]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/ada-lang.c
PR c++/11026:
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
50810684 68static void modify_general_field (struct type *, char *, LONGEST, int, int);
14f9c5c9 69
d2e4a39e 70static struct type *desc_base_type (struct type *);
14f9c5c9 71
d2e4a39e 72static struct type *desc_bounds_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct value *desc_bounds (struct value *);
14f9c5c9 75
d2e4a39e 76static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 79
556bdfd4 80static struct type *desc_data_target_type (struct type *);
14f9c5c9 81
d2e4a39e 82static struct value *desc_data (struct value *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 89
d2e4a39e 90static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static struct type *desc_index_type (struct type *, int);
14f9c5c9 95
d2e4a39e 96static int desc_arity (struct type *);
14f9c5c9 97
d2e4a39e 98static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 99
d2e4a39e 100static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 101
4a399546
UW
102static struct value *ensure_lval (struct value *,
103 struct gdbarch *, CORE_ADDR *);
14f9c5c9 104
d2e4a39e 105static struct value *make_array_descriptor (struct type *, struct value *,
4a399546 106 struct gdbarch *, CORE_ADDR *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
76a01679 109 struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 115 struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
d2e4a39e 121static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
122 *, const char *, int,
123 domain_enum, int);
14f9c5c9 124
4c4b4cd2 125static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 126 struct type *);
14f9c5c9 127
d2e4a39e 128static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 129 struct symbol *, struct block *);
14f9c5c9 130
d2e4a39e 131static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 132
4c4b4cd2
PH
133static char *ada_op_name (enum exp_opcode);
134
135static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 136
d2e4a39e 137static int numeric_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int integer_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int scalar_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int discrete_type_p (struct type *);
14f9c5c9 144
aeb5907d
JB
145static enum ada_renaming_category parse_old_style_renaming (struct type *,
146 const char **,
147 int *,
148 const char **);
149
150static struct symbol *find_old_style_renaming_symbol (const char *,
151 struct block *);
152
4c4b4cd2 153static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 154 int, int, int *);
4c4b4cd2 155
d2e4a39e 156static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 157
b4ba55a1
JB
158static struct type *ada_find_parallel_type_with_name (struct type *,
159 const char *);
160
d2e4a39e 161static int is_dynamic_field (struct type *, int);
14f9c5c9 162
10a2c479 163static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 164 const gdb_byte *,
4c4b4cd2
PH
165 CORE_ADDR, struct value *);
166
167static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 168
d2e4a39e 169static struct type *to_fixed_range_type (char *, struct value *,
1ce677a4 170 struct type *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
d2e4a39e 205static int wild_match (const char *, int, const char *);
14f9c5c9 206
d2e4a39e 207static struct value *ada_coerce_ref (struct value *);
14f9c5c9 208
4c4b4cd2
PH
209static LONGEST pos_atr (struct value *);
210
3cb382c9 211static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 212
d2e4a39e 213static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 214
4c4b4cd2
PH
215static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
14f9c5c9 217
4c4b4cd2
PH
218static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
76a01679 224static int find_struct_field (char *, struct type *, int,
52ce6436 225 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
226
227static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236static struct value *ada_coerce_to_simple_array (struct value *);
237
238static int ada_is_direct_array_type (struct type *);
239
72d5681a
PH
240static void ada_language_arch_info (struct gdbarch *,
241 struct language_arch_info *);
714e53ab
PH
242
243static void check_size (const struct type *);
52ce6436
PH
244
245static struct value *ada_index_struct_field (int, struct value *, int,
246 struct type *);
247
248static struct value *assign_aggregate (struct value *, struct value *,
249 struct expression *, int *, enum noside);
250
251static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
4c4b4cd2
PH
275\f
276
76a01679 277
4c4b4cd2 278/* Maximum-sized dynamic type. */
14f9c5c9
AS
279static unsigned int varsize_limit;
280
4c4b4cd2
PH
281/* FIXME: brobecker/2003-09-17: No longer a const because it is
282 returned by a function that does not return a const char *. */
283static char *ada_completer_word_break_characters =
284#ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286#else
14f9c5c9 287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 288#endif
14f9c5c9 289
4c4b4cd2 290/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 291static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 292 = "__gnat_ada_main_program_name";
14f9c5c9 293
4c4b4cd2
PH
294/* Limit on the number of warnings to raise per expression evaluation. */
295static int warning_limit = 2;
296
297/* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299static int warnings_issued = 0;
300
301static const char *known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303};
304
305static const char *known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307};
308
309/* Space for allocating results of ada_lookup_symbol_list. */
310static struct obstack symbol_list_obstack;
311
312 /* Utilities */
313
41d27058
JB
314/* Given DECODED_NAME a string holding a symbol name in its
315 decoded form (ie using the Ada dotted notation), returns
316 its unqualified name. */
317
318static const char *
319ada_unqualified_name (const char *decoded_name)
320{
321 const char *result = strrchr (decoded_name, '.');
322
323 if (result != NULL)
324 result++; /* Skip the dot... */
325 else
326 result = decoded_name;
327
328 return result;
329}
330
331/* Return a string starting with '<', followed by STR, and '>'.
332 The result is good until the next call. */
333
334static char *
335add_angle_brackets (const char *str)
336{
337 static char *result = NULL;
338
339 xfree (result);
88c15c34 340 result = xstrprintf ("<%s>", str);
41d27058
JB
341 return result;
342}
96d887e8 343
4c4b4cd2
PH
344static char *
345ada_get_gdb_completer_word_break_characters (void)
346{
347 return ada_completer_word_break_characters;
348}
349
e79af960
JB
350/* Print an array element index using the Ada syntax. */
351
352static void
353ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 354 const struct value_print_options *options)
e79af960 355{
79a45b7d 356 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
357 fprintf_filtered (stream, " => ");
358}
359
f27cf670 360/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 361 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 362 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 363
f27cf670
AS
364void *
365grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 366{
d2e4a39e
AS
367 if (*size < min_size)
368 {
369 *size *= 2;
370 if (*size < min_size)
4c4b4cd2 371 *size = min_size;
f27cf670 372 vect = xrealloc (vect, *size * element_size);
d2e4a39e 373 }
f27cf670 374 return vect;
14f9c5c9
AS
375}
376
377/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 378 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
379
380static int
ebf56fd3 381field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
382{
383 int len = strlen (target);
d2e4a39e 384 return
4c4b4cd2
PH
385 (strncmp (field_name, target, len) == 0
386 && (field_name[len] == '\0'
387 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
388 && strcmp (field_name + strlen (field_name) - 6,
389 "___XVN") != 0)));
14f9c5c9
AS
390}
391
392
872c8b51
JB
393/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
394 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
395 and return its index. This function also handles fields whose name
396 have ___ suffixes because the compiler sometimes alters their name
397 by adding such a suffix to represent fields with certain constraints.
398 If the field could not be found, return a negative number if
399 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
400
401int
402ada_get_field_index (const struct type *type, const char *field_name,
403 int maybe_missing)
404{
405 int fieldno;
872c8b51
JB
406 struct type *struct_type = check_typedef ((struct type *) type);
407
408 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
409 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
410 return fieldno;
411
412 if (!maybe_missing)
323e0a4a 413 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 414 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
415
416 return -1;
417}
418
419/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
420
421int
d2e4a39e 422ada_name_prefix_len (const char *name)
14f9c5c9
AS
423{
424 if (name == NULL)
425 return 0;
d2e4a39e 426 else
14f9c5c9 427 {
d2e4a39e 428 const char *p = strstr (name, "___");
14f9c5c9 429 if (p == NULL)
4c4b4cd2 430 return strlen (name);
14f9c5c9 431 else
4c4b4cd2 432 return p - name;
14f9c5c9
AS
433 }
434}
435
4c4b4cd2
PH
436/* Return non-zero if SUFFIX is a suffix of STR.
437 Return zero if STR is null. */
438
14f9c5c9 439static int
d2e4a39e 440is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
441{
442 int len1, len2;
443 if (str == NULL)
444 return 0;
445 len1 = strlen (str);
446 len2 = strlen (suffix);
4c4b4cd2 447 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
448}
449
4c4b4cd2
PH
450/* The contents of value VAL, treated as a value of type TYPE. The
451 result is an lval in memory if VAL is. */
14f9c5c9 452
d2e4a39e 453static struct value *
4c4b4cd2 454coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 455{
61ee279c 456 type = ada_check_typedef (type);
df407dfe 457 if (value_type (val) == type)
4c4b4cd2 458 return val;
d2e4a39e 459 else
14f9c5c9 460 {
4c4b4cd2
PH
461 struct value *result;
462
463 /* Make sure that the object size is not unreasonable before
464 trying to allocate some memory for it. */
714e53ab 465 check_size (type);
4c4b4cd2
PH
466
467 result = allocate_value (type);
74bcbdf3 468 set_value_component_location (result, val);
9bbda503
AC
469 set_value_bitsize (result, value_bitsize (val));
470 set_value_bitpos (result, value_bitpos (val));
42ae5230 471 set_value_address (result, value_address (val));
d69fe07e 472 if (value_lazy (val)
df407dfe 473 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 474 set_value_lazy (result, 1);
d2e4a39e 475 else
0fd88904 476 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 477 TYPE_LENGTH (type));
14f9c5c9
AS
478 return result;
479 }
480}
481
fc1a4b47
AC
482static const gdb_byte *
483cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
484{
485 if (valaddr == NULL)
486 return NULL;
487 else
488 return valaddr + offset;
489}
490
491static CORE_ADDR
ebf56fd3 492cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
493{
494 if (address == 0)
495 return 0;
d2e4a39e 496 else
14f9c5c9
AS
497 return address + offset;
498}
499
4c4b4cd2
PH
500/* Issue a warning (as for the definition of warning in utils.c, but
501 with exactly one argument rather than ...), unless the limit on the
502 number of warnings has passed during the evaluation of the current
503 expression. */
a2249542 504
77109804
AC
505/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
506 provided by "complaint". */
507static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
508
14f9c5c9 509static void
a2249542 510lim_warning (const char *format, ...)
14f9c5c9 511{
a2249542
MK
512 va_list args;
513 va_start (args, format);
514
4c4b4cd2
PH
515 warnings_issued += 1;
516 if (warnings_issued <= warning_limit)
a2249542
MK
517 vwarning (format, args);
518
519 va_end (args);
4c4b4cd2
PH
520}
521
714e53ab
PH
522/* Issue an error if the size of an object of type T is unreasonable,
523 i.e. if it would be a bad idea to allocate a value of this type in
524 GDB. */
525
526static void
527check_size (const struct type *type)
528{
529 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 530 error (_("object size is larger than varsize-limit"));
714e53ab
PH
531}
532
533
c3e5cd34
PH
534/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
535 gdbtypes.h, but some of the necessary definitions in that file
536 seem to have gone missing. */
537
538/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 539static LONGEST
c3e5cd34 540max_of_size (int size)
4c4b4cd2 541{
76a01679
JB
542 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
543 return top_bit | (top_bit - 1);
4c4b4cd2
PH
544}
545
c3e5cd34 546/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 547static LONGEST
c3e5cd34 548min_of_size (int size)
4c4b4cd2 549{
c3e5cd34 550 return -max_of_size (size) - 1;
4c4b4cd2
PH
551}
552
c3e5cd34 553/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 554static ULONGEST
c3e5cd34 555umax_of_size (int size)
4c4b4cd2 556{
76a01679
JB
557 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
558 return top_bit | (top_bit - 1);
4c4b4cd2
PH
559}
560
c3e5cd34
PH
561/* Maximum value of integral type T, as a signed quantity. */
562static LONGEST
563max_of_type (struct type *t)
4c4b4cd2 564{
c3e5cd34
PH
565 if (TYPE_UNSIGNED (t))
566 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
567 else
568 return max_of_size (TYPE_LENGTH (t));
569}
570
571/* Minimum value of integral type T, as a signed quantity. */
572static LONGEST
573min_of_type (struct type *t)
574{
575 if (TYPE_UNSIGNED (t))
576 return 0;
577 else
578 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
579}
580
581/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
582LONGEST
583ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 584{
76a01679 585 switch (TYPE_CODE (type))
4c4b4cd2
PH
586 {
587 case TYPE_CODE_RANGE:
690cc4eb 588 return TYPE_HIGH_BOUND (type);
4c4b4cd2 589 case TYPE_CODE_ENUM:
690cc4eb
PH
590 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
591 case TYPE_CODE_BOOL:
592 return 1;
593 case TYPE_CODE_CHAR:
76a01679 594 case TYPE_CODE_INT:
690cc4eb 595 return max_of_type (type);
4c4b4cd2 596 default:
43bbcdc2 597 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
598 }
599}
600
601/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
602LONGEST
603ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 604{
76a01679 605 switch (TYPE_CODE (type))
4c4b4cd2
PH
606 {
607 case TYPE_CODE_RANGE:
690cc4eb 608 return TYPE_LOW_BOUND (type);
4c4b4cd2 609 case TYPE_CODE_ENUM:
690cc4eb
PH
610 return TYPE_FIELD_BITPOS (type, 0);
611 case TYPE_CODE_BOOL:
612 return 0;
613 case TYPE_CODE_CHAR:
76a01679 614 case TYPE_CODE_INT:
690cc4eb 615 return min_of_type (type);
4c4b4cd2 616 default:
43bbcdc2 617 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
618 }
619}
620
621/* The identity on non-range types. For range types, the underlying
76a01679 622 non-range scalar type. */
4c4b4cd2
PH
623
624static struct type *
625base_type (struct type *type)
626{
627 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
628 {
76a01679
JB
629 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
630 return type;
4c4b4cd2
PH
631 type = TYPE_TARGET_TYPE (type);
632 }
633 return type;
14f9c5c9 634}
4c4b4cd2 635\f
76a01679 636
4c4b4cd2 637 /* Language Selection */
14f9c5c9
AS
638
639/* If the main program is in Ada, return language_ada, otherwise return LANG
640 (the main program is in Ada iif the adainit symbol is found).
641
4c4b4cd2 642 MAIN_PST is not used. */
d2e4a39e 643
14f9c5c9 644enum language
d2e4a39e 645ada_update_initial_language (enum language lang,
4c4b4cd2 646 struct partial_symtab *main_pst)
14f9c5c9 647{
d2e4a39e 648 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
649 (struct objfile *) NULL) != NULL)
650 return language_ada;
14f9c5c9
AS
651
652 return lang;
653}
96d887e8
PH
654
655/* If the main procedure is written in Ada, then return its name.
656 The result is good until the next call. Return NULL if the main
657 procedure doesn't appear to be in Ada. */
658
659char *
660ada_main_name (void)
661{
662 struct minimal_symbol *msym;
f9bc20b9 663 static char *main_program_name = NULL;
6c038f32 664
96d887e8
PH
665 /* For Ada, the name of the main procedure is stored in a specific
666 string constant, generated by the binder. Look for that symbol,
667 extract its address, and then read that string. If we didn't find
668 that string, then most probably the main procedure is not written
669 in Ada. */
670 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
671
672 if (msym != NULL)
673 {
f9bc20b9
JB
674 CORE_ADDR main_program_name_addr;
675 int err_code;
676
96d887e8
PH
677 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
678 if (main_program_name_addr == 0)
323e0a4a 679 error (_("Invalid address for Ada main program name."));
96d887e8 680
f9bc20b9
JB
681 xfree (main_program_name);
682 target_read_string (main_program_name_addr, &main_program_name,
683 1024, &err_code);
684
685 if (err_code != 0)
686 return NULL;
96d887e8
PH
687 return main_program_name;
688 }
689
690 /* The main procedure doesn't seem to be in Ada. */
691 return NULL;
692}
14f9c5c9 693\f
4c4b4cd2 694 /* Symbols */
d2e4a39e 695
4c4b4cd2
PH
696/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
697 of NULLs. */
14f9c5c9 698
d2e4a39e
AS
699const struct ada_opname_map ada_opname_table[] = {
700 {"Oadd", "\"+\"", BINOP_ADD},
701 {"Osubtract", "\"-\"", BINOP_SUB},
702 {"Omultiply", "\"*\"", BINOP_MUL},
703 {"Odivide", "\"/\"", BINOP_DIV},
704 {"Omod", "\"mod\"", BINOP_MOD},
705 {"Orem", "\"rem\"", BINOP_REM},
706 {"Oexpon", "\"**\"", BINOP_EXP},
707 {"Olt", "\"<\"", BINOP_LESS},
708 {"Ole", "\"<=\"", BINOP_LEQ},
709 {"Ogt", "\">\"", BINOP_GTR},
710 {"Oge", "\">=\"", BINOP_GEQ},
711 {"Oeq", "\"=\"", BINOP_EQUAL},
712 {"One", "\"/=\"", BINOP_NOTEQUAL},
713 {"Oand", "\"and\"", BINOP_BITWISE_AND},
714 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
715 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
716 {"Oconcat", "\"&\"", BINOP_CONCAT},
717 {"Oabs", "\"abs\"", UNOP_ABS},
718 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
719 {"Oadd", "\"+\"", UNOP_PLUS},
720 {"Osubtract", "\"-\"", UNOP_NEG},
721 {NULL, NULL}
14f9c5c9
AS
722};
723
4c4b4cd2
PH
724/* The "encoded" form of DECODED, according to GNAT conventions.
725 The result is valid until the next call to ada_encode. */
726
14f9c5c9 727char *
4c4b4cd2 728ada_encode (const char *decoded)
14f9c5c9 729{
4c4b4cd2
PH
730 static char *encoding_buffer = NULL;
731 static size_t encoding_buffer_size = 0;
d2e4a39e 732 const char *p;
14f9c5c9 733 int k;
d2e4a39e 734
4c4b4cd2 735 if (decoded == NULL)
14f9c5c9
AS
736 return NULL;
737
4c4b4cd2
PH
738 GROW_VECT (encoding_buffer, encoding_buffer_size,
739 2 * strlen (decoded) + 10);
14f9c5c9
AS
740
741 k = 0;
4c4b4cd2 742 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 743 {
cdc7bb92 744 if (*p == '.')
4c4b4cd2
PH
745 {
746 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
747 k += 2;
748 }
14f9c5c9 749 else if (*p == '"')
4c4b4cd2
PH
750 {
751 const struct ada_opname_map *mapping;
752
753 for (mapping = ada_opname_table;
1265e4aa
JB
754 mapping->encoded != NULL
755 && strncmp (mapping->decoded, p,
756 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
757 ;
758 if (mapping->encoded == NULL)
323e0a4a 759 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
760 strcpy (encoding_buffer + k, mapping->encoded);
761 k += strlen (mapping->encoded);
762 break;
763 }
d2e4a39e 764 else
4c4b4cd2
PH
765 {
766 encoding_buffer[k] = *p;
767 k += 1;
768 }
14f9c5c9
AS
769 }
770
4c4b4cd2
PH
771 encoding_buffer[k] = '\0';
772 return encoding_buffer;
14f9c5c9
AS
773}
774
775/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
776 quotes, unfolded, but with the quotes stripped away. Result good
777 to next call. */
778
d2e4a39e
AS
779char *
780ada_fold_name (const char *name)
14f9c5c9 781{
d2e4a39e 782 static char *fold_buffer = NULL;
14f9c5c9
AS
783 static size_t fold_buffer_size = 0;
784
785 int len = strlen (name);
d2e4a39e 786 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
787
788 if (name[0] == '\'')
789 {
d2e4a39e
AS
790 strncpy (fold_buffer, name + 1, len - 2);
791 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
792 }
793 else
794 {
795 int i;
796 for (i = 0; i <= len; i += 1)
4c4b4cd2 797 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
798 }
799
800 return fold_buffer;
801}
802
529cad9c
PH
803/* Return nonzero if C is either a digit or a lowercase alphabet character. */
804
805static int
806is_lower_alphanum (const char c)
807{
808 return (isdigit (c) || (isalpha (c) && islower (c)));
809}
810
29480c32
JB
811/* Remove either of these suffixes:
812 . .{DIGIT}+
813 . ${DIGIT}+
814 . ___{DIGIT}+
815 . __{DIGIT}+.
816 These are suffixes introduced by the compiler for entities such as
817 nested subprogram for instance, in order to avoid name clashes.
818 They do not serve any purpose for the debugger. */
819
820static void
821ada_remove_trailing_digits (const char *encoded, int *len)
822{
823 if (*len > 1 && isdigit (encoded[*len - 1]))
824 {
825 int i = *len - 2;
826 while (i > 0 && isdigit (encoded[i]))
827 i--;
828 if (i >= 0 && encoded[i] == '.')
829 *len = i;
830 else if (i >= 0 && encoded[i] == '$')
831 *len = i;
832 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
833 *len = i - 2;
834 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
835 *len = i - 1;
836 }
837}
838
839/* Remove the suffix introduced by the compiler for protected object
840 subprograms. */
841
842static void
843ada_remove_po_subprogram_suffix (const char *encoded, int *len)
844{
845 /* Remove trailing N. */
846
847 /* Protected entry subprograms are broken into two
848 separate subprograms: The first one is unprotected, and has
849 a 'N' suffix; the second is the protected version, and has
850 the 'P' suffix. The second calls the first one after handling
851 the protection. Since the P subprograms are internally generated,
852 we leave these names undecoded, giving the user a clue that this
853 entity is internal. */
854
855 if (*len > 1
856 && encoded[*len - 1] == 'N'
857 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
858 *len = *len - 1;
859}
860
69fadcdf
JB
861/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
862
863static void
864ada_remove_Xbn_suffix (const char *encoded, int *len)
865{
866 int i = *len - 1;
867
868 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
869 i--;
870
871 if (encoded[i] != 'X')
872 return;
873
874 if (i == 0)
875 return;
876
877 if (isalnum (encoded[i-1]))
878 *len = i;
879}
880
29480c32
JB
881/* If ENCODED follows the GNAT entity encoding conventions, then return
882 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
883 replaced by ENCODED.
14f9c5c9 884
4c4b4cd2 885 The resulting string is valid until the next call of ada_decode.
29480c32 886 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
887 is returned. */
888
889const char *
890ada_decode (const char *encoded)
14f9c5c9
AS
891{
892 int i, j;
893 int len0;
d2e4a39e 894 const char *p;
4c4b4cd2 895 char *decoded;
14f9c5c9 896 int at_start_name;
4c4b4cd2
PH
897 static char *decoding_buffer = NULL;
898 static size_t decoding_buffer_size = 0;
d2e4a39e 899
29480c32
JB
900 /* The name of the Ada main procedure starts with "_ada_".
901 This prefix is not part of the decoded name, so skip this part
902 if we see this prefix. */
4c4b4cd2
PH
903 if (strncmp (encoded, "_ada_", 5) == 0)
904 encoded += 5;
14f9c5c9 905
29480c32
JB
906 /* If the name starts with '_', then it is not a properly encoded
907 name, so do not attempt to decode it. Similarly, if the name
908 starts with '<', the name should not be decoded. */
4c4b4cd2 909 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
910 goto Suppress;
911
4c4b4cd2 912 len0 = strlen (encoded);
4c4b4cd2 913
29480c32
JB
914 ada_remove_trailing_digits (encoded, &len0);
915 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 916
4c4b4cd2
PH
917 /* Remove the ___X.* suffix if present. Do not forget to verify that
918 the suffix is located before the current "end" of ENCODED. We want
919 to avoid re-matching parts of ENCODED that have previously been
920 marked as discarded (by decrementing LEN0). */
921 p = strstr (encoded, "___");
922 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
923 {
924 if (p[3] == 'X')
4c4b4cd2 925 len0 = p - encoded;
14f9c5c9 926 else
4c4b4cd2 927 goto Suppress;
14f9c5c9 928 }
4c4b4cd2 929
29480c32
JB
930 /* Remove any trailing TKB suffix. It tells us that this symbol
931 is for the body of a task, but that information does not actually
932 appear in the decoded name. */
933
4c4b4cd2 934 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 935 len0 -= 3;
76a01679 936
a10967fa
JB
937 /* Remove any trailing TB suffix. The TB suffix is slightly different
938 from the TKB suffix because it is used for non-anonymous task
939 bodies. */
940
941 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
942 len0 -= 2;
943
29480c32
JB
944 /* Remove trailing "B" suffixes. */
945 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
946
4c4b4cd2 947 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
948 len0 -= 1;
949
4c4b4cd2 950 /* Make decoded big enough for possible expansion by operator name. */
29480c32 951
4c4b4cd2
PH
952 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
953 decoded = decoding_buffer;
14f9c5c9 954
29480c32
JB
955 /* Remove trailing __{digit}+ or trailing ${digit}+. */
956
4c4b4cd2 957 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 958 {
4c4b4cd2
PH
959 i = len0 - 2;
960 while ((i >= 0 && isdigit (encoded[i]))
961 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
962 i -= 1;
963 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
964 len0 = i - 1;
965 else if (encoded[i] == '$')
966 len0 = i;
d2e4a39e 967 }
14f9c5c9 968
29480c32
JB
969 /* The first few characters that are not alphabetic are not part
970 of any encoding we use, so we can copy them over verbatim. */
971
4c4b4cd2
PH
972 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
973 decoded[j] = encoded[i];
14f9c5c9
AS
974
975 at_start_name = 1;
976 while (i < len0)
977 {
29480c32 978 /* Is this a symbol function? */
4c4b4cd2
PH
979 if (at_start_name && encoded[i] == 'O')
980 {
981 int k;
982 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
983 {
984 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
985 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
986 op_len - 1) == 0)
987 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
988 {
989 strcpy (decoded + j, ada_opname_table[k].decoded);
990 at_start_name = 0;
991 i += op_len;
992 j += strlen (ada_opname_table[k].decoded);
993 break;
994 }
995 }
996 if (ada_opname_table[k].encoded != NULL)
997 continue;
998 }
14f9c5c9
AS
999 at_start_name = 0;
1000
529cad9c
PH
1001 /* Replace "TK__" with "__", which will eventually be translated
1002 into "." (just below). */
1003
4c4b4cd2
PH
1004 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1005 i += 2;
529cad9c 1006
29480c32
JB
1007 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1008 be translated into "." (just below). These are internal names
1009 generated for anonymous blocks inside which our symbol is nested. */
1010
1011 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1012 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1013 && isdigit (encoded [i+4]))
1014 {
1015 int k = i + 5;
1016
1017 while (k < len0 && isdigit (encoded[k]))
1018 k++; /* Skip any extra digit. */
1019
1020 /* Double-check that the "__B_{DIGITS}+" sequence we found
1021 is indeed followed by "__". */
1022 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1023 i = k;
1024 }
1025
529cad9c
PH
1026 /* Remove _E{DIGITS}+[sb] */
1027
1028 /* Just as for protected object subprograms, there are 2 categories
1029 of subprograms created by the compiler for each entry. The first
1030 one implements the actual entry code, and has a suffix following
1031 the convention above; the second one implements the barrier and
1032 uses the same convention as above, except that the 'E' is replaced
1033 by a 'B'.
1034
1035 Just as above, we do not decode the name of barrier functions
1036 to give the user a clue that the code he is debugging has been
1037 internally generated. */
1038
1039 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1040 && isdigit (encoded[i+2]))
1041 {
1042 int k = i + 3;
1043
1044 while (k < len0 && isdigit (encoded[k]))
1045 k++;
1046
1047 if (k < len0
1048 && (encoded[k] == 'b' || encoded[k] == 's'))
1049 {
1050 k++;
1051 /* Just as an extra precaution, make sure that if this
1052 suffix is followed by anything else, it is a '_'.
1053 Otherwise, we matched this sequence by accident. */
1054 if (k == len0
1055 || (k < len0 && encoded[k] == '_'))
1056 i = k;
1057 }
1058 }
1059
1060 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1061 the GNAT front-end in protected object subprograms. */
1062
1063 if (i < len0 + 3
1064 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1065 {
1066 /* Backtrack a bit up until we reach either the begining of
1067 the encoded name, or "__". Make sure that we only find
1068 digits or lowercase characters. */
1069 const char *ptr = encoded + i - 1;
1070
1071 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1072 ptr--;
1073 if (ptr < encoded
1074 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1075 i++;
1076 }
1077
4c4b4cd2
PH
1078 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1079 {
29480c32
JB
1080 /* This is a X[bn]* sequence not separated from the previous
1081 part of the name with a non-alpha-numeric character (in other
1082 words, immediately following an alpha-numeric character), then
1083 verify that it is placed at the end of the encoded name. If
1084 not, then the encoding is not valid and we should abort the
1085 decoding. Otherwise, just skip it, it is used in body-nested
1086 package names. */
4c4b4cd2
PH
1087 do
1088 i += 1;
1089 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1090 if (i < len0)
1091 goto Suppress;
1092 }
cdc7bb92 1093 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1094 {
29480c32 1095 /* Replace '__' by '.'. */
4c4b4cd2
PH
1096 decoded[j] = '.';
1097 at_start_name = 1;
1098 i += 2;
1099 j += 1;
1100 }
14f9c5c9 1101 else
4c4b4cd2 1102 {
29480c32
JB
1103 /* It's a character part of the decoded name, so just copy it
1104 over. */
4c4b4cd2
PH
1105 decoded[j] = encoded[i];
1106 i += 1;
1107 j += 1;
1108 }
14f9c5c9 1109 }
4c4b4cd2 1110 decoded[j] = '\000';
14f9c5c9 1111
29480c32
JB
1112 /* Decoded names should never contain any uppercase character.
1113 Double-check this, and abort the decoding if we find one. */
1114
4c4b4cd2
PH
1115 for (i = 0; decoded[i] != '\0'; i += 1)
1116 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1117 goto Suppress;
1118
4c4b4cd2
PH
1119 if (strcmp (decoded, encoded) == 0)
1120 return encoded;
1121 else
1122 return decoded;
14f9c5c9
AS
1123
1124Suppress:
4c4b4cd2
PH
1125 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1126 decoded = decoding_buffer;
1127 if (encoded[0] == '<')
1128 strcpy (decoded, encoded);
14f9c5c9 1129 else
88c15c34 1130 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1131 return decoded;
1132
1133}
1134
1135/* Table for keeping permanent unique copies of decoded names. Once
1136 allocated, names in this table are never released. While this is a
1137 storage leak, it should not be significant unless there are massive
1138 changes in the set of decoded names in successive versions of a
1139 symbol table loaded during a single session. */
1140static struct htab *decoded_names_store;
1141
1142/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1143 in the language-specific part of GSYMBOL, if it has not been
1144 previously computed. Tries to save the decoded name in the same
1145 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1146 in any case, the decoded symbol has a lifetime at least that of
1147 GSYMBOL).
1148 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1149 const, but nevertheless modified to a semantically equivalent form
1150 when a decoded name is cached in it.
76a01679 1151*/
4c4b4cd2 1152
76a01679
JB
1153char *
1154ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1155{
76a01679 1156 char **resultp =
4c4b4cd2
PH
1157 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1158 if (*resultp == NULL)
1159 {
1160 const char *decoded = ada_decode (gsymbol->name);
714835d5 1161 if (gsymbol->obj_section != NULL)
76a01679 1162 {
714835d5
UW
1163 struct objfile *objf = gsymbol->obj_section->objfile;
1164 *resultp = obsavestring (decoded, strlen (decoded),
1165 &objf->objfile_obstack);
76a01679 1166 }
4c4b4cd2 1167 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1168 case, we put the result on the heap. Since we only decode
1169 when needed, we hope this usually does not cause a
1170 significant memory leak (FIXME). */
4c4b4cd2 1171 if (*resultp == NULL)
76a01679
JB
1172 {
1173 char **slot = (char **) htab_find_slot (decoded_names_store,
1174 decoded, INSERT);
1175 if (*slot == NULL)
1176 *slot = xstrdup (decoded);
1177 *resultp = *slot;
1178 }
4c4b4cd2 1179 }
14f9c5c9 1180
4c4b4cd2
PH
1181 return *resultp;
1182}
76a01679 1183
2c0b251b 1184static char *
76a01679 1185ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1186{
1187 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1188}
1189
1190/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1191 suffixes that encode debugging information or leading _ada_ on
1192 SYM_NAME (see is_name_suffix commentary for the debugging
1193 information that is ignored). If WILD, then NAME need only match a
1194 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1195 either argument is NULL. */
14f9c5c9 1196
2c0b251b 1197static int
d2e4a39e 1198ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1199{
1200 if (sym_name == NULL || name == NULL)
1201 return 0;
1202 else if (wild)
1203 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1204 else
1205 {
1206 int len_name = strlen (name);
4c4b4cd2
PH
1207 return (strncmp (sym_name, name, len_name) == 0
1208 && is_name_suffix (sym_name + len_name))
1209 || (strncmp (sym_name, "_ada_", 5) == 0
1210 && strncmp (sym_name + 5, name, len_name) == 0
1211 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1212 }
14f9c5c9 1213}
14f9c5c9 1214\f
d2e4a39e 1215
4c4b4cd2 1216 /* Arrays */
14f9c5c9 1217
4c4b4cd2 1218/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1219
d2e4a39e
AS
1220static char *bound_name[] = {
1221 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1222 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1223};
1224
1225/* Maximum number of array dimensions we are prepared to handle. */
1226
4c4b4cd2 1227#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1228
4c4b4cd2 1229/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1230
1231static void
50810684
UW
1232modify_general_field (struct type *type, char *addr,
1233 LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1234{
50810684 1235 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1236}
1237
1238
4c4b4cd2
PH
1239/* The desc_* routines return primitive portions of array descriptors
1240 (fat pointers). */
14f9c5c9
AS
1241
1242/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1243 level of indirection, if needed. */
1244
d2e4a39e
AS
1245static struct type *
1246desc_base_type (struct type *type)
14f9c5c9
AS
1247{
1248 if (type == NULL)
1249 return NULL;
61ee279c 1250 type = ada_check_typedef (type);
1265e4aa
JB
1251 if (type != NULL
1252 && (TYPE_CODE (type) == TYPE_CODE_PTR
1253 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1254 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1255 else
1256 return type;
1257}
1258
4c4b4cd2
PH
1259/* True iff TYPE indicates a "thin" array pointer type. */
1260
14f9c5c9 1261static int
d2e4a39e 1262is_thin_pntr (struct type *type)
14f9c5c9 1263{
d2e4a39e 1264 return
14f9c5c9
AS
1265 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1266 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1267}
1268
4c4b4cd2
PH
1269/* The descriptor type for thin pointer type TYPE. */
1270
d2e4a39e
AS
1271static struct type *
1272thin_descriptor_type (struct type *type)
14f9c5c9 1273{
d2e4a39e 1274 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1275 if (base_type == NULL)
1276 return NULL;
1277 if (is_suffix (ada_type_name (base_type), "___XVE"))
1278 return base_type;
d2e4a39e 1279 else
14f9c5c9 1280 {
d2e4a39e 1281 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1282 if (alt_type == NULL)
4c4b4cd2 1283 return base_type;
14f9c5c9 1284 else
4c4b4cd2 1285 return alt_type;
14f9c5c9
AS
1286 }
1287}
1288
4c4b4cd2
PH
1289/* A pointer to the array data for thin-pointer value VAL. */
1290
d2e4a39e
AS
1291static struct value *
1292thin_data_pntr (struct value *val)
14f9c5c9 1293{
df407dfe 1294 struct type *type = value_type (val);
556bdfd4
UW
1295 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1296 data_type = lookup_pointer_type (data_type);
1297
14f9c5c9 1298 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1299 return value_cast (data_type, value_copy (val));
d2e4a39e 1300 else
42ae5230 1301 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1302}
1303
4c4b4cd2
PH
1304/* True iff TYPE indicates a "thick" array pointer type. */
1305
14f9c5c9 1306static int
d2e4a39e 1307is_thick_pntr (struct type *type)
14f9c5c9
AS
1308{
1309 type = desc_base_type (type);
1310 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1311 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1312}
1313
4c4b4cd2
PH
1314/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1315 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1316
d2e4a39e
AS
1317static struct type *
1318desc_bounds_type (struct type *type)
14f9c5c9 1319{
d2e4a39e 1320 struct type *r;
14f9c5c9
AS
1321
1322 type = desc_base_type (type);
1323
1324 if (type == NULL)
1325 return NULL;
1326 else if (is_thin_pntr (type))
1327 {
1328 type = thin_descriptor_type (type);
1329 if (type == NULL)
4c4b4cd2 1330 return NULL;
14f9c5c9
AS
1331 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1332 if (r != NULL)
61ee279c 1333 return ada_check_typedef (r);
14f9c5c9
AS
1334 }
1335 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1336 {
1337 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1338 if (r != NULL)
61ee279c 1339 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1340 }
1341 return NULL;
1342}
1343
1344/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1345 one, a pointer to its bounds data. Otherwise NULL. */
1346
d2e4a39e
AS
1347static struct value *
1348desc_bounds (struct value *arr)
14f9c5c9 1349{
df407dfe 1350 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1351 if (is_thin_pntr (type))
14f9c5c9 1352 {
d2e4a39e 1353 struct type *bounds_type =
4c4b4cd2 1354 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1355 LONGEST addr;
1356
4cdfadb1 1357 if (bounds_type == NULL)
323e0a4a 1358 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1359
1360 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1361 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1362 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1363 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1364 addr = value_as_long (arr);
d2e4a39e 1365 else
42ae5230 1366 addr = value_address (arr);
14f9c5c9 1367
d2e4a39e 1368 return
4c4b4cd2
PH
1369 value_from_longest (lookup_pointer_type (bounds_type),
1370 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1371 }
1372
1373 else if (is_thick_pntr (type))
d2e4a39e 1374 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1375 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1376 else
1377 return NULL;
1378}
1379
4c4b4cd2
PH
1380/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1381 position of the field containing the address of the bounds data. */
1382
14f9c5c9 1383static int
d2e4a39e 1384fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1385{
1386 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1387}
1388
1389/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1390 size of the field containing the address of the bounds data. */
1391
14f9c5c9 1392static int
d2e4a39e 1393fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1394{
1395 type = desc_base_type (type);
1396
d2e4a39e 1397 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1398 return TYPE_FIELD_BITSIZE (type, 1);
1399 else
61ee279c 1400 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1401}
1402
4c4b4cd2 1403/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1404 pointer to one, the type of its array data (a array-with-no-bounds type);
1405 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1406 data. */
4c4b4cd2 1407
d2e4a39e 1408static struct type *
556bdfd4 1409desc_data_target_type (struct type *type)
14f9c5c9
AS
1410{
1411 type = desc_base_type (type);
1412
4c4b4cd2 1413 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1414 if (is_thin_pntr (type))
556bdfd4 1415 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1416 else if (is_thick_pntr (type))
556bdfd4
UW
1417 {
1418 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1419
1420 if (data_type
1421 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1422 return TYPE_TARGET_TYPE (data_type);
1423 }
1424
1425 return NULL;
14f9c5c9
AS
1426}
1427
1428/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1429 its array data. */
4c4b4cd2 1430
d2e4a39e
AS
1431static struct value *
1432desc_data (struct value *arr)
14f9c5c9 1433{
df407dfe 1434 struct type *type = value_type (arr);
14f9c5c9
AS
1435 if (is_thin_pntr (type))
1436 return thin_data_pntr (arr);
1437 else if (is_thick_pntr (type))
d2e4a39e 1438 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1439 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1440 else
1441 return NULL;
1442}
1443
1444
1445/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1446 position of the field containing the address of the data. */
1447
14f9c5c9 1448static int
d2e4a39e 1449fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1450{
1451 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1452}
1453
1454/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1455 size of the field containing the address of the data. */
1456
14f9c5c9 1457static int
d2e4a39e 1458fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1459{
1460 type = desc_base_type (type);
1461
1462 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1463 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1464 else
14f9c5c9
AS
1465 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1466}
1467
4c4b4cd2 1468/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1469 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1470 bound, if WHICH is 1. The first bound is I=1. */
1471
d2e4a39e
AS
1472static struct value *
1473desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1474{
d2e4a39e 1475 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1476 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1477}
1478
1479/* If BOUNDS is an array-bounds structure type, return the bit position
1480 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1481 bound, if WHICH is 1. The first bound is I=1. */
1482
14f9c5c9 1483static int
d2e4a39e 1484desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1485{
d2e4a39e 1486 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1487}
1488
1489/* If BOUNDS is an array-bounds structure type, return the bit field size
1490 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1491 bound, if WHICH is 1. The first bound is I=1. */
1492
76a01679 1493static int
d2e4a39e 1494desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1495{
1496 type = desc_base_type (type);
1497
d2e4a39e
AS
1498 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1499 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1500 else
1501 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1502}
1503
1504/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1505 Ith bound (numbering from 1). Otherwise, NULL. */
1506
d2e4a39e
AS
1507static struct type *
1508desc_index_type (struct type *type, int i)
14f9c5c9
AS
1509{
1510 type = desc_base_type (type);
1511
1512 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1513 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1514 else
14f9c5c9
AS
1515 return NULL;
1516}
1517
4c4b4cd2
PH
1518/* The number of index positions in the array-bounds type TYPE.
1519 Return 0 if TYPE is NULL. */
1520
14f9c5c9 1521static int
d2e4a39e 1522desc_arity (struct type *type)
14f9c5c9
AS
1523{
1524 type = desc_base_type (type);
1525
1526 if (type != NULL)
1527 return TYPE_NFIELDS (type) / 2;
1528 return 0;
1529}
1530
4c4b4cd2
PH
1531/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1532 an array descriptor type (representing an unconstrained array
1533 type). */
1534
76a01679
JB
1535static int
1536ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1537{
1538 if (type == NULL)
1539 return 0;
61ee279c 1540 type = ada_check_typedef (type);
4c4b4cd2 1541 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1542 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1543}
1544
52ce6436
PH
1545/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1546 * to one. */
1547
2c0b251b 1548static int
52ce6436
PH
1549ada_is_array_type (struct type *type)
1550{
1551 while (type != NULL
1552 && (TYPE_CODE (type) == TYPE_CODE_PTR
1553 || TYPE_CODE (type) == TYPE_CODE_REF))
1554 type = TYPE_TARGET_TYPE (type);
1555 return ada_is_direct_array_type (type);
1556}
1557
4c4b4cd2 1558/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1559
14f9c5c9 1560int
4c4b4cd2 1561ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1562{
1563 if (type == NULL)
1564 return 0;
61ee279c 1565 type = ada_check_typedef (type);
14f9c5c9 1566 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1567 || (TYPE_CODE (type) == TYPE_CODE_PTR
1568 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1569}
1570
4c4b4cd2
PH
1571/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1572
14f9c5c9 1573int
4c4b4cd2 1574ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1575{
556bdfd4 1576 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1577
1578 if (type == NULL)
1579 return 0;
61ee279c 1580 type = ada_check_typedef (type);
556bdfd4
UW
1581 return (data_type != NULL
1582 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1583 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1584}
1585
1586/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1587 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1588 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1589 is still needed. */
1590
14f9c5c9 1591int
ebf56fd3 1592ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1593{
d2e4a39e 1594 return
14f9c5c9
AS
1595 type != NULL
1596 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1597 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1598 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1599 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1600}
1601
1602
4c4b4cd2 1603/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1604 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1605 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1606 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1607 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1608 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1609 a descriptor. */
d2e4a39e
AS
1610struct type *
1611ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1612{
ad82864c
JB
1613 if (ada_is_constrained_packed_array_type (value_type (arr)))
1614 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1615
df407dfe
AC
1616 if (!ada_is_array_descriptor_type (value_type (arr)))
1617 return value_type (arr);
d2e4a39e
AS
1618
1619 if (!bounds)
ad82864c
JB
1620 {
1621 struct type *array_type =
1622 ada_check_typedef (desc_data_target_type (value_type (arr)));
1623
1624 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1625 TYPE_FIELD_BITSIZE (array_type, 0) =
1626 decode_packed_array_bitsize (value_type (arr));
1627
1628 return array_type;
1629 }
14f9c5c9
AS
1630 else
1631 {
d2e4a39e 1632 struct type *elt_type;
14f9c5c9 1633 int arity;
d2e4a39e 1634 struct value *descriptor;
14f9c5c9 1635
df407dfe
AC
1636 elt_type = ada_array_element_type (value_type (arr), -1);
1637 arity = ada_array_arity (value_type (arr));
14f9c5c9 1638
d2e4a39e 1639 if (elt_type == NULL || arity == 0)
df407dfe 1640 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1641
1642 descriptor = desc_bounds (arr);
d2e4a39e 1643 if (value_as_long (descriptor) == 0)
4c4b4cd2 1644 return NULL;
d2e4a39e 1645 while (arity > 0)
4c4b4cd2 1646 {
e9bb382b
UW
1647 struct type *range_type = alloc_type_copy (value_type (arr));
1648 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1649 struct value *low = desc_one_bound (descriptor, arity, 0);
1650 struct value *high = desc_one_bound (descriptor, arity, 1);
1651 arity -= 1;
1652
df407dfe 1653 create_range_type (range_type, value_type (low),
529cad9c
PH
1654 longest_to_int (value_as_long (low)),
1655 longest_to_int (value_as_long (high)));
4c4b4cd2 1656 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1657
1658 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1659 TYPE_FIELD_BITSIZE (elt_type, 0) =
1660 decode_packed_array_bitsize (value_type (arr));
4c4b4cd2 1661 }
14f9c5c9
AS
1662
1663 return lookup_pointer_type (elt_type);
1664 }
1665}
1666
1667/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1668 Otherwise, returns either a standard GDB array with bounds set
1669 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1670 GDB array. Returns NULL if ARR is a null fat pointer. */
1671
d2e4a39e
AS
1672struct value *
1673ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1674{
df407dfe 1675 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1676 {
d2e4a39e 1677 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1678 if (arrType == NULL)
4c4b4cd2 1679 return NULL;
14f9c5c9
AS
1680 return value_cast (arrType, value_copy (desc_data (arr)));
1681 }
ad82864c
JB
1682 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1683 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1684 else
1685 return arr;
1686}
1687
1688/* If ARR does not represent an array, returns ARR unchanged.
1689 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1690 be ARR itself if it already is in the proper form). */
1691
1692static struct value *
d2e4a39e 1693ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1694{
df407dfe 1695 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1696 {
d2e4a39e 1697 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1698 if (arrVal == NULL)
323e0a4a 1699 error (_("Bounds unavailable for null array pointer."));
529cad9c 1700 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1701 return value_ind (arrVal);
1702 }
ad82864c
JB
1703 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1704 return decode_constrained_packed_array (arr);
d2e4a39e 1705 else
14f9c5c9
AS
1706 return arr;
1707}
1708
1709/* If TYPE represents a GNAT array type, return it translated to an
1710 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1711 packing). For other types, is the identity. */
1712
d2e4a39e
AS
1713struct type *
1714ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1715{
ad82864c
JB
1716 if (ada_is_constrained_packed_array_type (type))
1717 return decode_constrained_packed_array_type (type);
17280b9f
UW
1718
1719 if (ada_is_array_descriptor_type (type))
556bdfd4 1720 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1721
1722 return type;
14f9c5c9
AS
1723}
1724
4c4b4cd2
PH
1725/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1726
ad82864c
JB
1727static int
1728ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1729{
1730 if (type == NULL)
1731 return 0;
4c4b4cd2 1732 type = desc_base_type (type);
61ee279c 1733 type = ada_check_typedef (type);
d2e4a39e 1734 return
14f9c5c9
AS
1735 ada_type_name (type) != NULL
1736 && strstr (ada_type_name (type), "___XP") != NULL;
1737}
1738
ad82864c
JB
1739/* Non-zero iff TYPE represents a standard GNAT constrained
1740 packed-array type. */
1741
1742int
1743ada_is_constrained_packed_array_type (struct type *type)
1744{
1745 return ada_is_packed_array_type (type)
1746 && !ada_is_array_descriptor_type (type);
1747}
1748
1749/* Non-zero iff TYPE represents an array descriptor for a
1750 unconstrained packed-array type. */
1751
1752static int
1753ada_is_unconstrained_packed_array_type (struct type *type)
1754{
1755 return ada_is_packed_array_type (type)
1756 && ada_is_array_descriptor_type (type);
1757}
1758
1759/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1760 return the size of its elements in bits. */
1761
1762static long
1763decode_packed_array_bitsize (struct type *type)
1764{
1765 char *raw_name = ada_type_name (ada_check_typedef (type));
1766 char *tail;
1767 long bits;
1768
1769 if (!raw_name)
1770 raw_name = ada_type_name (desc_base_type (type));
1771
1772 if (!raw_name)
1773 return 0;
1774
1775 tail = strstr (raw_name, "___XP");
1776
1777 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1778 {
1779 lim_warning
1780 (_("could not understand bit size information on packed array"));
1781 return 0;
1782 }
1783
1784 return bits;
1785}
1786
14f9c5c9
AS
1787/* Given that TYPE is a standard GDB array type with all bounds filled
1788 in, and that the element size of its ultimate scalar constituents
1789 (that is, either its elements, or, if it is an array of arrays, its
1790 elements' elements, etc.) is *ELT_BITS, return an identical type,
1791 but with the bit sizes of its elements (and those of any
1792 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1793 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1794 in bits. */
1795
d2e4a39e 1796static struct type *
ad82864c 1797constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1798{
d2e4a39e
AS
1799 struct type *new_elt_type;
1800 struct type *new_type;
14f9c5c9
AS
1801 LONGEST low_bound, high_bound;
1802
61ee279c 1803 type = ada_check_typedef (type);
14f9c5c9
AS
1804 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1805 return type;
1806
e9bb382b 1807 new_type = alloc_type_copy (type);
ad82864c
JB
1808 new_elt_type =
1809 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1810 elt_bits);
262452ec 1811 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1812 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1813 TYPE_NAME (new_type) = ada_type_name (type);
1814
262452ec 1815 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1816 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1817 low_bound = high_bound = 0;
1818 if (high_bound < low_bound)
1819 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1820 else
14f9c5c9
AS
1821 {
1822 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1823 TYPE_LENGTH (new_type) =
4c4b4cd2 1824 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1825 }
1826
876cecd0 1827 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1828 return new_type;
1829}
1830
ad82864c
JB
1831/* The array type encoded by TYPE, where
1832 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 1833
d2e4a39e 1834static struct type *
ad82864c 1835decode_constrained_packed_array_type (struct type *type)
d2e4a39e 1836{
4c4b4cd2 1837 struct symbol *sym;
d2e4a39e 1838 struct block **blocks;
727e3d2e
JB
1839 char *raw_name = ada_type_name (ada_check_typedef (type));
1840 char *name;
1841 char *tail;
d2e4a39e 1842 struct type *shadow_type;
14f9c5c9
AS
1843 long bits;
1844 int i, n;
1845
727e3d2e
JB
1846 if (!raw_name)
1847 raw_name = ada_type_name (desc_base_type (type));
1848
1849 if (!raw_name)
1850 return NULL;
1851
1852 name = (char *) alloca (strlen (raw_name) + 1);
1853 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1854 type = desc_base_type (type);
1855
14f9c5c9
AS
1856 memcpy (name, raw_name, tail - raw_name);
1857 name[tail - raw_name] = '\000';
1858
b4ba55a1
JB
1859 shadow_type = ada_find_parallel_type_with_name (type, name);
1860
1861 if (shadow_type == NULL)
14f9c5c9 1862 {
323e0a4a 1863 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1864 return NULL;
1865 }
cb249c71 1866 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1867
1868 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1869 {
323e0a4a 1870 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1871 return NULL;
1872 }
d2e4a39e 1873
ad82864c
JB
1874 bits = decode_packed_array_bitsize (type);
1875 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
1876}
1877
ad82864c
JB
1878/* Given that ARR is a struct value *indicating a GNAT constrained packed
1879 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
1880 standard GDB array type except that the BITSIZEs of the array
1881 target types are set to the number of bits in each element, and the
4c4b4cd2 1882 type length is set appropriately. */
14f9c5c9 1883
d2e4a39e 1884static struct value *
ad82864c 1885decode_constrained_packed_array (struct value *arr)
14f9c5c9 1886{
4c4b4cd2 1887 struct type *type;
14f9c5c9 1888
4c4b4cd2 1889 arr = ada_coerce_ref (arr);
284614f0
JB
1890
1891 /* If our value is a pointer, then dererence it. Make sure that
1892 this operation does not cause the target type to be fixed, as
1893 this would indirectly cause this array to be decoded. The rest
1894 of the routine assumes that the array hasn't been decoded yet,
1895 so we use the basic "value_ind" routine to perform the dereferencing,
1896 as opposed to using "ada_value_ind". */
df407dfe 1897 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1898 arr = value_ind (arr);
4c4b4cd2 1899
ad82864c 1900 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
1901 if (type == NULL)
1902 {
323e0a4a 1903 error (_("can't unpack array"));
14f9c5c9
AS
1904 return NULL;
1905 }
61ee279c 1906
50810684 1907 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 1908 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1909 {
1910 /* This is a (right-justified) modular type representing a packed
1911 array with no wrapper. In order to interpret the value through
1912 the (left-justified) packed array type we just built, we must
1913 first left-justify it. */
1914 int bit_size, bit_pos;
1915 ULONGEST mod;
1916
df407dfe 1917 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1918 bit_size = 0;
1919 while (mod > 0)
1920 {
1921 bit_size += 1;
1922 mod >>= 1;
1923 }
df407dfe 1924 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1925 arr = ada_value_primitive_packed_val (arr, NULL,
1926 bit_pos / HOST_CHAR_BIT,
1927 bit_pos % HOST_CHAR_BIT,
1928 bit_size,
1929 type);
1930 }
1931
4c4b4cd2 1932 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1933}
1934
1935
1936/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1937 given in IND. ARR must be a simple array. */
14f9c5c9 1938
d2e4a39e
AS
1939static struct value *
1940value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1941{
1942 int i;
1943 int bits, elt_off, bit_off;
1944 long elt_total_bit_offset;
d2e4a39e
AS
1945 struct type *elt_type;
1946 struct value *v;
14f9c5c9
AS
1947
1948 bits = 0;
1949 elt_total_bit_offset = 0;
df407dfe 1950 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1951 for (i = 0; i < arity; i += 1)
14f9c5c9 1952 {
d2e4a39e 1953 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1954 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1955 error
323e0a4a 1956 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1957 else
4c4b4cd2
PH
1958 {
1959 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1960 LONGEST lowerbound, upperbound;
1961 LONGEST idx;
1962
1963 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1964 {
323e0a4a 1965 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1966 lowerbound = upperbound = 0;
1967 }
1968
3cb382c9 1969 idx = pos_atr (ind[i]);
4c4b4cd2 1970 if (idx < lowerbound || idx > upperbound)
323e0a4a 1971 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1972 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1973 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1974 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1975 }
14f9c5c9
AS
1976 }
1977 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1978 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1979
1980 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1981 bits, elt_type);
14f9c5c9
AS
1982 return v;
1983}
1984
4c4b4cd2 1985/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1986
1987static int
d2e4a39e 1988has_negatives (struct type *type)
14f9c5c9 1989{
d2e4a39e
AS
1990 switch (TYPE_CODE (type))
1991 {
1992 default:
1993 return 0;
1994 case TYPE_CODE_INT:
1995 return !TYPE_UNSIGNED (type);
1996 case TYPE_CODE_RANGE:
1997 return TYPE_LOW_BOUND (type) < 0;
1998 }
14f9c5c9 1999}
d2e4a39e 2000
14f9c5c9
AS
2001
2002/* Create a new value of type TYPE from the contents of OBJ starting
2003 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2004 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
2005 assigning through the result will set the field fetched from.
2006 VALADDR is ignored unless OBJ is NULL, in which case,
2007 VALADDR+OFFSET must address the start of storage containing the
2008 packed value. The value returned in this case is never an lval.
2009 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2010
d2e4a39e 2011struct value *
fc1a4b47 2012ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2013 long offset, int bit_offset, int bit_size,
4c4b4cd2 2014 struct type *type)
14f9c5c9 2015{
d2e4a39e 2016 struct value *v;
4c4b4cd2
PH
2017 int src, /* Index into the source area */
2018 targ, /* Index into the target area */
2019 srcBitsLeft, /* Number of source bits left to move */
2020 nsrc, ntarg, /* Number of source and target bytes */
2021 unusedLS, /* Number of bits in next significant
2022 byte of source that are unused */
2023 accumSize; /* Number of meaningful bits in accum */
2024 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2025 unsigned char *unpacked;
4c4b4cd2 2026 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2027 unsigned char sign;
2028 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2029 /* Transmit bytes from least to most significant; delta is the direction
2030 the indices move. */
50810684 2031 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2032
61ee279c 2033 type = ada_check_typedef (type);
14f9c5c9
AS
2034
2035 if (obj == NULL)
2036 {
2037 v = allocate_value (type);
d2e4a39e 2038 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2039 }
9214ee5f 2040 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2041 {
2042 v = value_at (type,
42ae5230 2043 value_address (obj) + offset);
d2e4a39e 2044 bytes = (unsigned char *) alloca (len);
42ae5230 2045 read_memory (value_address (v), bytes, len);
14f9c5c9 2046 }
d2e4a39e 2047 else
14f9c5c9
AS
2048 {
2049 v = allocate_value (type);
0fd88904 2050 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2051 }
d2e4a39e
AS
2052
2053 if (obj != NULL)
14f9c5c9 2054 {
42ae5230 2055 CORE_ADDR new_addr;
74bcbdf3 2056 set_value_component_location (v, obj);
42ae5230 2057 new_addr = value_address (obj) + offset;
9bbda503
AC
2058 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2059 set_value_bitsize (v, bit_size);
df407dfe 2060 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2061 {
42ae5230 2062 ++new_addr;
9bbda503 2063 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2064 }
42ae5230 2065 set_value_address (v, new_addr);
14f9c5c9
AS
2066 }
2067 else
9bbda503 2068 set_value_bitsize (v, bit_size);
0fd88904 2069 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2070
2071 srcBitsLeft = bit_size;
2072 nsrc = len;
2073 ntarg = TYPE_LENGTH (type);
2074 sign = 0;
2075 if (bit_size == 0)
2076 {
2077 memset (unpacked, 0, TYPE_LENGTH (type));
2078 return v;
2079 }
50810684 2080 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2081 {
d2e4a39e 2082 src = len - 1;
1265e4aa
JB
2083 if (has_negatives (type)
2084 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2085 sign = ~0;
d2e4a39e
AS
2086
2087 unusedLS =
4c4b4cd2
PH
2088 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2089 % HOST_CHAR_BIT;
14f9c5c9
AS
2090
2091 switch (TYPE_CODE (type))
4c4b4cd2
PH
2092 {
2093 case TYPE_CODE_ARRAY:
2094 case TYPE_CODE_UNION:
2095 case TYPE_CODE_STRUCT:
2096 /* Non-scalar values must be aligned at a byte boundary... */
2097 accumSize =
2098 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2099 /* ... And are placed at the beginning (most-significant) bytes
2100 of the target. */
529cad9c 2101 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2102 ntarg = targ + 1;
4c4b4cd2
PH
2103 break;
2104 default:
2105 accumSize = 0;
2106 targ = TYPE_LENGTH (type) - 1;
2107 break;
2108 }
14f9c5c9 2109 }
d2e4a39e 2110 else
14f9c5c9
AS
2111 {
2112 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2113
2114 src = targ = 0;
2115 unusedLS = bit_offset;
2116 accumSize = 0;
2117
d2e4a39e 2118 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2119 sign = ~0;
14f9c5c9 2120 }
d2e4a39e 2121
14f9c5c9
AS
2122 accum = 0;
2123 while (nsrc > 0)
2124 {
2125 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2126 part of the value. */
d2e4a39e 2127 unsigned int unusedMSMask =
4c4b4cd2
PH
2128 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2129 1;
2130 /* Sign-extend bits for this byte. */
14f9c5c9 2131 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2132 accum |=
4c4b4cd2 2133 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2134 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2135 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2136 {
2137 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2138 accumSize -= HOST_CHAR_BIT;
2139 accum >>= HOST_CHAR_BIT;
2140 ntarg -= 1;
2141 targ += delta;
2142 }
14f9c5c9
AS
2143 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2144 unusedLS = 0;
2145 nsrc -= 1;
2146 src += delta;
2147 }
2148 while (ntarg > 0)
2149 {
2150 accum |= sign << accumSize;
2151 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2152 accumSize -= HOST_CHAR_BIT;
2153 accum >>= HOST_CHAR_BIT;
2154 ntarg -= 1;
2155 targ += delta;
2156 }
2157
2158 return v;
2159}
d2e4a39e 2160
14f9c5c9
AS
2161/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2162 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2163 not overlap. */
14f9c5c9 2164static void
fc1a4b47 2165move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2166 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2167{
2168 unsigned int accum, mask;
2169 int accum_bits, chunk_size;
2170
2171 target += targ_offset / HOST_CHAR_BIT;
2172 targ_offset %= HOST_CHAR_BIT;
2173 source += src_offset / HOST_CHAR_BIT;
2174 src_offset %= HOST_CHAR_BIT;
50810684 2175 if (bits_big_endian_p)
14f9c5c9
AS
2176 {
2177 accum = (unsigned char) *source;
2178 source += 1;
2179 accum_bits = HOST_CHAR_BIT - src_offset;
2180
d2e4a39e 2181 while (n > 0)
4c4b4cd2
PH
2182 {
2183 int unused_right;
2184 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2185 accum_bits += HOST_CHAR_BIT;
2186 source += 1;
2187 chunk_size = HOST_CHAR_BIT - targ_offset;
2188 if (chunk_size > n)
2189 chunk_size = n;
2190 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2191 mask = ((1 << chunk_size) - 1) << unused_right;
2192 *target =
2193 (*target & ~mask)
2194 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2195 n -= chunk_size;
2196 accum_bits -= chunk_size;
2197 target += 1;
2198 targ_offset = 0;
2199 }
14f9c5c9
AS
2200 }
2201 else
2202 {
2203 accum = (unsigned char) *source >> src_offset;
2204 source += 1;
2205 accum_bits = HOST_CHAR_BIT - src_offset;
2206
d2e4a39e 2207 while (n > 0)
4c4b4cd2
PH
2208 {
2209 accum = accum + ((unsigned char) *source << accum_bits);
2210 accum_bits += HOST_CHAR_BIT;
2211 source += 1;
2212 chunk_size = HOST_CHAR_BIT - targ_offset;
2213 if (chunk_size > n)
2214 chunk_size = n;
2215 mask = ((1 << chunk_size) - 1) << targ_offset;
2216 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2217 n -= chunk_size;
2218 accum_bits -= chunk_size;
2219 accum >>= chunk_size;
2220 target += 1;
2221 targ_offset = 0;
2222 }
14f9c5c9
AS
2223 }
2224}
2225
14f9c5c9
AS
2226/* Store the contents of FROMVAL into the location of TOVAL.
2227 Return a new value with the location of TOVAL and contents of
2228 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2229 floating-point or non-scalar types. */
14f9c5c9 2230
d2e4a39e
AS
2231static struct value *
2232ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2233{
df407dfe
AC
2234 struct type *type = value_type (toval);
2235 int bits = value_bitsize (toval);
14f9c5c9 2236
52ce6436
PH
2237 toval = ada_coerce_ref (toval);
2238 fromval = ada_coerce_ref (fromval);
2239
2240 if (ada_is_direct_array_type (value_type (toval)))
2241 toval = ada_coerce_to_simple_array (toval);
2242 if (ada_is_direct_array_type (value_type (fromval)))
2243 fromval = ada_coerce_to_simple_array (fromval);
2244
88e3b34b 2245 if (!deprecated_value_modifiable (toval))
323e0a4a 2246 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2247
d2e4a39e 2248 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2249 && bits > 0
d2e4a39e 2250 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2251 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2252 {
df407dfe
AC
2253 int len = (value_bitpos (toval)
2254 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2255 int from_size;
d2e4a39e
AS
2256 char *buffer = (char *) alloca (len);
2257 struct value *val;
42ae5230 2258 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2259
2260 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2261 fromval = value_cast (type, fromval);
14f9c5c9 2262
52ce6436 2263 read_memory (to_addr, buffer, len);
aced2898
PH
2264 from_size = value_bitsize (fromval);
2265 if (from_size == 0)
2266 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2267 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2268 move_bits (buffer, value_bitpos (toval),
50810684 2269 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2270 else
50810684
UW
2271 move_bits (buffer, value_bitpos (toval),
2272 value_contents (fromval), 0, bits, 0);
52ce6436 2273 write_memory (to_addr, buffer, len);
8cebebb9
PP
2274 observer_notify_memory_changed (to_addr, len, buffer);
2275
14f9c5c9 2276 val = value_copy (toval);
0fd88904 2277 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2278 TYPE_LENGTH (type));
04624583 2279 deprecated_set_value_type (val, type);
d2e4a39e 2280
14f9c5c9
AS
2281 return val;
2282 }
2283
2284 return value_assign (toval, fromval);
2285}
2286
2287
52ce6436
PH
2288/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2289 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2290 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2291 * COMPONENT, and not the inferior's memory. The current contents
2292 * of COMPONENT are ignored. */
2293static void
2294value_assign_to_component (struct value *container, struct value *component,
2295 struct value *val)
2296{
2297 LONGEST offset_in_container =
42ae5230 2298 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2299 int bit_offset_in_container =
2300 value_bitpos (component) - value_bitpos (container);
2301 int bits;
2302
2303 val = value_cast (value_type (component), val);
2304
2305 if (value_bitsize (component) == 0)
2306 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2307 else
2308 bits = value_bitsize (component);
2309
50810684 2310 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2311 move_bits (value_contents_writeable (container) + offset_in_container,
2312 value_bitpos (container) + bit_offset_in_container,
2313 value_contents (val),
2314 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2315 bits, 1);
52ce6436
PH
2316 else
2317 move_bits (value_contents_writeable (container) + offset_in_container,
2318 value_bitpos (container) + bit_offset_in_container,
50810684 2319 value_contents (val), 0, bits, 0);
52ce6436
PH
2320}
2321
4c4b4cd2
PH
2322/* The value of the element of array ARR at the ARITY indices given in IND.
2323 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2324 thereto. */
2325
d2e4a39e
AS
2326struct value *
2327ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2328{
2329 int k;
d2e4a39e
AS
2330 struct value *elt;
2331 struct type *elt_type;
14f9c5c9
AS
2332
2333 elt = ada_coerce_to_simple_array (arr);
2334
df407dfe 2335 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2336 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2337 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2338 return value_subscript_packed (elt, arity, ind);
2339
2340 for (k = 0; k < arity; k += 1)
2341 {
2342 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2343 error (_("too many subscripts (%d expected)"), k);
2497b498 2344 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2345 }
2346 return elt;
2347}
2348
2349/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2350 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2351 IND. Does not read the entire array into memory. */
14f9c5c9 2352
2c0b251b 2353static struct value *
d2e4a39e 2354ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2355 struct value **ind)
14f9c5c9
AS
2356{
2357 int k;
2358
2359 for (k = 0; k < arity; k += 1)
2360 {
2361 LONGEST lwb, upb;
14f9c5c9
AS
2362
2363 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2364 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2365 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2366 value_copy (arr));
14f9c5c9 2367 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2368 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2369 type = TYPE_TARGET_TYPE (type);
2370 }
2371
2372 return value_ind (arr);
2373}
2374
0b5d8877 2375/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2376 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2377 elements starting at index LOW. The lower bound of this array is LOW, as
2378 per Ada rules. */
0b5d8877 2379static struct value *
f5938064
JG
2380ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2381 int low, int high)
0b5d8877 2382{
6c038f32 2383 CORE_ADDR base = value_as_address (array_ptr)
43bbcdc2 2384 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
0b5d8877 2385 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2386 struct type *index_type =
2387 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2388 low, high);
6c038f32 2389 struct type *slice_type =
0b5d8877 2390 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2391 return value_at_lazy (slice_type, base);
0b5d8877
PH
2392}
2393
2394
2395static struct value *
2396ada_value_slice (struct value *array, int low, int high)
2397{
df407dfe 2398 struct type *type = value_type (array);
6c038f32 2399 struct type *index_type =
0b5d8877 2400 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2401 struct type *slice_type =
0b5d8877 2402 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2403 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2404}
2405
14f9c5c9
AS
2406/* If type is a record type in the form of a standard GNAT array
2407 descriptor, returns the number of dimensions for type. If arr is a
2408 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2409 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2410
2411int
d2e4a39e 2412ada_array_arity (struct type *type)
14f9c5c9
AS
2413{
2414 int arity;
2415
2416 if (type == NULL)
2417 return 0;
2418
2419 type = desc_base_type (type);
2420
2421 arity = 0;
d2e4a39e 2422 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2423 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2424 else
2425 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2426 {
4c4b4cd2 2427 arity += 1;
61ee279c 2428 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2429 }
d2e4a39e 2430
14f9c5c9
AS
2431 return arity;
2432}
2433
2434/* If TYPE is a record type in the form of a standard GNAT array
2435 descriptor or a simple array type, returns the element type for
2436 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2437 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2438
d2e4a39e
AS
2439struct type *
2440ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2441{
2442 type = desc_base_type (type);
2443
d2e4a39e 2444 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2445 {
2446 int k;
d2e4a39e 2447 struct type *p_array_type;
14f9c5c9 2448
556bdfd4 2449 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2450
2451 k = ada_array_arity (type);
2452 if (k == 0)
4c4b4cd2 2453 return NULL;
d2e4a39e 2454
4c4b4cd2 2455 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2456 if (nindices >= 0 && k > nindices)
4c4b4cd2 2457 k = nindices;
d2e4a39e 2458 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2459 {
61ee279c 2460 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2461 k -= 1;
2462 }
14f9c5c9
AS
2463 return p_array_type;
2464 }
2465 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2466 {
2467 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2468 {
2469 type = TYPE_TARGET_TYPE (type);
2470 nindices -= 1;
2471 }
14f9c5c9
AS
2472 return type;
2473 }
2474
2475 return NULL;
2476}
2477
4c4b4cd2 2478/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2479 Does not examine memory. Throws an error if N is invalid or TYPE
2480 is not an array type. NAME is the name of the Ada attribute being
2481 evaluated ('range, 'first, 'last, or 'length); it is used in building
2482 the error message. */
14f9c5c9 2483
1eea4ebd
UW
2484static struct type *
2485ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2486{
4c4b4cd2
PH
2487 struct type *result_type;
2488
14f9c5c9
AS
2489 type = desc_base_type (type);
2490
1eea4ebd
UW
2491 if (n < 0 || n > ada_array_arity (type))
2492 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2493
4c4b4cd2 2494 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2495 {
2496 int i;
2497
2498 for (i = 1; i < n; i += 1)
4c4b4cd2 2499 type = TYPE_TARGET_TYPE (type);
262452ec 2500 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2501 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2502 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2503 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2504 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2505 result_type = NULL;
14f9c5c9 2506 }
d2e4a39e 2507 else
1eea4ebd
UW
2508 {
2509 result_type = desc_index_type (desc_bounds_type (type), n);
2510 if (result_type == NULL)
2511 error (_("attempt to take bound of something that is not an array"));
2512 }
2513
2514 return result_type;
14f9c5c9
AS
2515}
2516
2517/* Given that arr is an array type, returns the lower bound of the
2518 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2519 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2520 array-descriptor type. It works for other arrays with bounds supplied
2521 by run-time quantities other than discriminants. */
14f9c5c9 2522
abb68b3e 2523static LONGEST
1eea4ebd 2524ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2525{
1ce677a4 2526 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2527 int i;
262452ec
JK
2528
2529 gdb_assert (which == 0 || which == 1);
14f9c5c9 2530
ad82864c
JB
2531 if (ada_is_constrained_packed_array_type (arr_type))
2532 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2533
4c4b4cd2 2534 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2535 return (LONGEST) - which;
14f9c5c9
AS
2536
2537 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2538 type = TYPE_TARGET_TYPE (arr_type);
2539 else
2540 type = arr_type;
2541
1ce677a4
UW
2542 elt_type = type;
2543 for (i = n; i > 1; i--)
2544 elt_type = TYPE_TARGET_TYPE (type);
2545
14f9c5c9 2546 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2547 if (index_type_desc != NULL)
2548 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
1ce677a4 2549 NULL, TYPE_INDEX_TYPE (elt_type));
262452ec 2550 else
1ce677a4 2551 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2552
43bbcdc2
PH
2553 return
2554 (LONGEST) (which == 0
2555 ? ada_discrete_type_low_bound (index_type)
2556 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2557}
2558
2559/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2560 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2561 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2562 supplied by run-time quantities other than discriminants. */
14f9c5c9 2563
1eea4ebd 2564static LONGEST
4dc81987 2565ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2566{
df407dfe 2567 struct type *arr_type = value_type (arr);
14f9c5c9 2568
ad82864c
JB
2569 if (ada_is_constrained_packed_array_type (arr_type))
2570 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2571 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2572 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2573 else
1eea4ebd 2574 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2575}
2576
2577/* Given that arr is an array value, returns the length of the
2578 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2579 supplied by run-time quantities other than discriminants.
2580 Does not work for arrays indexed by enumeration types with representation
2581 clauses at the moment. */
14f9c5c9 2582
1eea4ebd 2583static LONGEST
d2e4a39e 2584ada_array_length (struct value *arr, int n)
14f9c5c9 2585{
df407dfe 2586 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2587
ad82864c
JB
2588 if (ada_is_constrained_packed_array_type (arr_type))
2589 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2590
4c4b4cd2 2591 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2592 return (ada_array_bound_from_type (arr_type, n, 1)
2593 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2594 else
1eea4ebd
UW
2595 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2596 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2597}
2598
2599/* An empty array whose type is that of ARR_TYPE (an array type),
2600 with bounds LOW to LOW-1. */
2601
2602static struct value *
2603empty_array (struct type *arr_type, int low)
2604{
6c038f32 2605 struct type *index_type =
0b5d8877
PH
2606 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2607 low, low - 1);
2608 struct type *elt_type = ada_array_element_type (arr_type, 1);
2609 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2610}
14f9c5c9 2611\f
d2e4a39e 2612
4c4b4cd2 2613 /* Name resolution */
14f9c5c9 2614
4c4b4cd2
PH
2615/* The "decoded" name for the user-definable Ada operator corresponding
2616 to OP. */
14f9c5c9 2617
d2e4a39e 2618static const char *
4c4b4cd2 2619ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2620{
2621 int i;
2622
4c4b4cd2 2623 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2624 {
2625 if (ada_opname_table[i].op == op)
4c4b4cd2 2626 return ada_opname_table[i].decoded;
14f9c5c9 2627 }
323e0a4a 2628 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2629}
2630
2631
4c4b4cd2
PH
2632/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2633 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2634 undefined namespace) and converts operators that are
2635 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2636 non-null, it provides a preferred result type [at the moment, only
2637 type void has any effect---causing procedures to be preferred over
2638 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2639 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2640
4c4b4cd2
PH
2641static void
2642resolve (struct expression **expp, int void_context_p)
14f9c5c9 2643{
30b15541
UW
2644 struct type *context_type = NULL;
2645 int pc = 0;
2646
2647 if (void_context_p)
2648 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2649
2650 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2651}
2652
4c4b4cd2
PH
2653/* Resolve the operator of the subexpression beginning at
2654 position *POS of *EXPP. "Resolving" consists of replacing
2655 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2656 with their resolutions, replacing built-in operators with
2657 function calls to user-defined operators, where appropriate, and,
2658 when DEPROCEDURE_P is non-zero, converting function-valued variables
2659 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2660 are as in ada_resolve, above. */
14f9c5c9 2661
d2e4a39e 2662static struct value *
4c4b4cd2 2663resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2664 struct type *context_type)
14f9c5c9
AS
2665{
2666 int pc = *pos;
2667 int i;
4c4b4cd2 2668 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2669 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2670 struct value **argvec; /* Vector of operand types (alloca'ed). */
2671 int nargs; /* Number of operands. */
52ce6436 2672 int oplen;
14f9c5c9
AS
2673
2674 argvec = NULL;
2675 nargs = 0;
2676 exp = *expp;
2677
52ce6436
PH
2678 /* Pass one: resolve operands, saving their types and updating *pos,
2679 if needed. */
14f9c5c9
AS
2680 switch (op)
2681 {
4c4b4cd2
PH
2682 case OP_FUNCALL:
2683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2685 *pos += 7;
4c4b4cd2
PH
2686 else
2687 {
2688 *pos += 3;
2689 resolve_subexp (expp, pos, 0, NULL);
2690 }
2691 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2692 break;
2693
14f9c5c9 2694 case UNOP_ADDR:
4c4b4cd2
PH
2695 *pos += 1;
2696 resolve_subexp (expp, pos, 0, NULL);
2697 break;
2698
52ce6436
PH
2699 case UNOP_QUAL:
2700 *pos += 3;
17466c1a 2701 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2702 break;
2703
52ce6436 2704 case OP_ATR_MODULUS:
4c4b4cd2
PH
2705 case OP_ATR_SIZE:
2706 case OP_ATR_TAG:
4c4b4cd2
PH
2707 case OP_ATR_FIRST:
2708 case OP_ATR_LAST:
2709 case OP_ATR_LENGTH:
2710 case OP_ATR_POS:
2711 case OP_ATR_VAL:
4c4b4cd2
PH
2712 case OP_ATR_MIN:
2713 case OP_ATR_MAX:
52ce6436
PH
2714 case TERNOP_IN_RANGE:
2715 case BINOP_IN_BOUNDS:
2716 case UNOP_IN_RANGE:
2717 case OP_AGGREGATE:
2718 case OP_OTHERS:
2719 case OP_CHOICES:
2720 case OP_POSITIONAL:
2721 case OP_DISCRETE_RANGE:
2722 case OP_NAME:
2723 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2724 *pos += oplen;
14f9c5c9
AS
2725 break;
2726
2727 case BINOP_ASSIGN:
2728 {
4c4b4cd2
PH
2729 struct value *arg1;
2730
2731 *pos += 1;
2732 arg1 = resolve_subexp (expp, pos, 0, NULL);
2733 if (arg1 == NULL)
2734 resolve_subexp (expp, pos, 1, NULL);
2735 else
df407dfe 2736 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2737 break;
14f9c5c9
AS
2738 }
2739
4c4b4cd2 2740 case UNOP_CAST:
4c4b4cd2
PH
2741 *pos += 3;
2742 nargs = 1;
2743 break;
14f9c5c9 2744
4c4b4cd2
PH
2745 case BINOP_ADD:
2746 case BINOP_SUB:
2747 case BINOP_MUL:
2748 case BINOP_DIV:
2749 case BINOP_REM:
2750 case BINOP_MOD:
2751 case BINOP_EXP:
2752 case BINOP_CONCAT:
2753 case BINOP_LOGICAL_AND:
2754 case BINOP_LOGICAL_OR:
2755 case BINOP_BITWISE_AND:
2756 case BINOP_BITWISE_IOR:
2757 case BINOP_BITWISE_XOR:
14f9c5c9 2758
4c4b4cd2
PH
2759 case BINOP_EQUAL:
2760 case BINOP_NOTEQUAL:
2761 case BINOP_LESS:
2762 case BINOP_GTR:
2763 case BINOP_LEQ:
2764 case BINOP_GEQ:
14f9c5c9 2765
4c4b4cd2
PH
2766 case BINOP_REPEAT:
2767 case BINOP_SUBSCRIPT:
2768 case BINOP_COMMA:
40c8aaa9
JB
2769 *pos += 1;
2770 nargs = 2;
2771 break;
14f9c5c9 2772
4c4b4cd2
PH
2773 case UNOP_NEG:
2774 case UNOP_PLUS:
2775 case UNOP_LOGICAL_NOT:
2776 case UNOP_ABS:
2777 case UNOP_IND:
2778 *pos += 1;
2779 nargs = 1;
2780 break;
14f9c5c9 2781
4c4b4cd2
PH
2782 case OP_LONG:
2783 case OP_DOUBLE:
2784 case OP_VAR_VALUE:
2785 *pos += 4;
2786 break;
14f9c5c9 2787
4c4b4cd2
PH
2788 case OP_TYPE:
2789 case OP_BOOL:
2790 case OP_LAST:
4c4b4cd2
PH
2791 case OP_INTERNALVAR:
2792 *pos += 3;
2793 break;
14f9c5c9 2794
4c4b4cd2
PH
2795 case UNOP_MEMVAL:
2796 *pos += 3;
2797 nargs = 1;
2798 break;
2799
67f3407f
DJ
2800 case OP_REGISTER:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 break;
2803
4c4b4cd2
PH
2804 case STRUCTOP_STRUCT:
2805 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2806 nargs = 1;
2807 break;
2808
4c4b4cd2 2809 case TERNOP_SLICE:
4c4b4cd2
PH
2810 *pos += 1;
2811 nargs = 3;
2812 break;
2813
52ce6436 2814 case OP_STRING:
14f9c5c9 2815 break;
4c4b4cd2
PH
2816
2817 default:
323e0a4a 2818 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2819 }
2820
76a01679 2821 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2822 for (i = 0; i < nargs; i += 1)
2823 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2824 argvec[i] = NULL;
2825 exp = *expp;
2826
2827 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2828 switch (op)
2829 {
2830 default:
2831 break;
2832
14f9c5c9 2833 case OP_VAR_VALUE:
4c4b4cd2 2834 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2835 {
2836 struct ada_symbol_info *candidates;
2837 int n_candidates;
2838
2839 n_candidates =
2840 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2841 (exp->elts[pc + 2].symbol),
2842 exp->elts[pc + 1].block, VAR_DOMAIN,
2843 &candidates);
2844
2845 if (n_candidates > 1)
2846 {
2847 /* Types tend to get re-introduced locally, so if there
2848 are any local symbols that are not types, first filter
2849 out all types. */
2850 int j;
2851 for (j = 0; j < n_candidates; j += 1)
2852 switch (SYMBOL_CLASS (candidates[j].sym))
2853 {
2854 case LOC_REGISTER:
2855 case LOC_ARG:
2856 case LOC_REF_ARG:
76a01679
JB
2857 case LOC_REGPARM_ADDR:
2858 case LOC_LOCAL:
76a01679 2859 case LOC_COMPUTED:
76a01679
JB
2860 goto FoundNonType;
2861 default:
2862 break;
2863 }
2864 FoundNonType:
2865 if (j < n_candidates)
2866 {
2867 j = 0;
2868 while (j < n_candidates)
2869 {
2870 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2871 {
2872 candidates[j] = candidates[n_candidates - 1];
2873 n_candidates -= 1;
2874 }
2875 else
2876 j += 1;
2877 }
2878 }
2879 }
2880
2881 if (n_candidates == 0)
323e0a4a 2882 error (_("No definition found for %s"),
76a01679
JB
2883 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2884 else if (n_candidates == 1)
2885 i = 0;
2886 else if (deprocedure_p
2887 && !is_nonfunction (candidates, n_candidates))
2888 {
06d5cf63
JB
2889 i = ada_resolve_function
2890 (candidates, n_candidates, NULL, 0,
2891 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2892 context_type);
76a01679 2893 if (i < 0)
323e0a4a 2894 error (_("Could not find a match for %s"),
76a01679
JB
2895 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2896 }
2897 else
2898 {
323e0a4a 2899 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2900 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2901 user_select_syms (candidates, n_candidates, 1);
2902 i = 0;
2903 }
2904
2905 exp->elts[pc + 1].block = candidates[i].block;
2906 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2907 if (innermost_block == NULL
2908 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2909 innermost_block = candidates[i].block;
2910 }
2911
2912 if (deprocedure_p
2913 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2914 == TYPE_CODE_FUNC))
2915 {
2916 replace_operator_with_call (expp, pc, 0, 0,
2917 exp->elts[pc + 2].symbol,
2918 exp->elts[pc + 1].block);
2919 exp = *expp;
2920 }
14f9c5c9
AS
2921 break;
2922
2923 case OP_FUNCALL:
2924 {
4c4b4cd2 2925 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2926 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2927 {
2928 struct ada_symbol_info *candidates;
2929 int n_candidates;
2930
2931 n_candidates =
76a01679
JB
2932 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2933 (exp->elts[pc + 5].symbol),
2934 exp->elts[pc + 4].block, VAR_DOMAIN,
2935 &candidates);
4c4b4cd2
PH
2936 if (n_candidates == 1)
2937 i = 0;
2938 else
2939 {
06d5cf63
JB
2940 i = ada_resolve_function
2941 (candidates, n_candidates,
2942 argvec, nargs,
2943 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2944 context_type);
4c4b4cd2 2945 if (i < 0)
323e0a4a 2946 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2947 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2948 }
2949
2950 exp->elts[pc + 4].block = candidates[i].block;
2951 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2952 if (innermost_block == NULL
2953 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2954 innermost_block = candidates[i].block;
2955 }
14f9c5c9
AS
2956 }
2957 break;
2958 case BINOP_ADD:
2959 case BINOP_SUB:
2960 case BINOP_MUL:
2961 case BINOP_DIV:
2962 case BINOP_REM:
2963 case BINOP_MOD:
2964 case BINOP_CONCAT:
2965 case BINOP_BITWISE_AND:
2966 case BINOP_BITWISE_IOR:
2967 case BINOP_BITWISE_XOR:
2968 case BINOP_EQUAL:
2969 case BINOP_NOTEQUAL:
2970 case BINOP_LESS:
2971 case BINOP_GTR:
2972 case BINOP_LEQ:
2973 case BINOP_GEQ:
2974 case BINOP_EXP:
2975 case UNOP_NEG:
2976 case UNOP_PLUS:
2977 case UNOP_LOGICAL_NOT:
2978 case UNOP_ABS:
2979 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2980 {
2981 struct ada_symbol_info *candidates;
2982 int n_candidates;
2983
2984 n_candidates =
2985 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2986 (struct block *) NULL, VAR_DOMAIN,
2987 &candidates);
2988 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2989 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2990 if (i < 0)
2991 break;
2992
76a01679
JB
2993 replace_operator_with_call (expp, pc, nargs, 1,
2994 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2995 exp = *expp;
2996 }
14f9c5c9 2997 break;
4c4b4cd2
PH
2998
2999 case OP_TYPE:
b3dbf008 3000 case OP_REGISTER:
4c4b4cd2 3001 return NULL;
14f9c5c9
AS
3002 }
3003
3004 *pos = pc;
3005 return evaluate_subexp_type (exp, pos);
3006}
3007
3008/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3009 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3010 a non-pointer. */
14f9c5c9 3011/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3012 liberal. */
14f9c5c9
AS
3013
3014static int
4dc81987 3015ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3016{
61ee279c
PH
3017 ftype = ada_check_typedef (ftype);
3018 atype = ada_check_typedef (atype);
14f9c5c9
AS
3019
3020 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3021 ftype = TYPE_TARGET_TYPE (ftype);
3022 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3023 atype = TYPE_TARGET_TYPE (atype);
3024
d2e4a39e 3025 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3026 {
3027 default:
5b3d5b7d 3028 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3029 case TYPE_CODE_PTR:
3030 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3031 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3032 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3033 else
1265e4aa
JB
3034 return (may_deref
3035 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3036 case TYPE_CODE_INT:
3037 case TYPE_CODE_ENUM:
3038 case TYPE_CODE_RANGE:
3039 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3040 {
3041 case TYPE_CODE_INT:
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_RANGE:
3044 return 1;
3045 default:
3046 return 0;
3047 }
14f9c5c9
AS
3048
3049 case TYPE_CODE_ARRAY:
d2e4a39e 3050 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3051 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3052
3053 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3054 if (ada_is_array_descriptor_type (ftype))
3055 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3056 || ada_is_array_descriptor_type (atype));
14f9c5c9 3057 else
4c4b4cd2
PH
3058 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3059 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3060
3061 case TYPE_CODE_UNION:
3062 case TYPE_CODE_FLT:
3063 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3064 }
3065}
3066
3067/* Return non-zero if the formals of FUNC "sufficiently match" the
3068 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3069 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3070 argument function. */
14f9c5c9
AS
3071
3072static int
d2e4a39e 3073ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3074{
3075 int i;
d2e4a39e 3076 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3077
1265e4aa
JB
3078 if (SYMBOL_CLASS (func) == LOC_CONST
3079 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3080 return (n_actuals == 0);
3081 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3082 return 0;
3083
3084 if (TYPE_NFIELDS (func_type) != n_actuals)
3085 return 0;
3086
3087 for (i = 0; i < n_actuals; i += 1)
3088 {
4c4b4cd2 3089 if (actuals[i] == NULL)
76a01679
JB
3090 return 0;
3091 else
3092 {
61ee279c 3093 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3094 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3095
76a01679
JB
3096 if (!ada_type_match (ftype, atype, 1))
3097 return 0;
3098 }
14f9c5c9
AS
3099 }
3100 return 1;
3101}
3102
3103/* False iff function type FUNC_TYPE definitely does not produce a value
3104 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3105 FUNC_TYPE is not a valid function type with a non-null return type
3106 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3107
3108static int
d2e4a39e 3109return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3110{
d2e4a39e 3111 struct type *return_type;
14f9c5c9
AS
3112
3113 if (func_type == NULL)
3114 return 1;
3115
4c4b4cd2
PH
3116 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3117 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3118 else
3119 return_type = base_type (func_type);
14f9c5c9
AS
3120 if (return_type == NULL)
3121 return 1;
3122
4c4b4cd2 3123 context_type = base_type (context_type);
14f9c5c9
AS
3124
3125 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3126 return context_type == NULL || return_type == context_type;
3127 else if (context_type == NULL)
3128 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3129 else
3130 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3131}
3132
3133
4c4b4cd2 3134/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3135 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3136 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3137 that returns that type, then eliminate matches that don't. If
3138 CONTEXT_TYPE is void and there is at least one match that does not
3139 return void, eliminate all matches that do.
3140
14f9c5c9
AS
3141 Asks the user if there is more than one match remaining. Returns -1
3142 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3143 solely for messages. May re-arrange and modify SYMS in
3144 the process; the index returned is for the modified vector. */
14f9c5c9 3145
4c4b4cd2
PH
3146static int
3147ada_resolve_function (struct ada_symbol_info syms[],
3148 int nsyms, struct value **args, int nargs,
3149 const char *name, struct type *context_type)
14f9c5c9 3150{
30b15541 3151 int fallback;
14f9c5c9 3152 int k;
4c4b4cd2 3153 int m; /* Number of hits */
14f9c5c9 3154
d2e4a39e 3155 m = 0;
30b15541
UW
3156 /* In the first pass of the loop, we only accept functions matching
3157 context_type. If none are found, we add a second pass of the loop
3158 where every function is accepted. */
3159 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3160 {
3161 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3162 {
61ee279c 3163 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3164
3165 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3166 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3167 {
3168 syms[m] = syms[k];
3169 m += 1;
3170 }
3171 }
14f9c5c9
AS
3172 }
3173
3174 if (m == 0)
3175 return -1;
3176 else if (m > 1)
3177 {
323e0a4a 3178 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3179 user_select_syms (syms, m, 1);
14f9c5c9
AS
3180 return 0;
3181 }
3182 return 0;
3183}
3184
4c4b4cd2
PH
3185/* Returns true (non-zero) iff decoded name N0 should appear before N1
3186 in a listing of choices during disambiguation (see sort_choices, below).
3187 The idea is that overloadings of a subprogram name from the
3188 same package should sort in their source order. We settle for ordering
3189 such symbols by their trailing number (__N or $N). */
3190
14f9c5c9 3191static int
4c4b4cd2 3192encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3193{
3194 if (N1 == NULL)
3195 return 0;
3196 else if (N0 == NULL)
3197 return 1;
3198 else
3199 {
3200 int k0, k1;
d2e4a39e 3201 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3202 ;
d2e4a39e 3203 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3204 ;
d2e4a39e 3205 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3206 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3207 {
3208 int n0, n1;
3209 n0 = k0;
3210 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3211 n0 -= 1;
3212 n1 = k1;
3213 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3214 n1 -= 1;
3215 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3216 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3217 }
14f9c5c9
AS
3218 return (strcmp (N0, N1) < 0);
3219 }
3220}
d2e4a39e 3221
4c4b4cd2
PH
3222/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3223 encoded names. */
3224
d2e4a39e 3225static void
4c4b4cd2 3226sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3227{
4c4b4cd2 3228 int i;
d2e4a39e 3229 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3230 {
4c4b4cd2 3231 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3232 int j;
3233
d2e4a39e 3234 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3235 {
3236 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3237 SYMBOL_LINKAGE_NAME (sym.sym)))
3238 break;
3239 syms[j + 1] = syms[j];
3240 }
d2e4a39e 3241 syms[j + 1] = sym;
14f9c5c9
AS
3242 }
3243}
3244
4c4b4cd2
PH
3245/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3246 by asking the user (if necessary), returning the number selected,
3247 and setting the first elements of SYMS items. Error if no symbols
3248 selected. */
14f9c5c9
AS
3249
3250/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3251 to be re-integrated one of these days. */
14f9c5c9
AS
3252
3253int
4c4b4cd2 3254user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3255{
3256 int i;
d2e4a39e 3257 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3258 int n_chosen;
3259 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3260 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3261
3262 if (max_results < 1)
323e0a4a 3263 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3264 if (nsyms <= 1)
3265 return nsyms;
3266
717d2f5a
JB
3267 if (select_mode == multiple_symbols_cancel)
3268 error (_("\
3269canceled because the command is ambiguous\n\
3270See set/show multiple-symbol."));
3271
3272 /* If select_mode is "all", then return all possible symbols.
3273 Only do that if more than one symbol can be selected, of course.
3274 Otherwise, display the menu as usual. */
3275 if (select_mode == multiple_symbols_all && max_results > 1)
3276 return nsyms;
3277
323e0a4a 3278 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3279 if (max_results > 1)
323e0a4a 3280 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3281
4c4b4cd2 3282 sort_choices (syms, nsyms);
14f9c5c9
AS
3283
3284 for (i = 0; i < nsyms; i += 1)
3285 {
4c4b4cd2
PH
3286 if (syms[i].sym == NULL)
3287 continue;
3288
3289 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3290 {
76a01679
JB
3291 struct symtab_and_line sal =
3292 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3293 if (sal.symtab == NULL)
3294 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3295 i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.line);
3298 else
3299 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3300 SYMBOL_PRINT_NAME (syms[i].sym),
3301 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3302 continue;
3303 }
d2e4a39e 3304 else
4c4b4cd2
PH
3305 {
3306 int is_enumeral =
3307 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3308 && SYMBOL_TYPE (syms[i].sym) != NULL
3309 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3310 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3311
3312 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3313 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3314 i + first_choice,
3315 SYMBOL_PRINT_NAME (syms[i].sym),
3316 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3317 else if (is_enumeral
3318 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3319 {
a3f17187 3320 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3321 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3322 gdb_stdout, -1, 0);
323e0a4a 3323 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3324 SYMBOL_PRINT_NAME (syms[i].sym));
3325 }
3326 else if (symtab != NULL)
3327 printf_unfiltered (is_enumeral
323e0a4a
AC
3328 ? _("[%d] %s in %s (enumeral)\n")
3329 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3330 i + first_choice,
3331 SYMBOL_PRINT_NAME (syms[i].sym),
3332 symtab->filename);
3333 else
3334 printf_unfiltered (is_enumeral
323e0a4a
AC
3335 ? _("[%d] %s (enumeral)\n")
3336 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3337 i + first_choice,
3338 SYMBOL_PRINT_NAME (syms[i].sym));
3339 }
14f9c5c9 3340 }
d2e4a39e 3341
14f9c5c9 3342 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3343 "overload-choice");
14f9c5c9
AS
3344
3345 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3346 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3347
3348 return n_chosen;
3349}
3350
3351/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3352 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3353 order in CHOICES[0 .. N-1], and return N.
3354
3355 The user types choices as a sequence of numbers on one line
3356 separated by blanks, encoding them as follows:
3357
4c4b4cd2 3358 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3359 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3360 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3361
4c4b4cd2 3362 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3363
3364 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3365 prompts (for use with the -f switch). */
14f9c5c9
AS
3366
3367int
d2e4a39e 3368get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3369 int is_all_choice, char *annotation_suffix)
14f9c5c9 3370{
d2e4a39e 3371 char *args;
0bcd0149 3372 char *prompt;
14f9c5c9
AS
3373 int n_chosen;
3374 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3375
14f9c5c9
AS
3376 prompt = getenv ("PS2");
3377 if (prompt == NULL)
0bcd0149 3378 prompt = "> ";
14f9c5c9 3379
0bcd0149 3380 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3381
14f9c5c9 3382 if (args == NULL)
323e0a4a 3383 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3384
3385 n_chosen = 0;
76a01679 3386
4c4b4cd2
PH
3387 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3388 order, as given in args. Choices are validated. */
14f9c5c9
AS
3389 while (1)
3390 {
d2e4a39e 3391 char *args2;
14f9c5c9
AS
3392 int choice, j;
3393
3394 while (isspace (*args))
4c4b4cd2 3395 args += 1;
14f9c5c9 3396 if (*args == '\0' && n_chosen == 0)
323e0a4a 3397 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3398 else if (*args == '\0')
4c4b4cd2 3399 break;
14f9c5c9
AS
3400
3401 choice = strtol (args, &args2, 10);
d2e4a39e 3402 if (args == args2 || choice < 0
4c4b4cd2 3403 || choice > n_choices + first_choice - 1)
323e0a4a 3404 error (_("Argument must be choice number"));
14f9c5c9
AS
3405 args = args2;
3406
d2e4a39e 3407 if (choice == 0)
323e0a4a 3408 error (_("cancelled"));
14f9c5c9
AS
3409
3410 if (choice < first_choice)
4c4b4cd2
PH
3411 {
3412 n_chosen = n_choices;
3413 for (j = 0; j < n_choices; j += 1)
3414 choices[j] = j;
3415 break;
3416 }
14f9c5c9
AS
3417 choice -= first_choice;
3418
d2e4a39e 3419 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3420 {
3421 }
14f9c5c9
AS
3422
3423 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3424 {
3425 int k;
3426 for (k = n_chosen - 1; k > j; k -= 1)
3427 choices[k + 1] = choices[k];
3428 choices[j + 1] = choice;
3429 n_chosen += 1;
3430 }
14f9c5c9
AS
3431 }
3432
3433 if (n_chosen > max_results)
323e0a4a 3434 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3435
14f9c5c9
AS
3436 return n_chosen;
3437}
3438
4c4b4cd2
PH
3439/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3440 on the function identified by SYM and BLOCK, and taking NARGS
3441 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3442
3443static void
d2e4a39e 3444replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3445 int oplen, struct symbol *sym,
3446 struct block *block)
14f9c5c9
AS
3447{
3448 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3449 symbol, -oplen for operator being replaced). */
d2e4a39e 3450 struct expression *newexp = (struct expression *)
14f9c5c9 3451 xmalloc (sizeof (struct expression)
4c4b4cd2 3452 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3453 struct expression *exp = *expp;
14f9c5c9
AS
3454
3455 newexp->nelts = exp->nelts + 7 - oplen;
3456 newexp->language_defn = exp->language_defn;
3457 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3458 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3459 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3460
3461 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3462 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3463
3464 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3465 newexp->elts[pc + 4].block = block;
3466 newexp->elts[pc + 5].symbol = sym;
3467
3468 *expp = newexp;
aacb1f0a 3469 xfree (exp);
d2e4a39e 3470}
14f9c5c9
AS
3471
3472/* Type-class predicates */
3473
4c4b4cd2
PH
3474/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3475 or FLOAT). */
14f9c5c9
AS
3476
3477static int
d2e4a39e 3478numeric_type_p (struct type *type)
14f9c5c9
AS
3479{
3480 if (type == NULL)
3481 return 0;
d2e4a39e
AS
3482 else
3483 {
3484 switch (TYPE_CODE (type))
4c4b4cd2
PH
3485 {
3486 case TYPE_CODE_INT:
3487 case TYPE_CODE_FLT:
3488 return 1;
3489 case TYPE_CODE_RANGE:
3490 return (type == TYPE_TARGET_TYPE (type)
3491 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3492 default:
3493 return 0;
3494 }
d2e4a39e 3495 }
14f9c5c9
AS
3496}
3497
4c4b4cd2 3498/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3499
3500static int
d2e4a39e 3501integer_type_p (struct type *type)
14f9c5c9
AS
3502{
3503 if (type == NULL)
3504 return 0;
d2e4a39e
AS
3505 else
3506 {
3507 switch (TYPE_CODE (type))
4c4b4cd2
PH
3508 {
3509 case TYPE_CODE_INT:
3510 return 1;
3511 case TYPE_CODE_RANGE:
3512 return (type == TYPE_TARGET_TYPE (type)
3513 || integer_type_p (TYPE_TARGET_TYPE (type)));
3514 default:
3515 return 0;
3516 }
d2e4a39e 3517 }
14f9c5c9
AS
3518}
3519
4c4b4cd2 3520/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3521
3522static int
d2e4a39e 3523scalar_type_p (struct type *type)
14f9c5c9
AS
3524{
3525 if (type == NULL)
3526 return 0;
d2e4a39e
AS
3527 else
3528 {
3529 switch (TYPE_CODE (type))
4c4b4cd2
PH
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_RANGE:
3533 case TYPE_CODE_ENUM:
3534 case TYPE_CODE_FLT:
3535 return 1;
3536 default:
3537 return 0;
3538 }
d2e4a39e 3539 }
14f9c5c9
AS
3540}
3541
4c4b4cd2 3542/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3543
3544static int
d2e4a39e 3545discrete_type_p (struct type *type)
14f9c5c9
AS
3546{
3547 if (type == NULL)
3548 return 0;
d2e4a39e
AS
3549 else
3550 {
3551 switch (TYPE_CODE (type))
4c4b4cd2
PH
3552 {
3553 case TYPE_CODE_INT:
3554 case TYPE_CODE_RANGE:
3555 case TYPE_CODE_ENUM:
872f0337 3556 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3557 return 1;
3558 default:
3559 return 0;
3560 }
d2e4a39e 3561 }
14f9c5c9
AS
3562}
3563
4c4b4cd2
PH
3564/* Returns non-zero if OP with operands in the vector ARGS could be
3565 a user-defined function. Errs on the side of pre-defined operators
3566 (i.e., result 0). */
14f9c5c9
AS
3567
3568static int
d2e4a39e 3569possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3570{
76a01679 3571 struct type *type0 =
df407dfe 3572 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3573 struct type *type1 =
df407dfe 3574 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3575
4c4b4cd2
PH
3576 if (type0 == NULL)
3577 return 0;
3578
14f9c5c9
AS
3579 switch (op)
3580 {
3581 default:
3582 return 0;
3583
3584 case BINOP_ADD:
3585 case BINOP_SUB:
3586 case BINOP_MUL:
3587 case BINOP_DIV:
d2e4a39e 3588 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3589
3590 case BINOP_REM:
3591 case BINOP_MOD:
3592 case BINOP_BITWISE_AND:
3593 case BINOP_BITWISE_IOR:
3594 case BINOP_BITWISE_XOR:
d2e4a39e 3595 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3596
3597 case BINOP_EQUAL:
3598 case BINOP_NOTEQUAL:
3599 case BINOP_LESS:
3600 case BINOP_GTR:
3601 case BINOP_LEQ:
3602 case BINOP_GEQ:
d2e4a39e 3603 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3604
3605 case BINOP_CONCAT:
ee90b9ab 3606 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3607
3608 case BINOP_EXP:
d2e4a39e 3609 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3610
3611 case UNOP_NEG:
3612 case UNOP_PLUS:
3613 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3614 case UNOP_ABS:
3615 return (!numeric_type_p (type0));
14f9c5c9
AS
3616
3617 }
3618}
3619\f
4c4b4cd2 3620 /* Renaming */
14f9c5c9 3621
aeb5907d
JB
3622/* NOTES:
3623
3624 1. In the following, we assume that a renaming type's name may
3625 have an ___XD suffix. It would be nice if this went away at some
3626 point.
3627 2. We handle both the (old) purely type-based representation of
3628 renamings and the (new) variable-based encoding. At some point,
3629 it is devoutly to be hoped that the former goes away
3630 (FIXME: hilfinger-2007-07-09).
3631 3. Subprogram renamings are not implemented, although the XRS
3632 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3633
3634/* If SYM encodes a renaming,
3635
3636 <renaming> renames <renamed entity>,
3637
3638 sets *LEN to the length of the renamed entity's name,
3639 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3640 the string describing the subcomponent selected from the renamed
3641 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3642 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3643 are undefined). Otherwise, returns a value indicating the category
3644 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3645 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3646 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3647 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3648 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3649 may be NULL, in which case they are not assigned.
3650
3651 [Currently, however, GCC does not generate subprogram renamings.] */
3652
3653enum ada_renaming_category
3654ada_parse_renaming (struct symbol *sym,
3655 const char **renamed_entity, int *len,
3656 const char **renaming_expr)
3657{
3658 enum ada_renaming_category kind;
3659 const char *info;
3660 const char *suffix;
3661
3662 if (sym == NULL)
3663 return ADA_NOT_RENAMING;
3664 switch (SYMBOL_CLASS (sym))
14f9c5c9 3665 {
aeb5907d
JB
3666 default:
3667 return ADA_NOT_RENAMING;
3668 case LOC_TYPEDEF:
3669 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3670 renamed_entity, len, renaming_expr);
3671 case LOC_LOCAL:
3672 case LOC_STATIC:
3673 case LOC_COMPUTED:
3674 case LOC_OPTIMIZED_OUT:
3675 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3676 if (info == NULL)
3677 return ADA_NOT_RENAMING;
3678 switch (info[5])
3679 {
3680 case '_':
3681 kind = ADA_OBJECT_RENAMING;
3682 info += 6;
3683 break;
3684 case 'E':
3685 kind = ADA_EXCEPTION_RENAMING;
3686 info += 7;
3687 break;
3688 case 'P':
3689 kind = ADA_PACKAGE_RENAMING;
3690 info += 7;
3691 break;
3692 case 'S':
3693 kind = ADA_SUBPROGRAM_RENAMING;
3694 info += 7;
3695 break;
3696 default:
3697 return ADA_NOT_RENAMING;
3698 }
14f9c5c9 3699 }
4c4b4cd2 3700
aeb5907d
JB
3701 if (renamed_entity != NULL)
3702 *renamed_entity = info;
3703 suffix = strstr (info, "___XE");
3704 if (suffix == NULL || suffix == info)
3705 return ADA_NOT_RENAMING;
3706 if (len != NULL)
3707 *len = strlen (info) - strlen (suffix);
3708 suffix += 5;
3709 if (renaming_expr != NULL)
3710 *renaming_expr = suffix;
3711 return kind;
3712}
3713
3714/* Assuming TYPE encodes a renaming according to the old encoding in
3715 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3716 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3717 ADA_NOT_RENAMING otherwise. */
3718static enum ada_renaming_category
3719parse_old_style_renaming (struct type *type,
3720 const char **renamed_entity, int *len,
3721 const char **renaming_expr)
3722{
3723 enum ada_renaming_category kind;
3724 const char *name;
3725 const char *info;
3726 const char *suffix;
14f9c5c9 3727
aeb5907d
JB
3728 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3729 || TYPE_NFIELDS (type) != 1)
3730 return ADA_NOT_RENAMING;
14f9c5c9 3731
aeb5907d
JB
3732 name = type_name_no_tag (type);
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735
3736 name = strstr (name, "___XR");
3737 if (name == NULL)
3738 return ADA_NOT_RENAMING;
3739 switch (name[5])
3740 {
3741 case '\0':
3742 case '_':
3743 kind = ADA_OBJECT_RENAMING;
3744 break;
3745 case 'E':
3746 kind = ADA_EXCEPTION_RENAMING;
3747 break;
3748 case 'P':
3749 kind = ADA_PACKAGE_RENAMING;
3750 break;
3751 case 'S':
3752 kind = ADA_SUBPROGRAM_RENAMING;
3753 break;
3754 default:
3755 return ADA_NOT_RENAMING;
3756 }
14f9c5c9 3757
aeb5907d
JB
3758 info = TYPE_FIELD_NAME (type, 0);
3759 if (info == NULL)
3760 return ADA_NOT_RENAMING;
3761 if (renamed_entity != NULL)
3762 *renamed_entity = info;
3763 suffix = strstr (info, "___XE");
3764 if (renaming_expr != NULL)
3765 *renaming_expr = suffix + 5;
3766 if (suffix == NULL || suffix == info)
3767 return ADA_NOT_RENAMING;
3768 if (len != NULL)
3769 *len = suffix - info;
3770 return kind;
3771}
52ce6436 3772
14f9c5c9 3773\f
d2e4a39e 3774
4c4b4cd2 3775 /* Evaluation: Function Calls */
14f9c5c9 3776
4c4b4cd2
PH
3777/* Return an lvalue containing the value VAL. This is the identity on
3778 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3779 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3780 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3781
d2e4a39e 3782static struct value *
4a399546 3783ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3784{
c3e5cd34
PH
3785 if (! VALUE_LVAL (val))
3786 {
df407dfe 3787 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3788
3789 /* The following is taken from the structure-return code in
3790 call_function_by_hand. FIXME: Therefore, some refactoring seems
3791 indicated. */
4a399546 3792 if (gdbarch_inner_than (gdbarch, 1, 2))
c3e5cd34 3793 {
42ae5230 3794 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3795 reserving sufficient space. */
3796 *sp -= len;
4a399546
UW
3797 if (gdbarch_frame_align_p (gdbarch))
3798 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3799 set_value_address (val, *sp);
c3e5cd34
PH
3800 }
3801 else
3802 {
3803 /* Stack grows upward. Align the frame, allocate space, and
3804 then again, re-align the frame. */
4a399546
UW
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
42ae5230 3807 set_value_address (val, *sp);
c3e5cd34 3808 *sp += len;
4a399546
UW
3809 if (gdbarch_frame_align_p (gdbarch))
3810 *sp = gdbarch_frame_align (gdbarch, *sp);
c3e5cd34 3811 }
a84a8a0d 3812 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3813
42ae5230 3814 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3815 }
14f9c5c9
AS
3816
3817 return val;
3818}
3819
3820/* Return the value ACTUAL, converted to be an appropriate value for a
3821 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3822 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3823 values not residing in memory, updating it as needed. */
14f9c5c9 3824
a93c0eb6
JB
3825struct value *
3826ada_convert_actual (struct value *actual, struct type *formal_type0,
4a399546 3827 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3828{
df407dfe 3829 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3830 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3831 struct type *formal_target =
3832 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3833 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3834 struct type *actual_target =
3835 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3836 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3837
4c4b4cd2 3838 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 3839 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4a399546 3840 return make_array_descriptor (formal_type, actual, gdbarch, sp);
a84a8a0d
JB
3841 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3842 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3843 {
a84a8a0d 3844 struct value *result;
14f9c5c9 3845 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3846 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3847 result = desc_data (actual);
14f9c5c9 3848 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3849 {
3850 if (VALUE_LVAL (actual) != lval_memory)
3851 {
3852 struct value *val;
df407dfe 3853 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3854 val = allocate_value (actual_type);
990a07ab 3855 memcpy ((char *) value_contents_raw (val),
0fd88904 3856 (char *) value_contents (actual),
4c4b4cd2 3857 TYPE_LENGTH (actual_type));
4a399546 3858 actual = ensure_lval (val, gdbarch, sp);
4c4b4cd2 3859 }
a84a8a0d 3860 result = value_addr (actual);
4c4b4cd2 3861 }
a84a8a0d
JB
3862 else
3863 return actual;
3864 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3865 }
3866 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3867 return ada_value_ind (actual);
3868
3869 return actual;
3870}
3871
3872
4c4b4cd2
PH
3873/* Push a descriptor of type TYPE for array value ARR on the stack at
3874 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3875 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3876 to-descriptor type rather than a descriptor type), a struct value *
3877 representing a pointer to this descriptor. */
14f9c5c9 3878
d2e4a39e 3879static struct value *
4a399546
UW
3880make_array_descriptor (struct type *type, struct value *arr,
3881 struct gdbarch *gdbarch, CORE_ADDR *sp)
14f9c5c9 3882{
d2e4a39e
AS
3883 struct type *bounds_type = desc_bounds_type (type);
3884 struct type *desc_type = desc_base_type (type);
3885 struct value *descriptor = allocate_value (desc_type);
3886 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3887 int i;
d2e4a39e 3888
df407dfe 3889 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3890 {
50810684
UW
3891 modify_general_field (value_type (bounds),
3892 value_contents_writeable (bounds),
1eea4ebd 3893 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3894 desc_bound_bitpos (bounds_type, i, 0),
3895 desc_bound_bitsize (bounds_type, i, 0));
50810684
UW
3896 modify_general_field (value_type (bounds),
3897 value_contents_writeable (bounds),
1eea4ebd 3898 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3899 desc_bound_bitpos (bounds_type, i, 1),
3900 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3901 }
d2e4a39e 3902
4a399546 3903 bounds = ensure_lval (bounds, gdbarch, sp);
d2e4a39e 3904
50810684
UW
3905 modify_general_field (value_type (descriptor),
3906 value_contents_writeable (descriptor),
4a399546 3907 value_address (ensure_lval (arr, gdbarch, sp)),
76a01679
JB
3908 fat_pntr_data_bitpos (desc_type),
3909 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3910
50810684
UW
3911 modify_general_field (value_type (descriptor),
3912 value_contents_writeable (descriptor),
42ae5230 3913 value_address (bounds),
4c4b4cd2
PH
3914 fat_pntr_bounds_bitpos (desc_type),
3915 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3916
4a399546 3917 descriptor = ensure_lval (descriptor, gdbarch, sp);
14f9c5c9
AS
3918
3919 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3920 return value_addr (descriptor);
3921 else
3922 return descriptor;
3923}
14f9c5c9 3924\f
963a6417
PH
3925/* Dummy definitions for an experimental caching module that is not
3926 * used in the public sources. */
96d887e8 3927
96d887e8
PH
3928static int
3929lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3930 struct symbol **sym, struct block **block)
96d887e8
PH
3931{
3932 return 0;
3933}
3934
3935static void
3936cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3937 struct block *block)
96d887e8
PH
3938{
3939}
4c4b4cd2
PH
3940\f
3941 /* Symbol Lookup */
3942
3943/* Return the result of a standard (literal, C-like) lookup of NAME in
3944 given DOMAIN, visible from lexical block BLOCK. */
3945
3946static struct symbol *
3947standard_lookup (const char *name, const struct block *block,
3948 domain_enum domain)
3949{
3950 struct symbol *sym;
4c4b4cd2 3951
2570f2b7 3952 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3953 return sym;
2570f2b7
UW
3954 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3955 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3956 return sym;
3957}
3958
3959
3960/* Non-zero iff there is at least one non-function/non-enumeral symbol
3961 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3962 since they contend in overloading in the same way. */
3963static int
3964is_nonfunction (struct ada_symbol_info syms[], int n)
3965{
3966 int i;
3967
3968 for (i = 0; i < n; i += 1)
3969 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3970 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3971 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3972 return 1;
3973
3974 return 0;
3975}
3976
3977/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3978 struct types. Otherwise, they may not. */
14f9c5c9
AS
3979
3980static int
d2e4a39e 3981equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3982{
d2e4a39e 3983 if (type0 == type1)
14f9c5c9 3984 return 1;
d2e4a39e 3985 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3986 || TYPE_CODE (type0) != TYPE_CODE (type1))
3987 return 0;
d2e4a39e 3988 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3989 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3990 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3991 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3992 return 1;
d2e4a39e 3993
14f9c5c9
AS
3994 return 0;
3995}
3996
3997/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3998 no more defined than that of SYM1. */
14f9c5c9
AS
3999
4000static int
d2e4a39e 4001lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4002{
4003 if (sym0 == sym1)
4004 return 1;
176620f1 4005 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4006 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4007 return 0;
4008
d2e4a39e 4009 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4010 {
4011 case LOC_UNDEF:
4012 return 1;
4013 case LOC_TYPEDEF:
4014 {
4c4b4cd2
PH
4015 struct type *type0 = SYMBOL_TYPE (sym0);
4016 struct type *type1 = SYMBOL_TYPE (sym1);
4017 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4018 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4019 int len0 = strlen (name0);
4020 return
4021 TYPE_CODE (type0) == TYPE_CODE (type1)
4022 && (equiv_types (type0, type1)
4023 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4024 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4025 }
4026 case LOC_CONST:
4027 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4028 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4029 default:
4030 return 0;
14f9c5c9
AS
4031 }
4032}
4033
4c4b4cd2
PH
4034/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4035 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4036
4037static void
76a01679
JB
4038add_defn_to_vec (struct obstack *obstackp,
4039 struct symbol *sym,
2570f2b7 4040 struct block *block)
14f9c5c9
AS
4041{
4042 int i;
4043 size_t tmp;
4c4b4cd2 4044 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4045
529cad9c
PH
4046 /* Do not try to complete stub types, as the debugger is probably
4047 already scanning all symbols matching a certain name at the
4048 time when this function is called. Trying to replace the stub
4049 type by its associated full type will cause us to restart a scan
4050 which may lead to an infinite recursion. Instead, the client
4051 collecting the matching symbols will end up collecting several
4052 matches, with at least one of them complete. It can then filter
4053 out the stub ones if needed. */
4054
4c4b4cd2
PH
4055 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4056 {
4057 if (lesseq_defined_than (sym, prevDefns[i].sym))
4058 return;
4059 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4060 {
4061 prevDefns[i].sym = sym;
4062 prevDefns[i].block = block;
4c4b4cd2 4063 return;
76a01679 4064 }
4c4b4cd2
PH
4065 }
4066
4067 {
4068 struct ada_symbol_info info;
4069
4070 info.sym = sym;
4071 info.block = block;
4c4b4cd2
PH
4072 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4073 }
4074}
4075
4076/* Number of ada_symbol_info structures currently collected in
4077 current vector in *OBSTACKP. */
4078
76a01679
JB
4079static int
4080num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4081{
4082 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4083}
4084
4085/* Vector of ada_symbol_info structures currently collected in current
4086 vector in *OBSTACKP. If FINISH, close off the vector and return
4087 its final address. */
4088
76a01679 4089static struct ada_symbol_info *
4c4b4cd2
PH
4090defns_collected (struct obstack *obstackp, int finish)
4091{
4092 if (finish)
4093 return obstack_finish (obstackp);
4094 else
4095 return (struct ada_symbol_info *) obstack_base (obstackp);
4096}
4097
96d887e8
PH
4098/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4099 Check the global symbols if GLOBAL, the static symbols if not.
4100 Do wild-card match if WILD. */
4c4b4cd2 4101
96d887e8
PH
4102static struct partial_symbol *
4103ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4104 int global, domain_enum namespace, int wild)
4c4b4cd2 4105{
96d887e8
PH
4106 struct partial_symbol **start;
4107 int name_len = strlen (name);
4108 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4109 int i;
4c4b4cd2 4110
96d887e8 4111 if (length == 0)
4c4b4cd2 4112 {
96d887e8 4113 return (NULL);
4c4b4cd2
PH
4114 }
4115
96d887e8
PH
4116 start = (global ?
4117 pst->objfile->global_psymbols.list + pst->globals_offset :
4118 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4119
96d887e8 4120 if (wild)
4c4b4cd2 4121 {
96d887e8
PH
4122 for (i = 0; i < length; i += 1)
4123 {
4124 struct partial_symbol *psym = start[i];
4c4b4cd2 4125
5eeb2539
AR
4126 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4127 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4128 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4129 return psym;
4130 }
4131 return NULL;
4c4b4cd2 4132 }
96d887e8
PH
4133 else
4134 {
4135 if (global)
4136 {
4137 int U;
4138 i = 0;
4139 U = length - 1;
4140 while (U - i > 4)
4141 {
4142 int M = (U + i) >> 1;
4143 struct partial_symbol *psym = start[M];
4144 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4145 i = M + 1;
4146 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4147 U = M - 1;
4148 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4149 i = M + 1;
4150 else
4151 U = M;
4152 }
4153 }
4154 else
4155 i = 0;
4c4b4cd2 4156
96d887e8
PH
4157 while (i < length)
4158 {
4159 struct partial_symbol *psym = start[i];
4c4b4cd2 4160
5eeb2539
AR
4161 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4162 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4163 {
4164 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4165
96d887e8
PH
4166 if (cmp < 0)
4167 {
4168 if (global)
4169 break;
4170 }
4171 else if (cmp == 0
4172 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4173 + name_len))
96d887e8
PH
4174 return psym;
4175 }
4176 i += 1;
4177 }
4c4b4cd2 4178
96d887e8
PH
4179 if (global)
4180 {
4181 int U;
4182 i = 0;
4183 U = length - 1;
4184 while (U - i > 4)
4185 {
4186 int M = (U + i) >> 1;
4187 struct partial_symbol *psym = start[M];
4188 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4189 i = M + 1;
4190 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4191 U = M - 1;
4192 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4193 i = M + 1;
4194 else
4195 U = M;
4196 }
4197 }
4198 else
4199 i = 0;
4c4b4cd2 4200
96d887e8
PH
4201 while (i < length)
4202 {
4203 struct partial_symbol *psym = start[i];
4c4b4cd2 4204
5eeb2539
AR
4205 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4206 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4207 {
4208 int cmp;
4c4b4cd2 4209
96d887e8
PH
4210 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4211 if (cmp == 0)
4212 {
4213 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4214 if (cmp == 0)
4215 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4216 name_len);
96d887e8 4217 }
4c4b4cd2 4218
96d887e8
PH
4219 if (cmp < 0)
4220 {
4221 if (global)
4222 break;
4223 }
4224 else if (cmp == 0
4225 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4226 + name_len + 5))
96d887e8
PH
4227 return psym;
4228 }
4229 i += 1;
4230 }
4231 }
4232 return NULL;
4c4b4cd2
PH
4233}
4234
96d887e8
PH
4235/* Return a minimal symbol matching NAME according to Ada decoding
4236 rules. Returns NULL if there is no such minimal symbol. Names
4237 prefixed with "standard__" are handled specially: "standard__" is
4238 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4239
96d887e8
PH
4240struct minimal_symbol *
4241ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4242{
4c4b4cd2 4243 struct objfile *objfile;
96d887e8
PH
4244 struct minimal_symbol *msymbol;
4245 int wild_match;
4c4b4cd2 4246
96d887e8 4247 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4248 {
96d887e8 4249 name += sizeof ("standard__") - 1;
4c4b4cd2 4250 wild_match = 0;
4c4b4cd2
PH
4251 }
4252 else
96d887e8 4253 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4254
96d887e8
PH
4255 ALL_MSYMBOLS (objfile, msymbol)
4256 {
4257 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4258 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4259 return msymbol;
4260 }
4c4b4cd2 4261
96d887e8
PH
4262 return NULL;
4263}
4c4b4cd2 4264
96d887e8
PH
4265/* For all subprograms that statically enclose the subprogram of the
4266 selected frame, add symbols matching identifier NAME in DOMAIN
4267 and their blocks to the list of data in OBSTACKP, as for
4268 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4269 wildcard prefix. */
4c4b4cd2 4270
96d887e8
PH
4271static void
4272add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4273 const char *name, domain_enum namespace,
96d887e8
PH
4274 int wild_match)
4275{
96d887e8 4276}
14f9c5c9 4277
96d887e8
PH
4278/* True if TYPE is definitely an artificial type supplied to a symbol
4279 for which no debugging information was given in the symbol file. */
14f9c5c9 4280
96d887e8
PH
4281static int
4282is_nondebugging_type (struct type *type)
4283{
4284 char *name = ada_type_name (type);
4285 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4286}
4c4b4cd2 4287
96d887e8
PH
4288/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4289 duplicate other symbols in the list (The only case I know of where
4290 this happens is when object files containing stabs-in-ecoff are
4291 linked with files containing ordinary ecoff debugging symbols (or no
4292 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4293 Returns the number of items in the modified list. */
4c4b4cd2 4294
96d887e8
PH
4295static int
4296remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4297{
4298 int i, j;
4c4b4cd2 4299
96d887e8
PH
4300 i = 0;
4301 while (i < nsyms)
4302 {
339c13b6
JB
4303 int remove = 0;
4304
4305 /* If two symbols have the same name and one of them is a stub type,
4306 the get rid of the stub. */
4307
4308 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4309 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4310 {
4311 for (j = 0; j < nsyms; j++)
4312 {
4313 if (j != i
4314 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4315 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4316 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4317 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4318 remove = 1;
4319 }
4320 }
4321
4322 /* Two symbols with the same name, same class and same address
4323 should be identical. */
4324
4325 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4326 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4327 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4328 {
4329 for (j = 0; j < nsyms; j += 1)
4330 {
4331 if (i != j
4332 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4333 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4334 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4335 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4336 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4337 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4338 remove = 1;
4c4b4cd2 4339 }
4c4b4cd2 4340 }
339c13b6
JB
4341
4342 if (remove)
4343 {
4344 for (j = i + 1; j < nsyms; j += 1)
4345 syms[j - 1] = syms[j];
4346 nsyms -= 1;
4347 }
4348
96d887e8 4349 i += 1;
14f9c5c9 4350 }
96d887e8 4351 return nsyms;
14f9c5c9
AS
4352}
4353
96d887e8
PH
4354/* Given a type that corresponds to a renaming entity, use the type name
4355 to extract the scope (package name or function name, fully qualified,
4356 and following the GNAT encoding convention) where this renaming has been
4357 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4358
96d887e8
PH
4359static char *
4360xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4361{
96d887e8
PH
4362 /* The renaming types adhere to the following convention:
4363 <scope>__<rename>___<XR extension>.
4364 So, to extract the scope, we search for the "___XR" extension,
4365 and then backtrack until we find the first "__". */
76a01679 4366
96d887e8
PH
4367 const char *name = type_name_no_tag (renaming_type);
4368 char *suffix = strstr (name, "___XR");
4369 char *last;
4370 int scope_len;
4371 char *scope;
14f9c5c9 4372
96d887e8
PH
4373 /* Now, backtrack a bit until we find the first "__". Start looking
4374 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4375
96d887e8
PH
4376 for (last = suffix - 3; last > name; last--)
4377 if (last[0] == '_' && last[1] == '_')
4378 break;
76a01679 4379
96d887e8 4380 /* Make a copy of scope and return it. */
14f9c5c9 4381
96d887e8
PH
4382 scope_len = last - name;
4383 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4384
96d887e8
PH
4385 strncpy (scope, name, scope_len);
4386 scope[scope_len] = '\0';
4c4b4cd2 4387
96d887e8 4388 return scope;
4c4b4cd2
PH
4389}
4390
96d887e8 4391/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4392
96d887e8
PH
4393static int
4394is_package_name (const char *name)
4c4b4cd2 4395{
96d887e8
PH
4396 /* Here, We take advantage of the fact that no symbols are generated
4397 for packages, while symbols are generated for each function.
4398 So the condition for NAME represent a package becomes equivalent
4399 to NAME not existing in our list of symbols. There is only one
4400 small complication with library-level functions (see below). */
4c4b4cd2 4401
96d887e8 4402 char *fun_name;
76a01679 4403
96d887e8
PH
4404 /* If it is a function that has not been defined at library level,
4405 then we should be able to look it up in the symbols. */
4406 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4407 return 0;
14f9c5c9 4408
96d887e8
PH
4409 /* Library-level function names start with "_ada_". See if function
4410 "_ada_" followed by NAME can be found. */
14f9c5c9 4411
96d887e8 4412 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4413 functions names cannot contain "__" in them. */
96d887e8
PH
4414 if (strstr (name, "__") != NULL)
4415 return 0;
4c4b4cd2 4416
b435e160 4417 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4418
96d887e8
PH
4419 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4420}
14f9c5c9 4421
96d887e8 4422/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4423 not visible from FUNCTION_NAME. */
14f9c5c9 4424
96d887e8 4425static int
aeb5907d 4426old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4427{
aeb5907d
JB
4428 char *scope;
4429
4430 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4431 return 0;
4432
4433 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4434
96d887e8 4435 make_cleanup (xfree, scope);
14f9c5c9 4436
96d887e8
PH
4437 /* If the rename has been defined in a package, then it is visible. */
4438 if (is_package_name (scope))
aeb5907d 4439 return 0;
14f9c5c9 4440
96d887e8
PH
4441 /* Check that the rename is in the current function scope by checking
4442 that its name starts with SCOPE. */
76a01679 4443
96d887e8
PH
4444 /* If the function name starts with "_ada_", it means that it is
4445 a library-level function. Strip this prefix before doing the
4446 comparison, as the encoding for the renaming does not contain
4447 this prefix. */
4448 if (strncmp (function_name, "_ada_", 5) == 0)
4449 function_name += 5;
f26caa11 4450
aeb5907d 4451 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4452}
4453
aeb5907d
JB
4454/* Remove entries from SYMS that corresponds to a renaming entity that
4455 is not visible from the function associated with CURRENT_BLOCK or
4456 that is superfluous due to the presence of more specific renaming
4457 information. Places surviving symbols in the initial entries of
4458 SYMS and returns the number of surviving symbols.
96d887e8
PH
4459
4460 Rationale:
aeb5907d
JB
4461 First, in cases where an object renaming is implemented as a
4462 reference variable, GNAT may produce both the actual reference
4463 variable and the renaming encoding. In this case, we discard the
4464 latter.
4465
4466 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4467 entity. Unfortunately, STABS currently does not support the definition
4468 of types that are local to a given lexical block, so all renamings types
4469 are emitted at library level. As a consequence, if an application
4470 contains two renaming entities using the same name, and a user tries to
4471 print the value of one of these entities, the result of the ada symbol
4472 lookup will also contain the wrong renaming type.
f26caa11 4473
96d887e8
PH
4474 This function partially covers for this limitation by attempting to
4475 remove from the SYMS list renaming symbols that should be visible
4476 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4477 method with the current information available. The implementation
4478 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4479
4480 - When the user tries to print a rename in a function while there
4481 is another rename entity defined in a package: Normally, the
4482 rename in the function has precedence over the rename in the
4483 package, so the latter should be removed from the list. This is
4484 currently not the case.
4485
4486 - This function will incorrectly remove valid renames if
4487 the CURRENT_BLOCK corresponds to a function which symbol name
4488 has been changed by an "Export" pragma. As a consequence,
4489 the user will be unable to print such rename entities. */
4c4b4cd2 4490
14f9c5c9 4491static int
aeb5907d
JB
4492remove_irrelevant_renamings (struct ada_symbol_info *syms,
4493 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4494{
4495 struct symbol *current_function;
4496 char *current_function_name;
4497 int i;
aeb5907d
JB
4498 int is_new_style_renaming;
4499
4500 /* If there is both a renaming foo___XR... encoded as a variable and
4501 a simple variable foo in the same block, discard the latter.
4502 First, zero out such symbols, then compress. */
4503 is_new_style_renaming = 0;
4504 for (i = 0; i < nsyms; i += 1)
4505 {
4506 struct symbol *sym = syms[i].sym;
4507 struct block *block = syms[i].block;
4508 const char *name;
4509 const char *suffix;
4510
4511 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4512 continue;
4513 name = SYMBOL_LINKAGE_NAME (sym);
4514 suffix = strstr (name, "___XR");
4515
4516 if (suffix != NULL)
4517 {
4518 int name_len = suffix - name;
4519 int j;
4520 is_new_style_renaming = 1;
4521 for (j = 0; j < nsyms; j += 1)
4522 if (i != j && syms[j].sym != NULL
4523 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4524 name_len) == 0
4525 && block == syms[j].block)
4526 syms[j].sym = NULL;
4527 }
4528 }
4529 if (is_new_style_renaming)
4530 {
4531 int j, k;
4532
4533 for (j = k = 0; j < nsyms; j += 1)
4534 if (syms[j].sym != NULL)
4535 {
4536 syms[k] = syms[j];
4537 k += 1;
4538 }
4539 return k;
4540 }
4c4b4cd2
PH
4541
4542 /* Extract the function name associated to CURRENT_BLOCK.
4543 Abort if unable to do so. */
76a01679 4544
4c4b4cd2
PH
4545 if (current_block == NULL)
4546 return nsyms;
76a01679 4547
7f0df278 4548 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4549 if (current_function == NULL)
4550 return nsyms;
4551
4552 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4553 if (current_function_name == NULL)
4554 return nsyms;
4555
4556 /* Check each of the symbols, and remove it from the list if it is
4557 a type corresponding to a renaming that is out of the scope of
4558 the current block. */
4559
4560 i = 0;
4561 while (i < nsyms)
4562 {
aeb5907d
JB
4563 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4564 == ADA_OBJECT_RENAMING
4565 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4566 {
4567 int j;
aeb5907d 4568 for (j = i + 1; j < nsyms; j += 1)
76a01679 4569 syms[j - 1] = syms[j];
4c4b4cd2
PH
4570 nsyms -= 1;
4571 }
4572 else
4573 i += 1;
4574 }
4575
4576 return nsyms;
4577}
4578
339c13b6
JB
4579/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4580 whose name and domain match NAME and DOMAIN respectively.
4581 If no match was found, then extend the search to "enclosing"
4582 routines (in other words, if we're inside a nested function,
4583 search the symbols defined inside the enclosing functions).
4584
4585 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4586
4587static void
4588ada_add_local_symbols (struct obstack *obstackp, const char *name,
4589 struct block *block, domain_enum domain,
4590 int wild_match)
4591{
4592 int block_depth = 0;
4593
4594 while (block != NULL)
4595 {
4596 block_depth += 1;
4597 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4598
4599 /* If we found a non-function match, assume that's the one. */
4600 if (is_nonfunction (defns_collected (obstackp, 0),
4601 num_defns_collected (obstackp)))
4602 return;
4603
4604 block = BLOCK_SUPERBLOCK (block);
4605 }
4606
4607 /* If no luck so far, try to find NAME as a local symbol in some lexically
4608 enclosing subprogram. */
4609 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4610 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4611}
4612
4613/* Add to OBSTACKP all non-local symbols whose name and domain match
4614 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4615 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4616
4617static void
4618ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4619 domain_enum domain, int global,
4620 int wild_match)
4621{
4622 struct objfile *objfile;
4623 struct partial_symtab *ps;
4624
4625 ALL_PSYMTABS (objfile, ps)
4626 {
4627 QUIT;
4628 if (ps->readin
4629 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4630 {
4631 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4632 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4633
4634 if (s == NULL || !s->primary)
4635 continue;
4636 ada_add_block_symbols (obstackp,
4637 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4638 name, domain, objfile, wild_match);
4639 }
4640 }
4641}
4642
4c4b4cd2
PH
4643/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4644 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4645 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4646 indicating the symbols found and the blocks and symbol tables (if
4647 any) in which they were found. This vector are transient---good only to
4648 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4649 symbol match within the nest of blocks whose innermost member is BLOCK0,
4650 is the one match returned (no other matches in that or
4651 enclosing blocks is returned). If there are any matches in or
4652 surrounding BLOCK0, then these alone are returned. Otherwise, the
4653 search extends to global and file-scope (static) symbol tables.
4654 Names prefixed with "standard__" are handled specially: "standard__"
4655 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4656
4657int
4c4b4cd2 4658ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4659 domain_enum namespace,
4660 struct ada_symbol_info **results)
14f9c5c9
AS
4661{
4662 struct symbol *sym;
14f9c5c9 4663 struct block *block;
4c4b4cd2 4664 const char *name;
4c4b4cd2 4665 int wild_match;
14f9c5c9 4666 int cacheIfUnique;
4c4b4cd2 4667 int ndefns;
14f9c5c9 4668
4c4b4cd2
PH
4669 obstack_free (&symbol_list_obstack, NULL);
4670 obstack_init (&symbol_list_obstack);
14f9c5c9 4671
14f9c5c9
AS
4672 cacheIfUnique = 0;
4673
4674 /* Search specified block and its superiors. */
4675
4c4b4cd2
PH
4676 wild_match = (strstr (name0, "__") == NULL);
4677 name = name0;
76a01679
JB
4678 block = (struct block *) block0; /* FIXME: No cast ought to be
4679 needed, but adding const will
4680 have a cascade effect. */
339c13b6
JB
4681
4682 /* Special case: If the user specifies a symbol name inside package
4683 Standard, do a non-wild matching of the symbol name without
4684 the "standard__" prefix. This was primarily introduced in order
4685 to allow the user to specifically access the standard exceptions
4686 using, for instance, Standard.Constraint_Error when Constraint_Error
4687 is ambiguous (due to the user defining its own Constraint_Error
4688 entity inside its program). */
4c4b4cd2
PH
4689 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4690 {
4691 wild_match = 0;
4692 block = NULL;
4693 name = name0 + sizeof ("standard__") - 1;
4694 }
4695
339c13b6 4696 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4697
339c13b6
JB
4698 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4699 wild_match);
4c4b4cd2 4700 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4701 goto done;
d2e4a39e 4702
339c13b6
JB
4703 /* No non-global symbols found. Check our cache to see if we have
4704 already performed this search before. If we have, then return
4705 the same result. */
4706
14f9c5c9 4707 cacheIfUnique = 1;
2570f2b7 4708 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4709 {
4710 if (sym != NULL)
2570f2b7 4711 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4712 goto done;
4713 }
14f9c5c9 4714
339c13b6
JB
4715 /* Search symbols from all global blocks. */
4716
4717 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4718 wild_match);
d2e4a39e 4719
4c4b4cd2 4720 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4721 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4722
4c4b4cd2 4723 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4724 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4725 wild_match);
14f9c5c9 4726
4c4b4cd2
PH
4727done:
4728 ndefns = num_defns_collected (&symbol_list_obstack);
4729 *results = defns_collected (&symbol_list_obstack, 1);
4730
4731 ndefns = remove_extra_symbols (*results, ndefns);
4732
d2e4a39e 4733 if (ndefns == 0)
2570f2b7 4734 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4735
4c4b4cd2 4736 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4737 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4738
aeb5907d 4739 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4740
14f9c5c9
AS
4741 return ndefns;
4742}
4743
d2e4a39e 4744struct symbol *
aeb5907d 4745ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4746 domain_enum namespace, struct block **block_found)
14f9c5c9 4747{
4c4b4cd2 4748 struct ada_symbol_info *candidates;
14f9c5c9
AS
4749 int n_candidates;
4750
aeb5907d 4751 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4752
4753 if (n_candidates == 0)
4754 return NULL;
4c4b4cd2 4755
aeb5907d
JB
4756 if (block_found != NULL)
4757 *block_found = candidates[0].block;
4c4b4cd2 4758
21b556f4 4759 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4760}
4761
4762/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4763 scope and in global scopes, or NULL if none. NAME is folded and
4764 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4765 choosing the first symbol if there are multiple choices.
4766 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4767 table in which the symbol was found (in both cases, these
4768 assignments occur only if the pointers are non-null). */
4769struct symbol *
4770ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4771 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4772{
4773 if (is_a_field_of_this != NULL)
4774 *is_a_field_of_this = 0;
4775
4776 return
4777 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4778 block0, namespace, NULL);
4c4b4cd2 4779}
14f9c5c9 4780
4c4b4cd2
PH
4781static struct symbol *
4782ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4783 const char *linkage_name,
4784 const struct block *block,
21b556f4 4785 const domain_enum domain)
4c4b4cd2
PH
4786{
4787 if (linkage_name == NULL)
4788 linkage_name = name;
76a01679 4789 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4790 NULL);
14f9c5c9
AS
4791}
4792
4793
4c4b4cd2
PH
4794/* True iff STR is a possible encoded suffix of a normal Ada name
4795 that is to be ignored for matching purposes. Suffixes of parallel
4796 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4797 are given by any of the regular expressions:
4c4b4cd2 4798
babe1480
JB
4799 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4800 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4801 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4802 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4803
4804 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4805 match is performed. This sequence is used to differentiate homonyms,
4806 is an optional part of a valid name suffix. */
4c4b4cd2 4807
14f9c5c9 4808static int
d2e4a39e 4809is_name_suffix (const char *str)
14f9c5c9
AS
4810{
4811 int k;
4c4b4cd2
PH
4812 const char *matching;
4813 const int len = strlen (str);
4814
babe1480
JB
4815 /* Skip optional leading __[0-9]+. */
4816
4c4b4cd2
PH
4817 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4818 {
babe1480
JB
4819 str += 3;
4820 while (isdigit (str[0]))
4821 str += 1;
4c4b4cd2 4822 }
babe1480
JB
4823
4824 /* [.$][0-9]+ */
4c4b4cd2 4825
babe1480 4826 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4827 {
babe1480 4828 matching = str + 1;
4c4b4cd2
PH
4829 while (isdigit (matching[0]))
4830 matching += 1;
4831 if (matching[0] == '\0')
4832 return 1;
4833 }
4834
4835 /* ___[0-9]+ */
babe1480 4836
4c4b4cd2
PH
4837 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4838 {
4839 matching = str + 3;
4840 while (isdigit (matching[0]))
4841 matching += 1;
4842 if (matching[0] == '\0')
4843 return 1;
4844 }
4845
529cad9c
PH
4846#if 0
4847 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4848 with a N at the end. Unfortunately, the compiler uses the same
4849 convention for other internal types it creates. So treating
4850 all entity names that end with an "N" as a name suffix causes
4851 some regressions. For instance, consider the case of an enumerated
4852 type. To support the 'Image attribute, it creates an array whose
4853 name ends with N.
4854 Having a single character like this as a suffix carrying some
4855 information is a bit risky. Perhaps we should change the encoding
4856 to be something like "_N" instead. In the meantime, do not do
4857 the following check. */
4858 /* Protected Object Subprograms */
4859 if (len == 1 && str [0] == 'N')
4860 return 1;
4861#endif
4862
4863 /* _E[0-9]+[bs]$ */
4864 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4865 {
4866 matching = str + 3;
4867 while (isdigit (matching[0]))
4868 matching += 1;
4869 if ((matching[0] == 'b' || matching[0] == 's')
4870 && matching [1] == '\0')
4871 return 1;
4872 }
4873
4c4b4cd2
PH
4874 /* ??? We should not modify STR directly, as we are doing below. This
4875 is fine in this case, but may become problematic later if we find
4876 that this alternative did not work, and want to try matching
4877 another one from the begining of STR. Since we modified it, we
4878 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4879 if (str[0] == 'X')
4880 {
4881 str += 1;
d2e4a39e 4882 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4883 {
4884 if (str[0] != 'n' && str[0] != 'b')
4885 return 0;
4886 str += 1;
4887 }
14f9c5c9 4888 }
babe1480 4889
14f9c5c9
AS
4890 if (str[0] == '\000')
4891 return 1;
babe1480 4892
d2e4a39e 4893 if (str[0] == '_')
14f9c5c9
AS
4894 {
4895 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4896 return 0;
d2e4a39e 4897 if (str[2] == '_')
4c4b4cd2 4898 {
61ee279c
PH
4899 if (strcmp (str + 3, "JM") == 0)
4900 return 1;
4901 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4902 the LJM suffix in favor of the JM one. But we will
4903 still accept LJM as a valid suffix for a reasonable
4904 amount of time, just to allow ourselves to debug programs
4905 compiled using an older version of GNAT. */
4c4b4cd2
PH
4906 if (strcmp (str + 3, "LJM") == 0)
4907 return 1;
4908 if (str[3] != 'X')
4909 return 0;
1265e4aa
JB
4910 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4911 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4912 return 1;
4913 if (str[4] == 'R' && str[5] != 'T')
4914 return 1;
4915 return 0;
4916 }
4917 if (!isdigit (str[2]))
4918 return 0;
4919 for (k = 3; str[k] != '\0'; k += 1)
4920 if (!isdigit (str[k]) && str[k] != '_')
4921 return 0;
14f9c5c9
AS
4922 return 1;
4923 }
4c4b4cd2 4924 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4925 {
4c4b4cd2
PH
4926 for (k = 2; str[k] != '\0'; k += 1)
4927 if (!isdigit (str[k]) && str[k] != '_')
4928 return 0;
14f9c5c9
AS
4929 return 1;
4930 }
4931 return 0;
4932}
d2e4a39e 4933
aeb5907d
JB
4934/* Return non-zero if the string starting at NAME and ending before
4935 NAME_END contains no capital letters. */
529cad9c
PH
4936
4937static int
4938is_valid_name_for_wild_match (const char *name0)
4939{
4940 const char *decoded_name = ada_decode (name0);
4941 int i;
4942
5823c3ef
JB
4943 /* If the decoded name starts with an angle bracket, it means that
4944 NAME0 does not follow the GNAT encoding format. It should then
4945 not be allowed as a possible wild match. */
4946 if (decoded_name[0] == '<')
4947 return 0;
4948
529cad9c
PH
4949 for (i=0; decoded_name[i] != '\0'; i++)
4950 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4951 return 0;
4952
4953 return 1;
4954}
4955
4c4b4cd2
PH
4956/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4957 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4958 informational suffixes of NAME (i.e., for which is_name_suffix is
4959 true). */
4960
14f9c5c9 4961static int
4c4b4cd2 4962wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4963{
5823c3ef
JB
4964 char* match;
4965 const char* start;
4966 start = name0;
4967 while (1)
14f9c5c9 4968 {
5823c3ef
JB
4969 match = strstr (start, patn0);
4970 if (match == NULL)
4971 return 0;
4972 if ((match == name0
4973 || match[-1] == '.'
4974 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4975 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4976 && is_name_suffix (match + patn_len))
4977 return (match == name0 || is_valid_name_for_wild_match (name0));
4978 start = match + 1;
96d887e8 4979 }
96d887e8
PH
4980}
4981
96d887e8
PH
4982/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4983 vector *defn_symbols, updating the list of symbols in OBSTACKP
4984 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4985 OBJFILE is the section containing BLOCK.
4986 SYMTAB is recorded with each symbol added. */
4987
4988static void
4989ada_add_block_symbols (struct obstack *obstackp,
76a01679 4990 struct block *block, const char *name,
96d887e8 4991 domain_enum domain, struct objfile *objfile,
2570f2b7 4992 int wild)
96d887e8
PH
4993{
4994 struct dict_iterator iter;
4995 int name_len = strlen (name);
4996 /* A matching argument symbol, if any. */
4997 struct symbol *arg_sym;
4998 /* Set true when we find a matching non-argument symbol. */
4999 int found_sym;
5000 struct symbol *sym;
5001
5002 arg_sym = NULL;
5003 found_sym = 0;
5004 if (wild)
5005 {
5006 struct symbol *sym;
5007 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5008 {
5eeb2539
AR
5009 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5010 SYMBOL_DOMAIN (sym), domain)
1265e4aa 5011 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 5012 {
2a2d4dc3
AS
5013 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5014 continue;
5015 else if (SYMBOL_IS_ARGUMENT (sym))
5016 arg_sym = sym;
5017 else
5018 {
76a01679
JB
5019 found_sym = 1;
5020 add_defn_to_vec (obstackp,
5021 fixup_symbol_section (sym, objfile),
2570f2b7 5022 block);
76a01679
JB
5023 }
5024 }
5025 }
96d887e8
PH
5026 }
5027 else
5028 {
5029 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5030 {
5eeb2539
AR
5031 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5032 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5033 {
5034 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5035 if (cmp == 0
5036 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5037 {
2a2d4dc3
AS
5038 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5039 {
5040 if (SYMBOL_IS_ARGUMENT (sym))
5041 arg_sym = sym;
5042 else
5043 {
5044 found_sym = 1;
5045 add_defn_to_vec (obstackp,
5046 fixup_symbol_section (sym, objfile),
5047 block);
5048 }
5049 }
76a01679
JB
5050 }
5051 }
5052 }
96d887e8
PH
5053 }
5054
5055 if (!found_sym && arg_sym != NULL)
5056 {
76a01679
JB
5057 add_defn_to_vec (obstackp,
5058 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5059 block);
96d887e8
PH
5060 }
5061
5062 if (!wild)
5063 {
5064 arg_sym = NULL;
5065 found_sym = 0;
5066
5067 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5068 {
5eeb2539
AR
5069 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5070 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5071 {
5072 int cmp;
5073
5074 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5075 if (cmp == 0)
5076 {
5077 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5078 if (cmp == 0)
5079 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5080 name_len);
5081 }
5082
5083 if (cmp == 0
5084 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5085 {
2a2d4dc3
AS
5086 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5087 {
5088 if (SYMBOL_IS_ARGUMENT (sym))
5089 arg_sym = sym;
5090 else
5091 {
5092 found_sym = 1;
5093 add_defn_to_vec (obstackp,
5094 fixup_symbol_section (sym, objfile),
5095 block);
5096 }
5097 }
76a01679
JB
5098 }
5099 }
76a01679 5100 }
96d887e8
PH
5101
5102 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5103 They aren't parameters, right? */
5104 if (!found_sym && arg_sym != NULL)
5105 {
5106 add_defn_to_vec (obstackp,
76a01679 5107 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5108 block);
96d887e8
PH
5109 }
5110 }
5111}
5112\f
41d27058
JB
5113
5114 /* Symbol Completion */
5115
5116/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5117 name in a form that's appropriate for the completion. The result
5118 does not need to be deallocated, but is only good until the next call.
5119
5120 TEXT_LEN is equal to the length of TEXT.
5121 Perform a wild match if WILD_MATCH is set.
5122 ENCODED should be set if TEXT represents the start of a symbol name
5123 in its encoded form. */
5124
5125static const char *
5126symbol_completion_match (const char *sym_name,
5127 const char *text, int text_len,
5128 int wild_match, int encoded)
5129{
5130 char *result;
5131 const int verbatim_match = (text[0] == '<');
5132 int match = 0;
5133
5134 if (verbatim_match)
5135 {
5136 /* Strip the leading angle bracket. */
5137 text = text + 1;
5138 text_len--;
5139 }
5140
5141 /* First, test against the fully qualified name of the symbol. */
5142
5143 if (strncmp (sym_name, text, text_len) == 0)
5144 match = 1;
5145
5146 if (match && !encoded)
5147 {
5148 /* One needed check before declaring a positive match is to verify
5149 that iff we are doing a verbatim match, the decoded version
5150 of the symbol name starts with '<'. Otherwise, this symbol name
5151 is not a suitable completion. */
5152 const char *sym_name_copy = sym_name;
5153 int has_angle_bracket;
5154
5155 sym_name = ada_decode (sym_name);
5156 has_angle_bracket = (sym_name[0] == '<');
5157 match = (has_angle_bracket == verbatim_match);
5158 sym_name = sym_name_copy;
5159 }
5160
5161 if (match && !verbatim_match)
5162 {
5163 /* When doing non-verbatim match, another check that needs to
5164 be done is to verify that the potentially matching symbol name
5165 does not include capital letters, because the ada-mode would
5166 not be able to understand these symbol names without the
5167 angle bracket notation. */
5168 const char *tmp;
5169
5170 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5171 if (*tmp != '\0')
5172 match = 0;
5173 }
5174
5175 /* Second: Try wild matching... */
5176
5177 if (!match && wild_match)
5178 {
5179 /* Since we are doing wild matching, this means that TEXT
5180 may represent an unqualified symbol name. We therefore must
5181 also compare TEXT against the unqualified name of the symbol. */
5182 sym_name = ada_unqualified_name (ada_decode (sym_name));
5183
5184 if (strncmp (sym_name, text, text_len) == 0)
5185 match = 1;
5186 }
5187
5188 /* Finally: If we found a mach, prepare the result to return. */
5189
5190 if (!match)
5191 return NULL;
5192
5193 if (verbatim_match)
5194 sym_name = add_angle_brackets (sym_name);
5195
5196 if (!encoded)
5197 sym_name = ada_decode (sym_name);
5198
5199 return sym_name;
5200}
5201
2ba95b9b
JB
5202typedef char *char_ptr;
5203DEF_VEC_P (char_ptr);
5204
41d27058
JB
5205/* A companion function to ada_make_symbol_completion_list().
5206 Check if SYM_NAME represents a symbol which name would be suitable
5207 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5208 it is appended at the end of the given string vector SV.
5209
5210 ORIG_TEXT is the string original string from the user command
5211 that needs to be completed. WORD is the entire command on which
5212 completion should be performed. These two parameters are used to
5213 determine which part of the symbol name should be added to the
5214 completion vector.
5215 if WILD_MATCH is set, then wild matching is performed.
5216 ENCODED should be set if TEXT represents a symbol name in its
5217 encoded formed (in which case the completion should also be
5218 encoded). */
5219
5220static void
d6565258 5221symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5222 const char *sym_name,
5223 const char *text, int text_len,
5224 const char *orig_text, const char *word,
5225 int wild_match, int encoded)
5226{
5227 const char *match = symbol_completion_match (sym_name, text, text_len,
5228 wild_match, encoded);
5229 char *completion;
5230
5231 if (match == NULL)
5232 return;
5233
5234 /* We found a match, so add the appropriate completion to the given
5235 string vector. */
5236
5237 if (word == orig_text)
5238 {
5239 completion = xmalloc (strlen (match) + 5);
5240 strcpy (completion, match);
5241 }
5242 else if (word > orig_text)
5243 {
5244 /* Return some portion of sym_name. */
5245 completion = xmalloc (strlen (match) + 5);
5246 strcpy (completion, match + (word - orig_text));
5247 }
5248 else
5249 {
5250 /* Return some of ORIG_TEXT plus sym_name. */
5251 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5252 strncpy (completion, word, orig_text - word);
5253 completion[orig_text - word] = '\0';
5254 strcat (completion, match);
5255 }
5256
d6565258 5257 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5258}
5259
5260/* Return a list of possible symbol names completing TEXT0. The list
5261 is NULL terminated. WORD is the entire command on which completion
5262 is made. */
5263
5264static char **
5265ada_make_symbol_completion_list (char *text0, char *word)
5266{
5267 char *text;
5268 int text_len;
5269 int wild_match;
5270 int encoded;
2ba95b9b 5271 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5272 struct symbol *sym;
5273 struct symtab *s;
5274 struct partial_symtab *ps;
5275 struct minimal_symbol *msymbol;
5276 struct objfile *objfile;
5277 struct block *b, *surrounding_static_block = 0;
5278 int i;
5279 struct dict_iterator iter;
5280
5281 if (text0[0] == '<')
5282 {
5283 text = xstrdup (text0);
5284 make_cleanup (xfree, text);
5285 text_len = strlen (text);
5286 wild_match = 0;
5287 encoded = 1;
5288 }
5289 else
5290 {
5291 text = xstrdup (ada_encode (text0));
5292 make_cleanup (xfree, text);
5293 text_len = strlen (text);
5294 for (i = 0; i < text_len; i++)
5295 text[i] = tolower (text[i]);
5296
5297 encoded = (strstr (text0, "__") != NULL);
5298 /* If the name contains a ".", then the user is entering a fully
5299 qualified entity name, and the match must not be done in wild
5300 mode. Similarly, if the user wants to complete what looks like
5301 an encoded name, the match must not be done in wild mode. */
5302 wild_match = (strchr (text0, '.') == NULL && !encoded);
5303 }
5304
5305 /* First, look at the partial symtab symbols. */
5306 ALL_PSYMTABS (objfile, ps)
5307 {
5308 struct partial_symbol **psym;
5309
5310 /* If the psymtab's been read in we'll get it when we search
5311 through the blockvector. */
5312 if (ps->readin)
5313 continue;
5314
5315 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5316 psym < (objfile->global_psymbols.list + ps->globals_offset
5317 + ps->n_global_syms); psym++)
5318 {
5319 QUIT;
d6565258 5320 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5321 text, text_len, text0, word,
5322 wild_match, encoded);
5323 }
5324
5325 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5326 psym < (objfile->static_psymbols.list + ps->statics_offset
5327 + ps->n_static_syms); psym++)
5328 {
5329 QUIT;
d6565258 5330 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5331 text, text_len, text0, word,
5332 wild_match, encoded);
5333 }
5334 }
5335
5336 /* At this point scan through the misc symbol vectors and add each
5337 symbol you find to the list. Eventually we want to ignore
5338 anything that isn't a text symbol (everything else will be
5339 handled by the psymtab code above). */
5340
5341 ALL_MSYMBOLS (objfile, msymbol)
5342 {
5343 QUIT;
d6565258 5344 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5345 text, text_len, text0, word, wild_match, encoded);
5346 }
5347
5348 /* Search upwards from currently selected frame (so that we can
5349 complete on local vars. */
5350
5351 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5352 {
5353 if (!BLOCK_SUPERBLOCK (b))
5354 surrounding_static_block = b; /* For elmin of dups */
5355
5356 ALL_BLOCK_SYMBOLS (b, iter, sym)
5357 {
d6565258 5358 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5359 text, text_len, text0, word,
5360 wild_match, encoded);
5361 }
5362 }
5363
5364 /* Go through the symtabs and check the externs and statics for
5365 symbols which match. */
5366
5367 ALL_SYMTABS (objfile, s)
5368 {
5369 QUIT;
5370 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5371 ALL_BLOCK_SYMBOLS (b, iter, sym)
5372 {
d6565258 5373 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5374 text, text_len, text0, word,
5375 wild_match, encoded);
5376 }
5377 }
5378
5379 ALL_SYMTABS (objfile, s)
5380 {
5381 QUIT;
5382 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5383 /* Don't do this block twice. */
5384 if (b == surrounding_static_block)
5385 continue;
5386 ALL_BLOCK_SYMBOLS (b, iter, sym)
5387 {
d6565258 5388 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5389 text, text_len, text0, word,
5390 wild_match, encoded);
5391 }
5392 }
5393
5394 /* Append the closing NULL entry. */
2ba95b9b 5395 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5396
2ba95b9b
JB
5397 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5398 return the copy. It's unfortunate that we have to make a copy
5399 of an array that we're about to destroy, but there is nothing much
5400 we can do about it. Fortunately, it's typically not a very large
5401 array. */
5402 {
5403 const size_t completions_size =
5404 VEC_length (char_ptr, completions) * sizeof (char *);
5405 char **result = malloc (completions_size);
5406
5407 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5408
5409 VEC_free (char_ptr, completions);
5410 return result;
5411 }
41d27058
JB
5412}
5413
963a6417 5414 /* Field Access */
96d887e8 5415
73fb9985
JB
5416/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5417 for tagged types. */
5418
5419static int
5420ada_is_dispatch_table_ptr_type (struct type *type)
5421{
5422 char *name;
5423
5424 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5425 return 0;
5426
5427 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5428 if (name == NULL)
5429 return 0;
5430
5431 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5432}
5433
963a6417
PH
5434/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5435 to be invisible to users. */
96d887e8 5436
963a6417
PH
5437int
5438ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5439{
963a6417
PH
5440 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5441 return 1;
73fb9985
JB
5442
5443 /* Check the name of that field. */
5444 {
5445 const char *name = TYPE_FIELD_NAME (type, field_num);
5446
5447 /* Anonymous field names should not be printed.
5448 brobecker/2007-02-20: I don't think this can actually happen
5449 but we don't want to print the value of annonymous fields anyway. */
5450 if (name == NULL)
5451 return 1;
5452
5453 /* A field named "_parent" is internally generated by GNAT for
5454 tagged types, and should not be printed either. */
5455 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5456 return 1;
5457 }
5458
5459 /* If this is the dispatch table of a tagged type, then ignore. */
5460 if (ada_is_tagged_type (type, 1)
5461 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5462 return 1;
5463
5464 /* Not a special field, so it should not be ignored. */
5465 return 0;
963a6417 5466}
96d887e8 5467
963a6417
PH
5468/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5469 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5470
963a6417
PH
5471int
5472ada_is_tagged_type (struct type *type, int refok)
5473{
5474 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5475}
96d887e8 5476
963a6417 5477/* True iff TYPE represents the type of X'Tag */
96d887e8 5478
963a6417
PH
5479int
5480ada_is_tag_type (struct type *type)
5481{
5482 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5483 return 0;
5484 else
96d887e8 5485 {
963a6417
PH
5486 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5487 return (name != NULL
5488 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5489 }
96d887e8
PH
5490}
5491
963a6417 5492/* The type of the tag on VAL. */
76a01679 5493
963a6417
PH
5494struct type *
5495ada_tag_type (struct value *val)
96d887e8 5496{
df407dfe 5497 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5498}
96d887e8 5499
963a6417 5500/* The value of the tag on VAL. */
96d887e8 5501
963a6417
PH
5502struct value *
5503ada_value_tag (struct value *val)
5504{
03ee6b2e 5505 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5506}
5507
963a6417
PH
5508/* The value of the tag on the object of type TYPE whose contents are
5509 saved at VALADDR, if it is non-null, or is at memory address
5510 ADDRESS. */
96d887e8 5511
963a6417 5512static struct value *
10a2c479 5513value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5514 const gdb_byte *valaddr,
963a6417 5515 CORE_ADDR address)
96d887e8 5516{
963a6417
PH
5517 int tag_byte_offset, dummy1, dummy2;
5518 struct type *tag_type;
5519 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5520 NULL, NULL, NULL))
96d887e8 5521 {
fc1a4b47 5522 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5523 ? NULL
5524 : valaddr + tag_byte_offset);
963a6417 5525 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5526
963a6417 5527 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5528 }
963a6417
PH
5529 return NULL;
5530}
96d887e8 5531
963a6417
PH
5532static struct type *
5533type_from_tag (struct value *tag)
5534{
5535 const char *type_name = ada_tag_name (tag);
5536 if (type_name != NULL)
5537 return ada_find_any_type (ada_encode (type_name));
5538 return NULL;
5539}
96d887e8 5540
963a6417
PH
5541struct tag_args
5542{
5543 struct value *tag;
5544 char *name;
5545};
4c4b4cd2 5546
529cad9c
PH
5547
5548static int ada_tag_name_1 (void *);
5549static int ada_tag_name_2 (struct tag_args *);
5550
4c4b4cd2
PH
5551/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5552 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5553 The value stored in ARGS->name is valid until the next call to
5554 ada_tag_name_1. */
5555
5556static int
5557ada_tag_name_1 (void *args0)
5558{
5559 struct tag_args *args = (struct tag_args *) args0;
5560 static char name[1024];
76a01679 5561 char *p;
4c4b4cd2
PH
5562 struct value *val;
5563 args->name = NULL;
03ee6b2e 5564 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5565 if (val == NULL)
5566 return ada_tag_name_2 (args);
03ee6b2e 5567 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5568 if (val == NULL)
5569 return 0;
5570 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5571 for (p = name; *p != '\0'; p += 1)
5572 if (isalpha (*p))
5573 *p = tolower (*p);
5574 args->name = name;
5575 return 0;
5576}
5577
5578/* Utility function for ada_tag_name_1 that tries the second
5579 representation for the dispatch table (in which there is no
5580 explicit 'tsd' field in the referent of the tag pointer, and instead
5581 the tsd pointer is stored just before the dispatch table. */
5582
5583static int
5584ada_tag_name_2 (struct tag_args *args)
5585{
5586 struct type *info_type;
5587 static char name[1024];
5588 char *p;
5589 struct value *val, *valp;
5590
5591 args->name = NULL;
5592 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5593 if (info_type == NULL)
5594 return 0;
5595 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5596 valp = value_cast (info_type, args->tag);
5597 if (valp == NULL)
5598 return 0;
2497b498 5599 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5600 if (val == NULL)
5601 return 0;
03ee6b2e 5602 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5603 if (val == NULL)
5604 return 0;
5605 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5606 for (p = name; *p != '\0'; p += 1)
5607 if (isalpha (*p))
5608 *p = tolower (*p);
5609 args->name = name;
5610 return 0;
5611}
5612
5613/* The type name of the dynamic type denoted by the 'tag value TAG, as
5614 * a C string. */
5615
5616const char *
5617ada_tag_name (struct value *tag)
5618{
5619 struct tag_args args;
df407dfe 5620 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5621 return NULL;
76a01679 5622 args.tag = tag;
4c4b4cd2
PH
5623 args.name = NULL;
5624 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5625 return args.name;
5626}
5627
5628/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5629
d2e4a39e 5630struct type *
ebf56fd3 5631ada_parent_type (struct type *type)
14f9c5c9
AS
5632{
5633 int i;
5634
61ee279c 5635 type = ada_check_typedef (type);
14f9c5c9
AS
5636
5637 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5638 return NULL;
5639
5640 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5641 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5642 {
5643 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5644
5645 /* If the _parent field is a pointer, then dereference it. */
5646 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5647 parent_type = TYPE_TARGET_TYPE (parent_type);
5648 /* If there is a parallel XVS type, get the actual base type. */
5649 parent_type = ada_get_base_type (parent_type);
5650
5651 return ada_check_typedef (parent_type);
5652 }
14f9c5c9
AS
5653
5654 return NULL;
5655}
5656
4c4b4cd2
PH
5657/* True iff field number FIELD_NUM of structure type TYPE contains the
5658 parent-type (inherited) fields of a derived type. Assumes TYPE is
5659 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5660
5661int
ebf56fd3 5662ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5663{
61ee279c 5664 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5665 return (name != NULL
5666 && (strncmp (name, "PARENT", 6) == 0
5667 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5668}
5669
4c4b4cd2 5670/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5671 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5672 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5673 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5674 structures. */
14f9c5c9
AS
5675
5676int
ebf56fd3 5677ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5678{
d2e4a39e
AS
5679 const char *name = TYPE_FIELD_NAME (type, field_num);
5680 return (name != NULL
4c4b4cd2
PH
5681 && (strncmp (name, "PARENT", 6) == 0
5682 || strcmp (name, "REP") == 0
5683 || strncmp (name, "_parent", 7) == 0
5684 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5685}
5686
4c4b4cd2
PH
5687/* True iff field number FIELD_NUM of structure or union type TYPE
5688 is a variant wrapper. Assumes TYPE is a structure type with at least
5689 FIELD_NUM+1 fields. */
14f9c5c9
AS
5690
5691int
ebf56fd3 5692ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5693{
d2e4a39e 5694 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5695 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5696 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5697 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5698 == TYPE_CODE_UNION)));
14f9c5c9
AS
5699}
5700
5701/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5702 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5703 returns the type of the controlling discriminant for the variant.
5704 May return NULL if the type could not be found. */
14f9c5c9 5705
d2e4a39e 5706struct type *
ebf56fd3 5707ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5708{
d2e4a39e 5709 char *name = ada_variant_discrim_name (var_type);
7c964f07 5710 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5711}
5712
4c4b4cd2 5713/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5714 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5715 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5716
5717int
ebf56fd3 5718ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5719{
d2e4a39e 5720 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5721 return (name != NULL && name[0] == 'O');
5722}
5723
5724/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5725 returns the name of the discriminant controlling the variant.
5726 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5727
d2e4a39e 5728char *
ebf56fd3 5729ada_variant_discrim_name (struct type *type0)
14f9c5c9 5730{
d2e4a39e 5731 static char *result = NULL;
14f9c5c9 5732 static size_t result_len = 0;
d2e4a39e
AS
5733 struct type *type;
5734 const char *name;
5735 const char *discrim_end;
5736 const char *discrim_start;
14f9c5c9
AS
5737
5738 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5739 type = TYPE_TARGET_TYPE (type0);
5740 else
5741 type = type0;
5742
5743 name = ada_type_name (type);
5744
5745 if (name == NULL || name[0] == '\000')
5746 return "";
5747
5748 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5749 discrim_end -= 1)
5750 {
4c4b4cd2
PH
5751 if (strncmp (discrim_end, "___XVN", 6) == 0)
5752 break;
14f9c5c9
AS
5753 }
5754 if (discrim_end == name)
5755 return "";
5756
d2e4a39e 5757 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5758 discrim_start -= 1)
5759 {
d2e4a39e 5760 if (discrim_start == name + 1)
4c4b4cd2 5761 return "";
76a01679 5762 if ((discrim_start > name + 3
4c4b4cd2
PH
5763 && strncmp (discrim_start - 3, "___", 3) == 0)
5764 || discrim_start[-1] == '.')
5765 break;
14f9c5c9
AS
5766 }
5767
5768 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5769 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5770 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5771 return result;
5772}
5773
4c4b4cd2
PH
5774/* Scan STR for a subtype-encoded number, beginning at position K.
5775 Put the position of the character just past the number scanned in
5776 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5777 Return 1 if there was a valid number at the given position, and 0
5778 otherwise. A "subtype-encoded" number consists of the absolute value
5779 in decimal, followed by the letter 'm' to indicate a negative number.
5780 Assumes 0m does not occur. */
14f9c5c9
AS
5781
5782int
d2e4a39e 5783ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5784{
5785 ULONGEST RU;
5786
d2e4a39e 5787 if (!isdigit (str[k]))
14f9c5c9
AS
5788 return 0;
5789
4c4b4cd2 5790 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5791 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5792 LONGEST. */
14f9c5c9
AS
5793 RU = 0;
5794 while (isdigit (str[k]))
5795 {
d2e4a39e 5796 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5797 k += 1;
5798 }
5799
d2e4a39e 5800 if (str[k] == 'm')
14f9c5c9
AS
5801 {
5802 if (R != NULL)
4c4b4cd2 5803 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5804 k += 1;
5805 }
5806 else if (R != NULL)
5807 *R = (LONGEST) RU;
5808
4c4b4cd2 5809 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5810 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5811 number representable as a LONGEST (although either would probably work
5812 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5813 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5814
5815 if (new_k != NULL)
5816 *new_k = k;
5817 return 1;
5818}
5819
4c4b4cd2
PH
5820/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5821 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5822 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5823
d2e4a39e 5824int
ebf56fd3 5825ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5826{
d2e4a39e 5827 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5828 int p;
5829
5830 p = 0;
5831 while (1)
5832 {
d2e4a39e 5833 switch (name[p])
4c4b4cd2
PH
5834 {
5835 case '\0':
5836 return 0;
5837 case 'S':
5838 {
5839 LONGEST W;
5840 if (!ada_scan_number (name, p + 1, &W, &p))
5841 return 0;
5842 if (val == W)
5843 return 1;
5844 break;
5845 }
5846 case 'R':
5847 {
5848 LONGEST L, U;
5849 if (!ada_scan_number (name, p + 1, &L, &p)
5850 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5851 return 0;
5852 if (val >= L && val <= U)
5853 return 1;
5854 break;
5855 }
5856 case 'O':
5857 return 1;
5858 default:
5859 return 0;
5860 }
5861 }
5862}
5863
5864/* FIXME: Lots of redundancy below. Try to consolidate. */
5865
5866/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5867 ARG_TYPE, extract and return the value of one of its (non-static)
5868 fields. FIELDNO says which field. Differs from value_primitive_field
5869 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5870
4c4b4cd2 5871static struct value *
d2e4a39e 5872ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5873 struct type *arg_type)
14f9c5c9 5874{
14f9c5c9
AS
5875 struct type *type;
5876
61ee279c 5877 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5878 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5879
4c4b4cd2 5880 /* Handle packed fields. */
14f9c5c9
AS
5881
5882 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5883 {
5884 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5885 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5886
0fd88904 5887 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5888 offset + bit_pos / 8,
5889 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5890 }
5891 else
5892 return value_primitive_field (arg1, offset, fieldno, arg_type);
5893}
5894
52ce6436
PH
5895/* Find field with name NAME in object of type TYPE. If found,
5896 set the following for each argument that is non-null:
5897 - *FIELD_TYPE_P to the field's type;
5898 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5899 an object of that type;
5900 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5901 - *BIT_SIZE_P to its size in bits if the field is packed, and
5902 0 otherwise;
5903 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5904 fields up to but not including the desired field, or by the total
5905 number of fields if not found. A NULL value of NAME never
5906 matches; the function just counts visible fields in this case.
5907
5908 Returns 1 if found, 0 otherwise. */
5909
4c4b4cd2 5910static int
76a01679
JB
5911find_struct_field (char *name, struct type *type, int offset,
5912 struct type **field_type_p,
52ce6436
PH
5913 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5914 int *index_p)
4c4b4cd2
PH
5915{
5916 int i;
5917
61ee279c 5918 type = ada_check_typedef (type);
76a01679 5919
52ce6436
PH
5920 if (field_type_p != NULL)
5921 *field_type_p = NULL;
5922 if (byte_offset_p != NULL)
d5d6fca5 5923 *byte_offset_p = 0;
52ce6436
PH
5924 if (bit_offset_p != NULL)
5925 *bit_offset_p = 0;
5926 if (bit_size_p != NULL)
5927 *bit_size_p = 0;
5928
5929 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5930 {
5931 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5932 int fld_offset = offset + bit_pos / 8;
5933 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5934
4c4b4cd2
PH
5935 if (t_field_name == NULL)
5936 continue;
5937
52ce6436 5938 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5939 {
5940 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5941 if (field_type_p != NULL)
5942 *field_type_p = TYPE_FIELD_TYPE (type, i);
5943 if (byte_offset_p != NULL)
5944 *byte_offset_p = fld_offset;
5945 if (bit_offset_p != NULL)
5946 *bit_offset_p = bit_pos % 8;
5947 if (bit_size_p != NULL)
5948 *bit_size_p = bit_size;
76a01679
JB
5949 return 1;
5950 }
4c4b4cd2
PH
5951 else if (ada_is_wrapper_field (type, i))
5952 {
52ce6436
PH
5953 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5954 field_type_p, byte_offset_p, bit_offset_p,
5955 bit_size_p, index_p))
76a01679
JB
5956 return 1;
5957 }
4c4b4cd2
PH
5958 else if (ada_is_variant_part (type, i))
5959 {
52ce6436
PH
5960 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5961 fixed type?? */
4c4b4cd2 5962 int j;
52ce6436
PH
5963 struct type *field_type
5964 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5965
52ce6436 5966 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5967 {
76a01679
JB
5968 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5969 fld_offset
5970 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5971 field_type_p, byte_offset_p,
52ce6436 5972 bit_offset_p, bit_size_p, index_p))
76a01679 5973 return 1;
4c4b4cd2
PH
5974 }
5975 }
52ce6436
PH
5976 else if (index_p != NULL)
5977 *index_p += 1;
4c4b4cd2
PH
5978 }
5979 return 0;
5980}
5981
52ce6436 5982/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5983
52ce6436
PH
5984static int
5985num_visible_fields (struct type *type)
5986{
5987 int n;
5988 n = 0;
5989 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5990 return n;
5991}
14f9c5c9 5992
4c4b4cd2 5993/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5994 and search in it assuming it has (class) type TYPE.
5995 If found, return value, else return NULL.
5996
4c4b4cd2 5997 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5998
4c4b4cd2 5999static struct value *
d2e4a39e 6000ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6001 struct type *type)
14f9c5c9
AS
6002{
6003 int i;
61ee279c 6004 type = ada_check_typedef (type);
14f9c5c9 6005
52ce6436 6006 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6007 {
6008 char *t_field_name = TYPE_FIELD_NAME (type, i);
6009
6010 if (t_field_name == NULL)
4c4b4cd2 6011 continue;
14f9c5c9
AS
6012
6013 else if (field_name_match (t_field_name, name))
4c4b4cd2 6014 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6015
6016 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6017 {
06d5cf63
JB
6018 struct value *v = /* Do not let indent join lines here. */
6019 ada_search_struct_field (name, arg,
6020 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6021 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6022 if (v != NULL)
6023 return v;
6024 }
14f9c5c9
AS
6025
6026 else if (ada_is_variant_part (type, i))
4c4b4cd2 6027 {
52ce6436 6028 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6029 int j;
61ee279c 6030 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6031 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6032
52ce6436 6033 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6034 {
06d5cf63
JB
6035 struct value *v = ada_search_struct_field /* Force line break. */
6036 (name, arg,
6037 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6038 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
6039 if (v != NULL)
6040 return v;
6041 }
6042 }
14f9c5c9
AS
6043 }
6044 return NULL;
6045}
d2e4a39e 6046
52ce6436
PH
6047static struct value *ada_index_struct_field_1 (int *, struct value *,
6048 int, struct type *);
6049
6050
6051/* Return field #INDEX in ARG, where the index is that returned by
6052 * find_struct_field through its INDEX_P argument. Adjust the address
6053 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6054 * If found, return value, else return NULL. */
6055
6056static struct value *
6057ada_index_struct_field (int index, struct value *arg, int offset,
6058 struct type *type)
6059{
6060 return ada_index_struct_field_1 (&index, arg, offset, type);
6061}
6062
6063
6064/* Auxiliary function for ada_index_struct_field. Like
6065 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6066 * *INDEX_P. */
6067
6068static struct value *
6069ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6070 struct type *type)
6071{
6072 int i;
6073 type = ada_check_typedef (type);
6074
6075 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6076 {
6077 if (TYPE_FIELD_NAME (type, i) == NULL)
6078 continue;
6079 else if (ada_is_wrapper_field (type, i))
6080 {
6081 struct value *v = /* Do not let indent join lines here. */
6082 ada_index_struct_field_1 (index_p, arg,
6083 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6084 TYPE_FIELD_TYPE (type, i));
6085 if (v != NULL)
6086 return v;
6087 }
6088
6089 else if (ada_is_variant_part (type, i))
6090 {
6091 /* PNH: Do we ever get here? See ada_search_struct_field,
6092 find_struct_field. */
6093 error (_("Cannot assign this kind of variant record"));
6094 }
6095 else if (*index_p == 0)
6096 return ada_value_primitive_field (arg, offset, i, type);
6097 else
6098 *index_p -= 1;
6099 }
6100 return NULL;
6101}
6102
4c4b4cd2
PH
6103/* Given ARG, a value of type (pointer or reference to a)*
6104 structure/union, extract the component named NAME from the ultimate
6105 target structure/union and return it as a value with its
f5938064 6106 appropriate type.
14f9c5c9 6107
4c4b4cd2
PH
6108 The routine searches for NAME among all members of the structure itself
6109 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6110 (e.g., '_parent').
6111
03ee6b2e
PH
6112 If NO_ERR, then simply return NULL in case of error, rather than
6113 calling error. */
14f9c5c9 6114
d2e4a39e 6115struct value *
03ee6b2e 6116ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6117{
4c4b4cd2 6118 struct type *t, *t1;
d2e4a39e 6119 struct value *v;
14f9c5c9 6120
4c4b4cd2 6121 v = NULL;
df407dfe 6122 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6123 if (TYPE_CODE (t) == TYPE_CODE_REF)
6124 {
6125 t1 = TYPE_TARGET_TYPE (t);
6126 if (t1 == NULL)
03ee6b2e 6127 goto BadValue;
61ee279c 6128 t1 = ada_check_typedef (t1);
4c4b4cd2 6129 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6130 {
994b9211 6131 arg = coerce_ref (arg);
76a01679
JB
6132 t = t1;
6133 }
4c4b4cd2 6134 }
14f9c5c9 6135
4c4b4cd2
PH
6136 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6137 {
6138 t1 = TYPE_TARGET_TYPE (t);
6139 if (t1 == NULL)
03ee6b2e 6140 goto BadValue;
61ee279c 6141 t1 = ada_check_typedef (t1);
4c4b4cd2 6142 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6143 {
6144 arg = value_ind (arg);
6145 t = t1;
6146 }
4c4b4cd2 6147 else
76a01679 6148 break;
4c4b4cd2 6149 }
14f9c5c9 6150
4c4b4cd2 6151 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6152 goto BadValue;
14f9c5c9 6153
4c4b4cd2
PH
6154 if (t1 == t)
6155 v = ada_search_struct_field (name, arg, 0, t);
6156 else
6157 {
6158 int bit_offset, bit_size, byte_offset;
6159 struct type *field_type;
6160 CORE_ADDR address;
6161
76a01679
JB
6162 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6163 address = value_as_address (arg);
4c4b4cd2 6164 else
0fd88904 6165 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6166
1ed6ede0 6167 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6168 if (find_struct_field (name, t1, 0,
6169 &field_type, &byte_offset, &bit_offset,
52ce6436 6170 &bit_size, NULL))
76a01679
JB
6171 {
6172 if (bit_size != 0)
6173 {
714e53ab
PH
6174 if (TYPE_CODE (t) == TYPE_CODE_REF)
6175 arg = ada_coerce_ref (arg);
6176 else
6177 arg = ada_value_ind (arg);
76a01679
JB
6178 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6179 bit_offset, bit_size,
6180 field_type);
6181 }
6182 else
f5938064 6183 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6184 }
6185 }
6186
03ee6b2e
PH
6187 if (v != NULL || no_err)
6188 return v;
6189 else
323e0a4a 6190 error (_("There is no member named %s."), name);
14f9c5c9 6191
03ee6b2e
PH
6192 BadValue:
6193 if (no_err)
6194 return NULL;
6195 else
6196 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6197}
6198
6199/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6200 If DISPP is non-null, add its byte displacement from the beginning of a
6201 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6202 work for packed fields).
6203
6204 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6205 followed by "___".
14f9c5c9 6206
4c4b4cd2
PH
6207 TYPE can be either a struct or union. If REFOK, TYPE may also
6208 be a (pointer or reference)+ to a struct or union, and the
6209 ultimate target type will be searched.
14f9c5c9
AS
6210
6211 Looks recursively into variant clauses and parent types.
6212
4c4b4cd2
PH
6213 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6214 TYPE is not a type of the right kind. */
14f9c5c9 6215
4c4b4cd2 6216static struct type *
76a01679
JB
6217ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6218 int noerr, int *dispp)
14f9c5c9
AS
6219{
6220 int i;
6221
6222 if (name == NULL)
6223 goto BadName;
6224
76a01679 6225 if (refok && type != NULL)
4c4b4cd2
PH
6226 while (1)
6227 {
61ee279c 6228 type = ada_check_typedef (type);
76a01679
JB
6229 if (TYPE_CODE (type) != TYPE_CODE_PTR
6230 && TYPE_CODE (type) != TYPE_CODE_REF)
6231 break;
6232 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6233 }
14f9c5c9 6234
76a01679 6235 if (type == NULL
1265e4aa
JB
6236 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6237 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6238 {
4c4b4cd2 6239 if (noerr)
76a01679 6240 return NULL;
4c4b4cd2 6241 else
76a01679
JB
6242 {
6243 target_terminal_ours ();
6244 gdb_flush (gdb_stdout);
323e0a4a
AC
6245 if (type == NULL)
6246 error (_("Type (null) is not a structure or union type"));
6247 else
6248 {
6249 /* XXX: type_sprint */
6250 fprintf_unfiltered (gdb_stderr, _("Type "));
6251 type_print (type, "", gdb_stderr, -1);
6252 error (_(" is not a structure or union type"));
6253 }
76a01679 6254 }
14f9c5c9
AS
6255 }
6256
6257 type = to_static_fixed_type (type);
6258
6259 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6260 {
6261 char *t_field_name = TYPE_FIELD_NAME (type, i);
6262 struct type *t;
6263 int disp;
d2e4a39e 6264
14f9c5c9 6265 if (t_field_name == NULL)
4c4b4cd2 6266 continue;
14f9c5c9
AS
6267
6268 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6269 {
6270 if (dispp != NULL)
6271 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6272 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6273 }
14f9c5c9
AS
6274
6275 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6276 {
6277 disp = 0;
6278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6279 0, 1, &disp);
6280 if (t != NULL)
6281 {
6282 if (dispp != NULL)
6283 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6284 return t;
6285 }
6286 }
14f9c5c9
AS
6287
6288 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6289 {
6290 int j;
61ee279c 6291 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6292
6293 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6294 {
b1f33ddd
JB
6295 /* FIXME pnh 2008/01/26: We check for a field that is
6296 NOT wrapped in a struct, since the compiler sometimes
6297 generates these for unchecked variant types. Revisit
6298 if the compiler changes this practice. */
6299 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6300 disp = 0;
b1f33ddd
JB
6301 if (v_field_name != NULL
6302 && field_name_match (v_field_name, name))
6303 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6304 else
6305 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6306 name, 0, 1, &disp);
6307
4c4b4cd2
PH
6308 if (t != NULL)
6309 {
6310 if (dispp != NULL)
6311 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6312 return t;
6313 }
6314 }
6315 }
14f9c5c9
AS
6316
6317 }
6318
6319BadName:
d2e4a39e 6320 if (!noerr)
14f9c5c9
AS
6321 {
6322 target_terminal_ours ();
6323 gdb_flush (gdb_stdout);
323e0a4a
AC
6324 if (name == NULL)
6325 {
6326 /* XXX: type_sprint */
6327 fprintf_unfiltered (gdb_stderr, _("Type "));
6328 type_print (type, "", gdb_stderr, -1);
6329 error (_(" has no component named <null>"));
6330 }
6331 else
6332 {
6333 /* XXX: type_sprint */
6334 fprintf_unfiltered (gdb_stderr, _("Type "));
6335 type_print (type, "", gdb_stderr, -1);
6336 error (_(" has no component named %s"), name);
6337 }
14f9c5c9
AS
6338 }
6339
6340 return NULL;
6341}
6342
b1f33ddd
JB
6343/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6344 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6345 represents an unchecked union (that is, the variant part of a
6346 record that is named in an Unchecked_Union pragma). */
6347
6348static int
6349is_unchecked_variant (struct type *var_type, struct type *outer_type)
6350{
6351 char *discrim_name = ada_variant_discrim_name (var_type);
6352 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6353 == NULL);
6354}
6355
6356
14f9c5c9
AS
6357/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6358 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6359 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6360 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6361
d2e4a39e 6362int
ebf56fd3 6363ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6364 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6365{
6366 int others_clause;
6367 int i;
d2e4a39e 6368 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6369 struct value *outer;
6370 struct value *discrim;
14f9c5c9
AS
6371 LONGEST discrim_val;
6372
0c281816
JB
6373 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6374 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6375 if (discrim == NULL)
14f9c5c9 6376 return -1;
0c281816 6377 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6378
6379 others_clause = -1;
6380 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6381 {
6382 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6383 others_clause = i;
14f9c5c9 6384 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6385 return i;
14f9c5c9
AS
6386 }
6387
6388 return others_clause;
6389}
d2e4a39e 6390\f
14f9c5c9
AS
6391
6392
4c4b4cd2 6393 /* Dynamic-Sized Records */
14f9c5c9
AS
6394
6395/* Strategy: The type ostensibly attached to a value with dynamic size
6396 (i.e., a size that is not statically recorded in the debugging
6397 data) does not accurately reflect the size or layout of the value.
6398 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6399 conventional types that are constructed on the fly. */
14f9c5c9
AS
6400
6401/* There is a subtle and tricky problem here. In general, we cannot
6402 determine the size of dynamic records without its data. However,
6403 the 'struct value' data structure, which GDB uses to represent
6404 quantities in the inferior process (the target), requires the size
6405 of the type at the time of its allocation in order to reserve space
6406 for GDB's internal copy of the data. That's why the
6407 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6408 rather than struct value*s.
14f9c5c9
AS
6409
6410 However, GDB's internal history variables ($1, $2, etc.) are
6411 struct value*s containing internal copies of the data that are not, in
6412 general, the same as the data at their corresponding addresses in
6413 the target. Fortunately, the types we give to these values are all
6414 conventional, fixed-size types (as per the strategy described
6415 above), so that we don't usually have to perform the
6416 'to_fixed_xxx_type' conversions to look at their values.
6417 Unfortunately, there is one exception: if one of the internal
6418 history variables is an array whose elements are unconstrained
6419 records, then we will need to create distinct fixed types for each
6420 element selected. */
6421
6422/* The upshot of all of this is that many routines take a (type, host
6423 address, target address) triple as arguments to represent a value.
6424 The host address, if non-null, is supposed to contain an internal
6425 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6426 target at the target address. */
14f9c5c9
AS
6427
6428/* Assuming that VAL0 represents a pointer value, the result of
6429 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6430 dynamic-sized types. */
14f9c5c9 6431
d2e4a39e
AS
6432struct value *
6433ada_value_ind (struct value *val0)
14f9c5c9 6434{
d2e4a39e 6435 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6436 return ada_to_fixed_value (val);
14f9c5c9
AS
6437}
6438
6439/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6440 qualifiers on VAL0. */
6441
d2e4a39e
AS
6442static struct value *
6443ada_coerce_ref (struct value *val0)
6444{
df407dfe 6445 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6446 {
6447 struct value *val = val0;
994b9211 6448 val = coerce_ref (val);
d2e4a39e 6449 val = unwrap_value (val);
4c4b4cd2 6450 return ada_to_fixed_value (val);
d2e4a39e
AS
6451 }
6452 else
14f9c5c9
AS
6453 return val0;
6454}
6455
6456/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6457 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6458
6459static unsigned int
ebf56fd3 6460align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6461{
6462 return (off + alignment - 1) & ~(alignment - 1);
6463}
6464
4c4b4cd2 6465/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6466
6467static unsigned int
ebf56fd3 6468field_alignment (struct type *type, int f)
14f9c5c9 6469{
d2e4a39e 6470 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6471 int len;
14f9c5c9
AS
6472 int align_offset;
6473
64a1bf19
JB
6474 /* The field name should never be null, unless the debugging information
6475 is somehow malformed. In this case, we assume the field does not
6476 require any alignment. */
6477 if (name == NULL)
6478 return 1;
6479
6480 len = strlen (name);
6481
4c4b4cd2
PH
6482 if (!isdigit (name[len - 1]))
6483 return 1;
14f9c5c9 6484
d2e4a39e 6485 if (isdigit (name[len - 2]))
14f9c5c9
AS
6486 align_offset = len - 2;
6487 else
6488 align_offset = len - 1;
6489
4c4b4cd2 6490 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6491 return TARGET_CHAR_BIT;
6492
4c4b4cd2
PH
6493 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6494}
6495
6496/* Find a symbol named NAME. Ignores ambiguity. */
6497
6498struct symbol *
6499ada_find_any_symbol (const char *name)
6500{
6501 struct symbol *sym;
6502
6503 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6504 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6505 return sym;
6506
6507 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6508 return sym;
14f9c5c9
AS
6509}
6510
dddfab26
UW
6511/* Find a type named NAME. Ignores ambiguity. This routine will look
6512 solely for types defined by debug info, it will not search the GDB
6513 primitive types. */
4c4b4cd2 6514
d2e4a39e 6515struct type *
ebf56fd3 6516ada_find_any_type (const char *name)
14f9c5c9 6517{
4c4b4cd2 6518 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6519
14f9c5c9 6520 if (sym != NULL)
dddfab26 6521 return SYMBOL_TYPE (sym);
14f9c5c9 6522
dddfab26 6523 return NULL;
14f9c5c9
AS
6524}
6525
aeb5907d
JB
6526/* Given NAME and an associated BLOCK, search all symbols for
6527 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6528 associated to NAME. Return this symbol if found, return
6529 NULL otherwise. */
6530
6531struct symbol *
6532ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6533{
6534 struct symbol *sym;
6535
6536 sym = find_old_style_renaming_symbol (name, block);
6537
6538 if (sym != NULL)
6539 return sym;
6540
6541 /* Not right yet. FIXME pnh 7/20/2007. */
6542 sym = ada_find_any_symbol (name);
6543 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6544 return sym;
6545 else
6546 return NULL;
6547}
6548
6549static struct symbol *
6550find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6551{
7f0df278 6552 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6553 char *rename;
6554
6555 if (function_sym != NULL)
6556 {
6557 /* If the symbol is defined inside a function, NAME is not fully
6558 qualified. This means we need to prepend the function name
6559 as well as adding the ``___XR'' suffix to build the name of
6560 the associated renaming symbol. */
6561 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6562 /* Function names sometimes contain suffixes used
6563 for instance to qualify nested subprograms. When building
6564 the XR type name, we need to make sure that this suffix is
6565 not included. So do not include any suffix in the function
6566 name length below. */
69fadcdf 6567 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6568 const int rename_len = function_name_len + 2 /* "__" */
6569 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6570
529cad9c 6571 /* Strip the suffix if necessary. */
69fadcdf
JB
6572 ada_remove_trailing_digits (function_name, &function_name_len);
6573 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6574 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6575
4c4b4cd2
PH
6576 /* Library-level functions are a special case, as GNAT adds
6577 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6578 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6579 have this prefix, so we need to skip this prefix if present. */
6580 if (function_name_len > 5 /* "_ada_" */
6581 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6582 {
6583 function_name += 5;
6584 function_name_len -= 5;
6585 }
4c4b4cd2
PH
6586
6587 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6588 strncpy (rename, function_name, function_name_len);
6589 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6590 "__%s___XR", name);
4c4b4cd2
PH
6591 }
6592 else
6593 {
6594 const int rename_len = strlen (name) + 6;
6595 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6596 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6597 }
6598
6599 return ada_find_any_symbol (rename);
6600}
6601
14f9c5c9 6602/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6603 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6604 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6605 otherwise return 0. */
6606
14f9c5c9 6607int
d2e4a39e 6608ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6609{
6610 if (type1 == NULL)
6611 return 1;
6612 else if (type0 == NULL)
6613 return 0;
6614 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6615 return 1;
6616 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6617 return 0;
4c4b4cd2
PH
6618 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6619 return 1;
ad82864c 6620 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6621 return 1;
4c4b4cd2
PH
6622 else if (ada_is_array_descriptor_type (type0)
6623 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6624 return 1;
aeb5907d
JB
6625 else
6626 {
6627 const char *type0_name = type_name_no_tag (type0);
6628 const char *type1_name = type_name_no_tag (type1);
6629
6630 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6631 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6632 return 1;
6633 }
14f9c5c9
AS
6634 return 0;
6635}
6636
6637/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6638 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6639
d2e4a39e
AS
6640char *
6641ada_type_name (struct type *type)
14f9c5c9 6642{
d2e4a39e 6643 if (type == NULL)
14f9c5c9
AS
6644 return NULL;
6645 else if (TYPE_NAME (type) != NULL)
6646 return TYPE_NAME (type);
6647 else
6648 return TYPE_TAG_NAME (type);
6649}
6650
b4ba55a1
JB
6651/* Search the list of "descriptive" types associated to TYPE for a type
6652 whose name is NAME. */
6653
6654static struct type *
6655find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6656{
6657 struct type *result;
6658
6659 /* If there no descriptive-type info, then there is no parallel type
6660 to be found. */
6661 if (!HAVE_GNAT_AUX_INFO (type))
6662 return NULL;
6663
6664 result = TYPE_DESCRIPTIVE_TYPE (type);
6665 while (result != NULL)
6666 {
6667 char *result_name = ada_type_name (result);
6668
6669 if (result_name == NULL)
6670 {
6671 warning (_("unexpected null name on descriptive type"));
6672 return NULL;
6673 }
6674
6675 /* If the names match, stop. */
6676 if (strcmp (result_name, name) == 0)
6677 break;
6678
6679 /* Otherwise, look at the next item on the list, if any. */
6680 if (HAVE_GNAT_AUX_INFO (result))
6681 result = TYPE_DESCRIPTIVE_TYPE (result);
6682 else
6683 result = NULL;
6684 }
6685
6686 /* If we didn't find a match, see whether this is a packed array. With
6687 older compilers, the descriptive type information is either absent or
6688 irrelevant when it comes to packed arrays so the above lookup fails.
6689 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6690 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6691 return ada_find_any_type (name);
6692
6693 return result;
6694}
6695
6696/* Find a parallel type to TYPE with the specified NAME, using the
6697 descriptive type taken from the debugging information, if available,
6698 and otherwise using the (slower) name-based method. */
6699
6700static struct type *
6701ada_find_parallel_type_with_name (struct type *type, const char *name)
6702{
6703 struct type *result = NULL;
6704
6705 if (HAVE_GNAT_AUX_INFO (type))
6706 result = find_parallel_type_by_descriptive_type (type, name);
6707 else
6708 result = ada_find_any_type (name);
6709
6710 return result;
6711}
6712
6713/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6714 SUFFIX to the name of TYPE. */
14f9c5c9 6715
d2e4a39e 6716struct type *
ebf56fd3 6717ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6718{
b4ba55a1 6719 char *name, *typename = ada_type_name (type);
14f9c5c9 6720 int len;
d2e4a39e 6721
14f9c5c9
AS
6722 if (typename == NULL)
6723 return NULL;
6724
6725 len = strlen (typename);
6726
b4ba55a1 6727 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
6728
6729 strcpy (name, typename);
6730 strcpy (name + len, suffix);
6731
b4ba55a1 6732 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
6733}
6734
14f9c5c9 6735/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6736 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6737
d2e4a39e
AS
6738static struct type *
6739dynamic_template_type (struct type *type)
14f9c5c9 6740{
61ee279c 6741 type = ada_check_typedef (type);
14f9c5c9
AS
6742
6743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6744 || ada_type_name (type) == NULL)
14f9c5c9 6745 return NULL;
d2e4a39e 6746 else
14f9c5c9
AS
6747 {
6748 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6749 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6750 return type;
14f9c5c9 6751 else
4c4b4cd2 6752 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6753 }
6754}
6755
6756/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6757 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6758
d2e4a39e
AS
6759static int
6760is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6761{
6762 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6763 return name != NULL
14f9c5c9
AS
6764 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6765 && strstr (name, "___XVL") != NULL;
6766}
6767
4c4b4cd2
PH
6768/* The index of the variant field of TYPE, or -1 if TYPE does not
6769 represent a variant record type. */
14f9c5c9 6770
d2e4a39e 6771static int
4c4b4cd2 6772variant_field_index (struct type *type)
14f9c5c9
AS
6773{
6774 int f;
6775
4c4b4cd2
PH
6776 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6777 return -1;
6778
6779 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6780 {
6781 if (ada_is_variant_part (type, f))
6782 return f;
6783 }
6784 return -1;
14f9c5c9
AS
6785}
6786
4c4b4cd2
PH
6787/* A record type with no fields. */
6788
d2e4a39e 6789static struct type *
e9bb382b 6790empty_record (struct type *template)
14f9c5c9 6791{
e9bb382b 6792 struct type *type = alloc_type_copy (template);
14f9c5c9
AS
6793 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6794 TYPE_NFIELDS (type) = 0;
6795 TYPE_FIELDS (type) = NULL;
b1f33ddd 6796 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6797 TYPE_NAME (type) = "<empty>";
6798 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6799 TYPE_LENGTH (type) = 0;
6800 return type;
6801}
6802
6803/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6804 the value of type TYPE at VALADDR or ADDRESS (see comments at
6805 the beginning of this section) VAL according to GNAT conventions.
6806 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6807 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6808 an outer-level type (i.e., as opposed to a branch of a variant.) A
6809 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6810 of the variant.
14f9c5c9 6811
4c4b4cd2
PH
6812 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6813 length are not statically known are discarded. As a consequence,
6814 VALADDR, ADDRESS and DVAL0 are ignored.
6815
6816 NOTE: Limitations: For now, we assume that dynamic fields and
6817 variants occupy whole numbers of bytes. However, they need not be
6818 byte-aligned. */
6819
6820struct type *
10a2c479 6821ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6822 const gdb_byte *valaddr,
4c4b4cd2
PH
6823 CORE_ADDR address, struct value *dval0,
6824 int keep_dynamic_fields)
14f9c5c9 6825{
d2e4a39e
AS
6826 struct value *mark = value_mark ();
6827 struct value *dval;
6828 struct type *rtype;
14f9c5c9 6829 int nfields, bit_len;
4c4b4cd2 6830 int variant_field;
14f9c5c9 6831 long off;
4c4b4cd2 6832 int fld_bit_len, bit_incr;
14f9c5c9
AS
6833 int f;
6834
4c4b4cd2
PH
6835 /* Compute the number of fields in this record type that are going
6836 to be processed: unless keep_dynamic_fields, this includes only
6837 fields whose position and length are static will be processed. */
6838 if (keep_dynamic_fields)
6839 nfields = TYPE_NFIELDS (type);
6840 else
6841 {
6842 nfields = 0;
76a01679 6843 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6844 && !ada_is_variant_part (type, nfields)
6845 && !is_dynamic_field (type, nfields))
6846 nfields++;
6847 }
6848
e9bb382b 6849 rtype = alloc_type_copy (type);
14f9c5c9
AS
6850 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6851 INIT_CPLUS_SPECIFIC (rtype);
6852 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6853 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6854 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6855 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6856 TYPE_NAME (rtype) = ada_type_name (type);
6857 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6858 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6859
d2e4a39e
AS
6860 off = 0;
6861 bit_len = 0;
4c4b4cd2
PH
6862 variant_field = -1;
6863
14f9c5c9
AS
6864 for (f = 0; f < nfields; f += 1)
6865 {
6c038f32
PH
6866 off = align_value (off, field_alignment (type, f))
6867 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6868 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6869 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6870
d2e4a39e 6871 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6872 {
6873 variant_field = f;
6874 fld_bit_len = bit_incr = 0;
6875 }
14f9c5c9 6876 else if (is_dynamic_field (type, f))
4c4b4cd2 6877 {
284614f0
JB
6878 const gdb_byte *field_valaddr = valaddr;
6879 CORE_ADDR field_address = address;
6880 struct type *field_type =
6881 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6882
4c4b4cd2 6883 if (dval0 == NULL)
b5304971
JG
6884 {
6885 /* rtype's length is computed based on the run-time
6886 value of discriminants. If the discriminants are not
6887 initialized, the type size may be completely bogus and
6888 GDB may fail to allocate a value for it. So check the
6889 size first before creating the value. */
6890 check_size (rtype);
6891 dval = value_from_contents_and_address (rtype, valaddr, address);
6892 }
4c4b4cd2
PH
6893 else
6894 dval = dval0;
6895
284614f0
JB
6896 /* If the type referenced by this field is an aligner type, we need
6897 to unwrap that aligner type, because its size might not be set.
6898 Keeping the aligner type would cause us to compute the wrong
6899 size for this field, impacting the offset of the all the fields
6900 that follow this one. */
6901 if (ada_is_aligner_type (field_type))
6902 {
6903 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6904
6905 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6906 field_address = cond_offset_target (field_address, field_offset);
6907 field_type = ada_aligned_type (field_type);
6908 }
6909
6910 field_valaddr = cond_offset_host (field_valaddr,
6911 off / TARGET_CHAR_BIT);
6912 field_address = cond_offset_target (field_address,
6913 off / TARGET_CHAR_BIT);
6914
6915 /* Get the fixed type of the field. Note that, in this case,
6916 we do not want to get the real type out of the tag: if
6917 the current field is the parent part of a tagged record,
6918 we will get the tag of the object. Clearly wrong: the real
6919 type of the parent is not the real type of the child. We
6920 would end up in an infinite loop. */
6921 field_type = ada_get_base_type (field_type);
6922 field_type = ada_to_fixed_type (field_type, field_valaddr,
6923 field_address, dval, 0);
6924
6925 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6926 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6927 bit_incr = fld_bit_len =
6928 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6929 }
14f9c5c9 6930 else
4c4b4cd2 6931 {
9f0dec2d
JB
6932 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6933
6934 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6935 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6936 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6937 bit_incr = fld_bit_len =
6938 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6939 else
6940 bit_incr = fld_bit_len =
9f0dec2d 6941 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 6942 }
14f9c5c9 6943 if (off + fld_bit_len > bit_len)
4c4b4cd2 6944 bit_len = off + fld_bit_len;
14f9c5c9 6945 off += bit_incr;
4c4b4cd2
PH
6946 TYPE_LENGTH (rtype) =
6947 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6948 }
4c4b4cd2
PH
6949
6950 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6951 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6952 the record. This can happen in the presence of representation
6953 clauses. */
6954 if (variant_field >= 0)
6955 {
6956 struct type *branch_type;
6957
6958 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6959
6960 if (dval0 == NULL)
6961 dval = value_from_contents_and_address (rtype, valaddr, address);
6962 else
6963 dval = dval0;
6964
6965 branch_type =
6966 to_fixed_variant_branch_type
6967 (TYPE_FIELD_TYPE (type, variant_field),
6968 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6969 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6970 if (branch_type == NULL)
6971 {
6972 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6973 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6974 TYPE_NFIELDS (rtype) -= 1;
6975 }
6976 else
6977 {
6978 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6979 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6980 fld_bit_len =
6981 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6982 TARGET_CHAR_BIT;
6983 if (off + fld_bit_len > bit_len)
6984 bit_len = off + fld_bit_len;
6985 TYPE_LENGTH (rtype) =
6986 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6987 }
6988 }
6989
714e53ab
PH
6990 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6991 should contain the alignment of that record, which should be a strictly
6992 positive value. If null or negative, then something is wrong, most
6993 probably in the debug info. In that case, we don't round up the size
6994 of the resulting type. If this record is not part of another structure,
6995 the current RTYPE length might be good enough for our purposes. */
6996 if (TYPE_LENGTH (type) <= 0)
6997 {
323e0a4a
AC
6998 if (TYPE_NAME (rtype))
6999 warning (_("Invalid type size for `%s' detected: %d."),
7000 TYPE_NAME (rtype), TYPE_LENGTH (type));
7001 else
7002 warning (_("Invalid type size for <unnamed> detected: %d."),
7003 TYPE_LENGTH (type));
714e53ab
PH
7004 }
7005 else
7006 {
7007 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7008 TYPE_LENGTH (type));
7009 }
14f9c5c9
AS
7010
7011 value_free_to_mark (mark);
d2e4a39e 7012 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7013 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7014 return rtype;
7015}
7016
4c4b4cd2
PH
7017/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7018 of 1. */
14f9c5c9 7019
d2e4a39e 7020static struct type *
fc1a4b47 7021template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7022 CORE_ADDR address, struct value *dval0)
7023{
7024 return ada_template_to_fixed_record_type_1 (type, valaddr,
7025 address, dval0, 1);
7026}
7027
7028/* An ordinary record type in which ___XVL-convention fields and
7029 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7030 static approximations, containing all possible fields. Uses
7031 no runtime values. Useless for use in values, but that's OK,
7032 since the results are used only for type determinations. Works on both
7033 structs and unions. Representation note: to save space, we memorize
7034 the result of this function in the TYPE_TARGET_TYPE of the
7035 template type. */
7036
7037static struct type *
7038template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7039{
7040 struct type *type;
7041 int nfields;
7042 int f;
7043
4c4b4cd2
PH
7044 if (TYPE_TARGET_TYPE (type0) != NULL)
7045 return TYPE_TARGET_TYPE (type0);
7046
7047 nfields = TYPE_NFIELDS (type0);
7048 type = type0;
14f9c5c9
AS
7049
7050 for (f = 0; f < nfields; f += 1)
7051 {
61ee279c 7052 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7053 struct type *new_type;
14f9c5c9 7054
4c4b4cd2
PH
7055 if (is_dynamic_field (type0, f))
7056 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7057 else
f192137b 7058 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7059 if (type == type0 && new_type != field_type)
7060 {
e9bb382b 7061 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7062 TYPE_CODE (type) = TYPE_CODE (type0);
7063 INIT_CPLUS_SPECIFIC (type);
7064 TYPE_NFIELDS (type) = nfields;
7065 TYPE_FIELDS (type) = (struct field *)
7066 TYPE_ALLOC (type, nfields * sizeof (struct field));
7067 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7068 sizeof (struct field) * nfields);
7069 TYPE_NAME (type) = ada_type_name (type0);
7070 TYPE_TAG_NAME (type) = NULL;
876cecd0 7071 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7072 TYPE_LENGTH (type) = 0;
7073 }
7074 TYPE_FIELD_TYPE (type, f) = new_type;
7075 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7076 }
14f9c5c9
AS
7077 return type;
7078}
7079
4c4b4cd2 7080/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7081 whose address in memory is ADDRESS, returns a revision of TYPE,
7082 which should be a non-dynamic-sized record, in which the variant
7083 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7084 for discriminant values in DVAL0, which can be NULL if the record
7085 contains the necessary discriminant values. */
7086
d2e4a39e 7087static struct type *
fc1a4b47 7088to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7089 CORE_ADDR address, struct value *dval0)
14f9c5c9 7090{
d2e4a39e 7091 struct value *mark = value_mark ();
4c4b4cd2 7092 struct value *dval;
d2e4a39e 7093 struct type *rtype;
14f9c5c9
AS
7094 struct type *branch_type;
7095 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7096 int variant_field = variant_field_index (type);
14f9c5c9 7097
4c4b4cd2 7098 if (variant_field == -1)
14f9c5c9
AS
7099 return type;
7100
4c4b4cd2
PH
7101 if (dval0 == NULL)
7102 dval = value_from_contents_and_address (type, valaddr, address);
7103 else
7104 dval = dval0;
7105
e9bb382b 7106 rtype = alloc_type_copy (type);
14f9c5c9 7107 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7108 INIT_CPLUS_SPECIFIC (rtype);
7109 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7110 TYPE_FIELDS (rtype) =
7111 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7112 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7113 sizeof (struct field) * nfields);
14f9c5c9
AS
7114 TYPE_NAME (rtype) = ada_type_name (type);
7115 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7116 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7117 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7118
4c4b4cd2
PH
7119 branch_type = to_fixed_variant_branch_type
7120 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7121 cond_offset_host (valaddr,
4c4b4cd2
PH
7122 TYPE_FIELD_BITPOS (type, variant_field)
7123 / TARGET_CHAR_BIT),
d2e4a39e 7124 cond_offset_target (address,
4c4b4cd2
PH
7125 TYPE_FIELD_BITPOS (type, variant_field)
7126 / TARGET_CHAR_BIT), dval);
d2e4a39e 7127 if (branch_type == NULL)
14f9c5c9 7128 {
4c4b4cd2
PH
7129 int f;
7130 for (f = variant_field + 1; f < nfields; f += 1)
7131 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7132 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7133 }
7134 else
7135 {
4c4b4cd2
PH
7136 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7137 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7138 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7139 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7140 }
4c4b4cd2 7141 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7142
4c4b4cd2 7143 value_free_to_mark (mark);
14f9c5c9
AS
7144 return rtype;
7145}
7146
7147/* An ordinary record type (with fixed-length fields) that describes
7148 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7149 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7150 should be in DVAL, a record value; it may be NULL if the object
7151 at ADDR itself contains any necessary discriminant values.
7152 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7153 values from the record are needed. Except in the case that DVAL,
7154 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7155 unchecked) is replaced by a particular branch of the variant.
7156
7157 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7158 is questionable and may be removed. It can arise during the
7159 processing of an unconstrained-array-of-record type where all the
7160 variant branches have exactly the same size. This is because in
7161 such cases, the compiler does not bother to use the XVS convention
7162 when encoding the record. I am currently dubious of this
7163 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7164
d2e4a39e 7165static struct type *
fc1a4b47 7166to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7167 CORE_ADDR address, struct value *dval)
14f9c5c9 7168{
d2e4a39e 7169 struct type *templ_type;
14f9c5c9 7170
876cecd0 7171 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7172 return type0;
7173
d2e4a39e 7174 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7175
7176 if (templ_type != NULL)
7177 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7178 else if (variant_field_index (type0) >= 0)
7179 {
7180 if (dval == NULL && valaddr == NULL && address == 0)
7181 return type0;
7182 return to_record_with_fixed_variant_part (type0, valaddr, address,
7183 dval);
7184 }
14f9c5c9
AS
7185 else
7186 {
876cecd0 7187 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7188 return type0;
7189 }
7190
7191}
7192
7193/* An ordinary record type (with fixed-length fields) that describes
7194 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7195 union type. Any necessary discriminants' values should be in DVAL,
7196 a record value. That is, this routine selects the appropriate
7197 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7198 indicated in the union's type name. Returns VAR_TYPE0 itself if
7199 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7200
d2e4a39e 7201static struct type *
fc1a4b47 7202to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7203 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7204{
7205 int which;
d2e4a39e
AS
7206 struct type *templ_type;
7207 struct type *var_type;
14f9c5c9
AS
7208
7209 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7210 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7211 else
14f9c5c9
AS
7212 var_type = var_type0;
7213
7214 templ_type = ada_find_parallel_type (var_type, "___XVU");
7215
7216 if (templ_type != NULL)
7217 var_type = templ_type;
7218
b1f33ddd
JB
7219 if (is_unchecked_variant (var_type, value_type (dval)))
7220 return var_type0;
d2e4a39e
AS
7221 which =
7222 ada_which_variant_applies (var_type,
0fd88904 7223 value_type (dval), value_contents (dval));
14f9c5c9
AS
7224
7225 if (which < 0)
e9bb382b 7226 return empty_record (var_type);
14f9c5c9 7227 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7228 return to_fixed_record_type
d2e4a39e
AS
7229 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7230 valaddr, address, dval);
4c4b4cd2 7231 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7232 return
7233 to_fixed_record_type
7234 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7235 else
7236 return TYPE_FIELD_TYPE (var_type, which);
7237}
7238
7239/* Assuming that TYPE0 is an array type describing the type of a value
7240 at ADDR, and that DVAL describes a record containing any
7241 discriminants used in TYPE0, returns a type for the value that
7242 contains no dynamic components (that is, no components whose sizes
7243 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7244 true, gives an error message if the resulting type's size is over
4c4b4cd2 7245 varsize_limit. */
14f9c5c9 7246
d2e4a39e
AS
7247static struct type *
7248to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7249 int ignore_too_big)
14f9c5c9 7250{
d2e4a39e
AS
7251 struct type *index_type_desc;
7252 struct type *result;
ad82864c 7253 int constrained_packed_array_p;
14f9c5c9 7254
284614f0 7255 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7256 return type0;
14f9c5c9 7257
ad82864c
JB
7258 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7259 if (constrained_packed_array_p)
7260 type0 = decode_constrained_packed_array_type (type0);
284614f0 7261
14f9c5c9
AS
7262 index_type_desc = ada_find_parallel_type (type0, "___XA");
7263 if (index_type_desc == NULL)
7264 {
61ee279c 7265 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7266 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7267 depend on the contents of the array in properly constructed
7268 debugging data. */
529cad9c
PH
7269 /* Create a fixed version of the array element type.
7270 We're not providing the address of an element here,
e1d5a0d2 7271 and thus the actual object value cannot be inspected to do
529cad9c
PH
7272 the conversion. This should not be a problem, since arrays of
7273 unconstrained objects are not allowed. In particular, all
7274 the elements of an array of a tagged type should all be of
7275 the same type specified in the debugging info. No need to
7276 consult the object tag. */
1ed6ede0 7277 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7278
284614f0
JB
7279 /* Make sure we always create a new array type when dealing with
7280 packed array types, since we're going to fix-up the array
7281 type length and element bitsize a little further down. */
ad82864c 7282 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7283 result = type0;
14f9c5c9 7284 else
e9bb382b 7285 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7286 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7287 }
7288 else
7289 {
7290 int i;
7291 struct type *elt_type0;
7292
7293 elt_type0 = type0;
7294 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7295 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7296
7297 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7298 depend on the contents of the array in properly constructed
7299 debugging data. */
529cad9c
PH
7300 /* Create a fixed version of the array element type.
7301 We're not providing the address of an element here,
e1d5a0d2 7302 and thus the actual object value cannot be inspected to do
529cad9c
PH
7303 the conversion. This should not be a problem, since arrays of
7304 unconstrained objects are not allowed. In particular, all
7305 the elements of an array of a tagged type should all be of
7306 the same type specified in the debugging info. No need to
7307 consult the object tag. */
1ed6ede0
JB
7308 result =
7309 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7310
7311 elt_type0 = type0;
14f9c5c9 7312 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7313 {
7314 struct type *range_type =
7315 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
1ce677a4 7316 dval, TYPE_INDEX_TYPE (elt_type0));
e9bb382b 7317 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7318 result, range_type);
1ce677a4 7319 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7320 }
d2e4a39e 7321 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7322 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7323 }
7324
ad82864c 7325 if (constrained_packed_array_p)
284614f0
JB
7326 {
7327 /* So far, the resulting type has been created as if the original
7328 type was a regular (non-packed) array type. As a result, the
7329 bitsize of the array elements needs to be set again, and the array
7330 length needs to be recomputed based on that bitsize. */
7331 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7332 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7333
7334 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7335 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7336 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7337 TYPE_LENGTH (result)++;
7338 }
7339
876cecd0 7340 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7341 return result;
d2e4a39e 7342}
14f9c5c9
AS
7343
7344
7345/* A standard type (containing no dynamically sized components)
7346 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7347 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7348 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7349 ADDRESS or in VALADDR contains these discriminants.
7350
1ed6ede0
JB
7351 If CHECK_TAG is not null, in the case of tagged types, this function
7352 attempts to locate the object's tag and use it to compute the actual
7353 type. However, when ADDRESS is null, we cannot use it to determine the
7354 location of the tag, and therefore compute the tagged type's actual type.
7355 So we return the tagged type without consulting the tag. */
529cad9c 7356
f192137b
JB
7357static struct type *
7358ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7359 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7360{
61ee279c 7361 type = ada_check_typedef (type);
d2e4a39e
AS
7362 switch (TYPE_CODE (type))
7363 {
7364 default:
14f9c5c9 7365 return type;
d2e4a39e 7366 case TYPE_CODE_STRUCT:
4c4b4cd2 7367 {
76a01679 7368 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7369 struct type *fixed_record_type =
7370 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7371 /* If STATIC_TYPE is a tagged type and we know the object's address,
7372 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7373 type from there. Note that we have to use the fixed record
7374 type (the parent part of the record may have dynamic fields
7375 and the way the location of _tag is expressed may depend on
7376 them). */
529cad9c 7377
1ed6ede0 7378 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7379 {
7380 struct type *real_type =
1ed6ede0
JB
7381 type_from_tag (value_tag_from_contents_and_address
7382 (fixed_record_type,
7383 valaddr,
7384 address));
76a01679 7385 if (real_type != NULL)
1ed6ede0 7386 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7387 }
4af88198
JB
7388
7389 /* Check to see if there is a parallel ___XVZ variable.
7390 If there is, then it provides the actual size of our type. */
7391 else if (ada_type_name (fixed_record_type) != NULL)
7392 {
7393 char *name = ada_type_name (fixed_record_type);
7394 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7395 int xvz_found = 0;
7396 LONGEST size;
7397
88c15c34 7398 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7399 size = get_int_var_value (xvz_name, &xvz_found);
7400 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7401 {
7402 fixed_record_type = copy_type (fixed_record_type);
7403 TYPE_LENGTH (fixed_record_type) = size;
7404
7405 /* The FIXED_RECORD_TYPE may have be a stub. We have
7406 observed this when the debugging info is STABS, and
7407 apparently it is something that is hard to fix.
7408
7409 In practice, we don't need the actual type definition
7410 at all, because the presence of the XVZ variable allows us
7411 to assume that there must be a XVS type as well, which we
7412 should be able to use later, when we need the actual type
7413 definition.
7414
7415 In the meantime, pretend that the "fixed" type we are
7416 returning is NOT a stub, because this can cause trouble
7417 when using this type to create new types targeting it.
7418 Indeed, the associated creation routines often check
7419 whether the target type is a stub and will try to replace
7420 it, thus using a type with the wrong size. This, in turn,
7421 might cause the new type to have the wrong size too.
7422 Consider the case of an array, for instance, where the size
7423 of the array is computed from the number of elements in
7424 our array multiplied by the size of its element. */
7425 TYPE_STUB (fixed_record_type) = 0;
7426 }
7427 }
1ed6ede0 7428 return fixed_record_type;
4c4b4cd2 7429 }
d2e4a39e 7430 case TYPE_CODE_ARRAY:
4c4b4cd2 7431 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7432 case TYPE_CODE_UNION:
7433 if (dval == NULL)
4c4b4cd2 7434 return type;
d2e4a39e 7435 else
4c4b4cd2 7436 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7437 }
14f9c5c9
AS
7438}
7439
f192137b
JB
7440/* The same as ada_to_fixed_type_1, except that it preserves the type
7441 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7442 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7443
7444struct type *
7445ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7446 CORE_ADDR address, struct value *dval, int check_tag)
7447
7448{
7449 struct type *fixed_type =
7450 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7451
7452 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7453 && TYPE_TARGET_TYPE (type) == fixed_type)
7454 return type;
7455
7456 return fixed_type;
7457}
7458
14f9c5c9 7459/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7460 TYPE0, but based on no runtime data. */
14f9c5c9 7461
d2e4a39e
AS
7462static struct type *
7463to_static_fixed_type (struct type *type0)
14f9c5c9 7464{
d2e4a39e 7465 struct type *type;
14f9c5c9
AS
7466
7467 if (type0 == NULL)
7468 return NULL;
7469
876cecd0 7470 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7471 return type0;
7472
61ee279c 7473 type0 = ada_check_typedef (type0);
d2e4a39e 7474
14f9c5c9
AS
7475 switch (TYPE_CODE (type0))
7476 {
7477 default:
7478 return type0;
7479 case TYPE_CODE_STRUCT:
7480 type = dynamic_template_type (type0);
d2e4a39e 7481 if (type != NULL)
4c4b4cd2
PH
7482 return template_to_static_fixed_type (type);
7483 else
7484 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7485 case TYPE_CODE_UNION:
7486 type = ada_find_parallel_type (type0, "___XVU");
7487 if (type != NULL)
4c4b4cd2
PH
7488 return template_to_static_fixed_type (type);
7489 else
7490 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7491 }
7492}
7493
4c4b4cd2
PH
7494/* A static approximation of TYPE with all type wrappers removed. */
7495
d2e4a39e
AS
7496static struct type *
7497static_unwrap_type (struct type *type)
14f9c5c9
AS
7498{
7499 if (ada_is_aligner_type (type))
7500 {
61ee279c 7501 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7502 if (ada_type_name (type1) == NULL)
4c4b4cd2 7503 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7504
7505 return static_unwrap_type (type1);
7506 }
d2e4a39e 7507 else
14f9c5c9 7508 {
d2e4a39e
AS
7509 struct type *raw_real_type = ada_get_base_type (type);
7510 if (raw_real_type == type)
4c4b4cd2 7511 return type;
14f9c5c9 7512 else
4c4b4cd2 7513 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7514 }
7515}
7516
7517/* In some cases, incomplete and private types require
4c4b4cd2 7518 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7519 type Foo;
7520 type FooP is access Foo;
7521 V: FooP;
7522 type Foo is array ...;
4c4b4cd2 7523 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7524 cross-references to such types, we instead substitute for FooP a
7525 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7526 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7527
7528/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7529 exists, otherwise TYPE. */
7530
d2e4a39e 7531struct type *
61ee279c 7532ada_check_typedef (struct type *type)
14f9c5c9 7533{
727e3d2e
JB
7534 if (type == NULL)
7535 return NULL;
7536
14f9c5c9
AS
7537 CHECK_TYPEDEF (type);
7538 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7539 || !TYPE_STUB (type)
14f9c5c9
AS
7540 || TYPE_TAG_NAME (type) == NULL)
7541 return type;
d2e4a39e 7542 else
14f9c5c9 7543 {
d2e4a39e
AS
7544 char *name = TYPE_TAG_NAME (type);
7545 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7546 return (type1 == NULL) ? type : type1;
7547 }
7548}
7549
7550/* A value representing the data at VALADDR/ADDRESS as described by
7551 type TYPE0, but with a standard (static-sized) type that correctly
7552 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7553 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7554 creation of struct values]. */
14f9c5c9 7555
4c4b4cd2
PH
7556static struct value *
7557ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7558 struct value *val0)
14f9c5c9 7559{
1ed6ede0 7560 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7561 if (type == type0 && val0 != NULL)
7562 return val0;
d2e4a39e 7563 else
4c4b4cd2
PH
7564 return value_from_contents_and_address (type, 0, address);
7565}
7566
7567/* A value representing VAL, but with a standard (static-sized) type
7568 that correctly describes it. Does not necessarily create a new
7569 value. */
7570
7571static struct value *
7572ada_to_fixed_value (struct value *val)
7573{
df407dfe 7574 return ada_to_fixed_value_create (value_type (val),
42ae5230 7575 value_address (val),
4c4b4cd2 7576 val);
14f9c5c9 7577}
d2e4a39e 7578\f
14f9c5c9 7579
14f9c5c9
AS
7580/* Attributes */
7581
4c4b4cd2
PH
7582/* Table mapping attribute numbers to names.
7583 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7584
d2e4a39e 7585static const char *attribute_names[] = {
14f9c5c9
AS
7586 "<?>",
7587
d2e4a39e 7588 "first",
14f9c5c9
AS
7589 "last",
7590 "length",
7591 "image",
14f9c5c9
AS
7592 "max",
7593 "min",
4c4b4cd2
PH
7594 "modulus",
7595 "pos",
7596 "size",
7597 "tag",
14f9c5c9 7598 "val",
14f9c5c9
AS
7599 0
7600};
7601
d2e4a39e 7602const char *
4c4b4cd2 7603ada_attribute_name (enum exp_opcode n)
14f9c5c9 7604{
4c4b4cd2
PH
7605 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7606 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7607 else
7608 return attribute_names[0];
7609}
7610
4c4b4cd2 7611/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7612
4c4b4cd2
PH
7613static LONGEST
7614pos_atr (struct value *arg)
14f9c5c9 7615{
24209737
PH
7616 struct value *val = coerce_ref (arg);
7617 struct type *type = value_type (val);
14f9c5c9 7618
d2e4a39e 7619 if (!discrete_type_p (type))
323e0a4a 7620 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7621
7622 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7623 {
7624 int i;
24209737 7625 LONGEST v = value_as_long (val);
14f9c5c9 7626
d2e4a39e 7627 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7628 {
7629 if (v == TYPE_FIELD_BITPOS (type, i))
7630 return i;
7631 }
323e0a4a 7632 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7633 }
7634 else
24209737 7635 return value_as_long (val);
4c4b4cd2
PH
7636}
7637
7638static struct value *
3cb382c9 7639value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7640{
3cb382c9 7641 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7642}
7643
4c4b4cd2 7644/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7645
d2e4a39e
AS
7646static struct value *
7647value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7648{
d2e4a39e 7649 if (!discrete_type_p (type))
323e0a4a 7650 error (_("'VAL only defined on discrete types"));
df407dfe 7651 if (!integer_type_p (value_type (arg)))
323e0a4a 7652 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7653
7654 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7655 {
7656 long pos = value_as_long (arg);
7657 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7658 error (_("argument to 'VAL out of range"));
d2e4a39e 7659 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7660 }
7661 else
7662 return value_from_longest (type, value_as_long (arg));
7663}
14f9c5c9 7664\f
d2e4a39e 7665
4c4b4cd2 7666 /* Evaluation */
14f9c5c9 7667
4c4b4cd2
PH
7668/* True if TYPE appears to be an Ada character type.
7669 [At the moment, this is true only for Character and Wide_Character;
7670 It is a heuristic test that could stand improvement]. */
14f9c5c9 7671
d2e4a39e
AS
7672int
7673ada_is_character_type (struct type *type)
14f9c5c9 7674{
7b9f71f2
JB
7675 const char *name;
7676
7677 /* If the type code says it's a character, then assume it really is,
7678 and don't check any further. */
7679 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7680 return 1;
7681
7682 /* Otherwise, assume it's a character type iff it is a discrete type
7683 with a known character type name. */
7684 name = ada_type_name (type);
7685 return (name != NULL
7686 && (TYPE_CODE (type) == TYPE_CODE_INT
7687 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7688 && (strcmp (name, "character") == 0
7689 || strcmp (name, "wide_character") == 0
5a517ebd 7690 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7691 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7692}
7693
4c4b4cd2 7694/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7695
7696int
ebf56fd3 7697ada_is_string_type (struct type *type)
14f9c5c9 7698{
61ee279c 7699 type = ada_check_typedef (type);
d2e4a39e 7700 if (type != NULL
14f9c5c9 7701 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7702 && (ada_is_simple_array_type (type)
7703 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7704 && ada_array_arity (type) == 1)
7705 {
7706 struct type *elttype = ada_array_element_type (type, 1);
7707
7708 return ada_is_character_type (elttype);
7709 }
d2e4a39e 7710 else
14f9c5c9
AS
7711 return 0;
7712}
7713
5bf03f13
JB
7714/* The compiler sometimes provides a parallel XVS type for a given
7715 PAD type. Normally, it is safe to follow the PAD type directly,
7716 but older versions of the compiler have a bug that causes the offset
7717 of its "F" field to be wrong. Following that field in that case
7718 would lead to incorrect results, but this can be worked around
7719 by ignoring the PAD type and using the associated XVS type instead.
7720
7721 Set to True if the debugger should trust the contents of PAD types.
7722 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7723static int trust_pad_over_xvs = 1;
14f9c5c9
AS
7724
7725/* True if TYPE is a struct type introduced by the compiler to force the
7726 alignment of a value. Such types have a single field with a
4c4b4cd2 7727 distinctive name. */
14f9c5c9
AS
7728
7729int
ebf56fd3 7730ada_is_aligner_type (struct type *type)
14f9c5c9 7731{
61ee279c 7732 type = ada_check_typedef (type);
714e53ab 7733
5bf03f13 7734 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
7735 return 0;
7736
14f9c5c9 7737 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7738 && TYPE_NFIELDS (type) == 1
7739 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7740}
7741
7742/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7743 the parallel type. */
14f9c5c9 7744
d2e4a39e
AS
7745struct type *
7746ada_get_base_type (struct type *raw_type)
14f9c5c9 7747{
d2e4a39e
AS
7748 struct type *real_type_namer;
7749 struct type *raw_real_type;
14f9c5c9
AS
7750
7751 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7752 return raw_type;
7753
284614f0
JB
7754 if (ada_is_aligner_type (raw_type))
7755 /* The encoding specifies that we should always use the aligner type.
7756 So, even if this aligner type has an associated XVS type, we should
7757 simply ignore it.
7758
7759 According to the compiler gurus, an XVS type parallel to an aligner
7760 type may exist because of a stabs limitation. In stabs, aligner
7761 types are empty because the field has a variable-sized type, and
7762 thus cannot actually be used as an aligner type. As a result,
7763 we need the associated parallel XVS type to decode the type.
7764 Since the policy in the compiler is to not change the internal
7765 representation based on the debugging info format, we sometimes
7766 end up having a redundant XVS type parallel to the aligner type. */
7767 return raw_type;
7768
14f9c5c9 7769 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7770 if (real_type_namer == NULL
14f9c5c9
AS
7771 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7772 || TYPE_NFIELDS (real_type_namer) != 1)
7773 return raw_type;
7774
f80d3ff2
JB
7775 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7776 {
7777 /* This is an older encoding form where the base type needs to be
7778 looked up by name. We prefer the newer enconding because it is
7779 more efficient. */
7780 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7781 if (raw_real_type == NULL)
7782 return raw_type;
7783 else
7784 return raw_real_type;
7785 }
7786
7787 /* The field in our XVS type is a reference to the base type. */
7788 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 7789}
14f9c5c9 7790
4c4b4cd2 7791/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7792
d2e4a39e
AS
7793struct type *
7794ada_aligned_type (struct type *type)
14f9c5c9
AS
7795{
7796 if (ada_is_aligner_type (type))
7797 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7798 else
7799 return ada_get_base_type (type);
7800}
7801
7802
7803/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7804 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7805
fc1a4b47
AC
7806const gdb_byte *
7807ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7808{
d2e4a39e 7809 if (ada_is_aligner_type (type))
14f9c5c9 7810 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7811 valaddr +
7812 TYPE_FIELD_BITPOS (type,
7813 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7814 else
7815 return valaddr;
7816}
7817
4c4b4cd2
PH
7818
7819
14f9c5c9 7820/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7821 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7822const char *
7823ada_enum_name (const char *name)
14f9c5c9 7824{
4c4b4cd2
PH
7825 static char *result;
7826 static size_t result_len = 0;
d2e4a39e 7827 char *tmp;
14f9c5c9 7828
4c4b4cd2
PH
7829 /* First, unqualify the enumeration name:
7830 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7831 all the preceeding characters, the unqualified name starts
7832 right after that dot.
4c4b4cd2 7833 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7834 translates dots into "__". Search forward for double underscores,
7835 but stop searching when we hit an overloading suffix, which is
7836 of the form "__" followed by digits. */
4c4b4cd2 7837
c3e5cd34
PH
7838 tmp = strrchr (name, '.');
7839 if (tmp != NULL)
4c4b4cd2
PH
7840 name = tmp + 1;
7841 else
14f9c5c9 7842 {
4c4b4cd2
PH
7843 while ((tmp = strstr (name, "__")) != NULL)
7844 {
7845 if (isdigit (tmp[2]))
7846 break;
7847 else
7848 name = tmp + 2;
7849 }
14f9c5c9
AS
7850 }
7851
7852 if (name[0] == 'Q')
7853 {
14f9c5c9
AS
7854 int v;
7855 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7856 {
7857 if (sscanf (name + 2, "%x", &v) != 1)
7858 return name;
7859 }
14f9c5c9 7860 else
4c4b4cd2 7861 return name;
14f9c5c9 7862
4c4b4cd2 7863 GROW_VECT (result, result_len, 16);
14f9c5c9 7864 if (isascii (v) && isprint (v))
88c15c34 7865 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7866 else if (name[1] == 'U')
88c15c34 7867 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7868 else
88c15c34 7869 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7870
7871 return result;
7872 }
d2e4a39e 7873 else
4c4b4cd2 7874 {
c3e5cd34
PH
7875 tmp = strstr (name, "__");
7876 if (tmp == NULL)
7877 tmp = strstr (name, "$");
7878 if (tmp != NULL)
4c4b4cd2
PH
7879 {
7880 GROW_VECT (result, result_len, tmp - name + 1);
7881 strncpy (result, name, tmp - name);
7882 result[tmp - name] = '\0';
7883 return result;
7884 }
7885
7886 return name;
7887 }
14f9c5c9
AS
7888}
7889
14f9c5c9
AS
7890/* Evaluate the subexpression of EXP starting at *POS as for
7891 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7892 expression. */
14f9c5c9 7893
d2e4a39e
AS
7894static struct value *
7895evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7896{
4b27a620 7897 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7898}
7899
7900/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7901 value it wraps. */
14f9c5c9 7902
d2e4a39e
AS
7903static struct value *
7904unwrap_value (struct value *val)
14f9c5c9 7905{
df407dfe 7906 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7907 if (ada_is_aligner_type (type))
7908 {
de4d072f 7909 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7910 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7911 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7912 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7913
7914 return unwrap_value (v);
7915 }
d2e4a39e 7916 else
14f9c5c9 7917 {
d2e4a39e 7918 struct type *raw_real_type =
61ee279c 7919 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7920
5bf03f13
JB
7921 /* If there is no parallel XVS or XVE type, then the value is
7922 already unwrapped. Return it without further modification. */
7923 if ((type == raw_real_type)
7924 && ada_find_parallel_type (type, "___XVE") == NULL)
7925 return val;
14f9c5c9 7926
d2e4a39e 7927 return
4c4b4cd2
PH
7928 coerce_unspec_val_to_type
7929 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7930 value_address (val),
1ed6ede0 7931 NULL, 1));
14f9c5c9
AS
7932 }
7933}
d2e4a39e
AS
7934
7935static struct value *
7936cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7937{
7938 LONGEST val;
7939
df407dfe 7940 if (type == value_type (arg))
14f9c5c9 7941 return arg;
df407dfe 7942 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7943 val = ada_float_to_fixed (type,
df407dfe 7944 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7945 value_as_long (arg)));
d2e4a39e 7946 else
14f9c5c9 7947 {
a53b7a21 7948 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7949 val = ada_float_to_fixed (type, argd);
7950 }
7951
7952 return value_from_longest (type, val);
7953}
7954
d2e4a39e 7955static struct value *
a53b7a21 7956cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7957{
df407dfe 7958 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7959 value_as_long (arg));
a53b7a21 7960 return value_from_double (type, val);
14f9c5c9
AS
7961}
7962
4c4b4cd2
PH
7963/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7964 return the converted value. */
7965
d2e4a39e
AS
7966static struct value *
7967coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7968{
df407dfe 7969 struct type *type2 = value_type (val);
14f9c5c9
AS
7970 if (type == type2)
7971 return val;
7972
61ee279c
PH
7973 type2 = ada_check_typedef (type2);
7974 type = ada_check_typedef (type);
14f9c5c9 7975
d2e4a39e
AS
7976 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7977 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7978 {
7979 val = ada_value_ind (val);
df407dfe 7980 type2 = value_type (val);
14f9c5c9
AS
7981 }
7982
d2e4a39e 7983 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7984 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7985 {
7986 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7987 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7988 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7989 error (_("Incompatible types in assignment"));
04624583 7990 deprecated_set_value_type (val, type);
14f9c5c9 7991 }
d2e4a39e 7992 return val;
14f9c5c9
AS
7993}
7994
4c4b4cd2
PH
7995static struct value *
7996ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7997{
7998 struct value *val;
7999 struct type *type1, *type2;
8000 LONGEST v, v1, v2;
8001
994b9211
AC
8002 arg1 = coerce_ref (arg1);
8003 arg2 = coerce_ref (arg2);
df407dfe
AC
8004 type1 = base_type (ada_check_typedef (value_type (arg1)));
8005 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8006
76a01679
JB
8007 if (TYPE_CODE (type1) != TYPE_CODE_INT
8008 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8009 return value_binop (arg1, arg2, op);
8010
76a01679 8011 switch (op)
4c4b4cd2
PH
8012 {
8013 case BINOP_MOD:
8014 case BINOP_DIV:
8015 case BINOP_REM:
8016 break;
8017 default:
8018 return value_binop (arg1, arg2, op);
8019 }
8020
8021 v2 = value_as_long (arg2);
8022 if (v2 == 0)
323e0a4a 8023 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8024
8025 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8026 return value_binop (arg1, arg2, op);
8027
8028 v1 = value_as_long (arg1);
8029 switch (op)
8030 {
8031 case BINOP_DIV:
8032 v = v1 / v2;
76a01679
JB
8033 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8034 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8035 break;
8036 case BINOP_REM:
8037 v = v1 % v2;
76a01679
JB
8038 if (v * v1 < 0)
8039 v -= v2;
4c4b4cd2
PH
8040 break;
8041 default:
8042 /* Should not reach this point. */
8043 v = 0;
8044 }
8045
8046 val = allocate_value (type1);
990a07ab 8047 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8048 TYPE_LENGTH (value_type (val)),
8049 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8050 return val;
8051}
8052
8053static int
8054ada_value_equal (struct value *arg1, struct value *arg2)
8055{
df407dfe
AC
8056 if (ada_is_direct_array_type (value_type (arg1))
8057 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8058 {
f58b38bf
JB
8059 /* Automatically dereference any array reference before
8060 we attempt to perform the comparison. */
8061 arg1 = ada_coerce_ref (arg1);
8062 arg2 = ada_coerce_ref (arg2);
8063
4c4b4cd2
PH
8064 arg1 = ada_coerce_to_simple_array (arg1);
8065 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8066 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8067 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8068 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8069 /* FIXME: The following works only for types whose
76a01679
JB
8070 representations use all bits (no padding or undefined bits)
8071 and do not have user-defined equality. */
8072 return
df407dfe 8073 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8074 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8075 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8076 }
8077 return value_equal (arg1, arg2);
8078}
8079
52ce6436
PH
8080/* Total number of component associations in the aggregate starting at
8081 index PC in EXP. Assumes that index PC is the start of an
8082 OP_AGGREGATE. */
8083
8084static int
8085num_component_specs (struct expression *exp, int pc)
8086{
8087 int n, m, i;
8088 m = exp->elts[pc + 1].longconst;
8089 pc += 3;
8090 n = 0;
8091 for (i = 0; i < m; i += 1)
8092 {
8093 switch (exp->elts[pc].opcode)
8094 {
8095 default:
8096 n += 1;
8097 break;
8098 case OP_CHOICES:
8099 n += exp->elts[pc + 1].longconst;
8100 break;
8101 }
8102 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8103 }
8104 return n;
8105}
8106
8107/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8108 component of LHS (a simple array or a record), updating *POS past
8109 the expression, assuming that LHS is contained in CONTAINER. Does
8110 not modify the inferior's memory, nor does it modify LHS (unless
8111 LHS == CONTAINER). */
8112
8113static void
8114assign_component (struct value *container, struct value *lhs, LONGEST index,
8115 struct expression *exp, int *pos)
8116{
8117 struct value *mark = value_mark ();
8118 struct value *elt;
8119 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8120 {
22601c15
UW
8121 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8122 struct value *index_val = value_from_longest (index_type, index);
52ce6436
PH
8123 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8124 }
8125 else
8126 {
8127 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8128 elt = ada_to_fixed_value (unwrap_value (elt));
8129 }
8130
8131 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8132 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8133 else
8134 value_assign_to_component (container, elt,
8135 ada_evaluate_subexp (NULL, exp, pos,
8136 EVAL_NORMAL));
8137
8138 value_free_to_mark (mark);
8139}
8140
8141/* Assuming that LHS represents an lvalue having a record or array
8142 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8143 of that aggregate's value to LHS, advancing *POS past the
8144 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8145 lvalue containing LHS (possibly LHS itself). Does not modify
8146 the inferior's memory, nor does it modify the contents of
8147 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8148
8149static struct value *
8150assign_aggregate (struct value *container,
8151 struct value *lhs, struct expression *exp,
8152 int *pos, enum noside noside)
8153{
8154 struct type *lhs_type;
8155 int n = exp->elts[*pos+1].longconst;
8156 LONGEST low_index, high_index;
8157 int num_specs;
8158 LONGEST *indices;
8159 int max_indices, num_indices;
8160 int is_array_aggregate;
8161 int i;
8162 struct value *mark = value_mark ();
8163
8164 *pos += 3;
8165 if (noside != EVAL_NORMAL)
8166 {
8167 int i;
8168 for (i = 0; i < n; i += 1)
8169 ada_evaluate_subexp (NULL, exp, pos, noside);
8170 return container;
8171 }
8172
8173 container = ada_coerce_ref (container);
8174 if (ada_is_direct_array_type (value_type (container)))
8175 container = ada_coerce_to_simple_array (container);
8176 lhs = ada_coerce_ref (lhs);
8177 if (!deprecated_value_modifiable (lhs))
8178 error (_("Left operand of assignment is not a modifiable lvalue."));
8179
8180 lhs_type = value_type (lhs);
8181 if (ada_is_direct_array_type (lhs_type))
8182 {
8183 lhs = ada_coerce_to_simple_array (lhs);
8184 lhs_type = value_type (lhs);
8185 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8186 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8187 is_array_aggregate = 1;
8188 }
8189 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8190 {
8191 low_index = 0;
8192 high_index = num_visible_fields (lhs_type) - 1;
8193 is_array_aggregate = 0;
8194 }
8195 else
8196 error (_("Left-hand side must be array or record."));
8197
8198 num_specs = num_component_specs (exp, *pos - 3);
8199 max_indices = 4 * num_specs + 4;
8200 indices = alloca (max_indices * sizeof (indices[0]));
8201 indices[0] = indices[1] = low_index - 1;
8202 indices[2] = indices[3] = high_index + 1;
8203 num_indices = 4;
8204
8205 for (i = 0; i < n; i += 1)
8206 {
8207 switch (exp->elts[*pos].opcode)
8208 {
8209 case OP_CHOICES:
8210 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8211 &num_indices, max_indices,
8212 low_index, high_index);
8213 break;
8214 case OP_POSITIONAL:
8215 aggregate_assign_positional (container, lhs, exp, pos, indices,
8216 &num_indices, max_indices,
8217 low_index, high_index);
8218 break;
8219 case OP_OTHERS:
8220 if (i != n-1)
8221 error (_("Misplaced 'others' clause"));
8222 aggregate_assign_others (container, lhs, exp, pos, indices,
8223 num_indices, low_index, high_index);
8224 break;
8225 default:
8226 error (_("Internal error: bad aggregate clause"));
8227 }
8228 }
8229
8230 return container;
8231}
8232
8233/* Assign into the component of LHS indexed by the OP_POSITIONAL
8234 construct at *POS, updating *POS past the construct, given that
8235 the positions are relative to lower bound LOW, where HIGH is the
8236 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8237 updating *NUM_INDICES as needed. CONTAINER is as for
8238 assign_aggregate. */
8239static void
8240aggregate_assign_positional (struct value *container,
8241 struct value *lhs, struct expression *exp,
8242 int *pos, LONGEST *indices, int *num_indices,
8243 int max_indices, LONGEST low, LONGEST high)
8244{
8245 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8246
8247 if (ind - 1 == high)
e1d5a0d2 8248 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8249 if (ind <= high)
8250 {
8251 add_component_interval (ind, ind, indices, num_indices, max_indices);
8252 *pos += 3;
8253 assign_component (container, lhs, ind, exp, pos);
8254 }
8255 else
8256 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8257}
8258
8259/* Assign into the components of LHS indexed by the OP_CHOICES
8260 construct at *POS, updating *POS past the construct, given that
8261 the allowable indices are LOW..HIGH. Record the indices assigned
8262 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8263 needed. CONTAINER is as for assign_aggregate. */
8264static void
8265aggregate_assign_from_choices (struct value *container,
8266 struct value *lhs, struct expression *exp,
8267 int *pos, LONGEST *indices, int *num_indices,
8268 int max_indices, LONGEST low, LONGEST high)
8269{
8270 int j;
8271 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8272 int choice_pos, expr_pc;
8273 int is_array = ada_is_direct_array_type (value_type (lhs));
8274
8275 choice_pos = *pos += 3;
8276
8277 for (j = 0; j < n_choices; j += 1)
8278 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8279 expr_pc = *pos;
8280 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8281
8282 for (j = 0; j < n_choices; j += 1)
8283 {
8284 LONGEST lower, upper;
8285 enum exp_opcode op = exp->elts[choice_pos].opcode;
8286 if (op == OP_DISCRETE_RANGE)
8287 {
8288 choice_pos += 1;
8289 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8290 EVAL_NORMAL));
8291 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8292 EVAL_NORMAL));
8293 }
8294 else if (is_array)
8295 {
8296 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8297 EVAL_NORMAL));
8298 upper = lower;
8299 }
8300 else
8301 {
8302 int ind;
8303 char *name;
8304 switch (op)
8305 {
8306 case OP_NAME:
8307 name = &exp->elts[choice_pos + 2].string;
8308 break;
8309 case OP_VAR_VALUE:
8310 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8311 break;
8312 default:
8313 error (_("Invalid record component association."));
8314 }
8315 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8316 ind = 0;
8317 if (! find_struct_field (name, value_type (lhs), 0,
8318 NULL, NULL, NULL, NULL, &ind))
8319 error (_("Unknown component name: %s."), name);
8320 lower = upper = ind;
8321 }
8322
8323 if (lower <= upper && (lower < low || upper > high))
8324 error (_("Index in component association out of bounds."));
8325
8326 add_component_interval (lower, upper, indices, num_indices,
8327 max_indices);
8328 while (lower <= upper)
8329 {
8330 int pos1;
8331 pos1 = expr_pc;
8332 assign_component (container, lhs, lower, exp, &pos1);
8333 lower += 1;
8334 }
8335 }
8336}
8337
8338/* Assign the value of the expression in the OP_OTHERS construct in
8339 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8340 have not been previously assigned. The index intervals already assigned
8341 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8342 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8343static void
8344aggregate_assign_others (struct value *container,
8345 struct value *lhs, struct expression *exp,
8346 int *pos, LONGEST *indices, int num_indices,
8347 LONGEST low, LONGEST high)
8348{
8349 int i;
8350 int expr_pc = *pos+1;
8351
8352 for (i = 0; i < num_indices - 2; i += 2)
8353 {
8354 LONGEST ind;
8355 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8356 {
8357 int pos;
8358 pos = expr_pc;
8359 assign_component (container, lhs, ind, exp, &pos);
8360 }
8361 }
8362 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8363}
8364
8365/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8366 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8367 modifying *SIZE as needed. It is an error if *SIZE exceeds
8368 MAX_SIZE. The resulting intervals do not overlap. */
8369static void
8370add_component_interval (LONGEST low, LONGEST high,
8371 LONGEST* indices, int *size, int max_size)
8372{
8373 int i, j;
8374 for (i = 0; i < *size; i += 2) {
8375 if (high >= indices[i] && low <= indices[i + 1])
8376 {
8377 int kh;
8378 for (kh = i + 2; kh < *size; kh += 2)
8379 if (high < indices[kh])
8380 break;
8381 if (low < indices[i])
8382 indices[i] = low;
8383 indices[i + 1] = indices[kh - 1];
8384 if (high > indices[i + 1])
8385 indices[i + 1] = high;
8386 memcpy (indices + i + 2, indices + kh, *size - kh);
8387 *size -= kh - i - 2;
8388 return;
8389 }
8390 else if (high < indices[i])
8391 break;
8392 }
8393
8394 if (*size == max_size)
8395 error (_("Internal error: miscounted aggregate components."));
8396 *size += 2;
8397 for (j = *size-1; j >= i+2; j -= 1)
8398 indices[j] = indices[j - 2];
8399 indices[i] = low;
8400 indices[i + 1] = high;
8401}
8402
6e48bd2c
JB
8403/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8404 is different. */
8405
8406static struct value *
8407ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8408{
8409 if (type == ada_check_typedef (value_type (arg2)))
8410 return arg2;
8411
8412 if (ada_is_fixed_point_type (type))
8413 return (cast_to_fixed (type, arg2));
8414
8415 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8416 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8417
8418 return value_cast (type, arg2);
8419}
8420
284614f0
JB
8421/* Evaluating Ada expressions, and printing their result.
8422 ------------------------------------------------------
8423
21649b50
JB
8424 1. Introduction:
8425 ----------------
8426
284614f0
JB
8427 We usually evaluate an Ada expression in order to print its value.
8428 We also evaluate an expression in order to print its type, which
8429 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8430 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8431 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8432 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8433 similar.
8434
8435 Evaluating expressions is a little more complicated for Ada entities
8436 than it is for entities in languages such as C. The main reason for
8437 this is that Ada provides types whose definition might be dynamic.
8438 One example of such types is variant records. Or another example
8439 would be an array whose bounds can only be known at run time.
8440
8441 The following description is a general guide as to what should be
8442 done (and what should NOT be done) in order to evaluate an expression
8443 involving such types, and when. This does not cover how the semantic
8444 information is encoded by GNAT as this is covered separatly. For the
8445 document used as the reference for the GNAT encoding, see exp_dbug.ads
8446 in the GNAT sources.
8447
8448 Ideally, we should embed each part of this description next to its
8449 associated code. Unfortunately, the amount of code is so vast right
8450 now that it's hard to see whether the code handling a particular
8451 situation might be duplicated or not. One day, when the code is
8452 cleaned up, this guide might become redundant with the comments
8453 inserted in the code, and we might want to remove it.
8454
21649b50
JB
8455 2. ``Fixing'' an Entity, the Simple Case:
8456 -----------------------------------------
8457
284614f0
JB
8458 When evaluating Ada expressions, the tricky issue is that they may
8459 reference entities whose type contents and size are not statically
8460 known. Consider for instance a variant record:
8461
8462 type Rec (Empty : Boolean := True) is record
8463 case Empty is
8464 when True => null;
8465 when False => Value : Integer;
8466 end case;
8467 end record;
8468 Yes : Rec := (Empty => False, Value => 1);
8469 No : Rec := (empty => True);
8470
8471 The size and contents of that record depends on the value of the
8472 descriminant (Rec.Empty). At this point, neither the debugging
8473 information nor the associated type structure in GDB are able to
8474 express such dynamic types. So what the debugger does is to create
8475 "fixed" versions of the type that applies to the specific object.
8476 We also informally refer to this opperation as "fixing" an object,
8477 which means creating its associated fixed type.
8478
8479 Example: when printing the value of variable "Yes" above, its fixed
8480 type would look like this:
8481
8482 type Rec is record
8483 Empty : Boolean;
8484 Value : Integer;
8485 end record;
8486
8487 On the other hand, if we printed the value of "No", its fixed type
8488 would become:
8489
8490 type Rec is record
8491 Empty : Boolean;
8492 end record;
8493
8494 Things become a little more complicated when trying to fix an entity
8495 with a dynamic type that directly contains another dynamic type,
8496 such as an array of variant records, for instance. There are
8497 two possible cases: Arrays, and records.
8498
21649b50
JB
8499 3. ``Fixing'' Arrays:
8500 ---------------------
8501
8502 The type structure in GDB describes an array in terms of its bounds,
8503 and the type of its elements. By design, all elements in the array
8504 have the same type and we cannot represent an array of variant elements
8505 using the current type structure in GDB. When fixing an array,
8506 we cannot fix the array element, as we would potentially need one
8507 fixed type per element of the array. As a result, the best we can do
8508 when fixing an array is to produce an array whose bounds and size
8509 are correct (allowing us to read it from memory), but without having
8510 touched its element type. Fixing each element will be done later,
8511 when (if) necessary.
8512
8513 Arrays are a little simpler to handle than records, because the same
8514 amount of memory is allocated for each element of the array, even if
1b536f04 8515 the amount of space actually used by each element differs from element
21649b50 8516 to element. Consider for instance the following array of type Rec:
284614f0
JB
8517
8518 type Rec_Array is array (1 .. 2) of Rec;
8519
1b536f04
JB
8520 The actual amount of memory occupied by each element might be different
8521 from element to element, depending on the value of their discriminant.
21649b50 8522 But the amount of space reserved for each element in the array remains
1b536f04 8523 fixed regardless. So we simply need to compute that size using
21649b50
JB
8524 the debugging information available, from which we can then determine
8525 the array size (we multiply the number of elements of the array by
8526 the size of each element).
8527
8528 The simplest case is when we have an array of a constrained element
8529 type. For instance, consider the following type declarations:
8530
8531 type Bounded_String (Max_Size : Integer) is
8532 Length : Integer;
8533 Buffer : String (1 .. Max_Size);
8534 end record;
8535 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8536
8537 In this case, the compiler describes the array as an array of
8538 variable-size elements (identified by its XVS suffix) for which
8539 the size can be read in the parallel XVZ variable.
8540
8541 In the case of an array of an unconstrained element type, the compiler
8542 wraps the array element inside a private PAD type. This type should not
8543 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8544 that we also use the adjective "aligner" in our code to designate
8545 these wrapper types.
8546
1b536f04 8547 In some cases, the size allocated for each element is statically
21649b50
JB
8548 known. In that case, the PAD type already has the correct size,
8549 and the array element should remain unfixed.
8550
8551 But there are cases when this size is not statically known.
8552 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8553
8554 type Dynamic is array (1 .. Five) of Integer;
8555 type Wrapper (Has_Length : Boolean := False) is record
8556 Data : Dynamic;
8557 case Has_Length is
8558 when True => Length : Integer;
8559 when False => null;
8560 end case;
8561 end record;
8562 type Wrapper_Array is array (1 .. 2) of Wrapper;
8563
8564 Hello : Wrapper_Array := (others => (Has_Length => True,
8565 Data => (others => 17),
8566 Length => 1));
8567
8568
8569 The debugging info would describe variable Hello as being an
8570 array of a PAD type. The size of that PAD type is not statically
8571 known, but can be determined using a parallel XVZ variable.
8572 In that case, a copy of the PAD type with the correct size should
8573 be used for the fixed array.
8574
21649b50
JB
8575 3. ``Fixing'' record type objects:
8576 ----------------------------------
8577
8578 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8579 record types. In this case, in order to compute the associated
8580 fixed type, we need to determine the size and offset of each of
8581 its components. This, in turn, requires us to compute the fixed
8582 type of each of these components.
8583
8584 Consider for instance the example:
8585
8586 type Bounded_String (Max_Size : Natural) is record
8587 Str : String (1 .. Max_Size);
8588 Length : Natural;
8589 end record;
8590 My_String : Bounded_String (Max_Size => 10);
8591
8592 In that case, the position of field "Length" depends on the size
8593 of field Str, which itself depends on the value of the Max_Size
21649b50 8594 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8595 we need to fix the type of field Str. Therefore, fixing a variant
8596 record requires us to fix each of its components.
8597
8598 However, if a component does not have a dynamic size, the component
8599 should not be fixed. In particular, fields that use a PAD type
8600 should not fixed. Here is an example where this might happen
8601 (assuming type Rec above):
8602
8603 type Container (Big : Boolean) is record
8604 First : Rec;
8605 After : Integer;
8606 case Big is
8607 when True => Another : Integer;
8608 when False => null;
8609 end case;
8610 end record;
8611 My_Container : Container := (Big => False,
8612 First => (Empty => True),
8613 After => 42);
8614
8615 In that example, the compiler creates a PAD type for component First,
8616 whose size is constant, and then positions the component After just
8617 right after it. The offset of component After is therefore constant
8618 in this case.
8619
8620 The debugger computes the position of each field based on an algorithm
8621 that uses, among other things, the actual position and size of the field
21649b50
JB
8622 preceding it. Let's now imagine that the user is trying to print
8623 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
8624 end up computing the offset of field After based on the size of the
8625 fixed version of field First. And since in our example First has
8626 only one actual field, the size of the fixed type is actually smaller
8627 than the amount of space allocated to that field, and thus we would
8628 compute the wrong offset of field After.
8629
21649b50
JB
8630 To make things more complicated, we need to watch out for dynamic
8631 components of variant records (identified by the ___XVL suffix in
8632 the component name). Even if the target type is a PAD type, the size
8633 of that type might not be statically known. So the PAD type needs
8634 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8635 we might end up with the wrong size for our component. This can be
8636 observed with the following type declarations:
284614f0
JB
8637
8638 type Octal is new Integer range 0 .. 7;
8639 type Octal_Array is array (Positive range <>) of Octal;
8640 pragma Pack (Octal_Array);
8641
8642 type Octal_Buffer (Size : Positive) is record
8643 Buffer : Octal_Array (1 .. Size);
8644 Length : Integer;
8645 end record;
8646
8647 In that case, Buffer is a PAD type whose size is unset and needs
8648 to be computed by fixing the unwrapped type.
8649
21649b50
JB
8650 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8651 ----------------------------------------------------------
8652
8653 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
8654 thus far, be actually fixed?
8655
8656 The answer is: Only when referencing that element. For instance
8657 when selecting one component of a record, this specific component
8658 should be fixed at that point in time. Or when printing the value
8659 of a record, each component should be fixed before its value gets
8660 printed. Similarly for arrays, the element of the array should be
8661 fixed when printing each element of the array, or when extracting
8662 one element out of that array. On the other hand, fixing should
8663 not be performed on the elements when taking a slice of an array!
8664
8665 Note that one of the side-effects of miscomputing the offset and
8666 size of each field is that we end up also miscomputing the size
8667 of the containing type. This can have adverse results when computing
8668 the value of an entity. GDB fetches the value of an entity based
8669 on the size of its type, and thus a wrong size causes GDB to fetch
8670 the wrong amount of memory. In the case where the computed size is
8671 too small, GDB fetches too little data to print the value of our
8672 entiry. Results in this case as unpredicatble, as we usually read
8673 past the buffer containing the data =:-o. */
8674
8675/* Implement the evaluate_exp routine in the exp_descriptor structure
8676 for the Ada language. */
8677
52ce6436 8678static struct value *
ebf56fd3 8679ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8680 int *pos, enum noside noside)
14f9c5c9
AS
8681{
8682 enum exp_opcode op;
14f9c5c9
AS
8683 int tem, tem2, tem3;
8684 int pc;
8685 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8686 struct type *type;
52ce6436 8687 int nargs, oplen;
d2e4a39e 8688 struct value **argvec;
14f9c5c9 8689
d2e4a39e
AS
8690 pc = *pos;
8691 *pos += 1;
14f9c5c9
AS
8692 op = exp->elts[pc].opcode;
8693
d2e4a39e 8694 switch (op)
14f9c5c9
AS
8695 {
8696 default:
8697 *pos -= 1;
6e48bd2c
JB
8698 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8699 arg1 = unwrap_value (arg1);
8700
8701 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8702 then we need to perform the conversion manually, because
8703 evaluate_subexp_standard doesn't do it. This conversion is
8704 necessary in Ada because the different kinds of float/fixed
8705 types in Ada have different representations.
8706
8707 Similarly, we need to perform the conversion from OP_LONG
8708 ourselves. */
8709 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8710 arg1 = ada_value_cast (expect_type, arg1, noside);
8711
8712 return arg1;
4c4b4cd2
PH
8713
8714 case OP_STRING:
8715 {
76a01679
JB
8716 struct value *result;
8717 *pos -= 1;
8718 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8719 /* The result type will have code OP_STRING, bashed there from
8720 OP_ARRAY. Bash it back. */
df407dfe
AC
8721 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8722 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8723 return result;
4c4b4cd2 8724 }
14f9c5c9
AS
8725
8726 case UNOP_CAST:
8727 (*pos) += 2;
8728 type = exp->elts[pc + 1].type;
8729 arg1 = evaluate_subexp (type, exp, pos, noside);
8730 if (noside == EVAL_SKIP)
4c4b4cd2 8731 goto nosideret;
6e48bd2c 8732 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8733 return arg1;
8734
4c4b4cd2
PH
8735 case UNOP_QUAL:
8736 (*pos) += 2;
8737 type = exp->elts[pc + 1].type;
8738 return ada_evaluate_subexp (type, exp, pos, noside);
8739
14f9c5c9
AS
8740 case BINOP_ASSIGN:
8741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8742 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8743 {
8744 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8745 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8746 return arg1;
8747 return ada_value_assign (arg1, arg1);
8748 }
003f3813
JB
8749 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8750 except if the lhs of our assignment is a convenience variable.
8751 In the case of assigning to a convenience variable, the lhs
8752 should be exactly the result of the evaluation of the rhs. */
8753 type = value_type (arg1);
8754 if (VALUE_LVAL (arg1) == lval_internalvar)
8755 type = NULL;
8756 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8757 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8758 return arg1;
df407dfe
AC
8759 if (ada_is_fixed_point_type (value_type (arg1)))
8760 arg2 = cast_to_fixed (value_type (arg1), arg2);
8761 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8762 error
323e0a4a 8763 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8764 else
df407dfe 8765 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8766 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8767
8768 case BINOP_ADD:
8769 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8770 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8771 if (noside == EVAL_SKIP)
4c4b4cd2 8772 goto nosideret;
2ac8a782
JB
8773 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8774 return (value_from_longest
8775 (value_type (arg1),
8776 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8777 if ((ada_is_fixed_point_type (value_type (arg1))
8778 || ada_is_fixed_point_type (value_type (arg2)))
8779 && value_type (arg1) != value_type (arg2))
323e0a4a 8780 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8781 /* Do the addition, and cast the result to the type of the first
8782 argument. We cannot cast the result to a reference type, so if
8783 ARG1 is a reference type, find its underlying type. */
8784 type = value_type (arg1);
8785 while (TYPE_CODE (type) == TYPE_CODE_REF)
8786 type = TYPE_TARGET_TYPE (type);
f44316fa 8787 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8788 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8789
8790 case BINOP_SUB:
8791 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8792 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8793 if (noside == EVAL_SKIP)
4c4b4cd2 8794 goto nosideret;
2ac8a782
JB
8795 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8796 return (value_from_longest
8797 (value_type (arg1),
8798 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8799 if ((ada_is_fixed_point_type (value_type (arg1))
8800 || ada_is_fixed_point_type (value_type (arg2)))
8801 && value_type (arg1) != value_type (arg2))
323e0a4a 8802 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8803 /* Do the substraction, and cast the result to the type of the first
8804 argument. We cannot cast the result to a reference type, so if
8805 ARG1 is a reference type, find its underlying type. */
8806 type = value_type (arg1);
8807 while (TYPE_CODE (type) == TYPE_CODE_REF)
8808 type = TYPE_TARGET_TYPE (type);
f44316fa 8809 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8810 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8811
8812 case BINOP_MUL:
8813 case BINOP_DIV:
e1578042
JB
8814 case BINOP_REM:
8815 case BINOP_MOD:
14f9c5c9
AS
8816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8817 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8818 if (noside == EVAL_SKIP)
4c4b4cd2 8819 goto nosideret;
e1578042 8820 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8821 {
8822 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8823 return value_zero (value_type (arg1), not_lval);
8824 }
14f9c5c9 8825 else
4c4b4cd2 8826 {
a53b7a21 8827 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8828 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8829 arg1 = cast_from_fixed (type, arg1);
df407dfe 8830 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8831 arg2 = cast_from_fixed (type, arg2);
f44316fa 8832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8833 return ada_value_binop (arg1, arg2, op);
8834 }
8835
4c4b4cd2
PH
8836 case BINOP_EQUAL:
8837 case BINOP_NOTEQUAL:
14f9c5c9 8838 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8839 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8840 if (noside == EVAL_SKIP)
76a01679 8841 goto nosideret;
4c4b4cd2 8842 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8843 tem = 0;
4c4b4cd2 8844 else
f44316fa
UW
8845 {
8846 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8847 tem = ada_value_equal (arg1, arg2);
8848 }
4c4b4cd2 8849 if (op == BINOP_NOTEQUAL)
76a01679 8850 tem = !tem;
fbb06eb1
UW
8851 type = language_bool_type (exp->language_defn, exp->gdbarch);
8852 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8853
8854 case UNOP_NEG:
8855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8856 if (noside == EVAL_SKIP)
8857 goto nosideret;
df407dfe
AC
8858 else if (ada_is_fixed_point_type (value_type (arg1)))
8859 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8860 else
f44316fa
UW
8861 {
8862 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8863 return value_neg (arg1);
8864 }
4c4b4cd2 8865
2330c6c6
JB
8866 case BINOP_LOGICAL_AND:
8867 case BINOP_LOGICAL_OR:
8868 case UNOP_LOGICAL_NOT:
000d5124
JB
8869 {
8870 struct value *val;
8871
8872 *pos -= 1;
8873 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8874 type = language_bool_type (exp->language_defn, exp->gdbarch);
8875 return value_cast (type, val);
000d5124 8876 }
2330c6c6
JB
8877
8878 case BINOP_BITWISE_AND:
8879 case BINOP_BITWISE_IOR:
8880 case BINOP_BITWISE_XOR:
000d5124
JB
8881 {
8882 struct value *val;
8883
8884 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8885 *pos = pc;
8886 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8887
8888 return value_cast (value_type (arg1), val);
8889 }
2330c6c6 8890
14f9c5c9
AS
8891 case OP_VAR_VALUE:
8892 *pos -= 1;
6799def4 8893
14f9c5c9 8894 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8895 {
8896 *pos += 4;
8897 goto nosideret;
8898 }
8899 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8900 /* Only encountered when an unresolved symbol occurs in a
8901 context other than a function call, in which case, it is
52ce6436 8902 invalid. */
323e0a4a 8903 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8904 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8905 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8906 {
0c1f74cf
JB
8907 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8908 if (ada_is_tagged_type (type, 0))
8909 {
8910 /* Tagged types are a little special in the fact that the real
8911 type is dynamic and can only be determined by inspecting the
8912 object's tag. This means that we need to get the object's
8913 value first (EVAL_NORMAL) and then extract the actual object
8914 type from its tag.
8915
8916 Note that we cannot skip the final step where we extract
8917 the object type from its tag, because the EVAL_NORMAL phase
8918 results in dynamic components being resolved into fixed ones.
8919 This can cause problems when trying to print the type
8920 description of tagged types whose parent has a dynamic size:
8921 We use the type name of the "_parent" component in order
8922 to print the name of the ancestor type in the type description.
8923 If that component had a dynamic size, the resolution into
8924 a fixed type would result in the loss of that type name,
8925 thus preventing us from printing the name of the ancestor
8926 type in the type description. */
b79819ba
JB
8927 struct type *actual_type;
8928
0c1f74cf 8929 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8930 actual_type = type_from_tag (ada_value_tag (arg1));
8931 if (actual_type == NULL)
8932 /* If, for some reason, we were unable to determine
8933 the actual type from the tag, then use the static
8934 approximation that we just computed as a fallback.
8935 This can happen if the debugging information is
8936 incomplete, for instance. */
8937 actual_type = type;
8938
8939 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8940 }
8941
4c4b4cd2
PH
8942 *pos += 4;
8943 return value_zero
8944 (to_static_fixed_type
8945 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8946 not_lval);
8947 }
d2e4a39e 8948 else
4c4b4cd2 8949 {
284614f0
JB
8950 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8951 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8952 return ada_to_fixed_value (arg1);
8953 }
8954
8955 case OP_FUNCALL:
8956 (*pos) += 2;
8957
8958 /* Allocate arg vector, including space for the function to be
8959 called in argvec[0] and a terminating NULL. */
8960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8961 argvec =
8962 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8963
8964 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8965 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8966 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8967 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8968 else
8969 {
8970 for (tem = 0; tem <= nargs; tem += 1)
8971 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8972 argvec[tem] = 0;
8973
8974 if (noside == EVAL_SKIP)
8975 goto nosideret;
8976 }
8977
ad82864c
JB
8978 if (ada_is_constrained_packed_array_type
8979 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8980 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8981 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8982 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8983 /* This is a packed array that has already been fixed, and
8984 therefore already coerced to a simple array. Nothing further
8985 to do. */
8986 ;
df407dfe
AC
8987 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8988 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8989 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8990 argvec[0] = value_addr (argvec[0]);
8991
df407dfe 8992 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8993 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8994 {
61ee279c 8995 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8996 {
8997 case TYPE_CODE_FUNC:
61ee279c 8998 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8999 break;
9000 case TYPE_CODE_ARRAY:
9001 break;
9002 case TYPE_CODE_STRUCT:
9003 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9004 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9005 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9006 break;
9007 default:
323e0a4a 9008 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9009 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9010 break;
9011 }
9012 }
9013
9014 switch (TYPE_CODE (type))
9015 {
9016 case TYPE_CODE_FUNC:
9017 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9018 return allocate_value (TYPE_TARGET_TYPE (type));
9019 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9020 case TYPE_CODE_STRUCT:
9021 {
9022 int arity;
9023
4c4b4cd2
PH
9024 arity = ada_array_arity (type);
9025 type = ada_array_element_type (type, nargs);
9026 if (type == NULL)
323e0a4a 9027 error (_("cannot subscript or call a record"));
4c4b4cd2 9028 if (arity != nargs)
323e0a4a 9029 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9031 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9032 return
9033 unwrap_value (ada_value_subscript
9034 (argvec[0], nargs, argvec + 1));
9035 }
9036 case TYPE_CODE_ARRAY:
9037 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9038 {
9039 type = ada_array_element_type (type, nargs);
9040 if (type == NULL)
323e0a4a 9041 error (_("element type of array unknown"));
4c4b4cd2 9042 else
0a07e705 9043 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9044 }
9045 return
9046 unwrap_value (ada_value_subscript
9047 (ada_coerce_to_simple_array (argvec[0]),
9048 nargs, argvec + 1));
9049 case TYPE_CODE_PTR: /* Pointer to array */
9050 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9052 {
9053 type = ada_array_element_type (type, nargs);
9054 if (type == NULL)
323e0a4a 9055 error (_("element type of array unknown"));
4c4b4cd2 9056 else
0a07e705 9057 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9058 }
9059 return
9060 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9061 nargs, argvec + 1));
9062
9063 default:
e1d5a0d2
PH
9064 error (_("Attempt to index or call something other than an "
9065 "array or function"));
4c4b4cd2
PH
9066 }
9067
9068 case TERNOP_SLICE:
9069 {
9070 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9071 struct value *low_bound_val =
9072 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9073 struct value *high_bound_val =
9074 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9075 LONGEST low_bound;
9076 LONGEST high_bound;
994b9211
AC
9077 low_bound_val = coerce_ref (low_bound_val);
9078 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9079 low_bound = pos_atr (low_bound_val);
9080 high_bound = pos_atr (high_bound_val);
963a6417 9081
4c4b4cd2
PH
9082 if (noside == EVAL_SKIP)
9083 goto nosideret;
9084
4c4b4cd2
PH
9085 /* If this is a reference to an aligner type, then remove all
9086 the aligners. */
df407dfe
AC
9087 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9088 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9089 TYPE_TARGET_TYPE (value_type (array)) =
9090 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9091
ad82864c 9092 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9093 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9094
9095 /* If this is a reference to an array or an array lvalue,
9096 convert to a pointer. */
df407dfe
AC
9097 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9098 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9099 && VALUE_LVAL (array) == lval_memory))
9100 array = value_addr (array);
9101
1265e4aa 9102 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9103 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9104 (value_type (array))))
0b5d8877 9105 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9106
9107 array = ada_coerce_to_simple_array_ptr (array);
9108
714e53ab
PH
9109 /* If we have more than one level of pointer indirection,
9110 dereference the value until we get only one level. */
df407dfe
AC
9111 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9112 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9113 == TYPE_CODE_PTR))
9114 array = value_ind (array);
9115
9116 /* Make sure we really do have an array type before going further,
9117 to avoid a SEGV when trying to get the index type or the target
9118 type later down the road if the debug info generated by
9119 the compiler is incorrect or incomplete. */
df407dfe 9120 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9121 error (_("cannot take slice of non-array"));
714e53ab 9122
df407dfe 9123 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9124 {
0b5d8877 9125 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9126 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9127 low_bound);
9128 else
9129 {
9130 struct type *arr_type0 =
df407dfe 9131 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9132 NULL, 1);
f5938064
JG
9133 return ada_value_slice_from_ptr (array, arr_type0,
9134 longest_to_int (low_bound),
9135 longest_to_int (high_bound));
4c4b4cd2
PH
9136 }
9137 }
9138 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9139 return array;
9140 else if (high_bound < low_bound)
df407dfe 9141 return empty_array (value_type (array), low_bound);
4c4b4cd2 9142 else
529cad9c
PH
9143 return ada_value_slice (array, longest_to_int (low_bound),
9144 longest_to_int (high_bound));
4c4b4cd2 9145 }
14f9c5c9 9146
4c4b4cd2
PH
9147 case UNOP_IN_RANGE:
9148 (*pos) += 2;
9149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9150 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9151
14f9c5c9 9152 if (noside == EVAL_SKIP)
4c4b4cd2 9153 goto nosideret;
14f9c5c9 9154
4c4b4cd2
PH
9155 switch (TYPE_CODE (type))
9156 {
9157 default:
e1d5a0d2
PH
9158 lim_warning (_("Membership test incompletely implemented; "
9159 "always returns true"));
fbb06eb1
UW
9160 type = language_bool_type (exp->language_defn, exp->gdbarch);
9161 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9162
9163 case TYPE_CODE_RANGE:
030b4912
UW
9164 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9165 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9168 type = language_bool_type (exp->language_defn, exp->gdbarch);
9169 return
9170 value_from_longest (type,
4c4b4cd2
PH
9171 (value_less (arg1, arg3)
9172 || value_equal (arg1, arg3))
9173 && (value_less (arg2, arg1)
9174 || value_equal (arg2, arg1)));
9175 }
9176
9177 case BINOP_IN_BOUNDS:
14f9c5c9 9178 (*pos) += 2;
4c4b4cd2
PH
9179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9180 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9181
4c4b4cd2
PH
9182 if (noside == EVAL_SKIP)
9183 goto nosideret;
14f9c5c9 9184
4c4b4cd2 9185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9186 {
9187 type = language_bool_type (exp->language_defn, exp->gdbarch);
9188 return value_zero (type, not_lval);
9189 }
14f9c5c9 9190
4c4b4cd2 9191 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9192
1eea4ebd
UW
9193 type = ada_index_type (value_type (arg2), tem, "range");
9194 if (!type)
9195 type = value_type (arg1);
14f9c5c9 9196
1eea4ebd
UW
9197 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9198 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9199
f44316fa
UW
9200 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9201 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9202 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9203 return
fbb06eb1 9204 value_from_longest (type,
4c4b4cd2
PH
9205 (value_less (arg1, arg3)
9206 || value_equal (arg1, arg3))
9207 && (value_less (arg2, arg1)
9208 || value_equal (arg2, arg1)));
9209
9210 case TERNOP_IN_RANGE:
9211 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9212 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9213 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9214
9215 if (noside == EVAL_SKIP)
9216 goto nosideret;
9217
f44316fa
UW
9218 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9220 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9221 return
fbb06eb1 9222 value_from_longest (type,
4c4b4cd2
PH
9223 (value_less (arg1, arg3)
9224 || value_equal (arg1, arg3))
9225 && (value_less (arg2, arg1)
9226 || value_equal (arg2, arg1)));
9227
9228 case OP_ATR_FIRST:
9229 case OP_ATR_LAST:
9230 case OP_ATR_LENGTH:
9231 {
76a01679
JB
9232 struct type *type_arg;
9233 if (exp->elts[*pos].opcode == OP_TYPE)
9234 {
9235 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9236 arg1 = NULL;
5bc23cb3 9237 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9238 }
9239 else
9240 {
9241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9242 type_arg = NULL;
9243 }
9244
9245 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9246 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9247 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9248 *pos += 4;
9249
9250 if (noside == EVAL_SKIP)
9251 goto nosideret;
9252
9253 if (type_arg == NULL)
9254 {
9255 arg1 = ada_coerce_ref (arg1);
9256
ad82864c 9257 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9258 arg1 = ada_coerce_to_simple_array (arg1);
9259
1eea4ebd
UW
9260 type = ada_index_type (value_type (arg1), tem,
9261 ada_attribute_name (op));
9262 if (type == NULL)
9263 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9264
9265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9266 return allocate_value (type);
76a01679
JB
9267
9268 switch (op)
9269 {
9270 default: /* Should never happen. */
323e0a4a 9271 error (_("unexpected attribute encountered"));
76a01679 9272 case OP_ATR_FIRST:
1eea4ebd
UW
9273 return value_from_longest
9274 (type, ada_array_bound (arg1, tem, 0));
76a01679 9275 case OP_ATR_LAST:
1eea4ebd
UW
9276 return value_from_longest
9277 (type, ada_array_bound (arg1, tem, 1));
76a01679 9278 case OP_ATR_LENGTH:
1eea4ebd
UW
9279 return value_from_longest
9280 (type, ada_array_length (arg1, tem));
76a01679
JB
9281 }
9282 }
9283 else if (discrete_type_p (type_arg))
9284 {
9285 struct type *range_type;
9286 char *name = ada_type_name (type_arg);
9287 range_type = NULL;
9288 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
1ce677a4 9289 range_type = to_fixed_range_type (name, NULL, type_arg);
76a01679
JB
9290 if (range_type == NULL)
9291 range_type = type_arg;
9292 switch (op)
9293 {
9294 default:
323e0a4a 9295 error (_("unexpected attribute encountered"));
76a01679 9296 case OP_ATR_FIRST:
690cc4eb 9297 return value_from_longest
43bbcdc2 9298 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9299 case OP_ATR_LAST:
690cc4eb 9300 return value_from_longest
43bbcdc2 9301 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9302 case OP_ATR_LENGTH:
323e0a4a 9303 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9304 }
9305 }
9306 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9307 error (_("unimplemented type attribute"));
76a01679
JB
9308 else
9309 {
9310 LONGEST low, high;
9311
ad82864c
JB
9312 if (ada_is_constrained_packed_array_type (type_arg))
9313 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9314
1eea4ebd 9315 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9316 if (type == NULL)
1eea4ebd
UW
9317 type = builtin_type (exp->gdbarch)->builtin_int;
9318
76a01679
JB
9319 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9320 return allocate_value (type);
9321
9322 switch (op)
9323 {
9324 default:
323e0a4a 9325 error (_("unexpected attribute encountered"));
76a01679 9326 case OP_ATR_FIRST:
1eea4ebd 9327 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9328 return value_from_longest (type, low);
9329 case OP_ATR_LAST:
1eea4ebd 9330 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9331 return value_from_longest (type, high);
9332 case OP_ATR_LENGTH:
1eea4ebd
UW
9333 low = ada_array_bound_from_type (type_arg, tem, 0);
9334 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9335 return value_from_longest (type, high - low + 1);
9336 }
9337 }
14f9c5c9
AS
9338 }
9339
4c4b4cd2
PH
9340 case OP_ATR_TAG:
9341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9342 if (noside == EVAL_SKIP)
76a01679 9343 goto nosideret;
4c4b4cd2
PH
9344
9345 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9346 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9347
9348 return ada_value_tag (arg1);
9349
9350 case OP_ATR_MIN:
9351 case OP_ATR_MAX:
9352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9354 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9355 if (noside == EVAL_SKIP)
76a01679 9356 goto nosideret;
d2e4a39e 9357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9358 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9359 else
f44316fa
UW
9360 {
9361 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9362 return value_binop (arg1, arg2,
9363 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9364 }
14f9c5c9 9365
4c4b4cd2
PH
9366 case OP_ATR_MODULUS:
9367 {
31dedfee 9368 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9369 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9370
76a01679
JB
9371 if (noside == EVAL_SKIP)
9372 goto nosideret;
4c4b4cd2 9373
76a01679 9374 if (!ada_is_modular_type (type_arg))
323e0a4a 9375 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9376
76a01679
JB
9377 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9378 ada_modulus (type_arg));
4c4b4cd2
PH
9379 }
9380
9381
9382 case OP_ATR_POS:
9383 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9385 if (noside == EVAL_SKIP)
76a01679 9386 goto nosideret;
3cb382c9
UW
9387 type = builtin_type (exp->gdbarch)->builtin_int;
9388 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9389 return value_zero (type, not_lval);
14f9c5c9 9390 else
3cb382c9 9391 return value_pos_atr (type, arg1);
14f9c5c9 9392
4c4b4cd2
PH
9393 case OP_ATR_SIZE:
9394 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9395 type = value_type (arg1);
9396
9397 /* If the argument is a reference, then dereference its type, since
9398 the user is really asking for the size of the actual object,
9399 not the size of the pointer. */
9400 if (TYPE_CODE (type) == TYPE_CODE_REF)
9401 type = TYPE_TARGET_TYPE (type);
9402
4c4b4cd2 9403 if (noside == EVAL_SKIP)
76a01679 9404 goto nosideret;
4c4b4cd2 9405 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9406 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9407 else
22601c15 9408 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9409 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9410
9411 case OP_ATR_VAL:
9412 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9414 type = exp->elts[pc + 2].type;
14f9c5c9 9415 if (noside == EVAL_SKIP)
76a01679 9416 goto nosideret;
4c4b4cd2 9417 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9418 return value_zero (type, not_lval);
4c4b4cd2 9419 else
76a01679 9420 return value_val_atr (type, arg1);
4c4b4cd2
PH
9421
9422 case BINOP_EXP:
9423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9424 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9425 if (noside == EVAL_SKIP)
9426 goto nosideret;
9427 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9428 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9429 else
f44316fa
UW
9430 {
9431 /* For integer exponentiation operations,
9432 only promote the first argument. */
9433 if (is_integral_type (value_type (arg2)))
9434 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9435 else
9436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9437
9438 return value_binop (arg1, arg2, op);
9439 }
4c4b4cd2
PH
9440
9441 case UNOP_PLUS:
9442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9443 if (noside == EVAL_SKIP)
9444 goto nosideret;
9445 else
9446 return arg1;
9447
9448 case UNOP_ABS:
9449 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9450 if (noside == EVAL_SKIP)
9451 goto nosideret;
f44316fa 9452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9453 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9454 return value_neg (arg1);
14f9c5c9 9455 else
4c4b4cd2 9456 return arg1;
14f9c5c9
AS
9457
9458 case UNOP_IND:
6b0d7253 9459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9460 if (noside == EVAL_SKIP)
4c4b4cd2 9461 goto nosideret;
df407dfe 9462 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9464 {
9465 if (ada_is_array_descriptor_type (type))
9466 /* GDB allows dereferencing GNAT array descriptors. */
9467 {
9468 struct type *arrType = ada_type_of_array (arg1, 0);
9469 if (arrType == NULL)
323e0a4a 9470 error (_("Attempt to dereference null array pointer."));
00a4c844 9471 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9472 }
9473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9474 || TYPE_CODE (type) == TYPE_CODE_REF
9475 /* In C you can dereference an array to get the 1st elt. */
9476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9477 {
9478 type = to_static_fixed_type
9479 (ada_aligned_type
9480 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9481 check_size (type);
9482 return value_zero (type, lval_memory);
9483 }
4c4b4cd2 9484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9485 {
9486 /* GDB allows dereferencing an int. */
9487 if (expect_type == NULL)
9488 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9489 lval_memory);
9490 else
9491 {
9492 expect_type =
9493 to_static_fixed_type (ada_aligned_type (expect_type));
9494 return value_zero (expect_type, lval_memory);
9495 }
9496 }
4c4b4cd2 9497 else
323e0a4a 9498 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9499 }
76a01679 9500 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9501 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9502
96967637
JB
9503 if (TYPE_CODE (type) == TYPE_CODE_INT)
9504 /* GDB allows dereferencing an int. If we were given
9505 the expect_type, then use that as the target type.
9506 Otherwise, assume that the target type is an int. */
9507 {
9508 if (expect_type != NULL)
9509 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9510 arg1));
9511 else
9512 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9513 (CORE_ADDR) value_as_address (arg1));
9514 }
6b0d7253 9515
4c4b4cd2
PH
9516 if (ada_is_array_descriptor_type (type))
9517 /* GDB allows dereferencing GNAT array descriptors. */
9518 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9519 else
4c4b4cd2 9520 return ada_value_ind (arg1);
14f9c5c9
AS
9521
9522 case STRUCTOP_STRUCT:
9523 tem = longest_to_int (exp->elts[pc + 1].longconst);
9524 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9526 if (noside == EVAL_SKIP)
4c4b4cd2 9527 goto nosideret;
14f9c5c9 9528 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9529 {
df407dfe 9530 struct type *type1 = value_type (arg1);
76a01679
JB
9531 if (ada_is_tagged_type (type1, 1))
9532 {
9533 type = ada_lookup_struct_elt_type (type1,
9534 &exp->elts[pc + 2].string,
9535 1, 1, NULL);
9536 if (type == NULL)
9537 /* In this case, we assume that the field COULD exist
9538 in some extension of the type. Return an object of
9539 "type" void, which will match any formal
9540 (see ada_type_match). */
30b15541
UW
9541 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9542 lval_memory);
76a01679
JB
9543 }
9544 else
9545 type =
9546 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9547 0, NULL);
9548
9549 return value_zero (ada_aligned_type (type), lval_memory);
9550 }
14f9c5c9 9551 else
284614f0
JB
9552 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9553 arg1 = unwrap_value (arg1);
9554 return ada_to_fixed_value (arg1);
9555
14f9c5c9 9556 case OP_TYPE:
4c4b4cd2
PH
9557 /* The value is not supposed to be used. This is here to make it
9558 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9559 (*pos) += 2;
9560 if (noside == EVAL_SKIP)
4c4b4cd2 9561 goto nosideret;
14f9c5c9 9562 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9563 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9564 else
323e0a4a 9565 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9566
9567 case OP_AGGREGATE:
9568 case OP_CHOICES:
9569 case OP_OTHERS:
9570 case OP_DISCRETE_RANGE:
9571 case OP_POSITIONAL:
9572 case OP_NAME:
9573 if (noside == EVAL_NORMAL)
9574 switch (op)
9575 {
9576 case OP_NAME:
9577 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9578 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9579 case OP_AGGREGATE:
9580 error (_("Aggregates only allowed on the right of an assignment"));
9581 default:
e1d5a0d2 9582 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9583 }
9584
9585 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9586 *pos += oplen - 1;
9587 for (tem = 0; tem < nargs; tem += 1)
9588 ada_evaluate_subexp (NULL, exp, pos, noside);
9589 goto nosideret;
14f9c5c9
AS
9590 }
9591
9592nosideret:
22601c15 9593 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9594}
14f9c5c9 9595\f
d2e4a39e 9596
4c4b4cd2 9597 /* Fixed point */
14f9c5c9
AS
9598
9599/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9600 type name that encodes the 'small and 'delta information.
4c4b4cd2 9601 Otherwise, return NULL. */
14f9c5c9 9602
d2e4a39e 9603static const char *
ebf56fd3 9604fixed_type_info (struct type *type)
14f9c5c9 9605{
d2e4a39e 9606 const char *name = ada_type_name (type);
14f9c5c9
AS
9607 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9608
d2e4a39e
AS
9609 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9610 {
14f9c5c9
AS
9611 const char *tail = strstr (name, "___XF_");
9612 if (tail == NULL)
4c4b4cd2 9613 return NULL;
d2e4a39e 9614 else
4c4b4cd2 9615 return tail + 5;
14f9c5c9
AS
9616 }
9617 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9618 return fixed_type_info (TYPE_TARGET_TYPE (type));
9619 else
9620 return NULL;
9621}
9622
4c4b4cd2 9623/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9624
9625int
ebf56fd3 9626ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9627{
9628 return fixed_type_info (type) != NULL;
9629}
9630
4c4b4cd2
PH
9631/* Return non-zero iff TYPE represents a System.Address type. */
9632
9633int
9634ada_is_system_address_type (struct type *type)
9635{
9636 return (TYPE_NAME (type)
9637 && strcmp (TYPE_NAME (type), "system__address") == 0);
9638}
9639
14f9c5c9
AS
9640/* Assuming that TYPE is the representation of an Ada fixed-point
9641 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9642 delta cannot be determined. */
14f9c5c9
AS
9643
9644DOUBLEST
ebf56fd3 9645ada_delta (struct type *type)
14f9c5c9
AS
9646{
9647 const char *encoding = fixed_type_info (type);
facc390f 9648 DOUBLEST num, den;
14f9c5c9 9649
facc390f
JB
9650 /* Strictly speaking, num and den are encoded as integer. However,
9651 they may not fit into a long, and they will have to be converted
9652 to DOUBLEST anyway. So scan them as DOUBLEST. */
9653 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9654 &num, &den) < 2)
14f9c5c9 9655 return -1.0;
d2e4a39e 9656 else
facc390f 9657 return num / den;
14f9c5c9
AS
9658}
9659
9660/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9661 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9662
9663static DOUBLEST
ebf56fd3 9664scaling_factor (struct type *type)
14f9c5c9
AS
9665{
9666 const char *encoding = fixed_type_info (type);
facc390f 9667 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9668 int n;
d2e4a39e 9669
facc390f
JB
9670 /* Strictly speaking, num's and den's are encoded as integer. However,
9671 they may not fit into a long, and they will have to be converted
9672 to DOUBLEST anyway. So scan them as DOUBLEST. */
9673 n = sscanf (encoding,
9674 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9675 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9676 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9677
9678 if (n < 2)
9679 return 1.0;
9680 else if (n == 4)
facc390f 9681 return num1 / den1;
d2e4a39e 9682 else
facc390f 9683 return num0 / den0;
14f9c5c9
AS
9684}
9685
9686
9687/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9688 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9689
9690DOUBLEST
ebf56fd3 9691ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9692{
d2e4a39e 9693 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9694}
9695
4c4b4cd2
PH
9696/* The representation of a fixed-point value of type TYPE
9697 corresponding to the value X. */
14f9c5c9
AS
9698
9699LONGEST
ebf56fd3 9700ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9701{
9702 return (LONGEST) (x / scaling_factor (type) + 0.5);
9703}
9704
14f9c5c9 9705\f
d2e4a39e 9706
4c4b4cd2 9707 /* Range types */
14f9c5c9
AS
9708
9709/* Scan STR beginning at position K for a discriminant name, and
9710 return the value of that discriminant field of DVAL in *PX. If
9711 PNEW_K is not null, put the position of the character beyond the
9712 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9713 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9714
9715static int
07d8f827 9716scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9717 int *pnew_k)
14f9c5c9
AS
9718{
9719 static char *bound_buffer = NULL;
9720 static size_t bound_buffer_len = 0;
9721 char *bound;
9722 char *pend;
d2e4a39e 9723 struct value *bound_val;
14f9c5c9
AS
9724
9725 if (dval == NULL || str == NULL || str[k] == '\0')
9726 return 0;
9727
d2e4a39e 9728 pend = strstr (str + k, "__");
14f9c5c9
AS
9729 if (pend == NULL)
9730 {
d2e4a39e 9731 bound = str + k;
14f9c5c9
AS
9732 k += strlen (bound);
9733 }
d2e4a39e 9734 else
14f9c5c9 9735 {
d2e4a39e 9736 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9737 bound = bound_buffer;
d2e4a39e
AS
9738 strncpy (bound_buffer, str + k, pend - (str + k));
9739 bound[pend - (str + k)] = '\0';
9740 k = pend - str;
14f9c5c9 9741 }
d2e4a39e 9742
df407dfe 9743 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9744 if (bound_val == NULL)
9745 return 0;
9746
9747 *px = value_as_long (bound_val);
9748 if (pnew_k != NULL)
9749 *pnew_k = k;
9750 return 1;
9751}
9752
9753/* Value of variable named NAME in the current environment. If
9754 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9755 otherwise causes an error with message ERR_MSG. */
9756
d2e4a39e
AS
9757static struct value *
9758get_var_value (char *name, char *err_msg)
14f9c5c9 9759{
4c4b4cd2 9760 struct ada_symbol_info *syms;
14f9c5c9
AS
9761 int nsyms;
9762
4c4b4cd2
PH
9763 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9764 &syms);
14f9c5c9
AS
9765
9766 if (nsyms != 1)
9767 {
9768 if (err_msg == NULL)
4c4b4cd2 9769 return 0;
14f9c5c9 9770 else
8a3fe4f8 9771 error (("%s"), err_msg);
14f9c5c9
AS
9772 }
9773
4c4b4cd2 9774 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9775}
d2e4a39e 9776
14f9c5c9 9777/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9778 no such variable found, returns 0, and sets *FLAG to 0. If
9779 successful, sets *FLAG to 1. */
9780
14f9c5c9 9781LONGEST
4c4b4cd2 9782get_int_var_value (char *name, int *flag)
14f9c5c9 9783{
4c4b4cd2 9784 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9785
14f9c5c9
AS
9786 if (var_val == 0)
9787 {
9788 if (flag != NULL)
4c4b4cd2 9789 *flag = 0;
14f9c5c9
AS
9790 return 0;
9791 }
9792 else
9793 {
9794 if (flag != NULL)
4c4b4cd2 9795 *flag = 1;
14f9c5c9
AS
9796 return value_as_long (var_val);
9797 }
9798}
d2e4a39e 9799
14f9c5c9
AS
9800
9801/* Return a range type whose base type is that of the range type named
9802 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9803 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
9804 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9805 corresponding range type from debug information; fall back to using it
9806 if symbol lookup fails. If a new type must be created, allocate it
9807 like ORIG_TYPE was. The bounds information, in general, is encoded
9808 in NAME, the base type given in the named range type. */
14f9c5c9 9809
d2e4a39e 9810static struct type *
1ce677a4 9811to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
14f9c5c9
AS
9812{
9813 struct type *raw_type = ada_find_any_type (name);
9814 struct type *base_type;
d2e4a39e 9815 char *subtype_info;
14f9c5c9 9816
1ce677a4 9817 /* Fall back to the original type if symbol lookup failed. */
dddfab26 9818 if (raw_type == NULL)
1ce677a4 9819 raw_type = orig_type;
dddfab26 9820
1ce677a4 9821 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
9822 base_type = TYPE_TARGET_TYPE (raw_type);
9823 else
9824 base_type = raw_type;
9825
9826 subtype_info = strstr (name, "___XD");
9827 if (subtype_info == NULL)
690cc4eb 9828 {
43bbcdc2
PH
9829 LONGEST L = ada_discrete_type_low_bound (raw_type);
9830 LONGEST U = ada_discrete_type_high_bound (raw_type);
690cc4eb
PH
9831 if (L < INT_MIN || U > INT_MAX)
9832 return raw_type;
9833 else
e9bb382b 9834 return create_range_type (alloc_type_copy (orig_type), raw_type,
43bbcdc2
PH
9835 ada_discrete_type_low_bound (raw_type),
9836 ada_discrete_type_high_bound (raw_type));
690cc4eb 9837 }
14f9c5c9
AS
9838 else
9839 {
9840 static char *name_buf = NULL;
9841 static size_t name_len = 0;
9842 int prefix_len = subtype_info - name;
9843 LONGEST L, U;
9844 struct type *type;
9845 char *bounds_str;
9846 int n;
9847
9848 GROW_VECT (name_buf, name_len, prefix_len + 5);
9849 strncpy (name_buf, name, prefix_len);
9850 name_buf[prefix_len] = '\0';
9851
9852 subtype_info += 5;
9853 bounds_str = strchr (subtype_info, '_');
9854 n = 1;
9855
d2e4a39e 9856 if (*subtype_info == 'L')
4c4b4cd2
PH
9857 {
9858 if (!ada_scan_number (bounds_str, n, &L, &n)
9859 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9860 return raw_type;
9861 if (bounds_str[n] == '_')
9862 n += 2;
9863 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9864 n += 1;
9865 subtype_info += 1;
9866 }
d2e4a39e 9867 else
4c4b4cd2
PH
9868 {
9869 int ok;
9870 strcpy (name_buf + prefix_len, "___L");
9871 L = get_int_var_value (name_buf, &ok);
9872 if (!ok)
9873 {
323e0a4a 9874 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9875 L = 1;
9876 }
9877 }
14f9c5c9 9878
d2e4a39e 9879 if (*subtype_info == 'U')
4c4b4cd2
PH
9880 {
9881 if (!ada_scan_number (bounds_str, n, &U, &n)
9882 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9883 return raw_type;
9884 }
d2e4a39e 9885 else
4c4b4cd2
PH
9886 {
9887 int ok;
9888 strcpy (name_buf + prefix_len, "___U");
9889 U = get_int_var_value (name_buf, &ok);
9890 if (!ok)
9891 {
323e0a4a 9892 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9893 U = L;
9894 }
9895 }
14f9c5c9 9896
e9bb382b 9897 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
d2e4a39e 9898 TYPE_NAME (type) = name;
14f9c5c9
AS
9899 return type;
9900 }
9901}
9902
4c4b4cd2
PH
9903/* True iff NAME is the name of a range type. */
9904
14f9c5c9 9905int
d2e4a39e 9906ada_is_range_type_name (const char *name)
14f9c5c9
AS
9907{
9908 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9909}
14f9c5c9 9910\f
d2e4a39e 9911
4c4b4cd2
PH
9912 /* Modular types */
9913
9914/* True iff TYPE is an Ada modular type. */
14f9c5c9 9915
14f9c5c9 9916int
d2e4a39e 9917ada_is_modular_type (struct type *type)
14f9c5c9 9918{
4c4b4cd2 9919 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9920
9921 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9922 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9923 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9924}
9925
0056e4d5
JB
9926/* Try to determine the lower and upper bounds of the given modular type
9927 using the type name only. Return non-zero and set L and U as the lower
9928 and upper bounds (respectively) if successful. */
9929
9930int
9931ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9932{
9933 char *name = ada_type_name (type);
9934 char *suffix;
9935 int k;
9936 LONGEST U;
9937
9938 if (name == NULL)
9939 return 0;
9940
9941 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9942 we are looking for static bounds, which means an __XDLU suffix.
9943 Moreover, we know that the lower bound of modular types is always
9944 zero, so the actual suffix should start with "__XDLU_0__", and
9945 then be followed by the upper bound value. */
9946 suffix = strstr (name, "__XDLU_0__");
9947 if (suffix == NULL)
9948 return 0;
9949 k = 10;
9950 if (!ada_scan_number (suffix, k, &U, NULL))
9951 return 0;
9952
9953 *modulus = (ULONGEST) U + 1;
9954 return 1;
9955}
9956
4c4b4cd2
PH
9957/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9958
61ee279c 9959ULONGEST
0056e4d5 9960ada_modulus (struct type *type)
14f9c5c9 9961{
43bbcdc2 9962 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9963}
d2e4a39e 9964\f
f7f9143b
JB
9965
9966/* Ada exception catchpoint support:
9967 ---------------------------------
9968
9969 We support 3 kinds of exception catchpoints:
9970 . catchpoints on Ada exceptions
9971 . catchpoints on unhandled Ada exceptions
9972 . catchpoints on failed assertions
9973
9974 Exceptions raised during failed assertions, or unhandled exceptions
9975 could perfectly be caught with the general catchpoint on Ada exceptions.
9976 However, we can easily differentiate these two special cases, and having
9977 the option to distinguish these two cases from the rest can be useful
9978 to zero-in on certain situations.
9979
9980 Exception catchpoints are a specialized form of breakpoint,
9981 since they rely on inserting breakpoints inside known routines
9982 of the GNAT runtime. The implementation therefore uses a standard
9983 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9984 of breakpoint_ops.
9985
0259addd
JB
9986 Support in the runtime for exception catchpoints have been changed
9987 a few times already, and these changes affect the implementation
9988 of these catchpoints. In order to be able to support several
9989 variants of the runtime, we use a sniffer that will determine
9990 the runtime variant used by the program being debugged.
9991
f7f9143b
JB
9992 At this time, we do not support the use of conditions on Ada exception
9993 catchpoints. The COND and COND_STRING fields are therefore set
9994 to NULL (most of the time, see below).
9995
9996 Conditions where EXP_STRING, COND, and COND_STRING are used:
9997
9998 When a user specifies the name of a specific exception in the case
9999 of catchpoints on Ada exceptions, we store the name of that exception
10000 in the EXP_STRING. We then translate this request into an actual
10001 condition stored in COND_STRING, and then parse it into an expression
10002 stored in COND. */
10003
10004/* The different types of catchpoints that we introduced for catching
10005 Ada exceptions. */
10006
10007enum exception_catchpoint_kind
10008{
10009 ex_catch_exception,
10010 ex_catch_exception_unhandled,
10011 ex_catch_assert
10012};
10013
3d0b0fa3
JB
10014/* Ada's standard exceptions. */
10015
10016static char *standard_exc[] = {
10017 "constraint_error",
10018 "program_error",
10019 "storage_error",
10020 "tasking_error"
10021};
10022
0259addd
JB
10023typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10024
10025/* A structure that describes how to support exception catchpoints
10026 for a given executable. */
10027
10028struct exception_support_info
10029{
10030 /* The name of the symbol to break on in order to insert
10031 a catchpoint on exceptions. */
10032 const char *catch_exception_sym;
10033
10034 /* The name of the symbol to break on in order to insert
10035 a catchpoint on unhandled exceptions. */
10036 const char *catch_exception_unhandled_sym;
10037
10038 /* The name of the symbol to break on in order to insert
10039 a catchpoint on failed assertions. */
10040 const char *catch_assert_sym;
10041
10042 /* Assuming that the inferior just triggered an unhandled exception
10043 catchpoint, this function is responsible for returning the address
10044 in inferior memory where the name of that exception is stored.
10045 Return zero if the address could not be computed. */
10046 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10047};
10048
10049static CORE_ADDR ada_unhandled_exception_name_addr (void);
10050static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10051
10052/* The following exception support info structure describes how to
10053 implement exception catchpoints with the latest version of the
10054 Ada runtime (as of 2007-03-06). */
10055
10056static const struct exception_support_info default_exception_support_info =
10057{
10058 "__gnat_debug_raise_exception", /* catch_exception_sym */
10059 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10060 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10061 ada_unhandled_exception_name_addr
10062};
10063
10064/* The following exception support info structure describes how to
10065 implement exception catchpoints with a slightly older version
10066 of the Ada runtime. */
10067
10068static const struct exception_support_info exception_support_info_fallback =
10069{
10070 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10071 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10072 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10073 ada_unhandled_exception_name_addr_from_raise
10074};
10075
10076/* For each executable, we sniff which exception info structure to use
10077 and cache it in the following global variable. */
10078
10079static const struct exception_support_info *exception_info = NULL;
10080
10081/* Inspect the Ada runtime and determine which exception info structure
10082 should be used to provide support for exception catchpoints.
10083
10084 This function will always set exception_info, or raise an error. */
10085
10086static void
10087ada_exception_support_info_sniffer (void)
10088{
10089 struct symbol *sym;
10090
10091 /* If the exception info is already known, then no need to recompute it. */
10092 if (exception_info != NULL)
10093 return;
10094
10095 /* Check the latest (default) exception support info. */
10096 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10097 NULL, VAR_DOMAIN);
10098 if (sym != NULL)
10099 {
10100 exception_info = &default_exception_support_info;
10101 return;
10102 }
10103
10104 /* Try our fallback exception suport info. */
10105 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10106 NULL, VAR_DOMAIN);
10107 if (sym != NULL)
10108 {
10109 exception_info = &exception_support_info_fallback;
10110 return;
10111 }
10112
10113 /* Sometimes, it is normal for us to not be able to find the routine
10114 we are looking for. This happens when the program is linked with
10115 the shared version of the GNAT runtime, and the program has not been
10116 started yet. Inform the user of these two possible causes if
10117 applicable. */
10118
10119 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10120 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10121
10122 /* If the symbol does not exist, then check that the program is
10123 already started, to make sure that shared libraries have been
10124 loaded. If it is not started, this may mean that the symbol is
10125 in a shared library. */
10126
10127 if (ptid_get_pid (inferior_ptid) == 0)
10128 error (_("Unable to insert catchpoint. Try to start the program first."));
10129
10130 /* At this point, we know that we are debugging an Ada program and
10131 that the inferior has been started, but we still are not able to
10132 find the run-time symbols. That can mean that we are in
10133 configurable run time mode, or that a-except as been optimized
10134 out by the linker... In any case, at this point it is not worth
10135 supporting this feature. */
10136
10137 error (_("Cannot insert catchpoints in this configuration."));
10138}
10139
10140/* An observer of "executable_changed" events.
10141 Its role is to clear certain cached values that need to be recomputed
10142 each time a new executable is loaded by GDB. */
10143
10144static void
781b42b0 10145ada_executable_changed_observer (void)
0259addd
JB
10146{
10147 /* If the executable changed, then it is possible that the Ada runtime
10148 is different. So we need to invalidate the exception support info
10149 cache. */
10150 exception_info = NULL;
10151}
10152
f7f9143b
JB
10153/* Return the name of the function at PC, NULL if could not find it.
10154 This function only checks the debugging information, not the symbol
10155 table. */
10156
10157static char *
10158function_name_from_pc (CORE_ADDR pc)
10159{
10160 char *func_name;
10161
10162 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10163 return NULL;
10164
10165 return func_name;
10166}
10167
10168/* True iff FRAME is very likely to be that of a function that is
10169 part of the runtime system. This is all very heuristic, but is
10170 intended to be used as advice as to what frames are uninteresting
10171 to most users. */
10172
10173static int
10174is_known_support_routine (struct frame_info *frame)
10175{
4ed6b5be 10176 struct symtab_and_line sal;
f7f9143b
JB
10177 char *func_name;
10178 int i;
f7f9143b 10179
4ed6b5be
JB
10180 /* If this code does not have any debugging information (no symtab),
10181 This cannot be any user code. */
f7f9143b 10182
4ed6b5be 10183 find_frame_sal (frame, &sal);
f7f9143b
JB
10184 if (sal.symtab == NULL)
10185 return 1;
10186
4ed6b5be
JB
10187 /* If there is a symtab, but the associated source file cannot be
10188 located, then assume this is not user code: Selecting a frame
10189 for which we cannot display the code would not be very helpful
10190 for the user. This should also take care of case such as VxWorks
10191 where the kernel has some debugging info provided for a few units. */
f7f9143b 10192
9bbc9174 10193 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10194 return 1;
10195
4ed6b5be
JB
10196 /* Check the unit filename againt the Ada runtime file naming.
10197 We also check the name of the objfile against the name of some
10198 known system libraries that sometimes come with debugging info
10199 too. */
10200
f7f9143b
JB
10201 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10202 {
10203 re_comp (known_runtime_file_name_patterns[i]);
10204 if (re_exec (sal.symtab->filename))
10205 return 1;
4ed6b5be
JB
10206 if (sal.symtab->objfile != NULL
10207 && re_exec (sal.symtab->objfile->name))
10208 return 1;
f7f9143b
JB
10209 }
10210
4ed6b5be 10211 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10212
4ed6b5be 10213 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10214 if (func_name == NULL)
10215 return 1;
10216
10217 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10218 {
10219 re_comp (known_auxiliary_function_name_patterns[i]);
10220 if (re_exec (func_name))
10221 return 1;
10222 }
10223
10224 return 0;
10225}
10226
10227/* Find the first frame that contains debugging information and that is not
10228 part of the Ada run-time, starting from FI and moving upward. */
10229
0ef643c8 10230void
f7f9143b
JB
10231ada_find_printable_frame (struct frame_info *fi)
10232{
10233 for (; fi != NULL; fi = get_prev_frame (fi))
10234 {
10235 if (!is_known_support_routine (fi))
10236 {
10237 select_frame (fi);
10238 break;
10239 }
10240 }
10241
10242}
10243
10244/* Assuming that the inferior just triggered an unhandled exception
10245 catchpoint, return the address in inferior memory where the name
10246 of the exception is stored.
10247
10248 Return zero if the address could not be computed. */
10249
10250static CORE_ADDR
10251ada_unhandled_exception_name_addr (void)
0259addd
JB
10252{
10253 return parse_and_eval_address ("e.full_name");
10254}
10255
10256/* Same as ada_unhandled_exception_name_addr, except that this function
10257 should be used when the inferior uses an older version of the runtime,
10258 where the exception name needs to be extracted from a specific frame
10259 several frames up in the callstack. */
10260
10261static CORE_ADDR
10262ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10263{
10264 int frame_level;
10265 struct frame_info *fi;
10266
10267 /* To determine the name of this exception, we need to select
10268 the frame corresponding to RAISE_SYM_NAME. This frame is
10269 at least 3 levels up, so we simply skip the first 3 frames
10270 without checking the name of their associated function. */
10271 fi = get_current_frame ();
10272 for (frame_level = 0; frame_level < 3; frame_level += 1)
10273 if (fi != NULL)
10274 fi = get_prev_frame (fi);
10275
10276 while (fi != NULL)
10277 {
10278 const char *func_name =
10279 function_name_from_pc (get_frame_address_in_block (fi));
10280 if (func_name != NULL
0259addd 10281 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10282 break; /* We found the frame we were looking for... */
10283 fi = get_prev_frame (fi);
10284 }
10285
10286 if (fi == NULL)
10287 return 0;
10288
10289 select_frame (fi);
10290 return parse_and_eval_address ("id.full_name");
10291}
10292
10293/* Assuming the inferior just triggered an Ada exception catchpoint
10294 (of any type), return the address in inferior memory where the name
10295 of the exception is stored, if applicable.
10296
10297 Return zero if the address could not be computed, or if not relevant. */
10298
10299static CORE_ADDR
10300ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10301 struct breakpoint *b)
10302{
10303 switch (ex)
10304 {
10305 case ex_catch_exception:
10306 return (parse_and_eval_address ("e.full_name"));
10307 break;
10308
10309 case ex_catch_exception_unhandled:
0259addd 10310 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10311 break;
10312
10313 case ex_catch_assert:
10314 return 0; /* Exception name is not relevant in this case. */
10315 break;
10316
10317 default:
10318 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10319 break;
10320 }
10321
10322 return 0; /* Should never be reached. */
10323}
10324
10325/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10326 any error that ada_exception_name_addr_1 might cause to be thrown.
10327 When an error is intercepted, a warning with the error message is printed,
10328 and zero is returned. */
10329
10330static CORE_ADDR
10331ada_exception_name_addr (enum exception_catchpoint_kind ex,
10332 struct breakpoint *b)
10333{
10334 struct gdb_exception e;
10335 CORE_ADDR result = 0;
10336
10337 TRY_CATCH (e, RETURN_MASK_ERROR)
10338 {
10339 result = ada_exception_name_addr_1 (ex, b);
10340 }
10341
10342 if (e.reason < 0)
10343 {
10344 warning (_("failed to get exception name: %s"), e.message);
10345 return 0;
10346 }
10347
10348 return result;
10349}
10350
10351/* Implement the PRINT_IT method in the breakpoint_ops structure
10352 for all exception catchpoint kinds. */
10353
10354static enum print_stop_action
10355print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10356{
10357 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10358 char exception_name[256];
10359
10360 if (addr != 0)
10361 {
10362 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10363 exception_name [sizeof (exception_name) - 1] = '\0';
10364 }
10365
10366 ada_find_printable_frame (get_current_frame ());
10367
10368 annotate_catchpoint (b->number);
10369 switch (ex)
10370 {
10371 case ex_catch_exception:
10372 if (addr != 0)
10373 printf_filtered (_("\nCatchpoint %d, %s at "),
10374 b->number, exception_name);
10375 else
10376 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10377 break;
10378 case ex_catch_exception_unhandled:
10379 if (addr != 0)
10380 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10381 b->number, exception_name);
10382 else
10383 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10384 b->number);
10385 break;
10386 case ex_catch_assert:
10387 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10388 b->number);
10389 break;
10390 }
10391
10392 return PRINT_SRC_AND_LOC;
10393}
10394
10395/* Implement the PRINT_ONE method in the breakpoint_ops structure
10396 for all exception catchpoint kinds. */
10397
10398static void
10399print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10400 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10401{
79a45b7d
TT
10402 struct value_print_options opts;
10403
10404 get_user_print_options (&opts);
10405 if (opts.addressprint)
f7f9143b
JB
10406 {
10407 annotate_field (4);
5af949e3 10408 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10409 }
10410
10411 annotate_field (5);
a6d9a66e 10412 *last_loc = b->loc;
f7f9143b
JB
10413 switch (ex)
10414 {
10415 case ex_catch_exception:
10416 if (b->exp_string != NULL)
10417 {
10418 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10419
10420 ui_out_field_string (uiout, "what", msg);
10421 xfree (msg);
10422 }
10423 else
10424 ui_out_field_string (uiout, "what", "all Ada exceptions");
10425
10426 break;
10427
10428 case ex_catch_exception_unhandled:
10429 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10430 break;
10431
10432 case ex_catch_assert:
10433 ui_out_field_string (uiout, "what", "failed Ada assertions");
10434 break;
10435
10436 default:
10437 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10438 break;
10439 }
10440}
10441
10442/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10443 for all exception catchpoint kinds. */
10444
10445static void
10446print_mention_exception (enum exception_catchpoint_kind ex,
10447 struct breakpoint *b)
10448{
10449 switch (ex)
10450 {
10451 case ex_catch_exception:
10452 if (b->exp_string != NULL)
10453 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10454 b->number, b->exp_string);
10455 else
10456 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10457
10458 break;
10459
10460 case ex_catch_exception_unhandled:
10461 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10462 b->number);
10463 break;
10464
10465 case ex_catch_assert:
10466 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10467 break;
10468
10469 default:
10470 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10471 break;
10472 }
10473}
10474
10475/* Virtual table for "catch exception" breakpoints. */
10476
10477static enum print_stop_action
10478print_it_catch_exception (struct breakpoint *b)
10479{
10480 return print_it_exception (ex_catch_exception, b);
10481}
10482
10483static void
a6d9a66e 10484print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10485{
a6d9a66e 10486 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10487}
10488
10489static void
10490print_mention_catch_exception (struct breakpoint *b)
10491{
10492 print_mention_exception (ex_catch_exception, b);
10493}
10494
10495static struct breakpoint_ops catch_exception_breakpoint_ops =
10496{
ce78b96d
JB
10497 NULL, /* insert */
10498 NULL, /* remove */
10499 NULL, /* breakpoint_hit */
f7f9143b
JB
10500 print_it_catch_exception,
10501 print_one_catch_exception,
10502 print_mention_catch_exception
10503};
10504
10505/* Virtual table for "catch exception unhandled" breakpoints. */
10506
10507static enum print_stop_action
10508print_it_catch_exception_unhandled (struct breakpoint *b)
10509{
10510 return print_it_exception (ex_catch_exception_unhandled, b);
10511}
10512
10513static void
a6d9a66e
UW
10514print_one_catch_exception_unhandled (struct breakpoint *b,
10515 struct bp_location **last_loc)
f7f9143b 10516{
a6d9a66e 10517 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10518}
10519
10520static void
10521print_mention_catch_exception_unhandled (struct breakpoint *b)
10522{
10523 print_mention_exception (ex_catch_exception_unhandled, b);
10524}
10525
10526static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10527 NULL, /* insert */
10528 NULL, /* remove */
10529 NULL, /* breakpoint_hit */
f7f9143b
JB
10530 print_it_catch_exception_unhandled,
10531 print_one_catch_exception_unhandled,
10532 print_mention_catch_exception_unhandled
10533};
10534
10535/* Virtual table for "catch assert" breakpoints. */
10536
10537static enum print_stop_action
10538print_it_catch_assert (struct breakpoint *b)
10539{
10540 return print_it_exception (ex_catch_assert, b);
10541}
10542
10543static void
a6d9a66e 10544print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10545{
a6d9a66e 10546 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
10547}
10548
10549static void
10550print_mention_catch_assert (struct breakpoint *b)
10551{
10552 print_mention_exception (ex_catch_assert, b);
10553}
10554
10555static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10556 NULL, /* insert */
10557 NULL, /* remove */
10558 NULL, /* breakpoint_hit */
f7f9143b
JB
10559 print_it_catch_assert,
10560 print_one_catch_assert,
10561 print_mention_catch_assert
10562};
10563
10564/* Return non-zero if B is an Ada exception catchpoint. */
10565
10566int
10567ada_exception_catchpoint_p (struct breakpoint *b)
10568{
10569 return (b->ops == &catch_exception_breakpoint_ops
10570 || b->ops == &catch_exception_unhandled_breakpoint_ops
10571 || b->ops == &catch_assert_breakpoint_ops);
10572}
10573
f7f9143b
JB
10574/* Return a newly allocated copy of the first space-separated token
10575 in ARGSP, and then adjust ARGSP to point immediately after that
10576 token.
10577
10578 Return NULL if ARGPS does not contain any more tokens. */
10579
10580static char *
10581ada_get_next_arg (char **argsp)
10582{
10583 char *args = *argsp;
10584 char *end;
10585 char *result;
10586
10587 /* Skip any leading white space. */
10588
10589 while (isspace (*args))
10590 args++;
10591
10592 if (args[0] == '\0')
10593 return NULL; /* No more arguments. */
10594
10595 /* Find the end of the current argument. */
10596
10597 end = args;
10598 while (*end != '\0' && !isspace (*end))
10599 end++;
10600
10601 /* Adjust ARGSP to point to the start of the next argument. */
10602
10603 *argsp = end;
10604
10605 /* Make a copy of the current argument and return it. */
10606
10607 result = xmalloc (end - args + 1);
10608 strncpy (result, args, end - args);
10609 result[end - args] = '\0';
10610
10611 return result;
10612}
10613
10614/* Split the arguments specified in a "catch exception" command.
10615 Set EX to the appropriate catchpoint type.
10616 Set EXP_STRING to the name of the specific exception if
10617 specified by the user. */
10618
10619static void
10620catch_ada_exception_command_split (char *args,
10621 enum exception_catchpoint_kind *ex,
10622 char **exp_string)
10623{
10624 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10625 char *exception_name;
10626
10627 exception_name = ada_get_next_arg (&args);
10628 make_cleanup (xfree, exception_name);
10629
10630 /* Check that we do not have any more arguments. Anything else
10631 is unexpected. */
10632
10633 while (isspace (*args))
10634 args++;
10635
10636 if (args[0] != '\0')
10637 error (_("Junk at end of expression"));
10638
10639 discard_cleanups (old_chain);
10640
10641 if (exception_name == NULL)
10642 {
10643 /* Catch all exceptions. */
10644 *ex = ex_catch_exception;
10645 *exp_string = NULL;
10646 }
10647 else if (strcmp (exception_name, "unhandled") == 0)
10648 {
10649 /* Catch unhandled exceptions. */
10650 *ex = ex_catch_exception_unhandled;
10651 *exp_string = NULL;
10652 }
10653 else
10654 {
10655 /* Catch a specific exception. */
10656 *ex = ex_catch_exception;
10657 *exp_string = exception_name;
10658 }
10659}
10660
10661/* Return the name of the symbol on which we should break in order to
10662 implement a catchpoint of the EX kind. */
10663
10664static const char *
10665ada_exception_sym_name (enum exception_catchpoint_kind ex)
10666{
0259addd
JB
10667 gdb_assert (exception_info != NULL);
10668
f7f9143b
JB
10669 switch (ex)
10670 {
10671 case ex_catch_exception:
0259addd 10672 return (exception_info->catch_exception_sym);
f7f9143b
JB
10673 break;
10674 case ex_catch_exception_unhandled:
0259addd 10675 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10676 break;
10677 case ex_catch_assert:
0259addd 10678 return (exception_info->catch_assert_sym);
f7f9143b
JB
10679 break;
10680 default:
10681 internal_error (__FILE__, __LINE__,
10682 _("unexpected catchpoint kind (%d)"), ex);
10683 }
10684}
10685
10686/* Return the breakpoint ops "virtual table" used for catchpoints
10687 of the EX kind. */
10688
10689static struct breakpoint_ops *
4b9eee8c 10690ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10691{
10692 switch (ex)
10693 {
10694 case ex_catch_exception:
10695 return (&catch_exception_breakpoint_ops);
10696 break;
10697 case ex_catch_exception_unhandled:
10698 return (&catch_exception_unhandled_breakpoint_ops);
10699 break;
10700 case ex_catch_assert:
10701 return (&catch_assert_breakpoint_ops);
10702 break;
10703 default:
10704 internal_error (__FILE__, __LINE__,
10705 _("unexpected catchpoint kind (%d)"), ex);
10706 }
10707}
10708
10709/* Return the condition that will be used to match the current exception
10710 being raised with the exception that the user wants to catch. This
10711 assumes that this condition is used when the inferior just triggered
10712 an exception catchpoint.
10713
10714 The string returned is a newly allocated string that needs to be
10715 deallocated later. */
10716
10717static char *
10718ada_exception_catchpoint_cond_string (const char *exp_string)
10719{
3d0b0fa3
JB
10720 int i;
10721
10722 /* The standard exceptions are a special case. They are defined in
10723 runtime units that have been compiled without debugging info; if
10724 EXP_STRING is the not-fully-qualified name of a standard
10725 exception (e.g. "constraint_error") then, during the evaluation
10726 of the condition expression, the symbol lookup on this name would
10727 *not* return this standard exception. The catchpoint condition
10728 may then be set only on user-defined exceptions which have the
10729 same not-fully-qualified name (e.g. my_package.constraint_error).
10730
10731 To avoid this unexcepted behavior, these standard exceptions are
10732 systematically prefixed by "standard". This means that "catch
10733 exception constraint_error" is rewritten into "catch exception
10734 standard.constraint_error".
10735
10736 If an exception named contraint_error is defined in another package of
10737 the inferior program, then the only way to specify this exception as a
10738 breakpoint condition is to use its fully-qualified named:
10739 e.g. my_package.constraint_error. */
10740
10741 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10742 {
10743 if (strcmp (standard_exc [i], exp_string) == 0)
10744 {
10745 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10746 exp_string);
10747 }
10748 }
f7f9143b
JB
10749 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10750}
10751
10752/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10753
10754static struct expression *
10755ada_parse_catchpoint_condition (char *cond_string,
10756 struct symtab_and_line sal)
10757{
10758 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10759}
10760
10761/* Return the symtab_and_line that should be used to insert an exception
10762 catchpoint of the TYPE kind.
10763
10764 EX_STRING should contain the name of a specific exception
10765 that the catchpoint should catch, or NULL otherwise.
10766
10767 The idea behind all the remaining parameters is that their names match
10768 the name of certain fields in the breakpoint structure that are used to
10769 handle exception catchpoints. This function returns the value to which
10770 these fields should be set, depending on the type of catchpoint we need
10771 to create.
10772
10773 If COND and COND_STRING are both non-NULL, any value they might
10774 hold will be free'ed, and then replaced by newly allocated ones.
10775 These parameters are left untouched otherwise. */
10776
10777static struct symtab_and_line
10778ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10779 char **addr_string, char **cond_string,
10780 struct expression **cond, struct breakpoint_ops **ops)
10781{
10782 const char *sym_name;
10783 struct symbol *sym;
10784 struct symtab_and_line sal;
10785
0259addd
JB
10786 /* First, find out which exception support info to use. */
10787 ada_exception_support_info_sniffer ();
10788
10789 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10790 the Ada exceptions requested by the user. */
10791
10792 sym_name = ada_exception_sym_name (ex);
10793 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10794
10795 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10796 that should be compiled with debugging information. As a result, we
10797 expect to find that symbol in the symtabs. If we don't find it, then
10798 the target most likely does not support Ada exceptions, or we cannot
10799 insert exception breakpoints yet, because the GNAT runtime hasn't been
10800 loaded yet. */
10801
10802 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10803 in such a way that no debugging information is produced for the symbol
10804 we are looking for. In this case, we could search the minimal symbols
10805 as a fall-back mechanism. This would still be operating in degraded
10806 mode, however, as we would still be missing the debugging information
10807 that is needed in order to extract the name of the exception being
10808 raised (this name is printed in the catchpoint message, and is also
10809 used when trying to catch a specific exception). We do not handle
10810 this case for now. */
10811
10812 if (sym == NULL)
0259addd 10813 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10814
10815 /* Make sure that the symbol we found corresponds to a function. */
10816 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10817 error (_("Symbol \"%s\" is not a function (class = %d)"),
10818 sym_name, SYMBOL_CLASS (sym));
10819
10820 sal = find_function_start_sal (sym, 1);
10821
10822 /* Set ADDR_STRING. */
10823
10824 *addr_string = xstrdup (sym_name);
10825
10826 /* Set the COND and COND_STRING (if not NULL). */
10827
10828 if (cond_string != NULL && cond != NULL)
10829 {
10830 if (*cond_string != NULL)
10831 {
10832 xfree (*cond_string);
10833 *cond_string = NULL;
10834 }
10835 if (*cond != NULL)
10836 {
10837 xfree (*cond);
10838 *cond = NULL;
10839 }
10840 if (exp_string != NULL)
10841 {
10842 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10843 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10844 }
10845 }
10846
10847 /* Set OPS. */
4b9eee8c 10848 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10849
10850 return sal;
10851}
10852
10853/* Parse the arguments (ARGS) of the "catch exception" command.
10854
10855 Set TYPE to the appropriate exception catchpoint type.
10856 If the user asked the catchpoint to catch only a specific
10857 exception, then save the exception name in ADDR_STRING.
10858
10859 See ada_exception_sal for a description of all the remaining
10860 function arguments of this function. */
10861
10862struct symtab_and_line
10863ada_decode_exception_location (char *args, char **addr_string,
10864 char **exp_string, char **cond_string,
10865 struct expression **cond,
10866 struct breakpoint_ops **ops)
10867{
10868 enum exception_catchpoint_kind ex;
10869
10870 catch_ada_exception_command_split (args, &ex, exp_string);
10871 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10872 cond, ops);
10873}
10874
10875struct symtab_and_line
10876ada_decode_assert_location (char *args, char **addr_string,
10877 struct breakpoint_ops **ops)
10878{
10879 /* Check that no argument where provided at the end of the command. */
10880
10881 if (args != NULL)
10882 {
10883 while (isspace (*args))
10884 args++;
10885 if (*args != '\0')
10886 error (_("Junk at end of arguments."));
10887 }
10888
10889 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10890 ops);
10891}
10892
4c4b4cd2
PH
10893 /* Operators */
10894/* Information about operators given special treatment in functions
10895 below. */
10896/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10897
10898#define ADA_OPERATORS \
10899 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10900 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10901 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10902 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10903 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10904 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10905 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10906 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10907 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10908 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10909 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10910 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10911 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10912 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10913 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10914 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10915 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10916 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10917 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10918
10919static void
10920ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10921{
10922 switch (exp->elts[pc - 1].opcode)
10923 {
76a01679 10924 default:
4c4b4cd2
PH
10925 operator_length_standard (exp, pc, oplenp, argsp);
10926 break;
10927
10928#define OP_DEFN(op, len, args, binop) \
10929 case op: *oplenp = len; *argsp = args; break;
10930 ADA_OPERATORS;
10931#undef OP_DEFN
52ce6436
PH
10932
10933 case OP_AGGREGATE:
10934 *oplenp = 3;
10935 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10936 break;
10937
10938 case OP_CHOICES:
10939 *oplenp = 3;
10940 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10941 break;
4c4b4cd2
PH
10942 }
10943}
10944
10945static char *
10946ada_op_name (enum exp_opcode opcode)
10947{
10948 switch (opcode)
10949 {
76a01679 10950 default:
4c4b4cd2 10951 return op_name_standard (opcode);
52ce6436 10952
4c4b4cd2
PH
10953#define OP_DEFN(op, len, args, binop) case op: return #op;
10954 ADA_OPERATORS;
10955#undef OP_DEFN
52ce6436
PH
10956
10957 case OP_AGGREGATE:
10958 return "OP_AGGREGATE";
10959 case OP_CHOICES:
10960 return "OP_CHOICES";
10961 case OP_NAME:
10962 return "OP_NAME";
4c4b4cd2
PH
10963 }
10964}
10965
10966/* As for operator_length, but assumes PC is pointing at the first
10967 element of the operator, and gives meaningful results only for the
52ce6436 10968 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10969
10970static void
76a01679
JB
10971ada_forward_operator_length (struct expression *exp, int pc,
10972 int *oplenp, int *argsp)
4c4b4cd2 10973{
76a01679 10974 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10975 {
10976 default:
10977 *oplenp = *argsp = 0;
10978 break;
52ce6436 10979
4c4b4cd2
PH
10980#define OP_DEFN(op, len, args, binop) \
10981 case op: *oplenp = len; *argsp = args; break;
10982 ADA_OPERATORS;
10983#undef OP_DEFN
52ce6436
PH
10984
10985 case OP_AGGREGATE:
10986 *oplenp = 3;
10987 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10988 break;
10989
10990 case OP_CHOICES:
10991 *oplenp = 3;
10992 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10993 break;
10994
10995 case OP_STRING:
10996 case OP_NAME:
10997 {
10998 int len = longest_to_int (exp->elts[pc + 1].longconst);
10999 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11000 *argsp = 0;
11001 break;
11002 }
4c4b4cd2
PH
11003 }
11004}
11005
11006static int
11007ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11008{
11009 enum exp_opcode op = exp->elts[elt].opcode;
11010 int oplen, nargs;
11011 int pc = elt;
11012 int i;
76a01679 11013
4c4b4cd2
PH
11014 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11015
76a01679 11016 switch (op)
4c4b4cd2 11017 {
76a01679 11018 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11019 case OP_ATR_FIRST:
11020 case OP_ATR_LAST:
11021 case OP_ATR_LENGTH:
11022 case OP_ATR_IMAGE:
11023 case OP_ATR_MAX:
11024 case OP_ATR_MIN:
11025 case OP_ATR_MODULUS:
11026 case OP_ATR_POS:
11027 case OP_ATR_SIZE:
11028 case OP_ATR_TAG:
11029 case OP_ATR_VAL:
11030 break;
11031
11032 case UNOP_IN_RANGE:
11033 case UNOP_QUAL:
323e0a4a
AC
11034 /* XXX: gdb_sprint_host_address, type_sprint */
11035 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11036 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11037 fprintf_filtered (stream, " (");
11038 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11039 fprintf_filtered (stream, ")");
11040 break;
11041 case BINOP_IN_BOUNDS:
52ce6436
PH
11042 fprintf_filtered (stream, " (%d)",
11043 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11044 break;
11045 case TERNOP_IN_RANGE:
11046 break;
11047
52ce6436
PH
11048 case OP_AGGREGATE:
11049 case OP_OTHERS:
11050 case OP_DISCRETE_RANGE:
11051 case OP_POSITIONAL:
11052 case OP_CHOICES:
11053 break;
11054
11055 case OP_NAME:
11056 case OP_STRING:
11057 {
11058 char *name = &exp->elts[elt + 2].string;
11059 int len = longest_to_int (exp->elts[elt + 1].longconst);
11060 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11061 break;
11062 }
11063
4c4b4cd2
PH
11064 default:
11065 return dump_subexp_body_standard (exp, stream, elt);
11066 }
11067
11068 elt += oplen;
11069 for (i = 0; i < nargs; i += 1)
11070 elt = dump_subexp (exp, stream, elt);
11071
11072 return elt;
11073}
11074
11075/* The Ada extension of print_subexp (q.v.). */
11076
76a01679
JB
11077static void
11078ada_print_subexp (struct expression *exp, int *pos,
11079 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11080{
52ce6436 11081 int oplen, nargs, i;
4c4b4cd2
PH
11082 int pc = *pos;
11083 enum exp_opcode op = exp->elts[pc].opcode;
11084
11085 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11086
52ce6436 11087 *pos += oplen;
4c4b4cd2
PH
11088 switch (op)
11089 {
11090 default:
52ce6436 11091 *pos -= oplen;
4c4b4cd2
PH
11092 print_subexp_standard (exp, pos, stream, prec);
11093 return;
11094
11095 case OP_VAR_VALUE:
4c4b4cd2
PH
11096 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11097 return;
11098
11099 case BINOP_IN_BOUNDS:
323e0a4a 11100 /* XXX: sprint_subexp */
4c4b4cd2 11101 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11102 fputs_filtered (" in ", stream);
4c4b4cd2 11103 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11104 fputs_filtered ("'range", stream);
4c4b4cd2 11105 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11106 fprintf_filtered (stream, "(%ld)",
11107 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11108 return;
11109
11110 case TERNOP_IN_RANGE:
4c4b4cd2 11111 if (prec >= PREC_EQUAL)
76a01679 11112 fputs_filtered ("(", stream);
323e0a4a 11113 /* XXX: sprint_subexp */
4c4b4cd2 11114 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11115 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11116 print_subexp (exp, pos, stream, PREC_EQUAL);
11117 fputs_filtered (" .. ", stream);
11118 print_subexp (exp, pos, stream, PREC_EQUAL);
11119 if (prec >= PREC_EQUAL)
76a01679
JB
11120 fputs_filtered (")", stream);
11121 return;
4c4b4cd2
PH
11122
11123 case OP_ATR_FIRST:
11124 case OP_ATR_LAST:
11125 case OP_ATR_LENGTH:
11126 case OP_ATR_IMAGE:
11127 case OP_ATR_MAX:
11128 case OP_ATR_MIN:
11129 case OP_ATR_MODULUS:
11130 case OP_ATR_POS:
11131 case OP_ATR_SIZE:
11132 case OP_ATR_TAG:
11133 case OP_ATR_VAL:
4c4b4cd2 11134 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11135 {
11136 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11137 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11138 *pos += 3;
11139 }
4c4b4cd2 11140 else
76a01679 11141 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11142 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11143 if (nargs > 1)
76a01679
JB
11144 {
11145 int tem;
11146 for (tem = 1; tem < nargs; tem += 1)
11147 {
11148 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11149 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11150 }
11151 fputs_filtered (")", stream);
11152 }
4c4b4cd2 11153 return;
14f9c5c9 11154
4c4b4cd2 11155 case UNOP_QUAL:
4c4b4cd2
PH
11156 type_print (exp->elts[pc + 1].type, "", stream, 0);
11157 fputs_filtered ("'(", stream);
11158 print_subexp (exp, pos, stream, PREC_PREFIX);
11159 fputs_filtered (")", stream);
11160 return;
14f9c5c9 11161
4c4b4cd2 11162 case UNOP_IN_RANGE:
323e0a4a 11163 /* XXX: sprint_subexp */
4c4b4cd2 11164 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11165 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11166 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11167 return;
52ce6436
PH
11168
11169 case OP_DISCRETE_RANGE:
11170 print_subexp (exp, pos, stream, PREC_SUFFIX);
11171 fputs_filtered ("..", stream);
11172 print_subexp (exp, pos, stream, PREC_SUFFIX);
11173 return;
11174
11175 case OP_OTHERS:
11176 fputs_filtered ("others => ", stream);
11177 print_subexp (exp, pos, stream, PREC_SUFFIX);
11178 return;
11179
11180 case OP_CHOICES:
11181 for (i = 0; i < nargs-1; i += 1)
11182 {
11183 if (i > 0)
11184 fputs_filtered ("|", stream);
11185 print_subexp (exp, pos, stream, PREC_SUFFIX);
11186 }
11187 fputs_filtered (" => ", stream);
11188 print_subexp (exp, pos, stream, PREC_SUFFIX);
11189 return;
11190
11191 case OP_POSITIONAL:
11192 print_subexp (exp, pos, stream, PREC_SUFFIX);
11193 return;
11194
11195 case OP_AGGREGATE:
11196 fputs_filtered ("(", stream);
11197 for (i = 0; i < nargs; i += 1)
11198 {
11199 if (i > 0)
11200 fputs_filtered (", ", stream);
11201 print_subexp (exp, pos, stream, PREC_SUFFIX);
11202 }
11203 fputs_filtered (")", stream);
11204 return;
4c4b4cd2
PH
11205 }
11206}
14f9c5c9
AS
11207
11208/* Table mapping opcodes into strings for printing operators
11209 and precedences of the operators. */
11210
d2e4a39e
AS
11211static const struct op_print ada_op_print_tab[] = {
11212 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11213 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11214 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11215 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11216 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11217 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11218 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11219 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11220 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11221 {">=", BINOP_GEQ, PREC_ORDER, 0},
11222 {">", BINOP_GTR, PREC_ORDER, 0},
11223 {"<", BINOP_LESS, PREC_ORDER, 0},
11224 {">>", BINOP_RSH, PREC_SHIFT, 0},
11225 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11226 {"+", BINOP_ADD, PREC_ADD, 0},
11227 {"-", BINOP_SUB, PREC_ADD, 0},
11228 {"&", BINOP_CONCAT, PREC_ADD, 0},
11229 {"*", BINOP_MUL, PREC_MUL, 0},
11230 {"/", BINOP_DIV, PREC_MUL, 0},
11231 {"rem", BINOP_REM, PREC_MUL, 0},
11232 {"mod", BINOP_MOD, PREC_MUL, 0},
11233 {"**", BINOP_EXP, PREC_REPEAT, 0},
11234 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11235 {"-", UNOP_NEG, PREC_PREFIX, 0},
11236 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11237 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11238 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11239 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11240 {".all", UNOP_IND, PREC_SUFFIX, 1},
11241 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11242 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11243 {NULL, 0, 0, 0}
14f9c5c9
AS
11244};
11245\f
72d5681a
PH
11246enum ada_primitive_types {
11247 ada_primitive_type_int,
11248 ada_primitive_type_long,
11249 ada_primitive_type_short,
11250 ada_primitive_type_char,
11251 ada_primitive_type_float,
11252 ada_primitive_type_double,
11253 ada_primitive_type_void,
11254 ada_primitive_type_long_long,
11255 ada_primitive_type_long_double,
11256 ada_primitive_type_natural,
11257 ada_primitive_type_positive,
11258 ada_primitive_type_system_address,
11259 nr_ada_primitive_types
11260};
6c038f32
PH
11261
11262static void
d4a9a881 11263ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11264 struct language_arch_info *lai)
11265{
d4a9a881 11266 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11267 lai->primitive_type_vector
d4a9a881 11268 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11269 struct type *);
e9bb382b
UW
11270
11271 lai->primitive_type_vector [ada_primitive_type_int]
11272 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11273 0, "integer");
11274 lai->primitive_type_vector [ada_primitive_type_long]
11275 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11276 0, "long_integer");
11277 lai->primitive_type_vector [ada_primitive_type_short]
11278 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11279 0, "short_integer");
11280 lai->string_char_type
11281 = lai->primitive_type_vector [ada_primitive_type_char]
11282 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11283 lai->primitive_type_vector [ada_primitive_type_float]
11284 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11285 "float", NULL);
11286 lai->primitive_type_vector [ada_primitive_type_double]
11287 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11288 "long_float", NULL);
11289 lai->primitive_type_vector [ada_primitive_type_long_long]
11290 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11291 0, "long_long_integer");
11292 lai->primitive_type_vector [ada_primitive_type_long_double]
11293 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11294 "long_long_float", NULL);
11295 lai->primitive_type_vector [ada_primitive_type_natural]
11296 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11297 0, "natural");
11298 lai->primitive_type_vector [ada_primitive_type_positive]
11299 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11300 0, "positive");
11301 lai->primitive_type_vector [ada_primitive_type_void]
11302 = builtin->builtin_void;
11303
11304 lai->primitive_type_vector [ada_primitive_type_system_address]
11305 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11306 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11307 = "system__address";
fbb06eb1 11308
47e729a8 11309 lai->bool_type_symbol = NULL;
fbb06eb1 11310 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11311}
6c038f32
PH
11312\f
11313 /* Language vector */
11314
11315/* Not really used, but needed in the ada_language_defn. */
11316
11317static void
6c7a06a3 11318emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11319{
6c7a06a3 11320 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11321}
11322
11323static int
11324parse (void)
11325{
11326 warnings_issued = 0;
11327 return ada_parse ();
11328}
11329
11330static const struct exp_descriptor ada_exp_descriptor = {
11331 ada_print_subexp,
11332 ada_operator_length,
11333 ada_op_name,
11334 ada_dump_subexp_body,
11335 ada_evaluate_subexp
11336};
11337
11338const struct language_defn ada_language_defn = {
11339 "ada", /* Language name */
11340 language_ada,
6c038f32
PH
11341 range_check_off,
11342 type_check_off,
11343 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11344 that's not quite what this means. */
6c038f32 11345 array_row_major,
9a044a89 11346 macro_expansion_no,
6c038f32
PH
11347 &ada_exp_descriptor,
11348 parse,
11349 ada_error,
11350 resolve,
11351 ada_printchar, /* Print a character constant */
11352 ada_printstr, /* Function to print string constant */
11353 emit_char, /* Function to print single char (not used) */
6c038f32 11354 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11355 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11356 ada_val_print, /* Print a value using appropriate syntax */
11357 ada_value_print, /* Print a top-level value */
11358 NULL, /* Language specific skip_trampoline */
2b2d9e11 11359 NULL, /* name_of_this */
6c038f32
PH
11360 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11361 basic_lookup_transparent_type, /* lookup_transparent_type */
11362 ada_la_decode, /* Language specific symbol demangler */
11363 NULL, /* Language specific class_name_from_physname */
11364 ada_op_print_tab, /* expression operators for printing */
11365 0, /* c-style arrays */
11366 1, /* String lower bound */
6c038f32 11367 ada_get_gdb_completer_word_break_characters,
41d27058 11368 ada_make_symbol_completion_list,
72d5681a 11369 ada_language_arch_info,
e79af960 11370 ada_print_array_index,
41f1b697 11371 default_pass_by_reference,
ae6a3a4c 11372 c_get_string,
6c038f32
PH
11373 LANG_MAGIC
11374};
11375
2c0b251b
PA
11376/* Provide a prototype to silence -Wmissing-prototypes. */
11377extern initialize_file_ftype _initialize_ada_language;
11378
5bf03f13
JB
11379/* Command-list for the "set/show ada" prefix command. */
11380static struct cmd_list_element *set_ada_list;
11381static struct cmd_list_element *show_ada_list;
11382
11383/* Implement the "set ada" prefix command. */
11384
11385static void
11386set_ada_command (char *arg, int from_tty)
11387{
11388 printf_unfiltered (_(\
11389"\"set ada\" must be followed by the name of a setting.\n"));
11390 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11391}
11392
11393/* Implement the "show ada" prefix command. */
11394
11395static void
11396show_ada_command (char *args, int from_tty)
11397{
11398 cmd_show_list (show_ada_list, from_tty, "");
11399}
11400
d2e4a39e 11401void
6c038f32 11402_initialize_ada_language (void)
14f9c5c9 11403{
6c038f32
PH
11404 add_language (&ada_language_defn);
11405
5bf03f13
JB
11406 add_prefix_cmd ("ada", no_class, set_ada_command,
11407 _("Prefix command for changing Ada-specfic settings"),
11408 &set_ada_list, "set ada ", 0, &setlist);
11409
11410 add_prefix_cmd ("ada", no_class, show_ada_command,
11411 _("Generic command for showing Ada-specific settings."),
11412 &show_ada_list, "show ada ", 0, &showlist);
11413
11414 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11415 &trust_pad_over_xvs, _("\
11416Enable or disable an optimization trusting PAD types over XVS types"), _("\
11417Show whether an optimization trusting PAD types over XVS types is activated"),
11418 _("\
11419This is related to the encoding used by the GNAT compiler. The debugger\n\
11420should normally trust the contents of PAD types, but certain older versions\n\
11421of GNAT have a bug that sometimes causes the information in the PAD type\n\
11422to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11423work around this bug. It is always safe to turn this option \"off\", but\n\
11424this incurs a slight performance penalty, so it is recommended to NOT change\n\
11425this option to \"off\" unless necessary."),
11426 NULL, NULL, &set_ada_list, &show_ada_list);
11427
6c038f32 11428 varsize_limit = 65536;
6c038f32
PH
11429
11430 obstack_init (&symbol_list_obstack);
11431
11432 decoded_names_store = htab_create_alloc
11433 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11434 NULL, xcalloc, xfree);
6b69afc4
JB
11435
11436 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11437}