]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/amd64-tdep.c
gdb: move compile_instance to compile/compile.h
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
213516ef 3 Copyright (C) 2001-2023 Free Software Foundation, Inc.
5ae96ec1
MK
4
5 Contributed by Jiri Smid, SuSE Labs.
53e95fcf
JS
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
53e95fcf
JS
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
53e95fcf
JS
21
22#include "defs.h"
4de283e4
TT
23#include "opcode/i386.h"
24#include "dis-asm.h"
c4f35dd8
MK
25#include "arch-utils.h"
26#include "block.h"
27#include "dummy-frame.h"
4de283e4 28#include "frame.h"
c4f35dd8
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
d55e5aa6
TT
31#include "inferior.h"
32#include "infrun.h"
4de283e4
TT
33#include "gdbcmd.h"
34#include "gdbcore.h"
c4f35dd8 35#include "objfiles.h"
53e95fcf 36#include "regcache.h"
2c261fae 37#include "regset.h"
53e95fcf 38#include "symfile.h"
4de283e4
TT
39#include "disasm.h"
40#include "amd64-tdep.h"
41#include "i387-tdep.h"
268a13a5 42#include "gdbsupport/x86-xstate.h"
4de283e4 43#include <algorithm>
22916b07 44#include "target-descriptions.h"
4de283e4
TT
45#include "arch/amd64.h"
46#include "producer.h"
47#include "ax.h"
48#include "ax-gdb.h"
268a13a5 49#include "gdbsupport/byte-vector.h"
4de283e4 50#include "osabi.h"
1d509aa6 51#include "x86-tdep.h"
257e02d8 52#include "amd64-ravenscar-thread.h"
6710bf39 53
e53bef9f
MK
54/* Note that the AMD64 architecture was previously known as x86-64.
55 The latter is (forever) engraved into the canonical system name as
90f90721 56 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
57 of GNU/Linux. The BSD's have renamed their ports to amd64; they
58 don't like to shout. For GDB we prefer the amd64_-prefix over the
59 x86_64_-prefix since it's so much easier to type. */
60
402ecd56 61/* Register information. */
c4f35dd8 62
27087b7f 63static const char * const amd64_register_names[] =
de220d0f 64{
6707b003 65 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
c4f35dd8
MK
66
67 /* %r8 is indeed register number 8. */
6707b003
UW
68 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
69 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
c4f35dd8 70
af233647 71 /* %st0 is register number 24. */
6707b003
UW
72 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
c4f35dd8 74
af233647 75 /* %xmm0 is register number 40. */
6707b003
UW
76 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
77 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 "mxcsr",
0e04a514
ML
79};
80
27087b7f 81static const char * const amd64_ymm_names[] =
a055a187
L
82{
83 "ymm0", "ymm1", "ymm2", "ymm3",
84 "ymm4", "ymm5", "ymm6", "ymm7",
85 "ymm8", "ymm9", "ymm10", "ymm11",
86 "ymm12", "ymm13", "ymm14", "ymm15"
87};
88
27087b7f 89static const char * const amd64_ymm_avx512_names[] =
01f9f808
MS
90{
91 "ymm16", "ymm17", "ymm18", "ymm19",
92 "ymm20", "ymm21", "ymm22", "ymm23",
93 "ymm24", "ymm25", "ymm26", "ymm27",
94 "ymm28", "ymm29", "ymm30", "ymm31"
95};
96
27087b7f 97static const char * const amd64_ymmh_names[] =
a055a187
L
98{
99 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
100 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
101 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
102 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
103};
de220d0f 104
27087b7f 105static const char * const amd64_ymmh_avx512_names[] =
01f9f808
MS
106{
107 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
108 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
109 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
110 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
111};
112
27087b7f 113static const char * const amd64_mpx_names[] =
e43e105e
WT
114{
115 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
116};
117
27087b7f 118static const char * const amd64_k_names[] =
01f9f808
MS
119{
120 "k0", "k1", "k2", "k3",
121 "k4", "k5", "k6", "k7"
122};
123
27087b7f 124static const char * const amd64_zmmh_names[] =
01f9f808
MS
125{
126 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
127 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
128 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
129 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
130 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
131 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
132 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
133 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
134};
135
27087b7f 136static const char * const amd64_zmm_names[] =
01f9f808
MS
137{
138 "zmm0", "zmm1", "zmm2", "zmm3",
139 "zmm4", "zmm5", "zmm6", "zmm7",
140 "zmm8", "zmm9", "zmm10", "zmm11",
141 "zmm12", "zmm13", "zmm14", "zmm15",
142 "zmm16", "zmm17", "zmm18", "zmm19",
143 "zmm20", "zmm21", "zmm22", "zmm23",
144 "zmm24", "zmm25", "zmm26", "zmm27",
145 "zmm28", "zmm29", "zmm30", "zmm31"
146};
147
27087b7f 148static const char * const amd64_xmm_avx512_names[] = {
01f9f808
MS
149 "xmm16", "xmm17", "xmm18", "xmm19",
150 "xmm20", "xmm21", "xmm22", "xmm23",
151 "xmm24", "xmm25", "xmm26", "xmm27",
152 "xmm28", "xmm29", "xmm30", "xmm31"
153};
154
27087b7f 155static const char * const amd64_pkeys_names[] = {
51547df6
MS
156 "pkru"
157};
158
c4f35dd8
MK
159/* DWARF Register Number Mapping as defined in the System V psABI,
160 section 3.6. */
53e95fcf 161
e53bef9f 162static int amd64_dwarf_regmap[] =
0e04a514 163{
c4f35dd8 164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
168
169 /* Frame Pointer Register RBP. */
90f90721 170 AMD64_RBP_REGNUM,
c4f35dd8
MK
171
172 /* Stack Pointer Register RSP. */
90f90721 173 AMD64_RSP_REGNUM,
c4f35dd8
MK
174
175 /* Extended Integer Registers 8 - 15. */
5b856f36
PM
176 AMD64_R8_REGNUM, /* %r8 */
177 AMD64_R9_REGNUM, /* %r9 */
178 AMD64_R10_REGNUM, /* %r10 */
179 AMD64_R11_REGNUM, /* %r11 */
180 AMD64_R12_REGNUM, /* %r12 */
181 AMD64_R13_REGNUM, /* %r13 */
182 AMD64_R14_REGNUM, /* %r14 */
183 AMD64_R15_REGNUM, /* %r15 */
c4f35dd8 184
59207364 185 /* Return Address RA. Mapped to RIP. */
90f90721 186 AMD64_RIP_REGNUM,
c4f35dd8
MK
187
188 /* SSE Registers 0 - 7. */
90f90721
MK
189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
193
194 /* Extended SSE Registers 8 - 15. */
90f90721
MK
195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
199
200 /* Floating Point Registers 0-7. */
90f90721
MK
201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
c6f4c129 204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
f7ca3fcf
PM
205
206 /* MMX Registers 0 - 7.
207 We have to handle those registers specifically, as their register
208 number within GDB depends on the target (or they may even not be
209 available at all). */
210 -1, -1, -1, -1, -1, -1, -1, -1,
211
c6f4c129
JB
212 /* Control and Status Flags Register. */
213 AMD64_EFLAGS_REGNUM,
214
215 /* Selector Registers. */
216 AMD64_ES_REGNUM,
217 AMD64_CS_REGNUM,
218 AMD64_SS_REGNUM,
219 AMD64_DS_REGNUM,
220 AMD64_FS_REGNUM,
221 AMD64_GS_REGNUM,
222 -1,
223 -1,
224
225 /* Segment Base Address Registers. */
226 -1,
227 -1,
228 -1,
229 -1,
230
231 /* Special Selector Registers. */
232 -1,
233 -1,
234
235 /* Floating Point Control Registers. */
236 AMD64_MXCSR_REGNUM,
237 AMD64_FCTRL_REGNUM,
238 AMD64_FSTAT_REGNUM
c4f35dd8 239};
0e04a514 240
e53bef9f
MK
241static const int amd64_dwarf_regmap_len =
242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 243
c4f35dd8
MK
244/* Convert DWARF register number REG to the appropriate register
245 number used by GDB. */
26abbdc4 246
c4f35dd8 247static int
d3f73121 248amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
53e95fcf 249{
08106042 250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
a055a187 251 int ymm0_regnum = tdep->ymm0_regnum;
c4f35dd8 252 int regnum = -1;
53e95fcf 253
16aff9a6 254 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
e53bef9f 255 regnum = amd64_dwarf_regmap[reg];
53e95fcf 256
0fde2c53 257 if (ymm0_regnum >= 0
a055a187
L
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
c4f35dd8
MK
260
261 return regnum;
53e95fcf 262}
d532c08f 263
35669430
DE
264/* Map architectural register numbers to gdb register numbers. */
265
266static const int amd64_arch_regmap[16] =
267{
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284};
285
286static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289/* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292static int
293amd64_arch_reg_to_regnum (int reg)
294{
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298}
299
1ba53b71
L
300/* Register names for byte pseudo-registers. */
301
27087b7f 302static const char * const amd64_byte_names[] =
1ba53b71
L
303{
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
fe01d668
L
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
1ba53b71
L
307};
308
fe01d668
L
309/* Number of lower byte registers. */
310#define AMD64_NUM_LOWER_BYTE_REGS 16
311
1ba53b71
L
312/* Register names for word pseudo-registers. */
313
27087b7f 314static const char * const amd64_word_names[] =
1ba53b71 315{
9cad29ac 316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
1ba53b71
L
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318};
319
320/* Register names for dword pseudo-registers. */
321
27087b7f 322static const char * const amd64_dword_names[] =
1ba53b71
L
323{
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
fff4548b
MK
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
1ba53b71
L
327};
328
329/* Return the name of register REGNUM. */
330
331static const char *
332amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333{
08106042 334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1ba53b71
L
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
01f9f808
MS
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
a055a187
L
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
1ba53b71
L
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349}
350
3543a589
TT
351static struct value *
352amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
849d0ba8 353 readable_regcache *regcache,
3543a589 354 int regnum)
1ba53b71 355{
08106042 356 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3543a589 357
925047fe 358 value *result_value = allocate_value (register_type (gdbarch, regnum));
3543a589
TT
359 VALUE_LVAL (result_value) = lval_register;
360 VALUE_REGNUM (result_value) = regnum;
50888e42 361 gdb_byte *buf = value_contents_raw (result_value).data ();
1ba53b71
L
362
363 if (i386_byte_regnum_p (gdbarch, regnum))
364 {
365 int gpnum = regnum - tdep->al_regnum;
366
367 /* Extract (always little endian). */
fe01d668
L
368 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
369 {
925047fe
SM
370 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
371 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
372
fe01d668 373 /* Special handling for AH, BH, CH, DH. */
925047fe 374 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
3543a589
TT
377 else
378 mark_value_bytes_unavailable (result_value, 0,
df86565b 379 value_type (result_value)->length ());
fe01d668
L
380 }
381 else
382 {
925047fe
SM
383 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
384 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
3543a589
TT
387 else
388 mark_value_bytes_unavailable (result_value, 0,
df86565b 389 value_type (result_value)->length ());
fe01d668 390 }
1ba53b71
L
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
925047fe 395 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71 396 /* Extract (always little endian). */
925047fe 397 register_status status = regcache->raw_read (gpnum, raw_buf);
05d1431c
PA
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
3543a589
TT
400 else
401 mark_value_bytes_unavailable (result_value, 0,
df86565b 402 value_type (result_value)->length ());
1ba53b71
L
403 }
404 else
3543a589
TT
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
1ba53b71
L
409}
410
411static void
412amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415{
08106042 416 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1ba53b71
L
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
fe01d668
L
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
925047fe
SM
424 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
425 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
426
fe01d668 427 /* Read ... AH, BH, CH, DH. */
925047fe 428 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
925047fe 432 regcache->raw_write (gpnum, raw_buf);
fe01d668
L
433 }
434 else
435 {
925047fe
SM
436 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
437
fe01d668 438 /* Read ... */
0b883586 439 regcache->raw_read (gpnum, raw_buf);
fe01d668
L
440 /* ... Modify ... (always little endian). */
441 memcpy (raw_buf, buf, 1);
442 /* ... Write. */
10eaee5f 443 regcache->raw_write (gpnum, raw_buf);
fe01d668 444 }
1ba53b71
L
445 }
446 else if (i386_dword_regnum_p (gdbarch, regnum))
447 {
448 int gpnum = regnum - tdep->eax_regnum;
925047fe 449 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
1ba53b71
L
450
451 /* Read ... */
0b883586 452 regcache->raw_read (gpnum, raw_buf);
1ba53b71
L
453 /* ... Modify ... (always little endian). */
454 memcpy (raw_buf, buf, 4);
455 /* ... Write. */
10eaee5f 456 regcache->raw_write (gpnum, raw_buf);
1ba53b71
L
457 }
458 else
459 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
460}
461
62e5fd57
MK
462/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
463
464static int
465amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
466 struct agent_expr *ax, int regnum)
467{
08106042 468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
62e5fd57
MK
469
470 if (i386_byte_regnum_p (gdbarch, regnum))
471 {
472 int gpnum = regnum - tdep->al_regnum;
473
474 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
475 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
476 else
477 ax_reg_mask (ax, gpnum);
478 return 0;
479 }
480 else if (i386_dword_regnum_p (gdbarch, regnum))
481 {
482 int gpnum = regnum - tdep->eax_regnum;
483
484 ax_reg_mask (ax, gpnum);
485 return 0;
486 }
487 else
488 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
489}
490
53e95fcf
JS
491\f
492
bf4d6c1c
JB
493/* Register classes as defined in the psABI. */
494
495enum amd64_reg_class
496{
497 AMD64_INTEGER,
498 AMD64_SSE,
499 AMD64_SSEUP,
500 AMD64_X87,
501 AMD64_X87UP,
502 AMD64_COMPLEX_X87,
503 AMD64_NO_CLASS,
504 AMD64_MEMORY
505};
506
efb1c01c
MK
507/* Return the union class of CLASS1 and CLASS2. See the psABI for
508 details. */
509
510static enum amd64_reg_class
511amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
512{
513 /* Rule (a): If both classes are equal, this is the resulting class. */
514 if (class1 == class2)
515 return class1;
516
517 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
518 is the other class. */
519 if (class1 == AMD64_NO_CLASS)
520 return class2;
521 if (class2 == AMD64_NO_CLASS)
522 return class1;
523
524 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
525 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
526 return AMD64_MEMORY;
527
528 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
529 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
530 return AMD64_INTEGER;
531
532 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
533 MEMORY is used as class. */
534 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
535 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
536 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
537 return AMD64_MEMORY;
538
539 /* Rule (f): Otherwise class SSE is used. */
540 return AMD64_SSE;
541}
542
fe978cb0 543static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
bf4d6c1c 544
4aa866af 545/* Return true if TYPE is a structure or union with unaligned fields. */
79b1ab3d 546
4aa866af
LS
547static bool
548amd64_has_unaligned_fields (struct type *type)
79b1ab3d 549{
78134374
SM
550 if (type->code () == TYPE_CODE_STRUCT
551 || type->code () == TYPE_CODE_UNION)
4aa866af 552 {
1f704f76 553 for (int i = 0; i < type->num_fields (); i++)
4aa866af 554 {
940da03e 555 struct type *subtype = check_typedef (type->field (i).type ());
4aa866af 556
a59240a4
TT
557 /* Ignore static fields, empty fields (for example nested
558 empty structures), and bitfields (these are handled by
559 the caller). */
ceacbf6e 560 if (field_is_static (&type->field (i))
4aa866af 561 || (TYPE_FIELD_BITSIZE (type, i) == 0
df86565b 562 && subtype->length () == 0)
a59240a4 563 || TYPE_FIELD_PACKED (type, i))
4aa866af
LS
564 continue;
565
b610c045 566 int bitpos = type->field (i).loc_bitpos ();
cd3f655c 567
4aa866af
LS
568 if (bitpos % 8 != 0)
569 return true;
570
a12a15e7
AB
571 int align = type_align (subtype);
572 if (align == 0)
573 error (_("could not determine alignment of type"));
574
4aa866af
LS
575 int bytepos = bitpos / 8;
576 if (bytepos % align != 0)
577 return true;
578
a59240a4 579 if (amd64_has_unaligned_fields (subtype))
4aa866af
LS
580 return true;
581 }
582 }
79b1ab3d 583
4aa866af 584 return false;
79b1ab3d
MK
585}
586
d10eccaa
TV
587/* Classify field I of TYPE starting at BITOFFSET according to the rules for
588 structures and union types, and store the result in THECLASS. */
589
590static void
591amd64_classify_aggregate_field (struct type *type, int i,
592 enum amd64_reg_class theclass[2],
593 unsigned int bitoffset)
594{
940da03e 595 struct type *subtype = check_typedef (type->field (i).type ());
d10eccaa
TV
596 enum amd64_reg_class subclass[2];
597 int bitsize = TYPE_FIELD_BITSIZE (type, i);
d10eccaa
TV
598
599 if (bitsize == 0)
df86565b 600 bitsize = subtype->length () * 8;
d10eccaa
TV
601
602 /* Ignore static fields, or empty fields, for example nested
603 empty structures.*/
ceacbf6e 604 if (field_is_static (&type->field (i)) || bitsize == 0)
d10eccaa
TV
605 return;
606
b610c045 607 int bitpos = bitoffset + type->field (i).loc_bitpos ();
cd3f655c
SM
608 int pos = bitpos / 64;
609 int endpos = (bitpos + bitsize - 1) / 64;
610
78134374
SM
611 if (subtype->code () == TYPE_CODE_STRUCT
612 || subtype->code () == TYPE_CODE_UNION)
d10eccaa
TV
613 {
614 /* Each field of an object is classified recursively. */
615 int j;
1f704f76 616 for (j = 0; j < subtype->num_fields (); j++)
d10eccaa
TV
617 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
618 return;
619 }
620
621 gdb_assert (pos == 0 || pos == 1);
622
623 amd64_classify (subtype, subclass);
624 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
625 if (bitsize <= 64 && pos == 0 && endpos == 1)
626 /* This is a bit of an odd case: We have a field that would
627 normally fit in one of the two eightbytes, except that
628 it is placed in a way that this field straddles them.
629 This has been seen with a structure containing an array.
630
631 The ABI is a bit unclear in this case, but we assume that
632 this field's class (stored in subclass[0]) must also be merged
633 into class[1]. In other words, our field has a piece stored
634 in the second eight-byte, and thus its class applies to
635 the second eight-byte as well.
636
637 In the case where the field length exceeds 8 bytes,
638 it should not be necessary to merge the field class
639 into class[1]. As LEN > 8, subclass[1] is necessarily
640 different from AMD64_NO_CLASS. If subclass[1] is equal
641 to subclass[0], then the normal class[1]/subclass[1]
642 merging will take care of everything. For subclass[1]
643 to be different from subclass[0], I can only see the case
644 where we have a SSE/SSEUP or X87/X87UP pair, which both
645 use up all 16 bytes of the aggregate, and are already
646 handled just fine (because each portion sits on its own
647 8-byte). */
648 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
649 if (pos == 0)
650 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
651}
652
efb1c01c
MK
653/* Classify TYPE according to the rules for aggregate (structures and
654 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
655
656static void
fe978cb0 657amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
53e95fcf 658{
b1718fcd
AB
659 /* 1. If the size of an object is larger than two times eight bytes, or
660 it is a non-trivial C++ object, or it has unaligned fields, then it
661 has class memory.
662
663 It is important that the trivially_copyable check is before the
664 unaligned fields check, as C++ classes with virtual base classes
665 will have fields (for the virtual base classes) with non-constant
666 loc_bitpos attributes, which will cause an assert to trigger within
667 the unaligned field check. As classes with virtual bases are not
668 trivially copyable, checking that first avoids this problem. */
862ebb27
TT
669 if (TYPE_HAS_DYNAMIC_LENGTH (type)
670 || type->length () > 16
b1718fcd
AB
671 || !language_pass_by_reference (type).trivially_copyable
672 || amd64_has_unaligned_fields (type))
53e95fcf 673 {
fe978cb0 674 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 675 return;
53e95fcf 676 }
efb1c01c
MK
677
678 /* 2. Both eightbytes get initialized to class NO_CLASS. */
fe978cb0 679 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
680
681 /* 3. Each field of an object is classified recursively so that
dda83cd7
SM
682 always two fields are considered. The resulting class is
683 calculated according to the classes of the fields in the
684 eightbyte: */
efb1c01c 685
78134374 686 if (type->code () == TYPE_CODE_ARRAY)
8ffd9b1b 687 {
27710edb 688 struct type *subtype = check_typedef (type->target_type ());
efb1c01c
MK
689
690 /* All fields in an array have the same type. */
fe978cb0 691 amd64_classify (subtype, theclass);
df86565b 692 if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS)
fe978cb0 693 theclass[1] = theclass[0];
8ffd9b1b 694 }
53e95fcf
JS
695 else
696 {
efb1c01c 697 int i;
53e95fcf 698
efb1c01c 699 /* Structure or union. */
78134374
SM
700 gdb_assert (type->code () == TYPE_CODE_STRUCT
701 || type->code () == TYPE_CODE_UNION);
efb1c01c 702
1f704f76 703 for (i = 0; i < type->num_fields (); i++)
d10eccaa 704 amd64_classify_aggregate_field (type, i, theclass, 0);
53e95fcf 705 }
efb1c01c
MK
706
707 /* 4. Then a post merger cleanup is done: */
708
709 /* Rule (a): If one of the classes is MEMORY, the whole argument is
710 passed in memory. */
fe978cb0
PA
711 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
712 theclass[0] = theclass[1] = AMD64_MEMORY;
efb1c01c 713
177b42fe 714 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
efb1c01c 715 SSE. */
fe978cb0
PA
716 if (theclass[0] == AMD64_SSEUP)
717 theclass[0] = AMD64_SSE;
718 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
719 theclass[1] = AMD64_SSE;
efb1c01c
MK
720}
721
722/* Classify TYPE, and store the result in CLASS. */
723
bf4d6c1c 724static void
fe978cb0 725amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
efb1c01c 726{
78134374 727 enum type_code code = type->code ();
df86565b 728 int len = type->length ();
efb1c01c 729
fe978cb0 730 theclass[0] = theclass[1] = AMD64_NO_CLASS;
efb1c01c
MK
731
732 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
733 long, long long, and pointers are in the INTEGER class. Similarly,
734 range types, used by languages such as Ada, are also in the INTEGER
735 class. */
efb1c01c 736 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
b929c77f 737 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
9db13498 738 || code == TYPE_CODE_CHAR
aa006118 739 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
efb1c01c 740 && (len == 1 || len == 2 || len == 4 || len == 8))
fe978cb0 741 theclass[0] = AMD64_INTEGER;
efb1c01c 742
0b99a660
FW
743 /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and
744 __m64 are in class SSE. */
5daa78cc 745 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
0b99a660 746 && (len == 2 || len == 4 || len == 8))
efb1c01c 747 /* FIXME: __m64 . */
fe978cb0 748 theclass[0] = AMD64_SSE;
efb1c01c 749
5daa78cc
TJB
750 /* Arguments of types __float128, _Decimal128 and __m128 are split into
751 two halves. The least significant ones belong to class SSE, the most
efb1c01c 752 significant one to class SSEUP. */
5daa78cc
TJB
753 else if (code == TYPE_CODE_DECFLOAT && len == 16)
754 /* FIXME: __float128, __m128. */
fe978cb0 755 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
efb1c01c
MK
756
757 /* The 64-bit mantissa of arguments of type long double belongs to
758 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
759 class X87UP. */
760 else if (code == TYPE_CODE_FLT && len == 16)
761 /* Class X87 and X87UP. */
fe978cb0 762 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
efb1c01c 763
0b99a660
FW
764 /* Arguments of complex T - where T is one of the types _Float16, float or
765 double - get treated as if they are implemented as:
7f7930dd
MK
766
767 struct complexT {
768 T real;
769 T imag;
5f52445b
YQ
770 };
771
772 */
0b99a660 773 else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4))
fe978cb0 774 theclass[0] = AMD64_SSE;
7f7930dd 775 else if (code == TYPE_CODE_COMPLEX && len == 16)
fe978cb0 776 theclass[0] = theclass[1] = AMD64_SSE;
7f7930dd
MK
777
778 /* A variable of type complex long double is classified as type
779 COMPLEX_X87. */
780 else if (code == TYPE_CODE_COMPLEX && len == 32)
fe978cb0 781 theclass[0] = AMD64_COMPLEX_X87;
7f7930dd 782
efb1c01c
MK
783 /* Aggregates. */
784 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
785 || code == TYPE_CODE_UNION)
fe978cb0 786 amd64_classify_aggregate (type, theclass);
efb1c01c
MK
787}
788
789static enum return_value_convention
6a3a010b 790amd64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 791 struct type *type, struct regcache *regcache,
5cb0f2d5 792 struct value **read_value, const gdb_byte *writebuf)
efb1c01c 793{
fe978cb0 794 enum amd64_reg_class theclass[2];
df86565b 795 int len = type->length ();
90f90721
MK
796 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
797 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
798 int integer_reg = 0;
799 int sse_reg = 0;
800 int i;
801
5cb0f2d5
TT
802 gdb_assert (!(read_value && writebuf));
803
efb1c01c 804 /* 1. Classify the return type with the classification algorithm. */
fe978cb0 805 amd64_classify (type, theclass);
efb1c01c
MK
806
807 /* 2. If the type has class MEMORY, then the caller provides space
6fa57a7d 808 for the return value and passes the address of this storage in
0963b4bd 809 %rdi as if it were the first argument to the function. In effect,
6fa57a7d
MK
810 this address becomes a hidden first argument.
811
812 On return %rax will contain the address that has been passed in
813 by the caller in %rdi. */
fe978cb0 814 if (theclass[0] == AMD64_MEMORY)
6fa57a7d
MK
815 {
816 /* As indicated by the comment above, the ABI guarantees that we
dda83cd7
SM
817 can always find the return value just after the function has
818 returned. */
6fa57a7d 819
911627e7 820 if (read_value != nullptr)
6fa57a7d
MK
821 {
822 ULONGEST addr;
823
824 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
911627e7 825 *read_value = value_at_non_lval (type, addr);
6fa57a7d
MK
826 }
827
828 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
829 }
efb1c01c 830
911627e7
TT
831 gdb_byte *readbuf = nullptr;
832 if (read_value != nullptr)
833 {
834 *read_value = allocate_value (type);
835 readbuf = value_contents_raw (*read_value).data ();
836 }
837
7f7930dd 838 /* 8. If the class is COMPLEX_X87, the real part of the value is
dda83cd7 839 returned in %st0 and the imaginary part in %st1. */
fe978cb0 840 if (theclass[0] == AMD64_COMPLEX_X87)
7f7930dd
MK
841 {
842 if (readbuf)
843 {
0b883586
SM
844 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
845 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
7f7930dd
MK
846 }
847
848 if (writebuf)
849 {
850 i387_return_value (gdbarch, regcache);
10eaee5f
SM
851 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
852 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
7f7930dd
MK
853
854 /* Fix up the tag word such that both %st(0) and %st(1) are
855 marked as valid. */
856 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
857 }
858
859 return RETURN_VALUE_REGISTER_CONVENTION;
860 }
861
fe978cb0 862 gdb_assert (theclass[1] != AMD64_MEMORY);
bad43aa5 863 gdb_assert (len <= 16);
efb1c01c
MK
864
865 for (i = 0; len > 0; i++, len -= 8)
866 {
867 int regnum = -1;
868 int offset = 0;
869
fe978cb0 870 switch (theclass[i])
efb1c01c
MK
871 {
872 case AMD64_INTEGER:
873 /* 3. If the class is INTEGER, the next available register
874 of the sequence %rax, %rdx is used. */
875 regnum = integer_regnum[integer_reg++];
876 break;
877
878 case AMD64_SSE:
879 /* 4. If the class is SSE, the next available SSE register
dda83cd7 880 of the sequence %xmm0, %xmm1 is used. */
efb1c01c
MK
881 regnum = sse_regnum[sse_reg++];
882 break;
883
884 case AMD64_SSEUP:
885 /* 5. If the class is SSEUP, the eightbyte is passed in the
886 upper half of the last used SSE register. */
887 gdb_assert (sse_reg > 0);
888 regnum = sse_regnum[sse_reg - 1];
889 offset = 8;
890 break;
891
892 case AMD64_X87:
893 /* 6. If the class is X87, the value is returned on the X87
dda83cd7 894 stack in %st0 as 80-bit x87 number. */
90f90721 895 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
896 if (writebuf)
897 i387_return_value (gdbarch, regcache);
898 break;
899
900 case AMD64_X87UP:
901 /* 7. If the class is X87UP, the value is returned together
dda83cd7 902 with the previous X87 value in %st0. */
fe978cb0 903 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
90f90721 904 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
905 offset = 8;
906 len = 2;
907 break;
908
909 case AMD64_NO_CLASS:
910 continue;
911
912 default:
913 gdb_assert (!"Unexpected register class.");
914 }
915
916 gdb_assert (regnum != -1);
917
918 if (readbuf)
502fe83e
SM
919 regcache->raw_read_part (regnum, offset, std::min (len, 8),
920 readbuf + i * 8);
efb1c01c 921 if (writebuf)
4f0420fd
SM
922 regcache->raw_write_part (regnum, offset, std::min (len, 8),
923 writebuf + i * 8);
efb1c01c
MK
924 }
925
926 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
927}
928\f
929
720aa428 930static CORE_ADDR
cf84fa6b
AH
931amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
932 CORE_ADDR sp, function_call_return_method return_method)
720aa428 933{
bf4d6c1c
JB
934 static int integer_regnum[] =
935 {
936 AMD64_RDI_REGNUM, /* %rdi */
937 AMD64_RSI_REGNUM, /* %rsi */
938 AMD64_RDX_REGNUM, /* %rdx */
939 AMD64_RCX_REGNUM, /* %rcx */
5b856f36
PM
940 AMD64_R8_REGNUM, /* %r8 */
941 AMD64_R9_REGNUM /* %r9 */
bf4d6c1c 942 };
720aa428
MK
943 static int sse_regnum[] =
944 {
945 /* %xmm0 ... %xmm7 */
90f90721
MK
946 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
947 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
948 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
949 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428 950 };
224c3ddb 951 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
720aa428
MK
952 int num_stack_args = 0;
953 int num_elements = 0;
954 int element = 0;
955 int integer_reg = 0;
956 int sse_reg = 0;
957 int i;
958
6470d250 959 /* Reserve a register for the "hidden" argument. */
cf84fa6b 960if (return_method == return_method_struct)
6470d250
MK
961 integer_reg++;
962
720aa428
MK
963 for (i = 0; i < nargs; i++)
964 {
4991999e 965 struct type *type = value_type (args[i]);
df86565b 966 int len = type->length ();
fe978cb0 967 enum amd64_reg_class theclass[2];
720aa428
MK
968 int needed_integer_regs = 0;
969 int needed_sse_regs = 0;
970 int j;
971
972 /* Classify argument. */
fe978cb0 973 amd64_classify (type, theclass);
720aa428
MK
974
975 /* Calculate the number of integer and SSE registers needed for
dda83cd7 976 this argument. */
720aa428
MK
977 for (j = 0; j < 2; j++)
978 {
fe978cb0 979 if (theclass[j] == AMD64_INTEGER)
720aa428 980 needed_integer_regs++;
fe978cb0 981 else if (theclass[j] == AMD64_SSE)
720aa428
MK
982 needed_sse_regs++;
983 }
984
985 /* Check whether enough registers are available, and if the
dda83cd7 986 argument should be passed in registers at all. */
bf4d6c1c 987 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
720aa428
MK
988 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
989 || (needed_integer_regs == 0 && needed_sse_regs == 0))
990 {
991 /* The argument will be passed on the stack. */
992 num_elements += ((len + 7) / 8);
849e9755 993 stack_args[num_stack_args++] = args[i];
720aa428
MK
994 }
995 else
996 {
997 /* The argument will be passed in registers. */
50888e42 998 const gdb_byte *valbuf = value_contents (args[i]).data ();
d8de1ef7 999 gdb_byte buf[8];
720aa428
MK
1000
1001 gdb_assert (len <= 16);
1002
1003 for (j = 0; len > 0; j++, len -= 8)
1004 {
1005 int regnum = -1;
1006 int offset = 0;
1007
fe978cb0 1008 switch (theclass[j])
720aa428
MK
1009 {
1010 case AMD64_INTEGER:
bf4d6c1c 1011 regnum = integer_regnum[integer_reg++];
720aa428
MK
1012 break;
1013
1014 case AMD64_SSE:
1015 regnum = sse_regnum[sse_reg++];
1016 break;
1017
1018 case AMD64_SSEUP:
1019 gdb_assert (sse_reg > 0);
1020 regnum = sse_regnum[sse_reg - 1];
1021 offset = 8;
1022 break;
1023
745ff14e
TV
1024 case AMD64_NO_CLASS:
1025 continue;
1026
720aa428
MK
1027 default:
1028 gdb_assert (!"Unexpected register class.");
1029 }
1030
1031 gdb_assert (regnum != -1);
1032 memset (buf, 0, sizeof buf);
325fac50 1033 memcpy (buf, valbuf + j * 8, std::min (len, 8));
4f0420fd 1034 regcache->raw_write_part (regnum, offset, 8, buf);
720aa428
MK
1035 }
1036 }
1037 }
1038
1039 /* Allocate space for the arguments on the stack. */
1040 sp -= num_elements * 8;
1041
1042 /* The psABI says that "The end of the input argument area shall be
1043 aligned on a 16 byte boundary." */
1044 sp &= ~0xf;
1045
1046 /* Write out the arguments to the stack. */
1047 for (i = 0; i < num_stack_args; i++)
1048 {
4991999e 1049 struct type *type = value_type (stack_args[i]);
50888e42 1050 const gdb_byte *valbuf = value_contents (stack_args[i]).data ();
df86565b 1051 int len = type->length ();
849e9755
JB
1052
1053 write_memory (sp + element * 8, valbuf, len);
1054 element += ((len + 7) / 8);
720aa428
MK
1055 }
1056
1057 /* The psABI says that "For calls that may call functions that use
1058 varargs or stdargs (prototype-less calls or calls to functions
1059 containing ellipsis (...) in the declaration) %al is used as
1060 hidden argument to specify the number of SSE registers used. */
90f90721 1061 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
1062 return sp;
1063}
1064
c4f35dd8 1065static CORE_ADDR
7d9b040b 1066amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
e53bef9f
MK
1067 struct regcache *regcache, CORE_ADDR bp_addr,
1068 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
1069 function_call_return_method return_method,
1070 CORE_ADDR struct_addr)
53e95fcf 1071{
e17a4113 1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 1073 gdb_byte buf[8];
c4f35dd8 1074
4a612d6f
WT
1075 /* BND registers can be in arbitrary values at the moment of the
1076 inferior call. This can cause boundary violations that are not
1077 due to a real bug or even desired by the user. The best to be done
1078 is set the BND registers to allow access to the whole memory, INIT
1079 state, before pushing the inferior call. */
1080 i387_reset_bnd_regs (gdbarch, regcache);
1081
c4f35dd8 1082 /* Pass arguments. */
cf84fa6b 1083 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
c4f35dd8
MK
1084
1085 /* Pass "hidden" argument". */
cf84fa6b 1086 if (return_method == return_method_struct)
c4f35dd8 1087 {
e17a4113 1088 store_unsigned_integer (buf, 8, byte_order, struct_addr);
b66f5587 1089 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
1090 }
1091
1092 /* Store return address. */
1093 sp -= 8;
e17a4113 1094 store_unsigned_integer (buf, 8, byte_order, bp_addr);
c4f35dd8
MK
1095 write_memory (sp, buf, 8);
1096
1097 /* Finally, update the stack pointer... */
e17a4113 1098 store_unsigned_integer (buf, 8, byte_order, sp);
b66f5587 1099 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
1100
1101 /* ...and fake a frame pointer. */
b66f5587 1102 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
c4f35dd8 1103
3e210248 1104 return sp + 16;
53e95fcf 1105}
c4f35dd8 1106\f
35669430
DE
1107/* Displaced instruction handling. */
1108
1109/* A partially decoded instruction.
1110 This contains enough details for displaced stepping purposes. */
1111
1112struct amd64_insn
1113{
1114 /* The number of opcode bytes. */
1115 int opcode_len;
50a1fdd5
PA
1116 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1117 not present. */
1118 int enc_prefix_offset;
35669430
DE
1119 /* The offset to the first opcode byte. */
1120 int opcode_offset;
1121 /* The offset to the modrm byte or -1 if not present. */
1122 int modrm_offset;
1123
1124 /* The raw instruction. */
1125 gdb_byte *raw_insn;
1126};
1127
1152d984
SM
1128struct amd64_displaced_step_copy_insn_closure
1129 : public displaced_step_copy_insn_closure
35669430 1130{
1152d984 1131 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
cfba9872
SM
1132 : insn_buf (insn_buf_len, 0)
1133 {}
1134
35669430 1135 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
cfba9872 1136 int tmp_used = 0;
35669430
DE
1137 int tmp_regno;
1138 ULONGEST tmp_save;
1139
1140 /* Details of the instruction. */
1141 struct amd64_insn insn_details;
1142
cfba9872
SM
1143 /* The possibly modified insn. */
1144 gdb::byte_vector insn_buf;
35669430
DE
1145};
1146
1147/* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1148 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1149 at which point delete these in favor of libopcodes' versions). */
1150
1151static const unsigned char onebyte_has_modrm[256] = {
1152 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1153 /* ------------------------------- */
1154 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1155 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1156 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1157 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1158 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1159 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1160 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1161 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1162 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1163 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1164 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1165 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1166 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1167 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1168 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1169 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1170 /* ------------------------------- */
1171 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1172};
1173
1174static const unsigned char twobyte_has_modrm[256] = {
1175 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1176 /* ------------------------------- */
1177 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1178 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1179 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1180 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1181 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1182 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1183 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1184 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1185 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1186 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1187 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1188 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1189 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1190 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1191 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1192 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1193 /* ------------------------------- */
1194 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1195};
1196
1197static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1198
1199static int
1200rex_prefix_p (gdb_byte pfx)
1201{
1202 return REX_PREFIX_P (pfx);
1203}
1204
50a1fdd5
PA
1205/* True if PFX is the start of the 2-byte VEX prefix. */
1206
1207static bool
1208vex2_prefix_p (gdb_byte pfx)
1209{
1210 return pfx == 0xc5;
1211}
1212
1213/* True if PFX is the start of the 3-byte VEX prefix. */
1214
1215static bool
1216vex3_prefix_p (gdb_byte pfx)
1217{
1218 return pfx == 0xc4;
1219}
1220
35669430
DE
1221/* Skip the legacy instruction prefixes in INSN.
1222 We assume INSN is properly sentineled so we don't have to worry
1223 about falling off the end of the buffer. */
1224
1225static gdb_byte *
1903f0e6 1226amd64_skip_prefixes (gdb_byte *insn)
35669430
DE
1227{
1228 while (1)
1229 {
1230 switch (*insn)
1231 {
1232 case DATA_PREFIX_OPCODE:
1233 case ADDR_PREFIX_OPCODE:
1234 case CS_PREFIX_OPCODE:
1235 case DS_PREFIX_OPCODE:
1236 case ES_PREFIX_OPCODE:
1237 case FS_PREFIX_OPCODE:
1238 case GS_PREFIX_OPCODE:
1239 case SS_PREFIX_OPCODE:
1240 case LOCK_PREFIX_OPCODE:
1241 case REPE_PREFIX_OPCODE:
1242 case REPNE_PREFIX_OPCODE:
1243 ++insn;
1244 continue;
1245 default:
1246 break;
1247 }
1248 break;
1249 }
1250
1251 return insn;
1252}
1253
35669430
DE
1254/* Return an integer register (other than RSP) that is unused as an input
1255 operand in INSN.
1256 In order to not require adding a rex prefix if the insn doesn't already
1257 have one, the result is restricted to RAX ... RDI, sans RSP.
1258 The register numbering of the result follows architecture ordering,
1259 e.g. RDI = 7. */
1260
1261static int
1262amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1263{
1264 /* 1 bit for each reg */
1265 int used_regs_mask = 0;
1266
1267 /* There can be at most 3 int regs used as inputs in an insn, and we have
1268 7 to choose from (RAX ... RDI, sans RSP).
1269 This allows us to take a conservative approach and keep things simple.
1270 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1271 that implicitly specify RAX. */
1272
1273 /* Avoid RAX. */
1274 used_regs_mask |= 1 << EAX_REG_NUM;
1275 /* Similarily avoid RDX, implicit operand in divides. */
1276 used_regs_mask |= 1 << EDX_REG_NUM;
1277 /* Avoid RSP. */
1278 used_regs_mask |= 1 << ESP_REG_NUM;
1279
1280 /* If the opcode is one byte long and there's no ModRM byte,
1281 assume the opcode specifies a register. */
1282 if (details->opcode_len == 1 && details->modrm_offset == -1)
1283 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1284
1285 /* Mark used regs in the modrm/sib bytes. */
1286 if (details->modrm_offset != -1)
1287 {
1288 int modrm = details->raw_insn[details->modrm_offset];
1289 int mod = MODRM_MOD_FIELD (modrm);
1290 int reg = MODRM_REG_FIELD (modrm);
1291 int rm = MODRM_RM_FIELD (modrm);
1292 int have_sib = mod != 3 && rm == 4;
1293
1294 /* Assume the reg field of the modrm byte specifies a register. */
1295 used_regs_mask |= 1 << reg;
1296
1297 if (have_sib)
1298 {
1299 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
d48ebb5b 1300 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
35669430 1301 used_regs_mask |= 1 << base;
d48ebb5b 1302 used_regs_mask |= 1 << idx;
35669430
DE
1303 }
1304 else
1305 {
1306 used_regs_mask |= 1 << rm;
1307 }
1308 }
1309
1310 gdb_assert (used_regs_mask < 256);
1311 gdb_assert (used_regs_mask != 255);
1312
1313 /* Finally, find a free reg. */
1314 {
1315 int i;
1316
1317 for (i = 0; i < 8; ++i)
1318 {
1319 if (! (used_regs_mask & (1 << i)))
1320 return i;
1321 }
1322
1323 /* We shouldn't get here. */
f34652de 1324 internal_error (_("unable to find free reg"));
35669430
DE
1325 }
1326}
1327
1328/* Extract the details of INSN that we need. */
1329
1330static void
1331amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1332{
1333 gdb_byte *start = insn;
1334 int need_modrm;
1335
1336 details->raw_insn = insn;
1337
1338 details->opcode_len = -1;
50a1fdd5 1339 details->enc_prefix_offset = -1;
35669430
DE
1340 details->opcode_offset = -1;
1341 details->modrm_offset = -1;
1342
1343 /* Skip legacy instruction prefixes. */
1903f0e6 1344 insn = amd64_skip_prefixes (insn);
35669430 1345
50a1fdd5 1346 /* Skip REX/VEX instruction encoding prefixes. */
35669430
DE
1347 if (rex_prefix_p (*insn))
1348 {
50a1fdd5 1349 details->enc_prefix_offset = insn - start;
35669430
DE
1350 ++insn;
1351 }
50a1fdd5
PA
1352 else if (vex2_prefix_p (*insn))
1353 {
1354 /* Don't record the offset in this case because this prefix has
1355 no REX.B equivalent. */
1356 insn += 2;
1357 }
1358 else if (vex3_prefix_p (*insn))
1359 {
1360 details->enc_prefix_offset = insn - start;
1361 insn += 3;
1362 }
35669430
DE
1363
1364 details->opcode_offset = insn - start;
1365
1366 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1367 {
1368 /* Two or three-byte opcode. */
1369 ++insn;
1370 need_modrm = twobyte_has_modrm[*insn];
1371
1372 /* Check for three-byte opcode. */
1903f0e6 1373 switch (*insn)
35669430 1374 {
1903f0e6
DE
1375 case 0x24:
1376 case 0x25:
1377 case 0x38:
1378 case 0x3a:
1379 case 0x7a:
1380 case 0x7b:
35669430
DE
1381 ++insn;
1382 details->opcode_len = 3;
1903f0e6
DE
1383 break;
1384 default:
1385 details->opcode_len = 2;
1386 break;
35669430 1387 }
35669430
DE
1388 }
1389 else
1390 {
1391 /* One-byte opcode. */
1392 need_modrm = onebyte_has_modrm[*insn];
1393 details->opcode_len = 1;
1394 }
1395
1396 if (need_modrm)
1397 {
1398 ++insn;
1399 details->modrm_offset = insn - start;
1400 }
1401}
1402
1403/* Update %rip-relative addressing in INSN.
1404
1405 %rip-relative addressing only uses a 32-bit displacement.
1406 32 bits is not enough to be guaranteed to cover the distance between where
1407 the real instruction is and where its copy is.
1408 Convert the insn to use base+disp addressing.
1409 We set base = pc + insn_length so we can leave disp unchanged. */
c4f35dd8 1410
35669430 1411static void
1152d984
SM
1412fixup_riprel (struct gdbarch *gdbarch,
1413 amd64_displaced_step_copy_insn_closure *dsc,
35669430
DE
1414 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1415{
1416 const struct amd64_insn *insn_details = &dsc->insn_details;
1417 int modrm_offset = insn_details->modrm_offset;
35669430 1418 CORE_ADDR rip_base;
35669430
DE
1419 int insn_length;
1420 int arch_tmp_regno, tmp_regno;
1421 ULONGEST orig_value;
1422
35669430 1423 /* Compute the rip-relative address. */
cfba9872
SM
1424 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1425 dsc->insn_buf.size (), from);
35669430
DE
1426 rip_base = from + insn_length;
1427
1428 /* We need a register to hold the address.
1429 Pick one not used in the insn.
1430 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1431 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1432 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1433
50a1fdd5
PA
1434 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1435 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1436
1437 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1438 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1439 is not r8-r15. */
1440 if (insn_details->enc_prefix_offset != -1)
1441 {
1442 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1443 if (rex_prefix_p (pfx[0]))
1444 pfx[0] &= ~REX_B;
1445 else if (vex3_prefix_p (pfx[0]))
1446 pfx[1] |= VEX3_NOT_B;
1447 else
1448 gdb_assert_not_reached ("unhandled prefix");
1449 }
35669430
DE
1450
1451 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1452 dsc->tmp_regno = tmp_regno;
1453 dsc->tmp_save = orig_value;
1454 dsc->tmp_used = 1;
1455
1456 /* Convert the ModRM field to be base+disp. */
1457 dsc->insn_buf[modrm_offset] &= ~0xc7;
1458 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1459
1460 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1461
136821d9
SM
1462 displaced_debug_printf ("%%rip-relative addressing used.");
1463 displaced_debug_printf ("using temp reg %d, old value %s, new value %s",
1464 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1465 paddress (gdbarch, rip_base));
35669430
DE
1466}
1467
1468static void
1469fixup_displaced_copy (struct gdbarch *gdbarch,
1152d984 1470 amd64_displaced_step_copy_insn_closure *dsc,
35669430
DE
1471 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1472{
1473 const struct amd64_insn *details = &dsc->insn_details;
1474
1475 if (details->modrm_offset != -1)
1476 {
1477 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1478
1479 if ((modrm & 0xc7) == 0x05)
1480 {
1481 /* The insn uses rip-relative addressing.
1482 Deal with it. */
1483 fixup_riprel (gdbarch, dsc, from, to, regs);
1484 }
1485 }
1486}
1487
1152d984 1488displaced_step_copy_insn_closure_up
35669430
DE
1489amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1490 CORE_ADDR from, CORE_ADDR to,
1491 struct regcache *regs)
1492{
1493 int len = gdbarch_max_insn_length (gdbarch);
741e63d7 1494 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
35669430
DE
1495 continually watch for running off the end of the buffer. */
1496 int fixup_sentinel_space = len;
1152d984
SM
1497 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1498 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
35669430
DE
1499 gdb_byte *buf = &dsc->insn_buf[0];
1500 struct amd64_insn *details = &dsc->insn_details;
1501
35669430
DE
1502 read_memory (from, buf, len);
1503
1504 /* Set up the sentinel space so we don't have to worry about running
1505 off the end of the buffer. An excessive number of leading prefixes
1506 could otherwise cause this. */
1507 memset (buf + len, 0, fixup_sentinel_space);
1508
1509 amd64_get_insn_details (buf, details);
1510
1511 /* GDB may get control back after the insn after the syscall.
1512 Presumably this is a kernel bug.
1513 If this is a syscall, make sure there's a nop afterwards. */
1514 {
1515 int syscall_length;
1516
1517 if (amd64_syscall_p (details, &syscall_length))
1518 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1519 }
1520
1521 /* Modify the insn to cope with the address where it will be executed from.
1522 In particular, handle any rip-relative addressing. */
e8217e61 1523 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
35669430
DE
1524
1525 write_memory (to, buf, len);
1526
136821d9
SM
1527 displaced_debug_printf ("copy %s->%s: %s",
1528 paddress (gdbarch, from), paddress (gdbarch, to),
1529 displaced_step_dump_bytes (buf, len).c_str ());
35669430 1530
6d0cf446 1531 /* This is a work around for a problem with g++ 4.8. */
1152d984 1532 return displaced_step_copy_insn_closure_up (dsc.release ());
35669430
DE
1533}
1534
1535static int
1536amd64_absolute_jmp_p (const struct amd64_insn *details)
1537{
1538 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1539
1540 if (insn[0] == 0xff)
1541 {
1542 /* jump near, absolute indirect (/4) */
1543 if ((insn[1] & 0x38) == 0x20)
1544 return 1;
1545
1546 /* jump far, absolute indirect (/5) */
1547 if ((insn[1] & 0x38) == 0x28)
1548 return 1;
1549 }
1550
1551 return 0;
1552}
1553
c2170eef
MM
1554/* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1555
1556static int
1557amd64_jmp_p (const struct amd64_insn *details)
1558{
1559 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1560
1561 /* jump short, relative. */
1562 if (insn[0] == 0xeb)
1563 return 1;
1564
1565 /* jump near, relative. */
1566 if (insn[0] == 0xe9)
1567 return 1;
1568
1569 return amd64_absolute_jmp_p (details);
1570}
1571
35669430
DE
1572static int
1573amd64_absolute_call_p (const struct amd64_insn *details)
1574{
1575 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1576
1577 if (insn[0] == 0xff)
1578 {
1579 /* Call near, absolute indirect (/2) */
1580 if ((insn[1] & 0x38) == 0x10)
1581 return 1;
1582
1583 /* Call far, absolute indirect (/3) */
1584 if ((insn[1] & 0x38) == 0x18)
1585 return 1;
1586 }
1587
1588 return 0;
1589}
1590
1591static int
1592amd64_ret_p (const struct amd64_insn *details)
1593{
1594 /* NOTE: gcc can emit "repz ; ret". */
1595 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1596
1597 switch (insn[0])
1598 {
1599 case 0xc2: /* ret near, pop N bytes */
1600 case 0xc3: /* ret near */
1601 case 0xca: /* ret far, pop N bytes */
1602 case 0xcb: /* ret far */
1603 case 0xcf: /* iret */
1604 return 1;
1605
1606 default:
1607 return 0;
1608 }
1609}
1610
1611static int
1612amd64_call_p (const struct amd64_insn *details)
1613{
1614 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1615
1616 if (amd64_absolute_call_p (details))
1617 return 1;
1618
1619 /* call near, relative */
1620 if (insn[0] == 0xe8)
1621 return 1;
1622
1623 return 0;
1624}
1625
35669430
DE
1626/* Return non-zero if INSN is a system call, and set *LENGTHP to its
1627 length in bytes. Otherwise, return zero. */
1628
1629static int
1630amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1631{
1632 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1633
1634 if (insn[0] == 0x0f && insn[1] == 0x05)
1635 {
1636 *lengthp = 2;
1637 return 1;
1638 }
1639
1640 return 0;
1641}
1642
c2170eef
MM
1643/* Classify the instruction at ADDR using PRED.
1644 Throw an error if the memory can't be read. */
1645
1646static int
1647amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1648 int (*pred) (const struct amd64_insn *))
1649{
1650 struct amd64_insn details;
1651 gdb_byte *buf;
1652 int len, classification;
1653
1654 len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1655 buf = (gdb_byte *) alloca (len);
c2170eef
MM
1656
1657 read_code (addr, buf, len);
1658 amd64_get_insn_details (buf, &details);
1659
1660 classification = pred (&details);
1661
1662 return classification;
1663}
1664
1665/* The gdbarch insn_is_call method. */
1666
1667static int
1668amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1669{
1670 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1671}
1672
1673/* The gdbarch insn_is_ret method. */
1674
1675static int
1676amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1677{
1678 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1679}
1680
1681/* The gdbarch insn_is_jump method. */
1682
1683static int
1684amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1685{
1686 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1687}
1688
35669430
DE
1689/* Fix up the state of registers and memory after having single-stepped
1690 a displaced instruction. */
1691
1692void
1693amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 1694 struct displaced_step_copy_insn_closure *dsc_,
35669430
DE
1695 CORE_ADDR from, CORE_ADDR to,
1696 struct regcache *regs)
1697{
1152d984
SM
1698 amd64_displaced_step_copy_insn_closure *dsc
1699 = (amd64_displaced_step_copy_insn_closure *) dsc_;
e17a4113 1700 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
35669430
DE
1701 /* The offset we applied to the instruction's address. */
1702 ULONGEST insn_offset = to - from;
cfba9872 1703 gdb_byte *insn = dsc->insn_buf.data ();
35669430
DE
1704 const struct amd64_insn *insn_details = &dsc->insn_details;
1705
136821d9
SM
1706 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
1707 paddress (gdbarch, from), paddress (gdbarch, to),
1708 insn[0], insn[1]);
35669430
DE
1709
1710 /* If we used a tmp reg, restore it. */
1711
1712 if (dsc->tmp_used)
1713 {
136821d9
SM
1714 displaced_debug_printf ("restoring reg %d to %s",
1715 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
35669430
DE
1716 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1717 }
1718
1719 /* The list of issues to contend with here is taken from
1720 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1721 Yay for Free Software! */
1722
1723 /* Relocate the %rip back to the program's instruction stream,
1724 if necessary. */
1725
1726 /* Except in the case of absolute or indirect jump or call
1727 instructions, or a return instruction, the new rip is relative to
1728 the displaced instruction; make it relative to the original insn.
1729 Well, signal handler returns don't need relocation either, but we use the
1730 value of %rip to recognize those; see below. */
1731 if (! amd64_absolute_jmp_p (insn_details)
1732 && ! amd64_absolute_call_p (insn_details)
1733 && ! amd64_ret_p (insn_details))
1734 {
1735 ULONGEST orig_rip;
1736 int insn_len;
1737
1738 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1739
1740 /* A signal trampoline system call changes the %rip, resuming
1741 execution of the main program after the signal handler has
1742 returned. That makes them like 'return' instructions; we
1743 shouldn't relocate %rip.
1744
1745 But most system calls don't, and we do need to relocate %rip.
1746
1747 Our heuristic for distinguishing these cases: if stepping
1748 over the system call instruction left control directly after
1749 the instruction, the we relocate --- control almost certainly
1750 doesn't belong in the displaced copy. Otherwise, we assume
1751 the instruction has put control where it belongs, and leave
1752 it unrelocated. Goodness help us if there are PC-relative
1753 system calls. */
1754 if (amd64_syscall_p (insn_details, &insn_len)
1755 && orig_rip != to + insn_len
1756 /* GDB can get control back after the insn after the syscall.
1757 Presumably this is a kernel bug.
1758 Fixup ensures its a nop, we add one to the length for it. */
1759 && orig_rip != to + insn_len + 1)
136821d9 1760 displaced_debug_printf ("syscall changed %%rip; not relocating");
35669430
DE
1761 else
1762 {
1763 ULONGEST rip = orig_rip - insn_offset;
1764
1903f0e6
DE
1765 /* If we just stepped over a breakpoint insn, we don't backup
1766 the pc on purpose; this is to match behaviour without
1767 stepping. */
35669430
DE
1768
1769 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1770
136821d9
SM
1771 displaced_debug_printf ("relocated %%rip from %s to %s",
1772 paddress (gdbarch, orig_rip),
1773 paddress (gdbarch, rip));
35669430
DE
1774 }
1775 }
1776
1777 /* If the instruction was PUSHFL, then the TF bit will be set in the
1778 pushed value, and should be cleared. We'll leave this for later,
1779 since GDB already messes up the TF flag when stepping over a
1780 pushfl. */
1781
1782 /* If the instruction was a call, the return address now atop the
1783 stack is the address following the copied instruction. We need
1784 to make it the address following the original instruction. */
1785 if (amd64_call_p (insn_details))
1786 {
1787 ULONGEST rsp;
1788 ULONGEST retaddr;
1789 const ULONGEST retaddr_len = 8;
1790
1791 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
e17a4113 1792 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
4dafcdeb 1793 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
e17a4113 1794 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
35669430 1795
136821d9
SM
1796 displaced_debug_printf ("relocated return addr at %s to %s",
1797 paddress (gdbarch, rsp),
1798 paddress (gdbarch, retaddr));
35669430
DE
1799 }
1800}
dde08ee1
PA
1801
1802/* If the instruction INSN uses RIP-relative addressing, return the
1803 offset into the raw INSN where the displacement to be adjusted is
1804 found. Returns 0 if the instruction doesn't use RIP-relative
1805 addressing. */
1806
1807static int
1808rip_relative_offset (struct amd64_insn *insn)
1809{
1810 if (insn->modrm_offset != -1)
1811 {
1812 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1813
1814 if ((modrm & 0xc7) == 0x05)
1815 {
1816 /* The displacement is found right after the ModRM byte. */
1817 return insn->modrm_offset + 1;
1818 }
1819 }
1820
1821 return 0;
1822}
1823
1824static void
1825append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1826{
1827 target_write_memory (*to, buf, len);
1828 *to += len;
1829}
1830
60965737 1831static void
dde08ee1
PA
1832amd64_relocate_instruction (struct gdbarch *gdbarch,
1833 CORE_ADDR *to, CORE_ADDR oldloc)
1834{
1835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1836 int len = gdbarch_max_insn_length (gdbarch);
1837 /* Extra space for sentinels. */
1838 int fixup_sentinel_space = len;
224c3ddb 1839 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
dde08ee1
PA
1840 struct amd64_insn insn_details;
1841 int offset = 0;
1842 LONGEST rel32, newrel;
1843 gdb_byte *insn;
1844 int insn_length;
1845
1846 read_memory (oldloc, buf, len);
1847
1848 /* Set up the sentinel space so we don't have to worry about running
1849 off the end of the buffer. An excessive number of leading prefixes
1850 could otherwise cause this. */
1851 memset (buf + len, 0, fixup_sentinel_space);
1852
1853 insn = buf;
1854 amd64_get_insn_details (insn, &insn_details);
1855
1856 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1857
1858 /* Skip legacy instruction prefixes. */
1859 insn = amd64_skip_prefixes (insn);
1860
1861 /* Adjust calls with 32-bit relative addresses as push/jump, with
1862 the address pushed being the location where the original call in
1863 the user program would return to. */
1864 if (insn[0] == 0xe8)
1865 {
f077e978
PA
1866 gdb_byte push_buf[32];
1867 CORE_ADDR ret_addr;
1868 int i = 0;
dde08ee1
PA
1869
1870 /* Where "ret" in the original code will return to. */
1871 ret_addr = oldloc + insn_length;
f077e978
PA
1872
1873 /* If pushing an address higher than or equal to 0x80000000,
1874 avoid 'pushq', as that sign extends its 32-bit operand, which
1875 would be incorrect. */
1876 if (ret_addr <= 0x7fffffff)
1877 {
1878 push_buf[0] = 0x68; /* pushq $... */
1879 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1880 i = 5;
1881 }
1882 else
1883 {
1884 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1885 push_buf[i++] = 0x83;
1886 push_buf[i++] = 0xec;
1887 push_buf[i++] = 0x08;
1888
1889 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1890 push_buf[i++] = 0x04;
1891 push_buf[i++] = 0x24;
1892 store_unsigned_integer (&push_buf[i], 4, byte_order,
1893 ret_addr & 0xffffffff);
1894 i += 4;
1895
1896 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1897 push_buf[i++] = 0x44;
1898 push_buf[i++] = 0x24;
1899 push_buf[i++] = 0x04;
1900 store_unsigned_integer (&push_buf[i], 4, byte_order,
1901 ret_addr >> 32);
1902 i += 4;
1903 }
1904 gdb_assert (i <= sizeof (push_buf));
dde08ee1 1905 /* Push the push. */
f077e978 1906 append_insns (to, i, push_buf);
dde08ee1
PA
1907
1908 /* Convert the relative call to a relative jump. */
1909 insn[0] = 0xe9;
1910
1911 /* Adjust the destination offset. */
1912 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1913 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1914 store_signed_integer (insn + 1, 4, byte_order, newrel);
1915
136821d9
SM
1916 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1917 hex_string (rel32), paddress (gdbarch, oldloc),
1918 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1919
1920 /* Write the adjusted jump into its displaced location. */
1921 append_insns (to, 5, insn);
1922 return;
1923 }
1924
1925 offset = rip_relative_offset (&insn_details);
1926 if (!offset)
1927 {
1928 /* Adjust jumps with 32-bit relative addresses. Calls are
1929 already handled above. */
1930 if (insn[0] == 0xe9)
1931 offset = 1;
1932 /* Adjust conditional jumps. */
1933 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1934 offset = 2;
1935 }
1936
1937 if (offset)
1938 {
1939 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1940 newrel = (oldloc - *to) + rel32;
f4a1794a 1941 store_signed_integer (insn + offset, 4, byte_order, newrel);
136821d9
SM
1942 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1943 hex_string (rel32), paddress (gdbarch, oldloc),
1944 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1945 }
1946
1947 /* Write the adjusted instruction into its displaced location. */
1948 append_insns (to, insn_length, buf);
1949}
1950
35669430 1951\f
c4f35dd8 1952/* The maximum number of saved registers. This should include %rip. */
90f90721 1953#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 1954
e53bef9f 1955struct amd64_frame_cache
c4f35dd8
MK
1956{
1957 /* Base address. */
1958 CORE_ADDR base;
8fbca658 1959 int base_p;
c4f35dd8
MK
1960 CORE_ADDR sp_offset;
1961 CORE_ADDR pc;
1962
1963 /* Saved registers. */
e53bef9f 1964 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8 1965 CORE_ADDR saved_sp;
e0c62198 1966 int saved_sp_reg;
c4f35dd8
MK
1967
1968 /* Do we have a frame? */
1969 int frameless_p;
1970};
8dda9770 1971
d2449ee8 1972/* Initialize a frame cache. */
c4f35dd8 1973
d2449ee8
DJ
1974static void
1975amd64_init_frame_cache (struct amd64_frame_cache *cache)
8dda9770 1976{
c4f35dd8
MK
1977 int i;
1978
c4f35dd8
MK
1979 /* Base address. */
1980 cache->base = 0;
8fbca658 1981 cache->base_p = 0;
c4f35dd8
MK
1982 cache->sp_offset = -8;
1983 cache->pc = 0;
1984
1985 /* Saved registers. We initialize these to -1 since zero is a valid
bba66b87
DE
1986 offset (that's where %rbp is supposed to be stored).
1987 The values start out as being offsets, and are later converted to
1988 addresses (at which point -1 is interpreted as an address, still meaning
1989 "invalid"). */
e53bef9f 1990 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
1991 cache->saved_regs[i] = -1;
1992 cache->saved_sp = 0;
e0c62198 1993 cache->saved_sp_reg = -1;
c4f35dd8
MK
1994
1995 /* Frameless until proven otherwise. */
1996 cache->frameless_p = 1;
d2449ee8 1997}
c4f35dd8 1998
d2449ee8
DJ
1999/* Allocate and initialize a frame cache. */
2000
2001static struct amd64_frame_cache *
2002amd64_alloc_frame_cache (void)
2003{
2004 struct amd64_frame_cache *cache;
2005
2006 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2007 amd64_init_frame_cache (cache);
c4f35dd8 2008 return cache;
8dda9770 2009}
53e95fcf 2010
e0c62198
L
2011/* GCC 4.4 and later, can put code in the prologue to realign the
2012 stack pointer. Check whether PC points to such code, and update
2013 CACHE accordingly. Return the first instruction after the code
2014 sequence or CURRENT_PC, whichever is smaller. If we don't
2015 recognize the code, return PC. */
2016
2017static CORE_ADDR
2018amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2019 struct amd64_frame_cache *cache)
2020{
2021 /* There are 2 code sequences to re-align stack before the frame
2022 gets set up:
2023
2024 1. Use a caller-saved saved register:
2025
2026 leaq 8(%rsp), %reg
2027 andq $-XXX, %rsp
2028 pushq -8(%reg)
2029
2030 2. Use a callee-saved saved register:
2031
2032 pushq %reg
2033 leaq 16(%rsp), %reg
2034 andq $-XXX, %rsp
2035 pushq -8(%reg)
2036
2037 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2038
24b21115
SM
2039 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2040 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
e0c62198
L
2041 */
2042
2043 gdb_byte buf[18];
2044 int reg, r;
2045 int offset, offset_and;
e0c62198 2046
bae8a07a 2047 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
2048 return pc;
2049
2050 /* Check caller-saved saved register. The first instruction has
2051 to be "leaq 8(%rsp), %reg". */
2052 if ((buf[0] & 0xfb) == 0x48
2053 && buf[1] == 0x8d
2054 && buf[3] == 0x24
2055 && buf[4] == 0x8)
2056 {
2057 /* MOD must be binary 10 and R/M must be binary 100. */
2058 if ((buf[2] & 0xc7) != 0x44)
2059 return pc;
2060
2061 /* REG has register number. */
2062 reg = (buf[2] >> 3) & 7;
2063
2064 /* Check the REX.R bit. */
2065 if (buf[0] == 0x4c)
2066 reg += 8;
2067
2068 offset = 5;
2069 }
2070 else
2071 {
2072 /* Check callee-saved saved register. The first instruction
2073 has to be "pushq %reg". */
2074 reg = 0;
2075 if ((buf[0] & 0xf8) == 0x50)
2076 offset = 0;
2077 else if ((buf[0] & 0xf6) == 0x40
2078 && (buf[1] & 0xf8) == 0x50)
2079 {
2080 /* Check the REX.B bit. */
2081 if ((buf[0] & 1) != 0)
2082 reg = 8;
2083
2084 offset = 1;
2085 }
2086 else
2087 return pc;
2088
2089 /* Get register. */
2090 reg += buf[offset] & 0x7;
2091
2092 offset++;
2093
2094 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2095 if ((buf[offset] & 0xfb) != 0x48
2096 || buf[offset + 1] != 0x8d
2097 || buf[offset + 3] != 0x24
2098 || buf[offset + 4] != 0x10)
2099 return pc;
2100
2101 /* MOD must be binary 10 and R/M must be binary 100. */
2102 if ((buf[offset + 2] & 0xc7) != 0x44)
2103 return pc;
2104
2105 /* REG has register number. */
2106 r = (buf[offset + 2] >> 3) & 7;
2107
2108 /* Check the REX.R bit. */
2109 if (buf[offset] == 0x4c)
2110 r += 8;
2111
2112 /* Registers in pushq and leaq have to be the same. */
2113 if (reg != r)
2114 return pc;
2115
2116 offset += 5;
2117 }
2118
2119 /* Rigister can't be %rsp nor %rbp. */
2120 if (reg == 4 || reg == 5)
2121 return pc;
2122
2123 /* The next instruction has to be "andq $-XXX, %rsp". */
2124 if (buf[offset] != 0x48
2125 || buf[offset + 2] != 0xe4
2126 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2127 return pc;
2128
2129 offset_and = offset;
2130 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2131
2132 /* The next instruction has to be "pushq -8(%reg)". */
2133 r = 0;
2134 if (buf[offset] == 0xff)
2135 offset++;
2136 else if ((buf[offset] & 0xf6) == 0x40
2137 && buf[offset + 1] == 0xff)
2138 {
2139 /* Check the REX.B bit. */
2140 if ((buf[offset] & 0x1) != 0)
2141 r = 8;
2142 offset += 2;
2143 }
2144 else
2145 return pc;
2146
2147 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2148 01. */
2149 if (buf[offset + 1] != 0xf8
2150 || (buf[offset] & 0xf8) != 0x70)
2151 return pc;
2152
2153 /* R/M has register. */
2154 r += buf[offset] & 7;
2155
2156 /* Registers in leaq and pushq have to be the same. */
2157 if (reg != r)
2158 return pc;
2159
2160 if (current_pc > pc + offset_and)
35669430 2161 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
e0c62198 2162
325fac50 2163 return std::min (pc + offset + 2, current_pc);
e0c62198
L
2164}
2165
ac142d96
L
2166/* Similar to amd64_analyze_stack_align for x32. */
2167
2168static CORE_ADDR
2169amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2170 struct amd64_frame_cache *cache)
2171{
2172 /* There are 2 code sequences to re-align stack before the frame
2173 gets set up:
2174
2175 1. Use a caller-saved saved register:
2176
2177 leaq 8(%rsp), %reg
2178 andq $-XXX, %rsp
2179 pushq -8(%reg)
2180
2181 or
2182
2183 [addr32] leal 8(%rsp), %reg
2184 andl $-XXX, %esp
2185 [addr32] pushq -8(%reg)
2186
2187 2. Use a callee-saved saved register:
2188
2189 pushq %reg
2190 leaq 16(%rsp), %reg
2191 andq $-XXX, %rsp
2192 pushq -8(%reg)
2193
2194 or
2195
2196 pushq %reg
2197 [addr32] leal 16(%rsp), %reg
2198 andl $-XXX, %esp
2199 [addr32] pushq -8(%reg)
2200
2201 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2202
24b21115
SM
2203 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2204 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
ac142d96
L
2205
2206 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2207
24b21115
SM
2208 0x83 0xe4 0xf0 andl $-16, %esp
2209 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
ac142d96
L
2210 */
2211
2212 gdb_byte buf[19];
2213 int reg, r;
2214 int offset, offset_and;
2215
2216 if (target_read_memory (pc, buf, sizeof buf))
2217 return pc;
2218
2219 /* Skip optional addr32 prefix. */
2220 offset = buf[0] == 0x67 ? 1 : 0;
2221
2222 /* Check caller-saved saved register. The first instruction has
2223 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2224 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2225 && buf[offset + 1] == 0x8d
2226 && buf[offset + 3] == 0x24
2227 && buf[offset + 4] == 0x8)
2228 {
2229 /* MOD must be binary 10 and R/M must be binary 100. */
2230 if ((buf[offset + 2] & 0xc7) != 0x44)
2231 return pc;
2232
2233 /* REG has register number. */
2234 reg = (buf[offset + 2] >> 3) & 7;
2235
2236 /* Check the REX.R bit. */
2237 if ((buf[offset] & 0x4) != 0)
2238 reg += 8;
2239
2240 offset += 5;
2241 }
2242 else
2243 {
2244 /* Check callee-saved saved register. The first instruction
2245 has to be "pushq %reg". */
2246 reg = 0;
2247 if ((buf[offset] & 0xf6) == 0x40
2248 && (buf[offset + 1] & 0xf8) == 0x50)
2249 {
2250 /* Check the REX.B bit. */
2251 if ((buf[offset] & 1) != 0)
2252 reg = 8;
2253
2254 offset += 1;
2255 }
2256 else if ((buf[offset] & 0xf8) != 0x50)
2257 return pc;
2258
2259 /* Get register. */
2260 reg += buf[offset] & 0x7;
2261
2262 offset++;
2263
2264 /* Skip optional addr32 prefix. */
2265 if (buf[offset] == 0x67)
2266 offset++;
2267
2268 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2269 "leal 16(%rsp), %reg". */
2270 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2271 || buf[offset + 1] != 0x8d
2272 || buf[offset + 3] != 0x24
2273 || buf[offset + 4] != 0x10)
2274 return pc;
2275
2276 /* MOD must be binary 10 and R/M must be binary 100. */
2277 if ((buf[offset + 2] & 0xc7) != 0x44)
2278 return pc;
2279
2280 /* REG has register number. */
2281 r = (buf[offset + 2] >> 3) & 7;
2282
2283 /* Check the REX.R bit. */
2284 if ((buf[offset] & 0x4) != 0)
2285 r += 8;
2286
2287 /* Registers in pushq and leaq have to be the same. */
2288 if (reg != r)
2289 return pc;
2290
2291 offset += 5;
2292 }
2293
2294 /* Rigister can't be %rsp nor %rbp. */
2295 if (reg == 4 || reg == 5)
2296 return pc;
2297
2298 /* The next instruction may be "andq $-XXX, %rsp" or
2299 "andl $-XXX, %esp". */
2300 if (buf[offset] != 0x48)
2301 offset--;
2302
2303 if (buf[offset + 2] != 0xe4
2304 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2305 return pc;
2306
2307 offset_and = offset;
2308 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2309
2310 /* Skip optional addr32 prefix. */
2311 if (buf[offset] == 0x67)
2312 offset++;
2313
2314 /* The next instruction has to be "pushq -8(%reg)". */
2315 r = 0;
2316 if (buf[offset] == 0xff)
2317 offset++;
2318 else if ((buf[offset] & 0xf6) == 0x40
2319 && buf[offset + 1] == 0xff)
2320 {
2321 /* Check the REX.B bit. */
2322 if ((buf[offset] & 0x1) != 0)
2323 r = 8;
2324 offset += 2;
2325 }
2326 else
2327 return pc;
2328
2329 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2330 01. */
2331 if (buf[offset + 1] != 0xf8
2332 || (buf[offset] & 0xf8) != 0x70)
2333 return pc;
2334
2335 /* R/M has register. */
2336 r += buf[offset] & 7;
2337
2338 /* Registers in leaq and pushq have to be the same. */
2339 if (reg != r)
2340 return pc;
2341
2342 if (current_pc > pc + offset_and)
2343 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2344
325fac50 2345 return std::min (pc + offset + 2, current_pc);
ac142d96
L
2346}
2347
c4f35dd8
MK
2348/* Do a limited analysis of the prologue at PC and update CACHE
2349 accordingly. Bail out early if CURRENT_PC is reached. Return the
2350 address where the analysis stopped.
2351
2352 We will handle only functions beginning with:
2353
2354 pushq %rbp 0x55
50f1ae7b 2355 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
c4f35dd8 2356
649e6d92
MK
2357 or (for the X32 ABI):
2358
2359 pushq %rbp 0x55
2360 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2361
ac4a4f1c
SM
2362 The `endbr64` instruction can be found before these sequences, and will be
2363 skipped if found.
2364
649e6d92
MK
2365 Any function that doesn't start with one of these sequences will be
2366 assumed to have no prologue and thus no valid frame pointer in
2367 %rbp. */
c4f35dd8
MK
2368
2369static CORE_ADDR
e17a4113
UW
2370amd64_analyze_prologue (struct gdbarch *gdbarch,
2371 CORE_ADDR pc, CORE_ADDR current_pc,
e53bef9f 2372 struct amd64_frame_cache *cache)
53e95fcf 2373{
e17a4113 2374 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ac4a4f1c
SM
2375 /* The `endbr64` instruction. */
2376 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
50f1ae7b
DE
2377 /* There are two variations of movq %rsp, %rbp. */
2378 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2379 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
649e6d92
MK
2380 /* Ditto for movl %esp, %ebp. */
2381 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2382 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2383
d8de1ef7
MK
2384 gdb_byte buf[3];
2385 gdb_byte op;
c4f35dd8
MK
2386
2387 if (current_pc <= pc)
2388 return current_pc;
2389
ac142d96
L
2390 if (gdbarch_ptr_bit (gdbarch) == 32)
2391 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2392 else
2393 pc = amd64_analyze_stack_align (pc, current_pc, cache);
e0c62198 2394
bae8a07a 2395 op = read_code_unsigned_integer (pc, 1, byte_order);
c4f35dd8 2396
ac4a4f1c
SM
2397 /* Check for the `endbr64` instruction, skip it if found. */
2398 if (op == endbr64[0])
2399 {
2400 read_code (pc + 1, buf, 3);
2401
2402 if (memcmp (buf, &endbr64[1], 3) == 0)
2403 pc += 4;
2404
2405 op = read_code_unsigned_integer (pc, 1, byte_order);
2406 }
2407
2408 if (current_pc <= pc)
2409 return current_pc;
2410
c4f35dd8
MK
2411 if (op == 0x55) /* pushq %rbp */
2412 {
2413 /* Take into account that we've executed the `pushq %rbp' that
dda83cd7 2414 starts this instruction sequence. */
90f90721 2415 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
2416 cache->sp_offset += 8;
2417
2418 /* If that's all, return now. */
2419 if (current_pc <= pc + 1)
dda83cd7 2420 return current_pc;
c4f35dd8 2421
bae8a07a 2422 read_code (pc + 1, buf, 3);
c4f35dd8 2423
649e6d92
MK
2424 /* Check for `movq %rsp, %rbp'. */
2425 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2426 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2427 {
2428 /* OK, we actually have a frame. */
2429 cache->frameless_p = 0;
2430 return pc + 4;
2431 }
2432
ed908db6 2433 /* For X32, also check for `movl %esp, %ebp'. */
649e6d92
MK
2434 if (gdbarch_ptr_bit (gdbarch) == 32)
2435 {
2436 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2437 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2438 {
2439 /* OK, we actually have a frame. */
2440 cache->frameless_p = 0;
2441 return pc + 3;
2442 }
2443 }
2444
2445 return pc + 1;
c4f35dd8
MK
2446 }
2447
2448 return pc;
53e95fcf
JS
2449}
2450
df15bd07
JK
2451/* Work around false termination of prologue - GCC PR debug/48827.
2452
2453 START_PC is the first instruction of a function, PC is its minimal already
2454 determined advanced address. Function returns PC if it has nothing to do.
2455
2456 84 c0 test %al,%al
2457 74 23 je after
2458 <-- here is 0 lines advance - the false prologue end marker.
2459 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2460 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2461 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2462 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2463 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2464 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2465 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2466 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2467 after: */
c4f35dd8
MK
2468
2469static CORE_ADDR
df15bd07 2470amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
53e95fcf 2471{
08711b9a
JK
2472 struct symtab_and_line start_pc_sal, next_sal;
2473 gdb_byte buf[4 + 8 * 7];
2474 int offset, xmmreg;
c4f35dd8 2475
08711b9a
JK
2476 if (pc == start_pc)
2477 return pc;
2478
2479 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2480 if (start_pc_sal.symtab == NULL
c6159652
SM
2481 || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit ()
2482 ->producer ()) < 6
08711b9a
JK
2483 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2484 return pc;
2485
2486 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2487 if (next_sal.line != start_pc_sal.line)
2488 return pc;
2489
2490 /* START_PC can be from overlayed memory, ignored here. */
bae8a07a 2491 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
08711b9a
JK
2492 return pc;
2493
2494 /* test %al,%al */
2495 if (buf[0] != 0x84 || buf[1] != 0xc0)
2496 return pc;
2497 /* je AFTER */
2498 if (buf[2] != 0x74)
2499 return pc;
2500
2501 offset = 4;
2502 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2503 {
bede5f5f 2504 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
08711b9a 2505 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
dda83cd7 2506 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
08711b9a
JK
2507 return pc;
2508
bede5f5f
JK
2509 /* 0b01?????? */
2510 if ((buf[offset + 2] & 0xc0) == 0x40)
08711b9a
JK
2511 {
2512 /* 8-bit displacement. */
2513 offset += 4;
2514 }
bede5f5f
JK
2515 /* 0b10?????? */
2516 else if ((buf[offset + 2] & 0xc0) == 0x80)
08711b9a
JK
2517 {
2518 /* 32-bit displacement. */
2519 offset += 7;
2520 }
2521 else
2522 return pc;
2523 }
2524
2525 /* je AFTER */
2526 if (offset - 4 != buf[3])
2527 return pc;
2528
2529 return next_sal.end;
53e95fcf 2530}
df15bd07
JK
2531
2532/* Return PC of first real instruction. */
2533
2534static CORE_ADDR
2535amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2536{
2537 struct amd64_frame_cache cache;
2538 CORE_ADDR pc;
56bf0743
KB
2539 CORE_ADDR func_addr;
2540
2541 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2542 {
2543 CORE_ADDR post_prologue_pc
2544 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 2545 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743 2546
c2fd7fae 2547 /* LLVM backend (Clang/Flang) always emits a line note before the
16e311ab
FW
2548 prologue and another one after. We trust clang and newer Intel
2549 compilers to emit usable line notes. */
56bf0743 2550 if (post_prologue_pc
43f3e411 2551 && (cust != NULL
ab5f850e
SM
2552 && cust->producer () != nullptr
2553 && (producer_is_llvm (cust->producer ())
2554 || producer_is_icc_ge_19 (cust->producer ()))))
16e311ab 2555 return std::max (start_pc, post_prologue_pc);
56bf0743 2556 }
df15bd07
JK
2557
2558 amd64_init_frame_cache (&cache);
2559 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2560 &cache);
2561 if (cache.frameless_p)
2562 return start_pc;
2563
2564 return amd64_skip_xmm_prologue (pc, start_pc);
2565}
c4f35dd8 2566\f
53e95fcf 2567
c4f35dd8
MK
2568/* Normal frames. */
2569
8fbca658 2570static void
bd2b40ac 2571amd64_frame_cache_1 (frame_info_ptr this_frame,
8fbca658 2572 struct amd64_frame_cache *cache)
6d686a84 2573{
e17a4113
UW
2574 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d8de1ef7 2576 gdb_byte buf[8];
6d686a84 2577 int i;
6d686a84 2578
10458914 2579 cache->pc = get_frame_func (this_frame);
c4f35dd8 2580 if (cache->pc != 0)
e17a4113
UW
2581 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2582 cache);
c4f35dd8
MK
2583
2584 if (cache->frameless_p)
2585 {
4a28816e
MK
2586 /* We didn't find a valid frame. If we're at the start of a
2587 function, or somewhere half-way its prologue, the function's
2588 frame probably hasn't been fully setup yet. Try to
2589 reconstruct the base address for the stack frame by looking
2590 at the stack pointer. For truly "frameless" functions this
2591 might work too. */
c4f35dd8 2592
e0c62198
L
2593 if (cache->saved_sp_reg != -1)
2594 {
8fbca658
PA
2595 /* Stack pointer has been saved. */
2596 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2597 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2598
e0c62198
L
2599 /* We're halfway aligning the stack. */
2600 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2601 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2602
2603 /* This will be added back below. */
2604 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2605 }
2606 else
2607 {
2608 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
e17a4113
UW
2609 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2610 + cache->sp_offset;
e0c62198 2611 }
c4f35dd8 2612 }
35883a3f
MK
2613 else
2614 {
10458914 2615 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
e17a4113 2616 cache->base = extract_unsigned_integer (buf, 8, byte_order);
35883a3f 2617 }
c4f35dd8
MK
2618
2619 /* Now that we have the base address for the stack frame we can
2620 calculate the value of %rsp in the calling frame. */
2621 cache->saved_sp = cache->base + 16;
2622
35883a3f
MK
2623 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2624 frame we find it at the same offset from the reconstructed base
e0c62198
L
2625 address. If we're halfway aligning the stack, %rip is handled
2626 differently (see above). */
2627 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2628 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 2629
c4f35dd8
MK
2630 /* Adjust all the saved registers such that they contain addresses
2631 instead of offsets. */
e53bef9f 2632 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
2633 if (cache->saved_regs[i] != -1)
2634 cache->saved_regs[i] += cache->base;
2635
8fbca658
PA
2636 cache->base_p = 1;
2637}
2638
2639static struct amd64_frame_cache *
bd2b40ac 2640amd64_frame_cache (frame_info_ptr this_frame, void **this_cache)
8fbca658 2641{
8fbca658
PA
2642 struct amd64_frame_cache *cache;
2643
2644 if (*this_cache)
9a3c8263 2645 return (struct amd64_frame_cache *) *this_cache;
8fbca658
PA
2646
2647 cache = amd64_alloc_frame_cache ();
2648 *this_cache = cache;
2649
a70b8144 2650 try
8fbca658
PA
2651 {
2652 amd64_frame_cache_1 (this_frame, cache);
2653 }
230d2906 2654 catch (const gdb_exception_error &ex)
7556d4a4
PA
2655 {
2656 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2657 throw;
7556d4a4 2658 }
8fbca658 2659
c4f35dd8 2660 return cache;
6d686a84
ML
2661}
2662
8fbca658 2663static enum unwind_stop_reason
bd2b40ac 2664amd64_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
2665 void **this_cache)
2666{
2667 struct amd64_frame_cache *cache =
2668 amd64_frame_cache (this_frame, this_cache);
2669
2670 if (!cache->base_p)
2671 return UNWIND_UNAVAILABLE;
2672
2673 /* This marks the outermost frame. */
2674 if (cache->base == 0)
2675 return UNWIND_OUTERMOST;
2676
2677 return UNWIND_NO_REASON;
2678}
2679
c4f35dd8 2680static void
bd2b40ac 2681amd64_frame_this_id (frame_info_ptr this_frame, void **this_cache,
e53bef9f 2682 struct frame_id *this_id)
c4f35dd8 2683{
e53bef9f 2684 struct amd64_frame_cache *cache =
10458914 2685 amd64_frame_cache (this_frame, this_cache);
c4f35dd8 2686
8fbca658 2687 if (!cache->base_p)
5ce0145d
PA
2688 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2689 else if (cache->base == 0)
2690 {
2691 /* This marks the outermost frame. */
2692 return;
2693 }
2694 else
2695 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
c4f35dd8 2696}
e76e1718 2697
10458914 2698static struct value *
bd2b40ac 2699amd64_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
10458914 2700 int regnum)
53e95fcf 2701{
10458914 2702 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e53bef9f 2703 struct amd64_frame_cache *cache =
10458914 2704 amd64_frame_cache (this_frame, this_cache);
e76e1718 2705
c4f35dd8 2706 gdb_assert (regnum >= 0);
b1ab997b 2707
2ae02b47 2708 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
10458914 2709 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
e76e1718 2710
e53bef9f 2711 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2712 return frame_unwind_got_memory (this_frame, regnum,
2713 cache->saved_regs[regnum]);
e76e1718 2714
10458914 2715 return frame_unwind_got_register (this_frame, regnum, regnum);
c4f35dd8 2716}
e76e1718 2717
e53bef9f 2718static const struct frame_unwind amd64_frame_unwind =
c4f35dd8 2719{
a154d838 2720 "amd64 prologue",
c4f35dd8 2721 NORMAL_FRAME,
8fbca658 2722 amd64_frame_unwind_stop_reason,
e53bef9f 2723 amd64_frame_this_id,
10458914
DJ
2724 amd64_frame_prev_register,
2725 NULL,
2726 default_frame_sniffer
c4f35dd8 2727};
c4f35dd8 2728\f
6710bf39
SS
2729/* Generate a bytecode expression to get the value of the saved PC. */
2730
2731static void
2732amd64_gen_return_address (struct gdbarch *gdbarch,
2733 struct agent_expr *ax, struct axs_value *value,
2734 CORE_ADDR scope)
2735{
2736 /* The following sequence assumes the traditional use of the base
2737 register. */
2738 ax_reg (ax, AMD64_RBP_REGNUM);
2739 ax_const_l (ax, 8);
2740 ax_simple (ax, aop_add);
2741 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2742 value->kind = axs_lvalue_memory;
2743}
2744\f
e76e1718 2745
c4f35dd8
MK
2746/* Signal trampolines. */
2747
2748/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2749 64-bit variants. This would require using identical frame caches
2750 on both platforms. */
2751
e53bef9f 2752static struct amd64_frame_cache *
bd2b40ac 2753amd64_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
c4f35dd8 2754{
e17a4113 2755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
08106042 2756 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
e17a4113 2757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e53bef9f 2758 struct amd64_frame_cache *cache;
c4f35dd8 2759 CORE_ADDR addr;
d8de1ef7 2760 gdb_byte buf[8];
2b5e0749 2761 int i;
c4f35dd8
MK
2762
2763 if (*this_cache)
9a3c8263 2764 return (struct amd64_frame_cache *) *this_cache;
c4f35dd8 2765
e53bef9f 2766 cache = amd64_alloc_frame_cache ();
c4f35dd8 2767
a70b8144 2768 try
8fbca658
PA
2769 {
2770 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2771 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2772
2773 addr = tdep->sigcontext_addr (this_frame);
2774 gdb_assert (tdep->sc_reg_offset);
2775 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2776 for (i = 0; i < tdep->sc_num_regs; i++)
2777 if (tdep->sc_reg_offset[i] != -1)
2778 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8 2779
8fbca658
PA
2780 cache->base_p = 1;
2781 }
230d2906 2782 catch (const gdb_exception_error &ex)
7556d4a4
PA
2783 {
2784 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2785 throw;
7556d4a4 2786 }
c4f35dd8
MK
2787
2788 *this_cache = cache;
2789 return cache;
53e95fcf
JS
2790}
2791
8fbca658 2792static enum unwind_stop_reason
bd2b40ac 2793amd64_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
2794 void **this_cache)
2795{
2796 struct amd64_frame_cache *cache =
2797 amd64_sigtramp_frame_cache (this_frame, this_cache);
2798
2799 if (!cache->base_p)
2800 return UNWIND_UNAVAILABLE;
2801
2802 return UNWIND_NO_REASON;
2803}
2804
c4f35dd8 2805static void
bd2b40ac 2806amd64_sigtramp_frame_this_id (frame_info_ptr this_frame,
e53bef9f 2807 void **this_cache, struct frame_id *this_id)
c4f35dd8 2808{
e53bef9f 2809 struct amd64_frame_cache *cache =
10458914 2810 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2811
8fbca658 2812 if (!cache->base_p)
5ce0145d
PA
2813 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2814 else if (cache->base == 0)
2815 {
2816 /* This marks the outermost frame. */
2817 return;
2818 }
2819 else
2820 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
c4f35dd8
MK
2821}
2822
10458914 2823static struct value *
bd2b40ac 2824amd64_sigtramp_frame_prev_register (frame_info_ptr this_frame,
10458914 2825 void **this_cache, int regnum)
c4f35dd8
MK
2826{
2827 /* Make sure we've initialized the cache. */
10458914 2828 amd64_sigtramp_frame_cache (this_frame, this_cache);
c4f35dd8 2829
10458914 2830 return amd64_frame_prev_register (this_frame, this_cache, regnum);
c4f35dd8
MK
2831}
2832
10458914
DJ
2833static int
2834amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
bd2b40ac 2835 frame_info_ptr this_frame,
10458914 2836 void **this_cache)
c4f35dd8 2837{
345bd07c 2838 gdbarch *arch = get_frame_arch (this_frame);
08106042 2839 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
911bc6ee
MK
2840
2841 /* We shouldn't even bother if we don't have a sigcontext_addr
2842 handler. */
2843 if (tdep->sigcontext_addr == NULL)
10458914 2844 return 0;
911bc6ee
MK
2845
2846 if (tdep->sigtramp_p != NULL)
2847 {
10458914
DJ
2848 if (tdep->sigtramp_p (this_frame))
2849 return 1;
911bc6ee 2850 }
c4f35dd8 2851
911bc6ee 2852 if (tdep->sigtramp_start != 0)
1c3545ae 2853 {
10458914 2854 CORE_ADDR pc = get_frame_pc (this_frame);
1c3545ae 2855
911bc6ee
MK
2856 gdb_assert (tdep->sigtramp_end != 0);
2857 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2858 return 1;
1c3545ae 2859 }
c4f35dd8 2860
10458914 2861 return 0;
c4f35dd8 2862}
10458914
DJ
2863
2864static const struct frame_unwind amd64_sigtramp_frame_unwind =
2865{
a154d838 2866 "amd64 sigtramp",
10458914 2867 SIGTRAMP_FRAME,
8fbca658 2868 amd64_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2869 amd64_sigtramp_frame_this_id,
2870 amd64_sigtramp_frame_prev_register,
2871 NULL,
2872 amd64_sigtramp_frame_sniffer
2873};
c4f35dd8
MK
2874\f
2875
2876static CORE_ADDR
bd2b40ac 2877amd64_frame_base_address (frame_info_ptr this_frame, void **this_cache)
c4f35dd8 2878{
e53bef9f 2879 struct amd64_frame_cache *cache =
10458914 2880 amd64_frame_cache (this_frame, this_cache);
c4f35dd8
MK
2881
2882 return cache->base;
2883}
2884
e53bef9f 2885static const struct frame_base amd64_frame_base =
c4f35dd8 2886{
e53bef9f
MK
2887 &amd64_frame_unwind,
2888 amd64_frame_base_address,
2889 amd64_frame_base_address,
2890 amd64_frame_base_address
c4f35dd8
MK
2891};
2892
872761f4
MS
2893/* Normal frames, but in a function epilogue. */
2894
c9cf6e20
MG
2895/* Implement the stack_frame_destroyed_p gdbarch method.
2896
2897 The epilogue is defined here as the 'ret' instruction, which will
872761f4
MS
2898 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2899 the function's stack frame. */
2900
2901static int
c9cf6e20 2902amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872761f4
MS
2903{
2904 gdb_byte insn;
43f3e411 2905 struct compunit_symtab *cust;
e0d00bc7 2906
43f3e411 2907 cust = find_pc_compunit_symtab (pc);
3908b699 2908 if (cust != NULL && cust->epilogue_unwind_valid ())
e0d00bc7 2909 return 0;
872761f4
MS
2910
2911 if (target_read_memory (pc, &insn, 1))
2912 return 0; /* Can't read memory at pc. */
2913
2914 if (insn != 0xc3) /* 'ret' instruction. */
2915 return 0;
2916
2917 return 1;
2918}
2919
2920static int
2921amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
bd2b40ac 2922 frame_info_ptr this_frame,
872761f4
MS
2923 void **this_prologue_cache)
2924{
2925 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2926 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2927 get_frame_pc (this_frame));
872761f4
MS
2928 else
2929 return 0;
2930}
2931
2932static struct amd64_frame_cache *
bd2b40ac 2933amd64_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
872761f4
MS
2934{
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2937 struct amd64_frame_cache *cache;
6c10c06b 2938 gdb_byte buf[8];
872761f4
MS
2939
2940 if (*this_cache)
9a3c8263 2941 return (struct amd64_frame_cache *) *this_cache;
872761f4
MS
2942
2943 cache = amd64_alloc_frame_cache ();
2944 *this_cache = cache;
2945
a70b8144 2946 try
8fbca658 2947 {
49d7cd73 2948 /* Cache base will be %rsp plus cache->sp_offset (-8). */
8fbca658
PA
2949 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2950 cache->base = extract_unsigned_integer (buf, 8,
2951 byte_order) + cache->sp_offset;
2952
2953 /* Cache pc will be the frame func. */
49d7cd73 2954 cache->pc = get_frame_func (this_frame);
872761f4 2955
49d7cd73 2956 /* The previous value of %rsp is cache->base plus 16. */
8fbca658 2957 cache->saved_sp = cache->base + 16;
872761f4 2958
49d7cd73 2959 /* The saved %rip will be at cache->base plus 8. */
8fbca658 2960 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
872761f4 2961
8fbca658
PA
2962 cache->base_p = 1;
2963 }
230d2906 2964 catch (const gdb_exception_error &ex)
7556d4a4
PA
2965 {
2966 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 2967 throw;
7556d4a4 2968 }
872761f4
MS
2969
2970 return cache;
2971}
2972
8fbca658 2973static enum unwind_stop_reason
bd2b40ac 2974amd64_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
8fbca658
PA
2975 void **this_cache)
2976{
2977 struct amd64_frame_cache *cache
2978 = amd64_epilogue_frame_cache (this_frame, this_cache);
2979
2980 if (!cache->base_p)
2981 return UNWIND_UNAVAILABLE;
2982
2983 return UNWIND_NO_REASON;
2984}
2985
872761f4 2986static void
bd2b40ac 2987amd64_epilogue_frame_this_id (frame_info_ptr this_frame,
872761f4
MS
2988 void **this_cache,
2989 struct frame_id *this_id)
2990{
2991 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2992 this_cache);
2993
8fbca658 2994 if (!cache->base_p)
5ce0145d
PA
2995 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2996 else
49d7cd73 2997 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
872761f4
MS
2998}
2999
3000static const struct frame_unwind amd64_epilogue_frame_unwind =
3001{
a154d838 3002 "amd64 epilogue",
872761f4 3003 NORMAL_FRAME,
8fbca658 3004 amd64_epilogue_frame_unwind_stop_reason,
872761f4
MS
3005 amd64_epilogue_frame_this_id,
3006 amd64_frame_prev_register,
3007 NULL,
3008 amd64_epilogue_frame_sniffer
3009};
3010
166f4c7b 3011static struct frame_id
bd2b40ac 3012amd64_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
166f4c7b 3013{
c4f35dd8
MK
3014 CORE_ADDR fp;
3015
10458914 3016 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
c4f35dd8 3017
10458914 3018 return frame_id_build (fp + 16, get_frame_pc (this_frame));
166f4c7b
ML
3019}
3020
8b148df9
AC
3021/* 16 byte align the SP per frame requirements. */
3022
3023static CORE_ADDR
e53bef9f 3024amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
3025{
3026 return sp & -(CORE_ADDR)16;
3027}
473f17b0
MK
3028\f
3029
593adc23
MK
3030/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3031 in the floating-point register set REGSET to register cache
3032 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3033
3034static void
e53bef9f
MK
3035amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3036 int regnum, const void *fpregs, size_t len)
473f17b0 3037{
ac7936df 3038 struct gdbarch *gdbarch = regcache->arch ();
08106042 3039 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
473f17b0 3040
1528345d 3041 gdb_assert (len >= tdep->sizeof_fpregset);
90f90721 3042 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 3043}
8b148df9 3044
593adc23
MK
3045/* Collect register REGNUM from the register cache REGCACHE and store
3046 it in the buffer specified by FPREGS and LEN as described by the
3047 floating-point register set REGSET. If REGNUM is -1, do this for
3048 all registers in REGSET. */
3049
3050static void
3051amd64_collect_fpregset (const struct regset *regset,
3052 const struct regcache *regcache,
3053 int regnum, void *fpregs, size_t len)
3054{
ac7936df 3055 struct gdbarch *gdbarch = regcache->arch ();
08106042 3056 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
593adc23 3057
1528345d 3058 gdb_assert (len >= tdep->sizeof_fpregset);
593adc23
MK
3059 amd64_collect_fxsave (regcache, regnum, fpregs);
3060}
3061
8f0435f7 3062const struct regset amd64_fpregset =
ecc37a5a
AA
3063 {
3064 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3065 };
c6b33596
MK
3066\f
3067
436675d3
PA
3068/* Figure out where the longjmp will land. Slurp the jmp_buf out of
3069 %rdi. We expect its value to be a pointer to the jmp_buf structure
3070 from which we extract the address that we will land at. This
3071 address is copied into PC. This routine returns non-zero on
3072 success. */
3073
3074static int
bd2b40ac 3075amd64_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
436675d3
PA
3076{
3077 gdb_byte buf[8];
3078 CORE_ADDR jb_addr;
3079 struct gdbarch *gdbarch = get_frame_arch (frame);
08106042 3080 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
345bd07c 3081 int jb_pc_offset = tdep->jb_pc_offset;
df86565b 3082 int len = builtin_type (gdbarch)->builtin_func_ptr->length ();
436675d3
PA
3083
3084 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3085 longjmp will land. */
3086 if (jb_pc_offset == -1)
3087 return 0;
3088
3089 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
0dfff4cb
UW
3090 jb_addr= extract_typed_address
3091 (buf, builtin_type (gdbarch)->builtin_data_ptr);
436675d3
PA
3092 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3093 return 0;
3094
0dfff4cb 3095 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
436675d3
PA
3096
3097 return 1;
3098}
3099
cf648174
HZ
3100static const int amd64_record_regmap[] =
3101{
3102 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3103 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3104 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3105 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3106 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3107 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3108};
3109
1d509aa6
MM
3110/* Implement the "in_indirect_branch_thunk" gdbarch function. */
3111
3112static bool
3113amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3114{
3115 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3116 AMD64_RAX_REGNUM,
3117 AMD64_RIP_REGNUM);
3118}
3119
2213a65d 3120void
c55a47e7 3121amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3122 const target_desc *default_tdesc)
53e95fcf 3123{
08106042 3124 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
90884b2b 3125 const struct target_desc *tdesc = info.target_desc;
05c0465e
SDJ
3126 static const char *const stap_integer_prefixes[] = { "$", NULL };
3127 static const char *const stap_register_prefixes[] = { "%", NULL };
3128 static const char *const stap_register_indirection_prefixes[] = { "(",
3129 NULL };
3130 static const char *const stap_register_indirection_suffixes[] = { ")",
3131 NULL };
53e95fcf 3132
473f17b0
MK
3133 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3134 floating-point registers. */
3135 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
8f0435f7 3136 tdep->fpregset = &amd64_fpregset;
473f17b0 3137
90884b2b 3138 if (! tdesc_has_registers (tdesc))
c55a47e7 3139 tdesc = default_tdesc;
90884b2b
L
3140 tdep->tdesc = tdesc;
3141
3142 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3143 tdep->register_names = amd64_register_names;
3144
01f9f808
MS
3145 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3146 {
3147 tdep->zmmh_register_names = amd64_zmmh_names;
3148 tdep->k_register_names = amd64_k_names;
3149 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3150 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3151
3152 tdep->num_zmm_regs = 32;
3153 tdep->num_xmm_avx512_regs = 16;
3154 tdep->num_ymm_avx512_regs = 16;
3155
3156 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3157 tdep->k0_regnum = AMD64_K0_REGNUM;
3158 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3159 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3160 }
3161
a055a187
L
3162 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3163 {
3164 tdep->ymmh_register_names = amd64_ymmh_names;
3165 tdep->num_ymm_regs = 16;
3166 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3167 }
3168
e43e105e
WT
3169 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3170 {
3171 tdep->mpx_register_names = amd64_mpx_names;
3172 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3173 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3174 }
3175
2735833d
WT
3176 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3177 {
1163a4b7 3178 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
2735833d
WT
3179 }
3180
51547df6
MS
3181 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3182 {
3183 tdep->pkeys_register_names = amd64_pkeys_names;
3184 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3185 tdep->num_pkeys_regs = 1;
3186 }
3187
fe01d668 3188 tdep->num_byte_regs = 20;
1ba53b71
L
3189 tdep->num_word_regs = 16;
3190 tdep->num_dword_regs = 16;
3191 /* Avoid wiring in the MMX registers for now. */
3192 tdep->num_mmx_regs = 0;
3193
3543a589
TT
3194 set_gdbarch_pseudo_register_read_value (gdbarch,
3195 amd64_pseudo_register_read_value);
1ba53b71
L
3196 set_gdbarch_pseudo_register_write (gdbarch,
3197 amd64_pseudo_register_write);
62e5fd57
MK
3198 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3199 amd64_ax_pseudo_register_collect);
1ba53b71
L
3200
3201 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3202
5716833c 3203 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 3204 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 3205 tdep->num_xmm_regs = 16;
53e95fcf 3206
0c1a73d6 3207 /* This is what all the fuss is about. */
53e95fcf
JS
3208 set_gdbarch_long_bit (gdbarch, 64);
3209 set_gdbarch_long_long_bit (gdbarch, 64);
3210 set_gdbarch_ptr_bit (gdbarch, 64);
3211
e53bef9f
MK
3212 /* In contrast to the i386, on AMD64 a `long double' actually takes
3213 up 128 bits, even though it's still based on the i387 extended
3214 floating-point format which has only 80 significant bits. */
b83b026c
MK
3215 set_gdbarch_long_double_bit (gdbarch, 128);
3216
e53bef9f 3217 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
b83b026c
MK
3218
3219 /* Register numbers of various important registers. */
90f90721
MK
3220 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3221 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3222 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3223 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 3224
e53bef9f
MK
3225 /* The "default" register numbering scheme for AMD64 is referred to
3226 as the "DWARF Register Number Mapping" in the System V psABI.
3227 The preferred debugging format for all known AMD64 targets is
3228 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3229 DWARF-1), but we provide the same mapping just in case. This
3230 mapping is also used for stabs, which GCC does support. */
3231 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
e53bef9f 3232 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 3233
c4f35dd8 3234 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 3235 be in use on any of the supported AMD64 targets. */
53e95fcf 3236
c4f35dd8 3237 /* Call dummy code. */
e53bef9f
MK
3238 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3239 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 3240 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 3241
83acabca 3242 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
d532c08f
MK
3243 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3244 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3245
5cb0f2d5 3246 set_gdbarch_return_value_as_value (gdbarch, amd64_return_value);
53e95fcf 3247
e53bef9f 3248 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 3249
cf648174
HZ
3250 tdep->record_regmap = amd64_record_regmap;
3251
10458914 3252 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
53e95fcf 3253
872761f4
MS
3254 /* Hook the function epilogue frame unwinder. This unwinder is
3255 appended to the list first, so that it supercedes the other
3256 unwinders in function epilogues. */
3257 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3258
3259 /* Hook the prologue-based frame unwinders. */
10458914
DJ
3260 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3261 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
e53bef9f 3262 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596 3263
436675d3 3264 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
dde08ee1
PA
3265
3266 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
6710bf39
SS
3267
3268 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
55aa24fb
SDJ
3269
3270 /* SystemTap variables and functions. */
05c0465e
SDJ
3271 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3272 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3273 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3274 stap_register_indirection_prefixes);
3275 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3276 stap_register_indirection_suffixes);
55aa24fb
SDJ
3277 set_gdbarch_stap_is_single_operand (gdbarch,
3278 i386_stap_is_single_operand);
3279 set_gdbarch_stap_parse_special_token (gdbarch,
3280 i386_stap_parse_special_token);
c2170eef
MM
3281 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3282 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3283 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
1d509aa6
MM
3284
3285 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3286 amd64_in_indirect_branch_thunk);
257e02d8
TT
3287
3288 register_amd64_ravenscar_ops (gdbarch);
c4f35dd8 3289}
c912f608
SM
3290
3291/* Initialize ARCH for x86-64, no osabi. */
3292
3293static void
3294amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3295{
de52b960
PA
3296 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3297 true));
c912f608 3298}
fff4548b
MK
3299
3300static struct type *
3301amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3302{
08106042 3303 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
fff4548b
MK
3304
3305 switch (regnum - tdep->eax_regnum)
3306 {
3307 case AMD64_RBP_REGNUM: /* %ebp */
3308 case AMD64_RSP_REGNUM: /* %esp */
3309 return builtin_type (gdbarch)->builtin_data_ptr;
3310 case AMD64_RIP_REGNUM: /* %eip */
3311 return builtin_type (gdbarch)->builtin_func_ptr;
3312 }
3313
3314 return i386_pseudo_register_type (gdbarch, regnum);
3315}
3316
3317void
c55a47e7 3318amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
a04b5337 3319 const target_desc *default_tdesc)
fff4548b 3320{
08106042 3321 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
fff4548b 3322
c55a47e7 3323 amd64_init_abi (info, gdbarch, default_tdesc);
fff4548b
MK
3324
3325 tdep->num_dword_regs = 17;
3326 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3327
3328 set_gdbarch_long_bit (gdbarch, 32);
3329 set_gdbarch_ptr_bit (gdbarch, 32);
3330}
90884b2b 3331
c912f608
SM
3332/* Initialize ARCH for x64-32, no osabi. */
3333
3334static void
3335amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3336{
3337 amd64_x32_init_abi (info, arch,
de52b960 3338 amd64_target_description (X86_XSTATE_SSE_MASK, true));
c912f608
SM
3339}
3340
97de3545
JB
3341/* Return the target description for a specified XSAVE feature mask. */
3342
3343const struct target_desc *
de52b960 3344amd64_target_description (uint64_t xcr0, bool segments)
97de3545 3345{
22916b07 3346 static target_desc *amd64_tdescs \
de52b960 3347 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
22916b07
YQ
3348 target_desc **tdesc;
3349
3350 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3351 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3352 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
de52b960
PA
3353 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3354 [segments ? 1 : 0];
22916b07
YQ
3355
3356 if (*tdesc == NULL)
de52b960
PA
3357 *tdesc = amd64_create_target_description (xcr0, false, false,
3358 segments);
22916b07
YQ
3359
3360 return *tdesc;
97de3545
JB
3361}
3362
6c265988 3363void _initialize_amd64_tdep ();
90884b2b 3364void
6c265988 3365_initialize_amd64_tdep ()
90884b2b 3366{
c912f608 3367 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
24b21115 3368 amd64_none_init_abi);
c912f608 3369 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
24b21115 3370 amd64_x32_none_init_abi);
90884b2b 3371}
c4f35dd8
MK
3372\f
3373
41d041d6
MK
3374/* The 64-bit FXSAVE format differs from the 32-bit format in the
3375 sense that the instruction pointer and data pointer are simply
3376 64-bit offsets into the code segment and the data segment instead
3377 of a selector offset pair. The functions below store the upper 32
3378 bits of these pointers (instead of just the 16-bits of the segment
3379 selector). */
3380
3381/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
3382 floating-point or SSE register value from *FXSAVE. If REGNUM is
3383 -1, do this for all registers. This function masks off any of the
3384 reserved bits in *FXSAVE. */
c4f35dd8
MK
3385
3386void
90f90721 3387amd64_supply_fxsave (struct regcache *regcache, int regnum,
20a6ec49 3388 const void *fxsave)
c4f35dd8 3389{
ac7936df 3390 struct gdbarch *gdbarch = regcache->arch ();
08106042 3391 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
20a6ec49 3392
41d041d6 3393 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8 3394
233dfcf0
L
3395 if (fxsave
3396 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
c4f35dd8 3397 {
9a3c8263 3398 const gdb_byte *regs = (const gdb_byte *) fxsave;
41d041d6 3399
20a6ec49 3400 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3401 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3402 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3403 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
c4f35dd8 3404 }
0c1a73d6
MK
3405}
3406
a055a187
L
3407/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3408
3409void
3410amd64_supply_xsave (struct regcache *regcache, int regnum,
3411 const void *xsave)
3412{
ac7936df 3413 struct gdbarch *gdbarch = regcache->arch ();
08106042 3414 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
a055a187
L
3415
3416 i387_supply_xsave (regcache, regnum, xsave);
3417
233dfcf0
L
3418 if (xsave
3419 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187 3420 {
9a3c8263 3421 const gdb_byte *regs = (const gdb_byte *) xsave;
8ee22052 3422 ULONGEST clear_bv;
a055a187 3423
8ee22052
AB
3424 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3425
3426 /* If the FISEG and FOSEG registers have not been initialised yet
3427 (their CLEAR_BV bit is set) then their default values of zero will
3428 have already been setup by I387_SUPPLY_XSAVE. */
3429 if (!(clear_bv & X86_XSTATE_X87))
3430 {
3431 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
73e1c03f 3432 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
8ee22052 3433 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
73e1c03f 3434 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
8ee22052 3435 }
a055a187
L
3436 }
3437}
3438
3c017e40
MK
3439/* Fill register REGNUM (if it is a floating-point or SSE register) in
3440 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3441 all registers. This function doesn't touch any of the reserved
3442 bits in *FXSAVE. */
3443
3444void
3445amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3446 void *fxsave)
3447{
ac7936df 3448 struct gdbarch *gdbarch = regcache->arch ();
08106042 3449 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
9a3c8263 3450 gdb_byte *regs = (gdb_byte *) fxsave;
3c017e40
MK
3451
3452 i387_collect_fxsave (regcache, regnum, fxsave);
3453
233dfcf0 3454 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
f0ef85a5 3455 {
20a6ec49 3456 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3457 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
20a6ec49 3458 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3459 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
f0ef85a5 3460 }
3c017e40 3461}
a055a187 3462
7a9dd1b2 3463/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
a055a187
L
3464
3465void
3466amd64_collect_xsave (const struct regcache *regcache, int regnum,
3467 void *xsave, int gcore)
3468{
ac7936df 3469 struct gdbarch *gdbarch = regcache->arch ();
08106042 3470 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
9a3c8263 3471 gdb_byte *regs = (gdb_byte *) xsave;
a055a187
L
3472
3473 i387_collect_xsave (regcache, regnum, xsave, gcore);
3474
233dfcf0 3475 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
a055a187
L
3476 {
3477 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
34a79281 3478 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
a055a187
L
3479 regs + 12);
3480 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
34a79281 3481 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
a055a187
L
3482 regs + 20);
3483 }
3484}