]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
8d9254fc 2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
e9eb809d
ZD
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
e9eb809d 20
b8698a0f
L
21/*
22 Description:
23
9baba81b
SP
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
b8698a0f 44
9baba81b 45 A short sketch of the algorithm is:
b8698a0f 46
9baba81b
SP
47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
b8698a0f 49
726a989a 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
9baba81b 51 (RHS) of the definition cannot be statically analyzed, the answer
b8698a0f 52 of the analyzer is: "don't know".
9baba81b
SP
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
b8698a0f 74
9baba81b 75 Example 1: Illustration of the basic algorithm.
b8698a0f 76
9baba81b
SP
77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
b8698a0f 83
9baba81b
SP
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
3f227a8c 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
9baba81b
SP
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
b8698a0f 114
9baba81b
SP
115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
b8698a0f
L
118
119 or in terms of a C program:
120
9baba81b
SP
121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
b8698a0f 127
3f227a8c 128 Example 2a: Illustration of the algorithm on nested loops.
b8698a0f 129
9baba81b
SP
130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
b8698a0f 138
9baba81b
SP
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
b8698a0f
L
141 loop-phi-node, and its analysis as in Example 1, gives:
142
9baba81b
SP
143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
b8698a0f 145
9baba81b
SP
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
b8698a0f
L
152 equal to "+32", and the result is:
153
9baba81b
SP
154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
3f227a8c
JS
156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
a213b219
SP
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
3f227a8c 179
9baba81b 180 Example 3: Higher degree polynomials.
b8698a0f 181
9baba81b
SP
182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
b8698a0f 188
9baba81b
SP
189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
b8698a0f 193
3f227a8c
JS
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
b8698a0f 196
9baba81b 197 Example 4: Lucas, Fibonacci, or mixers in general.
b8698a0f 198
9baba81b
SP
199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
b8698a0f 205
9baba81b
SP
206 a -> (1, c)_1
207 c -> {3, +, a}_1
b8698a0f 208
9baba81b
SP
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
b8698a0f 214
9baba81b
SP
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
b8698a0f 217
9baba81b 218 Example 5: Flip-flops, or exchangers.
b8698a0f 219
9baba81b
SP
220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
b8698a0f 226
9baba81b
SP
227 a -> (1, c)_1
228 c -> (3, a)_1
b8698a0f 229
9baba81b 230 Based on these symbolic chrecs, it is possible to refine this
b8698a0f
L
231 information into the more precise PERIODIC_CHRECs:
232
9baba81b
SP
233 a -> |1, 3|_1
234 c -> |3, 1|_1
b8698a0f 235
9baba81b 236 This transformation is not yet implemented.
b8698a0f 237
9baba81b 238 Further readings:
b8698a0f 239
9baba81b
SP
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
b8698a0f 247
9baba81b
SP
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
e9eb809d
ZD
256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
c7131fb2 259#include "backend.h"
06a6b46a 260#include "target.h"
957060b5 261#include "rtl.h"
06a6b46a 262#include "optabs-query.h"
cf2d1b38 263#include "tree.h"
c7131fb2 264#include "gimple.h"
c7131fb2 265#include "ssa.h"
957060b5 266#include "gimple-pretty-print.h"
c7131fb2 267#include "fold-const.h"
45b0be94 268#include "gimplify.h"
5be5c238 269#include "gimple-iterator.h"
18f429e2 270#include "gimplify-me.h"
442b4905 271#include "tree-cfg.h"
e28030cf
AM
272#include "tree-ssa-loop-ivopts.h"
273#include "tree-ssa-loop-manip.h"
274#include "tree-ssa-loop-niter.h"
442b4905 275#include "tree-ssa-loop.h"
7a300452 276#include "tree-ssa.h"
e9eb809d
ZD
277#include "cfgloop.h"
278#include "tree-chrec.h"
b83b5507 279#include "tree-affine.h"
e9eb809d 280#include "tree-scalar-evolution.h"
7ee2468b 281#include "dumpfile.h"
744730a4 282#include "tree-ssa-propagate.h"
19e51b40 283#include "gimple-fold.h"
24545562 284#include "tree-into-ssa.h"
5126ae0c 285#include "builtins.h"
06a6b46a 286#include "case-cfn-macros.h"
9baba81b 287
99b1c316
MS
288static tree analyze_scalar_evolution_1 (class loop *, tree);
289static tree analyze_scalar_evolution_for_address_of (class loop *loop,
bef28ced 290 tree var);
9baba81b 291
a3cc13cc
RB
292/* The cached information about an SSA name with version NAME_VERSION,
293 claiming that below basic block with index INSTANTIATED_BELOW, the
294 value of the SSA name can be expressed as CHREC. */
9baba81b 295
907dadbd 296struct GTY((for_user)) scev_info_str {
a3cc13cc
RB
297 unsigned int name_version;
298 int instantiated_below;
9baba81b
SP
299 tree chrec;
300};
301
302/* Counters for the scev database. */
303static unsigned nb_set_scev = 0;
304static unsigned nb_get_scev = 0;
305
ca752f39 306struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
907dadbd
TS
307{
308 static hashval_t hash (scev_info_str *i);
309 static bool equal (const scev_info_str *a, const scev_info_str *b);
310};
311
312static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
9baba81b
SP
313
314\f
a213b219 315/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
9baba81b
SP
316
317static inline struct scev_info_str *
a213b219 318new_scev_info_str (basic_block instantiated_below, tree var)
9baba81b
SP
319{
320 struct scev_info_str *res;
b8698a0f 321
766090c2 322 res = ggc_alloc<scev_info_str> ();
a3cc13cc 323 res->name_version = SSA_NAME_VERSION (var);
9baba81b 324 res->chrec = chrec_not_analyzed_yet;
a3cc13cc 325 res->instantiated_below = instantiated_below->index;
a213b219 326
9baba81b
SP
327 return res;
328}
329
330/* Computes a hash function for database element ELT. */
331
907dadbd
TS
332hashval_t
333scev_info_hasher::hash (scev_info_str *elt)
9baba81b 334{
a3cc13cc 335 return elt->name_version ^ elt->instantiated_below;
9baba81b
SP
336}
337
338/* Compares database elements E1 and E2. */
339
907dadbd
TS
340bool
341scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
9baba81b 342{
a3cc13cc 343 return (elt1->name_version == elt2->name_version
a213b219 344 && elt1->instantiated_below == elt2->instantiated_below);
9baba81b
SP
345}
346
a213b219
SP
347/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
348 A first query on VAR returns chrec_not_analyzed_yet. */
9baba81b
SP
349
350static tree *
a213b219 351find_var_scev_info (basic_block instantiated_below, tree var)
9baba81b
SP
352{
353 struct scev_info_str *res;
354 struct scev_info_str tmp;
9baba81b 355
a3cc13cc
RB
356 tmp.name_version = SSA_NAME_VERSION (var);
357 tmp.instantiated_below = instantiated_below->index;
907dadbd 358 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
9baba81b
SP
359
360 if (!*slot)
a213b219 361 *slot = new_scev_info_str (instantiated_below, var);
907dadbd 362 res = *slot;
9baba81b
SP
363
364 return &res->chrec;
365}
366
577d6588
RB
367
368/* Hashtable helpers for a temporary hash-table used when
369 analyzing a scalar evolution, instantiating a CHREC or
370 resolving mixers. */
371
6c1dae73 372class instantiate_cache_type
577d6588 373{
6c1dae73 374public:
577d6588
RB
375 htab_t map;
376 vec<scev_info_str> entries;
377
378 instantiate_cache_type () : map (NULL), entries (vNULL) {}
379 ~instantiate_cache_type ();
380 tree get (unsigned slot) { return entries[slot].chrec; }
381 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
382};
383
384instantiate_cache_type::~instantiate_cache_type ()
385{
386 if (map != NULL)
387 {
388 htab_delete (map);
389 entries.release ();
390 }
391}
392
393/* Cache to avoid infinite recursion when instantiating an SSA name.
394 Live during the outermost analyze_scalar_evolution, instantiate_scev
395 or resolve_mixers call. */
396static instantiate_cache_type *global_cache;
397
398
9baba81b
SP
399/* Return true when PHI is a loop-phi-node. */
400
401static bool
355fe088 402loop_phi_node_p (gimple *phi)
9baba81b
SP
403{
404 /* The implementation of this function is based on the following
405 property: "all the loop-phi-nodes of a loop are contained in the
406 loop's header basic block". */
407
726a989a 408 return loop_containing_stmt (phi)->header == gimple_bb (phi);
9baba81b
SP
409}
410
411/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
412 In general, in the case of multivariate evolutions we want to get
413 the evolution in different loops. LOOP specifies the level for
414 which to get the evolution.
b8698a0f 415
9baba81b 416 Example:
b8698a0f 417
9baba81b
SP
418 | for (j = 0; j < 100; j++)
419 | {
420 | for (k = 0; k < 100; k++)
421 | {
b8698a0f 422 | i = k + j; - Here the value of i is a function of j, k.
9baba81b 423 | }
b8698a0f 424 | ... = i - Here the value of i is a function of j.
9baba81b 425 | }
b8698a0f
L
426 | ... = i - Here the value of i is a scalar.
427
428 Example:
429
9baba81b
SP
430 | i_0 = ...
431 | loop_1 10 times
432 | i_1 = phi (i_0, i_2)
433 | i_2 = i_1 + 2
434 | endloop
b8698a0f 435
9baba81b
SP
436 This loop has the same effect as:
437 LOOP_1 has the same effect as:
b8698a0f 438
9baba81b 439 | i_1 = i_0 + 20
b8698a0f
L
440
441 The overall effect of the loop, "i_0 + 20" in the previous example,
442 is obtained by passing in the parameters: LOOP = 1,
9baba81b
SP
443 EVOLUTION_FN = {i_0, +, 2}_1.
444*/
b8698a0f 445
42e6eec5 446tree
99b1c316 447compute_overall_effect_of_inner_loop (class loop *loop, tree evolution_fn)
9baba81b
SP
448{
449 bool val = false;
450
451 if (evolution_fn == chrec_dont_know)
452 return chrec_dont_know;
453
454 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
455 {
99b1c316 456 class loop *inner_loop = get_chrec_loop (evolution_fn);
677cc14d
ZD
457
458 if (inner_loop == loop
459 || flow_loop_nested_p (loop, inner_loop))
9baba81b 460 {
a14865db 461 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
462
463 if (nb_iter == chrec_dont_know)
464 return chrec_dont_know;
465 else
466 {
467 tree res;
468
9baba81b
SP
469 /* evolution_fn is the evolution function in LOOP. Get
470 its value in the nb_iter-th iteration. */
471 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
42e6eec5
SP
472
473 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
474 res = instantiate_parameters (loop, res);
475
8c27b7d4 476 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
477 return compute_overall_effect_of_inner_loop (loop, res);
478 }
479 }
480 else
481 return evolution_fn;
482 }
b8698a0f 483
9baba81b
SP
484 /* If the evolution function is an invariant, there is nothing to do. */
485 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
486 return evolution_fn;
b8698a0f 487
9baba81b
SP
488 else
489 return chrec_dont_know;
490}
491
9baba81b
SP
492/* Associate CHREC to SCALAR. */
493
494static void
a213b219 495set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
9baba81b
SP
496{
497 tree *scalar_info;
b8698a0f 498
9baba81b
SP
499 if (TREE_CODE (scalar) != SSA_NAME)
500 return;
501
a213b219 502 scalar_info = find_var_scev_info (instantiated_below, scalar);
b8698a0f 503
9baba81b
SP
504 if (dump_file)
505 {
dfedbe40 506 if (dump_flags & TDF_SCEV)
9baba81b
SP
507 {
508 fprintf (dump_file, "(set_scalar_evolution \n");
a213b219
SP
509 fprintf (dump_file, " instantiated_below = %d \n",
510 instantiated_below->index);
9baba81b 511 fprintf (dump_file, " (scalar = ");
ef6cb4c7 512 print_generic_expr (dump_file, scalar);
9baba81b 513 fprintf (dump_file, ")\n (scalar_evolution = ");
ef6cb4c7 514 print_generic_expr (dump_file, chrec);
9baba81b
SP
515 fprintf (dump_file, "))\n");
516 }
517 if (dump_flags & TDF_STATS)
518 nb_set_scev++;
519 }
b8698a0f 520
9baba81b
SP
521 *scalar_info = chrec;
522}
523
a213b219
SP
524/* Retrieve the chrec associated to SCALAR instantiated below
525 INSTANTIATED_BELOW block. */
9baba81b
SP
526
527static tree
a213b219 528get_scalar_evolution (basic_block instantiated_below, tree scalar)
9baba81b
SP
529{
530 tree res;
b8698a0f 531
9baba81b
SP
532 if (dump_file)
533 {
dfedbe40 534 if (dump_flags & TDF_SCEV)
9baba81b
SP
535 {
536 fprintf (dump_file, "(get_scalar_evolution \n");
537 fprintf (dump_file, " (scalar = ");
ef6cb4c7 538 print_generic_expr (dump_file, scalar);
9baba81b
SP
539 fprintf (dump_file, ")\n");
540 }
541 if (dump_flags & TDF_STATS)
542 nb_get_scev++;
543 }
b8698a0f 544
5355943c
RB
545 if (VECTOR_TYPE_P (TREE_TYPE (scalar))
546 || TREE_CODE (TREE_TYPE (scalar)) == COMPLEX_TYPE)
547 /* For chrec_dont_know we keep the symbolic form. */
548 res = scalar;
549 else
550 switch (TREE_CODE (scalar))
551 {
552 case SSA_NAME:
553 if (SSA_NAME_IS_DEFAULT_DEF (scalar))
554 res = scalar;
555 else
556 res = *find_var_scev_info (instantiated_below, scalar);
557 break;
9baba81b 558
5355943c
RB
559 case REAL_CST:
560 case FIXED_CST:
561 case INTEGER_CST:
562 res = scalar;
563 break;
9baba81b 564
5355943c
RB
565 default:
566 res = chrec_not_analyzed_yet;
567 break;
568 }
b8698a0f 569
dfedbe40 570 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
571 {
572 fprintf (dump_file, " (scalar_evolution = ");
ef6cb4c7 573 print_generic_expr (dump_file, res);
9baba81b
SP
574 fprintf (dump_file, "))\n");
575 }
b8698a0f 576
9baba81b
SP
577 return res;
578}
579
580/* Helper function for add_to_evolution. Returns the evolution
581 function for an assignment of the form "a = b + c", where "a" and
582 "b" are on the strongly connected component. CHREC_BEFORE is the
583 information that we already have collected up to this point.
b8698a0f
L
584 TO_ADD is the evolution of "c".
585
9baba81b
SP
586 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
587 evolution the expression TO_ADD, otherwise construct an evolution
588 part for this loop. */
589
590static tree
e2157b49 591add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
355fe088 592 gimple *at_stmt)
9baba81b 593{
e2157b49 594 tree type, left, right;
99b1c316 595 class loop *loop = get_loop (cfun, loop_nb), *chloop;
e2157b49 596
9baba81b
SP
597 switch (TREE_CODE (chrec_before))
598 {
599 case POLYNOMIAL_CHREC:
677cc14d
ZD
600 chloop = get_chrec_loop (chrec_before);
601 if (chloop == loop
602 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
603 {
604 unsigned var;
e2157b49
SP
605
606 type = chrec_type (chrec_before);
b8698a0f 607
9baba81b 608 /* When there is no evolution part in this loop, build it. */
677cc14d 609 if (chloop != loop)
9baba81b
SP
610 {
611 var = loop_nb;
612 left = chrec_before;
7e0923cd
SP
613 right = SCALAR_FLOAT_TYPE_P (type)
614 ? build_real (type, dconst0)
615 : build_int_cst (type, 0);
9baba81b
SP
616 }
617 else
618 {
619 var = CHREC_VARIABLE (chrec_before);
620 left = CHREC_LEFT (chrec_before);
621 right = CHREC_RIGHT (chrec_before);
622 }
623
e2157b49 624 to_add = chrec_convert (type, to_add, at_stmt);
5be014d5
AP
625 right = chrec_convert_rhs (type, right, at_stmt);
626 right = chrec_fold_plus (chrec_type (right), right, to_add);
e2157b49 627 return build_polynomial_chrec (var, left, right);
9baba81b
SP
628 }
629 else
e2157b49 630 {
677cc14d
ZD
631 gcc_assert (flow_loop_nested_p (loop, chloop));
632
e2157b49
SP
633 /* Search the evolution in LOOP_NB. */
634 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
635 to_add, at_stmt);
636 right = CHREC_RIGHT (chrec_before);
5be014d5 637 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
e2157b49
SP
638 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
639 left, right);
640 }
b8698a0f 641
9baba81b
SP
642 default:
643 /* These nodes do not depend on a loop. */
644 if (chrec_before == chrec_dont_know)
645 return chrec_dont_know;
e2157b49
SP
646
647 left = chrec_before;
5be014d5 648 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
e2157b49 649 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
650 }
651}
652
653/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
b8698a0f
L
654 of LOOP_NB.
655
9baba81b
SP
656 Description (provided for completeness, for those who read code in
657 a plane, and for my poor 62 bytes brain that would have forgotten
658 all this in the next two or three months):
b8698a0f 659
9baba81b
SP
660 The algorithm of translation of programs from the SSA representation
661 into the chrecs syntax is based on a pattern matching. After having
662 reconstructed the overall tree expression for a loop, there are only
663 two cases that can arise:
b8698a0f 664
9baba81b
SP
665 1. a = loop-phi (init, a + expr)
666 2. a = loop-phi (init, expr)
b8698a0f 667
9baba81b
SP
668 where EXPR is either a scalar constant with respect to the analyzed
669 loop (this is a degree 0 polynomial), or an expression containing
670 other loop-phi definitions (these are higher degree polynomials).
b8698a0f 671
9baba81b 672 Examples:
b8698a0f
L
673
674 1.
9baba81b
SP
675 | init = ...
676 | loop_1
677 | a = phi (init, a + 5)
678 | endloop
b8698a0f
L
679
680 2.
9baba81b
SP
681 | inita = ...
682 | initb = ...
683 | loop_1
684 | a = phi (inita, 2 * b + 3)
685 | b = phi (initb, b + 1)
686 | endloop
b8698a0f
L
687
688 For the first case, the semantics of the SSA representation is:
689
9baba81b 690 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 691
9baba81b
SP
692 that is, there is a loop index "x" that determines the scalar value
693 of the variable during the loop execution. During the first
694 iteration, the value is that of the initial condition INIT, while
695 during the subsequent iterations, it is the sum of the initial
696 condition with the sum of all the values of EXPR from the initial
b8698a0f
L
697 iteration to the before last considered iteration.
698
9baba81b 699 For the second case, the semantics of the SSA program is:
b8698a0f 700
9baba81b
SP
701 | a (x) = init, if x = 0;
702 | expr (x - 1), otherwise.
b8698a0f 703
9baba81b 704 The second case corresponds to the PEELED_CHREC, whose syntax is
b8698a0f
L
705 close to the syntax of a loop-phi-node:
706
9baba81b 707 | phi (init, expr) vs. (init, expr)_x
b8698a0f 708
9baba81b 709 The proof of the translation algorithm for the first case is a
b8698a0f
L
710 proof by structural induction based on the degree of EXPR.
711
9baba81b
SP
712 Degree 0:
713 When EXPR is a constant with respect to the analyzed loop, or in
714 other words when EXPR is a polynomial of degree 0, the evolution of
715 the variable A in the loop is an affine function with an initial
716 condition INIT, and a step EXPR. In order to show this, we start
717 from the semantics of the SSA representation:
b8698a0f 718
9baba81b 719 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 720
9baba81b 721 and since "expr (j)" is a constant with respect to "j",
b8698a0f
L
722
723 f (x) = init + x * expr
724
9baba81b
SP
725 Finally, based on the semantics of the pure sum chrecs, by
726 identification we get the corresponding chrecs syntax:
b8698a0f
L
727
728 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
9baba81b 729 f (x) -> {init, +, expr}_x
b8698a0f 730
9baba81b
SP
731 Higher degree:
732 Suppose that EXPR is a polynomial of degree N with respect to the
733 analyzed loop_x for which we have already determined that it is
734 written under the chrecs syntax:
b8698a0f 735
9baba81b 736 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
b8698a0f 737
9baba81b 738 We start from the semantics of the SSA program:
b8698a0f 739
9baba81b
SP
740 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
741 |
b8698a0f 742 | f (x) = init + \sum_{j = 0}^{x - 1}
9baba81b
SP
743 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
744 |
b8698a0f
L
745 | f (x) = init + \sum_{j = 0}^{x - 1}
746 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
9baba81b 747 |
b8698a0f
L
748 | f (x) = init + \sum_{k = 0}^{n - 1}
749 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
9baba81b 750 |
b8698a0f
L
751 | f (x) = init + \sum_{k = 0}^{n - 1}
752 | (b_k * \binom{x}{k + 1})
9baba81b 753 |
b8698a0f
L
754 | f (x) = init + b_0 * \binom{x}{1} + ...
755 | + b_{n-1} * \binom{x}{n}
9baba81b 756 |
b8698a0f
L
757 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
758 | + b_{n-1} * \binom{x}{n}
9baba81b 759 |
b8698a0f 760
9baba81b 761 And finally from the definition of the chrecs syntax, we identify:
b8698a0f
L
762 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
763
9baba81b
SP
764 This shows the mechanism that stands behind the add_to_evolution
765 function. An important point is that the use of symbolic
766 parameters avoids the need of an analysis schedule.
b8698a0f 767
9baba81b 768 Example:
b8698a0f 769
9baba81b
SP
770 | inita = ...
771 | initb = ...
b8698a0f 772 | loop_1
9baba81b
SP
773 | a = phi (inita, a + 2 + b)
774 | b = phi (initb, b + 1)
775 | endloop
b8698a0f 776
9baba81b 777 When analyzing "a", the algorithm keeps "b" symbolically:
b8698a0f 778
9baba81b 779 | a -> {inita, +, 2 + b}_1
b8698a0f 780
9baba81b 781 Then, after instantiation, the analyzer ends on the evolution:
b8698a0f 782
9baba81b
SP
783 | a -> {inita, +, 2 + initb, +, 1}_1
784
785*/
786
b8698a0f 787static tree
e2157b49 788add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
355fe088 789 tree to_add, gimple *at_stmt)
9baba81b
SP
790{
791 tree type = chrec_type (to_add);
792 tree res = NULL_TREE;
b8698a0f 793
9baba81b
SP
794 if (to_add == NULL_TREE)
795 return chrec_before;
b8698a0f 796
9baba81b
SP
797 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
798 instantiated at this point. */
799 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
800 /* This should not happen. */
801 return chrec_dont_know;
b8698a0f 802
dfedbe40 803 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
804 {
805 fprintf (dump_file, "(add_to_evolution \n");
806 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
807 fprintf (dump_file, " (chrec_before = ");
ef6cb4c7 808 print_generic_expr (dump_file, chrec_before);
9baba81b 809 fprintf (dump_file, ")\n (to_add = ");
ef6cb4c7 810 print_generic_expr (dump_file, to_add);
9baba81b
SP
811 fprintf (dump_file, ")\n");
812 }
813
814 if (code == MINUS_EXPR)
9d2b0e12
VR
815 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
816 ? build_real (type, dconstm1)
817 : build_int_cst_type (type, -1));
9baba81b 818
e2157b49 819 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b 820
dfedbe40 821 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
822 {
823 fprintf (dump_file, " (res = ");
ef6cb4c7 824 print_generic_expr (dump_file, res);
9baba81b
SP
825 fprintf (dump_file, "))\n");
826 }
827
828 return res;
829}
830
9baba81b
SP
831\f
832
833/* This section selects the loops that will be good candidates for the
834 scalar evolution analysis. For the moment, greedily select all the
835 loop nests we could analyze. */
836
9baba81b
SP
837/* For a loop with a single exit edge, return the COND_EXPR that
838 guards the exit edge. If the expression is too difficult to
839 analyze, then give up. */
840
538dd0b7 841gcond *
99b1c316 842get_loop_exit_condition (const class loop *loop)
9baba81b 843{
538dd0b7 844 gcond *res = NULL;
ac8f6c69 845 edge exit_edge = single_exit (loop);
b8698a0f 846
dfedbe40 847 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 848 fprintf (dump_file, "(get_loop_exit_condition \n ");
b8698a0f 849
82b85a85 850 if (exit_edge)
9baba81b 851 {
355fe088 852 gimple *stmt;
b8698a0f 853
726a989a 854 stmt = last_stmt (exit_edge->src);
19d4e4d6 855 if (gcond *cond_stmt = safe_dyn_cast <gcond *> (stmt))
538dd0b7 856 res = cond_stmt;
9baba81b 857 }
b8698a0f 858
dfedbe40 859 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 860 {
ef6cb4c7 861 print_gimple_stmt (dump_file, res, 0);
9baba81b
SP
862 fprintf (dump_file, ")\n");
863 }
b8698a0f 864
9baba81b
SP
865 return res;
866}
867
9baba81b
SP
868\f
869/* Depth first search algorithm. */
870
a79683d5 871enum t_bool {
c59dabbe
SP
872 t_false,
873 t_true,
874 t_dont_know
a79683d5 875};
c59dabbe
SP
876
877
9ac1403c
RB
878static t_bool follow_ssa_edge_expr (class loop *loop, gimple *, tree, gphi *,
879 tree *, int);
9baba81b 880
726a989a 881/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
9baba81b
SP
882 Return true if the strongly connected component has been found. */
883
c59dabbe 884static t_bool
99b1c316 885follow_ssa_edge_binary (class loop *loop, gimple *at_stmt,
726a989a 886 tree type, tree rhs0, enum tree_code code, tree rhs1,
538dd0b7
DM
887 gphi *halting_phi, tree *evolution_of_loop,
888 int limit)
9baba81b 889{
c59dabbe 890 t_bool res = t_false;
b2a93c0a 891 tree evol;
726a989a 892
5be014d5 893 switch (code)
9baba81b 894 {
5be014d5 895 case POINTER_PLUS_EXPR:
9baba81b 896 case PLUS_EXPR:
9baba81b
SP
897 if (TREE_CODE (rhs0) == SSA_NAME)
898 {
899 if (TREE_CODE (rhs1) == SSA_NAME)
900 {
b8698a0f 901 /* Match an assignment under the form:
9baba81b 902 "a = b + c". */
b8698a0f 903
9e824336
ZD
904 /* We want only assignments of form "name + name" contribute to
905 LIMIT, as the other cases do not necessarily contribute to
906 the complexity of the expression. */
907 limit++;
908
b2a93c0a 909 evol = *evolution_of_loop;
b9b79ba4 910 evol = add_to_evolution
b8698a0f
L
911 (loop->num,
912 chrec_convert (type, evol, at_stmt),
5be014d5 913 code, rhs1, at_stmt);
9ac1403c
RB
914 res = follow_ssa_edge_expr
915 (loop, at_stmt, rhs0, halting_phi, &evol, limit);
b9b79ba4
RB
916 if (res == t_true)
917 *evolution_of_loop = evol;
c59dabbe 918 else if (res == t_false)
9baba81b 919 {
b9b79ba4
RB
920 *evolution_of_loop = add_to_evolution
921 (loop->num,
922 chrec_convert (type, *evolution_of_loop, at_stmt),
923 code, rhs0, at_stmt);
9ac1403c
RB
924 res = follow_ssa_edge_expr
925 (loop, at_stmt, rhs1, halting_phi,
c59dabbe 926 evolution_of_loop, limit);
9baba81b
SP
927 }
928 }
b8698a0f 929
9baba81b 930 else
3bbc329b 931 gcc_unreachable (); /* Handled in caller. */
9baba81b 932 }
b8698a0f 933
9baba81b
SP
934 else if (TREE_CODE (rhs1) == SSA_NAME)
935 {
b8698a0f 936 /* Match an assignment under the form:
9baba81b 937 "a = ... + c". */
b9b79ba4
RB
938 *evolution_of_loop = add_to_evolution
939 (loop->num, chrec_convert (type, *evolution_of_loop,
940 at_stmt),
941 code, rhs0, at_stmt);
9ac1403c
RB
942 res = follow_ssa_edge_expr
943 (loop, at_stmt, rhs1, halting_phi,
c59dabbe 944 evolution_of_loop, limit);
9baba81b
SP
945 }
946
947 else
b8698a0f 948 /* Otherwise, match an assignment under the form:
9baba81b
SP
949 "a = ... + ...". */
950 /* And there is nothing to do. */
c59dabbe 951 res = t_false;
9baba81b 952 break;
b8698a0f 953
9baba81b
SP
954 case MINUS_EXPR:
955 /* This case is under the form "opnd0 = rhs0 - rhs1". */
9baba81b 956 if (TREE_CODE (rhs0) == SSA_NAME)
3bbc329b 957 gcc_unreachable (); /* Handled in caller. */
9baba81b 958 else
b8698a0f 959 /* Otherwise, match an assignment under the form:
9baba81b
SP
960 "a = ... - ...". */
961 /* And there is nothing to do. */
c59dabbe 962 res = t_false;
9baba81b 963 break;
726a989a
RB
964
965 default:
966 res = t_false;
967 }
968
969 return res;
970}
b8698a0f 971
9baba81b
SP
972/* Checks whether the I-th argument of a PHI comes from a backedge. */
973
974static bool
538dd0b7 975backedge_phi_arg_p (gphi *phi, int i)
9baba81b 976{
726a989a 977 const_edge e = gimple_phi_arg_edge (phi, i);
9baba81b
SP
978
979 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
980 about updating it anywhere, and this should work as well most of the
981 time. */
982 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
983 return true;
984
985 return false;
986}
987
988/* Helper function for one branch of the condition-phi-node. Return
989 true if the strongly connected component has been found following
990 this path. */
991
c59dabbe 992static inline t_bool
9baba81b 993follow_ssa_edge_in_condition_phi_branch (int i,
99b1c316 994 class loop *loop,
538dd0b7
DM
995 gphi *condition_phi,
996 gphi *halting_phi,
9baba81b 997 tree *evolution_of_branch,
c59dabbe 998 tree init_cond, int limit)
9baba81b
SP
999{
1000 tree branch = PHI_ARG_DEF (condition_phi, i);
1001 *evolution_of_branch = chrec_dont_know;
1002
1003 /* Do not follow back edges (they must belong to an irreducible loop, which
1004 we really do not want to worry about). */
1005 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1006 return t_false;
9baba81b
SP
1007
1008 if (TREE_CODE (branch) == SSA_NAME)
1009 {
1010 *evolution_of_branch = init_cond;
9ac1403c
RB
1011 return follow_ssa_edge_expr (loop, condition_phi, branch, halting_phi,
1012 evolution_of_branch, limit);
9baba81b
SP
1013 }
1014
b8698a0f 1015 /* This case occurs when one of the condition branches sets
89dbed81 1016 the variable to a constant: i.e. a phi-node like
b8698a0f
L
1017 "a_2 = PHI <a_7(5), 2(6)>;".
1018
1019 FIXME: This case have to be refined correctly:
9baba81b
SP
1020 in some cases it is possible to say something better than
1021 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1022 return t_false;
9baba81b
SP
1023}
1024
1025/* This function merges the branches of a condition-phi-node in a
1026 loop. */
1027
c59dabbe 1028static t_bool
99b1c316 1029follow_ssa_edge_in_condition_phi (class loop *loop,
538dd0b7
DM
1030 gphi *condition_phi,
1031 gphi *halting_phi,
c59dabbe 1032 tree *evolution_of_loop, int limit)
9baba81b 1033{
726a989a 1034 int i, n;
9baba81b
SP
1035 tree init = *evolution_of_loop;
1036 tree evolution_of_branch;
c59dabbe
SP
1037 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1038 halting_phi,
1039 &evolution_of_branch,
1040 init, limit);
1041 if (res == t_false || res == t_dont_know)
1042 return res;
9baba81b 1043
9baba81b
SP
1044 *evolution_of_loop = evolution_of_branch;
1045
726a989a 1046 n = gimple_phi_num_args (condition_phi);
726a989a 1047 for (i = 1; i < n; i++)
9baba81b 1048 {
e0afb98a
SP
1049 /* Quickly give up when the evolution of one of the branches is
1050 not known. */
1051 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1052 return t_true;
e0afb98a 1053
788d3075
RG
1054 /* Increase the limit by the PHI argument number to avoid exponential
1055 time and memory complexity. */
c59dabbe
SP
1056 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1057 halting_phi,
1058 &evolution_of_branch,
788d3075 1059 init, limit + i);
c59dabbe
SP
1060 if (res == t_false || res == t_dont_know)
1061 return res;
9baba81b
SP
1062
1063 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1064 evolution_of_branch);
1065 }
b8698a0f 1066
c59dabbe 1067 return t_true;
9baba81b
SP
1068}
1069
1070/* Follow an SSA edge in an inner loop. It computes the overall
1071 effect of the loop, and following the symbolic initial conditions,
1072 it follows the edges in the parent loop. The inner loop is
1073 considered as a single statement. */
1074
c59dabbe 1075static t_bool
99b1c316 1076follow_ssa_edge_inner_loop_phi (class loop *outer_loop,
538dd0b7
DM
1077 gphi *loop_phi_node,
1078 gphi *halting_phi,
c59dabbe 1079 tree *evolution_of_loop, int limit)
9baba81b 1080{
99b1c316 1081 class loop *loop = loop_containing_stmt (loop_phi_node);
9baba81b
SP
1082 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1083
1084 /* Sometimes, the inner loop is too difficult to analyze, and the
1085 result of the analysis is a symbolic parameter. */
1086 if (ev == PHI_RESULT (loop_phi_node))
1087 {
c59dabbe 1088 t_bool res = t_false;
726a989a 1089 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1090
726a989a 1091 for (i = 0; i < n; i++)
9baba81b
SP
1092 {
1093 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1094 basic_block bb;
1095
1096 /* Follow the edges that exit the inner loop. */
726a989a 1097 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b 1098 if (!flow_bb_inside_loop_p (loop, bb))
726a989a
RB
1099 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1100 arg, halting_phi,
1101 evolution_of_loop, limit);
c59dabbe
SP
1102 if (res == t_true)
1103 break;
9baba81b
SP
1104 }
1105
1106 /* If the path crosses this loop-phi, give up. */
c59dabbe 1107 if (res == t_true)
9baba81b
SP
1108 *evolution_of_loop = chrec_dont_know;
1109
1110 return res;
1111 }
1112
1113 /* Otherwise, compute the overall effect of the inner loop. */
1114 ev = compute_overall_effect_of_inner_loop (loop, ev);
726a989a
RB
1115 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1116 evolution_of_loop, limit);
9baba81b
SP
1117}
1118
9ac1403c
RB
1119/* Follow the ssa edge into the expression EXPR.
1120 Return true if the strongly connected component has been found. */
9baba81b 1121
c59dabbe 1122static t_bool
9ac1403c
RB
1123follow_ssa_edge_expr (class loop *loop, gimple *at_stmt, tree expr,
1124 gphi *halting_phi, tree *evolution_of_loop,
1125 int limit)
9baba81b 1126{
9ac1403c
RB
1127 enum tree_code code;
1128 tree type, rhs0, rhs1 = NULL_TREE;
b8698a0f 1129
9ac1403c
RB
1130 /* The EXPR is one of the following cases:
1131 - an SSA_NAME,
1132 - an INTEGER_CST,
1133 - a PLUS_EXPR,
1134 - a POINTER_PLUS_EXPR,
1135 - a MINUS_EXPR,
1136 - an ASSERT_EXPR,
1137 - other cases are not yet handled. */
b8698a0f 1138
9ac1403c
RB
1139 /* For SSA_NAME look at the definition statement, handling
1140 PHI nodes and otherwise expand appropriately for the expression
1141 handling below. */
3bbc329b 1142tail_recurse:
9ac1403c
RB
1143 if (TREE_CODE (expr) == SSA_NAME)
1144 {
1145 gimple *def = SSA_NAME_DEF_STMT (expr);
b8698a0f 1146
9ac1403c
RB
1147 if (gimple_nop_p (def))
1148 return t_false;
b8698a0f 1149
9ac1403c 1150 /* Give up if the path is longer than the MAX that we allow. */
028d4092 1151 if (limit > param_scev_max_expr_complexity)
3bbc329b
RB
1152 {
1153 *evolution_of_loop = chrec_dont_know;
1154 return t_dont_know;
1155 }
b8698a0f 1156
9ac1403c
RB
1157 if (gphi *phi = dyn_cast <gphi *>(def))
1158 {
1159 if (!loop_phi_node_p (phi))
1160 /* DEF is a condition-phi-node. Follow the branches, and
1161 record their evolutions. Finally, merge the collected
1162 information and set the approximation to the main
1163 variable. */
1164 return follow_ssa_edge_in_condition_phi
1165 (loop, phi, halting_phi, evolution_of_loop, limit);
1166
1167 /* When the analyzed phi is the halting_phi, the
1168 depth-first search is over: we have found a path from
1169 the halting_phi to itself in the loop. */
1170 if (phi == halting_phi)
1171 return t_true;
1172
1173 /* Otherwise, the evolution of the HALTING_PHI depends
1174 on the evolution of another loop-phi-node, i.e. the
1175 evolution function is a higher degree polynomial. */
1176 class loop *def_loop = loop_containing_stmt (def);
1177 if (def_loop == loop)
1178 return t_false;
1179
1180 /* Inner loop. */
1181 if (flow_loop_nested_p (loop, def_loop))
1182 return follow_ssa_edge_inner_loop_phi
1183 (loop, phi, halting_phi, evolution_of_loop,
1184 limit + 1);
1185
1186 /* Outer loop. */
1187 return t_false;
1188 }
1189
1190 /* At this level of abstraction, the program is just a set
1191 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1192 other def to be handled. */
1193 if (!is_gimple_assign (def))
c59dabbe 1194 return t_false;
b8698a0f 1195
9ac1403c
RB
1196 code = gimple_assign_rhs_code (def);
1197 switch (get_gimple_rhs_class (code))
1198 {
1199 case GIMPLE_BINARY_RHS:
1200 rhs0 = gimple_assign_rhs1 (def);
1201 rhs1 = gimple_assign_rhs2 (def);
1202 break;
1203 case GIMPLE_UNARY_RHS:
1204 case GIMPLE_SINGLE_RHS:
1205 rhs0 = gimple_assign_rhs1 (def);
1206 break;
1207 default:
1208 return t_false;
1209 }
1210 type = TREE_TYPE (gimple_assign_lhs (def));
1211 at_stmt = def;
1212 }
1213 else
1214 {
1215 code = TREE_CODE (expr);
1216 type = TREE_TYPE (expr);
1217 switch (code)
1218 {
1219 CASE_CONVERT:
1220 rhs0 = TREE_OPERAND (expr, 0);
1221 break;
1222 case POINTER_PLUS_EXPR:
1223 case PLUS_EXPR:
1224 case MINUS_EXPR:
1225 rhs0 = TREE_OPERAND (expr, 0);
1226 rhs1 = TREE_OPERAND (expr, 1);
1227 break;
1228 default:
1229 rhs0 = expr;
1230 }
1231 }
1232
1233 switch (code)
1234 {
1235 CASE_CONVERT:
1236 {
1237 /* This assignment is under the form "a_1 = (cast) rhs. */
1238 t_bool res = follow_ssa_edge_expr (loop, at_stmt, rhs0, halting_phi,
1239 evolution_of_loop, limit);
1240 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1241 return res;
1242 }
9baba81b 1243
9ac1403c
RB
1244 case INTEGER_CST:
1245 /* This assignment is under the form "a_1 = 7". */
c59dabbe 1246 return t_false;
9baba81b 1247
9ac1403c
RB
1248 case ADDR_EXPR:
1249 {
1250 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1251 if (TREE_CODE (TREE_OPERAND (rhs0, 0)) != MEM_REF)
1252 return t_false;
1253 tree mem = TREE_OPERAND (rhs0, 0);
1254 rhs0 = TREE_OPERAND (mem, 0);
1255 rhs1 = TREE_OPERAND (mem, 1);
1256 code = POINTER_PLUS_EXPR;
1257 }
1258 /* Fallthru. */
1259 case POINTER_PLUS_EXPR:
1260 case PLUS_EXPR:
1261 case MINUS_EXPR:
1262 /* This case is under the form "rhs0 +- rhs1". */
1263 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1264 STRIP_USELESS_TYPE_CONVERSION (rhs1);
3bbc329b
RB
1265 if (TREE_CODE (rhs0) == SSA_NAME
1266 && (TREE_CODE (rhs1) != SSA_NAME || code == MINUS_EXPR))
1267 {
1268 /* Match an assignment under the form:
1269 "a = b +- ...".
1270 Use tail-recursion for the simple case. */
1271 *evolution_of_loop = add_to_evolution
1272 (loop->num, chrec_convert (type, *evolution_of_loop,
1273 at_stmt),
1274 code, rhs1, at_stmt);
1275 expr = rhs0;
1276 goto tail_recurse;
1277 }
1278 /* Else search for the SCC in both rhs0 and rhs1. */
9ac1403c
RB
1279 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1280 halting_phi, evolution_of_loop, limit);
1281
1282 case ASSERT_EXPR:
1283 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1284 It must be handled as a copy assignment of the form a_1 = a_2. */
3bbc329b
RB
1285 expr = ASSERT_EXPR_VAR (rhs0);
1286 goto tail_recurse;
b8698a0f 1287
9baba81b 1288 default:
c59dabbe 1289 return t_false;
9baba81b
SP
1290 }
1291}
1292
1293\f
b83b5507
BC
1294/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1295 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1296
1297 # i_17 = PHI <i_13(5), 0(3)>
1298 # _20 = PHI <_5(5), start_4(D)(3)>
1299 ...
1300 i_13 = i_17 + 1;
1301 _5 = start_4(D) + i_13;
1302
1303 Though variable _20 appears as a PEELED_CHREC in the form of
1304 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1305
1306 See PR41488. */
1307
1308static tree
99b1c316 1309simplify_peeled_chrec (class loop *loop, tree arg, tree init_cond)
b83b5507
BC
1310{
1311 aff_tree aff1, aff2;
1312 tree ev, left, right, type, step_val;
39c8aaa4 1313 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
b83b5507
BC
1314
1315 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1316 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1317 return chrec_dont_know;
1318
1319 left = CHREC_LEFT (ev);
1320 right = CHREC_RIGHT (ev);
1321 type = TREE_TYPE (left);
1322 step_val = chrec_fold_plus (type, init_cond, right);
1323
1324 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1325 if "left" equals to "init + right". */
1326 if (operand_equal_p (left, step_val, 0))
1327 {
1328 if (dump_file && (dump_flags & TDF_SCEV))
1329 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1330
1331 return build_polynomial_chrec (loop->num, init_cond, right);
1332 }
1333
cd5091f1
RB
1334 /* The affine code only deals with pointer and integer types. */
1335 if (!POINTER_TYPE_P (type)
1336 && !INTEGRAL_TYPE_P (type))
1337 return chrec_dont_know;
1338
b83b5507
BC
1339 /* Try harder to check if they are equal. */
1340 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1341 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1342 free_affine_expand_cache (&peeled_chrec_map);
807e902e 1343 aff_combination_scale (&aff2, -1);
b83b5507
BC
1344 aff_combination_add (&aff1, &aff2);
1345
1346 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1347 if "left" equals to "init + right". */
1348 if (aff_combination_zero_p (&aff1))
1349 {
1350 if (dump_file && (dump_flags & TDF_SCEV))
1351 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1352
1353 return build_polynomial_chrec (loop->num, init_cond, right);
1354 }
1355 return chrec_dont_know;
1356}
9baba81b
SP
1357
1358/* Given a LOOP_PHI_NODE, this function determines the evolution
1359 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1360
1361static tree
538dd0b7 1362analyze_evolution_in_loop (gphi *loop_phi_node,
9baba81b
SP
1363 tree init_cond)
1364{
726a989a 1365 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1366 tree evolution_function = chrec_not_analyzed_yet;
99b1c316 1367 class loop *loop = loop_containing_stmt (loop_phi_node);
9baba81b 1368 basic_block bb;
b83b5507 1369 static bool simplify_peeled_chrec_p = true;
b8698a0f 1370
dfedbe40 1371 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1372 {
1373 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1374 fprintf (dump_file, " (loop_phi_node = ");
ef6cb4c7 1375 print_gimple_stmt (dump_file, loop_phi_node, 0);
9baba81b
SP
1376 fprintf (dump_file, ")\n");
1377 }
b8698a0f 1378
726a989a 1379 for (i = 0; i < n; i++)
9baba81b
SP
1380 {
1381 tree arg = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1382 tree ev_fn;
874caa00 1383 t_bool res;
9baba81b
SP
1384
1385 /* Select the edges that enter the loop body. */
726a989a 1386 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1387 if (!flow_bb_inside_loop_p (loop, bb))
1388 continue;
f29deac9 1389
9baba81b
SP
1390 if (TREE_CODE (arg) == SSA_NAME)
1391 {
f29deac9
SP
1392 bool val = false;
1393
9baba81b
SP
1394 /* Pass in the initial condition to the follow edge function. */
1395 ev_fn = init_cond;
9ac1403c
RB
1396 res = follow_ssa_edge_expr (loop, loop_phi_node, arg,
1397 loop_phi_node, &ev_fn, 0);
f29deac9
SP
1398
1399 /* If ev_fn has no evolution in the inner loop, and the
1400 init_cond is not equal to ev_fn, then we have an
1401 ambiguity between two possible values, as we cannot know
1402 the number of iterations at this point. */
1403 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1404 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1405 && !operand_equal_p (init_cond, ev_fn, 0))
1406 ev_fn = chrec_dont_know;
9baba81b
SP
1407 }
1408 else
874caa00 1409 res = t_false;
f29deac9 1410
9baba81b
SP
1411 /* When it is impossible to go back on the same
1412 loop_phi_node by following the ssa edges, the
89dbed81 1413 evolution is represented by a peeled chrec, i.e. the
9baba81b 1414 first iteration, EV_FN has the value INIT_COND, then
b8698a0f 1415 all the other iterations it has the value of ARG.
9baba81b 1416 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1417 if (res != t_true)
b83b5507
BC
1418 {
1419 ev_fn = chrec_dont_know;
1420 /* Try to recognize POLYNOMIAL_CHREC which appears in
1421 the form of PEELED_CHREC, but guard the process with
1422 a bool variable to keep the analyzer from infinite
1423 recurrence for real PEELED_RECs. */
1424 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1425 {
1426 simplify_peeled_chrec_p = false;
1427 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1428 simplify_peeled_chrec_p = true;
1429 }
1430 }
b8698a0f 1431
9baba81b 1432 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1433 happens currently, but nevertheless), merge their evolutions. */
9baba81b 1434 evolution_function = chrec_merge (evolution_function, ev_fn);
e21401b6
RB
1435
1436 if (evolution_function == chrec_dont_know)
1437 break;
9baba81b 1438 }
b8698a0f 1439
dfedbe40 1440 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1441 {
1442 fprintf (dump_file, " (evolution_function = ");
ef6cb4c7 1443 print_generic_expr (dump_file, evolution_function);
9baba81b
SP
1444 fprintf (dump_file, "))\n");
1445 }
b8698a0f 1446
9baba81b
SP
1447 return evolution_function;
1448}
1449
806f2c1b
AL
1450/* Looks to see if VAR is a copy of a constant (via straightforward assignments
1451 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1452
1453static tree
1454follow_copies_to_constant (tree var)
1455{
1456 tree res = var;
24545562
RB
1457 while (TREE_CODE (res) == SSA_NAME
1458 /* We face not updated SSA form in multiple places and this walk
1459 may end up in sibling loops so we have to guard it. */
1460 && !name_registered_for_update_p (res))
806f2c1b
AL
1461 {
1462 gimple *def = SSA_NAME_DEF_STMT (res);
1463 if (gphi *phi = dyn_cast <gphi *> (def))
1464 {
1465 if (tree rhs = degenerate_phi_result (phi))
1466 res = rhs;
1467 else
1468 break;
1469 }
1470 else if (gimple_assign_single_p (def))
1471 /* Will exit loop if not an SSA_NAME. */
1472 res = gimple_assign_rhs1 (def);
1473 else
1474 break;
1475 }
1476 if (CONSTANT_CLASS_P (res))
1477 return res;
1478 return var;
1479}
1480
9baba81b
SP
1481/* Given a loop-phi-node, return the initial conditions of the
1482 variable on entry of the loop. When the CCP has propagated
1483 constants into the loop-phi-node, the initial condition is
1484 instantiated, otherwise the initial condition is kept symbolic.
1485 This analyzer does not analyze the evolution outside the current
1486 loop, and leaves this task to the on-demand tree reconstructor. */
1487
b8698a0f 1488static tree
538dd0b7 1489analyze_initial_condition (gphi *loop_phi_node)
9baba81b 1490{
726a989a 1491 int i, n;
9baba81b 1492 tree init_cond = chrec_not_analyzed_yet;
99b1c316 1493 class loop *loop = loop_containing_stmt (loop_phi_node);
b8698a0f 1494
dfedbe40 1495 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1496 {
1497 fprintf (dump_file, "(analyze_initial_condition \n");
1498 fprintf (dump_file, " (loop_phi_node = \n");
ef6cb4c7 1499 print_gimple_stmt (dump_file, loop_phi_node, 0);
9baba81b
SP
1500 fprintf (dump_file, ")\n");
1501 }
b8698a0f 1502
726a989a
RB
1503 n = gimple_phi_num_args (loop_phi_node);
1504 for (i = 0; i < n; i++)
9baba81b
SP
1505 {
1506 tree branch = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1507 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
b8698a0f 1508
9baba81b
SP
1509 /* When the branch is oriented to the loop's body, it does
1510 not contribute to the initial condition. */
1511 if (flow_bb_inside_loop_p (loop, bb))
1512 continue;
1513
1514 if (init_cond == chrec_not_analyzed_yet)
1515 {
1516 init_cond = branch;
1517 continue;
1518 }
1519
1520 if (TREE_CODE (branch) == SSA_NAME)
1521 {
1522 init_cond = chrec_dont_know;
1523 break;
1524 }
1525
1526 init_cond = chrec_merge (init_cond, branch);
1527 }
1528
1529 /* Ooops -- a loop without an entry??? */
1530 if (init_cond == chrec_not_analyzed_yet)
1531 init_cond = chrec_dont_know;
1532
806f2c1b
AL
1533 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1534 to not miss important early loop unrollings. */
1535 init_cond = follow_copies_to_constant (init_cond);
bf1cbdc6 1536
dfedbe40 1537 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1538 {
1539 fprintf (dump_file, " (init_cond = ");
ef6cb4c7 1540 print_generic_expr (dump_file, init_cond);
9baba81b
SP
1541 fprintf (dump_file, "))\n");
1542 }
b8698a0f 1543
9baba81b
SP
1544 return init_cond;
1545}
1546
1547/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1548
b8698a0f 1549static tree
99b1c316 1550interpret_loop_phi (class loop *loop, gphi *loop_phi_node)
9baba81b
SP
1551{
1552 tree res;
99b1c316 1553 class loop *phi_loop = loop_containing_stmt (loop_phi_node);
9baba81b 1554 tree init_cond;
b8698a0f 1555
5355943c 1556 gcc_assert (phi_loop == loop);
9baba81b
SP
1557
1558 /* Otherwise really interpret the loop phi. */
1559 init_cond = analyze_initial_condition (loop_phi_node);
1560 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1561
73c865fa
RG
1562 /* Verify we maintained the correct initial condition throughout
1563 possible conversions in the SSA chain. */
1564 if (res != chrec_dont_know)
1565 {
1566 tree new_init = res;
1567 if (CONVERT_EXPR_P (res)
1568 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1569 new_init = fold_convert (TREE_TYPE (res),
1570 CHREC_LEFT (TREE_OPERAND (res, 0)));
1571 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1572 new_init = CHREC_LEFT (res);
1573 STRIP_USELESS_TYPE_CONVERSION (new_init);
eb723fa3
RG
1574 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1575 || !operand_equal_p (init_cond, new_init, 0))
73c865fa
RG
1576 return chrec_dont_know;
1577 }
1578
9baba81b
SP
1579 return res;
1580}
1581
1582/* This function merges the branches of a condition-phi-node,
1583 contained in the outermost loop, and whose arguments are already
1584 analyzed. */
1585
1586static tree
99b1c316 1587interpret_condition_phi (class loop *loop, gphi *condition_phi)
9baba81b 1588{
726a989a 1589 int i, n = gimple_phi_num_args (condition_phi);
9baba81b 1590 tree res = chrec_not_analyzed_yet;
b8698a0f 1591
726a989a 1592 for (i = 0; i < n; i++)
9baba81b
SP
1593 {
1594 tree branch_chrec;
b8698a0f 1595
9baba81b
SP
1596 if (backedge_phi_arg_p (condition_phi, i))
1597 {
1598 res = chrec_dont_know;
1599 break;
1600 }
1601
1602 branch_chrec = analyze_scalar_evolution
1603 (loop, PHI_ARG_DEF (condition_phi, i));
b8698a0f 1604
9baba81b 1605 res = chrec_merge (res, branch_chrec);
e21401b6
RB
1606 if (res == chrec_dont_know)
1607 break;
9baba81b
SP
1608 }
1609
1610 return res;
1611}
1612
726a989a 1613/* Interpret the operation RHS1 OP RHS2. If we didn't
29836d07 1614 analyze this node before, follow the definitions until ending
726a989a 1615 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
9baba81b
SP
1616 return path, this function propagates evolutions (ala constant copy
1617 propagation). OPND1 is not a GIMPLE expression because we could
1618 analyze the effect of an inner loop: see interpret_loop_phi. */
1619
1620static tree
99b1c316 1621interpret_rhs_expr (class loop *loop, gimple *at_stmt,
726a989a 1622 tree type, tree rhs1, enum tree_code code, tree rhs2)
9baba81b 1623{
f802a424 1624 tree res, chrec1, chrec2, ctype;
355fe088 1625 gimple *def;
726a989a
RB
1626
1627 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1628 {
1629 if (is_gimple_min_invariant (rhs1))
1630 return chrec_convert (type, rhs1, at_stmt);
1631
1632 if (code == SSA_NAME)
1633 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1634 at_stmt);
1e8552eb 1635
726a989a
RB
1636 if (code == ASSERT_EXPR)
1637 {
1638 rhs1 = ASSERT_EXPR_VAR (rhs1);
1639 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1640 at_stmt);
1641 }
726a989a 1642 }
1e8552eb 1643
726a989a 1644 switch (code)
9baba81b 1645 {
6a02a719 1646 case ADDR_EXPR:
bef28ced
JL
1647 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1648 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1649 {
ef4bddc2 1650 machine_mode mode;
f37fac2b 1651 poly_int64 bitsize, bitpos;
ee45a32d 1652 int unsignedp, reversep;
bef28ced
JL
1653 int volatilep = 0;
1654 tree base, offset;
1655 tree chrec3;
1656 tree unitpos;
1657
1658 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
ee45a32d 1659 &bitsize, &bitpos, &offset, &mode,
25b75a48 1660 &unsignedp, &reversep, &volatilep);
bef28ced
JL
1661
1662 if (TREE_CODE (base) == MEM_REF)
1663 {
1664 rhs2 = TREE_OPERAND (base, 1);
1665 rhs1 = TREE_OPERAND (base, 0);
1666
1667 chrec1 = analyze_scalar_evolution (loop, rhs1);
1668 chrec2 = analyze_scalar_evolution (loop, rhs2);
1669 chrec1 = chrec_convert (type, chrec1, at_stmt);
1670 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1671 chrec1 = instantiate_parameters (loop, chrec1);
1672 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1673 res = chrec_fold_plus (type, chrec1, chrec2);
1674 }
1675 else
1676 {
1677 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1678 chrec1 = chrec_convert (type, chrec1, at_stmt);
1679 res = chrec1;
1680 }
6a02a719 1681
bef28ced
JL
1682 if (offset != NULL_TREE)
1683 {
1684 chrec2 = analyze_scalar_evolution (loop, offset);
1685 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
0547c9b6 1686 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1687 res = chrec_fold_plus (type, res, chrec2);
1688 }
1689
f37fac2b 1690 if (maybe_ne (bitpos, 0))
bef28ced 1691 {
f37fac2b 1692 unitpos = size_int (exact_div (bitpos, BITS_PER_UNIT));
bef28ced
JL
1693 chrec3 = analyze_scalar_evolution (loop, unitpos);
1694 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
0547c9b6 1695 chrec3 = instantiate_parameters (loop, chrec3);
bef28ced
JL
1696 res = chrec_fold_plus (type, res, chrec3);
1697 }
1698 }
1699 else
1700 res = chrec_dont_know;
1701 break;
6a02a719 1702
5be014d5 1703 case POINTER_PLUS_EXPR:
726a989a
RB
1704 chrec1 = analyze_scalar_evolution (loop, rhs1);
1705 chrec2 = analyze_scalar_evolution (loop, rhs2);
1706 chrec1 = chrec_convert (type, chrec1, at_stmt);
0d82a1c8 1707 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1708 chrec1 = instantiate_parameters (loop, chrec1);
1709 chrec2 = instantiate_parameters (loop, chrec2);
726a989a 1710 res = chrec_fold_plus (type, chrec1, chrec2);
5be014d5
AP
1711 break;
1712
9baba81b 1713 case PLUS_EXPR:
726a989a
RB
1714 chrec1 = analyze_scalar_evolution (loop, rhs1);
1715 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1716 ctype = type;
1717 /* When the stmt is conditionally executed re-write the CHREC
1718 into a form that has well-defined behavior on overflow. */
1719 if (at_stmt
1720 && INTEGRAL_TYPE_P (type)
1721 && ! TYPE_OVERFLOW_WRAPS (type)
1722 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1723 gimple_bb (at_stmt)))
1724 ctype = unsigned_type_for (type);
1725 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1726 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1727 chrec1 = instantiate_parameters (loop, chrec1);
1728 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1729 res = chrec_fold_plus (ctype, chrec1, chrec2);
1730 if (type != ctype)
1731 res = chrec_convert (type, res, at_stmt);
9baba81b 1732 break;
b8698a0f 1733
9baba81b 1734 case MINUS_EXPR:
726a989a
RB
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1737 ctype = type;
1738 /* When the stmt is conditionally executed re-write the CHREC
1739 into a form that has well-defined behavior on overflow. */
1740 if (at_stmt
1741 && INTEGRAL_TYPE_P (type)
1742 && ! TYPE_OVERFLOW_WRAPS (type)
1743 && ! dominated_by_p (CDI_DOMINATORS,
1744 loop->latch, gimple_bb (at_stmt)))
1745 ctype = unsigned_type_for (type);
1746 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1747 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1748 chrec1 = instantiate_parameters (loop, chrec1);
1749 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1750 res = chrec_fold_minus (ctype, chrec1, chrec2);
1751 if (type != ctype)
1752 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1753 break;
1754
1755 case NEGATE_EXPR:
726a989a 1756 chrec1 = analyze_scalar_evolution (loop, rhs1);
f802a424
RB
1757 ctype = type;
1758 /* When the stmt is conditionally executed re-write the CHREC
1759 into a form that has well-defined behavior on overflow. */
1760 if (at_stmt
1761 && INTEGRAL_TYPE_P (type)
1762 && ! TYPE_OVERFLOW_WRAPS (type)
1763 && ! dominated_by_p (CDI_DOMINATORS,
1764 loop->latch, gimple_bb (at_stmt)))
1765 ctype = unsigned_type_for (type);
1766 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
9a75ede0 1767 /* TYPE may be integer, real or complex, so use fold_convert. */
0547c9b6 1768 chrec1 = instantiate_parameters (loop, chrec1);
f802a424
RB
1769 res = chrec_fold_multiply (ctype, chrec1,
1770 fold_convert (ctype, integer_minus_one_node));
1771 if (type != ctype)
1772 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1773 break;
1774
418df9d7
JJ
1775 case BIT_NOT_EXPR:
1776 /* Handle ~X as -1 - X. */
1777 chrec1 = analyze_scalar_evolution (loop, rhs1);
1778 chrec1 = chrec_convert (type, chrec1, at_stmt);
0547c9b6 1779 chrec1 = instantiate_parameters (loop, chrec1);
418df9d7
JJ
1780 res = chrec_fold_minus (type,
1781 fold_convert (type, integer_minus_one_node),
1782 chrec1);
1783 break;
1784
9baba81b 1785 case MULT_EXPR:
726a989a
RB
1786 chrec1 = analyze_scalar_evolution (loop, rhs1);
1787 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1788 ctype = type;
1789 /* When the stmt is conditionally executed re-write the CHREC
1790 into a form that has well-defined behavior on overflow. */
1791 if (at_stmt
1792 && INTEGRAL_TYPE_P (type)
1793 && ! TYPE_OVERFLOW_WRAPS (type)
1794 && ! dominated_by_p (CDI_DOMINATORS,
1795 loop->latch, gimple_bb (at_stmt)))
1796 ctype = unsigned_type_for (type);
1797 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1798 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1799 chrec1 = instantiate_parameters (loop, chrec1);
1800 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1801 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1802 if (type != ctype)
1803 res = chrec_convert (type, res, at_stmt);
0bca51f0 1804 break;
b8698a0f 1805
60f2d2f3
AL
1806 case LSHIFT_EXPR:
1807 {
1808 /* Handle A<<B as A * (1<<B). */
1809 tree uns = unsigned_type_for (type);
1810 chrec1 = analyze_scalar_evolution (loop, rhs1);
1811 chrec2 = analyze_scalar_evolution (loop, rhs2);
1812 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1813 chrec1 = instantiate_parameters (loop, chrec1);
1814 chrec2 = instantiate_parameters (loop, chrec2);
1815
1816 tree one = build_int_cst (uns, 1);
1817 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1818 res = chrec_fold_multiply (uns, chrec1, chrec2);
1819 res = chrec_convert (type, res, at_stmt);
1820 }
1821 break;
1822
1043771b 1823 CASE_CONVERT:
195b4c50
RG
1824 /* In case we have a truncation of a widened operation that in
1825 the truncated type has undefined overflow behavior analyze
1826 the operation done in an unsigned type of the same precision
1827 as the final truncation. We cannot derive a scalar evolution
1828 for the widened operation but for the truncated result. */
1829 if (TREE_CODE (type) == INTEGER_TYPE
1830 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1831 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1832 && TYPE_OVERFLOW_UNDEFINED (type)
1833 && TREE_CODE (rhs1) == SSA_NAME
1834 && (def = SSA_NAME_DEF_STMT (rhs1))
1835 && is_gimple_assign (def)
1836 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1837 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1838 {
1839 tree utype = unsigned_type_for (type);
1840 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1841 gimple_assign_rhs1 (def),
1842 gimple_assign_rhs_code (def),
1843 gimple_assign_rhs2 (def));
1844 }
1845 else
1846 chrec1 = analyze_scalar_evolution (loop, rhs1);
b24d9420 1847 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
9baba81b 1848 break;
e6d62b46
BC
1849
1850 case BIT_AND_EXPR:
1851 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1852 If A is SCEV and its value is in the range of representable set
1853 of type unsigned short, the result expression is a (no-overflow)
1854 SCEV. */
1855 res = chrec_dont_know;
1856 if (tree_fits_uhwi_p (rhs2))
1857 {
1858 int precision;
1859 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1860
1861 val ++;
1862 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1863 it's not the maximum value of a smaller type than rhs1. */
1864 if (val != 0
1865 && (precision = exact_log2 (val)) > 0
1866 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1867 {
1868 tree utype = build_nonstandard_integer_type (precision, 1);
1869
1870 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1871 {
1872 chrec1 = analyze_scalar_evolution (loop, rhs1);
1873 chrec1 = chrec_convert (utype, chrec1, at_stmt);
1874 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
1875 }
1876 }
1877 }
1878 break;
b8698a0f 1879
9baba81b
SP
1880 default:
1881 res = chrec_dont_know;
1882 break;
1883 }
b8698a0f 1884
9baba81b
SP
1885 return res;
1886}
1887
726a989a
RB
1888/* Interpret the expression EXPR. */
1889
1890static tree
99b1c316 1891interpret_expr (class loop *loop, gimple *at_stmt, tree expr)
726a989a
RB
1892{
1893 enum tree_code code;
1894 tree type = TREE_TYPE (expr), op0, op1;
1895
1896 if (automatically_generated_chrec_p (expr))
1897 return expr;
1898
4e71066d 1899 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
5126ae0c 1900 || TREE_CODE (expr) == CALL_EXPR
4e71066d 1901 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
726a989a
RB
1902 return chrec_dont_know;
1903
1904 extract_ops_from_tree (expr, &code, &op0, &op1);
1905
1906 return interpret_rhs_expr (loop, at_stmt, type,
1907 op0, code, op1);
1908}
1909
1910/* Interpret the rhs of the assignment STMT. */
1911
1912static tree
99b1c316 1913interpret_gimple_assign (class loop *loop, gimple *stmt)
726a989a
RB
1914{
1915 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1916 enum tree_code code = gimple_assign_rhs_code (stmt);
1917
1918 return interpret_rhs_expr (loop, stmt, type,
1919 gimple_assign_rhs1 (stmt), code,
1920 gimple_assign_rhs2 (stmt));
1921}
1922
9baba81b
SP
1923\f
1924
b8698a0f 1925/* This section contains all the entry points:
9baba81b
SP
1926 - number_of_iterations_in_loop,
1927 - analyze_scalar_evolution,
1928 - instantiate_parameters.
1929*/
1930
9baba81b
SP
1931/* Helper recursive function. */
1932
1933static tree
99b1c316 1934analyze_scalar_evolution_1 (class loop *loop, tree var)
9baba81b 1935{
355fe088 1936 gimple *def;
9baba81b 1937 basic_block bb;
99b1c316 1938 class loop *def_loop;
fb1fe1f3 1939 tree res;
9baba81b 1940
9baba81b 1941 if (TREE_CODE (var) != SSA_NAME)
726a989a 1942 return interpret_expr (loop, NULL, var);
9baba81b
SP
1943
1944 def = SSA_NAME_DEF_STMT (var);
726a989a 1945 bb = gimple_bb (def);
5355943c 1946 def_loop = bb->loop_father;
9baba81b 1947
5355943c 1948 if (!flow_bb_inside_loop_p (loop, bb))
9baba81b 1949 {
806f2c1b
AL
1950 /* Keep symbolic form, but look through obvious copies for constants. */
1951 res = follow_copies_to_constant (var);
9baba81b
SP
1952 goto set_and_end;
1953 }
1954
9baba81b
SP
1955 if (loop != def_loop)
1956 {
fb1fe1f3 1957 res = analyze_scalar_evolution_1 (def_loop, var);
99b1c316 1958 class loop *loop_to_skip = superloop_at_depth (def_loop,
5355943c
RB
1959 loop_depth (loop) + 1);
1960 res = compute_overall_effect_of_inner_loop (loop_to_skip, res);
1961 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
1962 res = analyze_scalar_evolution_1 (loop, res);
9baba81b
SP
1963 goto set_and_end;
1964 }
1965
726a989a 1966 switch (gimple_code (def))
9baba81b 1967 {
726a989a
RB
1968 case GIMPLE_ASSIGN:
1969 res = interpret_gimple_assign (loop, def);
9baba81b
SP
1970 break;
1971
726a989a 1972 case GIMPLE_PHI:
9baba81b 1973 if (loop_phi_node_p (def))
538dd0b7 1974 res = interpret_loop_phi (loop, as_a <gphi *> (def));
9baba81b 1975 else
538dd0b7 1976 res = interpret_condition_phi (loop, as_a <gphi *> (def));
9baba81b
SP
1977 break;
1978
1979 default:
1980 res = chrec_dont_know;
1981 break;
1982 }
1983
1984 set_and_end:
1985
1986 /* Keep the symbolic form. */
1987 if (res == chrec_dont_know)
1988 res = var;
1989
1990 if (loop == def_loop)
a213b219 1991 set_scalar_evolution (block_before_loop (loop), var, res);
9baba81b
SP
1992
1993 return res;
1994}
1995
52bdd655
SP
1996/* Analyzes and returns the scalar evolution of the ssa_name VAR in
1997 LOOP. LOOP is the loop in which the variable is used.
b8698a0f 1998
9baba81b
SP
1999 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2000 pointer to the statement that uses this variable, in order to
2001 determine the evolution function of the variable, use the following
2002 calls:
b8698a0f 2003
52bdd655
SP
2004 loop_p loop = loop_containing_stmt (stmt);
2005 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
3f227a8c 2006 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
9baba81b
SP
2007*/
2008
b8698a0f 2009tree
99b1c316 2010analyze_scalar_evolution (class loop *loop, tree var)
9baba81b
SP
2011{
2012 tree res;
2013
a68f286c
RB
2014 /* ??? Fix callers. */
2015 if (! loop)
2016 return var;
2017
dfedbe40 2018 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2019 {
2020 fprintf (dump_file, "(analyze_scalar_evolution \n");
2021 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2022 fprintf (dump_file, " (scalar = ");
ef6cb4c7 2023 print_generic_expr (dump_file, var);
9baba81b
SP
2024 fprintf (dump_file, ")\n");
2025 }
2026
a213b219 2027 res = get_scalar_evolution (block_before_loop (loop), var);
fb1fe1f3 2028 if (res == chrec_not_analyzed_yet)
577d6588
RB
2029 {
2030 /* We'll recurse into instantiate_scev, avoid tearing down the
2031 instantiate cache repeatedly and keep it live from here. */
2032 bool destr = false;
2033 if (!global_cache)
2034 {
2035 global_cache = new instantiate_cache_type;
2036 destr = true;
2037 }
2038 res = analyze_scalar_evolution_1 (loop, var);
2039 if (destr)
2040 {
2041 delete global_cache;
2042 global_cache = NULL;
2043 }
2044 }
9baba81b 2045
dfedbe40 2046 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2047 fprintf (dump_file, ")\n");
2048
2049 return res;
2050}
2051
bef28ced
JL
2052/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2053
2054static tree
99b1c316 2055analyze_scalar_evolution_for_address_of (class loop *loop, tree var)
bef28ced
JL
2056{
2057 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2058}
2059
9baba81b 2060/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
f017bf5e 2061 WRTO_LOOP (which should be a superloop of USE_LOOP)
a6f778b2
ZD
2062
2063 FOLDED_CASTS is set to true if resolve_mixers used
2064 chrec_convert_aggressive (TODO -- not really, we are way too conservative
b8698a0f
L
2065 at the moment in order to keep things simple).
2066
f017bf5e
ZD
2067 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2068 example:
2069
2070 for (i = 0; i < 100; i++) -- loop 1
2071 {
2072 for (j = 0; j < 100; j++) -- loop 2
2073 {
2074 k1 = i;
2075 k2 = j;
2076
2077 use2 (k1, k2);
2078
2079 for (t = 0; t < 100; t++) -- loop 3
2080 use3 (k1, k2);
2081
2082 }
2083 use1 (k1, k2);
2084 }
2085
2086 Both k1 and k2 are invariants in loop3, thus
2087 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2088 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2089
2090 As they are invariant, it does not matter whether we consider their
2091 usage in loop 3 or loop 2, hence
2092 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2093 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2094 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2095 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2096
2097 Similarly for their evolutions with respect to loop 1. The values of K2
2098 in the use in loop 2 vary independently on loop 1, thus we cannot express
2099 the evolution with respect to loop 1:
2100 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2101 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2102 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2103 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2104
2105 The value of k2 in the use in loop 1 is known, though:
2106 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2107 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2108 */
9baba81b
SP
2109
2110static tree
99b1c316 2111analyze_scalar_evolution_in_loop (class loop *wrto_loop, class loop *use_loop,
a6f778b2 2112 tree version, bool *folded_casts)
9baba81b
SP
2113{
2114 bool val = false;
a6f778b2 2115 tree ev = version, tmp;
9baba81b 2116
b8698a0f 2117 /* We cannot just do
f017bf5e
ZD
2118
2119 tmp = analyze_scalar_evolution (use_loop, version);
c70ed622 2120 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
f017bf5e
ZD
2121
2122 as resolve_mixers would query the scalar evolution with respect to
2123 wrto_loop. For example, in the situation described in the function
2124 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2125 version = k2. Then
2126
2127 analyze_scalar_evolution (use_loop, version) = k2
2128
c70ed622
BC
2129 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2130 k2 in loop 1 is 100, which is a wrong result, since we are interested
2131 in the value in loop 3.
f017bf5e
ZD
2132
2133 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2134 each time checking that there is no evolution in the inner loop. */
2135
a6f778b2
ZD
2136 if (folded_casts)
2137 *folded_casts = false;
9baba81b
SP
2138 while (1)
2139 {
a6f778b2 2140 tmp = analyze_scalar_evolution (use_loop, ev);
c70ed622 2141 ev = resolve_mixers (use_loop, tmp, folded_casts);
9baba81b
SP
2142
2143 if (use_loop == wrto_loop)
2144 return ev;
2145
2146 /* If the value of the use changes in the inner loop, we cannot express
2147 its value in the outer loop (we might try to return interval chrec,
2148 but we do not have a user for it anyway) */
2149 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2150 || !val)
2151 return chrec_dont_know;
2152
9ba025a2 2153 use_loop = loop_outer (use_loop);
9baba81b
SP
2154 }
2155}
2156
eb0bc7af 2157
a3cc13cc
RB
2158/* Computes a hash function for database element ELT. */
2159
2160static inline hashval_t
2161hash_idx_scev_info (const void *elt_)
2162{
2163 unsigned idx = ((size_t) elt_) - 2;
907dadbd 2164 return scev_info_hasher::hash (&global_cache->entries[idx]);
a3cc13cc
RB
2165}
2166
2167/* Compares database elements E1 and E2. */
2168
2169static inline int
2170eq_idx_scev_info (const void *e1, const void *e2)
2171{
2172 unsigned idx1 = ((size_t) e1) - 2;
907dadbd
TS
2173 return scev_info_hasher::equal (&global_cache->entries[idx1],
2174 (const scev_info_str *) e2);
a3cc13cc
RB
2175}
2176
0547c9b6 2177/* Returns from CACHE the slot number of the cached chrec for NAME. */
fdd43ac4 2178
0547c9b6 2179static unsigned
a3cc13cc 2180get_instantiated_value_entry (instantiate_cache_type &cache,
a68f286c 2181 tree name, edge instantiate_below)
fdd43ac4 2182{
0547c9b6 2183 if (!cache.map)
fdd43ac4 2184 {
a3cc13cc 2185 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
fdd43ac4
RB
2186 cache.entries.create (10);
2187 }
b8698a0f 2188
a3cc13cc
RB
2189 scev_info_str e;
2190 e.name_version = SSA_NAME_VERSION (name);
a68f286c 2191 e.instantiated_below = instantiate_below->dest->index;
a3cc13cc 2192 void **slot = htab_find_slot_with_hash (cache.map, &e,
907dadbd 2193 scev_info_hasher::hash (&e), INSERT);
a3cc13cc 2194 if (!*slot)
fdd43ac4
RB
2195 {
2196 e.chrec = chrec_not_analyzed_yet;
a3cc13cc 2197 *slot = (void *)(size_t)(cache.entries.length () + 2);
fdd43ac4 2198 cache.entries.safe_push (e);
fdd43ac4
RB
2199 }
2200
a3cc13cc 2201 return ((size_t)*slot) - 2;
eb0bc7af
ZD
2202}
2203
0547c9b6 2204
18aed06a
SP
2205/* Return the closed_loop_phi node for VAR. If there is none, return
2206 NULL_TREE. */
2207
2208static tree
2209loop_closed_phi_def (tree var)
2210{
99b1c316 2211 class loop *loop;
18aed06a 2212 edge exit;
538dd0b7
DM
2213 gphi *phi;
2214 gphi_iterator psi;
18aed06a
SP
2215
2216 if (var == NULL_TREE
2217 || TREE_CODE (var) != SSA_NAME)
2218 return NULL_TREE;
2219
2220 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2221 exit = single_exit (loop);
18aed06a
SP
2222 if (!exit)
2223 return NULL_TREE;
2224
726a989a
RB
2225 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2226 {
538dd0b7 2227 phi = psi.phi ();
726a989a
RB
2228 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2229 return PHI_RESULT (phi);
2230 }
18aed06a
SP
2231
2232 return NULL_TREE;
2233}
2234
99b1c316 2235static tree instantiate_scev_r (edge, class loop *, class loop *,
c70ed622 2236 tree, bool *, int);
320f5a78
SP
2237
2238/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2239 and EVOLUTION_LOOP, that were left under a symbolic form.
2240
2495a183 2241 CHREC is an SSA_NAME to be instantiated.
320f5a78
SP
2242
2243 CACHE is the cache of already instantiated values.
2244
c70ed622
BC
2245 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2246 conversions that may wrap in signed/pointer type are folded, as long
2247 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2248 then we don't do such fold.
320f5a78
SP
2249
2250 SIZE_EXPR is used for computing the size of the expression to be
2251 instantiated, and to stop if it exceeds some limit. */
2252
2253static tree
a68f286c 2254instantiate_scev_name (edge instantiate_below,
99b1c316 2255 class loop *evolution_loop, class loop *inner_loop,
8b679c9b 2256 tree chrec,
c70ed622 2257 bool *fold_conversions,
4a8fb1a1 2258 int size_expr)
320f5a78 2259{
2495a183 2260 tree res;
99b1c316 2261 class loop *def_loop;
2495a183 2262 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
20179b0d 2263
92900aec 2264 /* A parameter, nothing to do. */
2495a183 2265 if (!def_bb
92900aec 2266 || !dominated_by_p (CDI_DOMINATORS, def_bb, instantiate_below->dest))
2495a183 2267 return chrec;
20179b0d 2268
2495a183
SP
2269 /* We cache the value of instantiated variable to avoid exponential
2270 time complexity due to reevaluations. We also store the convenient
2271 value in the cache in order to prevent infinite recursion -- we do
2272 not want to instantiate the SSA_NAME if it is in a mixer
2273 structure. This is used for avoiding the instantiation of
2274 recursively defined functions, such as:
320f5a78 2275
2495a183 2276 | a_2 -> {0, +, 1, +, a_2}_1 */
20179b0d 2277
a3cc13cc
RB
2278 unsigned si = get_instantiated_value_entry (*global_cache,
2279 chrec, instantiate_below);
0547c9b6
RB
2280 if (global_cache->get (si) != chrec_not_analyzed_yet)
2281 return global_cache->get (si);
20179b0d 2282
fdd43ac4 2283 /* On recursion return chrec_dont_know. */
0547c9b6 2284 global_cache->set (si, chrec_dont_know);
320f5a78 2285
2495a183
SP
2286 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2287
a68f286c
RB
2288 if (! dominated_by_p (CDI_DOMINATORS,
2289 def_loop->header, instantiate_below->dest))
2290 {
2291 gimple *def = SSA_NAME_DEF_STMT (chrec);
2292 if (gassign *ass = dyn_cast <gassign *> (def))
2293 {
2294 switch (gimple_assign_rhs_class (ass))
2295 {
2296 case GIMPLE_UNARY_RHS:
2297 {
2298 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2299 inner_loop, gimple_assign_rhs1 (ass),
2300 fold_conversions, size_expr);
2301 if (op0 == chrec_dont_know)
2302 return chrec_dont_know;
2303 res = fold_build1 (gimple_assign_rhs_code (ass),
2304 TREE_TYPE (chrec), op0);
2305 break;
2306 }
2307 case GIMPLE_BINARY_RHS:
2308 {
2309 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2310 inner_loop, gimple_assign_rhs1 (ass),
2311 fold_conversions, size_expr);
2312 if (op0 == chrec_dont_know)
2313 return chrec_dont_know;
2314 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2315 inner_loop, gimple_assign_rhs2 (ass),
2316 fold_conversions, size_expr);
2317 if (op1 == chrec_dont_know)
2318 return chrec_dont_know;
2319 res = fold_build2 (gimple_assign_rhs_code (ass),
2320 TREE_TYPE (chrec), op0, op1);
2321 break;
2322 }
2323 default:
2324 res = chrec_dont_know;
2325 }
2326 }
2327 else
2328 res = chrec_dont_know;
2329 global_cache->set (si, res);
2330 return res;
2331 }
2332
320f5a78
SP
2333 /* If the analysis yields a parametric chrec, instantiate the
2334 result again. */
2335 res = analyze_scalar_evolution (def_loop, chrec);
2336
2847388e 2337 /* Don't instantiate default definitions. */
320f5a78 2338 if (TREE_CODE (res) == SSA_NAME
2847388e
SP
2339 && SSA_NAME_IS_DEFAULT_DEF (res))
2340 ;
2341
2342 /* Don't instantiate loop-closed-ssa phi nodes. */
2343 else if (TREE_CODE (res) == SSA_NAME
2344 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2345 > loop_depth (def_loop))
320f5a78
SP
2346 {
2347 if (res == chrec)
2348 res = loop_closed_phi_def (chrec);
2349 else
2350 res = chrec;
2351
7472eb13
SP
2352 /* When there is no loop_closed_phi_def, it means that the
2353 variable is not used after the loop: try to still compute the
2354 value of the variable when exiting the loop. */
2355 if (res == NULL_TREE)
2356 {
2357 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2358 res = analyze_scalar_evolution (loop, chrec);
2359 res = compute_overall_effect_of_inner_loop (loop, res);
8b679c9b
RB
2360 res = instantiate_scev_r (instantiate_below, evolution_loop,
2361 inner_loop, res,
0547c9b6 2362 fold_conversions, size_expr);
7472eb13 2363 }
a68f286c
RB
2364 else if (dominated_by_p (CDI_DOMINATORS,
2365 gimple_bb (SSA_NAME_DEF_STMT (res)),
2366 instantiate_below->dest))
320f5a78
SP
2367 res = chrec_dont_know;
2368 }
2369
2370 else if (res != chrec_dont_know)
8b679c9b
RB
2371 {
2372 if (inner_loop
63fdb7be 2373 && def_bb->loop_father != inner_loop
8b679c9b
RB
2374 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2375 /* ??? We could try to compute the overall effect of the loop here. */
2376 res = chrec_dont_know;
2377 else
2378 res = instantiate_scev_r (instantiate_below, evolution_loop,
2379 inner_loop, res,
0547c9b6 2380 fold_conversions, size_expr);
8b679c9b 2381 }
320f5a78
SP
2382
2383 /* Store the correct value to the cache. */
0547c9b6 2384 global_cache->set (si, res);
320f5a78 2385 return res;
320f5a78
SP
2386}
2387
ec6636eb
SP
2388/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2389 and EVOLUTION_LOOP, that were left under a symbolic form.
2390
2391 CHREC is a polynomial chain of recurrence to be instantiated.
2392
2393 CACHE is the cache of already instantiated values.
2394
c70ed622
BC
2395 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2396 conversions that may wrap in signed/pointer type are folded, as long
2397 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2398 then we don't do such fold.
ec6636eb
SP
2399
2400 SIZE_EXPR is used for computing the size of the expression to be
2401 instantiated, and to stop if it exceeds some limit. */
2402
2403static tree
a68f286c 2404instantiate_scev_poly (edge instantiate_below,
99b1c316 2405 class loop *evolution_loop, class loop *,
c70ed622 2406 tree chrec, bool *fold_conversions, int size_expr)
ec6636eb
SP
2407{
2408 tree op1;
9e5dc77f 2409 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2410 get_chrec_loop (chrec),
0547c9b6 2411 CHREC_LEFT (chrec), fold_conversions,
ec6636eb
SP
2412 size_expr);
2413 if (op0 == chrec_dont_know)
2414 return chrec_dont_know;
2415
9e5dc77f 2416 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2417 get_chrec_loop (chrec),
0547c9b6 2418 CHREC_RIGHT (chrec), fold_conversions,
ec6636eb
SP
2419 size_expr);
2420 if (op1 == chrec_dont_know)
2421 return chrec_dont_know;
2422
2423 if (CHREC_LEFT (chrec) != op0
2424 || CHREC_RIGHT (chrec) != op1)
2425 {
2426 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
8b679c9b 2427 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
ec6636eb 2428 }
4bf4e169 2429
ec6636eb
SP
2430 return chrec;
2431}
2432
15fda317
SP
2433/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2434 and EVOLUTION_LOOP, that were left under a symbolic form.
2435
ffa34f4b 2436 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
15fda317
SP
2437
2438 CACHE is the cache of already instantiated values.
2439
c70ed622
BC
2440 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2441 conversions that may wrap in signed/pointer type are folded, as long
2442 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2443 then we don't do such fold.
15fda317
SP
2444
2445 SIZE_EXPR is used for computing the size of the expression to be
2446 instantiated, and to stop if it exceeds some limit. */
2447
2448static tree
a68f286c 2449instantiate_scev_binary (edge instantiate_below,
99b1c316 2450 class loop *evolution_loop, class loop *inner_loop,
8b679c9b 2451 tree chrec, enum tree_code code,
ffa34f4b 2452 tree type, tree c0, tree c1,
c70ed622 2453 bool *fold_conversions, int size_expr)
15fda317
SP
2454{
2455 tree op1;
8b679c9b 2456 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
0547c9b6 2457 c0, fold_conversions, size_expr);
15fda317
SP
2458 if (op0 == chrec_dont_know)
2459 return chrec_dont_know;
2460
577d6588
RB
2461 /* While we eventually compute the same op1 if c0 == c1 the process
2462 of doing this is expensive so the following short-cut prevents
2463 exponential compile-time behavior. */
2464 if (c0 != c1)
2465 {
2466 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2467 c1, fold_conversions, size_expr);
2468 if (op1 == chrec_dont_know)
2469 return chrec_dont_know;
2470 }
2471 else
2472 op1 = op0;
15fda317 2473
ffa34f4b
SP
2474 if (c0 != op0
2475 || c1 != op1)
15fda317 2476 {
15fda317
SP
2477 op0 = chrec_convert (type, op0, NULL);
2478 op1 = chrec_convert_rhs (type, op1, NULL);
2479
ffa34f4b 2480 switch (code)
15fda317
SP
2481 {
2482 case POINTER_PLUS_EXPR:
2483 case PLUS_EXPR:
2484 return chrec_fold_plus (type, op0, op1);
2485
2486 case MINUS_EXPR:
2487 return chrec_fold_minus (type, op0, op1);
2488
2489 case MULT_EXPR:
2490 return chrec_fold_multiply (type, op0, op1);
2491
2492 default:
2493 gcc_unreachable ();
2494 }
2495 }
2496
ffa34f4b 2497 return chrec ? chrec : fold_build2 (code, type, c0, c1);
15fda317
SP
2498}
2499
a213b219 2500/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
9c382ce9
SP
2501 and EVOLUTION_LOOP, that were left under a symbolic form.
2502
2503 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2504 instantiated.
2505
2506 CACHE is the cache of already instantiated values.
2507
c70ed622
BC
2508 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2509 conversions that may wrap in signed/pointer type are folded, as long
2510 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2511 then we don't do such fold.
9c382ce9
SP
2512
2513 SIZE_EXPR is used for computing the size of the expression to be
2514 instantiated, and to stop if it exceeds some limit. */
2515
2516static tree
a68f286c 2517instantiate_scev_convert (edge instantiate_below,
99b1c316 2518 class loop *evolution_loop, class loop *inner_loop,
0547c9b6 2519 tree chrec, tree type, tree op,
c70ed622 2520 bool *fold_conversions, int size_expr)
9c382ce9 2521{
8b679c9b
RB
2522 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2523 inner_loop, op,
0547c9b6 2524 fold_conversions, size_expr);
9c382ce9
SP
2525
2526 if (op0 == chrec_dont_know)
2527 return chrec_dont_know;
2528
2529 if (fold_conversions)
2530 {
c70ed622 2531 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
9c382ce9
SP
2532 if (tmp)
2533 return tmp;
9c382ce9 2534
c70ed622
BC
2535 /* If we used chrec_convert_aggressive, we can no longer assume that
2536 signed chrecs do not overflow, as chrec_convert does, so avoid
2537 calling it in that case. */
2538 if (*fold_conversions)
2539 {
2540 if (chrec && op0 == op)
2541 return chrec;
9c382ce9 2542
c70ed622
BC
2543 return fold_convert (type, op0);
2544 }
2545 }
9c382ce9
SP
2546
2547 return chrec_convert (type, op0, NULL);
2548}
2549
7ec0665d
SP
2550/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2551 and EVOLUTION_LOOP, that were left under a symbolic form.
2552
4b9d48a1 2553 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
7ec0665d 2554 Handle ~X as -1 - X.
4b9d48a1 2555 Handle -X as -1 * X.
7ec0665d
SP
2556
2557 CACHE is the cache of already instantiated values.
2558
c70ed622
BC
2559 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2560 conversions that may wrap in signed/pointer type are folded, as long
2561 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2562 then we don't do such fold.
7ec0665d
SP
2563
2564 SIZE_EXPR is used for computing the size of the expression to be
2565 instantiated, and to stop if it exceeds some limit. */
2566
2567static tree
a68f286c 2568instantiate_scev_not (edge instantiate_below,
99b1c316 2569 class loop *evolution_loop, class loop *inner_loop,
8b679c9b 2570 tree chrec,
20179b0d 2571 enum tree_code code, tree type, tree op,
c70ed622 2572 bool *fold_conversions, int size_expr)
7ec0665d 2573{
8b679c9b
RB
2574 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2575 inner_loop, op,
0547c9b6 2576 fold_conversions, size_expr);
20179b0d 2577
7ec0665d
SP
2578 if (op0 == chrec_dont_know)
2579 return chrec_dont_know;
2580
20179b0d 2581 if (op != op0)
7ec0665d
SP
2582 {
2583 op0 = chrec_convert (type, op0, NULL);
4b9d48a1 2584
20179b0d 2585 switch (code)
4b9d48a1
SP
2586 {
2587 case BIT_NOT_EXPR:
2588 return chrec_fold_minus
2589 (type, fold_convert (type, integer_minus_one_node), op0);
2590
2591 case NEGATE_EXPR:
2592 return chrec_fold_multiply
2593 (type, fold_convert (type, integer_minus_one_node), op0);
2594
2595 default:
2596 gcc_unreachable ();
2597 }
7ec0665d 2598 }
4b9d48a1 2599
20179b0d 2600 return chrec ? chrec : fold_build1 (code, type, op0);
7ec0665d
SP
2601}
2602
9e5dc77f
SP
2603/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2604 and EVOLUTION_LOOP, that were left under a symbolic form.
2605
2606 CHREC is the scalar evolution to instantiate.
2607
2608 CACHE is the cache of already instantiated values.
2282a0e6 2609
c70ed622
BC
2610 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2611 conversions that may wrap in signed/pointer type are folded, as long
2612 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2613 then we don't do such fold.
9e5dc77f
SP
2614
2615 SIZE_EXPR is used for computing the size of the expression to be
2616 instantiated, and to stop if it exceeds some limit. */
2617
2618static tree
a68f286c 2619instantiate_scev_r (edge instantiate_below,
99b1c316 2620 class loop *evolution_loop, class loop *inner_loop,
8b679c9b 2621 tree chrec,
c70ed622 2622 bool *fold_conversions, int size_expr)
9e5dc77f 2623{
47ae9e4c 2624 /* Give up if the expression is larger than the MAX that we allow. */
028d4092 2625 if (size_expr++ > param_scev_max_expr_size)
47ae9e4c
SP
2626 return chrec_dont_know;
2627
81fada9a
JJ
2628 if (chrec == NULL_TREE
2629 || automatically_generated_chrec_p (chrec)
d7770457 2630 || is_gimple_min_invariant (chrec))
9baba81b
SP
2631 return chrec;
2632
2633 switch (TREE_CODE (chrec))
2634 {
2635 case SSA_NAME:
8b679c9b
RB
2636 return instantiate_scev_name (instantiate_below, evolution_loop,
2637 inner_loop, chrec,
0547c9b6 2638 fold_conversions, size_expr);
9baba81b
SP
2639
2640 case POLYNOMIAL_CHREC:
8b679c9b
RB
2641 return instantiate_scev_poly (instantiate_below, evolution_loop,
2642 inner_loop, chrec,
0547c9b6 2643 fold_conversions, size_expr);
9baba81b 2644
5be014d5 2645 case POINTER_PLUS_EXPR:
9baba81b 2646 case PLUS_EXPR:
9baba81b 2647 case MINUS_EXPR:
9baba81b 2648 case MULT_EXPR:
8b679c9b
RB
2649 return instantiate_scev_binary (instantiate_below, evolution_loop,
2650 inner_loop, chrec,
ffa34f4b
SP
2651 TREE_CODE (chrec), chrec_type (chrec),
2652 TREE_OPERAND (chrec, 0),
2653 TREE_OPERAND (chrec, 1),
0547c9b6 2654 fold_conversions, size_expr);
9baba81b 2655
1043771b 2656 CASE_CONVERT:
8b679c9b
RB
2657 return instantiate_scev_convert (instantiate_below, evolution_loop,
2658 inner_loop, chrec,
9c382ce9 2659 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
0547c9b6 2660 fold_conversions, size_expr);
9baba81b 2661
4b9d48a1 2662 case NEGATE_EXPR:
418df9d7 2663 case BIT_NOT_EXPR:
8b679c9b
RB
2664 return instantiate_scev_not (instantiate_below, evolution_loop,
2665 inner_loop, chrec,
20179b0d
SP
2666 TREE_CODE (chrec), TREE_TYPE (chrec),
2667 TREE_OPERAND (chrec, 0),
0547c9b6 2668 fold_conversions, size_expr);
418df9d7 2669
4c7d6755 2670 case ADDR_EXPR:
a68f286c
RB
2671 if (is_gimple_min_invariant (chrec))
2672 return chrec;
2673 /* Fallthru. */
9baba81b
SP
2674 case SCEV_NOT_KNOWN:
2675 return chrec_dont_know;
2676
2677 case SCEV_KNOWN:
2678 return chrec_known;
15fda317 2679
9baba81b 2680 default:
a68f286c
RB
2681 if (CONSTANT_CLASS_P (chrec))
2682 return chrec;
2683 return chrec_dont_know;
9baba81b 2684 }
9baba81b 2685}
e9eb809d
ZD
2686
2687/* Analyze all the parameters of the chrec that were left under a
a213b219
SP
2688 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2689 recursive instantiation of parameters: a parameter is a variable
2690 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2691 a function parameter. */
e9eb809d
ZD
2692
2693tree
99b1c316 2694instantiate_scev (edge instantiate_below, class loop *evolution_loop,
3f227a8c 2695 tree chrec)
e9eb809d 2696{
9baba81b
SP
2697 tree res;
2698
dfedbe40 2699 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 2700 {
3f227a8c 2701 fprintf (dump_file, "(instantiate_scev \n");
a68f286c
RB
2702 fprintf (dump_file, " (instantiate_below = %d -> %d)\n",
2703 instantiate_below->src->index, instantiate_below->dest->index);
2704 if (evolution_loop)
2705 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
9baba81b 2706 fprintf (dump_file, " (chrec = ");
ef6cb4c7 2707 print_generic_expr (dump_file, chrec);
9baba81b
SP
2708 fprintf (dump_file, ")\n");
2709 }
b8698a0f 2710
0547c9b6
RB
2711 bool destr = false;
2712 if (!global_cache)
2713 {
2714 global_cache = new instantiate_cache_type;
2715 destr = true;
2716 }
2717
8b679c9b 2718 res = instantiate_scev_r (instantiate_below, evolution_loop,
c70ed622 2719 NULL, chrec, NULL, 0);
0547c9b6
RB
2720
2721 if (destr)
2722 {
2723 delete global_cache;
2724 global_cache = NULL;
2725 }
9baba81b 2726
dfedbe40 2727 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2728 {
2729 fprintf (dump_file, " (res = ");
ef6cb4c7 2730 print_generic_expr (dump_file, res);
9baba81b
SP
2731 fprintf (dump_file, "))\n");
2732 }
eb0bc7af 2733
9baba81b
SP
2734 return res;
2735}
2736
2737/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2738 evolutions in outer loops for LOOP invariants in CHREC, and does not
2739 care about causing overflows, as long as they do not affect value
2740 of an expression. */
9baba81b 2741
3cb960c7 2742tree
99b1c316 2743resolve_mixers (class loop *loop, tree chrec, bool *folded_casts)
9baba81b 2744{
0547c9b6 2745 bool destr = false;
c70ed622 2746 bool fold_conversions = false;
0547c9b6
RB
2747 if (!global_cache)
2748 {
2749 global_cache = new instantiate_cache_type;
2750 destr = true;
2751 }
2752
a68f286c 2753 tree ret = instantiate_scev_r (loop_preheader_edge (loop), loop, NULL,
c70ed622
BC
2754 chrec, &fold_conversions, 0);
2755
2756 if (folded_casts && !*folded_casts)
2757 *folded_casts = fold_conversions;
0547c9b6
RB
2758
2759 if (destr)
2760 {
2761 delete global_cache;
2762 global_cache = NULL;
2763 }
2764
eb0bc7af 2765 return ret;
9baba81b
SP
2766}
2767
b8698a0f 2768/* Entry point for the analysis of the number of iterations pass.
9baba81b
SP
2769 This function tries to safely approximate the number of iterations
2770 the loop will run. When this property is not decidable at compile
0a74c758
SP
2771 time, the result is chrec_dont_know. Otherwise the result is a
2772 scalar or a symbolic parameter. When the number of iterations may
2773 be equal to zero and the property cannot be determined at compile
2774 time, the result is a COND_EXPR that represents in a symbolic form
2775 the conditions under which the number of iterations is not zero.
b8698a0f 2776
9baba81b 2777 Example of analysis: suppose that the loop has an exit condition:
b8698a0f 2778
9baba81b 2779 "if (b > 49) goto end_loop;"
b8698a0f 2780
9baba81b
SP
2781 and that in a previous analysis we have determined that the
2782 variable 'b' has an evolution function:
b8698a0f
L
2783
2784 "EF = {23, +, 5}_2".
2785
9baba81b
SP
2786 When we evaluate the function at the point 5, i.e. the value of the
2787 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2788 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2789 the loop body has been executed 6 times. */
2790
b8698a0f 2791tree
99b1c316 2792number_of_latch_executions (class loop *loop)
9baba81b 2793{
9baba81b 2794 edge exit;
99b1c316 2795 class tree_niter_desc niter_desc;
0a74c758
SP
2796 tree may_be_zero;
2797 tree res;
9baba81b 2798
0a74c758 2799 /* Determine whether the number of iterations in loop has already
9baba81b
SP
2800 been computed. */
2801 res = loop->nb_iterations;
2802 if (res)
2803 return res;
0a74c758
SP
2804
2805 may_be_zero = NULL_TREE;
9baba81b 2806
dfedbe40 2807 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758 2808 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
b8698a0f 2809
0a74c758 2810 res = chrec_dont_know;
ac8f6c69 2811 exit = single_exit (loop);
9baba81b 2812
0a74c758
SP
2813 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2814 {
2815 may_be_zero = niter_desc.may_be_zero;
2816 res = niter_desc.niter;
2817 }
2818
2819 if (res == chrec_dont_know
2820 || !may_be_zero
2821 || integer_zerop (may_be_zero))
2822 ;
2823 else if (integer_nonzerop (may_be_zero))
2824 res = build_int_cst (TREE_TYPE (res), 0);
9baba81b 2825
0a74c758
SP
2826 else if (COMPARISON_CLASS_P (may_be_zero))
2827 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2828 build_int_cst (TREE_TYPE (res), 0), res);
9baba81b
SP
2829 else
2830 res = chrec_dont_know;
2831
dfedbe40 2832 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758
SP
2833 {
2834 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
ef6cb4c7 2835 print_generic_expr (dump_file, res);
0a74c758
SP
2836 fprintf (dump_file, "))\n");
2837 }
2838
2839 loop->nb_iterations = res;
2840 return res;
9baba81b 2841}
9baba81b
SP
2842\f
2843
2844/* Counters for the stats. */
2845
b8698a0f 2846struct chrec_stats
9baba81b
SP
2847{
2848 unsigned nb_chrecs;
2849 unsigned nb_affine;
2850 unsigned nb_affine_multivar;
2851 unsigned nb_higher_poly;
2852 unsigned nb_chrec_dont_know;
2853 unsigned nb_undetermined;
2854};
2855
2856/* Reset the counters. */
2857
2858static inline void
2859reset_chrecs_counters (struct chrec_stats *stats)
2860{
2861 stats->nb_chrecs = 0;
2862 stats->nb_affine = 0;
2863 stats->nb_affine_multivar = 0;
2864 stats->nb_higher_poly = 0;
2865 stats->nb_chrec_dont_know = 0;
2866 stats->nb_undetermined = 0;
2867}
2868
2869/* Dump the contents of a CHREC_STATS structure. */
2870
2871static void
2872dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2873{
2874 fprintf (file, "\n(\n");
2875 fprintf (file, "-----------------------------------------\n");
2876 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2877 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
b8698a0f 2878 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
9baba81b
SP
2879 stats->nb_higher_poly);
2880 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2881 fprintf (file, "-----------------------------------------\n");
2882 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
b8698a0f 2883 fprintf (file, "%d\twith undetermined coefficients\n",
9baba81b
SP
2884 stats->nb_undetermined);
2885 fprintf (file, "-----------------------------------------\n");
b8698a0f 2886 fprintf (file, "%d\tchrecs in the scev database\n",
907dadbd 2887 (int) scalar_evolution_info->elements ());
9baba81b
SP
2888 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2889 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2890 fprintf (file, "-----------------------------------------\n");
2891 fprintf (file, ")\n\n");
2892}
2893
2894/* Gather statistics about CHREC. */
2895
2896static void
2897gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2898{
2899 if (dump_file && (dump_flags & TDF_STATS))
2900 {
2901 fprintf (dump_file, "(classify_chrec ");
ef6cb4c7 2902 print_generic_expr (dump_file, chrec);
9baba81b
SP
2903 fprintf (dump_file, "\n");
2904 }
b8698a0f 2905
9baba81b 2906 stats->nb_chrecs++;
b8698a0f 2907
9baba81b
SP
2908 if (chrec == NULL_TREE)
2909 {
2910 stats->nb_undetermined++;
2911 return;
2912 }
b8698a0f 2913
9baba81b
SP
2914 switch (TREE_CODE (chrec))
2915 {
2916 case POLYNOMIAL_CHREC:
2917 if (evolution_function_is_affine_p (chrec))
2918 {
2919 if (dump_file && (dump_flags & TDF_STATS))
2920 fprintf (dump_file, " affine_univariate\n");
2921 stats->nb_affine++;
2922 }
a50411de 2923 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
9baba81b
SP
2924 {
2925 if (dump_file && (dump_flags & TDF_STATS))
2926 fprintf (dump_file, " affine_multivariate\n");
2927 stats->nb_affine_multivar++;
2928 }
2929 else
2930 {
2931 if (dump_file && (dump_flags & TDF_STATS))
2932 fprintf (dump_file, " higher_degree_polynomial\n");
2933 stats->nb_higher_poly++;
2934 }
b8698a0f 2935
9baba81b
SP
2936 break;
2937
2938 default:
2939 break;
2940 }
b8698a0f 2941
9baba81b
SP
2942 if (chrec_contains_undetermined (chrec))
2943 {
2944 if (dump_file && (dump_flags & TDF_STATS))
2945 fprintf (dump_file, " undetermined\n");
2946 stats->nb_undetermined++;
2947 }
b8698a0f 2948
9baba81b
SP
2949 if (dump_file && (dump_flags & TDF_STATS))
2950 fprintf (dump_file, ")\n");
2951}
2952
9baba81b
SP
2953/* Classify the chrecs of the whole database. */
2954
b8698a0f 2955void
9baba81b
SP
2956gather_stats_on_scev_database (void)
2957{
2958 struct chrec_stats stats;
b8698a0f 2959
9baba81b
SP
2960 if (!dump_file)
2961 return;
b8698a0f 2962
9baba81b 2963 reset_chrecs_counters (&stats);
b8698a0f 2964
907dadbd
TS
2965 hash_table<scev_info_hasher>::iterator iter;
2966 scev_info_str *elt;
2967 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
2968 iter)
2969 gather_chrec_stats (elt->chrec, &stats);
9baba81b
SP
2970
2971 dump_chrecs_stats (dump_file, &stats);
2972}
2973
2974\f
9baba81b
SP
2975/* Initialize the analysis of scalar evolutions for LOOPS. */
2976
2977void
d73be268 2978scev_initialize (void)
9baba81b 2979{
99b1c316 2980 class loop *loop;
9baba81b 2981
fb1fe1f3
RB
2982 gcc_assert (! scev_initialized_p ());
2983
907dadbd 2984 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
b8698a0f 2985
f0bd40b1 2986 FOR_EACH_LOOP (loop, 0)
42fd6772
ZD
2987 {
2988 loop->nb_iterations = NULL_TREE;
2989 }
9baba81b
SP
2990}
2991
e3a8f1fa
JH
2992/* Return true if SCEV is initialized. */
2993
2994bool
2995scev_initialized_p (void)
2996{
2997 return scalar_evolution_info != NULL;
2998}
2999
a7bf45de
SP
3000/* Cleans up the information cached by the scalar evolutions analysis
3001 in the hash table. */
3002
3003void
3004scev_reset_htab (void)
3005{
3006 if (!scalar_evolution_info)
3007 return;
3008
907dadbd 3009 scalar_evolution_info->empty ();
a7bf45de
SP
3010}
3011
3012/* Cleans up the information cached by the scalar evolutions analysis
3013 in the hash table and in the loop->nb_iterations. */
9baba81b
SP
3014
3015void
3016scev_reset (void)
3017{
99b1c316 3018 class loop *loop;
9baba81b 3019
a7bf45de
SP
3020 scev_reset_htab ();
3021
f0bd40b1 3022 FOR_EACH_LOOP (loop, 0)
9baba81b 3023 {
42fd6772 3024 loop->nb_iterations = NULL_TREE;
9baba81b 3025 }
e9eb809d
ZD
3026}
3027
1e3d54b4
JH
3028/* Return true if the IV calculation in TYPE can overflow based on the knowledge
3029 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3030 of IV.
3031
3032 We do not use information whether TYPE can overflow so it is safe to
3033 use this test even for derived IVs not computed every iteration or
3034 hypotetical IVs to be inserted into code. */
3035
019d6598 3036bool
99b1c316 3037iv_can_overflow_p (class loop *loop, tree type, tree base, tree step)
1e3d54b4
JH
3038{
3039 widest_int nit;
3040 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3041 signop sgn = TYPE_SIGN (type);
3042
3043 if (integer_zerop (step))
3044 return false;
3045
3046 if (TREE_CODE (base) == INTEGER_CST)
8e6cdc90 3047 base_min = base_max = wi::to_wide (base);
1e3d54b4
JH
3048 else if (TREE_CODE (base) == SSA_NAME
3049 && INTEGRAL_TYPE_P (TREE_TYPE (base))
3050 && get_range_info (base, &base_min, &base_max) == VR_RANGE)
3051 ;
3052 else
3053 return true;
3054
3055 if (TREE_CODE (step) == INTEGER_CST)
8e6cdc90 3056 step_min = step_max = wi::to_wide (step);
1e3d54b4
JH
3057 else if (TREE_CODE (step) == SSA_NAME
3058 && INTEGRAL_TYPE_P (TREE_TYPE (step))
3059 && get_range_info (step, &step_min, &step_max) == VR_RANGE)
3060 ;
3061 else
3062 return true;
3063
3064 if (!get_max_loop_iterations (loop, &nit))
3065 return true;
3066
3067 type_min = wi::min_value (type);
3068 type_max = wi::max_value (type);
3069
3070 /* Just sanity check that we don't see values out of the range of the type.
3071 In this case the arithmetics bellow would overflow. */
3072 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3073 && wi::le_p (base_max, type_max, sgn));
3074
3075 /* Account the possible increment in the last ieration. */
4a669ac3 3076 wi::overflow_type overflow = wi::OVF_NONE;
1e3d54b4
JH
3077 nit = wi::add (nit, 1, SIGNED, &overflow);
3078 if (overflow)
3079 return true;
3080
3081 /* NIT is typeless and can exceed the precision of the type. In this case
3082 overflow is always possible, because we know STEP is non-zero. */
3083 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3084 return true;
3085 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3086
3087 /* If step can be positive, check that nit*step <= type_max-base.
3088 This can be done by unsigned arithmetic and we only need to watch overflow
3089 in the multiplication. The right hand side can always be represented in
3090 the type. */
3091 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3092 {
4a669ac3 3093 wi::overflow_type overflow = wi::OVF_NONE;
1e3d54b4
JH
3094 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3095 type_max - base_max)
3096 || overflow)
3097 return true;
3098 }
3099 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3100 if (sgn == SIGNED && wi::neg_p (step_min))
3101 {
4a669ac3
AH
3102 wi::overflow_type overflow, overflow2;
3103 overflow = overflow2 = wi::OVF_NONE;
1e3d54b4
JH
3104 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3105 nit2, UNSIGNED, &overflow),
3106 base_min - type_min)
3107 || overflow || overflow2)
3108 return true;
3109 }
3110
3111 return false;
3112}
3113
43aabfcf
BC
3114/* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3115 function tries to derive condition under which it can be simplified
3116 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3117 the maximum number that inner iv can iterate. */
3118
3119static tree
3120derive_simple_iv_with_niters (tree ev, tree *niters)
3121{
3122 if (!CONVERT_EXPR_P (ev))
3123 return ev;
3124
3125 tree inner_ev = TREE_OPERAND (ev, 0);
3126 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3127 return ev;
3128
3129 tree init = CHREC_LEFT (inner_ev);
3130 tree step = CHREC_RIGHT (inner_ev);
3131 if (TREE_CODE (init) != INTEGER_CST
3132 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3133 return ev;
3134
3135 tree type = TREE_TYPE (ev);
3136 tree inner_type = TREE_TYPE (inner_ev);
3137 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3138 return ev;
3139
3140 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3141 folded only if inner iv won't overflow. We compute the maximum
3142 number the inner iv can iterate before overflowing and return the
3143 simplified affine iv. */
3144 tree delta;
3145 init = fold_convert (type, init);
3146 step = fold_convert (type, step);
3147 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3148 if (tree_int_cst_sign_bit (step))
3149 {
3150 tree bound = lower_bound_in_type (inner_type, inner_type);
3151 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3152 step = fold_build1 (NEGATE_EXPR, type, step);
3153 }
3154 else
3155 {
3156 tree bound = upper_bound_in_type (inner_type, inner_type);
3157 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3158 }
3159 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3160 return ev;
3161}
3162
f017bf5e
ZD
3163/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3164 respect to WRTO_LOOP and returns its base and step in IV if possible
3165 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3166 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3167 invariant in LOOP. Otherwise we require it to be an integer constant.
b8698a0f 3168
f017bf5e
ZD
3169 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3170 because it is computed in signed arithmetics). Consequently, adding an
3171 induction variable
b8698a0f 3172
f017bf5e
ZD
3173 for (i = IV->base; ; i += IV->step)
3174
3175 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3176 false for the type of the induction variable, or you can prove that i does
3177 not wrap by some other argument. Otherwise, this might introduce undefined
3178 behavior, and
b8698a0f 3179
43aabfcf
BC
3180 i = iv->base;
3181 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3182
3183 must be used instead.
3184
3185 When IV_NITERS is not NULL, this function also checks case in which OP
3186 is a conversion of an inner simple iv of below form:
3187
3188 (outer_type){inner_base, inner_step}_loop.
f017bf5e 3189
43aabfcf
BC
3190 If type of inner iv has smaller precision than outer_type, it can't be
3191 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3192 the inner iv could overflow/wrap. In this case, we derive a condition
3193 under which the inner iv won't overflow/wrap and do the simplification.
3194 The derived condition normally is the maximum number the inner iv can
3195 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3196 analysis, to derive break conditions when a loop must terminate, when is
3197 infinite. */
e9eb809d
ZD
3198
3199bool
99b1c316 3200simple_iv_with_niters (class loop *wrto_loop, class loop *use_loop,
43aabfcf
BC
3201 tree op, affine_iv *iv, tree *iv_niters,
3202 bool allow_nonconstant_step)
e9eb809d 3203{
f3c5f3a3 3204 enum tree_code code;
8aa46dd2 3205 tree type, ev, base, e;
f3c5f3a3 3206 wide_int extreme;
4a669ac3 3207 bool folded_casts;
9baba81b 3208
a6f778b2
ZD
3209 iv->base = NULL_TREE;
3210 iv->step = NULL_TREE;
3211 iv->no_overflow = false;
9baba81b
SP
3212
3213 type = TREE_TYPE (op);
1ee0d660
EB
3214 if (!POINTER_TYPE_P (type)
3215 && !INTEGRAL_TYPE_P (type))
9baba81b
SP
3216 return false;
3217
f017bf5e 3218 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
a6f778b2 3219 &folded_casts);
f017bf5e
ZD
3220 if (chrec_contains_undetermined (ev)
3221 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
9baba81b
SP
3222 return false;
3223
f017bf5e 3224 if (tree_does_not_contain_chrecs (ev))
9baba81b 3225 {
a6f778b2 3226 iv->base = ev;
6e42ce54 3227 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 3228 iv->no_overflow = true;
9baba81b
SP
3229 return true;
3230 }
3231
43aabfcf
BC
3232 /* If we can derive valid scalar evolution with assumptions. */
3233 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3234 ev = derive_simple_iv_with_niters (ev, iv_niters);
3235
3236 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3237 return false;
3238
3239 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
9baba81b
SP
3240 return false;
3241
a6f778b2 3242 iv->step = CHREC_RIGHT (ev);
f017bf5e
ZD
3243 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3244 || tree_contains_chrecs (iv->step, NULL))
9baba81b 3245 return false;
9be872b7 3246
a6f778b2 3247 iv->base = CHREC_LEFT (ev);
f017bf5e 3248 if (tree_contains_chrecs (iv->base, NULL))
9baba81b
SP
3249 return false;
3250
1210573b 3251 iv->no_overflow = !folded_casts && nowrap_type_p (type);
eeef0e45 3252
1e3d54b4
JH
3253 if (!iv->no_overflow
3254 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3255 iv->no_overflow = true;
3256
f3c5f3a3
BC
3257 /* Try to simplify iv base:
3258
3259 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3260 == (signed T)(unsigned T)base + step
3261 == base + step
3262
3263 If we can prove operation (base + step) doesn't overflow or underflow.
3264 Specifically, we try to prove below conditions are satisfied:
3265
3266 base <= UPPER_BOUND (type) - step ;;step > 0
3267 base >= LOWER_BOUND (type) - step ;;step < 0
3268
3269 This is done by proving the reverse conditions are false using loop's
3270 initial conditions.
3271
3272 The is necessary to make loop niter, or iv overflow analysis easier
3273 for below example:
3274
3275 int foo (int *a, signed char s, signed char l)
3276 {
3277 signed char i;
3278 for (i = s; i < l; i++)
3279 a[i] = 0;
3280 return 0;
3281 }
3282
3283 Note variable I is firstly converted to type unsigned char, incremented,
3284 then converted back to type signed char. */
3285
3286 if (wrto_loop->num != use_loop->num)
3287 return true;
3288
3289 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3290 return true;
3291
3292 type = TREE_TYPE (iv->base);
3293 e = TREE_OPERAND (iv->base, 0);
3294 if (TREE_CODE (e) != PLUS_EXPR
3295 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3296 || !tree_int_cst_equal (iv->step,
3297 fold_convert (type, TREE_OPERAND (e, 1))))
3298 return true;
3299 e = TREE_OPERAND (e, 0);
3300 if (!CONVERT_EXPR_P (e))
3301 return true;
3302 base = TREE_OPERAND (e, 0);
3303 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3304 return true;
3305
3306 if (tree_int_cst_sign_bit (iv->step))
3307 {
3308 code = LT_EXPR;
3309 extreme = wi::min_value (type);
3310 }
3311 else
3312 {
3313 code = GT_EXPR;
3314 extreme = wi::max_value (type);
3315 }
4a669ac3 3316 wi::overflow_type overflow = wi::OVF_NONE;
8e6cdc90
RS
3317 extreme = wi::sub (extreme, wi::to_wide (iv->step),
3318 TYPE_SIGN (type), &overflow);
f3c5f3a3
BC
3319 if (overflow)
3320 return true;
3321 e = fold_build2 (code, boolean_type_node, base,
3322 wide_int_to_tree (type, extreme));
8aa46dd2 3323 e = simplify_using_initial_conditions (use_loop, e);
f3c5f3a3
BC
3324 if (!integer_zerop (e))
3325 return true;
3326
3327 if (POINTER_TYPE_P (TREE_TYPE (base)))
3328 code = POINTER_PLUS_EXPR;
3329 else
3330 code = PLUS_EXPR;
3331
3332 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
9baba81b
SP
3333 return true;
3334}
3335
43aabfcf
BC
3336/* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3337 affine iv unconditionally. */
3338
3339bool
99b1c316 3340simple_iv (class loop *wrto_loop, class loop *use_loop, tree op,
43aabfcf
BC
3341 affine_iv *iv, bool allow_nonconstant_step)
3342{
3343 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3344 NULL, allow_nonconstant_step);
3345}
3346
9baba81b
SP
3347/* Finalize the scalar evolution analysis. */
3348
3349void
3350scev_finalize (void)
3351{
d51157de
ZD
3352 if (!scalar_evolution_info)
3353 return;
907dadbd 3354 scalar_evolution_info->empty ();
c7b852c8 3355 scalar_evolution_info = NULL;
01f1c24e 3356 free_numbers_of_iterations_estimates (cfun);
9baba81b
SP
3357}
3358
771f882e
ZD
3359/* Returns true if the expression EXPR is considered to be too expensive
3360 for scev_const_prop. */
3361
5fd8a9cb
RB
3362static bool
3363expression_expensive_p (tree expr, hash_map<tree, uint64_t> &cache,
3364 uint64_t &cost)
771f882e
ZD
3365{
3366 enum tree_code code;
3367
3368 if (is_gimple_val (expr))
3369 return false;
3370
3371 code = TREE_CODE (expr);
3372 if (code == TRUNC_DIV_EXPR
3373 || code == CEIL_DIV_EXPR
3374 || code == FLOOR_DIV_EXPR
3375 || code == ROUND_DIV_EXPR
3376 || code == TRUNC_MOD_EXPR
3377 || code == CEIL_MOD_EXPR
3378 || code == FLOOR_MOD_EXPR
3379 || code == ROUND_MOD_EXPR
3380 || code == EXACT_DIV_EXPR)
3381 {
3382 /* Division by power of two is usually cheap, so we allow it.
3383 Forbid anything else. */
3384 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3385 return true;
3386 }
3387
5fd8a9cb
RB
3388 bool visited_p;
3389 uint64_t &local_cost = cache.get_or_insert (expr, &visited_p);
3390 if (visited_p)
3391 {
3392 uint64_t tem = cost + local_cost;
3393 if (tem < cost)
3394 return true;
3395 cost = tem;
3396 return false;
3397 }
3398 local_cost = 1;
3399
3400 uint64_t op_cost = 0;
5126ae0c
KV
3401 if (code == CALL_EXPR)
3402 {
3403 tree arg;
3404 call_expr_arg_iterator iter;
06a6b46a
KV
3405 /* Even though is_inexpensive_builtin might say true, we will get a
3406 library call for popcount when backend does not have an instruction
3407 to do so. We consider this to be expenseive and generate
3408 __builtin_popcount only when backend defines it. */
3409 combined_fn cfn = get_call_combined_fn (expr);
3410 switch (cfn)
3411 {
3412 CASE_CFN_POPCOUNT:
3413 /* Check if opcode for popcount is available in the mode required. */
3414 if (optab_handler (popcount_optab,
3415 TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
3416 == CODE_FOR_nothing)
3417 {
3418 machine_mode mode;
3419 mode = TYPE_MODE (TREE_TYPE (CALL_EXPR_ARG (expr, 0)));
3420 scalar_int_mode int_mode;
3421
3422 /* If the mode is of 2 * UNITS_PER_WORD size, we can handle
3423 double-word popcount by emitting two single-word popcount
3424 instructions. */
3425 if (is_a <scalar_int_mode> (mode, &int_mode)
3426 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
3427 && (optab_handler (popcount_optab, word_mode)
3428 != CODE_FOR_nothing))
3429 break;
3430 return true;
3431 }
3432 default:
3433 break;
3434 }
5126ae0c
KV
3435
3436 if (!is_inexpensive_builtin (get_callee_fndecl (expr)))
3437 return true;
3438 FOR_EACH_CALL_EXPR_ARG (arg, iter, expr)
5fd8a9cb 3439 if (expression_expensive_p (arg, cache, op_cost))
5126ae0c 3440 return true;
5fd8a9cb
RB
3441 *cache.get (expr) += op_cost;
3442 cost += op_cost + 1;
5126ae0c
KV
3443 return false;
3444 }
3445
3f6f3319 3446 if (code == COND_EXPR)
5fd8a9cb
RB
3447 {
3448 if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost)
3449 || (EXPR_P (TREE_OPERAND (expr, 1))
3450 && EXPR_P (TREE_OPERAND (expr, 2)))
3451 /* If either branch has side effects or could trap. */
3452 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
3453 || generic_expr_could_trap_p (TREE_OPERAND (expr, 1))
3454 || TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0))
3455 || generic_expr_could_trap_p (TREE_OPERAND (expr, 0))
3456 || expression_expensive_p (TREE_OPERAND (expr, 1),
3457 cache, op_cost)
3458 || expression_expensive_p (TREE_OPERAND (expr, 2),
3459 cache, op_cost))
3460 return true;
3461 *cache.get (expr) += op_cost;
3462 cost += op_cost + 1;
3463 return false;
3464 }
3f6f3319 3465
771f882e
ZD
3466 switch (TREE_CODE_CLASS (code))
3467 {
3468 case tcc_binary:
3469 case tcc_comparison:
5fd8a9cb 3470 if (expression_expensive_p (TREE_OPERAND (expr, 1), cache, op_cost))
771f882e
ZD
3471 return true;
3472
3473 /* Fallthru. */
3474 case tcc_unary:
5fd8a9cb
RB
3475 if (expression_expensive_p (TREE_OPERAND (expr, 0), cache, op_cost))
3476 return true;
3477 *cache.get (expr) += op_cost;
3478 cost += op_cost + 1;
3479 return false;
771f882e
ZD
3480
3481 default:
3482 return true;
3483 }
3484}
3485
5fd8a9cb
RB
3486bool
3487expression_expensive_p (tree expr)
3488{
3489 hash_map<tree, uint64_t> cache;
3490 uint64_t expanded_size = 0;
3491 return (expression_expensive_p (expr, cache, expanded_size)
3492 || expanded_size > cache.elements ());
3493}
3494
4cc31a3c 3495/* Do final value replacement for LOOP, return true if we did anything. */
f993a853 3496
4cc31a3c 3497bool
99b1c316 3498final_value_replacement_loop (class loop *loop)
f993a853
TV
3499{
3500 /* If we do not know exact number of iterations of the loop, we cannot
3501 replace the final value. */
3502 edge exit = single_exit (loop);
3503 if (!exit)
4cc31a3c 3504 return false;
f993a853
TV
3505
3506 tree niter = number_of_latch_executions (loop);
3507 if (niter == chrec_dont_know)
4cc31a3c 3508 return false;
f993a853
TV
3509
3510 /* Ensure that it is possible to insert new statements somewhere. */
3511 if (!single_pred_p (exit->dest))
3512 split_loop_exit_edge (exit);
3513
3514 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3515 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3516
99b1c316 3517 class loop *ex_loop
f993a853
TV
3518 = superloop_at_depth (loop,
3519 loop_depth (exit->dest->loop_father) + 1);
3520
4cc31a3c 3521 bool any = false;
f993a853
TV
3522 gphi_iterator psi;
3523 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3524 {
3525 gphi *phi = psi.phi ();
3526 tree rslt = PHI_RESULT (phi);
3527 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3528 if (virtual_operand_p (def))
3529 {
3530 gsi_next (&psi);
3531 continue;
3532 }
3533
3534 if (!POINTER_TYPE_P (TREE_TYPE (def))
3535 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3536 {
3537 gsi_next (&psi);
3538 continue;
3539 }
3540
3541 bool folded_casts;
3542 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3543 &folded_casts);
3544 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3545 if (!tree_does_not_contain_chrecs (def)
3546 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3547 /* Moving the computation from the loop may prolong life range
3548 of some ssa names, which may cause problems if they appear
3549 on abnormal edges. */
3550 || contains_abnormal_ssa_name_p (def)
3551 /* Do not emit expensive expressions. The rationale is that
3552 when someone writes a code like
3553
3554 while (n > 45) n -= 45;
3555
3556 he probably knows that n is not large, and does not want it
3557 to be turned into n %= 45. */
3558 || expression_expensive_p (def))
3559 {
3560 if (dump_file && (dump_flags & TDF_DETAILS))
3561 {
3562 fprintf (dump_file, "not replacing:\n ");
ef6cb4c7 3563 print_gimple_stmt (dump_file, phi, 0);
f993a853
TV
3564 fprintf (dump_file, "\n");
3565 }
3566 gsi_next (&psi);
3567 continue;
3568 }
3569
3570 /* Eliminate the PHI node and replace it by a computation outside
3571 the loop. */
3572 if (dump_file)
3573 {
3574 fprintf (dump_file, "\nfinal value replacement:\n ");
ef6cb4c7 3575 print_gimple_stmt (dump_file, phi, 0);
47a5f7dd
AM
3576 fprintf (dump_file, " with expr: ");
3577 print_generic_expr (dump_file, def);
f993a853 3578 }
4cc31a3c 3579 any = true;
f993a853
TV
3580 def = unshare_expr (def);
3581 remove_phi_node (&psi, false);
3582
3583 /* If def's type has undefined overflow and there were folded
3584 casts, rewrite all stmts added for def into arithmetics
3585 with defined overflow behavior. */
3586 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3587 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3588 {
3589 gimple_seq stmts;
3590 gimple_stmt_iterator gsi2;
3591 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3592 gsi2 = gsi_start (stmts);
3593 while (!gsi_end_p (gsi2))
3594 {
3595 gimple *stmt = gsi_stmt (gsi2);
3596 gimple_stmt_iterator gsi3 = gsi2;
3597 gsi_next (&gsi2);
3598 gsi_remove (&gsi3, false);
3599 if (is_gimple_assign (stmt)
3600 && arith_code_with_undefined_signed_overflow
3601 (gimple_assign_rhs_code (stmt)))
3602 gsi_insert_seq_before (&gsi,
3603 rewrite_to_defined_overflow (stmt),
3604 GSI_SAME_STMT);
3605 else
3606 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3607 }
3608 }
3609 else
3610 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3611 true, GSI_SAME_STMT);
3612
3613 gassign *ass = gimple_build_assign (rslt, def);
ffdc40a9
EB
3614 gimple_set_location (ass,
3615 gimple_phi_arg_location (phi, exit->dest_idx));
f993a853
TV
3616 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3617 if (dump_file)
3618 {
47a5f7dd 3619 fprintf (dump_file, "\n final stmt:\n ");
ef6cb4c7 3620 print_gimple_stmt (dump_file, ass, 0);
f993a853
TV
3621 fprintf (dump_file, "\n");
3622 }
3623 }
925196ed 3624
4cc31a3c 3625 return any;
684aaf29 3626}
9e2f83a5
ZD
3627
3628#include "gt-tree-scalar-evolution.h"