]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
c-typeck.c (build_conditional_expr): Do not allow non-lvalue arrays.
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
fa49fd0f
RK
1/* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
d9221e01 3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
fa49fd0f 4
1322177d 5This file is part of GCC.
fa49fd0f 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
fa49fd0f 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
fa49fd0f
RK
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
fa49fd0f
RK
21
22#include "config.h"
23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
fa49fd0f
RK
26
27#include "rtl.h"
28#include "tm_p.h"
29#include "regs.h"
30#include "hard-reg-set.h"
31#include "flags.h"
32#include "real.h"
33#include "insn-config.h"
34#include "recog.h"
35#include "function.h"
36#include "expr.h"
37#include "toplev.h"
38#include "output.h"
39#include "ggc.h"
fa49fd0f
RK
40#include "hashtab.h"
41#include "cselib.h"
c65ecebc 42#include "params.h"
6a59927d 43#include "alloc-pool.h"
fa49fd0f 44
7080f735
AJ
45static int entry_and_rtx_equal_p (const void *, const void *);
46static hashval_t get_value_hash (const void *);
47static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
49static void unchain_one_value (cselib_val *);
50static void unchain_one_elt_list (struct elt_list **);
51static void unchain_one_elt_loc_list (struct elt_loc_list **);
52static void clear_table (void);
53static int discard_useless_locs (void **, void *);
54static int discard_useless_values (void **, void *);
55static void remove_useless_values (void);
56static rtx wrap_constant (enum machine_mode, rtx);
57static unsigned int hash_rtx (rtx, enum machine_mode, int);
58static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
59static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
60static cselib_val *cselib_lookup_mem (rtx, int);
61static void cselib_invalidate_regno (unsigned int, enum machine_mode);
7080f735
AJ
62static void cselib_invalidate_mem (rtx);
63static void cselib_invalidate_rtx (rtx, rtx, void *);
64static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65static void cselib_record_sets (rtx);
fa49fd0f
RK
66
67/* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76/* A table that enables us to look up elts by their value. */
e2500fed 77static GTY((param_is (cselib_val))) htab_t hash_table;
fa49fd0f
RK
78
79/* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81static rtx cselib_current_insn;
9635cfad 82static bool cselib_current_insn_in_libcall;
fa49fd0f
RK
83
84/* Every new unknown value gets a unique number. */
85static unsigned int next_unknown_value;
86
87/* The number of registers we had when the varrays were last resized. */
88static unsigned int cselib_nregs;
89
90/* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92static int n_useless_values;
93
94/* Number of useless values before we remove them from the hash table. */
95#define MAX_USELESS_VALUES 32
96
60fa6660
AO
97/* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
103 element. */
e2500fed
GK
104static GTY(()) varray_type reg_values;
105static GTY((deletable (""))) varray_type reg_values_old;
fa49fd0f
RK
106#define REG_VALUES(I) VARRAY_ELT_LIST (reg_values, (I))
107
31825e57 108/* The largest number of hard regs used by any entry added to the
e34bb004 109 REG_VALUES table. Cleared on each clear_table() invocation. */
31825e57
DM
110static unsigned int max_value_regs;
111
fa49fd0f
RK
112/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in clear_table() for fast emptying. */
e2500fed
GK
114static GTY(()) varray_type used_regs;
115static GTY((deletable (""))) varray_type used_regs_old;
fa49fd0f
RK
116
117/* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
e2500fed 119static GTY(()) rtx callmem;
fa49fd0f 120
fa49fd0f
RK
121/* Set by discard_useless_locs if it deleted the last location of any
122 value. */
123static int values_became_useless;
7101fb18
JH
124
125/* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127static cselib_val dummy_val;
128
7080f735 129/* Used to list all values that contain memory reference.
7101fb18
JH
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132static cselib_val *first_containing_mem = &dummy_val;
23bd7a93 133static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
fa49fd0f
RK
134\f
135
136/* Allocate a struct elt_list and fill in its two elements with the
137 arguments. */
138
6a59927d 139static inline struct elt_list *
7080f735 140new_elt_list (struct elt_list *next, cselib_val *elt)
fa49fd0f 141{
6a59927d
JH
142 struct elt_list *el;
143 el = pool_alloc (elt_list_pool);
fa49fd0f
RK
144 el->next = next;
145 el->elt = elt;
146 return el;
147}
148
149/* Allocate a struct elt_loc_list and fill in its two elements with the
150 arguments. */
151
6a59927d 152static inline struct elt_loc_list *
7080f735 153new_elt_loc_list (struct elt_loc_list *next, rtx loc)
fa49fd0f 154{
6a59927d
JH
155 struct elt_loc_list *el;
156 el = pool_alloc (elt_loc_list_pool);
fa49fd0f
RK
157 el->next = next;
158 el->loc = loc;
9ddb66ca 159 el->canon_loc = NULL;
fa49fd0f 160 el->setting_insn = cselib_current_insn;
9635cfad 161 el->in_libcall = cselib_current_insn_in_libcall;
fa49fd0f
RK
162 return el;
163}
164
165/* The elt_list at *PL is no longer needed. Unchain it and free its
166 storage. */
167
6a59927d 168static inline void
7080f735 169unchain_one_elt_list (struct elt_list **pl)
fa49fd0f
RK
170{
171 struct elt_list *l = *pl;
172
173 *pl = l->next;
6a59927d 174 pool_free (elt_list_pool, l);
fa49fd0f
RK
175}
176
177/* Likewise for elt_loc_lists. */
178
179static void
7080f735 180unchain_one_elt_loc_list (struct elt_loc_list **pl)
fa49fd0f
RK
181{
182 struct elt_loc_list *l = *pl;
183
184 *pl = l->next;
6a59927d 185 pool_free (elt_loc_list_pool, l);
fa49fd0f
RK
186}
187
188/* Likewise for cselib_vals. This also frees the addr_list associated with
189 V. */
190
191static void
7080f735 192unchain_one_value (cselib_val *v)
fa49fd0f
RK
193{
194 while (v->addr_list)
195 unchain_one_elt_list (&v->addr_list);
196
6a59927d 197 pool_free (cselib_val_pool, v);
fa49fd0f
RK
198}
199
200/* Remove all entries from the hash table. Also used during
201 initialization. If CLEAR_ALL isn't set, then only clear the entries
202 which are known to have been used. */
203
204static void
7080f735 205clear_table (void)
fa49fd0f
RK
206{
207 unsigned int i;
208
cd648cec
JH
209 for (i = 0; i < VARRAY_ACTIVE_SIZE (used_regs); i++)
210 REG_VALUES (VARRAY_UINT (used_regs, i)) = 0;
fa49fd0f 211
31825e57
DM
212 max_value_regs = 0;
213
fa49fd0f
RK
214 VARRAY_POP_ALL (used_regs);
215
216 htab_empty (hash_table);
fa49fd0f 217
fa49fd0f
RK
218 n_useless_values = 0;
219
220 next_unknown_value = 0;
7101fb18
JH
221
222 first_containing_mem = &dummy_val;
fa49fd0f
RK
223}
224
225/* The equality test for our hash table. The first argument ENTRY is a table
226 element (i.e. a cselib_val), while the second arg X is an rtx. We know
227 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
228 CONST of an appropriate mode. */
229
230static int
7080f735 231entry_and_rtx_equal_p (const void *entry, const void *x_arg)
fa49fd0f
RK
232{
233 struct elt_loc_list *l;
234 const cselib_val *v = (const cselib_val *) entry;
235 rtx x = (rtx) x_arg;
236 enum machine_mode mode = GET_MODE (x);
237
238 if (GET_CODE (x) == CONST_INT
239 || (mode == VOIDmode && GET_CODE (x) == CONST_DOUBLE))
240 abort ();
241 if (mode != GET_MODE (v->u.val_rtx))
242 return 0;
243
244 /* Unwrap X if necessary. */
245 if (GET_CODE (x) == CONST
246 && (GET_CODE (XEXP (x, 0)) == CONST_INT
247 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
248 x = XEXP (x, 0);
7080f735 249
fa49fd0f
RK
250 /* We don't guarantee that distinct rtx's have different hash values,
251 so we need to do a comparison. */
252 for (l = v->locs; l; l = l->next)
253 if (rtx_equal_for_cselib_p (l->loc, x))
254 return 1;
255
256 return 0;
257}
258
259/* The hash function for our hash table. The value is always computed with
260 hash_rtx when adding an element; this function just extracts the hash
261 value from a cselib_val structure. */
262
fb7e6024 263static hashval_t
7080f735 264get_value_hash (const void *entry)
fa49fd0f
RK
265{
266 const cselib_val *v = (const cselib_val *) entry;
267 return v->value;
268}
269
270/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
271 only return true for values which point to a cselib_val whose value
272 element has been set to zero, which implies the cselib_val will be
273 removed. */
274
275int
7080f735 276references_value_p (rtx x, int only_useless)
fa49fd0f
RK
277{
278 enum rtx_code code = GET_CODE (x);
279 const char *fmt = GET_RTX_FORMAT (code);
280 int i, j;
281
282 if (GET_CODE (x) == VALUE
283 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
284 return 1;
285
286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
289 return 1;
290 else if (fmt[i] == 'E')
291 for (j = 0; j < XVECLEN (x, i); j++)
292 if (references_value_p (XVECEXP (x, i, j), only_useless))
293 return 1;
294 }
295
296 return 0;
297}
298
299/* For all locations found in X, delete locations that reference useless
300 values (i.e. values without any location). Called through
301 htab_traverse. */
302
303static int
7080f735 304discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f
RK
305{
306 cselib_val *v = (cselib_val *)*x;
307 struct elt_loc_list **p = &v->locs;
308 int had_locs = v->locs != 0;
309
310 while (*p)
311 {
312 if (references_value_p ((*p)->loc, 1))
313 unchain_one_elt_loc_list (p);
314 else
315 p = &(*p)->next;
316 }
317
318 if (had_locs && v->locs == 0)
319 {
320 n_useless_values++;
321 values_became_useless = 1;
322 }
323 return 1;
324}
325
326/* If X is a value with no locations, remove it from the hashtable. */
327
328static int
7080f735 329discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f
RK
330{
331 cselib_val *v = (cselib_val *)*x;
332
333 if (v->locs == 0)
334 {
335 htab_clear_slot (hash_table, x);
336 unchain_one_value (v);
337 n_useless_values--;
338 }
339
340 return 1;
341}
342
343/* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
345
346static void
7080f735 347remove_useless_values (void)
fa49fd0f 348{
7101fb18 349 cselib_val **p, *v;
fa49fd0f
RK
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
352 do
353 {
354 values_became_useless = 0;
355 htab_traverse (hash_table, discard_useless_locs, 0);
356 }
357 while (values_became_useless);
358
359 /* Second pass: actually remove the values. */
360 htab_traverse (hash_table, discard_useless_values, 0);
361
7101fb18
JH
362 p = &first_containing_mem;
363 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
364 if (v->locs)
365 {
366 *p = v;
367 p = &(*p)->next_containing_mem;
368 }
369 *p = &dummy_val;
370
fa49fd0f
RK
371 if (n_useless_values != 0)
372 abort ();
373}
374
60fa6660
AO
375/* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
378 VOIDmode. */
379
380enum machine_mode
7080f735 381cselib_reg_set_mode (rtx x)
60fa6660
AO
382{
383 if (GET_CODE (x) != REG)
384 return GET_MODE (x);
385
386 if (REG_VALUES (REGNO (x)) == NULL
387 || REG_VALUES (REGNO (x))->elt == NULL)
388 return VOIDmode;
389
390 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
391}
392
fa49fd0f
RK
393/* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
395
396int
7080f735 397rtx_equal_for_cselib_p (rtx x, rtx y)
fa49fd0f
RK
398{
399 enum rtx_code code;
400 const char *fmt;
401 int i;
7080f735 402
fa49fd0f
RK
403 if (GET_CODE (x) == REG || GET_CODE (x) == MEM)
404 {
405 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
406
407 if (e)
408 x = e->u.val_rtx;
409 }
410
411 if (GET_CODE (y) == REG || GET_CODE (y) == MEM)
412 {
413 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
414
415 if (e)
416 y = e->u.val_rtx;
417 }
418
419 if (x == y)
420 return 1;
421
422 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
423 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
424
425 if (GET_CODE (x) == VALUE)
426 {
427 cselib_val *e = CSELIB_VAL_PTR (x);
428 struct elt_loc_list *l;
429
430 for (l = e->locs; l; l = l->next)
431 {
432 rtx t = l->loc;
433
434 /* Avoid infinite recursion. */
435 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
436 continue;
437 else if (rtx_equal_for_cselib_p (t, y))
438 return 1;
439 }
7080f735 440
fa49fd0f
RK
441 return 0;
442 }
443
444 if (GET_CODE (y) == VALUE)
445 {
446 cselib_val *e = CSELIB_VAL_PTR (y);
447 struct elt_loc_list *l;
448
449 for (l = e->locs; l; l = l->next)
450 {
451 rtx t = l->loc;
452
453 if (GET_CODE (t) == REG || GET_CODE (t) == MEM)
454 continue;
455 else if (rtx_equal_for_cselib_p (x, t))
456 return 1;
457 }
7080f735 458
fa49fd0f
RK
459 return 0;
460 }
461
462 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
463 return 0;
464
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x) == LABEL_REF)
467 return XEXP (x, 0) == XEXP (y, 0);
7080f735 468
fa49fd0f
RK
469 code = GET_CODE (x);
470 fmt = GET_RTX_FORMAT (code);
471
472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
473 {
474 int j;
475
476 switch (fmt[i])
477 {
478 case 'w':
479 if (XWINT (x, i) != XWINT (y, i))
480 return 0;
481 break;
482
483 case 'n':
484 case 'i':
485 if (XINT (x, i) != XINT (y, i))
486 return 0;
487 break;
488
489 case 'V':
490 case 'E':
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x, i) != XVECLEN (y, i))
493 return 0;
494
495 /* And the corresponding elements must match. */
496 for (j = 0; j < XVECLEN (x, i); j++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
498 XVECEXP (y, i, j)))
499 return 0;
500 break;
501
502 case 'e':
503 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
504 return 0;
505 break;
506
507 case 'S':
508 case 's':
509 if (strcmp (XSTR (x, i), XSTR (y, i)))
510 return 0;
511 break;
512
513 case 'u':
514 /* These are just backpointers, so they don't matter. */
515 break;
516
517 case '0':
518 case 't':
519 break;
520
521 /* It is believed that rtx's at this level will never
522 contain anything but integers and other rtx's,
523 except for within LABEL_REFs and SYMBOL_REFs. */
524 default:
525 abort ();
526 }
527 }
528 return 1;
529}
530
531/* We need to pass down the mode of constants through the hash table
532 functions. For that purpose, wrap them in a CONST of the appropriate
533 mode. */
534static rtx
7080f735 535wrap_constant (enum machine_mode mode, rtx x)
fa49fd0f
RK
536{
537 if (GET_CODE (x) != CONST_INT
538 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
539 return x;
540 if (mode == VOIDmode)
541 abort ();
542 return gen_rtx_CONST (mode, x);
543}
544
545/* Hash an rtx. Return 0 if we couldn't hash the rtx.
546 For registers and memory locations, we look up their cselib_val structure
547 and return its VALUE element.
548 Possible reasons for return 0 are: the object is volatile, or we couldn't
549 find a register or memory location in the table and CREATE is zero. If
550 CREATE is nonzero, table elts are created for regs and mem.
551 MODE is used in hashing for CONST_INTs only;
552 otherwise the mode of X is used. */
553
554static unsigned int
7080f735 555hash_rtx (rtx x, enum machine_mode mode, int create)
fa49fd0f
RK
556{
557 cselib_val *e;
558 int i, j;
559 enum rtx_code code;
560 const char *fmt;
561 unsigned int hash = 0;
562
fa49fd0f
RK
563 code = GET_CODE (x);
564 hash += (unsigned) code + (unsigned) GET_MODE (x);
565
566 switch (code)
567 {
568 case MEM:
569 case REG:
570 e = cselib_lookup (x, GET_MODE (x), create);
571 if (! e)
572 return 0;
573
a4f4333a 574 return e->value;
fa49fd0f
RK
575
576 case CONST_INT:
577 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
dc76f41c 578 return hash ? hash : (unsigned int) CONST_INT;
fa49fd0f
RK
579
580 case CONST_DOUBLE:
581 /* This is like the general case, except that it only counts
582 the integers representing the constant. */
583 hash += (unsigned) code + (unsigned) GET_MODE (x);
584 if (GET_MODE (x) != VOIDmode)
46b33600 585 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
fa49fd0f
RK
586 else
587 hash += ((unsigned) CONST_DOUBLE_LOW (x)
588 + (unsigned) CONST_DOUBLE_HIGH (x));
dc76f41c 589 return hash ? hash : (unsigned int) CONST_DOUBLE;
fa49fd0f 590
69ef87e2
AH
591 case CONST_VECTOR:
592 {
593 int units;
594 rtx elt;
595
596 units = CONST_VECTOR_NUNITS (x);
597
598 for (i = 0; i < units; ++i)
599 {
600 elt = CONST_VECTOR_ELT (x, i);
601 hash += hash_rtx (elt, GET_MODE (elt), 0);
602 }
603
604 return hash;
605 }
606
fa49fd0f
RK
607 /* Assume there is only one rtx object for any given label. */
608 case LABEL_REF:
609 hash
610 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
dc76f41c 611 return hash ? hash : (unsigned int) LABEL_REF;
fa49fd0f
RK
612
613 case SYMBOL_REF:
614 hash
615 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
dc76f41c 616 return hash ? hash : (unsigned int) SYMBOL_REF;
fa49fd0f
RK
617
618 case PRE_DEC:
619 case PRE_INC:
620 case POST_DEC:
621 case POST_INC:
622 case POST_MODIFY:
623 case PRE_MODIFY:
624 case PC:
625 case CC0:
626 case CALL:
627 case UNSPEC_VOLATILE:
628 return 0;
629
630 case ASM_OPERANDS:
631 if (MEM_VOLATILE_P (x))
632 return 0;
633
634 break;
7080f735 635
fa49fd0f
RK
636 default:
637 break;
638 }
639
640 i = GET_RTX_LENGTH (code) - 1;
641 fmt = GET_RTX_FORMAT (code);
642 for (; i >= 0; i--)
643 {
644 if (fmt[i] == 'e')
645 {
646 rtx tem = XEXP (x, i);
669ff14e
BS
647 unsigned int tem_hash = hash_rtx (tem, 0, create);
648
fa49fd0f
RK
649 if (tem_hash == 0)
650 return 0;
651
652 hash += tem_hash;
653 }
654 else if (fmt[i] == 'E')
655 for (j = 0; j < XVECLEN (x, i); j++)
656 {
657 unsigned int tem_hash = hash_rtx (XVECEXP (x, i, j), 0, create);
658
659 if (tem_hash == 0)
660 return 0;
661
662 hash += tem_hash;
663 }
664 else if (fmt[i] == 's')
665 {
666 const unsigned char *p = (const unsigned char *) XSTR (x, i);
667
668 if (p)
669 while (*p)
670 hash += *p++;
671 }
672 else if (fmt[i] == 'i')
673 hash += XINT (x, i);
674 else if (fmt[i] == '0' || fmt[i] == 't')
675 /* unused */;
676 else
677 abort ();
678 }
679
dc76f41c 680 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
fa49fd0f
RK
681}
682
683/* Create a new value structure for VALUE and initialize it. The mode of the
684 value is MODE. */
685
6a59927d 686static inline cselib_val *
7080f735 687new_cselib_val (unsigned int value, enum machine_mode mode)
fa49fd0f 688{
6a59927d 689 cselib_val *e = pool_alloc (cselib_val_pool);
fa49fd0f 690
6a59927d 691#ifdef ENABLE_CHECKING
fa49fd0f
RK
692 if (value == 0)
693 abort ();
6a59927d 694#endif
fa49fd0f
RK
695
696 e->value = value;
23bd7a93
JH
697 /* We use custom method to allocate this RTL construct because it accounts
698 about 8% of overall memory usage. */
699 e->u.val_rtx = pool_alloc (value_pool);
700 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
701 PUT_CODE (e->u.val_rtx, VALUE);
702 PUT_MODE (e->u.val_rtx, mode);
fa49fd0f
RK
703 CSELIB_VAL_PTR (e->u.val_rtx) = e;
704 e->addr_list = 0;
705 e->locs = 0;
7101fb18 706 e->next_containing_mem = 0;
fa49fd0f
RK
707 return e;
708}
709
710/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
711 contains the data at this address. X is a MEM that represents the
712 value. Update the two value structures to represent this situation. */
713
714static void
7080f735 715add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
fa49fd0f 716{
fa49fd0f
RK
717 struct elt_loc_list *l;
718
719 /* Avoid duplicates. */
720 for (l = mem_elt->locs; l; l = l->next)
721 if (GET_CODE (l->loc) == MEM
722 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
723 return;
724
fa49fd0f 725 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
f1ec5147
RK
726 mem_elt->locs
727 = new_elt_loc_list (mem_elt->locs,
728 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
7101fb18
JH
729 if (mem_elt->next_containing_mem == NULL)
730 {
731 mem_elt->next_containing_mem = first_containing_mem;
732 first_containing_mem = mem_elt;
733 }
fa49fd0f
RK
734}
735
736/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
737 If CREATE, make a new one if we haven't seen it before. */
738
739static cselib_val *
7080f735 740cselib_lookup_mem (rtx x, int create)
fa49fd0f
RK
741{
742 enum machine_mode mode = GET_MODE (x);
743 void **slot;
744 cselib_val *addr;
745 cselib_val *mem_elt;
746 struct elt_list *l;
747
748 if (MEM_VOLATILE_P (x) || mode == BLKmode
749 || (FLOAT_MODE_P (mode) && flag_float_store))
750 return 0;
751
752 /* Look up the value for the address. */
753 addr = cselib_lookup (XEXP (x, 0), mode, create);
754 if (! addr)
755 return 0;
756
757 /* Find a value that describes a value of our mode at that address. */
758 for (l = addr->addr_list; l; l = l->next)
759 if (GET_MODE (l->elt->u.val_rtx) == mode)
760 return l->elt;
761
762 if (! create)
763 return 0;
764
765 mem_elt = new_cselib_val (++next_unknown_value, mode);
766 add_mem_for_addr (addr, mem_elt, x);
767 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
768 mem_elt->value, INSERT);
769 *slot = mem_elt;
770 return mem_elt;
771}
772
773/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
774 with VALUE expressions. This way, it becomes independent of changes
775 to registers and memory.
776 X isn't actually modified; if modifications are needed, new rtl is
777 allocated. However, the return value can share rtl with X. */
778
91700444 779rtx
7080f735 780cselib_subst_to_values (rtx x)
fa49fd0f
RK
781{
782 enum rtx_code code = GET_CODE (x);
783 const char *fmt = GET_RTX_FORMAT (code);
784 cselib_val *e;
785 struct elt_list *l;
786 rtx copy = x;
787 int i;
788
789 switch (code)
790 {
791 case REG:
60fa6660
AO
792 l = REG_VALUES (REGNO (x));
793 if (l && l->elt == NULL)
794 l = l->next;
795 for (; l; l = l->next)
fa49fd0f
RK
796 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
797 return l->elt->u.val_rtx;
798
799 abort ();
800
801 case MEM:
802 e = cselib_lookup_mem (x, 0);
803 if (! e)
91700444
BS
804 {
805 /* This happens for autoincrements. Assign a value that doesn't
806 match any other. */
807 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
808 }
fa49fd0f
RK
809 return e->u.val_rtx;
810
fa49fd0f 811 case CONST_DOUBLE:
69ef87e2 812 case CONST_VECTOR:
fa49fd0f
RK
813 case CONST_INT:
814 return x;
815
91700444
BS
816 case POST_INC:
817 case PRE_INC:
818 case POST_DEC:
819 case PRE_DEC:
820 case POST_MODIFY:
821 case PRE_MODIFY:
822 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
823 return e->u.val_rtx;
7080f735 824
fa49fd0f
RK
825 default:
826 break;
827 }
828
829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
830 {
831 if (fmt[i] == 'e')
832 {
833 rtx t = cselib_subst_to_values (XEXP (x, i));
834
835 if (t != XEXP (x, i) && x == copy)
836 copy = shallow_copy_rtx (x);
837
838 XEXP (copy, i) = t;
839 }
840 else if (fmt[i] == 'E')
841 {
842 int j, k;
843
844 for (j = 0; j < XVECLEN (x, i); j++)
845 {
846 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
847
848 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
849 {
850 if (x == copy)
851 copy = shallow_copy_rtx (x);
852
853 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
854 for (k = 0; k < j; k++)
855 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
856 }
857
858 XVECEXP (copy, i, j) = t;
859 }
860 }
861 }
862
863 return copy;
864}
865
866/* Look up the rtl expression X in our tables and return the value it has.
867 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
868 we create a new one if possible, using mode MODE if X doesn't have a mode
869 (i.e. because it's a constant). */
870
871cselib_val *
7080f735 872cselib_lookup (rtx x, enum machine_mode mode, int create)
fa49fd0f
RK
873{
874 void **slot;
875 cselib_val *e;
876 unsigned int hashval;
877
878 if (GET_MODE (x) != VOIDmode)
879 mode = GET_MODE (x);
880
881 if (GET_CODE (x) == VALUE)
882 return CSELIB_VAL_PTR (x);
883
884 if (GET_CODE (x) == REG)
885 {
886 struct elt_list *l;
887 unsigned int i = REGNO (x);
888
60fa6660
AO
889 l = REG_VALUES (i);
890 if (l && l->elt == NULL)
891 l = l->next;
892 for (; l; l = l->next)
fa49fd0f
RK
893 if (mode == GET_MODE (l->elt->u.val_rtx))
894 return l->elt;
895
896 if (! create)
897 return 0;
898
31825e57
DM
899 if (i < FIRST_PSEUDO_REGISTER)
900 {
901 unsigned int n = HARD_REGNO_NREGS (i, mode);
902
903 if (n > max_value_regs)
904 max_value_regs = n;
905 }
906
fa49fd0f
RK
907 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
908 e->locs = new_elt_loc_list (e->locs, x);
909 if (REG_VALUES (i) == 0)
60fa6660
AO
910 {
911 /* Maintain the invariant that the first entry of
912 REG_VALUES, if present, must be the value used to set the
913 register, or NULL. */
914 VARRAY_PUSH_UINT (used_regs, i);
915 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
916 }
917 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
fa49fd0f
RK
918 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
919 *slot = e;
920 return e;
921 }
922
923 if (GET_CODE (x) == MEM)
924 return cselib_lookup_mem (x, create);
925
926 hashval = hash_rtx (x, mode, create);
927 /* Can't even create if hashing is not possible. */
928 if (! hashval)
929 return 0;
930
931 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
932 hashval, create ? INSERT : NO_INSERT);
933 if (slot == 0)
934 return 0;
935
936 e = (cselib_val *) *slot;
937 if (e)
938 return e;
939
940 e = new_cselib_val (hashval, mode);
941
942 /* We have to fill the slot before calling cselib_subst_to_values:
943 the hash table is inconsistent until we do so, and
944 cselib_subst_to_values will need to do lookups. */
945 *slot = (void *) e;
946 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
947 return e;
948}
949
950/* Invalidate any entries in reg_values that overlap REGNO. This is called
951 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
952 is used to determine how many hard registers are being changed. If MODE
953 is VOIDmode, then only REGNO is being changed; this is used when
954 invalidating call clobbered registers across a call. */
955
956static void
7080f735 957cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
fa49fd0f
RK
958{
959 unsigned int endregno;
960 unsigned int i;
961
962 /* If we see pseudos after reload, something is _wrong_. */
963 if (reload_completed && regno >= FIRST_PSEUDO_REGISTER
964 && reg_renumber[regno] >= 0)
965 abort ();
966
967 /* Determine the range of registers that must be invalidated. For
968 pseudos, only REGNO is affected. For hard regs, we must take MODE
969 into account, and we must also invalidate lower register numbers
970 if they contain values that overlap REGNO. */
291aac59 971 if (regno < FIRST_PSEUDO_REGISTER)
31825e57 972 {
291aac59
DC
973 if (mode == VOIDmode)
974 abort ();
7080f735 975
31825e57
DM
976 if (regno < max_value_regs)
977 i = 0;
978 else
979 i = regno - max_value_regs;
fa49fd0f 980
31825e57
DM
981 endregno = regno + HARD_REGNO_NREGS (regno, mode);
982 }
983 else
984 {
985 i = regno;
986 endregno = regno + 1;
987 }
988
989 for (; i < endregno; i++)
fa49fd0f
RK
990 {
991 struct elt_list **l = &REG_VALUES (i);
992
993 /* Go through all known values for this reg; if it overlaps the range
994 we're invalidating, remove the value. */
995 while (*l)
996 {
997 cselib_val *v = (*l)->elt;
998 struct elt_loc_list **p;
999 unsigned int this_last = i;
1000
60fa6660 1001 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
fa49fd0f
RK
1002 this_last += HARD_REGNO_NREGS (i, GET_MODE (v->u.val_rtx)) - 1;
1003
60fa6660 1004 if (this_last < regno || v == NULL)
fa49fd0f
RK
1005 {
1006 l = &(*l)->next;
1007 continue;
1008 }
1009
1010 /* We have an overlap. */
60fa6660
AO
1011 if (*l == REG_VALUES (i))
1012 {
1013 /* Maintain the invariant that the first entry of
1014 REG_VALUES, if present, must be the value used to set
1015 the register, or NULL. This is also nice because
1016 then we won't push the same regno onto user_regs
1017 multiple times. */
1018 (*l)->elt = NULL;
1019 l = &(*l)->next;
1020 }
1021 else
1022 unchain_one_elt_list (l);
fa49fd0f
RK
1023
1024 /* Now, we clear the mapping from value to reg. It must exist, so
1025 this code will crash intentionally if it doesn't. */
1026 for (p = &v->locs; ; p = &(*p)->next)
1027 {
1028 rtx x = (*p)->loc;
1029
1030 if (GET_CODE (x) == REG && REGNO (x) == i)
1031 {
1032 unchain_one_elt_loc_list (p);
1033 break;
1034 }
1035 }
1036 if (v->locs == 0)
1037 n_useless_values++;
1038 }
1039 }
1040}
9ddb66ca
JH
1041\f
1042/* Return 1 if X has a value that can vary even between two
1043 executions of the program. 0 means X can be compared reliably
1044 against certain constants or near-constants. */
fa49fd0f
RK
1045
1046static int
9ddb66ca 1047cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
fa49fd0f 1048{
9ddb66ca
JH
1049 /* We actually don't need to verify very hard. This is because
1050 if X has actually changed, we invalidate the memory anyway,
1051 so assume that all common memory addresses are
1052 invariant. */
fa49fd0f
RK
1053 return 0;
1054}
1055
7101fb18
JH
1056/* Invalidate any locations in the table which are changed because of a
1057 store to MEM_RTX. If this is called because of a non-const call
1058 instruction, MEM_RTX is (mem:BLK const0_rtx). */
fa49fd0f 1059
7101fb18 1060static void
7080f735 1061cselib_invalidate_mem (rtx mem_rtx)
fa49fd0f 1062{
7101fb18 1063 cselib_val **vp, *v, *next;
c65ecebc 1064 int num_mems = 0;
9ddb66ca
JH
1065 rtx mem_addr;
1066
1067 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1068 mem_rtx = canon_rtx (mem_rtx);
fa49fd0f 1069
7101fb18
JH
1070 vp = &first_containing_mem;
1071 for (v = *vp; v != &dummy_val; v = next)
fa49fd0f 1072 {
7101fb18
JH
1073 bool has_mem = false;
1074 struct elt_loc_list **p = &v->locs;
1075 int had_locs = v->locs != 0;
fa49fd0f 1076
7101fb18 1077 while (*p)
fa49fd0f 1078 {
7101fb18 1079 rtx x = (*p)->loc;
9ddb66ca 1080 rtx canon_x = (*p)->canon_loc;
7101fb18
JH
1081 cselib_val *addr;
1082 struct elt_list **mem_chain;
1083
1084 /* MEMs may occur in locations only at the top level; below
1085 that every MEM or REG is substituted by its VALUE. */
1086 if (GET_CODE (x) != MEM)
fa49fd0f 1087 {
7101fb18
JH
1088 p = &(*p)->next;
1089 continue;
1090 }
9ddb66ca
JH
1091 if (!canon_x)
1092 canon_x = (*p)->canon_loc = canon_rtx (x);
c65ecebc 1093 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
9ddb66ca
JH
1094 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1095 x, cselib_rtx_varies_p))
7101fb18
JH
1096 {
1097 has_mem = true;
c65ecebc 1098 num_mems++;
7101fb18
JH
1099 p = &(*p)->next;
1100 continue;
fa49fd0f
RK
1101 }
1102
7101fb18
JH
1103 /* This one overlaps. */
1104 /* We must have a mapping from this MEM's address to the
1105 value (E). Remove that, too. */
1106 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1107 mem_chain = &addr->addr_list;
1108 for (;;)
1109 {
1110 if ((*mem_chain)->elt == v)
1111 {
1112 unchain_one_elt_list (mem_chain);
1113 break;
1114 }
fa49fd0f 1115
7101fb18
JH
1116 mem_chain = &(*mem_chain)->next;
1117 }
fa49fd0f 1118
7101fb18
JH
1119 unchain_one_elt_loc_list (p);
1120 }
fa49fd0f 1121
7101fb18
JH
1122 if (had_locs && v->locs == 0)
1123 n_useless_values++;
fa49fd0f 1124
7101fb18
JH
1125 next = v->next_containing_mem;
1126 if (has_mem)
1127 {
1128 *vp = v;
1129 vp = &(*vp)->next_containing_mem;
1130 }
1131 else
1132 v->next_containing_mem = NULL;
1133 }
1134 *vp = &dummy_val;
fa49fd0f
RK
1135}
1136
1137/* Invalidate DEST, which is being assigned to or clobbered. The second and
1138 the third parameter exist so that this function can be passed to
1139 note_stores; they are ignored. */
1140
1141static void
7080f735
AJ
1142cselib_invalidate_rtx (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1143 void *data ATTRIBUTE_UNUSED)
fa49fd0f
RK
1144{
1145 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1146 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1147 dest = XEXP (dest, 0);
1148
1149 if (GET_CODE (dest) == REG)
1150 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1151 else if (GET_CODE (dest) == MEM)
1152 cselib_invalidate_mem (dest);
1153
1154 /* Some machines don't define AUTO_INC_DEC, but they still use push
1155 instructions. We need to catch that case here in order to
1156 invalidate the stack pointer correctly. Note that invalidating
1157 the stack pointer is different from invalidating DEST. */
1158 if (push_operand (dest, GET_MODE (dest)))
1159 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1160}
1161
1162/* Record the result of a SET instruction. DEST is being set; the source
1163 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1164 describes its address. */
1165
1166static void
7080f735 1167cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
fa49fd0f
RK
1168{
1169 int dreg = GET_CODE (dest) == REG ? (int) REGNO (dest) : -1;
1170
1171 if (src_elt == 0 || side_effects_p (dest))
1172 return;
1173
1174 if (dreg >= 0)
1175 {
31825e57
DM
1176 if (dreg < FIRST_PSEUDO_REGISTER)
1177 {
1178 unsigned int n = HARD_REGNO_NREGS (dreg, GET_MODE (dest));
1179
1180 if (n > max_value_regs)
1181 max_value_regs = n;
1182 }
1183
60fa6660
AO
1184 if (REG_VALUES (dreg) == 0)
1185 {
1186 VARRAY_PUSH_UINT (used_regs, dreg);
1187 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1188 }
1189 else
1190 {
1191 if (REG_VALUES (dreg)->elt == 0)
1192 REG_VALUES (dreg)->elt = src_elt;
1193 else
1194 /* The register should have been invalidated. */
1195 abort ();
1196 }
1197
fa49fd0f
RK
1198 if (src_elt->locs == 0)
1199 n_useless_values--;
1200 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1201 }
1202 else if (GET_CODE (dest) == MEM && dest_addr_elt != 0)
1203 {
1204 if (src_elt->locs == 0)
1205 n_useless_values--;
1206 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1207 }
1208}
1209
1210/* Describe a single set that is part of an insn. */
1211struct set
1212{
1213 rtx src;
1214 rtx dest;
1215 cselib_val *src_elt;
1216 cselib_val *dest_addr_elt;
1217};
1218
1219/* There is no good way to determine how many elements there can be
1220 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1221#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1222
1223/* Record the effects of any sets in INSN. */
1224static void
7080f735 1225cselib_record_sets (rtx insn)
fa49fd0f
RK
1226{
1227 int n_sets = 0;
1228 int i;
1229 struct set sets[MAX_SETS];
1230 rtx body = PATTERN (insn);
b7933c21 1231 rtx cond = 0;
fa49fd0f
RK
1232
1233 body = PATTERN (insn);
b7933c21
BS
1234 if (GET_CODE (body) == COND_EXEC)
1235 {
1236 cond = COND_EXEC_TEST (body);
1237 body = COND_EXEC_CODE (body);
1238 }
1239
fa49fd0f
RK
1240 /* Find all sets. */
1241 if (GET_CODE (body) == SET)
1242 {
1243 sets[0].src = SET_SRC (body);
1244 sets[0].dest = SET_DEST (body);
1245 n_sets = 1;
1246 }
1247 else if (GET_CODE (body) == PARALLEL)
1248 {
1249 /* Look through the PARALLEL and record the values being
1250 set, if possible. Also handle any CLOBBERs. */
1251 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1252 {
1253 rtx x = XVECEXP (body, 0, i);
1254
1255 if (GET_CODE (x) == SET)
1256 {
1257 sets[n_sets].src = SET_SRC (x);
1258 sets[n_sets].dest = SET_DEST (x);
1259 n_sets++;
1260 }
1261 }
1262 }
1263
1264 /* Look up the values that are read. Do this before invalidating the
1265 locations that are written. */
1266 for (i = 0; i < n_sets; i++)
1267 {
1268 rtx dest = sets[i].dest;
1269
1270 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1271 the low part after invalidating any knowledge about larger modes. */
1272 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1273 sets[i].dest = dest = XEXP (dest, 0);
1274
1275 /* We don't know how to record anything but REG or MEM. */
1276 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1277 {
b7933c21
BS
1278 rtx src = sets[i].src;
1279 if (cond)
1280 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
37060e78 1281 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
fa49fd0f
RK
1282 if (GET_CODE (dest) == MEM)
1283 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1284 else
1285 sets[i].dest_addr_elt = 0;
1286 }
1287 }
1288
1289 /* Invalidate all locations written by this insn. Note that the elts we
1290 looked up in the previous loop aren't affected, just some of their
1291 locations may go away. */
1292 note_stores (body, cselib_invalidate_rtx, NULL);
1293
1294 /* Now enter the equivalences in our tables. */
1295 for (i = 0; i < n_sets; i++)
1296 {
1297 rtx dest = sets[i].dest;
1298 if (GET_CODE (dest) == REG || GET_CODE (dest) == MEM)
1299 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1300 }
1301}
1302
1303/* Record the effects of INSN. */
1304
1305void
7080f735 1306cselib_process_insn (rtx insn)
fa49fd0f
RK
1307{
1308 int i;
1309 rtx x;
1310
9635cfad
JH
1311 if (find_reg_note (insn, REG_LIBCALL, NULL))
1312 cselib_current_insn_in_libcall = true;
1313 if (find_reg_note (insn, REG_RETVAL, NULL))
1314 cselib_current_insn_in_libcall = false;
fa49fd0f
RK
1315 cselib_current_insn = insn;
1316
1317 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1318 if (GET_CODE (insn) == CODE_LABEL
19652adf 1319 || (GET_CODE (insn) == CALL_INSN
570a98eb 1320 && find_reg_note (insn, REG_SETJMP, NULL))
fa49fd0f
RK
1321 || (GET_CODE (insn) == INSN
1322 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1323 && MEM_VOLATILE_P (PATTERN (insn))))
1324 {
cd648cec 1325 clear_table ();
fa49fd0f
RK
1326 return;
1327 }
1328
1329 if (! INSN_P (insn))
1330 {
1331 cselib_current_insn = 0;
1332 return;
1333 }
1334
1335 /* If this is a call instruction, forget anything stored in a
1336 call clobbered register, or, if this is not a const call, in
1337 memory. */
1338 if (GET_CODE (insn) == CALL_INSN)
1339 {
1340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1341 if (call_used_regs[i])
291aac59 1342 cselib_invalidate_regno (i, reg_raw_mode[i]);
fa49fd0f 1343
24a28584 1344 if (! CONST_OR_PURE_CALL_P (insn))
fa49fd0f
RK
1345 cselib_invalidate_mem (callmem);
1346 }
1347
1348 cselib_record_sets (insn);
1349
1350#ifdef AUTO_INC_DEC
1351 /* Clobber any registers which appear in REG_INC notes. We
1352 could keep track of the changes to their values, but it is
1353 unlikely to help. */
1354 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1355 if (REG_NOTE_KIND (x) == REG_INC)
1356 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1357#endif
1358
1359 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1360 after we have processed the insn. */
1361 if (GET_CODE (insn) == CALL_INSN)
1362 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1363 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1364 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1365
1366 cselib_current_insn = 0;
1367
1368 if (n_useless_values > MAX_USELESS_VALUES)
1369 remove_useless_values ();
1370}
1371
1372/* Make sure our varrays are big enough. Not called from any cselib routines;
1373 it must be called by the user if it allocated new registers. */
1374
1375void
7080f735 1376cselib_update_varray_sizes (void)
fa49fd0f
RK
1377{
1378 unsigned int nregs = max_reg_num ();
1379
1380 if (nregs == cselib_nregs)
1381 return;
1382
1383 cselib_nregs = nregs;
1384 VARRAY_GROW (reg_values, nregs);
1385 VARRAY_GROW (used_regs, nregs);
1386}
1387
1388/* Initialize cselib for one pass. The caller must also call
1389 init_alias_analysis. */
1390
1391void
7080f735 1392cselib_init (void)
fa49fd0f 1393{
6a59927d
JH
1394 elt_list_pool = create_alloc_pool ("elt_list",
1395 sizeof (struct elt_list), 10);
1396 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1397 sizeof (struct elt_loc_list), 10);
1398 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1399 sizeof (cselib_val), 10);
23bd7a93
JH
1400 value_pool = create_alloc_pool ("value",
1401 RTX_SIZE (VALUE), 100);
e2500fed 1402 /* This is only created once. */
fa49fd0f 1403 if (! callmem)
e2500fed 1404 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
fa49fd0f
RK
1405
1406 cselib_nregs = max_reg_num ();
e2500fed
GK
1407 if (reg_values_old != NULL && VARRAY_SIZE (reg_values_old) >= cselib_nregs)
1408 {
1409 reg_values = reg_values_old;
1410 used_regs = used_regs_old;
e2500fed
GK
1411 }
1412 else
1413 {
1414 VARRAY_ELT_LIST_INIT (reg_values, cselib_nregs, "reg_values");
1415 VARRAY_UINT_INIT (used_regs, cselib_nregs, "used_regs");
1416 }
7080f735 1417 hash_table = htab_create_ggc (31, get_value_hash, entry_and_rtx_equal_p,
e2500fed 1418 NULL);
9635cfad 1419 cselib_current_insn_in_libcall = false;
fa49fd0f
RK
1420}
1421
1422/* Called when the current user is done with cselib. */
1423
1424void
7080f735 1425cselib_finish (void)
fa49fd0f 1426{
6a59927d
JH
1427 free_alloc_pool (elt_list_pool);
1428 free_alloc_pool (elt_loc_list_pool);
1429 free_alloc_pool (cselib_val_pool);
23bd7a93 1430 free_alloc_pool (value_pool);
cd648cec 1431 clear_table ();
e2500fed
GK
1432 reg_values_old = reg_values;
1433 reg_values = 0;
1434 used_regs_old = used_regs;
1435 used_regs = 0;
1436 hash_table = 0;
1437 n_useless_values = 0;
1438 next_unknown_value = 0;
fa49fd0f 1439}
e2500fed
GK
1440
1441#include "gt-cselib.h"