6f2ffb4b 2021 new_elt_loc_list (e, x);
b4206259
RS
2022
2023 scalar_int_mode int_mode;
fa49fd0f 2024 if (REG_VALUES (i) == 0)
60fa6660
AO
2025 {
2026 /* Maintain the invariant that the first entry of
2027 REG_VALUES, if present, must be the value used to set the
2028 register, or NULL. */
6790d1ab 2029 used_regs[n_used_regs++] = i;
60fa6660
AO
2030 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2031 }
509f4495 2032 else if (cselib_preserve_constants
b4206259 2033 && is_int_mode (mode, &int_mode))
509f4495
JJ
2034 {
2035 /* During var-tracking, try harder to find equivalences
2036 for SUBREGs. If a setter sets say a DImode register
2037 and user uses that register only in SImode, add a lowpart
2038 subreg location. */
2039 struct elt_list *lwider = NULL;
b4206259 2040 scalar_int_mode lmode;
509f4495
JJ
2041 l = REG_VALUES (i);
2042 if (l && l->elt == NULL)
2043 l = l->next;
2044 for (; l; l = l->next)
b4206259
RS
2045 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2046 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
509f4495 2047 && (lwider == NULL
bd4288c0
RS
2048 || partial_subreg_p (lmode,
2049 GET_MODE (lwider->elt->val_rtx))))
509f4495
JJ
2050 {
2051 struct elt_loc_list *el;
2052 if (i < FIRST_PSEUDO_REGISTER
ad474626 2053 && hard_regno_nregs (i, lmode) != 1)
509f4495
JJ
2054 continue;
2055 for (el = l->elt->locs; el; el = el->next)
2056 if (!REG_P (el->loc))
2057 break;
2058 if (el)
2059 lwider = l;
2060 }
2061 if (lwider)
2062 {
b4206259 2063 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
509f4495
JJ
2064 GET_MODE (lwider->elt->val_rtx));
2065 if (sub)
6f2ffb4b 2066 new_elt_loc_list (e, sub);
509f4495
JJ
2067 }
2068 }
60fa6660 2069 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
f956adb9 2070 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
fa49fd0f 2071 *slot = e;
5847e8da 2072 return e;
fa49fd0f
RK
2073 }
2074
3c0cb5de 2075 if (MEM_P (x))
5847e8da 2076 return cselib_lookup_mem (x, create);
fa49fd0f 2077
4deef538 2078 hashval = cselib_hash_rtx (x, create, memmode);
fa49fd0f
RK
2079 /* Can't even create if hashing is not possible. */
2080 if (! hashval)
5847e8da 2081 return 0;
fa49fd0f 2082
f956adb9 2083 slot = cselib_find_slot (mode, x, hashval,
4deef538 2084 create ? INSERT : NO_INSERT, memmode);
fa49fd0f 2085 if (slot == 0)
5847e8da 2086 return 0;
fa49fd0f
RK
2087
2088 e = (cselib_val *) *slot;
2089 if (e)
5847e8da 2090 return e;
fa49fd0f 2091
b5b8b0ac 2092 e = new_cselib_val (hashval, mode, x);
fa49fd0f
RK
2093
2094 /* We have to fill the slot before calling cselib_subst_to_values:
2095 the hash table is inconsistent until we do so, and
2096 cselib_subst_to_values will need to do lookups. */
4a8fb1a1 2097 *slot = e;
6f2ffb4b 2098 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
5847e8da
AO
2099 return e;
2100}
2101
2102/* Wrapper for cselib_lookup, that indicates X is in INSN. */
2103
2104cselib_val *
ef4bddc2
RS
2105cselib_lookup_from_insn (rtx x, machine_mode mode,
2106 int create, machine_mode memmode, rtx_insn *insn)
5847e8da
AO
2107{
2108 cselib_val *ret;
2109
2110 gcc_assert (!cselib_current_insn);
2111 cselib_current_insn = insn;
2112
4deef538 2113 ret = cselib_lookup (x, mode, create, memmode);
5847e8da
AO
2114
2115 cselib_current_insn = NULL;
2116
2117 return ret;
2118}
2119
2120/* Wrapper for cselib_lookup_1, that logs the lookup result and
2121 maintains invariants related with debug insns. */
2122
2123cselib_val *
ef4bddc2
RS
2124cselib_lookup (rtx x, machine_mode mode,
2125 int create, machine_mode memmode)
5847e8da 2126{
4deef538 2127 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
5847e8da
AO
2128
2129 /* ??? Should we return NULL if we're not to create an entry, the
2130 found loc is a debug loc and cselib_current_insn is not DEBUG?
2131 If so, we should also avoid converting val to non-DEBUG; probably
2132 easiest setting cselib_current_insn to NULL before the call
2133 above. */
2134
4a3c9687 2135 if (dump_file && (dump_flags & TDF_CSELIB))
5847e8da
AO
2136 {
2137 fputs ("cselib lookup ", dump_file);
2138 print_inline_rtx (dump_file, x, 2);
2139 fprintf (dump_file, " => %u:%u\n",
2140 ret ? ret->uid : 0,
2141 ret ? ret->hash : 0);
2142 }
2143
2144 return ret;
fa49fd0f
RK
2145}
2146
2147/* Invalidate any entries in reg_values that overlap REGNO. This is called
2148 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2149 is used to determine how many hard registers are being changed. If MODE
2150 is VOIDmode, then only REGNO is being changed; this is used when
2151 invalidating call clobbered registers across a call. */
2152
2153static void
ef4bddc2 2154cselib_invalidate_regno (unsigned int regno, machine_mode mode)
fa49fd0f
RK
2155{
2156 unsigned int endregno;
2157 unsigned int i;
2158
2159 /* If we see pseudos after reload, something is _wrong_. */
341c100f
NS
2160 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2161 || reg_renumber[regno] < 0);
fa49fd0f
RK
2162
2163 /* Determine the range of registers that must be invalidated. For
2164 pseudos, only REGNO is affected. For hard regs, we must take MODE
2165 into account, and we must also invalidate lower register numbers
2166 if they contain values that overlap REGNO. */
291aac59 2167 if (regno < FIRST_PSEUDO_REGISTER)
31825e57 2168 {
341c100f 2169 gcc_assert (mode != VOIDmode);
7080f735 2170
31825e57
DM
2171 if (regno < max_value_regs)
2172 i = 0;
2173 else
2174 i = regno - max_value_regs;
fa49fd0f 2175
09e18274 2176 endregno = end_hard_regno (mode, regno);
31825e57
DM
2177 }
2178 else
2179 {
2180 i = regno;
2181 endregno = regno + 1;
2182 }
2183
2184 for (; i < endregno; i++)
fa49fd0f
RK
2185 {
2186 struct elt_list **l = &REG_VALUES (i);
2187
2188 /* Go through all known values for this reg; if it overlaps the range
2189 we're invalidating, remove the value. */
2190 while (*l)
2191 {
2192 cselib_val *v = (*l)->elt;
5847e8da 2193 bool had_locs;
21afc57d 2194 rtx_insn *setting_insn;
fa49fd0f
RK
2195 struct elt_loc_list **p;
2196 unsigned int this_last = i;
2197
60fa6660 2198 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
09e18274 2199 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
fa49fd0f 2200
9de9cbaf
JJ
2201 if (this_last < regno || v == NULL
2202 || (v == cfa_base_preserved_val
2203 && i == cfa_base_preserved_regno))
fa49fd0f
RK
2204 {
2205 l = &(*l)->next;
2206 continue;
2207 }
2208
2209 /* We have an overlap. */
60fa6660
AO
2210 if (*l == REG_VALUES (i))
2211 {
2212 /* Maintain the invariant that the first entry of
2213 REG_VALUES, if present, must be the value used to set
2214 the register, or NULL. This is also nice because
2215 then we won't push the same regno onto user_regs
2216 multiple times. */
2217 (*l)->elt = NULL;
2218 l = &(*l)->next;
2219 }
2220 else
2221 unchain_one_elt_list (l);
fa49fd0f 2222
6f2ffb4b
AO
2223 v = canonical_cselib_val (v);
2224
5847e8da
AO
2225 had_locs = v->locs != NULL;
2226 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2227
fa49fd0f
RK
2228 /* Now, we clear the mapping from value to reg. It must exist, so
2229 this code will crash intentionally if it doesn't. */
2230 for (p = &v->locs; ; p = &(*p)->next)
2231 {
2232 rtx x = (*p)->loc;
2233
f8cfc6aa 2234 if (REG_P (x) && REGNO (x) == i)
fa49fd0f
RK
2235 {
2236 unchain_one_elt_loc_list (p);
2237 break;
2238 }
2239 }
5847e8da
AO
2240
2241 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2242 {
2243 if (setting_insn && DEBUG_INSN_P (setting_insn))
2244 n_useless_debug_values++;
2245 else
2246 n_useless_values++;
2247 }
fa49fd0f
RK
2248 }
2249 }
2250}
9ddb66ca 2251\f
7101fb18
JH
2252/* Invalidate any locations in the table which are changed because of a
2253 store to MEM_RTX. If this is called because of a non-const call
2254 instruction, MEM_RTX is (mem:BLK const0_rtx). */
fa49fd0f 2255
7101fb18 2256static void
7080f735 2257cselib_invalidate_mem (rtx mem_rtx)
fa49fd0f 2258{
7101fb18 2259 cselib_val **vp, *v, *next;
c65ecebc 2260 int num_mems = 0;
9ddb66ca
JH
2261 rtx mem_addr;
2262
2263 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2264 mem_rtx = canon_rtx (mem_rtx);
fa49fd0f 2265
7101fb18
JH
2266 vp = &first_containing_mem;
2267 for (v = *vp; v != &dummy_val; v = next)
fa49fd0f 2268 {
7101fb18
JH
2269 bool has_mem = false;
2270 struct elt_loc_list **p = &v->locs;
5847e8da 2271 bool had_locs = v->locs != NULL;
21afc57d 2272 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f 2273
7101fb18 2274 while (*p)
fa49fd0f 2275 {
7101fb18
JH
2276 rtx x = (*p)->loc;
2277 cselib_val *addr;
2278 struct elt_list **mem_chain;
2279
2280 /* MEMs may occur in locations only at the top level; below
2281 that every MEM or REG is substituted by its VALUE. */
3c0cb5de 2282 if (!MEM_P (x))
fa49fd0f 2283 {
7101fb18
JH
2284 p = &(*p)->next;
2285 continue;
2286 }
c65ecebc 2287 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
bd280792
JR
2288 && ! canon_anti_dependence (x, false, mem_rtx,
2289 GET_MODE (mem_rtx), mem_addr))
7101fb18
JH
2290 {
2291 has_mem = true;
c65ecebc 2292 num_mems++;
7101fb18
JH
2293 p = &(*p)->next;
2294 continue;
fa49fd0f
RK
2295 }
2296
7101fb18
JH
2297 /* This one overlaps. */
2298 /* We must have a mapping from this MEM's address to the
2299 value (E). Remove that, too. */
4deef538 2300 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
faead9f7
AO
2301 addr = canonical_cselib_val (addr);
2302 gcc_checking_assert (v == canonical_cselib_val (v));
7101fb18
JH
2303 mem_chain = &addr->addr_list;
2304 for (;;)
2305 {
faead9f7
AO
2306 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2307
2308 if (canon == v)
7101fb18
JH
2309 {
2310 unchain_one_elt_list (mem_chain);
2311 break;
2312 }
fa49fd0f 2313
faead9f7
AO
2314 /* Record canonicalized elt. */
2315 (*mem_chain)->elt = canon;
2316
7101fb18
JH
2317 mem_chain = &(*mem_chain)->next;
2318 }
fa49fd0f 2319
7101fb18
JH
2320 unchain_one_elt_loc_list (p);
2321 }
fa49fd0f 2322
b5b8b0ac 2323 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
5847e8da
AO
2324 {
2325 if (setting_insn && DEBUG_INSN_P (setting_insn))
2326 n_useless_debug_values++;
2327 else
2328 n_useless_values++;
2329 }
fa49fd0f 2330
7101fb18
JH
2331 next = v->next_containing_mem;
2332 if (has_mem)
2333 {
2334 *vp = v;
2335 vp = &(*vp)->next_containing_mem;
2336 }
2337 else
2338 v->next_containing_mem = NULL;
2339 }
2340 *vp = &dummy_val;
fa49fd0f
RK
2341}
2342
0d87c765 2343/* Invalidate DEST, which is being assigned to or clobbered. */
fa49fd0f 2344
0d87c765
RH
2345void
2346cselib_invalidate_rtx (rtx dest)
fa49fd0f 2347{
46d096a3
SB
2348 while (GET_CODE (dest) == SUBREG
2349 || GET_CODE (dest) == ZERO_EXTRACT
2350 || GET_CODE (dest) == STRICT_LOW_PART)
fa49fd0f
RK
2351 dest = XEXP (dest, 0);
2352
f8cfc6aa 2353 if (REG_P (dest))
fa49fd0f 2354 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
3c0cb5de 2355 else if (MEM_P (dest))
fa49fd0f 2356 cselib_invalidate_mem (dest);
0d87c765
RH
2357}
2358
2359/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2360
2361static void
7bc980e1 2362cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
0d87c765
RH
2363 void *data ATTRIBUTE_UNUSED)
2364{
2365 cselib_invalidate_rtx (dest);
fa49fd0f
RK
2366}
2367
2368/* Record the result of a SET instruction. DEST is being set; the source
2369 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2370 describes its address. */
2371
2372static void
7080f735 2373cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
fa49fd0f 2374{
fa49fd0f
RK
2375 if (src_elt == 0 || side_effects_p (dest))
2376 return;
2377
dc8afb70 2378 if (REG_P (dest))
fa49fd0f 2379 {
dc8afb70 2380 unsigned int dreg = REGNO (dest);
31825e57
DM
2381 if (dreg < FIRST_PSEUDO_REGISTER)
2382 {
dc8afb70 2383 unsigned int n = REG_NREGS (dest);
31825e57
DM
2384
2385 if (n > max_value_regs)
2386 max_value_regs = n;
2387 }
2388
60fa6660
AO
2389 if (REG_VALUES (dreg) == 0)
2390 {
6790d1ab 2391 used_regs[n_used_regs++] = dreg;
60fa6660
AO
2392 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2393 }
2394 else
2395 {
341c100f
NS
2396 /* The register should have been invalidated. */
2397 gcc_assert (REG_VALUES (dreg)->elt == 0);
2398 REG_VALUES (dreg)->elt = src_elt;
60fa6660
AO
2399 }
2400
b5b8b0ac 2401 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f 2402 n_useless_values--;
6f2ffb4b 2403 new_elt_loc_list (src_elt, dest);
fa49fd0f 2404 }
3c0cb5de 2405 else if (MEM_P (dest) && dest_addr_elt != 0
463301c3 2406 && cselib_record_memory)
fa49fd0f 2407 {
b5b8b0ac 2408 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f
RK
2409 n_useless_values--;
2410 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2411 }
2412}
2413
6f2ffb4b
AO
2414/* Make ELT and X's VALUE equivalent to each other at INSN. */
2415
2416void
12ea1b95 2417cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
6f2ffb4b
AO
2418{
2419 cselib_val *nelt;
12ea1b95 2420 rtx_insn *save_cselib_current_insn = cselib_current_insn;
6f2ffb4b
AO
2421
2422 gcc_checking_assert (elt);
2423 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2424 gcc_checking_assert (!side_effects_p (x));
2425
2426 cselib_current_insn = insn;
2427
2428 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2429
2430 if (nelt != elt)
2431 {
0f68ba3e
AO
2432 cselib_any_perm_equivs = true;
2433
6f2ffb4b
AO
2434 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2435 cselib_preserve_value (nelt);
2436
2437 new_elt_loc_list (nelt, elt->val_rtx);
2438 }
2439
2440 cselib_current_insn = save_cselib_current_insn;
2441}
2442
0f68ba3e
AO
2443/* Return TRUE if any permanent equivalences have been recorded since
2444 the table was last initialized. */
2445bool
2446cselib_have_permanent_equivalences (void)
2447{
2448 return cselib_any_perm_equivs;
2449}
2450
fa49fd0f
RK
2451/* There is no good way to determine how many elements there can be
2452 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2453#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2454
4deef538
AO
2455struct cselib_record_autoinc_data
2456{
2457 struct cselib_set *sets;
2458 int n_sets;
2459};
2460
2461/* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2462 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2463
2464static int
2465cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2466 rtx dest, rtx src, rtx srcoff, void *arg)
2467{
2468 struct cselib_record_autoinc_data *data;
2469 data = (struct cselib_record_autoinc_data *)arg;
2470
2471 data->sets[data->n_sets].dest = dest;
2472
2473 if (srcoff)
2474 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2475 else
2476 data->sets[data->n_sets].src = src;
2477
2478 data->n_sets++;
2479
8d8e205b 2480 return 0;
4deef538
AO
2481}
2482
2483/* Record the effects of any sets and autoincs in INSN. */
fa49fd0f 2484static void
dd60a84c 2485cselib_record_sets (rtx_insn *insn)
fa49fd0f
RK
2486{
2487 int n_sets = 0;
2488 int i;
b5b8b0ac 2489 struct cselib_set sets[MAX_SETS];
fa49fd0f 2490 rtx body = PATTERN (insn);
b7933c21 2491 rtx cond = 0;
4deef538
AO
2492 int n_sets_before_autoinc;
2493 struct cselib_record_autoinc_data data;
fa49fd0f
RK
2494
2495 body = PATTERN (insn);
b7933c21
BS
2496 if (GET_CODE (body) == COND_EXEC)
2497 {
2498 cond = COND_EXEC_TEST (body);
2499 body = COND_EXEC_CODE (body);
2500 }
2501
fa49fd0f
RK
2502 /* Find all sets. */
2503 if (GET_CODE (body) == SET)
2504 {
2505 sets[0].src = SET_SRC (body);
2506 sets[0].dest = SET_DEST (body);
2507 n_sets = 1;
2508 }
2509 else if (GET_CODE (body) == PARALLEL)
2510 {
2511 /* Look through the PARALLEL and record the values being
2512 set, if possible. Also handle any CLOBBERs. */
2513 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2514 {
2515 rtx x = XVECEXP (body, 0, i);
2516
2517 if (GET_CODE (x) == SET)
2518 {
2519 sets[n_sets].src = SET_SRC (x);
2520 sets[n_sets].dest = SET_DEST (x);
2521 n_sets++;
2522 }
2523 }
2524 }
2525
8dd5516b
JJ
2526 if (n_sets == 1
2527 && MEM_P (sets[0].src)
2528 && !cselib_record_memory
2529 && MEM_READONLY_P (sets[0].src))
2530 {
2531 rtx note = find_reg_equal_equiv_note (insn);
2532
2533 if (note && CONSTANT_P (XEXP (note, 0)))
2534 sets[0].src = XEXP (note, 0);
2535 }
2536
4deef538
AO
2537 data.sets = sets;
2538 data.n_sets = n_sets_before_autoinc = n_sets;
8d8e205b 2539 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
4deef538
AO
2540 n_sets = data.n_sets;
2541
fa49fd0f
RK
2542 /* Look up the values that are read. Do this before invalidating the
2543 locations that are written. */
2544 for (i = 0; i < n_sets; i++)
2545 {
2546 rtx dest = sets[i].dest;
2547
2548 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2549 the low part after invalidating any knowledge about larger modes. */
2550 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2551 sets[i].dest = dest = XEXP (dest, 0);
2552
2553 /* We don't know how to record anything but REG or MEM. */
f8cfc6aa 2554 if (REG_P (dest)
3c0cb5de 2555 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f 2556 {
b7933c21
BS
2557 rtx src = sets[i].src;
2558 if (cond)
be9ed5d5 2559 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
4deef538 2560 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
3c0cb5de 2561 if (MEM_P (dest))
d4ebfa65 2562 {
ef4bddc2 2563 machine_mode address_mode = get_address_mode (dest);
d4ebfa65
BE
2564
2565 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
4deef538
AO
2566 address_mode, 1,
2567 GET_MODE (dest));
d4ebfa65 2568 }
fa49fd0f
RK
2569 else
2570 sets[i].dest_addr_elt = 0;
2571 }
2572 }
2573
b5b8b0ac
AO
2574 if (cselib_record_sets_hook)
2575 cselib_record_sets_hook (insn, sets, n_sets);
2576
fa49fd0f
RK
2577 /* Invalidate all locations written by this insn. Note that the elts we
2578 looked up in the previous loop aren't affected, just some of their
2579 locations may go away. */
0d87c765 2580 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
fa49fd0f 2581
4deef538
AO
2582 for (i = n_sets_before_autoinc; i < n_sets; i++)
2583 cselib_invalidate_rtx (sets[i].dest);
2584
b7048ab7
RH
2585 /* If this is an asm, look for duplicate sets. This can happen when the
2586 user uses the same value as an output multiple times. This is valid
2587 if the outputs are not actually used thereafter. Treat this case as
2588 if the value isn't actually set. We do this by smashing the destination
2589 to pc_rtx, so that we won't record the value later. */
2590 if (n_sets >= 2 && asm_noperands (body) >= 0)
2591 {
2592 for (i = 0; i < n_sets; i++)
2593 {
2594 rtx dest = sets[i].dest;
3c0cb5de 2595 if (REG_P (dest) || MEM_P (dest))
b7048ab7
RH
2596 {
2597 int j;
2598 for (j = i + 1; j < n_sets; j++)
2599 if (rtx_equal_p (dest, sets[j].dest))
2600 {
2601 sets[i].dest = pc_rtx;
2602 sets[j].dest = pc_rtx;
2603 }
2604 }
2605 }
2606 }
2607
fa49fd0f
RK
2608 /* Now enter the equivalences in our tables. */
2609 for (i = 0; i < n_sets; i++)
2610 {
2611 rtx dest = sets[i].dest;
f8cfc6aa 2612 if (REG_P (dest)
3c0cb5de 2613 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f
RK
2614 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2615 }
2616}
2617
40155239
JJ
2618/* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2619
2620bool
8df68a82 2621fp_setter_insn (rtx_insn *insn)
40155239
JJ
2622{
2623 rtx expr, pat = NULL_RTX;
2624
2625 if (!RTX_FRAME_RELATED_P (insn))
2626 return false;
2627
2628 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2629 if (expr)
2630 pat = XEXP (expr, 0);
2631 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2632 return false;
2633
2634 /* Don't return true for frame pointer restores in the epilogue. */
2635 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2636 return false;
2637 return true;
2638}
2639
fa49fd0f
RK
2640/* Record the effects of INSN. */
2641
2642void
dd60a84c 2643cselib_process_insn (rtx_insn *insn)
fa49fd0f
RK
2644{
2645 int i;
2646 rtx x;
2647
2648 cselib_current_insn = insn;
2649
f1257268 2650 /* Forget everything at a CODE_LABEL or a setjmp. */
f5d30aa6
JJ
2651 if ((LABEL_P (insn)
2652 || (CALL_P (insn)
f1257268 2653 && find_reg_note (insn, REG_SETJMP, NULL)))
f5d30aa6 2654 && !cselib_preserve_constants)
fa49fd0f 2655 {
5440c0e7 2656 cselib_reset_table (next_uid);
12ea1b95 2657 cselib_current_insn = NULL;
fa49fd0f
RK
2658 return;
2659 }
2660
2661 if (! INSN_P (insn))
2662 {
12ea1b95 2663 cselib_current_insn = NULL;
fa49fd0f
RK
2664 return;
2665 }
2666
2667 /* If this is a call instruction, forget anything stored in a
2668 call clobbered register, or, if this is not a const call, in
2669 memory. */
4b4bf941 2670 if (CALL_P (insn))
fa49fd0f
RK
2671 {
2672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7e42db17
DJ
2673 if (call_used_regs[i]
2674 || (REG_VALUES (i) && REG_VALUES (i)->elt
80ec73f4
RS
2675 && (targetm.hard_regno_call_part_clobbered
2676 (i, GET_MODE (REG_VALUES (i)->elt->val_rtx)))))
291aac59 2677 cselib_invalidate_regno (i, reg_raw_mode[i]);
fa49fd0f 2678
becfd6e5
KZ
2679 /* Since it is not clear how cselib is going to be used, be
2680 conservative here and treat looping pure or const functions
2681 as if they were regular functions. */
2682 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2683 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
fa49fd0f 2684 cselib_invalidate_mem (callmem);
007b405b
JDA
2685 else
2686 /* For const/pure calls, invalidate any argument slots because
2687 they are owned by the callee. */
2688 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2689 if (GET_CODE (XEXP (x, 0)) == USE
2690 && MEM_P (XEXP (XEXP (x, 0), 0)))
2691 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
fa49fd0f
RK
2692 }
2693
2694 cselib_record_sets (insn);
2695
fa49fd0f
RK
2696 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2697 after we have processed the insn. */
4b4bf941 2698 if (CALL_P (insn))
f5d30aa6
JJ
2699 {
2700 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2701 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2702 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2703 /* Flush evertything on setjmp. */
2704 if (cselib_preserve_constants
2705 && find_reg_note (insn, REG_SETJMP, NULL))
2706 {
2707 cselib_preserve_only_values ();
2708 cselib_reset_table (next_uid);
2709 }
2710 }
fa49fd0f 2711
40155239
JJ
2712 /* On setter of the hard frame pointer if frame_pointer_needed,
2713 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2714 VALUEs are distinct. */
2715 if (reload_completed
2716 && frame_pointer_needed
2717 && fp_setter_insn (insn))
2718 cselib_invalidate_rtx (stack_pointer_rtx);
2719
12ea1b95 2720 cselib_current_insn = NULL;
fa49fd0f 2721
80662856
AO
2722 if (n_useless_values > MAX_USELESS_VALUES
2723 /* remove_useless_values is linear in the hash table size. Avoid
2724 quadratic behavior for very large hashtables with very few
2725 useless elements. */
2726 && ((unsigned int)n_useless_values
c203e8a7 2727 > (cselib_hash_table->elements () - n_debug_values) / 4))
80662856 2728 remove_useless_values ();
fa49fd0f
RK
2729}
2730
fa49fd0f
RK
2731/* Initialize cselib for one pass. The caller must also call
2732 init_alias_analysis. */
2733
2734void
457eeaae 2735cselib_init (int record_what)
fa49fd0f 2736{
457eeaae
JJ
2737 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2738 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
0f68ba3e 2739 cselib_any_perm_equivs = false;
ac3768f6
SB
2740
2741 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2742 see canon_true_dependence. This is only created once. */
fa49fd0f 2743 if (! callmem)
ac3768f6 2744 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
fa49fd0f
RK
2745
2746 cselib_nregs = max_reg_num ();
6790d1ab
JH
2747
2748 /* We preserve reg_values to allow expensive clearing of the whole thing.
2749 Reallocate it however if it happens to be too large. */
2750 if (!reg_values || reg_values_size < cselib_nregs
2751 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
e2500fed 2752 {
04695783 2753 free (reg_values);
6790d1ab
JH
2754 /* Some space for newly emit instructions so we don't end up
2755 reallocating in between passes. */
2756 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
5ed6ace5 2757 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
e2500fed 2758 }
5ed6ace5 2759 used_regs = XNEWVEC (unsigned int, cselib_nregs);
6790d1ab 2760 n_used_regs = 0;
c203e8a7 2761 cselib_hash_table = new hash_table<cselib_hasher> (31);
0618dee5 2762 if (cselib_preserve_constants)
c203e8a7 2763 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31);
5440c0e7 2764 next_uid = 1;
fa49fd0f
RK
2765}
2766
2767/* Called when the current user is done with cselib. */
2768
2769void
7080f735 2770cselib_finish (void)
fa49fd0f 2771{
0618dee5 2772 bool preserved = cselib_preserve_constants;
6fb5fa3c 2773 cselib_discard_hook = NULL;
457eeaae 2774 cselib_preserve_constants = false;
0f68ba3e 2775 cselib_any_perm_equivs = false;
457eeaae 2776 cfa_base_preserved_val = NULL;
9de9cbaf 2777 cfa_base_preserved_regno = INVALID_REGNUM;
fb0b2914
ML
2778 elt_list_pool.release ();
2779 elt_loc_list_pool.release ();
2780 cselib_val_pool.release ();
a78a26f1 2781 value_pool.release ();
eb232f4e 2782 cselib_clear_table ();
c203e8a7
TS
2783 delete cselib_hash_table;
2784 cselib_hash_table = NULL;
0618dee5 2785 if (preserved)
c203e8a7
TS
2786 delete cselib_preserved_hash_table;
2787 cselib_preserved_hash_table = NULL;
0fc0c4c9 2788 free (used_regs);
e2500fed 2789 used_regs = 0;
e2500fed 2790 n_useless_values = 0;
5847e8da
AO
2791 n_useless_debug_values = 0;
2792 n_debug_values = 0;
5440c0e7 2793 next_uid = 0;
fa49fd0f 2794}
e2500fed 2795
4a8fb1a1 2796/* Dump the cselib_val *X to FILE *OUT. */
b5b8b0ac 2797
4a8fb1a1
LC
2798int
2799dump_cselib_val (cselib_val **x, FILE *out)
b5b8b0ac 2800{
4a8fb1a1 2801 cselib_val *v = *x;
b5b8b0ac
AO
2802 bool need_lf = true;
2803
2804 print_inline_rtx (out, v->val_rtx, 0);
2805
2806 if (v->locs)
2807 {
2808 struct elt_loc_list *l = v->locs;
2809 if (need_lf)
2810 {
2811 fputc ('\n', out);
2812 need_lf = false;
2813 }
2814 fputs (" locs:", out);
2815 do
2816 {
42286976
JJ
2817 if (l->setting_insn)
2818 fprintf (out, "\n from insn %i ",
2819 INSN_UID (l->setting_insn));
2820 else
2821 fprintf (out, "\n ");
b5b8b0ac
AO
2822 print_inline_rtx (out, l->loc, 4);
2823 }
2824 while ((l = l->next));
2825 fputc ('\n', out);
2826 }
2827 else
2828 {
2829 fputs (" no locs", out);
2830 need_lf = true;
2831 }
2832
2833 if (v->addr_list)
2834 {
2835 struct elt_list *e = v->addr_list;
2836 if (need_lf)
2837 {
2838 fputc ('\n', out);
2839 need_lf = false;
2840 }
2841 fputs (" addr list:", out);
2842 do
2843 {
2844 fputs ("\n ", out);
2845 print_inline_rtx (out, e->elt->val_rtx, 2);
2846 }
2847 while ((e = e->next));
2848 fputc ('\n', out);
2849 }
2850 else
2851 {
2852 fputs (" no addrs", out);
2853 need_lf = true;
2854 }
2855
2856 if (v->next_containing_mem == &dummy_val)
2857 fputs (" last mem\n", out);
2858 else if (v->next_containing_mem)
2859 {
2860 fputs (" next mem ", out);
2861 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2862 fputc ('\n', out);
2863 }
2864 else if (need_lf)
2865 fputc ('\n', out);
2866
2867 return 1;
2868}
2869
2870/* Dump to OUT everything in the CSELIB table. */
2871
2872void
2873dump_cselib_table (FILE *out)
2874{
2875 fprintf (out, "cselib hash table:\n");
c203e8a7 2876 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
0618dee5 2877 fprintf (out, "cselib preserved hash table:\n");
c203e8a7 2878 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
b5b8b0ac
AO
2879 if (first_containing_mem != &dummy_val)
2880 {
2881 fputs ("first mem ", out);
2882 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2883 fputc ('\n', out);
2884 }
5440c0e7 2885 fprintf (out, "next uid %i\n", next_uid);
b5b8b0ac
AO
2886}
2887
e2500fed 2888#include "gt-cselib.h"