]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-nat.c
Update FSF address.
[thirdparty/binutils-gdb.git] / gdb / alpha-nat.c
CommitLineData
cef4c2e7 1/* Low level Alpha interface, for GDB when running native.
2592eef8 2 Copyright 1993, 1995 Free Software Foundation, Inc.
cef4c2e7
PS
3
4This file is part of GDB.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
6c9638b4 18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
cef4c2e7
PS
19
20#include "defs.h"
21#include "inferior.h"
22#include "gdbcore.h"
23#include "target.h"
24#include <sys/ptrace.h>
25#include <machine/reg.h>
26
27/* Size of elements in jmpbuf */
28
29#define JB_ELEMENT_SIZE 8
30
31/* The definition for JB_PC in machine/reg.h is wrong.
32 And we can't get at the correct definition in setjmp.h as it is
33 not always available (eg. if _POSIX_SOURCE is defined which is the
34 default). As the defintion is unlikely to change (see comment
35 in <setjmp.h>, define the correct value here. */
36
37#undef JB_PC
38#define JB_PC 2
39
40/* Figure out where the longjmp will land.
41 We expect the first arg to be a pointer to the jmp_buf structure from which
42 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
43 This routine returns true on success. */
44
45int
46get_longjmp_target (pc)
47 CORE_ADDR *pc;
48{
49 CORE_ADDR jb_addr;
50 char raw_buffer[MAX_REGISTER_RAW_SIZE];
51
52 jb_addr = read_register(A0_REGNUM);
53
54 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
55 sizeof(CORE_ADDR)))
56 return 0;
57
58 *pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
59 return 1;
60}
61
62/* Extract the register values out of the core file and store
63 them where `read_register' will find them.
64
65 CORE_REG_SECT points to the register values themselves, read into memory.
66 CORE_REG_SIZE is the size of that area.
67 WHICH says which set of registers we are handling (0 = int, 2 = float
68 on machines where they are discontiguous).
69 REG_ADDR is the offset from u.u_ar0 to the register values relative to
70 core_reg_sect. This is used with old-fashioned core files to
71 locate the registers in a large upage-plus-stack ".reg" section.
72 Original upage address X is at location core_reg_sect+x+reg_addr.
73 */
74
75void
76fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
77 char *core_reg_sect;
78 unsigned core_reg_size;
79 int which;
80 unsigned reg_addr;
81{
82 register int regno;
83 register int addr;
84 int bad_reg = -1;
85
86 /* Table to map a gdb regnum to an index in the core register section.
87 The floating point register values are garbage in OSF/1.2 core files. */
88 static int core_reg_mapping[NUM_REGS] =
89 {
90#define EFL (EF_SIZE / 8)
91 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
92 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
93 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
94 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
95 EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7,
96 EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15,
97 EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23,
98 EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31,
99 EF_PC, -1
100 };
101 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
102
103 for (regno = 0; regno < NUM_REGS; regno++)
104 {
105 if (CANNOT_FETCH_REGISTER (regno))
106 {
107 supply_register (regno, zerobuf);
108 continue;
109 }
110 addr = 8 * core_reg_mapping[regno];
111 if (addr < 0 || addr >= core_reg_size)
112 {
113 if (bad_reg < 0)
114 bad_reg = regno;
115 }
116 else
117 {
118 supply_register (regno, core_reg_sect + addr);
119 }
120 }
121 if (bad_reg >= 0)
122 {
123 error ("Register %s not found in core file.", reg_names[bad_reg]);
124 }
125}
126
127/* Map gdb internal register number to a ptrace ``address''.
128 These ``addresses'' are defined in <sys/ptrace.h> */
129
130#define REGISTER_PTRACE_ADDR(regno) \
131 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
132 : regno == PC_REGNUM ? PC \
133 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
134 : 0)
135
136/* Return the ptrace ``address'' of register REGNO. */
137
138unsigned int
139register_addr (regno, blockend)
140 int regno;
141 int blockend;
142{
143 return REGISTER_PTRACE_ADDR (regno);
144}
2592eef8
PS
145
146#ifdef USE_PROC_FS
147#include <sys/procfs.h>
148
149/*
150 * See the comment in m68k-tdep.c regarding the utility of these functions.
151 */
152
153void
154supply_gregset (gregsetp)
155 gregset_t *gregsetp;
156{
157 register int regi;
158 register long *regp = gregsetp->regs;
3f403f6a 159 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
2592eef8
PS
160
161 for (regi = 0; regi < 31; regi++)
162 supply_register (regi, (char *)(regp + regi));
163
164 supply_register (PC_REGNUM, (char *)(regp + 31));
3f403f6a
PS
165
166 /* Fill inaccessible registers with zero. */
167 supply_register (ZERO_REGNUM, zerobuf);
168 supply_register (FP_REGNUM, zerobuf);
2592eef8
PS
169}
170
171void
172fill_gregset (gregsetp, regno)
173 gregset_t *gregsetp;
174 int regno;
175{
176 int regi;
177 register long *regp = gregsetp->regs;
178
179 for (regi = 0; regi < 31; regi++)
180 if ((regno == -1) || (regno == regi))
181 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
182
183 if ((regno == -1) || (regno == PC_REGNUM))
184 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
185}
186
187/*
188 * Now we do the same thing for floating-point registers.
189 * Again, see the comments in m68k-tdep.c.
190 */
191
192void
193supply_fpregset (fpregsetp)
194 fpregset_t *fpregsetp;
195{
196 register int regi;
197 register long *regp = fpregsetp->regs;
198
199 for (regi = 0; regi < 32; regi++)
200 supply_register (regi + FP0_REGNUM, (char *)(regp + regi));
201}
202
203void
204fill_fpregset (fpregsetp, regno)
205 fpregset_t *fpregsetp;
206 int regno;
207{
208 int regi;
209 register long *regp = fpregsetp->regs;
210
211 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
212 {
213 if ((regno == -1) || (regno == regi))
214 {
215 *(regp + regi - FP0_REGNUM) =
216 *(long *) &registers[REGISTER_BYTE (regi)];
217 }
218 }
219}
220#endif