]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/cselib.c
re PR libfortran/43298 (fortran library does not read in NaN -Inf or Inf)
[thirdparty/gcc.git] / gcc / cselib.c
CommitLineData
fa49fd0f
RK
1/* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
0de3e43f 3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
8dd5516b 4 Free Software Foundation, Inc.
fa49fd0f 5
1322177d 6This file is part of GCC.
fa49fd0f 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
fa49fd0f 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
fa49fd0f
RK
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
fa49fd0f
RK
21
22#include "config.h"
23#include "system.h"
4977bab6
ZW
24#include "coretypes.h"
25#include "tm.h"
fa49fd0f
RK
26
27#include "rtl.h"
28#include "tm_p.h"
29#include "regs.h"
30#include "hard-reg-set.h"
31#include "flags.h"
fa49fd0f
RK
32#include "insn-config.h"
33#include "recog.h"
34#include "function.h"
78528714 35#include "emit-rtl.h"
fa49fd0f
RK
36#include "toplev.h"
37#include "output.h"
38#include "ggc.h"
fa49fd0f 39#include "hashtab.h"
b5b8b0ac 40#include "tree-pass.h"
fa49fd0f 41#include "cselib.h"
c65ecebc 42#include "params.h"
6a59927d 43#include "alloc-pool.h"
29c1846b 44#include "target.h"
7a8cba34 45#include "bitmap.h"
fa49fd0f 46
463301c3 47static bool cselib_record_memory;
457eeaae 48static bool cselib_preserve_constants;
7080f735
AJ
49static int entry_and_rtx_equal_p (const void *, const void *);
50static hashval_t get_value_hash (const void *);
51static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
52static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
53static void unchain_one_value (cselib_val *);
54static void unchain_one_elt_list (struct elt_list **);
55static void unchain_one_elt_loc_list (struct elt_loc_list **);
7080f735
AJ
56static int discard_useless_locs (void **, void *);
57static int discard_useless_values (void **, void *);
58static void remove_useless_values (void);
29c1846b 59static unsigned int cselib_hash_rtx (rtx, int);
b5b8b0ac 60static cselib_val *new_cselib_val (unsigned int, enum machine_mode, rtx);
7080f735
AJ
61static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
62static cselib_val *cselib_lookup_mem (rtx, int);
63static void cselib_invalidate_regno (unsigned int, enum machine_mode);
7080f735 64static void cselib_invalidate_mem (rtx);
7080f735
AJ
65static void cselib_record_set (rtx, cselib_val *, cselib_val *);
66static void cselib_record_sets (rtx);
fa49fd0f 67
b5b8b0ac
AO
68struct expand_value_data
69{
70 bitmap regs_active;
71 cselib_expand_callback callback;
72 void *callback_arg;
864ddef7 73 bool dummy;
b5b8b0ac
AO
74};
75
76static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
77
fa49fd0f
RK
78/* There are three ways in which cselib can look up an rtx:
79 - for a REG, the reg_values table (which is indexed by regno) is used
80 - for a MEM, we recursively look up its address and then follow the
81 addr_list of that value
82 - for everything else, we compute a hash value and go through the hash
83 table. Since different rtx's can still have the same hash value,
84 this involves walking the table entries for a given value and comparing
85 the locations of the entries with the rtx we are looking up. */
86
87/* A table that enables us to look up elts by their value. */
7c514720 88static htab_t cselib_hash_table;
fa49fd0f
RK
89
90/* This is a global so we don't have to pass this through every function.
91 It is used in new_elt_loc_list to set SETTING_INSN. */
92static rtx cselib_current_insn;
93
5440c0e7
AO
94/* The unique id that the next create value will take. */
95static unsigned int next_uid;
fa49fd0f
RK
96
97/* The number of registers we had when the varrays were last resized. */
98static unsigned int cselib_nregs;
99
5847e8da
AO
100/* Count values without known locations, or with only locations that
101 wouldn't have been known except for debug insns. Whenever this
102 grows too big, we remove these useless values from the table.
103
104 Counting values with only debug values is a bit tricky. We don't
105 want to increment n_useless_values when we create a value for a
106 debug insn, for this would get n_useless_values out of sync, but we
107 want increment it if all locs in the list that were ever referenced
108 in nondebug insns are removed from the list.
109
110 In the general case, once we do that, we'd have to stop accepting
111 nondebug expressions in the loc list, to avoid having two values
112 equivalent that, without debug insns, would have been made into
113 separate values. However, because debug insns never introduce
114 equivalences themselves (no assignments), the only means for
115 growing loc lists is through nondebug assignments. If the locs
116 also happen to be referenced in debug insns, it will work just fine.
117
118 A consequence of this is that there's at most one debug-only loc in
119 each loc list. If we keep it in the first entry, testing whether
120 we have a debug-only loc list takes O(1).
121
122 Furthermore, since any additional entry in a loc list containing a
123 debug loc would have to come from an assignment (nondebug) that
124 references both the initial debug loc and the newly-equivalent loc,
125 the initial debug loc would be promoted to a nondebug loc, and the
126 loc list would not contain debug locs any more.
127
128 So the only case we have to be careful with in order to keep
129 n_useless_values in sync between debug and nondebug compilations is
130 to avoid incrementing n_useless_values when removing the single loc
131 from a value that turns out to not appear outside debug values. We
132 increment n_useless_debug_values instead, and leave such values
133 alone until, for other reasons, we garbage-collect useless
134 values. */
fa49fd0f 135static int n_useless_values;
5847e8da
AO
136static int n_useless_debug_values;
137
138/* Count values whose locs have been taken exclusively from debug
139 insns for the entire life of the value. */
140static int n_debug_values;
fa49fd0f
RK
141
142/* Number of useless values before we remove them from the hash table. */
143#define MAX_USELESS_VALUES 32
144
60fa6660
AO
145/* This table maps from register number to values. It does not
146 contain pointers to cselib_val structures, but rather elt_lists.
147 The purpose is to be able to refer to the same register in
148 different modes. The first element of the list defines the mode in
149 which the register was set; if the mode is unknown or the value is
150 no longer valid in that mode, ELT will be NULL for the first
151 element. */
5211d65a
KH
152static struct elt_list **reg_values;
153static unsigned int reg_values_size;
6790d1ab 154#define REG_VALUES(i) reg_values[i]
fa49fd0f 155
31825e57 156/* The largest number of hard regs used by any entry added to the
eb232f4e 157 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
31825e57
DM
158static unsigned int max_value_regs;
159
fa49fd0f 160/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
eb232f4e 161 in cselib_clear_table() for fast emptying. */
6790d1ab
JH
162static unsigned int *used_regs;
163static unsigned int n_used_regs;
fa49fd0f
RK
164
165/* We pass this to cselib_invalidate_mem to invalidate all of
166 memory for a non-const call instruction. */
e2500fed 167static GTY(()) rtx callmem;
fa49fd0f 168
fa49fd0f
RK
169/* Set by discard_useless_locs if it deleted the last location of any
170 value. */
171static int values_became_useless;
7101fb18
JH
172
173/* Used as stop element of the containing_mem list so we can check
174 presence in the list by checking the next pointer. */
175static cselib_val dummy_val;
176
457eeaae
JJ
177/* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
178 that is constant through the whole function and should never be
179 eliminated. */
180static cselib_val *cfa_base_preserved_val;
181
7080f735 182/* Used to list all values that contain memory reference.
7101fb18
JH
183 May or may not contain the useless values - the list is compacted
184 each time memory is invalidated. */
185static cselib_val *first_containing_mem = &dummy_val;
23bd7a93 186static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
6fb5fa3c
DB
187
188/* If nonnull, cselib will call this function before freeing useless
189 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
190void (*cselib_discard_hook) (cselib_val *);
b5b8b0ac
AO
191
192/* If nonnull, cselib will call this function before recording sets or
193 even clobbering outputs of INSN. All the recorded sets will be
194 represented in the array sets[n_sets]. new_val_min can be used to
195 tell whether values present in sets are introduced by this
196 instruction. */
197void (*cselib_record_sets_hook) (rtx insn, struct cselib_set *sets,
198 int n_sets);
199
200#define PRESERVED_VALUE_P(RTX) \
201 (RTL_FLAG_CHECK1("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
b5b8b0ac 202
fa49fd0f
RK
203\f
204
205/* Allocate a struct elt_list and fill in its two elements with the
206 arguments. */
207
6a59927d 208static inline struct elt_list *
7080f735 209new_elt_list (struct elt_list *next, cselib_val *elt)
fa49fd0f 210{
6a59927d 211 struct elt_list *el;
f883e0a7 212 el = (struct elt_list *) pool_alloc (elt_list_pool);
fa49fd0f
RK
213 el->next = next;
214 el->elt = elt;
215 return el;
216}
217
218/* Allocate a struct elt_loc_list and fill in its two elements with the
219 arguments. */
220
6a59927d 221static inline struct elt_loc_list *
7080f735 222new_elt_loc_list (struct elt_loc_list *next, rtx loc)
fa49fd0f 223{
6a59927d 224 struct elt_loc_list *el;
f883e0a7 225 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
fa49fd0f
RK
226 el->next = next;
227 el->loc = loc;
228 el->setting_insn = cselib_current_insn;
5847e8da
AO
229 gcc_assert (!next || !next->setting_insn
230 || !DEBUG_INSN_P (next->setting_insn));
231
232 /* If we're creating the first loc in a debug insn context, we've
233 just created a debug value. Count it. */
234 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
235 n_debug_values++;
236
fa49fd0f
RK
237 return el;
238}
239
5847e8da
AO
240/* Promote loc L to a nondebug cselib_current_insn if L is marked as
241 originating from a debug insn, maintaining the debug values
242 count. */
243
244static inline void
245promote_debug_loc (struct elt_loc_list *l)
246{
247 if (l->setting_insn && DEBUG_INSN_P (l->setting_insn)
248 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
249 {
250 n_debug_values--;
251 l->setting_insn = cselib_current_insn;
252 gcc_assert (!l->next);
253 }
254}
255
fa49fd0f
RK
256/* The elt_list at *PL is no longer needed. Unchain it and free its
257 storage. */
258
6a59927d 259static inline void
7080f735 260unchain_one_elt_list (struct elt_list **pl)
fa49fd0f
RK
261{
262 struct elt_list *l = *pl;
263
264 *pl = l->next;
6a59927d 265 pool_free (elt_list_pool, l);
fa49fd0f
RK
266}
267
268/* Likewise for elt_loc_lists. */
269
270static void
7080f735 271unchain_one_elt_loc_list (struct elt_loc_list **pl)
fa49fd0f
RK
272{
273 struct elt_loc_list *l = *pl;
274
275 *pl = l->next;
6a59927d 276 pool_free (elt_loc_list_pool, l);
fa49fd0f
RK
277}
278
279/* Likewise for cselib_vals. This also frees the addr_list associated with
280 V. */
281
282static void
7080f735 283unchain_one_value (cselib_val *v)
fa49fd0f
RK
284{
285 while (v->addr_list)
286 unchain_one_elt_list (&v->addr_list);
287
6a59927d 288 pool_free (cselib_val_pool, v);
fa49fd0f
RK
289}
290
291/* Remove all entries from the hash table. Also used during
b5b8b0ac 292 initialization. */
fa49fd0f 293
eb232f4e
SB
294void
295cselib_clear_table (void)
b5b8b0ac 296{
5440c0e7 297 cselib_reset_table (1);
b5b8b0ac
AO
298}
299
457eeaae
JJ
300/* Remove from hash table all VALUEs except constants. */
301
302static int
303preserve_only_constants (void **x, void *info ATTRIBUTE_UNUSED)
304{
305 cselib_val *v = (cselib_val *)*x;
306
307 if (v->locs != NULL
308 && v->locs->next == NULL)
309 {
310 if (CONSTANT_P (v->locs->loc)
311 && (GET_CODE (v->locs->loc) != CONST
312 || !references_value_p (v->locs->loc, 0)))
313 return 1;
314 if (cfa_base_preserved_val)
315 {
316 if (v == cfa_base_preserved_val)
317 return 1;
318 if (GET_CODE (v->locs->loc) == PLUS
319 && CONST_INT_P (XEXP (v->locs->loc, 1))
320 && XEXP (v->locs->loc, 0) == cfa_base_preserved_val->val_rtx)
321 return 1;
322 }
323 }
324
325 htab_clear_slot (cselib_hash_table, x);
326 return 1;
327}
328
b5b8b0ac
AO
329/* Remove all entries from the hash table, arranging for the next
330 value to be numbered NUM. */
331
332void
5440c0e7 333cselib_reset_table (unsigned int num)
fa49fd0f
RK
334{
335 unsigned int i;
336
31825e57
DM
337 max_value_regs = 0;
338
457eeaae
JJ
339 if (cfa_base_preserved_val)
340 {
341 unsigned int regno = REGNO (cfa_base_preserved_val->locs->loc);
342 unsigned int new_used_regs = 0;
343 for (i = 0; i < n_used_regs; i++)
344 if (used_regs[i] == regno)
345 {
346 new_used_regs = 1;
347 continue;
348 }
349 else
350 REG_VALUES (used_regs[i]) = 0;
351 gcc_assert (new_used_regs == 1);
352 n_used_regs = new_used_regs;
353 used_regs[0] = regno;
354 max_value_regs
355 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
356 }
357 else
358 {
359 for (i = 0; i < n_used_regs; i++)
360 REG_VALUES (used_regs[i]) = 0;
361 n_used_regs = 0;
362 }
fa49fd0f 363
457eeaae
JJ
364 if (cselib_preserve_constants)
365 htab_traverse (cselib_hash_table, preserve_only_constants, NULL);
366 else
367 htab_empty (cselib_hash_table);
fa49fd0f 368
fa49fd0f 369 n_useless_values = 0;
5847e8da
AO
370 n_useless_debug_values = 0;
371 n_debug_values = 0;
fa49fd0f 372
5440c0e7 373 next_uid = num;
7101fb18
JH
374
375 first_containing_mem = &dummy_val;
fa49fd0f
RK
376}
377
b5b8b0ac
AO
378/* Return the number of the next value that will be generated. */
379
380unsigned int
5440c0e7 381cselib_get_next_uid (void)
b5b8b0ac 382{
5440c0e7 383 return next_uid;
b5b8b0ac
AO
384}
385
fa49fd0f
RK
386/* The equality test for our hash table. The first argument ENTRY is a table
387 element (i.e. a cselib_val), while the second arg X is an rtx. We know
388 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
389 CONST of an appropriate mode. */
390
391static int
7080f735 392entry_and_rtx_equal_p (const void *entry, const void *x_arg)
fa49fd0f
RK
393{
394 struct elt_loc_list *l;
e5cfc29f 395 const cselib_val *const v = (const cselib_val *) entry;
f883e0a7 396 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
fa49fd0f
RK
397 enum machine_mode mode = GET_MODE (x);
398
481683e1 399 gcc_assert (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
341c100f 400 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
b8698a0f 401
757bbef8 402 if (mode != GET_MODE (v->val_rtx))
fa49fd0f
RK
403 return 0;
404
405 /* Unwrap X if necessary. */
406 if (GET_CODE (x) == CONST
481683e1 407 && (CONST_INT_P (XEXP (x, 0))
091a3ac7 408 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
fa49fd0f
RK
409 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
410 x = XEXP (x, 0);
7080f735 411
fa49fd0f
RK
412 /* We don't guarantee that distinct rtx's have different hash values,
413 so we need to do a comparison. */
414 for (l = v->locs; l; l = l->next)
415 if (rtx_equal_for_cselib_p (l->loc, x))
5847e8da
AO
416 {
417 promote_debug_loc (l);
418 return 1;
419 }
fa49fd0f
RK
420
421 return 0;
422}
423
424/* The hash function for our hash table. The value is always computed with
0516f6fe
SB
425 cselib_hash_rtx when adding an element; this function just extracts the
426 hash value from a cselib_val structure. */
fa49fd0f 427
fb7e6024 428static hashval_t
7080f735 429get_value_hash (const void *entry)
fa49fd0f 430{
4f588890 431 const cselib_val *const v = (const cselib_val *) entry;
5440c0e7 432 return v->hash;
fa49fd0f
RK
433}
434
435/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
436 only return true for values which point to a cselib_val whose value
437 element has been set to zero, which implies the cselib_val will be
438 removed. */
439
440int
4f588890 441references_value_p (const_rtx x, int only_useless)
fa49fd0f 442{
4f588890 443 const enum rtx_code code = GET_CODE (x);
fa49fd0f
RK
444 const char *fmt = GET_RTX_FORMAT (code);
445 int i, j;
446
447 if (GET_CODE (x) == VALUE
448 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
449 return 1;
450
451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
452 {
453 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
454 return 1;
455 else if (fmt[i] == 'E')
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (references_value_p (XVECEXP (x, i, j), only_useless))
458 return 1;
459 }
460
461 return 0;
462}
463
464/* For all locations found in X, delete locations that reference useless
465 values (i.e. values without any location). Called through
466 htab_traverse. */
467
468static int
7080f735 469discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f
RK
470{
471 cselib_val *v = (cselib_val *)*x;
472 struct elt_loc_list **p = &v->locs;
5847e8da
AO
473 bool had_locs = v->locs != NULL;
474 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f
RK
475
476 while (*p)
477 {
478 if (references_value_p ((*p)->loc, 1))
479 unchain_one_elt_loc_list (p);
480 else
481 p = &(*p)->next;
482 }
483
b5b8b0ac 484 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 485 {
5847e8da
AO
486 if (setting_insn && DEBUG_INSN_P (setting_insn))
487 n_useless_debug_values++;
488 else
489 n_useless_values++;
fa49fd0f
RK
490 values_became_useless = 1;
491 }
492 return 1;
493}
494
495/* If X is a value with no locations, remove it from the hashtable. */
496
497static int
7080f735 498discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
fa49fd0f
RK
499{
500 cselib_val *v = (cselib_val *)*x;
501
b5b8b0ac 502 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
fa49fd0f 503 {
6fb5fa3c
DB
504 if (cselib_discard_hook)
505 cselib_discard_hook (v);
506
757bbef8 507 CSELIB_VAL_PTR (v->val_rtx) = NULL;
7c514720 508 htab_clear_slot (cselib_hash_table, x);
fa49fd0f
RK
509 unchain_one_value (v);
510 n_useless_values--;
511 }
512
513 return 1;
514}
515
516/* Clean out useless values (i.e. those which no longer have locations
517 associated with them) from the hash table. */
518
519static void
7080f735 520remove_useless_values (void)
fa49fd0f 521{
7101fb18 522 cselib_val **p, *v;
5847e8da 523
fa49fd0f
RK
524 /* First pass: eliminate locations that reference the value. That in
525 turn can make more values useless. */
526 do
527 {
528 values_became_useless = 0;
7c514720 529 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
fa49fd0f
RK
530 }
531 while (values_became_useless);
532
533 /* Second pass: actually remove the values. */
fa49fd0f 534
7101fb18
JH
535 p = &first_containing_mem;
536 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
537 if (v->locs)
538 {
539 *p = v;
540 p = &(*p)->next_containing_mem;
541 }
542 *p = &dummy_val;
543
5847e8da
AO
544 n_useless_values += n_useless_debug_values;
545 n_debug_values -= n_useless_debug_values;
546 n_useless_debug_values = 0;
547
7c514720 548 htab_traverse (cselib_hash_table, discard_useless_values, 0);
3e2a0bd2 549
341c100f 550 gcc_assert (!n_useless_values);
fa49fd0f
RK
551}
552
b5b8b0ac
AO
553/* Arrange for a value to not be removed from the hash table even if
554 it becomes useless. */
555
556void
557cselib_preserve_value (cselib_val *v)
558{
559 PRESERVED_VALUE_P (v->val_rtx) = 1;
560}
561
562/* Test whether a value is preserved. */
563
564bool
565cselib_preserved_value_p (cselib_val *v)
566{
567 return PRESERVED_VALUE_P (v->val_rtx);
568}
569
457eeaae
JJ
570/* Arrange for a REG value to be assumed constant through the whole function,
571 never invalidated and preserved across cselib_reset_table calls. */
572
573void
574cselib_preserve_cfa_base_value (cselib_val *v)
575{
576 if (cselib_preserve_constants
577 && v->locs
578 && REG_P (v->locs->loc))
579 cfa_base_preserved_val = v;
580}
581
b5b8b0ac
AO
582/* Clean all non-constant expressions in the hash table, but retain
583 their values. */
584
585void
0de3e43f 586cselib_preserve_only_values (void)
b5b8b0ac
AO
587{
588 int i;
589
b5b8b0ac
AO
590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
591 cselib_invalidate_regno (i, reg_raw_mode[i]);
592
593 cselib_invalidate_mem (callmem);
594
595 remove_useless_values ();
596
597 gcc_assert (first_containing_mem == &dummy_val);
598}
599
60fa6660
AO
600/* Return the mode in which a register was last set. If X is not a
601 register, return its mode. If the mode in which the register was
602 set is not known, or the value was already clobbered, return
603 VOIDmode. */
604
605enum machine_mode
4f588890 606cselib_reg_set_mode (const_rtx x)
60fa6660 607{
f8cfc6aa 608 if (!REG_P (x))
60fa6660
AO
609 return GET_MODE (x);
610
611 if (REG_VALUES (REGNO (x)) == NULL
612 || REG_VALUES (REGNO (x))->elt == NULL)
613 return VOIDmode;
614
757bbef8 615 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
60fa6660
AO
616}
617
fa49fd0f
RK
618/* Return nonzero if we can prove that X and Y contain the same value, taking
619 our gathered information into account. */
620
621int
7080f735 622rtx_equal_for_cselib_p (rtx x, rtx y)
fa49fd0f
RK
623{
624 enum rtx_code code;
625 const char *fmt;
626 int i;
7080f735 627
f8cfc6aa 628 if (REG_P (x) || MEM_P (x))
fa49fd0f
RK
629 {
630 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
631
632 if (e)
757bbef8 633 x = e->val_rtx;
fa49fd0f
RK
634 }
635
f8cfc6aa 636 if (REG_P (y) || MEM_P (y))
fa49fd0f
RK
637 {
638 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
639
640 if (e)
757bbef8 641 y = e->val_rtx;
fa49fd0f
RK
642 }
643
644 if (x == y)
645 return 1;
646
647 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
648 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
649
650 if (GET_CODE (x) == VALUE)
651 {
652 cselib_val *e = CSELIB_VAL_PTR (x);
653 struct elt_loc_list *l;
654
655 for (l = e->locs; l; l = l->next)
656 {
657 rtx t = l->loc;
658
659 /* Avoid infinite recursion. */
3c0cb5de 660 if (REG_P (t) || MEM_P (t))
fa49fd0f
RK
661 continue;
662 else if (rtx_equal_for_cselib_p (t, y))
663 return 1;
664 }
7080f735 665
fa49fd0f
RK
666 return 0;
667 }
668
669 if (GET_CODE (y) == VALUE)
670 {
671 cselib_val *e = CSELIB_VAL_PTR (y);
672 struct elt_loc_list *l;
673
674 for (l = e->locs; l; l = l->next)
675 {
676 rtx t = l->loc;
677
3c0cb5de 678 if (REG_P (t) || MEM_P (t))
fa49fd0f
RK
679 continue;
680 else if (rtx_equal_for_cselib_p (x, t))
681 return 1;
682 }
7080f735 683
fa49fd0f
RK
684 return 0;
685 }
686
687 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
688 return 0;
689
37cf6116
RH
690 /* These won't be handled correctly by the code below. */
691 switch (GET_CODE (x))
692 {
693 case CONST_DOUBLE:
091a3ac7 694 case CONST_FIXED:
0ca5af51 695 case DEBUG_EXPR:
37cf6116
RH
696 return 0;
697
698 case LABEL_REF:
699 return XEXP (x, 0) == XEXP (y, 0);
700
701 default:
702 break;
703 }
7080f735 704
fa49fd0f
RK
705 code = GET_CODE (x);
706 fmt = GET_RTX_FORMAT (code);
707
708 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
709 {
710 int j;
711
712 switch (fmt[i])
713 {
714 case 'w':
715 if (XWINT (x, i) != XWINT (y, i))
716 return 0;
717 break;
718
719 case 'n':
720 case 'i':
721 if (XINT (x, i) != XINT (y, i))
722 return 0;
723 break;
724
725 case 'V':
726 case 'E':
727 /* Two vectors must have the same length. */
728 if (XVECLEN (x, i) != XVECLEN (y, i))
729 return 0;
730
731 /* And the corresponding elements must match. */
732 for (j = 0; j < XVECLEN (x, i); j++)
733 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
734 XVECEXP (y, i, j)))
735 return 0;
736 break;
737
738 case 'e':
29c1846b
R
739 if (i == 1
740 && targetm.commutative_p (x, UNKNOWN)
741 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
742 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
743 return 1;
fa49fd0f
RK
744 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
745 return 0;
746 break;
747
748 case 'S':
749 case 's':
750 if (strcmp (XSTR (x, i), XSTR (y, i)))
751 return 0;
752 break;
753
754 case 'u':
755 /* These are just backpointers, so they don't matter. */
756 break;
757
758 case '0':
759 case 't':
760 break;
761
762 /* It is believed that rtx's at this level will never
763 contain anything but integers and other rtx's,
764 except for within LABEL_REFs and SYMBOL_REFs. */
765 default:
341c100f 766 gcc_unreachable ();
fa49fd0f
RK
767 }
768 }
769 return 1;
770}
771
3af4ba41
RS
772/* We need to pass down the mode of constants through the hash table
773 functions. For that purpose, wrap them in a CONST of the appropriate
774 mode. */
775static rtx
776wrap_constant (enum machine_mode mode, rtx x)
777{
778 if (!CONST_INT_P (x) && GET_CODE (x) != CONST_FIXED
779 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
780 return x;
781 gcc_assert (mode != VOIDmode);
782 return gen_rtx_CONST (mode, x);
783}
784
fa49fd0f
RK
785/* Hash an rtx. Return 0 if we couldn't hash the rtx.
786 For registers and memory locations, we look up their cselib_val structure
787 and return its VALUE element.
788 Possible reasons for return 0 are: the object is volatile, or we couldn't
789 find a register or memory location in the table and CREATE is zero. If
790 CREATE is nonzero, table elts are created for regs and mem.
29c1846b
R
791 N.B. this hash function returns the same hash value for RTXes that
792 differ only in the order of operands, thus it is suitable for comparisons
793 that take commutativity into account.
794 If we wanted to also support associative rules, we'd have to use a different
795 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
796 We used to have a MODE argument for hashing for CONST_INTs, but that
797 didn't make sense, since it caused spurious hash differences between
798 (set (reg:SI 1) (const_int))
799 (plus:SI (reg:SI 2) (reg:SI 1))
800 and
801 (plus:SI (reg:SI 2) (const_int))
802 If the mode is important in any context, it must be checked specifically
803 in a comparison anyway, since relying on hash differences is unsafe. */
fa49fd0f
RK
804
805static unsigned int
29c1846b 806cselib_hash_rtx (rtx x, int create)
fa49fd0f
RK
807{
808 cselib_val *e;
809 int i, j;
810 enum rtx_code code;
811 const char *fmt;
812 unsigned int hash = 0;
813
fa49fd0f
RK
814 code = GET_CODE (x);
815 hash += (unsigned) code + (unsigned) GET_MODE (x);
816
817 switch (code)
818 {
819 case MEM:
820 case REG:
821 e = cselib_lookup (x, GET_MODE (x), create);
822 if (! e)
823 return 0;
824
5440c0e7 825 return e->hash;
fa49fd0f 826
0ca5af51 827 case DEBUG_EXPR:
e4fb38bd
JJ
828 hash += ((unsigned) DEBUG_EXPR << 7)
829 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
0ca5af51
AO
830 return hash ? hash : (unsigned int) DEBUG_EXPR;
831
fa49fd0f 832 case CONST_INT:
29c1846b 833 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
dc76f41c 834 return hash ? hash : (unsigned int) CONST_INT;
fa49fd0f
RK
835
836 case CONST_DOUBLE:
837 /* This is like the general case, except that it only counts
838 the integers representing the constant. */
839 hash += (unsigned) code + (unsigned) GET_MODE (x);
840 if (GET_MODE (x) != VOIDmode)
46b33600 841 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
fa49fd0f
RK
842 else
843 hash += ((unsigned) CONST_DOUBLE_LOW (x)
844 + (unsigned) CONST_DOUBLE_HIGH (x));
dc76f41c 845 return hash ? hash : (unsigned int) CONST_DOUBLE;
fa49fd0f 846
091a3ac7
CF
847 case CONST_FIXED:
848 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
849 hash += fixed_hash (CONST_FIXED_VALUE (x));
850 return hash ? hash : (unsigned int) CONST_FIXED;
851
69ef87e2
AH
852 case CONST_VECTOR:
853 {
854 int units;
855 rtx elt;
856
857 units = CONST_VECTOR_NUNITS (x);
858
859 for (i = 0; i < units; ++i)
860 {
861 elt = CONST_VECTOR_ELT (x, i);
29c1846b 862 hash += cselib_hash_rtx (elt, 0);
69ef87e2
AH
863 }
864
865 return hash;
866 }
867
fa49fd0f
RK
868 /* Assume there is only one rtx object for any given label. */
869 case LABEL_REF:
4c6669c2
RS
870 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
871 differences and differences between each stage's debugging dumps. */
872 hash += (((unsigned int) LABEL_REF << 7)
873 + CODE_LABEL_NUMBER (XEXP (x, 0)));
dc76f41c 874 return hash ? hash : (unsigned int) LABEL_REF;
fa49fd0f
RK
875
876 case SYMBOL_REF:
4c6669c2
RS
877 {
878 /* Don't hash on the symbol's address to avoid bootstrap differences.
879 Different hash values may cause expressions to be recorded in
880 different orders and thus different registers to be used in the
881 final assembler. This also avoids differences in the dump files
882 between various stages. */
883 unsigned int h = 0;
884 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
885
886 while (*p)
887 h += (h << 7) + *p++; /* ??? revisit */
888
889 hash += ((unsigned int) SYMBOL_REF << 7) + h;
890 return hash ? hash : (unsigned int) SYMBOL_REF;
891 }
fa49fd0f
RK
892
893 case PRE_DEC:
894 case PRE_INC:
895 case POST_DEC:
896 case POST_INC:
897 case POST_MODIFY:
898 case PRE_MODIFY:
899 case PC:
900 case CC0:
901 case CALL:
902 case UNSPEC_VOLATILE:
903 return 0;
904
905 case ASM_OPERANDS:
906 if (MEM_VOLATILE_P (x))
907 return 0;
908
909 break;
7080f735 910
fa49fd0f
RK
911 default:
912 break;
913 }
914
915 i = GET_RTX_LENGTH (code) - 1;
916 fmt = GET_RTX_FORMAT (code);
917 for (; i >= 0; i--)
918 {
341c100f 919 switch (fmt[i])
fa49fd0f 920 {
341c100f 921 case 'e':
fa49fd0f 922 {
341c100f 923 rtx tem = XEXP (x, i);
29c1846b 924 unsigned int tem_hash = cselib_hash_rtx (tem, create);
b8698a0f 925
fa49fd0f
RK
926 if (tem_hash == 0)
927 return 0;
b8698a0f 928
fa49fd0f
RK
929 hash += tem_hash;
930 }
341c100f
NS
931 break;
932 case 'E':
933 for (j = 0; j < XVECLEN (x, i); j++)
934 {
935 unsigned int tem_hash
29c1846b 936 = cselib_hash_rtx (XVECEXP (x, i, j), create);
b8698a0f 937
341c100f
NS
938 if (tem_hash == 0)
939 return 0;
b8698a0f 940
341c100f
NS
941 hash += tem_hash;
942 }
943 break;
fa49fd0f 944
341c100f
NS
945 case 's':
946 {
947 const unsigned char *p = (const unsigned char *) XSTR (x, i);
b8698a0f 948
341c100f
NS
949 if (p)
950 while (*p)
951 hash += *p++;
952 break;
953 }
b8698a0f 954
341c100f
NS
955 case 'i':
956 hash += XINT (x, i);
957 break;
958
959 case '0':
960 case 't':
961 /* unused */
962 break;
b8698a0f 963
341c100f
NS
964 default:
965 gcc_unreachable ();
fa49fd0f 966 }
fa49fd0f
RK
967 }
968
dc76f41c 969 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
fa49fd0f
RK
970}
971
972/* Create a new value structure for VALUE and initialize it. The mode of the
973 value is MODE. */
974
6a59927d 975static inline cselib_val *
5440c0e7 976new_cselib_val (unsigned int hash, enum machine_mode mode, rtx x)
fa49fd0f 977{
f883e0a7 978 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
fa49fd0f 979
5440c0e7
AO
980 gcc_assert (hash);
981 gcc_assert (next_uid);
fa49fd0f 982
5440c0e7
AO
983 e->hash = hash;
984 e->uid = next_uid++;
d67fb775
SB
985 /* We use an alloc pool to allocate this RTL construct because it
986 accounts for about 8% of the overall memory usage. We know
987 precisely when we can have VALUE RTXen (when cselib is active)
daa956d0 988 so we don't need to put them in garbage collected memory.
d67fb775 989 ??? Why should a VALUE be an RTX in the first place? */
f883e0a7 990 e->val_rtx = (rtx) pool_alloc (value_pool);
757bbef8
SB
991 memset (e->val_rtx, 0, RTX_HDR_SIZE);
992 PUT_CODE (e->val_rtx, VALUE);
993 PUT_MODE (e->val_rtx, mode);
994 CSELIB_VAL_PTR (e->val_rtx) = e;
fa49fd0f
RK
995 e->addr_list = 0;
996 e->locs = 0;
7101fb18 997 e->next_containing_mem = 0;
b5b8b0ac
AO
998
999 if (dump_file && (dump_flags & TDF_DETAILS))
1000 {
5440c0e7 1001 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
b5b8b0ac
AO
1002 if (flag_dump_noaddr || flag_dump_unnumbered)
1003 fputs ("# ", dump_file);
1004 else
1005 fprintf (dump_file, "%p ", (void*)e);
1006 print_rtl_single (dump_file, x);
1007 fputc ('\n', dump_file);
1008 }
1009
fa49fd0f
RK
1010 return e;
1011}
1012
1013/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1014 contains the data at this address. X is a MEM that represents the
1015 value. Update the two value structures to represent this situation. */
1016
1017static void
7080f735 1018add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
fa49fd0f 1019{
fa49fd0f
RK
1020 struct elt_loc_list *l;
1021
1022 /* Avoid duplicates. */
1023 for (l = mem_elt->locs; l; l = l->next)
3c0cb5de 1024 if (MEM_P (l->loc)
fa49fd0f 1025 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
5847e8da
AO
1026 {
1027 promote_debug_loc (l);
1028 return;
1029 }
fa49fd0f 1030
fa49fd0f 1031 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
f1ec5147
RK
1032 mem_elt->locs
1033 = new_elt_loc_list (mem_elt->locs,
757bbef8 1034 replace_equiv_address_nv (x, addr_elt->val_rtx));
7101fb18
JH
1035 if (mem_elt->next_containing_mem == NULL)
1036 {
1037 mem_elt->next_containing_mem = first_containing_mem;
1038 first_containing_mem = mem_elt;
1039 }
fa49fd0f
RK
1040}
1041
1042/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1043 If CREATE, make a new one if we haven't seen it before. */
1044
1045static cselib_val *
7080f735 1046cselib_lookup_mem (rtx x, int create)
fa49fd0f
RK
1047{
1048 enum machine_mode mode = GET_MODE (x);
1049 void **slot;
1050 cselib_val *addr;
1051 cselib_val *mem_elt;
1052 struct elt_list *l;
1053
1054 if (MEM_VOLATILE_P (x) || mode == BLKmode
463301c3 1055 || !cselib_record_memory
fa49fd0f
RK
1056 || (FLOAT_MODE_P (mode) && flag_float_store))
1057 return 0;
1058
1059 /* Look up the value for the address. */
1060 addr = cselib_lookup (XEXP (x, 0), mode, create);
1061 if (! addr)
1062 return 0;
1063
1064 /* Find a value that describes a value of our mode at that address. */
1065 for (l = addr->addr_list; l; l = l->next)
757bbef8 1066 if (GET_MODE (l->elt->val_rtx) == mode)
5847e8da
AO
1067 {
1068 promote_debug_loc (l->elt->locs);
1069 return l->elt;
1070 }
fa49fd0f
RK
1071
1072 if (! create)
1073 return 0;
1074
5440c0e7 1075 mem_elt = new_cselib_val (next_uid, mode, x);
fa49fd0f 1076 add_mem_for_addr (addr, mem_elt, x);
7c514720 1077 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
5440c0e7 1078 mem_elt->hash, INSERT);
fa49fd0f
RK
1079 *slot = mem_elt;
1080 return mem_elt;
1081}
1082
6fb5fa3c
DB
1083/* Search thru the possible substitutions in P. We prefer a non reg
1084 substitution because this allows us to expand the tree further. If
1085 we find, just a reg, take the lowest regno. There may be several
1086 non-reg results, we just take the first one because they will all
1087 expand to the same place. */
1088
b8698a0f 1089static rtx
b5b8b0ac
AO
1090expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1091 int max_depth)
6fb5fa3c
DB
1092{
1093 rtx reg_result = NULL;
1094 unsigned int regno = UINT_MAX;
1095 struct elt_loc_list *p_in = p;
1096
1097 for (; p; p = p -> next)
1098 {
1099 /* Avoid infinite recursion trying to expand a reg into a
1100 the same reg. */
b8698a0f
L
1101 if ((REG_P (p->loc))
1102 && (REGNO (p->loc) < regno)
b5b8b0ac 1103 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
6fb5fa3c
DB
1104 {
1105 reg_result = p->loc;
1106 regno = REGNO (p->loc);
1107 }
1108 /* Avoid infinite recursion and do not try to expand the
1109 value. */
b8698a0f 1110 else if (GET_CODE (p->loc) == VALUE
6fb5fa3c
DB
1111 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1112 continue;
1113 else if (!REG_P (p->loc))
1114 {
8dd5516b 1115 rtx result, note;
b5b8b0ac 1116 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1117 {
1118 print_inline_rtx (dump_file, p->loc, 0);
1119 fprintf (dump_file, "\n");
1120 }
8dd5516b
JJ
1121 if (GET_CODE (p->loc) == LO_SUM
1122 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1123 && p->setting_insn
1124 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1125 && XEXP (note, 0) == XEXP (p->loc, 1))
1126 return XEXP (p->loc, 1);
b5b8b0ac 1127 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
6fb5fa3c
DB
1128 if (result)
1129 return result;
1130 }
b8698a0f 1131
6fb5fa3c 1132 }
b8698a0f 1133
6fb5fa3c
DB
1134 if (regno != UINT_MAX)
1135 {
1136 rtx result;
b5b8b0ac 1137 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1138 fprintf (dump_file, "r%d\n", regno);
1139
b5b8b0ac 1140 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
6fb5fa3c
DB
1141 if (result)
1142 return result;
1143 }
1144
b5b8b0ac 1145 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1146 {
1147 if (reg_result)
1148 {
1149 print_inline_rtx (dump_file, reg_result, 0);
1150 fprintf (dump_file, "\n");
1151 }
b8698a0f 1152 else
6fb5fa3c
DB
1153 fprintf (dump_file, "NULL\n");
1154 }
1155 return reg_result;
1156}
1157
1158
1159/* Forward substitute and expand an expression out to its roots.
1160 This is the opposite of common subexpression. Because local value
1161 numbering is such a weak optimization, the expanded expression is
1162 pretty much unique (not from a pointer equals point of view but
b8698a0f 1163 from a tree shape point of view.
6fb5fa3c
DB
1164
1165 This function returns NULL if the expansion fails. The expansion
1166 will fail if there is no value number for one of the operands or if
1167 one of the operands has been overwritten between the current insn
1168 and the beginning of the basic block. For instance x has no
1169 expansion in:
1170
1171 r1 <- r1 + 3
1172 x <- r1 + 8
1173
1174 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1175 It is clear on return. */
1176
1177rtx
1178cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
b5b8b0ac
AO
1179{
1180 struct expand_value_data evd;
1181
1182 evd.regs_active = regs_active;
1183 evd.callback = NULL;
1184 evd.callback_arg = NULL;
864ddef7 1185 evd.dummy = false;
b5b8b0ac
AO
1186
1187 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1188}
1189
1190/* Same as cselib_expand_value_rtx, but using a callback to try to
0b7e34d7
AO
1191 resolve some expressions. The CB function should return ORIG if it
1192 can't or does not want to deal with a certain RTX. Any other
1193 return value, including NULL, will be used as the expansion for
1194 VALUE, without any further changes. */
b5b8b0ac
AO
1195
1196rtx
1197cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1198 cselib_expand_callback cb, void *data)
1199{
1200 struct expand_value_data evd;
1201
1202 evd.regs_active = regs_active;
1203 evd.callback = cb;
1204 evd.callback_arg = data;
864ddef7 1205 evd.dummy = false;
b5b8b0ac
AO
1206
1207 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1208}
1209
864ddef7
JJ
1210/* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1211 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1212 would return NULL or non-NULL, without allocating new rtx. */
1213
1214bool
1215cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1216 cselib_expand_callback cb, void *data)
1217{
1218 struct expand_value_data evd;
1219
1220 evd.regs_active = regs_active;
1221 evd.callback = cb;
1222 evd.callback_arg = data;
1223 evd.dummy = true;
1224
1225 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1226}
1227
0b7e34d7
AO
1228/* Internal implementation of cselib_expand_value_rtx and
1229 cselib_expand_value_rtx_cb. */
1230
b5b8b0ac
AO
1231static rtx
1232cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1233 int max_depth)
6fb5fa3c
DB
1234{
1235 rtx copy, scopy;
1236 int i, j;
1237 RTX_CODE code;
1238 const char *format_ptr;
8dd5516b 1239 enum machine_mode mode;
6fb5fa3c
DB
1240
1241 code = GET_CODE (orig);
1242
1243 /* For the context of dse, if we end up expand into a huge tree, we
1244 will not have a useful address, so we might as well just give up
1245 quickly. */
1246 if (max_depth <= 0)
1247 return NULL;
1248
1249 switch (code)
1250 {
1251 case REG:
1252 {
1253 struct elt_list *l = REG_VALUES (REGNO (orig));
1254
1255 if (l && l->elt == NULL)
1256 l = l->next;
1257 for (; l; l = l->next)
1258 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1259 {
1260 rtx result;
1261 int regno = REGNO (orig);
b8698a0f 1262
6fb5fa3c 1263 /* The only thing that we are not willing to do (this
6ed3da00 1264 is requirement of dse and if others potential uses
6fb5fa3c
DB
1265 need this function we should add a parm to control
1266 it) is that we will not substitute the
1267 STACK_POINTER_REGNUM, FRAME_POINTER or the
1268 HARD_FRAME_POINTER.
1269
cea618ac 1270 These expansions confuses the code that notices that
6fb5fa3c
DB
1271 stores into the frame go dead at the end of the
1272 function and that the frame is not effected by calls
1273 to subroutines. If you allow the
1274 STACK_POINTER_REGNUM substitution, then dse will
1275 think that parameter pushing also goes dead which is
1276 wrong. If you allow the FRAME_POINTER or the
1277 HARD_FRAME_POINTER then you lose the opportunity to
1278 make the frame assumptions. */
1279 if (regno == STACK_POINTER_REGNUM
1280 || regno == FRAME_POINTER_REGNUM
1281 || regno == HARD_FRAME_POINTER_REGNUM)
1282 return orig;
1283
b5b8b0ac 1284 bitmap_set_bit (evd->regs_active, regno);
6fb5fa3c 1285
b5b8b0ac 1286 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1287 fprintf (dump_file, "expanding: r%d into: ", regno);
1288
b5b8b0ac
AO
1289 result = expand_loc (l->elt->locs, evd, max_depth);
1290 bitmap_clear_bit (evd->regs_active, regno);
6fb5fa3c
DB
1291
1292 if (result)
1293 return result;
b8698a0f 1294 else
6fb5fa3c
DB
1295 return orig;
1296 }
1297 }
b8698a0f 1298
6fb5fa3c
DB
1299 case CONST_INT:
1300 case CONST_DOUBLE:
1301 case CONST_VECTOR:
1302 case SYMBOL_REF:
1303 case CODE_LABEL:
1304 case PC:
1305 case CC0:
1306 case SCRATCH:
1307 /* SCRATCH must be shared because they represent distinct values. */
1308 return orig;
1309 case CLOBBER:
1310 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1311 return orig;
1312 break;
1313
1314 case CONST:
1315 if (shared_const_p (orig))
1316 return orig;
1317 break;
1318
8dd5516b 1319 case SUBREG:
6fb5fa3c 1320 {
0b7e34d7
AO
1321 rtx subreg;
1322
1323 if (evd->callback)
1324 {
1325 subreg = evd->callback (orig, evd->regs_active, max_depth,
1326 evd->callback_arg);
1327 if (subreg != orig)
1328 return subreg;
1329 }
1330
1331 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1332 max_depth - 1);
8dd5516b
JJ
1333 if (!subreg)
1334 return NULL;
1335 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1336 GET_MODE (SUBREG_REG (orig)),
1337 SUBREG_BYTE (orig));
0b7e34d7
AO
1338 if (scopy == NULL
1339 || (GET_CODE (scopy) == SUBREG
1340 && !REG_P (SUBREG_REG (scopy))
1341 && !MEM_P (SUBREG_REG (scopy))))
1342 return NULL;
1343
8dd5516b 1344 return scopy;
6fb5fa3c 1345 }
8dd5516b
JJ
1346
1347 case VALUE:
b5b8b0ac
AO
1348 {
1349 rtx result;
0b7e34d7 1350
b5b8b0ac
AO
1351 if (dump_file && (dump_flags & TDF_DETAILS))
1352 {
1353 fputs ("\nexpanding ", dump_file);
1354 print_rtl_single (dump_file, orig);
1355 fputs (" into...", dump_file);
1356 }
8dd5516b 1357
0b7e34d7 1358 if (evd->callback)
b5b8b0ac
AO
1359 {
1360 result = evd->callback (orig, evd->regs_active, max_depth,
1361 evd->callback_arg);
0b7e34d7
AO
1362
1363 if (result != orig)
1364 return result;
b5b8b0ac 1365 }
8dd5516b 1366
0b7e34d7 1367 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
b5b8b0ac
AO
1368 return result;
1369 }
0ca5af51
AO
1370
1371 case DEBUG_EXPR:
1372 if (evd->callback)
1373 return evd->callback (orig, evd->regs_active, max_depth,
1374 evd->callback_arg);
1375 return orig;
1376
6fb5fa3c
DB
1377 default:
1378 break;
1379 }
1380
1381 /* Copy the various flags, fields, and other information. We assume
1382 that all fields need copying, and then clear the fields that should
1383 not be copied. That is the sensible default behavior, and forces
1384 us to explicitly document why we are *not* copying a flag. */
864ddef7
JJ
1385 if (evd->dummy)
1386 copy = NULL;
1387 else
1388 copy = shallow_copy_rtx (orig);
6fb5fa3c 1389
8dd5516b 1390 format_ptr = GET_RTX_FORMAT (code);
6fb5fa3c 1391
8dd5516b 1392 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6fb5fa3c
DB
1393 switch (*format_ptr++)
1394 {
1395 case 'e':
1396 if (XEXP (orig, i) != NULL)
1397 {
b5b8b0ac
AO
1398 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1399 max_depth - 1);
6fb5fa3c
DB
1400 if (!result)
1401 return NULL;
864ddef7
JJ
1402 if (copy)
1403 XEXP (copy, i) = result;
6fb5fa3c
DB
1404 }
1405 break;
1406
1407 case 'E':
1408 case 'V':
1409 if (XVEC (orig, i) != NULL)
1410 {
864ddef7
JJ
1411 if (copy)
1412 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1413 for (j = 0; j < XVECLEN (orig, i); j++)
6fb5fa3c 1414 {
b5b8b0ac
AO
1415 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1416 evd, max_depth - 1);
6fb5fa3c
DB
1417 if (!result)
1418 return NULL;
864ddef7
JJ
1419 if (copy)
1420 XVECEXP (copy, i, j) = result;
6fb5fa3c
DB
1421 }
1422 }
1423 break;
1424
1425 case 't':
1426 case 'w':
1427 case 'i':
1428 case 's':
1429 case 'S':
1430 case 'T':
1431 case 'u':
1432 case 'B':
1433 case '0':
1434 /* These are left unchanged. */
1435 break;
1436
1437 default:
1438 gcc_unreachable ();
1439 }
1440
864ddef7
JJ
1441 if (evd->dummy)
1442 return orig;
1443
8dd5516b
JJ
1444 mode = GET_MODE (copy);
1445 /* If an operand has been simplified into CONST_INT, which doesn't
1446 have a mode and the mode isn't derivable from whole rtx's mode,
1447 try simplify_*_operation first with mode from original's operand
1448 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1449 scopy = copy;
1450 switch (GET_RTX_CLASS (code))
1451 {
1452 case RTX_UNARY:
1453 if (CONST_INT_P (XEXP (copy, 0))
1454 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1455 {
1456 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1457 GET_MODE (XEXP (orig, 0)));
1458 if (scopy)
1459 return scopy;
1460 }
1461 break;
1462 case RTX_COMM_ARITH:
1463 case RTX_BIN_ARITH:
1464 /* These expressions can derive operand modes from the whole rtx's mode. */
1465 break;
1466 case RTX_TERNARY:
1467 case RTX_BITFIELD_OPS:
1468 if (CONST_INT_P (XEXP (copy, 0))
1469 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1470 {
1471 scopy = simplify_ternary_operation (code, mode,
1472 GET_MODE (XEXP (orig, 0)),
1473 XEXP (copy, 0), XEXP (copy, 1),
1474 XEXP (copy, 2));
1475 if (scopy)
1476 return scopy;
1477 }
1478 break;
1479 case RTX_COMPARE:
1480 case RTX_COMM_COMPARE:
1481 if (CONST_INT_P (XEXP (copy, 0))
1482 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1483 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1484 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1485 {
1486 scopy = simplify_relational_operation (code, mode,
1487 (GET_MODE (XEXP (orig, 0))
1488 != VOIDmode)
1489 ? GET_MODE (XEXP (orig, 0))
1490 : GET_MODE (XEXP (orig, 1)),
1491 XEXP (copy, 0),
1492 XEXP (copy, 1));
1493 if (scopy)
1494 return scopy;
1495 }
1496 break;
1497 default:
1498 break;
1499 }
6fb5fa3c
DB
1500 scopy = simplify_rtx (copy);
1501 if (scopy)
3af4ba41 1502 return scopy;
6fb5fa3c
DB
1503 return copy;
1504}
1505
fa49fd0f
RK
1506/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1507 with VALUE expressions. This way, it becomes independent of changes
1508 to registers and memory.
1509 X isn't actually modified; if modifications are needed, new rtl is
1510 allocated. However, the return value can share rtl with X. */
1511
91700444 1512rtx
7080f735 1513cselib_subst_to_values (rtx x)
fa49fd0f
RK
1514{
1515 enum rtx_code code = GET_CODE (x);
1516 const char *fmt = GET_RTX_FORMAT (code);
1517 cselib_val *e;
1518 struct elt_list *l;
1519 rtx copy = x;
1520 int i;
1521
1522 switch (code)
1523 {
1524 case REG:
60fa6660
AO
1525 l = REG_VALUES (REGNO (x));
1526 if (l && l->elt == NULL)
1527 l = l->next;
1528 for (; l; l = l->next)
757bbef8
SB
1529 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1530 return l->elt->val_rtx;
fa49fd0f 1531
341c100f 1532 gcc_unreachable ();
fa49fd0f
RK
1533
1534 case MEM:
1535 e = cselib_lookup_mem (x, 0);
1536 if (! e)
91700444
BS
1537 {
1538 /* This happens for autoincrements. Assign a value that doesn't
1539 match any other. */
5440c0e7 1540 e = new_cselib_val (next_uid, GET_MODE (x), x);
91700444 1541 }
757bbef8 1542 return e->val_rtx;
fa49fd0f 1543
fa49fd0f 1544 case CONST_DOUBLE:
69ef87e2 1545 case CONST_VECTOR:
fa49fd0f 1546 case CONST_INT:
091a3ac7 1547 case CONST_FIXED:
fa49fd0f
RK
1548 return x;
1549
91700444
BS
1550 case POST_INC:
1551 case PRE_INC:
1552 case POST_DEC:
1553 case PRE_DEC:
1554 case POST_MODIFY:
1555 case PRE_MODIFY:
5440c0e7 1556 e = new_cselib_val (next_uid, GET_MODE (x), x);
757bbef8 1557 return e->val_rtx;
7080f735 1558
fa49fd0f
RK
1559 default:
1560 break;
1561 }
1562
1563 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1564 {
1565 if (fmt[i] == 'e')
1566 {
1567 rtx t = cselib_subst_to_values (XEXP (x, i));
1568
bd7960b1
RS
1569 if (t != XEXP (x, i))
1570 {
1571 if (x == copy)
1572 copy = shallow_copy_rtx (x);
1573 XEXP (copy, i) = t;
1574 }
fa49fd0f
RK
1575 }
1576 else if (fmt[i] == 'E')
1577 {
bd7960b1 1578 int j;
fa49fd0f
RK
1579
1580 for (j = 0; j < XVECLEN (x, i); j++)
1581 {
1582 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1583
bd7960b1 1584 if (t != XVECEXP (x, i, j))
fa49fd0f 1585 {
bd7960b1
RS
1586 if (XVEC (x, i) == XVEC (copy, i))
1587 {
1588 if (x == copy)
1589 copy = shallow_copy_rtx (x);
1590 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1591 }
1592 XVECEXP (copy, i, j) = t;
fa49fd0f 1593 }
fa49fd0f
RK
1594 }
1595 }
1596 }
1597
1598 return copy;
1599}
1600
1601/* Look up the rtl expression X in our tables and return the value it has.
1602 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1603 we create a new one if possible, using mode MODE if X doesn't have a mode
1604 (i.e. because it's a constant). */
1605
5847e8da
AO
1606static cselib_val *
1607cselib_lookup_1 (rtx x, enum machine_mode mode, int create)
fa49fd0f
RK
1608{
1609 void **slot;
1610 cselib_val *e;
1611 unsigned int hashval;
1612
1613 if (GET_MODE (x) != VOIDmode)
1614 mode = GET_MODE (x);
1615
1616 if (GET_CODE (x) == VALUE)
1617 return CSELIB_VAL_PTR (x);
1618
f8cfc6aa 1619 if (REG_P (x))
fa49fd0f
RK
1620 {
1621 struct elt_list *l;
1622 unsigned int i = REGNO (x);
1623
60fa6660
AO
1624 l = REG_VALUES (i);
1625 if (l && l->elt == NULL)
1626 l = l->next;
1627 for (; l; l = l->next)
757bbef8 1628 if (mode == GET_MODE (l->elt->val_rtx))
5847e8da
AO
1629 {
1630 promote_debug_loc (l->elt->locs);
1631 return l->elt;
1632 }
fa49fd0f
RK
1633
1634 if (! create)
5847e8da 1635 return 0;
fa49fd0f 1636
31825e57
DM
1637 if (i < FIRST_PSEUDO_REGISTER)
1638 {
66fd46b6 1639 unsigned int n = hard_regno_nregs[i][mode];
31825e57
DM
1640
1641 if (n > max_value_regs)
1642 max_value_regs = n;
1643 }
1644
5440c0e7 1645 e = new_cselib_val (next_uid, GET_MODE (x), x);
fa49fd0f
RK
1646 e->locs = new_elt_loc_list (e->locs, x);
1647 if (REG_VALUES (i) == 0)
60fa6660
AO
1648 {
1649 /* Maintain the invariant that the first entry of
1650 REG_VALUES, if present, must be the value used to set the
1651 register, or NULL. */
6790d1ab 1652 used_regs[n_used_regs++] = i;
60fa6660
AO
1653 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1654 }
1655 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
5440c0e7 1656 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->hash, INSERT);
fa49fd0f 1657 *slot = e;
5847e8da 1658 return e;
fa49fd0f
RK
1659 }
1660
3c0cb5de 1661 if (MEM_P (x))
5847e8da 1662 return cselib_lookup_mem (x, create);
fa49fd0f 1663
29c1846b 1664 hashval = cselib_hash_rtx (x, create);
fa49fd0f
RK
1665 /* Can't even create if hashing is not possible. */
1666 if (! hashval)
5847e8da 1667 return 0;
fa49fd0f 1668
7c514720 1669 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
fa49fd0f
RK
1670 hashval, create ? INSERT : NO_INSERT);
1671 if (slot == 0)
5847e8da 1672 return 0;
fa49fd0f
RK
1673
1674 e = (cselib_val *) *slot;
1675 if (e)
5847e8da 1676 return e;
fa49fd0f 1677
b5b8b0ac 1678 e = new_cselib_val (hashval, mode, x);
fa49fd0f
RK
1679
1680 /* We have to fill the slot before calling cselib_subst_to_values:
1681 the hash table is inconsistent until we do so, and
1682 cselib_subst_to_values will need to do lookups. */
1683 *slot = (void *) e;
1684 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
5847e8da
AO
1685 return e;
1686}
1687
1688/* Wrapper for cselib_lookup, that indicates X is in INSN. */
1689
1690cselib_val *
1691cselib_lookup_from_insn (rtx x, enum machine_mode mode,
1692 int create, rtx insn)
1693{
1694 cselib_val *ret;
1695
1696 gcc_assert (!cselib_current_insn);
1697 cselib_current_insn = insn;
1698
1699 ret = cselib_lookup (x, mode, create);
1700
1701 cselib_current_insn = NULL;
1702
1703 return ret;
1704}
1705
1706/* Wrapper for cselib_lookup_1, that logs the lookup result and
1707 maintains invariants related with debug insns. */
1708
1709cselib_val *
1710cselib_lookup (rtx x, enum machine_mode mode, int create)
1711{
1712 cselib_val *ret = cselib_lookup_1 (x, mode, create);
1713
1714 /* ??? Should we return NULL if we're not to create an entry, the
1715 found loc is a debug loc and cselib_current_insn is not DEBUG?
1716 If so, we should also avoid converting val to non-DEBUG; probably
1717 easiest setting cselib_current_insn to NULL before the call
1718 above. */
1719
1720 if (dump_file && (dump_flags & TDF_DETAILS))
1721 {
1722 fputs ("cselib lookup ", dump_file);
1723 print_inline_rtx (dump_file, x, 2);
1724 fprintf (dump_file, " => %u:%u\n",
1725 ret ? ret->uid : 0,
1726 ret ? ret->hash : 0);
1727 }
1728
1729 return ret;
fa49fd0f
RK
1730}
1731
1732/* Invalidate any entries in reg_values that overlap REGNO. This is called
1733 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1734 is used to determine how many hard registers are being changed. If MODE
1735 is VOIDmode, then only REGNO is being changed; this is used when
1736 invalidating call clobbered registers across a call. */
1737
1738static void
7080f735 1739cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
fa49fd0f
RK
1740{
1741 unsigned int endregno;
1742 unsigned int i;
1743
1744 /* If we see pseudos after reload, something is _wrong_. */
341c100f
NS
1745 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1746 || reg_renumber[regno] < 0);
fa49fd0f
RK
1747
1748 /* Determine the range of registers that must be invalidated. For
1749 pseudos, only REGNO is affected. For hard regs, we must take MODE
1750 into account, and we must also invalidate lower register numbers
1751 if they contain values that overlap REGNO. */
291aac59 1752 if (regno < FIRST_PSEUDO_REGISTER)
31825e57 1753 {
341c100f 1754 gcc_assert (mode != VOIDmode);
7080f735 1755
31825e57
DM
1756 if (regno < max_value_regs)
1757 i = 0;
1758 else
1759 i = regno - max_value_regs;
fa49fd0f 1760
09e18274 1761 endregno = end_hard_regno (mode, regno);
31825e57
DM
1762 }
1763 else
1764 {
1765 i = regno;
1766 endregno = regno + 1;
1767 }
1768
1769 for (; i < endregno; i++)
fa49fd0f
RK
1770 {
1771 struct elt_list **l = &REG_VALUES (i);
1772
1773 /* Go through all known values for this reg; if it overlaps the range
1774 we're invalidating, remove the value. */
1775 while (*l)
1776 {
1777 cselib_val *v = (*l)->elt;
5847e8da
AO
1778 bool had_locs;
1779 rtx setting_insn;
fa49fd0f
RK
1780 struct elt_loc_list **p;
1781 unsigned int this_last = i;
1782
60fa6660 1783 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
09e18274 1784 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
fa49fd0f 1785
457eeaae 1786 if (this_last < regno || v == NULL || v == cfa_base_preserved_val)
fa49fd0f
RK
1787 {
1788 l = &(*l)->next;
1789 continue;
1790 }
1791
1792 /* We have an overlap. */
60fa6660
AO
1793 if (*l == REG_VALUES (i))
1794 {
1795 /* Maintain the invariant that the first entry of
1796 REG_VALUES, if present, must be the value used to set
1797 the register, or NULL. This is also nice because
1798 then we won't push the same regno onto user_regs
1799 multiple times. */
1800 (*l)->elt = NULL;
1801 l = &(*l)->next;
1802 }
1803 else
1804 unchain_one_elt_list (l);
fa49fd0f 1805
5847e8da
AO
1806 had_locs = v->locs != NULL;
1807 setting_insn = v->locs ? v->locs->setting_insn : NULL;
1808
fa49fd0f
RK
1809 /* Now, we clear the mapping from value to reg. It must exist, so
1810 this code will crash intentionally if it doesn't. */
1811 for (p = &v->locs; ; p = &(*p)->next)
1812 {
1813 rtx x = (*p)->loc;
1814
f8cfc6aa 1815 if (REG_P (x) && REGNO (x) == i)
fa49fd0f
RK
1816 {
1817 unchain_one_elt_loc_list (p);
1818 break;
1819 }
1820 }
5847e8da
AO
1821
1822 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
1823 {
1824 if (setting_insn && DEBUG_INSN_P (setting_insn))
1825 n_useless_debug_values++;
1826 else
1827 n_useless_values++;
1828 }
fa49fd0f
RK
1829 }
1830 }
1831}
9ddb66ca
JH
1832\f
1833/* Return 1 if X has a value that can vary even between two
1834 executions of the program. 0 means X can be compared reliably
1835 against certain constants or near-constants. */
fa49fd0f 1836
4f588890
KG
1837static bool
1838cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
fa49fd0f 1839{
9ddb66ca
JH
1840 /* We actually don't need to verify very hard. This is because
1841 if X has actually changed, we invalidate the memory anyway,
1842 so assume that all common memory addresses are
1843 invariant. */
fa49fd0f
RK
1844 return 0;
1845}
1846
7101fb18
JH
1847/* Invalidate any locations in the table which are changed because of a
1848 store to MEM_RTX. If this is called because of a non-const call
1849 instruction, MEM_RTX is (mem:BLK const0_rtx). */
fa49fd0f 1850
7101fb18 1851static void
7080f735 1852cselib_invalidate_mem (rtx mem_rtx)
fa49fd0f 1853{
7101fb18 1854 cselib_val **vp, *v, *next;
c65ecebc 1855 int num_mems = 0;
9ddb66ca
JH
1856 rtx mem_addr;
1857
1858 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1859 mem_rtx = canon_rtx (mem_rtx);
fa49fd0f 1860
7101fb18
JH
1861 vp = &first_containing_mem;
1862 for (v = *vp; v != &dummy_val; v = next)
fa49fd0f 1863 {
7101fb18
JH
1864 bool has_mem = false;
1865 struct elt_loc_list **p = &v->locs;
5847e8da
AO
1866 bool had_locs = v->locs != NULL;
1867 rtx setting_insn = v->locs ? v->locs->setting_insn : NULL;
fa49fd0f 1868
7101fb18 1869 while (*p)
fa49fd0f 1870 {
7101fb18
JH
1871 rtx x = (*p)->loc;
1872 cselib_val *addr;
1873 struct elt_list **mem_chain;
1874
1875 /* MEMs may occur in locations only at the top level; below
1876 that every MEM or REG is substituted by its VALUE. */
3c0cb5de 1877 if (!MEM_P (x))
fa49fd0f 1878 {
7101fb18
JH
1879 p = &(*p)->next;
1880 continue;
1881 }
c65ecebc 1882 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
9ddb66ca 1883 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
6216f94e 1884 x, NULL_RTX, cselib_rtx_varies_p))
7101fb18
JH
1885 {
1886 has_mem = true;
c65ecebc 1887 num_mems++;
7101fb18
JH
1888 p = &(*p)->next;
1889 continue;
fa49fd0f
RK
1890 }
1891
7101fb18
JH
1892 /* This one overlaps. */
1893 /* We must have a mapping from this MEM's address to the
1894 value (E). Remove that, too. */
1895 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1896 mem_chain = &addr->addr_list;
1897 for (;;)
1898 {
1899 if ((*mem_chain)->elt == v)
1900 {
1901 unchain_one_elt_list (mem_chain);
1902 break;
1903 }
fa49fd0f 1904
7101fb18
JH
1905 mem_chain = &(*mem_chain)->next;
1906 }
fa49fd0f 1907
7101fb18
JH
1908 unchain_one_elt_loc_list (p);
1909 }
fa49fd0f 1910
b5b8b0ac 1911 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
5847e8da
AO
1912 {
1913 if (setting_insn && DEBUG_INSN_P (setting_insn))
1914 n_useless_debug_values++;
1915 else
1916 n_useless_values++;
1917 }
fa49fd0f 1918
7101fb18
JH
1919 next = v->next_containing_mem;
1920 if (has_mem)
1921 {
1922 *vp = v;
1923 vp = &(*vp)->next_containing_mem;
1924 }
1925 else
1926 v->next_containing_mem = NULL;
1927 }
1928 *vp = &dummy_val;
fa49fd0f
RK
1929}
1930
0d87c765 1931/* Invalidate DEST, which is being assigned to or clobbered. */
fa49fd0f 1932
0d87c765
RH
1933void
1934cselib_invalidate_rtx (rtx dest)
fa49fd0f 1935{
46d096a3
SB
1936 while (GET_CODE (dest) == SUBREG
1937 || GET_CODE (dest) == ZERO_EXTRACT
1938 || GET_CODE (dest) == STRICT_LOW_PART)
fa49fd0f
RK
1939 dest = XEXP (dest, 0);
1940
f8cfc6aa 1941 if (REG_P (dest))
fa49fd0f 1942 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
3c0cb5de 1943 else if (MEM_P (dest))
fa49fd0f
RK
1944 cselib_invalidate_mem (dest);
1945
1946 /* Some machines don't define AUTO_INC_DEC, but they still use push
1947 instructions. We need to catch that case here in order to
1948 invalidate the stack pointer correctly. Note that invalidating
1949 the stack pointer is different from invalidating DEST. */
1950 if (push_operand (dest, GET_MODE (dest)))
0d87c765
RH
1951 cselib_invalidate_rtx (stack_pointer_rtx);
1952}
1953
1954/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1955
1956static void
7bc980e1 1957cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
0d87c765
RH
1958 void *data ATTRIBUTE_UNUSED)
1959{
1960 cselib_invalidate_rtx (dest);
fa49fd0f
RK
1961}
1962
1963/* Record the result of a SET instruction. DEST is being set; the source
1964 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1965 describes its address. */
1966
1967static void
7080f735 1968cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
fa49fd0f 1969{
f8cfc6aa 1970 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
fa49fd0f
RK
1971
1972 if (src_elt == 0 || side_effects_p (dest))
1973 return;
1974
1975 if (dreg >= 0)
1976 {
31825e57
DM
1977 if (dreg < FIRST_PSEUDO_REGISTER)
1978 {
66fd46b6 1979 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
31825e57
DM
1980
1981 if (n > max_value_regs)
1982 max_value_regs = n;
1983 }
1984
60fa6660
AO
1985 if (REG_VALUES (dreg) == 0)
1986 {
6790d1ab 1987 used_regs[n_used_regs++] = dreg;
60fa6660
AO
1988 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1989 }
1990 else
1991 {
341c100f
NS
1992 /* The register should have been invalidated. */
1993 gcc_assert (REG_VALUES (dreg)->elt == 0);
1994 REG_VALUES (dreg)->elt = src_elt;
60fa6660
AO
1995 }
1996
b5b8b0ac 1997 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f
RK
1998 n_useless_values--;
1999 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
2000 }
3c0cb5de 2001 else if (MEM_P (dest) && dest_addr_elt != 0
463301c3 2002 && cselib_record_memory)
fa49fd0f 2003 {
b5b8b0ac 2004 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
fa49fd0f
RK
2005 n_useless_values--;
2006 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2007 }
2008}
2009
fa49fd0f
RK
2010/* There is no good way to determine how many elements there can be
2011 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2012#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2013
2014/* Record the effects of any sets in INSN. */
2015static void
7080f735 2016cselib_record_sets (rtx insn)
fa49fd0f
RK
2017{
2018 int n_sets = 0;
2019 int i;
b5b8b0ac 2020 struct cselib_set sets[MAX_SETS];
fa49fd0f 2021 rtx body = PATTERN (insn);
b7933c21 2022 rtx cond = 0;
fa49fd0f
RK
2023
2024 body = PATTERN (insn);
b7933c21
BS
2025 if (GET_CODE (body) == COND_EXEC)
2026 {
2027 cond = COND_EXEC_TEST (body);
2028 body = COND_EXEC_CODE (body);
2029 }
2030
fa49fd0f
RK
2031 /* Find all sets. */
2032 if (GET_CODE (body) == SET)
2033 {
2034 sets[0].src = SET_SRC (body);
2035 sets[0].dest = SET_DEST (body);
2036 n_sets = 1;
2037 }
2038 else if (GET_CODE (body) == PARALLEL)
2039 {
2040 /* Look through the PARALLEL and record the values being
2041 set, if possible. Also handle any CLOBBERs. */
2042 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2043 {
2044 rtx x = XVECEXP (body, 0, i);
2045
2046 if (GET_CODE (x) == SET)
2047 {
2048 sets[n_sets].src = SET_SRC (x);
2049 sets[n_sets].dest = SET_DEST (x);
2050 n_sets++;
2051 }
2052 }
2053 }
2054
8dd5516b
JJ
2055 if (n_sets == 1
2056 && MEM_P (sets[0].src)
2057 && !cselib_record_memory
2058 && MEM_READONLY_P (sets[0].src))
2059 {
2060 rtx note = find_reg_equal_equiv_note (insn);
2061
2062 if (note && CONSTANT_P (XEXP (note, 0)))
2063 sets[0].src = XEXP (note, 0);
2064 }
2065
fa49fd0f
RK
2066 /* Look up the values that are read. Do this before invalidating the
2067 locations that are written. */
2068 for (i = 0; i < n_sets; i++)
2069 {
2070 rtx dest = sets[i].dest;
2071
2072 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2073 the low part after invalidating any knowledge about larger modes. */
2074 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2075 sets[i].dest = dest = XEXP (dest, 0);
2076
2077 /* We don't know how to record anything but REG or MEM. */
f8cfc6aa 2078 if (REG_P (dest)
3c0cb5de 2079 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f 2080 {
b7933c21
BS
2081 rtx src = sets[i].src;
2082 if (cond)
be9ed5d5 2083 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
37060e78 2084 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
3c0cb5de 2085 if (MEM_P (dest))
d4ebfa65
BE
2086 {
2087 enum machine_mode address_mode
2088 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2089
2090 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2091 address_mode, 1);
2092 }
fa49fd0f
RK
2093 else
2094 sets[i].dest_addr_elt = 0;
2095 }
2096 }
2097
b5b8b0ac
AO
2098 if (cselib_record_sets_hook)
2099 cselib_record_sets_hook (insn, sets, n_sets);
2100
fa49fd0f
RK
2101 /* Invalidate all locations written by this insn. Note that the elts we
2102 looked up in the previous loop aren't affected, just some of their
2103 locations may go away. */
0d87c765 2104 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
fa49fd0f 2105
b7048ab7
RH
2106 /* If this is an asm, look for duplicate sets. This can happen when the
2107 user uses the same value as an output multiple times. This is valid
2108 if the outputs are not actually used thereafter. Treat this case as
2109 if the value isn't actually set. We do this by smashing the destination
2110 to pc_rtx, so that we won't record the value later. */
2111 if (n_sets >= 2 && asm_noperands (body) >= 0)
2112 {
2113 for (i = 0; i < n_sets; i++)
2114 {
2115 rtx dest = sets[i].dest;
3c0cb5de 2116 if (REG_P (dest) || MEM_P (dest))
b7048ab7
RH
2117 {
2118 int j;
2119 for (j = i + 1; j < n_sets; j++)
2120 if (rtx_equal_p (dest, sets[j].dest))
2121 {
2122 sets[i].dest = pc_rtx;
2123 sets[j].dest = pc_rtx;
2124 }
2125 }
2126 }
2127 }
2128
fa49fd0f
RK
2129 /* Now enter the equivalences in our tables. */
2130 for (i = 0; i < n_sets; i++)
2131 {
2132 rtx dest = sets[i].dest;
f8cfc6aa 2133 if (REG_P (dest)
3c0cb5de 2134 || (MEM_P (dest) && cselib_record_memory))
fa49fd0f
RK
2135 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2136 }
2137}
2138
2139/* Record the effects of INSN. */
2140
2141void
7080f735 2142cselib_process_insn (rtx insn)
fa49fd0f
RK
2143{
2144 int i;
2145 rtx x;
2146
2147 cselib_current_insn = insn;
2148
2149 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
4b4bf941
JQ
2150 if (LABEL_P (insn)
2151 || (CALL_P (insn)
570a98eb 2152 && find_reg_note (insn, REG_SETJMP, NULL))
4b4bf941 2153 || (NONJUMP_INSN_P (insn)
fa49fd0f
RK
2154 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
2155 && MEM_VOLATILE_P (PATTERN (insn))))
2156 {
5440c0e7 2157 cselib_reset_table (next_uid);
2080bd29 2158 cselib_current_insn = NULL_RTX;
fa49fd0f
RK
2159 return;
2160 }
2161
2162 if (! INSN_P (insn))
2163 {
2080bd29 2164 cselib_current_insn = NULL_RTX;
fa49fd0f
RK
2165 return;
2166 }
2167
2168 /* If this is a call instruction, forget anything stored in a
2169 call clobbered register, or, if this is not a const call, in
2170 memory. */
4b4bf941 2171 if (CALL_P (insn))
fa49fd0f
RK
2172 {
2173 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7e42db17
DJ
2174 if (call_used_regs[i]
2175 || (REG_VALUES (i) && REG_VALUES (i)->elt
b8698a0f 2176 && HARD_REGNO_CALL_PART_CLOBBERED (i,
757bbef8 2177 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
291aac59 2178 cselib_invalidate_regno (i, reg_raw_mode[i]);
fa49fd0f 2179
becfd6e5
KZ
2180 /* Since it is not clear how cselib is going to be used, be
2181 conservative here and treat looping pure or const functions
2182 as if they were regular functions. */
2183 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2184 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
fa49fd0f
RK
2185 cselib_invalidate_mem (callmem);
2186 }
2187
2188 cselib_record_sets (insn);
2189
2190#ifdef AUTO_INC_DEC
2191 /* Clobber any registers which appear in REG_INC notes. We
2192 could keep track of the changes to their values, but it is
2193 unlikely to help. */
2194 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
2195 if (REG_NOTE_KIND (x) == REG_INC)
0d87c765 2196 cselib_invalidate_rtx (XEXP (x, 0));
fa49fd0f
RK
2197#endif
2198
2199 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2200 after we have processed the insn. */
4b4bf941 2201 if (CALL_P (insn))
fa49fd0f
RK
2202 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2203 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
0d87c765 2204 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
fa49fd0f 2205
2080bd29 2206 cselib_current_insn = NULL_RTX;
fa49fd0f 2207
96d0cc81
JH
2208 if (n_useless_values > MAX_USELESS_VALUES
2209 /* remove_useless_values is linear in the hash table size. Avoid
9f5ed61a 2210 quadratic behavior for very large hashtables with very few
96d0cc81 2211 useless elements. */
5847e8da
AO
2212 && ((unsigned int)n_useless_values
2213 > (cselib_hash_table->n_elements
2214 - cselib_hash_table->n_deleted
2215 - n_debug_values) / 4))
fa49fd0f
RK
2216 remove_useless_values ();
2217}
2218
fa49fd0f
RK
2219/* Initialize cselib for one pass. The caller must also call
2220 init_alias_analysis. */
2221
2222void
457eeaae 2223cselib_init (int record_what)
fa49fd0f 2224{
b8698a0f 2225 elt_list_pool = create_alloc_pool ("elt_list",
6a59927d 2226 sizeof (struct elt_list), 10);
b8698a0f 2227 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
6a59927d 2228 sizeof (struct elt_loc_list), 10);
b8698a0f 2229 cselib_val_pool = create_alloc_pool ("cselib_val_list",
6a59927d 2230 sizeof (cselib_val), 10);
aacd3885 2231 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
457eeaae
JJ
2232 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2233 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
ac3768f6
SB
2234
2235 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2236 see canon_true_dependence. This is only created once. */
fa49fd0f 2237 if (! callmem)
ac3768f6 2238 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
fa49fd0f
RK
2239
2240 cselib_nregs = max_reg_num ();
6790d1ab
JH
2241
2242 /* We preserve reg_values to allow expensive clearing of the whole thing.
2243 Reallocate it however if it happens to be too large. */
2244 if (!reg_values || reg_values_size < cselib_nregs
2245 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
e2500fed 2246 {
6790d1ab
JH
2247 if (reg_values)
2248 free (reg_values);
2249 /* Some space for newly emit instructions so we don't end up
2250 reallocating in between passes. */
2251 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
5ed6ace5 2252 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
e2500fed 2253 }
5ed6ace5 2254 used_regs = XNEWVEC (unsigned int, cselib_nregs);
6790d1ab 2255 n_used_regs = 0;
7c514720
KH
2256 cselib_hash_table = htab_create (31, get_value_hash,
2257 entry_and_rtx_equal_p, NULL);
5440c0e7 2258 next_uid = 1;
fa49fd0f
RK
2259}
2260
2261/* Called when the current user is done with cselib. */
2262
2263void
7080f735 2264cselib_finish (void)
fa49fd0f 2265{
6fb5fa3c 2266 cselib_discard_hook = NULL;
457eeaae
JJ
2267 cselib_preserve_constants = false;
2268 cfa_base_preserved_val = NULL;
6a59927d
JH
2269 free_alloc_pool (elt_list_pool);
2270 free_alloc_pool (elt_loc_list_pool);
2271 free_alloc_pool (cselib_val_pool);
23bd7a93 2272 free_alloc_pool (value_pool);
eb232f4e 2273 cselib_clear_table ();
7c514720 2274 htab_delete (cselib_hash_table);
0fc0c4c9 2275 free (used_regs);
e2500fed 2276 used_regs = 0;
7c514720 2277 cselib_hash_table = 0;
e2500fed 2278 n_useless_values = 0;
5847e8da
AO
2279 n_useless_debug_values = 0;
2280 n_debug_values = 0;
5440c0e7 2281 next_uid = 0;
fa49fd0f 2282}
e2500fed 2283
b5b8b0ac
AO
2284/* Dump the cselib_val *X to FILE *info. */
2285
2286static int
2287dump_cselib_val (void **x, void *info)
2288{
2289 cselib_val *v = (cselib_val *)*x;
2290 FILE *out = (FILE *)info;
2291 bool need_lf = true;
2292
2293 print_inline_rtx (out, v->val_rtx, 0);
2294
2295 if (v->locs)
2296 {
2297 struct elt_loc_list *l = v->locs;
2298 if (need_lf)
2299 {
2300 fputc ('\n', out);
2301 need_lf = false;
2302 }
2303 fputs (" locs:", out);
2304 do
2305 {
2306 fprintf (out, "\n from insn %i ",
2307 INSN_UID (l->setting_insn));
2308 print_inline_rtx (out, l->loc, 4);
2309 }
2310 while ((l = l->next));
2311 fputc ('\n', out);
2312 }
2313 else
2314 {
2315 fputs (" no locs", out);
2316 need_lf = true;
2317 }
2318
2319 if (v->addr_list)
2320 {
2321 struct elt_list *e = v->addr_list;
2322 if (need_lf)
2323 {
2324 fputc ('\n', out);
2325 need_lf = false;
2326 }
2327 fputs (" addr list:", out);
2328 do
2329 {
2330 fputs ("\n ", out);
2331 print_inline_rtx (out, e->elt->val_rtx, 2);
2332 }
2333 while ((e = e->next));
2334 fputc ('\n', out);
2335 }
2336 else
2337 {
2338 fputs (" no addrs", out);
2339 need_lf = true;
2340 }
2341
2342 if (v->next_containing_mem == &dummy_val)
2343 fputs (" last mem\n", out);
2344 else if (v->next_containing_mem)
2345 {
2346 fputs (" next mem ", out);
2347 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2348 fputc ('\n', out);
2349 }
2350 else if (need_lf)
2351 fputc ('\n', out);
2352
2353 return 1;
2354}
2355
2356/* Dump to OUT everything in the CSELIB table. */
2357
2358void
2359dump_cselib_table (FILE *out)
2360{
2361 fprintf (out, "cselib hash table:\n");
2362 htab_traverse (cselib_hash_table, dump_cselib_val, out);
2363 if (first_containing_mem != &dummy_val)
2364 {
2365 fputs ("first mem ", out);
2366 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2367 fputc ('\n', out);
2368 }
5440c0e7 2369 fprintf (out, "next uid %i\n", next_uid);
b5b8b0ac
AO
2370}
2371
e2500fed 2372#include "gt-cselib.h"