]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
* elf64-ppc.c (STFD_FR0_0R1, LFD_FR0_0R1, BLR): Define.
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
c3b4394c 3 2001, 2002 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
34e8f22d
RE
37
38#include "arm-tdep.h"
39
082fc60d
RE
40#include "elf-bfd.h"
41#include "coff/internal.h"
97e03143 42#include "elf/arm.h"
c906108c 43
2a451106
KB
44/* Each OS has a different mechanism for accessing the various
45 registers stored in the sigcontext structure.
46
47 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
48 function pointer) which may be used to determine the addresses
49 of the various saved registers in the sigcontext structure.
50
51 For the ARM target, there are three parameters to this function.
52 The first is the pc value of the frame under consideration, the
53 second the stack pointer of this frame, and the last is the
54 register number to fetch.
55
56 If the tm.h file does not define this macro, then it's assumed that
57 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
58 be 0.
59
60 When it comes time to multi-arching this code, see the identically
61 named machinery in ia64-tdep.c for an example of how it could be
62 done. It should not be necessary to modify the code below where
63 this macro is used. */
64
3bb04bdd
AC
65#ifdef SIGCONTEXT_REGISTER_ADDRESS
66#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
67#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
68#endif
69#else
70#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
71#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
72#endif
73
082fc60d
RE
74/* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose. This field is already being used to store
77 the symbol size, so the assumption is that the symbol size cannot
78 exceed 2^31.
79
80 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
81 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
82 MSYMBOL_SIZE Returns the size of the minimal symbol,
83 i.e. the "info" field with the "special" bit
84 masked out. */
85
86#define MSYMBOL_SET_SPECIAL(msym) \
87 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
88 | 0x80000000)
89
90#define MSYMBOL_IS_SPECIAL(msym) \
91 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
92
93#define MSYMBOL_SIZE(msym) \
94 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 95
97e03143
RE
96/* This table matches the indicees assigned to enum arm_abi. Keep
97 them in sync. */
98
99static const char * const arm_abi_names[] =
100{
101 "<unknown>",
102 "ARM EABI (version 1)",
103 "ARM EABI (version 2)",
104 "GNU/Linux",
105 "NetBSD (a.out)",
106 "NetBSD (ELF)",
107 "APCS",
108 "FreeBSD",
109 "Windows CE",
110 NULL
111};
112
bc90b915
FN
113/* Number of different reg name sets (options). */
114static int num_flavor_options;
115
116/* We have more registers than the disassembler as gdb can print the value
117 of special registers as well.
118 The general register names are overwritten by whatever is being used by
119 the disassembler at the moment. We also adjust the case of cpsr and fps. */
120
121/* Initial value: Register names used in ARM's ISA documentation. */
122static char * arm_register_name_strings[] =
da59e081
JM
123{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
124 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
125 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
126 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
127 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
128 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
bc90b915 129 "fps", "cpsr" }; /* 24 25 */
966fbf70 130static char **arm_register_names = arm_register_name_strings;
ed9a39eb 131
bc90b915 132/* Valid register name flavors. */
53904c9e 133static const char **valid_flavors;
ed9a39eb 134
bc90b915 135/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 136static const char *disassembly_flavor;
bc90b915 137static int current_option; /* Index to that option in the opcodes table. */
96baa820 138
ed9a39eb
JM
139/* This is used to keep the bfd arch_info in sync with the disassembly
140 flavor. */
141static void set_disassembly_flavor_sfunc(char *, int,
142 struct cmd_list_element *);
143static void set_disassembly_flavor (void);
144
145static void convert_from_extended (void *ptr, void *dbl);
146
147/* Define other aspects of the stack frame. We keep the offsets of
148 all saved registers, 'cause we need 'em a lot! We also keep the
149 current size of the stack frame, and the offset of the frame
150 pointer from the stack pointer (for frameless functions, and when
151 we're still in the prologue of a function with a frame) */
152
153struct frame_extra_info
c3b4394c
RE
154{
155 int framesize;
156 int frameoffset;
157 int framereg;
158};
ed9a39eb 159
bc90b915
FN
160/* Addresses for calling Thumb functions have the bit 0 set.
161 Here are some macros to test, set, or clear bit 0 of addresses. */
162#define IS_THUMB_ADDR(addr) ((addr) & 1)
163#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
164#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
165
39bbf761 166static int
ed9a39eb 167arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 168{
c906108c
SS
169 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
170}
171
172/* Set to true if the 32-bit mode is in use. */
173
174int arm_apcs_32 = 1;
175
ed9a39eb
JM
176/* Flag set by arm_fix_call_dummy that tells whether the target
177 function is a Thumb function. This flag is checked by
178 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
179 its use in valops.c) to pass the function address as an additional
180 parameter. */
c906108c
SS
181
182static int target_is_thumb;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the calling
185 function is a Thumb function. This flag is checked by
186 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
187
188static int caller_is_thumb;
189
ed9a39eb
JM
190/* Determine if the program counter specified in MEMADDR is in a Thumb
191 function. */
c906108c 192
34e8f22d 193int
2a451106 194arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 195{
c5aa993b 196 struct minimal_symbol *sym;
c906108c 197
ed9a39eb 198 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
199 if (IS_THUMB_ADDR (memaddr))
200 return 1;
201
ed9a39eb 202 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
203 sym = lookup_minimal_symbol_by_pc (memaddr);
204 if (sym)
205 {
c5aa993b 206 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
207 }
208 else
ed9a39eb
JM
209 {
210 return 0;
211 }
c906108c
SS
212}
213
ed9a39eb
JM
214/* Determine if the program counter specified in MEMADDR is in a call
215 dummy being called from a Thumb function. */
c906108c 216
34e8f22d 217int
2a451106 218arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 219{
c5aa993b 220 CORE_ADDR sp = read_sp ();
c906108c 221
dfcd3bfb
JM
222 /* FIXME: Until we switch for the new call dummy macros, this heuristic
223 is the best we can do. We are trying to determine if the pc is on
224 the stack, which (hopefully) will only happen in a call dummy.
225 We hope the current stack pointer is not so far alway from the dummy
226 frame location (true if we have not pushed large data structures or
227 gone too many levels deep) and that our 1024 is not enough to consider
228 code regions as part of the stack (true for most practical purposes) */
229 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
230 return caller_is_thumb;
231 else
232 return 0;
233}
234
181c1381 235/* Remove useless bits from addresses in a running program. */
34e8f22d 236static CORE_ADDR
ed9a39eb 237arm_addr_bits_remove (CORE_ADDR val)
c906108c
SS
238{
239 if (arm_pc_is_thumb (val))
240 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
241 else
242 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
243}
244
181c1381
RE
245/* When reading symbols, we need to zap the low bit of the address,
246 which may be set to 1 for Thumb functions. */
34e8f22d 247static CORE_ADDR
181c1381
RE
248arm_smash_text_address (CORE_ADDR val)
249{
250 return val & ~1;
251}
252
34e8f22d
RE
253/* Immediately after a function call, return the saved pc. Can't
254 always go through the frames for this because on some machines the
255 new frame is not set up until the new function executes some
256 instructions. */
257
258static CORE_ADDR
ed9a39eb 259arm_saved_pc_after_call (struct frame_info *frame)
c906108c 260{
34e8f22d 261 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
262}
263
0defa245
RE
264/* Determine whether the function invocation represented by FI has a
265 frame on the stack associated with it. If it does return zero,
266 otherwise return 1. */
267
148754e5 268static int
ed9a39eb 269arm_frameless_function_invocation (struct frame_info *fi)
392a587b 270{
392a587b 271 CORE_ADDR func_start, after_prologue;
96baa820 272 int frameless;
ed9a39eb 273
0defa245
RE
274 /* Sometimes we have functions that do a little setup (like saving the
275 vN registers with the stmdb instruction, but DO NOT set up a frame.
276 The symbol table will report this as a prologue. However, it is
277 important not to try to parse these partial frames as frames, or we
278 will get really confused.
279
280 So I will demand 3 instructions between the start & end of the
281 prologue before I call it a real prologue, i.e. at least
282 mov ip, sp,
283 stmdb sp!, {}
284 sub sp, ip, #4. */
285
392a587b 286 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
7be570e7 287 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 288
96baa820 289 /* There are some frameless functions whose first two instructions
ed9a39eb
JM
290 follow the standard APCS form, in which case after_prologue will
291 be func_start + 8. */
292
96baa820 293 frameless = (after_prologue < func_start + 12);
392a587b
JM
294 return frameless;
295}
296
0defa245 297/* The address of the arguments in the frame. */
148754e5 298static CORE_ADDR
0defa245
RE
299arm_frame_args_address (struct frame_info *fi)
300{
301 return fi->frame;
302}
303
304/* The address of the local variables in the frame. */
148754e5 305static CORE_ADDR
0defa245
RE
306arm_frame_locals_address (struct frame_info *fi)
307{
308 return fi->frame;
309}
310
311/* The number of arguments being passed in the frame. */
148754e5 312static int
0defa245
RE
313arm_frame_num_args (struct frame_info *fi)
314{
315 /* We have no way of knowing. */
316 return -1;
317}
318
c906108c 319/* A typical Thumb prologue looks like this:
c5aa993b
JM
320 push {r7, lr}
321 add sp, sp, #-28
322 add r7, sp, #12
c906108c 323 Sometimes the latter instruction may be replaced by:
da59e081
JM
324 mov r7, sp
325
326 or like this:
327 push {r7, lr}
328 mov r7, sp
329 sub sp, #12
330
331 or, on tpcs, like this:
332 sub sp,#16
333 push {r7, lr}
334 (many instructions)
335 mov r7, sp
336 sub sp, #12
337
338 There is always one instruction of three classes:
339 1 - push
340 2 - setting of r7
341 3 - adjusting of sp
342
343 When we have found at least one of each class we are done with the prolog.
344 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 345 */
c906108c
SS
346
347static CORE_ADDR
c7885828 348thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
349{
350 CORE_ADDR current_pc;
da59e081
JM
351 int findmask = 0; /* findmask:
352 bit 0 - push { rlist }
353 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
354 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
355 */
c906108c 356
c7885828 357 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
c906108c
SS
358 {
359 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
360
da59e081
JM
361 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
362 {
363 findmask |= 1; /* push found */
364 }
365 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
366 {
367 if ((findmask & 1) == 0) /* before push ? */
368 continue;
369 else
370 findmask |= 4; /* add/sub sp found */
371 }
372 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
373 {
374 findmask |= 2; /* setting of r7 found */
375 }
376 else if (insn == 0x466f) /* mov r7, sp */
377 {
378 findmask |= 2; /* setting of r7 found */
379 }
3d74b771
FF
380 else if (findmask == (4+2+1))
381 {
382 break; /* We have found one of each type of prologue instruction */
383 }
da59e081
JM
384 else
385 continue; /* something in the prolog that we don't care about or some
386 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
387 }
388
389 return current_pc;
390}
391
34e8f22d
RE
392/* Advance the PC across any function entry prologue instructions to reach
393 some "real" code.
394
395 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 396 prologue:
c906108c 397
c5aa993b
JM
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 406
34e8f22d 407static CORE_ADDR
ed9a39eb 408arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
409{
410 unsigned long inst;
411 CORE_ADDR skip_pc;
412 CORE_ADDR func_addr, func_end;
50f6fb4b 413 char *func_name;
c906108c
SS
414 struct symtab_and_line sal;
415
96baa820 416 /* See what the symbol table says. */
ed9a39eb 417
50f6fb4b 418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 419 {
50f6fb4b
CV
420 struct symbol *sym;
421
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
425 {
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
429 return sal.end;
430 }
c906108c
SS
431 }
432
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
c7885828 435 return thumb_skip_prologue (pc, func_end);
c906108c
SS
436
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
439 skip_pc = pc;
440 inst = read_memory_integer (skip_pc, 4);
c5aa993b 441 if (inst != 0xe1a0c00d) /* mov ip, sp */
c906108c
SS
442 return pc;
443
444 skip_pc += 4;
445 inst = read_memory_integer (skip_pc, 4);
c5aa993b 446 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
c906108c
SS
447 {
448 skip_pc += 4;
449 inst = read_memory_integer (skip_pc, 4);
450 }
451
c5aa993b 452 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
c906108c
SS
453 return pc;
454
455 skip_pc += 4;
456 inst = read_memory_integer (skip_pc, 4);
457
458 /* Any insns after this point may float into the code, if it makes
ed9a39eb
JM
459 for better instruction scheduling, so we skip them only if we
460 find them, but still consdier the function to be frame-ful. */
c906108c 461
ed9a39eb
JM
462 /* We may have either one sfmfd instruction here, or several stfe
463 insns, depending on the version of floating point code we
464 support. */
c5aa993b 465 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
c906108c
SS
466 {
467 skip_pc += 4;
468 inst = read_memory_integer (skip_pc, 4);
469 }
470 else
471 {
c5aa993b
JM
472 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
473 {
474 skip_pc += 4;
475 inst = read_memory_integer (skip_pc, 4);
476 }
c906108c
SS
477 }
478
c5aa993b 479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
c906108c
SS
480 skip_pc += 4;
481
482 return skip_pc;
483}
c5aa993b 484/* *INDENT-OFF* */
c906108c
SS
485/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
486 This function decodes a Thumb function prologue to determine:
487 1) the size of the stack frame
488 2) which registers are saved on it
489 3) the offsets of saved regs
490 4) the offset from the stack pointer to the frame pointer
491 This information is stored in the "extra" fields of the frame_info.
492
da59e081
JM
493 A typical Thumb function prologue would create this stack frame
494 (offsets relative to FP)
c906108c
SS
495 old SP -> 24 stack parameters
496 20 LR
497 16 R7
498 R7 -> 0 local variables (16 bytes)
499 SP -> -12 additional stack space (12 bytes)
500 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
501 12 bytes. The frame register is R7.
502
503 The comments for thumb_skip_prolog() describe the algorithm we use to detect
504 the end of the prolog */
c5aa993b
JM
505/* *INDENT-ON* */
506
c906108c 507static void
ed9a39eb 508thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
509{
510 CORE_ADDR prologue_start;
511 CORE_ADDR prologue_end;
512 CORE_ADDR current_pc;
c5aa993b 513 int saved_reg[16]; /* which register has been copied to register n? */
da59e081
JM
514 int findmask = 0; /* findmask:
515 bit 0 - push { rlist }
516 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
517 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
518 */
c5aa993b 519 int i;
c906108c 520
c5aa993b 521 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
522 {
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
524
c5aa993b 525 if (sal.line == 0) /* no line info, use current PC */
c906108c
SS
526 prologue_end = fi->pc;
527 else if (sal.end < prologue_end) /* next line begins after fn end */
c5aa993b 528 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
529 }
530 else
c5aa993b
JM
531 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
532 /* 16 pushes, an add, and "mv fp,sp" */
c906108c
SS
533
534 prologue_end = min (prologue_end, fi->pc);
535
536 /* Initialize the saved register map. When register H is copied to
537 register L, we will put H in saved_reg[L]. */
538 for (i = 0; i < 16; i++)
539 saved_reg[i] = i;
540
541 /* Search the prologue looking for instructions that set up the
da59e081
JM
542 frame pointer, adjust the stack pointer, and save registers.
543 Do this until all basic prolog instructions are found. */
c906108c 544
c3b4394c 545 fi->extra_info->framesize = 0;
da59e081
JM
546 for (current_pc = prologue_start;
547 (current_pc < prologue_end) && ((findmask & 7) != 7);
548 current_pc += 2)
c906108c
SS
549 {
550 unsigned short insn;
551 int regno;
552 int offset;
553
554 insn = read_memory_unsigned_integer (current_pc, 2);
555
c5aa993b 556 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 557 {
da59e081
JM
558 int mask;
559 findmask |= 1; /* push found */
c906108c
SS
560 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
561 whether to save LR (R14). */
da59e081 562 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c
SS
563
564 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 565 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 566 if (mask & (1 << regno))
c5aa993b 567 {
c3b4394c
RE
568 fi->extra_info->framesize += 4;
569 fi->saved_regs[saved_reg[regno]] =
570 -(fi->extra_info->framesize);
c906108c
SS
571 saved_reg[regno] = regno; /* reset saved register map */
572 }
573 }
da59e081 574 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
c906108c 575 {
da59e081
JM
576 if ((findmask & 1) == 0) /* before push ? */
577 continue;
578 else
579 findmask |= 4; /* add/sub sp found */
580
c5aa993b 581 offset = (insn & 0x7f) << 2; /* get scaled offset */
da59e081
JM
582 if (insn & 0x80) /* is it signed? (==subtracting) */
583 {
c3b4394c 584 fi->extra_info->frameoffset += offset;
da59e081
JM
585 offset = -offset;
586 }
c3b4394c 587 fi->extra_info->framesize -= offset;
c906108c
SS
588 }
589 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
590 {
da59e081 591 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
592 fi->extra_info->framereg = THUMB_FP_REGNUM;
593 /* get scaled offset */
594 fi->extra_info->frameoffset = (insn & 0xff) << 2;
c906108c 595 }
da59e081 596 else if (insn == 0x466f) /* mov r7, sp */
c906108c 597 {
da59e081 598 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
599 fi->extra_info->framereg = THUMB_FP_REGNUM;
600 fi->extra_info->frameoffset = 0;
34e8f22d 601 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
602 }
603 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
604 {
c5aa993b 605 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 606 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
c5aa993b 607 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
608 }
609 else
da59e081
JM
610 continue; /* something in the prolog that we don't care about or some
611 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
612 }
613}
614
ed9a39eb
JM
615/* Check if prologue for this frame's PC has already been scanned. If
616 it has, copy the relevant information about that prologue and
c906108c
SS
617 return non-zero. Otherwise do not copy anything and return zero.
618
619 The information saved in the cache includes:
c5aa993b
JM
620 * the frame register number;
621 * the size of the stack frame;
622 * the offsets of saved regs (relative to the old SP); and
623 * the offset from the stack pointer to the frame pointer
c906108c 624
ed9a39eb
JM
625 The cache contains only one entry, since this is adequate for the
626 typical sequence of prologue scan requests we get. When performing
627 a backtrace, GDB will usually ask to scan the same function twice
628 in a row (once to get the frame chain, and once to fill in the
629 extra frame information). */
c906108c
SS
630
631static struct frame_info prologue_cache;
632
633static int
ed9a39eb 634check_prologue_cache (struct frame_info *fi)
c906108c
SS
635{
636 int i;
637
638 if (fi->pc == prologue_cache.pc)
639 {
c3b4394c
RE
640 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
641 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
642 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
643 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
644 fi->saved_regs[i] = prologue_cache.saved_regs[i];
c906108c
SS
645 return 1;
646 }
647 else
648 return 0;
649}
650
651
ed9a39eb 652/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
653
654static void
ed9a39eb 655save_prologue_cache (struct frame_info *fi)
c906108c
SS
656{
657 int i;
658
c5aa993b 659 prologue_cache.pc = fi->pc;
c3b4394c
RE
660 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
661 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
662 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
c5aa993b 663
c3b4394c
RE
664 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
665 prologue_cache.saved_regs[i] = fi->saved_regs[i];
c906108c
SS
666}
667
668
ed9a39eb 669/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
670 1) the size of the stack frame
671 2) which registers are saved on it
672 3) the offsets of saved regs
673 4) the offset from the stack pointer to the frame pointer
c906108c
SS
674 This information is stored in the "extra" fields of the frame_info.
675
96baa820
JM
676 There are two basic forms for the ARM prologue. The fixed argument
677 function call will look like:
ed9a39eb
JM
678
679 mov ip, sp
680 stmfd sp!, {fp, ip, lr, pc}
681 sub fp, ip, #4
682 [sub sp, sp, #4]
96baa820 683
c906108c 684 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
685 IP -> 4 (caller's stack)
686 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
687 -4 LR (return address in caller)
688 -8 IP (copy of caller's SP)
689 -12 FP (caller's FP)
690 SP -> -28 Local variables
691
c906108c 692 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
693 28 bytes. The stmfd call can also save any of the vN registers it
694 plans to use, which increases the frame size accordingly.
695
696 Note: The stored PC is 8 off of the STMFD instruction that stored it
697 because the ARM Store instructions always store PC + 8 when you read
698 the PC register.
ed9a39eb 699
96baa820
JM
700 A variable argument function call will look like:
701
ed9a39eb
JM
702 mov ip, sp
703 stmfd sp!, {a1, a2, a3, a4}
704 stmfd sp!, {fp, ip, lr, pc}
705 sub fp, ip, #20
706
96baa820 707 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
708 IP -> 20 (caller's stack)
709 16 A4
710 12 A3
711 8 A2
712 4 A1
713 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
714 -4 LR (return address in caller)
715 -8 IP (copy of caller's SP)
716 -12 FP (caller's FP)
717 SP -> -28 Local variables
96baa820
JM
718
719 The frame size would thus be 48 bytes, and the frame offset would be
720 28 bytes.
721
722 There is another potential complication, which is that the optimizer
723 will try to separate the store of fp in the "stmfd" instruction from
724 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
725 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
726
727 Also, note, the original version of the ARM toolchain claimed that there
728 should be an
729
730 instruction at the end of the prologue. I have never seen GCC produce
731 this, and the ARM docs don't mention it. We still test for it below in
732 case it happens...
ed9a39eb
JM
733
734 */
c906108c
SS
735
736static void
ed9a39eb 737arm_scan_prologue (struct frame_info *fi)
c906108c
SS
738{
739 int regno, sp_offset, fp_offset;
16a0f3e7 740 LONGEST return_value;
c906108c
SS
741 CORE_ADDR prologue_start, prologue_end, current_pc;
742
743 /* Check if this function is already in the cache of frame information. */
744 if (check_prologue_cache (fi))
745 return;
746
747 /* Assume there is no frame until proven otherwise. */
34e8f22d 748 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
749 fi->extra_info->framesize = 0;
750 fi->extra_info->frameoffset = 0;
c906108c
SS
751
752 /* Check for Thumb prologue. */
753 if (arm_pc_is_thumb (fi->pc))
754 {
755 thumb_scan_prologue (fi);
756 save_prologue_cache (fi);
757 return;
758 }
759
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
763 {
2a451106
KB
764 /* One way to find the end of the prologue (which works well
765 for unoptimized code) is to do the following:
766
767 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
768
769 if (sal.line == 0)
770 prologue_end = fi->pc;
771 else if (sal.end < prologue_end)
772 prologue_end = sal.end;
773
774 This mechanism is very accurate so long as the optimizer
775 doesn't move any instructions from the function body into the
776 prologue. If this happens, sal.end will be the last
777 instruction in the first hunk of prologue code just before
778 the first instruction that the scheduler has moved from
779 the body to the prologue.
780
781 In order to make sure that we scan all of the prologue
782 instructions, we use a slightly less accurate mechanism which
783 may scan more than necessary. To help compensate for this
784 lack of accuracy, the prologue scanning loop below contains
785 several clauses which'll cause the loop to terminate early if
786 an implausible prologue instruction is encountered.
787
788 The expression
789
790 prologue_start + 64
791
792 is a suitable endpoint since it accounts for the largest
793 possible prologue plus up to five instructions inserted by
794 the scheduler. */
795
796 if (prologue_end > prologue_start + 64)
797 {
798 prologue_end = prologue_start + 64; /* See above. */
799 }
c906108c
SS
800 }
801 else
802 {
803 /* Get address of the stmfd in the prologue of the callee; the saved
96baa820 804 PC is the address of the stmfd + 8. */
16a0f3e7
EZ
805 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
806 return;
807 else
808 {
809 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
810 prologue_end = prologue_start + 64; /* See above. */
811 }
c906108c
SS
812 }
813
814 /* Now search the prologue looking for instructions that set up the
96baa820 815 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 816
96baa820
JM
817 Be careful, however, and if it doesn't look like a prologue,
818 don't try to scan it. If, for instance, a frameless function
819 begins with stmfd sp!, then we will tell ourselves there is
820 a frame, which will confuse stack traceback, as well ad"finish"
821 and other operations that rely on a knowledge of the stack
822 traceback.
823
824 In the APCS, the prologue should start with "mov ip, sp" so
d4473757
KB
825 if we don't see this as the first insn, we will stop. [Note:
826 This doesn't seem to be true any longer, so it's now an optional
827 part of the prologue. - Kevin Buettner, 2001-11-20] */
c906108c
SS
828
829 sp_offset = fp_offset = 0;
c906108c 830
ed9a39eb
JM
831 if (read_memory_unsigned_integer (prologue_start, 4)
832 == 0xe1a0c00d) /* mov ip, sp */
d4473757
KB
833 current_pc = prologue_start + 4;
834 else
835 current_pc = prologue_start;
836
837 for (; current_pc < prologue_end; current_pc += 4)
96baa820 838 {
d4473757
KB
839 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
840
841 if ((insn & 0xffff0000) == 0xe92d0000)
842 /* stmfd sp!, {..., fp, ip, lr, pc}
843 or
844 stmfd sp!, {a1, a2, a3, a4} */
c906108c 845 {
d4473757 846 int mask = insn & 0xffff;
ed9a39eb 847
d4473757 848 /* Calculate offsets of saved registers. */
34e8f22d 849 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
850 if (mask & (1 << regno))
851 {
852 sp_offset -= 4;
c3b4394c 853 fi->saved_regs[regno] = sp_offset;
d4473757
KB
854 }
855 }
856 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
857 {
858 unsigned imm = insn & 0xff; /* immediate value */
859 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
860 imm = (imm >> rot) | (imm << (32 - rot));
861 fp_offset = -imm;
34e8f22d 862 fi->extra_info->framereg = ARM_FP_REGNUM;
d4473757
KB
863 }
864 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
865 {
866 unsigned imm = insn & 0xff; /* immediate value */
867 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
868 imm = (imm >> rot) | (imm << (32 - rot));
869 sp_offset -= imm;
870 }
871 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
872 {
873 sp_offset -= 12;
34e8f22d 874 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
c3b4394c 875 fi->saved_regs[regno] = sp_offset;
d4473757
KB
876 }
877 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
878 {
879 int n_saved_fp_regs;
880 unsigned int fp_start_reg, fp_bound_reg;
881
882 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 883 {
d4473757
KB
884 if ((insn & 0x40000) == 0x40000) /* N1 is set */
885 n_saved_fp_regs = 3;
886 else
887 n_saved_fp_regs = 1;
96baa820 888 }
d4473757 889 else
96baa820 890 {
d4473757
KB
891 if ((insn & 0x40000) == 0x40000) /* N1 is set */
892 n_saved_fp_regs = 2;
893 else
894 n_saved_fp_regs = 4;
96baa820 895 }
d4473757 896
34e8f22d 897 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
898 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
899 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
900 {
901 sp_offset -= 12;
c3b4394c 902 fi->saved_regs[fp_start_reg++] = sp_offset;
96baa820 903 }
c906108c 904 }
d4473757
KB
905 else if ((insn & 0xf0000000) != 0xe0000000)
906 break; /* Condition not true, exit early */
907 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
908 break; /* Don't scan past a block load */
909 else
910 /* The optimizer might shove anything into the prologue,
911 so we just skip what we don't recognize. */
912 continue;
c906108c
SS
913 }
914
915 /* The frame size is just the negative of the offset (from the original SP)
916 of the last thing thing we pushed on the stack. The frame offset is
917 [new FP] - [new SP]. */
c3b4394c 918 fi->extra_info->framesize = -sp_offset;
34e8f22d 919 if (fi->extra_info->framereg == ARM_FP_REGNUM)
c3b4394c 920 fi->extra_info->frameoffset = fp_offset - sp_offset;
d4473757 921 else
c3b4394c 922 fi->extra_info->frameoffset = 0;
ed9a39eb 923
c906108c
SS
924 save_prologue_cache (fi);
925}
926
ed9a39eb
JM
927/* Find REGNUM on the stack. Otherwise, it's in an active register.
928 One thing we might want to do here is to check REGNUM against the
929 clobber mask, and somehow flag it as invalid if it isn't saved on
930 the stack somewhere. This would provide a graceful failure mode
931 when trying to get the value of caller-saves registers for an inner
932 frame. */
c906108c
SS
933
934static CORE_ADDR
ed9a39eb 935arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c
SS
936{
937 for (; fi; fi = fi->next)
c5aa993b
JM
938
939#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
940 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
941 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
942 else
943#endif
c3b4394c
RE
944 if (fi->saved_regs[regnum] != 0)
945 return read_memory_integer (fi->saved_regs[regnum],
c5aa993b 946 REGISTER_RAW_SIZE (regnum));
c906108c
SS
947 return read_register (regnum);
948}
148754e5
RE
949/* Function: frame_chain Given a GDB frame, determine the address of
950 the calling function's frame. This will be used to create a new
951 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
952 will be called for the new frame. For ARM, we save the frame size
953 when we initialize the frame_info. */
c5aa993b 954
148754e5 955static CORE_ADDR
ed9a39eb 956arm_frame_chain (struct frame_info *fi)
c906108c 957{
c5aa993b 958#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
959 CORE_ADDR fn_start, callers_pc, fp;
960
961 /* is this a dummy frame? */
962 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c5aa993b 963 return fi->frame; /* dummy frame same as caller's frame */
c906108c
SS
964
965 /* is caller-of-this a dummy frame? */
c5aa993b 966 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
34e8f22d 967 fp = arm_find_callers_reg (fi, ARM_FP_REGNUM);
c5aa993b
JM
968 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
969 return fp; /* dummy frame's frame may bear no relation to ours */
c906108c
SS
970
971 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
972 if (fn_start == entry_point_address ())
c5aa993b 973 return 0; /* in _start fn, don't chain further */
c906108c
SS
974#endif
975 CORE_ADDR caller_pc, fn_start;
c3b4394c 976 int framereg = fi->extra_info->framereg;
c906108c
SS
977
978 if (fi->pc < LOWEST_PC)
979 return 0;
980
981 /* If the caller is the startup code, we're at the end of the chain. */
982 caller_pc = FRAME_SAVED_PC (fi);
983 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
984 if (fn_start == entry_point_address ())
985 return 0;
986
987 /* If the caller is Thumb and the caller is ARM, or vice versa,
988 the frame register of the caller is different from ours.
989 So we must scan the prologue of the caller to determine its
990 frame register number. */
c3b4394c
RE
991 /* XXX Fixme, we should try to do this without creating a temporary
992 caller_fi. */
c906108c
SS
993 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
994 {
c3b4394c
RE
995 struct frame_info caller_fi;
996 struct cleanup *old_chain;
997
998 /* Create a temporary frame suitable for scanning the caller's
999 prologue. (Ugh.) */
c5aa993b 1000 memset (&caller_fi, 0, sizeof (caller_fi));
c3b4394c
RE
1001 caller_fi.extra_info = (struct frame_extra_info *)
1002 xcalloc (1, sizeof (struct frame_extra_info));
1003 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1004 caller_fi.saved_regs = (CORE_ADDR *)
1005 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1006 make_cleanup (xfree, caller_fi.saved_regs);
1007
1008 /* Now, scan the prologue and obtain the frame register. */
c906108c 1009 caller_fi.pc = caller_pc;
c5aa993b 1010 arm_scan_prologue (&caller_fi);
c3b4394c
RE
1011 framereg = caller_fi.extra_info->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
c906108c
SS
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
34e8f22d 1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1021 return arm_find_callers_reg (fi, framereg);
1022 else
c3b4394c 1023 return fi->frame + fi->extra_info->framesize;
c906108c
SS
1024}
1025
ed9a39eb
JM
1026/* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
c906108c 1034
148754e5 1035static void
ed9a39eb 1036arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1037{
1038 int reg;
f079148d 1039 CORE_ADDR sp;
c906108c 1040
c3b4394c
RE
1041 if (fi->saved_regs == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 fi->extra_info = (struct frame_extra_info *)
1045 frame_obstack_alloc (sizeof (struct frame_extra_info));
1046
1047 fi->extra_info->framesize = 0;
1048 fi->extra_info->frameoffset = 0;
1049 fi->extra_info->framereg = 0;
1050
c906108c
SS
1051 if (fi->next)
1052 fi->pc = FRAME_SAVED_PC (fi->next);
1053
c3b4394c 1054 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
c906108c 1055
c5aa993b 1056#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
1057 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1058 {
1059 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
c5aa993b 1060 by assuming it's always FP. */
34e8f22d
RE
1061 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
1062 ARM_SP_REGNUM);
c3b4394c
RE
1063 fi->extra_info->framesize = 0;
1064 fi->extra_info->frameoffset = 0;
c906108c
SS
1065 return;
1066 }
c5aa993b 1067 else
c906108c 1068#endif
2a451106 1069
f079148d
KB
1070 /* Compute stack pointer for this frame. We use this value for both the
1071 sigtramp and call dummy cases. */
1072 if (!fi->next)
1073 sp = read_sp();
1074 else
c3b4394c
RE
1075 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1076 + fi->next->extra_info->framesize);
f079148d 1077
2a451106
KB
1078 /* Determine whether or not we're in a sigtramp frame.
1079 Unfortunately, it isn't sufficient to test
1080 fi->signal_handler_caller because this value is sometimes set
1081 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1082 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1083 to use the sigcontext addresses for the saved registers.
1084
1085 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1086 the name of the function, the code below will have to be changed
1087 to first fetch the name of the function and then pass this name
f079148d 1088 to IN_SIGTRAMP. */
2a451106 1089
3bb04bdd 1090 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
dd96c05b 1091 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
2a451106 1092 {
2a451106 1093 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c 1094 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
2a451106
KB
1095
1096 /* FIXME: What about thumb mode? */
34e8f22d 1097 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
1098 fi->frame =
1099 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1100 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1101 fi->extra_info->framesize = 0;
1102 fi->extra_info->frameoffset = 0;
2a451106
KB
1103
1104 }
f079148d
KB
1105 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1106 {
1107 CORE_ADDR rp;
1108 CORE_ADDR callers_sp;
1109
1110 /* Set rp point at the high end of the saved registers. */
1111 rp = fi->frame - REGISTER_SIZE;
1112
1113 /* Fill in addresses of saved registers. */
34e8f22d
RE
1114 fi->saved_regs[ARM_PS_REGNUM] = rp;
1115 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1116 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
f079148d 1117 {
c3b4394c 1118 fi->saved_regs[reg] = rp;
f079148d
KB
1119 rp -= REGISTER_RAW_SIZE (reg);
1120 }
1121
34e8f22d
RE
1122 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1123 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
1124 fi->extra_info->framereg = ARM_FP_REGNUM;
c3b4394c
RE
1125 fi->extra_info->framesize = callers_sp - sp;
1126 fi->extra_info->frameoffset = fi->frame - sp;
f079148d 1127 }
2a451106 1128 else
c906108c
SS
1129 {
1130 arm_scan_prologue (fi);
1131
104c1213
JM
1132 if (!fi->next)
1133 /* this is the innermost frame? */
c3b4394c 1134 fi->frame = read_register (fi->extra_info->framereg);
34e8f22d 1135 else if (fi->extra_info->framereg == ARM_FP_REGNUM
c3b4394c 1136 || fi->extra_info->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1137 {
1138 /* not the innermost frame */
1139 /* If we have an FP, the callee saved it. */
c3b4394c 1140 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
ed9a39eb 1141 fi->frame =
c3b4394c
RE
1142 read_memory_integer (fi->next
1143 ->saved_regs[fi->extra_info->framereg], 4);
ed9a39eb
JM
1144 else if (fromleaf)
1145 /* If we were called by a frameless fn. then our frame is
1146 still in the frame pointer register on the board... */
1147 fi->frame = read_fp ();
1148 }
c906108c 1149
ed9a39eb
JM
1150 /* Calculate actual addresses of saved registers using offsets
1151 determined by arm_scan_prologue. */
c906108c 1152 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c
RE
1153 if (fi->saved_regs[reg] != 0)
1154 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1155 - fi->extra_info->frameoffset);
c906108c
SS
1156 }
1157}
1158
1159
34e8f22d 1160/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1161 is saved in the stack anywhere, otherwise we get it from the
1162 registers.
c906108c
SS
1163
1164 The old definition of this function was a macro:
c5aa993b 1165 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1166 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1167
148754e5 1168static CORE_ADDR
ed9a39eb 1169arm_frame_saved_pc (struct frame_info *fi)
c906108c 1170{
c5aa993b 1171#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c 1172 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
34e8f22d 1173 return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
c906108c
SS
1174 else
1175#endif
c3b4394c
RE
1176 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1177 fi->frame))
f079148d 1178 {
34e8f22d
RE
1179 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1180 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1181 }
1182 else
c906108c 1183 {
34e8f22d 1184 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1185 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1186 }
1187}
1188
c906108c
SS
1189/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1190 Examine the Program Status Register to decide which state we're in. */
1191
148754e5
RE
1192static CORE_ADDR
1193arm_read_fp (void)
c906108c 1194{
34e8f22d 1195 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1196 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1197 else
34e8f22d 1198 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1199}
1200
148754e5
RE
1201/* Store into a struct frame_saved_regs the addresses of the saved
1202 registers of frame described by FRAME_INFO. This includes special
1203 registers such as PC and FP saved in special ways in the stack
1204 frame. SP is even more special: the address we return for it IS
1205 the sp for the next frame. */
c906108c 1206
148754e5 1207static void
c3b4394c 1208arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1209{
c3b4394c
RE
1210
1211 if (fip->saved_regs)
1212 return;
1213
1214 arm_init_extra_frame_info (0, fip);
c906108c
SS
1215}
1216
148754e5
RE
1217/* Push an empty stack frame, to record the current PC, etc. */
1218
1219static void
ed9a39eb 1220arm_push_dummy_frame (void)
c906108c 1221{
34e8f22d 1222 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1223 CORE_ADDR sp = old_sp;
1224 CORE_ADDR fp, prologue_start;
1225 int regnum;
1226
1227 /* Push the two dummy prologue instructions in reverse order,
1228 so that they'll be in the correct low-to-high order in memory. */
1229 /* sub fp, ip, #4 */
1230 sp = push_word (sp, 0xe24cb004);
1231 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1232 prologue_start = sp = push_word (sp, 0xe92ddfff);
1233
ed9a39eb
JM
1234 /* Push a pointer to the dummy prologue + 12, because when stm
1235 instruction stores the PC, it stores the address of the stm
c906108c
SS
1236 instruction itself plus 12. */
1237 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1238
f079148d 1239 /* Push the processor status. */
34e8f22d 1240 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1241
1242 /* Push all 16 registers starting with r15. */
34e8f22d 1243 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1244 sp = push_word (sp, read_register (regnum));
c5aa993b 1245
f079148d 1246 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1247 write_register (ARM_FP_REGNUM, fp);
c906108c 1248 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1249 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1250}
1251
6eb69eab
RE
1252/* CALL_DUMMY_WORDS:
1253 This sequence of words is the instructions
1254
1255 mov lr,pc
1256 mov pc,r4
1257 illegal
1258
1259 Note this is 12 bytes. */
1260
34e8f22d 1261static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1262{
1263 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1264};
1265
c906108c 1266/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1267 in Thumb or ARM mode, and whether the target function is Thumb or
1268 ARM. There are three different situations requiring three
c906108c
SS
1269 different dummies:
1270
1271 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1272 been copied into the dummy parameter to this function.
c906108c 1273 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1274 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1275 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1276 works for calling both ARM and Thumb functions.
c906108c 1277
ed9a39eb
JM
1278 All three call dummies expect to receive the target function
1279 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1280
34e8f22d 1281static void
ed9a39eb 1282arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1283 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1284{
1285 static short thumb_dummy[4] =
1286 {
c5aa993b
JM
1287 0xf000, 0xf801, /* bl label */
1288 0xdf18, /* swi 24 */
1289 0x4720, /* label: bx r4 */
c906108c
SS
1290 };
1291 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1292
1293 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1294 caller_is_thumb = arm_pc_is_thumb (read_pc ());
c906108c 1295
ed9a39eb
JM
1296 /* If the target function is Thumb, set the low bit of the function
1297 address. And if the CPU is currently in ARM mode, patch the
1298 second instruction of call dummy to use a BX instruction to
1299 switch to Thumb mode. */
c906108c
SS
1300 target_is_thumb = arm_pc_is_thumb (fun);
1301 if (target_is_thumb)
1302 {
1303 fun |= 1;
1304 if (!caller_is_thumb)
1305 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1306 }
1307
1308 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1309 instead of the ARM one that's already been copied. This will
1310 work for both Thumb and ARM target functions. */
1311 if (caller_is_thumb)
1312 {
1313 int i;
1314 char *p = dummy;
1315 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1316
1317 for (i = 0; i < len; i++)
1318 {
1319 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1320 p += sizeof (thumb_dummy[0]);
1321 }
1322 }
1323
ed9a39eb
JM
1324 /* Put the target address in r4; the call dummy will copy this to
1325 the PC. */
c906108c
SS
1326 write_register (4, fun);
1327}
1328
c906108c 1329/* Return the offset in the call dummy of the instruction that needs
ed9a39eb
JM
1330 to have a breakpoint placed on it. This is the offset of the 'swi
1331 24' instruction, which is no longer actually used, but simply acts
c906108c
SS
1332 as a place-holder now.
1333
ed9a39eb 1334 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
c906108c
SS
1335
1336int
ed9a39eb 1337arm_call_dummy_breakpoint_offset (void)
c906108c
SS
1338{
1339 if (caller_is_thumb)
1340 return 4;
1341 else
1342 return 8;
1343}
1344
ed9a39eb
JM
1345/* Note: ScottB
1346
1347 This function does not support passing parameters using the FPA
1348 variant of the APCS. It passes any floating point arguments in the
1349 general registers and/or on the stack. */
c906108c 1350
39bbf761 1351static CORE_ADDR
ea7c478f 1352arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1353 int struct_return, CORE_ADDR struct_addr)
c906108c 1354{
ed9a39eb
JM
1355 char *fp;
1356 int argnum, argreg, nstack_size;
1357
1358 /* Walk through the list of args and determine how large a temporary
1359 stack is required. Need to take care here as structs may be
1360 passed on the stack, and we have to to push them. */
1361 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1362 if (struct_return) /* The struct address goes in A1. */
1363 nstack_size += REGISTER_SIZE;
1364
1365 /* Walk through the arguments and add their size to nstack_size. */
1366 for (argnum = 0; argnum < nargs; argnum++)
c5aa993b 1367 {
c906108c 1368 int len;
ed9a39eb
JM
1369 struct type *arg_type;
1370
1371 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1372 len = TYPE_LENGTH (arg_type);
c906108c 1373
6b230f1b 1374 nstack_size += len;
ed9a39eb 1375 }
c906108c 1376
ed9a39eb
JM
1377 /* Allocate room on the stack, and initialize our stack frame
1378 pointer. */
1379 fp = NULL;
1380 if (nstack_size > 0)
1381 {
1382 sp -= nstack_size;
1383 fp = (char *) sp;
1384 }
1385
1386 /* Initialize the integer argument register pointer. */
34e8f22d 1387 argreg = ARM_A1_REGNUM;
c906108c 1388
ed9a39eb
JM
1389 /* The struct_return pointer occupies the first parameter passing
1390 register. */
c906108c 1391 if (struct_return)
c5aa993b 1392 write_register (argreg++, struct_addr);
c906108c 1393
ed9a39eb
JM
1394 /* Process arguments from left to right. Store as many as allowed
1395 in the parameter passing registers (A1-A4), and save the rest on
1396 the temporary stack. */
c5aa993b 1397 for (argnum = 0; argnum < nargs; argnum++)
c906108c 1398 {
ed9a39eb 1399 int len;
c5aa993b 1400 char *val;
c5aa993b 1401 CORE_ADDR regval;
ed9a39eb
JM
1402 enum type_code typecode;
1403 struct type *arg_type, *target_type;
1404
1405 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1406 target_type = TYPE_TARGET_TYPE (arg_type);
1407 len = TYPE_LENGTH (arg_type);
1408 typecode = TYPE_CODE (arg_type);
1409 val = (char *) VALUE_CONTENTS (args[argnum]);
1410
da59e081
JM
1411#if 1
1412 /* I don't know why this code was disable. The only logical use
1413 for a function pointer is to call that function, so setting
1414 the mode bit is perfectly fine. FN */
ed9a39eb 1415 /* If the argument is a pointer to a function, and it is a Thumb
c906108c 1416 function, set the low bit of the pointer. */
ed9a39eb
JM
1417 if (TYPE_CODE_PTR == typecode
1418 && NULL != target_type
1419 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1420 {
ed9a39eb 1421 CORE_ADDR regval = extract_address (val, len);
c906108c
SS
1422 if (arm_pc_is_thumb (regval))
1423 store_address (val, len, MAKE_THUMB_ADDR (regval));
1424 }
c906108c 1425#endif
ed9a39eb
JM
1426 /* Copy the argument to general registers or the stack in
1427 register-sized pieces. Large arguments are split between
1428 registers and stack. */
1429 while (len > 0)
c906108c 1430 {
ed9a39eb
JM
1431 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1432
1433 if (argreg <= ARM_LAST_ARG_REGNUM)
c906108c 1434 {
ed9a39eb
JM
1435 /* It's an argument being passed in a general register. */
1436 regval = extract_address (val, partial_len);
1437 write_register (argreg++, regval);
c906108c 1438 }
ed9a39eb
JM
1439 else
1440 {
1441 /* Push the arguments onto the stack. */
1442 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1443 fp += REGISTER_SIZE;
1444 }
1445
1446 len -= partial_len;
1447 val += partial_len;
c906108c
SS
1448 }
1449 }
c906108c
SS
1450
1451 /* Return adjusted stack pointer. */
1452 return sp;
1453}
1454
f079148d
KB
1455/* Pop the current frame. So long as the frame info has been initialized
1456 properly (see arm_init_extra_frame_info), this code works for dummy frames
1457 as well as regular frames. I.e, there's no need to have a special case
1458 for dummy frames. */
148754e5 1459static void
ed9a39eb 1460arm_pop_frame (void)
c906108c 1461{
c906108c 1462 int regnum;
8b93c638 1463 struct frame_info *frame = get_current_frame ();
c3b4394c
RE
1464 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1465 + frame->extra_info->framesize);
c906108c 1466
f079148d 1467 for (regnum = 0; regnum < NUM_REGS; regnum++)
c3b4394c 1468 if (frame->saved_regs[regnum] != 0)
f079148d 1469 write_register (regnum,
c3b4394c 1470 read_memory_integer (frame->saved_regs[regnum],
f079148d 1471 REGISTER_RAW_SIZE (regnum)));
8b93c638 1472
34e8f22d
RE
1473 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1474 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1475
1476 flush_cached_frames ();
1477}
1478
1479static void
ed9a39eb 1480print_fpu_flags (int flags)
c906108c 1481{
c5aa993b
JM
1482 if (flags & (1 << 0))
1483 fputs ("IVO ", stdout);
1484 if (flags & (1 << 1))
1485 fputs ("DVZ ", stdout);
1486 if (flags & (1 << 2))
1487 fputs ("OFL ", stdout);
1488 if (flags & (1 << 3))
1489 fputs ("UFL ", stdout);
1490 if (flags & (1 << 4))
1491 fputs ("INX ", stdout);
1492 putchar ('\n');
c906108c
SS
1493}
1494
5e74b15c
RE
1495/* Print interesting information about the floating point processor
1496 (if present) or emulator. */
34e8f22d 1497static void
5e74b15c 1498arm_print_float_info (void)
c906108c 1499{
34e8f22d 1500 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1501 int type;
1502
1503 type = (status >> 24) & 127;
1504 printf ("%s FPU type %d\n",
ed9a39eb 1505 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1506 type);
1507 fputs ("mask: ", stdout);
1508 print_fpu_flags (status >> 16);
1509 fputs ("flags: ", stdout);
1510 print_fpu_flags (status);
c906108c
SS
1511}
1512
34e8f22d
RE
1513/* Return the GDB type object for the "standard" data type of data in
1514 register N. */
1515
1516static struct type *
032758dc
AC
1517arm_register_type (int regnum)
1518{
34e8f22d 1519 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1520 {
d7449b42 1521 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1522 return builtin_type_arm_ext_big;
1523 else
1524 return builtin_type_arm_ext_littlebyte_bigword;
1525 }
1526 else
1527 return builtin_type_int32;
1528}
1529
34e8f22d
RE
1530/* Index within `registers' of the first byte of the space for
1531 register N. */
1532
1533static int
1534arm_register_byte (int regnum)
1535{
1536 if (regnum < ARM_F0_REGNUM)
1537 return regnum * INT_REGISTER_RAW_SIZE;
1538 else if (regnum < ARM_PS_REGNUM)
1539 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1540 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1541 else
1542 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1543 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1544 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1545}
1546
1547/* Number of bytes of storage in the actual machine representation for
1548 register N. All registers are 4 bytes, except fp0 - fp7, which are
1549 12 bytes in length. */
1550
1551static int
1552arm_register_raw_size (int regnum)
1553{
1554 if (regnum < ARM_F0_REGNUM)
1555 return INT_REGISTER_RAW_SIZE;
1556 else if (regnum < ARM_FPS_REGNUM)
1557 return FP_REGISTER_RAW_SIZE;
1558 else
1559 return STATUS_REGISTER_SIZE;
1560}
1561
1562/* Number of bytes of storage in a program's representation
1563 for register N. */
1564static int
1565arm_register_virtual_size (int regnum)
1566{
1567 if (regnum < ARM_F0_REGNUM)
1568 return INT_REGISTER_VIRTUAL_SIZE;
1569 else if (regnum < ARM_FPS_REGNUM)
1570 return FP_REGISTER_VIRTUAL_SIZE;
1571 else
1572 return STATUS_REGISTER_SIZE;
1573}
1574
1575
a37b3cc0
AC
1576/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1577 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1578 It is thought that this is is the floating-point register format on
1579 little-endian systems. */
c906108c 1580
ed9a39eb
JM
1581static void
1582convert_from_extended (void *ptr, void *dbl)
c906108c 1583{
a37b3cc0 1584 DOUBLEST d;
d7449b42 1585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1586 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1587 else
1588 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1589 ptr, &d);
1590 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
c906108c
SS
1591}
1592
34e8f22d 1593static void
ed9a39eb 1594convert_to_extended (void *dbl, void *ptr)
c906108c 1595{
a37b3cc0
AC
1596 DOUBLEST d;
1597 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
d7449b42 1598 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1599 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1600 else
1601 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1602 &d, dbl);
c906108c 1603}
ed9a39eb 1604
c906108c 1605static int
ed9a39eb 1606condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1607{
1608 if (cond == INST_AL || cond == INST_NV)
1609 return 1;
1610
1611 switch (cond)
1612 {
1613 case INST_EQ:
1614 return ((status_reg & FLAG_Z) != 0);
1615 case INST_NE:
1616 return ((status_reg & FLAG_Z) == 0);
1617 case INST_CS:
1618 return ((status_reg & FLAG_C) != 0);
1619 case INST_CC:
1620 return ((status_reg & FLAG_C) == 0);
1621 case INST_MI:
1622 return ((status_reg & FLAG_N) != 0);
1623 case INST_PL:
1624 return ((status_reg & FLAG_N) == 0);
1625 case INST_VS:
1626 return ((status_reg & FLAG_V) != 0);
1627 case INST_VC:
1628 return ((status_reg & FLAG_V) == 0);
1629 case INST_HI:
1630 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1631 case INST_LS:
1632 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1633 case INST_GE:
1634 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1635 case INST_LT:
1636 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1637 case INST_GT:
1638 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1639 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1640 case INST_LE:
1641 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1642 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1643 }
1644 return 1;
1645}
1646
9512d7fd 1647/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1648#define submask(x) ((1L << ((x) + 1)) - 1)
1649#define bit(obj,st) (((obj) >> (st)) & 1)
1650#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1651#define sbits(obj,st,fn) \
1652 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1653#define BranchDest(addr,instr) \
1654 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1655#define ARM_PC_32 1
1656
1657static unsigned long
ed9a39eb
JM
1658shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1659 unsigned long status_reg)
c906108c
SS
1660{
1661 unsigned long res, shift;
1662 int rm = bits (inst, 0, 3);
1663 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1664
1665 if (bit (inst, 4))
c906108c
SS
1666 {
1667 int rs = bits (inst, 8, 11);
1668 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1669 }
1670 else
1671 shift = bits (inst, 7, 11);
c5aa993b
JM
1672
1673 res = (rm == 15
c906108c 1674 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1675 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1676 : read_register (rm));
1677
1678 switch (shifttype)
1679 {
c5aa993b 1680 case 0: /* LSL */
c906108c
SS
1681 res = shift >= 32 ? 0 : res << shift;
1682 break;
c5aa993b
JM
1683
1684 case 1: /* LSR */
c906108c
SS
1685 res = shift >= 32 ? 0 : res >> shift;
1686 break;
1687
c5aa993b
JM
1688 case 2: /* ASR */
1689 if (shift >= 32)
1690 shift = 31;
c906108c
SS
1691 res = ((res & 0x80000000L)
1692 ? ~((~res) >> shift) : res >> shift);
1693 break;
1694
c5aa993b 1695 case 3: /* ROR/RRX */
c906108c
SS
1696 shift &= 31;
1697 if (shift == 0)
1698 res = (res >> 1) | (carry ? 0x80000000L : 0);
1699 else
c5aa993b 1700 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1701 break;
1702 }
1703
1704 return res & 0xffffffff;
1705}
1706
c906108c
SS
1707/* Return number of 1-bits in VAL. */
1708
1709static int
ed9a39eb 1710bitcount (unsigned long val)
c906108c
SS
1711{
1712 int nbits;
1713 for (nbits = 0; val != 0; nbits++)
c5aa993b 1714 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1715 return nbits;
1716}
1717
34e8f22d 1718CORE_ADDR
ed9a39eb 1719thumb_get_next_pc (CORE_ADDR pc)
c906108c 1720{
c5aa993b 1721 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1722 unsigned short inst1 = read_memory_integer (pc, 2);
c5aa993b 1723 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1724 unsigned long offset;
1725
1726 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1727 {
1728 CORE_ADDR sp;
1729
1730 /* Fetch the saved PC from the stack. It's stored above
1731 all of the other registers. */
1732 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1733 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1734 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1735 nextpc = ADDR_BITS_REMOVE (nextpc);
1736 if (nextpc == pc)
1737 error ("Infinite loop detected");
1738 }
1739 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1740 {
34e8f22d 1741 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1742 unsigned long cond = bits (inst1, 8, 11);
c906108c
SS
1743 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1744 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1745 }
1746 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1747 {
1748 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1749 }
1750 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1751 {
1752 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1753 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1754 nextpc = pc_val + offset;
1755 }
1756
1757 return nextpc;
1758}
1759
34e8f22d 1760CORE_ADDR
ed9a39eb 1761arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1762{
1763 unsigned long pc_val;
1764 unsigned long this_instr;
1765 unsigned long status;
1766 CORE_ADDR nextpc;
1767
1768 if (arm_pc_is_thumb (pc))
1769 return thumb_get_next_pc (pc);
1770
1771 pc_val = (unsigned long) pc;
1772 this_instr = read_memory_integer (pc, 4);
34e8f22d 1773 status = read_register (ARM_PS_REGNUM);
c5aa993b 1774 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1775
1776 if (condition_true (bits (this_instr, 28, 31), status))
1777 {
1778 switch (bits (this_instr, 24, 27))
1779 {
c5aa993b
JM
1780 case 0x0:
1781 case 0x1: /* data processing */
1782 case 0x2:
1783 case 0x3:
c906108c
SS
1784 {
1785 unsigned long operand1, operand2, result = 0;
1786 unsigned long rn;
1787 int c;
c5aa993b 1788
c906108c
SS
1789 if (bits (this_instr, 12, 15) != 15)
1790 break;
1791
1792 if (bits (this_instr, 22, 25) == 0
c5aa993b 1793 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1794 error ("Illegal update to pc in instruction");
1795
1796 /* Multiply into PC */
1797 c = (status & FLAG_C) ? 1 : 0;
1798 rn = bits (this_instr, 16, 19);
1799 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1800
c906108c
SS
1801 if (bit (this_instr, 25))
1802 {
1803 unsigned long immval = bits (this_instr, 0, 7);
1804 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1805 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1806 & 0xffffffff;
c906108c 1807 }
c5aa993b 1808 else /* operand 2 is a shifted register */
c906108c 1809 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1810
c906108c
SS
1811 switch (bits (this_instr, 21, 24))
1812 {
c5aa993b 1813 case 0x0: /*and */
c906108c
SS
1814 result = operand1 & operand2;
1815 break;
1816
c5aa993b 1817 case 0x1: /*eor */
c906108c
SS
1818 result = operand1 ^ operand2;
1819 break;
1820
c5aa993b 1821 case 0x2: /*sub */
c906108c
SS
1822 result = operand1 - operand2;
1823 break;
1824
c5aa993b 1825 case 0x3: /*rsb */
c906108c
SS
1826 result = operand2 - operand1;
1827 break;
1828
c5aa993b 1829 case 0x4: /*add */
c906108c
SS
1830 result = operand1 + operand2;
1831 break;
1832
c5aa993b 1833 case 0x5: /*adc */
c906108c
SS
1834 result = operand1 + operand2 + c;
1835 break;
1836
c5aa993b 1837 case 0x6: /*sbc */
c906108c
SS
1838 result = operand1 - operand2 + c;
1839 break;
1840
c5aa993b 1841 case 0x7: /*rsc */
c906108c
SS
1842 result = operand2 - operand1 + c;
1843 break;
1844
c5aa993b
JM
1845 case 0x8:
1846 case 0x9:
1847 case 0xa:
1848 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1849 result = (unsigned long) nextpc;
1850 break;
1851
c5aa993b 1852 case 0xc: /*orr */
c906108c
SS
1853 result = operand1 | operand2;
1854 break;
1855
c5aa993b 1856 case 0xd: /*mov */
c906108c
SS
1857 /* Always step into a function. */
1858 result = operand2;
c5aa993b 1859 break;
c906108c 1860
c5aa993b 1861 case 0xe: /*bic */
c906108c
SS
1862 result = operand1 & ~operand2;
1863 break;
1864
c5aa993b 1865 case 0xf: /*mvn */
c906108c
SS
1866 result = ~operand2;
1867 break;
1868 }
1869 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1870
1871 if (nextpc == pc)
1872 error ("Infinite loop detected");
1873 break;
1874 }
c5aa993b
JM
1875
1876 case 0x4:
1877 case 0x5: /* data transfer */
1878 case 0x6:
1879 case 0x7:
c906108c
SS
1880 if (bit (this_instr, 20))
1881 {
1882 /* load */
1883 if (bits (this_instr, 12, 15) == 15)
1884 {
1885 /* rd == pc */
c5aa993b 1886 unsigned long rn;
c906108c 1887 unsigned long base;
c5aa993b 1888
c906108c
SS
1889 if (bit (this_instr, 22))
1890 error ("Illegal update to pc in instruction");
1891
1892 /* byte write to PC */
1893 rn = bits (this_instr, 16, 19);
1894 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1895 if (bit (this_instr, 24))
1896 {
1897 /* pre-indexed */
1898 int c = (status & FLAG_C) ? 1 : 0;
1899 unsigned long offset =
c5aa993b 1900 (bit (this_instr, 25)
ed9a39eb 1901 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1902 : bits (this_instr, 0, 11));
c906108c
SS
1903
1904 if (bit (this_instr, 23))
1905 base += offset;
1906 else
1907 base -= offset;
1908 }
c5aa993b 1909 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1910 4);
c5aa993b 1911
c906108c
SS
1912 nextpc = ADDR_BITS_REMOVE (nextpc);
1913
1914 if (nextpc == pc)
1915 error ("Infinite loop detected");
1916 }
1917 }
1918 break;
c5aa993b
JM
1919
1920 case 0x8:
1921 case 0x9: /* block transfer */
c906108c
SS
1922 if (bit (this_instr, 20))
1923 {
1924 /* LDM */
1925 if (bit (this_instr, 15))
1926 {
1927 /* loading pc */
1928 int offset = 0;
1929
1930 if (bit (this_instr, 23))
1931 {
1932 /* up */
1933 unsigned long reglist = bits (this_instr, 0, 14);
1934 offset = bitcount (reglist) * 4;
c5aa993b 1935 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1936 offset += 4;
1937 }
1938 else if (bit (this_instr, 24))
1939 offset = -4;
c5aa993b 1940
c906108c 1941 {
c5aa993b
JM
1942 unsigned long rn_val =
1943 read_register (bits (this_instr, 16, 19));
c906108c
SS
1944 nextpc =
1945 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1946 + offset),
c906108c
SS
1947 4);
1948 }
1949 nextpc = ADDR_BITS_REMOVE (nextpc);
1950 if (nextpc == pc)
1951 error ("Infinite loop detected");
1952 }
1953 }
1954 break;
c5aa993b
JM
1955
1956 case 0xb: /* branch & link */
1957 case 0xa: /* branch */
c906108c
SS
1958 {
1959 nextpc = BranchDest (pc, this_instr);
1960
1961 nextpc = ADDR_BITS_REMOVE (nextpc);
1962 if (nextpc == pc)
1963 error ("Infinite loop detected");
1964 break;
1965 }
c5aa993b
JM
1966
1967 case 0xc:
1968 case 0xd:
1969 case 0xe: /* coproc ops */
1970 case 0xf: /* SWI */
c906108c
SS
1971 break;
1972
1973 default:
97e03143 1974 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1975 return (pc);
1976 }
1977 }
1978
1979 return nextpc;
1980}
1981
9512d7fd
FN
1982/* single_step() is called just before we want to resume the inferior,
1983 if we want to single-step it but there is no hardware or kernel
1984 single-step support. We find the target of the coming instruction
1985 and breakpoint it.
1986
1987 single_step is also called just after the inferior stops. If we had
1988 set up a simulated single-step, we undo our damage. */
1989
34e8f22d
RE
1990static void
1991arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd
FN
1992{
1993 static int next_pc; /* State between setting and unsetting. */
1994 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1995
1996 if (insert_bpt)
1997 {
34e8f22d 1998 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1999 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2000 }
2001 else
80fcf3f0 2002 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2003}
9512d7fd 2004
c906108c
SS
2005#include "bfd-in2.h"
2006#include "libcoff.h"
2007
2008static int
ed9a39eb 2009gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2010{
2011 if (arm_pc_is_thumb (memaddr))
2012 {
c5aa993b
JM
2013 static asymbol *asym;
2014 static combined_entry_type ce;
2015 static struct coff_symbol_struct csym;
2016 static struct _bfd fake_bfd;
2017 static bfd_target fake_target;
c906108c
SS
2018
2019 if (csym.native == NULL)
2020 {
2021 /* Create a fake symbol vector containing a Thumb symbol. This is
2022 solely so that the code in print_insn_little_arm() and
2023 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
2024 of a Thumb symbol and switch to decoding Thumb instructions. */
c5aa993b
JM
2025
2026 fake_target.flavour = bfd_target_coff_flavour;
2027 fake_bfd.xvec = &fake_target;
c906108c 2028 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2029 csym.native = &ce;
2030 csym.symbol.the_bfd = &fake_bfd;
2031 csym.symbol.name = "fake";
2032 asym = (asymbol *) & csym;
c906108c 2033 }
c5aa993b 2034
c906108c 2035 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2036 info->symbols = &asym;
c906108c
SS
2037 }
2038 else
2039 info->symbols = NULL;
c5aa993b 2040
d7449b42 2041 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2042 return print_insn_big_arm (memaddr, info);
2043 else
2044 return print_insn_little_arm (memaddr, info);
2045}
2046
66e810cd
RE
2047/* The following define instruction sequences that will cause ARM
2048 cpu's to take an undefined instruction trap. These are used to
2049 signal a breakpoint to GDB.
2050
2051 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2052 modes. A different instruction is required for each mode. The ARM
2053 cpu's can also be big or little endian. Thus four different
2054 instructions are needed to support all cases.
2055
2056 Note: ARMv4 defines several new instructions that will take the
2057 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2058 not in fact add the new instructions. The new undefined
2059 instructions in ARMv4 are all instructions that had no defined
2060 behaviour in earlier chips. There is no guarantee that they will
2061 raise an exception, but may be treated as NOP's. In practice, it
2062 may only safe to rely on instructions matching:
2063
2064 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2065 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2066 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2067
2068 Even this may only true if the condition predicate is true. The
2069 following use a condition predicate of ALWAYS so it is always TRUE.
2070
2071 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2072 and NetBSD all use a software interrupt rather than an undefined
2073 instruction to force a trap. This can be handled by by the
2074 abi-specific code during establishment of the gdbarch vector. */
2075
2076
2077/* XXX for now we allow a non-multi-arch gdb to override these
2078 definitions. */
2079#ifndef ARM_LE_BREAKPOINT
2080#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2081#endif
2082#ifndef ARM_BE_BREAKPOINT
2083#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2084#endif
2085#ifndef THUMB_LE_BREAKPOINT
2086#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2087#endif
2088#ifndef THUMB_BE_BREAKPOINT
2089#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2090#endif
2091
2092static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2093static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2094static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2095static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2096
34e8f22d
RE
2097/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2098 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2099 breakpoint should be used. It returns a pointer to a string of
2100 bytes that encode a breakpoint instruction, stores the length of
2101 the string to *lenptr, and adjusts the program counter (if
2102 necessary) to point to the actual memory location where the
c906108c
SS
2103 breakpoint should be inserted. */
2104
34e8f22d
RE
2105/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2106 breakpoints and storing their handles instread of what was in
2107 memory. It is nice that this is the same size as a handle -
2108 otherwise remote-rdp will have to change. */
2109
c906108c 2110unsigned char *
ed9a39eb 2111arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2112{
66e810cd
RE
2113 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2114
c906108c
SS
2115 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2116 {
66e810cd
RE
2117 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2118 *lenptr = tdep->thumb_breakpoint_size;
2119 return tdep->thumb_breakpoint;
c906108c
SS
2120 }
2121 else
2122 {
66e810cd
RE
2123 *lenptr = tdep->arm_breakpoint_size;
2124 return tdep->arm_breakpoint;
c906108c
SS
2125 }
2126}
ed9a39eb
JM
2127
2128/* Extract from an array REGBUF containing the (raw) register state a
2129 function return value of type TYPE, and copy that, in virtual
2130 format, into VALBUF. */
2131
34e8f22d 2132static void
ed9a39eb
JM
2133arm_extract_return_value (struct type *type,
2134 char regbuf[REGISTER_BYTES],
2135 char *valbuf)
2136{
2137 if (TYPE_CODE_FLT == TYPE_CODE (type))
34e8f22d 2138 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)], valbuf);
ed9a39eb 2139 else
34e8f22d
RE
2140 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2141 TYPE_LENGTH (type));
2142}
2143
67255d04
RE
2144/* Extract from an array REGBUF containing the (raw) register state
2145 the address in which a function should return its structure value. */
2146
2147static CORE_ADDR
2148arm_extract_struct_value_address (char *regbuf)
2149{
2150 return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM));
2151}
2152
2153/* Will a function return an aggregate type in memory or in a
2154 register? Return 0 if an aggregate type can be returned in a
2155 register, 1 if it must be returned in memory. */
2156
2157static int
2158arm_use_struct_convention (int gcc_p, struct type *type)
2159{
2160 int nRc;
2161 register enum type_code code;
2162
2163 /* In the ARM ABI, "integer" like aggregate types are returned in
2164 registers. For an aggregate type to be integer like, its size
2165 must be less than or equal to REGISTER_SIZE and the offset of
2166 each addressable subfield must be zero. Note that bit fields are
2167 not addressable, and all addressable subfields of unions always
2168 start at offset zero.
2169
2170 This function is based on the behaviour of GCC 2.95.1.
2171 See: gcc/arm.c: arm_return_in_memory() for details.
2172
2173 Note: All versions of GCC before GCC 2.95.2 do not set up the
2174 parameters correctly for a function returning the following
2175 structure: struct { float f;}; This should be returned in memory,
2176 not a register. Richard Earnshaw sent me a patch, but I do not
2177 know of any way to detect if a function like the above has been
2178 compiled with the correct calling convention. */
2179
2180 /* All aggregate types that won't fit in a register must be returned
2181 in memory. */
2182 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2183 {
2184 return 1;
2185 }
2186
2187 /* The only aggregate types that can be returned in a register are
2188 structs and unions. Arrays must be returned in memory. */
2189 code = TYPE_CODE (type);
2190 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2191 {
2192 return 1;
2193 }
2194
2195 /* Assume all other aggregate types can be returned in a register.
2196 Run a check for structures, unions and arrays. */
2197 nRc = 0;
2198
2199 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2200 {
2201 int i;
2202 /* Need to check if this struct/union is "integer" like. For
2203 this to be true, its size must be less than or equal to
2204 REGISTER_SIZE and the offset of each addressable subfield
2205 must be zero. Note that bit fields are not addressable, and
2206 unions always start at offset zero. If any of the subfields
2207 is a floating point type, the struct/union cannot be an
2208 integer type. */
2209
2210 /* For each field in the object, check:
2211 1) Is it FP? --> yes, nRc = 1;
2212 2) Is it addressable (bitpos != 0) and
2213 not packed (bitsize == 0)?
2214 --> yes, nRc = 1
2215 */
2216
2217 for (i = 0; i < TYPE_NFIELDS (type); i++)
2218 {
2219 enum type_code field_type_code;
2220 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2221
2222 /* Is it a floating point type field? */
2223 if (field_type_code == TYPE_CODE_FLT)
2224 {
2225 nRc = 1;
2226 break;
2227 }
2228
2229 /* If bitpos != 0, then we have to care about it. */
2230 if (TYPE_FIELD_BITPOS (type, i) != 0)
2231 {
2232 /* Bitfields are not addressable. If the field bitsize is
2233 zero, then the field is not packed. Hence it cannot be
2234 a bitfield or any other packed type. */
2235 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2236 {
2237 nRc = 1;
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 return nRc;
2245}
2246
34e8f22d
RE
2247/* Write into appropriate registers a function return value of type
2248 TYPE, given in virtual format. */
2249
2250static void
2251arm_store_return_value (struct type *type, char *valbuf)
2252{
2253 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2254 {
2255 char buf[MAX_REGISTER_RAW_SIZE];
2256
2257 convert_to_extended (valbuf, buf);
2258 /* XXX Is this correct for soft-float? */
2259 write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2260 MAX_REGISTER_RAW_SIZE);
2261 }
2262 else
2263 write_register_bytes (0, valbuf, TYPE_LENGTH (type));
2264}
2265
2266/* Store the address of the place in which to copy the structure the
2267 subroutine will return. This is called from call_function. */
2268
2269static void
2270arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2271{
2272 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2273}
2274
2275/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2276
2277int
ed9a39eb 2278arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2279{
2280 CORE_ADDR start_addr;
2281
ed9a39eb
JM
2282 /* Find the starting address of the function containing the PC. If
2283 the caller didn't give us a name, look it up at the same time. */
c906108c
SS
2284 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2285 return 0;
2286
2287 return strncmp (name, "_call_via_r", 11) == 0;
2288}
2289
ed9a39eb
JM
2290/* If PC is in a Thumb call or return stub, return the address of the
2291 target PC, which is in a register. The thunk functions are called
2292 _called_via_xx, where x is the register name. The possible names
2293 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2294
2295CORE_ADDR
ed9a39eb 2296arm_skip_stub (CORE_ADDR pc)
c906108c 2297{
c5aa993b 2298 char *name;
c906108c
SS
2299 CORE_ADDR start_addr;
2300
2301 /* Find the starting address and name of the function containing the PC. */
2302 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2303 return 0;
2304
2305 /* Call thunks always start with "_call_via_". */
2306 if (strncmp (name, "_call_via_", 10) == 0)
2307 {
ed9a39eb
JM
2308 /* Use the name suffix to determine which register contains the
2309 target PC. */
c5aa993b
JM
2310 static char *table[15] =
2311 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2312 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2313 };
c906108c
SS
2314 int regno;
2315
2316 for (regno = 0; regno <= 14; regno++)
2317 if (strcmp (&name[10], table[regno]) == 0)
2318 return read_register (regno);
2319 }
ed9a39eb 2320
c5aa993b 2321 return 0; /* not a stub */
c906108c
SS
2322}
2323
bc90b915
FN
2324/* If the user changes the register disassembly flavor used for info register
2325 and other commands, we have to also switch the flavor used in opcodes
2326 for disassembly output.
2327 This function is run in the set disassembly_flavor command, and does that. */
2328
2329static void
2330set_disassembly_flavor_sfunc (char *args, int from_tty,
2331 struct cmd_list_element *c)
2332{
2333 set_disassembly_flavor ();
2334}
2335\f
966fbf70 2336/* Return the ARM register name corresponding to register I. */
34e8f22d
RE
2337static char *
2338arm_register_name (int i)
966fbf70
RE
2339{
2340 return arm_register_names[i];
2341}
2342
bc90b915
FN
2343static void
2344set_disassembly_flavor (void)
2345{
2346 const char *setname, *setdesc, **regnames;
2347 int numregs, j;
2348
2349 /* Find the flavor that the user wants in the opcodes table. */
2350 int current = 0;
2351 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2352 while ((disassembly_flavor != setname)
2353 && (current < num_flavor_options))
2354 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2355 current_option = current;
2356
2357 /* Fill our copy. */
2358 for (j = 0; j < numregs; j++)
2359 arm_register_names[j] = (char *) regnames[j];
2360
2361 /* Adjust case. */
34e8f22d 2362 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2363 {
34e8f22d
RE
2364 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2365 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2366 }
2367 else
2368 {
34e8f22d
RE
2369 arm_register_names[ARM_FPS_REGNUM] = "fps";
2370 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2371 }
2372
2373 /* Synchronize the disassembler. */
2374 set_arm_regname_option (current);
2375}
2376
2377/* arm_othernames implements the "othernames" command. This is kind
2378 of hacky, and I prefer the set-show disassembly-flavor which is
2379 also used for the x86 gdb. I will keep this around, however, in
2380 case anyone is actually using it. */
2381
2382static void
2383arm_othernames (char *names, int n)
2384{
2385 /* Circle through the various flavors. */
2386 current_option = (current_option + 1) % num_flavor_options;
2387
2388 disassembly_flavor = valid_flavors[current_option];
2389 set_disassembly_flavor ();
2390}
2391
a42dd537
KB
2392/* Fetch, and possibly build, an appropriate link_map_offsets structure
2393 for ARM linux targets using the struct offsets defined in <link.h>.
2394 Note, however, that link.h is not actually referred to in this file.
2395 Instead, the relevant structs offsets were obtained from examining
2396 link.h. (We can't refer to link.h from this file because the host
2397 system won't necessarily have it, or if it does, the structs which
2398 it defines will refer to the host system, not the target.) */
2399
2400struct link_map_offsets *
2401arm_linux_svr4_fetch_link_map_offsets (void)
2402{
2403 static struct link_map_offsets lmo;
2404 static struct link_map_offsets *lmp = 0;
2405
2406 if (lmp == 0)
2407 {
2408 lmp = &lmo;
2409
2410 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2411 need. */
2412
2413 lmo.r_map_offset = 4;
2414 lmo.r_map_size = 4;
2415
2416 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2417 need. */
2418
2419 lmo.l_addr_offset = 0;
2420 lmo.l_addr_size = 4;
2421
2422 lmo.l_name_offset = 4;
2423 lmo.l_name_size = 4;
2424
2425 lmo.l_next_offset = 12;
2426 lmo.l_next_size = 4;
2427
2428 lmo.l_prev_offset = 16;
2429 lmo.l_prev_size = 4;
2430 }
2431
2432 return lmp;
2433}
2434
082fc60d
RE
2435/* Test whether the coff symbol specific value corresponds to a Thumb
2436 function. */
2437
2438static int
2439coff_sym_is_thumb (int val)
2440{
2441 return (val == C_THUMBEXT ||
2442 val == C_THUMBSTAT ||
2443 val == C_THUMBEXTFUNC ||
2444 val == C_THUMBSTATFUNC ||
2445 val == C_THUMBLABEL);
2446}
2447
2448/* arm_coff_make_msymbol_special()
2449 arm_elf_make_msymbol_special()
2450
2451 These functions test whether the COFF or ELF symbol corresponds to
2452 an address in thumb code, and set a "special" bit in a minimal
2453 symbol to indicate that it does. */
2454
34e8f22d 2455static void
082fc60d
RE
2456arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2457{
2458 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2459 STT_ARM_TFUNC). */
2460 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2461 == STT_LOPROC)
2462 MSYMBOL_SET_SPECIAL (msym);
2463}
2464
34e8f22d 2465static void
082fc60d
RE
2466arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2467{
2468 if (coff_sym_is_thumb (val))
2469 MSYMBOL_SET_SPECIAL (msym);
2470}
2471
97e03143
RE
2472\f
2473static void
2474process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2475{
2476 enum arm_abi *os_ident_ptr = obj;
2477 const char *name;
2478 unsigned int sectsize;
2479
2480 name = bfd_get_section_name (abfd, sect);
2481 sectsize = bfd_section_size (abfd, sect);
2482
2483 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2484 {
2485 unsigned int name_length, data_length, note_type;
2486 char *note;
2487
2488 /* If the section is larger than this, it's probably not what we are
2489 looking for. */
2490 if (sectsize > 128)
2491 sectsize = 128;
2492
2493 note = alloca (sectsize);
2494
2495 bfd_get_section_contents (abfd, sect, note,
2496 (file_ptr) 0, (bfd_size_type) sectsize);
2497
2498 name_length = bfd_h_get_32 (abfd, note);
2499 data_length = bfd_h_get_32 (abfd, note + 4);
2500 note_type = bfd_h_get_32 (abfd, note + 8);
2501
2502 if (name_length == 4 && data_length == 16 && note_type == 1
2503 && strcmp (note + 12, "GNU") == 0)
2504 {
2505 int os_number = bfd_h_get_32 (abfd, note + 16);
2506
2507 /* The case numbers are from abi-tags in glibc */
2508 switch (os_number)
2509 {
2510 case 0 :
2511 *os_ident_ptr = ARM_ABI_LINUX;
2512 break;
2513
2514 case 1 :
2515 internal_error
2516 (__FILE__, __LINE__,
2517 "process_note_abi_sections: Hurd objects not supported");
2518 break;
2519
2520 case 2 :
2521 internal_error
2522 (__FILE__, __LINE__,
2523 "process_note_abi_sections: Solaris objects not supported");
2524 break;
2525
2526 default :
2527 internal_error
2528 (__FILE__, __LINE__,
2529 "process_note_abi_sections: unknown OS number %d",
2530 os_number);
2531 break;
2532 }
2533 }
2534 }
2535 /* NetBSD uses a similar trick. */
2536 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
2537 {
2538 unsigned int name_length, desc_length, note_type;
2539 char *note;
2540
2541 /* If the section is larger than this, it's probably not what we are
2542 looking for. */
2543 if (sectsize > 128)
2544 sectsize = 128;
2545
2546 note = alloca (sectsize);
2547
2548 bfd_get_section_contents (abfd, sect, note,
2549 (file_ptr) 0, (bfd_size_type) sectsize);
2550
2551 name_length = bfd_h_get_32 (abfd, note);
2552 desc_length = bfd_h_get_32 (abfd, note + 4);
2553 note_type = bfd_h_get_32 (abfd, note + 8);
2554
2555 if (name_length == 7 && desc_length == 4 && note_type == 1
2556 && strcmp (note + 12, "NetBSD") == 0)
2557 /* XXX Should we check the version here?
2558 Probably not necessary yet. */
2559 *os_ident_ptr = ARM_ABI_NETBSD_ELF;
2560 }
2561}
2562
2563/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2564 executables. If it's not an ELF executable or if the OS/ABI couldn't
2565 be determined, simply return -1. */
2566
2567static int
2568get_elfosabi (bfd *abfd)
2569{
2570 int elfosabi;
2571 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2572
2573 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2574
2575 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2576 that we're on a SYSV system. However, GNU/Linux uses a note section
2577 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2578 have to check the note sections too.
2579
2580 GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that
2581 as well.*/
2582 if (elfosabi == 0 || elfosabi == ELFOSABI_ARM)
2583 {
2584 bfd_map_over_sections (abfd,
2585 process_note_abi_tag_sections,
2586 &arm_abi);
2587 }
2588
2589 if (arm_abi != ARM_ABI_UNKNOWN)
2590 return arm_abi;
2591
2592 switch (elfosabi)
2593 {
2594 case ELFOSABI_NONE:
2595 /* Existing ARM Tools don't set this field, so look at the EI_FLAGS
2596 field for more information. */
2597
2598 switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags))
2599 {
2600 case EF_ARM_EABI_VER1:
2601 return ARM_ABI_EABI_V1;
2602
2603 case EF_ARM_EABI_VER2:
2604 return ARM_ABI_EABI_V2;
2605
2606 case EF_ARM_EABI_UNKNOWN:
2607 /* Assume GNU tools. */
2608 return ARM_ABI_APCS;
2609
2610 default:
2611 internal_error (__FILE__, __LINE__,
2612 "get_elfosabi: Unknown ARM EABI version 0x%lx",
2613 EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags));
2614
2615 }
2616 break;
2617
2618 case ELFOSABI_NETBSD:
2619 return ARM_ABI_NETBSD_ELF;
2620
2621 case ELFOSABI_FREEBSD:
2622 return ARM_ABI_FREEBSD;
2623
2624 case ELFOSABI_LINUX:
2625 return ARM_ABI_LINUX;
2626
2627 case ELFOSABI_ARM:
2628 /* Assume GNU tools with the old APCS abi. */
2629 return ARM_ABI_APCS;
2630
2631 default:
2632 }
2633
2634 return ARM_ABI_UNKNOWN;
2635}
2636
2637struct arm_abi_handler
2638{
2639 struct arm_abi_handler *next;
2640 enum arm_abi abi;
2641 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
2642};
2643
2644struct arm_abi_handler *arm_abi_handler_list = NULL;
2645
2646void
2647arm_gdbarch_register_os_abi (enum arm_abi abi,
2648 void (*init_abi)(struct gdbarch_info,
2649 struct gdbarch *))
2650{
2651 struct arm_abi_handler **handler_p;
2652
2653 for (handler_p = &arm_abi_handler_list; *handler_p != NULL;
2654 handler_p = &(*handler_p)->next)
2655 {
2656 if ((*handler_p)->abi == abi)
2657 {
2658 internal_error
2659 (__FILE__, __LINE__,
2660 "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)"
2661 " has already been registered", (int)abi);
2662 /* If user wants to continue, override previous definition. */
2663 (*handler_p)->init_abi = init_abi;
2664 return;
2665 }
2666 }
2667
2668 (*handler_p)
2669 = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler));
2670 (*handler_p)->next = NULL;
2671 (*handler_p)->abi = abi;
2672 (*handler_p)->init_abi = init_abi;
2673}
2674
2675/* Initialize the current architecture based on INFO. If possible, re-use an
2676 architecture from ARCHES, which is a list of architectures already created
2677 during this debugging session.
2678
2679 Called e.g. at program startup, when reading a core file, and when reading
2680 a binary file. */
2681
39bbf761
RE
2682static struct gdbarch *
2683arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2684{
97e03143 2685 struct gdbarch_tdep *tdep;
39bbf761 2686 struct gdbarch *gdbarch;
97e03143
RE
2687 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2688 struct arm_abi_handler *abi_handler;
39bbf761 2689
97e03143 2690 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2691
97e03143
RE
2692 if (info.abfd != NULL)
2693 {
2694 switch (bfd_get_flavour (info.abfd))
2695 {
2696 case bfd_target_elf_flavour:
2697 arm_abi = get_elfosabi (info.abfd);
2698 break;
2699
2700 case bfd_target_aout_flavour:
2701 if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0)
2702 arm_abi = ARM_ABI_NETBSD_AOUT;
2703 else
2704 /* Assume it's an old APCS-style ABI. */
2705 arm_abi = ARM_ABI_APCS;
2706 break;
2707
2708 case bfd_target_coff_flavour:
2709 /* Assume it's an old APCS-style ABI. */
2710 /* XXX WinCE? */
2711 arm_abi = ARM_ABI_APCS;
2712 break;
2713
2714 default:
2715 /* Not sure what to do here, leave the ABI as unknown. */
2716 break;
2717 }
2718 }
2719
2720 /* Find a candidate among extant architectures. */
2721 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2722 arches != NULL;
2723 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2724 {
2725 /* Make sure the ABI selection matches. */
2726 tdep = gdbarch_tdep (arches->gdbarch);
2727 if (tdep && tdep->arm_abi == arm_abi)
2728 return arches->gdbarch;
2729 }
2730
2731 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2732 gdbarch = gdbarch_alloc (&info, tdep);
2733
2734 tdep->arm_abi = arm_abi;
2735 if (arm_abi < ARM_ABI_INVALID)
2736 tdep->abi_name = arm_abi_names[arm_abi];
2737 else
2738 {
2739 internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d",
2740 (int) arm_abi);
2741 tdep->abi_name = "<invalid>";
2742 }
39bbf761 2743
66e810cd 2744 /* Breakpoints and floating point sizes and format. */
67255d04
RE
2745 switch (info.byte_order)
2746 {
2747 case BFD_ENDIAN_BIG:
66e810cd
RE
2748 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2749 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2750 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2751 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2752
67255d04
RE
2753 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2754 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2755 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
66e810cd 2756
67255d04
RE
2757 break;
2758
2759 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2760 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2761 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2762 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2763 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2764
67255d04
RE
2765 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2766 set_gdbarch_double_format (gdbarch,
2767 &floatformat_ieee_double_littlebyte_bigword);
2768 set_gdbarch_long_double_format (gdbarch,
2769 &floatformat_ieee_double_littlebyte_bigword);
66e810cd 2770
67255d04
RE
2771 break;
2772
2773 default:
2774 internal_error (__FILE__, __LINE__,
2775 "arm_gdbarch_init: bad byte order for float format");
2776 }
2777
97e03143
RE
2778 tdep->lowest_pc = 0x20;
2779
39bbf761
RE
2780 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2781
2782 /* Call dummy code. */
2783 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2784 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2785 set_gdbarch_call_dummy_p (gdbarch, 1);
2786 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2787
34e8f22d
RE
2788 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2789 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words));
2790 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2791
2792 set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy);
2793
39bbf761
RE
2794 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2795
2796 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2797 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2798
148754e5 2799 /* Frame handling. */
39bbf761 2800 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
148754e5
RE
2801 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2802 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2803 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2804 set_gdbarch_frameless_function_invocation
2805 (gdbarch, arm_frameless_function_invocation);
2806 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2807 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2808 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2809 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2810 set_gdbarch_frame_args_skip (gdbarch, 0);
2811 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2812 set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame);
2813 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2814
34e8f22d
RE
2815 /* Address manipulation. */
2816 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2817 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2818
2819 /* Offset from address of function to start of its code. */
2820 set_gdbarch_function_start_offset (gdbarch, 0);
2821
2822 /* Advance PC across function entry code. */
2823 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2824
2825 /* Get the PC when a frame might not be available. */
2826 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2827
2828 /* The stack grows downward. */
2829 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2830
2831 /* Breakpoint manipulation. */
2832 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2833 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2834
2835 /* Information about registers, etc. */
2836 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2837 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2838 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2839 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2840 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2841 set_gdbarch_register_bytes (gdbarch,
2842 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2843 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2844 + NUM_SREGS * STATUS_REGISTER_SIZE));
2845 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2846 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2847 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2848 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2849 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2850 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2851
2852 /* Integer registers are 4 bytes. */
2853 set_gdbarch_register_size (gdbarch, 4);
2854 set_gdbarch_register_name (gdbarch, arm_register_name);
2855
2856 /* Returning results. */
2857 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2858 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2859 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04
RE
2860 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2861 set_gdbarch_extract_struct_value_address (gdbarch,
2862 arm_extract_struct_value_address);
34e8f22d
RE
2863
2864 /* Single stepping. */
2865 /* XXX For an RDI target we should ask the target if it can single-step. */
2866 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2867
2868 /* Minsymbol frobbing. */
2869 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2870 set_gdbarch_coff_make_msymbol_special (gdbarch,
2871 arm_coff_make_msymbol_special);
2872
97e03143
RE
2873 /* Hook in the ABI-specific overrides, if they have been registered. */
2874 if (arm_abi == ARM_ABI_UNKNOWN)
2875 {
2876 fprintf_filtered
2877 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2878 "Attempting to continue with the default ARM settings");
2879 }
2880 else
2881 {
2882 for (abi_handler = arm_abi_handler_list; abi_handler != NULL;
2883 abi_handler = abi_handler->next)
2884 if (abi_handler->abi == arm_abi)
2885 break;
2886
2887 if (abi_handler)
2888 abi_handler->init_abi (info, gdbarch);
2889 else
2890 {
2891 /* We assume that if GDB_MULTI_ARCH is less than
2892 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2893 overriding definitions in this file. */
2894 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2895 fprintf_filtered
2896 (gdb_stderr,
2897 "A handler for the ABI variant \"%s\" is not built into this "
2898 "configuration of GDB. "
2899 "Attempting to continue with the default ARM settings",
2900 arm_abi_names[arm_abi]);
2901 }
2902 }
2903
2904 /* Now we have tuned the configuration, set a few final things,
2905 based on what the OS ABI has told us. */
2906
2907 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
2908 references the old architecture vector, not the one we are
2909 building here. */
2910 if (prologue_cache.saved_regs != NULL)
2911 xfree (prologue_cache.saved_regs);
2912
2913 prologue_cache.saved_regs = (CORE_ADDR *)
2914 xcalloc (1, (sizeof (CORE_ADDR)
97e03143 2915 * (gdbarch_num_regs (gdbarch) + NUM_PSEUDO_REGS)));
39bbf761
RE
2916
2917 return gdbarch;
2918}
2919
97e03143
RE
2920static void
2921arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2922{
2923 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2924
2925 if (tdep == NULL)
2926 return;
2927
2928 if (tdep->abi_name != NULL)
2929 fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name);
2930 else
2931 internal_error (__FILE__, __LINE__,
2932 "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)",
2933 (int) tdep->arm_abi);
2934
2935 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2936 (unsigned long) tdep->lowest_pc);
2937}
2938
2939static void
2940arm_init_abi_eabi_v1 (struct gdbarch_info info,
2941 struct gdbarch *gdbarch)
2942{
2943 /* Place-holder. */
2944}
2945
2946static void
2947arm_init_abi_eabi_v2 (struct gdbarch_info info,
2948 struct gdbarch *gdbarch)
2949{
2950 /* Place-holder. */
2951}
2952
2953static void
2954arm_init_abi_apcs (struct gdbarch_info info,
2955 struct gdbarch *gdbarch)
2956{
2957 /* Place-holder. */
2958}
2959
c906108c 2960void
ed9a39eb 2961_initialize_arm_tdep (void)
c906108c 2962{
bc90b915
FN
2963 struct ui_file *stb;
2964 long length;
96baa820 2965 struct cmd_list_element *new_cmd;
53904c9e
AC
2966 const char *setname;
2967 const char *setdesc;
2968 const char **regnames;
bc90b915
FN
2969 int numregs, i, j;
2970 static char *helptext;
085dd6e6 2971
39bbf761 2972 if (GDB_MULTI_ARCH)
97e03143
RE
2973 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2974
2975 /* Register some ABI variants for embedded systems. */
2976 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1);
2977 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2);
2978 arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs);
39bbf761 2979
c906108c 2980 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 2981
bc90b915
FN
2982 /* Get the number of possible sets of register names defined in opcodes. */
2983 num_flavor_options = get_arm_regname_num_options ();
2984
085dd6e6 2985 /* Sync the opcode insn printer with our register viewer: */
bc90b915 2986 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2987
bc90b915
FN
2988 /* Begin creating the help text. */
2989 stb = mem_fileopen ();
2990 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
2991The valid values are:\n");
ed9a39eb 2992
bc90b915
FN
2993 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2994 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
2995 for (i = 0; i < num_flavor_options; i++)
2996 {
2997 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 2998 valid_flavors[i] = setname;
bc90b915
FN
2999 fprintf_unfiltered (stb, "%s - %s\n", setname,
3000 setdesc);
3001 /* Copy the default names (if found) and synchronize disassembler. */
3002 if (!strcmp (setname, "std"))
3003 {
53904c9e 3004 disassembly_flavor = setname;
bc90b915
FN
3005 current_option = i;
3006 for (j = 0; j < numregs; j++)
3007 arm_register_names[j] = (char *) regnames[j];
3008 set_arm_regname_option (i);
3009 }
3010 }
3011 /* Mark the end of valid options. */
3012 valid_flavors[num_flavor_options] = NULL;
c906108c 3013
bc90b915
FN
3014 /* Finish the creation of the help text. */
3015 fprintf_unfiltered (stb, "The default is \"std\".");
3016 helptext = ui_file_xstrdup (stb, &length);
3017 ui_file_delete (stb);
ed9a39eb 3018
bc90b915 3019 /* Add the disassembly-flavor command */
96baa820 3020 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 3021 valid_flavors,
1ed2a135 3022 &disassembly_flavor,
bc90b915 3023 helptext,
ed9a39eb 3024 &setlist);
9f60d481 3025 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
3026 add_show_from_set (new_cmd, &showlist);
3027
c906108c
SS
3028 /* ??? Maybe this should be a boolean. */
3029 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 3030 var_zinteger, (char *) &arm_apcs_32,
96baa820 3031 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 3032 &showlist);
c906108c 3033
bc90b915
FN
3034 /* Add the deprecated "othernames" command */
3035
3036 add_com ("othernames", class_obscure, arm_othernames,
3037 "Switch to the next set of register names.");
c3b4394c
RE
3038
3039 /* Fill in the prologue_cache fields. */
34e8f22d 3040 prologue_cache.saved_regs = NULL;
c3b4394c
RE
3041 prologue_cache.extra_info = (struct frame_extra_info *)
3042 xcalloc (1, sizeof (struct frame_extra_info));
c906108c 3043}