]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
4a94e368 3 Copyright (C) 1993-2022 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
d55e5aa6 21#include "frame.h"
4de283e4
TT
22#include "frame-unwind.h"
23#include "frame-base.h"
82ca8957 24#include "dwarf2/frame.h"
4de283e4
TT
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
c906108c
SS
28#include "gdbcmd.h"
29#include "gdbcore.h"
4de283e4
TT
30#include "dis-asm.h"
31#include "symfile.h"
d55e5aa6 32#include "objfiles.h"
4de283e4 33#include "linespec.h"
4e052eda 34#include "regcache.h"
615967cb 35#include "reggroups.h"
4de283e4
TT
36#include "arch-utils.h"
37#include "osabi.h"
38#include "block.h"
39#include "infcall.h"
07ea644b 40#include "trad-frame.h"
4de283e4
TT
41
42#include "elf-bfd.h"
43
44#include "alpha-tdep.h"
45#include <algorithm>
dc129d82 46
3a48e6ff
JG
47/* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53/* Memory instruction format */
54#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56#define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59static const int lda_opcode = 0x08;
60static const int stq_opcode = 0x2d;
61
62/* Branch instruction format */
63#define BR_RA(insn) MEM_RA(insn)
64
46ad3598 65static const int br_opcode = 0x30;
3a48e6ff
JG
66static const int bne_opcode = 0x3d;
67
68/* Operate instruction format */
69#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71#define OPR_RA(insn) MEM_RA(insn)
72#define OPR_RC(insn) ((insn & 0x1f))
73#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75static const int subq_opcode = 0x10;
76static const int subq_function = 0x29;
77
c906108c 78\f
515921d7
JB
79/* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
0963b4bd 82 be used for a virtual register. That virtual register has
515921d7
JB
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
fa88f677 86static const char *
d93859e2 87alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 88{
5ab84872 89 static const char * const register_names[] =
636a6dfc
JT
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 99 "pc", "", "unique"
636a6dfc
JT
100 };
101
102 if (regno < 0)
5ab84872 103 return NULL;
e8d2d628 104 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
105 return NULL;
106 return register_names[regno];
636a6dfc 107}
d734c450 108
dc129d82 109static int
64a3914f 110alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 111{
4a1be8d2 112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
113}
114
dc129d82 115static int
64a3914f 116alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 117{
515921d7 118 return (regno == ALPHA_ZERO_REGNUM
dda83cd7 119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
120}
121
dc129d82 122static struct type *
c483c494 123alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 124{
72667056 125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 126 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 127 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
b38b6be2 132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 133 return builtin_type (gdbarch)->builtin_double;
72667056 134
df4df182 135 return builtin_type (gdbarch)->builtin_int64;
0d056799 136}
f8453e34 137
615967cb
RH
138/* Is REGNUM a member of REGGROUP? */
139
140static int
141alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143{
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
148 return 0;
149
df4a182b
RH
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178}
179
c483c494
RH
180/* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184static void
e17a4113 185alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 186{
e17a4113 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
9a3c8263 221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
68fce50f 229 bytes, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca 236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
68fce50f 237 && TYPE_LENGTH (type) == 4);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 246 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 247
fbe654c8
AH
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
fbe654c8
AH
255 return 0;
256 }
257
258 /* Convert to VALTYPE. */
8dccd430 259
68fce50f 260 gdb_assert (TYPE_LENGTH (valtype) == 4);
50888e42 261 alpha_sts (gdbarch, out, value_contents_all (value).data ());
fbe654c8
AH
262
263 release_value (value);
68fce50f 264 return 1;
d2427a71 265}
5868c862 266
d2427a71 267static void
ff2e87ac 268alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 269 struct type *valtype, const gdb_byte *in)
d2427a71 270{
fbe654c8 271 gdb_byte out[ALPHA_REGISTER_SIZE];
2a1ce6ec 272
68fce50f 273 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
274 gdb_assert (register_size (get_frame_arch (frame), regnum)
275 <= ALPHA_REGISTER_SIZE);
68fce50f
YQ
276 alpha_lds (get_frame_arch (frame), out, in);
277
ff2e87ac 278 put_frame_register (frame, regnum, out);
5868c862
JT
279}
280
d2427a71
RH
281\f
282/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
d2427a71
RH
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
c906108c 293
d2427a71 294static CORE_ADDR
7d9b040b 295alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
298 function_call_return_method return_method,
299 CORE_ADDR struct_addr)
c906108c 300{
e17a4113 301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 302 int i;
cf84fa6b 303 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
d2427a71 304 struct alpha_arg
c906108c 305 {
f42a0a33 306 const gdb_byte *contents;
d2427a71
RH
307 int len;
308 int offset;
309 };
8d749320 310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71 329 /* Cast argument to long if necessary as the compiler does it too. */
78134374 330 switch (arg_type->code ())
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
50888e42 368 write_memory (sp, value_contents (arg).data (), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
50888e42 389 write_memory (sp, value_contents (arg).data (), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
50888e42 403 m_arg->contents = value_contents (arg).data ();
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
cf84fa6b 450 if (return_method == return_method_struct)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
b66f5587
SM
457 regcache->cooked_write (ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
459 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
ac7936df 476 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
479 ULONGEST l;
480
78134374 481 switch (valtype->code ())
5ec2bb99
RH
482 {
483 case TYPE_CODE_FLT:
744a8059 484 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
485 {
486 case 4:
dca08e1f 487 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 488 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
489 break;
490
491 case 8:
dca08e1f 492 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
493 break;
494
24064b5c
RH
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
5ec2bb99 500 default:
0963b4bd
MS
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
5ec2bb99
RH
503 }
504 break;
505
7b5e1cb3 506 case TYPE_CODE_COMPLEX:
744a8059 507 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
dca08e1f 511 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
512 break;
513
514 case 16:
dca08e1f
SM
515 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
516 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
517 break;
518
519 case 32:
a9933661 520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
0963b4bd
MS
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
7b5e1cb3
RH
527 }
528 break;
529
5ec2bb99
RH
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
534 break;
535 }
140f9984
JT
536}
537
5ec2bb99
RH
538/* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
0d056799 540
d2427a71 541static void
5ec2bb99 542alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 543 const gdb_byte *valbuf)
c906108c 544{
ac7936df 545 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 547 ULONGEST l;
d2427a71 548
78134374 549 switch (valtype->code ())
c906108c 550 {
5ec2bb99 551 case TYPE_CODE_FLT:
744a8059 552 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
553 {
554 case 4:
e17a4113 555 alpha_lds (gdbarch, raw_buffer, valbuf);
b66f5587 556 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
f75d70cc 557 break;
5ec2bb99
RH
558
559 case 8:
b66f5587 560 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
5ec2bb99
RH
561 break;
562
24064b5c
RH
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
323e0a4a 567 error (_("Cannot set a 128-bit long double return value."));
24064b5c 568
5ec2bb99 569 default:
0963b4bd
MS
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
5ec2bb99
RH
572 }
573 break;
d2427a71 574
7b5e1cb3 575 case TYPE_CODE_COMPLEX:
744a8059 576 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
b66f5587 580 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
7b5e1cb3
RH
581 break;
582
583 case 16:
b66f5587
SM
584 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
585 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
323e0a4a 592 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
593
594 default:
0963b4bd
MS
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
7b5e1cb3
RH
597 }
598 break;
599
5ec2bb99
RH
600 default:
601 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
744a8059 604 if (TYPE_LENGTH (valtype) == 4)
df4df182 605 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
c906108c
SS
610}
611
9823e921 612static enum return_value_convention
6a3a010b 613alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921 616{
78134374 617 enum type_code code = type->code ();
345bd07c 618 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
9823e921
RH
619
620 if ((code == TYPE_CODE_STRUCT
621 || code == TYPE_CODE_UNION
622 || code == TYPE_CODE_ARRAY)
345bd07c 623 && tdep->return_in_memory (type))
9823e921
RH
624 {
625 if (readbuf)
626 {
627 ULONGEST addr;
628 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
629 read_memory (addr, readbuf, TYPE_LENGTH (type));
630 }
631
632 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
633 }
634
635 if (readbuf)
636 alpha_extract_return_value (type, regcache, readbuf);
637 if (writebuf)
638 alpha_store_return_value (type, regcache, writebuf);
639
640 return RETURN_VALUE_REGISTER_CONVENTION;
641}
642
643static int
644alpha_return_in_memory_always (struct type *type)
645{
646 return 1;
647}
d2427a71 648\f
c906108c 649
04180708 650constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 651
04180708 652typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 653
d2427a71
RH
654\f
655/* This returns the PC of the first insn after the prologue.
656 If we can't find the prologue, then return 0. */
c906108c 657
d2427a71
RH
658CORE_ADDR
659alpha_after_prologue (CORE_ADDR pc)
c906108c 660{
d2427a71
RH
661 struct symtab_and_line sal;
662 CORE_ADDR func_addr, func_end;
c906108c 663
d2427a71 664 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 665 return 0;
c906108c 666
d2427a71
RH
667 sal = find_pc_line (func_addr, 0);
668 if (sal.end < func_end)
669 return sal.end;
c5aa993b 670
d2427a71
RH
671 /* The line after the prologue is after the end of the function. In this
672 case, tell the caller to find the prologue the hard way. */
673 return 0;
c906108c
SS
674}
675
d2427a71
RH
676/* Read an instruction from memory at PC, looking through breakpoints. */
677
678unsigned int
e17a4113 679alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 680{
e17a4113 681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 682 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 683 int res;
c5aa993b 684
d09f2c3f
PA
685 res = target_read_memory (pc, buf, sizeof (buf));
686 if (res != 0)
687 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 688 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 689}
c5aa993b 690
d2427a71
RH
691/* To skip prologues, I use this predicate. Returns either PC itself
692 if the code at PC does not look like a function prologue; otherwise
693 returns an address that (if we're lucky) follows the prologue. If
694 LENIENT, then we must skip everything which is involved in setting
695 up the frame (it's OK to skip more, just so long as we don't skip
696 anything which might clobber the registers which are being saved. */
c906108c 697
d2427a71 698static CORE_ADDR
6093d2eb 699alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
700{
701 unsigned long inst;
702 int offset;
703 CORE_ADDR post_prologue_pc;
e8d2d628 704 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 705
d2427a71
RH
706 /* Silently return the unaltered pc upon memory errors.
707 This could happen on OSF/1 if decode_line_1 tries to skip the
708 prologue for quickstarted shared library functions when the
709 shared library is not yet mapped in.
710 Reading target memory is slow over serial lines, so we perform
711 this check only if the target has shared libraries (which all
712 Alpha targets do). */
e8d2d628 713 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 714 return pc;
c906108c 715
d2427a71
RH
716 /* See if we can determine the end of the prologue via the symbol table.
717 If so, then return either PC, or the PC after the prologue, whichever
718 is greater. */
c906108c 719
d2427a71
RH
720 post_prologue_pc = alpha_after_prologue (pc);
721 if (post_prologue_pc != 0)
325fac50 722 return std::max (pc, post_prologue_pc);
c906108c 723
d2427a71
RH
724 /* Can't determine prologue from the symbol table, need to examine
725 instructions. */
dc1b0db2 726
0963b4bd 727 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
728 instruction and the instructions that save registers on the stack
729 or in the gcc frame. */
e8d2d628 730 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 731 {
e17a4113 732 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 733
d2427a71
RH
734 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
735 continue;
736 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
739 continue;
740 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
741 continue;
c906108c 742
d2427a71
RH
743 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
744 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
745 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
746 continue;
c906108c 747
d2427a71
RH
748 if (inst == 0x47de040f) /* bis sp,sp,fp */
749 continue;
750 if (inst == 0x47fe040f) /* bis zero,sp,fp */
751 continue;
c906108c 752
d2427a71 753 break;
c906108c 754 }
d2427a71
RH
755 return pc + offset;
756}
c906108c 757
46ad3598
UW
758\f
759static const int ldl_l_opcode = 0x2a;
760static const int ldq_l_opcode = 0x2b;
761static const int stl_c_opcode = 0x2e;
762static const int stq_c_opcode = 0x2f;
763
764/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
765 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
766 is found, attempt to step through it. A breakpoint is placed at the end of
767 the sequence. */
768
a0ff9e1a 769static std::vector<CORE_ADDR>
68f81d60 770alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
46ad3598 771{
70ab8ccd 772 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
46ad3598
UW
773 CORE_ADDR loc = pc;
774 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
775 unsigned int insn = alpha_read_insn (gdbarch, loc);
776 int insn_count;
777 int index;
778 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
779 const int atomic_sequence_length = 16; /* Instruction sequence length. */
780 int bc_insn_count = 0; /* Conditional branch instruction count. */
781
782 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
783 if (INSN_OPCODE (insn) != ldl_l_opcode
784 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 785 return {};
46ad3598
UW
786
787 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
788 instructions. */
789 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
790 {
791 loc += ALPHA_INSN_SIZE;
792 insn = alpha_read_insn (gdbarch, loc);
793
794 /* Assume that there is at most one branch in the atomic
795 sequence. If a branch is found, put a breakpoint in
796 its destination address. */
797 if (INSN_OPCODE (insn) >= br_opcode)
798 {
799 int immediate = (insn & 0x001fffff) << 2;
800
801 immediate = (immediate ^ 0x400000) - 0x400000;
802
803 if (bc_insn_count >= 1)
a0ff9e1a
SM
804 return {}; /* More than one branch found, fallback
805 to the standard single-step code. */
46ad3598
UW
806
807 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
808
809 bc_insn_count++;
810 last_breakpoint++;
811 }
812
813 if (INSN_OPCODE (insn) == stl_c_opcode
814 || INSN_OPCODE (insn) == stq_c_opcode)
815 break;
816 }
817
818 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
819 if (INSN_OPCODE (insn) != stl_c_opcode
820 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 821 return {};
46ad3598
UW
822
823 closing_insn = loc;
824 loc += ALPHA_INSN_SIZE;
825
826 /* Insert a breakpoint right after the end of the atomic sequence. */
827 breaks[0] = loc;
828
829 /* Check for duplicated breakpoints. Check also for a breakpoint
830 placed (branch instruction's destination) anywhere in sequence. */
831 if (last_breakpoint
832 && (breaks[1] == breaks[0]
833 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
834 last_breakpoint = 0;
835
a0ff9e1a
SM
836 std::vector<CORE_ADDR> next_pcs;
837
46ad3598 838 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 839 next_pcs.push_back (breaks[index]);
46ad3598 840
93f9a11f 841 return next_pcs;
46ad3598
UW
842}
843
d2427a71
RH
844\f
845/* Figure out where the longjmp will land.
846 We expect the first arg to be a pointer to the jmp_buf structure from
847 which we extract the PC (JB_PC) that we will land at. The PC is copied
848 into the "pc". This routine returns true on success. */
c906108c
SS
849
850static int
60ade65d 851alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 852{
e17a4113 853 struct gdbarch *gdbarch = get_frame_arch (frame);
345bd07c 854 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
e17a4113 855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 856 CORE_ADDR jb_addr;
2a1ce6ec 857 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 858
60ade65d 859 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 860
d2427a71
RH
861 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
862 raw_buffer, tdep->jb_elt_size))
c906108c 863 return 0;
d2427a71 864
e17a4113 865 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 866 return 1;
c906108c
SS
867}
868
d2427a71
RH
869\f
870/* Frame unwinder for signal trampolines. We use alpha tdep bits that
871 describe the location and shape of the sigcontext structure. After
872 that, all registers are in memory, so it's easy. */
873/* ??? Shouldn't we be able to do this generically, rather than with
874 OSABI data specific to Alpha? */
875
876struct alpha_sigtramp_unwind_cache
c906108c 877{
d2427a71
RH
878 CORE_ADDR sigcontext_addr;
879};
c906108c 880
d2427a71 881static struct alpha_sigtramp_unwind_cache *
6834c9bb 882alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
883 void **this_prologue_cache)
884{
885 struct alpha_sigtramp_unwind_cache *info;
c906108c 886
d2427a71 887 if (*this_prologue_cache)
9a3c8263 888 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 889
d2427a71
RH
890 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
891 *this_prologue_cache = info;
c906108c 892
345bd07c
SM
893 gdbarch *arch = get_frame_arch (this_frame);
894 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (arch);
6834c9bb 895 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 896
d2427a71 897 return info;
c906108c
SS
898}
899
138e7be5
MK
900/* Return the address of REGNUM in a sigtramp frame. Since this is
901 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 902
d2427a71 903static CORE_ADDR
be8626e0
MD
904alpha_sigtramp_register_address (struct gdbarch *gdbarch,
905 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 906{
345bd07c 907 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
138e7be5
MK
908
909 if (regnum >= 0 && regnum < 32)
910 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
911 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
912 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
913 else if (regnum == ALPHA_PC_REGNUM)
914 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 915
d2427a71 916 return 0;
c906108c
SS
917}
918
d2427a71
RH
919/* Given a GDB frame, determine the address of the calling function's
920 frame. This will be used to create a new GDB frame struct. */
140f9984 921
dc129d82 922static void
6834c9bb 923alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
924 void **this_prologue_cache,
925 struct frame_id *this_id)
c906108c 926{
6834c9bb 927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
345bd07c 928 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
d2427a71 929 struct alpha_sigtramp_unwind_cache *info
6834c9bb 930 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
931 CORE_ADDR stack_addr, code_addr;
932
933 /* If the OSABI couldn't locate the sigcontext, give up. */
934 if (info->sigcontext_addr == 0)
935 return;
936
937 /* If we have dynamic signal trampolines, find their start.
938 If we do not, then we must assume there is a symbol record
939 that can provide the start address. */
d2427a71 940 if (tdep->dynamic_sigtramp_offset)
c906108c 941 {
d2427a71 942 int offset;
6834c9bb 943 code_addr = get_frame_pc (this_frame);
e17a4113 944 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
945 if (offset >= 0)
946 code_addr -= offset;
c906108c 947 else
d2427a71 948 code_addr = 0;
c906108c 949 }
d2427a71 950 else
6834c9bb 951 code_addr = get_frame_func (this_frame);
c906108c 952
d2427a71 953 /* The stack address is trivially read from the sigcontext. */
be8626e0 954 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 955 ALPHA_SP_REGNUM);
6834c9bb 956 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 957 ALPHA_REGISTER_SIZE);
c906108c 958
d2427a71 959 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
960}
961
d2427a71 962/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 963
6834c9bb
JB
964static struct value *
965alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
966 void **this_prologue_cache, int regnum)
c906108c 967{
d2427a71 968 struct alpha_sigtramp_unwind_cache *info
6834c9bb 969 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 970 CORE_ADDR addr;
c906108c 971
d2427a71 972 if (info->sigcontext_addr != 0)
c906108c 973 {
d2427a71 974 /* All integer and fp registers are stored in memory. */
6834c9bb 975 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 976 info->sigcontext_addr, regnum);
d2427a71 977 if (addr != 0)
dda83cd7 978 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
979 }
980
d2427a71
RH
981 /* This extra register may actually be in the sigcontext, but our
982 current description of it in alpha_sigtramp_frame_unwind_cache
983 doesn't include it. Too bad. Fall back on whatever's in the
984 outer frame. */
6834c9bb 985 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 986}
c906108c 987
6834c9bb
JB
988static int
989alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
dda83cd7
SM
990 struct frame_info *this_frame,
991 void **this_prologue_cache)
d2427a71 992{
6834c9bb
JB
993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
994 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 995 const char *name;
c906108c 996
f2524b93 997 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
85102364 998 look at tramp-frame.h and other simpler per-architecture
f2524b93
AC
999 sigtramp unwinders. */
1000
1001 /* We shouldn't even bother to try if the OSABI didn't register a
85102364 1002 sigcontext_addr handler or pc_in_sigtramp handler. */
345bd07c
SM
1003 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1004 if (tdep->sigcontext_addr == NULL)
6834c9bb 1005 return 0;
345bd07c
SM
1006
1007 if (tdep->pc_in_sigtramp == NULL)
6834c9bb 1008 return 0;
c906108c 1009
d2427a71
RH
1010 /* Otherwise we should be in a signal frame. */
1011 find_pc_partial_function (pc, &name, NULL, NULL);
345bd07c 1012 if (tdep->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1013 return 1;
c906108c 1014
6834c9bb 1015 return 0;
c906108c 1016}
6834c9bb 1017
a154d838
SM
1018static const struct frame_unwind alpha_sigtramp_frame_unwind =
1019{
1020 "alpha sigtramp",
6834c9bb 1021 SIGTRAMP_FRAME,
8fbca658 1022 default_frame_unwind_stop_reason,
6834c9bb
JB
1023 alpha_sigtramp_frame_this_id,
1024 alpha_sigtramp_frame_prev_register,
1025 NULL,
1026 alpha_sigtramp_frame_sniffer
1027};
1028
d2427a71 1029\f
c906108c 1030
d2427a71
RH
1031/* Heuristic_proc_start may hunt through the text section for a long
1032 time across a 2400 baud serial line. Allows the user to limit this
1033 search. */
44096aee 1034static int heuristic_fence_post = 0;
c906108c 1035
d2427a71
RH
1036/* Attempt to locate the start of the function containing PC. We assume that
1037 the previous function ends with an about_to_return insn. Not foolproof by
1038 any means, since gcc is happy to put the epilogue in the middle of a
1039 function. But we're guessing anyway... */
c906108c 1040
d2427a71 1041static CORE_ADDR
be8626e0 1042alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1043{
345bd07c 1044 alpha_gdbarch_tdep *tdep = (alpha_gdbarch_tdep *) gdbarch_tdep (gdbarch);
d2427a71
RH
1045 CORE_ADDR last_non_nop = pc;
1046 CORE_ADDR fence = pc - heuristic_fence_post;
1047 CORE_ADDR orig_pc = pc;
fbe586ae 1048 CORE_ADDR func;
d6b48e9c 1049 struct inferior *inf;
9e0b60a8 1050
d2427a71
RH
1051 if (pc == 0)
1052 return 0;
9e0b60a8 1053
fbe586ae
RH
1054 /* First see if we can find the start of the function from minimal
1055 symbol information. This can succeed with a binary that doesn't
1056 have debug info, but hasn't been stripped. */
1057 func = get_pc_function_start (pc);
1058 if (func)
1059 return func;
1060
44096aee 1061 if (heuristic_fence_post == -1
d2427a71
RH
1062 || fence < tdep->vm_min_address)
1063 fence = tdep->vm_min_address;
c906108c 1064
d2427a71
RH
1065 /* Search back for previous return; also stop at a 0, which might be
1066 seen for instance before the start of a code section. Don't include
1067 nops, since this usually indicates padding between functions. */
e8d2d628 1068 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1069 {
e17a4113 1070 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1071 switch (insn)
c906108c 1072 {
d2427a71
RH
1073 case 0: /* invalid insn */
1074 case 0x6bfa8001: /* ret $31,($26),1 */
1075 return last_non_nop;
1076
1077 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1078 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1079 break;
1080
1081 default:
1082 last_non_nop = pc;
1083 break;
c906108c 1084 }
d2427a71 1085 }
c906108c 1086
d6b48e9c
PA
1087 inf = current_inferior ();
1088
d2427a71
RH
1089 /* It's not clear to me why we reach this point when stopping quietly,
1090 but with this test, at least we don't print out warnings for every
1091 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1092 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1093 {
1094 static int blurb_printed = 0;
c906108c 1095
d2427a71 1096 if (fence == tdep->vm_min_address)
323e0a4a 1097 warning (_("Hit beginning of text section without finding \
5af949e3 1098enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1099 else
323e0a4a 1100 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1101enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1102
d2427a71
RH
1103 if (!blurb_printed)
1104 {
6cb06a8c 1105 gdb_printf (_("\
d2427a71
RH
1106This warning occurs if you are debugging a function without any symbols\n\
1107(for example, in a stripped executable). In that case, you may wish to\n\
1108increase the size of the search with the `set heuristic-fence-post' command.\n\
1109\n\
1110Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1111(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1112 blurb_printed = 1;
1113 }
1114 }
c906108c 1115
d2427a71
RH
1116 return 0;
1117}
c906108c 1118
07ea644b
MD
1119/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1120 something about the traditional layout of alpha stack frames. */
1121
1122struct alpha_heuristic_unwind_cache
1123{
1124 CORE_ADDR vfp;
1125 CORE_ADDR start_pc;
098caef4 1126 trad_frame_saved_reg *saved_regs;
07ea644b
MD
1127 int return_reg;
1128};
1129
3a48e6ff
JG
1130/* If a probing loop sequence starts at PC, simulate it and compute
1131 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1132 FRAME_SIZE unchanged. */
1133
1134static void
1135alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1136 int *frame_size)
1137{
1138 CORE_ADDR cur_pc = *pc;
1139 int cur_frame_size = *frame_size;
1140 int nb_of_iterations, reg_index, reg_probe;
1141 unsigned int insn;
1142
1143 /* The following pattern is recognized as a probing loop:
1144
dda83cd7
SM
1145 lda REG_INDEX,NB_OF_ITERATIONS
1146 lda REG_PROBE,<immediate>(sp)
3a48e6ff
JG
1147
1148 LOOP_START:
dda83cd7
SM
1149 stq zero,<immediate>(REG_PROBE)
1150 subq REG_INDEX,0x1,REG_INDEX
1151 lda REG_PROBE,<immediate>(REG_PROBE)
1152 bne REG_INDEX, LOOP_START
3a48e6ff 1153
dda83cd7 1154 lda sp,<immediate>(REG_PROBE)
3a48e6ff
JG
1155
1156 If anything different is found, the function returns without
1157 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1158 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1159
1160 /* lda REG_INDEX,NB_OF_ITERATIONS */
1161
1162 insn = alpha_read_insn (gdbarch, cur_pc);
1163 if (INSN_OPCODE (insn) != lda_opcode)
1164 return;
1165 reg_index = MEM_RA (insn);
1166 nb_of_iterations = MEM_DISP (insn);
1167
1168 /* lda REG_PROBE,<immediate>(sp) */
1169
1170 cur_pc += ALPHA_INSN_SIZE;
1171 insn = alpha_read_insn (gdbarch, cur_pc);
1172 if (INSN_OPCODE (insn) != lda_opcode
1173 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1174 return;
1175 reg_probe = MEM_RA (insn);
1176 cur_frame_size -= MEM_DISP (insn);
1177
1178 /* stq zero,<immediate>(REG_PROBE) */
1179
1180 cur_pc += ALPHA_INSN_SIZE;
1181 insn = alpha_read_insn (gdbarch, cur_pc);
1182 if (INSN_OPCODE (insn) != stq_opcode
1183 || MEM_RA (insn) != 0x1f
1184 || MEM_RB (insn) != reg_probe)
1185 return;
1186
1187 /* subq REG_INDEX,0x1,REG_INDEX */
1188
1189 cur_pc += ALPHA_INSN_SIZE;
1190 insn = alpha_read_insn (gdbarch, cur_pc);
1191 if (INSN_OPCODE (insn) != subq_opcode
1192 || !OPR_HAS_IMMEDIATE (insn)
1193 || OPR_FUNCTION (insn) != subq_function
1194 || OPR_LIT(insn) != 1
1195 || OPR_RA (insn) != reg_index
1196 || OPR_RC (insn) != reg_index)
1197 return;
1198
1199 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1200
1201 cur_pc += ALPHA_INSN_SIZE;
1202 insn = alpha_read_insn (gdbarch, cur_pc);
1203 if (INSN_OPCODE (insn) != lda_opcode
1204 || MEM_RA (insn) != reg_probe
1205 || MEM_RB (insn) != reg_probe)
1206 return;
1207 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1208
1209 /* bne REG_INDEX, LOOP_START */
1210
1211 cur_pc += ALPHA_INSN_SIZE;
1212 insn = alpha_read_insn (gdbarch, cur_pc);
1213 if (INSN_OPCODE (insn) != bne_opcode
1214 || MEM_RA (insn) != reg_index)
1215 return;
1216
1217 /* lda sp,<immediate>(REG_PROBE) */
1218
1219 cur_pc += ALPHA_INSN_SIZE;
1220 insn = alpha_read_insn (gdbarch, cur_pc);
1221 if (INSN_OPCODE (insn) != lda_opcode
1222 || MEM_RA (insn) != ALPHA_SP_REGNUM
1223 || MEM_RB (insn) != reg_probe)
1224 return;
1225 cur_frame_size -= MEM_DISP (insn);
1226
1227 *pc = cur_pc;
1228 *frame_size = cur_frame_size;
1229}
1230
fbe586ae 1231static struct alpha_heuristic_unwind_cache *
6834c9bb 1232alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1233 void **this_prologue_cache,
1234 CORE_ADDR start_pc)
1235{
6834c9bb 1236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1237 struct alpha_heuristic_unwind_cache *info;
1238 ULONGEST val;
1239 CORE_ADDR limit_pc, cur_pc;
1240 int frame_reg, frame_size, return_reg, reg;
c906108c 1241
d2427a71 1242 if (*this_prologue_cache)
9a3c8263 1243 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1244
d2427a71
RH
1245 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1246 *this_prologue_cache = info;
6834c9bb 1247 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1248
6834c9bb 1249 limit_pc = get_frame_pc (this_frame);
d2427a71 1250 if (start_pc == 0)
be8626e0 1251 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1252 info->start_pc = start_pc;
c906108c 1253
d2427a71
RH
1254 frame_reg = ALPHA_SP_REGNUM;
1255 frame_size = 0;
1256 return_reg = -1;
c906108c 1257
d2427a71
RH
1258 /* If we've identified a likely place to start, do code scanning. */
1259 if (start_pc != 0)
c5aa993b 1260 {
d2427a71
RH
1261 /* Limit the forward search to 50 instructions. */
1262 if (start_pc + 200 < limit_pc)
1263 limit_pc = start_pc + 200;
c5aa993b 1264
e8d2d628 1265 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1266 {
e17a4113 1267 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1268
d2427a71
RH
1269 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1270 {
1271 if (word & 0x8000)
1272 {
1273 /* Consider only the first stack allocation instruction
0963b4bd 1274 to contain the static size of the frame. */
d2427a71
RH
1275 if (frame_size == 0)
1276 frame_size = (-word) & 0xffff;
1277 }
1278 else
1279 {
1280 /* Exit loop if a positive stack adjustment is found, which
1281 usually means that the stack cleanup code in the function
1282 epilogue is reached. */
1283 break;
1284 }
1285 }
1286 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1287 {
1288 reg = (word & 0x03e00000) >> 21;
1289
dda83cd7
SM
1290 /* Ignore this instruction if we have already encountered
1291 an instruction saving the same register earlier in the
1292 function code. The current instruction does not tell
1293 us where the original value upon function entry is saved.
1294 All it says is that the function we are scanning reused
1295 that register for some computation of its own, and is now
1296 saving its result. */
a9a87d35 1297 if (info->saved_regs[reg].is_addr ())
dda83cd7 1298 continue;
d15bfd3a 1299
d2427a71
RH
1300 if (reg == 31)
1301 continue;
1302
1303 /* Do not compute the address where the register was saved yet,
1304 because we don't know yet if the offset will need to be
1305 relative to $sp or $fp (we can not compute the address
1306 relative to $sp if $sp is updated during the execution of
1307 the current subroutine, for instance when doing some alloca).
1308 So just store the offset for the moment, and compute the
1309 address later when we know whether this frame has a frame
1310 pointer or not. */
1311 /* Hack: temporarily add one, so that the offset is non-zero
1312 and we can tell which registers have save offsets below. */
098caef4 1313 info->saved_regs[reg].set_addr ((word & 0xffff) + 1);
d2427a71
RH
1314
1315 /* Starting with OSF/1-3.2C, the system libraries are shipped
1316 without local symbols, but they still contain procedure
1317 descriptors without a symbol reference. GDB is currently
1318 unable to find these procedure descriptors and uses
1319 heuristic_proc_desc instead.
1320 As some low level compiler support routines (__div*, __add*)
1321 use a non-standard return address register, we have to
1322 add some heuristics to determine the return address register,
1323 or stepping over these routines will fail.
1324 Usually the return address register is the first register
1325 saved on the stack, but assembler optimization might
1326 rearrange the register saves.
1327 So we recognize only a few registers (t7, t9, ra) within
1328 the procedure prologue as valid return address registers.
1329 If we encounter a return instruction, we extract the
7a9dd1b2 1330 return address register from it.
d2427a71
RH
1331
1332 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1333 e.g. via the minimal symbol table, might obviate this
1334 hack. */
d2427a71
RH
1335 if (return_reg == -1
1336 && cur_pc < (start_pc + 80)
1337 && (reg == ALPHA_T7_REGNUM
1338 || reg == ALPHA_T9_REGNUM
1339 || reg == ALPHA_RA_REGNUM))
1340 return_reg = reg;
1341 }
1342 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1343 return_reg = (word >> 16) & 0x1f;
1344 else if (word == 0x47de040f) /* bis sp,sp,fp */
1345 frame_reg = ALPHA_GCC_FP_REGNUM;
1346 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1347 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1348
1349 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1350 }
c5aa993b 1351
d2427a71
RH
1352 /* If we haven't found a valid return address register yet, keep
1353 searching in the procedure prologue. */
1354 if (return_reg == -1)
1355 {
1356 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1357 {
e17a4113 1358 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1359
d2427a71
RH
1360 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1361 {
1362 reg = (word & 0x03e00000) >> 21;
1363 if (reg == ALPHA_T7_REGNUM
1364 || reg == ALPHA_T9_REGNUM
1365 || reg == ALPHA_RA_REGNUM)
1366 {
1367 return_reg = reg;
1368 break;
1369 }
1370 }
1371 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1372 {
1373 return_reg = (word >> 16) & 0x1f;
1374 break;
1375 }
85b32d22 1376
e8d2d628 1377 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1378 }
1379 }
c906108c 1380 }
c906108c 1381
d2427a71
RH
1382 /* Failing that, do default to the customary RA. */
1383 if (return_reg == -1)
1384 return_reg = ALPHA_RA_REGNUM;
1385 info->return_reg = return_reg;
f8453e34 1386
6834c9bb 1387 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1388 info->vfp = val + frame_size;
c906108c 1389
d2427a71
RH
1390 /* Convert offsets to absolute addresses. See above about adding
1391 one to the offsets to make all detected offsets non-zero. */
1392 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
a9a87d35 1393 if (info->saved_regs[reg].is_addr ())
098caef4
LM
1394 info->saved_regs[reg].set_addr (info->saved_regs[reg].addr ()
1395 + val - 1);
d2427a71 1396
bfd66dd9
JB
1397 /* The stack pointer of the previous frame is computed by popping
1398 the current stack frame. */
a9a87d35
LM
1399 if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ())
1400 info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp);
bfd66dd9 1401
d2427a71 1402 return info;
c906108c 1403}
c906108c 1404
d2427a71
RH
1405/* Given a GDB frame, determine the address of the calling function's
1406 frame. This will be used to create a new GDB frame struct. */
1407
fbe586ae 1408static void
6834c9bb
JB
1409alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1410 void **this_prologue_cache,
1411 struct frame_id *this_id)
c906108c 1412{
d2427a71 1413 struct alpha_heuristic_unwind_cache *info
6834c9bb 1414 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1415
d2427a71 1416 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1417}
1418
d2427a71
RH
1419/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1420
6834c9bb
JB
1421static struct value *
1422alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1423 void **this_prologue_cache, int regnum)
c906108c 1424{
d2427a71 1425 struct alpha_heuristic_unwind_cache *info
6834c9bb 1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1427
1428 /* The PC of the previous frame is stored in the link register of
1429 the current frame. Frob regnum so that we pull the value from
1430 the correct place. */
1431 if (regnum == ALPHA_PC_REGNUM)
1432 regnum = info->return_reg;
1433
6834c9bb 1434 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1435}
1436
a154d838
SM
1437static const struct frame_unwind alpha_heuristic_frame_unwind =
1438{
1439 "alpha prologue",
d2427a71 1440 NORMAL_FRAME,
8fbca658 1441 default_frame_unwind_stop_reason,
d2427a71 1442 alpha_heuristic_frame_this_id,
6834c9bb
JB
1443 alpha_heuristic_frame_prev_register,
1444 NULL,
1445 default_frame_sniffer
d2427a71 1446};
c906108c 1447
fbe586ae 1448static CORE_ADDR
6834c9bb 1449alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1450 void **this_prologue_cache)
c906108c 1451{
d2427a71 1452 struct alpha_heuristic_unwind_cache *info
6834c9bb 1453 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1454
d2427a71 1455 return info->vfp;
c906108c
SS
1456}
1457
d2427a71
RH
1458static const struct frame_base alpha_heuristic_frame_base = {
1459 &alpha_heuristic_frame_unwind,
1460 alpha_heuristic_frame_base_address,
1461 alpha_heuristic_frame_base_address,
1462 alpha_heuristic_frame_base_address
1463};
1464
c906108c 1465/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1466 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1467
1468static void
eb4c3f4a
TT
1469reinit_frame_cache_sfunc (const char *args,
1470 int from_tty, struct cmd_list_element *c)
c906108c
SS
1471{
1472 reinit_frame_cache ();
1473}
98a8e1e5
RH
1474\f
1475/* Helper routines for alpha*-nat.c files to move register sets to and
1476 from core files. The UNIQUE pointer is allowed to be NULL, as most
1477 targets don't supply this value in their core files. */
1478
1479void
390c1522
UW
1480alpha_supply_int_regs (struct regcache *regcache, int regno,
1481 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1482{
9a3c8263 1483 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1484 int i;
1485
1486 for (i = 0; i < 31; ++i)
1487 if (regno == i || regno == -1)
73e1c03f 1488 regcache->raw_supply (i, regs + i * 8);
98a8e1e5
RH
1489
1490 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1491 {
1492 const gdb_byte zero[8] = { 0 };
1493
73e1c03f 1494 regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
4a1be8d2 1495 }
98a8e1e5
RH
1496
1497 if (regno == ALPHA_PC_REGNUM || regno == -1)
73e1c03f 1498 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1499
1500 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
73e1c03f 1501 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1502}
1503
1504void
390c1522
UW
1505alpha_fill_int_regs (const struct regcache *regcache,
1506 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1507{
9a3c8263 1508 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1509 int i;
1510
1511 for (i = 0; i < 31; ++i)
1512 if (regno == i || regno == -1)
34a79281 1513 regcache->raw_collect (i, regs + i * 8);
98a8e1e5
RH
1514
1515 if (regno == ALPHA_PC_REGNUM || regno == -1)
34a79281 1516 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1517
1518 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
34a79281 1519 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1520}
1521
1522void
390c1522
UW
1523alpha_supply_fp_regs (struct regcache *regcache, int regno,
1524 const void *f0_f30, const void *fpcr)
98a8e1e5 1525{
9a3c8263 1526 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1527 int i;
1528
1529 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1530 if (regno == i || regno == -1)
73e1c03f 1531 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1532
1533 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
73e1c03f 1534 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1535}
1536
1537void
390c1522
UW
1538alpha_fill_fp_regs (const struct regcache *regcache,
1539 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1540{
9a3c8263 1541 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1542 int i;
1543
1544 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1545 if (regno == i || regno == -1)
34a79281 1546 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1547
1548 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
34a79281 1549 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1550}
1551
d2427a71 1552\f
0de94d4b
JB
1553
1554/* Return nonzero if the G_floating register value in REG is equal to
1555 zero for FP control instructions. */
1556
1557static int
1558fp_register_zero_p (LONGEST reg)
1559{
1560 /* Check that all bits except the sign bit are zero. */
1561 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1562
1563 return ((reg & zero_mask) == 0);
1564}
1565
1566/* Return the value of the sign bit for the G_floating register
1567 value held in REG. */
1568
1569static int
1570fp_register_sign_bit (LONGEST reg)
1571{
1572 const LONGEST sign_mask = (LONGEST) 1 << 63;
1573
1574 return ((reg & sign_mask) != 0);
1575}
1576
ec32e4be
JT
1577/* alpha_software_single_step() is called just before we want to resume
1578 the inferior, if we want to single-step it but there is no hardware
1579 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1580 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1581
1582static CORE_ADDR
7ab2d087 1583alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1584{
ac7936df 1585 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1586 unsigned int insn;
1587 unsigned int op;
551e4f2e 1588 int regno;
ec32e4be
JT
1589 int offset;
1590 LONGEST rav;
1591
e17a4113 1592 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1593
0963b4bd 1594 /* Opcode is top 6 bits. */
ec32e4be
JT
1595 op = (insn >> 26) & 0x3f;
1596
1597 if (op == 0x1a)
1598 {
1599 /* Jump format: target PC is:
1600 RB & ~3 */
7ab2d087 1601 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1602 }
1603
1604 if ((op & 0x30) == 0x30)
1605 {
1606 /* Branch format: target PC is:
1607 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1608 if (op == 0x30 /* BR */
1609 || op == 0x34) /* BSR */
ec32e4be
JT
1610 {
1611 branch_taken:
dda83cd7 1612 offset = (insn & 0x001fffff);
ec32e4be
JT
1613 if (offset & 0x00100000)
1614 offset |= 0xffe00000;
e8d2d628
MK
1615 offset *= ALPHA_INSN_SIZE;
1616 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1617 }
1618
1619 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1620 regno = (insn >> 21) & 0x1f;
1621 switch (op)
dda83cd7
SM
1622 {
1623 case 0x31: /* FBEQ */
1624 case 0x36: /* FBGE */
1625 case 0x37: /* FBGT */
1626 case 0x33: /* FBLE */
1627 case 0x32: /* FBLT */
1628 case 0x35: /* FBNE */
1629 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1630 }
1631
7ab2d087 1632 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1633
ec32e4be
JT
1634 switch (op)
1635 {
1636 case 0x38: /* BLBC */
1637 if ((rav & 1) == 0)
1638 goto branch_taken;
1639 break;
1640 case 0x3c: /* BLBS */
1641 if (rav & 1)
1642 goto branch_taken;
1643 break;
1644 case 0x39: /* BEQ */
1645 if (rav == 0)
1646 goto branch_taken;
1647 break;
1648 case 0x3d: /* BNE */
1649 if (rav != 0)
1650 goto branch_taken;
1651 break;
1652 case 0x3a: /* BLT */
1653 if (rav < 0)
1654 goto branch_taken;
1655 break;
1656 case 0x3b: /* BLE */
1657 if (rav <= 0)
1658 goto branch_taken;
1659 break;
1660 case 0x3f: /* BGT */
1661 if (rav > 0)
1662 goto branch_taken;
1663 break;
1664 case 0x3e: /* BGE */
1665 if (rav >= 0)
1666 goto branch_taken;
1667 break;
d2427a71 1668
dda83cd7
SM
1669 /* Floating point branches. */
1670
1671 case 0x31: /* FBEQ */
1672 if (fp_register_zero_p (rav))
1673 goto branch_taken;
1674 break;
1675 case 0x36: /* FBGE */
1676 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1677 goto branch_taken;
1678 break;
1679 case 0x37: /* FBGT */
1680 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1681 goto branch_taken;
1682 break;
1683 case 0x33: /* FBLE */
1684 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1685 goto branch_taken;
1686 break;
1687 case 0x32: /* FBLT */
1688 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1689 goto branch_taken;
1690 break;
1691 case 0x35: /* FBNE */
1692 if (! fp_register_zero_p (rav))
1693 goto branch_taken;
1694 break;
ec32e4be
JT
1695 }
1696 }
1697
1698 /* Not a branch or branch not taken; target PC is:
1699 pc + 4 */
e8d2d628 1700 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1701}
1702
a0ff9e1a 1703std::vector<CORE_ADDR>
f5ea389a 1704alpha_software_single_step (struct regcache *regcache)
ec32e4be 1705{
68f81d60
RH
1706 struct gdbarch *gdbarch = regcache->arch ();
1707
1708 CORE_ADDR pc = regcache_read_pc (regcache);
1709
1710 std::vector<CORE_ADDR> next_pcs
1711 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1712 if (!next_pcs.empty ())
1713 return next_pcs;
ec32e4be 1714
68f81d60
RH
1715 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1716 return {next_pc};
c906108c
SS
1717}
1718
dc129d82 1719\f
dc129d82
JT
1720/* Initialize the current architecture based on INFO. If possible, re-use an
1721 architecture from ARCHES, which is a list of architectures already created
1722 during this debugging session.
1723
1724 Called e.g. at program startup, when reading a core file, and when reading
1725 a binary file. */
1726
1727static struct gdbarch *
1728alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1729{
dc129d82 1730 struct gdbarch *gdbarch;
dc129d82 1731
dc129d82 1732 /* Find a candidate among extant architectures. */
4be87837
DJ
1733 arches = gdbarch_list_lookup_by_info (arches, &info);
1734 if (arches != NULL)
1735 return arches->gdbarch;
dc129d82 1736
345bd07c 1737 alpha_gdbarch_tdep *tdep = new alpha_gdbarch_tdep;
dc129d82
JT
1738 gdbarch = gdbarch_alloc (&info, tdep);
1739
d2427a71
RH
1740 /* Lowest text address. This is used by heuristic_proc_start()
1741 to decide when to stop looking. */
594706e6 1742 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1743
36a6271d 1744 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1745 tdep->sigcontext_addr = NULL;
138e7be5
MK
1746 tdep->sc_pc_offset = 2 * 8;
1747 tdep->sc_regs_offset = 4 * 8;
1748 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1749
0963b4bd 1750 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1751
9823e921
RH
1752 tdep->return_in_memory = alpha_return_in_memory_always;
1753
dc129d82
JT
1754 /* Type sizes */
1755 set_gdbarch_short_bit (gdbarch, 16);
1756 set_gdbarch_int_bit (gdbarch, 32);
1757 set_gdbarch_long_bit (gdbarch, 64);
1758 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1759 set_gdbarch_wchar_bit (gdbarch, 64);
1760 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1761 set_gdbarch_float_bit (gdbarch, 32);
1762 set_gdbarch_double_bit (gdbarch, 64);
1763 set_gdbarch_long_double_bit (gdbarch, 64);
1764 set_gdbarch_ptr_bit (gdbarch, 64);
1765
1766 /* Register info */
1767 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1768 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1769 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1770 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1771
1772 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1773 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1774
1775 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1776 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1777
c483c494
RH
1778 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1779 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1780 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1781
615967cb
RH
1782 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1783
d2427a71 1784 /* Prologue heuristics. */
dc129d82
JT
1785 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1786
d2427a71 1787 /* Call info. */
dc129d82 1788
9823e921 1789 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1790
1791 /* Settings for calling functions in the inferior. */
c88e30c0 1792 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71 1793
dc129d82 1794 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1795 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1796
04180708
YQ
1797 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1798 alpha_breakpoint::kind_from_pc);
1799 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1800 alpha_breakpoint::bp_from_kind);
e8d2d628 1801 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1802 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1803
46ad3598 1804 /* Handles single stepping of atomic sequences. */
68f81d60 1805 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
46ad3598 1806
44dffaac 1807 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1808 gdbarch_init_osabi (info, gdbarch);
44dffaac 1809
accc6d1f
JT
1810 /* Now that we have tuned the configuration, set a few final things
1811 based on what the OS ABI has told us. */
1812
1813 if (tdep->jb_pc >= 0)
1814 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1815
6834c9bb
JB
1816 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1817 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1818
d2427a71 1819 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1820
d2427a71 1821 return gdbarch;
dc129d82
JT
1822}
1823
baa490c4
RH
1824void
1825alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1826{
6834c9bb 1827 dwarf2_append_unwinders (gdbarch);
336d1bba 1828 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1829}
1830
6c265988 1831void _initialize_alpha_tdep ();
c906108c 1832void
6c265988 1833_initialize_alpha_tdep ()
c906108c 1834{
c906108c 1835
d2427a71 1836 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1837
1838 /* Let the user set the fence post for heuristic_proc_start. */
1839
1840 /* We really would like to have both "0" and "unlimited" work, but
1841 command.c doesn't deal with that. So make it a var_zinteger
1842 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1843 /* We need to throw away the frame cache when we set this, since it
1844 might change our ability to get backtraces. */
1845 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1846 &heuristic_fence_post, _("\
1847Set the distance searched for the start of a function."), _("\
1848Show the distance searched for the start of a function."), _("\
c906108c
SS
1849If you are debugging a stripped executable, GDB needs to search through the\n\
1850program for the start of a function. This command sets the distance of the\n\
323e0a4a 1851search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1852 reinit_frame_cache_sfunc,
0963b4bd
MS
1853 NULL, /* FIXME: i18n: The distance searched for
1854 the start of a function is \"%d\". */
edefbb7c 1855 &setlist, &showlist);
c906108c 1856}