]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/amd64-windows-tdep.c
Change "set debug symtab-create" to take a verbosity level.
[thirdparty/binutils-gdb.git] / gdb / amd64-windows-tdep.c
CommitLineData
28e7fd62 1/* Copyright (C) 2009-2013 Free Software Foundation, Inc.
d0761299
JB
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include "defs.h"
19#include "osabi.h"
20#include "amd64-tdep.h"
ba581dc1 21#include "gdbtypes.h"
cba6fab5
JB
22#include "gdbcore.h"
23#include "regcache.h"
a8e1bb34 24#include "windows-tdep.h"
84552b16 25#include "frame.h"
9058cc3a
TG
26#include "objfiles.h"
27#include "frame-unwind.h"
28#include "coff/internal.h"
29#include "coff/i386.h"
30#include "coff/pe.h"
31#include "libcoff.h"
20c2e3e0 32#include "value.h"
ba581dc1
JB
33
34/* The registers used to pass integer arguments during a function call. */
35static int amd64_windows_dummy_call_integer_regs[] =
36{
37 AMD64_RCX_REGNUM, /* %rcx */
38 AMD64_RDX_REGNUM, /* %rdx */
5b856f36
PM
39 AMD64_R8_REGNUM, /* %r8 */
40 AMD64_R9_REGNUM /* %r9 */
ba581dc1
JB
41};
42
20c2e3e0
JB
43/* Return nonzero if an argument of type TYPE should be passed
44 via one of the integer registers. */
ba581dc1 45
20c2e3e0
JB
46static int
47amd64_windows_passed_by_integer_register (struct type *type)
ba581dc1
JB
48{
49 switch (TYPE_CODE (type))
50 {
20c2e3e0
JB
51 case TYPE_CODE_INT:
52 case TYPE_CODE_ENUM:
53 case TYPE_CODE_BOOL:
54 case TYPE_CODE_RANGE:
55 case TYPE_CODE_CHAR:
56 case TYPE_CODE_PTR:
57 case TYPE_CODE_REF:
ba581dc1
JB
58 case TYPE_CODE_STRUCT:
59 case TYPE_CODE_UNION:
20c2e3e0
JB
60 return (TYPE_LENGTH (type) == 1
61 || TYPE_LENGTH (type) == 2
62 || TYPE_LENGTH (type) == 4
63 || TYPE_LENGTH (type) == 8);
ba581dc1
JB
64
65 default:
20c2e3e0 66 return 0;
ba581dc1
JB
67 }
68}
d0761299 69
20c2e3e0
JB
70/* Return nonzero if an argument of type TYPE should be passed
71 via one of the XMM registers. */
72
73static int
74amd64_windows_passed_by_xmm_register (struct type *type)
75{
76 return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
79}
80
81/* Return non-zero iff an argument of the given TYPE should be passed
82 by pointer. */
83
84static int
85amd64_windows_passed_by_pointer (struct type *type)
86{
87 if (amd64_windows_passed_by_integer_register (type))
88 return 0;
89
90 if (amd64_windows_passed_by_xmm_register (type))
91 return 0;
92
93 return 1;
94}
95
96/* For each argument that should be passed by pointer, reserve some
97 stack space, store a copy of the argument on the stack, and replace
98 the argument by its address. Return the new Stack Pointer value.
99
100 NARGS is the number of arguments. ARGS is the array containing
101 the value of each argument. SP is value of the Stack Pointer. */
102
103static CORE_ADDR
104amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 int nargs, CORE_ADDR sp)
106{
107 int i;
108
109 for (i = 0; i < nargs; i++)
110 if (amd64_windows_passed_by_pointer (value_type (args[i])))
111 {
112 struct type *type = value_type (args[i]);
113 const gdb_byte *valbuf = value_contents (args[i]);
114 const int len = TYPE_LENGTH (type);
115
116 /* Store a copy of that argument on the stack, aligned to
117 a 16 bytes boundary, and then use the copy's address as
118 the argument. */
119
120 sp -= len;
121 sp &= ~0xf;
122 write_memory (sp, valbuf, len);
123
124 args[i]
125 = value_addr (value_from_contents_and_address (type, valbuf, sp));
126 }
127
128 return sp;
129}
130
131/* Store the value of ARG in register REGNO (right-justified).
132 REGCACHE is the register cache. */
133
134static void
135amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 struct value *arg, int regno)
137{
138 struct type *type = value_type (arg);
139 const gdb_byte *valbuf = value_contents (arg);
140 gdb_byte buf[8];
141
142 gdb_assert (TYPE_LENGTH (type) <= 8);
143 memset (buf, 0, sizeof buf);
144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145 regcache_cooked_write (regcache, regno, buf);
146}
147
148/* Push the arguments for an inferior function call, and return
149 the updated value of the SP (Stack Pointer).
150
151 All arguments are identical to the arguments used in
152 amd64_windows_push_dummy_call. */
153
154static CORE_ADDR
155amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 struct value **args, CORE_ADDR sp,
157 int struct_return)
158{
159 int reg_idx = 0;
160 int i;
161 struct value **stack_args = alloca (nargs * sizeof (struct value *));
162 int num_stack_args = 0;
163 int num_elements = 0;
164 int element = 0;
165
166 /* First, handle the arguments passed by pointer.
167
168 These arguments are replaced by pointers to a copy we are making
169 in inferior memory. So use a copy of the ARGS table, to avoid
170 modifying the original one. */
171 {
172 struct value **args1 = alloca (nargs * sizeof (struct value *));
173
174 memcpy (args1, args, nargs * sizeof (struct value *));
175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
176 args = args1;
177 }
178
179 /* Reserve a register for the "hidden" argument. */
180 if (struct_return)
181 reg_idx++;
182
183 for (i = 0; i < nargs; i++)
184 {
185 struct type *type = value_type (args[i]);
186 int len = TYPE_LENGTH (type);
187 int on_stack_p = 1;
188
189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
190 {
191 if (amd64_windows_passed_by_integer_register (type))
192 {
193 amd64_windows_store_arg_in_reg
194 (regcache, args[i],
195 amd64_windows_dummy_call_integer_regs[reg_idx]);
196 on_stack_p = 0;
197 reg_idx++;
198 }
199 else if (amd64_windows_passed_by_xmm_register (type))
200 {
201 amd64_windows_store_arg_in_reg
202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 /* In case of varargs, these parameters must also be
204 passed via the integer registers. */
205 amd64_windows_store_arg_in_reg
206 (regcache, args[i],
207 amd64_windows_dummy_call_integer_regs[reg_idx]);
208 on_stack_p = 0;
209 reg_idx++;
210 }
211 }
212
213 if (on_stack_p)
214 {
215 num_elements += ((len + 7) / 8);
216 stack_args[num_stack_args++] = args[i];
217 }
218 }
219
220 /* Allocate space for the arguments on the stack, keeping it
221 aligned on a 16 byte boundary. */
222 sp -= num_elements * 8;
223 sp &= ~0xf;
224
225 /* Write out the arguments to the stack. */
226 for (i = 0; i < num_stack_args; i++)
227 {
228 struct type *type = value_type (stack_args[i]);
229 const gdb_byte *valbuf = value_contents (stack_args[i]);
230
231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232 element += ((TYPE_LENGTH (type) + 7) / 8);
233 }
234
235 return sp;
236}
237
238/* Implement the "push_dummy_call" gdbarch method. */
239
240static CORE_ADDR
241amd64_windows_push_dummy_call
242 (struct gdbarch *gdbarch, struct value *function,
243 struct regcache *regcache, CORE_ADDR bp_addr,
244 int nargs, struct value **args,
245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
246{
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248 gdb_byte buf[8];
249
250 /* Pass arguments. */
251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
252 struct_return);
253
254 /* Pass "hidden" argument". */
255 if (struct_return)
256 {
257 /* The "hidden" argument is passed throught the first argument
258 register. */
259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
260
261 store_unsigned_integer (buf, 8, byte_order, struct_addr);
262 regcache_cooked_write (regcache, arg_regnum, buf);
263 }
264
265 /* Reserve some memory on the stack for the integer-parameter
266 registers, as required by the ABI. */
267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
268
269 /* Store return address. */
270 sp -= 8;
271 store_unsigned_integer (buf, 8, byte_order, bp_addr);
272 write_memory (sp, buf, 8);
273
274 /* Update the stack pointer... */
275 store_unsigned_integer (buf, 8, byte_order, sp);
276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
277
278 /* ...and fake a frame pointer. */
279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
280
281 return sp + 16;
282}
283
cba6fab5
JB
284/* Implement the "return_value" gdbarch method for amd64-windows. */
285
286static enum return_value_convention
6a3a010b 287amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
cba6fab5
JB
288 struct type *type, struct regcache *regcache,
289 gdb_byte *readbuf, const gdb_byte *writebuf)
290{
291 int len = TYPE_LENGTH (type);
292 int regnum = -1;
293
294 /* See if our value is returned through a register. If it is, then
295 store the associated register number in REGNUM. */
296 switch (TYPE_CODE (type))
297 {
298 case TYPE_CODE_FLT:
299 case TYPE_CODE_DECFLOAT:
300 /* __m128, __m128i, __m128d, floats, and doubles are returned
301 via XMM0. */
302 if (len == 4 || len == 8 || len == 16)
303 regnum = AMD64_XMM0_REGNUM;
304 break;
305 default:
306 /* All other values that are 1, 2, 4 or 8 bytes long are returned
307 via RAX. */
308 if (len == 1 || len == 2 || len == 4 || len == 8)
309 regnum = AMD64_RAX_REGNUM;
310 break;
311 }
312
313 if (regnum < 0)
314 {
315 /* RAX contains the address where the return value has been stored. */
316 if (readbuf)
317 {
318 ULONGEST addr;
319
320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 read_memory (addr, readbuf, TYPE_LENGTH (type));
322 }
323 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
324 }
325 else
326 {
327 /* Extract the return value from the register where it was stored. */
328 if (readbuf)
329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
330 if (writebuf)
331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332 return RETURN_VALUE_REGISTER_CONVENTION;
333 }
334}
335
99e24b90
PM
336/* Check that the code pointed to by PC corresponds to a call to
337 __main, skip it if so. Return PC otherwise. */
338
339static CORE_ADDR
340amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
341{
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343 gdb_byte op;
344
345 target_read_memory (pc, &op, 1);
346 if (op == 0xe8)
347 {
348 gdb_byte buf[4];
349
350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
351 {
7cbd4a93 352 struct bound_minimal_symbol s;
99e24b90
PM
353 CORE_ADDR call_dest;
354
355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93
TT
357 if (s.minsym != NULL
358 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
359 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
99e24b90
PM
360 pc += 5;
361 }
362 }
363
364 return pc;
365}
366
9058cc3a
TG
367struct amd64_windows_frame_cache
368{
369 /* ImageBase for the module. */
370 CORE_ADDR image_base;
371
372 /* Function start and end rva. */
373 CORE_ADDR start_rva;
374 CORE_ADDR end_rva;
375
376 /* Next instruction to be executed. */
377 CORE_ADDR pc;
378
379 /* Current sp. */
380 CORE_ADDR sp;
381
382 /* Address of saved integer and xmm registers. */
383 CORE_ADDR prev_reg_addr[16];
384 CORE_ADDR prev_xmm_addr[16];
385
386 /* These two next fields are set only for machine info frames. */
387
388 /* Likewise for RIP. */
389 CORE_ADDR prev_rip_addr;
390
391 /* Likewise for RSP. */
392 CORE_ADDR prev_rsp_addr;
393
394 /* Address of the previous frame. */
395 CORE_ADDR prev_sp;
396};
397
398/* Convert a Windows register number to gdb. */
399static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
400{
401 AMD64_RAX_REGNUM,
402 AMD64_RCX_REGNUM,
403 AMD64_RDX_REGNUM,
404 AMD64_RBX_REGNUM,
405 AMD64_RSP_REGNUM,
406 AMD64_RBP_REGNUM,
407 AMD64_RSI_REGNUM,
408 AMD64_RDI_REGNUM,
409 AMD64_R8_REGNUM,
410 AMD64_R9_REGNUM,
411 AMD64_R10_REGNUM,
412 AMD64_R11_REGNUM,
413 AMD64_R12_REGNUM,
414 AMD64_R13_REGNUM,
415 AMD64_R14_REGNUM,
416 AMD64_R15_REGNUM
417};
418
419/* Return TRUE iff PC is the the range of the function corresponding to
420 CACHE. */
421
422static int
423pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
424{
425 return (pc >= cache->image_base + cache->start_rva
426 && pc < cache->image_base + cache->end_rva);
427}
428
429/* Try to recognize and decode an epilogue sequence.
430
431 Return -1 if we fail to read the instructions for any reason.
432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
433
434static int
435amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 struct amd64_windows_frame_cache *cache)
437{
438 /* According to MSDN an epilogue "must consist of either an add RSP,constant
439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440 register pops and a return or a jmp".
441
442 Furthermore, according to RtlVirtualUnwind, the complete list of
443 epilog marker is:
444 - ret [c3]
445 - ret n [c2 imm16]
446 - rep ret [f3 c3]
447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
448 - jmp qword ptr imm32 - not handled
449 - rex.w jmp reg [4X ff eY]
450 */
451
452 CORE_ADDR pc = cache->pc;
453 CORE_ADDR cur_sp = cache->sp;
454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456 gdb_byte op;
457 gdb_byte rex;
458
459 /* We don't care about the instruction deallocating the frame:
460 if it hasn't been executed, the pc is still in the body,
461 if it has been executed, the following epilog decoding will work. */
462
463 /* First decode:
464 - pop reg [41 58-5f] or [58-5f]. */
465
466 while (1)
467 {
468 /* Read opcode. */
469 if (target_read_memory (pc, &op, 1) != 0)
470 return -1;
471
472 if (op >= 0x40 && op <= 0x4f)
473 {
474 /* REX prefix. */
475 rex = op;
476
477 /* Read opcode. */
478 if (target_read_memory (pc + 1, &op, 1) != 0)
479 return -1;
480 }
481 else
482 rex = 0;
483
484 if (op >= 0x58 && op <= 0x5f)
485 {
486 /* pop reg */
487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
488
489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
490 cur_sp += 8;
491 }
492 else
493 break;
494
495 /* Allow the user to break this loop. This shouldn't happen as the
496 number of consecutive pop should be small. */
497 QUIT;
498 }
499
500 /* Then decode the marker. */
501
502 /* Read opcode. */
503 if (target_read_memory (pc, &op, 1) != 0)
504 return -1;
505
506 switch (op)
507 {
508 case 0xc3:
509 /* Ret. */
510 cache->prev_rip_addr = cur_sp;
511 cache->prev_sp = cur_sp + 8;
512 return 1;
513
514 case 0xeb:
515 {
516 /* jmp rel8 */
517 gdb_byte rel8;
518 CORE_ADDR npc;
519
520 if (target_read_memory (pc + 1, &rel8, 1) != 0)
521 return -1;
522 npc = pc + 2 + (signed char) rel8;
523
524 /* If the jump is within the function, then this is not a marker,
525 otherwise this is a tail-call. */
526 return !pc_in_range (npc, cache);
527 }
528
529 case 0xec:
530 {
531 /* jmp rel32 */
532 gdb_byte rel32[4];
533 CORE_ADDR npc;
534
535 if (target_read_memory (pc + 1, rel32, 4) != 0)
536 return -1;
537 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
538
539 /* If the jump is within the function, then this is not a marker,
540 otherwise this is a tail-call. */
541 return !pc_in_range (npc, cache);
542 }
543
544 case 0xc2:
545 {
546 /* ret n */
547 gdb_byte imm16[2];
548
549 if (target_read_memory (pc + 1, imm16, 2) != 0)
550 return -1;
551 cache->prev_rip_addr = cur_sp;
552 cache->prev_sp = cur_sp
553 + extract_unsigned_integer (imm16, 4, byte_order);
554 return 1;
555 }
556
557 case 0xf3:
558 {
559 /* rep; ret */
560 gdb_byte op1;
561
562 if (target_read_memory (pc + 2, &op1, 1) != 0)
563 return -1;
564 if (op1 != 0xc3)
565 return 0;
566
567 cache->prev_rip_addr = cur_sp;
568 cache->prev_sp = cur_sp + 8;
569 return 1;
570 }
571
572 case 0x40:
573 case 0x41:
574 case 0x42:
575 case 0x43:
576 case 0x44:
577 case 0x45:
578 case 0x46:
579 case 0x47:
580 case 0x48:
581 case 0x49:
582 case 0x4a:
583 case 0x4b:
584 case 0x4c:
585 case 0x4d:
586 case 0x4e:
587 case 0x4f:
588 /* Got a REX prefix, read next byte. */
589 rex = op;
590 if (target_read_memory (pc + 1, &op, 1) != 0)
591 return -1;
592
593 if (op == 0xff)
594 {
595 /* rex jmp reg */
596 gdb_byte op1;
597 unsigned int reg;
598 gdb_byte buf[8];
599
600 if (target_read_memory (pc + 2, &op1, 1) != 0)
601 return -1;
602 return (op1 & 0xf8) == 0xe0;
603 }
604 else
605 return 0;
606
607 default:
608 /* Not REX, so unknown. */
609 return 0;
610 }
611}
612
613/* Decode and execute unwind insns at UNWIND_INFO. */
614
615static void
616amd64_windows_frame_decode_insns (struct frame_info *this_frame,
617 struct amd64_windows_frame_cache *cache,
618 CORE_ADDR unwind_info)
619{
620 CORE_ADDR save_addr = 0;
621 CORE_ADDR cur_sp = cache->sp;
622 struct gdbarch *gdbarch = get_frame_arch (this_frame);
623 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624 int j;
625
626 for (j = 0; ; j++)
627 {
628 struct external_pex64_unwind_info ex_ui;
629 /* There are at most 256 16-bit unwind insns. */
630 gdb_byte insns[2 * 256];
631 gdb_byte *p;
632 gdb_byte *end_insns;
633 unsigned char codes_count;
634 unsigned char frame_reg;
635 unsigned char frame_off;
636
637 /* Read and decode header. */
638 if (target_read_memory (cache->image_base + unwind_info,
639 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
640 return;
641
642 if (frame_debug)
643 fprintf_unfiltered
644 (gdb_stdlog,
645 "amd64_windows_frame_decodes_insn: "
646 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
647 paddress (gdbarch, unwind_info),
648 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
649 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
650
651 /* Check version. */
652 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1)
653 return;
654
655 if (j == 0
656 && (cache->pc >=
657 cache->image_base + cache->start_rva + ex_ui.SizeOfPrologue))
658 {
659 /* Not in the prologue. We want to detect if the PC points to an
660 epilogue. If so, the epilogue detection+decoding function is
661 sufficient. Otherwise, the unwinder will consider that the PC
662 is in the body of the function and will need to decode unwind
663 info. */
664 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
665 return;
666
667 /* Not in an epilog. Clear possible side effects. */
668 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
669 }
670
671 codes_count = ex_ui.CountOfCodes;
672 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
673
674 if (frame_reg != 0)
675 {
676 /* According to msdn:
677 If an FP reg is used, then any unwind code taking an offset must
678 only be used after the FP reg is established in the prolog. */
679 gdb_byte buf[8];
680 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
681
682 get_frame_register (this_frame, frreg, buf);
683 save_addr = extract_unsigned_integer (buf, 8, byte_order);
684
685 if (frame_debug)
686 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
687 gdbarch_register_name (gdbarch, frreg),
688 paddress (gdbarch, save_addr));
689 }
690
691 /* Read opcodes. */
692 if (codes_count != 0
693 && target_read_memory (cache->image_base + unwind_info
694 + sizeof (ex_ui),
695 insns, codes_count * 2) != 0)
696 return;
697
698 end_insns = &insns[codes_count * 2];
699 for (p = insns; p < end_insns; p += 2)
700 {
701 int reg;
702
703 if (frame_debug)
704 fprintf_unfiltered
705 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
706 (unsigned) (p - insns), p[0], p[1]);
707
708 /* Virtually execute the operation. */
709 if (cache->pc >= cache->image_base + cache->start_rva + p[0])
710 {
711 /* If there is no frame registers defined, the current value of
712 rsp is used instead. */
713 if (frame_reg == 0)
714 save_addr = cur_sp;
715
716 switch (PEX64_UNWCODE_CODE (p[1]))
717 {
718 case UWOP_PUSH_NONVOL:
719 /* Push pre-decrements RSP. */
720 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
721 cache->prev_reg_addr[reg] = cur_sp;
722 cur_sp += 8;
723 break;
724 case UWOP_ALLOC_LARGE:
725 if (PEX64_UNWCODE_INFO (p[1]) == 0)
726 cur_sp +=
727 8 * extract_unsigned_integer (p + 2, 2, byte_order);
728 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
729 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
730 else
731 return;
732 break;
733 case UWOP_ALLOC_SMALL:
734 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
735 break;
736 case UWOP_SET_FPREG:
737 cur_sp = save_addr
738 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
739 break;
740 case UWOP_SAVE_NONVOL:
741 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
742 cache->prev_reg_addr[reg] = save_addr
743 - 8 * extract_unsigned_integer (p + 2, 2, byte_order);
744 break;
745 case UWOP_SAVE_NONVOL_FAR:
746 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
747 cache->prev_reg_addr[reg] = save_addr
748 - 8 * extract_unsigned_integer (p + 2, 4, byte_order);
749 break;
750 case UWOP_SAVE_XMM128:
751 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
752 save_addr
753 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
754 break;
755 case UWOP_SAVE_XMM128_FAR:
756 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
757 save_addr
758 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
759 break;
760 case UWOP_PUSH_MACHFRAME:
761 if (PEX64_UNWCODE_INFO (p[1]) == 0)
762 {
763 cache->prev_rip_addr = cur_sp + 0;
764 cache->prev_rsp_addr = cur_sp + 24;
765 cur_sp += 40;
766 }
767 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
768 {
769 cache->prev_rip_addr = cur_sp + 8;
770 cache->prev_rsp_addr = cur_sp + 32;
771 cur_sp += 48;
772 }
773 else
774 return;
775 break;
776 default:
777 return;
778 }
779 }
780
781 /* Adjust with the length of the opcode. */
782 switch (PEX64_UNWCODE_CODE (p[1]))
783 {
784 case UWOP_PUSH_NONVOL:
785 case UWOP_ALLOC_SMALL:
786 case UWOP_SET_FPREG:
787 case UWOP_PUSH_MACHFRAME:
788 break;
789 case UWOP_ALLOC_LARGE:
790 if (PEX64_UNWCODE_INFO (p[1]) == 0)
791 p += 2;
792 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
793 p += 4;
794 else
795 return;
796 break;
797 case UWOP_SAVE_NONVOL:
798 case UWOP_SAVE_XMM128:
799 p += 2;
800 break;
801 case UWOP_SAVE_NONVOL_FAR:
802 case UWOP_SAVE_XMM128_FAR:
803 p += 4;
804 break;
805 default:
806 return;
807 }
808 }
809 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
810 break;
811 else
812 {
813 /* Read the chained unwind info. */
814 struct external_pex64_runtime_function d;
815 CORE_ADDR chain_vma;
816
817 chain_vma = cache->image_base + unwind_info
818 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2 + 8;
819
820 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
821 return;
822
823 cache->start_rva =
824 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
825 cache->end_rva =
826 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
827 unwind_info =
828 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
829 }
830
831 /* Allow the user to break this loop. */
832 QUIT;
833 }
834 /* PC is saved by the call. */
835 if (cache->prev_rip_addr == 0)
836 cache->prev_rip_addr = cur_sp;
837 cache->prev_sp = cur_sp + 8;
838
839 if (frame_debug)
840 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
841 paddress (gdbarch, cache->prev_sp),
842 paddress (gdbarch, cache->prev_rip_addr));
843}
844
845/* Find SEH unwind info for PC, returning 0 on success.
846
847 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
848 to the base address of the corresponding image, and START_RVA
849 to the rva of the function containing PC. */
850
851static int
852amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
853 CORE_ADDR *unwind_info,
854 CORE_ADDR *image_base,
855 CORE_ADDR *start_rva,
856 CORE_ADDR *end_rva)
857{
858 struct obj_section *sec;
859 pe_data_type *pe;
860 IMAGE_DATA_DIRECTORY *dir;
861 struct objfile *objfile;
862 unsigned long lo, hi;
863 CORE_ADDR base;
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
865
866 /* Get the corresponding exception directory. */
867 sec = find_pc_section (pc);
868 if (sec == NULL)
869 return -1;
870 objfile = sec->objfile;
871 pe = pe_data (sec->objfile->obfd);
872 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
873
874 base = pe->pe_opthdr.ImageBase
875 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
876 *image_base = base;
877
878 /* Find the entry.
879
880 Note: This does not handle dynamically added entries (for JIT
881 engines). For this, we would need to ask the kernel directly,
882 which means getting some info from the native layer. For the
883 rest of the code, however, it's probably faster to search
884 the entry ourselves. */
885 lo = 0;
886 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
887 *unwind_info = 0;
888 while (lo <= hi)
889 {
890 unsigned long mid = lo + (hi - lo) / 2;
891 struct external_pex64_runtime_function d;
892 CORE_ADDR sa, ea;
893
894 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
895 (gdb_byte *) &d, sizeof (d)) != 0)
896 return -1;
897
898 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
899 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
900 if (pc < base + sa)
901 hi = mid - 1;
902 else if (pc >= base + ea)
903 lo = mid + 1;
904 else if (pc >= base + sa && pc < base + ea)
905 {
906 /* Got it. */
907 *start_rva = sa;
908 *end_rva = ea;
909 *unwind_info =
910 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
911 break;
912 }
913 else
914 break;
915 }
916
917 if (frame_debug)
918 fprintf_unfiltered
919 (gdb_stdlog,
920 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
921 paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
922
923 if (*unwind_info & 1)
924 {
925 /* Unofficially documented unwind info redirection, when UNWIND_INFO
926 address is odd (http://www.codemachine.com/article_x64deepdive.html).
927 */
928 struct external_pex64_runtime_function d;
929 CORE_ADDR sa, ea;
930
931 if (target_read_memory (base + (*unwind_info & ~1),
932 (gdb_byte *) &d, sizeof (d)) != 0)
933 return -1;
934
935 *start_rva =
936 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
937 *end_rva = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
938 *unwind_info =
939 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
940
941 }
942 return 0;
943}
944
945/* Fill THIS_CACHE using the native amd64-windows unwinding data
946 for THIS_FRAME. */
947
948static struct amd64_windows_frame_cache *
949amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
950{
951 struct gdbarch *gdbarch = get_frame_arch (this_frame);
952 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
953 struct amd64_windows_frame_cache *cache;
954 gdb_byte buf[8];
955 struct obj_section *sec;
956 pe_data_type *pe;
957 IMAGE_DATA_DIRECTORY *dir;
958 CORE_ADDR image_base;
959 CORE_ADDR pc;
960 struct objfile *objfile;
961 unsigned long lo, hi;
962 CORE_ADDR unwind_info = 0;
963
964 if (*this_cache)
965 return *this_cache;
966
967 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
968 *this_cache = cache;
969
970 /* Get current PC and SP. */
971 pc = get_frame_pc (this_frame);
972 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
973 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
974 cache->pc = pc;
975
976 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
977 &cache->image_base,
978 &cache->start_rva,
979 &cache->end_rva))
980 return cache;
981
982 if (unwind_info == 0)
983 {
984 /* Assume a leaf function. */
985 cache->prev_sp = cache->sp + 8;
986 cache->prev_rip_addr = cache->sp;
987 }
988 else
989 {
990 /* Decode unwind insns to compute saved addresses. */
991 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
992 }
993 return cache;
994}
995
996/* Implement the "prev_register" method of struct frame_unwind
997 using the standard Windows x64 SEH info. */
998
999static struct value *
1000amd64_windows_frame_prev_register (struct frame_info *this_frame,
1001 void **this_cache, int regnum)
1002{
1003 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1005 struct amd64_windows_frame_cache *cache =
1006 amd64_windows_frame_cache (this_frame, this_cache);
1007 struct value *val;
1008 CORE_ADDR prev;
1009
1010 if (frame_debug)
1011 fprintf_unfiltered (gdb_stdlog,
1012 "amd64_windows_frame_prev_register %s for sp=%s\n",
1013 gdbarch_register_name (gdbarch, regnum),
1014 paddress (gdbarch, cache->prev_sp));
1015
1016 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1017 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1018 else if (regnum == AMD64_RSP_REGNUM)
1019 {
1020 prev = cache->prev_rsp_addr;
1021 if (prev == 0)
1022 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1023 }
1024 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1025 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1026 else if (regnum == AMD64_RIP_REGNUM)
1027 prev = cache->prev_rip_addr;
1028 else
1029 prev = 0;
1030
1031 if (prev && frame_debug)
1032 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
1033
1034 if (prev)
1035 {
1036 /* Register was saved. */
1037 return frame_unwind_got_memory (this_frame, regnum, prev);
1038 }
1039 else
1040 {
1041 /* Register is either volatile or not modified. */
1042 return frame_unwind_got_register (this_frame, regnum, regnum);
1043 }
1044}
1045
1046/* Implement the "this_id" method of struct frame_unwind using
1047 the standard Windows x64 SEH info. */
1048
1049static void
1050amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1051 struct frame_id *this_id)
1052{
1053 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1054 struct amd64_windows_frame_cache *cache =
1055 amd64_windows_frame_cache (this_frame, this_cache);
1056
1057 *this_id = frame_id_build (cache->prev_sp,
1058 cache->image_base + cache->start_rva);
1059}
1060
1061/* Windows x64 SEH unwinder. */
1062
1063static const struct frame_unwind amd64_windows_frame_unwind =
1064{
1065 NORMAL_FRAME,
1066 default_frame_unwind_stop_reason,
1067 &amd64_windows_frame_this_id,
1068 &amd64_windows_frame_prev_register,
1069 NULL,
1070 default_frame_sniffer
1071};
1072
1073/* Implement the "skip_prologue" gdbarch method. */
1074
1075static CORE_ADDR
1076amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1077{
1078 CORE_ADDR func_addr;
1079 CORE_ADDR unwind_info = 0;
1080 CORE_ADDR image_base, start_rva, end_rva;
1081 struct external_pex64_unwind_info ex_ui;
1082
1083 /* Use prologue size from unwind info. */
1084 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1085 &image_base, &start_rva, &end_rva) == 0)
1086 {
1087 if (unwind_info == 0)
1088 {
1089 /* Leaf function. */
1090 return pc;
1091 }
1092 else if (target_read_memory (image_base + unwind_info,
1093 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1094 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1095 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1096 }
1097
1098 /* See if we can determine the end of the prologue via the symbol
1099 table. If so, then return either the PC, or the PC after
1100 the prologue, whichever is greater. */
1101 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1102 {
1103 CORE_ADDR post_prologue_pc
1104 = skip_prologue_using_sal (gdbarch, func_addr);
1105
1106 if (post_prologue_pc != 0)
1107 return max (pc, post_prologue_pc);
1108 }
1109
1110 return pc;
1111}
1112
84552b16
PA
1113/* Check Win64 DLL jmp trampolines and find jump destination. */
1114
1115static CORE_ADDR
1116amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1117{
1118 CORE_ADDR destination = 0;
1119 struct gdbarch *gdbarch = get_frame_arch (frame);
1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1121
1122 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1123 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1124 {
1125 /* Get opcode offset and see if we can find a reference in our data. */
1126 ULONGEST offset
1127 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1128
1129 /* Get address of function pointer at end of pc. */
1130 CORE_ADDR indirect_addr = pc + offset + 6;
1131
1132 struct minimal_symbol *indsym
7cbd4a93
TT
1133 = (indirect_addr
1134 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1135 : NULL);
84552b16
PA
1136 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : NULL;
1137
1138 if (symname)
1139 {
1140 if (strncmp (symname, "__imp_", 6) == 0
1141 || strncmp (symname, "_imp_", 5) == 0)
1142 destination
1143 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1144 }
1145 }
1146
1147 return destination;
1148}
99e24b90 1149
83ab93c6
JB
1150/* Implement the "auto_wide_charset" gdbarch method. */
1151
1152static const char *
1153amd64_windows_auto_wide_charset (void)
1154{
1155 return "UTF-16";
1156}
1157
d0761299
JB
1158static void
1159amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1160{
ba581dc1
JB
1161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1162
9058cc3a
TG
1163 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1164 preferred over the SEH one. The reasons are:
1165 - binaries without SEH but with dwarf2 debug info are correcly handled
1166 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1167 info).
1168 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1169 handled if the dwarf2 unwinder is used).
1170
1171 The call to amd64_init_abi appends default unwinders, that aren't
1172 compatible with the SEH one.
1173 */
1174 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1175
d0761299
JB
1176 amd64_init_abi (info, gdbarch);
1177
64870a42
YQ
1178 windows_init_abi (info, gdbarch);
1179
d0761299
JB
1180 /* On Windows, "long"s are only 32bit. */
1181 set_gdbarch_long_bit (gdbarch, 32);
1182
ba581dc1 1183 /* Function calls. */
20c2e3e0 1184 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
cba6fab5 1185 set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
99e24b90 1186 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
84552b16
PA
1187 set_gdbarch_skip_trampoline_code (gdbarch,
1188 amd64_windows_skip_trampoline_code);
ba581dc1 1189
9058cc3a
TG
1190 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1191
83ab93c6 1192 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
d0761299
JB
1193}
1194
693be288
JK
1195/* -Wmissing-prototypes */
1196extern initialize_file_ftype _initialize_amd64_windows_tdep;
1197
d0761299
JB
1198void
1199_initialize_amd64_windows_tdep (void)
1200{
1201 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1202 amd64_windows_init_abi);
1203}