]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/d10v-tdep.c
2003-07-16 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / d10v-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for Mitsubishi D10V, for GDB.
349c5d5f 2
51603483 3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
349c5d5f 4 Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Contributed by Martin Hunt, hunt@cygnus.com */
24
25#include "defs.h"
26#include "frame.h"
7f6104a9 27#include "frame-unwind.h"
270cb5d6 28#include "frame-base.h"
c906108c
SS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "gdbcore.h"
33#include "gdb_string.h"
34#include "value.h"
35#include "inferior.h"
c5aa993b 36#include "dis-asm.h"
c906108c
SS
37#include "symfile.h"
38#include "objfiles.h"
104c1213 39#include "language.h"
28d069e6 40#include "arch-utils.h"
4e052eda 41#include "regcache.h"
e8933a55 42#include "remote.h"
f0d4cc9e 43#include "floatformat.h"
b91b96f4 44#include "gdb/sim-d10v.h"
8238d0bf 45#include "sim-regno.h"
92bf2b80 46#include "disasm.h"
a0f267c7 47#include "trad-frame.h"
4ce44c66 48
fa1fd571
AC
49#include "gdb_assert.h"
50
4ce44c66
JM
51struct gdbarch_tdep
52 {
53 int a0_regnum;
54 int nr_dmap_regs;
f6684c31
AC
55 unsigned long (*dmap_register) (void *regcache, int nr);
56 unsigned long (*imap_register) (void *regcache, int nr);
4ce44c66
JM
57 };
58
59/* These are the addresses the D10V-EVA board maps data and
60 instruction memory to. */
cce74817 61
78eac43e
MS
62enum memspace {
63 DMEM_START = 0x2000000,
64 IMEM_START = 0x1000000,
65 STACK_START = 0x200bffe
66};
cce74817 67
4ce44c66
JM
68/* d10v register names. */
69
70enum
71 {
72 R0_REGNUM = 0,
78eac43e 73 R3_REGNUM = 3,
6c2b5168 74 D10V_FP_REGNUM = 11,
4ce44c66 75 LR_REGNUM = 13,
f75493ed 76 D10V_SP_REGNUM = 15,
4ce44c66 77 PSW_REGNUM = 16,
27d94c49 78 D10V_PC_REGNUM = 18,
4ce44c66 79 NR_IMAP_REGS = 2,
78eac43e
MS
80 NR_A_REGS = 2,
81 TS2_NUM_REGS = 37,
82 TS3_NUM_REGS = 42,
83 /* d10v calling convention. */
84 ARG1_REGNUM = R0_REGNUM,
85 ARGN_REGNUM = R3_REGNUM,
86 RET1_REGNUM = R0_REGNUM,
4ce44c66 87 };
78eac43e 88
b9362cc7 89static int
f75493ed
AC
90nr_dmap_regs (struct gdbarch *gdbarch)
91{
92 return gdbarch_tdep (gdbarch)->nr_dmap_regs;
93}
94
b9362cc7 95static int
f75493ed
AC
96a0_regnum (struct gdbarch *gdbarch)
97{
98 return gdbarch_tdep (gdbarch)->a0_regnum;
99}
4ce44c66 100
392a587b
JM
101/* Local functions */
102
a14ed312 103extern void _initialize_d10v_tdep (void);
392a587b 104
a14ed312 105static void d10v_eva_prepare_to_trace (void);
392a587b 106
a14ed312 107static void d10v_eva_get_trace_data (void);
c906108c 108
23964bcd 109static CORE_ADDR
6ae2f580 110d10v_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
489137c0 111{
6ae2f580
AC
112 /* Align to the size of an instruction (so that they can safely be
113 pushed onto the stack. */
114 return sp & ~3;
489137c0 115}
c906108c
SS
116
117/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
118 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
119 and TYPE is the type (which is known to be struct, union or array).
120
121 The d10v returns anything less than 8 bytes in size in
122 registers. */
123
f5e1cf12 124static int
fba45db2 125d10v_use_struct_convention (int gcc_p, struct type *type)
c906108c 126{
02da6206
JSC
127 long alignment;
128 int i;
129 /* The d10v only passes a struct in a register when that structure
130 has an alignment that matches the size of a register. */
131 /* If the structure doesn't fit in 4 registers, put it on the
132 stack. */
133 if (TYPE_LENGTH (type) > 8)
134 return 1;
135 /* If the struct contains only one field, don't put it on the stack
136 - gcc can fit it in one or more registers. */
137 if (TYPE_NFIELDS (type) == 1)
138 return 0;
139 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
140 for (i = 1; i < TYPE_NFIELDS (type); i++)
141 {
142 /* If the alignment changes, just assume it goes on the
143 stack. */
144 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
145 return 1;
146 }
147 /* If the alignment is suitable for the d10v's 16 bit registers,
148 don't put it on the stack. */
149 if (alignment == 2 || alignment == 4)
150 return 0;
151 return 1;
c906108c
SS
152}
153
154
f4f9705a 155static const unsigned char *
fba45db2 156d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
392a587b 157{
c5aa993b
JM
158 static unsigned char breakpoint[] =
159 {0x2f, 0x90, 0x5e, 0x00};
392a587b
JM
160 *lenptr = sizeof (breakpoint);
161 return breakpoint;
162}
163
4ce44c66
JM
164/* Map the REG_NR onto an ascii name. Return NULL or an empty string
165 when the reg_nr isn't valid. */
166
167enum ts2_regnums
168 {
169 TS2_IMAP0_REGNUM = 32,
170 TS2_DMAP_REGNUM = 34,
171 TS2_NR_DMAP_REGS = 1,
172 TS2_A0_REGNUM = 35
173 };
174
fa88f677 175static const char *
4ce44c66 176d10v_ts2_register_name (int reg_nr)
392a587b 177{
c5aa993b
JM
178 static char *register_names[] =
179 {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
183 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
184 "imap0", "imap1", "dmap", "a0", "a1"
392a587b
JM
185 };
186 if (reg_nr < 0)
187 return NULL;
188 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
189 return NULL;
c5aa993b 190 return register_names[reg_nr];
392a587b
JM
191}
192
4ce44c66
JM
193enum ts3_regnums
194 {
195 TS3_IMAP0_REGNUM = 36,
196 TS3_DMAP0_REGNUM = 38,
197 TS3_NR_DMAP_REGS = 4,
198 TS3_A0_REGNUM = 32
199 };
200
fa88f677 201static const char *
4ce44c66
JM
202d10v_ts3_register_name (int reg_nr)
203{
204 static char *register_names[] =
205 {
206 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
207 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
208 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
209 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
210 "a0", "a1",
211 "spi", "spu",
212 "imap0", "imap1",
213 "dmap0", "dmap1", "dmap2", "dmap3"
214 };
215 if (reg_nr < 0)
216 return NULL;
217 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
218 return NULL;
219 return register_names[reg_nr];
220}
221
bf93dfed
JB
222/* Access the DMAP/IMAP registers in a target independent way.
223
224 Divide the D10V's 64k data space into four 16k segments:
225 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
226 0xc000 -- 0xffff.
227
228 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
229 0x7fff) always map to the on-chip data RAM, and the fourth always
230 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
231 unified memory or instruction memory, under the control of the
232 single DMAP register.
233
234 On the TS3, there are four DMAP registers, each of which controls
235 one of the segments. */
4ce44c66
JM
236
237static unsigned long
f6684c31 238d10v_ts2_dmap_register (void *regcache, int reg_nr)
4ce44c66
JM
239{
240 switch (reg_nr)
241 {
242 case 0:
243 case 1:
244 return 0x2000;
245 case 2:
f6684c31
AC
246 {
247 ULONGEST reg;
248 regcache_cooked_read_unsigned (regcache, TS2_DMAP_REGNUM, &reg);
249 return reg;
250 }
4ce44c66
JM
251 default:
252 return 0;
253 }
254}
255
256static unsigned long
f6684c31 257d10v_ts3_dmap_register (void *regcache, int reg_nr)
4ce44c66 258{
f6684c31
AC
259 ULONGEST reg;
260 regcache_cooked_read_unsigned (regcache, TS3_DMAP0_REGNUM + reg_nr, &reg);
261 return reg;
4ce44c66
JM
262}
263
264static unsigned long
f6684c31 265d10v_ts2_imap_register (void *regcache, int reg_nr)
4ce44c66 266{
f6684c31
AC
267 ULONGEST reg;
268 regcache_cooked_read_unsigned (regcache, TS2_IMAP0_REGNUM + reg_nr, &reg);
269 return reg;
4ce44c66
JM
270}
271
272static unsigned long
f6684c31 273d10v_ts3_imap_register (void *regcache, int reg_nr)
4ce44c66 274{
f6684c31
AC
275 ULONGEST reg;
276 regcache_cooked_read_unsigned (regcache, TS3_IMAP0_REGNUM + reg_nr, &reg);
277 return reg;
4ce44c66
JM
278}
279
280/* MAP GDB's internal register numbering (determined by the layout fo
281 the REGISTER_BYTE array) onto the simulator's register
282 numbering. */
283
284static int
285d10v_ts2_register_sim_regno (int nr)
286{
e8933a55
AC
287 /* Only makes sense to supply raw registers. */
288 gdb_assert (nr >= 0 && nr < NUM_REGS);
4ce44c66
JM
289 if (nr >= TS2_IMAP0_REGNUM
290 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
291 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
292 if (nr == TS2_DMAP_REGNUM)
293 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
294 if (nr >= TS2_A0_REGNUM
295 && nr < TS2_A0_REGNUM + NR_A_REGS)
296 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
297 return nr;
298}
299
300static int
301d10v_ts3_register_sim_regno (int nr)
302{
e8933a55
AC
303 /* Only makes sense to supply raw registers. */
304 gdb_assert (nr >= 0 && nr < NUM_REGS);
4ce44c66
JM
305 if (nr >= TS3_IMAP0_REGNUM
306 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
307 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
308 if (nr >= TS3_DMAP0_REGNUM
309 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
310 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
311 if (nr >= TS3_A0_REGNUM
312 && nr < TS3_A0_REGNUM + NR_A_REGS)
313 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
314 return nr;
315}
316
392a587b
JM
317/* Return the GDB type object for the "standard" data type
318 of data in register N. */
319
f5e1cf12 320static struct type *
35cac7cf 321d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
392a587b 322{
27d94c49 323 if (reg_nr == D10V_PC_REGNUM)
75af7f68 324 return builtin_type_void_func_ptr;
f75493ed 325 if (reg_nr == D10V_SP_REGNUM || reg_nr == D10V_FP_REGNUM)
095a4c96 326 return builtin_type_void_data_ptr;
f75493ed
AC
327 else if (reg_nr >= a0_regnum (gdbarch)
328 && reg_nr < (a0_regnum (gdbarch) + NR_A_REGS))
4ce44c66 329 return builtin_type_int64;
392a587b 330 else
4ce44c66 331 return builtin_type_int16;
392a587b
JM
332}
333
f5e1cf12 334static int
fba45db2 335d10v_daddr_p (CORE_ADDR x)
392a587b
JM
336{
337 return (((x) & 0x3000000) == DMEM_START);
338}
339
f5e1cf12 340static int
fba45db2 341d10v_iaddr_p (CORE_ADDR x)
392a587b
JM
342{
343 return (((x) & 0x3000000) == IMEM_START);
344}
345
169a7369
MS
346static CORE_ADDR
347d10v_make_daddr (CORE_ADDR x)
348{
349 return ((x) | DMEM_START);
350}
351
352static CORE_ADDR
353d10v_make_iaddr (CORE_ADDR x)
354{
355 if (d10v_iaddr_p (x))
356 return x; /* Idempotency -- x is already in the IMEM space. */
357 else
358 return (((x) << 2) | IMEM_START);
359}
392a587b 360
f5e1cf12 361static CORE_ADDR
fba45db2 362d10v_convert_iaddr_to_raw (CORE_ADDR x)
392a587b
JM
363{
364 return (((x) >> 2) & 0xffff);
365}
366
f5e1cf12 367static CORE_ADDR
fba45db2 368d10v_convert_daddr_to_raw (CORE_ADDR x)
392a587b
JM
369{
370 return ((x) & 0xffff);
371}
372
75af7f68
JB
373static void
374d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
375{
376 /* Is it a code address? */
377 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
378 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
379 {
75af7f68
JB
380 store_unsigned_integer (buf, TYPE_LENGTH (type),
381 d10v_convert_iaddr_to_raw (addr));
382 }
383 else
384 {
385 /* Strip off any upper segment bits. */
386 store_unsigned_integer (buf, TYPE_LENGTH (type),
387 d10v_convert_daddr_to_raw (addr));
388 }
389}
390
391static CORE_ADDR
66140c26 392d10v_pointer_to_address (struct type *type, const void *buf)
75af7f68 393{
f75493ed 394 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
75af7f68
JB
395 /* Is it a code address? */
396 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
74a9bb82
FF
397 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
398 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
75af7f68
JB
399 return d10v_make_iaddr (addr);
400 else
401 return d10v_make_daddr (addr);
402}
403
095a4c96
EZ
404/* Don't do anything if we have an integer, this way users can type 'x
405 <addr>' w/o having gdb outsmart them. The internal gdb conversions
406 to the correct space are taken care of in the pointer_to_address
407 function. If we don't do this, 'x $fp' wouldn't work. */
fc0c74b1
AC
408static CORE_ADDR
409d10v_integer_to_address (struct type *type, void *buf)
410{
411 LONGEST val;
412 val = unpack_long (type, buf);
095a4c96 413 return val;
fc0c74b1 414}
75af7f68 415
392a587b
JM
416/* Write into appropriate registers a function return value
417 of type TYPE, given in virtual format.
418
419 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
420
f5e1cf12 421static void
fa1fd571
AC
422d10v_store_return_value (struct type *type, struct regcache *regcache,
423 const void *valbuf)
392a587b 424{
fa1fd571
AC
425 /* Only char return values need to be shifted right within the first
426 regnum. */
3d79a47c
MS
427 if (TYPE_LENGTH (type) == 1
428 && TYPE_CODE (type) == TYPE_CODE_INT)
429 {
fa1fd571
AC
430 bfd_byte tmp[2];
431 tmp[1] = *(bfd_byte *)valbuf;
432 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
3d79a47c
MS
433 }
434 else
fa1fd571
AC
435 {
436 int reg;
437 /* A structure is never more than 8 bytes long. See
438 use_struct_convention(). */
439 gdb_assert (TYPE_LENGTH (type) <= 8);
440 /* Write out most registers, stop loop before trying to write
441 out any dangling byte at the end of the buffer. */
442 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
443 {
444 regcache_cooked_write (regcache, RET1_REGNUM + reg,
445 (bfd_byte *) valbuf + reg * 2);
446 }
447 /* Write out any dangling byte at the end of the buffer. */
448 if ((reg * 2) + 1 == TYPE_LENGTH (type))
449 regcache_cooked_write_part (regcache, reg, 0, 1,
450 (bfd_byte *) valbuf + reg * 2);
451 }
392a587b
JM
452}
453
454/* Extract from an array REGBUF containing the (raw) register state
455 the address in which a function should return its structure value,
456 as a CORE_ADDR (or an expression that can be used as one). */
457
f5e1cf12 458static CORE_ADDR
fa1fd571 459d10v_extract_struct_value_address (struct regcache *regcache)
392a587b 460{
fa1fd571
AC
461 ULONGEST addr;
462 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
463 return (addr | DMEM_START);
392a587b
JM
464}
465
c5aa993b 466static int
fba45db2 467check_prologue (unsigned short op)
c906108c
SS
468{
469 /* st rn, @-sp */
470 if ((op & 0x7E1F) == 0x6C1F)
471 return 1;
472
473 /* st2w rn, @-sp */
474 if ((op & 0x7E3F) == 0x6E1F)
475 return 1;
476
477 /* subi sp, n */
478 if ((op & 0x7FE1) == 0x01E1)
479 return 1;
480
481 /* mv r11, sp */
482 if (op == 0x417E)
483 return 1;
484
485 /* nop */
486 if (op == 0x5E00)
487 return 1;
488
489 /* st rn, @sp */
490 if ((op & 0x7E1F) == 0x681E)
491 return 1;
492
493 /* st2w rn, @sp */
c5aa993b
JM
494 if ((op & 0x7E3F) == 0x3A1E)
495 return 1;
c906108c
SS
496
497 return 0;
498}
499
f5e1cf12 500static CORE_ADDR
fba45db2 501d10v_skip_prologue (CORE_ADDR pc)
c906108c
SS
502{
503 unsigned long op;
504 unsigned short op1, op2;
505 CORE_ADDR func_addr, func_end;
506 struct symtab_and_line sal;
507
508 /* If we have line debugging information, then the end of the */
509 /* prologue should the first assembly instruction of the first source line */
510 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
511 {
512 sal = find_pc_line (func_addr, 0);
c5aa993b 513 if (sal.end && sal.end < func_end)
c906108c
SS
514 return sal.end;
515 }
c5aa993b
JM
516
517 if (target_read_memory (pc, (char *) &op, 4))
c906108c
SS
518 return pc; /* Can't access it -- assume no prologue. */
519
520 while (1)
521 {
c5aa993b 522 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
523 if ((op & 0xC0000000) == 0xC0000000)
524 {
525 /* long instruction */
c5aa993b
JM
526 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
527 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
528 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
c906108c
SS
529 break;
530 }
531 else
532 {
533 /* short instructions */
534 if ((op & 0xC0000000) == 0x80000000)
535 {
536 op2 = (op & 0x3FFF8000) >> 15;
537 op1 = op & 0x7FFF;
c5aa993b
JM
538 }
539 else
c906108c
SS
540 {
541 op1 = (op & 0x3FFF8000) >> 15;
542 op2 = op & 0x7FFF;
543 }
c5aa993b 544 if (check_prologue (op1))
c906108c 545 {
c5aa993b 546 if (!check_prologue (op2))
c906108c
SS
547 {
548 /* if the previous opcode was really part of the prologue */
549 /* and not just a NOP, then we want to break after both instructions */
550 if (op1 != 0x5E00)
551 pc += 4;
552 break;
553 }
554 }
555 else
556 break;
557 }
558 pc += 4;
559 }
560 return pc;
561}
562
7f6104a9 563struct d10v_unwind_cache
c906108c 564{
270cb5d6
AC
565 /* The previous frame's inner most stack address. Used as this
566 frame ID's stack_addr. */
567 CORE_ADDR prev_sp;
568 /* The frame's base, optionally used by the high-level debug info. */
ceea5145 569 CORE_ADDR base;
7f6104a9 570 int size;
0d843116
AC
571 /* How far the SP and r11 (FP) have been offset from the start of
572 the stack frame (as defined by the previous frame's stack
573 pointer). */
574 LONGEST sp_offset;
575 LONGEST r11_offset;
7f6104a9 576 int uses_frame;
a0f267c7 577 /* Table indicating the location of each and every register. */
8983bd83 578 struct trad_frame_saved_reg *saved_regs;
7f6104a9 579};
c906108c 580
c5aa993b 581static int
7f6104a9
AC
582prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
583 CORE_ADDR addr)
c906108c
SS
584{
585 int n;
586
587 /* st rn, @-sp */
588 if ((op & 0x7E1F) == 0x6C1F)
589 {
590 n = (op & 0x1E0) >> 5;
0d843116 591 info->sp_offset -= 2;
a0f267c7 592 info->saved_regs[n].addr = info->sp_offset;
c906108c
SS
593 return 1;
594 }
595
596 /* st2w rn, @-sp */
597 else if ((op & 0x7E3F) == 0x6E1F)
598 {
599 n = (op & 0x1E0) >> 5;
0d843116 600 info->sp_offset -= 4;
a0f267c7
AC
601 info->saved_regs[n + 0].addr = info->sp_offset + 0;
602 info->saved_regs[n + 1].addr = info->sp_offset + 2;
c906108c
SS
603 return 1;
604 }
605
606 /* subi sp, n */
607 if ((op & 0x7FE1) == 0x01E1)
608 {
609 n = (op & 0x1E) >> 1;
610 if (n == 0)
611 n = 16;
0d843116 612 info->sp_offset -= n;
c906108c
SS
613 return 1;
614 }
615
616 /* mv r11, sp */
617 if (op == 0x417E)
618 {
7f6104a9 619 info->uses_frame = 1;
0d843116
AC
620 info->r11_offset = info->sp_offset;
621 return 1;
622 }
623
624 /* st rn, @r11 */
625 if ((op & 0x7E1F) == 0x6816)
626 {
627 n = (op & 0x1E0) >> 5;
a0f267c7 628 info->saved_regs[n].addr = info->r11_offset;
c906108c
SS
629 return 1;
630 }
631
632 /* nop */
633 if (op == 0x5E00)
634 return 1;
635
636 /* st rn, @sp */
637 if ((op & 0x7E1F) == 0x681E)
638 {
639 n = (op & 0x1E0) >> 5;
a0f267c7 640 info->saved_regs[n].addr = info->sp_offset;
c906108c
SS
641 return 1;
642 }
643
644 /* st2w rn, @sp */
645 if ((op & 0x7E3F) == 0x3A1E)
646 {
647 n = (op & 0x1E0) >> 5;
a0f267c7
AC
648 info->saved_regs[n + 0].addr = info->sp_offset + 0;
649 info->saved_regs[n + 1].addr = info->sp_offset + 2;
c906108c
SS
650 return 1;
651 }
652
653 return 0;
654}
655
cce74817
JM
656/* Put here the code to store, into fi->saved_regs, the addresses of
657 the saved registers of frame described by FRAME_INFO. This
658 includes special registers such as pc and fp saved in special ways
659 in the stack frame. sp is even more special: the address we return
660 for it IS the sp for the next frame. */
661
b9362cc7 662static struct d10v_unwind_cache *
6dc42492
AC
663d10v_frame_unwind_cache (struct frame_info *next_frame,
664 void **this_prologue_cache)
c906108c 665{
ae1e7417 666 struct gdbarch *gdbarch = get_frame_arch (next_frame);
ceea5145
AC
667 CORE_ADDR pc;
668 ULONGEST prev_sp;
669 ULONGEST this_base;
c906108c
SS
670 unsigned long op;
671 unsigned short op1, op2;
672 int i;
7f6104a9
AC
673 struct d10v_unwind_cache *info;
674
6dc42492
AC
675 if ((*this_prologue_cache))
676 return (*this_prologue_cache);
7f6104a9
AC
677
678 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
6dc42492 679 (*this_prologue_cache) = info;
a0f267c7 680 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
7f6104a9 681
7f6104a9 682 info->size = 0;
0d843116 683 info->sp_offset = 0;
c906108c 684
7f6104a9 685 info->uses_frame = 0;
be41e9f4 686 for (pc = frame_func_unwind (next_frame);
81f8a206 687 pc > 0 && pc < frame_pc_unwind (next_frame);
270cb5d6 688 pc += 4)
c906108c 689 {
ae1e7417 690 op = get_frame_memory_unsigned (next_frame, pc, 4);
c906108c
SS
691 if ((op & 0xC0000000) == 0xC0000000)
692 {
693 /* long instruction */
694 if ((op & 0x3FFF0000) == 0x01FF0000)
695 {
696 /* add3 sp,sp,n */
697 short n = op & 0xFFFF;
0d843116 698 info->sp_offset += n;
c906108c
SS
699 }
700 else if ((op & 0x3F0F0000) == 0x340F0000)
701 {
702 /* st rn, @(offset,sp) */
703 short offset = op & 0xFFFF;
704 short n = (op >> 20) & 0xF;
a0f267c7 705 info->saved_regs[n].addr = info->sp_offset + offset;
c906108c
SS
706 }
707 else if ((op & 0x3F1F0000) == 0x350F0000)
708 {
709 /* st2w rn, @(offset,sp) */
710 short offset = op & 0xFFFF;
711 short n = (op >> 20) & 0xF;
a0f267c7
AC
712 info->saved_regs[n + 0].addr = info->sp_offset + offset + 0;
713 info->saved_regs[n + 1].addr = info->sp_offset + offset + 2;
c906108c
SS
714 }
715 else
716 break;
717 }
718 else
719 {
720 /* short instructions */
721 if ((op & 0xC0000000) == 0x80000000)
722 {
723 op2 = (op & 0x3FFF8000) >> 15;
724 op1 = op & 0x7FFF;
c5aa993b
JM
725 }
726 else
c906108c
SS
727 {
728 op1 = (op & 0x3FFF8000) >> 15;
729 op2 = op & 0x7FFF;
730 }
7f6104a9
AC
731 if (!prologue_find_regs (info, op1, pc)
732 || !prologue_find_regs (info, op2, pc))
c906108c
SS
733 break;
734 }
c906108c 735 }
c5aa993b 736
0d843116 737 info->size = -info->sp_offset;
c906108c 738
a0f267c7
AC
739 /* Compute the previous frame's stack pointer (which is also the
740 frame's ID's stack address), and this frame's base pointer. */
ceea5145
AC
741 if (info->uses_frame)
742 {
743 /* The SP was moved to the FP. This indicates that a new frame
744 was created. Get THIS frame's FP value by unwinding it from
745 the next frame. */
6c2b5168 746 frame_unwind_unsigned_register (next_frame, D10V_FP_REGNUM, &this_base);
ceea5145
AC
747 /* The FP points at the last saved register. Adjust the FP back
748 to before the first saved register giving the SP. */
749 prev_sp = this_base + info->size;
750 }
ceea5145
AC
751 else
752 {
753 /* Assume that the FP is this frame's SP but with that pushed
754 stack space added back. */
f75493ed 755 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &this_base);
ceea5145
AC
756 prev_sp = this_base + info->size;
757 }
758
a0f267c7
AC
759 /* Convert that SP/BASE into real addresses. */
760 info->prev_sp = d10v_make_daddr (prev_sp);
ceea5145 761 info->base = d10v_make_daddr (this_base);
c906108c 762
ceea5145
AC
763 /* Adjust all the saved registers so that they contain addresses and
764 not offsets. */
c5aa993b 765 for (i = 0; i < NUM_REGS - 1; i++)
3b3850e8 766 if (trad_frame_addr_p (info->saved_regs, i))
c906108c 767 {
a0f267c7 768 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
c906108c
SS
769 }
770
a0f267c7
AC
771 /* The call instruction moves the caller's PC in the callee's LR.
772 Since this is an unwind, do the reverse. Copy the location of LR
773 into PC (the address / regnum) so that a request for PC will be
774 converted into a request for the LR. */
775 info->saved_regs[D10V_PC_REGNUM] = info->saved_regs[LR_REGNUM];
776
777 /* The previous frame's SP needed to be computed. Save the computed
778 value. */
3b3850e8
AC
779 trad_frame_set_value (info->saved_regs, D10V_SP_REGNUM,
780 d10v_make_daddr (prev_sp));
c906108c 781
7f6104a9 782 return info;
c906108c
SS
783}
784
785static void
5f601589
AC
786d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
787 struct frame_info *frame, int regnum, int all)
c906108c 788{
f6684c31 789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5f601589 790 if (regnum >= 0)
4ce44c66 791 {
5f601589
AC
792 default_print_registers_info (gdbarch, file, frame, regnum, all);
793 return;
4ce44c66 794 }
5f601589
AC
795
796 {
797 ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
27d94c49 798 frame_read_unsigned_register (frame, D10V_PC_REGNUM, &pc);
5f601589 799 frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
eb8bc282
AC
800 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_s", -1), &rpt_s);
801 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_e", -1), &rpt_e);
802 frame_read_unsigned_register (frame, frame_map_name_to_regnum (frame, "rpt_c", -1), &rpt_c);
5f601589
AC
803 fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
804 (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
805 (long) rpt_s, (long) rpt_e, (long) rpt_c);
806 }
807
808 {
809 int group;
810 for (group = 0; group < 16; group += 8)
811 {
812 int r;
813 fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
814 for (r = group; r < group + 8; r++)
815 {
816 ULONGEST tmp;
817 frame_read_unsigned_register (frame, r, &tmp);
818 fprintf_filtered (file, " %04lx", (long) tmp);
819 }
820 fprintf_filtered (file, "\n");
821 }
822 }
823
824 /* Note: The IMAP/DMAP registers don't participate in function
825 calls. Don't bother trying to unwind them. */
826
6789195b 827 {
5f601589
AC
828 int a;
829 for (a = 0; a < NR_IMAP_REGS; a++)
830 {
831 if (a > 0)
832 fprintf_filtered (file, " ");
f6684c31
AC
833 fprintf_filtered (file, "IMAP%d %04lx", a,
834 tdep->imap_register (current_regcache, a));
5f601589 835 }
f75493ed 836 if (nr_dmap_regs (gdbarch) == 1)
5f601589 837 /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
f6684c31
AC
838 fprintf_filtered (file, " DMAP %04lx\n",
839 tdep->dmap_register (current_regcache, 2));
5f601589
AC
840 else
841 {
f75493ed 842 for (a = 0; a < nr_dmap_regs (gdbarch); a++)
5f601589 843 {
f6684c31
AC
844 fprintf_filtered (file, " DMAP%d %04lx", a,
845 tdep->dmap_register (current_regcache, a));
5f601589
AC
846 }
847 fprintf_filtered (file, "\n");
848 }
849 }
850
851 {
0c92afe8 852 char num[MAX_REGISTER_SIZE];
5f601589
AC
853 int a;
854 fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
f75493ed 855 for (a = a0_regnum (gdbarch); a < a0_regnum (gdbarch) + NR_A_REGS; a++)
6789195b
AC
856 {
857 int i;
5f601589 858 fprintf_filtered (file, " ");
f75493ed 859 frame_read_register (frame, a, num);
ae1e7417 860 for (i = 0; i < register_size (gdbarch, a); i++)
6789195b 861 {
5f601589 862 fprintf_filtered (file, "%02x", (num[i] & 0xff));
6789195b
AC
863 }
864 }
865 }
5f601589
AC
866 fprintf_filtered (file, "\n");
867}
868
869static void
870show_regs (char *args, int from_tty)
871{
872 d10v_print_registers_info (current_gdbarch, gdb_stdout,
873 get_current_frame (), -1, 1);
c906108c
SS
874}
875
f5e1cf12 876static CORE_ADDR
39f77062 877d10v_read_pc (ptid_t ptid)
c906108c 878{
39f77062 879 ptid_t save_ptid;
c906108c
SS
880 CORE_ADDR pc;
881 CORE_ADDR retval;
882
39f77062
KB
883 save_ptid = inferior_ptid;
884 inferior_ptid = ptid;
27d94c49 885 pc = (int) read_register (D10V_PC_REGNUM);
39f77062 886 inferior_ptid = save_ptid;
7b570125 887 retval = d10v_make_iaddr (pc);
c906108c
SS
888 return retval;
889}
890
f5e1cf12 891static void
39f77062 892d10v_write_pc (CORE_ADDR val, ptid_t ptid)
c906108c 893{
39f77062 894 ptid_t save_ptid;
c906108c 895
39f77062
KB
896 save_ptid = inferior_ptid;
897 inferior_ptid = ptid;
27d94c49 898 write_register (D10V_PC_REGNUM, d10v_convert_iaddr_to_raw (val));
39f77062 899 inferior_ptid = save_ptid;
c906108c
SS
900}
901
f5e1cf12 902static CORE_ADDR
a9e5fdc2 903d10v_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 904{
a9e5fdc2
AC
905 ULONGEST sp;
906 frame_unwind_unsigned_register (next_frame, D10V_SP_REGNUM, &sp);
907 return d10v_make_daddr (sp);
c906108c
SS
908}
909
7a292a7a
SS
910/* When arguments must be pushed onto the stack, they go on in reverse
911 order. The below implements a FILO (stack) to do this. */
912
913struct stack_item
914{
915 int len;
916 struct stack_item *prev;
917 void *data;
918};
919
a14ed312
KB
920static struct stack_item *push_stack_item (struct stack_item *prev,
921 void *contents, int len);
7a292a7a 922static struct stack_item *
fba45db2 923push_stack_item (struct stack_item *prev, void *contents, int len)
7a292a7a
SS
924{
925 struct stack_item *si;
926 si = xmalloc (sizeof (struct stack_item));
927 si->data = xmalloc (len);
928 si->len = len;
929 si->prev = prev;
930 memcpy (si->data, contents, len);
931 return si;
932}
933
a14ed312 934static struct stack_item *pop_stack_item (struct stack_item *si);
7a292a7a 935static struct stack_item *
fba45db2 936pop_stack_item (struct stack_item *si)
7a292a7a
SS
937{
938 struct stack_item *dead = si;
939 si = si->prev;
b8c9b27d
KB
940 xfree (dead->data);
941 xfree (dead);
7a292a7a
SS
942 return si;
943}
944
945
7043d8dc
AC
946static CORE_ADDR
947d10v_push_dummy_code (struct gdbarch *gdbarch,
948 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
949 struct value **args, int nargs,
950 struct type *value_type,
951 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
952{
953 /* Allocate space sufficient for a breakpoint. */
954 sp = (sp - 4) & ~3;
955 /* Store the address of that breakpoint taking care to first convert
956 it into a code (IADDR) address from a stack (DADDR) address.
957 This of course assumes that the two virtual addresses map onto
958 the same real address. */
959 (*bp_addr) = d10v_make_iaddr (d10v_convert_iaddr_to_raw (sp));
960 /* d10v always starts the call at the callee's entry point. */
961 (*real_pc) = funaddr;
962 return sp;
963}
964
f5e1cf12 965static CORE_ADDR
6a65450a
AC
966d10v_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
967 struct regcache *regcache, CORE_ADDR bp_addr,
968 int nargs, struct value **args, CORE_ADDR sp, int struct_return,
969 CORE_ADDR struct_addr)
c906108c
SS
970{
971 int i;
972 int regnum = ARG1_REGNUM;
7a292a7a 973 struct stack_item *si = NULL;
7bd91a28
MS
974 long val;
975
5873a88d 976 /* Set the return address. For the d10v, the return breakpoint is
6a65450a 977 always at BP_ADDR. */
5873a88d 978 regcache_cooked_write_unsigned (regcache, LR_REGNUM,
6a65450a 979 d10v_convert_iaddr_to_raw (bp_addr));
5873a88d 980
4183d812
AC
981 /* If STRUCT_RETURN is true, then the struct return address (in
982 STRUCT_ADDR) will consume the first argument-passing register.
983 Both adjust the register count and store that value. */
7bd91a28 984 if (struct_return)
4183d812 985 {
5873a88d 986 regcache_cooked_write_unsigned (regcache, regnum, struct_addr);
4183d812
AC
987 regnum++;
988 }
c5aa993b 989
c906108c
SS
990 /* Fill in registers and arg lists */
991 for (i = 0; i < nargs; i++)
992 {
ea7c478f 993 struct value *arg = args[i];
c906108c
SS
994 struct type *type = check_typedef (VALUE_TYPE (arg));
995 char *contents = VALUE_CONTENTS (arg);
996 int len = TYPE_LENGTH (type);
7bd91a28
MS
997 int aligned_regnum = (regnum + 1) & ~1;
998
8b279e7a 999 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
7bd91a28
MS
1000 if (len <= 2 && regnum <= ARGN_REGNUM)
1001 /* fits in a single register, do not align */
1002 {
1003 val = extract_unsigned_integer (contents, len);
5873a88d 1004 regcache_cooked_write_unsigned (regcache, regnum++, val);
7bd91a28
MS
1005 }
1006 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1007 /* value fits in remaining registers, store keeping left
1008 aligned */
c906108c 1009 {
7bd91a28
MS
1010 int b;
1011 regnum = aligned_regnum;
1012 for (b = 0; b < (len & ~1); b += 2)
c906108c 1013 {
7bd91a28 1014 val = extract_unsigned_integer (&contents[b], 2);
5873a88d 1015 regcache_cooked_write_unsigned (regcache, regnum++, val);
c906108c 1016 }
7bd91a28 1017 if (b < len)
c906108c 1018 {
7bd91a28 1019 val = extract_unsigned_integer (&contents[b], 1);
5873a88d 1020 regcache_cooked_write_unsigned (regcache, regnum++, (val << 8));
c906108c
SS
1021 }
1022 }
7bd91a28
MS
1023 else
1024 {
1025 /* arg will go onto stack */
1026 regnum = ARGN_REGNUM + 1;
1027 si = push_stack_item (si, contents, len);
1028 }
c906108c 1029 }
7a292a7a
SS
1030
1031 while (si)
1032 {
1033 sp = (sp - si->len) & ~1;
1034 write_memory (sp, si->data, si->len);
1035 si = pop_stack_item (si);
1036 }
c5aa993b 1037
5873a88d 1038 /* Finally, update the SP register. */
f75493ed 1039 regcache_cooked_write_unsigned (regcache, D10V_SP_REGNUM,
5873a88d
AC
1040 d10v_convert_daddr_to_raw (sp));
1041
c906108c
SS
1042 return sp;
1043}
1044
1045
1046/* Given a return value in `regbuf' with a type `valtype',
1047 extract and copy its value into `valbuf'. */
1048
f5e1cf12 1049static void
fa1fd571
AC
1050d10v_extract_return_value (struct type *type, struct regcache *regcache,
1051 void *valbuf)
c906108c
SS
1052{
1053 int len;
fa1fd571 1054 if (TYPE_LENGTH (type) == 1)
c906108c 1055 {
fa1fd571
AC
1056 ULONGEST c;
1057 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
3d79a47c
MS
1058 store_unsigned_integer (valbuf, 1, c);
1059 }
3d79a47c
MS
1060 else
1061 {
1062 /* For return values of odd size, the first byte is in the
1063 least significant part of the first register. The
fa1fd571
AC
1064 remaining bytes in remaining registers. Interestingly, when
1065 such values are passed in, the last byte is in the most
1066 significant byte of that same register - wierd. */
1067 int reg = RET1_REGNUM;
1068 int off = 0;
1069 if (TYPE_LENGTH (type) & 1)
1070 {
1071 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1072 (bfd_byte *)valbuf + off);
1073 off++;
1074 reg++;
1075 }
1076 /* Transfer the remaining registers. */
1077 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1078 {
1079 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1080 (bfd_byte *) valbuf + off);
1081 }
c906108c
SS
1082 }
1083}
1084
c2c6d25f
JM
1085/* Translate a GDB virtual ADDR/LEN into a format the remote target
1086 understands. Returns number of bytes that can be transfered
4ce44c66
JM
1087 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1088 (segmentation fault). Since the simulator knows all about how the
1089 VM system works, we just call that to do the translation. */
c2c6d25f 1090
4ce44c66 1091static void
f6684c31
AC
1092remote_d10v_translate_xfer_address (struct gdbarch *gdbarch,
1093 struct regcache *regcache,
1094 CORE_ADDR memaddr, int nr_bytes,
c2c6d25f
JM
1095 CORE_ADDR *targ_addr, int *targ_len)
1096{
f6684c31 1097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4ce44c66
JM
1098 long out_addr;
1099 long out_len;
f6684c31
AC
1100 out_len = sim_d10v_translate_addr (memaddr, nr_bytes, &out_addr, regcache,
1101 tdep->dmap_register, tdep->imap_register);
4ce44c66
JM
1102 *targ_addr = out_addr;
1103 *targ_len = out_len;
c2c6d25f
JM
1104}
1105
4ce44c66 1106
c906108c
SS
1107/* The following code implements access to, and display of, the D10V's
1108 instruction trace buffer. The buffer consists of 64K or more
1109 4-byte words of data, of which each words includes an 8-bit count,
1110 an 8-bit segment number, and a 16-bit instruction address.
1111
1112 In theory, the trace buffer is continuously capturing instruction
1113 data that the CPU presents on its "debug bus", but in practice, the
1114 ROMified GDB stub only enables tracing when it continues or steps
1115 the program, and stops tracing when the program stops; so it
1116 actually works for GDB to read the buffer counter out of memory and
1117 then read each trace word. The counter records where the tracing
1118 stops, but there is no record of where it started, so we remember
1119 the PC when we resumed and then search backwards in the trace
1120 buffer for a word that includes that address. This is not perfect,
1121 because you will miss trace data if the resumption PC is the target
1122 of a branch. (The value of the buffer counter is semi-random, any
1123 trace data from a previous program stop is gone.) */
1124
1125/* The address of the last word recorded in the trace buffer. */
1126
1127#define DBBC_ADDR (0xd80000)
1128
1129/* The base of the trace buffer, at least for the "Board_0". */
1130
1131#define TRACE_BUFFER_BASE (0xf40000)
1132
a14ed312 1133static void trace_command (char *, int);
c906108c 1134
a14ed312 1135static void untrace_command (char *, int);
c906108c 1136
a14ed312 1137static void trace_info (char *, int);
c906108c 1138
a14ed312 1139static void tdisassemble_command (char *, int);
c906108c 1140
a14ed312 1141static void display_trace (int, int);
c906108c
SS
1142
1143/* True when instruction traces are being collected. */
1144
1145static int tracing;
1146
1147/* Remembered PC. */
1148
1149static CORE_ADDR last_pc;
1150
1151/* True when trace output should be displayed whenever program stops. */
1152
1153static int trace_display;
1154
1155/* True when trace listing should include source lines. */
1156
1157static int default_trace_show_source = 1;
1158
c5aa993b
JM
1159struct trace_buffer
1160 {
1161 int size;
1162 short *counts;
1163 CORE_ADDR *addrs;
1164 }
1165trace_data;
c906108c
SS
1166
1167static void
fba45db2 1168trace_command (char *args, int from_tty)
c906108c
SS
1169{
1170 /* Clear the host-side trace buffer, allocating space if needed. */
1171 trace_data.size = 0;
1172 if (trace_data.counts == NULL)
f75493ed 1173 trace_data.counts = XCALLOC (65536, short);
c906108c 1174 if (trace_data.addrs == NULL)
f75493ed 1175 trace_data.addrs = XCALLOC (65536, CORE_ADDR);
c906108c
SS
1176
1177 tracing = 1;
1178
1179 printf_filtered ("Tracing is now on.\n");
1180}
1181
1182static void
fba45db2 1183untrace_command (char *args, int from_tty)
c906108c
SS
1184{
1185 tracing = 0;
1186
1187 printf_filtered ("Tracing is now off.\n");
1188}
1189
1190static void
fba45db2 1191trace_info (char *args, int from_tty)
c906108c
SS
1192{
1193 int i;
1194
1195 if (trace_data.size)
1196 {
1197 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1198
1199 for (i = 0; i < trace_data.size; ++i)
1200 {
d4f3574e
SS
1201 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1202 i,
1203 trace_data.counts[i],
c906108c 1204 (trace_data.counts[i] == 1 ? "" : "s"),
d4f3574e 1205 paddr_nz (trace_data.addrs[i]));
c906108c
SS
1206 }
1207 }
1208 else
1209 printf_filtered ("No entries in trace buffer.\n");
1210
1211 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1212}
1213
392a587b 1214static void
fba45db2 1215d10v_eva_prepare_to_trace (void)
c906108c
SS
1216{
1217 if (!tracing)
1218 return;
1219
27d94c49 1220 last_pc = read_register (D10V_PC_REGNUM);
c906108c
SS
1221}
1222
1223/* Collect trace data from the target board and format it into a form
1224 more useful for display. */
1225
392a587b 1226static void
fba45db2 1227d10v_eva_get_trace_data (void)
c906108c
SS
1228{
1229 int count, i, j, oldsize;
1230 int trace_addr, trace_seg, trace_cnt, next_cnt;
1231 unsigned int last_trace, trace_word, next_word;
1232 unsigned int *tmpspace;
1233
1234 if (!tracing)
1235 return;
1236
c5aa993b 1237 tmpspace = xmalloc (65536 * sizeof (unsigned int));
c906108c
SS
1238
1239 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1240
1241 /* Collect buffer contents from the target, stopping when we reach
1242 the word recorded when execution resumed. */
1243
1244 count = 0;
1245 while (last_trace > 0)
1246 {
1247 QUIT;
1248 trace_word =
1249 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1250 trace_addr = trace_word & 0xffff;
1251 last_trace -= 4;
1252 /* Ignore an apparently nonsensical entry. */
1253 if (trace_addr == 0xffd5)
1254 continue;
1255 tmpspace[count++] = trace_word;
1256 if (trace_addr == last_pc)
1257 break;
1258 if (count > 65535)
1259 break;
1260 }
1261
1262 /* Move the data to the host-side trace buffer, adjusting counts to
1263 include the last instruction executed and transforming the address
1264 into something that GDB likes. */
1265
1266 for (i = 0; i < count; ++i)
1267 {
1268 trace_word = tmpspace[i];
1269 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1270 trace_addr = trace_word & 0xffff;
1271 next_cnt = (next_word >> 24) & 0xff;
1272 j = trace_data.size + count - i - 1;
1273 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1274 trace_data.counts[j] = next_cnt + 1;
1275 }
1276
1277 oldsize = trace_data.size;
1278 trace_data.size += count;
1279
b8c9b27d 1280 xfree (tmpspace);
c906108c
SS
1281
1282 if (trace_display)
1283 display_trace (oldsize, trace_data.size);
1284}
1285
1286static void
fba45db2 1287tdisassemble_command (char *arg, int from_tty)
c906108c
SS
1288{
1289 int i, count;
1290 CORE_ADDR low, high;
c906108c
SS
1291
1292 if (!arg)
1293 {
1294 low = 0;
1295 high = trace_data.size;
1296 }
c906108c 1297 else
e8933a55
AC
1298 {
1299 char *space_index = strchr (arg, ' ');
1300 if (space_index == NULL)
1301 {
1302 low = parse_and_eval_address (arg);
1303 high = low + 5;
1304 }
1305 else
1306 {
1307 /* Two arguments. */
1308 *space_index = '\0';
1309 low = parse_and_eval_address (arg);
1310 high = parse_and_eval_address (space_index + 1);
1311 if (high < low)
1312 high = low;
1313 }
c906108c
SS
1314 }
1315
d4f3574e 1316 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
c906108c
SS
1317
1318 display_trace (low, high);
1319
1320 printf_filtered ("End of trace dump.\n");
1321 gdb_flush (gdb_stdout);
1322}
1323
1324static void
fba45db2 1325display_trace (int low, int high)
c906108c
SS
1326{
1327 int i, count, trace_show_source, first, suppress;
1328 CORE_ADDR next_address;
1329
1330 trace_show_source = default_trace_show_source;
c5aa993b 1331 if (!have_full_symbols () && !have_partial_symbols ())
c906108c
SS
1332 {
1333 trace_show_source = 0;
1334 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1335 printf_filtered ("Trace will not display any source.\n");
1336 }
1337
1338 first = 1;
1339 suppress = 0;
1340 for (i = low; i < high; ++i)
1341 {
1342 next_address = trace_data.addrs[i];
c5aa993b 1343 count = trace_data.counts[i];
c906108c
SS
1344 while (count-- > 0)
1345 {
1346 QUIT;
1347 if (trace_show_source)
1348 {
1349 struct symtab_and_line sal, sal_prev;
1350
1351 sal_prev = find_pc_line (next_address - 4, 0);
1352 sal = find_pc_line (next_address, 0);
1353
1354 if (sal.symtab)
1355 {
1356 if (first || sal.line != sal_prev.line)
1357 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1358 suppress = 0;
1359 }
1360 else
1361 {
1362 if (!suppress)
1363 /* FIXME-32x64--assumes sal.pc fits in long. */
1364 printf_filtered ("No source file for address %s.\n",
c5aa993b 1365 local_hex_string ((unsigned long) sal.pc));
c906108c
SS
1366 suppress = 1;
1367 }
1368 }
1369 first = 0;
1370 print_address (next_address, gdb_stdout);
1371 printf_filtered (":");
1372 printf_filtered ("\t");
1373 wrap_here (" ");
92bf2b80 1374 next_address += gdb_print_insn (next_address, gdb_stdout);
c906108c
SS
1375 printf_filtered ("\n");
1376 gdb_flush (gdb_stdout);
1377 }
1378 }
1379}
1380
7f6104a9 1381static CORE_ADDR
12cc2063 1382d10v_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
7f6104a9 1383{
12cc2063 1384 ULONGEST pc;
27d94c49 1385 frame_unwind_unsigned_register (next_frame, D10V_PC_REGNUM, &pc);
12cc2063 1386 return d10v_make_iaddr (pc);
7f6104a9
AC
1387}
1388
1389/* Given a GDB frame, determine the address of the calling function's
1390 frame. This will be used to create a new GDB frame struct. */
1391
1392static void
6dc42492
AC
1393d10v_frame_this_id (struct frame_info *next_frame,
1394 void **this_prologue_cache,
1395 struct frame_id *this_id)
7f6104a9 1396{
6dc42492
AC
1397 struct d10v_unwind_cache *info
1398 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
1399 CORE_ADDR base;
81f8a206
AC
1400 CORE_ADDR func;
1401 struct frame_id id;
7f6104a9 1402
81f8a206
AC
1403 /* The FUNC is easy. */
1404 func = frame_func_unwind (next_frame);
7f6104a9 1405
6dc42492
AC
1406 /* This is meant to halt the backtrace at "_start". Make sure we
1407 don't halt it at a generic dummy frame. */
81f8a206 1408 if (func <= IMEM_START || inside_entry_file (func))
6dc42492 1409 return;
7f6104a9 1410
6dc42492
AC
1411 /* Hopefully the prologue analysis either correctly determined the
1412 frame's base (which is the SP from the previous frame), or set
1413 that base to "NULL". */
270cb5d6 1414 base = info->prev_sp;
6dc42492
AC
1415 if (base == STACK_START || base == 0)
1416 return;
7f6104a9 1417
81f8a206
AC
1418 id = frame_id_build (base, func);
1419
81f8a206 1420 (*this_id) = id;
7f6104a9
AC
1421}
1422
7f6104a9 1423static void
6dc42492
AC
1424d10v_frame_prev_register (struct frame_info *next_frame,
1425 void **this_prologue_cache,
1426 int regnum, int *optimizedp,
1427 enum lval_type *lvalp, CORE_ADDR *addrp,
1428 int *realnump, void *bufferp)
7f6104a9 1429{
6dc42492
AC
1430 struct d10v_unwind_cache *info
1431 = d10v_frame_unwind_cache (next_frame, this_prologue_cache);
a0f267c7
AC
1432 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
1433 optimizedp, lvalp, addrp, realnump, bufferp);
7f6104a9
AC
1434}
1435
270cb5d6 1436static const struct frame_unwind d10v_frame_unwind = {
7df05f2b 1437 NORMAL_FRAME,
6dc42492
AC
1438 d10v_frame_this_id,
1439 d10v_frame_prev_register
7f6104a9
AC
1440};
1441
b9362cc7 1442static const struct frame_unwind *
336d1bba 1443d10v_frame_sniffer (struct frame_info *next_frame)
7f6104a9
AC
1444{
1445 return &d10v_frame_unwind;
1446}
1447
270cb5d6
AC
1448static CORE_ADDR
1449d10v_frame_base_address (struct frame_info *next_frame, void **this_cache)
1450{
1451 struct d10v_unwind_cache *info
1452 = d10v_frame_unwind_cache (next_frame, this_cache);
1453 return info->base;
1454}
1455
1456static const struct frame_base d10v_frame_base = {
1457 &d10v_frame_unwind,
1458 d10v_frame_base_address,
1459 d10v_frame_base_address,
1460 d10v_frame_base_address
1461};
1462
6314f104
AC
1463/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1464 dummy frame. The frame ID's base needs to match the TOS value
1465 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1466 breakpoint. */
1467
1468static struct frame_id
1469d10v_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1470{
3e210248
AC
1471 return frame_id_build (d10v_unwind_sp (gdbarch, next_frame),
1472 frame_pc_unwind (next_frame));
6314f104
AC
1473}
1474
0f71a2f6 1475static gdbarch_init_ftype d10v_gdbarch_init;
4ce44c66 1476
0f71a2f6 1477static struct gdbarch *
fba45db2 1478d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
0f71a2f6 1479{
0f71a2f6 1480 struct gdbarch *gdbarch;
4ce44c66
JM
1481 int d10v_num_regs;
1482 struct gdbarch_tdep *tdep;
1483 gdbarch_register_name_ftype *d10v_register_name;
7c7651b2 1484 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
0f71a2f6 1485
4ce44c66
JM
1486 /* Find a candidate among the list of pre-declared architectures. */
1487 arches = gdbarch_list_lookup_by_info (arches, &info);
0f71a2f6
JM
1488 if (arches != NULL)
1489 return arches->gdbarch;
4ce44c66
JM
1490
1491 /* None found, create a new architecture from the information
1492 provided. */
1493 tdep = XMALLOC (struct gdbarch_tdep);
1494 gdbarch = gdbarch_alloc (&info, tdep);
1495
1496 switch (info.bfd_arch_info->mach)
1497 {
1498 case bfd_mach_d10v_ts2:
1499 d10v_num_regs = 37;
1500 d10v_register_name = d10v_ts2_register_name;
7c7651b2 1501 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
4ce44c66
JM
1502 tdep->a0_regnum = TS2_A0_REGNUM;
1503 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
4ce44c66
JM
1504 tdep->dmap_register = d10v_ts2_dmap_register;
1505 tdep->imap_register = d10v_ts2_imap_register;
1506 break;
1507 default:
1508 case bfd_mach_d10v_ts3:
1509 d10v_num_regs = 42;
1510 d10v_register_name = d10v_ts3_register_name;
7c7651b2 1511 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
4ce44c66
JM
1512 tdep->a0_regnum = TS3_A0_REGNUM;
1513 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
4ce44c66
JM
1514 tdep->dmap_register = d10v_ts3_dmap_register;
1515 tdep->imap_register = d10v_ts3_imap_register;
1516 break;
1517 }
0f71a2f6
JM
1518
1519 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1520 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
a9e5fdc2 1521 set_gdbarch_unwind_sp (gdbarch, d10v_unwind_sp);
0f71a2f6
JM
1522
1523 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
f75493ed 1524 set_gdbarch_sp_regnum (gdbarch, D10V_SP_REGNUM);
0f71a2f6 1525 set_gdbarch_register_name (gdbarch, d10v_register_name);
35cac7cf 1526 set_gdbarch_register_type (gdbarch, d10v_register_type);
0f71a2f6 1527
75af7f68
JB
1528 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1529 set_gdbarch_addr_bit (gdbarch, 32);
1530 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1531 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
fc0c74b1 1532 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
0f71a2f6
JM
1533 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1534 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1535 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
02da6206 1536 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1537 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1538 double'' is 64 bits. */
0f71a2f6
JM
1539 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1540 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1541 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1542 switch (info.byte_order)
1543 {
d7449b42 1544 case BFD_ENDIAN_BIG:
f0d4cc9e
AC
1545 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1546 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1547 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1548 break;
778eb05e 1549 case BFD_ENDIAN_LITTLE:
f0d4cc9e
AC
1550 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1551 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1552 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1553 break;
1554 default:
8e65ff28
AC
1555 internal_error (__FILE__, __LINE__,
1556 "d10v_gdbarch_init: bad byte order for float format");
f0d4cc9e 1557 }
0f71a2f6 1558
fa1fd571 1559 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
7043d8dc 1560 set_gdbarch_push_dummy_code (gdbarch, d10v_push_dummy_code);
5873a88d 1561 set_gdbarch_push_dummy_call (gdbarch, d10v_push_dummy_call);
fa1fd571
AC
1562 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1563 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
0f71a2f6
JM
1564 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1565
0f71a2f6
JM
1566 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1567 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1568 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1569 set_gdbarch_function_start_offset (gdbarch, 0);
1570 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1571
1572 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1573
1574 set_gdbarch_frame_args_skip (gdbarch, 0);
1575 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
f4ded5b1 1576
6ae2f580 1577 set_gdbarch_frame_align (gdbarch, d10v_frame_align);
0f71a2f6 1578
7c7651b2
AC
1579 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1580
5f601589
AC
1581 set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1582
336d1bba 1583 frame_unwind_append_sniffer (gdbarch, d10v_frame_sniffer);
270cb5d6 1584 frame_base_set_default (gdbarch, &d10v_frame_base);
7f6104a9 1585
3e210248
AC
1586 /* Methods for saving / extracting a dummy frame's ID. The ID's
1587 stack address must match the SP value returned by
1588 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
6314f104 1589 set_gdbarch_unwind_dummy_id (gdbarch, d10v_unwind_dummy_id);
6314f104 1590
12cc2063
AC
1591 /* Return the unwound PC value. */
1592 set_gdbarch_unwind_pc (gdbarch, d10v_unwind_pc);
1593
0ef21242
AC
1594 set_gdbarch_print_insn (gdbarch, print_insn_d10v);
1595
0f71a2f6
JM
1596 return gdbarch;
1597}
1598
c906108c 1599void
fba45db2 1600_initialize_d10v_tdep (void)
c906108c 1601{
0f71a2f6
JM
1602 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1603
c906108c
SS
1604 target_resume_hook = d10v_eva_prepare_to_trace;
1605 target_wait_loop_hook = d10v_eva_get_trace_data;
1606
5f601589
AC
1607 deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
1608 "info registers");
c906108c 1609
cff3e48b 1610 add_com ("itrace", class_support, trace_command,
c906108c
SS
1611 "Enable tracing of instruction execution.");
1612
cff3e48b 1613 add_com ("iuntrace", class_support, untrace_command,
c906108c
SS
1614 "Disable tracing of instruction execution.");
1615
cff3e48b 1616 add_com ("itdisassemble", class_vars, tdisassemble_command,
c906108c
SS
1617 "Disassemble the trace buffer.\n\
1618Two optional arguments specify a range of trace buffer entries\n\
1619as reported by info trace (NOT addresses!).");
1620
cff3e48b 1621 add_info ("itrace", trace_info,
c906108c
SS
1622 "Display info about the trace data buffer.");
1623
f75493ed
AC
1624 add_setshow_boolean_cmd ("itracedisplay", no_class, &trace_display,
1625 "Set automatic display of trace.\n",
1626 "Show automatic display of trace.\n",
1627 NULL, NULL, &setlist, &showlist);
1628 add_setshow_boolean_cmd ("itracesource", no_class,
1629 &default_trace_show_source,
1630 "Set display of source code with trace.\n",
1631 "Show display of source code with trace.\n",
1632 NULL, NULL, &setlist, &showlist);
c5aa993b 1633}