]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/alpha-tdep.c
daily update
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
ec32e4be 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
b6ba6518 3 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "frame.h"
24#include "inferior.h"
25#include "symtab.h"
26#include "value.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "dis-asm.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "gdb_string.h"
c5f0f3d0 33#include "linespec.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
dc129d82
JT
36#include "arch-utils.h"
37
38#include "elf-bfd.h"
39
40#include "alpha-tdep.h"
41
42static gdbarch_init_ftype alpha_gdbarch_init;
43
44static gdbarch_register_name_ftype alpha_register_name;
45static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48static gdbarch_register_byte_ftype alpha_register_byte;
49static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51static gdbarch_register_convertible_ftype alpha_register_convertible;
52static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56static gdbarch_extract_return_value_ftype alpha_extract_return_value;
57static gdbarch_store_return_value_ftype alpha_store_return_value;
58static gdbarch_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
95b80706
JT
62static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63
dc129d82
JT
64static gdbarch_frame_args_address_ftype alpha_frame_args_address;
65static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66
67static gdbarch_skip_prologue_ftype alpha_skip_prologue;
68static gdbarch_get_saved_register_ftype alpha_get_saved_register;
69static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
70static gdbarch_frame_chain_ftype alpha_frame_chain;
71static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
72static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
73
74static gdbarch_push_arguments_ftype alpha_push_arguments;
75static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
76static gdbarch_pop_frame_ftype alpha_pop_frame;
77static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
78static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
79static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
c906108c 80
140f9984
JT
81struct frame_extra_info
82 {
83 alpha_extra_func_info_t proc_desc;
84 int localoff;
85 int pc_reg;
86 };
87
c906108c
SS
88/* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
89
90/* Prototypes for local functions. */
91
140f9984
JT
92static void alpha_find_saved_regs (struct frame_info *);
93
a14ed312 94static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
c906108c 95
a14ed312 96static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
c906108c 97
a14ed312 98static CORE_ADDR heuristic_proc_start (CORE_ADDR);
c906108c 99
a14ed312
KB
100static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
101 CORE_ADDR,
102 struct frame_info *);
c906108c 103
a14ed312
KB
104static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
105 struct frame_info *);
c906108c
SS
106
107#if 0
a14ed312 108static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
c906108c
SS
109#endif
110
a14ed312 111static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
c906108c 112
a14ed312
KB
113static CORE_ADDR after_prologue (CORE_ADDR pc,
114 alpha_extra_func_info_t proc_desc);
c906108c 115
a14ed312
KB
116static int alpha_in_prologue (CORE_ADDR pc,
117 alpha_extra_func_info_t proc_desc);
c906108c 118
a14ed312 119static int alpha_about_to_return (CORE_ADDR pc);
392a587b 120
a14ed312 121void _initialize_alpha_tdep (void);
392a587b 122
c906108c
SS
123/* Heuristic_proc_start may hunt through the text section for a long
124 time across a 2400 baud serial line. Allows the user to limit this
125 search. */
126static unsigned int heuristic_fence_post = 0;
c5aa993b 127/* *INDENT-OFF* */
c906108c
SS
128/* Layout of a stack frame on the alpha:
129
130 | |
131 pdr members: | 7th ... nth arg, |
132 | `pushed' by caller. |
133 | |
134----------------|-------------------------------|<-- old_sp == vfp
135 ^ ^ ^ ^ | |
136 | | | | | |
137 | |localoff | Copies of 1st .. 6th |
138 | | | | | argument if necessary. |
139 | | | v | |
140 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
141 | | | | |
142 | | | | Locals and temporaries. |
143 | | | | |
144 | | | |-------------------------------|
145 | | | | |
146 |-fregoffset | Saved float registers. |
147 | | | | F9 |
148 | | | | . |
149 | | | | . |
150 | | | | F2 |
151 | | v | |
152 | | -------|-------------------------------|
153 | | | |
154 | | | Saved registers. |
155 | | | S6 |
156 |-regoffset | . |
157 | | | . |
158 | | | S0 |
159 | | | pdr.pcreg |
160 | v | |
161 | ----------|-------------------------------|
162 | | |
163 frameoffset | Argument build area, gets |
164 | | 7th ... nth arg for any |
165 | | called procedure. |
166 v | |
167 -------------|-------------------------------|<-- sp
168 | |
169*/
c5aa993b
JM
170/* *INDENT-ON* */
171
c5aa993b 172#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
b83266a0
SS
173/* These next two fields are kind of being hijacked. I wonder if
174 iline is too small for the values it needs to hold, if GDB is
175 running on a 32-bit host. */
c5aa993b
JM
176#define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
177#define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
c906108c
SS
178#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
179#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
180#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
181#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
182#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
183#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
184#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
185#define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
186#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
187#define _PROC_MAGIC_ 0x0F0F0F0F
188#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
189#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
190
191struct linked_proc_info
c5aa993b
JM
192 {
193 struct alpha_extra_func_info info;
194 struct linked_proc_info *next;
195 }
196 *linked_proc_desc_table = NULL;
c906108c 197\f
36a6271d
JT
198static CORE_ADDR
199alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
c906108c 200{
36a6271d
JT
201 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
202
203 if (tdep->skip_sigtramp_frame != NULL)
204 return (tdep->skip_sigtramp_frame (frame, pc));
205
206 return (0);
207}
208
209static LONGEST
210alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
211{
212 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
213
214 /* Must be provided by OS/ABI variant code if supported. */
215 if (tdep->dynamic_sigtramp_offset != NULL)
216 return (tdep->dynamic_sigtramp_offset (pc));
217
218 return (-1);
219}
220
221#define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
222
223/* Return TRUE if the procedure descriptor PROC is a procedure
224 descriptor that refers to a dynamically generated signal
225 trampoline routine. */
226static int
227alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
228{
229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
230
231 if (tdep->dynamic_sigtramp_offset != NULL)
232 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
233
234 return (0);
235}
236
237static void
238alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
239{
240 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
241
242 if (tdep->dynamic_sigtramp_offset != NULL)
243 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
c906108c 244}
c5aa993b 245
c906108c
SS
246/* Dynamically create a signal-handler caller procedure descriptor for
247 the signal-handler return code starting at address LOW_ADDR. The
248 descriptor is added to the linked_proc_desc_table. */
249
250static alpha_extra_func_info_t
fba45db2 251push_sigtramp_desc (CORE_ADDR low_addr)
c906108c
SS
252{
253 struct linked_proc_info *link;
254 alpha_extra_func_info_t proc_desc;
255
256 link = (struct linked_proc_info *)
257 xmalloc (sizeof (struct linked_proc_info));
258 link->next = linked_proc_desc_table;
259 linked_proc_desc_table = link;
260
261 proc_desc = &link->info;
262
263 proc_desc->numargs = 0;
c5aa993b
JM
264 PROC_LOW_ADDR (proc_desc) = low_addr;
265 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
266 PROC_DUMMY_FRAME (proc_desc) = 0;
267 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
268 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
269 PROC_REG_MASK (proc_desc) = 0xffff;
270 PROC_FREG_MASK (proc_desc) = 0xffff;
271 PROC_PC_REG (proc_desc) = 26;
272 PROC_LOCALOFF (proc_desc) = 0;
36a6271d 273 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
c906108c
SS
274 return (proc_desc);
275}
c906108c 276\f
c5aa993b 277
dc129d82 278static char *
636a6dfc
JT
279alpha_register_name (int regno)
280{
281 static char *register_names[] =
282 {
283 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
284 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
285 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
286 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
291 "pc", "vfp",
292 };
293
294 if (regno < 0)
295 return (NULL);
296 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
297 return (NULL);
298 return (register_names[regno]);
299}
d734c450 300
dc129d82 301static int
d734c450
JT
302alpha_cannot_fetch_register (int regno)
303{
dc129d82 304 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
d734c450
JT
305}
306
dc129d82 307static int
d734c450
JT
308alpha_cannot_store_register (int regno)
309{
dc129d82 310 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
d734c450
JT
311}
312
dc129d82 313static int
d734c450
JT
314alpha_register_convertible (int regno)
315{
316 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
317}
0d056799 318
dc129d82 319static struct type *
0d056799
JT
320alpha_register_virtual_type (int regno)
321{
322 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
323 ? builtin_type_double : builtin_type_long);
324}
f8453e34 325
dc129d82 326static int
f8453e34
JT
327alpha_register_byte (int regno)
328{
329 return (regno * 8);
330}
331
dc129d82 332static int
f8453e34
JT
333alpha_register_raw_size (int regno)
334{
335 return 8;
336}
337
dc129d82 338static int
f8453e34
JT
339alpha_register_virtual_size (int regno)
340{
341 return 8;
342}
636a6dfc
JT
343\f
344
c906108c
SS
345/* Guaranteed to set frame->saved_regs to some values (it never leaves it
346 NULL). */
347
140f9984 348static void
fba45db2 349alpha_find_saved_regs (struct frame_info *frame)
c906108c
SS
350{
351 int ireg;
352 CORE_ADDR reg_position;
353 unsigned long mask;
354 alpha_extra_func_info_t proc_desc;
355 int returnreg;
356
357 frame_saved_regs_zalloc (frame);
358
359 /* If it is the frame for __sigtramp, the saved registers are located
360 in a sigcontext structure somewhere on the stack. __sigtramp
361 passes a pointer to the sigcontext structure on the stack.
362 If the stack layout for __sigtramp changes, or if sigcontext offsets
363 change, we might have to update this code. */
364#ifndef SIGFRAME_PC_OFF
365#define SIGFRAME_PC_OFF (2 * 8)
366#define SIGFRAME_REGSAVE_OFF (4 * 8)
367#define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
368#endif
369 if (frame->signal_handler_caller)
370 {
371 CORE_ADDR sigcontext_addr;
372
373 sigcontext_addr = SIGCONTEXT_ADDR (frame);
374 for (ireg = 0; ireg < 32; ireg++)
375 {
c5aa993b
JM
376 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
377 frame->saved_regs[ireg] = reg_position;
c906108c
SS
378 }
379 for (ireg = 0; ireg < 32; ireg++)
380 {
c5aa993b
JM
381 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
382 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
383 }
384 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
385 return;
386 }
387
140f9984 388 proc_desc = frame->extra_info->proc_desc;
c906108c
SS
389 if (proc_desc == NULL)
390 /* I'm not sure how/whether this can happen. Normally when we can't
391 find a proc_desc, we "synthesize" one using heuristic_proc_desc
392 and set the saved_regs right away. */
393 return;
394
395 /* Fill in the offsets for the registers which gen_mask says
396 were saved. */
397
398 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
399 mask = PROC_REG_MASK (proc_desc);
400
401 returnreg = PROC_PC_REG (proc_desc);
402
403 /* Note that RA is always saved first, regardless of its actual
404 register number. */
405 if (mask & (1 << returnreg))
406 {
407 frame->saved_regs[returnreg] = reg_position;
408 reg_position += 8;
c5aa993b
JM
409 mask &= ~(1 << returnreg); /* Clear bit for RA so we
410 don't save again later. */
c906108c
SS
411 }
412
c5aa993b 413 for (ireg = 0; ireg <= 31; ++ireg)
c906108c
SS
414 if (mask & (1 << ireg))
415 {
416 frame->saved_regs[ireg] = reg_position;
417 reg_position += 8;
418 }
419
420 /* Fill in the offsets for the registers which float_mask says
421 were saved. */
422
423 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
424 mask = PROC_FREG_MASK (proc_desc);
425
c5aa993b 426 for (ireg = 0; ireg <= 31; ++ireg)
c906108c
SS
427 if (mask & (1 << ireg))
428 {
c5aa993b 429 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
c906108c
SS
430 reg_position += 8;
431 }
432
433 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
434}
435
dc129d82 436static void
140f9984
JT
437alpha_frame_init_saved_regs (struct frame_info *fi)
438{
439 if (fi->saved_regs == NULL)
440 alpha_find_saved_regs (fi);
441 fi->saved_regs[SP_REGNUM] = fi->frame;
442}
443
dc129d82 444static void
0d056799
JT
445alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
446{
447 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
448 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
449}
450
c906108c 451static CORE_ADDR
fba45db2 452read_next_frame_reg (struct frame_info *fi, int regno)
c906108c
SS
453{
454 for (; fi; fi = fi->next)
455 {
456 /* We have to get the saved sp from the sigcontext
c5aa993b 457 if it is a signal handler frame. */
c906108c
SS
458 if (regno == SP_REGNUM && !fi->signal_handler_caller)
459 return fi->frame;
460 else
461 {
462 if (fi->saved_regs == NULL)
463 alpha_find_saved_regs (fi);
464 if (fi->saved_regs[regno])
c5aa993b 465 return read_memory_integer (fi->saved_regs[regno], 8);
c906108c
SS
466 }
467 }
c5aa993b 468 return read_register (regno);
c906108c
SS
469}
470
dc129d82 471static CORE_ADDR
fba45db2 472alpha_frame_saved_pc (struct frame_info *frame)
c906108c 473{
140f9984 474 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c
SS
475 /* We have to get the saved pc from the sigcontext
476 if it is a signal handler frame. */
140f9984
JT
477 int pcreg = frame->signal_handler_caller ? PC_REGNUM
478 : frame->extra_info->pc_reg;
c906108c 479
c5aa993b
JM
480 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
481 return read_memory_integer (frame->frame - 8, 8);
c906108c 482
c5aa993b 483 return read_next_frame_reg (frame, pcreg);
c906108c
SS
484}
485
dc129d82
JT
486static void
487alpha_get_saved_register (char *raw_buffer,
488 int *optimized,
489 CORE_ADDR *addrp,
490 struct frame_info *frame,
491 int regnum,
492 enum lval_type *lval)
493{
494 CORE_ADDR addr;
495
496 if (!target_has_registers)
497 error ("No registers.");
498
499 /* Normal systems don't optimize out things with register numbers. */
500 if (optimized != NULL)
501 *optimized = 0;
502 addr = find_saved_register (frame, regnum);
503 if (addr != 0)
504 {
505 if (lval != NULL)
506 *lval = lval_memory;
507 if (regnum == SP_REGNUM)
508 {
509 if (raw_buffer != NULL)
510 {
511 /* Put it back in target format. */
512 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
513 (LONGEST) addr);
514 }
515 if (addrp != NULL)
516 *addrp = 0;
517 return;
518 }
519 if (raw_buffer != NULL)
520 target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
521 }
522 else
523 {
524 if (lval != NULL)
525 *lval = lval_register;
526 addr = REGISTER_BYTE (regnum);
527 if (raw_buffer != NULL)
528 read_register_gen (regnum, raw_buffer);
529 }
530 if (addrp != NULL)
531 *addrp = addr;
532}
533
534static CORE_ADDR
fba45db2 535alpha_saved_pc_after_call (struct frame_info *frame)
c906108c
SS
536{
537 CORE_ADDR pc = frame->pc;
538 CORE_ADDR tmp;
539 alpha_extra_func_info_t proc_desc;
540 int pcreg;
541
542 /* Skip over shared library trampoline if necessary. */
543 tmp = SKIP_TRAMPOLINE_CODE (pc);
544 if (tmp != 0)
545 pc = tmp;
546
547 proc_desc = find_proc_desc (pc, frame->next);
dc129d82 548 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
c906108c
SS
549
550 if (frame->signal_handler_caller)
551 return alpha_frame_saved_pc (frame);
552 else
553 return read_register (pcreg);
554}
555
556
557static struct alpha_extra_func_info temp_proc_desc;
dc129d82 558static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
c906108c
SS
559
560/* Nonzero if instruction at PC is a return instruction. "ret
561 $zero,($ra),1" on alpha. */
562
563static int
fba45db2 564alpha_about_to_return (CORE_ADDR pc)
c906108c
SS
565{
566 return read_memory_integer (pc, 4) == 0x6bfa8001;
567}
568
569
570
571/* This fencepost looks highly suspicious to me. Removing it also
572 seems suspicious as it could affect remote debugging across serial
573 lines. */
574
575static CORE_ADDR
fba45db2 576heuristic_proc_start (CORE_ADDR pc)
c906108c 577{
d9b023cc 578 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c5aa993b
JM
579 CORE_ADDR start_pc = pc;
580 CORE_ADDR fence = start_pc - heuristic_fence_post;
c906108c 581
c5aa993b
JM
582 if (start_pc == 0)
583 return 0;
c906108c 584
c5aa993b 585 if (heuristic_fence_post == UINT_MAX
d9b023cc
JT
586 || fence < tdep->vm_min_address)
587 fence = tdep->vm_min_address;
c906108c 588
c5aa993b
JM
589 /* search back for previous return */
590 for (start_pc -= 4;; start_pc -= 4)
591 if (start_pc < fence)
592 {
593 /* It's not clear to me why we reach this point when
594 stop_soon_quietly, but with this test, at least we
595 don't print out warnings for every child forked (eg, on
596 decstation). 22apr93 rich@cygnus.com. */
597 if (!stop_soon_quietly)
c906108c 598 {
c5aa993b
JM
599 static int blurb_printed = 0;
600
d9b023cc 601 if (fence == tdep->vm_min_address)
c5aa993b
JM
602 warning ("Hit beginning of text section without finding");
603 else
604 warning ("Hit heuristic-fence-post without finding");
605
d4f3574e 606 warning ("enclosing function for address 0x%s", paddr_nz (pc));
c5aa993b 607 if (!blurb_printed)
c906108c 608 {
c5aa993b 609 printf_filtered ("\
c906108c
SS
610This warning occurs if you are debugging a function without any symbols\n\
611(for example, in a stripped executable). In that case, you may wish to\n\
612increase the size of the search with the `set heuristic-fence-post' command.\n\
613\n\
614Otherwise, you told GDB there was a function where there isn't one, or\n\
615(more likely) you have encountered a bug in GDB.\n");
c5aa993b 616 blurb_printed = 1;
c906108c 617 }
c906108c 618 }
c906108c 619
c5aa993b
JM
620 return 0;
621 }
622 else if (alpha_about_to_return (start_pc))
623 break;
624
625 start_pc += 4; /* skip return */
626 return start_pc;
c906108c
SS
627}
628
629static alpha_extra_func_info_t
fba45db2
KB
630heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
631 struct frame_info *next_frame)
c906108c 632{
c5aa993b
JM
633 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
634 CORE_ADDR cur_pc;
635 int frame_size;
636 int has_frame_reg = 0;
637 unsigned long reg_mask = 0;
638 int pcreg = -1;
639
640 if (start_pc == 0)
641 return NULL;
642 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
140f9984 643 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
c5aa993b
JM
644 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
645
646 if (start_pc + 200 < limit_pc)
647 limit_pc = start_pc + 200;
648 frame_size = 0;
649 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
650 {
651 char buf[4];
652 unsigned long word;
653 int status;
c906108c 654
c5aa993b
JM
655 status = read_memory_nobpt (cur_pc, buf, 4);
656 if (status)
657 memory_error (status, cur_pc);
658 word = extract_unsigned_integer (buf, 4);
c906108c 659
c5aa993b
JM
660 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
661 {
662 if (word & 0x8000)
663 frame_size += (-word) & 0xffff;
664 else
665 /* Exit loop if a positive stack adjustment is found, which
666 usually means that the stack cleanup code in the function
667 epilogue is reached. */
668 break;
669 }
670 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
671 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
672 {
673 int reg = (word & 0x03e00000) >> 21;
674 reg_mask |= 1 << reg;
140f9984 675 temp_saved_regs[reg] = sp + (short) word;
c5aa993b
JM
676
677 /* Starting with OSF/1-3.2C, the system libraries are shipped
678 without local symbols, but they still contain procedure
679 descriptors without a symbol reference. GDB is currently
680 unable to find these procedure descriptors and uses
681 heuristic_proc_desc instead.
682 As some low level compiler support routines (__div*, __add*)
683 use a non-standard return address register, we have to
684 add some heuristics to determine the return address register,
685 or stepping over these routines will fail.
686 Usually the return address register is the first register
687 saved on the stack, but assembler optimization might
688 rearrange the register saves.
689 So we recognize only a few registers (t7, t9, ra) within
690 the procedure prologue as valid return address registers.
691 If we encounter a return instruction, we extract the
692 the return address register from it.
693
694 FIXME: Rewriting GDB to access the procedure descriptors,
695 e.g. via the minimal symbol table, might obviate this hack. */
696 if (pcreg == -1
697 && cur_pc < (start_pc + 80)
dc129d82
JT
698 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
699 || reg == ALPHA_RA_REGNUM))
c5aa993b
JM
700 pcreg = reg;
701 }
702 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
703 pcreg = (word >> 16) & 0x1f;
704 else if (word == 0x47de040f) /* bis sp,sp fp */
705 has_frame_reg = 1;
706 }
707 if (pcreg == -1)
708 {
709 /* If we haven't found a valid return address register yet,
710 keep searching in the procedure prologue. */
711 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
712 {
713 char buf[4];
714 unsigned long word;
c906108c 715
c5aa993b
JM
716 if (read_memory_nobpt (cur_pc, buf, 4))
717 break;
718 cur_pc += 4;
719 word = extract_unsigned_integer (buf, 4);
c906108c 720
c5aa993b
JM
721 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
722 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
723 {
724 int reg = (word & 0x03e00000) >> 21;
dc129d82
JT
725 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
726 || reg == ALPHA_RA_REGNUM)
c5aa993b
JM
727 {
728 pcreg = reg;
729 break;
730 }
731 }
732 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
733 {
734 pcreg = (word >> 16) & 0x1f;
735 break;
736 }
737 }
738 }
c906108c 739
c5aa993b 740 if (has_frame_reg)
dc129d82 741 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
c5aa993b
JM
742 else
743 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
744 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
745 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
dc129d82 746 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
c5aa993b
JM
747 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
748 return &temp_proc_desc;
c906108c
SS
749}
750
751/* This returns the PC of the first inst after the prologue. If we can't
752 find the prologue, then return 0. */
753
754static CORE_ADDR
fba45db2 755after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
c906108c
SS
756{
757 struct symtab_and_line sal;
758 CORE_ADDR func_addr, func_end;
759
760 if (!proc_desc)
761 proc_desc = find_proc_desc (pc, NULL);
762
763 if (proc_desc)
764 {
36a6271d 765 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
c906108c
SS
766 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
767
768 /* If function is frameless, then we need to do it the hard way. I
c5aa993b 769 strongly suspect that frameless always means prologueless... */
c906108c
SS
770 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
771 && PROC_FRAME_OFFSET (proc_desc) == 0)
772 return 0;
773 }
774
775 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
776 return 0; /* Unknown */
777
778 sal = find_pc_line (func_addr, 0);
779
780 if (sal.end < func_end)
781 return sal.end;
782
783 /* The line after the prologue is after the end of the function. In this
784 case, tell the caller to find the prologue the hard way. */
785
786 return 0;
787}
788
789/* Return non-zero if we *might* be in a function prologue. Return zero if we
790 are definitively *not* in a function prologue. */
791
792static int
fba45db2 793alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
c906108c
SS
794{
795 CORE_ADDR after_prologue_pc;
796
797 after_prologue_pc = after_prologue (pc, proc_desc);
798
799 if (after_prologue_pc == 0
800 || pc < after_prologue_pc)
801 return 1;
802 else
803 return 0;
804}
805
806static alpha_extra_func_info_t
fba45db2 807find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
c906108c
SS
808{
809 alpha_extra_func_info_t proc_desc;
810 struct block *b;
811 struct symbol *sym;
812 CORE_ADDR startaddr;
813
814 /* Try to get the proc_desc from the linked call dummy proc_descs
815 if the pc is in the call dummy.
816 This is hairy. In the case of nested dummy calls we have to find the
817 right proc_desc, but we might not yet know the frame for the dummy
818 as it will be contained in the proc_desc we are searching for.
819 So we have to find the proc_desc whose frame is closest to the current
820 stack pointer. */
821
822 if (PC_IN_CALL_DUMMY (pc, 0, 0))
823 {
824 struct linked_proc_info *link;
825 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
826 alpha_extra_func_info_t found_proc_desc = NULL;
827 long min_distance = LONG_MAX;
828
829 for (link = linked_proc_desc_table; link; link = link->next)
830 {
831 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
832 if (distance > 0 && distance < min_distance)
833 {
834 min_distance = distance;
835 found_proc_desc = &link->info;
836 }
837 }
838 if (found_proc_desc != NULL)
839 return found_proc_desc;
840 }
841
c5aa993b 842 b = block_for_pc (pc);
c906108c
SS
843
844 find_pc_partial_function (pc, NULL, &startaddr, NULL);
845 if (b == NULL)
846 sym = NULL;
847 else
848 {
849 if (startaddr > BLOCK_START (b))
850 /* This is the "pathological" case referred to in a comment in
851 print_frame_info. It might be better to move this check into
852 symbol reading. */
853 sym = NULL;
854 else
855 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
856 0, NULL);
857 }
858
859 /* If we never found a PDR for this function in symbol reading, then
860 examine prologues to find the information. */
861 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
862 sym = NULL;
863
864 if (sym)
865 {
c5aa993b
JM
866 /* IF this is the topmost frame AND
867 * (this proc does not have debugging information OR
868 * the PC is in the procedure prologue)
869 * THEN create a "heuristic" proc_desc (by analyzing
870 * the actual code) to replace the "official" proc_desc.
871 */
872 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
873 if (next_frame == NULL)
874 {
875 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
876 {
877 alpha_extra_func_info_t found_heuristic =
878 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
879 pc, next_frame);
880 if (found_heuristic)
881 {
882 PROC_LOCALOFF (found_heuristic) =
883 PROC_LOCALOFF (proc_desc);
884 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
885 proc_desc = found_heuristic;
886 }
887 }
888 }
c906108c
SS
889 }
890 else
891 {
892 long offset;
893
894 /* Is linked_proc_desc_table really necessary? It only seems to be used
c5aa993b
JM
895 by procedure call dummys. However, the procedures being called ought
896 to have their own proc_descs, and even if they don't,
897 heuristic_proc_desc knows how to create them! */
c906108c
SS
898
899 register struct linked_proc_info *link;
900 for (link = linked_proc_desc_table; link; link = link->next)
c5aa993b
JM
901 if (PROC_LOW_ADDR (&link->info) <= pc
902 && PROC_HIGH_ADDR (&link->info) > pc)
903 return &link->info;
c906108c
SS
904
905 /* If PC is inside a dynamically generated sigtramp handler,
c5aa993b 906 create and push a procedure descriptor for that code: */
36a6271d 907 offset = alpha_dynamic_sigtramp_offset (pc);
c906108c
SS
908 if (offset >= 0)
909 return push_sigtramp_desc (pc - offset);
910
911 /* If heuristic_fence_post is non-zero, determine the procedure
c5aa993b
JM
912 start address by examining the instructions.
913 This allows us to find the start address of static functions which
914 have no symbolic information, as startaddr would have been set to
915 the preceding global function start address by the
916 find_pc_partial_function call above. */
c906108c
SS
917 if (startaddr == 0 || heuristic_fence_post != 0)
918 startaddr = heuristic_proc_start (pc);
919
920 proc_desc =
921 heuristic_proc_desc (startaddr, pc, next_frame);
922 }
923 return proc_desc;
924}
925
926alpha_extra_func_info_t cached_proc_desc;
927
dc129d82 928static CORE_ADDR
fba45db2 929alpha_frame_chain (struct frame_info *frame)
c906108c 930{
c5aa993b
JM
931 alpha_extra_func_info_t proc_desc;
932 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
933
934 if (saved_pc == 0 || inside_entry_file (saved_pc))
935 return 0;
936
937 proc_desc = find_proc_desc (saved_pc, frame);
938 if (!proc_desc)
939 return 0;
940
941 cached_proc_desc = proc_desc;
942
943 /* Fetch the frame pointer for a dummy frame from the procedure
944 descriptor. */
945 if (PROC_DESC_IS_DUMMY (proc_desc))
946 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
947
948 /* If no frame pointer and frame size is zero, we must be at end
949 of stack (or otherwise hosed). If we don't check frame size,
950 we loop forever if we see a zero size frame. */
951 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
952 && PROC_FRAME_OFFSET (proc_desc) == 0
953 /* The previous frame from a sigtramp frame might be frameless
954 and have frame size zero. */
955 && !frame->signal_handler_caller)
36a6271d 956 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
c5aa993b
JM
957 else
958 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
959 + PROC_FRAME_OFFSET (proc_desc);
c906108c
SS
960}
961
962void
140f9984
JT
963alpha_print_extra_frame_info (struct frame_info *fi)
964{
965 if (fi
966 && fi->extra_info
967 && fi->extra_info->proc_desc
968 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
969 printf_filtered (" frame pointer is at %s+%s\n",
970 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
971 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
972}
973
dc129d82 974static void
140f9984 975alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
c906108c
SS
976{
977 /* Use proc_desc calculated in frame_chain */
978 alpha_extra_func_info_t proc_desc =
c5aa993b 979 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
c906108c 980
140f9984
JT
981 frame->extra_info = (struct frame_extra_info *)
982 frame_obstack_alloc (sizeof (struct frame_extra_info));
983
c906108c 984 frame->saved_regs = NULL;
140f9984 985 frame->extra_info->localoff = 0;
dc129d82 986 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
140f9984 987 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
c906108c
SS
988 if (proc_desc)
989 {
990 /* Get the locals offset and the saved pc register from the
c5aa993b
JM
991 procedure descriptor, they are valid even if we are in the
992 middle of the prologue. */
140f9984
JT
993 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
994 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
c906108c
SS
995
996 /* Fixup frame-pointer - only needed for top frame */
997
998 /* Fetch the frame pointer for a dummy frame from the procedure
c5aa993b
JM
999 descriptor. */
1000 if (PROC_DESC_IS_DUMMY (proc_desc))
1001 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
c906108c
SS
1002
1003 /* This may not be quite right, if proc has a real frame register.
c5aa993b
JM
1004 Get the value of the frame relative sp, procedure might have been
1005 interrupted by a signal at it's very start. */
c906108c 1006 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
36a6271d 1007 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
c906108c
SS
1008 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1009 else
1010 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1011 + PROC_FRAME_OFFSET (proc_desc);
1012
1013 if (proc_desc == &temp_proc_desc)
1014 {
1015 char *name;
1016
1017 /* Do not set the saved registers for a sigtramp frame,
1018 alpha_find_saved_registers will do that for us.
1019 We can't use frame->signal_handler_caller, it is not yet set. */
1020 find_pc_partial_function (frame->pc, &name,
c5aa993b 1021 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
d7bd68ca 1022 if (!PC_IN_SIGTRAMP (frame->pc, name))
c906108c 1023 {
c5aa993b 1024 frame->saved_regs = (CORE_ADDR *)
c906108c 1025 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
140f9984
JT
1026 memcpy (frame->saved_regs, temp_saved_regs,
1027 SIZEOF_FRAME_SAVED_REGS);
c906108c 1028 frame->saved_regs[PC_REGNUM]
dc129d82 1029 = frame->saved_regs[ALPHA_RA_REGNUM];
c906108c
SS
1030 }
1031 }
1032 }
1033}
1034
dc129d82 1035static CORE_ADDR
140f9984
JT
1036alpha_frame_locals_address (struct frame_info *fi)
1037{
1038 return (fi->frame - fi->extra_info->localoff);
1039}
1040
dc129d82 1041static CORE_ADDR
140f9984
JT
1042alpha_frame_args_address (struct frame_info *fi)
1043{
1044 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1045}
1046
c906108c
SS
1047/* ALPHA stack frames are almost impenetrable. When execution stops,
1048 we basically have to look at symbol information for the function
1049 that we stopped in, which tells us *which* register (if any) is
1050 the base of the frame pointer, and what offset from that register
1051 the frame itself is at.
1052
1053 This presents a problem when trying to examine a stack in memory
1054 (that isn't executing at the moment), using the "frame" command. We
1055 don't have a PC, nor do we have any registers except SP.
1056
1057 This routine takes two arguments, SP and PC, and tries to make the
1058 cached frames look as if these two arguments defined a frame on the
1059 cache. This allows the rest of info frame to extract the important
1060 arguments without difficulty. */
1061
1062struct frame_info *
a57f9e49 1063alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
c906108c
SS
1064{
1065 if (argc != 2)
1066 error ("ALPHA frame specifications require two arguments: sp and pc");
1067
1068 return create_new_frame (argv[0], argv[1]);
1069}
1070
1071/* The alpha passes the first six arguments in the registers, the rest on
1072 the stack. The register arguments are eventually transferred to the
1073 argument transfer area immediately below the stack by the called function
1074 anyway. So we `push' at least six arguments on the stack, `reload' the
1075 argument registers and then adjust the stack pointer to point past the
1076 sixth argument. This algorithm simplifies the passing of a large struct
1077 which extends from the registers to the stack.
1078 If the called function is returning a structure, the address of the
1079 structure to be returned is passed as a hidden first argument. */
1080
dc129d82 1081static CORE_ADDR
ea7c478f 1082alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1083 int struct_return, CORE_ADDR struct_addr)
c906108c 1084{
7a292a7a 1085 int i;
c906108c
SS
1086 int accumulate_size = struct_return ? 8 : 0;
1087 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
c5aa993b
JM
1088 struct alpha_arg
1089 {
1090 char *contents;
1091 int len;
1092 int offset;
1093 };
c906108c 1094 struct alpha_arg *alpha_args =
c5aa993b 1095 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
c906108c
SS
1096 register struct alpha_arg *m_arg;
1097 char raw_buffer[sizeof (CORE_ADDR)];
1098 int required_arg_regs;
1099
1100 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1101 {
ea7c478f 1102 struct value *arg = args[i];
c906108c
SS
1103 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1104 /* Cast argument to long if necessary as the compiler does it too. */
1105 switch (TYPE_CODE (arg_type))
1106 {
1107 case TYPE_CODE_INT:
1108 case TYPE_CODE_BOOL:
1109 case TYPE_CODE_CHAR:
1110 case TYPE_CODE_RANGE:
1111 case TYPE_CODE_ENUM:
1112 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1113 {
1114 arg_type = builtin_type_long;
1115 arg = value_cast (arg_type, arg);
1116 }
1117 break;
1118 default:
1119 break;
1120 }
1121 m_arg->len = TYPE_LENGTH (arg_type);
1122 m_arg->offset = accumulate_size;
1123 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
c5aa993b 1124 m_arg->contents = VALUE_CONTENTS (arg);
c906108c
SS
1125 }
1126
1127 /* Determine required argument register loads, loading an argument register
1128 is expensive as it uses three ptrace calls. */
1129 required_arg_regs = accumulate_size / 8;
1130 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1131 required_arg_regs = ALPHA_NUM_ARG_REGS;
1132
1133 /* Make room for the arguments on the stack. */
1134 if (accumulate_size < arg_regs_size)
c5aa993b 1135 accumulate_size = arg_regs_size;
c906108c
SS
1136 sp -= accumulate_size;
1137
1138 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1139 sp &= ~15;
1140
1141 /* `Push' arguments on the stack. */
c5aa993b
JM
1142 for (i = nargs; m_arg--, --i >= 0;)
1143 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
c906108c
SS
1144 if (struct_return)
1145 {
1146 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1147 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1148 }
1149
1150 /* Load the argument registers. */
1151 for (i = 0; i < required_arg_regs; i++)
1152 {
1153 LONGEST val;
1154
1155 val = read_memory_integer (sp + i * 8, 8);
dc129d82
JT
1156 write_register (ALPHA_A0_REGNUM + i, val);
1157 write_register (ALPHA_FPA0_REGNUM + i, val);
c906108c
SS
1158 }
1159
1160 return sp + arg_regs_size;
1161}
1162
dc129d82 1163static void
fba45db2 1164alpha_push_dummy_frame (void)
c906108c
SS
1165{
1166 int ireg;
1167 struct linked_proc_info *link;
1168 alpha_extra_func_info_t proc_desc;
1169 CORE_ADDR sp = read_register (SP_REGNUM);
1170 CORE_ADDR save_address;
dc129d82 1171 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
c906108c
SS
1172 unsigned long mask;
1173
c5aa993b 1174 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
c906108c
SS
1175 link->next = linked_proc_desc_table;
1176 linked_proc_desc_table = link;
c5aa993b 1177
c906108c
SS
1178 proc_desc = &link->info;
1179
1180 /*
1181 * The registers we must save are all those not preserved across
1182 * procedure calls.
1183 * In addition, we must save the PC and RA.
1184 *
1185 * Dummy frame layout:
1186 * (high memory)
c5aa993b 1187 * Saved PC
c906108c
SS
1188 * Saved F30
1189 * ...
1190 * Saved F0
c5aa993b
JM
1191 * Saved R29
1192 * ...
1193 * Saved R0
1194 * Saved R26 (RA)
1195 * Parameter build area
c906108c
SS
1196 * (low memory)
1197 */
1198
1199/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1200#define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1201#define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1202#define GEN_REG_SAVE_COUNT 24
1203#define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1204#define FLOAT_REG_SAVE_COUNT 23
1205 /* The special register is the PC as we have no bit for it in the save masks.
1206 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1207#define SPECIAL_REG_SAVE_COUNT 1
1208
c5aa993b
JM
1209 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1210 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
c906108c
SS
1211 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1212 but keep SP aligned to a multiple of 16. */
c5aa993b
JM
1213 PROC_REG_OFFSET (proc_desc) =
1214 -((8 * (SPECIAL_REG_SAVE_COUNT
c906108c
SS
1215 + GEN_REG_SAVE_COUNT
1216 + FLOAT_REG_SAVE_COUNT)
c5aa993b
JM
1217 + 15) & ~15);
1218 PROC_FREG_OFFSET (proc_desc) =
1219 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
c906108c
SS
1220
1221 /* Save general registers.
1222 The return address register is the first saved register, all other
1223 registers follow in ascending order.
1224 The PC is saved immediately below the SP. */
c5aa993b 1225 save_address = sp + PROC_REG_OFFSET (proc_desc);
dc129d82 1226 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
c906108c
SS
1227 write_memory (save_address, raw_buffer, 8);
1228 save_address += 8;
c5aa993b 1229 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
c906108c
SS
1230 for (ireg = 0; mask; ireg++, mask >>= 1)
1231 if (mask & 1)
1232 {
dc129d82 1233 if (ireg == ALPHA_RA_REGNUM)
c906108c
SS
1234 continue;
1235 store_address (raw_buffer, 8, read_register (ireg));
1236 write_memory (save_address, raw_buffer, 8);
1237 save_address += 8;
1238 }
1239
1240 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1241 write_memory (sp - 8, raw_buffer, 8);
1242
1243 /* Save floating point registers. */
c5aa993b
JM
1244 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1245 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
c906108c
SS
1246 for (ireg = 0; mask; ireg++, mask >>= 1)
1247 if (mask & 1)
1248 {
1249 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1250 write_memory (save_address, raw_buffer, 8);
1251 save_address += 8;
1252 }
1253
1254 /* Set and save the frame address for the dummy.
1255 This is tricky. The only registers that are suitable for a frame save
1256 are those that are preserved across procedure calls (s0-s6). But if
1257 a read system call is interrupted and then a dummy call is made
1258 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1259 is satisfied. Then it returns with the s0-s6 registers set to the values
1260 on entry to the read system call and our dummy frame pointer would be
1261 destroyed. So we save the dummy frame in the proc_desc and handle the
1262 retrieval of the frame pointer of a dummy specifically. The frame register
1263 is set to the virtual frame (pseudo) register, it's value will always
1264 be read as zero and will help us to catch any errors in the dummy frame
1265 retrieval code. */
c5aa993b
JM
1266 PROC_DUMMY_FRAME (proc_desc) = sp;
1267 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1268 PROC_FRAME_OFFSET (proc_desc) = 0;
1269 sp += PROC_REG_OFFSET (proc_desc);
c906108c
SS
1270 write_register (SP_REGNUM, sp);
1271
c5aa993b
JM
1272 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1273 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
c906108c 1274
c5aa993b 1275 SET_PROC_DESC_IS_DUMMY (proc_desc);
dc129d82 1276 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
c906108c
SS
1277}
1278
dc129d82 1279static void
fba45db2 1280alpha_pop_frame (void)
c906108c
SS
1281{
1282 register int regnum;
1283 struct frame_info *frame = get_current_frame ();
1284 CORE_ADDR new_sp = frame->frame;
1285
140f9984 1286 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
c906108c 1287
9e0b60a8
JM
1288 /* we need proc_desc to know how to restore the registers;
1289 if it is NULL, construct (a temporary) one */
1290 if (proc_desc == NULL)
c5aa993b 1291 proc_desc = find_proc_desc (frame->pc, frame->next);
9e0b60a8
JM
1292
1293 /* Question: should we copy this proc_desc and save it in
1294 frame->proc_desc? If we do, who will free it?
1295 For now, we don't save a copy... */
1296
c5aa993b 1297 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
c906108c
SS
1298 if (frame->saved_regs == NULL)
1299 alpha_find_saved_regs (frame);
1300 if (proc_desc)
1301 {
c5aa993b
JM
1302 for (regnum = 32; --regnum >= 0;)
1303 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
c906108c
SS
1304 write_register (regnum,
1305 read_memory_integer (frame->saved_regs[regnum],
1306 8));
c5aa993b
JM
1307 for (regnum = 32; --regnum >= 0;)
1308 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
c906108c 1309 write_register (regnum + FP0_REGNUM,
c5aa993b 1310 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
c906108c
SS
1311 }
1312 write_register (SP_REGNUM, new_sp);
1313 flush_cached_frames ();
1314
c5aa993b 1315 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
36a6271d 1316 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
c906108c
SS
1317 {
1318 struct linked_proc_info *pi_ptr, *prev_ptr;
1319
1320 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1321 pi_ptr != NULL;
1322 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1323 {
1324 if (&pi_ptr->info == proc_desc)
1325 break;
1326 }
1327
1328 if (pi_ptr == NULL)
1329 error ("Can't locate dummy extra frame info\n");
1330
1331 if (prev_ptr != NULL)
1332 prev_ptr->next = pi_ptr->next;
1333 else
1334 linked_proc_desc_table = pi_ptr->next;
1335
b8c9b27d 1336 xfree (pi_ptr);
c906108c
SS
1337 }
1338}
1339\f
1340/* To skip prologues, I use this predicate. Returns either PC itself
1341 if the code at PC does not look like a function prologue; otherwise
1342 returns an address that (if we're lucky) follows the prologue. If
1343 LENIENT, then we must skip everything which is involved in setting
1344 up the frame (it's OK to skip more, just so long as we don't skip
1345 anything which might clobber the registers which are being saved.
0fb34c3a
MS
1346 Currently we must not skip more on the alpha, but we might need the
1347 lenient stuff some day. */
c906108c 1348
f8453e34
JT
1349static CORE_ADDR
1350alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
c906108c 1351{
c5aa993b
JM
1352 unsigned long inst;
1353 int offset;
1354 CORE_ADDR post_prologue_pc;
1355 char buf[4];
c906108c
SS
1356
1357#ifdef GDB_TARGET_HAS_SHARED_LIBS
c5aa993b
JM
1358 /* Silently return the unaltered pc upon memory errors.
1359 This could happen on OSF/1 if decode_line_1 tries to skip the
1360 prologue for quickstarted shared library functions when the
1361 shared library is not yet mapped in.
1362 Reading target memory is slow over serial lines, so we perform
1363 this check only if the target has shared libraries. */
1364 if (target_read_memory (pc, buf, 4))
1365 return pc;
c906108c
SS
1366#endif
1367
c5aa993b
JM
1368 /* See if we can determine the end of the prologue via the symbol table.
1369 If so, then return either PC, or the PC after the prologue, whichever
1370 is greater. */
c906108c 1371
c5aa993b 1372 post_prologue_pc = after_prologue (pc, NULL);
c906108c 1373
c5aa993b
JM
1374 if (post_prologue_pc != 0)
1375 return max (pc, post_prologue_pc);
c906108c 1376
c5aa993b
JM
1377 /* Can't determine prologue from the symbol table, need to examine
1378 instructions. */
c906108c 1379
c5aa993b
JM
1380 /* Skip the typical prologue instructions. These are the stack adjustment
1381 instruction and the instructions that save registers on the stack
1382 or in the gcc frame. */
1383 for (offset = 0; offset < 100; offset += 4)
1384 {
1385 int status;
1386
1387 status = read_memory_nobpt (pc + offset, buf, 4);
1388 if (status)
1389 memory_error (status, pc + offset);
1390 inst = extract_unsigned_integer (buf, 4);
1391
1392 /* The alpha has no delay slots. But let's keep the lenient stuff,
1393 we might need it for something else in the future. */
1394 if (lenient && 0)
1395 continue;
1396
1397 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1398 continue;
1399 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1400 continue;
1401 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1402 continue;
1403 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1404 continue;
1405
1406 if ((inst & 0xfc1f0000) == 0xb41e0000
1407 && (inst & 0xffff0000) != 0xb7fe0000)
1408 continue; /* stq reg,n($sp) */
1409 /* reg != $zero */
1410 if ((inst & 0xfc1f0000) == 0x9c1e0000
1411 && (inst & 0xffff0000) != 0x9ffe0000)
1412 continue; /* stt reg,n($sp) */
1413 /* reg != $zero */
1414 if (inst == 0x47de040f) /* bis sp,sp,fp */
1415 continue;
1416
1417 break;
c906108c 1418 }
c5aa993b 1419 return pc + offset;
c906108c
SS
1420}
1421
dc129d82 1422static CORE_ADDR
f8453e34
JT
1423alpha_skip_prologue (CORE_ADDR addr)
1424{
1425 return (alpha_skip_prologue_internal (addr, 0));
1426}
1427
c906108c
SS
1428#if 0
1429/* Is address PC in the prologue (loosely defined) for function at
1430 STARTADDR? */
1431
1432static int
fba45db2 1433alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
c906108c 1434{
f8453e34 1435 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
c906108c
SS
1436 return pc >= startaddr && pc < end_prologue;
1437}
1438#endif
1439
1440/* The alpha needs a conversion between register and memory format if
1441 the register is a floating point register and
c5aa993b 1442 memory format is float, as the register format must be double
c906108c 1443 or
c5aa993b
JM
1444 memory format is an integer with 4 bytes or less, as the representation
1445 of integers in floating point registers is different. */
dc129d82 1446static void
fba45db2
KB
1447alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1448 char *raw_buffer, char *virtual_buffer)
c906108c
SS
1449{
1450 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1451 {
1452 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1453 return;
1454 }
1455
1456 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1457 {
1458 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1459 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1460 }
1461 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1462 {
1463 ULONGEST l;
1464 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1465 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1466 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1467 }
1468 else
1469 error ("Cannot retrieve value from floating point register");
1470}
1471
dc129d82 1472static void
fba45db2
KB
1473alpha_register_convert_to_raw (struct type *valtype, int regnum,
1474 char *virtual_buffer, char *raw_buffer)
c906108c
SS
1475{
1476 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1477 {
1478 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1479 return;
1480 }
1481
1482 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1483 {
1484 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1485 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1486 }
1487 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1488 {
1489 ULONGEST l;
1490 if (TYPE_UNSIGNED (valtype))
1491 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1492 else
1493 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1494 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1495 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1496 }
1497 else
1498 error ("Cannot store value in floating point register");
1499}
1500
95b80706
JT
1501static const unsigned char *
1502alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1503{
1504 static const unsigned char alpha_breakpoint[] =
1505 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1506
1507 *lenptr = sizeof(alpha_breakpoint);
1508 return (alpha_breakpoint);
1509}
1510
c906108c
SS
1511/* Given a return value in `regbuf' with a type `valtype',
1512 extract and copy its value into `valbuf'. */
1513
dc129d82 1514static void
732a6b2d
KB
1515alpha_extract_return_value (struct type *valtype,
1516 char regbuf[REGISTER_BYTES], char *valbuf)
c906108c
SS
1517{
1518 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1519 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1520 regbuf + REGISTER_BYTE (FP0_REGNUM),
1521 valbuf);
1522 else
dc129d82
JT
1523 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1524 TYPE_LENGTH (valtype));
c906108c
SS
1525}
1526
1527/* Given a return value in `regbuf' with a type `valtype',
1528 write its value into the appropriate register. */
1529
dc129d82 1530static void
fba45db2 1531alpha_store_return_value (struct type *valtype, char *valbuf)
c906108c 1532{
dc129d82
JT
1533 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1534 int regnum = ALPHA_V0_REGNUM;
c906108c 1535 int length = TYPE_LENGTH (valtype);
c5aa993b 1536
c906108c
SS
1537 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1538 {
1539 regnum = FP0_REGNUM;
1540 length = REGISTER_RAW_SIZE (regnum);
1541 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1542 }
1543 else
1544 memcpy (raw_buffer, valbuf, length);
1545
1546 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1547}
1548
1549/* Just like reinit_frame_cache, but with the right arguments to be
1550 callable as an sfunc. */
1551
1552static void
fba45db2 1553reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1554{
1555 reinit_frame_cache ();
1556}
1557
1558/* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1559 to find a convenient place in the text segment to stick a breakpoint to
1560 detect the completion of a target function call (ala call_function_by_hand).
1561 */
1562
1563CORE_ADDR
fba45db2 1564alpha_call_dummy_address (void)
c906108c
SS
1565{
1566 CORE_ADDR entry;
1567 struct minimal_symbol *sym;
1568
1569 entry = entry_point_address ();
1570
1571 if (entry != 0)
1572 return entry;
1573
1574 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1575
1576 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1577 return 0;
1578 else
1579 return SYMBOL_VALUE_ADDRESS (sym) + 4;
ec32e4be
JT
1580}
1581
dc129d82 1582static void
0d056799
JT
1583alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1584 struct value **args, struct type *type, int gcc_p)
1585{
1586 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1587
1588 if (bp_address == 0)
1589 error ("no place to put call");
dc129d82
JT
1590 write_register (ALPHA_RA_REGNUM, bp_address);
1591 write_register (ALPHA_T12_REGNUM, fun);
0d056799
JT
1592}
1593
ee1f65f0
JT
1594/* On the Alpha, the call dummy code is nevery copied to user space
1595 (see alpha_fix_call_dummy() above). The contents of this do not
1596 matter. */
1597LONGEST alpha_call_dummy_words[] = { 0 };
1598
dc129d82 1599static int
d734c450
JT
1600alpha_use_struct_convention (int gcc_p, struct type *type)
1601{
1602 /* Structures are returned by ref in extra arg0. */
1603 return 1;
1604}
1605
dc129d82 1606static void
0d056799
JT
1607alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1608{
1609 /* Store the address of the place in which to copy the structure the
1610 subroutine will return. Handled by alpha_push_arguments. */
1611}
1612
dc129d82 1613static CORE_ADDR
0d056799
JT
1614alpha_extract_struct_value_address (char *regbuf)
1615{
dc129d82
JT
1616 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1617 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
0d056799
JT
1618}
1619
ec32e4be
JT
1620/* alpha_software_single_step() is called just before we want to resume
1621 the inferior, if we want to single-step it but there is no hardware
1622 or kernel single-step support (NetBSD on Alpha, for example). We find
1623 the target of the coming instruction and breakpoint it.
1624
1625 single_step is also called just after the inferior stops. If we had
1626 set up a simulated single-step, we undo our damage. */
1627
1628static CORE_ADDR
1629alpha_next_pc (CORE_ADDR pc)
1630{
1631 unsigned int insn;
1632 unsigned int op;
1633 int offset;
1634 LONGEST rav;
1635
1636 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1637
1638 /* Opcode is top 6 bits. */
1639 op = (insn >> 26) & 0x3f;
1640
1641 if (op == 0x1a)
1642 {
1643 /* Jump format: target PC is:
1644 RB & ~3 */
1645 return (read_register ((insn >> 16) & 0x1f) & ~3);
1646 }
1647
1648 if ((op & 0x30) == 0x30)
1649 {
1650 /* Branch format: target PC is:
1651 (new PC) + (4 * sext(displacement)) */
1652 if (op == 0x30 || /* BR */
1653 op == 0x34) /* BSR */
1654 {
1655 branch_taken:
1656 offset = (insn & 0x001fffff);
1657 if (offset & 0x00100000)
1658 offset |= 0xffe00000;
1659 offset *= 4;
1660 return (pc + 4 + offset);
1661 }
1662
1663 /* Need to determine if branch is taken; read RA. */
1664 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1665 switch (op)
1666 {
1667 case 0x38: /* BLBC */
1668 if ((rav & 1) == 0)
1669 goto branch_taken;
1670 break;
1671 case 0x3c: /* BLBS */
1672 if (rav & 1)
1673 goto branch_taken;
1674 break;
1675 case 0x39: /* BEQ */
1676 if (rav == 0)
1677 goto branch_taken;
1678 break;
1679 case 0x3d: /* BNE */
1680 if (rav != 0)
1681 goto branch_taken;
1682 break;
1683 case 0x3a: /* BLT */
1684 if (rav < 0)
1685 goto branch_taken;
1686 break;
1687 case 0x3b: /* BLE */
1688 if (rav <= 0)
1689 goto branch_taken;
1690 break;
1691 case 0x3f: /* BGT */
1692 if (rav > 0)
1693 goto branch_taken;
1694 break;
1695 case 0x3e: /* BGE */
1696 if (rav >= 0)
1697 goto branch_taken;
1698 break;
1699 }
1700 }
1701
1702 /* Not a branch or branch not taken; target PC is:
1703 pc + 4 */
1704 return (pc + 4);
1705}
1706
1707void
1708alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1709{
1710 static CORE_ADDR next_pc;
1711 typedef char binsn_quantum[BREAKPOINT_MAX];
1712 static binsn_quantum break_mem;
1713 CORE_ADDR pc;
1714
1715 if (insert_breakpoints_p)
1716 {
1717 pc = read_pc ();
1718 next_pc = alpha_next_pc (pc);
1719
1720 target_insert_breakpoint (next_pc, break_mem);
1721 }
1722 else
1723 {
1724 target_remove_breakpoint (next_pc, break_mem);
1725 write_pc (next_pc);
1726 }
c906108c
SS
1727}
1728
dc129d82
JT
1729\f
1730/* This table matches the indices assigned to enum alpha_abi. Keep
1731 them in sync. */
1732static const char * const alpha_abi_names[] =
1733{
1734 "<unknown>",
1735 "OSF/1",
1736 "GNU/Linux",
1737 "FreeBSD",
1738 "NetBSD",
1739 NULL
1740};
1741
1742static void
1743process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
1744{
1745 enum alpha_abi *os_ident_ptr = obj;
1746 const char *name;
1747 unsigned int sectsize;
1748
1749 name = bfd_get_section_name (abfd, sect);
1750 sectsize = bfd_section_size (abfd, sect);
1751
1752 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
1753 {
1754 unsigned int name_length, data_length, note_type;
1755 char *note;
1756
1757 /* If the section is larger than this, it's probably not what we are
1758 looking for. */
1759 if (sectsize > 128)
1760 sectsize = 128;
1761
1762 note = alloca (sectsize);
1763
1764 bfd_get_section_contents (abfd, sect, note,
1765 (file_ptr) 0, (bfd_size_type) sectsize);
1766
1767 name_length = bfd_h_get_32 (abfd, note);
1768 data_length = bfd_h_get_32 (abfd, note + 4);
1769 note_type = bfd_h_get_32 (abfd, note + 8);
1770
1771 if (name_length == 4 && data_length == 16 && note_type == 1
1772 && strcmp (note + 12, "GNU") == 0)
1773 {
1774 int os_number = bfd_h_get_32 (abfd, note + 16);
1775
1776 /* The case numbers are from abi-tags in glibc. */
1777 switch (os_number)
1778 {
1779 case 0 :
1780 *os_ident_ptr = ALPHA_ABI_LINUX;
1781 break;
1782
1783 case 1 :
1784 internal_error
1785 (__FILE__, __LINE__,
1786 "process_note_abi_sections: Hurd objects not supported");
1787 break;
1788
1789 case 2 :
1790 internal_error
1791 (__FILE__, __LINE__,
1792 "process_note_abi_sections: Solaris objects not supported");
1793 break;
1794
1795 default :
1796 internal_error
1797 (__FILE__, __LINE__,
1798 "process_note_abi_sections: unknown OS number %d",
1799 os_number);
1800 break;
1801 }
1802 }
1803 }
1804 /* NetBSD uses a similar trick. */
1805 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
1806 {
1807 unsigned int name_length, desc_length, note_type;
1808 char *note;
1809
1810 /* If the section is larger than this, it's probably not what we are
1811 looking for. */
1812 if (sectsize > 128)
1813 sectsize = 128;
1814
1815 note = alloca (sectsize);
1816
1817 bfd_get_section_contents (abfd, sect, note,
1818 (file_ptr) 0, (bfd_size_type) sectsize);
1819
1820 name_length = bfd_h_get_32 (abfd, note);
1821 desc_length = bfd_h_get_32 (abfd, note + 4);
1822 note_type = bfd_h_get_32 (abfd, note + 8);
1823
1824 if (name_length == 7 && desc_length == 4 && note_type == 1
1825 && strcmp (note + 12, "NetBSD") == 0)
1826 /* XXX Should we check the version here?
1827 Probably not necessary yet. */
1828 *os_ident_ptr = ALPHA_ABI_NETBSD;
1829 }
1830}
1831
1832static int
1833get_elfosabi (bfd *abfd)
1834{
1835 int elfosabi;
1836 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
1837
1838 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
1839
1840 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
1841 what we're on a SYSV system. However, GNU/Linux uses a note section
1842 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
1843 have to check the note sections too. */
1844 if (elfosabi == 0)
1845 {
1846 bfd_map_over_sections (abfd,
1847 process_note_abi_tag_sections,
1848 &alpha_abi);
1849 }
1850
1851 if (alpha_abi != ALPHA_ABI_UNKNOWN)
1852 return alpha_abi;
1853
1854 switch (elfosabi)
1855 {
1856 case ELFOSABI_NONE:
1857 /* Leave it as unknown. */
1858 break;
1859
1860 case ELFOSABI_NETBSD:
1861 return ALPHA_ABI_NETBSD;
1862
1863 case ELFOSABI_FREEBSD:
1864 return ALPHA_ABI_FREEBSD;
1865
1866 case ELFOSABI_LINUX:
1867 return ALPHA_ABI_LINUX;
1868 }
1869
1870 return ALPHA_ABI_UNKNOWN;
1871}
1872
44dffaac
JT
1873struct alpha_abi_handler
1874{
1875 struct alpha_abi_handler *next;
1876 enum alpha_abi abi;
1877 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
1878};
1879
1880struct alpha_abi_handler *alpha_abi_handler_list = NULL;
1881
1882void
1883alpha_gdbarch_register_os_abi (enum alpha_abi abi,
1884 void (*init_abi)(struct gdbarch_info,
1885 struct gdbarch *))
1886{
1887 struct alpha_abi_handler **handler_p;
1888
1889 for (handler_p = &alpha_abi_handler_list; *handler_p != NULL;
1890 handler_p = &(*handler_p)->next)
1891 {
1892 if ((*handler_p)->abi == abi)
1893 {
1894 internal_error
1895 (__FILE__, __LINE__,
1896 "alpha_gdbarch_register_os_abi: A handler for this ABI variant "
1897 "(%d) has already been registered", (int) abi);
1898 /* If user wants to continue, override previous definition. */
1899 (*handler_p)->init_abi = init_abi;
1900 return;
1901 }
1902 }
1903
1904 (*handler_p)
1905 = (struct alpha_abi_handler *) xmalloc (sizeof (struct alpha_abi_handler));
1906 (*handler_p)->next = NULL;
1907 (*handler_p)->abi = abi;
1908 (*handler_p)->init_abi = init_abi;
1909}
1910
dc129d82
JT
1911/* Initialize the current architecture based on INFO. If possible, re-use an
1912 architecture from ARCHES, which is a list of architectures already created
1913 during this debugging session.
1914
1915 Called e.g. at program startup, when reading a core file, and when reading
1916 a binary file. */
1917
1918static struct gdbarch *
1919alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1920{
1921 struct gdbarch_tdep *tdep;
1922 struct gdbarch *gdbarch;
1923 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
44dffaac 1924 struct alpha_abi_handler *abi_handler;
dc129d82
JT
1925
1926 /* Try to determine the ABI of the object we are loading. */
1927
1928 if (info.abfd != NULL)
1929 {
1930 switch (bfd_get_flavour (info.abfd))
1931 {
1932 case bfd_target_elf_flavour:
1933 alpha_abi = get_elfosabi (info.abfd);
1934 break;
1935
1936 case bfd_target_ecoff_flavour:
1937 /* Assume it's OSF/1. */
1938 alpha_abi = ALPHA_ABI_OSF1;
1939 break;
1940
1941 default:
1942 /* Not sure what to do here, leave the ABI as unknown. */
1943 break;
1944 }
1945 }
1946
1947 /* Find a candidate among extant architectures. */
1948 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1949 arches != NULL;
1950 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1951 {
1952 /* Make sure the ABI selection matches. */
1953 tdep = gdbarch_tdep (arches->gdbarch);
1954 if (tdep && tdep->alpha_abi == alpha_abi)
1955 return arches->gdbarch;
1956 }
1957
1958 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1959 gdbarch = gdbarch_alloc (&info, tdep);
1960
1961 tdep->alpha_abi = alpha_abi;
1962 if (alpha_abi < ALPHA_ABI_INVALID)
1963 tdep->abi_name = alpha_abi_names[alpha_abi];
1964 else
1965 {
1966 internal_error (__FILE__, __LINE__, "Invalid setting of alpha_abi %d",
1967 (int) alpha_abi);
1968 tdep->abi_name = "<invalid>";
1969 }
1970
d9b023cc
JT
1971 /* Lowest text address. This is used by heuristic_proc_start() to
1972 decide when to stop looking. */
1973 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1974
36a6271d
JT
1975 tdep->dynamic_sigtramp_offset = NULL;
1976 tdep->skip_sigtramp_frame = NULL;
1977
dc129d82
JT
1978 /* Type sizes */
1979 set_gdbarch_short_bit (gdbarch, 16);
1980 set_gdbarch_int_bit (gdbarch, 32);
1981 set_gdbarch_long_bit (gdbarch, 64);
1982 set_gdbarch_long_long_bit (gdbarch, 64);
1983 set_gdbarch_float_bit (gdbarch, 32);
1984 set_gdbarch_double_bit (gdbarch, 64);
1985 set_gdbarch_long_double_bit (gdbarch, 64);
1986 set_gdbarch_ptr_bit (gdbarch, 64);
1987
1988 /* Register info */
1989 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1990 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1991 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1992 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1993 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1994
1995 set_gdbarch_register_name (gdbarch, alpha_register_name);
1996 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1997 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1998 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1999 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
2000 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
2001 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
2002 set_gdbarch_max_register_virtual_size (gdbarch,
2003 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
2004 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
2005
2006 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
2007 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
2008
2009 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
2010 set_gdbarch_register_convert_to_virtual (gdbarch,
2011 alpha_register_convert_to_virtual);
2012 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
2013
2014 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
2015
2016 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2017 set_gdbarch_frameless_function_invocation (gdbarch,
2018 generic_frameless_function_invocation_not);
2019
2020 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
2021
2022 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
2023 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
2024 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
2025
2026 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
2027 set_gdbarch_get_saved_register (gdbarch, alpha_get_saved_register);
2028
2029 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
2030 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
2031
2032 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
2033 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
2034 set_gdbarch_extract_struct_value_address (gdbarch,
2035 alpha_extract_struct_value_address);
2036
2037 /* Settings for calling functions in the inferior. */
2038 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2039 set_gdbarch_call_dummy_length (gdbarch, 0);
2040 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
2041 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
2042
2043 /* On the Alpha, the call dummy code is never copied to user space,
2044 stopping the user call is achieved via a bp_call_dummy breakpoint.
2045 But we need a fake CALL_DUMMY definition to enable the proper
2046 call_function_by_hand and to avoid zero length array warnings. */
2047 set_gdbarch_call_dummy_p (gdbarch, 1);
2048 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
2049 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2050 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
2051 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
2052 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
2053
2054 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
2055 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
2056 argument handling and bp_call_dummy takes care of stopping the dummy. */
2057 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2058 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
2059 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2060 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2061 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2062 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
2063 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2064 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
2065 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
2066 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
2067 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
2068
2069 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 2070 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 2071
65585be4
JT
2072 /* Floats are always passed as doubles. */
2073 set_gdbarch_coerce_float_to_double (gdbarch,
2074 standard_coerce_float_to_double);
2075
95b80706 2076 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
dc129d82 2077 set_gdbarch_decr_pc_after_break (gdbarch, 4);
95b80706
JT
2078
2079 set_gdbarch_function_start_offset (gdbarch, 0);
dc129d82
JT
2080 set_gdbarch_frame_args_skip (gdbarch, 0);
2081
44dffaac
JT
2082 /* Hook in ABI-specific overrides, if they have been registered. */
2083 if (alpha_abi == ALPHA_ABI_UNKNOWN)
2084 {
2085 /* Don't complain about not knowing the ABI variant if we don't
2086 have an inferior. */
2087 if (info.abfd)
2088 fprintf_filtered
2089 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2090 "Attempting to continue with the default Alpha settings");
2091 }
2092 else
2093 {
2094 for (abi_handler = alpha_abi_handler_list; abi_handler != NULL;
2095 abi_handler = abi_handler->next)
2096 if (abi_handler->abi == alpha_abi)
2097 break;
2098
2099 if (abi_handler)
2100 abi_handler->init_abi (info, gdbarch);
2101 else
2102 {
2103 /* We assume that if GDB_MULTI_ARCH is less than
2104 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2105 overriding definitions in this file. */
2106 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2107 fprintf_filtered
2108 (gdb_stderr,
2109 "A handler for the ABI variant \"%s\" is not built into this "
2110 "configuration of GDB. "
2111 "Attempting to continue with the default Alpha settings",
2112 alpha_abi_names[alpha_abi]);
2113 }
2114 }
2115
dc129d82
JT
2116 return gdbarch;
2117}
2118
2119static void
2120alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2121{
2122 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2123
2124 if (tdep == NULL)
2125 return;
2126
2127 if (tdep->abi_name != NULL)
2128 fprintf_unfiltered (file, "alpha_dump_tdep: ABI = %s\n", tdep->abi_name);
2129 else
2130 internal_error (__FILE__, __LINE__,
2131 "alpha_dump_tdep: illegal setting of tdep->alpha_abi (%d)",
2132 (int) tdep->alpha_abi);
d9b023cc
JT
2133
2134 fprintf_unfiltered (file,
2135 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
2136 (long) tdep->vm_min_address);
dc129d82
JT
2137}
2138
c906108c 2139void
fba45db2 2140_initialize_alpha_tdep (void)
c906108c
SS
2141{
2142 struct cmd_list_element *c;
2143
dc129d82
JT
2144 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
2145
c906108c
SS
2146 tm_print_insn = print_insn_alpha;
2147
2148 /* Let the user set the fence post for heuristic_proc_start. */
2149
2150 /* We really would like to have both "0" and "unlimited" work, but
2151 command.c doesn't deal with that. So make it a var_zinteger
2152 because the user can always use "999999" or some such for unlimited. */
2153 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2154 (char *) &heuristic_fence_post,
2155 "\
2156Set the distance searched for the start of a function.\n\
2157If you are debugging a stripped executable, GDB needs to search through the\n\
2158program for the start of a function. This command sets the distance of the\n\
2159search. The only need to set it is when debugging a stripped executable.",
2160 &setlist);
2161 /* We need to throw away the frame cache when we set this, since it
2162 might change our ability to get backtraces. */
9f60d481 2163 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
c906108c
SS
2164 add_show_from_set (c, &showlist);
2165}