]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/arm-tdep.c
* arm-tdep.h (enum arm_abi): New enum.
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
c3b4394c 3 2001, 2002 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
34e8f22d
RE
37
38#include "arm-tdep.h"
39
082fc60d
RE
40#include "elf-bfd.h"
41#include "coff/internal.h"
97e03143 42#include "elf/arm.h"
c906108c 43
2a451106
KB
44/* Each OS has a different mechanism for accessing the various
45 registers stored in the sigcontext structure.
46
47 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
48 function pointer) which may be used to determine the addresses
49 of the various saved registers in the sigcontext structure.
50
51 For the ARM target, there are three parameters to this function.
52 The first is the pc value of the frame under consideration, the
53 second the stack pointer of this frame, and the last is the
54 register number to fetch.
55
56 If the tm.h file does not define this macro, then it's assumed that
57 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
58 be 0.
59
60 When it comes time to multi-arching this code, see the identically
61 named machinery in ia64-tdep.c for an example of how it could be
62 done. It should not be necessary to modify the code below where
63 this macro is used. */
64
3bb04bdd
AC
65#ifdef SIGCONTEXT_REGISTER_ADDRESS
66#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
67#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
68#endif
69#else
70#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
71#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
72#endif
73
082fc60d
RE
74/* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose. This field is already being used to store
77 the symbol size, so the assumption is that the symbol size cannot
78 exceed 2^31.
79
80 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
81 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
82 MSYMBOL_SIZE Returns the size of the minimal symbol,
83 i.e. the "info" field with the "special" bit
84 masked out. */
85
86#define MSYMBOL_SET_SPECIAL(msym) \
87 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
88 | 0x80000000)
89
90#define MSYMBOL_IS_SPECIAL(msym) \
91 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
92
93#define MSYMBOL_SIZE(msym) \
94 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 95
97e03143
RE
96/* This table matches the indicees assigned to enum arm_abi. Keep
97 them in sync. */
98
99static const char * const arm_abi_names[] =
100{
101 "<unknown>",
102 "ARM EABI (version 1)",
103 "ARM EABI (version 2)",
104 "GNU/Linux",
105 "NetBSD (a.out)",
106 "NetBSD (ELF)",
107 "APCS",
108 "FreeBSD",
109 "Windows CE",
110 NULL
111};
112
bc90b915
FN
113/* Number of different reg name sets (options). */
114static int num_flavor_options;
115
116/* We have more registers than the disassembler as gdb can print the value
117 of special registers as well.
118 The general register names are overwritten by whatever is being used by
119 the disassembler at the moment. We also adjust the case of cpsr and fps. */
120
121/* Initial value: Register names used in ARM's ISA documentation. */
122static char * arm_register_name_strings[] =
da59e081
JM
123{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
124 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
125 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
126 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
127 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
128 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
bc90b915 129 "fps", "cpsr" }; /* 24 25 */
966fbf70 130static char **arm_register_names = arm_register_name_strings;
ed9a39eb 131
bc90b915 132/* Valid register name flavors. */
53904c9e 133static const char **valid_flavors;
ed9a39eb 134
bc90b915 135/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 136static const char *disassembly_flavor;
bc90b915 137static int current_option; /* Index to that option in the opcodes table. */
96baa820 138
ed9a39eb
JM
139/* This is used to keep the bfd arch_info in sync with the disassembly
140 flavor. */
141static void set_disassembly_flavor_sfunc(char *, int,
142 struct cmd_list_element *);
143static void set_disassembly_flavor (void);
144
145static void convert_from_extended (void *ptr, void *dbl);
146
147/* Define other aspects of the stack frame. We keep the offsets of
148 all saved registers, 'cause we need 'em a lot! We also keep the
149 current size of the stack frame, and the offset of the frame
150 pointer from the stack pointer (for frameless functions, and when
151 we're still in the prologue of a function with a frame) */
152
153struct frame_extra_info
c3b4394c
RE
154{
155 int framesize;
156 int frameoffset;
157 int framereg;
158};
ed9a39eb 159
bc90b915
FN
160/* Addresses for calling Thumb functions have the bit 0 set.
161 Here are some macros to test, set, or clear bit 0 of addresses. */
162#define IS_THUMB_ADDR(addr) ((addr) & 1)
163#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
164#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
165
39bbf761 166static int
ed9a39eb 167arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 168{
c906108c
SS
169 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
170}
171
172/* Set to true if the 32-bit mode is in use. */
173
174int arm_apcs_32 = 1;
175
ed9a39eb
JM
176/* Flag set by arm_fix_call_dummy that tells whether the target
177 function is a Thumb function. This flag is checked by
178 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
179 its use in valops.c) to pass the function address as an additional
180 parameter. */
c906108c
SS
181
182static int target_is_thumb;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the calling
185 function is a Thumb function. This flag is checked by
186 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
187
188static int caller_is_thumb;
189
ed9a39eb
JM
190/* Determine if the program counter specified in MEMADDR is in a Thumb
191 function. */
c906108c 192
34e8f22d 193int
2a451106 194arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 195{
c5aa993b 196 struct minimal_symbol *sym;
c906108c 197
ed9a39eb 198 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
199 if (IS_THUMB_ADDR (memaddr))
200 return 1;
201
ed9a39eb 202 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
203 sym = lookup_minimal_symbol_by_pc (memaddr);
204 if (sym)
205 {
c5aa993b 206 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
207 }
208 else
ed9a39eb
JM
209 {
210 return 0;
211 }
c906108c
SS
212}
213
ed9a39eb
JM
214/* Determine if the program counter specified in MEMADDR is in a call
215 dummy being called from a Thumb function. */
c906108c 216
34e8f22d 217int
2a451106 218arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 219{
c5aa993b 220 CORE_ADDR sp = read_sp ();
c906108c 221
dfcd3bfb
JM
222 /* FIXME: Until we switch for the new call dummy macros, this heuristic
223 is the best we can do. We are trying to determine if the pc is on
224 the stack, which (hopefully) will only happen in a call dummy.
225 We hope the current stack pointer is not so far alway from the dummy
226 frame location (true if we have not pushed large data structures or
227 gone too many levels deep) and that our 1024 is not enough to consider
228 code regions as part of the stack (true for most practical purposes) */
229 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
230 return caller_is_thumb;
231 else
232 return 0;
233}
234
181c1381 235/* Remove useless bits from addresses in a running program. */
34e8f22d 236static CORE_ADDR
ed9a39eb 237arm_addr_bits_remove (CORE_ADDR val)
c906108c
SS
238{
239 if (arm_pc_is_thumb (val))
240 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
241 else
242 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
243}
244
181c1381
RE
245/* When reading symbols, we need to zap the low bit of the address,
246 which may be set to 1 for Thumb functions. */
34e8f22d 247static CORE_ADDR
181c1381
RE
248arm_smash_text_address (CORE_ADDR val)
249{
250 return val & ~1;
251}
252
34e8f22d
RE
253/* Immediately after a function call, return the saved pc. Can't
254 always go through the frames for this because on some machines the
255 new frame is not set up until the new function executes some
256 instructions. */
257
258static CORE_ADDR
ed9a39eb 259arm_saved_pc_after_call (struct frame_info *frame)
c906108c 260{
34e8f22d 261 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
262}
263
0defa245
RE
264/* Determine whether the function invocation represented by FI has a
265 frame on the stack associated with it. If it does return zero,
266 otherwise return 1. */
267
148754e5 268static int
ed9a39eb 269arm_frameless_function_invocation (struct frame_info *fi)
392a587b 270{
392a587b 271 CORE_ADDR func_start, after_prologue;
96baa820 272 int frameless;
ed9a39eb 273
0defa245
RE
274 /* Sometimes we have functions that do a little setup (like saving the
275 vN registers with the stmdb instruction, but DO NOT set up a frame.
276 The symbol table will report this as a prologue. However, it is
277 important not to try to parse these partial frames as frames, or we
278 will get really confused.
279
280 So I will demand 3 instructions between the start & end of the
281 prologue before I call it a real prologue, i.e. at least
282 mov ip, sp,
283 stmdb sp!, {}
284 sub sp, ip, #4. */
285
392a587b 286 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
7be570e7 287 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 288
96baa820 289 /* There are some frameless functions whose first two instructions
ed9a39eb
JM
290 follow the standard APCS form, in which case after_prologue will
291 be func_start + 8. */
292
96baa820 293 frameless = (after_prologue < func_start + 12);
392a587b
JM
294 return frameless;
295}
296
0defa245 297/* The address of the arguments in the frame. */
148754e5 298static CORE_ADDR
0defa245
RE
299arm_frame_args_address (struct frame_info *fi)
300{
301 return fi->frame;
302}
303
304/* The address of the local variables in the frame. */
148754e5 305static CORE_ADDR
0defa245
RE
306arm_frame_locals_address (struct frame_info *fi)
307{
308 return fi->frame;
309}
310
311/* The number of arguments being passed in the frame. */
148754e5 312static int
0defa245
RE
313arm_frame_num_args (struct frame_info *fi)
314{
315 /* We have no way of knowing. */
316 return -1;
317}
318
c906108c 319/* A typical Thumb prologue looks like this:
c5aa993b
JM
320 push {r7, lr}
321 add sp, sp, #-28
322 add r7, sp, #12
c906108c 323 Sometimes the latter instruction may be replaced by:
da59e081
JM
324 mov r7, sp
325
326 or like this:
327 push {r7, lr}
328 mov r7, sp
329 sub sp, #12
330
331 or, on tpcs, like this:
332 sub sp,#16
333 push {r7, lr}
334 (many instructions)
335 mov r7, sp
336 sub sp, #12
337
338 There is always one instruction of three classes:
339 1 - push
340 2 - setting of r7
341 3 - adjusting of sp
342
343 When we have found at least one of each class we are done with the prolog.
344 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 345 */
c906108c
SS
346
347static CORE_ADDR
c7885828 348thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
349{
350 CORE_ADDR current_pc;
da59e081
JM
351 int findmask = 0; /* findmask:
352 bit 0 - push { rlist }
353 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
354 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
355 */
c906108c 356
c7885828 357 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
c906108c
SS
358 {
359 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
360
da59e081
JM
361 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
362 {
363 findmask |= 1; /* push found */
364 }
365 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
366 {
367 if ((findmask & 1) == 0) /* before push ? */
368 continue;
369 else
370 findmask |= 4; /* add/sub sp found */
371 }
372 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
373 {
374 findmask |= 2; /* setting of r7 found */
375 }
376 else if (insn == 0x466f) /* mov r7, sp */
377 {
378 findmask |= 2; /* setting of r7 found */
379 }
3d74b771
FF
380 else if (findmask == (4+2+1))
381 {
382 break; /* We have found one of each type of prologue instruction */
383 }
da59e081
JM
384 else
385 continue; /* something in the prolog that we don't care about or some
386 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
387 }
388
389 return current_pc;
390}
391
34e8f22d
RE
392/* Advance the PC across any function entry prologue instructions to reach
393 some "real" code.
394
395 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 396 prologue:
c906108c 397
c5aa993b
JM
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 406
34e8f22d 407static CORE_ADDR
ed9a39eb 408arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
409{
410 unsigned long inst;
411 CORE_ADDR skip_pc;
412 CORE_ADDR func_addr, func_end;
50f6fb4b 413 char *func_name;
c906108c
SS
414 struct symtab_and_line sal;
415
96baa820 416 /* See what the symbol table says. */
ed9a39eb 417
50f6fb4b 418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 419 {
50f6fb4b
CV
420 struct symbol *sym;
421
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
425 {
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
429 return sal.end;
430 }
c906108c
SS
431 }
432
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
c7885828 435 return thumb_skip_prologue (pc, func_end);
c906108c
SS
436
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
439 skip_pc = pc;
440 inst = read_memory_integer (skip_pc, 4);
c5aa993b 441 if (inst != 0xe1a0c00d) /* mov ip, sp */
c906108c
SS
442 return pc;
443
444 skip_pc += 4;
445 inst = read_memory_integer (skip_pc, 4);
c5aa993b 446 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
c906108c
SS
447 {
448 skip_pc += 4;
449 inst = read_memory_integer (skip_pc, 4);
450 }
451
c5aa993b 452 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
c906108c
SS
453 return pc;
454
455 skip_pc += 4;
456 inst = read_memory_integer (skip_pc, 4);
457
458 /* Any insns after this point may float into the code, if it makes
ed9a39eb
JM
459 for better instruction scheduling, so we skip them only if we
460 find them, but still consdier the function to be frame-ful. */
c906108c 461
ed9a39eb
JM
462 /* We may have either one sfmfd instruction here, or several stfe
463 insns, depending on the version of floating point code we
464 support. */
c5aa993b 465 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
c906108c
SS
466 {
467 skip_pc += 4;
468 inst = read_memory_integer (skip_pc, 4);
469 }
470 else
471 {
c5aa993b
JM
472 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
473 {
474 skip_pc += 4;
475 inst = read_memory_integer (skip_pc, 4);
476 }
c906108c
SS
477 }
478
c5aa993b 479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
c906108c
SS
480 skip_pc += 4;
481
482 return skip_pc;
483}
c5aa993b 484/* *INDENT-OFF* */
c906108c
SS
485/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
486 This function decodes a Thumb function prologue to determine:
487 1) the size of the stack frame
488 2) which registers are saved on it
489 3) the offsets of saved regs
490 4) the offset from the stack pointer to the frame pointer
491 This information is stored in the "extra" fields of the frame_info.
492
da59e081
JM
493 A typical Thumb function prologue would create this stack frame
494 (offsets relative to FP)
c906108c
SS
495 old SP -> 24 stack parameters
496 20 LR
497 16 R7
498 R7 -> 0 local variables (16 bytes)
499 SP -> -12 additional stack space (12 bytes)
500 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
501 12 bytes. The frame register is R7.
502
503 The comments for thumb_skip_prolog() describe the algorithm we use to detect
504 the end of the prolog */
c5aa993b
JM
505/* *INDENT-ON* */
506
c906108c 507static void
ed9a39eb 508thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
509{
510 CORE_ADDR prologue_start;
511 CORE_ADDR prologue_end;
512 CORE_ADDR current_pc;
c5aa993b 513 int saved_reg[16]; /* which register has been copied to register n? */
da59e081
JM
514 int findmask = 0; /* findmask:
515 bit 0 - push { rlist }
516 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
517 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
518 */
c5aa993b 519 int i;
c906108c 520
c5aa993b 521 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
522 {
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
524
c5aa993b 525 if (sal.line == 0) /* no line info, use current PC */
c906108c
SS
526 prologue_end = fi->pc;
527 else if (sal.end < prologue_end) /* next line begins after fn end */
c5aa993b 528 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
529 }
530 else
c5aa993b
JM
531 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
532 /* 16 pushes, an add, and "mv fp,sp" */
c906108c
SS
533
534 prologue_end = min (prologue_end, fi->pc);
535
536 /* Initialize the saved register map. When register H is copied to
537 register L, we will put H in saved_reg[L]. */
538 for (i = 0; i < 16; i++)
539 saved_reg[i] = i;
540
541 /* Search the prologue looking for instructions that set up the
da59e081
JM
542 frame pointer, adjust the stack pointer, and save registers.
543 Do this until all basic prolog instructions are found. */
c906108c 544
c3b4394c 545 fi->extra_info->framesize = 0;
da59e081
JM
546 for (current_pc = prologue_start;
547 (current_pc < prologue_end) && ((findmask & 7) != 7);
548 current_pc += 2)
c906108c
SS
549 {
550 unsigned short insn;
551 int regno;
552 int offset;
553
554 insn = read_memory_unsigned_integer (current_pc, 2);
555
c5aa993b 556 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 557 {
da59e081
JM
558 int mask;
559 findmask |= 1; /* push found */
c906108c
SS
560 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
561 whether to save LR (R14). */
da59e081 562 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c
SS
563
564 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 565 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 566 if (mask & (1 << regno))
c5aa993b 567 {
c3b4394c
RE
568 fi->extra_info->framesize += 4;
569 fi->saved_regs[saved_reg[regno]] =
570 -(fi->extra_info->framesize);
c906108c
SS
571 saved_reg[regno] = regno; /* reset saved register map */
572 }
573 }
da59e081 574 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
c906108c 575 {
da59e081
JM
576 if ((findmask & 1) == 0) /* before push ? */
577 continue;
578 else
579 findmask |= 4; /* add/sub sp found */
580
c5aa993b 581 offset = (insn & 0x7f) << 2; /* get scaled offset */
da59e081
JM
582 if (insn & 0x80) /* is it signed? (==subtracting) */
583 {
c3b4394c 584 fi->extra_info->frameoffset += offset;
da59e081
JM
585 offset = -offset;
586 }
c3b4394c 587 fi->extra_info->framesize -= offset;
c906108c
SS
588 }
589 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
590 {
da59e081 591 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
592 fi->extra_info->framereg = THUMB_FP_REGNUM;
593 /* get scaled offset */
594 fi->extra_info->frameoffset = (insn & 0xff) << 2;
c906108c 595 }
da59e081 596 else if (insn == 0x466f) /* mov r7, sp */
c906108c 597 {
da59e081 598 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
599 fi->extra_info->framereg = THUMB_FP_REGNUM;
600 fi->extra_info->frameoffset = 0;
34e8f22d 601 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
602 }
603 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
604 {
c5aa993b 605 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 606 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
c5aa993b 607 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
608 }
609 else
da59e081
JM
610 continue; /* something in the prolog that we don't care about or some
611 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
612 }
613}
614
ed9a39eb
JM
615/* Check if prologue for this frame's PC has already been scanned. If
616 it has, copy the relevant information about that prologue and
c906108c
SS
617 return non-zero. Otherwise do not copy anything and return zero.
618
619 The information saved in the cache includes:
c5aa993b
JM
620 * the frame register number;
621 * the size of the stack frame;
622 * the offsets of saved regs (relative to the old SP); and
623 * the offset from the stack pointer to the frame pointer
c906108c 624
ed9a39eb
JM
625 The cache contains only one entry, since this is adequate for the
626 typical sequence of prologue scan requests we get. When performing
627 a backtrace, GDB will usually ask to scan the same function twice
628 in a row (once to get the frame chain, and once to fill in the
629 extra frame information). */
c906108c
SS
630
631static struct frame_info prologue_cache;
632
633static int
ed9a39eb 634check_prologue_cache (struct frame_info *fi)
c906108c
SS
635{
636 int i;
637
638 if (fi->pc == prologue_cache.pc)
639 {
c3b4394c
RE
640 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
641 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
642 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
643 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
644 fi->saved_regs[i] = prologue_cache.saved_regs[i];
c906108c
SS
645 return 1;
646 }
647 else
648 return 0;
649}
650
651
ed9a39eb 652/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
653
654static void
ed9a39eb 655save_prologue_cache (struct frame_info *fi)
c906108c
SS
656{
657 int i;
658
c5aa993b 659 prologue_cache.pc = fi->pc;
c3b4394c
RE
660 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
661 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
662 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
c5aa993b 663
c3b4394c
RE
664 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
665 prologue_cache.saved_regs[i] = fi->saved_regs[i];
c906108c
SS
666}
667
668
ed9a39eb 669/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
670 1) the size of the stack frame
671 2) which registers are saved on it
672 3) the offsets of saved regs
673 4) the offset from the stack pointer to the frame pointer
c906108c
SS
674 This information is stored in the "extra" fields of the frame_info.
675
96baa820
JM
676 There are two basic forms for the ARM prologue. The fixed argument
677 function call will look like:
ed9a39eb
JM
678
679 mov ip, sp
680 stmfd sp!, {fp, ip, lr, pc}
681 sub fp, ip, #4
682 [sub sp, sp, #4]
96baa820 683
c906108c 684 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
685 IP -> 4 (caller's stack)
686 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
687 -4 LR (return address in caller)
688 -8 IP (copy of caller's SP)
689 -12 FP (caller's FP)
690 SP -> -28 Local variables
691
c906108c 692 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
693 28 bytes. The stmfd call can also save any of the vN registers it
694 plans to use, which increases the frame size accordingly.
695
696 Note: The stored PC is 8 off of the STMFD instruction that stored it
697 because the ARM Store instructions always store PC + 8 when you read
698 the PC register.
ed9a39eb 699
96baa820
JM
700 A variable argument function call will look like:
701
ed9a39eb
JM
702 mov ip, sp
703 stmfd sp!, {a1, a2, a3, a4}
704 stmfd sp!, {fp, ip, lr, pc}
705 sub fp, ip, #20
706
96baa820 707 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
708 IP -> 20 (caller's stack)
709 16 A4
710 12 A3
711 8 A2
712 4 A1
713 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
714 -4 LR (return address in caller)
715 -8 IP (copy of caller's SP)
716 -12 FP (caller's FP)
717 SP -> -28 Local variables
96baa820
JM
718
719 The frame size would thus be 48 bytes, and the frame offset would be
720 28 bytes.
721
722 There is another potential complication, which is that the optimizer
723 will try to separate the store of fp in the "stmfd" instruction from
724 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
725 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
726
727 Also, note, the original version of the ARM toolchain claimed that there
728 should be an
729
730 instruction at the end of the prologue. I have never seen GCC produce
731 this, and the ARM docs don't mention it. We still test for it below in
732 case it happens...
ed9a39eb
JM
733
734 */
c906108c
SS
735
736static void
ed9a39eb 737arm_scan_prologue (struct frame_info *fi)
c906108c
SS
738{
739 int regno, sp_offset, fp_offset;
16a0f3e7 740 LONGEST return_value;
c906108c
SS
741 CORE_ADDR prologue_start, prologue_end, current_pc;
742
743 /* Check if this function is already in the cache of frame information. */
744 if (check_prologue_cache (fi))
745 return;
746
747 /* Assume there is no frame until proven otherwise. */
34e8f22d 748 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
749 fi->extra_info->framesize = 0;
750 fi->extra_info->frameoffset = 0;
c906108c
SS
751
752 /* Check for Thumb prologue. */
753 if (arm_pc_is_thumb (fi->pc))
754 {
755 thumb_scan_prologue (fi);
756 save_prologue_cache (fi);
757 return;
758 }
759
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
763 {
2a451106
KB
764 /* One way to find the end of the prologue (which works well
765 for unoptimized code) is to do the following:
766
767 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
768
769 if (sal.line == 0)
770 prologue_end = fi->pc;
771 else if (sal.end < prologue_end)
772 prologue_end = sal.end;
773
774 This mechanism is very accurate so long as the optimizer
775 doesn't move any instructions from the function body into the
776 prologue. If this happens, sal.end will be the last
777 instruction in the first hunk of prologue code just before
778 the first instruction that the scheduler has moved from
779 the body to the prologue.
780
781 In order to make sure that we scan all of the prologue
782 instructions, we use a slightly less accurate mechanism which
783 may scan more than necessary. To help compensate for this
784 lack of accuracy, the prologue scanning loop below contains
785 several clauses which'll cause the loop to terminate early if
786 an implausible prologue instruction is encountered.
787
788 The expression
789
790 prologue_start + 64
791
792 is a suitable endpoint since it accounts for the largest
793 possible prologue plus up to five instructions inserted by
794 the scheduler. */
795
796 if (prologue_end > prologue_start + 64)
797 {
798 prologue_end = prologue_start + 64; /* See above. */
799 }
c906108c
SS
800 }
801 else
802 {
803 /* Get address of the stmfd in the prologue of the callee; the saved
96baa820 804 PC is the address of the stmfd + 8. */
16a0f3e7
EZ
805 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
806 return;
807 else
808 {
809 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
810 prologue_end = prologue_start + 64; /* See above. */
811 }
c906108c
SS
812 }
813
814 /* Now search the prologue looking for instructions that set up the
96baa820 815 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 816
96baa820
JM
817 Be careful, however, and if it doesn't look like a prologue,
818 don't try to scan it. If, for instance, a frameless function
819 begins with stmfd sp!, then we will tell ourselves there is
820 a frame, which will confuse stack traceback, as well ad"finish"
821 and other operations that rely on a knowledge of the stack
822 traceback.
823
824 In the APCS, the prologue should start with "mov ip, sp" so
d4473757
KB
825 if we don't see this as the first insn, we will stop. [Note:
826 This doesn't seem to be true any longer, so it's now an optional
827 part of the prologue. - Kevin Buettner, 2001-11-20] */
c906108c
SS
828
829 sp_offset = fp_offset = 0;
c906108c 830
ed9a39eb
JM
831 if (read_memory_unsigned_integer (prologue_start, 4)
832 == 0xe1a0c00d) /* mov ip, sp */
d4473757
KB
833 current_pc = prologue_start + 4;
834 else
835 current_pc = prologue_start;
836
837 for (; current_pc < prologue_end; current_pc += 4)
96baa820 838 {
d4473757
KB
839 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
840
841 if ((insn & 0xffff0000) == 0xe92d0000)
842 /* stmfd sp!, {..., fp, ip, lr, pc}
843 or
844 stmfd sp!, {a1, a2, a3, a4} */
c906108c 845 {
d4473757 846 int mask = insn & 0xffff;
ed9a39eb 847
d4473757 848 /* Calculate offsets of saved registers. */
34e8f22d 849 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
850 if (mask & (1 << regno))
851 {
852 sp_offset -= 4;
c3b4394c 853 fi->saved_regs[regno] = sp_offset;
d4473757
KB
854 }
855 }
856 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
857 {
858 unsigned imm = insn & 0xff; /* immediate value */
859 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
860 imm = (imm >> rot) | (imm << (32 - rot));
861 fp_offset = -imm;
34e8f22d 862 fi->extra_info->framereg = ARM_FP_REGNUM;
d4473757
KB
863 }
864 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
865 {
866 unsigned imm = insn & 0xff; /* immediate value */
867 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
868 imm = (imm >> rot) | (imm << (32 - rot));
869 sp_offset -= imm;
870 }
871 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
872 {
873 sp_offset -= 12;
34e8f22d 874 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
c3b4394c 875 fi->saved_regs[regno] = sp_offset;
d4473757
KB
876 }
877 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
878 {
879 int n_saved_fp_regs;
880 unsigned int fp_start_reg, fp_bound_reg;
881
882 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 883 {
d4473757
KB
884 if ((insn & 0x40000) == 0x40000) /* N1 is set */
885 n_saved_fp_regs = 3;
886 else
887 n_saved_fp_regs = 1;
96baa820 888 }
d4473757 889 else
96baa820 890 {
d4473757
KB
891 if ((insn & 0x40000) == 0x40000) /* N1 is set */
892 n_saved_fp_regs = 2;
893 else
894 n_saved_fp_regs = 4;
96baa820 895 }
d4473757 896
34e8f22d 897 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
898 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
899 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
900 {
901 sp_offset -= 12;
c3b4394c 902 fi->saved_regs[fp_start_reg++] = sp_offset;
96baa820 903 }
c906108c 904 }
d4473757
KB
905 else if ((insn & 0xf0000000) != 0xe0000000)
906 break; /* Condition not true, exit early */
907 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
908 break; /* Don't scan past a block load */
909 else
910 /* The optimizer might shove anything into the prologue,
911 so we just skip what we don't recognize. */
912 continue;
c906108c
SS
913 }
914
915 /* The frame size is just the negative of the offset (from the original SP)
916 of the last thing thing we pushed on the stack. The frame offset is
917 [new FP] - [new SP]. */
c3b4394c 918 fi->extra_info->framesize = -sp_offset;
34e8f22d 919 if (fi->extra_info->framereg == ARM_FP_REGNUM)
c3b4394c 920 fi->extra_info->frameoffset = fp_offset - sp_offset;
d4473757 921 else
c3b4394c 922 fi->extra_info->frameoffset = 0;
ed9a39eb 923
c906108c
SS
924 save_prologue_cache (fi);
925}
926
ed9a39eb
JM
927/* Find REGNUM on the stack. Otherwise, it's in an active register.
928 One thing we might want to do here is to check REGNUM against the
929 clobber mask, and somehow flag it as invalid if it isn't saved on
930 the stack somewhere. This would provide a graceful failure mode
931 when trying to get the value of caller-saves registers for an inner
932 frame. */
c906108c
SS
933
934static CORE_ADDR
ed9a39eb 935arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c
SS
936{
937 for (; fi; fi = fi->next)
c5aa993b
JM
938
939#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
940 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
941 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
942 else
943#endif
c3b4394c
RE
944 if (fi->saved_regs[regnum] != 0)
945 return read_memory_integer (fi->saved_regs[regnum],
c5aa993b 946 REGISTER_RAW_SIZE (regnum));
c906108c
SS
947 return read_register (regnum);
948}
148754e5
RE
949/* Function: frame_chain Given a GDB frame, determine the address of
950 the calling function's frame. This will be used to create a new
951 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
952 will be called for the new frame. For ARM, we save the frame size
953 when we initialize the frame_info. */
c5aa993b 954
148754e5 955static CORE_ADDR
ed9a39eb 956arm_frame_chain (struct frame_info *fi)
c906108c 957{
c5aa993b 958#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
959 CORE_ADDR fn_start, callers_pc, fp;
960
961 /* is this a dummy frame? */
962 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c5aa993b 963 return fi->frame; /* dummy frame same as caller's frame */
c906108c
SS
964
965 /* is caller-of-this a dummy frame? */
c5aa993b 966 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
34e8f22d 967 fp = arm_find_callers_reg (fi, ARM_FP_REGNUM);
c5aa993b
JM
968 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
969 return fp; /* dummy frame's frame may bear no relation to ours */
c906108c
SS
970
971 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
972 if (fn_start == entry_point_address ())
c5aa993b 973 return 0; /* in _start fn, don't chain further */
c906108c
SS
974#endif
975 CORE_ADDR caller_pc, fn_start;
c3b4394c 976 int framereg = fi->extra_info->framereg;
c906108c
SS
977
978 if (fi->pc < LOWEST_PC)
979 return 0;
980
981 /* If the caller is the startup code, we're at the end of the chain. */
982 caller_pc = FRAME_SAVED_PC (fi);
983 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
984 if (fn_start == entry_point_address ())
985 return 0;
986
987 /* If the caller is Thumb and the caller is ARM, or vice versa,
988 the frame register of the caller is different from ours.
989 So we must scan the prologue of the caller to determine its
990 frame register number. */
c3b4394c
RE
991 /* XXX Fixme, we should try to do this without creating a temporary
992 caller_fi. */
c906108c
SS
993 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
994 {
c3b4394c
RE
995 struct frame_info caller_fi;
996 struct cleanup *old_chain;
997
998 /* Create a temporary frame suitable for scanning the caller's
999 prologue. (Ugh.) */
c5aa993b 1000 memset (&caller_fi, 0, sizeof (caller_fi));
c3b4394c
RE
1001 caller_fi.extra_info = (struct frame_extra_info *)
1002 xcalloc (1, sizeof (struct frame_extra_info));
1003 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1004 caller_fi.saved_regs = (CORE_ADDR *)
1005 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1006 make_cleanup (xfree, caller_fi.saved_regs);
1007
1008 /* Now, scan the prologue and obtain the frame register. */
c906108c 1009 caller_fi.pc = caller_pc;
c5aa993b 1010 arm_scan_prologue (&caller_fi);
c3b4394c
RE
1011 framereg = caller_fi.extra_info->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
c906108c
SS
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
34e8f22d 1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1021 return arm_find_callers_reg (fi, framereg);
1022 else
c3b4394c 1023 return fi->frame + fi->extra_info->framesize;
c906108c
SS
1024}
1025
ed9a39eb
JM
1026/* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
c906108c 1034
148754e5 1035static void
ed9a39eb 1036arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1037{
1038 int reg;
f079148d 1039 CORE_ADDR sp;
c906108c 1040
c3b4394c
RE
1041 if (fi->saved_regs == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 fi->extra_info = (struct frame_extra_info *)
1045 frame_obstack_alloc (sizeof (struct frame_extra_info));
1046
1047 fi->extra_info->framesize = 0;
1048 fi->extra_info->frameoffset = 0;
1049 fi->extra_info->framereg = 0;
1050
c906108c
SS
1051 if (fi->next)
1052 fi->pc = FRAME_SAVED_PC (fi->next);
1053
c3b4394c 1054 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
c906108c 1055
c5aa993b 1056#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
1057 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1058 {
1059 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
c5aa993b 1060 by assuming it's always FP. */
34e8f22d
RE
1061 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
1062 ARM_SP_REGNUM);
c3b4394c
RE
1063 fi->extra_info->framesize = 0;
1064 fi->extra_info->frameoffset = 0;
c906108c
SS
1065 return;
1066 }
c5aa993b 1067 else
c906108c 1068#endif
2a451106 1069
f079148d
KB
1070 /* Compute stack pointer for this frame. We use this value for both the
1071 sigtramp and call dummy cases. */
1072 if (!fi->next)
1073 sp = read_sp();
1074 else
c3b4394c
RE
1075 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1076 + fi->next->extra_info->framesize);
f079148d 1077
2a451106
KB
1078 /* Determine whether or not we're in a sigtramp frame.
1079 Unfortunately, it isn't sufficient to test
1080 fi->signal_handler_caller because this value is sometimes set
1081 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1082 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1083 to use the sigcontext addresses for the saved registers.
1084
1085 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1086 the name of the function, the code below will have to be changed
1087 to first fetch the name of the function and then pass this name
f079148d 1088 to IN_SIGTRAMP. */
2a451106 1089
3bb04bdd 1090 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
dd96c05b 1091 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
2a451106 1092 {
2a451106 1093 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c 1094 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
2a451106
KB
1095
1096 /* FIXME: What about thumb mode? */
34e8f22d 1097 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
1098 fi->frame =
1099 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1100 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1101 fi->extra_info->framesize = 0;
1102 fi->extra_info->frameoffset = 0;
2a451106
KB
1103
1104 }
f079148d
KB
1105 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1106 {
1107 CORE_ADDR rp;
1108 CORE_ADDR callers_sp;
1109
1110 /* Set rp point at the high end of the saved registers. */
1111 rp = fi->frame - REGISTER_SIZE;
1112
1113 /* Fill in addresses of saved registers. */
34e8f22d
RE
1114 fi->saved_regs[ARM_PS_REGNUM] = rp;
1115 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1116 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
f079148d 1117 {
c3b4394c 1118 fi->saved_regs[reg] = rp;
f079148d
KB
1119 rp -= REGISTER_RAW_SIZE (reg);
1120 }
1121
34e8f22d
RE
1122 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1123 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
1124 fi->extra_info->framereg = ARM_FP_REGNUM;
c3b4394c
RE
1125 fi->extra_info->framesize = callers_sp - sp;
1126 fi->extra_info->frameoffset = fi->frame - sp;
f079148d 1127 }
2a451106 1128 else
c906108c
SS
1129 {
1130 arm_scan_prologue (fi);
1131
104c1213
JM
1132 if (!fi->next)
1133 /* this is the innermost frame? */
c3b4394c 1134 fi->frame = read_register (fi->extra_info->framereg);
34e8f22d 1135 else if (fi->extra_info->framereg == ARM_FP_REGNUM
c3b4394c 1136 || fi->extra_info->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1137 {
1138 /* not the innermost frame */
1139 /* If we have an FP, the callee saved it. */
c3b4394c 1140 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
ed9a39eb 1141 fi->frame =
c3b4394c
RE
1142 read_memory_integer (fi->next
1143 ->saved_regs[fi->extra_info->framereg], 4);
ed9a39eb
JM
1144 else if (fromleaf)
1145 /* If we were called by a frameless fn. then our frame is
1146 still in the frame pointer register on the board... */
1147 fi->frame = read_fp ();
1148 }
c906108c 1149
ed9a39eb
JM
1150 /* Calculate actual addresses of saved registers using offsets
1151 determined by arm_scan_prologue. */
c906108c 1152 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c
RE
1153 if (fi->saved_regs[reg] != 0)
1154 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1155 - fi->extra_info->frameoffset);
c906108c
SS
1156 }
1157}
1158
1159
34e8f22d 1160/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1161 is saved in the stack anywhere, otherwise we get it from the
1162 registers.
c906108c
SS
1163
1164 The old definition of this function was a macro:
c5aa993b 1165 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1166 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1167
148754e5 1168static CORE_ADDR
ed9a39eb 1169arm_frame_saved_pc (struct frame_info *fi)
c906108c 1170{
c5aa993b 1171#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c 1172 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
34e8f22d 1173 return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
c906108c
SS
1174 else
1175#endif
c3b4394c
RE
1176 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1177 fi->frame))
f079148d 1178 {
34e8f22d
RE
1179 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1180 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1181 }
1182 else
c906108c 1183 {
34e8f22d 1184 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1185 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1186 }
1187}
1188
c906108c
SS
1189/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1190 Examine the Program Status Register to decide which state we're in. */
1191
148754e5
RE
1192static CORE_ADDR
1193arm_read_fp (void)
c906108c 1194{
34e8f22d 1195 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1196 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1197 else
34e8f22d 1198 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1199}
1200
148754e5
RE
1201/* Store into a struct frame_saved_regs the addresses of the saved
1202 registers of frame described by FRAME_INFO. This includes special
1203 registers such as PC and FP saved in special ways in the stack
1204 frame. SP is even more special: the address we return for it IS
1205 the sp for the next frame. */
c906108c 1206
148754e5 1207static void
c3b4394c 1208arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1209{
c3b4394c
RE
1210
1211 if (fip->saved_regs)
1212 return;
1213
1214 arm_init_extra_frame_info (0, fip);
c906108c
SS
1215}
1216
148754e5
RE
1217/* Push an empty stack frame, to record the current PC, etc. */
1218
1219static void
ed9a39eb 1220arm_push_dummy_frame (void)
c906108c 1221{
34e8f22d 1222 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1223 CORE_ADDR sp = old_sp;
1224 CORE_ADDR fp, prologue_start;
1225 int regnum;
1226
1227 /* Push the two dummy prologue instructions in reverse order,
1228 so that they'll be in the correct low-to-high order in memory. */
1229 /* sub fp, ip, #4 */
1230 sp = push_word (sp, 0xe24cb004);
1231 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1232 prologue_start = sp = push_word (sp, 0xe92ddfff);
1233
ed9a39eb
JM
1234 /* Push a pointer to the dummy prologue + 12, because when stm
1235 instruction stores the PC, it stores the address of the stm
c906108c
SS
1236 instruction itself plus 12. */
1237 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1238
f079148d 1239 /* Push the processor status. */
34e8f22d 1240 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1241
1242 /* Push all 16 registers starting with r15. */
34e8f22d 1243 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1244 sp = push_word (sp, read_register (regnum));
c5aa993b 1245
f079148d 1246 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1247 write_register (ARM_FP_REGNUM, fp);
c906108c 1248 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1249 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1250}
1251
6eb69eab
RE
1252/* CALL_DUMMY_WORDS:
1253 This sequence of words is the instructions
1254
1255 mov lr,pc
1256 mov pc,r4
1257 illegal
1258
1259 Note this is 12 bytes. */
1260
34e8f22d 1261static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1262{
1263 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1264};
1265
c906108c 1266/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1267 in Thumb or ARM mode, and whether the target function is Thumb or
1268 ARM. There are three different situations requiring three
c906108c
SS
1269 different dummies:
1270
1271 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1272 been copied into the dummy parameter to this function.
c906108c 1273 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1274 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1275 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1276 works for calling both ARM and Thumb functions.
c906108c 1277
ed9a39eb
JM
1278 All three call dummies expect to receive the target function
1279 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1280
34e8f22d 1281static void
ed9a39eb 1282arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1283 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1284{
1285 static short thumb_dummy[4] =
1286 {
c5aa993b
JM
1287 0xf000, 0xf801, /* bl label */
1288 0xdf18, /* swi 24 */
1289 0x4720, /* label: bx r4 */
c906108c
SS
1290 };
1291 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1292
1293 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1294 caller_is_thumb = arm_pc_is_thumb (read_pc ());
c906108c 1295
ed9a39eb
JM
1296 /* If the target function is Thumb, set the low bit of the function
1297 address. And if the CPU is currently in ARM mode, patch the
1298 second instruction of call dummy to use a BX instruction to
1299 switch to Thumb mode. */
c906108c
SS
1300 target_is_thumb = arm_pc_is_thumb (fun);
1301 if (target_is_thumb)
1302 {
1303 fun |= 1;
1304 if (!caller_is_thumb)
1305 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1306 }
1307
1308 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1309 instead of the ARM one that's already been copied. This will
1310 work for both Thumb and ARM target functions. */
1311 if (caller_is_thumb)
1312 {
1313 int i;
1314 char *p = dummy;
1315 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1316
1317 for (i = 0; i < len; i++)
1318 {
1319 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1320 p += sizeof (thumb_dummy[0]);
1321 }
1322 }
1323
ed9a39eb
JM
1324 /* Put the target address in r4; the call dummy will copy this to
1325 the PC. */
c906108c
SS
1326 write_register (4, fun);
1327}
1328
c906108c 1329/* Return the offset in the call dummy of the instruction that needs
ed9a39eb
JM
1330 to have a breakpoint placed on it. This is the offset of the 'swi
1331 24' instruction, which is no longer actually used, but simply acts
c906108c
SS
1332 as a place-holder now.
1333
ed9a39eb 1334 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
c906108c
SS
1335
1336int
ed9a39eb 1337arm_call_dummy_breakpoint_offset (void)
c906108c
SS
1338{
1339 if (caller_is_thumb)
1340 return 4;
1341 else
1342 return 8;
1343}
1344
ed9a39eb
JM
1345/* Note: ScottB
1346
1347 This function does not support passing parameters using the FPA
1348 variant of the APCS. It passes any floating point arguments in the
1349 general registers and/or on the stack. */
c906108c 1350
39bbf761 1351static CORE_ADDR
ea7c478f 1352arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1353 int struct_return, CORE_ADDR struct_addr)
c906108c 1354{
ed9a39eb
JM
1355 char *fp;
1356 int argnum, argreg, nstack_size;
1357
1358 /* Walk through the list of args and determine how large a temporary
1359 stack is required. Need to take care here as structs may be
1360 passed on the stack, and we have to to push them. */
1361 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1362 if (struct_return) /* The struct address goes in A1. */
1363 nstack_size += REGISTER_SIZE;
1364
1365 /* Walk through the arguments and add their size to nstack_size. */
1366 for (argnum = 0; argnum < nargs; argnum++)
c5aa993b 1367 {
c906108c 1368 int len;
ed9a39eb
JM
1369 struct type *arg_type;
1370
1371 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1372 len = TYPE_LENGTH (arg_type);
c906108c 1373
6b230f1b 1374 nstack_size += len;
ed9a39eb 1375 }
c906108c 1376
ed9a39eb
JM
1377 /* Allocate room on the stack, and initialize our stack frame
1378 pointer. */
1379 fp = NULL;
1380 if (nstack_size > 0)
1381 {
1382 sp -= nstack_size;
1383 fp = (char *) sp;
1384 }
1385
1386 /* Initialize the integer argument register pointer. */
34e8f22d 1387 argreg = ARM_A1_REGNUM;
c906108c 1388
ed9a39eb
JM
1389 /* The struct_return pointer occupies the first parameter passing
1390 register. */
c906108c 1391 if (struct_return)
c5aa993b 1392 write_register (argreg++, struct_addr);
c906108c 1393
ed9a39eb
JM
1394 /* Process arguments from left to right. Store as many as allowed
1395 in the parameter passing registers (A1-A4), and save the rest on
1396 the temporary stack. */
c5aa993b 1397 for (argnum = 0; argnum < nargs; argnum++)
c906108c 1398 {
ed9a39eb 1399 int len;
c5aa993b 1400 char *val;
c5aa993b 1401 CORE_ADDR regval;
ed9a39eb
JM
1402 enum type_code typecode;
1403 struct type *arg_type, *target_type;
1404
1405 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1406 target_type = TYPE_TARGET_TYPE (arg_type);
1407 len = TYPE_LENGTH (arg_type);
1408 typecode = TYPE_CODE (arg_type);
1409 val = (char *) VALUE_CONTENTS (args[argnum]);
1410
da59e081
JM
1411#if 1
1412 /* I don't know why this code was disable. The only logical use
1413 for a function pointer is to call that function, so setting
1414 the mode bit is perfectly fine. FN */
ed9a39eb 1415 /* If the argument is a pointer to a function, and it is a Thumb
c906108c 1416 function, set the low bit of the pointer. */
ed9a39eb
JM
1417 if (TYPE_CODE_PTR == typecode
1418 && NULL != target_type
1419 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1420 {
ed9a39eb 1421 CORE_ADDR regval = extract_address (val, len);
c906108c
SS
1422 if (arm_pc_is_thumb (regval))
1423 store_address (val, len, MAKE_THUMB_ADDR (regval));
1424 }
c906108c 1425#endif
ed9a39eb
JM
1426 /* Copy the argument to general registers or the stack in
1427 register-sized pieces. Large arguments are split between
1428 registers and stack. */
1429 while (len > 0)
c906108c 1430 {
ed9a39eb
JM
1431 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1432
1433 if (argreg <= ARM_LAST_ARG_REGNUM)
c906108c 1434 {
ed9a39eb
JM
1435 /* It's an argument being passed in a general register. */
1436 regval = extract_address (val, partial_len);
1437 write_register (argreg++, regval);
c906108c 1438 }
ed9a39eb
JM
1439 else
1440 {
1441 /* Push the arguments onto the stack. */
1442 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1443 fp += REGISTER_SIZE;
1444 }
1445
1446 len -= partial_len;
1447 val += partial_len;
c906108c
SS
1448 }
1449 }
c906108c
SS
1450
1451 /* Return adjusted stack pointer. */
1452 return sp;
1453}
1454
f079148d
KB
1455/* Pop the current frame. So long as the frame info has been initialized
1456 properly (see arm_init_extra_frame_info), this code works for dummy frames
1457 as well as regular frames. I.e, there's no need to have a special case
1458 for dummy frames. */
148754e5 1459static void
ed9a39eb 1460arm_pop_frame (void)
c906108c 1461{
c906108c 1462 int regnum;
8b93c638 1463 struct frame_info *frame = get_current_frame ();
c3b4394c
RE
1464 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1465 + frame->extra_info->framesize);
c906108c 1466
f079148d 1467 for (regnum = 0; regnum < NUM_REGS; regnum++)
c3b4394c 1468 if (frame->saved_regs[regnum] != 0)
f079148d 1469 write_register (regnum,
c3b4394c 1470 read_memory_integer (frame->saved_regs[regnum],
f079148d 1471 REGISTER_RAW_SIZE (regnum)));
8b93c638 1472
34e8f22d
RE
1473 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1474 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1475
1476 flush_cached_frames ();
1477}
1478
1479static void
ed9a39eb 1480print_fpu_flags (int flags)
c906108c 1481{
c5aa993b
JM
1482 if (flags & (1 << 0))
1483 fputs ("IVO ", stdout);
1484 if (flags & (1 << 1))
1485 fputs ("DVZ ", stdout);
1486 if (flags & (1 << 2))
1487 fputs ("OFL ", stdout);
1488 if (flags & (1 << 3))
1489 fputs ("UFL ", stdout);
1490 if (flags & (1 << 4))
1491 fputs ("INX ", stdout);
1492 putchar ('\n');
c906108c
SS
1493}
1494
5e74b15c
RE
1495/* Print interesting information about the floating point processor
1496 (if present) or emulator. */
34e8f22d 1497static void
5e74b15c 1498arm_print_float_info (void)
c906108c 1499{
34e8f22d 1500 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1501 int type;
1502
1503 type = (status >> 24) & 127;
1504 printf ("%s FPU type %d\n",
ed9a39eb 1505 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1506 type);
1507 fputs ("mask: ", stdout);
1508 print_fpu_flags (status >> 16);
1509 fputs ("flags: ", stdout);
1510 print_fpu_flags (status);
c906108c
SS
1511}
1512
34e8f22d
RE
1513/* Return the GDB type object for the "standard" data type of data in
1514 register N. */
1515
1516static struct type *
032758dc
AC
1517arm_register_type (int regnum)
1518{
34e8f22d 1519 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1520 {
d7449b42 1521 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1522 return builtin_type_arm_ext_big;
1523 else
1524 return builtin_type_arm_ext_littlebyte_bigword;
1525 }
1526 else
1527 return builtin_type_int32;
1528}
1529
34e8f22d
RE
1530/* Index within `registers' of the first byte of the space for
1531 register N. */
1532
1533static int
1534arm_register_byte (int regnum)
1535{
1536 if (regnum < ARM_F0_REGNUM)
1537 return regnum * INT_REGISTER_RAW_SIZE;
1538 else if (regnum < ARM_PS_REGNUM)
1539 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1540 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1541 else
1542 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1543 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1544 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1545}
1546
1547/* Number of bytes of storage in the actual machine representation for
1548 register N. All registers are 4 bytes, except fp0 - fp7, which are
1549 12 bytes in length. */
1550
1551static int
1552arm_register_raw_size (int regnum)
1553{
1554 if (regnum < ARM_F0_REGNUM)
1555 return INT_REGISTER_RAW_SIZE;
1556 else if (regnum < ARM_FPS_REGNUM)
1557 return FP_REGISTER_RAW_SIZE;
1558 else
1559 return STATUS_REGISTER_SIZE;
1560}
1561
1562/* Number of bytes of storage in a program's representation
1563 for register N. */
1564static int
1565arm_register_virtual_size (int regnum)
1566{
1567 if (regnum < ARM_F0_REGNUM)
1568 return INT_REGISTER_VIRTUAL_SIZE;
1569 else if (regnum < ARM_FPS_REGNUM)
1570 return FP_REGISTER_VIRTUAL_SIZE;
1571 else
1572 return STATUS_REGISTER_SIZE;
1573}
1574
1575
a37b3cc0
AC
1576/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1577 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1578 It is thought that this is is the floating-point register format on
1579 little-endian systems. */
c906108c 1580
ed9a39eb
JM
1581static void
1582convert_from_extended (void *ptr, void *dbl)
c906108c 1583{
a37b3cc0 1584 DOUBLEST d;
d7449b42 1585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1586 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1587 else
1588 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1589 ptr, &d);
1590 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
c906108c
SS
1591}
1592
34e8f22d 1593static void
ed9a39eb 1594convert_to_extended (void *dbl, void *ptr)
c906108c 1595{
a37b3cc0
AC
1596 DOUBLEST d;
1597 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
d7449b42 1598 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1599 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1600 else
1601 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1602 &d, dbl);
c906108c 1603}
ed9a39eb 1604
c906108c 1605static int
ed9a39eb 1606condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1607{
1608 if (cond == INST_AL || cond == INST_NV)
1609 return 1;
1610
1611 switch (cond)
1612 {
1613 case INST_EQ:
1614 return ((status_reg & FLAG_Z) != 0);
1615 case INST_NE:
1616 return ((status_reg & FLAG_Z) == 0);
1617 case INST_CS:
1618 return ((status_reg & FLAG_C) != 0);
1619 case INST_CC:
1620 return ((status_reg & FLAG_C) == 0);
1621 case INST_MI:
1622 return ((status_reg & FLAG_N) != 0);
1623 case INST_PL:
1624 return ((status_reg & FLAG_N) == 0);
1625 case INST_VS:
1626 return ((status_reg & FLAG_V) != 0);
1627 case INST_VC:
1628 return ((status_reg & FLAG_V) == 0);
1629 case INST_HI:
1630 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1631 case INST_LS:
1632 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1633 case INST_GE:
1634 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1635 case INST_LT:
1636 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1637 case INST_GT:
1638 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1639 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1640 case INST_LE:
1641 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1642 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1643 }
1644 return 1;
1645}
1646
9512d7fd 1647/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1648#define submask(x) ((1L << ((x) + 1)) - 1)
1649#define bit(obj,st) (((obj) >> (st)) & 1)
1650#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1651#define sbits(obj,st,fn) \
1652 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1653#define BranchDest(addr,instr) \
1654 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1655#define ARM_PC_32 1
1656
1657static unsigned long
ed9a39eb
JM
1658shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1659 unsigned long status_reg)
c906108c
SS
1660{
1661 unsigned long res, shift;
1662 int rm = bits (inst, 0, 3);
1663 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1664
1665 if (bit (inst, 4))
c906108c
SS
1666 {
1667 int rs = bits (inst, 8, 11);
1668 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1669 }
1670 else
1671 shift = bits (inst, 7, 11);
c5aa993b
JM
1672
1673 res = (rm == 15
c906108c 1674 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1675 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1676 : read_register (rm));
1677
1678 switch (shifttype)
1679 {
c5aa993b 1680 case 0: /* LSL */
c906108c
SS
1681 res = shift >= 32 ? 0 : res << shift;
1682 break;
c5aa993b
JM
1683
1684 case 1: /* LSR */
c906108c
SS
1685 res = shift >= 32 ? 0 : res >> shift;
1686 break;
1687
c5aa993b
JM
1688 case 2: /* ASR */
1689 if (shift >= 32)
1690 shift = 31;
c906108c
SS
1691 res = ((res & 0x80000000L)
1692 ? ~((~res) >> shift) : res >> shift);
1693 break;
1694
c5aa993b 1695 case 3: /* ROR/RRX */
c906108c
SS
1696 shift &= 31;
1697 if (shift == 0)
1698 res = (res >> 1) | (carry ? 0x80000000L : 0);
1699 else
c5aa993b 1700 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1701 break;
1702 }
1703
1704 return res & 0xffffffff;
1705}
1706
c906108c
SS
1707/* Return number of 1-bits in VAL. */
1708
1709static int
ed9a39eb 1710bitcount (unsigned long val)
c906108c
SS
1711{
1712 int nbits;
1713 for (nbits = 0; val != 0; nbits++)
c5aa993b 1714 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1715 return nbits;
1716}
1717
34e8f22d 1718CORE_ADDR
ed9a39eb 1719thumb_get_next_pc (CORE_ADDR pc)
c906108c 1720{
c5aa993b 1721 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1722 unsigned short inst1 = read_memory_integer (pc, 2);
c5aa993b 1723 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1724 unsigned long offset;
1725
1726 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1727 {
1728 CORE_ADDR sp;
1729
1730 /* Fetch the saved PC from the stack. It's stored above
1731 all of the other registers. */
1732 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1733 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1734 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1735 nextpc = ADDR_BITS_REMOVE (nextpc);
1736 if (nextpc == pc)
1737 error ("Infinite loop detected");
1738 }
1739 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1740 {
34e8f22d 1741 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1742 unsigned long cond = bits (inst1, 8, 11);
c906108c
SS
1743 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1744 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1745 }
1746 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1747 {
1748 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1749 }
1750 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1751 {
1752 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1753 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1754 nextpc = pc_val + offset;
1755 }
1756
1757 return nextpc;
1758}
1759
34e8f22d 1760CORE_ADDR
ed9a39eb 1761arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1762{
1763 unsigned long pc_val;
1764 unsigned long this_instr;
1765 unsigned long status;
1766 CORE_ADDR nextpc;
1767
1768 if (arm_pc_is_thumb (pc))
1769 return thumb_get_next_pc (pc);
1770
1771 pc_val = (unsigned long) pc;
1772 this_instr = read_memory_integer (pc, 4);
34e8f22d 1773 status = read_register (ARM_PS_REGNUM);
c5aa993b 1774 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1775
1776 if (condition_true (bits (this_instr, 28, 31), status))
1777 {
1778 switch (bits (this_instr, 24, 27))
1779 {
c5aa993b
JM
1780 case 0x0:
1781 case 0x1: /* data processing */
1782 case 0x2:
1783 case 0x3:
c906108c
SS
1784 {
1785 unsigned long operand1, operand2, result = 0;
1786 unsigned long rn;
1787 int c;
c5aa993b 1788
c906108c
SS
1789 if (bits (this_instr, 12, 15) != 15)
1790 break;
1791
1792 if (bits (this_instr, 22, 25) == 0
c5aa993b 1793 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1794 error ("Illegal update to pc in instruction");
1795
1796 /* Multiply into PC */
1797 c = (status & FLAG_C) ? 1 : 0;
1798 rn = bits (this_instr, 16, 19);
1799 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1800
c906108c
SS
1801 if (bit (this_instr, 25))
1802 {
1803 unsigned long immval = bits (this_instr, 0, 7);
1804 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1805 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1806 & 0xffffffff;
c906108c 1807 }
c5aa993b 1808 else /* operand 2 is a shifted register */
c906108c 1809 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1810
c906108c
SS
1811 switch (bits (this_instr, 21, 24))
1812 {
c5aa993b 1813 case 0x0: /*and */
c906108c
SS
1814 result = operand1 & operand2;
1815 break;
1816
c5aa993b 1817 case 0x1: /*eor */
c906108c
SS
1818 result = operand1 ^ operand2;
1819 break;
1820
c5aa993b 1821 case 0x2: /*sub */
c906108c
SS
1822 result = operand1 - operand2;
1823 break;
1824
c5aa993b 1825 case 0x3: /*rsb */
c906108c
SS
1826 result = operand2 - operand1;
1827 break;
1828
c5aa993b 1829 case 0x4: /*add */
c906108c
SS
1830 result = operand1 + operand2;
1831 break;
1832
c5aa993b 1833 case 0x5: /*adc */
c906108c
SS
1834 result = operand1 + operand2 + c;
1835 break;
1836
c5aa993b 1837 case 0x6: /*sbc */
c906108c
SS
1838 result = operand1 - operand2 + c;
1839 break;
1840
c5aa993b 1841 case 0x7: /*rsc */
c906108c
SS
1842 result = operand2 - operand1 + c;
1843 break;
1844
c5aa993b
JM
1845 case 0x8:
1846 case 0x9:
1847 case 0xa:
1848 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1849 result = (unsigned long) nextpc;
1850 break;
1851
c5aa993b 1852 case 0xc: /*orr */
c906108c
SS
1853 result = operand1 | operand2;
1854 break;
1855
c5aa993b 1856 case 0xd: /*mov */
c906108c
SS
1857 /* Always step into a function. */
1858 result = operand2;
c5aa993b 1859 break;
c906108c 1860
c5aa993b 1861 case 0xe: /*bic */
c906108c
SS
1862 result = operand1 & ~operand2;
1863 break;
1864
c5aa993b 1865 case 0xf: /*mvn */
c906108c
SS
1866 result = ~operand2;
1867 break;
1868 }
1869 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1870
1871 if (nextpc == pc)
1872 error ("Infinite loop detected");
1873 break;
1874 }
c5aa993b
JM
1875
1876 case 0x4:
1877 case 0x5: /* data transfer */
1878 case 0x6:
1879 case 0x7:
c906108c
SS
1880 if (bit (this_instr, 20))
1881 {
1882 /* load */
1883 if (bits (this_instr, 12, 15) == 15)
1884 {
1885 /* rd == pc */
c5aa993b 1886 unsigned long rn;
c906108c 1887 unsigned long base;
c5aa993b 1888
c906108c
SS
1889 if (bit (this_instr, 22))
1890 error ("Illegal update to pc in instruction");
1891
1892 /* byte write to PC */
1893 rn = bits (this_instr, 16, 19);
1894 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1895 if (bit (this_instr, 24))
1896 {
1897 /* pre-indexed */
1898 int c = (status & FLAG_C) ? 1 : 0;
1899 unsigned long offset =
c5aa993b 1900 (bit (this_instr, 25)
ed9a39eb 1901 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1902 : bits (this_instr, 0, 11));
c906108c
SS
1903
1904 if (bit (this_instr, 23))
1905 base += offset;
1906 else
1907 base -= offset;
1908 }
c5aa993b 1909 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1910 4);
c5aa993b 1911
c906108c
SS
1912 nextpc = ADDR_BITS_REMOVE (nextpc);
1913
1914 if (nextpc == pc)
1915 error ("Infinite loop detected");
1916 }
1917 }
1918 break;
c5aa993b
JM
1919
1920 case 0x8:
1921 case 0x9: /* block transfer */
c906108c
SS
1922 if (bit (this_instr, 20))
1923 {
1924 /* LDM */
1925 if (bit (this_instr, 15))
1926 {
1927 /* loading pc */
1928 int offset = 0;
1929
1930 if (bit (this_instr, 23))
1931 {
1932 /* up */
1933 unsigned long reglist = bits (this_instr, 0, 14);
1934 offset = bitcount (reglist) * 4;
c5aa993b 1935 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1936 offset += 4;
1937 }
1938 else if (bit (this_instr, 24))
1939 offset = -4;
c5aa993b 1940
c906108c 1941 {
c5aa993b
JM
1942 unsigned long rn_val =
1943 read_register (bits (this_instr, 16, 19));
c906108c
SS
1944 nextpc =
1945 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1946 + offset),
c906108c
SS
1947 4);
1948 }
1949 nextpc = ADDR_BITS_REMOVE (nextpc);
1950 if (nextpc == pc)
1951 error ("Infinite loop detected");
1952 }
1953 }
1954 break;
c5aa993b
JM
1955
1956 case 0xb: /* branch & link */
1957 case 0xa: /* branch */
c906108c
SS
1958 {
1959 nextpc = BranchDest (pc, this_instr);
1960
1961 nextpc = ADDR_BITS_REMOVE (nextpc);
1962 if (nextpc == pc)
1963 error ("Infinite loop detected");
1964 break;
1965 }
c5aa993b
JM
1966
1967 case 0xc:
1968 case 0xd:
1969 case 0xe: /* coproc ops */
1970 case 0xf: /* SWI */
c906108c
SS
1971 break;
1972
1973 default:
97e03143 1974 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1975 return (pc);
1976 }
1977 }
1978
1979 return nextpc;
1980}
1981
9512d7fd
FN
1982/* single_step() is called just before we want to resume the inferior,
1983 if we want to single-step it but there is no hardware or kernel
1984 single-step support. We find the target of the coming instruction
1985 and breakpoint it.
1986
1987 single_step is also called just after the inferior stops. If we had
1988 set up a simulated single-step, we undo our damage. */
1989
34e8f22d
RE
1990static void
1991arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd
FN
1992{
1993 static int next_pc; /* State between setting and unsetting. */
1994 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1995
1996 if (insert_bpt)
1997 {
34e8f22d 1998 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 1999 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2000 }
2001 else
80fcf3f0 2002 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2003}
9512d7fd 2004
c906108c
SS
2005#include "bfd-in2.h"
2006#include "libcoff.h"
2007
2008static int
ed9a39eb 2009gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2010{
2011 if (arm_pc_is_thumb (memaddr))
2012 {
c5aa993b
JM
2013 static asymbol *asym;
2014 static combined_entry_type ce;
2015 static struct coff_symbol_struct csym;
2016 static struct _bfd fake_bfd;
2017 static bfd_target fake_target;
c906108c
SS
2018
2019 if (csym.native == NULL)
2020 {
2021 /* Create a fake symbol vector containing a Thumb symbol. This is
2022 solely so that the code in print_insn_little_arm() and
2023 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
2024 of a Thumb symbol and switch to decoding Thumb instructions. */
c5aa993b
JM
2025
2026 fake_target.flavour = bfd_target_coff_flavour;
2027 fake_bfd.xvec = &fake_target;
c906108c 2028 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2029 csym.native = &ce;
2030 csym.symbol.the_bfd = &fake_bfd;
2031 csym.symbol.name = "fake";
2032 asym = (asymbol *) & csym;
c906108c 2033 }
c5aa993b 2034
c906108c 2035 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2036 info->symbols = &asym;
c906108c
SS
2037 }
2038 else
2039 info->symbols = NULL;
c5aa993b 2040
d7449b42 2041 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2042 return print_insn_big_arm (memaddr, info);
2043 else
2044 return print_insn_little_arm (memaddr, info);
2045}
2046
34e8f22d
RE
2047/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2048 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2049 breakpoint should be used. It returns a pointer to a string of
2050 bytes that encode a breakpoint instruction, stores the length of
2051 the string to *lenptr, and adjusts the program counter (if
2052 necessary) to point to the actual memory location where the
c906108c
SS
2053 breakpoint should be inserted. */
2054
34e8f22d
RE
2055/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2056 breakpoints and storing their handles instread of what was in
2057 memory. It is nice that this is the same size as a handle -
2058 otherwise remote-rdp will have to change. */
2059
c906108c 2060unsigned char *
ed9a39eb 2061arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c
SS
2062{
2063 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2064 {
d7449b42 2065 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c5aa993b
JM
2066 {
2067 static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
2068 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2069 *lenptr = sizeof (thumb_breakpoint);
2070 return thumb_breakpoint;
2071 }
c906108c 2072 else
c5aa993b
JM
2073 {
2074 static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
2075 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2076 *lenptr = sizeof (thumb_breakpoint);
2077 return thumb_breakpoint;
2078 }
c906108c
SS
2079 }
2080 else
2081 {
d7449b42 2082 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c5aa993b
JM
2083 {
2084 static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
2085 *lenptr = sizeof (arm_breakpoint);
2086 return arm_breakpoint;
2087 }
c906108c 2088 else
c5aa993b
JM
2089 {
2090 static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
2091 *lenptr = sizeof (arm_breakpoint);
2092 return arm_breakpoint;
2093 }
c906108c
SS
2094 }
2095}
ed9a39eb
JM
2096
2097/* Extract from an array REGBUF containing the (raw) register state a
2098 function return value of type TYPE, and copy that, in virtual
2099 format, into VALBUF. */
2100
34e8f22d 2101static void
ed9a39eb
JM
2102arm_extract_return_value (struct type *type,
2103 char regbuf[REGISTER_BYTES],
2104 char *valbuf)
2105{
2106 if (TYPE_CODE_FLT == TYPE_CODE (type))
34e8f22d 2107 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)], valbuf);
ed9a39eb 2108 else
34e8f22d
RE
2109 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2110 TYPE_LENGTH (type));
2111}
2112
67255d04
RE
2113/* Extract from an array REGBUF containing the (raw) register state
2114 the address in which a function should return its structure value. */
2115
2116static CORE_ADDR
2117arm_extract_struct_value_address (char *regbuf)
2118{
2119 return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM));
2120}
2121
2122/* Will a function return an aggregate type in memory or in a
2123 register? Return 0 if an aggregate type can be returned in a
2124 register, 1 if it must be returned in memory. */
2125
2126static int
2127arm_use_struct_convention (int gcc_p, struct type *type)
2128{
2129 int nRc;
2130 register enum type_code code;
2131
2132 /* In the ARM ABI, "integer" like aggregate types are returned in
2133 registers. For an aggregate type to be integer like, its size
2134 must be less than or equal to REGISTER_SIZE and the offset of
2135 each addressable subfield must be zero. Note that bit fields are
2136 not addressable, and all addressable subfields of unions always
2137 start at offset zero.
2138
2139 This function is based on the behaviour of GCC 2.95.1.
2140 See: gcc/arm.c: arm_return_in_memory() for details.
2141
2142 Note: All versions of GCC before GCC 2.95.2 do not set up the
2143 parameters correctly for a function returning the following
2144 structure: struct { float f;}; This should be returned in memory,
2145 not a register. Richard Earnshaw sent me a patch, but I do not
2146 know of any way to detect if a function like the above has been
2147 compiled with the correct calling convention. */
2148
2149 /* All aggregate types that won't fit in a register must be returned
2150 in memory. */
2151 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2152 {
2153 return 1;
2154 }
2155
2156 /* The only aggregate types that can be returned in a register are
2157 structs and unions. Arrays must be returned in memory. */
2158 code = TYPE_CODE (type);
2159 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2160 {
2161 return 1;
2162 }
2163
2164 /* Assume all other aggregate types can be returned in a register.
2165 Run a check for structures, unions and arrays. */
2166 nRc = 0;
2167
2168 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2169 {
2170 int i;
2171 /* Need to check if this struct/union is "integer" like. For
2172 this to be true, its size must be less than or equal to
2173 REGISTER_SIZE and the offset of each addressable subfield
2174 must be zero. Note that bit fields are not addressable, and
2175 unions always start at offset zero. If any of the subfields
2176 is a floating point type, the struct/union cannot be an
2177 integer type. */
2178
2179 /* For each field in the object, check:
2180 1) Is it FP? --> yes, nRc = 1;
2181 2) Is it addressable (bitpos != 0) and
2182 not packed (bitsize == 0)?
2183 --> yes, nRc = 1
2184 */
2185
2186 for (i = 0; i < TYPE_NFIELDS (type); i++)
2187 {
2188 enum type_code field_type_code;
2189 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2190
2191 /* Is it a floating point type field? */
2192 if (field_type_code == TYPE_CODE_FLT)
2193 {
2194 nRc = 1;
2195 break;
2196 }
2197
2198 /* If bitpos != 0, then we have to care about it. */
2199 if (TYPE_FIELD_BITPOS (type, i) != 0)
2200 {
2201 /* Bitfields are not addressable. If the field bitsize is
2202 zero, then the field is not packed. Hence it cannot be
2203 a bitfield or any other packed type. */
2204 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2205 {
2206 nRc = 1;
2207 break;
2208 }
2209 }
2210 }
2211 }
2212
2213 return nRc;
2214}
2215
34e8f22d
RE
2216/* Write into appropriate registers a function return value of type
2217 TYPE, given in virtual format. */
2218
2219static void
2220arm_store_return_value (struct type *type, char *valbuf)
2221{
2222 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2223 {
2224 char buf[MAX_REGISTER_RAW_SIZE];
2225
2226 convert_to_extended (valbuf, buf);
2227 /* XXX Is this correct for soft-float? */
2228 write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2229 MAX_REGISTER_RAW_SIZE);
2230 }
2231 else
2232 write_register_bytes (0, valbuf, TYPE_LENGTH (type));
2233}
2234
2235/* Store the address of the place in which to copy the structure the
2236 subroutine will return. This is called from call_function. */
2237
2238static void
2239arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2240{
2241 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2242}
2243
2244/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2245
2246int
ed9a39eb 2247arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2248{
2249 CORE_ADDR start_addr;
2250
ed9a39eb
JM
2251 /* Find the starting address of the function containing the PC. If
2252 the caller didn't give us a name, look it up at the same time. */
c906108c
SS
2253 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2254 return 0;
2255
2256 return strncmp (name, "_call_via_r", 11) == 0;
2257}
2258
ed9a39eb
JM
2259/* If PC is in a Thumb call or return stub, return the address of the
2260 target PC, which is in a register. The thunk functions are called
2261 _called_via_xx, where x is the register name. The possible names
2262 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2263
2264CORE_ADDR
ed9a39eb 2265arm_skip_stub (CORE_ADDR pc)
c906108c 2266{
c5aa993b 2267 char *name;
c906108c
SS
2268 CORE_ADDR start_addr;
2269
2270 /* Find the starting address and name of the function containing the PC. */
2271 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2272 return 0;
2273
2274 /* Call thunks always start with "_call_via_". */
2275 if (strncmp (name, "_call_via_", 10) == 0)
2276 {
ed9a39eb
JM
2277 /* Use the name suffix to determine which register contains the
2278 target PC. */
c5aa993b
JM
2279 static char *table[15] =
2280 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2281 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2282 };
c906108c
SS
2283 int regno;
2284
2285 for (regno = 0; regno <= 14; regno++)
2286 if (strcmp (&name[10], table[regno]) == 0)
2287 return read_register (regno);
2288 }
ed9a39eb 2289
c5aa993b 2290 return 0; /* not a stub */
c906108c
SS
2291}
2292
bc90b915
FN
2293/* If the user changes the register disassembly flavor used for info register
2294 and other commands, we have to also switch the flavor used in opcodes
2295 for disassembly output.
2296 This function is run in the set disassembly_flavor command, and does that. */
2297
2298static void
2299set_disassembly_flavor_sfunc (char *args, int from_tty,
2300 struct cmd_list_element *c)
2301{
2302 set_disassembly_flavor ();
2303}
2304\f
966fbf70 2305/* Return the ARM register name corresponding to register I. */
34e8f22d
RE
2306static char *
2307arm_register_name (int i)
966fbf70
RE
2308{
2309 return arm_register_names[i];
2310}
2311
bc90b915
FN
2312static void
2313set_disassembly_flavor (void)
2314{
2315 const char *setname, *setdesc, **regnames;
2316 int numregs, j;
2317
2318 /* Find the flavor that the user wants in the opcodes table. */
2319 int current = 0;
2320 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2321 while ((disassembly_flavor != setname)
2322 && (current < num_flavor_options))
2323 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2324 current_option = current;
2325
2326 /* Fill our copy. */
2327 for (j = 0; j < numregs; j++)
2328 arm_register_names[j] = (char *) regnames[j];
2329
2330 /* Adjust case. */
34e8f22d 2331 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2332 {
34e8f22d
RE
2333 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2334 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2335 }
2336 else
2337 {
34e8f22d
RE
2338 arm_register_names[ARM_FPS_REGNUM] = "fps";
2339 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2340 }
2341
2342 /* Synchronize the disassembler. */
2343 set_arm_regname_option (current);
2344}
2345
2346/* arm_othernames implements the "othernames" command. This is kind
2347 of hacky, and I prefer the set-show disassembly-flavor which is
2348 also used for the x86 gdb. I will keep this around, however, in
2349 case anyone is actually using it. */
2350
2351static void
2352arm_othernames (char *names, int n)
2353{
2354 /* Circle through the various flavors. */
2355 current_option = (current_option + 1) % num_flavor_options;
2356
2357 disassembly_flavor = valid_flavors[current_option];
2358 set_disassembly_flavor ();
2359}
2360
a42dd537
KB
2361/* Fetch, and possibly build, an appropriate link_map_offsets structure
2362 for ARM linux targets using the struct offsets defined in <link.h>.
2363 Note, however, that link.h is not actually referred to in this file.
2364 Instead, the relevant structs offsets were obtained from examining
2365 link.h. (We can't refer to link.h from this file because the host
2366 system won't necessarily have it, or if it does, the structs which
2367 it defines will refer to the host system, not the target.) */
2368
2369struct link_map_offsets *
2370arm_linux_svr4_fetch_link_map_offsets (void)
2371{
2372 static struct link_map_offsets lmo;
2373 static struct link_map_offsets *lmp = 0;
2374
2375 if (lmp == 0)
2376 {
2377 lmp = &lmo;
2378
2379 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2380 need. */
2381
2382 lmo.r_map_offset = 4;
2383 lmo.r_map_size = 4;
2384
2385 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2386 need. */
2387
2388 lmo.l_addr_offset = 0;
2389 lmo.l_addr_size = 4;
2390
2391 lmo.l_name_offset = 4;
2392 lmo.l_name_size = 4;
2393
2394 lmo.l_next_offset = 12;
2395 lmo.l_next_size = 4;
2396
2397 lmo.l_prev_offset = 16;
2398 lmo.l_prev_size = 4;
2399 }
2400
2401 return lmp;
2402}
2403
082fc60d
RE
2404/* Test whether the coff symbol specific value corresponds to a Thumb
2405 function. */
2406
2407static int
2408coff_sym_is_thumb (int val)
2409{
2410 return (val == C_THUMBEXT ||
2411 val == C_THUMBSTAT ||
2412 val == C_THUMBEXTFUNC ||
2413 val == C_THUMBSTATFUNC ||
2414 val == C_THUMBLABEL);
2415}
2416
2417/* arm_coff_make_msymbol_special()
2418 arm_elf_make_msymbol_special()
2419
2420 These functions test whether the COFF or ELF symbol corresponds to
2421 an address in thumb code, and set a "special" bit in a minimal
2422 symbol to indicate that it does. */
2423
34e8f22d 2424static void
082fc60d
RE
2425arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2426{
2427 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2428 STT_ARM_TFUNC). */
2429 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2430 == STT_LOPROC)
2431 MSYMBOL_SET_SPECIAL (msym);
2432}
2433
34e8f22d 2434static void
082fc60d
RE
2435arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2436{
2437 if (coff_sym_is_thumb (val))
2438 MSYMBOL_SET_SPECIAL (msym);
2439}
2440
97e03143
RE
2441\f
2442static void
2443process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2444{
2445 enum arm_abi *os_ident_ptr = obj;
2446 const char *name;
2447 unsigned int sectsize;
2448
2449 name = bfd_get_section_name (abfd, sect);
2450 sectsize = bfd_section_size (abfd, sect);
2451
2452 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2453 {
2454 unsigned int name_length, data_length, note_type;
2455 char *note;
2456
2457 /* If the section is larger than this, it's probably not what we are
2458 looking for. */
2459 if (sectsize > 128)
2460 sectsize = 128;
2461
2462 note = alloca (sectsize);
2463
2464 bfd_get_section_contents (abfd, sect, note,
2465 (file_ptr) 0, (bfd_size_type) sectsize);
2466
2467 name_length = bfd_h_get_32 (abfd, note);
2468 data_length = bfd_h_get_32 (abfd, note + 4);
2469 note_type = bfd_h_get_32 (abfd, note + 8);
2470
2471 if (name_length == 4 && data_length == 16 && note_type == 1
2472 && strcmp (note + 12, "GNU") == 0)
2473 {
2474 int os_number = bfd_h_get_32 (abfd, note + 16);
2475
2476 /* The case numbers are from abi-tags in glibc */
2477 switch (os_number)
2478 {
2479 case 0 :
2480 *os_ident_ptr = ARM_ABI_LINUX;
2481 break;
2482
2483 case 1 :
2484 internal_error
2485 (__FILE__, __LINE__,
2486 "process_note_abi_sections: Hurd objects not supported");
2487 break;
2488
2489 case 2 :
2490 internal_error
2491 (__FILE__, __LINE__,
2492 "process_note_abi_sections: Solaris objects not supported");
2493 break;
2494
2495 default :
2496 internal_error
2497 (__FILE__, __LINE__,
2498 "process_note_abi_sections: unknown OS number %d",
2499 os_number);
2500 break;
2501 }
2502 }
2503 }
2504 /* NetBSD uses a similar trick. */
2505 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
2506 {
2507 unsigned int name_length, desc_length, note_type;
2508 char *note;
2509
2510 /* If the section is larger than this, it's probably not what we are
2511 looking for. */
2512 if (sectsize > 128)
2513 sectsize = 128;
2514
2515 note = alloca (sectsize);
2516
2517 bfd_get_section_contents (abfd, sect, note,
2518 (file_ptr) 0, (bfd_size_type) sectsize);
2519
2520 name_length = bfd_h_get_32 (abfd, note);
2521 desc_length = bfd_h_get_32 (abfd, note + 4);
2522 note_type = bfd_h_get_32 (abfd, note + 8);
2523
2524 if (name_length == 7 && desc_length == 4 && note_type == 1
2525 && strcmp (note + 12, "NetBSD") == 0)
2526 /* XXX Should we check the version here?
2527 Probably not necessary yet. */
2528 *os_ident_ptr = ARM_ABI_NETBSD_ELF;
2529 }
2530}
2531
2532/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2533 executables. If it's not an ELF executable or if the OS/ABI couldn't
2534 be determined, simply return -1. */
2535
2536static int
2537get_elfosabi (bfd *abfd)
2538{
2539 int elfosabi;
2540 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2541
2542 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2543
2544 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2545 that we're on a SYSV system. However, GNU/Linux uses a note section
2546 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2547 have to check the note sections too.
2548
2549 GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that
2550 as well.*/
2551 if (elfosabi == 0 || elfosabi == ELFOSABI_ARM)
2552 {
2553 bfd_map_over_sections (abfd,
2554 process_note_abi_tag_sections,
2555 &arm_abi);
2556 }
2557
2558 if (arm_abi != ARM_ABI_UNKNOWN)
2559 return arm_abi;
2560
2561 switch (elfosabi)
2562 {
2563 case ELFOSABI_NONE:
2564 /* Existing ARM Tools don't set this field, so look at the EI_FLAGS
2565 field for more information. */
2566
2567 switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags))
2568 {
2569 case EF_ARM_EABI_VER1:
2570 return ARM_ABI_EABI_V1;
2571
2572 case EF_ARM_EABI_VER2:
2573 return ARM_ABI_EABI_V2;
2574
2575 case EF_ARM_EABI_UNKNOWN:
2576 /* Assume GNU tools. */
2577 return ARM_ABI_APCS;
2578
2579 default:
2580 internal_error (__FILE__, __LINE__,
2581 "get_elfosabi: Unknown ARM EABI version 0x%lx",
2582 EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags));
2583
2584 }
2585 break;
2586
2587 case ELFOSABI_NETBSD:
2588 return ARM_ABI_NETBSD_ELF;
2589
2590 case ELFOSABI_FREEBSD:
2591 return ARM_ABI_FREEBSD;
2592
2593 case ELFOSABI_LINUX:
2594 return ARM_ABI_LINUX;
2595
2596 case ELFOSABI_ARM:
2597 /* Assume GNU tools with the old APCS abi. */
2598 return ARM_ABI_APCS;
2599
2600 default:
2601 }
2602
2603 return ARM_ABI_UNKNOWN;
2604}
2605
2606struct arm_abi_handler
2607{
2608 struct arm_abi_handler *next;
2609 enum arm_abi abi;
2610 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
2611};
2612
2613struct arm_abi_handler *arm_abi_handler_list = NULL;
2614
2615void
2616arm_gdbarch_register_os_abi (enum arm_abi abi,
2617 void (*init_abi)(struct gdbarch_info,
2618 struct gdbarch *))
2619{
2620 struct arm_abi_handler **handler_p;
2621
2622 for (handler_p = &arm_abi_handler_list; *handler_p != NULL;
2623 handler_p = &(*handler_p)->next)
2624 {
2625 if ((*handler_p)->abi == abi)
2626 {
2627 internal_error
2628 (__FILE__, __LINE__,
2629 "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)"
2630 " has already been registered", (int)abi);
2631 /* If user wants to continue, override previous definition. */
2632 (*handler_p)->init_abi = init_abi;
2633 return;
2634 }
2635 }
2636
2637 (*handler_p)
2638 = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler));
2639 (*handler_p)->next = NULL;
2640 (*handler_p)->abi = abi;
2641 (*handler_p)->init_abi = init_abi;
2642}
2643
2644/* Initialize the current architecture based on INFO. If possible, re-use an
2645 architecture from ARCHES, which is a list of architectures already created
2646 during this debugging session.
2647
2648 Called e.g. at program startup, when reading a core file, and when reading
2649 a binary file. */
2650
39bbf761
RE
2651static struct gdbarch *
2652arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2653{
97e03143 2654 struct gdbarch_tdep *tdep;
39bbf761 2655 struct gdbarch *gdbarch;
97e03143
RE
2656 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2657 struct arm_abi_handler *abi_handler;
39bbf761 2658
97e03143 2659 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2660
97e03143
RE
2661 if (info.abfd != NULL)
2662 {
2663 switch (bfd_get_flavour (info.abfd))
2664 {
2665 case bfd_target_elf_flavour:
2666 arm_abi = get_elfosabi (info.abfd);
2667 break;
2668
2669 case bfd_target_aout_flavour:
2670 if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0)
2671 arm_abi = ARM_ABI_NETBSD_AOUT;
2672 else
2673 /* Assume it's an old APCS-style ABI. */
2674 arm_abi = ARM_ABI_APCS;
2675 break;
2676
2677 case bfd_target_coff_flavour:
2678 /* Assume it's an old APCS-style ABI. */
2679 /* XXX WinCE? */
2680 arm_abi = ARM_ABI_APCS;
2681 break;
2682
2683 default:
2684 /* Not sure what to do here, leave the ABI as unknown. */
2685 break;
2686 }
2687 }
2688
2689 /* Find a candidate among extant architectures. */
2690 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2691 arches != NULL;
2692 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2693 {
2694 /* Make sure the ABI selection matches. */
2695 tdep = gdbarch_tdep (arches->gdbarch);
2696 if (tdep && tdep->arm_abi == arm_abi)
2697 return arches->gdbarch;
2698 }
2699
2700 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2701 gdbarch = gdbarch_alloc (&info, tdep);
2702
2703 tdep->arm_abi = arm_abi;
2704 if (arm_abi < ARM_ABI_INVALID)
2705 tdep->abi_name = arm_abi_names[arm_abi];
2706 else
2707 {
2708 internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d",
2709 (int) arm_abi);
2710 tdep->abi_name = "<invalid>";
2711 }
39bbf761 2712
67255d04
RE
2713 /* Floating point sizes and format. */
2714 switch (info.byte_order)
2715 {
2716 case BFD_ENDIAN_BIG:
2717 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2718 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2719 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2720 break;
2721
2722 case BFD_ENDIAN_LITTLE:
2723 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2724 set_gdbarch_double_format (gdbarch,
2725 &floatformat_ieee_double_littlebyte_bigword);
2726 set_gdbarch_long_double_format (gdbarch,
2727 &floatformat_ieee_double_littlebyte_bigword);
2728 break;
2729
2730 default:
2731 internal_error (__FILE__, __LINE__,
2732 "arm_gdbarch_init: bad byte order for float format");
2733 }
2734
97e03143
RE
2735 tdep->lowest_pc = 0x20;
2736
39bbf761
RE
2737 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2738
2739 /* Call dummy code. */
2740 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2741 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2742 set_gdbarch_call_dummy_p (gdbarch, 1);
2743 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2744
34e8f22d
RE
2745 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2746 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words));
2747 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2748
2749 set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy);
2750
39bbf761
RE
2751 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2752
2753 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2754 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2755
148754e5 2756 /* Frame handling. */
39bbf761 2757 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
148754e5
RE
2758 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2759 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2760 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2761 set_gdbarch_frameless_function_invocation
2762 (gdbarch, arm_frameless_function_invocation);
2763 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2764 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2765 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2766 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2767 set_gdbarch_frame_args_skip (gdbarch, 0);
2768 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2769 set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame);
2770 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2771
34e8f22d
RE
2772 /* Address manipulation. */
2773 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2774 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2775
2776 /* Offset from address of function to start of its code. */
2777 set_gdbarch_function_start_offset (gdbarch, 0);
2778
2779 /* Advance PC across function entry code. */
2780 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2781
2782 /* Get the PC when a frame might not be available. */
2783 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2784
2785 /* The stack grows downward. */
2786 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2787
2788 /* Breakpoint manipulation. */
2789 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2790 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2791
2792 /* Information about registers, etc. */
2793 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2794 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2795 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2796 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2797 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2798 set_gdbarch_register_bytes (gdbarch,
2799 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2800 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2801 + NUM_SREGS * STATUS_REGISTER_SIZE));
2802 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2803 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2804 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2805 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2806 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2807 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2808
2809 /* Integer registers are 4 bytes. */
2810 set_gdbarch_register_size (gdbarch, 4);
2811 set_gdbarch_register_name (gdbarch, arm_register_name);
2812
2813 /* Returning results. */
2814 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2815 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2816 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04
RE
2817 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2818 set_gdbarch_extract_struct_value_address (gdbarch,
2819 arm_extract_struct_value_address);
34e8f22d
RE
2820
2821 /* Single stepping. */
2822 /* XXX For an RDI target we should ask the target if it can single-step. */
2823 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2824
2825 /* Minsymbol frobbing. */
2826 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2827 set_gdbarch_coff_make_msymbol_special (gdbarch,
2828 arm_coff_make_msymbol_special);
2829
97e03143
RE
2830 /* Hook in the ABI-specific overrides, if they have been registered. */
2831 if (arm_abi == ARM_ABI_UNKNOWN)
2832 {
2833 fprintf_filtered
2834 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2835 "Attempting to continue with the default ARM settings");
2836 }
2837 else
2838 {
2839 for (abi_handler = arm_abi_handler_list; abi_handler != NULL;
2840 abi_handler = abi_handler->next)
2841 if (abi_handler->abi == arm_abi)
2842 break;
2843
2844 if (abi_handler)
2845 abi_handler->init_abi (info, gdbarch);
2846 else
2847 {
2848 /* We assume that if GDB_MULTI_ARCH is less than
2849 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2850 overriding definitions in this file. */
2851 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2852 fprintf_filtered
2853 (gdb_stderr,
2854 "A handler for the ABI variant \"%s\" is not built into this "
2855 "configuration of GDB. "
2856 "Attempting to continue with the default ARM settings",
2857 arm_abi_names[arm_abi]);
2858 }
2859 }
2860
2861 /* Now we have tuned the configuration, set a few final things,
2862 based on what the OS ABI has told us. */
2863
2864 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
2865 references the old architecture vector, not the one we are
2866 building here. */
2867 if (prologue_cache.saved_regs != NULL)
2868 xfree (prologue_cache.saved_regs);
2869
2870 prologue_cache.saved_regs = (CORE_ADDR *)
2871 xcalloc (1, (sizeof (CORE_ADDR)
97e03143 2872 * (gdbarch_num_regs (gdbarch) + NUM_PSEUDO_REGS)));
39bbf761
RE
2873
2874 return gdbarch;
2875}
2876
97e03143
RE
2877static void
2878arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2879{
2880 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2881
2882 if (tdep == NULL)
2883 return;
2884
2885 if (tdep->abi_name != NULL)
2886 fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name);
2887 else
2888 internal_error (__FILE__, __LINE__,
2889 "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)",
2890 (int) tdep->arm_abi);
2891
2892 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2893 (unsigned long) tdep->lowest_pc);
2894}
2895
2896static void
2897arm_init_abi_eabi_v1 (struct gdbarch_info info,
2898 struct gdbarch *gdbarch)
2899{
2900 /* Place-holder. */
2901}
2902
2903static void
2904arm_init_abi_eabi_v2 (struct gdbarch_info info,
2905 struct gdbarch *gdbarch)
2906{
2907 /* Place-holder. */
2908}
2909
2910static void
2911arm_init_abi_apcs (struct gdbarch_info info,
2912 struct gdbarch *gdbarch)
2913{
2914 /* Place-holder. */
2915}
2916
c906108c 2917void
ed9a39eb 2918_initialize_arm_tdep (void)
c906108c 2919{
bc90b915
FN
2920 struct ui_file *stb;
2921 long length;
96baa820 2922 struct cmd_list_element *new_cmd;
53904c9e
AC
2923 const char *setname;
2924 const char *setdesc;
2925 const char **regnames;
bc90b915
FN
2926 int numregs, i, j;
2927 static char *helptext;
085dd6e6 2928
39bbf761 2929 if (GDB_MULTI_ARCH)
97e03143
RE
2930 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2931
2932 /* Register some ABI variants for embedded systems. */
2933 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1);
2934 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2);
2935 arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs);
39bbf761 2936
c906108c 2937 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 2938
bc90b915
FN
2939 /* Get the number of possible sets of register names defined in opcodes. */
2940 num_flavor_options = get_arm_regname_num_options ();
2941
085dd6e6 2942 /* Sync the opcode insn printer with our register viewer: */
bc90b915 2943 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2944
bc90b915
FN
2945 /* Begin creating the help text. */
2946 stb = mem_fileopen ();
2947 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
2948The valid values are:\n");
ed9a39eb 2949
bc90b915
FN
2950 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2951 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
2952 for (i = 0; i < num_flavor_options; i++)
2953 {
2954 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 2955 valid_flavors[i] = setname;
bc90b915
FN
2956 fprintf_unfiltered (stb, "%s - %s\n", setname,
2957 setdesc);
2958 /* Copy the default names (if found) and synchronize disassembler. */
2959 if (!strcmp (setname, "std"))
2960 {
53904c9e 2961 disassembly_flavor = setname;
bc90b915
FN
2962 current_option = i;
2963 for (j = 0; j < numregs; j++)
2964 arm_register_names[j] = (char *) regnames[j];
2965 set_arm_regname_option (i);
2966 }
2967 }
2968 /* Mark the end of valid options. */
2969 valid_flavors[num_flavor_options] = NULL;
c906108c 2970
bc90b915
FN
2971 /* Finish the creation of the help text. */
2972 fprintf_unfiltered (stb, "The default is \"std\".");
2973 helptext = ui_file_xstrdup (stb, &length);
2974 ui_file_delete (stb);
ed9a39eb 2975
bc90b915 2976 /* Add the disassembly-flavor command */
96baa820 2977 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 2978 valid_flavors,
1ed2a135 2979 &disassembly_flavor,
bc90b915 2980 helptext,
ed9a39eb 2981 &setlist);
9f60d481 2982 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
2983 add_show_from_set (new_cmd, &showlist);
2984
c906108c
SS
2985 /* ??? Maybe this should be a boolean. */
2986 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 2987 var_zinteger, (char *) &arm_apcs_32,
96baa820 2988 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 2989 &showlist);
c906108c 2990
bc90b915
FN
2991 /* Add the deprecated "othernames" command */
2992
2993 add_com ("othernames", class_obscure, arm_othernames,
2994 "Switch to the next set of register names.");
c3b4394c
RE
2995
2996 /* Fill in the prologue_cache fields. */
34e8f22d 2997 prologue_cache.saved_regs = NULL;
c3b4394c
RE
2998 prologue_cache.extra_info = (struct frame_extra_info *)
2999 xcalloc (1, sizeof (struct frame_extra_info));
c906108c 3000}