]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/amd64-tdep.c
* i386-sol2-tdep.c: Include "gdb_string.h".
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
CommitLineData
e53bef9f 1/* Target-dependent code for AMD64.
ce0eebec 2
e53bef9f 3 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
53e95fcf
JS
4 Contributed by Jiri Smid, SuSE Labs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23#include "defs.h"
c4f35dd8
MK
24#include "arch-utils.h"
25#include "block.h"
26#include "dummy-frame.h"
27#include "frame.h"
28#include "frame-base.h"
29#include "frame-unwind.h"
53e95fcf 30#include "inferior.h"
53e95fcf 31#include "gdbcmd.h"
c4f35dd8
MK
32#include "gdbcore.h"
33#include "objfiles.h"
53e95fcf 34#include "regcache.h"
2c261fae 35#include "regset.h"
53e95fcf 36#include "symfile.h"
c4f35dd8 37
82dbc5f7 38#include "gdb_assert.h"
c4f35dd8 39
9c1488cb 40#include "amd64-tdep.h"
c4f35dd8 41#include "i387-tdep.h"
53e95fcf 42
e53bef9f
MK
43/* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
90f90721 45 returned by config.guess, and used as the name for the AMD64 port
e53bef9f
MK
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
402ecd56 50/* Register information. */
c4f35dd8 51
e53bef9f 52struct amd64_register_info
de220d0f 53{
de220d0f
ML
54 char *name;
55 struct type **type;
56};
53e95fcf 57
e53bef9f 58static struct amd64_register_info amd64_register_info[] =
c4f35dd8
MK
59{
60 { "rax", &builtin_type_int64 },
61 { "rbx", &builtin_type_int64 },
62 { "rcx", &builtin_type_int64 },
63 { "rdx", &builtin_type_int64 },
64 { "rsi", &builtin_type_int64 },
65 { "rdi", &builtin_type_int64 },
66 { "rbp", &builtin_type_void_data_ptr },
67 { "rsp", &builtin_type_void_data_ptr },
68
69 /* %r8 is indeed register number 8. */
70 { "r8", &builtin_type_int64 },
71 { "r9", &builtin_type_int64 },
72 { "r10", &builtin_type_int64 },
73 { "r11", &builtin_type_int64 },
74 { "r12", &builtin_type_int64 },
75 { "r13", &builtin_type_int64 },
76 { "r14", &builtin_type_int64 },
77 { "r15", &builtin_type_int64 },
78 { "rip", &builtin_type_void_func_ptr },
79 { "eflags", &builtin_type_int32 },
af233647
MK
80 { "cs", &builtin_type_int32 },
81 { "ss", &builtin_type_int32 },
c4f35dd8
MK
82 { "ds", &builtin_type_int32 },
83 { "es", &builtin_type_int32 },
84 { "fs", &builtin_type_int32 },
85 { "gs", &builtin_type_int32 },
86
af233647 87 /* %st0 is register number 24. */
c4f35dd8
MK
88 { "st0", &builtin_type_i387_ext },
89 { "st1", &builtin_type_i387_ext },
90 { "st2", &builtin_type_i387_ext },
91 { "st3", &builtin_type_i387_ext },
92 { "st4", &builtin_type_i387_ext },
93 { "st5", &builtin_type_i387_ext },
94 { "st6", &builtin_type_i387_ext },
95 { "st7", &builtin_type_i387_ext },
96 { "fctrl", &builtin_type_int32 },
97 { "fstat", &builtin_type_int32 },
98 { "ftag", &builtin_type_int32 },
99 { "fiseg", &builtin_type_int32 },
100 { "fioff", &builtin_type_int32 },
101 { "foseg", &builtin_type_int32 },
102 { "fooff", &builtin_type_int32 },
103 { "fop", &builtin_type_int32 },
104
af233647 105 /* %xmm0 is register number 40. */
c4f35dd8
MK
106 { "xmm0", &builtin_type_v4sf },
107 { "xmm1", &builtin_type_v4sf },
108 { "xmm2", &builtin_type_v4sf },
109 { "xmm3", &builtin_type_v4sf },
110 { "xmm4", &builtin_type_v4sf },
111 { "xmm5", &builtin_type_v4sf },
112 { "xmm6", &builtin_type_v4sf },
113 { "xmm7", &builtin_type_v4sf },
114 { "xmm8", &builtin_type_v4sf },
115 { "xmm9", &builtin_type_v4sf },
116 { "xmm10", &builtin_type_v4sf },
117 { "xmm11", &builtin_type_v4sf },
118 { "xmm12", &builtin_type_v4sf },
119 { "xmm13", &builtin_type_v4sf },
120 { "xmm14", &builtin_type_v4sf },
121 { "xmm15", &builtin_type_v4sf },
122 { "mxcsr", &builtin_type_int32 }
0e04a514
ML
123};
124
c4f35dd8 125/* Total number of registers. */
e53bef9f
MK
126#define AMD64_NUM_REGS \
127 (sizeof (amd64_register_info) / sizeof (amd64_register_info[0]))
de220d0f 128
c4f35dd8 129/* Return the name of register REGNUM. */
b6779aa2 130
c4f35dd8 131static const char *
e53bef9f 132amd64_register_name (int regnum)
53e95fcf 133{
e53bef9f
MK
134 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
135 return amd64_register_info[regnum].name;
53e95fcf 136
c4f35dd8 137 return NULL;
53e95fcf
JS
138}
139
140/* Return the GDB type object for the "standard" data type of data in
c4f35dd8 141 register REGNUM. */
53e95fcf 142
c4f35dd8 143static struct type *
e53bef9f 144amd64_register_type (struct gdbarch *gdbarch, int regnum)
53e95fcf 145{
e53bef9f 146 gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
4657573b 147
e53bef9f 148 return *amd64_register_info[regnum].type;
53e95fcf
JS
149}
150
c4f35dd8
MK
151/* DWARF Register Number Mapping as defined in the System V psABI,
152 section 3.6. */
53e95fcf 153
e53bef9f 154static int amd64_dwarf_regmap[] =
0e04a514 155{
c4f35dd8 156 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
90f90721
MK
157 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
158 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
159 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
c4f35dd8
MK
160
161 /* Frame Pointer Register RBP. */
90f90721 162 AMD64_RBP_REGNUM,
c4f35dd8
MK
163
164 /* Stack Pointer Register RSP. */
90f90721 165 AMD64_RSP_REGNUM,
c4f35dd8
MK
166
167 /* Extended Integer Registers 8 - 15. */
168 8, 9, 10, 11, 12, 13, 14, 15,
169
59207364 170 /* Return Address RA. Mapped to RIP. */
90f90721 171 AMD64_RIP_REGNUM,
c4f35dd8
MK
172
173 /* SSE Registers 0 - 7. */
90f90721
MK
174 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
175 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
176 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
177 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
c4f35dd8
MK
178
179 /* Extended SSE Registers 8 - 15. */
90f90721
MK
180 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
181 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
182 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
183 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
c4f35dd8
MK
184
185 /* Floating Point Registers 0-7. */
90f90721
MK
186 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
187 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
188 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
189 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7
c4f35dd8 190};
0e04a514 191
e53bef9f
MK
192static const int amd64_dwarf_regmap_len =
193 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
0e04a514 194
c4f35dd8
MK
195/* Convert DWARF register number REG to the appropriate register
196 number used by GDB. */
26abbdc4 197
c4f35dd8 198static int
e53bef9f 199amd64_dwarf_reg_to_regnum (int reg)
53e95fcf 200{
c4f35dd8 201 int regnum = -1;
53e95fcf 202
e53bef9f
MK
203 if (reg >= 0 || reg < amd64_dwarf_regmap_len)
204 regnum = amd64_dwarf_regmap[reg];
53e95fcf 205
c4f35dd8
MK
206 if (regnum == -1)
207 warning ("Unmapped DWARF Register #%d encountered\n", reg);
208
209 return regnum;
53e95fcf 210}
d532c08f
MK
211
212/* Return nonzero if a value of type TYPE stored in register REGNUM
213 needs any special handling. */
214
215static int
e53bef9f 216amd64_convert_register_p (int regnum, struct type *type)
d532c08f
MK
217{
218 return i386_fp_regnum_p (regnum);
219}
53e95fcf
JS
220\f
221
efb1c01c
MK
222/* Register classes as defined in the psABI. */
223
224enum amd64_reg_class
225{
226 AMD64_INTEGER,
227 AMD64_SSE,
228 AMD64_SSEUP,
229 AMD64_X87,
230 AMD64_X87UP,
231 AMD64_COMPLEX_X87,
232 AMD64_NO_CLASS,
233 AMD64_MEMORY
234};
235
236/* Return the union class of CLASS1 and CLASS2. See the psABI for
237 details. */
238
239static enum amd64_reg_class
240amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
241{
242 /* Rule (a): If both classes are equal, this is the resulting class. */
243 if (class1 == class2)
244 return class1;
245
246 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
247 is the other class. */
248 if (class1 == AMD64_NO_CLASS)
249 return class2;
250 if (class2 == AMD64_NO_CLASS)
251 return class1;
252
253 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
254 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
255 return AMD64_MEMORY;
256
257 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
258 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
259 return AMD64_INTEGER;
260
261 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
262 MEMORY is used as class. */
263 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
264 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
265 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
266 return AMD64_MEMORY;
267
268 /* Rule (f): Otherwise class SSE is used. */
269 return AMD64_SSE;
270}
271
272static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
273
79b1ab3d
MK
274/* Return non-zero if TYPE is a non-POD structure or union type. */
275
276static int
277amd64_non_pod_p (struct type *type)
278{
279 /* ??? A class with a base class certainly isn't POD, but does this
280 catch all non-POD structure types? */
281 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
282 return 1;
283
284 return 0;
285}
286
efb1c01c
MK
287/* Classify TYPE according to the rules for aggregate (structures and
288 arrays) and union types, and store the result in CLASS. */
c4f35dd8
MK
289
290static void
efb1c01c 291amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
53e95fcf
JS
292{
293 int len = TYPE_LENGTH (type);
294
efb1c01c
MK
295 /* 1. If the size of an object is larger than two eightbytes, or in
296 C++, is a non-POD structure or union type, or contains
297 unaligned fields, it has class memory. */
79b1ab3d 298 if (len > 16 || amd64_non_pod_p (type))
53e95fcf 299 {
efb1c01c
MK
300 class[0] = class[1] = AMD64_MEMORY;
301 return;
53e95fcf 302 }
efb1c01c
MK
303
304 /* 2. Both eightbytes get initialized to class NO_CLASS. */
305 class[0] = class[1] = AMD64_NO_CLASS;
306
307 /* 3. Each field of an object is classified recursively so that
308 always two fields are considered. The resulting class is
309 calculated according to the classes of the fields in the
310 eightbyte: */
311
312 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
8ffd9b1b 313 {
efb1c01c
MK
314 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
315
316 /* All fields in an array have the same type. */
317 amd64_classify (subtype, class);
318 if (len > 8 && class[1] == AMD64_NO_CLASS)
319 class[1] = class[0];
8ffd9b1b 320 }
53e95fcf
JS
321 else
322 {
efb1c01c 323 int i;
53e95fcf 324
efb1c01c
MK
325 /* Structure or union. */
326 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
327 || TYPE_CODE (type) == TYPE_CODE_UNION);
328
329 for (i = 0; i < TYPE_NFIELDS (type); i++)
53e95fcf 330 {
efb1c01c
MK
331 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
332 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
333 enum amd64_reg_class subclass[2];
334
562c50c2
MK
335 /* Ignore static fields. */
336 if (TYPE_FIELD_STATIC (type, i))
337 continue;
338
efb1c01c
MK
339 gdb_assert (pos == 0 || pos == 1);
340
341 amd64_classify (subtype, subclass);
342 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
343 if (pos == 0)
344 class[1] = amd64_merge_classes (class[1], subclass[1]);
53e95fcf 345 }
53e95fcf 346 }
efb1c01c
MK
347
348 /* 4. Then a post merger cleanup is done: */
349
350 /* Rule (a): If one of the classes is MEMORY, the whole argument is
351 passed in memory. */
352 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
353 class[0] = class[1] = AMD64_MEMORY;
354
355 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
356 SSE. */
357 if (class[0] == AMD64_SSEUP)
358 class[0] = AMD64_SSE;
359 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
360 class[1] = AMD64_SSE;
361}
362
363/* Classify TYPE, and store the result in CLASS. */
364
365static void
366amd64_classify (struct type *type, enum amd64_reg_class class[2])
367{
368 enum type_code code = TYPE_CODE (type);
369 int len = TYPE_LENGTH (type);
370
371 class[0] = class[1] = AMD64_NO_CLASS;
372
373 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
5a7225ed
JB
374 long, long long, and pointers are in the INTEGER class. Similarly,
375 range types, used by languages such as Ada, are also in the INTEGER
376 class. */
efb1c01c 377 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
5a7225ed 378 || code == TYPE_CODE_RANGE
efb1c01c
MK
379 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
380 && (len == 1 || len == 2 || len == 4 || len == 8))
381 class[0] = AMD64_INTEGER;
382
383 /* Arguments of types float, double and __m64 are in class SSE. */
384 else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
385 /* FIXME: __m64 . */
386 class[0] = AMD64_SSE;
387
388 /* Arguments of types __float128 and __m128 are split into two
389 halves. The least significant ones belong to class SSE, the most
390 significant one to class SSEUP. */
391 /* FIXME: __float128, __m128. */
392
393 /* The 64-bit mantissa of arguments of type long double belongs to
394 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
395 class X87UP. */
396 else if (code == TYPE_CODE_FLT && len == 16)
397 /* Class X87 and X87UP. */
398 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
399
400 /* Aggregates. */
401 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
402 || code == TYPE_CODE_UNION)
403 amd64_classify_aggregate (type, class);
404}
405
406static enum return_value_convention
407amd64_return_value (struct gdbarch *gdbarch, struct type *type,
408 struct regcache *regcache,
409 void *readbuf, const void *writebuf)
410{
411 enum amd64_reg_class class[2];
412 int len = TYPE_LENGTH (type);
90f90721
MK
413 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
414 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
efb1c01c
MK
415 int integer_reg = 0;
416 int sse_reg = 0;
417 int i;
418
419 gdb_assert (!(readbuf && writebuf));
420
421 /* 1. Classify the return type with the classification algorithm. */
422 amd64_classify (type, class);
423
424 /* 2. If the type has class MEMORY, then the caller provides space
425 for the return value and passes the address of this storage in
426 %rdi as if it were the first argument to the function. In
427 effect, this address becomes a hidden first argument. */
428 if (class[0] == AMD64_MEMORY)
429 return RETURN_VALUE_STRUCT_CONVENTION;
430
431 gdb_assert (class[1] != AMD64_MEMORY);
432 gdb_assert (len <= 16);
433
434 for (i = 0; len > 0; i++, len -= 8)
435 {
436 int regnum = -1;
437 int offset = 0;
438
439 switch (class[i])
440 {
441 case AMD64_INTEGER:
442 /* 3. If the class is INTEGER, the next available register
443 of the sequence %rax, %rdx is used. */
444 regnum = integer_regnum[integer_reg++];
445 break;
446
447 case AMD64_SSE:
448 /* 4. If the class is SSE, the next available SSE register
449 of the sequence %xmm0, %xmm1 is used. */
450 regnum = sse_regnum[sse_reg++];
451 break;
452
453 case AMD64_SSEUP:
454 /* 5. If the class is SSEUP, the eightbyte is passed in the
455 upper half of the last used SSE register. */
456 gdb_assert (sse_reg > 0);
457 regnum = sse_regnum[sse_reg - 1];
458 offset = 8;
459 break;
460
461 case AMD64_X87:
462 /* 6. If the class is X87, the value is returned on the X87
463 stack in %st0 as 80-bit x87 number. */
90f90721 464 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
465 if (writebuf)
466 i387_return_value (gdbarch, regcache);
467 break;
468
469 case AMD64_X87UP:
470 /* 7. If the class is X87UP, the value is returned together
471 with the previous X87 value in %st0. */
472 gdb_assert (i > 0 && class[0] == AMD64_X87);
90f90721 473 regnum = AMD64_ST0_REGNUM;
efb1c01c
MK
474 offset = 8;
475 len = 2;
476 break;
477
478 case AMD64_NO_CLASS:
479 continue;
480
481 default:
482 gdb_assert (!"Unexpected register class.");
483 }
484
485 gdb_assert (regnum != -1);
486
487 if (readbuf)
488 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
489 (char *) readbuf + i * 8);
490 if (writebuf)
491 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
492 (const char *) writebuf + i * 8);
493 }
494
495 return RETURN_VALUE_REGISTER_CONVENTION;
53e95fcf
JS
496}
497\f
498
720aa428
MK
499static CORE_ADDR
500amd64_push_arguments (struct regcache *regcache, int nargs,
6470d250 501 struct value **args, CORE_ADDR sp, int struct_return)
720aa428
MK
502{
503 static int integer_regnum[] =
504 {
90f90721
MK
505 AMD64_RDI_REGNUM, /* %rdi */
506 AMD64_RSI_REGNUM, /* %rsi */
507 AMD64_RDX_REGNUM, /* %rdx */
508 AMD64_RCX_REGNUM, /* %rcx */
509 8, /* %r8 */
510 9 /* %r9 */
720aa428
MK
511 };
512 static int sse_regnum[] =
513 {
514 /* %xmm0 ... %xmm7 */
90f90721
MK
515 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
516 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
517 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
518 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
720aa428
MK
519 };
520 struct value **stack_args = alloca (nargs * sizeof (struct value *));
521 int num_stack_args = 0;
522 int num_elements = 0;
523 int element = 0;
524 int integer_reg = 0;
525 int sse_reg = 0;
526 int i;
527
6470d250
MK
528 /* Reserve a register for the "hidden" argument. */
529 if (struct_return)
530 integer_reg++;
531
720aa428
MK
532 for (i = 0; i < nargs; i++)
533 {
534 struct type *type = VALUE_TYPE (args[i]);
535 int len = TYPE_LENGTH (type);
536 enum amd64_reg_class class[2];
537 int needed_integer_regs = 0;
538 int needed_sse_regs = 0;
539 int j;
540
541 /* Classify argument. */
542 amd64_classify (type, class);
543
544 /* Calculate the number of integer and SSE registers needed for
545 this argument. */
546 for (j = 0; j < 2; j++)
547 {
548 if (class[j] == AMD64_INTEGER)
549 needed_integer_regs++;
550 else if (class[j] == AMD64_SSE)
551 needed_sse_regs++;
552 }
553
554 /* Check whether enough registers are available, and if the
555 argument should be passed in registers at all. */
556 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
557 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
558 || (needed_integer_regs == 0 && needed_sse_regs == 0))
559 {
560 /* The argument will be passed on the stack. */
561 num_elements += ((len + 7) / 8);
562 stack_args[num_stack_args++] = args[i];
563 }
564 else
565 {
566 /* The argument will be passed in registers. */
567 char *valbuf = VALUE_CONTENTS (args[i]);
568 char buf[8];
569
570 gdb_assert (len <= 16);
571
572 for (j = 0; len > 0; j++, len -= 8)
573 {
574 int regnum = -1;
575 int offset = 0;
576
577 switch (class[j])
578 {
579 case AMD64_INTEGER:
580 regnum = integer_regnum[integer_reg++];
581 break;
582
583 case AMD64_SSE:
584 regnum = sse_regnum[sse_reg++];
585 break;
586
587 case AMD64_SSEUP:
588 gdb_assert (sse_reg > 0);
589 regnum = sse_regnum[sse_reg - 1];
590 offset = 8;
591 break;
592
593 default:
594 gdb_assert (!"Unexpected register class.");
595 }
596
597 gdb_assert (regnum != -1);
598 memset (buf, 0, sizeof buf);
599 memcpy (buf, valbuf + j * 8, min (len, 8));
600 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
601 }
602 }
603 }
604
605 /* Allocate space for the arguments on the stack. */
606 sp -= num_elements * 8;
607
608 /* The psABI says that "The end of the input argument area shall be
609 aligned on a 16 byte boundary." */
610 sp &= ~0xf;
611
612 /* Write out the arguments to the stack. */
613 for (i = 0; i < num_stack_args; i++)
614 {
615 struct type *type = VALUE_TYPE (stack_args[i]);
616 char *valbuf = VALUE_CONTENTS (stack_args[i]);
617 int len = TYPE_LENGTH (type);
618
619 write_memory (sp + element * 8, valbuf, len);
620 element += ((len + 7) / 8);
621 }
622
623 /* The psABI says that "For calls that may call functions that use
624 varargs or stdargs (prototype-less calls or calls to functions
625 containing ellipsis (...) in the declaration) %al is used as
626 hidden argument to specify the number of SSE registers used. */
90f90721 627 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
720aa428
MK
628 return sp;
629}
630
c4f35dd8 631static CORE_ADDR
e53bef9f
MK
632amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
633 struct regcache *regcache, CORE_ADDR bp_addr,
634 int nargs, struct value **args, CORE_ADDR sp,
635 int struct_return, CORE_ADDR struct_addr)
53e95fcf 636{
c4f35dd8
MK
637 char buf[8];
638
639 /* Pass arguments. */
6470d250 640 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
c4f35dd8
MK
641
642 /* Pass "hidden" argument". */
643 if (struct_return)
644 {
645 store_unsigned_integer (buf, 8, struct_addr);
90f90721 646 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
c4f35dd8
MK
647 }
648
649 /* Store return address. */
650 sp -= 8;
10f93086 651 store_unsigned_integer (buf, 8, bp_addr);
c4f35dd8
MK
652 write_memory (sp, buf, 8);
653
654 /* Finally, update the stack pointer... */
655 store_unsigned_integer (buf, 8, sp);
90f90721 656 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
657
658 /* ...and fake a frame pointer. */
90f90721 659 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
c4f35dd8 660
3e210248 661 return sp + 16;
53e95fcf 662}
c4f35dd8
MK
663\f
664
665/* The maximum number of saved registers. This should include %rip. */
90f90721 666#define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
c4f35dd8 667
e53bef9f 668struct amd64_frame_cache
c4f35dd8
MK
669{
670 /* Base address. */
671 CORE_ADDR base;
672 CORE_ADDR sp_offset;
673 CORE_ADDR pc;
674
675 /* Saved registers. */
e53bef9f 676 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
c4f35dd8
MK
677 CORE_ADDR saved_sp;
678
679 /* Do we have a frame? */
680 int frameless_p;
681};
8dda9770 682
c4f35dd8
MK
683/* Allocate and initialize a frame cache. */
684
e53bef9f
MK
685static struct amd64_frame_cache *
686amd64_alloc_frame_cache (void)
8dda9770 687{
e53bef9f 688 struct amd64_frame_cache *cache;
c4f35dd8
MK
689 int i;
690
e53bef9f 691 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
8dda9770 692
c4f35dd8
MK
693 /* Base address. */
694 cache->base = 0;
695 cache->sp_offset = -8;
696 cache->pc = 0;
697
698 /* Saved registers. We initialize these to -1 since zero is a valid
699 offset (that's where %rbp is supposed to be stored). */
e53bef9f 700 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
701 cache->saved_regs[i] = -1;
702 cache->saved_sp = 0;
703
704 /* Frameless until proven otherwise. */
705 cache->frameless_p = 1;
706
707 return cache;
8dda9770 708}
53e95fcf 709
c4f35dd8
MK
710/* Do a limited analysis of the prologue at PC and update CACHE
711 accordingly. Bail out early if CURRENT_PC is reached. Return the
712 address where the analysis stopped.
713
714 We will handle only functions beginning with:
715
716 pushq %rbp 0x55
717 movq %rsp, %rbp 0x48 0x89 0xe5
718
719 Any function that doesn't start with this sequence will be assumed
720 to have no prologue and thus no valid frame pointer in %rbp. */
721
722static CORE_ADDR
e53bef9f
MK
723amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
724 struct amd64_frame_cache *cache)
53e95fcf 725{
c4f35dd8
MK
726 static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
727 unsigned char buf[3];
728 unsigned char op;
729
730 if (current_pc <= pc)
731 return current_pc;
732
733 op = read_memory_unsigned_integer (pc, 1);
734
735 if (op == 0x55) /* pushq %rbp */
736 {
737 /* Take into account that we've executed the `pushq %rbp' that
738 starts this instruction sequence. */
90f90721 739 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
c4f35dd8
MK
740 cache->sp_offset += 8;
741
742 /* If that's all, return now. */
743 if (current_pc <= pc + 1)
744 return current_pc;
745
746 /* Check for `movq %rsp, %rbp'. */
747 read_memory (pc + 1, buf, 3);
748 if (memcmp (buf, proto, 3) != 0)
749 return pc + 1;
750
751 /* OK, we actually have a frame. */
752 cache->frameless_p = 0;
753 return pc + 4;
754 }
755
756 return pc;
53e95fcf
JS
757}
758
c4f35dd8
MK
759/* Return PC of first real instruction. */
760
761static CORE_ADDR
e53bef9f 762amd64_skip_prologue (CORE_ADDR start_pc)
53e95fcf 763{
e53bef9f 764 struct amd64_frame_cache cache;
c4f35dd8
MK
765 CORE_ADDR pc;
766
e53bef9f 767 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
c4f35dd8
MK
768 if (cache.frameless_p)
769 return start_pc;
770
771 return pc;
53e95fcf 772}
c4f35dd8 773\f
53e95fcf 774
c4f35dd8
MK
775/* Normal frames. */
776
e53bef9f
MK
777static struct amd64_frame_cache *
778amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
6d686a84 779{
e53bef9f 780 struct amd64_frame_cache *cache;
c4f35dd8 781 char buf[8];
6d686a84 782 int i;
6d686a84 783
c4f35dd8
MK
784 if (*this_cache)
785 return *this_cache;
6d686a84 786
e53bef9f 787 cache = amd64_alloc_frame_cache ();
c4f35dd8
MK
788 *this_cache = cache;
789
c4f35dd8
MK
790 cache->pc = frame_func_unwind (next_frame);
791 if (cache->pc != 0)
e53bef9f 792 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
c4f35dd8
MK
793
794 if (cache->frameless_p)
795 {
4a28816e
MK
796 /* We didn't find a valid frame. If we're at the start of a
797 function, or somewhere half-way its prologue, the function's
798 frame probably hasn't been fully setup yet. Try to
799 reconstruct the base address for the stack frame by looking
800 at the stack pointer. For truly "frameless" functions this
801 might work too. */
c4f35dd8 802
90f90721 803 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
804 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
805 }
35883a3f
MK
806 else
807 {
90f90721 808 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
35883a3f
MK
809 cache->base = extract_unsigned_integer (buf, 8);
810 }
c4f35dd8
MK
811
812 /* Now that we have the base address for the stack frame we can
813 calculate the value of %rsp in the calling frame. */
814 cache->saved_sp = cache->base + 16;
815
35883a3f
MK
816 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
817 frame we find it at the same offset from the reconstructed base
818 address. */
90f90721 819 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
35883a3f 820
c4f35dd8
MK
821 /* Adjust all the saved registers such that they contain addresses
822 instead of offsets. */
e53bef9f 823 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
c4f35dd8
MK
824 if (cache->saved_regs[i] != -1)
825 cache->saved_regs[i] += cache->base;
826
827 return cache;
6d686a84
ML
828}
829
c4f35dd8 830static void
e53bef9f
MK
831amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
832 struct frame_id *this_id)
c4f35dd8 833{
e53bef9f
MK
834 struct amd64_frame_cache *cache =
835 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
836
837 /* This marks the outermost frame. */
838 if (cache->base == 0)
839 return;
840
841 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
842}
e76e1718 843
c4f35dd8 844static void
e53bef9f
MK
845amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
846 int regnum, int *optimizedp,
847 enum lval_type *lvalp, CORE_ADDR *addrp,
848 int *realnump, void *valuep)
53e95fcf 849{
e53bef9f
MK
850 struct amd64_frame_cache *cache =
851 amd64_frame_cache (next_frame, this_cache);
e76e1718 852
c4f35dd8 853 gdb_assert (regnum >= 0);
b1ab997b 854
c4f35dd8
MK
855 if (regnum == SP_REGNUM && cache->saved_sp)
856 {
857 *optimizedp = 0;
858 *lvalp = not_lval;
859 *addrp = 0;
860 *realnump = -1;
861 if (valuep)
862 {
863 /* Store the value. */
864 store_unsigned_integer (valuep, 8, cache->saved_sp);
865 }
866 return;
867 }
e76e1718 868
e53bef9f 869 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
c4f35dd8
MK
870 {
871 *optimizedp = 0;
872 *lvalp = lval_memory;
873 *addrp = cache->saved_regs[regnum];
874 *realnump = -1;
875 if (valuep)
876 {
877 /* Read the value in from memory. */
878 read_memory (*addrp, valuep,
879 register_size (current_gdbarch, regnum));
880 }
881 return;
882 }
e76e1718 883
c4f35dd8
MK
884 frame_register_unwind (next_frame, regnum,
885 optimizedp, lvalp, addrp, realnump, valuep);
886}
e76e1718 887
e53bef9f 888static const struct frame_unwind amd64_frame_unwind =
c4f35dd8
MK
889{
890 NORMAL_FRAME,
e53bef9f
MK
891 amd64_frame_this_id,
892 amd64_frame_prev_register
c4f35dd8 893};
e76e1718 894
c4f35dd8 895static const struct frame_unwind *
e53bef9f 896amd64_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 897{
e53bef9f 898 return &amd64_frame_unwind;
c4f35dd8
MK
899}
900\f
e76e1718 901
c4f35dd8
MK
902/* Signal trampolines. */
903
904/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
905 64-bit variants. This would require using identical frame caches
906 on both platforms. */
907
e53bef9f
MK
908static struct amd64_frame_cache *
909amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
c4f35dd8 910{
e53bef9f 911 struct amd64_frame_cache *cache;
c4f35dd8
MK
912 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
913 CORE_ADDR addr;
914 char buf[8];
2b5e0749 915 int i;
c4f35dd8
MK
916
917 if (*this_cache)
918 return *this_cache;
919
e53bef9f 920 cache = amd64_alloc_frame_cache ();
c4f35dd8 921
90f90721 922 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
c4f35dd8
MK
923 cache->base = extract_unsigned_integer (buf, 8) - 8;
924
925 addr = tdep->sigcontext_addr (next_frame);
2b5e0749 926 gdb_assert (tdep->sc_reg_offset);
e53bef9f 927 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2b5e0749
MK
928 for (i = 0; i < tdep->sc_num_regs; i++)
929 if (tdep->sc_reg_offset[i] != -1)
930 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
c4f35dd8
MK
931
932 *this_cache = cache;
933 return cache;
53e95fcf
JS
934}
935
c4f35dd8 936static void
e53bef9f
MK
937amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
938 void **this_cache, struct frame_id *this_id)
c4f35dd8 939{
e53bef9f
MK
940 struct amd64_frame_cache *cache =
941 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8
MK
942
943 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
944}
945
946static void
e53bef9f
MK
947amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
948 void **this_cache,
949 int regnum, int *optimizedp,
950 enum lval_type *lvalp, CORE_ADDR *addrp,
951 int *realnump, void *valuep)
c4f35dd8
MK
952{
953 /* Make sure we've initialized the cache. */
e53bef9f 954 amd64_sigtramp_frame_cache (next_frame, this_cache);
c4f35dd8 955
e53bef9f
MK
956 amd64_frame_prev_register (next_frame, this_cache, regnum,
957 optimizedp, lvalp, addrp, realnump, valuep);
c4f35dd8
MK
958}
959
e53bef9f 960static const struct frame_unwind amd64_sigtramp_frame_unwind =
c4f35dd8
MK
961{
962 SIGTRAMP_FRAME,
e53bef9f
MK
963 amd64_sigtramp_frame_this_id,
964 amd64_sigtramp_frame_prev_register
c4f35dd8
MK
965};
966
967static const struct frame_unwind *
e53bef9f 968amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
c4f35dd8 969{
911bc6ee
MK
970 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
971
972 /* We shouldn't even bother if we don't have a sigcontext_addr
973 handler. */
974 if (tdep->sigcontext_addr == NULL)
975 return NULL;
976
977 if (tdep->sigtramp_p != NULL)
978 {
979 if (tdep->sigtramp_p (next_frame))
980 return &amd64_sigtramp_frame_unwind;
981 }
c4f35dd8 982
911bc6ee 983 if (tdep->sigtramp_start != 0)
1c3545ae 984 {
911bc6ee 985 CORE_ADDR pc = frame_pc_unwind (next_frame);
1c3545ae 986
911bc6ee
MK
987 gdb_assert (tdep->sigtramp_end != 0);
988 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
989 return &amd64_sigtramp_frame_unwind;
1c3545ae 990 }
c4f35dd8
MK
991
992 return NULL;
993}
994\f
995
996static CORE_ADDR
e53bef9f 997amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
c4f35dd8 998{
e53bef9f
MK
999 struct amd64_frame_cache *cache =
1000 amd64_frame_cache (next_frame, this_cache);
c4f35dd8
MK
1001
1002 return cache->base;
1003}
1004
e53bef9f 1005static const struct frame_base amd64_frame_base =
c4f35dd8 1006{
e53bef9f
MK
1007 &amd64_frame_unwind,
1008 amd64_frame_base_address,
1009 amd64_frame_base_address,
1010 amd64_frame_base_address
c4f35dd8
MK
1011};
1012
166f4c7b 1013static struct frame_id
e53bef9f 1014amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
166f4c7b 1015{
c4f35dd8
MK
1016 char buf[8];
1017 CORE_ADDR fp;
1018
90f90721 1019 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
c4f35dd8
MK
1020 fp = extract_unsigned_integer (buf, 8);
1021
1022 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
166f4c7b
ML
1023}
1024
8b148df9
AC
1025/* 16 byte align the SP per frame requirements. */
1026
1027static CORE_ADDR
e53bef9f 1028amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
8b148df9
AC
1029{
1030 return sp & -(CORE_ADDR)16;
1031}
473f17b0
MK
1032\f
1033
1034/* Supply register REGNUM from the floating-point register set REGSET
1035 to register cache REGCACHE. If REGNUM is -1, do this for all
1036 registers in REGSET. */
1037
1038static void
e53bef9f
MK
1039amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1040 int regnum, const void *fpregs, size_t len)
473f17b0
MK
1041{
1042 const struct gdbarch_tdep *tdep = regset->descr;
1043
1044 gdb_assert (len == tdep->sizeof_fpregset);
90f90721 1045 amd64_supply_fxsave (regcache, regnum, fpregs);
473f17b0 1046}
8b148df9 1047
c6b33596
MK
1048/* Return the appropriate register set for the core section identified
1049 by SECT_NAME and SECT_SIZE. */
1050
1051static const struct regset *
e53bef9f
MK
1052amd64_regset_from_core_section (struct gdbarch *gdbarch,
1053 const char *sect_name, size_t sect_size)
c6b33596
MK
1054{
1055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1056
1057 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1058 {
1059 if (tdep->fpregset == NULL)
1060 {
1061 tdep->fpregset = XMALLOC (struct regset);
1062 tdep->fpregset->descr = tdep;
e53bef9f 1063 tdep->fpregset->supply_regset = amd64_supply_fpregset;
c6b33596
MK
1064 }
1065
1066 return tdep->fpregset;
1067 }
1068
1069 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1070}
1071\f
1072
2213a65d 1073void
90f90721 1074amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
53e95fcf 1075{
0c1a73d6 1076 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
53e95fcf 1077
473f17b0
MK
1078 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1079 floating-point registers. */
1080 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1081
5716833c 1082 /* AMD64 has an FPU and 16 SSE registers. */
90f90721 1083 tdep->st0_regnum = AMD64_ST0_REGNUM;
0c1a73d6 1084 tdep->num_xmm_regs = 16;
53e95fcf 1085
0c1a73d6 1086 /* This is what all the fuss is about. */
53e95fcf
JS
1087 set_gdbarch_long_bit (gdbarch, 64);
1088 set_gdbarch_long_long_bit (gdbarch, 64);
1089 set_gdbarch_ptr_bit (gdbarch, 64);
1090
e53bef9f
MK
1091 /* In contrast to the i386, on AMD64 a `long double' actually takes
1092 up 128 bits, even though it's still based on the i387 extended
1093 floating-point format which has only 80 significant bits. */
b83b026c
MK
1094 set_gdbarch_long_double_bit (gdbarch, 128);
1095
e53bef9f
MK
1096 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1097 set_gdbarch_register_name (gdbarch, amd64_register_name);
1098 set_gdbarch_register_type (gdbarch, amd64_register_type);
b83b026c
MK
1099
1100 /* Register numbers of various important registers. */
90f90721
MK
1101 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1102 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1103 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1104 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
b83b026c 1105
e53bef9f
MK
1106 /* The "default" register numbering scheme for AMD64 is referred to
1107 as the "DWARF Register Number Mapping" in the System V psABI.
1108 The preferred debugging format for all known AMD64 targets is
1109 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1110 DWARF-1), but we provide the same mapping just in case. This
1111 mapping is also used for stabs, which GCC does support. */
1112 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1113 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1114 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
de220d0f 1115
c4f35dd8 1116 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
e53bef9f 1117 be in use on any of the supported AMD64 targets. */
53e95fcf 1118
c4f35dd8 1119 /* Call dummy code. */
e53bef9f
MK
1120 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1121 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
8b148df9 1122 set_gdbarch_frame_red_zone_size (gdbarch, 128);
53e95fcf 1123
e53bef9f 1124 set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
d532c08f
MK
1125 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1126 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1127
efb1c01c 1128 set_gdbarch_return_value (gdbarch, amd64_return_value);
53e95fcf 1129
e53bef9f 1130 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
53e95fcf 1131
c4f35dd8 1132 /* Avoid wiring in the MMX registers for now. */
2213a65d 1133 set_gdbarch_num_pseudo_regs (gdbarch, 0);
5716833c 1134 tdep->mm0_regnum = -1;
2213a65d 1135
e53bef9f 1136 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
53e95fcf 1137
b83b026c 1138 /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
e53bef9f 1139 since all supported AMD64 targets are ELF, but that might change
b83b026c 1140 in the future. */
8a8ab2b9 1141 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
c4f35dd8 1142
e53bef9f
MK
1143 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1144 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1145 frame_base_set_default (gdbarch, &amd64_frame_base);
c6b33596
MK
1146
1147 /* If we have a register mapping, enable the generic core file support. */
1148 if (tdep->gregset_reg_offset)
1149 set_gdbarch_regset_from_core_section (gdbarch,
e53bef9f 1150 amd64_regset_from_core_section);
c4f35dd8
MK
1151}
1152\f
1153
90f90721 1154#define I387_ST0_REGNUM AMD64_ST0_REGNUM
c4f35dd8 1155
41d041d6
MK
1156/* The 64-bit FXSAVE format differs from the 32-bit format in the
1157 sense that the instruction pointer and data pointer are simply
1158 64-bit offsets into the code segment and the data segment instead
1159 of a selector offset pair. The functions below store the upper 32
1160 bits of these pointers (instead of just the 16-bits of the segment
1161 selector). */
1162
1163/* Fill register REGNUM in REGCACHE with the appropriate
0485f6ad
MK
1164 floating-point or SSE register value from *FXSAVE. If REGNUM is
1165 -1, do this for all registers. This function masks off any of the
1166 reserved bits in *FXSAVE. */
c4f35dd8
MK
1167
1168void
90f90721 1169amd64_supply_fxsave (struct regcache *regcache, int regnum,
41d041d6 1170 const void *fxsave)
c4f35dd8 1171{
41d041d6 1172 i387_supply_fxsave (regcache, regnum, fxsave);
c4f35dd8
MK
1173
1174 if (fxsave)
1175 {
41d041d6
MK
1176 const char *regs = fxsave;
1177
0485f6ad 1178 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
41d041d6 1179 regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
0485f6ad 1180 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
41d041d6 1181 regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
c4f35dd8 1182 }
0c1a73d6
MK
1183}
1184
3c017e40
MK
1185/* Fill register REGNUM (if it is a floating-point or SSE register) in
1186 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1187 all registers. This function doesn't touch any of the reserved
1188 bits in *FXSAVE. */
1189
1190void
1191amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1192 void *fxsave)
1193{
1194 char *regs = fxsave;
1195
1196 i387_collect_fxsave (regcache, regnum, fxsave);
1197
1198 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1199 regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
1200 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1201 regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
1202}