]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
Update copyright years.
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
7adcbafe 2 Copyright (C) 1997-2022 Free Software Foundation, Inc.
7506f491 3
1322177d 4This file is part of GCC.
7506f491 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7506f491 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7506f491
DE
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7506f491
DE
19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
24*/
25
26/* References searched while implementing this.
7506f491
DE
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
7506f491
DE
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
7506f491
DE
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
f4e584dc
JL
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
a42cd965
AM
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
f4e584dc
JL
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
7506f491
DE
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
50b2596f 136#include "system.h"
4977bab6 137#include "coretypes.h"
c7131fb2 138#include "backend.h"
957060b5 139#include "target.h"
c7131fb2 140#include "rtl.h"
957060b5
AM
141#include "tree.h"
142#include "predict.h"
c7131fb2 143#include "df.h"
4d0cdd0c 144#include "memmodel.h"
6baf1cc8 145#include "tm_p.h"
957060b5 146#include "insn-config.h"
0777c850 147#include "print-rtl.h"
7506f491 148#include "regs.h"
b11f0116 149#include "ira.h"
7506f491 150#include "recog.h"
957060b5 151#include "diagnostic-core.h"
60393bbc
AM
152#include "cfgrtl.h"
153#include "cfganal.h"
154#include "lcm.h"
155#include "cfgcleanup.h"
589005ff 156#include "expr.h"
d128effb 157#include "intl.h"
ef330312 158#include "tree-pass.h"
6fb5fa3c 159#include "dbgcnt.h"
7c6811fe 160#include "gcse.h"
af3eb110 161#include "gcse-common.h"
a4dfaad2 162#include "function-abi.h"
4fa31c2a 163
f4e584dc 164/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 165 are a superset of those done by classic GCSE.
7506f491 166
e45425ec
SB
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
4cad6dba 178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 179 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
3906a4a1 182
7506f491 183 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 184 partially redundant).
7506f491 185
7506f491
DE
186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
3906a4a1
SB
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
7506f491 207 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 208 a while to converge. Hence we only perform one pass.
7506f491
DE
209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
4cad6dba 233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
238 each register in each block and thus can try to use an existing
239 register. */
7506f491
DE
240\f
241/* GCSE global vars. */
242
7c6811fe
RS
243struct target_gcse default_target_gcse;
244#if SWITCHABLE_TARGET
245struct target_gcse *this_target_gcse = &default_target_gcse;
246#endif
247
5f39ad47
SB
248/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249int flag_rerun_cse_after_global_opts;
f4e584dc 250
7506f491
DE
251/* An obstack for our working variables. */
252static struct obstack gcse_obstack;
253
7506f491
DE
254/* Hash table of expressions. */
255
11478306 256struct gcse_expr
7506f491 257{
43c8a043 258 /* The expression. */
7506f491
DE
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
11478306 263 struct gcse_expr *next_same_hash;
7506f491
DE
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
11478306 269 struct gcse_occr *antic_occr;
7506f491
DE
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
11478306 274 struct gcse_occr *avail_occr;
7506f491
DE
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
20160347
MK
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
ec7f796e 284 HOST_WIDE_INT max_distance;
7506f491
DE
285};
286
287/* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
11478306 291struct gcse_occr
7506f491
DE
292{
293 /* Next occurrence of this expression. */
11478306 294 struct gcse_occr *next;
7506f491 295 /* The insn that computes the expression. */
cf92a178 296 rtx_insn *insn;
cc2902df 297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 298 char deleted_p;
cc2902df 299 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304};
305
11478306 306typedef struct gcse_occr *occr_t;
cad9aa15 307
e45425ec 308/* Expression hash tables.
7506f491
DE
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
c4c81601 315 Someday I'll perform the computation and figure it out. */
7506f491 316
11478306 317struct gcse_hash_table_d
02280659
ZD
318{
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
11478306 321 struct gcse_expr **table;
02280659
ZD
322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
2e653e39 325
02280659
ZD
326 /* Number of hash table elements. */
327 unsigned int n_elems;
02280659 328};
c4c81601 329
02280659 330/* Expression hash table. */
11478306 331static struct gcse_hash_table_d expr_hash_table;
02280659 332
a13d4ebf 333/* This is a list of expressions which are MEMs and will be used by load
589005ff 334 or store motion.
43c8a043
EB
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
589005ff 337 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
43c8a043 340 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
341
342struct ls_expr
343{
11478306 344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
a13d4ebf 345 rtx pattern; /* Pattern of this mem. */
47a3dae1 346 rtx pattern_regs; /* List of registers mentioned by the mem. */
0777c850 347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
a13d4ebf
AM
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
b58b21d5 351 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
352 rtx reaching_reg; /* Register to use when re-writing. */
353};
354
355/* Head of the list of load/store memory refs. */
356static struct ls_expr * pre_ldst_mems = NULL;
357
8d67ee55 358struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
4a8fb1a1 359{
4a8fb1a1 360 typedef value_type compare_type;
67f58944
TS
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
4a8fb1a1
LC
363};
364
365/* Hashtable helpers. */
366inline hashval_t
67f58944 367pre_ldst_expr_hasher::hash (const ls_expr *x)
4a8fb1a1
LC
368{
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372}
373
374static int expr_equiv_p (const_rtx, const_rtx);
375
376inline bool
67f58944
TS
377pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
4a8fb1a1
LC
379{
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381}
382
9727e468 383/* Hashtable for the load/store memory refs. */
c203e8a7 384static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
9727e468 385
7506f491
DE
386/* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
73991d6a 389static regset reg_set_bitmap;
7506f491 390
a13d4ebf
AM
391/* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
e26d1bb2 393static vec<rtx_insn *> *modify_mem_list;
0516f6fe 394static bitmap modify_mem_list_set;
a13d4ebf 395
6ce1edcf
NF
396/* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
9771b263 398static vec<modify_pair> *canon_modify_mem_list;
0516f6fe 399
aa47fcfa
JL
400/* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402static bitmap blocks_with_calls;
403
7506f491
DE
404/* Various variables for statistics gathering. */
405
406/* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409static int bytes_used;
c4c81601 410
7506f491
DE
411/* GCSE substitutions made. */
412static int gcse_subst_count;
413/* Number of copy instructions created. */
414static int gcse_create_count;
7506f491 415\f
20160347
MK
416/* Doing code hoisting. */
417static bool doing_code_hoisting_p = false;
418\f
e83f4801 419/* For available exprs */
df35c271 420static sbitmap *ae_kill;
7506f491 421\f
b11f0116
BC
422/* Data stored for each basic block. */
423struct bb_data
424{
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
b11f0116
BC
437};
438
439#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441static basic_block curr_bb;
442
443/* Current register pressure for each pressure class. */
444static int curr_reg_pressure[N_REG_CLASSES];
445\f
446
1d088dee 447static void compute_can_copy (void);
9fe15a12
KG
448static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 450static void *gcse_alloc (unsigned long);
eb232f4e 451static void alloc_gcse_mem (void);
1d088dee 452static void free_gcse_mem (void);
11478306
JH
453static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
cf92a178
DM
457static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459static int oprs_available_p (const_rtx, const rtx_insn *);
ef4bddc2 460static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
ec7f796e 461 HOST_WIDE_INT, struct gcse_hash_table_d *);
ef4bddc2 462static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
170065c9 463static void record_last_reg_set_info (rtx_insn *, int);
e26d1bb2 464static void record_last_mem_set_info (rtx_insn *);
7bc980e1 465static void record_last_set_info (rtx, const_rtx, void *);
11478306
JH
466static void compute_hash_table (struct gcse_hash_table_d *);
467static void alloc_hash_table (struct gcse_hash_table_d *);
468static void free_hash_table (struct gcse_hash_table_d *);
469static void compute_hash_table_work (struct gcse_hash_table_d *);
470static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
1d088dee 471static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
11478306 472 struct gcse_hash_table_d *);
7bc980e1 473static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 474static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
1d088dee
AJ
475static void alloc_pre_mem (int, int);
476static void free_pre_mem (void);
43c8a043 477static struct edge_list *compute_pre_data (void);
11478306 478static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
1d088dee 479 basic_block);
11478306
JH
480static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
1d088dee
AJ
482static void pre_insert_copies (void);
483static int pre_delete (void);
43c8a043 484static int pre_gcse (struct edge_list *);
5f39ad47 485static int one_pre_gcse_pass (void);
170065c9 486static void add_label_notes (rtx, rtx_insn *);
1d088dee
AJ
487static void alloc_code_hoist_mem (int, int);
488static void free_code_hoist_mem (void);
489static void compute_code_hoist_vbeinout (void);
490static void compute_code_hoist_data (void);
ec7f796e
ML
491static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
cf92a178 495 int *, bitmap, rtx_insn *);
5f39ad47 496static int hoist_code (void);
4b8181c5 497static enum reg_class get_regno_pressure_class (int regno, int *nregs);
cf92a178 498static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
1d088dee 499static int one_code_hoisting_pass (void);
11478306
JH
500static rtx_insn *process_insert_insn (struct gcse_expr *);
501static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
1d088dee
AJ
503 basic_block, char *);
504static struct ls_expr * ldst_entry (rtx);
505static void free_ldst_entry (struct ls_expr *);
43c8a043 506static void free_ld_motion_mems (void);
1d088dee
AJ
507static void print_ldst_list (FILE *);
508static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 509static int simple_mem (const_rtx);
1d088dee
AJ
510static void invalidate_any_buried_refs (rtx);
511static void compute_ld_motion_mems (void);
512static void trim_ld_motion_mems (void);
11478306 513static void update_ld_motion_stores (struct gcse_expr *);
1d088dee
AJ
514static void clear_modify_mem_tables (void);
515static void free_modify_mem_tables (void);
1b4572a8
KG
516
517#define GNEW(T) ((T *) gmalloc (sizeof (T)))
518#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
522
523#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
525
526#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 528\f
7506f491
DE
529/* Misc. utilities. */
530
7c6811fe
RS
531#define can_copy \
532 (this_target_gcse->x_can_copy)
533#define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
773eae39 535
7506f491
DE
536/* Compute which modes support reg/reg copy operations. */
537
538static void
1d088dee 539compute_can_copy (void)
7506f491
DE
540{
541 int i;
50b2596f 542#ifndef AVOID_CCMODE_COPIES
21afc57d
TS
543 rtx reg;
544 rtx_insn *insn;
50b2596f 545#endif
773eae39 546 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
7506f491 552#ifdef AVOID_CCMODE_COPIES
773eae39 553 can_copy[i] = 0;
7506f491 554#else
ef4bddc2 555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
f7df4a84 556 insn = emit_insn (gen_rtx_SET (reg, reg));
9714cf43 557 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 558 can_copy[i] = 1;
7506f491 559#endif
c4c81601 560 }
141b5810 561 else
773eae39 562 can_copy[i] = 1;
c4c81601 563
7506f491 564 end_sequence ();
7506f491 565}
773eae39
EB
566
567/* Returns whether the mode supports reg/reg copy operations. */
568
569bool
ef4bddc2 570can_copy_p (machine_mode mode)
773eae39 571{
773eae39
EB
572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579}
7506f491
DE
580\f
581/* Cover function to xmalloc to record bytes allocated. */
582
703ad42b 583static void *
4ac11022 584gmalloc (size_t size)
7506f491
DE
585{
586 bytes_used += size;
587 return xmalloc (size);
588}
589
9fe15a12
KG
590/* Cover function to xcalloc to record bytes allocated. */
591
592static void *
593gcalloc (size_t nelem, size_t elsize)
594{
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597}
598
77bbd421 599/* Cover function to obstack_alloc. */
7506f491 600
703ad42b 601static void *
1d088dee 602gcse_alloc (unsigned long size)
7506f491 603{
77bbd421 604 bytes_used += size;
703ad42b 605 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
606}
607
4a81774c 608/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
609 This is called at the start of each pass. */
610
611static void
eb232f4e 612alloc_gcse_mem (void)
7506f491 613{
7506f491 614 /* Allocate vars to track sets of regs. */
7a8cba34 615 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 616
a13d4ebf 617 /* Allocate array to keep a list of insns which modify memory in each
9771b263
DN
618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
e26d1bb2 620 typedef vec<rtx_insn *> vec_rtx_heap;
9771b263 621 typedef vec<modify_pair> vec_modify_pair_heap;
8b1c6fd7
DM
622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
8bdbfff5
NS
625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
627}
628
629/* Free memory allocated by alloc_gcse_mem. */
630
631static void
1d088dee 632free_gcse_mem (void)
7506f491 633{
d5b8da97
SB
634 FREE_REG_SET (reg_set_bitmap);
635
73991d6a 636 free_modify_mem_tables ();
8bdbfff5
NS
637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
7506f491 639}
b5ce41ff
JL
640\f
641/* Compute the local properties of each recorded expression.
c4c81601
RK
642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
b5ce41ff
JL
645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
e45425ec 657 We call this routine for pre and code hoisting. They all compute
c4c81601 658 basically the same information and thus can easily share this code.
7506f491 659
c4c81601
RK
660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
b5ce41ff 663
e45425ec 664 TABLE controls which hash table to look at. */
589005ff 665
b5ce41ff 666static void
7b1b4aed 667compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
11478306 668 struct gcse_hash_table_d *table)
b5ce41ff 669{
02280659 670 unsigned int i;
589005ff 671
b5ce41ff
JL
672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
695ab36a 674 {
8b1c6fd7 675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
695ab36a 676 }
c4c81601 677
b5ce41ff 678 if (comp)
8b1c6fd7 679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
b5ce41ff 680 if (antloc)
8b1c6fd7 681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
b5ce41ff 682
02280659 683 for (i = 0; i < table->size; i++)
7506f491 684 {
11478306 685 struct gcse_expr *expr;
b5ce41ff 686
02280659 687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 688 {
b5ce41ff 689 int indx = expr->bitmap_index;
11478306 690 struct gcse_occr *occr;
b5ce41ff
JL
691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
b5ce41ff 695 if (transp)
af3eb110
JL
696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
b5ce41ff
JL
700
701 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 702 we want to set to nonzero in ANTLOC. */
b5ce41ff 703 if (antloc)
c4c81601
RK
704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
d7c028c0 706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 707
c4c81601
RK
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
b5ce41ff
JL
712
713 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 714 we want to set to nonzero in COMP. */
b5ce41ff 715 if (comp)
c4c81601
RK
716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
d7c028c0 718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 719
c4c81601
RK
720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
b5ce41ff
JL
724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
7506f491 729 }
7506f491
DE
730}
731\f
7506f491
DE
732/* Hash table support. */
733
80c29cc4
RZ
734struct reg_avail_info
735{
e0082a72 736 basic_block last_bb;
80c29cc4
RZ
737 int first_set;
738 int last_set;
739};
740
741static struct reg_avail_info *reg_avail_info;
e0082a72 742static basic_block current_bb;
7506f491 743
fb0c0a12
RK
744/* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
7506f491
DE
746
747static int
ec7f796e 748want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
7506f491 749{
3d8504ac
RS
750#ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756#endif
757
20160347
MK
758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
5e8f01f4 761 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
c4c81601 776 switch (GET_CODE (x))
7506f491
DE
777 {
778 case REG:
779 case SUBREG:
20160347
MK
780 case CALL:
781 return 0;
782
d8116890 783 CASE_CONST_ANY:
20160347
MK
784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
7506f491
DE
789
790 default:
20160347
MK
791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
a261ee49 795 HOST_WIDE_INT max_distance;
20160347
MK
796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
e548c9df 799 cost = set_src_cost (x, mode, 0);
20160347 800
028d4092 801 if (cost < COSTS_N_INSNS (param_gcse_unrestricted_cost))
20160347 802 {
a261ee49 803 max_distance
028d4092 804 = ((HOST_WIDE_INT)param_gcse_cost_distance_ratio * cost) / 10;
20160347
MK
805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
0683fd27 817 return can_assign_to_reg_without_clobbers_p (x, mode);
7506f491 818 }
1707bafa
RS
819}
820
df35c271 821/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa 822
cf92a178 823static GTY(()) rtx_insn *test_insn;
1707bafa 824
0683fd27
KT
825/* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
ec0a1343
JB
828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
df35c271
SB
833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
1707bafa 836
df35c271 837bool
0683fd27 838can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
1707bafa
RS
839{
840 int num_clobbers = 0;
841 int icode;
0dbaf51e 842 bool can_assign = false;
7506f491 843
fb0c0a12 844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
0683fd27 845 if (general_operand (x, mode))
fb0c0a12
RK
846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
f7df4a84 855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
fb0c0a12
RK
856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
0f82e5c9 858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
0dbaf51e 859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
fb0c0a12
RK
860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
0683fd27 864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
fb0c0a12 865 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 866
ec0a1343 867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
b8698a0f 868
0dbaf51e
SB
869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
b8698a0f 876
0dbaf51e
SB
877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
b8698a0f 879
0dbaf51e 880 return can_assign;
7506f491
DE
881}
882
cc2902df 883/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887static int
cf92a178 888oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
7506f491 889{
c4c81601 890 int i, j;
7506f491 891 enum rtx_code code;
6f7d635c 892 const char *fmt;
7506f491 893
7506f491
DE
894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
80c29cc4
RZ
901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
589005ff 906 if (avail_p)
4a81774c 907 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 908 else
4a81774c 909 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 910 }
7506f491
DE
911
912 case MEM:
85c0f02d
SB
913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
a13d4ebf 916 return 0;
7506f491 917 else
c4c81601 918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
4b983fdc
RH
924 case PRE_MODIFY:
925 case POST_MODIFY:
7506f491
DE
926 return 0;
927
928 case PC:
7506f491 929 case CONST:
d8116890 930 CASE_CONST_ANY:
7506f491
DE
931 case SYMBOL_REF:
932 case LABEL_REF:
933 case ADDR_VEC:
934 case ADDR_DIFF_VEC:
935 return 1;
936
937 default:
938 break;
939 }
940
c4c81601 941 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
942 {
943 if (fmt[i] == 'e')
944 {
c4c81601
RK
945 /* If we are about to do the last recursive call needed at this
946 level, change it into iteration. This function is called enough
947 to be worth it. */
7506f491 948 if (i == 0)
c4c81601
RK
949 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
950
951 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
952 return 0;
953 }
954 else if (fmt[i] == 'E')
c4c81601
RK
955 for (j = 0; j < XVECLEN (x, i); j++)
956 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
957 return 0;
7506f491
DE
958 }
959
960 return 1;
961}
962
43c8a043 963/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 964
43c8a043
EB
965struct mem_conflict_info
966{
967 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
968 see if a memory store conflicts with this memory load. */
969 const_rtx mem;
a13d4ebf 970
43c8a043
EB
971 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
972 references. */
973 bool conflict;
974};
975
976/* DEST is the output of an instruction. If it is a memory reference and
977 possibly conflicts with the load found in DATA, then communicate this
978 information back through DATA. */
a13d4ebf
AM
979
980static void
7bc980e1 981mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 982 void *data)
a13d4ebf 983{
43c8a043
EB
984 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
985
a13d4ebf
AM
986 while (GET_CODE (dest) == SUBREG
987 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
988 || GET_CODE (dest) == STRICT_LOW_PART)
989 dest = XEXP (dest, 0);
990
991 /* If DEST is not a MEM, then it will not conflict with the load. Note
992 that function calls are assumed to clobber memory, but are handled
993 elsewhere. */
7b1b4aed 994 if (! MEM_P (dest))
a13d4ebf 995 return;
aaa4ca30 996
a13d4ebf 997 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 998 don't mark as killed this time. */
43c8a043 999 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
1000 {
1001 if (!find_rtx_in_ldst (dest))
43c8a043 1002 mci->conflict = true;
a13d4ebf
AM
1003 return;
1004 }
aaa4ca30 1005
53d9622b 1006 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 1007 mci->conflict = true;
a13d4ebf
AM
1008}
1009
1010/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 1011 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
1012 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1013 before UID_LIMIT.
1014
1015 To check the entire block, set UID_LIMIT to max_uid + 1 and
1016 AVAIL_P to 0. */
1017
1018static int
43c8a043
EB
1019load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1020 int avail_p)
a13d4ebf 1021{
e26d1bb2
DM
1022 vec<rtx_insn *> list = modify_mem_list[bb->index];
1023 rtx_insn *setter;
6409abe3 1024 unsigned ix;
16c5b95d
MH
1025
1026 /* If this is a readonly then we aren't going to be changing it. */
1027 if (MEM_READONLY_P (x))
1028 return 0;
1029
9771b263 1030 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
a13d4ebf 1031 {
43c8a043
EB
1032 struct mem_conflict_info mci;
1033
a13d4ebf
AM
1034 /* Ignore entries in the list that do not apply. */
1035 if ((avail_p
6409abe3 1036 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1037 || (! avail_p
6409abe3
NF
1038 && DF_INSN_LUID (setter) > uid_limit))
1039 continue;
a13d4ebf
AM
1040
1041 /* If SETTER is a call everything is clobbered. Note that calls
1042 to pure functions are never put on the list, so we need not
1043 worry about them. */
7b1b4aed 1044 if (CALL_P (setter))
a13d4ebf
AM
1045 return 1;
1046
1047 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1048 note_stores to examine each hunk of memory that is modified. */
1049 mci.mem = x;
1050 mci.conflict = false;
e8448ba5 1051 note_stores (setter, mems_conflict_for_gcse_p, &mci);
43c8a043 1052 if (mci.conflict)
a13d4ebf 1053 return 1;
a13d4ebf
AM
1054 }
1055 return 0;
1056}
1057
cc2902df 1058/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1059 the start of INSN's basic block up to but not including INSN. */
1060
1061static int
cf92a178 1062oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1063{
1064 return oprs_unchanged_p (x, insn, 0);
1065}
1066
cc2902df 1067/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1068 INSN to the end of INSN's basic block. */
1069
1070static int
cf92a178 1071oprs_available_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1072{
1073 return oprs_unchanged_p (x, insn, 1);
1074}
1075
1076/* Hash expression X.
c4c81601
RK
1077
1078 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1079 indicating if a volatile operand is found or if the expression contains
b58b21d5 1080 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1081 the current size of the hash table to be probed. */
7506f491
DE
1082
1083static unsigned int
ef4bddc2 1084hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
b58b21d5 1085 int hash_table_size)
7506f491
DE
1086{
1087 unsigned int hash;
1088
1089 *do_not_record_p = 0;
1090
43c8a043 1091 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1092 return hash % hash_table_size;
1093}
172890a2 1094
0516f6fe 1095/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1096
1097static int
ed7a4b4b 1098expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1099{
0516f6fe 1100 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1101}
1102
02280659 1103/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1104 If it is already present, record it as the last occurrence in INSN's
1105 basic block.
1106
1107 MODE is the mode of the value X is being stored into.
1108 It is only used if X is a CONST_INT.
1109
cc2902df 1110 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1111 AVAIL_P is nonzero if X is an available expression.
1112
1113 MAX_DISTANCE is the maximum distance in instructions this expression can
1114 be moved. */
7506f491
DE
1115
1116static void
ef4bddc2 1117insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
cf92a178 1118 int antic_p,
ec7f796e
ML
1119 int avail_p, HOST_WIDE_INT max_distance,
1120 struct gcse_hash_table_d *table)
7506f491
DE
1121{
1122 int found, do_not_record_p;
1123 unsigned int hash;
11478306
JH
1124 struct gcse_expr *cur_expr, *last_expr = NULL;
1125 struct gcse_occr *antic_occr, *avail_occr;
7506f491 1126
02280659 1127 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1128
1129 /* Do not insert expression in table if it contains volatile operands,
1130 or if hash_expr determines the expression is something we don't want
1131 to or can't handle. */
1132 if (do_not_record_p)
1133 return;
1134
02280659 1135 cur_expr = table->table[hash];
7506f491
DE
1136 found = 0;
1137
01512446 1138 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
7506f491
DE
1139 {
1140 /* If the expression isn't found, save a pointer to the end of
1141 the list. */
1142 last_expr = cur_expr;
1143 cur_expr = cur_expr->next_same_hash;
1144 }
1145
1146 if (! found)
1147 {
11478306
JH
1148 cur_expr = GOBNEW (struct gcse_expr);
1149 bytes_used += sizeof (struct gcse_expr);
02280659 1150 if (table->table[hash] == NULL)
c4c81601 1151 /* This is the first pattern that hashed to this index. */
02280659 1152 table->table[hash] = cur_expr;
7506f491 1153 else
c4c81601
RK
1154 /* Add EXPR to end of this hash chain. */
1155 last_expr->next_same_hash = cur_expr;
1156
589005ff 1157 /* Set the fields of the expr element. */
7506f491 1158 cur_expr->expr = x;
02280659 1159 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1160 cur_expr->next_same_hash = NULL;
1161 cur_expr->antic_occr = NULL;
1162 cur_expr->avail_occr = NULL;
20160347
MK
1163 gcc_assert (max_distance >= 0);
1164 cur_expr->max_distance = max_distance;
7506f491 1165 }
20160347
MK
1166 else
1167 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1168
1169 /* Now record the occurrence(s). */
7506f491
DE
1170 if (antic_p)
1171 {
1172 antic_occr = cur_expr->antic_occr;
1173
b0de17ef
SB
1174 if (antic_occr
1175 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1176 antic_occr = NULL;
7506f491
DE
1177
1178 if (antic_occr)
c4c81601
RK
1179 /* Found another instance of the expression in the same basic block.
1180 Prefer the currently recorded one. We want the first one in the
1181 block and the block is scanned from start to end. */
1182 ; /* nothing to do */
7506f491
DE
1183 else
1184 {
1185 /* First occurrence of this expression in this basic block. */
11478306
JH
1186 antic_occr = GOBNEW (struct gcse_occr);
1187 bytes_used += sizeof (struct gcse_occr);
7506f491 1188 antic_occr->insn = insn;
b6e47ceb 1189 antic_occr->next = cur_expr->antic_occr;
f9957958 1190 antic_occr->deleted_p = 0;
b6e47ceb 1191 cur_expr->antic_occr = antic_occr;
7506f491
DE
1192 }
1193 }
1194
1195 if (avail_p)
1196 {
1197 avail_occr = cur_expr->avail_occr;
1198
b0de17ef
SB
1199 if (avail_occr
1200 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1201 {
b6e47ceb
JL
1202 /* Found another instance of the expression in the same basic block.
1203 Prefer this occurrence to the currently recorded one. We want
1204 the last one in the block and the block is scanned from start
1205 to end. */
1206 avail_occr->insn = insn;
7506f491 1207 }
7506f491
DE
1208 else
1209 {
1210 /* First occurrence of this expression in this basic block. */
11478306
JH
1211 avail_occr = GOBNEW (struct gcse_occr);
1212 bytes_used += sizeof (struct gcse_occr);
7506f491 1213 avail_occr->insn = insn;
b6e47ceb 1214 avail_occr->next = cur_expr->avail_occr;
f9957958 1215 avail_occr->deleted_p = 0;
b6e47ceb 1216 cur_expr->avail_occr = avail_occr;
7506f491
DE
1217 }
1218 }
1219}
1220
43c8a043 1221/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1222
1223static void
11478306 1224hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491 1225{
43c8a043
EB
1226 rtx src = SET_SRC (set);
1227 rtx dest = SET_DEST (set);
172890a2 1228 rtx note;
7506f491 1229
6e72d1e9 1230 if (GET_CODE (src) == CALL)
02280659 1231 hash_scan_call (src, insn, table);
7506f491 1232
7b1b4aed 1233 else if (REG_P (dest))
7506f491 1234 {
172890a2 1235 unsigned int regno = REGNO (dest);
ec7f796e 1236 HOST_WIDE_INT max_distance = 0;
7506f491 1237
29470771
SB
1238 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1239
90631280
PB
1240 This allows us to do a single GCSE pass and still eliminate
1241 redundant constants, addresses or other expressions that are
29470771
SB
1242 constructed with multiple instructions.
1243
e45425ec 1244 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1245 In this case, there will almost always be a REG_EQUAL note on the
1246 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1247 for INSN, we miss copy propagation opportunities and we perform the
1248 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1249 do more than one PRE GCSE pass.
1250
fa10beec 1251 Note that this does not impede profitable constant propagations. We
29470771 1252 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1253 note = find_reg_equal_equiv_note (insn);
1254 if (note != 0
29470771
SB
1255 && REG_NOTE_KIND (note) == REG_EQUAL
1256 && !REG_P (src)
e548c9df 1257 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
f7df4a84 1258 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
172890a2 1259
7506f491 1260 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1261 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1262 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1263 && can_copy_p (GET_MODE (dest))
068473ec 1264 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1265 do that easily for EH edges so disable GCSE on these for now. */
1266 /* ??? We can now easily create new EH landing pads at the
1267 gimple level, for splitting edges; there's no reason we
1268 can't do the same thing at the rtl level. */
1269 && !can_throw_internal (insn)
7506f491 1270 /* Is SET_SRC something we want to gcse? */
e548c9df 1271 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
172890a2 1272 /* Don't CSE a nop. */
43c8a043 1273 && ! set_noop_p (set)
43e72072
JJ
1274 /* Don't GCSE if it has attached REG_EQUIV note.
1275 At this point this only function parameters should have
1276 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1277 explicitly, it means address of parameter has been taken,
43e72072 1278 so we should not extend the lifetime of the pseudo. */
90631280 1279 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1280 {
1281 /* An expression is not anticipatable if its operands are
52d76e11 1282 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1283 this insn. The latter condition does not have to mean that
1284 SRC itself is not anticipatable, but we just will not be
1285 able to handle code motion of insns with multiple sets. */
1286 int antic_p = oprs_anticipatable_p (src, insn)
1287 && !multiple_sets (insn);
7506f491 1288 /* An expression is not available if its operands are
eb296bd9
GK
1289 subsequently modified, including this insn. It's also not
1290 available if this is a branch, because we can't insert
1291 a set after the branch. */
1292 int avail_p = (oprs_available_p (src, insn)
1293 && ! JUMP_P (insn));
c4c81601 1294
20160347
MK
1295 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1296 max_distance, table);
7506f491 1297 }
7506f491 1298 }
d91edf86 1299 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1300 the REG stored in that memory. This makes it possible to remove
1301 redundant loads from due to stores to the same location. */
7b1b4aed 1302 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
e548c9df
AM
1303 {
1304 unsigned int regno = REGNO (src);
ec7f796e 1305 HOST_WIDE_INT max_distance = 0;
e548c9df
AM
1306
1307 /* Only record sets of pseudo-regs in the hash table. */
1308 if (regno >= FIRST_PSEUDO_REGISTER
1309 /* Don't GCSE something if we can't do a reg/reg copy. */
1310 && can_copy_p (GET_MODE (src))
1311 /* GCSE commonly inserts instruction after the insn. We can't
1312 do that easily for EH edges so disable GCSE on these for now. */
1313 && !can_throw_internal (insn)
1314 /* Is SET_DEST something we want to gcse? */
1315 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1316 /* Don't CSE a nop. */
1317 && ! set_noop_p (set)
1318 /* Don't GCSE if it has attached REG_EQUIV note.
1319 At this point this only function parameters should have
1320 REG_EQUIV notes and if the argument slot is used somewhere
1321 explicitly, it means address of parameter has been taken,
1322 so we should not extend the lifetime of the pseudo. */
1323 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1324 || ! MEM_P (XEXP (note, 0))))
1325 {
1326 /* Stores are never anticipatable. */
1327 int antic_p = 0;
1328 /* An expression is not available if its operands are
1329 subsequently modified, including this insn. It's also not
1330 available if this is a branch, because we can't insert
1331 a set after the branch. */
1332 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1333
1334 /* Record the memory expression (DEST) in the hash table. */
1335 insert_expr_in_table (dest, GET_MODE (dest), insn,
1336 antic_p, avail_p, max_distance, table);
1337 }
1338 }
7506f491
DE
1339}
1340
1341static void
cf92a178 1342hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1343 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1344{
1345 /* Currently nothing to do. */
1346}
1347
1348static void
cf92a178 1349hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1350 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1351{
1352 /* Currently nothing to do. */
1353}
1354
43c8a043 1355/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1356
1357static void
11478306 1358hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491
DE
1359{
1360 rtx pat = PATTERN (insn);
c4c81601 1361 int i;
7506f491
DE
1362
1363 /* Pick out the sets of INSN and for other forms of instructions record
1364 what's been modified. */
1365
172890a2 1366 if (GET_CODE (pat) == SET)
02280659 1367 hash_scan_set (pat, insn, table);
43c8a043
EB
1368
1369 else if (GET_CODE (pat) == CLOBBER)
1370 hash_scan_clobber (pat, insn, table);
1371
1372 else if (GET_CODE (pat) == CALL)
1373 hash_scan_call (pat, insn, table);
1374
7506f491 1375 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1376 for (i = 0; i < XVECLEN (pat, 0); i++)
1377 {
1378 rtx x = XVECEXP (pat, 0, i);
7506f491 1379
c4c81601 1380 if (GET_CODE (x) == SET)
02280659 1381 hash_scan_set (x, insn, table);
c4c81601 1382 else if (GET_CODE (x) == CLOBBER)
02280659 1383 hash_scan_clobber (x, insn, table);
6e72d1e9 1384 else if (GET_CODE (x) == CALL)
02280659 1385 hash_scan_call (x, insn, table);
c4c81601 1386 }
7506f491
DE
1387}
1388
43c8a043
EB
1389/* Dump the hash table TABLE to file FILE under the name NAME. */
1390
7506f491 1391static void
11478306 1392dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
7506f491
DE
1393{
1394 int i;
1395 /* Flattened out table, so it's printed in proper order. */
11478306 1396 struct gcse_expr **flat_table;
4da896b2 1397 unsigned int *hash_val;
11478306 1398 struct gcse_expr *expr;
4da896b2 1399
11478306 1400 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1b4572a8 1401 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1402
02280659
ZD
1403 for (i = 0; i < (int) table->size; i++)
1404 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1405 {
1406 flat_table[expr->bitmap_index] = expr;
1407 hash_val[expr->bitmap_index] = i;
1408 }
7506f491
DE
1409
1410 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1411 name, table->size, table->n_elems);
7506f491 1412
02280659 1413 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1414 if (flat_table[i] != 0)
1415 {
a0ac9e5a 1416 expr = flat_table[i];
ec7f796e
ML
1417 fprintf (file, "Index %d (hash value %d; max distance "
1418 HOST_WIDE_INT_PRINT_DEC ")\n ",
20160347 1419 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1420 print_rtl (file, expr->expr);
21318741
RK
1421 fprintf (file, "\n");
1422 }
7506f491
DE
1423
1424 fprintf (file, "\n");
4da896b2 1425
4da896b2
MM
1426 free (flat_table);
1427 free (hash_val);
7506f491
DE
1428}
1429
1430/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1431
80c29cc4 1432 first_set records the first place in the block where the register
7506f491 1433 is set and is used to compute "anticipatability".
c4c81601 1434
80c29cc4 1435 last_set records the last place in the block where the register
7506f491 1436 is set and is used to compute "availability".
c4c81601 1437
80c29cc4 1438 last_bb records the block for which first_set and last_set are
4a81774c 1439 valid, as a quick test to invalidate them. */
7506f491
DE
1440
1441static void
170065c9 1442record_last_reg_set_info (rtx_insn *insn, int regno)
7506f491 1443{
80c29cc4 1444 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1445 int luid = DF_INSN_LUID (insn);
c4c81601 1446
4a81774c 1447 info->last_set = luid;
80c29cc4
RZ
1448 if (info->last_bb != current_bb)
1449 {
1450 info->last_bb = current_bb;
4a81774c 1451 info->first_set = luid;
80c29cc4 1452 }
7506f491
DE
1453}
1454
a13d4ebf
AM
1455/* Record memory modification information for INSN. We do not actually care
1456 about the memory location(s) that are set, or even how they are set (consider
1457 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1458
1459static void
e26d1bb2 1460record_last_mem_set_info (rtx_insn *insn)
7506f491 1461{
85c0f02d
SB
1462 if (! flag_gcse_lm)
1463 return;
0fe854a7 1464
af3eb110
JL
1465 record_last_mem_set_info_common (insn, modify_mem_list,
1466 canon_modify_mem_list,
1467 modify_mem_list_set,
1468 blocks_with_calls);
7506f491
DE
1469}
1470
7506f491 1471/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1472 SET or CLOBBER in an insn. DATA is really the instruction in which
1473 the SET is taking place. */
7506f491
DE
1474
1475static void
7bc980e1 1476record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1477{
e26d1bb2 1478 rtx_insn *last_set_insn = (rtx_insn *) data;
84832317 1479
7506f491
DE
1480 if (GET_CODE (dest) == SUBREG)
1481 dest = SUBREG_REG (dest);
1482
7b1b4aed 1483 if (REG_P (dest))
7506f491 1484 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1485 else if (MEM_P (dest)
7506f491
DE
1486 /* Ignore pushes, they clobber nothing. */
1487 && ! push_operand (dest, GET_MODE (dest)))
1488 record_last_mem_set_info (last_set_insn);
1489}
1490
e45425ec 1491/* Top level function to create an expression hash table.
7506f491
DE
1492
1493 Expression entries are placed in the hash table if
1494 - they are of the form (set (pseudo-reg) src),
1495 - src is something we want to perform GCSE on,
1496 - none of the operands are subsequently modified in the block
1497
7506f491
DE
1498 Currently src must be a pseudo-reg or a const_int.
1499
02280659 1500 TABLE is the table computed. */
7506f491
DE
1501
1502static void
11478306 1503compute_hash_table_work (struct gcse_hash_table_d *table)
7506f491 1504{
5f39ad47 1505 int i;
7506f491 1506
a13d4ebf 1507 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1508 clear_modify_mem_tables ();
7506f491 1509 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1510 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1511
5f39ad47 1512 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1513 reg_avail_info[i].last_bb = NULL;
7506f491 1514
11cd3bed 1515 FOR_EACH_BB_FN (current_bb, cfun)
7506f491 1516 {
cf92a178 1517 rtx_insn *insn;
770ae6cc 1518 unsigned int regno;
7506f491
DE
1519
1520 /* First pass over the instructions records information used to
4a81774c 1521 determine when registers and memory are first and last set. */
eb232f4e 1522 FOR_BB_INSNS (current_bb, insn)
7506f491 1523 {
a344c9f1 1524 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1525 continue;
1526
7b1b4aed 1527 if (CALL_P (insn))
7506f491 1528 {
c7fb4c7a 1529 hard_reg_set_iterator hrsi;
a4dfaad2
RS
1530
1531 /* We don't track modes of hard registers, so we need
1532 to be conservative and assume that partial kills
1533 are full kills. */
1534 HARD_REG_SET callee_clobbers
1535 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
1536 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
c7fb4c7a 1537 record_last_reg_set_info (insn, regno);
c4c81601 1538
3bab7385 1539 if (! RTL_CONST_OR_PURE_CALL_P (insn)
fedcf3c4
RB
1540 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1541 || can_throw_external (insn))
e45425ec 1542 record_last_mem_set_info (insn);
7506f491
DE
1543 }
1544
e8448ba5 1545 note_stores (insn, record_last_set_info, insn);
7506f491
DE
1546 }
1547
1548 /* The next pass builds the hash table. */
eb232f4e 1549 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1550 if (NONDEBUG_INSN_P (insn))
4a8cae83 1551 hash_scan_insn (insn, table);
7506f491
DE
1552 }
1553
80c29cc4
RZ
1554 free (reg_avail_info);
1555 reg_avail_info = NULL;
7506f491
DE
1556}
1557
02280659 1558/* Allocate space for the set/expr hash TABLE.
e45425ec 1559 It is used to determine the number of buckets to use. */
7506f491
DE
1560
1561static void
11478306 1562alloc_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1563{
1564 int n;
1565
b5b8b0ac
AO
1566 n = get_max_insn_count ();
1567
1568 table->size = n / 4;
02280659
ZD
1569 if (table->size < 11)
1570 table->size = 11;
c4c81601 1571
7506f491
DE
1572 /* Attempt to maintain efficient use of hash table.
1573 Making it an odd number is simplest for now.
1574 ??? Later take some measurements. */
02280659 1575 table->size |= 1;
11478306
JH
1576 n = table->size * sizeof (struct gcse_expr *);
1577 table->table = GNEWVAR (struct gcse_expr *, n);
7506f491
DE
1578}
1579
02280659 1580/* Free things allocated by alloc_hash_table. */
7506f491
DE
1581
1582static void
11478306 1583free_hash_table (struct gcse_hash_table_d *table)
7506f491 1584{
02280659 1585 free (table->table);
7506f491
DE
1586}
1587
e45425ec 1588/* Compute the expression hash table TABLE. */
7506f491
DE
1589
1590static void
11478306 1591compute_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1592{
1593 /* Initialize count of number of entries in hash table. */
02280659 1594 table->n_elems = 0;
11478306 1595 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
7506f491 1596
02280659 1597 compute_hash_table_work (table);
7506f491
DE
1598}
1599\f
1600/* Expression tracking support. */
1601
e45425ec
SB
1602/* Clear canon_modify_mem_list and modify_mem_list tables. */
1603static void
1604clear_modify_mem_tables (void)
0e3f0221 1605{
e45425ec
SB
1606 unsigned i;
1607 bitmap_iterator bi;
0e3f0221 1608
e45425ec 1609 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1610 {
9771b263
DN
1611 modify_mem_list[i].release ();
1612 canon_modify_mem_list[i].release ();
0e3f0221 1613 }
e45425ec
SB
1614 bitmap_clear (modify_mem_list_set);
1615 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1616}
1617
e45425ec 1618/* Release memory used by modify_mem_list_set. */
0e3f0221 1619
e45425ec
SB
1620static void
1621free_modify_mem_tables (void)
e129b3f9 1622{
e45425ec
SB
1623 clear_modify_mem_tables ();
1624 free (modify_mem_list);
1625 free (canon_modify_mem_list);
1626 modify_mem_list = 0;
1627 canon_modify_mem_list = 0;
e129b3f9 1628}
e45425ec 1629\f
a65f3558 1630/* Compute PRE+LCM working variables. */
7506f491
DE
1631
1632/* Local properties of expressions. */
43c8a043 1633
7506f491 1634/* Nonzero for expressions that are transparent in the block. */
a65f3558 1635static sbitmap *transp;
7506f491 1636
a65f3558
JL
1637/* Nonzero for expressions that are computed (available) in the block. */
1638static sbitmap *comp;
7506f491 1639
a65f3558
JL
1640/* Nonzero for expressions that are locally anticipatable in the block. */
1641static sbitmap *antloc;
7506f491 1642
a65f3558
JL
1643/* Nonzero for expressions where this block is an optimal computation
1644 point. */
1645static sbitmap *pre_optimal;
5c35539b 1646
a65f3558
JL
1647/* Nonzero for expressions which are redundant in a particular block. */
1648static sbitmap *pre_redundant;
7506f491 1649
a42cd965
AM
1650/* Nonzero for expressions which should be inserted on a specific edge. */
1651static sbitmap *pre_insert_map;
1652
1653/* Nonzero for expressions which should be deleted in a specific block. */
1654static sbitmap *pre_delete_map;
1655
a65f3558 1656/* Allocate vars used for PRE analysis. */
7506f491
DE
1657
1658static void
1d088dee 1659alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1660{
a65f3558
JL
1661 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1662 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1664
a42cd965
AM
1665 pre_optimal = NULL;
1666 pre_redundant = NULL;
1667 pre_insert_map = NULL;
1668 pre_delete_map = NULL;
a42cd965 1669 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1670
a42cd965 1671 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1672}
1673
a65f3558 1674/* Free vars used for PRE analysis. */
7506f491
DE
1675
1676static void
1d088dee 1677free_pre_mem (void)
7506f491 1678{
5a660bff
DB
1679 sbitmap_vector_free (transp);
1680 sbitmap_vector_free (comp);
bd3675fc
JL
1681
1682 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1683
a42cd965 1684 if (pre_optimal)
5a660bff 1685 sbitmap_vector_free (pre_optimal);
a42cd965 1686 if (pre_redundant)
5a660bff 1687 sbitmap_vector_free (pre_redundant);
a42cd965 1688 if (pre_insert_map)
5a660bff 1689 sbitmap_vector_free (pre_insert_map);
a42cd965 1690 if (pre_delete_map)
5a660bff 1691 sbitmap_vector_free (pre_delete_map);
a42cd965 1692
bd3675fc 1693 transp = comp = NULL;
a42cd965 1694 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1695}
1696
9b774782
JL
1697/* Remove certain expressions from anticipatable and transparent
1698 sets of basic blocks that have incoming abnormal edge.
1699 For PRE remove potentially trapping expressions to avoid placing
1700 them on abnormal edges. For hoisting remove memory references that
1701 can be clobbered by calls. */
7506f491
DE
1702
1703static void
9b774782 1704prune_expressions (bool pre_p)
7506f491 1705{
11478306 1706 struct gcse_expr *expr;
b614171e 1707 unsigned int ui;
9b774782 1708 basic_block bb;
c66e8ae9 1709
7ba9e72d 1710 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
f61e445a 1711 bitmap_clear (prune_exprs);
02280659 1712 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1713 {
43c8a043 1714 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1715 {
1716 /* Note potentially trapping expressions. */
43c8a043 1717 if (may_trap_p (expr->expr))
9b774782 1718 {
d7c028c0 1719 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1720 continue;
1721 }
b614171e 1722
d80c6d02 1723 if (!pre_p && contains_mem_rtx_p (expr->expr))
9b774782
JL
1724 /* Note memory references that can be clobbered by a call.
1725 We do not split abnormal edges in hoisting, so would
1726 a memory reference get hoisted along an abnormal edge,
1727 it would be placed /before/ the call. Therefore, only
1728 constant memory references can be hoisted along abnormal
1729 edges. */
1730 {
d80c6d02
JL
1731 rtx x = expr->expr;
1732
1733 /* Common cases where we might find the MEM which may allow us
1734 to avoid pruning the expression. */
1735 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1736 x = XEXP (x, 0);
1737
1738 /* If we found the MEM, go ahead and look at it to see if it has
1739 properties that allow us to avoid pruning its expression out
1740 of the tables. */
1741 if (MEM_P (x))
1742 {
1743 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1744 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1745 continue;
1746
1747 if (MEM_READONLY_P (x)
1748 && !MEM_VOLATILE_P (x)
1749 && MEM_NOTRAP_P (x))
1750 /* Constant memory reference, e.g., a PIC address. */
1751 continue;
1752 }
9b774782
JL
1753
1754 /* ??? Optimally, we would use interprocedural alias
1755 analysis to determine if this mem is actually killed
1756 by this call. */
1757
d7c028c0 1758 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1759 }
1760 }
1761 }
c66e8ae9 1762
11cd3bed 1763 FOR_EACH_BB_FN (bb, cfun)
c66e8ae9 1764 {
b614171e 1765 edge e;
628f6a4e 1766 edge_iterator ei;
b614171e
MM
1767
1768 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1769 kill all trapping (for PRE) and memory (for hoist) expressions
1770 because we won't be able to properly place the instruction on
1771 the edge. So make them neither anticipatable nor transparent.
1772 This is fairly conservative.
1773
1774 ??? For hoisting it may be necessary to check for set-and-jump
1775 instructions here, not just for abnormal edges. The general problem
1776 is that when an expression cannot not be placed right at the end of
1777 a basic block we should account for any side-effects of a subsequent
1778 jump instructions that could clobber the expression. It would
1779 be best to implement this check along the lines of
b11f0116 1780 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1781 and, hence, there's no need to conservatively prune expressions on
1782 "intermediate" set-and-jump instructions. */
628f6a4e 1783 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1784 if ((e->flags & EDGE_ABNORMAL)
1785 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1786 {
f61e445a 1787 bitmap_and_compl (antloc[bb->index],
9b774782 1788 antloc[bb->index], prune_exprs);
f61e445a 1789 bitmap_and_compl (transp[bb->index],
9b774782 1790 transp[bb->index], prune_exprs);
b614171e
MM
1791 break;
1792 }
9b774782 1793 }
9b774782
JL
1794}
1795
29fa95ed
JL
1796/* It may be necessary to insert a large number of insns on edges to
1797 make the existing occurrences of expressions fully redundant. This
1798 routine examines the set of insertions and deletions and if the ratio
1799 of insertions to deletions is too high for a particular expression, then
1800 the expression is removed from the insertion/deletion sets.
1801
1802 N_ELEMS is the number of elements in the hash table. */
1803
1804static void
1805prune_insertions_deletions (int n_elems)
1806{
1807 sbitmap_iterator sbi;
29fa95ed
JL
1808
1809 /* We always use I to iterate over blocks/edges and J to iterate over
1810 expressions. */
1811 unsigned int i, j;
1812
1813 /* Counts for the number of times an expression needs to be inserted and
1814 number of times an expression can be removed as a result. */
1815 int *insertions = GCNEWVEC (int, n_elems);
1816 int *deletions = GCNEWVEC (int, n_elems);
1817
1818 /* Set of expressions which require too many insertions relative to
1819 the number of deletions achieved. We will prune these out of the
1820 insertion/deletion sets. */
7ba9e72d 1821 auto_sbitmap prune_exprs (n_elems);
f61e445a 1822 bitmap_clear (prune_exprs);
29fa95ed
JL
1823
1824 /* Iterate over the edges counting the number of times each expression
1825 needs to be inserted. */
dc936fb2 1826 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
29fa95ed 1827 {
d4ac4ce2 1828 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1829 insertions[j]++;
1830 }
1831
1832 /* Similarly for deletions, but those occur in blocks rather than on
1833 edges. */
8b1c6fd7 1834 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
29fa95ed 1835 {
d4ac4ce2 1836 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1837 deletions[j]++;
1838 }
1839
1840 /* Now that we have accurate counts, iterate over the elements in the
1841 hash table and see if any need too many insertions relative to the
1842 number of evaluations that can be removed. If so, mark them in
1843 PRUNE_EXPRS. */
1844 for (j = 0; j < (unsigned) n_elems; j++)
1845 if (deletions[j]
028d4092 1846 && (insertions[j] / deletions[j]) > param_max_gcse_insertion_ratio)
d7c028c0 1847 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1848
1849 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1850 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed 1851 {
dc936fb2 1852 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
d7c028c0 1853 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed 1854
8b1c6fd7 1855 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
d7c028c0 1856 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1857 }
1858
29fa95ed
JL
1859 free (insertions);
1860 free (deletions);
1861}
1862
9b774782 1863/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 1864
43c8a043 1865static struct edge_list *
9b774782
JL
1866compute_pre_data (void)
1867{
43c8a043 1868 struct edge_list *edge_list;
9b774782
JL
1869 basic_block bb;
1870
1871 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1872 prune_expressions (true);
8b1c6fd7 1873 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
9b774782
JL
1874
1875 /* Compute ae_kill for each basic block using:
1876
1877 ~(TRANSP | COMP)
1878 */
1879
11cd3bed 1880 FOR_EACH_BB_FN (bb, cfun)
9b774782 1881 {
f61e445a
LC
1882 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1883 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
1884 }
1885
10d22567 1886 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 1887 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 1888 sbitmap_vector_free (antloc);
bd3675fc 1889 antloc = NULL;
5a660bff 1890 sbitmap_vector_free (ae_kill);
589005ff 1891 ae_kill = NULL;
29fa95ed
JL
1892
1893 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
1894
1895 return edge_list;
7506f491
DE
1896}
1897\f
1898/* PRE utilities */
1899
cc2902df 1900/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 1901 block BB.
7506f491
DE
1902
1903 VISITED is a pointer to a working buffer for tracking which BB's have
1904 been visited. It is NULL for the top-level call.
1905
1906 We treat reaching expressions that go through blocks containing the same
1907 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1908 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1909 2 as not reaching. The intent is to improve the probability of finding
1910 only one reaching expression and to reduce register lifetimes by picking
1911 the closest such expression. */
1912
1913static int
11478306 1914pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
43c8a043 1915 basic_block bb, char *visited)
7506f491 1916{
36349f8b 1917 edge pred;
628f6a4e 1918 edge_iterator ei;
b8698a0f 1919
628f6a4e 1920 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 1921 {
e2d2ed72 1922 basic_block pred_bb = pred->src;
7506f491 1923
fefa31b5 1924 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
7506f491 1925 /* Has predecessor has already been visited? */
0b17ab2f 1926 || visited[pred_bb->index])
c4c81601
RK
1927 ;/* Nothing to do. */
1928
7506f491 1929 /* Does this predecessor generate this expression? */
d7c028c0 1930 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
1931 {
1932 /* Is this the occurrence we're looking for?
1933 Note that there's only one generating occurrence per block
1934 so we just need to check the block number. */
a65f3558 1935 if (occr_bb == pred_bb)
7506f491 1936 return 1;
c4c81601 1937
0b17ab2f 1938 visited[pred_bb->index] = 1;
7506f491
DE
1939 }
1940 /* Ignore this predecessor if it kills the expression. */
d7c028c0 1941 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 1942 visited[pred_bb->index] = 1;
c4c81601 1943
7506f491
DE
1944 /* Neither gen nor kill. */
1945 else
ac7c5af5 1946 {
0b17ab2f 1947 visited[pred_bb->index] = 1;
89e606c9 1948 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 1949 return 1;
ac7c5af5 1950 }
7506f491
DE
1951 }
1952
1953 /* All paths have been checked. */
1954 return 0;
1955}
283a2545
RL
1956
1957/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 1958 memory allocated for that function is returned. */
283a2545
RL
1959
1960static int
11478306 1961pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
283a2545
RL
1962{
1963 int rval;
8b1c6fd7 1964 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
283a2545 1965
8e42ace1 1966 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
1967
1968 free (visited);
c4c81601 1969 return rval;
283a2545 1970}
7506f491 1971\f
53f2f08b 1972/* Generate RTL to copy an EXP to REG and return it. */
a42cd965 1973
53f2f08b
UB
1974rtx_insn *
1975prepare_copy_insn (rtx reg, rtx exp)
a42cd965 1976{
cf92a178 1977 rtx_insn *pat;
a42cd965
AM
1978
1979 start_sequence ();
fb0c0a12
RK
1980
1981 /* If the expression is something that's an operand, like a constant,
1982 just copy it to a register. */
1983 if (general_operand (exp, GET_MODE (reg)))
1984 emit_move_insn (reg, exp);
1985
1986 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 1987 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
1988 else
1989 {
f7df4a84 1990 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
282899df 1991
57ac4c34 1992 if (insn_invalid_p (insn, false))
2f021b67 1993 gcc_unreachable ();
282899df 1994 }
b8698a0f 1995
2f937369 1996 pat = get_insns ();
a42cd965
AM
1997 end_sequence ();
1998
1999 return pat;
2000}
589005ff 2001
53f2f08b
UB
2002/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2003
2004static rtx_insn *
2005process_insert_insn (struct gcse_expr *expr)
2006{
2007 rtx reg = expr->reaching_reg;
2008 /* Copy the expression to make sure we don't have any sharing issues. */
2009 rtx exp = copy_rtx (expr->expr);
2010
2011 return prepare_copy_insn (reg, exp);
2012}
2013
a65f3558
JL
2014/* Add EXPR to the end of basic block BB.
2015
eae7938e 2016 This is used by both the PRE and code hoisting. */
7506f491
DE
2017
2018static void
11478306 2019insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
7506f491 2020{
dc01c3d1 2021 rtx_insn *insn = BB_END (bb);
cf92a178 2022 rtx_insn *new_insn;
7506f491
DE
2023 rtx reg = expr->reaching_reg;
2024 int regno = REGNO (reg);
cf92a178 2025 rtx_insn *pat, *pat_end;
7506f491 2026
a42cd965 2027 pat = process_insert_insn (expr);
282899df 2028 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2029
2030 pat_end = pat;
2031 while (NEXT_INSN (pat_end) != NULL_RTX)
2032 pat_end = NEXT_INSN (pat_end);
7506f491 2033
bd1cd0d0
SB
2034 /* If the last insn is a jump, insert EXPR in front. Similarly we need to
2035 take care of trapping instructions in presence of non-call exceptions. */
7506f491 2036
7b1b4aed 2037 if (JUMP_P (insn)
4b4bf941 2038 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2039 && (!single_succ_p (bb)
2040 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2041 {
bd1cd0d0 2042 /* FIXME: What if something in jump uses value set in new insn? */
6fb5fa3c 2043 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2044 }
c4c81601 2045
3947e2f9
RH
2046 /* Likewise if the last insn is a call, as will happen in the presence
2047 of exception handling. */
7b1b4aed 2048 else if (CALL_P (insn)
c5cbcccf
ZD
2049 && (!single_succ_p (bb)
2050 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2051 {
42db504c
SB
2052 /* Keeping in mind targets with small register classes and parameters
2053 in registers, we search backward and place the instructions before
2054 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2055 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2056
2057 /* Since different machines initialize their parameter registers
2058 in different orders, assume nothing. Collect the set of all
2059 parameter registers. */
a813c111 2060 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2061
b1d26727
JL
2062 /* If we found all the parameter loads, then we want to insert
2063 before the first parameter load.
2064
2065 If we did not find all the parameter loads, then we might have
2066 stopped on the head of the block, which could be a CODE_LABEL.
2067 If we inserted before the CODE_LABEL, then we would be putting
2068 the insn in the wrong basic block. In that case, put the insn
b5229628 2069 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2070 while (LABEL_P (insn)
589ca5cb 2071 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2072 insn = NEXT_INSN (insn);
c4c81601 2073
6fb5fa3c 2074 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2075 }
2076 else
6fb5fa3c 2077 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2078
2f937369 2079 while (1)
a65f3558 2080 {
2f937369 2081 if (INSN_P (pat))
4a81774c 2082 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2083 if (pat == pat_end)
2084 break;
2085 pat = NEXT_INSN (pat);
a65f3558 2086 }
3947e2f9 2087
7506f491
DE
2088 gcse_create_count++;
2089
10d22567 2090 if (dump_file)
7506f491 2091 {
10d22567 2092 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2093 bb->index, INSN_UID (new_insn));
10d22567 2094 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2095 expr->bitmap_index, regno);
7506f491
DE
2096 }
2097}
2098
a42cd965
AM
2099/* Insert partially redundant expressions on edges in the CFG to make
2100 the expressions fully redundant. */
7506f491 2101
a42cd965 2102static int
11478306 2103pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
7506f491 2104{
c4c81601 2105 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2106 sbitmap *inserted;
2107
a42cd965
AM
2108 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2109 if it reaches any of the deleted expressions. */
7506f491 2110
a42cd965
AM
2111 set_size = pre_insert_map[0]->size;
2112 num_edges = NUM_EDGES (edge_list);
02280659 2113 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2114 bitmap_vector_clear (inserted, num_edges);
7506f491 2115
a42cd965 2116 for (e = 0; e < num_edges; e++)
7506f491
DE
2117 {
2118 int indx;
e2d2ed72 2119 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2120
a65f3558 2121 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2122 {
a42cd965 2123 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2124
43c8a043
EB
2125 for (j = indx;
2126 insert && j < (int) expr_hash_table.n_elems;
2127 j++, insert >>= 1)
c4c81601
RK
2128 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2129 {
11478306
JH
2130 struct gcse_expr *expr = index_map[j];
2131 struct gcse_occr *occr;
a65f3558 2132
ff7cc307 2133 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2134 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2135 {
2136 if (! occr->deleted_p)
2137 continue;
2138
3f117656 2139 /* Insert this expression on this edge if it would
ff7cc307 2140 reach the deleted occurrence in BB. */
d7c028c0 2141 if (!bitmap_bit_p (inserted[e], j))
c4c81601 2142 {
cf92a178 2143 rtx_insn *insn;
c4c81601
RK
2144 edge eg = INDEX_EDGE (edge_list, e);
2145
2146 /* We can't insert anything on an abnormal and
2147 critical edge, so we insert the insn at the end of
2148 the previous block. There are several alternatives
2149 detailed in Morgans book P277 (sec 10.5) for
2150 handling this situation. This one is easiest for
2151 now. */
2152
b16aa8a5 2153 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2154 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2155 else
2156 {
2157 insn = process_insert_insn (index_map[j]);
2158 insert_insn_on_edge (insn, eg);
2159 }
2160
10d22567 2161 if (dump_file)
c4c81601 2162 {
5f39ad47 2163 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2164 bb->index,
2165 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2166 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2167 expr->bitmap_index);
2168 }
2169
a13d4ebf 2170 update_ld_motion_stores (expr);
d7c028c0 2171 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2172 did_insert = 1;
2173 gcse_create_count++;
2174 }
2175 }
2176 }
7506f491
DE
2177 }
2178 }
5faf03ae 2179
5a660bff 2180 sbitmap_vector_free (inserted);
a42cd965 2181 return did_insert;
7506f491
DE
2182}
2183
073089a7 2184/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2185 Given "old_reg <- expr" (INSN), instead of adding after it
2186 reaching_reg <- old_reg
2187 it's better to do the following:
2188 reaching_reg <- expr
2189 old_reg <- reaching_reg
2190 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2191 opportunities. But if this fails, we try the old way.
2192 When "expr" is a store, i.e.
2193 given "MEM <- old_reg", instead of adding after it
2194 reaching_reg <- old_reg
2195 it's better to add it before as follows:
2196 reaching_reg <- old_reg
2197 MEM <- reaching_reg. */
7506f491
DE
2198
2199static void
11478306 2200pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
7506f491
DE
2201{
2202 rtx reg = expr->reaching_reg;
2203 int regno = REGNO (reg);
2204 int indx = expr->bitmap_index;
073089a7 2205 rtx pat = PATTERN (insn);
1476d1bd
MM
2206 rtx set, first_set;
2207 rtx_insn *new_insn;
b885908b 2208 rtx old_reg;
073089a7 2209 int i;
7506f491 2210
073089a7 2211 /* This block matches the logic in hash_scan_insn. */
282899df 2212 switch (GET_CODE (pat))
073089a7 2213 {
282899df
NS
2214 case SET:
2215 set = pat;
2216 break;
2217
2218 case PARALLEL:
073089a7
RS
2219 /* Search through the parallel looking for the set whose
2220 source was the expression that we're interested in. */
64068ca2 2221 first_set = NULL_RTX;
073089a7
RS
2222 set = NULL_RTX;
2223 for (i = 0; i < XVECLEN (pat, 0); i++)
2224 {
2225 rtx x = XVECEXP (pat, 0, i);
64068ca2 2226 if (GET_CODE (x) == SET)
073089a7 2227 {
64068ca2
RS
2228 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2229 may not find an equivalent expression, but in this
2230 case the PARALLEL will have a single set. */
2231 if (first_set == NULL_RTX)
2232 first_set = x;
2233 if (expr_equiv_p (SET_SRC (x), expr->expr))
2234 {
2235 set = x;
2236 break;
2237 }
073089a7
RS
2238 }
2239 }
64068ca2
RS
2240
2241 gcc_assert (first_set);
2242 if (set == NULL_RTX)
2243 set = first_set;
282899df
NS
2244 break;
2245
2246 default:
2247 gcc_unreachable ();
073089a7 2248 }
c4c81601 2249
7b1b4aed 2250 if (REG_P (SET_DEST (set)))
073089a7 2251 {
f5f2e3cd
MH
2252 old_reg = SET_DEST (set);
2253 /* Check if we can modify the set destination in the original insn. */
2254 if (validate_change (insn, &SET_DEST (set), reg, 0))
2255 {
2256 new_insn = gen_move_insn (old_reg, reg);
2257 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2258 }
2259 else
2260 {
2261 new_insn = gen_move_insn (reg, old_reg);
2262 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2263 }
073089a7 2264 }
f5f2e3cd 2265 else /* This is possible only in case of a store to memory. */
073089a7 2266 {
f5f2e3cd 2267 old_reg = SET_SRC (set);
073089a7 2268 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2269
2270 /* Check if we can modify the set source in the original insn. */
2271 if (validate_change (insn, &SET_SRC (set), reg, 0))
2272 new_insn = emit_insn_before (new_insn, insn);
2273 else
2274 new_insn = emit_insn_after (new_insn, insn);
073089a7 2275 }
7506f491
DE
2276
2277 gcse_create_count++;
2278
10d22567
ZD
2279 if (dump_file)
2280 fprintf (dump_file,
a42cd965 2281 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2282 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2283 INSN_UID (insn), regno);
7506f491
DE
2284}
2285
2286/* Copy available expressions that reach the redundant expression
2287 to `reaching_reg'. */
2288
2289static void
1d088dee 2290pre_insert_copies (void)
7506f491 2291{
f5f2e3cd 2292 unsigned int i, added_copy;
11478306
JH
2293 struct gcse_expr *expr;
2294 struct gcse_occr *occr;
2295 struct gcse_occr *avail;
a65f3558 2296
7506f491
DE
2297 /* For each available expression in the table, copy the result to
2298 `reaching_reg' if the expression reaches a deleted one.
2299
2300 ??? The current algorithm is rather brute force.
2301 Need to do some profiling. */
2302
02280659 2303 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2304 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2305 {
2306 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2307 we don't want to insert a copy here because the expression may not
2308 really be redundant. So only insert an insn if the expression was
2309 deleted. This test also avoids further processing if the
2310 expression wasn't deleted anywhere. */
2311 if (expr->reaching_reg == NULL)
2312 continue;
7b1b4aed 2313
f5f2e3cd 2314 /* Set when we add a copy for that expression. */
7b1b4aed 2315 added_copy = 0;
c4c81601
RK
2316
2317 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2318 {
2319 if (! occr->deleted_p)
2320 continue;
7506f491 2321
c4c81601
RK
2322 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2323 {
cf92a178 2324 rtx_insn *insn = avail->insn;
7506f491 2325
c4c81601
RK
2326 /* No need to handle this one if handled already. */
2327 if (avail->copied_p)
2328 continue;
7506f491 2329
c4c81601 2330 /* Don't handle this one if it's a redundant one. */
4654c0cf 2331 if (insn->deleted ())
c4c81601 2332 continue;
7506f491 2333
c4c81601 2334 /* Or if the expression doesn't reach the deleted one. */
589005ff 2335 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2336 expr,
2337 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2338 continue;
7506f491 2339
f5f2e3cd
MH
2340 added_copy = 1;
2341
c4c81601
RK
2342 /* Copy the result of avail to reaching_reg. */
2343 pre_insert_copy_insn (expr, insn);
2344 avail->copied_p = 1;
2345 }
2346 }
f5f2e3cd 2347
7b1b4aed 2348 if (added_copy)
f5f2e3cd 2349 update_ld_motion_stores (expr);
c4c81601 2350 }
7506f491
DE
2351}
2352
b6808818
JDA
2353struct set_data
2354{
cf92a178 2355 rtx_insn *insn;
b6808818
JDA
2356 const_rtx set;
2357 int nsets;
2358};
2359
2360/* Increment number of sets and record set in DATA. */
2361
2362static void
2363record_set_data (rtx dest, const_rtx set, void *data)
2364{
2365 struct set_data *s = (struct set_data *)data;
2366
2367 if (GET_CODE (set) == SET)
2368 {
2369 /* We allow insns having multiple sets, where all but one are
2370 dead as single set insns. In the common case only a single
2371 set is present, so we want to avoid checking for REG_UNUSED
2372 notes unless necessary. */
2373 if (s->nsets == 1
2374 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2375 && !side_effects_p (s->set))
2376 s->nsets = 0;
2377
2378 if (!s->nsets)
2379 {
2380 /* Record this set. */
2381 s->nsets += 1;
2382 s->set = set;
2383 }
2384 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2385 || side_effects_p (set))
2386 s->nsets += 1;
2387 }
2388}
2389
2390static const_rtx
cf92a178 2391single_set_gcse (rtx_insn *insn)
b6808818
JDA
2392{
2393 struct set_data s;
2394 rtx pattern;
2395
2396 gcc_assert (INSN_P (insn));
2397
2398 /* Optimize common case. */
2399 pattern = PATTERN (insn);
2400 if (GET_CODE (pattern) == SET)
2401 return pattern;
2402
2403 s.insn = insn;
2404 s.nsets = 0;
e8448ba5 2405 note_pattern_stores (pattern, record_set_data, &s);
b6808818
JDA
2406
2407 /* Considered invariant insns have exactly one set. */
2408 gcc_assert (s.nsets == 1);
2409 return s.set;
2410}
2411
10d1bb36
JH
2412/* Emit move from SRC to DEST noting the equivalence with expression computed
2413 in INSN. */
43c8a043 2414
e67d1102 2415static rtx_insn *
cf92a178 2416gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
10d1bb36 2417{
e8a54173 2418 rtx_insn *new_rtx;
b6808818
JDA
2419 const_rtx set = single_set_gcse (insn);
2420 rtx set2;
10d1bb36 2421 rtx note;
dca3da7a 2422 rtx eqv = NULL_RTX;
10d1bb36
JH
2423
2424 /* This should never fail since we're creating a reg->reg copy
2425 we've verified to be valid. */
2426
60564289 2427 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2428
dca3da7a
SB
2429 /* Note the equivalence for local CSE pass. Take the note from the old
2430 set if there was one. Otherwise record the SET_SRC from the old set
2431 unless DEST is also an operand of the SET_SRC. */
60564289 2432 set2 = single_set (new_rtx);
6bdb8dd6 2433 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2434 return new_rtx;
10d1bb36
JH
2435 if ((note = find_reg_equal_equiv_note (insn)))
2436 eqv = XEXP (note, 0);
dca3da7a
SB
2437 else if (! REG_P (dest)
2438 || ! reg_mentioned_p (dest, SET_SRC (set)))
10d1bb36
JH
2439 eqv = SET_SRC (set);
2440
dca3da7a
SB
2441 if (eqv != NULL_RTX)
2442 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2443
60564289 2444 return new_rtx;
10d1bb36
JH
2445}
2446
7506f491 2447/* Delete redundant computations.
7506f491
DE
2448 Deletion is done by changing the insn to copy the `reaching_reg' of
2449 the expression into the result of the SET. It is left to later passes
337405fd 2450 to propagate the copy or eliminate it.
7506f491 2451
43c8a043 2452 Return nonzero if a change is made. */
7506f491
DE
2453
2454static int
1d088dee 2455pre_delete (void)
7506f491 2456{
2e653e39 2457 unsigned int i;
63bc1d05 2458 int changed;
11478306
JH
2459 struct gcse_expr *expr;
2460 struct gcse_occr *occr;
a65f3558 2461
7506f491 2462 changed = 0;
02280659 2463 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2464 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2465 {
2466 int indx = expr->bitmap_index;
7506f491 2467
43c8a043 2468 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2469 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2470 {
cf92a178 2471 rtx_insn *insn = occr->insn;
c4c81601 2472 rtx set;
e2d2ed72 2473 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2474
073089a7 2475 /* We only delete insns that have a single_set. */
d7c028c0 2476 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2477 && (set = single_set (insn)) != 0
2478 && dbg_cnt (pre_insn))
c4c81601 2479 {
c4c81601
RK
2480 /* Create a pseudo-reg to store the result of reaching
2481 expressions into. Get the mode for the new pseudo from
2482 the mode of the original destination pseudo. */
2483 if (expr->reaching_reg == NULL)
46b71b03 2484 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2485
43c8a043 2486 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2487 delete_insn (insn);
2488 occr->deleted_p = 1;
10d1bb36
JH
2489 changed = 1;
2490 gcse_subst_count++;
7506f491 2491
10d22567 2492 if (dump_file)
c4c81601 2493 {
10d22567 2494 fprintf (dump_file,
c4c81601
RK
2495 "PRE: redundant insn %d (expression %d) in ",
2496 INSN_UID (insn), indx);
10d22567 2497 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2498 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2499 }
2500 }
2501 }
2502 }
7506f491
DE
2503
2504 return changed;
2505}
2506
2507/* Perform GCSE optimizations using PRE.
2508 This is called by one_pre_gcse_pass after all the dataflow analysis
2509 has been done.
2510
c4c81601
RK
2511 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2512 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2513 Compiler Design and Implementation.
7506f491 2514
c4c81601
RK
2515 ??? A new pseudo reg is created to hold the reaching expression. The nice
2516 thing about the classical approach is that it would try to use an existing
2517 reg. If the register can't be adequately optimized [i.e. we introduce
2518 reload problems], one could add a pass here to propagate the new register
2519 through the block.
7506f491 2520
c4c81601
RK
2521 ??? We don't handle single sets in PARALLELs because we're [currently] not
2522 able to copy the rest of the parallel when we insert copies to create full
2523 redundancies from partial redundancies. However, there's no reason why we
2524 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2525 redundancies. */
2526
2527static int
43c8a043 2528pre_gcse (struct edge_list *edge_list)
7506f491 2529{
2e653e39
RK
2530 unsigned int i;
2531 int did_insert, changed;
11478306
JH
2532 struct gcse_expr **index_map;
2533 struct gcse_expr *expr;
7506f491
DE
2534
2535 /* Compute a mapping from expression number (`bitmap_index') to
2536 hash table entry. */
2537
11478306 2538 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 2539 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2540 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2541 index_map[expr->bitmap_index] = expr;
7506f491 2542
7506f491
DE
2543 /* Delete the redundant insns first so that
2544 - we know what register to use for the new insns and for the other
2545 ones with reaching expressions
2546 - we know which insns are redundant when we go to create copies */
c4c81601 2547
7506f491 2548 changed = pre_delete ();
a42cd965 2549 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2550
7506f491 2551 /* In other places with reaching expressions, copy the expression to the
a42cd965 2552 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2553 pre_insert_copies ();
a42cd965
AM
2554 if (did_insert)
2555 {
2556 commit_edge_insertions ();
2557 changed = 1;
2558 }
7506f491 2559
283a2545 2560 free (index_map);
7506f491
DE
2561 return changed;
2562}
2563
2564/* Top level routine to perform one PRE GCSE pass.
2565
cc2902df 2566 Return nonzero if a change was made. */
7506f491
DE
2567
2568static int
5f39ad47 2569one_pre_gcse_pass (void)
7506f491
DE
2570{
2571 int changed = 0;
2572
2573 gcse_subst_count = 0;
2574 gcse_create_count = 0;
2575
5f39ad47 2576 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 2577 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 2578 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
5f39ad47
SB
2579 return 0;
2580
2581 /* We need alias. */
2582 init_alias_analysis ();
2583
2584 bytes_used = 0;
2585 gcc_obstack_init (&gcse_obstack);
2586 alloc_gcse_mem ();
2587
e45425ec 2588 alloc_hash_table (&expr_hash_table);
a42cd965 2589 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2590 if (flag_gcse_lm)
2591 compute_ld_motion_mems ();
2592
02280659 2593 compute_hash_table (&expr_hash_table);
43c8a043
EB
2594 if (flag_gcse_lm)
2595 trim_ld_motion_mems ();
10d22567
ZD
2596 if (dump_file)
2597 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2598
02280659 2599 if (expr_hash_table.n_elems > 0)
7506f491 2600 {
43c8a043 2601 struct edge_list *edge_list;
8b1c6fd7 2602 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
43c8a043
EB
2603 edge_list = compute_pre_data ();
2604 changed |= pre_gcse (edge_list);
a42cd965 2605 free_edge_list (edge_list);
7506f491
DE
2606 free_pre_mem ();
2607 }
c4c81601 2608
43c8a043
EB
2609 if (flag_gcse_lm)
2610 free_ld_motion_mems ();
6809cbf9 2611 remove_fake_exit_edges ();
02280659 2612 free_hash_table (&expr_hash_table);
7506f491 2613
5f39ad47
SB
2614 free_gcse_mem ();
2615 obstack_free (&gcse_obstack, NULL);
2616
2617 /* We are finished with alias. */
2618 end_alias_analysis ();
2619
10d22567 2620 if (dump_file)
7506f491 2621 {
5f39ad47 2622 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
2623 current_function_name (), n_basic_blocks_for_fn (cfun),
2624 bytes_used);
10d22567 2625 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2626 gcse_subst_count, gcse_create_count);
7506f491
DE
2627 }
2628
2629 return changed;
2630}
aeb2f500 2631\f
cf7c4aa6
HPN
2632/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2633 to INSN. If such notes are added to an insn which references a
2634 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2635 that note, because the following loop optimization pass requires
2636 them. */
aeb2f500 2637
aeb2f500
JW
2638/* ??? If there was a jump optimization pass after gcse and before loop,
2639 then we would not need to do this here, because jump would add the
cf7c4aa6 2640 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2641
2642static void
170065c9 2643add_label_notes (rtx x, rtx_insn *insn)
aeb2f500
JW
2644{
2645 enum rtx_code code = GET_CODE (x);
2646 int i, j;
6f7d635c 2647 const char *fmt;
aeb2f500
JW
2648
2649 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2650 {
6b3603c2 2651 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2652 avoid flow generating (slightly) worse code.
6b3603c2 2653
ac7c5af5
JL
2654 We no longer ignore such label references (see LABEL_REF handling in
2655 mark_jump_label for additional information). */
c4c81601 2656
cb2f563b
HPN
2657 /* There's no reason for current users to emit jump-insns with
2658 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2659 notes. */
2660 gcc_assert (!JUMP_P (insn));
04a121a7 2661 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
65c5f2a6 2662
04a121a7
TS
2663 if (LABEL_P (label_ref_label (x)))
2664 LABEL_NUSES (label_ref_label (x))++;
cb2f563b 2665
aeb2f500
JW
2666 return;
2667 }
2668
c4c81601 2669 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2670 {
2671 if (fmt[i] == 'e')
2672 add_label_notes (XEXP (x, i), insn);
2673 else if (fmt[i] == 'E')
2674 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2675 add_label_notes (XVECEXP (x, i, j), insn);
2676 }
2677}
a65f3558 2678
bb457bd9
JL
2679/* Code Hoisting variables and subroutines. */
2680
2681/* Very busy expressions. */
2682static sbitmap *hoist_vbein;
2683static sbitmap *hoist_vbeout;
2684
bb457bd9 2685/* ??? We could compute post dominators and run this algorithm in
68e82b83 2686 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2687 more effective than the tail merging code in jump.c.
2688
2689 It's unclear if tail merging could be run in parallel with
2690 code hoisting. It would be nice. */
2691
2692/* Allocate vars used for code hoisting analysis. */
2693
2694static void
1d088dee 2695alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2696{
2697 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2698 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2699 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2700
2701 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2702 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2703}
2704
2705/* Free vars used for code hoisting analysis. */
2706
2707static void
1d088dee 2708free_code_hoist_mem (void)
bb457bd9 2709{
5a660bff
DB
2710 sbitmap_vector_free (antloc);
2711 sbitmap_vector_free (transp);
2712 sbitmap_vector_free (comp);
bb457bd9 2713
5a660bff
DB
2714 sbitmap_vector_free (hoist_vbein);
2715 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2716
d47cc544 2717 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2718}
2719
2720/* Compute the very busy expressions at entry/exit from each block.
2721
2722 An expression is very busy if all paths from a given point
2723 compute the expression. */
2724
2725static void
1d088dee 2726compute_code_hoist_vbeinout (void)
bb457bd9 2727{
e0082a72
ZD
2728 int changed, passes;
2729 basic_block bb;
bb457bd9 2730
8b1c6fd7
DM
2731 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2732 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
bb457bd9
JL
2733
2734 passes = 0;
2735 changed = 1;
c4c81601 2736
bb457bd9
JL
2737 while (changed)
2738 {
2739 changed = 0;
c4c81601 2740
bb457bd9
JL
2741 /* We scan the blocks in the reverse order to speed up
2742 the convergence. */
4f42035e 2743 FOR_EACH_BB_REVERSE_FN (bb, cfun)
bb457bd9 2744 {
fefa31b5 2745 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
ce4c0015 2746 {
d7c028c0
LC
2747 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2748 hoist_vbein, bb);
ce4c0015
MK
2749
2750 /* Include expressions in VBEout that are calculated
2751 in BB and available at its end. */
f61e445a 2752 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2753 hoist_vbeout[bb->index], comp[bb->index]);
2754 }
f8423fea 2755
f61e445a 2756 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2757 antloc[bb->index],
2758 hoist_vbeout[bb->index],
2759 transp[bb->index]);
bb457bd9 2760 }
c4c81601 2761
bb457bd9
JL
2762 passes++;
2763 }
2764
10d22567 2765 if (dump_file)
cad9aa15
MK
2766 {
2767 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2768
11cd3bed 2769 FOR_EACH_BB_FN (bb, cfun)
cad9aa15
MK
2770 {
2771 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2772 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2773 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2774 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2775 }
2776 }
bb457bd9
JL
2777}
2778
2779/* Top level routine to do the dataflow analysis needed by code hoisting. */
2780
2781static void
1d088dee 2782compute_code_hoist_data (void)
bb457bd9 2783{
02280659 2784 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2785 prune_expressions (false);
bb457bd9 2786 compute_code_hoist_vbeinout ();
d47cc544 2787 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2788 if (dump_file)
2789 fprintf (dump_file, "\n");
bb457bd9
JL
2790}
2791
4b8181c5
BC
2792/* Update register pressure for BB when hoisting an expression from
2793 instruction FROM, if live ranges of inputs are shrunk. Also
2794 maintain live_in information if live range of register referred
2795 in FROM is shrunk.
2796
2797 Return 0 if register pressure doesn't change, otherwise return
2798 the number by which register pressure is decreased.
2799
2800 NOTE: Register pressure won't be increased in this function. */
2801
2802static int
cf92a178 2803update_bb_reg_pressure (basic_block bb, rtx_insn *from)
4b8181c5 2804{
cf92a178
DM
2805 rtx dreg;
2806 rtx_insn *insn;
4b8181c5 2807 basic_block succ_bb;
bfac633a 2808 df_ref use, op_ref;
4b8181c5
BC
2809 edge succ;
2810 edge_iterator ei;
2811 int decreased_pressure = 0;
2812 int nregs;
2813 enum reg_class pressure_class;
bfac633a
RS
2814
2815 FOR_EACH_INSN_USE (use, from)
4b8181c5 2816 {
bfac633a 2817 dreg = DF_REF_REAL_REG (use);
4b8181c5
BC
2818 /* The live range of register is shrunk only if it isn't:
2819 1. referred on any path from the end of this block to EXIT, or
2820 2. referred by insns other than FROM in this block. */
2821 FOR_EACH_EDGE (succ, ei, bb->succs)
2822 {
2823 succ_bb = succ->dest;
fefa31b5 2824 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4b8181c5
BC
2825 continue;
2826
2827 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2828 break;
2829 }
2830 if (succ != NULL)
2831 continue;
2832
2833 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2834 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2835 {
2836 if (!DF_REF_INSN_INFO (op_ref))
2837 continue;
2838
2839 insn = DF_REF_INSN (op_ref);
2840 if (BLOCK_FOR_INSN (insn) == bb
2841 && NONDEBUG_INSN_P (insn) && insn != from)
2842 break;
2843 }
2844
2845 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2846 /* Decrease register pressure and update live_in information for
2847 this block. */
2848 if (!op_ref && pressure_class != NO_REGS)
2849 {
2850 decreased_pressure += nregs;
2851 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2852 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2853 }
2854 }
2855 return decreased_pressure;
2856}
2857
b11f0116
BC
2858/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2859 flow graph, if it can reach BB unimpared. Stop the search if the
2860 expression would need to be moved more than DISTANCE instructions.
2861
2862 DISTANCE is the number of instructions through which EXPR can be
2863 hoisted up in flow graph.
2864
2865 BB_SIZE points to an array which contains the number of instructions
2866 for each basic block.
2867
2868 PRESSURE_CLASS and NREGS are register class and number of hard registers
2869 for storing EXPR.
2870
2871 HOISTED_BBS points to a bitmap indicating basic blocks through which
2872 EXPR is hoisted.
bb457bd9 2873
4b8181c5
BC
2874 FROM is the instruction from which EXPR is hoisted.
2875
bb457bd9
JL
2876 It's unclear exactly what Muchnick meant by "unimpared". It seems
2877 to me that the expression must either be computed or transparent in
2878 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2879 would allow the expression to be hoisted out of loops, even if
2880 the expression wasn't a loop invariant.
2881
2882 Contrast this to reachability for PRE where an expression is
2883 considered reachable if *any* path reaches instead of *all*
2884 paths. */
2885
2886static int
11478306 2887should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
ec7f796e
ML
2888 basic_block bb, sbitmap visited,
2889 HOST_WIDE_INT distance,
b11f0116 2890 int *bb_size, enum reg_class pressure_class,
cf92a178 2891 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
bb457bd9 2892{
b11f0116 2893 unsigned int i;
bb457bd9 2894 edge pred;
628f6a4e 2895 edge_iterator ei;
b11f0116 2896 sbitmap_iterator sbi;
283a2545 2897 int visited_allocated_locally = 0;
4b8181c5 2898 int decreased_pressure = 0;
589005ff 2899
4b8181c5
BC
2900 if (flag_ira_hoist_pressure)
2901 {
2902 /* Record old information of basic block BB when it is visited
2903 at the first time. */
2904 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2905 {
2906 struct bb_data *data = BB_DATA (bb);
2907 bitmap_copy (data->backup, data->live_in);
2908 data->old_pressure = data->max_reg_pressure[pressure_class];
2909 }
2910 decreased_pressure = update_bb_reg_pressure (bb, from);
2911 }
20160347
MK
2912 /* Terminate the search if distance, for which EXPR is allowed to move,
2913 is exhausted. */
2914 if (distance > 0)
2915 {
4b8181c5
BC
2916 if (flag_ira_hoist_pressure)
2917 {
2918 /* Prefer to hoist EXPR if register pressure is decreased. */
2919 if (decreased_pressure > *nregs)
2920 distance += bb_size[bb->index];
2921 /* Let EXPR be hoisted through basic block at no cost if one
2922 of following conditions is satisfied:
2923
2924 1. The basic block has low register pressure.
2925 2. Register pressure won't be increases after hoisting EXPR.
2926
2927 Constant expressions is handled conservatively, because
2928 hoisting constant expression aggressively results in worse
2929 code. This decision is made by the observation of CSiBE
2930 on ARM target, while it has no obvious effect on other
2931 targets like x86, x86_64, mips and powerpc. */
2932 else if (CONST_INT_P (expr->expr)
2933 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2934 >= ira_class_hard_regs_num[pressure_class]
2935 && decreased_pressure < *nregs))
2936 distance -= bb_size[bb->index];
2937 }
2938 else
b11f0116 2939 distance -= bb_size[bb->index];
20160347
MK
2940
2941 if (distance <= 0)
2942 return 0;
2943 }
2944 else
2945 gcc_assert (distance == 0);
bb457bd9
JL
2946
2947 if (visited == NULL)
2948 {
8e42ace1 2949 visited_allocated_locally = 1;
8b1c6fd7 2950 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 2951 bitmap_clear (visited);
bb457bd9
JL
2952 }
2953
628f6a4e 2954 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 2955 {
e2d2ed72 2956 basic_block pred_bb = pred->src;
bb457bd9 2957
fefa31b5 2958 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
bb457bd9 2959 break;
f305679f
JH
2960 else if (pred_bb == expr_bb)
2961 continue;
d7c028c0 2962 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 2963 continue;
d7c028c0 2964 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
2965 break;
2966 /* Not killed. */
2967 else
2968 {
d7c028c0 2969 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
2970 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2971 visited, distance, bb_size,
4b8181c5
BC
2972 pressure_class, nregs,
2973 hoisted_bbs, from))
bb457bd9
JL
2974 break;
2975 }
2976 }
589005ff 2977 if (visited_allocated_locally)
b11f0116
BC
2978 {
2979 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 2980 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
2981 if (flag_ira_hoist_pressure && !pred)
2982 {
4b8181c5
BC
2983 /* Record the basic block from which EXPR is hoisted. */
2984 bitmap_set_bit (visited, bb->index);
d4ac4ce2 2985 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 2986 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
2987 }
2988 sbitmap_free (visited);
2989 }
c4c81601 2990
bb457bd9
JL
2991 return (pred == NULL);
2992}
2993\f
073a8998 2994/* Find occurrence in BB. */
43c8a043 2995
11478306
JH
2996static struct gcse_occr *
2997find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
20160347
MK
2998{
2999 /* Find the right occurrence of this expression. */
3000 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3001 occr = occr->next;
3002
3003 return occr;
3004}
3005
b11f0116
BC
3006/* Actually perform code hoisting.
3007
3008 The code hoisting pass can hoist multiple computations of the same
3009 expression along dominated path to a dominating basic block, like
3010 from b2/b3 to b1 as depicted below:
3011
3012 b1 ------
3013 /\ |
3014 / \ |
3015 bx by distance
3016 / \ |
3017 / \ |
3018 b2 b3 ------
3019
3020 Unfortunately code hoisting generally extends the live range of an
3021 output pseudo register, which increases register pressure and hurts
3022 register allocation. To address this issue, an attribute MAX_DISTANCE
3023 is computed and attached to each expression. The attribute is computed
3024 from rtx cost of the corresponding expression and it's used to control
3025 how long the expression can be hoisted up in flow graph. As the
3026 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3027 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3028 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3029
3030 Option "-fira-hoist-pressure" implements register pressure directed
3031 hoist based on upper method. The rationale is:
3032 1. Calculate register pressure for each basic block by reusing IRA
3033 facility.
3034 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3035 the change of live ranges for inputs/output. The basic block's
3036 register pressure will be increased because of extended live
3037 range of output. However, register pressure will be decreased
3038 if the live ranges of inputs are shrunk.
3039 3. After knowing how hoisting affects register pressure, GCC prefers
3040 to hoist the expression if it can decrease register pressure, by
3041 increasing DISTANCE of the corresponding expression.
3042 4. If hoisting the expression increases register pressure, GCC checks
3043 register pressure of the basic block and decrease DISTANCE only if
3044 the register pressure is high. In other words, expression will be
3045 hoisted through at no cost if the basic block has low register
3046 pressure.
3047 5. Update register pressure information for basic blocks through
3048 which expression is hoisted. */
c4c81601 3049
5f39ad47 3050static int
1d088dee 3051hoist_code (void)
bb457bd9 3052{
e0082a72 3053 basic_block bb, dominated;
cad9aa15 3054 unsigned int dom_tree_walk_index;
b11f0116 3055 unsigned int i, j, k;
11478306
JH
3056 struct gcse_expr **index_map;
3057 struct gcse_expr *expr;
20160347
MK
3058 int *to_bb_head;
3059 int *bb_size;
5f39ad47 3060 int changed = 0;
b11f0116
BC
3061 struct bb_data *data;
3062 /* Basic blocks that have occurrences reachable from BB. */
3063 bitmap from_bbs;
3064 /* Basic blocks through which expr is hoisted. */
3065 bitmap hoisted_bbs = NULL;
3066 bitmap_iterator bi;
bb457bd9 3067
bb457bd9
JL
3068 /* Compute a mapping from expression number (`bitmap_index') to
3069 hash table entry. */
3070
11478306 3071 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 3072 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3073 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3074 index_map[expr->bitmap_index] = expr;
bb457bd9 3075
20160347
MK
3076 /* Calculate sizes of basic blocks and note how far
3077 each instruction is from the start of its block. We then use this
3078 data to restrict distance an expression can travel. */
3079
3080 to_bb_head = XCNEWVEC (int, get_max_uid ());
8b1c6fd7 3081 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
20160347 3082
11cd3bed 3083 FOR_EACH_BB_FN (bb, cfun)
20160347 3084 {
cf92a178 3085 rtx_insn *insn;
20160347
MK
3086 int to_head;
3087
20160347 3088 to_head = 0;
05b5ea34 3089 FOR_BB_INSNS (bb, insn)
20160347
MK
3090 {
3091 /* Don't count debug instructions to avoid them affecting
3092 decision choices. */
3093 if (NONDEBUG_INSN_P (insn))
3094 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3095 }
3096
3097 bb_size[bb->index] = to_head;
3098 }
3099
fefa31b5
DM
3100 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3101 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3102 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
cad9aa15 3103
b11f0116
BC
3104 from_bbs = BITMAP_ALLOC (NULL);
3105 if (flag_ira_hoist_pressure)
3106 hoisted_bbs = BITMAP_ALLOC (NULL);
3107
53c55d32
TS
3108 auto_vec<basic_block> dom_tree_walk
3109 = get_all_dominated_blocks (CDI_DOMINATORS,
3110 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
cad9aa15 3111
bb457bd9
JL
3112 /* Walk over each basic block looking for potentially hoistable
3113 expressions, nothing gets hoisted from the entry block. */
9771b263 3114 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3115 {
53c55d32
TS
3116 auto_vec<basic_block> domby
3117 = get_dominated_to_depth (CDI_DOMINATORS, bb, param_max_hoist_depth);
cad9aa15 3118
9771b263 3119 if (domby.length () == 0)
cad9aa15 3120 continue;
bb457bd9
JL
3121
3122 /* Examine each expression that is very busy at the exit of this
3123 block. These are the potentially hoistable expressions. */
5829cc0f 3124 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3125 {
d7c028c0 3126 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3127 {
b11f0116
BC
3128 int nregs = 0;
3129 enum reg_class pressure_class = NO_REGS;
cad9aa15 3130 /* Current expression. */
11478306 3131 struct gcse_expr *expr = index_map[i];
073a8998 3132 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3133 int hoistable = 0;
073a8998 3134 /* Occurrences reachable from BB. */
6e1aa848 3135 vec<occr_t> occrs_to_hoist = vNULL;
cad9aa15
MK
3136 /* We want to insert the expression into BB only once, so
3137 note when we've inserted it. */
3138 int insn_inserted_p;
3139 occr_t occr;
3140
ce4c0015 3141 /* If an expression is computed in BB and is available at end of
073a8998 3142 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3143 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3144 {
3145 occr = find_occr_in_bb (expr->antic_occr, bb);
3146
3147 if (occr)
3148 {
073a8998 3149 /* An occurrence might've been already deleted
cad9aa15 3150 while processing a dominator of BB. */
2d36b47f 3151 if (!occr->deleted_p)
cad9aa15
MK
3152 {
3153 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3154 hoistable++;
3155 }
3156 }
3157 else
3158 hoistable++;
3159 }
ce4c0015 3160
bb457bd9
JL
3161 /* We've found a potentially hoistable expression, now
3162 we look at every block BB dominates to see if it
3163 computes the expression. */
9771b263 3164 FOR_EACH_VEC_ELT (domby, j, dominated)
bb457bd9 3165 {
ec7f796e 3166 HOST_WIDE_INT max_distance;
20160347 3167
bb457bd9 3168 /* Ignore self dominance. */
c635a1ec 3169 if (bb == dominated)
bb457bd9 3170 continue;
bb457bd9
JL
3171 /* We've found a dominated block, now see if it computes
3172 the busy expression and whether or not moving that
3173 expression to the "beginning" of that block is safe. */
d7c028c0 3174 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3175 continue;
3176
cad9aa15
MK
3177 occr = find_occr_in_bb (expr->antic_occr, dominated);
3178 gcc_assert (occr);
20160347 3179
073a8998 3180 /* An occurrence might've been already deleted
cad9aa15
MK
3181 while processing a dominator of BB. */
3182 if (occr->deleted_p)
2d36b47f 3183 continue;
cad9aa15
MK
3184 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3185
3186 max_distance = expr->max_distance;
3187 if (max_distance > 0)
3188 /* Adjust MAX_DISTANCE to account for the fact that
3189 OCCR won't have to travel all of DOMINATED, but
3190 only part of it. */
3191 max_distance += (bb_size[dominated->index]
3192 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3193
b11f0116
BC
3194 pressure_class = get_pressure_class_and_nregs (occr->insn,
3195 &nregs);
3196
3197 /* Note if the expression should be hoisted from the dominated
3198 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3199
3200 Keep track of how many times this expression is hoistable
3201 from a dominated block into BB. */
b11f0116
BC
3202 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3203 max_distance, bb_size,
3204 pressure_class, &nregs,
4b8181c5 3205 hoisted_bbs, occr->insn))
cad9aa15
MK
3206 {
3207 hoistable++;
9771b263 3208 occrs_to_hoist.safe_push (occr);
cad9aa15
MK
3209 bitmap_set_bit (from_bbs, dominated->index);
3210 }
bb457bd9
JL
3211 }
3212
ff7cc307 3213 /* If we found more than one hoistable occurrence of this
cad9aa15 3214 expression, then note it in the vector of expressions to
bb457bd9
JL
3215 hoist. It makes no sense to hoist things which are computed
3216 in only one BB, and doing so tends to pessimize register
3217 allocation. One could increase this value to try harder
3218 to avoid any possible code expansion due to register
3219 allocation issues; however experiments have shown that
3220 the vast majority of hoistable expressions are only movable
e0bb17a8 3221 from two successors, so raising this threshold is likely
bb457bd9 3222 to nullify any benefit we get from code hoisting. */
62a3f636 3223 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3224 {
9771b263 3225 /* If (hoistable != vec::length), then there is
073a8998 3226 an occurrence of EXPR in BB itself. Don't waste
cad9aa15 3227 time looking for LCA in this case. */
9771b263 3228 if ((unsigned) hoistable == occrs_to_hoist.length ())
cad9aa15
MK
3229 {
3230 basic_block lca;
3231
3232 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3233 from_bbs);
3234 if (lca != bb)
073a8998 3235 /* Punt, it's better to hoist these occurrences to
cad9aa15 3236 LCA. */
9771b263 3237 occrs_to_hoist.release ();
cad9aa15 3238 }
bb457bd9 3239 }
cad9aa15 3240 else
688010ba 3241 /* Punt, no point hoisting a single occurrence. */
9771b263 3242 occrs_to_hoist.release ();
bb457bd9 3243
b11f0116 3244 if (flag_ira_hoist_pressure
9771b263 3245 && !occrs_to_hoist.is_empty ())
b11f0116 3246 {
4b8181c5
BC
3247 /* Increase register pressure of basic blocks to which
3248 expr is hoisted because of extended live range of
3249 output. */
b11f0116
BC
3250 data = BB_DATA (bb);
3251 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3252 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3253 {
06e28de2 3254 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3255 data->max_reg_pressure[pressure_class] += nregs;
3256 }
b11f0116
BC
3257 }
3258 else if (flag_ira_hoist_pressure)
3259 {
4b8181c5
BC
3260 /* Restore register pressure and live_in info for basic
3261 blocks recorded in hoisted_bbs when expr will not be
3262 hoisted. */
b11f0116
BC
3263 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3264 {
06e28de2 3265 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3266 bitmap_copy (data->live_in, data->backup);
3267 data->max_reg_pressure[pressure_class]
3268 = data->old_pressure;
b11f0116
BC
3269 }
3270 }
3271
3272 if (flag_ira_hoist_pressure)
3273 bitmap_clear (hoisted_bbs);
3274
cad9aa15 3275 insn_inserted_p = 0;
bb457bd9 3276
073a8998 3277 /* Walk through occurrences of I'th expressions we want
cad9aa15 3278 to hoist to BB and make the transformations. */
9771b263 3279 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
bb457bd9 3280 {
cf92a178 3281 rtx_insn *insn;
b6808818 3282 const_rtx set;
cad9aa15
MK
3283
3284 gcc_assert (!occr->deleted_p);
3285
3286 insn = occr->insn;
b6808818 3287 set = single_set_gcse (insn);
cad9aa15
MK
3288
3289 /* Create a pseudo-reg to store the result of reaching
3290 expressions into. Get the mode for the new pseudo
3291 from the mode of the original destination pseudo.
3292
3293 It is important to use new pseudos whenever we
3294 emit a set. This will allow reload to use
3295 rematerialization for such registers. */
3296 if (!insn_inserted_p)
3297 expr->reaching_reg
3298 = gen_reg_rtx_and_attrs (SET_DEST (set));
3299
43c8a043 3300 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3301 insn);
3302 delete_insn (insn);
3303 occr->deleted_p = 1;
3304 changed = 1;
3305 gcse_subst_count++;
3306
3307 if (!insn_inserted_p)
bb457bd9 3308 {
cad9aa15
MK
3309 insert_insn_end_basic_block (expr, bb);
3310 insn_inserted_p = 1;
bb457bd9
JL
3311 }
3312 }
cad9aa15 3313
9771b263 3314 occrs_to_hoist.release ();
cad9aa15 3315 bitmap_clear (from_bbs);
bb457bd9
JL
3316 }
3317 }
3318 }
c4c81601 3319
b11f0116
BC
3320 BITMAP_FREE (from_bbs);
3321 if (flag_ira_hoist_pressure)
3322 BITMAP_FREE (hoisted_bbs);
3323
20160347
MK
3324 free (bb_size);
3325 free (to_bb_head);
8e42ace1 3326 free (index_map);
5f39ad47
SB
3327
3328 return changed;
bb457bd9
JL
3329}
3330
b11f0116
BC
3331/* Return pressure class and number of needed hard registers (through
3332 *NREGS) of register REGNO. */
3333static enum reg_class
3334get_regno_pressure_class (int regno, int *nregs)
3335{
3336 if (regno >= FIRST_PSEUDO_REGISTER)
3337 {
3338 enum reg_class pressure_class;
3339
3340 pressure_class = reg_allocno_class (regno);
3341 pressure_class = ira_pressure_class_translate[pressure_class];
3342 *nregs
3343 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3344 return pressure_class;
3345 }
3346 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3347 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3348 {
3349 *nregs = 1;
3350 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3351 }
3352 else
3353 {
3354 *nregs = 0;
3355 return NO_REGS;
3356 }
3357}
3358
3359/* Return pressure class and number of hard registers (through *NREGS)
3360 for destination of INSN. */
3361static enum reg_class
cf92a178 3362get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
b11f0116
BC
3363{
3364 rtx reg;
3365 enum reg_class pressure_class;
b6808818 3366 const_rtx set = single_set_gcse (insn);
b11f0116 3367
b11f0116
BC
3368 reg = SET_DEST (set);
3369 if (GET_CODE (reg) == SUBREG)
3370 reg = SUBREG_REG (reg);
3371 if (MEM_P (reg))
3372 {
3373 *nregs = 0;
3374 pressure_class = NO_REGS;
3375 }
3376 else
3377 {
3378 gcc_assert (REG_P (reg));
3379 pressure_class = reg_allocno_class (REGNO (reg));
3380 pressure_class = ira_pressure_class_translate[pressure_class];
3381 *nregs
3382 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3383 }
3384 return pressure_class;
3385}
3386
3387/* Increase (if INCR_P) or decrease current register pressure for
3388 register REGNO. */
3389static void
3390change_pressure (int regno, bool incr_p)
3391{
3392 int nregs;
3393 enum reg_class pressure_class;
3394
3395 pressure_class = get_regno_pressure_class (regno, &nregs);
3396 if (! incr_p)
3397 curr_reg_pressure[pressure_class] -= nregs;
3398 else
3399 {
3400 curr_reg_pressure[pressure_class] += nregs;
3401 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3402 < curr_reg_pressure[pressure_class])
3403 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3404 = curr_reg_pressure[pressure_class];
3405 }
3406}
3407
3408/* Calculate register pressure for each basic block by walking insns
3409 from last to first. */
3410static void
3411calculate_bb_reg_pressure (void)
3412{
3413 int i;
3414 unsigned int j;
cf92a178 3415 rtx_insn *insn;
b11f0116
BC
3416 basic_block bb;
3417 bitmap curr_regs_live;
3418 bitmap_iterator bi;
3419
3420
8d49e7ef 3421 ira_setup_eliminable_regset ();
b11f0116 3422 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
11cd3bed 3423 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3424 {
3425 curr_bb = bb;
4b8181c5
BC
3426 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3427 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3428 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3429 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3430 for (i = 0; i < ira_pressure_classes_num; i++)
3431 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3432 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3433 change_pressure (j, true);
3434
3435 FOR_BB_INSNS_REVERSE (bb, insn)
3436 {
3437 rtx dreg;
3438 int regno;
bfac633a 3439 df_ref def, use;
b11f0116
BC
3440
3441 if (! NONDEBUG_INSN_P (insn))
3442 continue;
3443
bfac633a 3444 FOR_EACH_INSN_DEF (def, insn)
b11f0116 3445 {
bfac633a 3446 dreg = DF_REF_REAL_REG (def);
b11f0116
BC
3447 gcc_assert (REG_P (dreg));
3448 regno = REGNO (dreg);
bfac633a 3449 if (!(DF_REF_FLAGS (def)
b11f0116
BC
3450 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3451 {
3452 if (bitmap_clear_bit (curr_regs_live, regno))
3453 change_pressure (regno, false);
3454 }
3455 }
3456
bfac633a 3457 FOR_EACH_INSN_USE (use, insn)
b11f0116 3458 {
bfac633a 3459 dreg = DF_REF_REAL_REG (use);
b11f0116
BC
3460 gcc_assert (REG_P (dreg));
3461 regno = REGNO (dreg);
3462 if (bitmap_set_bit (curr_regs_live, regno))
3463 change_pressure (regno, true);
3464 }
3465 }
3466 }
3467 BITMAP_FREE (curr_regs_live);
3468
3469 if (dump_file == NULL)
3470 return;
3471
3472 fprintf (dump_file, "\nRegister Pressure: \n");
11cd3bed 3473 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3474 {
3475 fprintf (dump_file, " Basic block %d: \n", bb->index);
3476 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3477 {
3478 enum reg_class pressure_class;
3479
3480 pressure_class = ira_pressure_classes[i];
3481 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3482 continue;
3483
3484 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3485 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3486 }
3487 }
3488 fprintf (dump_file, "\n");
3489}
3490
bb457bd9
JL
3491/* Top level routine to perform one code hoisting (aka unification) pass
3492
cc2902df 3493 Return nonzero if a change was made. */
bb457bd9
JL
3494
3495static int
1d088dee 3496one_code_hoisting_pass (void)
bb457bd9
JL
3497{
3498 int changed = 0;
3499
5f39ad47
SB
3500 gcse_subst_count = 0;
3501 gcse_create_count = 0;
3502
3503 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 3504 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 3505 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
5f39ad47
SB
3506 return 0;
3507
20160347
MK
3508 doing_code_hoisting_p = true;
3509
b11f0116
BC
3510 /* Calculate register pressure for each basic block. */
3511 if (flag_ira_hoist_pressure)
3512 {
3513 regstat_init_n_sets_and_refs ();
3514 ira_set_pseudo_classes (false, dump_file);
3515 alloc_aux_for_blocks (sizeof (struct bb_data));
3516 calculate_bb_reg_pressure ();
3517 regstat_free_n_sets_and_refs ();
3518 }
3519
5f39ad47
SB
3520 /* We need alias. */
3521 init_alias_analysis ();
3522
3523 bytes_used = 0;
3524 gcc_obstack_init (&gcse_obstack);
3525 alloc_gcse_mem ();
3526
e45425ec 3527 alloc_hash_table (&expr_hash_table);
02280659 3528 compute_hash_table (&expr_hash_table);
10d22567
ZD
3529 if (dump_file)
3530 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3531
02280659 3532 if (expr_hash_table.n_elems > 0)
bb457bd9 3533 {
8b1c6fd7
DM
3534 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3535 expr_hash_table.n_elems);
bb457bd9 3536 compute_code_hoist_data ();
5f39ad47 3537 changed = hoist_code ();
bb457bd9
JL
3538 free_code_hoist_mem ();
3539 }
c4c81601 3540
b11f0116
BC
3541 if (flag_ira_hoist_pressure)
3542 {
3543 free_aux_for_blocks ();
3544 free_reg_info ();
3545 }
02280659 3546 free_hash_table (&expr_hash_table);
5f39ad47
SB
3547 free_gcse_mem ();
3548 obstack_free (&gcse_obstack, NULL);
3549
3550 /* We are finished with alias. */
3551 end_alias_analysis ();
3552
3553 if (dump_file)
3554 {
3555 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
3556 current_function_name (), n_basic_blocks_for_fn (cfun),
3557 bytes_used);
5f39ad47
SB
3558 fprintf (dump_file, "%d substs, %d insns created\n",
3559 gcse_subst_count, gcse_create_count);
3560 }
bb457bd9 3561
20160347
MK
3562 doing_code_hoisting_p = false;
3563
bb457bd9
JL
3564 return changed;
3565}
a13d4ebf 3566\f
43c8a043
EB
3567/* Here we provide the things required to do store motion towards the exit.
3568 In order for this to be effective, gcse also needed to be taught how to
3569 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3570
3571 int i;
3572 float a[10];
3573
3574 void foo(float scale)
3575 {
3576 for (i=0; i<10; i++)
3577 a[i] *= scale;
3578 }
3579
3580 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3581 the load out since its live around the loop, and stored at the bottom
3582 of the loop.
a13d4ebf 3583
589005ff 3584 The 'Load Motion' referred to and implemented in this file is
43c8a043 3585 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3586 this situation and allows gcse to move the load out of the loop.
3587
3588 Once gcse has hoisted the load, store motion can then push this
3589 load towards the exit, and we end up with no loads or stores of 'i'
3590 in the loop. */
3591
ff7cc307 3592/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3593 doesn't find one, we create one and initialize it. */
3594
3595static struct ls_expr *
1d088dee 3596ldst_entry (rtx x)
a13d4ebf 3597{
b58b21d5 3598 int do_not_record_p = 0;
a13d4ebf 3599 struct ls_expr * ptr;
b58b21d5 3600 unsigned int hash;
4a8fb1a1 3601 ls_expr **slot;
9727e468 3602 struct ls_expr e;
a13d4ebf 3603
0516f6fe
SB
3604 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3605 NULL, /*have_reg_qty=*/false);
a13d4ebf 3606
9727e468 3607 e.pattern = x;
c203e8a7 3608 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
9727e468 3609 if (*slot)
4a8fb1a1 3610 return *slot;
b58b21d5 3611
5ed6ace5 3612 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3613
3614 ptr->next = pre_ldst_mems;
3615 ptr->expr = NULL;
3616 ptr->pattern = x;
3617 ptr->pattern_regs = NULL_RTX;
0777c850 3618 ptr->stores.create (0);
b58b21d5
RS
3619 ptr->reaching_reg = NULL_RTX;
3620 ptr->invalid = 0;
3621 ptr->index = 0;
3622 ptr->hash_index = hash;
3623 pre_ldst_mems = ptr;
9727e468 3624 *slot = ptr;
589005ff 3625
a13d4ebf
AM
3626 return ptr;
3627}
3628
3629/* Free up an individual ldst entry. */
3630
589005ff 3631static void
1d088dee 3632free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3633{
0777c850 3634 ptr->stores.release ();
a13d4ebf
AM
3635
3636 free (ptr);
3637}
3638
3639/* Free up all memory associated with the ldst list. */
3640
3641static void
43c8a043 3642free_ld_motion_mems (void)
a13d4ebf 3643{
c203e8a7
TS
3644 delete pre_ldst_table;
3645 pre_ldst_table = NULL;
9727e468 3646
589005ff 3647 while (pre_ldst_mems)
a13d4ebf
AM
3648 {
3649 struct ls_expr * tmp = pre_ldst_mems;
3650
3651 pre_ldst_mems = pre_ldst_mems->next;
3652
3653 free_ldst_entry (tmp);
3654 }
3655
3656 pre_ldst_mems = NULL;
3657}
3658
3659/* Dump debugging info about the ldst list. */
3660
3661static void
1d088dee 3662print_ldst_list (FILE * file)
a13d4ebf
AM
3663{
3664 struct ls_expr * ptr;
3665
3666 fprintf (file, "LDST list: \n");
3667
43c8a043 3668 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3669 {
3670 fprintf (file, " Pattern (%3d): ", ptr->index);
3671
3672 print_rtl (file, ptr->pattern);
3673
a13d4ebf 3674 fprintf (file, "\n Stores : ");
0777c850 3675 print_rtx_insn_vec (file, ptr->stores);
a13d4ebf
AM
3676
3677 fprintf (file, "\n\n");
3678 }
3679
3680 fprintf (file, "\n");
3681}
3682
3683/* Returns 1 if X is in the list of ldst only expressions. */
3684
3685static struct ls_expr *
1d088dee 3686find_rtx_in_ldst (rtx x)
a13d4ebf 3687{
9727e468 3688 struct ls_expr e;
4a8fb1a1 3689 ls_expr **slot;
c203e8a7 3690 if (!pre_ldst_table)
6375779a 3691 return NULL;
9727e468 3692 e.pattern = x;
c203e8a7 3693 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
4a8fb1a1 3694 if (!slot || (*slot)->invalid)
9727e468 3695 return NULL;
4a8fb1a1 3696 return *slot;
a13d4ebf 3697}
a13d4ebf
AM
3698\f
3699/* Load Motion for loads which only kill themselves. */
3700
43c8a043
EB
3701/* Return true if x, a MEM, is a simple access with no side effects.
3702 These are the types of loads we consider for the ld_motion list,
3703 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3704
589005ff 3705static int
ed7a4b4b 3706simple_mem (const_rtx x)
a13d4ebf 3707{
a13d4ebf
AM
3708 if (MEM_VOLATILE_P (x))
3709 return 0;
589005ff 3710
a13d4ebf
AM
3711 if (GET_MODE (x) == BLKmode)
3712 return 0;
aaa4ca30 3713
47a3dae1 3714 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3715 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3716 continue. */
8f4f502f 3717 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3718 return 0;
3719
47a3dae1
ZD
3720 if (side_effects_p (x))
3721 return 0;
589005ff 3722
47a3dae1
ZD
3723 /* Do not consider function arguments passed on stack. */
3724 if (reg_mentioned_p (stack_pointer_rtx, x))
3725 return 0;
3726
3727 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3728 return 0;
3729
3730 return 1;
a13d4ebf
AM
3731}
3732
589005ff
KH
3733/* Make sure there isn't a buried reference in this pattern anywhere.
3734 If there is, invalidate the entry for it since we're not capable
3735 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3736 loads since the aliasing code will allow all entries in the
3737 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3738 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3739 fix it up. */
3740
3741static void
1d088dee 3742invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3743{
3744 const char * fmt;
8e42ace1 3745 int i, j;
a13d4ebf
AM
3746 struct ls_expr * ptr;
3747
3748 /* Invalidate it in the list. */
7b1b4aed 3749 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3750 {
3751 ptr = ldst_entry (x);
3752 ptr->invalid = 1;
3753 }
3754
3755 /* Recursively process the insn. */
3756 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3757
a13d4ebf
AM
3758 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3759 {
3760 if (fmt[i] == 'e')
3761 invalidate_any_buried_refs (XEXP (x, i));
3762 else if (fmt[i] == 'E')
3763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3764 invalidate_any_buried_refs (XVECEXP (x, i, j));
3765 }
3766}
3767
4d3eb89a
HPN
3768/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3769 being defined as MEM loads and stores to symbols, with no side effects
3770 and no registers in the expression. For a MEM destination, we also
3771 check that the insn is still valid if we replace the destination with a
3772 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3773 which don't match this criteria, they are invalidated and trimmed out
3774 later. */
a13d4ebf 3775
589005ff 3776static void
1d088dee 3777compute_ld_motion_mems (void)
a13d4ebf
AM
3778{
3779 struct ls_expr * ptr;
e0082a72 3780 basic_block bb;
cf92a178 3781 rtx_insn *insn;
589005ff 3782
a13d4ebf 3783 pre_ldst_mems = NULL;
c203e8a7 3784 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
a13d4ebf 3785
11cd3bed 3786 FOR_EACH_BB_FN (bb, cfun)
a13d4ebf 3787 {
eb232f4e 3788 FOR_BB_INSNS (bb, insn)
a13d4ebf 3789 {
b5b8b0ac 3790 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3791 {
3792 if (GET_CODE (PATTERN (insn)) == SET)
3793 {
3794 rtx src = SET_SRC (PATTERN (insn));
3795 rtx dest = SET_DEST (PATTERN (insn));
3796
0bca04b8 3797 /* Check for a simple load. */
7b1b4aed 3798 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3799 {
3800 ptr = ldst_entry (src);
5c576429 3801 if (!REG_P (dest))
a13d4ebf
AM
3802 ptr->invalid = 1;
3803 }
3804 else
3805 {
3806 /* Make sure there isn't a buried load somewhere. */
3807 invalidate_any_buried_refs (src);
3808 }
589005ff 3809
0bca04b8
EB
3810 /* Check for a simple load through a REG_EQUAL note. */
3811 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3812 if (note
3813 && REG_NOTE_KIND (note) == REG_EQUAL
3814 && (src_eq = XEXP (note, 0))
2df013f3
JB
3815 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3816 invalidate_any_buried_refs (src_eq);
3817
a13d4ebf
AM
3818 /* Check for stores. Don't worry about aliased ones, they
3819 will block any movement we might do later. We only care
3820 about this exact pattern since those are the only
3821 circumstance that we will ignore the aliasing info. */
7b1b4aed 3822 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3823 {
3824 ptr = ldst_entry (dest);
0683fd27 3825 machine_mode src_mode = GET_MODE (src);
7b1b4aed 3826 if (! MEM_P (src)
4d3eb89a
HPN
3827 && GET_CODE (src) != ASM_OPERANDS
3828 /* Check for REG manually since want_to_gcse_p
3829 returns 0 for all REGs. */
0683fd27
KT
3830 && can_assign_to_reg_without_clobbers_p (src,
3831 src_mode))
0777c850 3832 ptr->stores.safe_push (insn);
a13d4ebf
AM
3833 else
3834 ptr->invalid = 1;
3835 }
3836 }
3837 else
0bca04b8
EB
3838 {
3839 /* Invalidate all MEMs in the pattern and... */
3840 invalidate_any_buried_refs (PATTERN (insn));
3841
3842 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3843 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3844 if (note
3845 && REG_NOTE_KIND (note) == REG_EQUAL
3846 && (src_eq = XEXP (note, 0)))
3847 invalidate_any_buried_refs (src_eq);
3848 }
a13d4ebf
AM
3849 }
3850 }
3851 }
3852}
3853
589005ff 3854/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3855 expression list for pre gcse. */
3856
3857static void
1d088dee 3858trim_ld_motion_mems (void)
a13d4ebf 3859{
b58b21d5
RS
3860 struct ls_expr * * last = & pre_ldst_mems;
3861 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3862
3863 while (ptr != NULL)
3864 {
11478306 3865 struct gcse_expr * expr;
589005ff 3866
a13d4ebf 3867 /* Delete if entry has been made invalid. */
b58b21d5 3868 if (! ptr->invalid)
a13d4ebf 3869 {
a13d4ebf 3870 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3871 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3872
b58b21d5
RS
3873 for (expr = expr_hash_table.table[hash];
3874 expr != NULL;
3875 expr = expr->next_same_hash)
3876 if (expr_equiv_p (expr->expr, ptr->pattern))
3877 break;
a13d4ebf
AM
3878 }
3879 else
11478306 3880 expr = (struct gcse_expr *) 0;
b58b21d5
RS
3881
3882 if (expr)
a13d4ebf
AM
3883 {
3884 /* Set the expression field if we are keeping it. */
a13d4ebf 3885 ptr->expr = expr;
b58b21d5 3886 last = & ptr->next;
a13d4ebf
AM
3887 ptr = ptr->next;
3888 }
b58b21d5
RS
3889 else
3890 {
3891 *last = ptr->next;
c203e8a7 3892 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
b58b21d5
RS
3893 free_ldst_entry (ptr);
3894 ptr = * last;
3895 }
a13d4ebf
AM
3896 }
3897
3898 /* Show the world what we've found. */
10d22567
ZD
3899 if (dump_file && pre_ldst_mems != NULL)
3900 print_ldst_list (dump_file);
a13d4ebf
AM
3901}
3902
3903/* This routine will take an expression which we are replacing with
3904 a reaching register, and update any stores that are needed if
3905 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 3906 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
3907 the reaching register into the store location. These keeps the
3908 correct value in the reaching register for the loads. */
3909
3910static void
11478306 3911update_ld_motion_stores (struct gcse_expr * expr)
a13d4ebf
AM
3912{
3913 struct ls_expr * mem_ptr;
3914
3915 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3916 {
589005ff
KH
3917 /* We can try to find just the REACHED stores, but is shouldn't
3918 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
3919 dead and should be eliminated later. */
3920
4d3eb89a
HPN
3921 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3922 where reg is the reaching reg used in the load. We checked in
3923 compute_ld_motion_mems that we can replace (set mem expr) with
3924 (set reg expr) in that insn. */
0777c850
TS
3925 rtx_insn *insn;
3926 unsigned int i;
3927 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
a13d4ebf 3928 {
a13d4ebf
AM
3929 rtx pat = PATTERN (insn);
3930 rtx src = SET_SRC (pat);
3931 rtx reg = expr->reaching_reg;
a13d4ebf
AM
3932
3933 /* If we've already copied it, continue. */
3934 if (expr->reaching_reg == src)
3935 continue;
589005ff 3936
10d22567 3937 if (dump_file)
a13d4ebf 3938 {
10d22567 3939 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 3940 print_rtl (dump_file, reg);
10d22567
ZD
3941 fprintf (dump_file, ":\n ");
3942 print_inline_rtx (dump_file, insn, 8);
3943 fprintf (dump_file, "\n");
a13d4ebf 3944 }
589005ff 3945
e67d1102 3946 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 3947 emit_insn_before (copy, insn);
a13d4ebf 3948 SET_SRC (pat) = reg;
6fb5fa3c 3949 df_insn_rescan (insn);
a13d4ebf
AM
3950
3951 /* un-recognize this pattern since it's probably different now. */
3952 INSN_CODE (insn) = -1;
3953 gcse_create_count++;
3954 }
3955 }
3956}
3957\f
df35c271
SB
3958/* Return true if the graph is too expensive to optimize. PASS is the
3959 optimization about to be performed. */
47a3dae1 3960
87d8dd6c
BL
3961bool
3962gcse_or_cprop_is_too_expensive (const char *pass)
df35c271 3963{
cb52e59e
RB
3964 unsigned HOST_WIDE_INT memory_request
3965 = ((unsigned HOST_WIDE_INT)n_basic_blocks_for_fn (cfun)
3966 * SBITMAP_SET_SIZE (max_reg_num ()) * sizeof (SBITMAP_ELT_TYPE));
87d8dd6c 3967
df35c271
SB
3968 /* Trying to perform global optimizations on flow graphs which have
3969 a high connectivity will take a long time and is unlikely to be
3970 particularly useful.
aaa4ca30 3971
df35c271
SB
3972 In normal circumstances a cfg should have about twice as many
3973 edges as blocks. But we do not want to punish small functions
3974 which have a couple switch statements. Rather than simply
3975 threshold the number of blocks, uses something with a more
3976 graceful degradation. */
dc936fb2 3977 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
df35c271
SB
3978 {
3979 warning (OPT_Wdisabled_optimization,
3980 "%s: %d basic blocks and %d edges/basic block",
0cae8d31 3981 pass, n_basic_blocks_for_fn (cfun),
dc936fb2 3982 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
a13d4ebf 3983
df35c271
SB
3984 return true;
3985 }
a13d4ebf 3986
e45425ec 3987 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271 3988 storage it's better just to disable the optimization. */
0833e3e1 3989 if (memory_request / 1024 > (unsigned HOST_WIDE_INT)param_max_gcse_memory)
df35c271
SB
3990 {
3991 warning (OPT_Wdisabled_optimization,
a9c697b8 3992 "%s: %d basic blocks and %d registers; "
652623f7 3993 "increase %<--param max-gcse-memory%> above %wu",
87d8dd6c 3994 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
0833e3e1 3995 memory_request / 1024);
a13d4ebf 3996
df35c271
SB
3997 return true;
3998 }
adfcce61 3999
df35c271 4000 return false;
01c43039 4001}
df35c271 4002\f
df35c271
SB
4003static unsigned int
4004execute_rtl_pre (void)
4005{
f2b01cfb 4006 int changed;
df35c271 4007 delete_unreachable_blocks ();
df35c271 4008 df_analyze ();
f2b01cfb
RG
4009 changed = one_pre_gcse_pass ();
4010 flag_rerun_cse_after_global_opts |= changed;
4011 if (changed)
4012 cleanup_cfg (0);
df35c271
SB
4013 return 0;
4014}
aaa4ca30 4015
df35c271
SB
4016static unsigned int
4017execute_rtl_hoist (void)
4018{
f2b01cfb 4019 int changed;
df35c271 4020 delete_unreachable_blocks ();
df35c271 4021 df_analyze ();
f2b01cfb
RG
4022 changed = one_code_hoisting_pass ();
4023 flag_rerun_cse_after_global_opts |= changed;
4024 if (changed)
4025 cleanup_cfg (0);
df35c271
SB
4026 return 0;
4027}
ef330312 4028
27a4cd48
DM
4029namespace {
4030
4031const pass_data pass_data_rtl_pre =
ef330312 4032{
27a4cd48
DM
4033 RTL_PASS, /* type */
4034 "rtl pre", /* name */
4035 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4036 TV_PRE, /* tv_id */
4037 PROP_cfglayout, /* properties_required */
4038 0, /* properties_provided */
4039 0, /* properties_destroyed */
4040 0, /* todo_flags_start */
3bea341f 4041 TODO_df_finish, /* todo_flags_finish */
5f39ad47 4042};
ef330312 4043
27a4cd48
DM
4044class pass_rtl_pre : public rtl_opt_pass
4045{
4046public:
c3284718
RS
4047 pass_rtl_pre (gcc::context *ctxt)
4048 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
27a4cd48
DM
4049 {}
4050
4051 /* opt_pass methods: */
1a3d085c 4052 virtual bool gate (function *);
be55bfe6 4053 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
27a4cd48
DM
4054
4055}; // class pass_rtl_pre
4056
1a3d085c
TS
4057/* We do not construct an accurate cfg in functions which call
4058 setjmp, so none of these passes runs if the function calls
4059 setjmp.
4060 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4061
4062bool
4063pass_rtl_pre::gate (function *fun)
4064{
4065 return optimize > 0 && flag_gcse
4066 && !fun->calls_setjmp
4067 && optimize_function_for_speed_p (fun)
4068 && dbg_cnt (pre);
4069}
4070
27a4cd48
DM
4071} // anon namespace
4072
4073rtl_opt_pass *
4074make_pass_rtl_pre (gcc::context *ctxt)
4075{
4076 return new pass_rtl_pre (ctxt);
4077}
4078
4079namespace {
4080
4081const pass_data pass_data_rtl_hoist =
ef330312 4082{
27a4cd48
DM
4083 RTL_PASS, /* type */
4084 "hoist", /* name */
4085 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4086 TV_HOIST, /* tv_id */
4087 PROP_cfglayout, /* properties_required */
4088 0, /* properties_provided */
4089 0, /* properties_destroyed */
4090 0, /* todo_flags_start */
3bea341f 4091 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
4092};
4093
27a4cd48
DM
4094class pass_rtl_hoist : public rtl_opt_pass
4095{
4096public:
c3284718
RS
4097 pass_rtl_hoist (gcc::context *ctxt)
4098 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
27a4cd48
DM
4099 {}
4100
4101 /* opt_pass methods: */
1a3d085c 4102 virtual bool gate (function *);
be55bfe6 4103 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
27a4cd48
DM
4104
4105}; // class pass_rtl_hoist
4106
1a3d085c
TS
4107bool
4108pass_rtl_hoist::gate (function *)
4109{
4110 return optimize > 0 && flag_gcse
4111 && !cfun->calls_setjmp
4112 /* It does not make sense to run code hoisting unless we are optimizing
4113 for code size -- it rarely makes programs faster, and can make then
4114 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4115 && optimize_function_for_size_p (cfun)
4116 && dbg_cnt (hoist);
4117}
4118
27a4cd48
DM
4119} // anon namespace
4120
4121rtl_opt_pass *
4122make_pass_rtl_hoist (gcc::context *ctxt)
4123{
4124 return new pass_rtl_hoist (ctxt);
4125}
4126
3edf64aa
DM
4127/* Reset all state within gcse.c so that we can rerun the compiler
4128 within the same process. For use by toplev::finalize. */
4129
4130void
4131gcse_c_finalize (void)
4132{
4133 test_insn = NULL;
4134}
4135
e2500fed 4136#include "gt-gcse.h"