]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
merge from gcc
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904
AC
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2005 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
615967cb 24#include "doublest.h"
c906108c 25#include "frame.h"
d2427a71
RH
26#include "frame-unwind.h"
27#include "frame-base.h"
baa490c4 28#include "dwarf2-frame.h"
c906108c
SS
29#include "inferior.h"
30#include "symtab.h"
31#include "value.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "dis-asm.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "gdb_string.h"
c5f0f3d0 38#include "linespec.h"
4e052eda 39#include "regcache.h"
615967cb 40#include "reggroups.h"
dc129d82 41#include "arch-utils.h"
4be87837 42#include "osabi.h"
fe898f56 43#include "block.h"
7d9b040b 44#include "infcall.h"
dc129d82
JT
45
46#include "elf-bfd.h"
47
48#include "alpha-tdep.h"
49
c906108c 50\f
515921d7
JB
51/* Return the name of the REGNO register.
52
53 An empty name corresponds to a register number that used to
54 be used for a virtual register. That virtual register has
55 been removed, but the index is still reserved to maintain
56 compatibility with existing remote alpha targets. */
57
fa88f677 58static const char *
636a6dfc
JT
59alpha_register_name (int regno)
60{
5ab84872 61 static const char * const register_names[] =
636a6dfc
JT
62 {
63 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
64 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
65 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
66 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
67 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
68 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
69 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
70 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 71 "pc", "", "unique"
636a6dfc
JT
72 };
73
74 if (regno < 0)
5ab84872 75 return NULL;
636a6dfc 76 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
5ab84872
RH
77 return NULL;
78 return register_names[regno];
636a6dfc 79}
d734c450 80
dc129d82 81static int
d734c450
JT
82alpha_cannot_fetch_register (int regno)
83{
515921d7
JB
84 return (regno == ALPHA_ZERO_REGNUM
85 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
86}
87
dc129d82 88static int
d734c450
JT
89alpha_cannot_store_register (int regno)
90{
515921d7
JB
91 return (regno == ALPHA_ZERO_REGNUM
92 || strlen (alpha_register_name (regno)) == 0);
d734c450
JT
93}
94
dc129d82 95static struct type *
c483c494 96alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 97{
72667056
RH
98 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
99 return builtin_type_void_data_ptr;
100 if (regno == ALPHA_PC_REGNUM)
101 return builtin_type_void_func_ptr;
102
103 /* Don't need to worry about little vs big endian until
104 some jerk tries to port to alpha-unicosmk. */
b38b6be2 105 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
72667056
RH
106 return builtin_type_ieee_double_little;
107
108 return builtin_type_int64;
0d056799 109}
f8453e34 110
615967cb
RH
111/* Is REGNUM a member of REGGROUP? */
112
113static int
114alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
115 struct reggroup *group)
116{
117 /* Filter out any registers eliminated, but whose regnum is
118 reserved for backward compatibility, e.g. the vfp. */
119 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
120 return 0;
121
df4a182b
RH
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150}
151
dc129d82 152static int
f8453e34
JT
153alpha_register_byte (int regno)
154{
155 return (regno * 8);
156}
157
c483c494
RH
158/* The following represents exactly the conversion performed by
159 the LDS instruction. This applies to both single-precision
160 floating point and 32-bit integers. */
161
162static void
163alpha_lds (void *out, const void *in)
164{
165 ULONGEST mem = extract_unsigned_integer (in, 4);
166 ULONGEST frac = (mem >> 0) & 0x7fffff;
167 ULONGEST sign = (mem >> 31) & 1;
168 ULONGEST exp_msb = (mem >> 30) & 1;
169 ULONGEST exp_low = (mem >> 23) & 0x7f;
170 ULONGEST exp, reg;
171
172 exp = (exp_msb << 10) | exp_low;
173 if (exp_msb)
174 {
175 if (exp_low == 0x7f)
176 exp = 0x7ff;
177 }
178 else
179 {
180 if (exp_low != 0x00)
181 exp |= 0x380;
182 }
183
184 reg = (sign << 63) | (exp << 52) | (frac << 29);
185 store_unsigned_integer (out, 8, reg);
186}
187
188/* Similarly, this represents exactly the conversion performed by
189 the STS instruction. */
190
39efb398 191static void
c483c494
RH
192alpha_sts (void *out, const void *in)
193{
194 ULONGEST reg, mem;
195
196 reg = extract_unsigned_integer (in, 8);
197 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
198 store_unsigned_integer (out, 4, mem);
199}
200
d2427a71
RH
201/* The alpha needs a conversion between register and memory format if the
202 register is a floating point register and memory format is float, as the
203 register format must be double or memory format is an integer with 4
204 bytes or less, as the representation of integers in floating point
205 registers is different. */
206
c483c494 207static int
ff2e87ac 208alpha_convert_register_p (int regno, struct type *type)
14696584 209{
c483c494 210 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
14696584
RH
211}
212
d2427a71 213static void
ff2e87ac 214alpha_register_to_value (struct frame_info *frame, int regnum,
5b819568 215 struct type *valtype, gdb_byte *out)
5868c862 216{
ff2e87ac
AC
217 char in[MAX_REGISTER_SIZE];
218 frame_register_read (frame, regnum, in);
c483c494 219 switch (TYPE_LENGTH (valtype))
d2427a71 220 {
c483c494
RH
221 case 4:
222 alpha_sts (out, in);
223 break;
224 case 8:
225 memcpy (out, in, 8);
226 break;
227 default:
323e0a4a 228 error (_("Cannot retrieve value from floating point register"));
d2427a71 229 }
d2427a71 230}
5868c862 231
d2427a71 232static void
ff2e87ac 233alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 234 struct type *valtype, const gdb_byte *in)
d2427a71 235{
ff2e87ac 236 char out[MAX_REGISTER_SIZE];
c483c494 237 switch (TYPE_LENGTH (valtype))
d2427a71 238 {
c483c494
RH
239 case 4:
240 alpha_lds (out, in);
241 break;
242 case 8:
243 memcpy (out, in, 8);
244 break;
245 default:
323e0a4a 246 error (_("Cannot store value in floating point register"));
d2427a71 247 }
ff2e87ac 248 put_frame_register (frame, regnum, out);
5868c862
JT
249}
250
d2427a71
RH
251\f
252/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
253 the stack. The register arguments are stored in ARG_REG_BUFFER, and
254 then moved into the register file; this simplifies the passing of a
255 large struct which extends from the registers to the stack, plus avoids
256 three ptrace invocations per word.
257
258 We don't bother tracking which register values should go in integer
259 regs or fp regs; we load the same values into both.
260
d2427a71
RH
261 If the called function is returning a structure, the address of the
262 structure to be returned is passed as a hidden first argument. */
c906108c 263
d2427a71 264static CORE_ADDR
7d9b040b 265alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
266 struct regcache *regcache, CORE_ADDR bp_addr,
267 int nargs, struct value **args, CORE_ADDR sp,
268 int struct_return, CORE_ADDR struct_addr)
c906108c 269{
d2427a71
RH
270 int i;
271 int accumulate_size = struct_return ? 8 : 0;
d2427a71 272 struct alpha_arg
c906108c 273 {
d2427a71
RH
274 char *contents;
275 int len;
276 int offset;
277 };
c88e30c0
RH
278 struct alpha_arg *alpha_args
279 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 280 struct alpha_arg *m_arg;
c88e30c0 281 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 282 int required_arg_regs;
7d9b040b 283 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 284
c88e30c0
RH
285 /* The ABI places the address of the called function in T12. */
286 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
287
288 /* Set the return address register to point to the entry point
289 of the program, where a breakpoint lies in wait. */
290 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
291
292 /* Lay out the arguments in memory. */
d2427a71
RH
293 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
294 {
295 struct value *arg = args[i];
4991999e 296 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 297
d2427a71
RH
298 /* Cast argument to long if necessary as the compiler does it too. */
299 switch (TYPE_CODE (arg_type))
c906108c 300 {
d2427a71
RH
301 case TYPE_CODE_INT:
302 case TYPE_CODE_BOOL:
303 case TYPE_CODE_CHAR:
304 case TYPE_CODE_RANGE:
305 case TYPE_CODE_ENUM:
0ede8eca 306 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 307 {
0ede8eca
RH
308 /* 32-bit values must be sign-extended to 64 bits
309 even if the base data type is unsigned. */
310 arg_type = builtin_type_int32;
311 arg = value_cast (arg_type, arg);
312 }
313 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
314 {
315 arg_type = builtin_type_int64;
d2427a71
RH
316 arg = value_cast (arg_type, arg);
317 }
318 break;
7b5e1cb3 319
c88e30c0
RH
320 case TYPE_CODE_FLT:
321 /* "float" arguments loaded in registers must be passed in
322 register format, aka "double". */
323 if (accumulate_size < sizeof (arg_reg_buffer)
324 && TYPE_LENGTH (arg_type) == 4)
325 {
eb4edb88 326 arg_type = builtin_type_ieee_double_little;
c88e30c0
RH
327 arg = value_cast (arg_type, arg);
328 }
329 /* Tru64 5.1 has a 128-bit long double, and passes this by
330 invisible reference. No one else uses this data type. */
331 else if (TYPE_LENGTH (arg_type) == 16)
332 {
333 /* Allocate aligned storage. */
334 sp = (sp & -16) - 16;
335
336 /* Write the real data into the stack. */
0fd88904 337 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
338
339 /* Construct the indirection. */
340 arg_type = lookup_pointer_type (arg_type);
341 arg = value_from_pointer (arg_type, sp);
342 }
343 break;
7b5e1cb3
RH
344
345 case TYPE_CODE_COMPLEX:
346 /* ??? The ABI says that complex values are passed as two
347 separate scalar values. This distinction only matters
348 for complex float. However, GCC does not implement this. */
349
350 /* Tru64 5.1 has a 128-bit long double, and passes this by
351 invisible reference. */
352 if (TYPE_LENGTH (arg_type) == 32)
353 {
354 /* Allocate aligned storage. */
355 sp = (sp & -16) - 16;
356
357 /* Write the real data into the stack. */
0fd88904 358 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
359
360 /* Construct the indirection. */
361 arg_type = lookup_pointer_type (arg_type);
362 arg = value_from_pointer (arg_type, sp);
363 }
364 break;
365
d2427a71
RH
366 default:
367 break;
c906108c 368 }
d2427a71
RH
369 m_arg->len = TYPE_LENGTH (arg_type);
370 m_arg->offset = accumulate_size;
371 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
0fd88904 372 m_arg->contents = value_contents_writeable (arg);
c906108c
SS
373 }
374
d2427a71
RH
375 /* Determine required argument register loads, loading an argument register
376 is expensive as it uses three ptrace calls. */
377 required_arg_regs = accumulate_size / 8;
378 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
379 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 380
d2427a71 381 /* Make room for the arguments on the stack. */
c88e30c0
RH
382 if (accumulate_size < sizeof(arg_reg_buffer))
383 accumulate_size = 0;
384 else
385 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 386 sp -= accumulate_size;
c906108c 387
c88e30c0 388 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 389 sp &= ~15;
c906108c 390
d2427a71
RH
391 /* `Push' arguments on the stack. */
392 for (i = nargs; m_arg--, --i >= 0;)
c906108c 393 {
c88e30c0
RH
394 char *contents = m_arg->contents;
395 int offset = m_arg->offset;
396 int len = m_arg->len;
397
398 /* Copy the bytes destined for registers into arg_reg_buffer. */
399 if (offset < sizeof(arg_reg_buffer))
400 {
401 if (offset + len <= sizeof(arg_reg_buffer))
402 {
403 memcpy (arg_reg_buffer + offset, contents, len);
404 continue;
405 }
406 else
407 {
408 int tlen = sizeof(arg_reg_buffer) - offset;
409 memcpy (arg_reg_buffer + offset, contents, tlen);
410 offset += tlen;
411 contents += tlen;
412 len -= tlen;
413 }
414 }
415
416 /* Everything else goes to the stack. */
417 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 418 }
c88e30c0
RH
419 if (struct_return)
420 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
c906108c 421
d2427a71
RH
422 /* Load the argument registers. */
423 for (i = 0; i < required_arg_regs; i++)
424 {
09cc52fd
RH
425 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
426 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
427 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
428 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 429 }
c906108c 430
09cc52fd
RH
431 /* Finally, update the stack pointer. */
432 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
433
c88e30c0 434 return sp;
c906108c
SS
435}
436
5ec2bb99
RH
437/* Extract from REGCACHE the value about to be returned from a function
438 and copy it into VALBUF. */
d2427a71 439
dc129d82 440static void
5ec2bb99 441alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 442 gdb_byte *valbuf)
140f9984 443{
7b5e1cb3 444 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
445 char raw_buffer[ALPHA_REGISTER_SIZE];
446 ULONGEST l;
447
448 switch (TYPE_CODE (valtype))
449 {
450 case TYPE_CODE_FLT:
7b5e1cb3 451 switch (length)
5ec2bb99
RH
452 {
453 case 4:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
c483c494 455 alpha_sts (valbuf, raw_buffer);
5ec2bb99
RH
456 break;
457
458 case 8:
459 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
460 break;
461
24064b5c
RH
462 case 16:
463 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
464 read_memory (l, valbuf, 16);
465 break;
466
5ec2bb99 467 default:
323e0a4a 468 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
469 }
470 break;
471
7b5e1cb3
RH
472 case TYPE_CODE_COMPLEX:
473 switch (length)
474 {
475 case 8:
476 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
478 break;
479
480 case 16:
481 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
482 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
483 (char *)valbuf + 8);
484 break;
485
486 case 32:
487 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
488 read_memory (l, valbuf, 32);
489 break;
490
491 default:
323e0a4a 492 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
493 }
494 break;
495
5ec2bb99
RH
496 default:
497 /* Assume everything else degenerates to an integer. */
498 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3 499 store_unsigned_integer (valbuf, length, l);
5ec2bb99
RH
500 break;
501 }
140f9984
JT
502}
503
5ec2bb99
RH
504/* Extract from REGCACHE the address of a structure about to be returned
505 from a function. */
506
507static CORE_ADDR
508alpha_extract_struct_value_address (struct regcache *regcache)
509{
510 ULONGEST addr;
511 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
512 return addr;
513}
514
515/* Insert the given value into REGCACHE as if it was being
516 returned by a function. */
0d056799 517
d2427a71 518static void
5ec2bb99 519alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 520 const gdb_byte *valbuf)
c906108c 521{
d2427a71 522 int length = TYPE_LENGTH (valtype);
5ec2bb99
RH
523 char raw_buffer[ALPHA_REGISTER_SIZE];
524 ULONGEST l;
d2427a71 525
5ec2bb99 526 switch (TYPE_CODE (valtype))
c906108c 527 {
5ec2bb99
RH
528 case TYPE_CODE_FLT:
529 switch (length)
530 {
531 case 4:
c483c494 532 alpha_lds (raw_buffer, valbuf);
f75d70cc
RH
533 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
534 break;
5ec2bb99
RH
535
536 case 8:
537 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
538 break;
539
24064b5c
RH
540 case 16:
541 /* FIXME: 128-bit long doubles are returned like structures:
542 by writing into indirect storage provided by the caller
543 as the first argument. */
323e0a4a 544 error (_("Cannot set a 128-bit long double return value."));
24064b5c 545
5ec2bb99 546 default:
323e0a4a 547 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
5ec2bb99
RH
548 }
549 break;
d2427a71 550
7b5e1cb3
RH
551 case TYPE_CODE_COMPLEX:
552 switch (length)
553 {
554 case 8:
555 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
557 break;
558
559 case 16:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
562 (const char *)valbuf + 8);
563 break;
564
565 case 32:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
323e0a4a 569 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
570
571 default:
323e0a4a 572 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
7b5e1cb3
RH
573 }
574 break;
575
5ec2bb99
RH
576 default:
577 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
578 /* 32-bit values must be sign-extended to 64 bits
579 even if the base data type is unsigned. */
580 if (length == 4)
581 valtype = builtin_type_int32;
5ec2bb99
RH
582 l = unpack_long (valtype, valbuf);
583 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
584 break;
585 }
c906108c
SS
586}
587
d2427a71
RH
588\f
589static const unsigned char *
590alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 591{
d2427a71
RH
592 static const unsigned char alpha_breakpoint[] =
593 { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 594
d2427a71
RH
595 *lenptr = sizeof(alpha_breakpoint);
596 return (alpha_breakpoint);
597}
c906108c 598
d2427a71
RH
599\f
600/* This returns the PC of the first insn after the prologue.
601 If we can't find the prologue, then return 0. */
c906108c 602
d2427a71
RH
603CORE_ADDR
604alpha_after_prologue (CORE_ADDR pc)
c906108c 605{
d2427a71
RH
606 struct symtab_and_line sal;
607 CORE_ADDR func_addr, func_end;
c906108c 608
d2427a71 609 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 610 return 0;
c906108c 611
d2427a71
RH
612 sal = find_pc_line (func_addr, 0);
613 if (sal.end < func_end)
614 return sal.end;
c5aa993b 615
d2427a71
RH
616 /* The line after the prologue is after the end of the function. In this
617 case, tell the caller to find the prologue the hard way. */
618 return 0;
c906108c
SS
619}
620
d2427a71
RH
621/* Read an instruction from memory at PC, looking through breakpoints. */
622
623unsigned int
624alpha_read_insn (CORE_ADDR pc)
c906108c 625{
d2427a71
RH
626 char buf[4];
627 int status;
c5aa993b 628
1f602b35 629 status = deprecated_read_memory_nobpt (pc, buf, 4);
d2427a71
RH
630 if (status)
631 memory_error (status, pc);
632 return extract_unsigned_integer (buf, 4);
633}
c5aa993b 634
d2427a71
RH
635/* To skip prologues, I use this predicate. Returns either PC itself
636 if the code at PC does not look like a function prologue; otherwise
637 returns an address that (if we're lucky) follows the prologue. If
638 LENIENT, then we must skip everything which is involved in setting
639 up the frame (it's OK to skip more, just so long as we don't skip
640 anything which might clobber the registers which are being saved. */
c906108c 641
d2427a71
RH
642static CORE_ADDR
643alpha_skip_prologue (CORE_ADDR pc)
644{
645 unsigned long inst;
646 int offset;
647 CORE_ADDR post_prologue_pc;
648 char buf[4];
c906108c 649
d2427a71
RH
650 /* Silently return the unaltered pc upon memory errors.
651 This could happen on OSF/1 if decode_line_1 tries to skip the
652 prologue for quickstarted shared library functions when the
653 shared library is not yet mapped in.
654 Reading target memory is slow over serial lines, so we perform
655 this check only if the target has shared libraries (which all
656 Alpha targets do). */
657 if (target_read_memory (pc, buf, 4))
658 return pc;
c906108c 659
d2427a71
RH
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
c906108c 663
d2427a71
RH
664 post_prologue_pc = alpha_after_prologue (pc);
665 if (post_prologue_pc != 0)
666 return max (pc, post_prologue_pc);
c906108c 667
d2427a71
RH
668 /* Can't determine prologue from the symbol table, need to examine
669 instructions. */
dc1b0db2 670
d2427a71
RH
671 /* Skip the typical prologue instructions. These are the stack adjustment
672 instruction and the instructions that save registers on the stack
673 or in the gcc frame. */
674 for (offset = 0; offset < 100; offset += 4)
675 {
676 inst = alpha_read_insn (pc + offset);
c906108c 677
d2427a71
RH
678 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
679 continue;
680 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
681 continue;
682 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
683 continue;
684 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
685 continue;
c906108c 686
d2427a71
RH
687 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
688 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
689 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
690 continue;
c906108c 691
d2427a71
RH
692 if (inst == 0x47de040f) /* bis sp,sp,fp */
693 continue;
694 if (inst == 0x47fe040f) /* bis zero,sp,fp */
695 continue;
c906108c 696
d2427a71 697 break;
c906108c 698 }
d2427a71
RH
699 return pc + offset;
700}
c906108c 701
d2427a71
RH
702\f
703/* Figure out where the longjmp will land.
704 We expect the first arg to be a pointer to the jmp_buf structure from
705 which we extract the PC (JB_PC) that we will land at. The PC is copied
706 into the "pc". This routine returns true on success. */
c906108c
SS
707
708static int
d2427a71 709alpha_get_longjmp_target (CORE_ADDR *pc)
c906108c 710{
d2427a71
RH
711 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
712 CORE_ADDR jb_addr;
5ab84872 713 char raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 714
d2427a71 715 jb_addr = read_register (ALPHA_A0_REGNUM);
c906108c 716
d2427a71
RH
717 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
718 raw_buffer, tdep->jb_elt_size))
c906108c 719 return 0;
d2427a71 720
7c0b4a20 721 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
d2427a71 722 return 1;
c906108c
SS
723}
724
d2427a71
RH
725\f
726/* Frame unwinder for signal trampolines. We use alpha tdep bits that
727 describe the location and shape of the sigcontext structure. After
728 that, all registers are in memory, so it's easy. */
729/* ??? Shouldn't we be able to do this generically, rather than with
730 OSABI data specific to Alpha? */
731
732struct alpha_sigtramp_unwind_cache
c906108c 733{
d2427a71
RH
734 CORE_ADDR sigcontext_addr;
735};
c906108c 736
d2427a71
RH
737static struct alpha_sigtramp_unwind_cache *
738alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
739 void **this_prologue_cache)
740{
741 struct alpha_sigtramp_unwind_cache *info;
742 struct gdbarch_tdep *tdep;
c906108c 743
d2427a71
RH
744 if (*this_prologue_cache)
745 return *this_prologue_cache;
c906108c 746
d2427a71
RH
747 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
748 *this_prologue_cache = info;
c906108c 749
d2427a71
RH
750 tdep = gdbarch_tdep (current_gdbarch);
751 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
c906108c 752
d2427a71 753 return info;
c906108c
SS
754}
755
138e7be5
MK
756/* Return the address of REGNUM in a sigtramp frame. Since this is
757 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 758
d2427a71 759static CORE_ADDR
138e7be5 760alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
d2427a71 761{
138e7be5
MK
762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
763
764 if (regnum >= 0 && regnum < 32)
765 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
766 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
767 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
768 else if (regnum == ALPHA_PC_REGNUM)
769 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 770
d2427a71 771 return 0;
c906108c
SS
772}
773
d2427a71
RH
774/* Given a GDB frame, determine the address of the calling function's
775 frame. This will be used to create a new GDB frame struct. */
140f9984 776
dc129d82 777static void
d2427a71
RH
778alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
779 void **this_prologue_cache,
780 struct frame_id *this_id)
c906108c 781{
d2427a71
RH
782 struct alpha_sigtramp_unwind_cache *info
783 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
784 struct gdbarch_tdep *tdep;
785 CORE_ADDR stack_addr, code_addr;
786
787 /* If the OSABI couldn't locate the sigcontext, give up. */
788 if (info->sigcontext_addr == 0)
789 return;
790
791 /* If we have dynamic signal trampolines, find their start.
792 If we do not, then we must assume there is a symbol record
793 that can provide the start address. */
794 tdep = gdbarch_tdep (current_gdbarch);
795 if (tdep->dynamic_sigtramp_offset)
c906108c 796 {
d2427a71
RH
797 int offset;
798 code_addr = frame_pc_unwind (next_frame);
799 offset = tdep->dynamic_sigtramp_offset (code_addr);
800 if (offset >= 0)
801 code_addr -= offset;
c906108c 802 else
d2427a71 803 code_addr = 0;
c906108c 804 }
d2427a71
RH
805 else
806 code_addr = frame_func_unwind (next_frame);
c906108c 807
d2427a71
RH
808 /* The stack address is trivially read from the sigcontext. */
809 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
810 ALPHA_SP_REGNUM);
b21fd293
RH
811 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
812 ALPHA_REGISTER_SIZE);
c906108c 813
d2427a71 814 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
815}
816
d2427a71 817/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 818
d2427a71
RH
819static void
820alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
821 void **this_prologue_cache,
822 int regnum, int *optimizedp,
823 enum lval_type *lvalp, CORE_ADDR *addrp,
5b819568 824 int *realnump, gdb_byte *bufferp)
c906108c 825{
d2427a71
RH
826 struct alpha_sigtramp_unwind_cache *info
827 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
828 CORE_ADDR addr;
c906108c 829
d2427a71 830 if (info->sigcontext_addr != 0)
c906108c 831 {
d2427a71
RH
832 /* All integer and fp registers are stored in memory. */
833 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
834 if (addr != 0)
c906108c 835 {
d2427a71
RH
836 *optimizedp = 0;
837 *lvalp = lval_memory;
838 *addrp = addr;
839 *realnump = -1;
840 if (bufferp != NULL)
b21fd293 841 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
d2427a71 842 return;
c906108c 843 }
c906108c
SS
844 }
845
d2427a71
RH
846 /* This extra register may actually be in the sigcontext, but our
847 current description of it in alpha_sigtramp_frame_unwind_cache
848 doesn't include it. Too bad. Fall back on whatever's in the
849 outer frame. */
850 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
851 realnump, bufferp);
852}
c906108c 853
d2427a71
RH
854static const struct frame_unwind alpha_sigtramp_frame_unwind = {
855 SIGTRAMP_FRAME,
856 alpha_sigtramp_frame_this_id,
857 alpha_sigtramp_frame_prev_register
858};
c906108c 859
d2427a71 860static const struct frame_unwind *
336d1bba 861alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
d2427a71 862{
336d1bba 863 CORE_ADDR pc = frame_pc_unwind (next_frame);
d2427a71 864 char *name;
c906108c 865
f2524b93
AC
866 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
867 look at tramp-frame.h and other simplier per-architecture
868 sigtramp unwinders. */
869
870 /* We shouldn't even bother to try if the OSABI didn't register a
871 sigcontext_addr handler or pc_in_sigtramp hander. */
872 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
873 return NULL;
874 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
d2427a71 875 return NULL;
c906108c 876
d2427a71
RH
877 /* Otherwise we should be in a signal frame. */
878 find_pc_partial_function (pc, &name, NULL, NULL);
f2524b93 879 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
d2427a71 880 return &alpha_sigtramp_frame_unwind;
c906108c 881
d2427a71 882 return NULL;
c906108c 883}
d2427a71
RH
884\f
885/* Fallback alpha frame unwinder. Uses instruction scanning and knows
886 something about the traditional layout of alpha stack frames. */
c906108c 887
d2427a71 888struct alpha_heuristic_unwind_cache
c906108c 889{
d2427a71
RH
890 CORE_ADDR *saved_regs;
891 CORE_ADDR vfp;
892 CORE_ADDR start_pc;
893 int return_reg;
894};
c906108c 895
d2427a71
RH
896/* Heuristic_proc_start may hunt through the text section for a long
897 time across a 2400 baud serial line. Allows the user to limit this
898 search. */
899static unsigned int heuristic_fence_post = 0;
c906108c 900
d2427a71
RH
901/* Attempt to locate the start of the function containing PC. We assume that
902 the previous function ends with an about_to_return insn. Not foolproof by
903 any means, since gcc is happy to put the epilogue in the middle of a
904 function. But we're guessing anyway... */
c906108c 905
d2427a71
RH
906static CORE_ADDR
907alpha_heuristic_proc_start (CORE_ADDR pc)
908{
909 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
910 CORE_ADDR last_non_nop = pc;
911 CORE_ADDR fence = pc - heuristic_fence_post;
912 CORE_ADDR orig_pc = pc;
fbe586ae 913 CORE_ADDR func;
9e0b60a8 914
d2427a71
RH
915 if (pc == 0)
916 return 0;
9e0b60a8 917
fbe586ae
RH
918 /* First see if we can find the start of the function from minimal
919 symbol information. This can succeed with a binary that doesn't
920 have debug info, but hasn't been stripped. */
921 func = get_pc_function_start (pc);
922 if (func)
923 return func;
924
d2427a71
RH
925 if (heuristic_fence_post == UINT_MAX
926 || fence < tdep->vm_min_address)
927 fence = tdep->vm_min_address;
c906108c 928
d2427a71
RH
929 /* Search back for previous return; also stop at a 0, which might be
930 seen for instance before the start of a code section. Don't include
931 nops, since this usually indicates padding between functions. */
932 for (pc -= 4; pc >= fence; pc -= 4)
c906108c 933 {
d2427a71
RH
934 unsigned int insn = alpha_read_insn (pc);
935 switch (insn)
c906108c 936 {
d2427a71
RH
937 case 0: /* invalid insn */
938 case 0x6bfa8001: /* ret $31,($26),1 */
939 return last_non_nop;
940
941 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
942 case 0x47ff041f: /* nop: bis $31,$31,$31 */
943 break;
944
945 default:
946 last_non_nop = pc;
947 break;
c906108c 948 }
d2427a71 949 }
c906108c 950
d2427a71
RH
951 /* It's not clear to me why we reach this point when stopping quietly,
952 but with this test, at least we don't print out warnings for every
953 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
954 if (stop_soon == NO_STOP_QUIETLY)
955 {
956 static int blurb_printed = 0;
c906108c 957
d2427a71 958 if (fence == tdep->vm_min_address)
323e0a4a
AC
959 warning (_("Hit beginning of text section without finding \
960enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 961 else
323e0a4a
AC
962 warning (_("Hit heuristic-fence-post without finding \
963enclosing function for address 0x%s"), paddr_nz (orig_pc));
c906108c 964
d2427a71
RH
965 if (!blurb_printed)
966 {
323e0a4a 967 printf_filtered (_("\
d2427a71
RH
968This warning occurs if you are debugging a function without any symbols\n\
969(for example, in a stripped executable). In that case, you may wish to\n\
970increase the size of the search with the `set heuristic-fence-post' command.\n\
971\n\
972Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 973(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
974 blurb_printed = 1;
975 }
976 }
c906108c 977
d2427a71
RH
978 return 0;
979}
c906108c 980
fbe586ae 981static struct alpha_heuristic_unwind_cache *
d2427a71
RH
982alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
983 void **this_prologue_cache,
984 CORE_ADDR start_pc)
985{
986 struct alpha_heuristic_unwind_cache *info;
987 ULONGEST val;
988 CORE_ADDR limit_pc, cur_pc;
989 int frame_reg, frame_size, return_reg, reg;
c906108c 990
d2427a71
RH
991 if (*this_prologue_cache)
992 return *this_prologue_cache;
c906108c 993
d2427a71
RH
994 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
995 *this_prologue_cache = info;
996 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
c906108c 997
d2427a71
RH
998 limit_pc = frame_pc_unwind (next_frame);
999 if (start_pc == 0)
1000 start_pc = alpha_heuristic_proc_start (limit_pc);
1001 info->start_pc = start_pc;
c906108c 1002
d2427a71
RH
1003 frame_reg = ALPHA_SP_REGNUM;
1004 frame_size = 0;
1005 return_reg = -1;
c906108c 1006
d2427a71
RH
1007 /* If we've identified a likely place to start, do code scanning. */
1008 if (start_pc != 0)
c5aa993b 1009 {
d2427a71
RH
1010 /* Limit the forward search to 50 instructions. */
1011 if (start_pc + 200 < limit_pc)
1012 limit_pc = start_pc + 200;
c5aa993b 1013
d2427a71
RH
1014 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1015 {
1016 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1017
d2427a71
RH
1018 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1019 {
1020 if (word & 0x8000)
1021 {
1022 /* Consider only the first stack allocation instruction
1023 to contain the static size of the frame. */
1024 if (frame_size == 0)
1025 frame_size = (-word) & 0xffff;
1026 }
1027 else
1028 {
1029 /* Exit loop if a positive stack adjustment is found, which
1030 usually means that the stack cleanup code in the function
1031 epilogue is reached. */
1032 break;
1033 }
1034 }
1035 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1036 {
1037 reg = (word & 0x03e00000) >> 21;
1038
d15bfd3a
AC
1039 /* Ignore this instruction if we have already encountered
1040 an instruction saving the same register earlier in the
1041 function code. The current instruction does not tell
1042 us where the original value upon function entry is saved.
1043 All it says is that the function we are scanning reused
1044 that register for some computation of its own, and is now
1045 saving its result. */
1046 if (info->saved_regs[reg])
1047 continue;
1048
d2427a71
RH
1049 if (reg == 31)
1050 continue;
1051
1052 /* Do not compute the address where the register was saved yet,
1053 because we don't know yet if the offset will need to be
1054 relative to $sp or $fp (we can not compute the address
1055 relative to $sp if $sp is updated during the execution of
1056 the current subroutine, for instance when doing some alloca).
1057 So just store the offset for the moment, and compute the
1058 address later when we know whether this frame has a frame
1059 pointer or not. */
1060 /* Hack: temporarily add one, so that the offset is non-zero
1061 and we can tell which registers have save offsets below. */
1062 info->saved_regs[reg] = (word & 0xffff) + 1;
1063
1064 /* Starting with OSF/1-3.2C, the system libraries are shipped
1065 without local symbols, but they still contain procedure
1066 descriptors without a symbol reference. GDB is currently
1067 unable to find these procedure descriptors and uses
1068 heuristic_proc_desc instead.
1069 As some low level compiler support routines (__div*, __add*)
1070 use a non-standard return address register, we have to
1071 add some heuristics to determine the return address register,
1072 or stepping over these routines will fail.
1073 Usually the return address register is the first register
1074 saved on the stack, but assembler optimization might
1075 rearrange the register saves.
1076 So we recognize only a few registers (t7, t9, ra) within
1077 the procedure prologue as valid return address registers.
1078 If we encounter a return instruction, we extract the
1079 the return address register from it.
1080
1081 FIXME: Rewriting GDB to access the procedure descriptors,
1082 e.g. via the minimal symbol table, might obviate this hack. */
1083 if (return_reg == -1
1084 && cur_pc < (start_pc + 80)
1085 && (reg == ALPHA_T7_REGNUM
1086 || reg == ALPHA_T9_REGNUM
1087 || reg == ALPHA_RA_REGNUM))
1088 return_reg = reg;
1089 }
1090 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1091 return_reg = (word >> 16) & 0x1f;
1092 else if (word == 0x47de040f) /* bis sp,sp,fp */
1093 frame_reg = ALPHA_GCC_FP_REGNUM;
1094 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1095 frame_reg = ALPHA_GCC_FP_REGNUM;
1096 }
c5aa993b 1097
d2427a71
RH
1098 /* If we haven't found a valid return address register yet, keep
1099 searching in the procedure prologue. */
1100 if (return_reg == -1)
1101 {
1102 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1103 {
1104 unsigned int word = alpha_read_insn (cur_pc);
c5aa993b 1105
d2427a71
RH
1106 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1107 {
1108 reg = (word & 0x03e00000) >> 21;
1109 if (reg == ALPHA_T7_REGNUM
1110 || reg == ALPHA_T9_REGNUM
1111 || reg == ALPHA_RA_REGNUM)
1112 {
1113 return_reg = reg;
1114 break;
1115 }
1116 }
1117 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1118 {
1119 return_reg = (word >> 16) & 0x1f;
1120 break;
1121 }
85b32d22
RH
1122
1123 cur_pc += 4;
d2427a71
RH
1124 }
1125 }
c906108c 1126 }
c906108c 1127
d2427a71
RH
1128 /* Failing that, do default to the customary RA. */
1129 if (return_reg == -1)
1130 return_reg = ALPHA_RA_REGNUM;
1131 info->return_reg = return_reg;
f8453e34 1132
d2427a71
RH
1133 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1134 info->vfp = val + frame_size;
c906108c 1135
d2427a71
RH
1136 /* Convert offsets to absolute addresses. See above about adding
1137 one to the offsets to make all detected offsets non-zero. */
1138 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1139 if (info->saved_regs[reg])
1140 info->saved_regs[reg] += val - 1;
1141
1142 return info;
c906108c 1143}
c906108c 1144
d2427a71
RH
1145/* Given a GDB frame, determine the address of the calling function's
1146 frame. This will be used to create a new GDB frame struct. */
1147
fbe586ae 1148static void
d2427a71
RH
1149alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1150 void **this_prologue_cache,
1151 struct frame_id *this_id)
c906108c 1152{
d2427a71
RH
1153 struct alpha_heuristic_unwind_cache *info
1154 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1155
d2427a71 1156 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1157}
1158
d2427a71
RH
1159/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1160
fbe586ae 1161static void
d2427a71
RH
1162alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1163 void **this_prologue_cache,
1164 int regnum, int *optimizedp,
1165 enum lval_type *lvalp, CORE_ADDR *addrp,
5b819568 1166 int *realnump, gdb_byte *bufferp)
c906108c 1167{
d2427a71
RH
1168 struct alpha_heuristic_unwind_cache *info
1169 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1170
1171 /* The PC of the previous frame is stored in the link register of
1172 the current frame. Frob regnum so that we pull the value from
1173 the correct place. */
1174 if (regnum == ALPHA_PC_REGNUM)
1175 regnum = info->return_reg;
1176
1177 /* For all registers known to be saved in the current frame,
1178 do the obvious and pull the value out. */
1179 if (info->saved_regs[regnum])
c906108c 1180 {
d2427a71
RH
1181 *optimizedp = 0;
1182 *lvalp = lval_memory;
1183 *addrp = info->saved_regs[regnum];
1184 *realnump = -1;
1185 if (bufferp != NULL)
b21fd293 1186 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
c906108c
SS
1187 return;
1188 }
1189
d2427a71
RH
1190 /* The stack pointer of the previous frame is computed by popping
1191 the current stack frame. */
1192 if (regnum == ALPHA_SP_REGNUM)
c906108c 1193 {
d2427a71
RH
1194 *optimizedp = 0;
1195 *lvalp = not_lval;
1196 *addrp = 0;
1197 *realnump = -1;
1198 if (bufferp != NULL)
1199 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1200 return;
c906108c 1201 }
95b80706 1202
d2427a71 1203 /* Otherwise assume the next frame has the same register value. */
1cc759c3
JB
1204 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
1205 realnump, bufferp);
95b80706
JT
1206}
1207
d2427a71
RH
1208static const struct frame_unwind alpha_heuristic_frame_unwind = {
1209 NORMAL_FRAME,
1210 alpha_heuristic_frame_this_id,
1211 alpha_heuristic_frame_prev_register
1212};
c906108c 1213
d2427a71 1214static const struct frame_unwind *
336d1bba 1215alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
c906108c 1216{
d2427a71 1217 return &alpha_heuristic_frame_unwind;
c906108c
SS
1218}
1219
fbe586ae 1220static CORE_ADDR
d2427a71
RH
1221alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1222 void **this_prologue_cache)
c906108c 1223{
d2427a71
RH
1224 struct alpha_heuristic_unwind_cache *info
1225 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
c906108c 1226
d2427a71 1227 return info->vfp;
c906108c
SS
1228}
1229
d2427a71
RH
1230static const struct frame_base alpha_heuristic_frame_base = {
1231 &alpha_heuristic_frame_unwind,
1232 alpha_heuristic_frame_base_address,
1233 alpha_heuristic_frame_base_address,
1234 alpha_heuristic_frame_base_address
1235};
1236
c906108c 1237/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1238 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1239
1240static void
fba45db2 1241reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1242{
1243 reinit_frame_cache ();
1244}
1245
d2427a71 1246\f
d2427a71
RH
1247/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1248 dummy frame. The frame ID's base needs to match the TOS value
1249 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1250 breakpoint. */
d734c450 1251
d2427a71
RH
1252static struct frame_id
1253alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
0d056799 1254{
d2427a71
RH
1255 ULONGEST base;
1256 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1257 return frame_id_build (base, frame_pc_unwind (next_frame));
0d056799
JT
1258}
1259
dc129d82 1260static CORE_ADDR
d2427a71 1261alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1262{
d2427a71
RH
1263 ULONGEST pc;
1264 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1265 return pc;
accc6d1f
JT
1266}
1267
98a8e1e5
RH
1268\f
1269/* Helper routines for alpha*-nat.c files to move register sets to and
1270 from core files. The UNIQUE pointer is allowed to be NULL, as most
1271 targets don't supply this value in their core files. */
1272
1273void
1274alpha_supply_int_regs (int regno, const void *r0_r30,
1275 const void *pc, const void *unique)
1276{
1277 int i;
1278
1279 for (i = 0; i < 31; ++i)
1280 if (regno == i || regno == -1)
23a6d369 1281 regcache_raw_supply (current_regcache, i, (const char *)r0_r30 + i*8);
98a8e1e5
RH
1282
1283 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
23a6d369 1284 regcache_raw_supply (current_regcache, ALPHA_ZERO_REGNUM, NULL);
98a8e1e5
RH
1285
1286 if (regno == ALPHA_PC_REGNUM || regno == -1)
23a6d369 1287 regcache_raw_supply (current_regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1288
1289 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
23a6d369 1290 regcache_raw_supply (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1291}
1292
1293void
1294alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1295{
1296 int i;
1297
1298 for (i = 0; i < 31; ++i)
1299 if (regno == i || regno == -1)
822c9732 1300 regcache_raw_collect (current_regcache, i, (char *)r0_r30 + i*8);
98a8e1e5
RH
1301
1302 if (regno == ALPHA_PC_REGNUM || regno == -1)
822c9732 1303 regcache_raw_collect (current_regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1304
1305 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
822c9732 1306 regcache_raw_collect (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1307}
1308
1309void
1310alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1311{
1312 int i;
1313
1314 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1315 if (regno == i || regno == -1)
23a6d369
AC
1316 regcache_raw_supply (current_regcache, i,
1317 (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1318
1319 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
23a6d369 1320 regcache_raw_supply (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1321}
1322
1323void
1324alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1325{
1326 int i;
1327
1328 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1329 if (regno == i || regno == -1)
822c9732
AC
1330 regcache_raw_collect (current_regcache, i,
1331 (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1332
1333 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
822c9732 1334 regcache_raw_collect (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1335}
1336
d2427a71 1337\f
0de94d4b
JB
1338
1339/* Return nonzero if the G_floating register value in REG is equal to
1340 zero for FP control instructions. */
1341
1342static int
1343fp_register_zero_p (LONGEST reg)
1344{
1345 /* Check that all bits except the sign bit are zero. */
1346 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1347
1348 return ((reg & zero_mask) == 0);
1349}
1350
1351/* Return the value of the sign bit for the G_floating register
1352 value held in REG. */
1353
1354static int
1355fp_register_sign_bit (LONGEST reg)
1356{
1357 const LONGEST sign_mask = (LONGEST) 1 << 63;
1358
1359 return ((reg & sign_mask) != 0);
1360}
1361
ec32e4be
JT
1362/* alpha_software_single_step() is called just before we want to resume
1363 the inferior, if we want to single-step it but there is no hardware
1364 or kernel single-step support (NetBSD on Alpha, for example). We find
1365 the target of the coming instruction and breakpoint it.
1366
1367 single_step is also called just after the inferior stops. If we had
1368 set up a simulated single-step, we undo our damage. */
1369
1370static CORE_ADDR
1371alpha_next_pc (CORE_ADDR pc)
1372{
1373 unsigned int insn;
1374 unsigned int op;
551e4f2e 1375 int regno;
ec32e4be
JT
1376 int offset;
1377 LONGEST rav;
0de94d4b 1378 char reg[8];
ec32e4be 1379
b21fd293 1380 insn = alpha_read_insn (pc);
ec32e4be
JT
1381
1382 /* Opcode is top 6 bits. */
1383 op = (insn >> 26) & 0x3f;
1384
1385 if (op == 0x1a)
1386 {
1387 /* Jump format: target PC is:
1388 RB & ~3 */
1389 return (read_register ((insn >> 16) & 0x1f) & ~3);
1390 }
1391
1392 if ((op & 0x30) == 0x30)
1393 {
1394 /* Branch format: target PC is:
1395 (new PC) + (4 * sext(displacement)) */
1396 if (op == 0x30 || /* BR */
1397 op == 0x34) /* BSR */
1398 {
1399 branch_taken:
1400 offset = (insn & 0x001fffff);
1401 if (offset & 0x00100000)
1402 offset |= 0xffe00000;
1403 offset *= 4;
1404 return (pc + 4 + offset);
1405 }
1406
1407 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1408 regno = (insn >> 21) & 0x1f;
1409 switch (op)
1410 {
1411 case 0x31: /* FBEQ */
1412 case 0x36: /* FBGE */
1413 case 0x37: /* FBGT */
1414 case 0x33: /* FBLE */
1415 case 0x32: /* FBLT */
1416 case 0x35: /* FBNE */
1417 regno += FP0_REGNUM;
1418 }
1419
1420 regcache_cooked_read (current_regcache, regno, reg);
0de94d4b
JB
1421 rav = extract_signed_integer (reg, 8);
1422
ec32e4be
JT
1423 switch (op)
1424 {
1425 case 0x38: /* BLBC */
1426 if ((rav & 1) == 0)
1427 goto branch_taken;
1428 break;
1429 case 0x3c: /* BLBS */
1430 if (rav & 1)
1431 goto branch_taken;
1432 break;
1433 case 0x39: /* BEQ */
1434 if (rav == 0)
1435 goto branch_taken;
1436 break;
1437 case 0x3d: /* BNE */
1438 if (rav != 0)
1439 goto branch_taken;
1440 break;
1441 case 0x3a: /* BLT */
1442 if (rav < 0)
1443 goto branch_taken;
1444 break;
1445 case 0x3b: /* BLE */
1446 if (rav <= 0)
1447 goto branch_taken;
1448 break;
1449 case 0x3f: /* BGT */
1450 if (rav > 0)
1451 goto branch_taken;
1452 break;
1453 case 0x3e: /* BGE */
1454 if (rav >= 0)
1455 goto branch_taken;
1456 break;
d2427a71 1457
0de94d4b
JB
1458 /* Floating point branches. */
1459
1460 case 0x31: /* FBEQ */
1461 if (fp_register_zero_p (rav))
1462 goto branch_taken;
1463 break;
1464 case 0x36: /* FBGE */
1465 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1466 goto branch_taken;
1467 break;
1468 case 0x37: /* FBGT */
1469 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1470 goto branch_taken;
1471 break;
1472 case 0x33: /* FBLE */
1473 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1474 goto branch_taken;
1475 break;
1476 case 0x32: /* FBLT */
1477 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1478 goto branch_taken;
1479 break;
1480 case 0x35: /* FBNE */
1481 if (! fp_register_zero_p (rav))
1482 goto branch_taken;
1483 break;
ec32e4be
JT
1484 }
1485 }
1486
1487 /* Not a branch or branch not taken; target PC is:
1488 pc + 4 */
1489 return (pc + 4);
1490}
1491
1492void
1493alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1494{
1495 static CORE_ADDR next_pc;
1496 typedef char binsn_quantum[BREAKPOINT_MAX];
1497 static binsn_quantum break_mem;
1498 CORE_ADDR pc;
1499
1500 if (insert_breakpoints_p)
1501 {
1502 pc = read_pc ();
1503 next_pc = alpha_next_pc (pc);
1504
1505 target_insert_breakpoint (next_pc, break_mem);
1506 }
1507 else
1508 {
1509 target_remove_breakpoint (next_pc, break_mem);
1510 write_pc (next_pc);
1511 }
c906108c
SS
1512}
1513
dc129d82 1514\f
dc129d82
JT
1515/* Initialize the current architecture based on INFO. If possible, re-use an
1516 architecture from ARCHES, which is a list of architectures already created
1517 during this debugging session.
1518
1519 Called e.g. at program startup, when reading a core file, and when reading
1520 a binary file. */
1521
1522static struct gdbarch *
1523alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1524{
1525 struct gdbarch_tdep *tdep;
1526 struct gdbarch *gdbarch;
dc129d82
JT
1527
1528 /* Try to determine the ABI of the object we are loading. */
4be87837 1529 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1530 {
4be87837
DJ
1531 /* If it's an ECOFF file, assume it's OSF/1. */
1532 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1533 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1534 }
1535
1536 /* Find a candidate among extant architectures. */
4be87837
DJ
1537 arches = gdbarch_list_lookup_by_info (arches, &info);
1538 if (arches != NULL)
1539 return arches->gdbarch;
dc129d82
JT
1540
1541 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1542 gdbarch = gdbarch_alloc (&info, tdep);
1543
d2427a71
RH
1544 /* Lowest text address. This is used by heuristic_proc_start()
1545 to decide when to stop looking. */
594706e6 1546 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1547
36a6271d 1548 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1549 tdep->sigcontext_addr = NULL;
138e7be5
MK
1550 tdep->sc_pc_offset = 2 * 8;
1551 tdep->sc_regs_offset = 4 * 8;
1552 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1553
accc6d1f
JT
1554 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1555
dc129d82
JT
1556 /* Type sizes */
1557 set_gdbarch_short_bit (gdbarch, 16);
1558 set_gdbarch_int_bit (gdbarch, 32);
1559 set_gdbarch_long_bit (gdbarch, 64);
1560 set_gdbarch_long_long_bit (gdbarch, 64);
1561 set_gdbarch_float_bit (gdbarch, 32);
1562 set_gdbarch_double_bit (gdbarch, 64);
1563 set_gdbarch_long_double_bit (gdbarch, 64);
1564 set_gdbarch_ptr_bit (gdbarch, 64);
1565
1566 /* Register info */
1567 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1568 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1569 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1570 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1571
1572 set_gdbarch_register_name (gdbarch, alpha_register_name);
9c04cab7 1573 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
c483c494 1574 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1575
1576 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1577 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1578
c483c494
RH
1579 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1580 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1581 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1582
615967cb
RH
1583 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1584
d2427a71 1585 /* Prologue heuristics. */
dc129d82
JT
1586 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1587
5ef165c2
RH
1588 /* Disassembler. */
1589 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1590
d2427a71 1591 /* Call info. */
dc129d82 1592
b5622e8d 1593 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
5ec2bb99
RH
1594 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1595 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
74055713 1596 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address);
dc129d82
JT
1597
1598 /* Settings for calling functions in the inferior. */
c88e30c0 1599 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1600
1601 /* Methods for saving / extracting a dummy frame's ID. */
1602 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
d2427a71
RH
1603
1604 /* Return the unwound PC value. */
1605 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1606
1607 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1608 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1609
95b80706 1610 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
dc129d82 1611 set_gdbarch_decr_pc_after_break (gdbarch, 4);
95b80706 1612
44dffaac 1613 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1614 gdbarch_init_osabi (info, gdbarch);
44dffaac 1615
accc6d1f
JT
1616 /* Now that we have tuned the configuration, set a few final things
1617 based on what the OS ABI has told us. */
1618
1619 if (tdep->jb_pc >= 0)
1620 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1621
336d1bba
AC
1622 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1623 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
dc129d82 1624
d2427a71 1625 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1626
d2427a71 1627 return gdbarch;
dc129d82
JT
1628}
1629
baa490c4
RH
1630void
1631alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1632{
336d1bba
AC
1633 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1634 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1635}
1636
a78f21af
AC
1637extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1638
c906108c 1639void
fba45db2 1640_initialize_alpha_tdep (void)
c906108c
SS
1641{
1642 struct cmd_list_element *c;
1643
d2427a71 1644 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1645
1646 /* Let the user set the fence post for heuristic_proc_start. */
1647
1648 /* We really would like to have both "0" and "unlimited" work, but
1649 command.c doesn't deal with that. So make it a var_zinteger
1650 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1651 /* We need to throw away the frame cache when we set this, since it
1652 might change our ability to get backtraces. */
1653 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1654 &heuristic_fence_post, _("\
1655Set the distance searched for the start of a function."), _("\
1656Show the distance searched for the start of a function."), _("\
c906108c
SS
1657If you are debugging a stripped executable, GDB needs to search through the\n\
1658program for the start of a function. This command sets the distance of the\n\
323e0a4a 1659search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1660 reinit_frame_cache_sfunc,
7915a72c 1661 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
edefbb7c 1662 &setlist, &showlist);
c906108c 1663}