]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/dse.c
re PR middle-end/92046 (Command line options (that are per-functions) are affecting...
[thirdparty/gcc.git] / gcc / dse.c
CommitLineData
6fb5fa3c 1/* RTL dead store elimination.
a5544970 2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
6fb5fa3c
DB
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
6fb5fa3c
DB
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6fb5fa3c
DB
22
23#undef BASELINE
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "target.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5 33#include "predict.h"
c7131fb2 34#include "df.h"
4d0cdd0c 35#include "memmodel.h"
957060b5
AM
36#include "tm_p.h"
37#include "gimple-ssa.h"
38#include "expmed.h"
39#include "optabs.h"
957060b5
AM
40#include "emit-rtl.h"
41#include "recog.h"
40e23961 42#include "alias.h"
d8a2d370 43#include "stor-layout.h"
60393bbc 44#include "cfgrtl.h"
6fb5fa3c 45#include "cselib.h"
6fb5fa3c 46#include "tree-pass.h"
36566b39 47#include "explow.h"
6fb5fa3c 48#include "expr.h"
6fb5fa3c 49#include "dbgcnt.h"
dabd47e7 50#include "params.h"
d7111da8 51#include "rtl-iter.h"
6c5ed3f1 52#include "cfgcleanup.h"
6783fdb7 53#include "calls.h"
6fb5fa3c
DB
54
55/* This file contains three techniques for performing Dead Store
b8698a0f 56 Elimination (dse).
6fb5fa3c
DB
57
58 * The first technique performs dse locally on any base address. It
59 is based on the cselib which is a local value numbering technique.
60 This technique is local to a basic block but deals with a fairly
61 general addresses.
b8698a0f 62
6fb5fa3c
DB
63 * The second technique performs dse globally but is restricted to
64 base addresses that are either constant or are relative to the
65 frame_pointer.
66
67 * The third technique, (which is only done after register allocation)
026c3cfd 68 processes the spill slots. This differs from the second
6fb5fa3c
DB
69 technique because it takes advantage of the fact that spilling is
70 completely free from the effects of aliasing.
71
72 Logically, dse is a backwards dataflow problem. A store can be
73 deleted if it if cannot be reached in the backward direction by any
74 use of the value being stored. However, the local technique uses a
75 forwards scan of the basic block because cselib requires that the
76 block be processed in that order.
77
78 The pass is logically broken into 7 steps:
79
80 0) Initialization.
81
82 1) The local algorithm, as well as scanning the insns for the two
83 global algorithms.
84
85 2) Analysis to see if the global algs are necessary. In the case
86 of stores base on a constant address, there must be at least two
87 stores to that address, to make it possible to delete some of the
88 stores. In the case of stores off of the frame or spill related
89 stores, only one store to an address is necessary because those
90 stores die at the end of the function.
91
b8698a0f 92 3) Set up the global dataflow equations based on processing the
6fb5fa3c
DB
93 info parsed in the first step.
94
95 4) Solve the dataflow equations.
96
97 5) Delete the insns that the global analysis has indicated are
98 unnecessary.
99
073a8998 100 6) Delete insns that store the same value as preceding store
8dd5516b
JJ
101 where the earlier store couldn't be eliminated.
102
103 7) Cleanup.
6fb5fa3c
DB
104
105 This step uses cselib and canon_rtx to build the largest expression
106 possible for each address. This pass is a forwards pass through
107 each basic block. From the point of view of the global technique,
108 the first pass could examine a block in either direction. The
0d52bcc1 109 forwards ordering is to accommodate cselib.
6fb5fa3c 110
5ef0b50d 111 We make a simplifying assumption: addresses fall into four broad
6fb5fa3c
DB
112 categories:
113
114 1) base has rtx_varies_p == false, offset is constant.
115 2) base has rtx_varies_p == false, offset variable.
116 3) base has rtx_varies_p == true, offset constant.
117 4) base has rtx_varies_p == true, offset variable.
118
119 The local passes are able to process all 4 kinds of addresses. The
5ef0b50d 120 global pass only handles 1).
6fb5fa3c
DB
121
122 The global problem is formulated as follows:
123
124 A store, S1, to address A, where A is not relative to the stack
125 frame, can be eliminated if all paths from S1 to the end of the
5ef0b50d 126 function contain another store to A before a read to A.
6fb5fa3c
DB
127
128 If the address A is relative to the stack frame, a store S2 to A
5ef0b50d 129 can be eliminated if there are no paths from S2 that reach the
6fb5fa3c 130 end of the function that read A before another store to A. In
5ef0b50d 131 this case S2 can be deleted if there are paths from S2 to the
6fb5fa3c
DB
132 end of the function that have no reads or writes to A. This
133 second case allows stores to the stack frame to be deleted that
134 would otherwise die when the function returns. This cannot be
135 done if stores_off_frame_dead_at_return is not true. See the doc
136 for that variable for when this variable is false.
137
138 The global problem is formulated as a backwards set union
139 dataflow problem where the stores are the gens and reads are the
140 kills. Set union problems are rare and require some special
141 handling given our representation of bitmaps. A straightforward
5ef0b50d 142 implementation requires a lot of bitmaps filled with 1s.
6fb5fa3c
DB
143 These are expensive and cumbersome in our bitmap formulation so
144 care has been taken to avoid large vectors filled with 1s. See
145 the comments in bb_info and in the dataflow confluence functions
b8698a0f 146 for details.
6fb5fa3c
DB
147
148 There are two places for further enhancements to this algorithm:
b8698a0f 149
6fb5fa3c
DB
150 1) The original dse which was embedded in a pass called flow also
151 did local address forwarding. For example in
152
153 A <- r100
154 ... <- A
155
156 flow would replace the right hand side of the second insn with a
6ed3da00 157 reference to r100. Most of the information is available to add this
6fb5fa3c
DB
158 to this pass. It has not done it because it is a lot of work in
159 the case that either r100 is assigned to between the first and
160 second insn and/or the second insn is a load of part of the value
161 stored by the first insn.
162
163 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
164 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
165 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
166 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
167
168 2) The cleaning up of spill code is quite profitable. It currently
169 depends on reading tea leaves and chicken entrails left by reload.
170 This pass depends on reload creating a singleton alias set for each
171 spill slot and telling the next dse pass which of these alias sets
172 are the singletons. Rather than analyze the addresses of the
173 spills, dse's spill processing just does analysis of the loads and
174 stores that use those alias sets. There are three cases where this
175 falls short:
176
177 a) Reload sometimes creates the slot for one mode of access, and
178 then inserts loads and/or stores for a smaller mode. In this
179 case, the current code just punts on the slot. The proper thing
180 to do is to back out and use one bit vector position for each
181 byte of the entity associated with the slot. This depends on
182 KNOWING that reload always generates the accesses for each of the
183 bytes in some canonical (read that easy to understand several
184 passes after reload happens) way.
185
186 b) Reload sometimes decides that spill slot it allocated was not
187 large enough for the mode and goes back and allocates more slots
188 with the same mode and alias set. The backout in this case is a
189 little more graceful than (a). In this case the slot is unmarked
190 as being a spill slot and if final address comes out to be based
b8698a0f 191 off the frame pointer, the global algorithm handles this slot.
6fb5fa3c
DB
192
193 c) For any pass that may prespill, there is currently no
194 mechanism to tell the dse pass that the slot being used has the
195 special properties that reload uses. It may be that all that is
0d52bcc1 196 required is to have those passes make the same calls that reload
6fb5fa3c
DB
197 does, assuming that the alias sets can be manipulated in the same
198 way. */
199
200/* There are limits to the size of constant offsets we model for the
201 global problem. There are certainly test cases, that exceed this
202 limit, however, it is unlikely that there are important programs
203 that really have constant offsets this size. */
204#define MAX_OFFSET (64 * 1024)
205
3f9b14ff
SB
206/* Obstack for the DSE dataflow bitmaps. We don't want to put these
207 on the default obstack because these bitmaps can grow quite large
208 (~2GB for the small (!) test case of PR54146) and we'll hold on to
209 all that memory until the end of the compiler run.
210 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
211 releasing the whole obstack. */
212static bitmap_obstack dse_bitmap_obstack;
213
214/* Obstack for other data. As for above: Kinda nice to be able to
215 throw it all away at the end in one big sweep. */
216static struct obstack dse_obstack;
217
218/* Scratch bitmap for cselib's cselib_expand_value_rtx. */
6fb5fa3c 219static bitmap scratch = NULL;
3f9b14ff 220
da6603c6 221struct insn_info_type;
6fb5fa3c
DB
222
223/* This structure holds information about a candidate store. */
6c1dae73 224class store_info
6fb5fa3c 225{
6c1dae73 226public:
6fb5fa3c
DB
227
228 /* False means this is a clobber. */
229 bool is_set;
230
8dd5516b
JJ
231 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
232 bool is_large;
233
6fb5fa3c
DB
234 /* The id of the mem group of the base address. If rtx_varies_p is
235 true, this is -1. Otherwise, it is the index into the group
236 table. */
237 int group_id;
b8698a0f 238
6fb5fa3c
DB
239 /* This is the cselib value. */
240 cselib_val *cse_base;
241
242 /* This canonized mem. */
243 rtx mem;
244
6216f94e 245 /* Canonized MEM address for use by canon_true_dependence. */
6fb5fa3c
DB
246 rtx mem_addr;
247
71d6a386 248 /* The offset of the first byte associated with the operation. */
02ce5d90 249 poly_int64 offset;
71d6a386
RS
250
251 /* The number of bytes covered by the operation. This is always exact
252 and known (rather than -1). */
02ce5d90 253 poly_int64 width;
8dd5516b
JJ
254
255 union
256 {
257 /* A bitmask as wide as the number of bytes in the word that
258 contains a 1 if the byte may be needed. The store is unused if
259 all of the bits are 0. This is used if IS_LARGE is false. */
260 unsigned HOST_WIDE_INT small_bitmask;
261
262 struct
263 {
02ce5d90
RS
264 /* A bitmap with one bit per byte, or null if the number of
265 bytes isn't known at compile time. A cleared bit means
266 the position is needed. Used if IS_LARGE is true. */
dc491a25 267 bitmap bmap;
6fb5fa3c 268
02ce5d90
RS
269 /* When BITMAP is nonnull, this counts the number of set bits
270 (i.e. unneeded bytes) in the bitmap. If it is equal to
271 WIDTH, the whole store is unused.
272
273 When BITMAP is null:
274 - the store is definitely not needed when COUNT == 1
275 - all the store is needed when COUNT == 0 and RHS is nonnull
276 - otherwise we don't know which parts of the store are needed. */
8dd5516b
JJ
277 int count;
278 } large;
279 } positions_needed;
6fb5fa3c
DB
280
281 /* The next store info for this insn. */
99b1c316 282 class store_info *next;
6fb5fa3c
DB
283
284 /* The right hand side of the store. This is used if there is a
285 subsequent reload of the mems address somewhere later in the
286 basic block. */
8dd5516b
JJ
287 rtx rhs;
288
289 /* If rhs is or holds a constant, this contains that constant,
290 otherwise NULL. */
291 rtx const_rhs;
292
293 /* Set if this store stores the same constant value as REDUNDANT_REASON
294 insn stored. These aren't eliminated early, because doing that
295 might prevent the earlier larger store to be eliminated. */
da6603c6 296 struct insn_info_type *redundant_reason;
6fb5fa3c
DB
297};
298
4fe663b0
L
299/* Return a bitmask with the first N low bits set. */
300
301static unsigned HOST_WIDE_INT
302lowpart_bitmask (int n)
303{
dd4786fe 304 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_M1U;
4fe663b0
L
305 return mask >> (HOST_BITS_PER_WIDE_INT - n);
306}
307
fcb87c50 308static object_allocator<store_info> cse_store_info_pool ("cse_store_info_pool");
da6603c6 309
fcb87c50 310static object_allocator<store_info> rtx_store_info_pool ("rtx_store_info_pool");
6fb5fa3c
DB
311
312/* This structure holds information about a load. These are only
313 built for rtx bases. */
6c1dae73 314class read_info_type
6fb5fa3c 315{
6c1dae73 316public:
6fb5fa3c
DB
317 /* The id of the mem group of the base address. */
318 int group_id;
319
71d6a386 320 /* The offset of the first byte associated with the operation. */
02ce5d90 321 poly_int64 offset;
71d6a386
RS
322
323 /* The number of bytes covered by the operation, or -1 if not known. */
02ce5d90 324 poly_int64 width;
6fb5fa3c
DB
325
326 /* The mem being read. */
327 rtx mem;
328
329 /* The next read_info for this insn. */
99b1c316 330 class read_info_type *next;
6fb5fa3c 331};
99b1c316 332typedef class read_info_type *read_info_t;
6fb5fa3c 333
fcb87c50 334static object_allocator<read_info_type> read_info_type_pool ("read_info_pool");
6fb5fa3c
DB
335
336/* One of these records is created for each insn. */
337
da6603c6 338struct insn_info_type
6fb5fa3c
DB
339{
340 /* Set true if the insn contains a store but the insn itself cannot
341 be deleted. This is set if the insn is a parallel and there is
342 more than one non dead output or if the insn is in some way
343 volatile. */
344 bool cannot_delete;
345
346 /* This field is only used by the global algorithm. It is set true
347 if the insn contains any read of mem except for a (1). This is
348 also set if the insn is a call or has a clobber mem. If the insn
349 contains a wild read, the use_rec will be null. */
350 bool wild_read;
351
d26c7090
ER
352 /* This is true only for CALL instructions which could potentially read
353 any non-frame memory location. This field is used by the global
354 algorithm. */
355 bool non_frame_wild_read;
356
50f0f366
EB
357 /* This field is only used for the processing of const functions.
358 These functions cannot read memory, but they can read the stack
64520bdc
EB
359 because that is where they may get their parms. We need to be
360 this conservative because, like the store motion pass, we don't
361 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
362 Moreover, we need to distinguish two cases:
363 1. Before reload (register elimination), the stores related to
364 outgoing arguments are stack pointer based and thus deemed
365 of non-constant base in this pass. This requires special
366 handling but also means that the frame pointer based stores
367 need not be killed upon encountering a const function call.
368 2. After reload, the stores related to outgoing arguments can be
369 either stack pointer or hard frame pointer based. This means
370 that we have no other choice than also killing all the frame
371 pointer based stores upon encountering a const function call.
57534689
JJ
372 This field is set after reload for const function calls and before
373 reload for const tail function calls on targets where arg pointer
374 is the frame pointer. Having this set is less severe than a wild
375 read, it just means that all the frame related stores are killed
376 rather than all the stores. */
64520bdc
EB
377 bool frame_read;
378
379 /* This field is only used for the processing of const functions.
380 It is set if the insn may contain a stack pointer based store. */
50f0f366 381 bool stack_pointer_based;
6fb5fa3c
DB
382
383 /* This is true if any of the sets within the store contains a
384 cselib base. Such stores can only be deleted by the local
385 algorithm. */
386 bool contains_cselib_groups;
387
388 /* The insn. */
dd60a84c 389 rtx_insn *insn;
6fb5fa3c
DB
390
391 /* The list of mem sets or mem clobbers that are contained in this
392 insn. If the insn is deletable, it contains only one mem set.
393 But it could also contain clobbers. Insns that contain more than
394 one mem set are not deletable, but each of those mems are here in
6ed3da00 395 order to provide info to delete other insns. */
fd6daec9 396 store_info *store_rec;
6fb5fa3c
DB
397
398 /* The linked list of mem uses in this insn. Only the reads from
399 rtx bases are listed here. The reads to cselib bases are
400 completely processed during the first scan and so are never
401 created. */
402 read_info_t read_rec;
403
9e582b1d
JR
404 /* The live fixed registers. We assume only fixed registers can
405 cause trouble by being clobbered from an expanded pattern;
406 storing only the live fixed registers (rather than all registers)
407 means less memory needs to be allocated / copied for the individual
408 stores. */
409 regset fixed_regs_live;
410
6fb5fa3c 411 /* The prev insn in the basic block. */
da6603c6 412 struct insn_info_type * prev_insn;
6fb5fa3c
DB
413
414 /* The linked list of insns that are in consideration for removal in
073a8998 415 the forwards pass through the basic block. This pointer may be
6fb5fa3c 416 trash as it is not cleared when a wild read occurs. The only
fa10beec 417 time it is guaranteed to be correct is when the traversal starts
6fb5fa3c 418 at active_local_stores. */
da6603c6 419 struct insn_info_type * next_local_store;
6fb5fa3c 420};
da6603c6 421typedef struct insn_info_type *insn_info_t;
6fb5fa3c 422
fcb87c50 423static object_allocator<insn_info_type> insn_info_type_pool ("insn_info_pool");
6fb5fa3c
DB
424
425/* The linked list of stores that are under consideration in this
b8698a0f 426 basic block. */
6fb5fa3c 427static insn_info_t active_local_stores;
dabd47e7 428static int active_local_stores_len;
6fb5fa3c 429
da6603c6 430struct dse_bb_info_type
6fb5fa3c 431{
6fb5fa3c
DB
432 /* Pointer to the insn info for the last insn in the block. These
433 are linked so this is how all of the insns are reached. During
434 scanning this is the current insn being scanned. */
435 insn_info_t last_insn;
436
437 /* The info for the global dataflow problem. */
438
439
440 /* This is set if the transfer function should and in the wild_read
441 bitmap before applying the kill and gen sets. That vector knocks
442 out most of the bits in the bitmap and thus speeds up the
443 operations. */
444 bool apply_wild_read;
445
02b47899
KZ
446 /* The following 4 bitvectors hold information about which positions
447 of which stores are live or dead. They are indexed by
448 get_bitmap_index. */
449
6fb5fa3c
DB
450 /* The set of store positions that exist in this block before a wild read. */
451 bitmap gen;
b8698a0f 452
6fb5fa3c
DB
453 /* The set of load positions that exist in this block above the
454 same position of a store. */
455 bitmap kill;
456
457 /* The set of stores that reach the top of the block without being
458 killed by a read.
459
460 Do not represent the in if it is all ones. Note that this is
461 what the bitvector should logically be initialized to for a set
462 intersection problem. However, like the kill set, this is too
463 expensive. So initially, the in set will only be created for the
464 exit block and any block that contains a wild read. */
465 bitmap in;
466
467 /* The set of stores that reach the bottom of the block from it's
468 successors.
469
470 Do not represent the in if it is all ones. Note that this is
471 what the bitvector should logically be initialized to for a set
472 intersection problem. However, like the kill and in set, this is
473 too expensive. So what is done is that the confluence operator
474 just initializes the vector from one of the out sets of the
475 successors of the block. */
476 bitmap out;
02b47899
KZ
477
478 /* The following bitvector is indexed by the reg number. It
479 contains the set of regs that are live at the current instruction
480 being processed. While it contains info for all of the
9e582b1d
JR
481 registers, only the hard registers are actually examined. It is used
482 to assure that shift and/or add sequences that are inserted do not
073a8998 483 accidentally clobber live hard regs. */
02b47899 484 bitmap regs_live;
6fb5fa3c
DB
485};
486
da6603c6 487typedef struct dse_bb_info_type *bb_info_t;
fb0b2914
ML
488
489static object_allocator<dse_bb_info_type> dse_bb_info_type_pool
fcb87c50 490 ("bb_info_pool");
6fb5fa3c
DB
491
492/* Table to hold all bb_infos. */
493static bb_info_t *bb_table;
494
495/* There is a group_info for each rtx base that is used to reference
496 memory. There are also not many of the rtx bases because they are
497 very limited in scope. */
498
b8698a0f 499struct group_info
6fb5fa3c
DB
500{
501 /* The actual base of the address. */
502 rtx rtx_base;
503
504 /* The sequential id of the base. This allows us to have a
505 canonical ordering of these that is not based on addresses. */
506 int id;
507
8f5929e1
JJ
508 /* True if there are any positions that are to be processed
509 globally. */
510 bool process_globally;
511
512 /* True if the base of this group is either the frame_pointer or
513 hard_frame_pointer. */
514 bool frame_related;
515
d32f725a
OH
516 /* A mem wrapped around the base pointer for the group in order to do
517 read dependency. It must be given BLKmode in order to encompass all
518 the possible offsets from the base. */
6fb5fa3c 519 rtx base_mem;
b8698a0f 520
6216f94e
JJ
521 /* Canonized version of base_mem's address. */
522 rtx canon_base_addr;
6fb5fa3c
DB
523
524 /* These two sets of two bitmaps are used to keep track of how many
6ed3da00 525 stores are actually referencing that position from this base. We
6fb5fa3c 526 only do this for rtx bases as this will be used to assign
6ed3da00 527 positions in the bitmaps for the global problem. Bit N is set in
6fb5fa3c
DB
528 store1 on the first store for offset N. Bit N is set in store2
529 for the second store to offset N. This is all we need since we
530 only care about offsets that have two or more stores for them.
531
532 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
533 for 0 and greater offsets.
534
535 There is one special case here, for stores into the stack frame,
536 we will or store1 into store2 before deciding which stores look
537 at globally. This is because stores to the stack frame that have
538 no other reads before the end of the function can also be
539 deleted. */
540 bitmap store1_n, store1_p, store2_n, store2_p;
541
d26c7090
ER
542 /* These bitmaps keep track of offsets in this group escape this function.
543 An offset escapes if it corresponds to a named variable whose
544 addressable flag is set. */
545 bitmap escaped_n, escaped_p;
546
6ed3da00 547 /* The positions in this bitmap have the same assignments as the in,
6fb5fa3c 548 out, gen and kill bitmaps. This bitmap is all zeros except for
6ed3da00 549 the positions that are occupied by stores for this group. */
6fb5fa3c
DB
550 bitmap group_kill;
551
6fb5fa3c 552 /* The offset_map is used to map the offsets from this base into
6ed3da00 553 positions in the global bitmaps. It is only created after all of
6fb5fa3c
DB
554 the all of stores have been scanned and we know which ones we
555 care about. */
b8698a0f
L
556 int *offset_map_n, *offset_map_p;
557 int offset_map_size_n, offset_map_size_p;
6fb5fa3c 558};
da6603c6 559
fcb87c50 560static object_allocator<group_info> group_info_pool ("rtx_group_info_pool");
6fb5fa3c 561
6fb5fa3c
DB
562/* Index into the rtx_group_vec. */
563static int rtx_group_next_id;
564
6fb5fa3c 565
fd6daec9 566static vec<group_info *> rtx_group_vec;
6fb5fa3c
DB
567
568
569/* This structure holds the set of changes that are being deferred
570 when removing read operation. See replace_read. */
b8698a0f 571struct deferred_change
6fb5fa3c
DB
572{
573
574 /* The mem that is being replaced. */
575 rtx *loc;
576
577 /* The reg it is being replaced with. */
578 rtx reg;
579
580 struct deferred_change *next;
581};
582
fb0b2914 583static object_allocator<deferred_change> deferred_change_pool
fcb87c50 584 ("deferred_change_pool");
6fb5fa3c 585
fd6daec9 586static deferred_change *deferred_change_list = NULL;
6fb5fa3c 587
e3b5732b 588/* This is true except if cfun->stdarg -- i.e. we cannot do
9dd9bf80 589 this for vararg functions because they play games with the frame. */
6fb5fa3c
DB
590static bool stores_off_frame_dead_at_return;
591
592/* Counter for stats. */
b8698a0f
L
593static int globally_deleted;
594static int locally_deleted;
b8698a0f 595
6fb5fa3c
DB
596static bitmap all_blocks;
597
d26c7090
ER
598/* Locations that are killed by calls in the global phase. */
599static bitmap kill_on_calls;
600
6fb5fa3c
DB
601/* The number of bits used in the global bitmaps. */
602static unsigned int current_position;
71d6a386
RS
603
604/* Print offset range [OFFSET, OFFSET + WIDTH) to FILE. */
605
606static void
607print_range (FILE *file, poly_int64 offset, poly_int64 width)
608{
609 fprintf (file, "[");
610 print_dec (offset, file, SIGNED);
611 fprintf (file, "..");
612 print_dec (offset + width, file, SIGNED);
613 fprintf (file, ")");
614}
6fb5fa3c
DB
615\f
616/*----------------------------------------------------------------------------
617 Zeroth step.
618
b8698a0f 619 Initialization.
6fb5fa3c
DB
620----------------------------------------------------------------------------*/
621
6fb5fa3c 622
6fb5fa3c
DB
623/* Hashtable callbacks for maintaining the "bases" field of
624 store_group_info, given that the addresses are function invariants. */
625
8d67ee55 626struct invariant_group_base_hasher : nofree_ptr_hash <group_info>
703c8606 627{
67f58944
TS
628 static inline hashval_t hash (const group_info *);
629 static inline bool equal (const group_info *, const group_info *);
703c8606
LC
630};
631
632inline bool
67f58944
TS
633invariant_group_base_hasher::equal (const group_info *gi1,
634 const group_info *gi2)
6fb5fa3c 635{
6fb5fa3c
DB
636 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
637}
638
703c8606 639inline hashval_t
67f58944 640invariant_group_base_hasher::hash (const group_info *gi)
6fb5fa3c 641{
6fb5fa3c
DB
642 int do_not_record;
643 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
644}
645
703c8606 646/* Tables of group_info structures, hashed by base value. */
c203e8a7 647static hash_table<invariant_group_base_hasher> *rtx_group_table;
703c8606 648
6fb5fa3c
DB
649
650/* Get the GROUP for BASE. Add a new group if it is not there. */
651
fd6daec9 652static group_info *
6fb5fa3c
DB
653get_group_info (rtx base)
654{
b8698a0f 655 struct group_info tmp_gi;
fd6daec9 656 group_info *gi;
703c8606 657 group_info **slot;
6fb5fa3c 658
ac6929b5
RB
659 gcc_assert (base != NULL_RTX);
660
661 /* Find the store_base_info structure for BASE, creating a new one
662 if necessary. */
663 tmp_gi.rtx_base = base;
664 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
665 gi = *slot;
6fb5fa3c
DB
666
667 if (gi == NULL)
668 {
fb0b2914 669 *slot = gi = group_info_pool.allocate ();
6fb5fa3c
DB
670 gi->rtx_base = base;
671 gi->id = rtx_group_next_id++;
d32f725a 672 gi->base_mem = gen_rtx_MEM (BLKmode, base);
6216f94e 673 gi->canon_base_addr = canon_rtx (base);
3f9b14ff
SB
674 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
675 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
676 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
677 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
678 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
679 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
680 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 681 gi->process_globally = false;
b8698a0f 682 gi->frame_related =
6fb5fa3c
DB
683 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
684 gi->offset_map_size_n = 0;
685 gi->offset_map_size_p = 0;
686 gi->offset_map_n = NULL;
687 gi->offset_map_p = NULL;
9771b263 688 rtx_group_vec.safe_push (gi);
6fb5fa3c
DB
689 }
690
691 return gi;
692}
693
694
695/* Initialization of data structures. */
696
697static void
698dse_step0 (void)
699{
700 locally_deleted = 0;
701 globally_deleted = 0;
6fb5fa3c 702
3f9b14ff
SB
703 bitmap_obstack_initialize (&dse_bitmap_obstack);
704 gcc_obstack_init (&dse_obstack);
705
706 scratch = BITMAP_ALLOC (&reg_obstack);
707 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 708
6fb5fa3c 709
c203e8a7 710 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
6fb5fa3c 711
8b1c6fd7 712 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
6fb5fa3c
DB
713 rtx_group_next_id = 0;
714
e3b5732b 715 stores_off_frame_dead_at_return = !cfun->stdarg;
6fb5fa3c
DB
716
717 init_alias_analysis ();
6fb5fa3c
DB
718}
719
720
721\f
722/*----------------------------------------------------------------------------
723 First step.
724
725 Scan all of the insns. Any random ordering of the blocks is fine.
0d52bcc1 726 Each block is scanned in forward order to accommodate cselib which
6fb5fa3c
DB
727 is used to remove stores with non-constant bases.
728----------------------------------------------------------------------------*/
729
730/* Delete all of the store_info recs from INSN_INFO. */
731
b8698a0f 732static void
6fb5fa3c
DB
733free_store_info (insn_info_t insn_info)
734{
fd6daec9
TS
735 store_info *cur = insn_info->store_rec;
736 while (cur)
6fb5fa3c 737 {
fd6daec9
TS
738 store_info *next = cur->next;
739 if (cur->is_large)
740 BITMAP_FREE (cur->positions_needed.large.bmap);
741 if (cur->cse_base)
742 cse_store_info_pool.remove (cur);
6fb5fa3c 743 else
fd6daec9
TS
744 rtx_store_info_pool.remove (cur);
745 cur = next;
6fb5fa3c
DB
746 }
747
748 insn_info->cannot_delete = true;
749 insn_info->contains_cselib_groups = false;
750 insn_info->store_rec = NULL;
751}
752
a79683d5 753struct note_add_store_info
9e582b1d 754{
dc01c3d1 755 rtx_insn *first, *current;
9e582b1d
JR
756 regset fixed_regs_live;
757 bool failure;
a79683d5 758};
9e582b1d
JR
759
760/* Callback for emit_inc_dec_insn_before via note_stores.
761 Check if a register is clobbered which is live afterwards. */
762
763static void
764note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
765{
dc01c3d1 766 rtx_insn *insn;
9e582b1d 767 note_add_store_info *info = (note_add_store_info *) data;
9e582b1d
JR
768
769 if (!REG_P (loc))
770 return;
771
772 /* If this register is referenced by the current or an earlier insn,
773 that's OK. E.g. this applies to the register that is being incremented
774 with this addition. */
775 for (insn = info->first;
776 insn != NEXT_INSN (info->current);
777 insn = NEXT_INSN (insn))
778 if (reg_referenced_p (loc, PATTERN (insn)))
779 return;
780
781 /* If we come here, we have a clobber of a register that's only OK
782 if that register is not live. If we don't have liveness information
783 available, fail now. */
784 if (!info->fixed_regs_live)
785 {
53d1bae9 786 info->failure = true;
9e582b1d
JR
787 return;
788 }
789 /* Now check if this is a live fixed register. */
53d1bae9
RS
790 unsigned int end_regno = END_REGNO (loc);
791 for (unsigned int regno = REGNO (loc); regno < end_regno; ++regno)
792 if (REGNO_REG_SET_P (info->fixed_regs_live, regno))
793 info->failure = true;
9e582b1d
JR
794}
795
4deef538
AO
796/* Callback for for_each_inc_dec that emits an INSN that sets DEST to
797 SRC + SRCOFF before insn ARG. */
6fb5fa3c
DB
798
799static int
4deef538
AO
800emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
801 rtx op ATTRIBUTE_UNUSED,
802 rtx dest, rtx src, rtx srcoff, void *arg)
6fb5fa3c 803{
9e582b1d 804 insn_info_t insn_info = (insn_info_t) arg;
dc01c3d1 805 rtx_insn *insn = insn_info->insn, *new_insn, *cur;
9e582b1d 806 note_add_store_info info;
b8698a0f 807
4deef538
AO
808 /* We can reuse all operands without copying, because we are about
809 to delete the insn that contained it. */
9e582b1d 810 if (srcoff)
ed079c4b
JJ
811 {
812 start_sequence ();
813 emit_insn (gen_add3_insn (dest, src, srcoff));
814 new_insn = get_insns ();
815 end_sequence ();
816 }
9e582b1d 817 else
1476d1bd 818 new_insn = gen_move_insn (dest, src);
9e582b1d
JR
819 info.first = new_insn;
820 info.fixed_regs_live = insn_info->fixed_regs_live;
821 info.failure = false;
822 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
823 {
824 info.current = cur;
e8448ba5 825 note_stores (cur, note_add_store, &info);
9e582b1d 826 }
6fb5fa3c 827
9e582b1d
JR
828 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
829 return it immediately, communicating the failure to its caller. */
830 if (info.failure)
831 return 1;
832
833 emit_insn_before (new_insn, insn);
6fb5fa3c 834
8d8e205b 835 return 0;
6fb5fa3c
DB
836}
837
9e582b1d
JR
838/* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
839 is there, is split into a separate insn.
840 Return true on success (or if there was nothing to do), false on failure. */
6fb5fa3c 841
9e582b1d
JR
842static bool
843check_for_inc_dec_1 (insn_info_t insn_info)
6fb5fa3c 844{
dd60a84c 845 rtx_insn *insn = insn_info->insn;
6fb5fa3c
DB
846 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
847 if (note)
8d8e205b
RS
848 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
849 insn_info) == 0;
9e582b1d 850 return true;
6fb5fa3c
DB
851}
852
853
9e582b1d
JR
854/* Entry point for postreload. If you work on reload_cse, or you need this
855 anywhere else, consider if you can provide register liveness information
856 and add a parameter to this function so that it can be passed down in
857 insn_info.fixed_regs_live. */
858bool
dd60a84c 859check_for_inc_dec (rtx_insn *insn)
9e582b1d 860{
da6603c6 861 insn_info_type insn_info;
9e582b1d
JR
862 rtx note;
863
864 insn_info.insn = insn;
865 insn_info.fixed_regs_live = NULL;
866 note = find_reg_note (insn, REG_INC, NULL_RTX);
867 if (note)
8d8e205b
RS
868 return for_each_inc_dec (PATTERN (insn), emit_inc_dec_insn_before,
869 &insn_info) == 0;
9e582b1d
JR
870 return true;
871}
872
b8698a0f 873/* Delete the insn and free all of the fields inside INSN_INFO. */
6fb5fa3c
DB
874
875static void
876delete_dead_store_insn (insn_info_t insn_info)
877{
878 read_info_t read_info;
879
880 if (!dbg_cnt (dse))
881 return;
882
9e582b1d
JR
883 if (!check_for_inc_dec_1 (insn_info))
884 return;
456610d3 885 if (dump_file && (dump_flags & TDF_DETAILS))
ac6929b5
RB
886 fprintf (dump_file, "Locally deleting insn %d\n",
887 INSN_UID (insn_info->insn));
6fb5fa3c
DB
888
889 free_store_info (insn_info);
890 read_info = insn_info->read_rec;
b8698a0f 891
6fb5fa3c
DB
892 while (read_info)
893 {
894 read_info_t next = read_info->next;
fb0b2914 895 read_info_type_pool.remove (read_info);
6fb5fa3c
DB
896 read_info = next;
897 }
898 insn_info->read_rec = NULL;
899
900 delete_insn (insn_info->insn);
901 locally_deleted++;
902 insn_info->insn = NULL;
903
904 insn_info->wild_read = false;
905}
906
88d8330d
EB
907/* Return whether DECL, a local variable, can possibly escape the current
908 function scope. */
909
910static bool
911local_variable_can_escape (tree decl)
912{
913 if (TREE_ADDRESSABLE (decl))
914 return true;
915
916 /* If this is a partitioned variable, we need to consider all the variables
917 in the partition. This is necessary because a store into one of them can
918 be replaced with a store into another and this may not change the outcome
919 of the escape analysis. */
920 if (cfun->gimple_df->decls_to_pointers != NULL)
921 {
39c8aaa4 922 tree *namep = cfun->gimple_df->decls_to_pointers->get (decl);
88d8330d 923 if (namep)
39c8aaa4 924 return TREE_ADDRESSABLE (*namep);
88d8330d
EB
925 }
926
927 return false;
928}
929
930/* Return whether EXPR can possibly escape the current function scope. */
931
d26c7090
ER
932static bool
933can_escape (tree expr)
934{
935 tree base;
936 if (!expr)
937 return true;
938 base = get_base_address (expr);
939 if (DECL_P (base)
88d8330d 940 && !may_be_aliased (base)
8813a647 941 && !(VAR_P (base)
88d8330d
EB
942 && !DECL_EXTERNAL (base)
943 && !TREE_STATIC (base)
944 && local_variable_can_escape (base)))
d26c7090
ER
945 return false;
946 return true;
947}
6fb5fa3c
DB
948
949/* Set the store* bitmaps offset_map_size* fields in GROUP based on
950 OFFSET and WIDTH. */
951
952static void
02ce5d90 953set_usage_bits (group_info *group, poly_int64 offset, poly_int64 width,
d26c7090 954 tree expr)
6fb5fa3c 955{
02ce5d90
RS
956 /* Non-constant offsets and widths act as global kills, so there's no point
957 trying to use them to derive global DSE candidates. */
958 HOST_WIDE_INT i, const_offset, const_width;
d26c7090 959 bool expr_escapes = can_escape (expr);
02ce5d90
RS
960 if (offset.is_constant (&const_offset)
961 && width.is_constant (&const_width)
962 && const_offset > -MAX_OFFSET
963 && const_offset + const_width < MAX_OFFSET)
964 for (i = const_offset; i < const_offset + const_width; ++i)
6fb5fa3c
DB
965 {
966 bitmap store1;
967 bitmap store2;
d26c7090 968 bitmap escaped;
6fb5fa3c
DB
969 int ai;
970 if (i < 0)
971 {
972 store1 = group->store1_n;
973 store2 = group->store2_n;
d26c7090 974 escaped = group->escaped_n;
6fb5fa3c
DB
975 ai = -i;
976 }
977 else
978 {
979 store1 = group->store1_p;
980 store2 = group->store2_p;
d26c7090 981 escaped = group->escaped_p;
6fb5fa3c
DB
982 ai = i;
983 }
b8698a0f 984
fcaa4ca4 985 if (!bitmap_set_bit (store1, ai))
6fb5fa3c 986 bitmap_set_bit (store2, ai);
b8698a0f 987 else
6fb5fa3c 988 {
6fb5fa3c
DB
989 if (i < 0)
990 {
991 if (group->offset_map_size_n < ai)
992 group->offset_map_size_n = ai;
993 }
994 else
995 {
996 if (group->offset_map_size_p < ai)
997 group->offset_map_size_p = ai;
998 }
999 }
d26c7090
ER
1000 if (expr_escapes)
1001 bitmap_set_bit (escaped, ai);
6fb5fa3c
DB
1002 }
1003}
1004
d26c7090
ER
1005static void
1006reset_active_stores (void)
1007{
1008 active_local_stores = NULL;
1009 active_local_stores_len = 0;
1010}
6fb5fa3c 1011
d26c7090 1012/* Free all READ_REC of the LAST_INSN of BB_INFO. */
6fb5fa3c
DB
1013
1014static void
d26c7090 1015free_read_records (bb_info_t bb_info)
6fb5fa3c
DB
1016{
1017 insn_info_t insn_info = bb_info->last_insn;
1018 read_info_t *ptr = &insn_info->read_rec;
6fb5fa3c
DB
1019 while (*ptr)
1020 {
1021 read_info_t next = (*ptr)->next;
ac6929b5
RB
1022 read_info_type_pool.remove (*ptr);
1023 *ptr = next;
6fb5fa3c 1024 }
d26c7090
ER
1025}
1026
1027/* Set the BB_INFO so that the last insn is marked as a wild read. */
1028
1029static void
1030add_wild_read (bb_info_t bb_info)
1031{
1032 insn_info_t insn_info = bb_info->last_insn;
6fb5fa3c 1033 insn_info->wild_read = true;
d26c7090
ER
1034 free_read_records (bb_info);
1035 reset_active_stores ();
6fb5fa3c
DB
1036}
1037
d26c7090
ER
1038/* Set the BB_INFO so that the last insn is marked as a wild read of
1039 non-frame locations. */
1040
1041static void
1042add_non_frame_wild_read (bb_info_t bb_info)
1043{
1044 insn_info_t insn_info = bb_info->last_insn;
1045 insn_info->non_frame_wild_read = true;
1046 free_read_records (bb_info);
1047 reset_active_stores ();
1048}
6fb5fa3c 1049
50f0f366
EB
1050/* Return true if X is a constant or one of the registers that behave
1051 as a constant over the life of a function. This is equivalent to
1052 !rtx_varies_p for memory addresses. */
6fb5fa3c
DB
1053
1054static bool
1055const_or_frame_p (rtx x)
1056{
d8116890
KZ
1057 if (CONSTANT_P (x))
1058 return true;
1059
1060 if (GET_CODE (x) == REG)
6fb5fa3c 1061 {
6fb5fa3c
DB
1062 /* Note that we have to test for the actual rtx used for the frame
1063 and arg pointers and not just the register number in case we have
1064 eliminated the frame and/or arg pointer and are using it
1065 for pseudos. */
1066 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1067 /* The arg pointer varies if it is not a fixed register. */
1068 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1069 || x == pic_offset_table_rtx)
1070 return true;
1071 return false;
6fb5fa3c 1072 }
da6603c6 1073
d8116890 1074 return false;
6fb5fa3c
DB
1075}
1076
b8698a0f
L
1077/* Take all reasonable action to put the address of MEM into the form
1078 that we can do analysis on.
6fb5fa3c
DB
1079
1080 The gold standard is to get the address into the form: address +
1081 OFFSET where address is something that rtx_varies_p considers a
1082 constant. When we can get the address in this form, we can do
1083 global analysis on it. Note that for constant bases, address is
1084 not actually returned, only the group_id. The address can be
1085 obtained from that.
1086
1087 If that fails, we try cselib to get a value we can at least use
b8698a0f
L
1088 locally. If that fails we return false.
1089
6fb5fa3c
DB
1090 The GROUP_ID is set to -1 for cselib bases and the index of the
1091 group for non_varying bases.
1092
1093 FOR_READ is true if this is a mem read and false if not. */
1094
1095static bool
1096canon_address (rtx mem,
6fb5fa3c 1097 int *group_id,
02ce5d90 1098 poly_int64 *offset,
6fb5fa3c
DB
1099 cselib_val **base)
1100{
ef4bddc2 1101 machine_mode address_mode = get_address_mode (mem);
6fb5fa3c
DB
1102 rtx mem_address = XEXP (mem, 0);
1103 rtx expanded_address, address;
403c7520
JJ
1104 int expanded;
1105
4deef538 1106 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
6fb5fa3c 1107
456610d3 1108 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1109 {
1110 fprintf (dump_file, " mem: ");
1111 print_inline_rtx (dump_file, mem_address, 0);
1112 fprintf (dump_file, "\n");
1113 }
1114
403c7520
JJ
1115 /* First see if just canon_rtx (mem_address) is const or frame,
1116 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1117 address = NULL_RTX;
1118 for (expanded = 0; expanded < 2; expanded++)
1119 {
1120 if (expanded)
1121 {
1122 /* Use cselib to replace all of the reg references with the full
b8698a0f 1123 expression. This will take care of the case where we have
6fb5fa3c 1124
403c7520
JJ
1125 r_x = base + offset;
1126 val = *r_x;
b8698a0f
L
1127
1128 by making it into
6fb5fa3c 1129
403c7520 1130 val = *(base + offset); */
6fb5fa3c 1131
403c7520
JJ
1132 expanded_address = cselib_expand_value_rtx (mem_address,
1133 scratch, 5);
6fb5fa3c 1134
403c7520
JJ
1135 /* If this fails, just go with the address from first
1136 iteration. */
1137 if (!expanded_address)
1138 break;
1139 }
1140 else
1141 expanded_address = mem_address;
6fb5fa3c 1142
403c7520
JJ
1143 /* Split the address into canonical BASE + OFFSET terms. */
1144 address = canon_rtx (expanded_address);
6fb5fa3c 1145
403c7520 1146 *offset = 0;
6fb5fa3c 1147
456610d3 1148 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1149 {
1150 if (expanded)
1151 {
1152 fprintf (dump_file, "\n after cselib_expand address: ");
1153 print_inline_rtx (dump_file, expanded_address, 0);
1154 fprintf (dump_file, "\n");
1155 }
6fb5fa3c 1156
403c7520
JJ
1157 fprintf (dump_file, "\n after canon_rtx address: ");
1158 print_inline_rtx (dump_file, address, 0);
1159 fprintf (dump_file, "\n");
1160 }
6fb5fa3c 1161
403c7520
JJ
1162 if (GET_CODE (address) == CONST)
1163 address = XEXP (address, 0);
6fb5fa3c 1164
02ce5d90 1165 address = strip_offset_and_add (address, offset);
6fb5fa3c 1166
09e881c9
BE
1167 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1168 && const_or_frame_p (address))
6fb5fa3c 1169 {
fd6daec9 1170 group_info *group = get_group_info (address);
403c7520 1171
456610d3 1172 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1173 {
1174 fprintf (dump_file, " gid=%d offset=", group->id);
1175 print_dec (*offset, dump_file);
1176 fprintf (dump_file, "\n");
1177 }
403c7520
JJ
1178 *base = NULL;
1179 *group_id = group->id;
1180 return true;
6fb5fa3c 1181 }
403c7520
JJ
1182 }
1183
4deef538 1184 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
403c7520
JJ
1185 *group_id = -1;
1186
1187 if (*base == NULL)
1188 {
456610d3 1189 if (dump_file && (dump_flags & TDF_DETAILS))
403c7520
JJ
1190 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1191 return false;
6fb5fa3c 1192 }
456610d3 1193 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
1194 {
1195 fprintf (dump_file, " varying cselib base=%u:%u offset = ",
1196 (*base)->uid, (*base)->hash);
1197 print_dec (*offset, dump_file);
1198 fprintf (dump_file, "\n");
1199 }
6fb5fa3c
DB
1200 return true;
1201}
1202
1203
1204/* Clear the rhs field from the active_local_stores array. */
1205
1206static void
1207clear_rhs_from_active_local_stores (void)
1208{
1209 insn_info_t ptr = active_local_stores;
1210
1211 while (ptr)
1212 {
fd6daec9 1213 store_info *store_info = ptr->store_rec;
6fb5fa3c
DB
1214 /* Skip the clobbers. */
1215 while (!store_info->is_set)
1216 store_info = store_info->next;
1217
1218 store_info->rhs = NULL;
8dd5516b 1219 store_info->const_rhs = NULL;
6fb5fa3c
DB
1220
1221 ptr = ptr->next_local_store;
1222 }
1223}
1224
1225
8dd5516b
JJ
1226/* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1227
1228static inline void
fd6daec9 1229set_position_unneeded (store_info *s_info, int pos)
8dd5516b
JJ
1230{
1231 if (__builtin_expect (s_info->is_large, false))
1232 {
fcaa4ca4
NF
1233 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1234 s_info->positions_needed.large.count++;
8dd5516b
JJ
1235 }
1236 else
1237 s_info->positions_needed.small_bitmask
fecfbfa4 1238 &= ~(HOST_WIDE_INT_1U << pos);
8dd5516b
JJ
1239}
1240
1241/* Mark the whole store S_INFO as unneeded. */
1242
1243static inline void
fd6daec9 1244set_all_positions_unneeded (store_info *s_info)
8dd5516b
JJ
1245{
1246 if (__builtin_expect (s_info->is_large, false))
1247 {
02ce5d90
RS
1248 HOST_WIDE_INT width;
1249 if (s_info->width.is_constant (&width))
1250 {
1251 bitmap_set_range (s_info->positions_needed.large.bmap, 0, width);
1252 s_info->positions_needed.large.count = width;
1253 }
1254 else
1255 {
1256 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1257 s_info->positions_needed.large.count = 1;
1258 }
8dd5516b
JJ
1259 }
1260 else
07e96250 1261 s_info->positions_needed.small_bitmask = HOST_WIDE_INT_0U;
8dd5516b
JJ
1262}
1263
1264/* Return TRUE if any bytes from S_INFO store are needed. */
1265
1266static inline bool
fd6daec9 1267any_positions_needed_p (store_info *s_info)
8dd5516b
JJ
1268{
1269 if (__builtin_expect (s_info->is_large, false))
02ce5d90
RS
1270 {
1271 HOST_WIDE_INT width;
1272 if (s_info->width.is_constant (&width))
1273 {
1274 gcc_checking_assert (s_info->positions_needed.large.bmap);
1275 return s_info->positions_needed.large.count < width;
1276 }
1277 else
1278 {
1279 gcc_checking_assert (!s_info->positions_needed.large.bmap);
1280 return s_info->positions_needed.large.count == 0;
1281 }
1282 }
8dd5516b 1283 else
07e96250 1284 return (s_info->positions_needed.small_bitmask != HOST_WIDE_INT_0U);
8dd5516b
JJ
1285}
1286
1287/* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
02ce5d90 1288 store are known to be needed. */
8dd5516b
JJ
1289
1290static inline bool
02ce5d90
RS
1291all_positions_needed_p (store_info *s_info, poly_int64 start,
1292 poly_int64 width)
8dd5516b 1293{
02ce5d90
RS
1294 gcc_assert (s_info->rhs);
1295 if (!s_info->width.is_constant ())
1296 {
1297 gcc_assert (s_info->is_large
1298 && !s_info->positions_needed.large.bmap);
1299 return s_info->positions_needed.large.count == 0;
1300 }
1301
1302 /* Otherwise, if START and WIDTH are non-constant, we're asking about
1303 a non-constant region of a constant-sized store. We can't say for
1304 sure that all positions are needed. */
1305 HOST_WIDE_INT const_start, const_width;
1306 if (!start.is_constant (&const_start)
1307 || !width.is_constant (&const_width))
1308 return false;
1309
8dd5516b
JJ
1310 if (__builtin_expect (s_info->is_large, false))
1311 {
02ce5d90
RS
1312 for (HOST_WIDE_INT i = const_start; i < const_start + const_width; ++i)
1313 if (bitmap_bit_p (s_info->positions_needed.large.bmap, i))
8dd5516b
JJ
1314 return false;
1315 return true;
1316 }
1317 else
1318 {
02ce5d90
RS
1319 unsigned HOST_WIDE_INT mask
1320 = lowpart_bitmask (const_width) << const_start;
8dd5516b
JJ
1321 return (s_info->positions_needed.small_bitmask & mask) == mask;
1322 }
1323}
1324
1325
02ce5d90
RS
1326static rtx get_stored_val (store_info *, machine_mode, poly_int64,
1327 poly_int64, basic_block, bool);
8dd5516b
JJ
1328
1329
6fb5fa3c
DB
1330/* BODY is an instruction pattern that belongs to INSN. Return 1 if
1331 there is a candidate store, after adding it to the appropriate
1332 local store group if so. */
1333
1334static int
1335record_store (rtx body, bb_info_t bb_info)
1336{
6216f94e 1337 rtx mem, rhs, const_rhs, mem_addr;
02ce5d90
RS
1338 poly_int64 offset = 0;
1339 poly_int64 width = 0;
6fb5fa3c 1340 insn_info_t insn_info = bb_info->last_insn;
fd6daec9 1341 store_info *store_info = NULL;
6fb5fa3c
DB
1342 int group_id;
1343 cselib_val *base = NULL;
8dd5516b 1344 insn_info_t ptr, last, redundant_reason;
6fb5fa3c
DB
1345 bool store_is_unused;
1346
1347 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1348 return 0;
1349
8dd5516b
JJ
1350 mem = SET_DEST (body);
1351
6fb5fa3c
DB
1352 /* If this is not used, then this cannot be used to keep the insn
1353 from being deleted. On the other hand, it does provide something
1354 that can be used to prove that another store is dead. */
1355 store_is_unused
8dd5516b 1356 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
6fb5fa3c
DB
1357
1358 /* Check whether that value is a suitable memory location. */
6fb5fa3c
DB
1359 if (!MEM_P (mem))
1360 {
1361 /* If the set or clobber is unused, then it does not effect our
1362 ability to get rid of the entire insn. */
1363 if (!store_is_unused)
1364 insn_info->cannot_delete = true;
1365 return 0;
1366 }
1367
1368 /* At this point we know mem is a mem. */
1369 if (GET_MODE (mem) == BLKmode)
1370 {
d05d7551 1371 HOST_WIDE_INT const_size;
6fb5fa3c
DB
1372 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1373 {
456610d3 1374 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
1375 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1376 add_wild_read (bb_info);
1377 insn_info->cannot_delete = true;
8dd5516b 1378 return 0;
6fb5fa3c 1379 }
8dd5516b
JJ
1380 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1381 as memset (addr, 0, 36); */
f5541398 1382 else if (!MEM_SIZE_KNOWN_P (mem)
d05d7551
RS
1383 || maybe_le (MEM_SIZE (mem), 0)
1384 /* This is a limit on the bitmap size, which is only relevant
1385 for constant-sized MEMs. */
1386 || (MEM_SIZE (mem).is_constant (&const_size)
1387 && const_size > MAX_OFFSET)
8dd5516b 1388 || GET_CODE (body) != SET
8dd5516b 1389 || !CONST_INT_P (SET_SRC (body)))
6fb5fa3c 1390 {
8dd5516b
JJ
1391 if (!store_is_unused)
1392 {
1393 /* If the set or clobber is unused, then it does not effect our
1394 ability to get rid of the entire insn. */
1395 insn_info->cannot_delete = true;
1396 clear_rhs_from_active_local_stores ();
1397 }
1398 return 0;
6fb5fa3c 1399 }
6fb5fa3c
DB
1400 }
1401
1402 /* We can still process a volatile mem, we just cannot delete it. */
1403 if (MEM_VOLATILE_P (mem))
8dd5516b 1404 insn_info->cannot_delete = true;
6fb5fa3c 1405
ac6929b5 1406 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c
DB
1407 {
1408 clear_rhs_from_active_local_stores ();
1409 return 0;
1410 }
1411
8dd5516b 1412 if (GET_MODE (mem) == BLKmode)
f5541398 1413 width = MEM_SIZE (mem);
8dd5516b 1414 else
6f557e0e 1415 width = GET_MODE_SIZE (GET_MODE (mem));
6fb5fa3c 1416
02ce5d90 1417 if (!endpoint_representable_p (offset, width))
213ffde2
JJ
1418 {
1419 clear_rhs_from_active_local_stores ();
1420 return 0;
1421 }
1422
cbe679a4
JJ
1423 if (known_eq (width, 0))
1424 return 0;
1425
ac6929b5 1426 if (group_id >= 0)
6fb5fa3c
DB
1427 {
1428 /* In the restrictive case where the base is a constant or the
1429 frame pointer we can do global analysis. */
b8698a0f 1430
fd6daec9 1431 group_info *group
9771b263 1432 = rtx_group_vec[group_id];
d26c7090 1433 tree expr = MEM_EXPR (mem);
b8698a0f 1434
da6603c6 1435 store_info = rtx_store_info_pool.allocate ();
d26c7090 1436 set_usage_bits (group, offset, width, expr);
6fb5fa3c 1437
456610d3 1438 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1439 {
1440 fprintf (dump_file, " processing const base store gid=%d",
1441 group_id);
1442 print_range (dump_file, offset, width);
1443 fprintf (dump_file, "\n");
1444 }
6fb5fa3c
DB
1445 }
1446 else
1447 {
9e412ca3 1448 if (may_be_sp_based_p (XEXP (mem, 0)))
50f0f366 1449 insn_info->stack_pointer_based = true;
6fb5fa3c 1450 insn_info->contains_cselib_groups = true;
50f0f366 1451
da6603c6 1452 store_info = cse_store_info_pool.allocate ();
6fb5fa3c
DB
1453 group_id = -1;
1454
456610d3 1455 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1456 {
1457 fprintf (dump_file, " processing cselib store ");
1458 print_range (dump_file, offset, width);
1459 fprintf (dump_file, "\n");
1460 }
6fb5fa3c
DB
1461 }
1462
8dd5516b
JJ
1463 const_rhs = rhs = NULL_RTX;
1464 if (GET_CODE (body) == SET
1465 /* No place to keep the value after ra. */
1466 && !reload_completed
1467 && (REG_P (SET_SRC (body))
1468 || GET_CODE (SET_SRC (body)) == SUBREG
1469 || CONSTANT_P (SET_SRC (body)))
1470 && !MEM_VOLATILE_P (mem)
1471 /* Sometimes the store and reload is used for truncation and
1472 rounding. */
1473 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1474 {
1475 rhs = SET_SRC (body);
1476 if (CONSTANT_P (rhs))
1477 const_rhs = rhs;
1478 else if (body == PATTERN (insn_info->insn))
1479 {
1480 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1481 if (tem && CONSTANT_P (XEXP (tem, 0)))
1482 const_rhs = XEXP (tem, 0);
1483 }
1484 if (const_rhs == NULL_RTX && REG_P (rhs))
1485 {
1486 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1487
1488 if (tem && CONSTANT_P (tem))
1489 const_rhs = tem;
1490 }
1491 }
1492
6fb5fa3c
DB
1493 /* Check to see if this stores causes some other stores to be
1494 dead. */
1495 ptr = active_local_stores;
1496 last = NULL;
8dd5516b 1497 redundant_reason = NULL;
6216f94e 1498 mem = canon_rtx (mem);
ac6929b5
RB
1499
1500 if (group_id < 0)
1501 mem_addr = base->val_rtx;
6216f94e
JJ
1502 else
1503 {
ac6929b5
RB
1504 group_info *group = rtx_group_vec[group_id];
1505 mem_addr = group->canon_base_addr;
6216f94e 1506 }
02ce5d90 1507 if (maybe_ne (offset, 0))
ac6929b5 1508 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c
DB
1509
1510 while (ptr)
1511 {
1512 insn_info_t next = ptr->next_local_store;
99b1c316 1513 class store_info *s_info = ptr->store_rec;
60564289 1514 bool del = true;
6fb5fa3c
DB
1515
1516 /* Skip the clobbers. We delete the active insn if this insn
6ed3da00 1517 shadows the set. To have been put on the active list, it
6fb5fa3c
DB
1518 has exactly on set. */
1519 while (!s_info->is_set)
1520 s_info = s_info->next;
1521
ac6929b5 1522 if (s_info->group_id == group_id && s_info->cse_base == base)
6fb5fa3c
DB
1523 {
1524 HOST_WIDE_INT i;
456610d3 1525 if (dump_file && (dump_flags & TDF_DETAILS))
71d6a386
RS
1526 {
1527 fprintf (dump_file, " trying store in insn=%d gid=%d",
1528 INSN_UID (ptr->insn), s_info->group_id);
1529 print_range (dump_file, s_info->offset, s_info->width);
1530 fprintf (dump_file, "\n");
1531 }
8dd5516b
JJ
1532
1533 /* Even if PTR won't be eliminated as unneeded, if both
1534 PTR and this insn store the same constant value, we might
1535 eliminate this insn instead. */
1536 if (s_info->const_rhs
1537 && const_rhs
71d6a386
RS
1538 && known_subrange_p (offset, width,
1539 s_info->offset, s_info->width)
1540 && all_positions_needed_p (s_info, offset - s_info->offset,
d7e1f499
RB
1541 width)
1542 /* We can only remove the later store if the earlier aliases
1543 at least all accesses the later one. */
1544 && (MEM_ALIAS_SET (mem) == MEM_ALIAS_SET (s_info->mem)
1545 || alias_set_subset_of (MEM_ALIAS_SET (mem),
1546 MEM_ALIAS_SET (s_info->mem))))
8dd5516b
JJ
1547 {
1548 if (GET_MODE (mem) == BLKmode)
1549 {
1550 if (GET_MODE (s_info->mem) == BLKmode
1551 && s_info->const_rhs == const_rhs)
1552 redundant_reason = ptr;
1553 }
1554 else if (s_info->const_rhs == const0_rtx
1555 && const_rhs == const0_rtx)
1556 redundant_reason = ptr;
1557 else
1558 {
1559 rtx val;
1560 start_sequence ();
71d6a386 1561 val = get_stored_val (s_info, GET_MODE (mem), offset, width,
8dd5516b
JJ
1562 BLOCK_FOR_INSN (insn_info->insn),
1563 true);
1564 if (get_insns () != NULL)
1565 val = NULL_RTX;
1566 end_sequence ();
1567 if (val && rtx_equal_p (val, const_rhs))
1568 redundant_reason = ptr;
1569 }
1570 }
1571
02ce5d90 1572 HOST_WIDE_INT begin_unneeded, const_s_width, const_width;
71d6a386
RS
1573 if (known_subrange_p (s_info->offset, s_info->width, offset, width))
1574 /* The new store touches every byte that S_INFO does. */
1575 set_all_positions_unneeded (s_info);
02ce5d90
RS
1576 else if ((offset - s_info->offset).is_constant (&begin_unneeded)
1577 && s_info->width.is_constant (&const_s_width)
1578 && width.is_constant (&const_width))
71d6a386 1579 {
02ce5d90 1580 HOST_WIDE_INT end_unneeded = begin_unneeded + const_width;
71d6a386 1581 begin_unneeded = MAX (begin_unneeded, 0);
02ce5d90 1582 end_unneeded = MIN (end_unneeded, const_s_width);
71d6a386
RS
1583 for (i = begin_unneeded; i < end_unneeded; ++i)
1584 set_position_unneeded (s_info, i);
1585 }
02ce5d90
RS
1586 else
1587 {
1588 /* We don't know which parts of S_INFO are needed and
1589 which aren't, so invalidate the RHS. */
1590 s_info->rhs = NULL;
1591 s_info->const_rhs = NULL;
1592 }
6fb5fa3c
DB
1593 }
1594 else if (s_info->rhs)
1595 /* Need to see if it is possible for this store to overwrite
1596 the value of store_info. If it is, set the rhs to NULL to
1597 keep it from being used to remove a load. */
1598 {
43b9f499
RB
1599 if (canon_output_dependence (s_info->mem, true,
1600 mem, GET_MODE (mem),
1601 mem_addr))
8dd5516b
JJ
1602 {
1603 s_info->rhs = NULL;
1604 s_info->const_rhs = NULL;
1605 }
6fb5fa3c 1606 }
6216f94e 1607
6fb5fa3c
DB
1608 /* An insn can be deleted if every position of every one of
1609 its s_infos is zero. */
1b6fa860 1610 if (any_positions_needed_p (s_info))
60564289 1611 del = false;
8dd5516b 1612
60564289 1613 if (del)
6fb5fa3c
DB
1614 {
1615 insn_info_t insn_to_delete = ptr;
b8698a0f 1616
dabd47e7 1617 active_local_stores_len--;
6fb5fa3c
DB
1618 if (last)
1619 last->next_local_store = ptr->next_local_store;
1620 else
1621 active_local_stores = ptr->next_local_store;
b8698a0f 1622
1b6fa860
JJ
1623 if (!insn_to_delete->cannot_delete)
1624 delete_dead_store_insn (insn_to_delete);
6fb5fa3c
DB
1625 }
1626 else
1627 last = ptr;
b8698a0f 1628
6fb5fa3c
DB
1629 ptr = next;
1630 }
b8698a0f 1631
6fb5fa3c
DB
1632 /* Finish filling in the store_info. */
1633 store_info->next = insn_info->store_rec;
1634 insn_info->store_rec = store_info;
6216f94e 1635 store_info->mem = mem;
6216f94e 1636 store_info->mem_addr = mem_addr;
6fb5fa3c 1637 store_info->cse_base = base;
02ce5d90
RS
1638 HOST_WIDE_INT const_width;
1639 if (!width.is_constant (&const_width))
1640 {
1641 store_info->is_large = true;
1642 store_info->positions_needed.large.count = 0;
1643 store_info->positions_needed.large.bmap = NULL;
1644 }
1645 else if (const_width > HOST_BITS_PER_WIDE_INT)
8dd5516b
JJ
1646 {
1647 store_info->is_large = true;
1648 store_info->positions_needed.large.count = 0;
3f9b14ff 1649 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
8dd5516b
JJ
1650 }
1651 else
1652 {
1653 store_info->is_large = false;
02ce5d90
RS
1654 store_info->positions_needed.small_bitmask
1655 = lowpart_bitmask (const_width);
8dd5516b 1656 }
6fb5fa3c 1657 store_info->group_id = group_id;
71d6a386
RS
1658 store_info->offset = offset;
1659 store_info->width = width;
6fb5fa3c 1660 store_info->is_set = GET_CODE (body) == SET;
8dd5516b
JJ
1661 store_info->rhs = rhs;
1662 store_info->const_rhs = const_rhs;
1663 store_info->redundant_reason = redundant_reason;
6fb5fa3c 1664
6fb5fa3c
DB
1665 /* If this is a clobber, we return 0. We will only be able to
1666 delete this insn if there is only one store USED store, but we
1667 can use the clobber to delete other stores earlier. */
1668 return store_info->is_set ? 1 : 0;
1669}
1670
1671
1672static void
1673dump_insn_info (const char * start, insn_info_t insn_info)
1674{
b8698a0f 1675 fprintf (dump_file, "%s insn=%d %s\n", start,
6fb5fa3c
DB
1676 INSN_UID (insn_info->insn),
1677 insn_info->store_rec ? "has store" : "naked");
1678}
1679
1680
8660aaae
EC
1681/* If the modes are different and the value's source and target do not
1682 line up, we need to extract the value from lower part of the rhs of
1683 the store, shift it, and then put it into a form that can be shoved
1684 into the read_insn. This function generates a right SHIFT of a
1685 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1686 shift sequence is returned or NULL if we failed to find a
1687 shift. */
1688
1689static rtx
02ce5d90 1690find_shift_sequence (poly_int64 access_size,
fd6daec9 1691 store_info *store_info,
ef4bddc2 1692 machine_mode read_mode,
02ce5d90 1693 poly_int64 shift, bool speed, bool require_cst)
8660aaae 1694{
ef4bddc2 1695 machine_mode store_mode = GET_MODE (store_info->mem);
f67f4dff 1696 scalar_int_mode new_mode;
18b526e8 1697 rtx read_reg = NULL;
8660aaae
EC
1698
1699 /* Some machines like the x86 have shift insns for each size of
1700 operand. Other machines like the ppc or the ia-64 may only have
1701 shift insns that shift values within 32 or 64 bit registers.
1702 This loop tries to find the smallest shift insn that will right
1703 justify the value we want to read but is available in one insn on
1704 the machine. */
1705
f67f4dff
RS
1706 opt_scalar_int_mode new_mode_iter;
1707 FOR_EACH_MODE_FROM (new_mode_iter,
1708 smallest_int_mode_for_size (access_size * BITS_PER_UNIT))
8660aaae 1709 {
dc01c3d1
DM
1710 rtx target, new_reg, new_lhs;
1711 rtx_insn *shift_seq, *insn;
d898d29b 1712 int cost;
348eea5f 1713
f67f4dff 1714 new_mode = new_mode_iter.require ();
c94843d2
RS
1715 if (GET_MODE_BITSIZE (new_mode) > BITS_PER_WORD)
1716 break;
1717
72a2609f
JJ
1718 /* If a constant was stored into memory, try to simplify it here,
1719 otherwise the cost of the shift might preclude this optimization
1720 e.g. at -Os, even when no actual shift will be needed. */
8dd5516b 1721 if (store_info->const_rhs)
72a2609f 1722 {
91914e56 1723 poly_uint64 byte = subreg_lowpart_offset (new_mode, store_mode);
8dd5516b
JJ
1724 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1725 store_mode, byte);
72a2609f
JJ
1726 if (ret && CONSTANT_P (ret))
1727 {
abd3c800 1728 rtx shift_rtx = gen_int_shift_amount (new_mode, shift);
72a2609f 1729 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
abd3c800 1730 ret, shift_rtx);
72a2609f
JJ
1731 if (ret && CONSTANT_P (ret))
1732 {
1733 byte = subreg_lowpart_offset (read_mode, new_mode);
1734 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1735 if (ret && CONSTANT_P (ret)
e548c9df
AM
1736 && (set_src_cost (ret, read_mode, speed)
1737 <= COSTS_N_INSNS (1)))
72a2609f
JJ
1738 return ret;
1739 }
1740 }
1741 }
1742
8dd5516b
JJ
1743 if (require_cst)
1744 return NULL_RTX;
1745
18b526e8
RS
1746 /* Try a wider mode if truncating the store mode to NEW_MODE
1747 requires a real instruction. */
73a699ae 1748 if (maybe_lt (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (store_mode))
d0edd768 1749 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
348eea5f
RS
1750 continue;
1751
18b526e8
RS
1752 /* Also try a wider mode if the necessary punning is either not
1753 desirable or not possible. */
1754 if (!CONSTANT_P (store_info->rhs)
99e1629f 1755 && !targetm.modes_tieable_p (new_mode, store_mode))
18b526e8 1756 continue;
18b526e8 1757
348eea5f 1758 new_reg = gen_reg_rtx (new_mode);
8660aaae
EC
1759
1760 start_sequence ();
1761
1762 /* In theory we could also check for an ashr. Ian Taylor knows
1763 of one dsp where the cost of these two was not the same. But
1764 this really is a rare case anyway. */
1765 target = expand_binop (new_mode, lshr_optab, new_reg,
abd3c800
RS
1766 gen_int_shift_amount (new_mode, shift),
1767 new_reg, 1, OPTAB_DIRECT);
8660aaae 1768
c6f3019a
RS
1769 shift_seq = get_insns ();
1770 end_sequence ();
8660aaae 1771
c6f3019a
RS
1772 if (target != new_reg || shift_seq == NULL)
1773 continue;
1774
1775 cost = 0;
1776 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1777 if (INSN_P (insn))
d09e78e8 1778 cost += insn_cost (insn, speed);
c6f3019a
RS
1779
1780 /* The computation up to here is essentially independent
1781 of the arguments and could be precomputed. It may
1782 not be worth doing so. We could precompute if
1783 worthwhile or at least cache the results. The result
06acf7d0
RS
1784 technically depends on both SHIFT and ACCESS_SIZE,
1785 but in practice the answer will depend only on ACCESS_SIZE. */
c6f3019a
RS
1786
1787 if (cost > COSTS_N_INSNS (1))
1788 continue;
1789
d898d29b
JJ
1790 new_lhs = extract_low_bits (new_mode, store_mode,
1791 copy_rtx (store_info->rhs));
1792 if (new_lhs == NULL_RTX)
1793 continue;
1794
c6f3019a
RS
1795 /* We found an acceptable shift. Generate a move to
1796 take the value from the store and put it into the
1797 shift pseudo, then shift it, then generate another
1798 move to put in into the target of the read. */
18b526e8 1799 emit_move_insn (new_reg, new_lhs);
c6f3019a 1800 emit_insn (shift_seq);
18b526e8 1801 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
c6f3019a 1802 break;
8660aaae
EC
1803 }
1804
18b526e8 1805 return read_reg;
8660aaae
EC
1806}
1807
1808
02b47899
KZ
1809/* Call back for note_stores to find the hard regs set or clobbered by
1810 insn. Data is a bitmap of the hardregs set so far. */
1811
1812static void
1813look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1814{
1815 bitmap regs_set = (bitmap) data;
1816
1817 if (REG_P (x)
f773c2bd 1818 && HARD_REGISTER_P (x))
dc8afb70 1819 bitmap_set_range (regs_set, REGNO (x), REG_NREGS (x));
02b47899
KZ
1820}
1821
8dd5516b 1822/* Helper function for replace_read and record_store.
71d6a386
RS
1823 Attempt to return a value of mode READ_MODE stored in STORE_INFO,
1824 consisting of READ_WIDTH bytes starting from READ_OFFSET. Return NULL
8dd5516b
JJ
1825 if not successful. If REQUIRE_CST is true, return always constant. */
1826
1827static rtx
fd6daec9 1828get_stored_val (store_info *store_info, machine_mode read_mode,
02ce5d90 1829 poly_int64 read_offset, poly_int64 read_width,
8dd5516b
JJ
1830 basic_block bb, bool require_cst)
1831{
ef4bddc2 1832 machine_mode store_mode = GET_MODE (store_info->mem);
02ce5d90 1833 poly_int64 gap;
8dd5516b
JJ
1834 rtx read_reg;
1835
1836 /* To get here the read is within the boundaries of the write so
1837 shift will never be negative. Start out with the shift being in
1838 bytes. */
1839 if (store_mode == BLKmode)
71d6a386 1840 gap = 0;
8dd5516b 1841 else if (BYTES_BIG_ENDIAN)
71d6a386
RS
1842 gap = ((store_info->offset + store_info->width)
1843 - (read_offset + read_width));
8dd5516b 1844 else
71d6a386 1845 gap = read_offset - store_info->offset;
8dd5516b 1846
e6575643 1847 if (gap.is_constant () && maybe_ne (gap, 0))
71d6a386 1848 {
02ce5d90
RS
1849 poly_int64 shift = gap * BITS_PER_UNIT;
1850 poly_int64 access_size = GET_MODE_SIZE (read_mode) + gap;
71d6a386
RS
1851 read_reg = find_shift_sequence (access_size, store_info, read_mode,
1852 shift, optimize_bb_for_speed_p (bb),
1853 require_cst);
1854 }
8dd5516b
JJ
1855 else if (store_mode == BLKmode)
1856 {
1857 /* The store is a memset (addr, const_val, const_size). */
1858 gcc_assert (CONST_INT_P (store_info->rhs));
304b9962
RS
1859 scalar_int_mode int_store_mode;
1860 if (!int_mode_for_mode (read_mode).exists (&int_store_mode))
8dd5516b
JJ
1861 read_reg = NULL_RTX;
1862 else if (store_info->rhs == const0_rtx)
304b9962
RS
1863 read_reg = extract_low_bits (read_mode, int_store_mode, const0_rtx);
1864 else if (GET_MODE_BITSIZE (int_store_mode) > HOST_BITS_PER_WIDE_INT
8dd5516b
JJ
1865 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1866 read_reg = NULL_RTX;
1867 else
1868 {
1869 unsigned HOST_WIDE_INT c
1870 = INTVAL (store_info->rhs)
fecfbfa4 1871 & ((HOST_WIDE_INT_1 << BITS_PER_UNIT) - 1);
8dd5516b
JJ
1872 int shift = BITS_PER_UNIT;
1873 while (shift < HOST_BITS_PER_WIDE_INT)
1874 {
1875 c |= (c << shift);
1876 shift <<= 1;
1877 }
304b9962
RS
1878 read_reg = gen_int_mode (c, int_store_mode);
1879 read_reg = extract_low_bits (read_mode, int_store_mode, read_reg);
8dd5516b
JJ
1880 }
1881 }
1882 else if (store_info->const_rhs
1883 && (require_cst
1884 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1885 read_reg = extract_low_bits (read_mode, store_mode,
1886 copy_rtx (store_info->const_rhs));
1887 else
1888 read_reg = extract_low_bits (read_mode, store_mode,
1889 copy_rtx (store_info->rhs));
1890 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1891 read_reg = NULL_RTX;
1892 return read_reg;
1893}
02b47899 1894
6fb5fa3c
DB
1895/* Take a sequence of:
1896 A <- r1
1897 ...
1898 ... <- A
1899
b8698a0f 1900 and change it into
6fb5fa3c
DB
1901 r2 <- r1
1902 A <- r1
1903 ...
1904 ... <- r2
1905
8660aaae
EC
1906 or
1907
1908 r3 <- extract (r1)
1909 r3 <- r3 >> shift
1910 r2 <- extract (r3)
1911 ... <- r2
1912
1913 or
1914
1915 r2 <- extract (r1)
1916 ... <- r2
1917
1918 Depending on the alignment and the mode of the store and
1919 subsequent load.
1920
1921
1922 The STORE_INFO and STORE_INSN are for the store and READ_INFO
6fb5fa3c
DB
1923 and READ_INSN are for the read. Return true if the replacement
1924 went ok. */
1925
1926static bool
fd6daec9 1927replace_read (store_info *store_info, insn_info_t store_insn,
8dd5516b
JJ
1928 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1929 bitmap regs_live)
6fb5fa3c 1930{
ef4bddc2
RS
1931 machine_mode store_mode = GET_MODE (store_info->mem);
1932 machine_mode read_mode = GET_MODE (read_info->mem);
dc01c3d1
DM
1933 rtx_insn *insns, *this_insn;
1934 rtx read_reg;
8dd5516b 1935 basic_block bb;
8660aaae 1936
6fb5fa3c
DB
1937 if (!dbg_cnt (dse))
1938 return false;
1939
18b526e8
RS
1940 /* Create a sequence of instructions to set up the read register.
1941 This sequence goes immediately before the store and its result
1942 is read by the load.
1943
1944 We need to keep this in perspective. We are replacing a read
8660aaae
EC
1945 with a sequence of insns, but the read will almost certainly be
1946 in cache, so it is not going to be an expensive one. Thus, we
1947 are not willing to do a multi insn shift or worse a subroutine
1948 call to get rid of the read. */
456610d3 1949 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1950 fprintf (dump_file, "trying to replace %smode load in insn %d"
1951 " from %smode store in insn %d\n",
1952 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1953 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1954 start_sequence ();
8dd5516b
JJ
1955 bb = BLOCK_FOR_INSN (read_insn->insn);
1956 read_reg = get_stored_val (store_info,
71d6a386 1957 read_mode, read_info->offset, read_info->width,
8dd5516b 1958 bb, false);
18b526e8 1959 if (read_reg == NULL_RTX)
8660aaae 1960 {
18b526e8 1961 end_sequence ();
456610d3 1962 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
1963 fprintf (dump_file, " -- could not extract bits of stored value\n");
1964 return false;
8660aaae 1965 }
18b526e8
RS
1966 /* Force the value into a new register so that it won't be clobbered
1967 between the store and the load. */
1968 read_reg = copy_to_mode_reg (read_mode, read_reg);
1969 insns = get_insns ();
1970 end_sequence ();
8660aaae 1971
02b47899
KZ
1972 if (insns != NULL_RTX)
1973 {
1974 /* Now we have to scan the set of new instructions to see if the
1975 sequence contains and sets of hardregs that happened to be
1976 live at this point. For instance, this can happen if one of
1977 the insns sets the CC and the CC happened to be live at that
1978 point. This does occasionally happen, see PR 37922. */
3f9b14ff 1979 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
02b47899
KZ
1980
1981 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
e8448ba5 1982 note_stores (this_insn, look_for_hardregs, regs_set);
b8698a0f 1983
02b47899
KZ
1984 bitmap_and_into (regs_set, regs_live);
1985 if (!bitmap_empty_p (regs_set))
1986 {
456610d3 1987 if (dump_file && (dump_flags & TDF_DETAILS))
02b47899 1988 {
b8698a0f 1989 fprintf (dump_file,
02b47899
KZ
1990 "abandoning replacement because sequence clobbers live hardregs:");
1991 df_print_regset (dump_file, regs_set);
1992 }
b8698a0f 1993
02b47899
KZ
1994 BITMAP_FREE (regs_set);
1995 return false;
1996 }
1997 BITMAP_FREE (regs_set);
1998 }
1999
8660aaae 2000 if (validate_change (read_insn->insn, loc, read_reg, 0))
6fb5fa3c 2001 {
fd6daec9 2002 deferred_change *change = deferred_change_pool.allocate ();
b8698a0f 2003
8660aaae
EC
2004 /* Insert this right before the store insn where it will be safe
2005 from later insns that might change it before the read. */
2006 emit_insn_before (insns, store_insn->insn);
b8698a0f 2007
8660aaae
EC
2008 /* And now for the kludge part: cselib croaks if you just
2009 return at this point. There are two reasons for this:
b8698a0f 2010
8660aaae
EC
2011 1) Cselib has an idea of how many pseudos there are and
2012 that does not include the new ones we just added.
b8698a0f 2013
8660aaae
EC
2014 2) Cselib does not know about the move insn we added
2015 above the store_info, and there is no way to tell it
2016 about it, because it has "moved on".
b8698a0f 2017
8660aaae
EC
2018 Problem (1) is fixable with a certain amount of engineering.
2019 Problem (2) is requires starting the bb from scratch. This
2020 could be expensive.
b8698a0f 2021
8660aaae
EC
2022 So we are just going to have to lie. The move/extraction
2023 insns are not really an issue, cselib did not see them. But
2024 the use of the new pseudo read_insn is a real problem because
2025 cselib has not scanned this insn. The way that we solve this
2026 problem is that we are just going to put the mem back for now
2027 and when we are finished with the block, we undo this. We
2028 keep a table of mems to get rid of. At the end of the basic
2029 block we can put them back. */
b8698a0f 2030
8660aaae 2031 *loc = read_info->mem;
da6603c6
ML
2032 change->next = deferred_change_list;
2033 deferred_change_list = change;
2034 change->loc = loc;
2035 change->reg = read_reg;
b8698a0f 2036
8660aaae
EC
2037 /* Get rid of the read_info, from the point of view of the
2038 rest of dse, play like this read never happened. */
2039 read_insn->read_rec = read_info->next;
fb0b2914 2040 read_info_type_pool.remove (read_info);
456610d3 2041 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2042 {
2043 fprintf (dump_file, " -- replaced the loaded MEM with ");
2044 print_simple_rtl (dump_file, read_reg);
2045 fprintf (dump_file, "\n");
2046 }
8660aaae 2047 return true;
6fb5fa3c 2048 }
b8698a0f 2049 else
6fb5fa3c 2050 {
456610d3 2051 if (dump_file && (dump_flags & TDF_DETAILS))
18b526e8
RS
2052 {
2053 fprintf (dump_file, " -- replacing the loaded MEM with ");
2054 print_simple_rtl (dump_file, read_reg);
2055 fprintf (dump_file, " led to an invalid instruction\n");
2056 }
6fb5fa3c
DB
2057 return false;
2058 }
2059}
2060
d7111da8
RS
2061/* Check the address of MEM *LOC and kill any appropriate stores that may
2062 be active. */
6fb5fa3c 2063
d7111da8
RS
2064static void
2065check_mem_read_rtx (rtx *loc, bb_info_t bb_info)
6fb5fa3c 2066{
6216f94e 2067 rtx mem = *loc, mem_addr;
6fb5fa3c 2068 insn_info_t insn_info;
02ce5d90
RS
2069 poly_int64 offset = 0;
2070 poly_int64 width = 0;
b8698a0f 2071 cselib_val *base = NULL;
6fb5fa3c
DB
2072 int group_id;
2073 read_info_t read_info;
2074
6fb5fa3c
DB
2075 insn_info = bb_info->last_insn;
2076
2077 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
a49a975f 2078 || MEM_VOLATILE_P (mem))
6fb5fa3c 2079 {
a49a975f
JJ
2080 if (crtl->stack_protect_guard
2081 && (MEM_EXPR (mem) == crtl->stack_protect_guard
2082 || (crtl->stack_protect_guard_decl
2083 && MEM_EXPR (mem) == crtl->stack_protect_guard_decl))
2084 && MEM_VOLATILE_P (mem))
2085 {
2086 /* This is either the stack protector canary on the stack,
2087 which ought to be written by a MEM_VOLATILE_P store and
2088 thus shouldn't be deleted and is read at the very end of
2089 function, but shouldn't conflict with any other store.
2090 Or it is __stack_chk_guard variable or TLS or whatever else
2091 MEM holding the canary value, which really shouldn't be
2092 ever modified in -fstack-protector* protected functions,
2093 otherwise the prologue store wouldn't match the epilogue
2094 check. */
2095 if (dump_file && (dump_flags & TDF_DETAILS))
2096 fprintf (dump_file, " stack protector canary read ignored.\n");
2097 insn_info->cannot_delete = true;
2098 return;
2099 }
2100
456610d3 2101 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2102 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2103 add_wild_read (bb_info);
2104 insn_info->cannot_delete = true;
d7111da8 2105 return;
6fb5fa3c
DB
2106 }
2107
2108 /* If it is reading readonly mem, then there can be no conflict with
2109 another write. */
2110 if (MEM_READONLY_P (mem))
d7111da8 2111 return;
6fb5fa3c 2112
ac6929b5 2113 if (!canon_address (mem, &group_id, &offset, &base))
6fb5fa3c 2114 {
456610d3 2115 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2116 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2117 add_wild_read (bb_info);
d7111da8 2118 return;
6fb5fa3c
DB
2119 }
2120
2121 if (GET_MODE (mem) == BLKmode)
2122 width = -1;
2123 else
2124 width = GET_MODE_SIZE (GET_MODE (mem));
2125
02ce5d90 2126 if (!endpoint_representable_p (offset, known_eq (width, -1) ? 1 : width))
938f9248 2127 {
213ffde2
JJ
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2129 fprintf (dump_file, " adding wild read, due to overflow.\n");
2130 add_wild_read (bb_info);
938f9248
ML
2131 return;
2132 }
2133
fb0b2914 2134 read_info = read_info_type_pool.allocate ();
6fb5fa3c
DB
2135 read_info->group_id = group_id;
2136 read_info->mem = mem;
71d6a386
RS
2137 read_info->offset = offset;
2138 read_info->width = width;
6fb5fa3c
DB
2139 read_info->next = insn_info->read_rec;
2140 insn_info->read_rec = read_info;
ac6929b5
RB
2141 if (group_id < 0)
2142 mem_addr = base->val_rtx;
6216f94e
JJ
2143 else
2144 {
ac6929b5
RB
2145 group_info *group = rtx_group_vec[group_id];
2146 mem_addr = group->canon_base_addr;
6216f94e 2147 }
02ce5d90 2148 if (maybe_ne (offset, 0))
ac6929b5 2149 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
6fb5fa3c 2150
ac6929b5 2151 if (group_id >= 0)
6fb5fa3c
DB
2152 {
2153 /* This is the restricted case where the base is a constant or
2154 the frame pointer and offset is a constant. */
2155 insn_info_t i_ptr = active_local_stores;
2156 insn_info_t last = NULL;
b8698a0f 2157
456610d3 2158 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2159 {
02ce5d90 2160 if (!known_size_p (width))
6fb5fa3c
DB
2161 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2162 group_id);
2163 else
71d6a386
RS
2164 {
2165 fprintf (dump_file, " processing const load gid=%d", group_id);
2166 print_range (dump_file, offset, width);
2167 fprintf (dump_file, "\n");
2168 }
6fb5fa3c
DB
2169 }
2170
2171 while (i_ptr)
2172 {
2173 bool remove = false;
fd6daec9 2174 store_info *store_info = i_ptr->store_rec;
b8698a0f 2175
6fb5fa3c
DB
2176 /* Skip the clobbers. */
2177 while (!store_info->is_set)
2178 store_info = store_info->next;
b8698a0f 2179
6fb5fa3c
DB
2180 /* There are three cases here. */
2181 if (store_info->group_id < 0)
2182 /* We have a cselib store followed by a read from a
2183 const base. */
b8698a0f
L
2184 remove
2185 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2186 GET_MODE (store_info->mem),
2187 store_info->mem_addr,
53d9622b 2188 mem, mem_addr);
b8698a0f 2189
6fb5fa3c
DB
2190 else if (group_id == store_info->group_id)
2191 {
2192 /* This is a block mode load. We may get lucky and
2193 canon_true_dependence may save the day. */
02ce5d90 2194 if (!known_size_p (width))
b8698a0f
L
2195 remove
2196 = canon_true_dependence (store_info->mem,
6fb5fa3c
DB
2197 GET_MODE (store_info->mem),
2198 store_info->mem_addr,
53d9622b 2199 mem, mem_addr);
b8698a0f 2200
6fb5fa3c
DB
2201 /* If this read is just reading back something that we just
2202 stored, rewrite the read. */
b8698a0f 2203 else
6fb5fa3c
DB
2204 {
2205 if (store_info->rhs
71d6a386
RS
2206 && known_subrange_p (offset, width, store_info->offset,
2207 store_info->width)
8dd5516b 2208 && all_positions_needed_p (store_info,
71d6a386 2209 offset - store_info->offset,
8dd5516b
JJ
2210 width)
2211 && replace_read (store_info, i_ptr, read_info,
2212 insn_info, loc, bb_info->regs_live))
d7111da8 2213 return;
8dd5516b 2214
6fb5fa3c 2215 /* The bases are the same, just see if the offsets
71d6a386
RS
2216 could overlap. */
2217 if (ranges_maybe_overlap_p (offset, width,
2218 store_info->offset,
2219 store_info->width))
6fb5fa3c
DB
2220 remove = true;
2221 }
2222 }
b8698a0f
L
2223
2224 /* else
6fb5fa3c
DB
2225 The else case that is missing here is that the
2226 bases are constant but different. There is nothing
2227 to do here because there is no overlap. */
b8698a0f 2228
6fb5fa3c
DB
2229 if (remove)
2230 {
456610d3 2231 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2232 dump_insn_info ("removing from active", i_ptr);
2233
dabd47e7 2234 active_local_stores_len--;
6fb5fa3c
DB
2235 if (last)
2236 last->next_local_store = i_ptr->next_local_store;
2237 else
2238 active_local_stores = i_ptr->next_local_store;
2239 }
2240 else
2241 last = i_ptr;
2242 i_ptr = i_ptr->next_local_store;
2243 }
2244 }
b8698a0f 2245 else
6fb5fa3c
DB
2246 {
2247 insn_info_t i_ptr = active_local_stores;
2248 insn_info_t last = NULL;
456610d3 2249 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2250 {
2251 fprintf (dump_file, " processing cselib load mem:");
2252 print_inline_rtx (dump_file, mem, 0);
2253 fprintf (dump_file, "\n");
2254 }
2255
2256 while (i_ptr)
2257 {
2258 bool remove = false;
fd6daec9 2259 store_info *store_info = i_ptr->store_rec;
b8698a0f 2260
456610d3 2261 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2262 fprintf (dump_file, " processing cselib load against insn %d\n",
2263 INSN_UID (i_ptr->insn));
2264
2265 /* Skip the clobbers. */
2266 while (!store_info->is_set)
2267 store_info = store_info->next;
2268
2269 /* If this read is just reading back something that we just
2270 stored, rewrite the read. */
2271 if (store_info->rhs
2272 && store_info->group_id == -1
2273 && store_info->cse_base == base
71d6a386
RS
2274 && known_subrange_p (offset, width, store_info->offset,
2275 store_info->width)
8dd5516b 2276 && all_positions_needed_p (store_info,
71d6a386 2277 offset - store_info->offset, width)
8dd5516b
JJ
2278 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2279 bb_info->regs_live))
d7111da8 2280 return;
6fb5fa3c 2281
ac6929b5
RB
2282 remove = canon_true_dependence (store_info->mem,
2283 GET_MODE (store_info->mem),
2284 store_info->mem_addr,
2285 mem, mem_addr);
b8698a0f 2286
6fb5fa3c
DB
2287 if (remove)
2288 {
456610d3 2289 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2290 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2291
dabd47e7 2292 active_local_stores_len--;
6fb5fa3c
DB
2293 if (last)
2294 last->next_local_store = i_ptr->next_local_store;
2295 else
2296 active_local_stores = i_ptr->next_local_store;
2297 }
2298 else
2299 last = i_ptr;
2300 i_ptr = i_ptr->next_local_store;
2301 }
2302 }
6fb5fa3c
DB
2303}
2304
d7111da8 2305/* A note_uses callback in which DATA points the INSN_INFO for
6fb5fa3c
DB
2306 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2307 true for any part of *LOC. */
2308
2309static void
2310check_mem_read_use (rtx *loc, void *data)
2311{
d7111da8
RS
2312 subrtx_ptr_iterator::array_type array;
2313 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
2314 {
2315 rtx *loc = *iter;
2316 if (MEM_P (*loc))
2317 check_mem_read_rtx (loc, (bb_info_t) data);
2318 }
6fb5fa3c
DB
2319}
2320
8dd5516b
JJ
2321
2322/* Get arguments passed to CALL_INSN. Return TRUE if successful.
2323 So far it only handles arguments passed in registers. */
2324
2325static bool
2326get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2327{
d5cc9181
JR
2328 CUMULATIVE_ARGS args_so_far_v;
2329 cumulative_args_t args_so_far;
8dd5516b
JJ
2330 tree arg;
2331 int idx;
2332
d5cc9181
JR
2333 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2334 args_so_far = pack_cumulative_args (&args_so_far_v);
8dd5516b
JJ
2335
2336 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2337 for (idx = 0;
2338 arg != void_list_node && idx < nargs;
2339 arg = TREE_CHAIN (arg), idx++)
2340 {
b4206259 2341 scalar_int_mode mode;
3c07301f 2342 rtx reg, link, tmp;
b4206259
RS
2343
2344 if (!is_int_mode (TYPE_MODE (TREE_VALUE (arg)), &mode))
2345 return false;
2346
6783fdb7
RS
2347 function_arg_info arg (mode, /*named=*/true);
2348 reg = targetm.calls.function_arg (args_so_far, arg);
b4206259 2349 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode)
8dd5516b
JJ
2350 return false;
2351
2352 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2353 link;
2354 link = XEXP (link, 1))
2355 if (GET_CODE (XEXP (link, 0)) == USE)
2356 {
b4206259 2357 scalar_int_mode arg_mode;
8dd5516b
JJ
2358 args[idx] = XEXP (XEXP (link, 0), 0);
2359 if (REG_P (args[idx])
2360 && REGNO (args[idx]) == REGNO (reg)
2361 && (GET_MODE (args[idx]) == mode
b4206259
RS
2362 || (is_int_mode (GET_MODE (args[idx]), &arg_mode)
2363 && (GET_MODE_SIZE (arg_mode) <= UNITS_PER_WORD)
2364 && (GET_MODE_SIZE (arg_mode) > GET_MODE_SIZE (mode)))))
8dd5516b
JJ
2365 break;
2366 }
2367 if (!link)
2368 return false;
2369
2370 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2371 if (GET_MODE (args[idx]) != mode)
2372 {
2373 if (!tmp || !CONST_INT_P (tmp))
2374 return false;
6d26322f 2375 tmp = gen_int_mode (INTVAL (tmp), mode);
8dd5516b
JJ
2376 }
2377 if (tmp)
2378 args[idx] = tmp;
2379
6930c98c 2380 targetm.calls.function_arg_advance (args_so_far, arg);
8dd5516b
JJ
2381 }
2382 if (arg != void_list_node || idx != nargs)
2383 return false;
2384 return true;
2385}
2386
9e582b1d
JR
2387/* Return a bitmap of the fixed registers contained in IN. */
2388
2389static bitmap
2390copy_fixed_regs (const_bitmap in)
2391{
2392 bitmap ret;
2393
2394 ret = ALLOC_REG_SET (NULL);
0b0310e9 2395 bitmap_and (ret, in, bitmap_view<HARD_REG_SET> (fixed_reg_set));
9e582b1d
JR
2396 return ret;
2397}
8dd5516b 2398
6fb5fa3c
DB
2399/* Apply record_store to all candidate stores in INSN. Mark INSN
2400 if some part of it is not a candidate store and assigns to a
2401 non-register target. */
2402
2403static void
fc2d7303 2404scan_insn (bb_info_t bb_info, rtx_insn *insn, int max_active_local_stores)
6fb5fa3c
DB
2405{
2406 rtx body;
fb0b2914 2407 insn_info_type *insn_info = insn_info_type_pool.allocate ();
6fb5fa3c 2408 int mems_found = 0;
da6603c6 2409 memset (insn_info, 0, sizeof (struct insn_info_type));
6fb5fa3c 2410
456610d3 2411 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
2412 fprintf (dump_file, "\n**scanning insn=%d\n",
2413 INSN_UID (insn));
2414
2415 insn_info->prev_insn = bb_info->last_insn;
2416 insn_info->insn = insn;
2417 bb_info->last_insn = insn_info;
b8698a0f 2418
b5b8b0ac
AO
2419 if (DEBUG_INSN_P (insn))
2420 {
2421 insn_info->cannot_delete = true;
2422 return;
2423 }
6fb5fa3c 2424
6fb5fa3c
DB
2425 /* Look at all of the uses in the insn. */
2426 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2427
2428 if (CALL_P (insn))
2429 {
8dd5516b 2430 bool const_call;
ee516de9 2431 rtx call, sym;
8dd5516b
JJ
2432 tree memset_call = NULL_TREE;
2433
6fb5fa3c 2434 insn_info->cannot_delete = true;
50f0f366 2435
6fb5fa3c 2436 /* Const functions cannot do anything bad i.e. read memory,
50f0f366 2437 however, they can read their parameters which may have
8dd5516b
JJ
2438 been pushed onto the stack.
2439 memset and bzero don't read memory either. */
2440 const_call = RTL_CONST_CALL_P (insn);
ee516de9
EB
2441 if (!const_call
2442 && (call = get_call_rtx_from (insn))
2443 && (sym = XEXP (XEXP (call, 0), 0))
2444 && GET_CODE (sym) == SYMBOL_REF
2445 && SYMBOL_REF_DECL (sym)
2446 && TREE_CODE (SYMBOL_REF_DECL (sym)) == FUNCTION_DECL
3d78e008 2447 && fndecl_built_in_p (SYMBOL_REF_DECL (sym), BUILT_IN_MEMSET))
ee516de9
EB
2448 memset_call = SYMBOL_REF_DECL (sym);
2449
8dd5516b 2450 if (const_call || memset_call)
6fb5fa3c
DB
2451 {
2452 insn_info_t i_ptr = active_local_stores;
2453 insn_info_t last = NULL;
2454
456610d3 2455 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2456 fprintf (dump_file, "%s call %d\n",
2457 const_call ? "const" : "memset", INSN_UID (insn));
6fb5fa3c 2458
64520bdc 2459 /* See the head comment of the frame_read field. */
57534689
JJ
2460 if (reload_completed
2461 /* Tail calls are storing their arguments using
2462 arg pointer. If it is a frame pointer on the target,
2463 even before reload we need to kill frame pointer based
2464 stores. */
2465 || (SIBLING_CALL_P (insn)
2466 && HARD_FRAME_POINTER_IS_ARG_POINTER))
64520bdc
EB
2467 insn_info->frame_read = true;
2468
2469 /* Loop over the active stores and remove those which are
2470 killed by the const function call. */
6fb5fa3c
DB
2471 while (i_ptr)
2472 {
64520bdc
EB
2473 bool remove_store = false;
2474
2475 /* The stack pointer based stores are always killed. */
50f0f366 2476 if (i_ptr->stack_pointer_based)
64520bdc
EB
2477 remove_store = true;
2478
2479 /* If the frame is read, the frame related stores are killed. */
2480 else if (insn_info->frame_read)
2481 {
fd6daec9 2482 store_info *store_info = i_ptr->store_rec;
64520bdc
EB
2483
2484 /* Skip the clobbers. */
2485 while (!store_info->is_set)
2486 store_info = store_info->next;
2487
2488 if (store_info->group_id >= 0
9771b263 2489 && rtx_group_vec[store_info->group_id]->frame_related)
64520bdc
EB
2490 remove_store = true;
2491 }
2492
2493 if (remove_store)
6fb5fa3c 2494 {
456610d3 2495 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2496 dump_insn_info ("removing from active", i_ptr);
b8698a0f 2497
dabd47e7 2498 active_local_stores_len--;
6fb5fa3c
DB
2499 if (last)
2500 last->next_local_store = i_ptr->next_local_store;
2501 else
2502 active_local_stores = i_ptr->next_local_store;
2503 }
2504 else
2505 last = i_ptr;
64520bdc 2506
6fb5fa3c
DB
2507 i_ptr = i_ptr->next_local_store;
2508 }
8dd5516b
JJ
2509
2510 if (memset_call)
2511 {
2512 rtx args[3];
2513 if (get_call_args (insn, memset_call, args, 3)
2514 && CONST_INT_P (args[1])
2515 && CONST_INT_P (args[2])
2516 && INTVAL (args[2]) > 0)
2517 {
2518 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
f5541398 2519 set_mem_size (mem, INTVAL (args[2]));
f7df4a84 2520 body = gen_rtx_SET (mem, args[1]);
8dd5516b 2521 mems_found += record_store (body, bb_info);
456610d3 2522 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2523 fprintf (dump_file, "handling memset as BLKmode store\n");
2524 if (mems_found == 1)
2525 {
fc2d7303 2526 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2527 {
2528 active_local_stores_len = 1;
2529 active_local_stores = NULL;
2530 }
9e582b1d
JR
2531 insn_info->fixed_regs_live
2532 = copy_fixed_regs (bb_info->regs_live);
8dd5516b
JJ
2533 insn_info->next_local_store = active_local_stores;
2534 active_local_stores = insn_info;
2535 }
2536 }
a2ad54a0
JJ
2537 else
2538 clear_rhs_from_active_local_stores ();
8dd5516b 2539 }
6fb5fa3c 2540 }
7ee98586
EB
2541 else if (SIBLING_CALL_P (insn)
2542 && (reload_completed || HARD_FRAME_POINTER_IS_ARG_POINTER))
57534689
JJ
2543 /* Arguments for a sibling call that are pushed to memory are passed
2544 using the incoming argument pointer of the current function. After
7ee98586
EB
2545 reload that might be (and likely is) frame pointer based. And, if
2546 it is a frame pointer on the target, even before reload we need to
2547 kill frame pointer based stores. */
57534689 2548 add_wild_read (bb_info);
50f0f366 2549 else
d26c7090
ER
2550 /* Every other call, including pure functions, may read any memory
2551 that is not relative to the frame. */
2552 add_non_frame_wild_read (bb_info);
50f0f366 2553
6fb5fa3c
DB
2554 return;
2555 }
2556
2557 /* Assuming that there are sets in these insns, we cannot delete
2558 them. */
2559 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
0a64eeca 2560 || volatile_refs_p (PATTERN (insn))
2da02156 2561 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6fb5fa3c
DB
2562 || (RTX_FRAME_RELATED_P (insn))
2563 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2564 insn_info->cannot_delete = true;
b8698a0f 2565
6fb5fa3c
DB
2566 body = PATTERN (insn);
2567 if (GET_CODE (body) == PARALLEL)
2568 {
2569 int i;
2570 for (i = 0; i < XVECLEN (body, 0); i++)
2571 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2572 }
2573 else
2574 mems_found += record_store (body, bb_info);
2575
456610d3 2576 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2577 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
6fb5fa3c
DB
2578 mems_found, insn_info->cannot_delete ? "true" : "false");
2579
8dd5516b
JJ
2580 /* If we found some sets of mems, add it into the active_local_stores so
2581 that it can be locally deleted if found dead or used for
2582 replace_read and redundant constant store elimination. Otherwise mark
2583 it as cannot delete. This simplifies the processing later. */
2584 if (mems_found == 1)
6fb5fa3c 2585 {
fc2d7303 2586 if (active_local_stores_len++ >= max_active_local_stores)
dabd47e7
JJ
2587 {
2588 active_local_stores_len = 1;
2589 active_local_stores = NULL;
2590 }
9e582b1d 2591 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
6fb5fa3c
DB
2592 insn_info->next_local_store = active_local_stores;
2593 active_local_stores = insn_info;
2594 }
2595 else
2596 insn_info->cannot_delete = true;
2597}
2598
2599
2600/* Remove BASE from the set of active_local_stores. This is a
2601 callback from cselib that is used to get rid of the stores in
2602 active_local_stores. */
2603
2604static void
2605remove_useless_values (cselib_val *base)
2606{
2607 insn_info_t insn_info = active_local_stores;
2608 insn_info_t last = NULL;
2609
2610 while (insn_info)
2611 {
fd6daec9 2612 store_info *store_info = insn_info->store_rec;
60564289 2613 bool del = false;
6fb5fa3c
DB
2614
2615 /* If ANY of the store_infos match the cselib group that is
67914693 2616 being deleted, then the insn cannot be deleted. */
6fb5fa3c
DB
2617 while (store_info)
2618 {
b8698a0f 2619 if ((store_info->group_id == -1)
6fb5fa3c
DB
2620 && (store_info->cse_base == base))
2621 {
60564289 2622 del = true;
6fb5fa3c
DB
2623 break;
2624 }
2625 store_info = store_info->next;
2626 }
2627
60564289 2628 if (del)
6fb5fa3c 2629 {
dabd47e7 2630 active_local_stores_len--;
6fb5fa3c
DB
2631 if (last)
2632 last->next_local_store = insn_info->next_local_store;
2633 else
2634 active_local_stores = insn_info->next_local_store;
2635 free_store_info (insn_info);
2636 }
2637 else
2638 last = insn_info;
b8698a0f 2639
6fb5fa3c
DB
2640 insn_info = insn_info->next_local_store;
2641 }
2642}
2643
2644
2645/* Do all of step 1. */
2646
2647static void
2648dse_step1 (void)
2649{
2650 basic_block bb;
3f9b14ff 2651 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
b8698a0f 2652
457eeaae 2653 cselib_init (0);
6fb5fa3c
DB
2654 all_blocks = BITMAP_ALLOC (NULL);
2655 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2656 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2657
fc2d7303
RB
2658 /* For -O1 reduce the maximum number of active local stores for RTL DSE
2659 since this can consume huge amounts of memory (PR89115). */
2660 int max_active_local_stores = PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES);
2661 if (optimize < 2)
2662 max_active_local_stores /= 10;
2663
04a90bec 2664 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
2665 {
2666 insn_info_t ptr;
fb0b2914 2667 bb_info_t bb_info = dse_bb_info_type_pool.allocate ();
6fb5fa3c 2668
da6603c6 2669 memset (bb_info, 0, sizeof (dse_bb_info_type));
6fb5fa3c 2670 bitmap_set_bit (all_blocks, bb->index);
02b47899
KZ
2671 bb_info->regs_live = regs_live;
2672
2673 bitmap_copy (regs_live, DF_LR_IN (bb));
2674 df_simulate_initialize_forwards (bb, regs_live);
6fb5fa3c
DB
2675
2676 bb_table[bb->index] = bb_info;
2677 cselib_discard_hook = remove_useless_values;
2678
2679 if (bb->index >= NUM_FIXED_BLOCKS)
2680 {
dd60a84c 2681 rtx_insn *insn;
6fb5fa3c 2682
6fb5fa3c 2683 active_local_stores = NULL;
dabd47e7 2684 active_local_stores_len = 0;
6fb5fa3c 2685 cselib_clear_table ();
b8698a0f 2686
6fb5fa3c
DB
2687 /* Scan the insns. */
2688 FOR_BB_INSNS (bb, insn)
2689 {
2690 if (INSN_P (insn))
fc2d7303 2691 scan_insn (bb_info, insn, max_active_local_stores);
6fb5fa3c 2692 cselib_process_insn (insn);
02b47899
KZ
2693 if (INSN_P (insn))
2694 df_simulate_one_insn_forwards (bb, insn, regs_live);
6fb5fa3c 2695 }
b8698a0f 2696
6fb5fa3c
DB
2697 /* This is something of a hack, because the global algorithm
2698 is supposed to take care of the case where stores go dead
2699 at the end of the function. However, the global
2700 algorithm must take a more conservative view of block
2701 mode reads than the local alg does. So to get the case
2702 where you have a store to the frame followed by a non
0d52bcc1 2703 overlapping block more read, we look at the active local
6fb5fa3c
DB
2704 stores at the end of the function and delete all of the
2705 frame and spill based ones. */
2706 if (stores_off_frame_dead_at_return
2707 && (EDGE_COUNT (bb->succs) == 0
2708 || (single_succ_p (bb)
fefa31b5 2709 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
e3b5732b 2710 && ! crtl->calls_eh_return)))
6fb5fa3c
DB
2711 {
2712 insn_info_t i_ptr = active_local_stores;
2713 while (i_ptr)
2714 {
fd6daec9 2715 store_info *store_info = i_ptr->store_rec;
6fb5fa3c
DB
2716
2717 /* Skip the clobbers. */
2718 while (!store_info->is_set)
2719 store_info = store_info->next;
ac6929b5
RB
2720 if (store_info->group_id >= 0)
2721 {
2722 group_info *group = rtx_group_vec[store_info->group_id];
2723 if (group->frame_related && !i_ptr->cannot_delete)
2724 delete_dead_store_insn (i_ptr);
2725 }
6fb5fa3c
DB
2726
2727 i_ptr = i_ptr->next_local_store;
2728 }
2729 }
2730
2731 /* Get rid of the loads that were discovered in
2732 replace_read. Cselib is finished with this block. */
2733 while (deferred_change_list)
2734 {
fd6daec9 2735 deferred_change *next = deferred_change_list->next;
6fb5fa3c
DB
2736
2737 /* There is no reason to validate this change. That was
2738 done earlier. */
2739 *deferred_change_list->loc = deferred_change_list->reg;
fb0b2914 2740 deferred_change_pool.remove (deferred_change_list);
6fb5fa3c
DB
2741 deferred_change_list = next;
2742 }
2743
2744 /* Get rid of all of the cselib based store_infos in this
2745 block and mark the containing insns as not being
2746 deletable. */
2747 ptr = bb_info->last_insn;
2748 while (ptr)
2749 {
2750 if (ptr->contains_cselib_groups)
8dd5516b 2751 {
fd6daec9 2752 store_info *s_info = ptr->store_rec;
8dd5516b
JJ
2753 while (s_info && !s_info->is_set)
2754 s_info = s_info->next;
2755 if (s_info
2756 && s_info->redundant_reason
2757 && s_info->redundant_reason->insn
2758 && !ptr->cannot_delete)
2759 {
456610d3 2760 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
2761 fprintf (dump_file, "Locally deleting insn %d "
2762 "because insn %d stores the "
2763 "same value and couldn't be "
2764 "eliminated\n",
2765 INSN_UID (ptr->insn),
2766 INSN_UID (s_info->redundant_reason->insn));
2767 delete_dead_store_insn (ptr);
2768 }
8dd5516b
JJ
2769 free_store_info (ptr);
2770 }
2771 else
2772 {
fd6daec9 2773 store_info *s_info;
8dd5516b
JJ
2774
2775 /* Free at least positions_needed bitmaps. */
2776 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2777 if (s_info->is_large)
2778 {
dc491a25 2779 BITMAP_FREE (s_info->positions_needed.large.bmap);
8dd5516b
JJ
2780 s_info->is_large = false;
2781 }
2782 }
6fb5fa3c
DB
2783 ptr = ptr->prev_insn;
2784 }
2785
da6603c6 2786 cse_store_info_pool.release ();
6fb5fa3c 2787 }
02b47899 2788 bb_info->regs_live = NULL;
6fb5fa3c
DB
2789 }
2790
02b47899 2791 BITMAP_FREE (regs_live);
6fb5fa3c 2792 cselib_finish ();
c203e8a7 2793 rtx_group_table->empty ();
6fb5fa3c
DB
2794}
2795
2796\f
2797/*----------------------------------------------------------------------------
2798 Second step.
2799
2800 Assign each byte position in the stores that we are going to
2801 analyze globally to a position in the bitmaps. Returns true if
6ed3da00 2802 there are any bit positions assigned.
6fb5fa3c
DB
2803----------------------------------------------------------------------------*/
2804
2805static void
2806dse_step2_init (void)
2807{
2808 unsigned int i;
fd6daec9 2809 group_info *group;
6fb5fa3c 2810
9771b263 2811 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2812 {
2813 /* For all non stack related bases, we only consider a store to
2814 be deletable if there are two or more stores for that
2815 position. This is because it takes one store to make the
2816 other store redundant. However, for the stores that are
2817 stack related, we consider them if there is only one store
2818 for the position. We do this because the stack related
2819 stores can be deleted if their is no read between them and
2820 the end of the function.
b8698a0f 2821
6fb5fa3c
DB
2822 To make this work in the current framework, we take the stack
2823 related bases add all of the bits from store1 into store2.
2824 This has the effect of making the eligible even if there is
2825 only one store. */
2826
2827 if (stores_off_frame_dead_at_return && group->frame_related)
2828 {
2829 bitmap_ior_into (group->store2_n, group->store1_n);
2830 bitmap_ior_into (group->store2_p, group->store1_p);
456610d3 2831 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 2832 fprintf (dump_file, "group %d is frame related ", i);
6fb5fa3c
DB
2833 }
2834
2835 group->offset_map_size_n++;
3f9b14ff
SB
2836 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2837 group->offset_map_size_n);
6fb5fa3c 2838 group->offset_map_size_p++;
3f9b14ff
SB
2839 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2840 group->offset_map_size_p);
6fb5fa3c 2841 group->process_globally = false;
456610d3 2842 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 2843 {
b8698a0f 2844 fprintf (dump_file, "group %d(%d+%d): ", i,
6fb5fa3c
DB
2845 (int)bitmap_count_bits (group->store2_n),
2846 (int)bitmap_count_bits (group->store2_p));
2847 bitmap_print (dump_file, group->store2_n, "n ", " ");
2848 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2849 }
2850 }
2851}
2852
2853
ac6929b5 2854/* Init the offset tables. */
6fb5fa3c
DB
2855
2856static bool
ac6929b5 2857dse_step2 (void)
6fb5fa3c
DB
2858{
2859 unsigned int i;
fd6daec9 2860 group_info *group;
6fb5fa3c
DB
2861 /* Position 0 is unused because 0 is used in the maps to mean
2862 unused. */
2863 current_position = 1;
9771b263 2864 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2865 {
2866 bitmap_iterator bi;
2867 unsigned int j;
2868
c3284718
RS
2869 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2870 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
6fb5fa3c
DB
2871 bitmap_clear (group->group_kill);
2872
2873 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2874 {
2875 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2876 if (bitmap_bit_p (group->escaped_n, j))
2877 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2878 group->offset_map_n[j] = current_position++;
2879 group->process_globally = true;
2880 }
2881 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2882 {
b8698a0f 2883 bitmap_set_bit (group->group_kill, current_position);
d26c7090
ER
2884 if (bitmap_bit_p (group->escaped_p, j))
2885 bitmap_set_bit (kill_on_calls, current_position);
6fb5fa3c
DB
2886 group->offset_map_p[j] = current_position++;
2887 group->process_globally = true;
2888 }
2889 }
2890 return current_position != 1;
2891}
2892
2893
6fb5fa3c
DB
2894\f
2895/*----------------------------------------------------------------------------
2896 Third step.
b8698a0f 2897
6fb5fa3c
DB
2898 Build the bit vectors for the transfer functions.
2899----------------------------------------------------------------------------*/
2900
2901
6fb5fa3c
DB
2902/* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2903 there, return 0. */
2904
2905static int
fd6daec9 2906get_bitmap_index (group_info *group_info, HOST_WIDE_INT offset)
6fb5fa3c
DB
2907{
2908 if (offset < 0)
2909 {
2910 HOST_WIDE_INT offset_p = -offset;
2911 if (offset_p >= group_info->offset_map_size_n)
2912 return 0;
2913 return group_info->offset_map_n[offset_p];
2914 }
2915 else
2916 {
2917 if (offset >= group_info->offset_map_size_p)
2918 return 0;
2919 return group_info->offset_map_p[offset];
2920 }
2921}
2922
2923
2924/* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2925 may be NULL. */
2926
b8698a0f 2927static void
ac6929b5 2928scan_stores (store_info *store_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2929{
2930 while (store_info)
2931 {
02ce5d90 2932 HOST_WIDE_INT i, offset, width;
fd6daec9 2933 group_info *group_info
9771b263 2934 = rtx_group_vec[store_info->group_id];
02ce5d90
RS
2935 /* We can (conservatively) ignore stores whose bounds aren't known;
2936 they simply don't generate new global dse opportunities. */
2937 if (group_info->process_globally
2938 && store_info->offset.is_constant (&offset)
2939 && store_info->width.is_constant (&width))
71d6a386 2940 {
02ce5d90
RS
2941 HOST_WIDE_INT end = offset + width;
2942 for (i = offset; i < end; i++)
71d6a386
RS
2943 {
2944 int index = get_bitmap_index (group_info, i);
2945 if (index != 0)
2946 {
2947 bitmap_set_bit (gen, index);
2948 if (kill)
2949 bitmap_clear_bit (kill, index);
2950 }
2951 }
2952 }
6fb5fa3c
DB
2953 store_info = store_info->next;
2954 }
2955}
2956
2957
6fb5fa3c
DB
2958/* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
2959 may be NULL. */
2960
2961static void
ac6929b5 2962scan_reads (insn_info_t insn_info, bitmap gen, bitmap kill)
6fb5fa3c
DB
2963{
2964 read_info_t read_info = insn_info->read_rec;
2965 int i;
fd6daec9 2966 group_info *group;
6fb5fa3c 2967
64520bdc
EB
2968 /* If this insn reads the frame, kill all the frame related stores. */
2969 if (insn_info->frame_read)
2970 {
9771b263 2971 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
64520bdc
EB
2972 if (group->process_globally && group->frame_related)
2973 {
2974 if (kill)
2975 bitmap_ior_into (kill, group->group_kill);
b8698a0f 2976 bitmap_and_compl_into (gen, group->group_kill);
64520bdc
EB
2977 }
2978 }
d26c7090
ER
2979 if (insn_info->non_frame_wild_read)
2980 {
2981 /* Kill all non-frame related stores. Kill all stores of variables that
2982 escape. */
2983 if (kill)
2984 bitmap_ior_into (kill, kill_on_calls);
2985 bitmap_and_compl_into (gen, kill_on_calls);
9771b263 2986 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
d26c7090
ER
2987 if (group->process_globally && !group->frame_related)
2988 {
2989 if (kill)
2990 bitmap_ior_into (kill, group->group_kill);
2991 bitmap_and_compl_into (gen, group->group_kill);
2992 }
2993 }
6fb5fa3c
DB
2994 while (read_info)
2995 {
9771b263 2996 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
2997 {
2998 if (group->process_globally)
2999 {
3000 if (i == read_info->group_id)
3001 {
02ce5d90
RS
3002 HOST_WIDE_INT offset, width;
3003 /* Reads with non-constant size kill all DSE opportunities
3004 in the group. */
3005 if (!read_info->offset.is_constant (&offset)
3006 || !read_info->width.is_constant (&width)
3007 || !known_size_p (width))
6fb5fa3c 3008 {
71d6a386 3009 /* Handle block mode reads. */
6fb5fa3c
DB
3010 if (kill)
3011 bitmap_ior_into (kill, group->group_kill);
3012 bitmap_and_compl_into (gen, group->group_kill);
3013 }
3014 else
3015 {
3016 /* The groups are the same, just process the
3017 offsets. */
3018 HOST_WIDE_INT j;
02ce5d90
RS
3019 HOST_WIDE_INT end = offset + width;
3020 for (j = offset; j < end; j++)
6fb5fa3c
DB
3021 {
3022 int index = get_bitmap_index (group, j);
3023 if (index != 0)
3024 {
3025 if (kill)
3026 bitmap_set_bit (kill, index);
3027 bitmap_clear_bit (gen, index);
3028 }
3029 }
3030 }
3031 }
3032 else
3033 {
3034 /* The groups are different, if the alias sets
3035 conflict, clear the entire group. We only need
3036 to apply this test if the read_info is a cselib
3037 read. Anything with a constant base cannot alias
3038 something else with a different constant
3039 base. */
3040 if ((read_info->group_id < 0)
b8698a0f 3041 && canon_true_dependence (group->base_mem,
d32f725a 3042 GET_MODE (group->base_mem),
6216f94e 3043 group->canon_base_addr,
53d9622b 3044 read_info->mem, NULL_RTX))
6fb5fa3c
DB
3045 {
3046 if (kill)
3047 bitmap_ior_into (kill, group->group_kill);
3048 bitmap_and_compl_into (gen, group->group_kill);
3049 }
3050 }
3051 }
3052 }
b8698a0f 3053
6fb5fa3c
DB
3054 read_info = read_info->next;
3055 }
3056}
3057
6fb5fa3c
DB
3058
3059/* Return the insn in BB_INFO before the first wild read or if there
3060 are no wild reads in the block, return the last insn. */
3061
3062static insn_info_t
3063find_insn_before_first_wild_read (bb_info_t bb_info)
3064{
3065 insn_info_t insn_info = bb_info->last_insn;
3066 insn_info_t last_wild_read = NULL;
3067
3068 while (insn_info)
3069 {
3070 if (insn_info->wild_read)
3071 {
3072 last_wild_read = insn_info->prev_insn;
3073 /* Block starts with wild read. */
3074 if (!last_wild_read)
3075 return NULL;
3076 }
3077
3078 insn_info = insn_info->prev_insn;
3079 }
3080
3081 if (last_wild_read)
3082 return last_wild_read;
3083 else
3084 return bb_info->last_insn;
3085}
3086
3087
3088/* Scan the insns in BB_INFO starting at PTR and going to the top of
3089 the block in order to build the gen and kill sets for the block.
3090 We start at ptr which may be the last insn in the block or may be
3091 the first insn with a wild read. In the latter case we are able to
3092 skip the rest of the block because it just does not matter:
3093 anything that happens is hidden by the wild read. */
3094
3095static void
ac6929b5 3096dse_step3_scan (basic_block bb)
6fb5fa3c
DB
3097{
3098 bb_info_t bb_info = bb_table[bb->index];
3099 insn_info_t insn_info;
3100
ac6929b5 3101 insn_info = find_insn_before_first_wild_read (bb_info);
b8698a0f 3102
6fb5fa3c
DB
3103 /* In the spill case or in the no_spill case if there is no wild
3104 read in the block, we will need a kill set. */
3105 if (insn_info == bb_info->last_insn)
3106 {
3107 if (bb_info->kill)
3108 bitmap_clear (bb_info->kill);
3109 else
3f9b14ff 3110 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c 3111 }
b8698a0f 3112 else
6fb5fa3c
DB
3113 if (bb_info->kill)
3114 BITMAP_FREE (bb_info->kill);
3115
3116 while (insn_info)
3117 {
3118 /* There may have been code deleted by the dce pass run before
3119 this phase. */
3120 if (insn_info->insn && INSN_P (insn_info->insn))
3121 {
ac6929b5
RB
3122 scan_stores (insn_info->store_rec, bb_info->gen, bb_info->kill);
3123 scan_reads (insn_info, bb_info->gen, bb_info->kill);
b8698a0f 3124 }
6fb5fa3c
DB
3125
3126 insn_info = insn_info->prev_insn;
3127 }
3128}
3129
3130
3131/* Set the gen set of the exit block, and also any block with no
3132 successors that does not have a wild read. */
3133
3134static void
3135dse_step3_exit_block_scan (bb_info_t bb_info)
3136{
3137 /* The gen set is all 0's for the exit block except for the
3138 frame_pointer_group. */
b8698a0f 3139
6fb5fa3c
DB
3140 if (stores_off_frame_dead_at_return)
3141 {
3142 unsigned int i;
fd6daec9 3143 group_info *group;
b8698a0f 3144
9771b263 3145 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
6fb5fa3c
DB
3146 {
3147 if (group->process_globally && group->frame_related)
3148 bitmap_ior_into (bb_info->gen, group->group_kill);
3149 }
3150 }
3151}
3152
3153
3154/* Find all of the blocks that are not backwards reachable from the
3155 exit block or any block with no successors (BB). These are the
3156 infinite loops or infinite self loops. These blocks will still
3157 have their bits set in UNREACHABLE_BLOCKS. */
3158
3159static void
3160mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3161{
3162 edge e;
3163 edge_iterator ei;
3164
d7c028c0 3165 if (bitmap_bit_p (unreachable_blocks, bb->index))
6fb5fa3c 3166 {
d7c028c0 3167 bitmap_clear_bit (unreachable_blocks, bb->index);
6fb5fa3c 3168 FOR_EACH_EDGE (e, ei, bb->preds)
b8698a0f 3169 {
6fb5fa3c 3170 mark_reachable_blocks (unreachable_blocks, e->src);
b8698a0f 3171 }
6fb5fa3c
DB
3172 }
3173}
3174
3175/* Build the transfer functions for the function. */
3176
3177static void
ac6929b5 3178dse_step3 ()
6fb5fa3c
DB
3179{
3180 basic_block bb;
6fb5fa3c
DB
3181 sbitmap_iterator sbi;
3182 bitmap all_ones = NULL;
3183 unsigned int i;
b8698a0f 3184
7ba9e72d 3185 auto_sbitmap unreachable_blocks (last_basic_block_for_fn (cfun));
f61e445a 3186 bitmap_ones (unreachable_blocks);
6fb5fa3c 3187
04a90bec 3188 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3189 {
3190 bb_info_t bb_info = bb_table[bb->index];
3191 if (bb_info->gen)
3192 bitmap_clear (bb_info->gen);
3193 else
3f9b14ff 3194 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3195
3196 if (bb->index == ENTRY_BLOCK)
3197 ;
3198 else if (bb->index == EXIT_BLOCK)
3199 dse_step3_exit_block_scan (bb_info);
3200 else
ac6929b5 3201 dse_step3_scan (bb);
6fb5fa3c
DB
3202 if (EDGE_COUNT (bb->succs) == 0)
3203 mark_reachable_blocks (unreachable_blocks, bb);
3204
3205 /* If this is the second time dataflow is run, delete the old
3206 sets. */
3207 if (bb_info->in)
3208 BITMAP_FREE (bb_info->in);
3209 if (bb_info->out)
3210 BITMAP_FREE (bb_info->out);
3211 }
3212
3213 /* For any block in an infinite loop, we must initialize the out set
3214 to all ones. This could be expensive, but almost never occurs in
3215 practice. However, it is common in regression tests. */
d4ac4ce2 3216 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
6fb5fa3c
DB
3217 {
3218 if (bitmap_bit_p (all_blocks, i))
3219 {
3220 bb_info_t bb_info = bb_table[i];
3221 if (!all_ones)
3222 {
3223 unsigned int j;
fd6daec9 3224 group_info *group;
6fb5fa3c 3225
3f9b14ff 3226 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
9771b263 3227 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
6fb5fa3c
DB
3228 bitmap_ior_into (all_ones, group->group_kill);
3229 }
3230 if (!bb_info->out)
3231 {
3f9b14ff 3232 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3233 bitmap_copy (bb_info->out, all_ones);
3234 }
3235 }
3236 }
3237
3238 if (all_ones)
3239 BITMAP_FREE (all_ones);
6fb5fa3c
DB
3240}
3241
3242
3243\f
3244/*----------------------------------------------------------------------------
3245 Fourth step.
3246
3247 Solve the bitvector equations.
3248----------------------------------------------------------------------------*/
3249
3250
3251/* Confluence function for blocks with no successors. Create an out
3252 set from the gen set of the exit block. This block logically has
3253 the exit block as a successor. */
3254
3255
3256
3257static void
3258dse_confluence_0 (basic_block bb)
3259{
3260 bb_info_t bb_info = bb_table[bb->index];
3261
3262 if (bb->index == EXIT_BLOCK)
3263 return;
3264
3265 if (!bb_info->out)
3266 {
3f9b14ff 3267 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3268 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3269 }
3270}
3271
3272/* Propagate the information from the in set of the dest of E to the
3273 out set of the src of E. If the various in or out sets are not
3274 there, that means they are all ones. */
3275
1a0f3fa1 3276static bool
6fb5fa3c
DB
3277dse_confluence_n (edge e)
3278{
3279 bb_info_t src_info = bb_table[e->src->index];
3280 bb_info_t dest_info = bb_table[e->dest->index];
3281
3282 if (dest_info->in)
3283 {
3284 if (src_info->out)
3285 bitmap_and_into (src_info->out, dest_info->in);
3286 else
3287 {
3f9b14ff 3288 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3289 bitmap_copy (src_info->out, dest_info->in);
3290 }
3291 }
1a0f3fa1 3292 return true;
6fb5fa3c
DB
3293}
3294
3295
3296/* Propagate the info from the out to the in set of BB_INDEX's basic
b8698a0f 3297 block. There are three cases:
6fb5fa3c
DB
3298
3299 1) The block has no kill set. In this case the kill set is all
3300 ones. It does not matter what the out set of the block is, none of
3301 the info can reach the top. The only thing that reaches the top is
3302 the gen set and we just copy the set.
3303
3304 2) There is a kill set but no out set and bb has successors. In
3305 this case we just return. Eventually an out set will be created and
3306 it is better to wait than to create a set of ones.
3307
3308 3) There is both a kill and out set. We apply the obvious transfer
3309 function.
3310*/
3311
3312static bool
3313dse_transfer_function (int bb_index)
3314{
3315 bb_info_t bb_info = bb_table[bb_index];
3316
3317 if (bb_info->kill)
3318 {
3319 if (bb_info->out)
3320 {
3321 /* Case 3 above. */
3322 if (bb_info->in)
b8698a0f 3323 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3324 bb_info->out, bb_info->kill);
3325 else
3326 {
3f9b14ff 3327 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
b8698a0f 3328 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
6fb5fa3c
DB
3329 bb_info->out, bb_info->kill);
3330 return true;
3331 }
3332 }
3333 else
3334 /* Case 2 above. */
3335 return false;
3336 }
3337 else
3338 {
3339 /* Case 1 above. If there is already an in set, nothing
3340 happens. */
3341 if (bb_info->in)
3342 return false;
3343 else
3344 {
3f9b14ff 3345 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
6fb5fa3c
DB
3346 bitmap_copy (bb_info->in, bb_info->gen);
3347 return true;
3348 }
3349 }
3350}
3351
3352/* Solve the dataflow equations. */
3353
3354static void
3355dse_step4 (void)
3356{
b8698a0f
L
3357 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3358 dse_confluence_n, dse_transfer_function,
3359 all_blocks, df_get_postorder (DF_BACKWARD),
6fb5fa3c 3360 df_get_n_blocks (DF_BACKWARD));
456610d3 3361 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3362 {
3363 basic_block bb;
3364
3365 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
04a90bec 3366 FOR_ALL_BB_FN (bb, cfun)
6fb5fa3c
DB
3367 {
3368 bb_info_t bb_info = bb_table[bb->index];
3369
3370 df_print_bb_index (bb, dump_file);
3371 if (bb_info->in)
3372 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3373 else
3374 fprintf (dump_file, " in: *MISSING*\n");
3375 if (bb_info->gen)
3376 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3377 else
3378 fprintf (dump_file, " gen: *MISSING*\n");
3379 if (bb_info->kill)
3380 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3381 else
3382 fprintf (dump_file, " kill: *MISSING*\n");
3383 if (bb_info->out)
3384 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3385 else
3386 fprintf (dump_file, " out: *MISSING*\n\n");
3387 }
3388 }
3389}
3390
3391
3392\f
3393/*----------------------------------------------------------------------------
3394 Fifth step.
3395
0d52bcc1 3396 Delete the stores that can only be deleted using the global information.
6fb5fa3c
DB
3397----------------------------------------------------------------------------*/
3398
3399
3400static void
ac6929b5 3401dse_step5 (void)
6fb5fa3c
DB
3402{
3403 basic_block bb;
11cd3bed 3404 FOR_EACH_BB_FN (bb, cfun)
6fb5fa3c
DB
3405 {
3406 bb_info_t bb_info = bb_table[bb->index];
3407 insn_info_t insn_info = bb_info->last_insn;
3408 bitmap v = bb_info->out;
3409
3410 while (insn_info)
3411 {
3412 bool deleted = false;
3413 if (dump_file && insn_info->insn)
3414 {
3415 fprintf (dump_file, "starting to process insn %d\n",
3416 INSN_UID (insn_info->insn));
3417 bitmap_print (dump_file, v, " v: ", "\n");
3418 }
3419
3420 /* There may have been code deleted by the dce pass run before
3421 this phase. */
b8698a0f 3422 if (insn_info->insn
6fb5fa3c
DB
3423 && INSN_P (insn_info->insn)
3424 && (!insn_info->cannot_delete)
3425 && (!bitmap_empty_p (v)))
3426 {
fd6daec9 3427 store_info *store_info = insn_info->store_rec;
6fb5fa3c
DB
3428
3429 /* Try to delete the current insn. */
3430 deleted = true;
b8698a0f 3431
6fb5fa3c
DB
3432 /* Skip the clobbers. */
3433 while (!store_info->is_set)
3434 store_info = store_info->next;
3435
02ce5d90 3436 HOST_WIDE_INT i, offset, width;
ac6929b5
RB
3437 group_info *group_info = rtx_group_vec[store_info->group_id];
3438
02ce5d90
RS
3439 if (!store_info->offset.is_constant (&offset)
3440 || !store_info->width.is_constant (&width))
3441 deleted = false;
3442 else
6fb5fa3c 3443 {
02ce5d90
RS
3444 HOST_WIDE_INT end = offset + width;
3445 for (i = offset; i < end; i++)
6fb5fa3c 3446 {
02ce5d90
RS
3447 int index = get_bitmap_index (group_info, i);
3448
456610d3 3449 if (dump_file && (dump_flags & TDF_DETAILS))
02ce5d90
RS
3450 fprintf (dump_file, "i = %d, index = %d\n",
3451 (int) i, index);
3452 if (index == 0 || !bitmap_bit_p (v, index))
3453 {
3454 if (dump_file && (dump_flags & TDF_DETAILS))
3455 fprintf (dump_file, "failing at i = %d\n",
3456 (int) i);
3457 deleted = false;
3458 break;
3459 }
6fb5fa3c
DB
3460 }
3461 }
3462 if (deleted)
3463 {
9e582b1d
JR
3464 if (dbg_cnt (dse)
3465 && check_for_inc_dec_1 (insn_info))
6fb5fa3c 3466 {
6fb5fa3c
DB
3467 delete_insn (insn_info->insn);
3468 insn_info->insn = NULL;
3469 globally_deleted++;
3470 }
3471 }
3472 }
3473 /* We do want to process the local info if the insn was
6ed3da00 3474 deleted. For instance, if the insn did a wild read, we
6fb5fa3c 3475 no longer need to trash the info. */
b8698a0f 3476 if (insn_info->insn
6fb5fa3c
DB
3477 && INSN_P (insn_info->insn)
3478 && (!deleted))
3479 {
ac6929b5 3480 scan_stores (insn_info->store_rec, v, NULL);
6fb5fa3c
DB
3481 if (insn_info->wild_read)
3482 {
456610d3 3483 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c
DB
3484 fprintf (dump_file, "wild read\n");
3485 bitmap_clear (v);
3486 }
d26c7090 3487 else if (insn_info->read_rec
a8404b9a
JJ
3488 || insn_info->non_frame_wild_read
3489 || insn_info->frame_read)
6fb5fa3c 3490 {
a8404b9a
JJ
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3492 {
3493 if (!insn_info->non_frame_wild_read
3494 && !insn_info->frame_read)
3495 fprintf (dump_file, "regular read\n");
3496 if (insn_info->non_frame_wild_read)
3497 fprintf (dump_file, "non-frame wild read\n");
3498 if (insn_info->frame_read)
3499 fprintf (dump_file, "frame read\n");
3500 }
ac6929b5 3501 scan_reads (insn_info, v, NULL);
6fb5fa3c
DB
3502 }
3503 }
b8698a0f 3504
6fb5fa3c
DB
3505 insn_info = insn_info->prev_insn;
3506 }
3507 }
3508}
3509
3510
6fb5fa3c
DB
3511\f
3512/*----------------------------------------------------------------------------
3513 Sixth step.
3514
8dd5516b
JJ
3515 Delete stores made redundant by earlier stores (which store the same
3516 value) that couldn't be eliminated.
3517----------------------------------------------------------------------------*/
3518
3519static void
3520dse_step6 (void)
3521{
3522 basic_block bb;
3523
04a90bec 3524 FOR_ALL_BB_FN (bb, cfun)
8dd5516b
JJ
3525 {
3526 bb_info_t bb_info = bb_table[bb->index];
3527 insn_info_t insn_info = bb_info->last_insn;
3528
3529 while (insn_info)
3530 {
3531 /* There may have been code deleted by the dce pass run before
3532 this phase. */
3533 if (insn_info->insn
3534 && INSN_P (insn_info->insn)
3535 && !insn_info->cannot_delete)
3536 {
fd6daec9 3537 store_info *s_info = insn_info->store_rec;
8dd5516b
JJ
3538
3539 while (s_info && !s_info->is_set)
3540 s_info = s_info->next;
3541 if (s_info
3542 && s_info->redundant_reason
3543 && s_info->redundant_reason->insn
3544 && INSN_P (s_info->redundant_reason->insn))
3545 {
eb92d49a 3546 rtx_insn *rinsn = s_info->redundant_reason->insn;
456610d3 3547 if (dump_file && (dump_flags & TDF_DETAILS))
8dd5516b
JJ
3548 fprintf (dump_file, "Locally deleting insn %d "
3549 "because insn %d stores the "
3550 "same value and couldn't be "
3551 "eliminated\n",
3552 INSN_UID (insn_info->insn),
3553 INSN_UID (rinsn));
3554 delete_dead_store_insn (insn_info);
3555 }
3556 }
3557 insn_info = insn_info->prev_insn;
3558 }
3559 }
3560}
3561\f
3562/*----------------------------------------------------------------------------
3563 Seventh step.
3564
b8698a0f 3565 Destroy everything left standing.
6fb5fa3c
DB
3566----------------------------------------------------------------------------*/
3567
b8698a0f 3568static void
3f9b14ff 3569dse_step7 (void)
6fb5fa3c 3570{
3f9b14ff
SB
3571 bitmap_obstack_release (&dse_bitmap_obstack);
3572 obstack_free (&dse_obstack, NULL);
370f38e8 3573
6fb5fa3c
DB
3574 end_alias_analysis ();
3575 free (bb_table);
c203e8a7
TS
3576 delete rtx_group_table;
3577 rtx_group_table = NULL;
9771b263 3578 rtx_group_vec.release ();
6fb5fa3c
DB
3579 BITMAP_FREE (all_blocks);
3580 BITMAP_FREE (scratch);
3581
da6603c6 3582 rtx_store_info_pool.release ();
fb0b2914
ML
3583 read_info_type_pool.release ();
3584 insn_info_type_pool.release ();
3585 dse_bb_info_type_pool.release ();
3586 group_info_pool.release ();
3587 deferred_change_pool.release ();
6fb5fa3c
DB
3588}
3589
3590
6fb5fa3c
DB
3591/* -------------------------------------------------------------------------
3592 DSE
3593 ------------------------------------------------------------------------- */
3594
3595/* Callback for running pass_rtl_dse. */
3596
3597static unsigned int
3598rest_of_handle_dse (void)
3599{
6fb5fa3c
DB
3600 df_set_flags (DF_DEFER_INSN_RESCAN);
3601
02b47899
KZ
3602 /* Need the notes since we must track live hardregs in the forwards
3603 direction. */
3604 df_note_add_problem ();
3605 df_analyze ();
3606
6fb5fa3c
DB
3607 dse_step0 ();
3608 dse_step1 ();
3609 dse_step2_init ();
ac6929b5 3610 if (dse_step2 ())
6fb5fa3c
DB
3611 {
3612 df_set_flags (DF_LR_RUN_DCE);
3613 df_analyze ();
456610d3 3614 if (dump_file && (dump_flags & TDF_DETAILS))
6fb5fa3c 3615 fprintf (dump_file, "doing global processing\n");
ac6929b5 3616 dse_step3 ();
6fb5fa3c 3617 dse_step4 ();
ac6929b5 3618 dse_step5 ();
6fb5fa3c
DB
3619 }
3620
8dd5516b 3621 dse_step6 ();
3f9b14ff 3622 dse_step7 ();
6fb5fa3c
DB
3623
3624 if (dump_file)
ac6929b5
RB
3625 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d\n",
3626 locally_deleted, globally_deleted);
6c5ed3f1
JJ
3627
3628 /* DSE can eliminate potentially-trapping MEMs.
3629 Remove any EH edges associated with them. */
3630 if ((locally_deleted || globally_deleted)
3631 && cfun->can_throw_non_call_exceptions
3632 && purge_all_dead_edges ())
7f5ddfcb
JJ
3633 {
3634 free_dominance_info (CDI_DOMINATORS);
3635 cleanup_cfg (0);
3636 }
6c5ed3f1 3637
6fb5fa3c
DB
3638 return 0;
3639}
3640
17795822
TS
3641namespace {
3642
3643const pass_data pass_data_rtl_dse1 =
27a4cd48
DM
3644{
3645 RTL_PASS, /* type */
3646 "dse1", /* name */
3647 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3648 TV_DSE1, /* tv_id */
3649 0, /* properties_required */
3650 0, /* properties_provided */
3651 0, /* properties_destroyed */
3652 0, /* todo_flags_start */
3bea341f 3653 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c
DB
3654};
3655
17795822 3656class pass_rtl_dse1 : public rtl_opt_pass
27a4cd48
DM
3657{
3658public:
c3284718
RS
3659 pass_rtl_dse1 (gcc::context *ctxt)
3660 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
27a4cd48
DM
3661 {}
3662
3663 /* opt_pass methods: */
1a3d085c
TS
3664 virtual bool gate (function *)
3665 {
3666 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3667 }
3668
be55bfe6 3669 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3670
3671}; // class pass_rtl_dse1
3672
17795822
TS
3673} // anon namespace
3674
27a4cd48
DM
3675rtl_opt_pass *
3676make_pass_rtl_dse1 (gcc::context *ctxt)
3677{
3678 return new pass_rtl_dse1 (ctxt);
3679}
3680
17795822
TS
3681namespace {
3682
3683const pass_data pass_data_rtl_dse2 =
27a4cd48
DM
3684{
3685 RTL_PASS, /* type */
3686 "dse2", /* name */
3687 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
3688 TV_DSE2, /* tv_id */
3689 0, /* properties_required */
3690 0, /* properties_provided */
3691 0, /* properties_destroyed */
3692 0, /* todo_flags_start */
3bea341f 3693 TODO_df_finish, /* todo_flags_finish */
6fb5fa3c 3694};
27a4cd48 3695
17795822 3696class pass_rtl_dse2 : public rtl_opt_pass
27a4cd48
DM
3697{
3698public:
c3284718
RS
3699 pass_rtl_dse2 (gcc::context *ctxt)
3700 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
27a4cd48
DM
3701 {}
3702
3703 /* opt_pass methods: */
1a3d085c
TS
3704 virtual bool gate (function *)
3705 {
3706 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3707 }
3708
be55bfe6 3709 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
27a4cd48
DM
3710
3711}; // class pass_rtl_dse2
3712
17795822
TS
3713} // anon namespace
3714
27a4cd48
DM
3715rtl_opt_pass *
3716make_pass_rtl_dse2 (gcc::context *ctxt)
3717{
3718 return new pass_rtl_dse2 (ctxt);
3719}