]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/dbxread.c
* symtab.c (free_symtab): Declare as exported void fn now.
[thirdparty/binutils-gdb.git] / gdb / dbxread.c
CommitLineData
bd5635a1
RP
1/* Read dbx symbol tables and convert to internal format, for GDB.
2 Copyright (C) 1986-1991 Free Software Foundation, Inc.
3
4This file is part of GDB.
5
6GDB is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 1, or (at your option)
9any later version.
10
11GDB is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GDB; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19\f
20/* Symbol read-in occurs in two phases:
21 1. A scan (read_dbx_symtab()) of the entire executable, whose sole
22 purpose is to make a list of symbols (partial symbol table)
23 which will cause symbols
24 to be read in if referenced. This scan happens when the
25 "symbol-file" command is given (symbol_file_command()).
26 1a. The "add-file" command. Similar to #1.
27 2. Full read-in of symbols. (dbx_psymtab_to_symtab()). This happens
28 when a symbol in a file for which symbols have not yet been
29 read in is referenced. */
30
31/* There used to be some PROFILE_TYPES code in this file which counted
32 the number of occurances of various symbols. I'd suggest instead:
33 nm -ap foo | awk 'print $5' | sort | uniq -c
34 to print how many of each n_type, or something like
35 nm -ap foo | awk '$5 == "LSYM" {print $6 $7 $8 $9 $10 $11}' | \
36 awk 'BEGIN {FS=":"}
37 {print substr($2,1,1)}' | sort | uniq -c
38 to print the number of each kind of symbol descriptor (i.e. the letter
39 after ':'). */
40
41#include <stdio.h>
42#include <string.h>
43#include "defs.h"
44#include "param.h"
45
46#ifdef USG
47#include <sys/types.h>
48#include <fcntl.h>
49#define L_SET 0
50#define L_INCR 1
51#endif
52
53#include "a.out.gnu.h"
54#include "stab.gnu.h" /* We always use GNU stabs, not native, now */
55#include <ctype.h>
56
57#ifndef NO_GNU_STABS
58/*
59 * Define specifically gnu symbols here.
60 */
61
62/* The following type indicates the definition of a symbol as being
63 an indirect reference to another symbol. The other symbol
64 appears as an undefined reference, immediately following this symbol.
65
66 Indirection is asymmetrical. The other symbol's value will be used
67 to satisfy requests for the indirect symbol, but not vice versa.
68 If the other symbol does not have a definition, libraries will
69 be searched to find a definition. */
70#ifndef N_INDR
71#define N_INDR 0xa
72#endif
73
74/* The following symbols refer to set elements.
75 All the N_SET[ATDB] symbols with the same name form one set.
76 Space is allocated for the set in the text section, and each set
77 element's value is stored into one word of the space.
78 The first word of the space is the length of the set (number of elements).
79
80 The address of the set is made into an N_SETV symbol
81 whose name is the same as the name of the set.
82 This symbol acts like a N_DATA global symbol
83 in that it can satisfy undefined external references. */
84
85#ifndef N_SETA
86#define N_SETA 0x14 /* Absolute set element symbol */
87#endif /* This is input to LD, in a .o file. */
88
89#ifndef N_SETT
90#define N_SETT 0x16 /* Text set element symbol */
91#endif /* This is input to LD, in a .o file. */
92
93#ifndef N_SETD
94#define N_SETD 0x18 /* Data set element symbol */
95#endif /* This is input to LD, in a .o file. */
96
97#ifndef N_SETB
98#define N_SETB 0x1A /* Bss set element symbol */
99#endif /* This is input to LD, in a .o file. */
100
101/* Macros dealing with the set element symbols defined in a.out.h */
102#define SET_ELEMENT_P(x) ((x)>=N_SETA&&(x)<=(N_SETB|N_EXT))
103#define TYPE_OF_SET_ELEMENT(x) ((x)-N_SETA+N_ABS)
104
105#ifndef N_SETV
106#define N_SETV 0x1C /* Pointer to set vector in data area. */
107#endif /* This is output from LD. */
108
109#ifndef N_WARNING
110#define N_WARNING 0x1E /* Warning message to print if file included */
111#endif /* This is input to ld */
112
113#endif /* NO_GNU_STABS */
114
115#include <obstack.h>
116#include <sys/param.h>
117#include <sys/file.h>
118#include <sys/stat.h>
119#include "symtab.h"
120#include "breakpoint.h"
121#include "command.h"
122#include "target.h"
123#include "gdbcore.h" /* for bfd stuff */
124#include "liba.out.h" /* FIXME Secret internal BFD stuff for a.out */
125#include "symfile.h"
126
127struct dbx_symfile_info {
128 asection *text_sect; /* Text section accessor */
129 int symcount; /* How many symbols are there in the file */
130 char *stringtab; /* The actual string table */
131 int stringtab_size; /* Its size */
132 off_t symtab_offset; /* Offset in file to symbol table */
133 int desc; /* File descriptor of symbol file */
134};
135
136extern void qsort ();
137extern double atof ();
138extern struct cmd_list_element *cmdlist;
139
140extern void symbol_file_command ();
141
142/* Forward declarations */
143
144static void add_symbol_to_list ();
145static void read_dbx_symtab ();
146static void init_psymbol_list ();
147static void process_one_symbol ();
148static struct type *read_type ();
149static struct type *read_range_type ();
150static struct type *read_enum_type ();
151static struct type *read_struct_type ();
152static struct type *read_array_type ();
153static long read_number ();
154static void finish_block ();
155static struct blockvector *make_blockvector ();
156static struct symbol *define_symbol ();
157static void start_subfile ();
158static int hashname ();
159static struct pending *copy_pending ();
160static void fix_common_block ();
161static void add_undefined_type ();
162static void cleanup_undefined_types ();
163static void scan_file_globals ();
164static void read_ofile_symtab ();
165static void dbx_psymtab_to_symtab ();
166
167/* C++ */
168static struct type **read_args ();
169
170static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER };
171static const char vb_name[] = { '_','v','b',CPLUS_MARKER };
172
173/* Macro to determine which symbols to ignore when reading the first symbol
174 of a file. Some machines override this definition. */
175#ifndef IGNORE_SYMBOL
176/* This code is used on Ultrix systems. Ignore it */
177#define IGNORE_SYMBOL(type) (type == (int)N_NSYMS)
178#endif
179
180/* Macro for name of symbol to indicate a file compiled with gcc. */
181#ifndef GCC_COMPILED_FLAG_SYMBOL
182#define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
183#endif
184
185/* Convert stab register number (from `r' declaration) to a gdb REGNUM. */
186
187#ifndef STAB_REG_TO_REGNUM
188#define STAB_REG_TO_REGNUM(VALUE) (VALUE)
189#endif
190
191/* Define this as 1 if a pcc declaration of a char or short argument
192 gives the correct address. Otherwise assume pcc gives the
193 address of the corresponding int, which is not the same on a
194 big-endian machine. */
195
196#ifndef BELIEVE_PCC_PROMOTION
197#define BELIEVE_PCC_PROMOTION 0
198#endif
199\f
200/* Nonzero means give verbose info on gdb action. From main.c. */
201extern int info_verbose;
202
203/* Name of source file whose symbol data we are now processing.
204 This comes from a symbol of type N_SO. */
205
206static char *last_source_file;
207
208/* Core address of start of text of current source file.
209 This too comes from the N_SO symbol. */
210
211static CORE_ADDR last_source_start_addr;
212
213/* The entry point of a file we are reading. */
214CORE_ADDR entry_point;
215
216/* The list of sub-source-files within the current individual compilation.
217 Each file gets its own symtab with its own linetable and associated info,
218 but they all share one blockvector. */
219
220struct subfile
221{
222 struct subfile *next;
223 char *name;
224 char *dirname;
225 struct linetable *line_vector;
226 int line_vector_length;
227 int line_vector_index;
228 int prev_line_number;
229};
230
231static struct subfile *subfiles;
232
233static struct subfile *current_subfile;
234
235/* Count symbols as they are processed, for error messages. */
236
237static unsigned int symnum;
238
239/* Vector of types defined so far, indexed by their dbx type numbers.
240 (In newer sun systems, dbx uses a pair of numbers in parens,
241 as in "(SUBFILENUM,NUMWITHINSUBFILE)". Then these numbers must be
242 translated through the type_translations hash table to get
243 the index into the type vector.) */
244
245static struct typevector *type_vector;
246
247/* Number of elements allocated for type_vector currently. */
248
249static int type_vector_length;
250
251/* Vector of line number information. */
252
253static struct linetable *line_vector;
254
255/* Index of next entry to go in line_vector_index. */
256
257static int line_vector_index;
258
259/* Last line number recorded in the line vector. */
260
261static int prev_line_number;
262
263/* Number of elements allocated for line_vector currently. */
264
265static int line_vector_length;
266
267/* Hash table of global symbols whose values are not known yet.
268 They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
269 have the correct data for that slot yet. */
270/* The use of the LOC_BLOCK code in this chain is nonstandard--
271 it refers to a FORTRAN common block rather than the usual meaning. */
272
273#define HASHSIZE 127
274static struct symbol *global_sym_chain[HASHSIZE];
275
276/* Record the symbols defined for each context in a list.
277 We don't create a struct block for the context until we
278 know how long to make it. */
279
280#define PENDINGSIZE 100
281
282struct pending
283{
284 struct pending *next;
285 int nsyms;
286 struct symbol *symbol[PENDINGSIZE];
287};
288
289/* List of free `struct pending' structures for reuse. */
290struct pending *free_pendings;
291
292/* Here are the three lists that symbols are put on. */
293
294struct pending *file_symbols; /* static at top level, and types */
295
296struct pending *global_symbols; /* global functions and variables */
297
298struct pending *local_symbols; /* everything local to lexical context */
299
300/* List of symbols declared since the last BCOMM. This list is a tail
301 of local_symbols. When ECOMM is seen, the symbols on the list
302 are noted so their proper addresses can be filled in later,
303 using the common block base address gotten from the assembler
304 stabs. */
305
306struct pending *common_block;
307int common_block_i;
308
309/* Stack representing unclosed lexical contexts
310 (that will become blocks, eventually). */
311
312struct context_stack
313{
314 struct pending *locals;
315 struct pending_block *old_blocks;
316 struct symbol *name;
317 CORE_ADDR start_addr;
318 CORE_ADDR end_addr; /* Temp slot for exception handling. */
319 int depth;
320};
321
322struct context_stack *context_stack;
323
324/* Index of first unused entry in context stack. */
325int context_stack_depth;
326
327/* Currently allocated size of context stack. */
328
329int context_stack_size;
330
331/* Nonzero if within a function (so symbols should be local,
332 if nothing says specifically). */
333
334int within_function;
335
336/* List of blocks already made (lexical contexts already closed).
337 This is used at the end to make the blockvector. */
338
339struct pending_block
340{
341 struct pending_block *next;
342 struct block *block;
343};
344
345struct pending_block *pending_blocks;
346
347extern CORE_ADDR startup_file_start; /* From blockframe.c */
348extern CORE_ADDR startup_file_end; /* From blockframe.c */
349
350/* Global variable which, when set, indicates that we are processing a
351 .o file compiled with gcc */
352
353static unsigned char processing_gcc_compilation;
354
355/* Make a list of forward references which haven't been defined. */
356static struct type **undef_types;
357static int undef_types_allocated, undef_types_length;
358
359/* String table for the main symbol file. It is kept in memory
360 permanently, to speed up symbol reading. Other files' symbol tables
361 are read in on demand. FIXME, this should be cleaner. */
362
363static char *symfile_string_table;
364static int symfile_string_table_size;
365
366 /* Setup a define to deal cleanly with the underscore problem */
367
368#ifdef NAMES_HAVE_UNDERSCORE
369#define HASH_OFFSET 1
370#else
371#define HASH_OFFSET 0
372#endif
373
374/* Complaints about the symbols we have encountered. */
375
376struct complaint innerblock_complaint =
377 {"inner block not inside outer block in %s", 0, 0};
378
379struct complaint blockvector_complaint =
380 {"block at %x out of order", 0, 0};
381
382struct complaint lbrac_complaint =
383 {"bad block start address patched", 0, 0};
384
385#if 0
386struct complaint dbx_class_complaint =
387 {"encountered DBX-style class variable debugging information.\n\
388You seem to have compiled your program with \
389\"g++ -g0\" instead of \"g++ -g\".\n\
390Therefore GDB will not know about your class variables", 0, 0};
391#endif
392
393struct complaint string_table_offset_complaint =
394 {"bad string table offset in symbol %d", 0, 0};
395
396struct complaint unknown_symtype_complaint =
397 {"unknown symbol type 0x%x", 0, 0};
398
399struct complaint lbrac_rbrac_complaint =
400 {"block start larger than block end", 0, 0};
401
402struct complaint const_vol_complaint =
403 {"const/volatile indicator missing, got '%c'", 0, 0};
404
405struct complaint error_type_complaint =
406 {"C++ type mismatch between compiler and debugger", 0, 0};
407
408struct complaint invalid_member_complaint =
409 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
410\f
411/* Support for Sun changes to dbx symbol format */
412
413/* For each identified header file, we have a table of types defined
414 in that header file.
415
416 header_files maps header file names to their type tables.
417 It is a vector of n_header_files elements.
418 Each element describes one header file.
419 It contains a vector of types.
420
421 Sometimes it can happen that the same header file produces
422 different results when included in different places.
423 This can result from conditionals or from different
424 things done before including the file.
425 When this happens, there are multiple entries for the file in this table,
426 one entry for each distinct set of results.
427 The entries are distinguished by the INSTANCE field.
428 The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
429 used to match header-file references to their corresponding data. */
430
431struct header_file
432{
433 char *name; /* Name of header file */
434 int instance; /* Numeric code distinguishing instances
435 of one header file that produced
436 different results when included.
437 It comes from the N_BINCL or N_EXCL. */
438 struct type **vector; /* Pointer to vector of types */
439 int length; /* Allocated length (# elts) of that vector */
440};
441
442static struct header_file *header_files = 0;
443
444static int n_header_files;
445
446static int n_allocated_header_files;
447
448/* During initial symbol readin, we need to have a structure to keep
449 track of which psymtabs have which bincls in them. This structure
450 is used during readin to setup the list of dependencies within each
451 partial symbol table. */
452
453struct header_file_location
454{
455 char *name; /* Name of header file */
456 int instance; /* See above */
457 struct partial_symtab *pst; /* Partial symtab that has the
458 BINCL/EINCL defs for this file */
459};
460
461/* The actual list and controling variables */
462static struct header_file_location *bincl_list, *next_bincl;
463static int bincls_allocated;
464
465/* Within each object file, various header files are assigned numbers.
466 A type is defined or referred to with a pair of numbers
467 (FILENUM,TYPENUM) where FILENUM is the number of the header file
468 and TYPENUM is the number within that header file.
469 TYPENUM is the index within the vector of types for that header file.
470
471 FILENUM == 1 is special; it refers to the main source of the object file,
472 and not to any header file. FILENUM != 1 is interpreted by looking it up
473 in the following table, which contains indices in header_files. */
474
475static int *this_object_header_files = 0;
476
477static int n_this_object_header_files;
478
479static int n_allocated_this_object_header_files;
480
481/* When a header file is getting special overriding definitions
482 for one source file, record here the header_files index
483 of its normal definition vector.
484 At other times, this is -1. */
485
486static int header_file_prev_index;
487
488/* Free up old header file tables, and allocate new ones.
489 We're reading a new symbol file now. */
490
491void
492free_and_init_header_files ()
493{
494 register int i;
495 for (i = 0; i < n_header_files; i++)
496 free (header_files[i].name);
497 if (header_files) /* First time null */
498 free (header_files);
499 if (this_object_header_files) /* First time null */
500 free (this_object_header_files);
501
502 n_allocated_header_files = 10;
503 header_files = (struct header_file *) xmalloc (10 * sizeof (struct header_file));
504 n_header_files = 0;
505
506 n_allocated_this_object_header_files = 10;
507 this_object_header_files = (int *) xmalloc (10 * sizeof (int));
508}
509
510/* Called at the start of each object file's symbols.
511 Clear out the mapping of header file numbers to header files. */
512
513static void
514new_object_header_files ()
515{
516 /* Leave FILENUM of 0 free for builtin types and this file's types. */
517 n_this_object_header_files = 1;
518 header_file_prev_index = -1;
519}
520
521/* Add header file number I for this object file
522 at the next successive FILENUM. */
523
524static void
525add_this_object_header_file (i)
526 int i;
527{
528 if (n_this_object_header_files == n_allocated_this_object_header_files)
529 {
530 n_allocated_this_object_header_files *= 2;
531 this_object_header_files
532 = (int *) xrealloc (this_object_header_files,
533 n_allocated_this_object_header_files * sizeof (int));
534 }
535
536 this_object_header_files[n_this_object_header_files++] = i;
537}
538
539/* Add to this file an "old" header file, one already seen in
540 a previous object file. NAME is the header file's name.
541 INSTANCE is its instance code, to select among multiple
542 symbol tables for the same header file. */
543
544static void
545add_old_header_file (name, instance)
546 char *name;
547 int instance;
548{
549 register struct header_file *p = header_files;
550 register int i;
551
552 for (i = 0; i < n_header_files; i++)
553 if (!strcmp (p[i].name, name) && instance == p[i].instance)
554 {
555 add_this_object_header_file (i);
556 return;
557 }
558 error ("Invalid symbol data: \"repeated\" header file that hasn't been seen before, at symtab pos %d.",
559 symnum);
560}
561
562/* Add to this file a "new" header file: definitions for its types follow.
563 NAME is the header file's name.
564 Most often this happens only once for each distinct header file,
565 but not necessarily. If it happens more than once, INSTANCE has
566 a different value each time, and references to the header file
567 use INSTANCE values to select among them.
568
569 dbx output contains "begin" and "end" markers for each new header file,
570 but at this level we just need to know which files there have been;
571 so we record the file when its "begin" is seen and ignore the "end". */
572
573static void
574add_new_header_file (name, instance)
575 char *name;
576 int instance;
577{
578 register int i;
579 header_file_prev_index = -1;
580
581 /* Make sure there is room for one more header file. */
582
583 if (n_header_files == n_allocated_header_files)
584 {
585 n_allocated_header_files *= 2;
586 header_files = (struct header_file *)
587 xrealloc (header_files,
588 (n_allocated_header_files
589 * sizeof (struct header_file)));
590 }
591
592 /* Create an entry for this header file. */
593
594 i = n_header_files++;
595 header_files[i].name = savestring (name, strlen(name));
596 header_files[i].instance = instance;
597 header_files[i].length = 10;
598 header_files[i].vector
599 = (struct type **) xmalloc (10 * sizeof (struct type *));
600 bzero (header_files[i].vector, 10 * sizeof (struct type *));
601
602 add_this_object_header_file (i);
603}
604
605/* Look up a dbx type-number pair. Return the address of the slot
606 where the type for that number-pair is stored.
607 The number-pair is in TYPENUMS.
608
609 This can be used for finding the type associated with that pair
610 or for associating a new type with the pair. */
611
612static struct type **
613dbx_lookup_type (typenums)
614 int typenums[2];
615{
616 register int filenum = typenums[0], index = typenums[1];
617
618 if (filenum < 0 || filenum >= n_this_object_header_files)
619 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
620 filenum, index, symnum);
621
622 if (filenum == 0)
623 {
624 /* Type is defined outside of header files.
625 Find it in this object file's type vector. */
626 if (index >= type_vector_length)
627 {
628 type_vector_length *= 2;
629 type_vector = (struct typevector *)
630 xrealloc (type_vector,
631 (sizeof (struct typevector)
632 + type_vector_length * sizeof (struct type *)));
633 bzero (&type_vector->type[type_vector_length / 2],
634 type_vector_length * sizeof (struct type *) / 2);
635 }
636 return &type_vector->type[index];
637 }
638 else
639 {
640 register int real_filenum = this_object_header_files[filenum];
641 register struct header_file *f;
642 int f_orig_length;
643
644 if (real_filenum >= n_header_files)
645 abort ();
646
647 f = &header_files[real_filenum];
648
649 f_orig_length = f->length;
650 if (index >= f_orig_length)
651 {
652 while (index >= f->length)
653 f->length *= 2;
654 f->vector = (struct type **)
655 xrealloc (f->vector, f->length * sizeof (struct type *));
656 bzero (&f->vector[f_orig_length],
657 (f->length - f_orig_length) * sizeof (struct type *));
658 }
659 return &f->vector[index];
660 }
661}
662
663/* Create a type object. Occaisionally used when you need a type
664 which isn't going to be given a type number. */
665
666static struct type *
667dbx_create_type ()
668{
669 register struct type *type =
670 (struct type *) obstack_alloc (symbol_obstack, sizeof (struct type));
671
672 bzero (type, sizeof (struct type));
673 TYPE_VPTR_FIELDNO (type) = -1;
674 return type;
675}
676
677/* Make sure there is a type allocated for type numbers TYPENUMS
678 and return the type object.
679 This can create an empty (zeroed) type object.
680 TYPENUMS may be (-1, -1) to return a new type object that is not
681 put into the type vector, and so may not be referred to by number. */
682
683static struct type *
684dbx_alloc_type (typenums)
685 int typenums[2];
686{
687 register struct type **type_addr;
688 register struct type *type;
689
690 if (typenums[1] != -1)
691 {
692 type_addr = dbx_lookup_type (typenums);
693 type = *type_addr;
694 }
695 else
696 {
697 type_addr = 0;
698 type = 0;
699 }
700
701 /* If we are referring to a type not known at all yet,
702 allocate an empty type for it.
703 We will fill it in later if we find out how. */
704 if (type == 0)
705 {
706 type = dbx_create_type ();
707 if (type_addr)
708 *type_addr = type;
709 }
710
711 return type;
712}
713
714#if 0
715static struct type **
716explicit_lookup_type (real_filenum, index)
717 int real_filenum, index;
718{
719 register struct header_file *f = &header_files[real_filenum];
720
721 if (index >= f->length)
722 {
723 f->length *= 2;
724 f->vector = (struct type **)
725 xrealloc (f->vector, f->length * sizeof (struct type *));
726 bzero (&f->vector[f->length / 2],
727 f->length * sizeof (struct type *) / 2);
728 }
729 return &f->vector[index];
730}
731#endif
732\f
733/* maintain the lists of symbols and blocks */
734
735/* Add a symbol to one of the lists of symbols. */
736static void
737add_symbol_to_list (symbol, listhead)
738 struct symbol *symbol;
739 struct pending **listhead;
740{
741 /* We keep PENDINGSIZE symbols in each link of the list.
742 If we don't have a link with room in it, add a new link. */
743 if (*listhead == 0 || (*listhead)->nsyms == PENDINGSIZE)
744 {
745 register struct pending *link;
746 if (free_pendings)
747 {
748 link = free_pendings;
749 free_pendings = link->next;
750 }
751 else
752 link = (struct pending *) xmalloc (sizeof (struct pending));
753
754 link->next = *listhead;
755 *listhead = link;
756 link->nsyms = 0;
757 }
758
759 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
760}
761
762/* At end of reading syms, or in case of quit,
763 really free as many `struct pending's as we can easily find. */
764
765/* ARGSUSED */
766static void
767really_free_pendings (foo)
768 int foo;
769{
770 struct pending *next, *next1;
771 struct pending_block *bnext, *bnext1;
772
773 for (next = free_pendings; next; next = next1)
774 {
775 next1 = next->next;
776 free (next);
777 }
778 free_pendings = 0;
779
780#if 0 /* Now we make the links in the symbol_obstack, so don't free them. */
781 for (bnext = pending_blocks; bnext; bnext = bnext1)
782 {
783 bnext1 = bnext->next;
784 free (bnext);
785 }
786#endif
787 pending_blocks = 0;
788
789 for (next = file_symbols; next; next = next1)
790 {
791 next1 = next->next;
792 free (next);
793 }
3f2e006b
JG
794 file_symbols = 0;
795
bd5635a1
RP
796 for (next = global_symbols; next; next = next1)
797 {
798 next1 = next->next;
799 free (next);
800 }
3f2e006b 801 global_symbols = 0;
bd5635a1
RP
802}
803
804/* Take one of the lists of symbols and make a block from it.
805 Keep the order the symbols have in the list (reversed from the input file).
806 Put the block on the list of pending blocks. */
807
808static void
809finish_block (symbol, listhead, old_blocks, start, end)
810 struct symbol *symbol;
811 struct pending **listhead;
812 struct pending_block *old_blocks;
813 CORE_ADDR start, end;
814{
815 register struct pending *next, *next1;
816 register struct block *block;
817 register struct pending_block *pblock;
818 struct pending_block *opblock;
819 register int i;
820
821 /* Count the length of the list of symbols. */
822
823 for (next = *listhead, i = 0; next; i += next->nsyms, next = next->next)
824 /*EMPTY*/;
825
826 block = (struct block *) obstack_alloc (symbol_obstack,
827 (sizeof (struct block)
828 + ((i - 1)
829 * sizeof (struct symbol *))));
830
831 /* Copy the symbols into the block. */
832
833 BLOCK_NSYMS (block) = i;
834 for (next = *listhead; next; next = next->next)
835 {
836 register int j;
837 for (j = next->nsyms - 1; j >= 0; j--)
838 BLOCK_SYM (block, --i) = next->symbol[j];
839 }
840
841 BLOCK_START (block) = start;
842 BLOCK_END (block) = end;
843 BLOCK_SUPERBLOCK (block) = 0; /* Filled in when containing block is made */
844 BLOCK_GCC_COMPILED (block) = processing_gcc_compilation;
845
846 /* Put the block in as the value of the symbol that names it. */
847
848 if (symbol)
849 {
850 SYMBOL_BLOCK_VALUE (symbol) = block;
851 BLOCK_FUNCTION (block) = symbol;
852 }
853 else
854 BLOCK_FUNCTION (block) = 0;
855
856 /* Now "free" the links of the list, and empty the list. */
857
858 for (next = *listhead; next; next = next1)
859 {
860 next1 = next->next;
861 next->next = free_pendings;
862 free_pendings = next;
863 }
864 *listhead = 0;
865
866 /* Install this block as the superblock
867 of all blocks made since the start of this scope
868 that don't have superblocks yet. */
869
870 opblock = 0;
871 for (pblock = pending_blocks; pblock != old_blocks; pblock = pblock->next)
872 {
873 if (BLOCK_SUPERBLOCK (pblock->block) == 0) {
874#if 1
875 /* Check to be sure the blocks are nested as we receive them.
876 If the compiler/assembler/linker work, this just burns a small
877 amount of time. */
878 if (BLOCK_START (pblock->block) < BLOCK_START (block)
879 || BLOCK_END (pblock->block) > BLOCK_END (block)) {
880 complain(&innerblock_complaint, symbol? SYMBOL_NAME (symbol):
881 "(don't know)");
882 BLOCK_START (pblock->block) = BLOCK_START (block);
883 BLOCK_END (pblock->block) = BLOCK_END (block);
884 }
885#endif
886 BLOCK_SUPERBLOCK (pblock->block) = block;
887 }
888 opblock = pblock;
889 }
890
891 /* Record this block on the list of all blocks in the file.
892 Put it after opblock, or at the beginning if opblock is 0.
893 This puts the block in the list after all its subblocks. */
894
895 /* Allocate in the symbol_obstack to save time.
896 It wastes a little space. */
897 pblock = (struct pending_block *)
898 obstack_alloc (symbol_obstack,
899 sizeof (struct pending_block));
900 pblock->block = block;
901 if (opblock)
902 {
903 pblock->next = opblock->next;
904 opblock->next = pblock;
905 }
906 else
907 {
908 pblock->next = pending_blocks;
909 pending_blocks = pblock;
910 }
911}
912
913static struct blockvector *
914make_blockvector ()
915{
916 register struct pending_block *next;
917 register struct blockvector *blockvector;
918 register int i;
919
920 /* Count the length of the list of blocks. */
921
922 for (next = pending_blocks, i = 0; next; next = next->next, i++);
923
924 blockvector = (struct blockvector *)
925 obstack_alloc (symbol_obstack,
926 (sizeof (struct blockvector)
927 + (i - 1) * sizeof (struct block *)));
928
929 /* Copy the blocks into the blockvector.
930 This is done in reverse order, which happens to put
931 the blocks into the proper order (ascending starting address).
932 finish_block has hair to insert each block into the list
933 after its subblocks in order to make sure this is true. */
934
935 BLOCKVECTOR_NBLOCKS (blockvector) = i;
936 for (next = pending_blocks; next; next = next->next) {
937 BLOCKVECTOR_BLOCK (blockvector, --i) = next->block;
938 }
939
940#if 0 /* Now we make the links in the obstack, so don't free them. */
941 /* Now free the links of the list, and empty the list. */
942
943 for (next = pending_blocks; next; next = next1)
944 {
945 next1 = next->next;
946 free (next);
947 }
948#endif
949 pending_blocks = 0;
950
951#if 1 /* FIXME, shut this off after a while to speed up symbol reading. */
952 /* Some compilers output blocks in the wrong order, but we depend
953 on their being in the right order so we can binary search.
954 Check the order and moan about it. FIXME. */
955 if (BLOCKVECTOR_NBLOCKS (blockvector) > 1)
956 for (i = 1; i < BLOCKVECTOR_NBLOCKS (blockvector); i++) {
957 if (BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i-1))
958 > BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i))) {
959 complain (&blockvector_complaint,
960 BLOCK_START(BLOCKVECTOR_BLOCK (blockvector, i)));
961 }
962 }
963#endif
964
965 return blockvector;
966}
967\f
968/* Manage the vector of line numbers. */
969
970static void
971record_line (line, pc)
972 int line;
973 CORE_ADDR pc;
974{
975 struct linetable_entry *e;
976 /* Ignore the dummy line number in libg.o */
977
978 if (line == 0xffff)
979 return;
980
981 /* Make sure line vector is big enough. */
982
983 if (line_vector_index + 1 >= line_vector_length)
984 {
985 line_vector_length *= 2;
986 line_vector = (struct linetable *)
987 xrealloc (line_vector,
988 (sizeof (struct linetable)
989 + line_vector_length * sizeof (struct linetable_entry)));
990 current_subfile->line_vector = line_vector;
991 }
992
993 e = line_vector->item + line_vector_index++;
994 e->line = line; e->pc = pc;
995}
996\f
997/* Start a new symtab for a new source file.
998 This is called when a dbx symbol of type N_SO is seen;
999 it indicates the start of data for one original source file. */
1000
1001static void
1002start_symtab (name, dirname, start_addr)
1003 char *name;
1004 char *dirname;
1005 CORE_ADDR start_addr;
1006{
1007
1008 last_source_file = name;
1009 last_source_start_addr = start_addr;
1010 file_symbols = 0;
1011 global_symbols = 0;
1012 within_function = 0;
1013
1014 /* Context stack is initially empty, with room for 10 levels. */
1015 context_stack
1016 = (struct context_stack *) xmalloc (10 * sizeof (struct context_stack));
1017 context_stack_size = 10;
1018 context_stack_depth = 0;
1019
1020 new_object_header_files ();
1021
1022 type_vector_length = 160;
1023 type_vector = (struct typevector *)
1024 xmalloc (sizeof (struct typevector)
1025 + type_vector_length * sizeof (struct type *));
1026 bzero (type_vector->type, type_vector_length * sizeof (struct type *));
1027
1028 /* Initialize the list of sub source files with one entry
1029 for this file (the top-level source file). */
1030
1031 subfiles = 0;
1032 current_subfile = 0;
1033 start_subfile (name, dirname);
1034}
1035
1036/* Handle an N_SOL symbol, which indicates the start of
1037 code that came from an included (or otherwise merged-in)
1038 source file with a different name. */
1039
1040static void
1041start_subfile (name, dirname)
1042 char *name;
1043 char *dirname;
1044{
1045 register struct subfile *subfile;
1046
1047 /* Save the current subfile's line vector data. */
1048
1049 if (current_subfile)
1050 {
1051 current_subfile->line_vector_index = line_vector_index;
1052 current_subfile->line_vector_length = line_vector_length;
1053 current_subfile->prev_line_number = prev_line_number;
1054 }
1055
1056 /* See if this subfile is already known as a subfile of the
1057 current main source file. */
1058
1059 for (subfile = subfiles; subfile; subfile = subfile->next)
1060 {
1061 if (!strcmp (subfile->name, name))
1062 {
1063 line_vector = subfile->line_vector;
1064 line_vector_index = subfile->line_vector_index;
1065 line_vector_length = subfile->line_vector_length;
1066 prev_line_number = subfile->prev_line_number;
1067 current_subfile = subfile;
1068 return;
1069 }
1070 }
1071
1072 /* This subfile is not known. Add an entry for it. */
1073
1074 line_vector_index = 0;
1075 line_vector_length = 1000;
1076 prev_line_number = -2; /* Force first line number to be explicit */
1077 line_vector = (struct linetable *)
1078 xmalloc (sizeof (struct linetable)
1079 + line_vector_length * sizeof (struct linetable_entry));
1080
1081 /* Make an entry for this subfile in the list of all subfiles
1082 of the current main source file. */
1083
1084 subfile = (struct subfile *) xmalloc (sizeof (struct subfile));
1085 subfile->next = subfiles;
1086 subfile->name = obsavestring (name, strlen (name));
1087 if (dirname == NULL)
1088 subfile->dirname = NULL;
1089 else
1090 subfile->dirname = obsavestring (dirname, strlen (dirname));
1091
1092 subfile->line_vector = line_vector;
1093 subfiles = subfile;
1094 current_subfile = subfile;
1095}
1096
1097/* Finish the symbol definitions for one main source file,
1098 close off all the lexical contexts for that file
1099 (creating struct block's for them), then make the struct symtab
1100 for that file and put it in the list of all such.
1101
1102 END_ADDR is the address of the end of the file's text. */
1103
1104static void
1105end_symtab (end_addr)
1106 CORE_ADDR end_addr;
1107{
1108 register struct symtab *symtab;
1109 register struct blockvector *blockvector;
1110 register struct subfile *subfile;
1111 register struct linetable *lv;
1112 struct subfile *nextsub;
1113
1114 /* Finish the lexical context of the last function in the file;
1115 pop the context stack. */
1116
1117 if (context_stack_depth > 0)
1118 {
1119 register struct context_stack *cstk;
1120 context_stack_depth--;
1121 cstk = &context_stack[context_stack_depth];
1122 /* Make a block for the local symbols within. */
1123 finish_block (cstk->name, &local_symbols, cstk->old_blocks,
1124 cstk->start_addr, end_addr);
1125 }
1126
1127 /* Cleanup any undefined types that have been left hanging around
1128 (this needs to be done before the finish_blocks so that
1129 file_symbols is still good). */
1130 cleanup_undefined_types ();
1131
1132 /* Finish defining all the blocks of this symtab. */
1133 finish_block (0, &file_symbols, 0, last_source_start_addr, end_addr);
1134 finish_block (0, &global_symbols, 0, last_source_start_addr, end_addr);
1135 blockvector = make_blockvector ();
1136
1137 current_subfile->line_vector_index = line_vector_index;
1138
1139 /* Now create the symtab objects proper, one for each subfile. */
1140 /* (The main file is one of them.) */
1141
1142 for (subfile = subfiles; subfile; subfile = nextsub)
1143 {
1144 symtab = (struct symtab *) xmalloc (sizeof (struct symtab));
1145
1146 /* Fill in its components. */
1147 symtab->blockvector = blockvector;
1148 lv = subfile->line_vector;
1149 lv->nitems = subfile->line_vector_index;
1150 symtab->linetable = (struct linetable *)
1151 xrealloc (lv, (sizeof (struct linetable)
1152 + lv->nitems * sizeof (struct linetable_entry)));
1153 type_vector->length = type_vector_length;
1154 symtab->typevector = type_vector;
1155
1156 symtab->filename = subfile->name;
1157 symtab->dirname = subfile->dirname;
1158
1159 symtab->free_code = free_linetable;
1160 symtab->free_ptr = 0;
1161 if (subfile->next == 0)
1162 symtab->free_ptr = (char *) type_vector;
1163
1164 symtab->nlines = 0;
1165 symtab->line_charpos = 0;
1166
1167 symtab->language = language_unknown;
1168 symtab->fullname = NULL;
1169
f9623881
JG
1170 /* There should never already be a symtab for this name, since
1171 any prev dups have been removed when the psymtab was read in.
1172 FIXME, there ought to be a way to check this here. */
1173 /* FIXME blewit |= free_named_symtabs (symtab->filename); */
bd5635a1
RP
1174
1175 /* Link the new symtab into the list of such. */
1176 symtab->next = symtab_list;
1177 symtab_list = symtab;
1178
1179 nextsub = subfile->next;
1180 free (subfile);
1181 }
1182
1183 type_vector = 0;
1184 type_vector_length = -1;
1185 line_vector = 0;
1186 line_vector_length = -1;
1187 last_source_file = 0;
1188}
1189\f
1190/* Handle the N_BINCL and N_EINCL symbol types
1191 that act like N_SOL for switching source files
1192 (different subfiles, as we call them) within one object file,
1193 but using a stack rather than in an arbitrary order. */
1194
1195struct subfile_stack
1196{
1197 struct subfile_stack *next;
1198 char *name;
1199 int prev_index;
1200};
1201
1202struct subfile_stack *subfile_stack;
1203
1204static void
1205push_subfile ()
1206{
1207 register struct subfile_stack *tem
1208 = (struct subfile_stack *) xmalloc (sizeof (struct subfile_stack));
1209
1210 tem->next = subfile_stack;
1211 subfile_stack = tem;
1212 if (current_subfile == 0 || current_subfile->name == 0)
1213 abort ();
1214 tem->name = current_subfile->name;
1215 tem->prev_index = header_file_prev_index;
1216}
1217
1218static char *
1219pop_subfile ()
1220{
1221 register char *name;
1222 register struct subfile_stack *link = subfile_stack;
1223
1224 if (link == 0)
1225 abort ();
1226
1227 name = link->name;
1228 subfile_stack = link->next;
1229 header_file_prev_index = link->prev_index;
1230 free (link);
1231
1232 return name;
1233}
1234\f
1235void
1236record_misc_function (name, address, type)
1237 char *name;
1238 CORE_ADDR address;
1239 int type;
1240{
1241 enum misc_function_type misc_type =
1242 (type == (N_TEXT | N_EXT) ? mf_text :
1243 (type == (N_DATA | N_EXT)
1244 || type == (N_DATA)
1245 || type == (N_SETV | N_EXT)
1246 ) ? mf_data :
1247 type == (N_BSS | N_EXT) ? mf_bss :
1248 type == (N_ABS | N_EXT) ? mf_abs : mf_unknown);
1249
1250 prim_record_misc_function (obsavestring (name, strlen (name)),
1251 address, misc_type);
1252}
1253\f
1254/* Scan and build partial symbols for a symbol file.
1255 We have been initialized by a call to dbx_symfile_init, which
1256 put all the relevant info into a "struct dbx_symfile_info"
1257 hung off the struct sym_fns SF.
1258
1259 ADDR is the address relative to which the symbols in it are (e.g.
1260 the base address of the text segment).
1261 MAINLINE is true if we are reading the main symbol
1262 table (as opposed to a shared lib or dynamically loaded file). */
1263
1264void
1265dbx_symfile_read (sf, addr, mainline)
1266 struct sym_fns *sf;
1267 CORE_ADDR addr;
1268 int mainline; /* FIXME comments above */
1269{
1270 struct dbx_symfile_info *info = (struct dbx_symfile_info *) (sf->sym_private);
1271 bfd *sym_bfd = sf->sym_bfd;
1272 int val;
1273 char *filename = bfd_get_filename (sym_bfd);
1274
1275 val = lseek (info->desc, info->symtab_offset, L_SET);
1276 if (val < 0)
1277 perror_with_name (filename);
1278
1279 /* If mainline, set global string table pointers, and reinitialize global
1280 partial symbol list. */
1281 if (mainline) {
1282 symfile_string_table = info->stringtab;
1283 symfile_string_table_size = info->stringtab_size;
bd5635a1
RP
1284 }
1285
66eeea27
JG
1286 /* If we are reinitializing, or if we have never loaded syms yet, init */
1287 if (mainline || global_psymbols.size == 0 || static_psymbols.size == 0)
1288 init_psymbol_list (info->symcount);
1289
bd5635a1
RP
1290 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
1291
1292 pending_blocks = 0;
1293 make_cleanup (really_free_pendings, 0);
1294
1295 init_misc_bunches ();
1296 make_cleanup (discard_misc_bunches, 0);
1297
1298 /* Now that the symbol table data of the executable file are all in core,
1299 process them and define symbols accordingly. */
1300
1301 read_dbx_symtab (filename,
1302 addr - bfd_section_vma (sym_bfd, info->text_sect), /*offset*/
1303 info->desc, info->stringtab, info->stringtab_size,
1304 info->symcount,
1305 bfd_section_vma (sym_bfd, info->text_sect),
1306 bfd_section_size (sym_bfd, info->text_sect));
1307
1308 /* Go over the misc symbol bunches and install them in vector. */
1309
1310 condense_misc_bunches (!mainline);
1311
1312 /* Free up any memory we allocated for ourselves. */
1313
1314 if (!mainline) {
1315 free (info->stringtab); /* Stringtab is only saved for mainline */
1316 }
1317 free (info);
1318 sf->sym_private = 0; /* Zap pointer to our (now gone) info struct */
1319
1320 /* Call to select_source_symtab used to be here; it was using too
1321 much time. I'll make sure that list_sources can handle the lack
1322 of current_source_symtab */
1323
1324 if (!partial_symtab_list)
1325 printf_filtered ("\n(no debugging symbols found)...");
1326}
1327
1328/* Discard any information we have cached during the reading of a
1329 single symbol file. This should not toss global information
1330 from previous symbol files that have been read. E.g. we might
1331 be discarding info from reading a shared library, and should not
1332 throw away the info from the main file. */
1333
1334void
1335dbx_symfile_discard ()
1336{
1337
1338 /* Empty the hash table of global syms looking for values. */
1339 bzero (global_sym_chain, sizeof global_sym_chain);
1340
1341 free_pendings = 0;
1342 file_symbols = 0;
1343 global_symbols = 0;
1344}
1345
1346/* Initialize anything that needs initializing when a completely new
1347 symbol file is specified (not just adding some symbols from another
1348 file, e.g. a shared library). */
1349
1350void
1351dbx_new_init ()
1352{
1353 dbx_symfile_discard ();
1354 /* Don't put these on the cleanup chain; they need to stick around
1355 until the next call to symbol_file_command. *Then* we'll free
1356 them. */
1357 if (symfile_string_table)
1358 {
1359 free (symfile_string_table);
1360 symfile_string_table = 0;
1361 symfile_string_table_size = 0;
1362 }
1363 free_and_init_header_files ();
1364}
1365
1366
1367/* dbx_symfile_init ()
1368 is the dbx-specific initialization routine for reading symbols.
1369 It is passed a struct sym_fns which contains, among other things,
1370 the BFD for the file whose symbols are being read, and a slot for a pointer
1371 to "private data" which we fill with goodies.
1372
1373 We read the string table into malloc'd space and stash a pointer to it.
1374
1375 Since BFD doesn't know how to read debug symbols in a format-independent
1376 way (and may never do so...), we have to do it ourselves. We will never
1377 be called unless this is an a.out (or very similar) file.
1378 FIXME, there should be a cleaner peephole into the BFD environment here. */
1379
1380void
1381dbx_symfile_init (sf)
1382 struct sym_fns *sf;
1383{
1384 int val;
1385 int desc;
1386 struct stat statbuf;
1387 bfd *sym_bfd = sf->sym_bfd;
1388 char *name = bfd_get_filename (sym_bfd);
1389 struct dbx_symfile_info *info;
1390 unsigned char size_temp[4];
1391
1392 /* Allocate struct to keep track of the symfile */
1393 sf->sym_private = xmalloc (sizeof (*info)); /* FIXME storage leak */
1394 info = (struct dbx_symfile_info *)sf->sym_private;
1395
1396 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1397 desc = fileno ((FILE *)(sym_bfd->iostream)); /* Raw file descriptor */
1398#define STRING_TABLE_OFFSET (sym_bfd->origin + obj_str_filepos (sym_bfd))
1399#define SYMBOL_TABLE_OFFSET (sym_bfd->origin + obj_sym_filepos (sym_bfd))
1400 /* FIXME POKING INSIDE BFD DATA STRUCTURES */
1401
1402 info->desc = desc;
1403 info->text_sect = bfd_get_section_by_name (sym_bfd, ".text");
1404 if (!info->text_sect)
1405 abort();
1406 info->symcount = bfd_get_symcount_upper_bound(sym_bfd); /* It's exact for a.out */
1407
1408 /* Read the string table size and check it for bogosity. */
1409 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1410 if (val < 0)
1411 perror_with_name (name);
1412 if (fstat (desc, &statbuf) == -1)
1413 perror_with_name (name);
1414
1415 val = myread (desc, size_temp, sizeof (long));
1416 if (val < 0)
1417 perror_with_name (name);
1418 info->stringtab_size = bfd_h_getlong (sym_bfd, size_temp);
1419
1420 if (info->stringtab_size >= 0 && info->stringtab_size < statbuf.st_size)
1421 {
1422 info->stringtab = (char *) xmalloc (info->stringtab_size);
1423 /* Caller is responsible for freeing the string table. No cleanup. */
1424 }
1425 else
1426 info->stringtab = NULL;
1427 if (info->stringtab == NULL && info->stringtab_size != 0)
1428 error ("ridiculous string table size: %d bytes", info->stringtab_size);
1429
1430 /* Now read in the string table in one big gulp. */
1431
1432 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
1433 if (val < 0)
1434 perror_with_name (name);
1435 val = myread (desc, info->stringtab, info->stringtab_size);
1436 if (val < 0)
1437 perror_with_name (name);
1438
1439 /* Record the position of the symbol table for later use. */
1440
1441 info->symtab_offset = SYMBOL_TABLE_OFFSET;
1442}
1443\f
1444/* Buffer for reading the symbol table entries. */
1445static struct nlist symbuf[4096];
1446static int symbuf_idx;
1447static int symbuf_end;
1448
1449/* I/O descriptor for reading the symbol table. */
1450static int symtab_input_desc;
1451
1452/* The address in memory of the string table of the object file we are
1453 reading (which might not be the "main" object file, but might be a
1454 shared library or some other dynamically loaded thing). This is set
1455 by read_dbx_symtab when building psymtabs, and by read_ofile_symtab
1456 when building symtabs, and is used only by next_symbol_text. */
1457static char *stringtab_global;
1458
1459/* Refill the symbol table input buffer
1460 and set the variables that control fetching entries from it.
1461 Reports an error if no data available.
1462 This function can read past the end of the symbol table
1463 (into the string table) but this does no harm. */
1464
1465static int
1466fill_symbuf ()
1467{
1468 int nbytes = myread (symtab_input_desc, symbuf, sizeof (symbuf));
1469 if (nbytes < 0)
1470 perror_with_name ("<symbol file>");
1471 else if (nbytes == 0)
1472 error ("Premature end of file reading symbol table");
1473 symbuf_end = nbytes / sizeof (struct nlist);
1474 symbuf_idx = 0;
1475 return 1;
1476}
1477
1478#define SWAP_SYMBOL(symp) \
1479 { \
1480 (symp)->n_un.n_strx = bfd_h_getlong(symfile_bfd, \
1481 (unsigned char *)&(symp)->n_un.n_strx); \
1482 (symp)->n_desc = bfd_h_getshort (symfile_bfd, \
1483 (unsigned char *)&(symp)->n_desc); \
1484 (symp)->n_value = bfd_h_getlong (symfile_bfd, \
1485 (unsigned char *)&(symp)->n_value); \
1486 }
1487
1488/* Invariant: The symbol pointed to by symbuf_idx is the first one
1489 that hasn't been swapped. Swap the symbol at the same time
1490 that symbuf_idx is incremented. */
1491
1492/* dbx allows the text of a symbol name to be continued into the
1493 next symbol name! When such a continuation is encountered
1494 (a \ at the end of the text of a name)
1495 call this function to get the continuation. */
1496
1497static char *
1498next_symbol_text ()
1499{
1500 if (symbuf_idx == symbuf_end)
1501 fill_symbuf ();
1502 symnum++;
1503 SWAP_SYMBOL(&symbuf[symbuf_idx]);
1504 return symbuf[symbuf_idx++].n_un.n_strx + stringtab_global;
1505}
1506\f
1507/* Initializes storage for all of the partial symbols that will be
1508 created by read_dbx_symtab and subsidiaries. */
1509
1510static void
1511init_psymbol_list (total_symbols)
1512 int total_symbols;
1513{
1514 /* Free any previously allocated psymbol lists. */
1515 if (global_psymbols.list)
1516 free (global_psymbols.list);
1517 if (static_psymbols.list)
1518 free (static_psymbols.list);
1519
1520 /* Current best guess is that there are approximately a twentieth
1521 of the total symbols (in a debugging file) are global or static
1522 oriented symbols */
1523 global_psymbols.size = total_symbols / 10;
1524 static_psymbols.size = total_symbols / 10;
1525 global_psymbols.next = global_psymbols.list = (struct partial_symbol *)
1526 xmalloc (global_psymbols.size * sizeof (struct partial_symbol));
1527 static_psymbols.next = static_psymbols.list = (struct partial_symbol *)
1528 xmalloc (static_psymbols.size * sizeof (struct partial_symbol));
1529}
1530
1531/* Initialize the list of bincls to contain none and have some
1532 allocated. */
1533
1534static void
1535init_bincl_list (number)
1536 int number;
1537{
1538 bincls_allocated = number;
1539 next_bincl = bincl_list = (struct header_file_location *)
1540 xmalloc (bincls_allocated * sizeof(struct header_file_location));
1541}
1542
1543/* Add a bincl to the list. */
1544
1545static void
1546add_bincl_to_list (pst, name, instance)
1547 struct partial_symtab *pst;
1548 char *name;
1549 int instance;
1550{
1551 if (next_bincl >= bincl_list + bincls_allocated)
1552 {
1553 int offset = next_bincl - bincl_list;
1554 bincls_allocated *= 2;
1555 bincl_list = (struct header_file_location *)
1556 xrealloc ((char *)bincl_list,
1557 bincls_allocated * sizeof (struct header_file_location));
1558 next_bincl = bincl_list + offset;
1559 }
1560 next_bincl->pst = pst;
1561 next_bincl->instance = instance;
1562 next_bincl++->name = name;
1563}
1564
1565/* Given a name, value pair, find the corresponding
1566 bincl in the list. Return the partial symtab associated
1567 with that header_file_location. */
1568
1569struct partial_symtab *
1570find_corresponding_bincl_psymtab (name, instance)
1571 char *name;
1572 int instance;
1573{
1574 struct header_file_location *bincl;
1575
1576 for (bincl = bincl_list; bincl < next_bincl; bincl++)
1577 if (bincl->instance == instance
1578 && !strcmp (name, bincl->name))
1579 return bincl->pst;
1580
1581 return (struct partial_symtab *) 0;
1582}
1583
1584/* Free the storage allocated for the bincl list. */
1585
1586static void
1587free_bincl_list ()
1588{
1589 free (bincl_list);
1590 bincls_allocated = 0;
1591}
1592
1593static struct partial_symtab *start_psymtab ();
1594static void end_psymtab();
1595
1596#ifdef DEBUG
1597/* This is normally a macro defined in read_dbx_symtab, but this
1598 is a lot easier to debug. */
1599
1600ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, PLIST, VALUE)
1601 char *NAME;
1602 int NAMELENGTH;
1603 enum namespace NAMESPACE;
1604 enum address_class CLASS;
1605 struct psymbol_allocation_list *PLIST;
1606 unsigned long VALUE;
1607{
1608 register struct partial_symbol *psym;
1609
1610#define LIST *PLIST
1611 do {
1612 if ((LIST).next >=
1613 (LIST).list + (LIST).size)
1614 {
1615 (LIST).list = (struct partial_symbol *)
1616 xrealloc ((LIST).list,
1617 ((LIST).size * 2
1618 * sizeof (struct partial_symbol)));
1619 /* Next assumes we only went one over. Should be good if
1620 program works correctly */
1621 (LIST).next =
1622 (LIST).list + (LIST).size;
1623 (LIST).size *= 2;
1624 }
1625 psym = (LIST).next++;
1626#undef LIST
1627
1628 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack,
1629 (NAMELENGTH) + 1);
1630 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH));
1631 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0';
1632 SYMBOL_NAMESPACE (psym) = (NAMESPACE);
1633 SYMBOL_CLASS (psym) = (CLASS);
1634 SYMBOL_VALUE (psym) = (VALUE);
1635 } while (0);
1636}
1637
1638/* Since one arg is a struct, we have to pass in a ptr and deref it (sigh) */
1639#define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1640 ADD_PSYMBOL_TO_PLIST(NAME, NAMELENGTH, NAMESPACE, CLASS, &LIST, VALUE)
1641
1642#endif /* DEBUG */
1643
1644/* Given pointers to an a.out symbol table in core containing dbx
1645 style data, setup partial_symtab's describing each source file for
1646 which debugging information is available. NLISTLEN is the number
1647 of symbols in the symbol table. All symbol names are given as
1648 offsets relative to STRINGTAB. STRINGTAB_SIZE is the size of
1649 STRINGTAB. SYMFILE_NAME is the name of the file we are reading from
1650 and ADDR is its relocated address (if incremental) or 0 (if not). */
1651
1652static void
1653read_dbx_symtab (symfile_name, addr,
1654 desc, stringtab, stringtab_size, nlistlen,
1655 text_addr, text_size)
1656 char *symfile_name;
1657 CORE_ADDR addr;
1658 int desc;
1659 register char *stringtab;
1660 register long stringtab_size;
1661 register int nlistlen;
1662 CORE_ADDR text_addr;
1663 int text_size;
1664{
1665 register struct nlist *bufp;
1666 register char *namestring;
1667 register struct partial_symbol *psym;
1668 int nsl;
1669 int past_first_source_file = 0;
1670 CORE_ADDR last_o_file_start = 0;
1671 struct cleanup *old_chain;
1672 char *p;
1673
1674 /* End of the text segment of the executable file. */
1675 CORE_ADDR end_of_text_addr;
1676
1677 /* Current partial symtab */
1678 struct partial_symtab *pst;
1679
1680 /* List of current psymtab's include files */
1681 char **psymtab_include_list;
1682 int includes_allocated;
1683 int includes_used;
1684
1685 /* Index within current psymtab dependency list */
1686 struct partial_symtab **dependency_list;
1687 int dependencies_used, dependencies_allocated;
1688
1689 stringtab_global = stringtab;
1690
1691 pst = (struct partial_symtab *) 0;
1692
1693 includes_allocated = 30;
1694 includes_used = 0;
1695 psymtab_include_list = (char **) alloca (includes_allocated *
1696 sizeof (char *));
1697
1698 dependencies_allocated = 30;
1699 dependencies_used = 0;
1700 dependency_list =
1701 (struct partial_symtab **) alloca (dependencies_allocated *
1702 sizeof (struct partial_symtab *));
1703
1704 /* FIXME!! If an error occurs, this blows away the whole symbol table!
1705 It should only blow away the psymtabs created herein. We could
1706 be reading a shared library or a dynloaded file! */
1707 old_chain = make_cleanup (free_all_psymtabs, 0);
1708
1709 /* Init bincl list */
1710 init_bincl_list (20);
1711 make_cleanup (free_bincl_list, 0);
1712
1713 last_source_file = 0;
1714
1715#ifdef END_OF_TEXT_DEFAULT
1716 end_of_text_addr = END_OF_TEXT_DEFAULT;
1717#else
3f2e006b 1718 end_of_text_addr = text_addr + text_size;
bd5635a1
RP
1719#endif
1720
1721 symtab_input_desc = desc; /* This is needed for fill_symbuf below */
1722 symbuf_end = symbuf_idx = 0;
1723
1724 for (symnum = 0; symnum < nlistlen; symnum++)
1725 {
1726 /* Get the symbol for this run and pull out some info */
1727 QUIT; /* allow this to be interruptable */
1728 if (symbuf_idx == symbuf_end)
1729 fill_symbuf ();
1730 bufp = &symbuf[symbuf_idx++];
1731
1732 /*
1733 * Special case to speed up readin.
1734 */
1735 if (bufp->n_type == (unsigned char)N_SLINE) continue;
1736
1737 SWAP_SYMBOL (bufp);
1738
1739 /* Ok. There is a lot of code duplicated in the rest of this
1740 switch statement (for efficiency reasons). Since I don't
1741 like duplicating code, I will do my penance here, and
1742 describe the code which is duplicated:
1743
1744 *) The assignment to namestring.
1745 *) The call to strchr.
1746 *) The addition of a partial symbol the the two partial
1747 symbol lists. This last is a large section of code, so
1748 I've imbedded it in the following macro.
1749 */
1750
1751/* Set namestring based on bufp. If the string table index is invalid,
1752 give a fake name, and print a single error message per symbol file read,
1753 rather than abort the symbol reading or flood the user with messages. */
1754#define SET_NAMESTRING()\
1755 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size) { \
1756 complain (&string_table_offset_complaint, symnum); \
1757 namestring = "foo"; \
1758 } else \
1759 namestring = bufp->n_un.n_strx + stringtab
1760
1761/* Add a symbol with an integer value to a psymtab. */
1762/* This is a macro unless we're debugging. See above this function. */
1763#ifndef DEBUG
1764# define ADD_PSYMBOL_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1765 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1766 SYMBOL_VALUE)
1767#endif /* DEBUG */
1768
1769/* Add a symbol with a CORE_ADDR value to a psymtab. */
1770#define ADD_PSYMBOL_ADDR_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE) \
1771 ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, \
1772 SYMBOL_VALUE_ADDRESS)
1773
1774/* Add any kind of symbol to a psymtab. */
1775#define ADD_PSYMBOL_VT_TO_LIST(NAME, NAMELENGTH, NAMESPACE, CLASS, LIST, VALUE, VT)\
1776 do { \
1777 if ((LIST).next >= \
1778 (LIST).list + (LIST).size) \
1779 { \
1780 (LIST).list = (struct partial_symbol *) \
1781 xrealloc ((LIST).list, \
1782 ((LIST).size * 2 \
1783 * sizeof (struct partial_symbol))); \
1784 /* Next assumes we only went one over. Should be good if \
1785 program works correctly */ \
1786 (LIST).next = \
1787 (LIST).list + (LIST).size; \
1788 (LIST).size *= 2; \
1789 } \
1790 psym = (LIST).next++; \
1791 \
1792 SYMBOL_NAME (psym) = (char *) obstack_alloc (psymbol_obstack, \
1793 (NAMELENGTH) + 1); \
1794 strncpy (SYMBOL_NAME (psym), (NAME), (NAMELENGTH)); \
1795 SYMBOL_NAME (psym)[(NAMELENGTH)] = '\0'; \
1796 SYMBOL_NAMESPACE (psym) = (NAMESPACE); \
1797 SYMBOL_CLASS (psym) = (CLASS); \
1798 VT (psym) = (VALUE); \
1799 } while (0);
1800
1801/* End of macro definitions, now let's handle them symbols! */
1802
1803 switch (bufp->n_type)
1804 {
1805 /*
1806 * Standard, external, non-debugger, symbols
1807 */
1808
1809 case N_TEXT | N_EXT:
1810 case N_NBTEXT | N_EXT:
1811 case N_NBDATA | N_EXT:
1812 case N_NBBSS | N_EXT:
1813 case N_SETV | N_EXT:
1814 case N_ABS | N_EXT:
1815 case N_DATA | N_EXT:
1816 case N_BSS | N_EXT:
1817
1818 bufp->n_value += addr; /* Relocate */
1819
1820 SET_NAMESTRING();
1821
1822 bss_ext_symbol:
1823 record_misc_function (namestring, bufp->n_value,
1824 bufp->n_type); /* Always */
1825
1826 continue;
1827
1828 /* Standard, local, non-debugger, symbols */
1829
1830 case N_NBTEXT:
1831
1832 /* We need to be able to deal with both N_FN or N_TEXT,
1833 because we have no way of knowing whether the sys-supplied ld
1834 or GNU ld was used to make the executable. */
1835#if ! (N_FN & N_EXT)
1836 case N_FN:
1837#endif
1838 case N_FN | N_EXT:
1839 case N_TEXT:
1840 bufp->n_value += addr; /* Relocate */
1841 SET_NAMESTRING();
1842 if ((namestring[0] == '-' && namestring[1] == 'l')
1843 || (namestring [(nsl = strlen (namestring)) - 1] == 'o'
1844 && namestring [nsl - 2] == '.'))
1845 {
1846 if (entry_point < bufp->n_value
1847 && entry_point >= last_o_file_start
1848 && addr == 0) /* FIXME nogood nomore */
1849 {
1850 startup_file_start = last_o_file_start;
1851 startup_file_end = bufp->n_value;
1852 }
1853 if (past_first_source_file && pst
1854 /* The gould NP1 uses low values for .o and -l symbols
1855 which are not the address. */
1856 && bufp->n_value > pst->textlow)
1857 {
1858 end_psymtab (pst, psymtab_include_list, includes_used,
1859 symnum * sizeof (struct nlist), bufp->n_value,
1860 dependency_list, dependencies_used,
1861 global_psymbols.next, static_psymbols.next);
1862 pst = (struct partial_symtab *) 0;
1863 includes_used = 0;
1864 dependencies_used = 0;
1865 }
1866 else
1867 past_first_source_file = 1;
1868 last_o_file_start = bufp->n_value;
1869 }
1870 continue;
1871
1872 case N_DATA:
1873 bufp->n_value += addr; /* Relocate */
1874 SET_NAMESTRING ();
1875 /* Check for __DYNAMIC, which is used by Sun shared libraries.
1876 Record it even if it's local, not global, so we can find it. */
1877 if (namestring[8] == 'C' && (strcmp ("__DYNAMIC", namestring) == 0))
1878 {
1879 /* Not really a function here, but... */
1880 record_misc_function (namestring, bufp->n_value,
1881 bufp->n_type); /* Always */
1882 }
1883 continue;
1884
1885 case N_UNDF | N_EXT:
1886 if (bufp->n_value != 0) {
1887 /* This is a "Fortran COMMON" symbol. See if the target
1888 environment knows where it has been relocated to. */
1889
1890 CORE_ADDR reladdr;
1891
1892 SET_NAMESTRING();
1893 if (target_lookup_symbol (namestring, &reladdr)) {
1894 continue; /* Error in lookup; ignore symbol for now. */
1895 }
1896 bufp->n_type ^= (N_BSS^N_UNDF); /* Define it as a bss-symbol */
1897 bufp->n_value = reladdr;
1898 goto bss_ext_symbol;
1899 }
1900 continue; /* Just undefined, not COMMON */
1901
1902 /* Lots of symbol types we can just ignore. */
1903
1904 case N_UNDF:
1905 case N_ABS:
1906 case N_BSS:
1907 case N_NBDATA:
1908 case N_NBBSS:
1909 continue;
1910
1911 /* Keep going . . .*/
1912
1913 /*
1914 * Special symbol types for GNU
1915 */
1916 case N_INDR:
1917 case N_INDR | N_EXT:
1918 case N_SETA:
1919 case N_SETA | N_EXT:
1920 case N_SETT:
1921 case N_SETT | N_EXT:
1922 case N_SETD:
1923 case N_SETD | N_EXT:
1924 case N_SETB:
1925 case N_SETB | N_EXT:
1926 case N_SETV:
1927 continue;
1928
1929 /*
1930 * Debugger symbols
1931 */
1932
1933 case N_SO: {
1934 unsigned long valu = bufp->n_value;
1935 /* Symbol number of the first symbol of this file (i.e. the N_SO
1936 if there is just one, or the first if we have a pair). */
1937 int first_symnum = symnum;
1938
1939 /* End the current partial symtab and start a new one */
1940
1941 SET_NAMESTRING();
1942
1943 /* Peek at the next symbol. If it is also an N_SO, the
1944 first one just indicates the directory. */
1945 if (symbuf_idx == symbuf_end)
1946 fill_symbuf ();
1947 bufp = &symbuf[symbuf_idx];
1948 /* n_type is only a char, so swapping swapping is irrelevant. */
1949 if (bufp->n_type == (unsigned char)N_SO)
1950 {
1951 SWAP_SYMBOL (bufp);
1952 SET_NAMESTRING ();
1953 valu = bufp->n_value;
1954 symbuf_idx++;
1955 symnum++;
1956 }
1957 valu += addr; /* Relocate */
1958
1959 if (pst && past_first_source_file)
1960 {
1961 end_psymtab (pst, psymtab_include_list, includes_used,
1962 first_symnum * sizeof (struct nlist), valu,
1963 dependency_list, dependencies_used,
1964 global_psymbols.next, static_psymbols.next);
1965 pst = (struct partial_symtab *) 0;
1966 includes_used = 0;
1967 dependencies_used = 0;
1968 }
1969 else
1970 past_first_source_file = 1;
1971
1972 pst = start_psymtab (symfile_name, addr,
1973 namestring, valu,
1974 first_symnum * sizeof (struct nlist),
1975 global_psymbols.next, static_psymbols.next);
1976
1977 continue;
1978 }
1979
1980 case N_BINCL:
1981 /* Add this bincl to the bincl_list for future EXCLs. No
1982 need to save the string; it'll be around until
1983 read_dbx_symtab function returns */
1984
1985 SET_NAMESTRING();
1986
1987 add_bincl_to_list (pst, namestring, bufp->n_value);
1988
1989 /* Mark down an include file in the current psymtab */
1990
1991 psymtab_include_list[includes_used++] = namestring;
1992 if (includes_used >= includes_allocated)
1993 {
1994 char **orig = psymtab_include_list;
1995
1996 psymtab_include_list = (char **)
1997 alloca ((includes_allocated *= 2) *
1998 sizeof (char *));
1999 bcopy (orig, psymtab_include_list,
2000 includes_used * sizeof (char *));
2001 }
2002
2003 continue;
2004
2005 case N_SOL:
2006 /* Mark down an include file in the current psymtab */
2007
2008 SET_NAMESTRING();
2009
2010 /* In C++, one may expect the same filename to come round many
2011 times, when code is coming alternately from the main file
2012 and from inline functions in other files. So I check to see
f9623881
JG
2013 if this is a file we've seen before -- either the main
2014 source file, or a previously included file.
bd5635a1
RP
2015
2016 This seems to be a lot of time to be spending on N_SOL, but
2017 things like "break expread.y:435" need to work (I
2018 suppose the psymtab_include_list could be hashed or put
2019 in a binary tree, if profiling shows this is a major hog). */
f9623881
JG
2020 if (!strcmp (namestring, pst->filename))
2021 continue;
bd5635a1
RP
2022 {
2023 register int i;
2024 for (i = 0; i < includes_used; i++)
2025 if (!strcmp (namestring, psymtab_include_list[i]))
2026 {
2027 i = -1;
2028 break;
2029 }
2030 if (i == -1)
2031 continue;
2032 }
2033
2034 psymtab_include_list[includes_used++] = namestring;
2035 if (includes_used >= includes_allocated)
2036 {
2037 char **orig = psymtab_include_list;
2038
2039 psymtab_include_list = (char **)
2040 alloca ((includes_allocated *= 2) *
2041 sizeof (char *));
2042 bcopy (orig, psymtab_include_list,
2043 includes_used * sizeof (char *));
2044 }
2045 continue;
2046
2047 case N_LSYM: /* Typedef or automatic variable. */
2048 SET_NAMESTRING();
2049
2050 p = (char *) strchr (namestring, ':');
2051
2052 /* Skip if there is no :. */
2053 if (!p) continue;
2054
2055 switch (p[1])
2056 {
2057 case 'T':
2058 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2059 STRUCT_NAMESPACE, LOC_TYPEDEF,
2060 static_psymbols, bufp->n_value);
2061 if (p[2] == 't')
2062 {
2063 /* Also a typedef with the same name. */
2064 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2065 VAR_NAMESPACE, LOC_TYPEDEF,
2066 static_psymbols, bufp->n_value);
2067 p += 1;
2068 }
2069 goto check_enum;
2070 case 't':
2071 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2072 VAR_NAMESPACE, LOC_TYPEDEF,
2073 static_psymbols, bufp->n_value);
2074 check_enum:
2075 /* If this is an enumerated type, we need to
2076 add all the enum constants to the partial symbol
2077 table. This does not cover enums without names, e.g.
2078 "enum {a, b} c;" in C, but fortunately those are
2079 rare. There is no way for GDB to find those from the
2080 enum type without spending too much time on it. Thus
2081 to solve this problem, the compiler needs to put out separate
2082 constant symbols ('c' N_LSYMS) for enum constants in
2083 enums without names, or put out a dummy type. */
2084
2085 /* We are looking for something of the form
2086 <name> ":" ("t" | "T") [<number> "="] "e"
2087 {<constant> ":" <value> ","} ";". */
2088
2089 /* Skip over the colon and the 't' or 'T'. */
2090 p += 2;
2091 /* This type may be given a number. Skip over it. */
2092 while ((*p >= '0' && *p <= '9')
2093 || *p == '=')
2094 p++;
2095
2096 if (*p++ == 'e')
2097 {
2098 /* We have found an enumerated type. */
2099 /* According to comments in read_enum_type
2100 a comma could end it instead of a semicolon.
2101 I don't know where that happens.
2102 Accept either. */
2103 while (*p && *p != ';' && *p != ',')
2104 {
2105 char *q;
2106
2107 /* Check for and handle cretinous dbx symbol name
2108 continuation! */
2109 if (*p == '\\')
2110 p = next_symbol_text ();
2111
2112 /* Point to the character after the name
2113 of the enum constant. */
2114 for (q = p; *q && *q != ':'; q++)
2115 ;
2116 /* Note that the value doesn't matter for
2117 enum constants in psymtabs, just in symtabs. */
2118 ADD_PSYMBOL_TO_LIST (p, q - p,
2119 VAR_NAMESPACE, LOC_CONST,
2120 static_psymbols, 0);
2121 /* Point past the name. */
2122 p = q;
2123 /* Skip over the value. */
2124 while (*p && *p != ',')
2125 p++;
2126 /* Advance past the comma. */
2127 if (*p)
2128 p++;
2129 }
2130 }
2131
2132 continue;
2133 case 'c':
2134 /* Constant, e.g. from "const" in Pascal. */
2135 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2136 VAR_NAMESPACE, LOC_CONST,
2137 static_psymbols, bufp->n_value);
2138 continue;
2139 default:
2140 /* Skip if the thing following the : is
2141 not a letter (which indicates declaration of a local
2142 variable, which we aren't interested in). */
2143 continue;
2144 }
2145
2146 case N_FUN:
2147 case N_GSYM: /* Global (extern) variable; can be
2148 data or bss (sigh). */
2149 case N_STSYM: /* Data seg var -- static */
2150 case N_LCSYM: /* BSS " */
2151
2152 case N_NBSTS: /* Gould nobase. */
2153 case N_NBLCS: /* symbols. */
2154
2155 /* Following may probably be ignored; I'll leave them here
2156 for now (until I do Pascal and Modula 2 extensions). */
2157
2158 case N_PC: /* I may or may not need this; I
2159 suspect not. */
2160 case N_M2C: /* I suspect that I can ignore this here. */
2161 case N_SCOPE: /* Same. */
2162
2163 SET_NAMESTRING();
2164
2165 p = (char *) strchr (namestring, ':');
2166 if (!p)
2167 continue; /* Not a debugging symbol. */
2168
2169
2170
2171 /* Main processing section for debugging symbols which
2172 the initial read through the symbol tables needs to worry
2173 about. If we reach this point, the symbol which we are
2174 considering is definitely one we are interested in.
2175 p must also contain the (valid) index into the namestring
2176 which indicates the debugging type symbol. */
2177
2178 switch (p[1])
2179 {
2180 case 'c':
2181 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2182 VAR_NAMESPACE, LOC_CONST,
2183 static_psymbols, bufp->n_value);
2184 continue;
2185 case 'S':
2186 bufp->n_value += addr; /* Relocate */
2187 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2188 VAR_NAMESPACE, LOC_STATIC,
2189 static_psymbols, bufp->n_value);
2190 continue;
2191 case 'G':
2192 bufp->n_value += addr; /* Relocate */
2193 ADD_PSYMBOL_ADDR_TO_LIST (namestring, p - namestring,
2194 VAR_NAMESPACE, LOC_EXTERNAL,
2195 global_psymbols, bufp->n_value);
2196 continue;
2197
2198 case 't':
2199 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2200 VAR_NAMESPACE, LOC_TYPEDEF,
2201 global_psymbols, bufp->n_value);
2202 continue;
2203
2204 case 'f':
2205 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2206 VAR_NAMESPACE, LOC_BLOCK,
2207 static_psymbols, bufp->n_value);
2208 continue;
2209
f9623881
JG
2210 /* Global functions were ignored here, but now they
2211 are put into the global psymtab like one would expect.
2212 They're also in the misc fn vector...
2213 FIXME, why did it used to ignore these? That broke
2214 "i fun" on these functions. */
2215 case 'F':
2216 ADD_PSYMBOL_TO_LIST (namestring, p - namestring,
2217 VAR_NAMESPACE, LOC_BLOCK,
2218 global_psymbols, bufp->n_value);
2219 continue;
2220
bd5635a1
RP
2221 /* Two things show up here (hopefully); static symbols of
2222 local scope (static used inside braces) or extensions
2223 of structure symbols. We can ignore both. */
2224 case 'V':
2225 case '(':
2226 case '0':
2227 case '1':
2228 case '2':
2229 case '3':
2230 case '4':
2231 case '5':
2232 case '6':
2233 case '7':
2234 case '8':
2235 case '9':
bd5635a1
RP
2236 continue;
2237
2238 default:
2239 /* Unexpected symbol. Ignore it; perhaps it is an extension
2240 that we don't know about.
2241
2242 Someone says sun cc puts out symbols like
2243 /foo/baz/maclib::/usr/local/bin/maclib,
2244 which would get here with a symbol type of ':'. */
2245 continue;
2246 }
2247
2248 case N_EXCL:
2249
2250 SET_NAMESTRING();
2251
2252 /* Find the corresponding bincl and mark that psymtab on the
2253 psymtab dependency list */
2254 {
2255 struct partial_symtab *needed_pst =
2256 find_corresponding_bincl_psymtab (namestring, bufp->n_value);
2257
2258 /* If this include file was defined earlier in this file,
2259 leave it alone. */
2260 if (needed_pst == pst) continue;
2261
2262 if (needed_pst)
2263 {
2264 int i;
2265 int found = 0;
2266
2267 for (i = 0; i < dependencies_used; i++)
2268 if (dependency_list[i] == needed_pst)
2269 {
2270 found = 1;
2271 break;
2272 }
2273
2274 /* If it's already in the list, skip the rest. */
2275 if (found) continue;
2276
2277 dependency_list[dependencies_used++] = needed_pst;
2278 if (dependencies_used >= dependencies_allocated)
2279 {
2280 struct partial_symtab **orig = dependency_list;
2281 dependency_list =
2282 (struct partial_symtab **)
2283 alloca ((dependencies_allocated *= 2)
2284 * sizeof (struct partial_symtab *));
2285 bcopy (orig, dependency_list,
2286 (dependencies_used
2287 * sizeof (struct partial_symtab *)));
2288#ifdef DEBUG_INFO
2289 fprintf (stderr, "Had to reallocate dependency list.\n");
2290 fprintf (stderr, "New dependencies allocated: %d\n",
2291 dependencies_allocated);
2292#endif
2293 }
2294 }
2295 else
2296 error ("Invalid symbol data: \"repeated\" header file not previously seen, at symtab pos %d.",
2297 symnum);
2298 }
2299 continue;
2300
2301 case N_EINCL:
2302 case N_DSLINE:
2303 case N_BSLINE:
2304 case N_SSYM: /* Claim: Structure or union element.
2305 Hopefully, I can ignore this. */
2306 case N_ENTRY: /* Alternate entry point; can ignore. */
2307 case N_MAIN: /* Can definitely ignore this. */
2308 case N_CATCH: /* These are GNU C++ extensions */
2309 case N_EHDECL: /* that can safely be ignored here. */
2310 case N_LENG:
2311 case N_BCOMM:
2312 case N_ECOMM:
2313 case N_ECOML:
2314 case N_FNAME:
2315 case N_SLINE:
2316 case N_RSYM:
2317 case N_PSYM:
2318 case N_LBRAC:
2319 case N_RBRAC:
2320 case N_NSYMS: /* Ultrix 4.0: symbol count */
2321 /* These symbols aren't interesting; don't worry about them */
2322
2323 continue;
2324
2325 default:
2326 /* If we haven't found it yet, ignore it. It's probably some
2327 new type we don't know about yet. */
2328 complain (&unknown_symtype_complaint, bufp->n_type);
2329 continue;
2330 }
2331 }
2332
2333 /* If there's stuff to be cleaned up, clean it up. */
2334 if (entry_point < bufp->n_value
2335 && entry_point >= last_o_file_start)
2336 {
2337 startup_file_start = last_o_file_start;
2338 startup_file_end = bufp->n_value;
2339 }
2340
2341 if (pst)
2342 {
2343 end_psymtab (pst, psymtab_include_list, includes_used,
2344 symnum * sizeof (struct nlist), end_of_text_addr,
2345 dependency_list, dependencies_used,
2346 global_psymbols.next, static_psymbols.next);
2347 includes_used = 0;
2348 dependencies_used = 0;
2349 pst = (struct partial_symtab *) 0;
2350 }
2351
2352 free_bincl_list ();
2353 discard_cleanups (old_chain);
2354}
2355
2356/*
2357 * Allocate and partially fill a partial symtab. It will be
2358 * completely filled at the end of the symbol list.
2359
2360 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2361 is the address relative to which its symbols are (incremental) or 0
2362 (normal). */
2363static struct partial_symtab *
2364start_psymtab (symfile_name, addr,
2365 filename, textlow, ldsymoff, global_syms, static_syms)
2366 char *symfile_name;
2367 CORE_ADDR addr;
2368 char *filename;
2369 CORE_ADDR textlow;
2370 int ldsymoff;
2371 struct partial_symbol *global_syms;
2372 struct partial_symbol *static_syms;
2373{
2374 struct partial_symtab *result =
2375 (struct partial_symtab *) obstack_alloc (psymbol_obstack,
2376 sizeof (struct partial_symtab));
2377
2378 result->addr = addr;
2379
2380 result->symfile_name =
2381 (char *) obstack_alloc (psymbol_obstack,
2382 strlen (symfile_name) + 1);
2383 strcpy (result->symfile_name, symfile_name);
2384
2385 result->filename =
2386 (char *) obstack_alloc (psymbol_obstack,
2387 strlen (filename) + 1);
2388 strcpy (result->filename, filename);
2389
2390 result->textlow = textlow;
2391 result->ldsymoff = ldsymoff;
2392
2393 result->readin = 0;
2394 result->symtab = 0;
2395 result->read_symtab = dbx_psymtab_to_symtab;
2396
2397 result->globals_offset = global_syms - global_psymbols.list;
2398 result->statics_offset = static_syms - static_psymbols.list;
2399
2400 result->n_global_syms = 0;
2401 result->n_static_syms = 0;
2402
2403
2404 return result;
2405}
2406
2407static int
2408compare_psymbols (s1, s2)
2409 register struct partial_symbol *s1, *s2;
2410{
2411 register char
2412 *st1 = SYMBOL_NAME (s1),
2413 *st2 = SYMBOL_NAME (s2);
2414
2415 return (st1[0] - st2[0] ? st1[0] - st2[0] :
2416 strcmp (st1 + 1, st2 + 1));
2417}
2418
2419
2420/* Close off the current usage of a partial_symbol table entry. This
2421 involves setting the correct number of includes (with a realloc),
2422 setting the high text mark, setting the symbol length in the
2423 executable, and setting the length of the global and static lists
2424 of psymbols.
2425
2426 The global symbols and static symbols are then seperately sorted.
2427
2428 Then the partial symtab is put on the global list.
2429 *** List variables and peculiarities of same. ***
2430 */
2431static void
2432end_psymtab (pst, include_list, num_includes, capping_symbol_offset,
2433 capping_text, dependency_list, number_dependencies,
2434 capping_global, capping_static)
2435 struct partial_symtab *pst;
2436 char **include_list;
2437 int num_includes;
2438 int capping_symbol_offset;
2439 CORE_ADDR capping_text;
2440 struct partial_symtab **dependency_list;
2441 int number_dependencies;
2442 struct partial_symbol *capping_global, *capping_static;
2443{
2444 int i;
2445
2446 pst->ldsymlen = capping_symbol_offset - pst->ldsymoff;
2447 pst->texthigh = capping_text;
2448
2449 pst->n_global_syms =
2450 capping_global - (global_psymbols.list + pst->globals_offset);
2451 pst->n_static_syms =
2452 capping_static - (static_psymbols.list + pst->statics_offset);
2453
2454 pst->number_of_dependencies = number_dependencies;
2455 if (number_dependencies)
2456 {
2457 pst->dependencies = (struct partial_symtab **)
2458 obstack_alloc (psymbol_obstack,
2459 number_dependencies * sizeof (struct partial_symtab *));
2460 bcopy (dependency_list, pst->dependencies,
2461 number_dependencies * sizeof (struct partial_symtab *));
2462 }
2463 else
2464 pst->dependencies = 0;
2465
2466 for (i = 0; i < num_includes; i++)
2467 {
2468 /* Eventually, put this on obstack */
2469 struct partial_symtab *subpst =
2470 (struct partial_symtab *)
2471 obstack_alloc (psymbol_obstack,
2472 sizeof (struct partial_symtab));
2473
2474 subpst->filename =
2475 (char *) obstack_alloc (psymbol_obstack,
2476 strlen (include_list[i]) + 1);
2477 strcpy (subpst->filename, include_list[i]);
2478
2479 subpst->symfile_name = pst->symfile_name;
2480 subpst->addr = pst->addr;
2481 subpst->ldsymoff =
2482 subpst->ldsymlen =
2483 subpst->textlow =
2484 subpst->texthigh = 0;
2485
2486 subpst->dependencies = (struct partial_symtab **)
2487 obstack_alloc (psymbol_obstack,
2488 sizeof (struct partial_symtab *));
2489 subpst->dependencies[0] = pst;
2490 subpst->number_of_dependencies = 1;
2491
2492 subpst->globals_offset =
2493 subpst->n_global_syms =
2494 subpst->statics_offset =
2495 subpst->n_static_syms = 0;
2496
2497 subpst->readin = 0;
2498 subpst->read_symtab = dbx_psymtab_to_symtab;
2499
2500 subpst->next = partial_symtab_list;
2501 partial_symtab_list = subpst;
2502 }
2503
2504 /* Sort the global list; don't sort the static list */
2505 qsort (global_psymbols.list + pst->globals_offset, pst->n_global_syms,
2506 sizeof (struct partial_symbol), compare_psymbols);
2507
f9623881
JG
2508 /* If there is already a psymtab or symtab for a file of this name, remove it.
2509 (If there is a symtab, more drastic things also happen.)
2510 This happens in VxWorks. */
2511 free_named_symtabs (pst->filename);
2512
bd5635a1
RP
2513 /* Put the psymtab on the psymtab list */
2514 pst->next = partial_symtab_list;
2515 partial_symtab_list = pst;
2516}
2517\f
2518static void
2519psymtab_to_symtab_1 (pst, desc, stringtab, stringtab_size, sym_offset)
2520 struct partial_symtab *pst;
2521 int desc;
2522 char *stringtab;
2523 int stringtab_size;
2524 int sym_offset;
2525{
2526 struct cleanup *old_chain;
2527 int i;
2528
2529 if (!pst)
2530 return;
2531
2532 if (pst->readin)
2533 {
2534 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2535 pst->filename);
2536 return;
2537 }
2538
2539 /* Read in all partial symbtabs on which this one is dependent */
2540 for (i = 0; i < pst->number_of_dependencies; i++)
2541 if (!pst->dependencies[i]->readin)
2542 {
2543 /* Inform about additional files that need to be read in. */
2544 if (info_verbose)
2545 {
2546 fputs_filtered (" ", stdout);
2547 wrap_here ("");
2548 fputs_filtered ("and ", stdout);
2549 wrap_here ("");
2550 printf_filtered ("%s...", pst->dependencies[i]->filename);
2551 wrap_here (""); /* Flush output */
2552 fflush (stdout);
2553 }
2554 psymtab_to_symtab_1 (pst->dependencies[i], desc,
2555 stringtab, stringtab_size, sym_offset);
2556 }
2557
2558 if (pst->ldsymlen) /* Otherwise it's a dummy */
2559 {
2560 /* Init stuff necessary for reading in symbols */
2561 free_pendings = 0;
2562 pending_blocks = 0;
2563 file_symbols = 0;
2564 global_symbols = 0;
2565 old_chain = make_cleanup (really_free_pendings, 0);
2566
2567 /* Read in this files symbols */
2568 lseek (desc, sym_offset, L_SET);
2569 read_ofile_symtab (desc, stringtab, stringtab_size,
2570 pst->ldsymoff,
2571 pst->ldsymlen, pst->textlow,
2572 pst->texthigh - pst->textlow, pst->addr);
2573 sort_symtab_syms (symtab_list); /* At beginning since just added */
2574
2575 do_cleanups (old_chain);
2576 }
2577
2578 pst->readin = 1;
2579}
2580
2581/*
2582 * Read in all of the symbols for a given psymtab for real.
2583 * Be verbose about it if the user wants that.
2584 */
2585static void
2586dbx_psymtab_to_symtab (pst)
2587 struct partial_symtab *pst;
2588{
2589 int desc;
2590 char *stringtab;
2591 int stsize, val;
2592 struct stat statbuf;
2593 struct cleanup *old_chain;
2594 bfd *sym_bfd;
2595 long st_temp;
2596
2597 if (!pst)
2598 return;
2599
2600 if (pst->readin)
2601 {
2602 fprintf (stderr, "Psymtab for %s already read in. Shouldn't happen.\n",
2603 pst->filename);
2604 return;
2605 }
2606
2607 if (pst->ldsymlen || pst->number_of_dependencies)
2608 {
2609 /* Print the message now, before reading the string table,
2610 to avoid disconcerting pauses. */
2611 if (info_verbose)
2612 {
2613 printf_filtered ("Reading in symbols for %s...", pst->filename);
2614 fflush (stdout);
2615 }
2616
2617 /* Open symbol file and read in string table. Symbol_file_command
2618 guarantees that the symbol file name will be absolute, so there is
2619 no need for openp. */
2620 desc = open(pst->symfile_name, O_RDONLY, 0);
2621
2622 if (desc < 0)
2623 perror_with_name (pst->symfile_name);
2624
2625 sym_bfd = bfd_fdopenr (pst->symfile_name, NULL, desc);
2626 if (!sym_bfd)
2627 {
2628 (void)close (desc);
2629 error ("Could not open `%s' to read symbols: %s",
2630 pst->symfile_name, bfd_errmsg (bfd_error));
2631 }
2632 old_chain = make_cleanup (bfd_close, sym_bfd);
2633 if (!bfd_check_format (sym_bfd, bfd_object))
2634 error ("\"%s\": can't read symbols: %s.",
2635 pst->symfile_name, bfd_errmsg (bfd_error));
2636
2637 /* We keep the string table for symfile resident in memory, but
2638 not the string table for any other symbol files. */
66eeea27 2639 if ((symfile == 0) || 0 != strcmp(pst->symfile_name, symfile))
bd5635a1
RP
2640 {
2641 /* Read in the string table */
2642
2643 /* FIXME, this uses internal BFD variables. See above in
2644 dbx_symbol_file_open where the macro is defined! */
2645 lseek (desc, STRING_TABLE_OFFSET, L_SET);
2646
2647 val = myread (desc, &st_temp, sizeof st_temp);
2648 if (val < 0)
2649 perror_with_name (pst->symfile_name);
2650 stsize = bfd_h_getlong (sym_bfd, (unsigned char *)&st_temp);
2651 if (fstat (desc, &statbuf) < 0)
2652 perror_with_name (pst->symfile_name);
2653
2654 if (stsize >= 0 && stsize < statbuf.st_size)
2655 {
2656#ifdef BROKEN_LARGE_ALLOCA
2657 stringtab = (char *) xmalloc (stsize);
2658 make_cleanup (free, stringtab);
2659#else
2660 stringtab = (char *) alloca (stsize);
2661#endif
2662 }
2663 else
2664 stringtab = NULL;
2665 if (stringtab == NULL && stsize != 0)
2666 error ("ridiculous string table size: %d bytes", stsize);
2667
2668 /* FIXME, this uses internal BFD variables. See above in
2669 dbx_symbol_file_open where the macro is defined! */
2670 val = lseek (desc, STRING_TABLE_OFFSET, L_SET);
2671 if (val < 0)
2672 perror_with_name (pst->symfile_name);
2673 val = myread (desc, stringtab, stsize);
2674 if (val < 0)
2675 perror_with_name (pst->symfile_name);
2676 }
2677 else
2678 {
2679 stringtab = symfile_string_table;
2680 stsize = symfile_string_table_size;
2681 }
2682
2683 symfile_bfd = sym_bfd; /* Kludge for SWAP_SYMBOL */
2684
2685 /* FIXME, this uses internal BFD variables. See above in
2686 dbx_symbol_file_open where the macro is defined! */
2687 psymtab_to_symtab_1 (pst, desc, stringtab, stsize,
2688 SYMBOL_TABLE_OFFSET);
2689
2690 /* Match with global symbols. This only needs to be done once,
2691 after all of the symtabs and dependencies have been read in. */
2692 scan_file_globals ();
2693
2694 do_cleanups (old_chain);
2695
2696 /* Finish up the debug error message. */
2697 if (info_verbose)
2698 printf_filtered ("done.\n");
2699 }
2700}
2701
2702/*
2703 * Scan through all of the global symbols defined in the object file,
2704 * assigning values to the debugging symbols that need to be assigned
2705 * to. Get these symbols from the misc function list.
2706 */
2707static void
2708scan_file_globals ()
2709{
2710 int hash;
2711 int mf;
2712
2713 for (mf = 0; mf < misc_function_count; mf++)
2714 {
2715 char *namestring = misc_function_vector[mf].name;
2716 struct symbol *sym, *prev;
2717
2718 QUIT;
2719
2720 prev = (struct symbol *) 0;
2721
2722 /* Get the hash index and check all the symbols
2723 under that hash index. */
2724
2725 hash = hashname (namestring);
2726
2727 for (sym = global_sym_chain[hash]; sym;)
2728 {
2729 if (*namestring == SYMBOL_NAME (sym)[0]
2730 && !strcmp(namestring + 1, SYMBOL_NAME (sym) + 1))
2731 {
2732 /* Splice this symbol out of the hash chain and
2733 assign the value we have to it. */
2734 if (prev)
2735 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
2736 else
2737 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
2738
2739 /* Check to see whether we need to fix up a common block. */
2740 /* Note: this code might be executed several times for
2741 the same symbol if there are multiple references. */
2742 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
2743 fix_common_block (sym, misc_function_vector[mf].address);
2744 else
2745 SYMBOL_VALUE_ADDRESS (sym) = misc_function_vector[mf].address;
2746
2747 if (prev)
2748 sym = SYMBOL_VALUE_CHAIN (prev);
2749 else
2750 sym = global_sym_chain[hash];
2751 }
2752 else
2753 {
2754 prev = sym;
2755 sym = SYMBOL_VALUE_CHAIN (sym);
2756 }
2757 }
2758 }
2759}
2760
2761/* Process a pair of symbols. Currently they must both be N_SO's. */
2762static void
2763process_symbol_pair (type1, desc1, value1, name1,
2764 type2, desc2, value2, name2)
2765 int type1;
2766 int desc1;
2767 CORE_ADDR value1;
2768 char *name1;
2769 int type2;
2770 int desc2;
2771 CORE_ADDR value2;
2772 char *name2;
2773{
2774 /* No need to check PCC_SOL_BROKEN, on the assumption that such
2775 broken PCC's don't put out N_SO pairs. */
2776 if (last_source_file)
2777 end_symtab (value2);
2778 start_symtab (name2, name1, value2);
2779}
2780
2781/*
2782 * Read in a defined section of a specific object file's symbols.
2783 *
2784 * DESC is the file descriptor for the file, positioned at the
2785 * beginning of the symtab
2786 * STRINGTAB is a pointer to the files string
2787 * table, already read in
2788 * SYM_OFFSET is the offset within the file of
2789 * the beginning of the symbols we want to read, NUM_SUMBOLS is the
2790 * number of symbols to read
2791 * TEXT_OFFSET is the beginning of the text segment we are reading symbols for
2792 * TEXT_SIZE is the size of the text segment read in.
2793 * OFFSET is a relocation offset which gets added to each symbol
2794 */
2795
2796static void
2797read_ofile_symtab (desc, stringtab, stringtab_size, sym_offset,
2798 sym_size, text_offset, text_size, offset)
2799 int desc;
2800 register char *stringtab;
2801 unsigned int stringtab_size;
2802 int sym_offset;
2803 int sym_size;
2804 CORE_ADDR text_offset;
2805 int text_size;
2806 int offset;
2807{
2808 register char *namestring;
2809 struct nlist *bufp;
2810 unsigned char type;
2811 subfile_stack = 0;
2812
2813 stringtab_global = stringtab;
2814 last_source_file = 0;
2815
2816 symtab_input_desc = desc;
2817 symbuf_end = symbuf_idx = 0;
2818
2819 /* It is necessary to actually read one symbol *before* the start
2820 of this symtab's symbols, because the GCC_COMPILED_FLAG_SYMBOL
2821 occurs before the N_SO symbol.
2822
2823 Detecting this in read_dbx_symtab
2824 would slow down initial readin, so we look for it here instead. */
2825 if (sym_offset >= (int)sizeof (struct nlist))
2826 {
2827 lseek (desc, sym_offset - sizeof (struct nlist), L_INCR);
2828 fill_symbuf ();
2829 bufp = &symbuf[symbuf_idx++];
2830 SWAP_SYMBOL (bufp);
2831
2832 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2833 error ("Invalid symbol data: bad string table offset: %d",
2834 bufp->n_un.n_strx);
2835 namestring = bufp->n_un.n_strx + stringtab;
2836
2837 processing_gcc_compilation =
2838 (bufp->n_type == N_TEXT
2839 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL));
2840 }
2841 else
2842 {
2843 /* The N_SO starting this symtab is the first symbol, so we
2844 better not check the symbol before it. I'm not this can
2845 happen, but it doesn't hurt to check for it. */
2846 lseek(desc, sym_offset, L_INCR);
2847 processing_gcc_compilation = 0;
2848 }
2849
2850 if (symbuf_idx == symbuf_end)
2851 fill_symbuf();
2852 bufp = &symbuf[symbuf_idx];
2853 if (bufp->n_type != (unsigned char)N_SO)
2854 error("First symbol in segment of executable not a source symbol");
2855
2856 for (symnum = 0;
2857 symnum < sym_size / sizeof(struct nlist);
2858 symnum++)
2859 {
2860 QUIT; /* Allow this to be interruptable */
2861 if (symbuf_idx == symbuf_end)
2862 fill_symbuf();
2863 bufp = &symbuf[symbuf_idx++];
2864 SWAP_SYMBOL (bufp);
2865
2866 type = bufp->n_type & N_TYPE;
2867 if (type == (unsigned char)N_CATCH)
2868 {
2869 /* N_CATCH is not fixed up by the linker, and unfortunately,
2870 there's no other place to put it in the .stab map. */
2871 /* FIXME, do we also have to add OFFSET or something? -- gnu@cygnus */
2872 bufp->n_value += text_offset;
2873 }
2874 else if (type == N_TEXT || type == N_DATA || type == N_BSS)
2875 bufp->n_value += offset;
2876
2877 type = bufp->n_type;
2878 if (bufp->n_un.n_strx < 0 || bufp->n_un.n_strx >= stringtab_size)
2879 error ("Invalid symbol data: bad string table offset: %d",
2880 bufp->n_un.n_strx);
2881 namestring = bufp->n_un.n_strx + stringtab;
2882
2883 if (type & N_STAB)
2884 {
2885 short desc = bufp->n_desc;
2886 unsigned long valu = bufp->n_value;
2887
2888 /* Check for a pair of N_SO symbols. */
2889 if (type == (unsigned char)N_SO)
2890 {
2891 if (symbuf_idx == symbuf_end)
2892 fill_symbuf ();
2893 bufp = &symbuf[symbuf_idx];
2894 if (bufp->n_type == (unsigned char)N_SO)
2895 {
2896 char *namestring2;
2897
2898 SWAP_SYMBOL (bufp);
2899 bufp->n_value += offset; /* Relocate */
2900 symbuf_idx++;
2901 symnum++;
2902
2903 if (bufp->n_un.n_strx < 0
2904 || bufp->n_un.n_strx >= stringtab_size)
2905 error ("Invalid symbol data: bad string table offset: %d",
2906 bufp->n_un.n_strx);
2907 namestring2 = bufp->n_un.n_strx + stringtab;
2908
2909 process_symbol_pair (N_SO, desc, valu, namestring,
2910 N_SO, bufp->n_desc, bufp->n_value,
2911 namestring2);
2912 }
2913 else
2914 process_one_symbol(type, desc, valu, namestring);
2915 }
2916 else
2917 process_one_symbol (type, desc, valu, namestring);
2918 }
2919 /* We skip checking for a new .o or -l file; that should never
2920 happen in this routine. */
2921 else if (type == N_TEXT
2922 && !strcmp (namestring, GCC_COMPILED_FLAG_SYMBOL))
2923 /* I don't think this code will ever be executed, because
2924 the GCC_COMPILED_FLAG_SYMBOL usually is right before
2925 the N_SO symbol which starts this source file.
2926 However, there is no reason not to accept
2927 the GCC_COMPILED_FLAG_SYMBOL anywhere. */
2928 processing_gcc_compilation = 1;
2929 else if (type & N_EXT || type == (unsigned char)N_TEXT
2930 || type == (unsigned char)N_NBTEXT
2931 )
2932 /* Global symbol: see if we came across a dbx defintion for
2933 a corresponding symbol. If so, store the value. Remove
2934 syms from the chain when their values are stored, but
2935 search the whole chain, as there may be several syms from
2936 different files with the same name. */
2937 /* This is probably not true. Since the files will be read
2938 in one at a time, each reference to a global symbol will
2939 be satisfied in each file as it appears. So we skip this
2940 section. */
2941 ;
2942 }
2943 end_symtab (text_offset + text_size);
2944}
2945\f
2946static int
2947hashname (name)
2948 char *name;
2949{
2950 register char *p = name;
2951 register int total = p[0];
2952 register int c;
2953
2954 c = p[1];
2955 total += c << 2;
2956 if (c)
2957 {
2958 c = p[2];
2959 total += c << 4;
2960 if (c)
2961 total += p[3] << 6;
2962 }
2963
2964 /* Ensure result is positive. */
2965 if (total < 0) total += (1000 << 6);
2966 return total % HASHSIZE;
2967}
2968
2969\f
2970static void
2971process_one_symbol (type, desc, valu, name)
2972 int type, desc;
2973 CORE_ADDR valu;
2974 char *name;
2975{
2976#ifndef SUN_FIXED_LBRAC_BUG
2977 /* This records the last pc address we've seen. We depend on their being
2978 an SLINE or FUN or SO before the first LBRAC, since the variable does
2979 not get reset in between reads of different symbol files. */
2980 static CORE_ADDR last_pc_address;
2981#endif
2982 register struct context_stack *new;
2983 char *colon_pos;
2984
2985 /* Something is wrong if we see real data before
2986 seeing a source file name. */
2987
2988 if (last_source_file == 0 && type != (unsigned char)N_SO)
2989 {
2990 /* Currently this ignores N_ENTRY on Gould machines, N_NSYM on machines
2991 where that code is defined. */
2992 if (IGNORE_SYMBOL (type))
2993 return;
2994
2995 /* FIXME, this should not be an error, since it precludes extending
2996 the symbol table information in this way... */
2997 error ("Invalid symbol data: does not start by identifying a source file.");
2998 }
2999
3000 switch (type)
3001 {
3002 case N_FUN:
3003 case N_FNAME:
3004 /* Either of these types of symbols indicates the start of
3005 a new function. We must process its "name" normally for dbx,
3006 but also record the start of a new lexical context, and possibly
3007 also the end of the lexical context for the previous function. */
3008 /* This is not always true. This type of symbol may indicate a
3009 text segment variable. */
3010
3011#ifndef SUN_FIXED_LBRAC_BUG
3012 last_pc_address = valu; /* Save for SunOS bug circumcision */
3013#endif
3014
3015 colon_pos = strchr (name, ':');
3016 if (!colon_pos++
3017 || (*colon_pos != 'f' && *colon_pos != 'F'))
3018 {
3019 define_symbol (valu, name, desc, type);
3020 break;
3021 }
3022
3023 within_function = 1;
3024 if (context_stack_depth > 0)
3025 {
3026 new = &context_stack[--context_stack_depth];
3027 /* Make a block for the local symbols within. */
3028 finish_block (new->name, &local_symbols, new->old_blocks,
3029 new->start_addr, valu);
3030 }
3031 /* Stack must be empty now. */
3032 if (context_stack_depth != 0)
3033 error ("Invalid symbol data: unmatched N_LBRAC before symtab pos %d.",
3034 symnum);
3035
3036 new = &context_stack[context_stack_depth++];
3037 new->old_blocks = pending_blocks;
3038 new->start_addr = valu;
3039 new->name = define_symbol (valu, name, desc, type);
3040 local_symbols = 0;
3041 break;
3042
3043 case N_CATCH:
3044 /* Record the address at which this catch takes place. */
3045 define_symbol (valu, name, desc, type);
3046 break;
3047
3048 case N_EHDECL:
3049 /* Don't know what to do with these yet. */
3050 error ("action uncertain for eh extensions");
3051 break;
3052
3053 case N_LBRAC:
3054 /* This "symbol" just indicates the start of an inner lexical
3055 context within a function. */
3056
3057#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3058 /* On most machines, the block addresses are relative to the
3059 N_SO, the linker did not relocate them (sigh). */
3060 valu += last_source_start_addr;
3061#endif
3062
3063#ifndef SUN_FIXED_LBRAC_BUG
3064 if (valu < last_pc_address) {
3065 /* Patch current LBRAC pc value to match last handy pc value */
3066 complain (&lbrac_complaint, 0);
3067 valu = last_pc_address;
3068 }
3069#endif
3070 if (context_stack_depth == context_stack_size)
3071 {
3072 context_stack_size *= 2;
3073 context_stack = (struct context_stack *)
3074 xrealloc (context_stack,
3075 (context_stack_size
3076 * sizeof (struct context_stack)));
3077 }
3078
3079 new = &context_stack[context_stack_depth++];
3080 new->depth = desc;
3081 new->locals = local_symbols;
3082 new->old_blocks = pending_blocks;
3083 new->start_addr = valu;
3084 new->name = 0;
3085 local_symbols = 0;
3086 break;
3087
3088 case N_RBRAC:
3089 /* This "symbol" just indicates the end of an inner lexical
3090 context that was started with N_LBRAC. */
3091
3092#if !defined (BLOCK_ADDRESS_ABSOLUTE)
3093 /* On most machines, the block addresses are relative to the
3094 N_SO, the linker did not relocate them (sigh). */
3095 valu += last_source_start_addr;
3096#endif
3097
3098 new = &context_stack[--context_stack_depth];
3099 if (desc != new->depth)
3100 error ("Invalid symbol data: N_LBRAC/N_RBRAC symbol mismatch, symtab pos %d.", symnum);
3101
3102 /* Some compilers put the variable decls inside of an
3103 LBRAC/RBRAC block. This macro should be nonzero if this
3104 is true. DESC is N_DESC from the N_RBRAC symbol.
3105 GCC_P is true if we've detected the GCC_COMPILED_SYMBOL. */
3106#if !defined (VARIABLES_INSIDE_BLOCK)
3107#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) 0
3108#endif
3109
3110 /* Can only use new->locals as local symbols here if we're in
3111 gcc or on a machine that puts them before the lbrack. */
3112 if (!VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3113 local_symbols = new->locals;
3114
3115 /* If this is not the outermost LBRAC...RBRAC pair in the
3116 function, its local symbols preceded it, and are the ones
3117 just recovered from the context stack. Defined the block for them.
3118
3119 If this is the outermost LBRAC...RBRAC pair, there is no
3120 need to do anything; leave the symbols that preceded it
3121 to be attached to the function's own block. However, if
3122 it is so, we need to indicate that we just moved outside
3123 of the function. */
3124 if (local_symbols
3125 && (context_stack_depth
3126 > !VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation)))
3127 {
3128 /* FIXME Muzzle a compiler bug that makes end < start. */
3129 if (new->start_addr > valu)
3130 {
3131 complain(&lbrac_rbrac_complaint, 0);
3132 new->start_addr = valu;
3133 }
3134 /* Make a block for the local symbols within. */
3135 finish_block (0, &local_symbols, new->old_blocks,
3136 new->start_addr, valu);
3137 }
3138 else
3139 {
3140 within_function = 0;
3141 }
3142 if (VARIABLES_INSIDE_BLOCK(desc, processing_gcc_compilation))
3143 /* Now pop locals of block just finished. */
3144 local_symbols = new->locals;
3145 break;
3146
3147 case N_FN | N_EXT:
3148 /* This kind of symbol supposedly indicates the start
3149 of an object file. In fact this type does not appear. */
3150 break;
3151
3152 case N_SO:
3153 /* This type of symbol indicates the start of data
3154 for one source file.
3155 Finish the symbol table of the previous source file
3156 (if any) and start accumulating a new symbol table. */
3157#ifndef SUN_FIXED_LBRAC_BUG
3158 last_pc_address = valu; /* Save for SunOS bug circumcision */
3159#endif
3160
3161#ifdef PCC_SOL_BROKEN
3162 /* pcc bug, occasionally puts out SO for SOL. */
3163 if (context_stack_depth > 0)
3164 {
3165 start_subfile (name, NULL);
3166 break;
3167 }
3168#endif
3169 if (last_source_file)
3170 end_symtab (valu);
3171 start_symtab (name, NULL, valu);
3172 break;
3173
3174 case N_SOL:
3175 /* This type of symbol indicates the start of data for
3176 a sub-source-file, one whose contents were copied or
3177 included in the compilation of the main source file
3178 (whose name was given in the N_SO symbol.) */
3179 start_subfile (name, NULL);
3180 break;
3181
3182 case N_BINCL:
3183 push_subfile ();
3184 add_new_header_file (name, valu);
3185 start_subfile (name, NULL);
3186 break;
3187
3188 case N_EINCL:
3189 start_subfile (pop_subfile (), NULL);
3190 break;
3191
3192 case N_EXCL:
3193 add_old_header_file (name, valu);
3194 break;
3195
3196 case N_SLINE:
3197 /* This type of "symbol" really just records
3198 one line-number -- core-address correspondence.
3199 Enter it in the line list for this symbol table. */
3200#ifndef SUN_FIXED_LBRAC_BUG
3201 last_pc_address = valu; /* Save for SunOS bug circumcision */
3202#endif
3203 record_line (desc, valu);
3204 break;
3205
3206 case N_BCOMM:
3207 if (common_block)
3208 error ("Invalid symbol data: common within common at symtab pos %d",
3209 symnum);
3210 common_block = local_symbols;
3211 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3212 break;
3213
3214 case N_ECOMM:
3215 /* Symbols declared since the BCOMM are to have the common block
3216 start address added in when we know it. common_block points to
3217 the first symbol after the BCOMM in the local_symbols list;
3218 copy the list and hang it off the symbol for the common block name
3219 for later fixup. */
3220 {
3221 int i;
3222 struct symbol *sym =
3223 (struct symbol *) xmalloc (sizeof (struct symbol));
3224 bzero (sym, sizeof *sym);
3225 SYMBOL_NAME (sym) = savestring (name, strlen (name));
3226 SYMBOL_CLASS (sym) = LOC_BLOCK;
3227 SYMBOL_NAMESPACE (sym) = (enum namespace)((long)
3228 copy_pending (local_symbols, common_block_i, common_block));
3229 i = hashname (SYMBOL_NAME (sym));
3230 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3231 global_sym_chain[i] = sym;
3232 common_block = 0;
3233 break;
3234 }
3235
3236 case N_ECOML:
3237 case N_LENG:
3238 break;
3239
3240 default:
3241 if (name)
3242 define_symbol (valu, name, desc, type);
3243 }
3244}
3245\f
3246/* Read a number by which a type is referred to in dbx data,
3247 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
3248 Just a single number N is equivalent to (0,N).
3249 Return the two numbers by storing them in the vector TYPENUMS.
3250 TYPENUMS will then be used as an argument to dbx_lookup_type. */
3251
3252static void
3253read_type_number (pp, typenums)
3254 register char **pp;
3255 register int *typenums;
3256{
3257 if (**pp == '(')
3258 {
3259 (*pp)++;
3260 typenums[0] = read_number (pp, ',');
3261 typenums[1] = read_number (pp, ')');
3262 }
3263 else
3264 {
3265 typenums[0] = 0;
3266 typenums[1] = read_number (pp, 0);
3267 }
3268}
3269\f
3270/* To handle GNU C++ typename abbreviation, we need to be able to
3271 fill in a type's name as soon as space for that type is allocated.
3272 `type_synonym_name' is the name of the type being allocated.
3273 It is cleared as soon as it is used (lest all allocated types
3274 get this name). */
3275static char *type_synonym_name;
3276
3277static struct symbol *
3278define_symbol (valu, string, desc, type)
3279 unsigned int valu;
3280 char *string;
3281 int desc;
3282 int type;
3283{
3284 register struct symbol *sym;
3285 char *p = (char *) strchr (string, ':');
3286 int deftype;
3287 int synonym = 0;
3288 register int i;
3289
3290 /* Ignore syms with empty names. */
3291 if (string[0] == 0)
3292 return 0;
3293
3294 /* Ignore old-style symbols from cc -go */
3295 if (p == 0)
3296 return 0;
3297
3298 sym = (struct symbol *)obstack_alloc (symbol_obstack, sizeof (struct symbol));
3299
3300 if (processing_gcc_compilation) {
3301 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
3302 number of bytes occupied by a type or object, which we ignore. */
3303 SYMBOL_LINE(sym) = desc;
3304 } else {
3305 SYMBOL_LINE(sym) = 0; /* unknown */
3306 }
3307
3308 if (string[0] == CPLUS_MARKER)
3309 {
3310 /* Special GNU C++ names. */
3311 switch (string[1])
3312 {
3313 case 't':
3314 SYMBOL_NAME (sym) = "this";
3315 break;
3316 case 'v': /* $vtbl_ptr_type */
3317 /* Was: SYMBOL_NAME (sym) = "vptr"; */
3318 goto normal;
3319 case 'e':
3320 SYMBOL_NAME (sym) = "eh_throw";
3321 break;
3322
3323 case '_':
3324 /* This was an anonymous type that was never fixed up. */
3325 goto normal;
3326
3327 default:
3328 abort ();
3329 }
3330 }
3331 else
3332 {
3333 normal:
3334 SYMBOL_NAME (sym)
3335 = (char *) obstack_alloc (symbol_obstack, ((p - string) + 1));
3336 /* Open-coded bcopy--saves function call time. */
3337 {
3338 register char *p1 = string;
3339 register char *p2 = SYMBOL_NAME (sym);
3340 while (p1 != p)
3341 *p2++ = *p1++;
3342 *p2++ = '\0';
3343 }
3344 }
3345 p++;
3346 /* Determine the type of name being defined. */
3347 /* The Acorn RISC machine's compiler can put out locals that don't
3348 start with "234=" or "(3,4)=", so assume anything other than the
3349 deftypes we know how to handle is a local. */
3350 /* (Peter Watkins @ Computervision)
3351 Handle Sun-style local fortran array types 'ar...' .
3352 (gnu@cygnus.com) -- this strchr() handles them properly?
3353 (tiemann@cygnus.com) -- 'C' is for catch. */
3354 if (!strchr ("cfFGpPrStTvVXC", *p))
3355 deftype = 'l';
3356 else
3357 deftype = *p++;
3358
3359 /* c is a special case, not followed by a type-number.
3360 SYMBOL:c=iVALUE for an integer constant symbol.
3361 SYMBOL:c=rVALUE for a floating constant symbol.
3362 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3363 e.g. "b:c=e6,0" for "const b = blob1"
3364 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3365 if (deftype == 'c')
3366 {
3367 if (*p++ != '=')
3368 error ("Invalid symbol data at symtab pos %d.", symnum);
3369 switch (*p++)
3370 {
3371 case 'r':
3372 {
3373 double d = atof (p);
3374 char *valu;
3375
3376 SYMBOL_TYPE (sym) = builtin_type_double;
3377 valu = (char *) obstack_alloc (symbol_obstack, sizeof (double));
3378 bcopy (&d, valu, sizeof (double));
3379 SWAP_TARGET_AND_HOST (valu, sizeof (double));
3380 SYMBOL_VALUE_BYTES (sym) = valu;
3381 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
3382 }
3383 break;
3384 case 'i':
3385 {
3386 SYMBOL_TYPE (sym) = builtin_type_int;
3387 SYMBOL_VALUE (sym) = atoi (p);
3388 SYMBOL_CLASS (sym) = LOC_CONST;
3389 }
3390 break;
3391 case 'e':
3392 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
3393 e.g. "b:c=e6,0" for "const b = blob1"
3394 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
3395 {
3396 int typenums[2];
3397
3398 read_type_number (&p, typenums);
3399 if (*p++ != ',')
3400 error ("Invalid symbol data: no comma in enum const symbol");
3401
3402 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
3403 SYMBOL_VALUE (sym) = atoi (p);
3404 SYMBOL_CLASS (sym) = LOC_CONST;
3405 }
3406 break;
3407 default:
3408 error ("Invalid symbol data at symtab pos %d.", symnum);
3409 }
3410 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3411 add_symbol_to_list (sym, &file_symbols);
3412 return sym;
3413 }
3414
3415 /* Now usually comes a number that says which data type,
3416 and possibly more stuff to define the type
3417 (all of which is handled by read_type) */
3418
3419 if (deftype == 'p' && *p == 'F')
3420 /* pF is a two-letter code that means a function parameter in Fortran.
3421 The type-number specifies the type of the return value.
3422 Translate it into a pointer-to-function type. */
3423 {
3424 p++;
3425 SYMBOL_TYPE (sym)
3426 = lookup_pointer_type (lookup_function_type (read_type (&p)));
3427 }
3428 else
3429 {
3430 struct type *type;
3431 synonym = *p == 't';
3432
3433 if (synonym)
3434 {
3435 p += 1;
3436 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
3437 strlen (SYMBOL_NAME (sym)));
3438 }
3439
3440 type = read_type (&p);
3441
3442 if ((deftype == 'F' || deftype == 'f')
3443 && TYPE_CODE (type) != TYPE_CODE_FUNC)
3444 SYMBOL_TYPE (sym) = lookup_function_type (type);
3445 else
3446 SYMBOL_TYPE (sym) = type;
3447 }
3448
3449 switch (deftype)
3450 {
3451 case 'C':
3452 /* The name of a caught exception. */
3453 SYMBOL_CLASS (sym) = LOC_LABEL;
3454 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3455 SYMBOL_VALUE_ADDRESS (sym) = valu;
3456 add_symbol_to_list (sym, &local_symbols);
3457 break;
3458
3459 case 'f':
3460 SYMBOL_CLASS (sym) = LOC_BLOCK;
3461 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3462 add_symbol_to_list (sym, &file_symbols);
3463 break;
3464
3465 case 'F':
3466 SYMBOL_CLASS (sym) = LOC_BLOCK;
3467 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3468 add_symbol_to_list (sym, &global_symbols);
3469 break;
3470
3471 case 'G':
3472 /* For a class G (global) symbol, it appears that the
3473 value is not correct. It is necessary to search for the
3474 corresponding linker definition to find the value.
3475 These definitions appear at the end of the namelist. */
3476 i = hashname (SYMBOL_NAME (sym));
3477 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3478 global_sym_chain[i] = sym;
3479 SYMBOL_CLASS (sym) = LOC_STATIC;
3480 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3481 add_symbol_to_list (sym, &global_symbols);
3482 break;
3483
3484 /* This case is faked by a conditional above,
3485 when there is no code letter in the dbx data.
3486 Dbx data never actually contains 'l'. */
3487 case 'l':
3488 SYMBOL_CLASS (sym) = LOC_LOCAL;
3489 SYMBOL_VALUE (sym) = valu;
3490 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3491 add_symbol_to_list (sym, &local_symbols);
3492 break;
3493
3494 case 'p':
3495 /* Normally this is a parameter, a LOC_ARG. On the i960, it
3496 can also be a LOC_LOCAL_ARG depending on symbol type. */
3497#ifndef DBX_PARM_SYMBOL_CLASS
3498#define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
3499#endif
3500 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
3501 SYMBOL_VALUE (sym) = valu;
3502 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3503 add_symbol_to_list (sym, &local_symbols);
3504
3505 /* If it's gcc-compiled, if it says `short', believe it. */
3506 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
3507 break;
3508
3509#if defined(BELIEVE_PCC_PROMOTION_TYPE)
3510 /* This macro is defined on machines (e.g. sparc) where
3511 we should believe the type of a PCC 'short' argument,
3512 but shouldn't believe the address (the address is
3513 the address of the corresponding int). Note that
3514 this is only different from the BELIEVE_PCC_PROMOTION
3515 case on big-endian machines.
3516
3517 My guess is that this correction, as opposed to changing
3518 the parameter to an 'int' (as done below, for PCC
3519 on most machines), is the right thing to do
3520 on all machines, but I don't want to risk breaking
3521 something that already works. On most PCC machines,
3522 the sparc problem doesn't come up because the calling
3523 function has to zero the top bytes (not knowing whether
3524 the called function wants an int or a short), so there
3525 is no practical difference between an int and a short
3526 (except perhaps what happens when the GDB user types
3527 "print short_arg = 0x10000;").
3528
3529 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
3530 actually produces the correct address (we don't need to fix it
3531 up). I made this code adapt so that it will offset the symbol
3532 if it was pointing at an int-aligned location and not
3533 otherwise. This way you can use the same gdb for 4.0.x and
3534 4.1 systems. */
3535
3536 if (0 == SYMBOL_VALUE (sym) % sizeof (int))
3537 {
3538 if (SYMBOL_TYPE (sym) == builtin_type_char
3539 || SYMBOL_TYPE (sym) == builtin_type_unsigned_char)
3540 SYMBOL_VALUE (sym) += 3;
3541 else if (SYMBOL_TYPE (sym) == builtin_type_short
3542 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3543 SYMBOL_VALUE (sym) += 2;
3544 }
3545 break;
3546
3547#else /* no BELIEVE_PCC_PROMOTION_TYPE. */
3548
3549 /* If PCC says a parameter is a short or a char,
3550 it is really an int. */
3551 if (SYMBOL_TYPE (sym) == builtin_type_char
3552 || SYMBOL_TYPE (sym) == builtin_type_short)
3553 SYMBOL_TYPE (sym) = builtin_type_int;
3554 else if (SYMBOL_TYPE (sym) == builtin_type_unsigned_char
3555 || SYMBOL_TYPE (sym) == builtin_type_unsigned_short)
3556 SYMBOL_TYPE (sym) = builtin_type_unsigned_int;
3557 break;
3558
3559#endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
3560
3561 case 'P':
3562 SYMBOL_CLASS (sym) = LOC_REGPARM;
3563 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3564 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3565 add_symbol_to_list (sym, &local_symbols);
3566 break;
3567
3568 case 'r':
3569 SYMBOL_CLASS (sym) = LOC_REGISTER;
3570 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
3571 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3572 add_symbol_to_list (sym, &local_symbols);
3573 break;
3574
3575 case 'S':
3576 /* Static symbol at top level of file */
3577 SYMBOL_CLASS (sym) = LOC_STATIC;
3578 SYMBOL_VALUE_ADDRESS (sym) = valu;
3579 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3580 add_symbol_to_list (sym, &file_symbols);
3581 break;
3582
3583 case 't':
3584 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3585 SYMBOL_VALUE (sym) = valu;
3586 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3587 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3588 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3589 TYPE_NAME (SYMBOL_TYPE (sym)) =
3590 obsavestring (SYMBOL_NAME (sym),
3591 strlen (SYMBOL_NAME (sym)));
3592 /* C++ vagaries: we may have a type which is derived from
3593 a base type which did not have its name defined when the
3594 derived class was output. We fill in the derived class's
3595 base part member's name here in that case. */
3596 else if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3597 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
3598 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
3599 {
3600 int i;
3601 for (i = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; i >= 0; i--)
3602 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) == 0)
3603 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), i) =
3604 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), i));
3605 }
3606
3607 add_symbol_to_list (sym, &file_symbols);
3608 break;
3609
3610 case 'T':
3611 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3612 SYMBOL_VALUE (sym) = valu;
3613 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3614 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0
3615 && (TYPE_FLAGS (SYMBOL_TYPE (sym)) & TYPE_FLAG_PERM) == 0)
3616 TYPE_NAME (SYMBOL_TYPE (sym))
3617 = obconcat ("",
3618 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
3619 ? "enum "
3620 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
3621 ? "struct " : "union ")),
3622 SYMBOL_NAME (sym));
3623 add_symbol_to_list (sym, &file_symbols);
3624
3625 if (synonym)
3626 {
3627 register struct symbol *typedef_sym
3628 = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
3629 SYMBOL_NAME (typedef_sym) = SYMBOL_NAME (sym);
3630 SYMBOL_TYPE (typedef_sym) = SYMBOL_TYPE (sym);
3631
3632 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
3633 SYMBOL_VALUE (typedef_sym) = valu;
3634 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
3635 add_symbol_to_list (typedef_sym, &file_symbols);
3636 }
3637 break;
3638
3639 case 'V':
3640 /* Static symbol of local scope */
3641 SYMBOL_CLASS (sym) = LOC_STATIC;
3642 SYMBOL_VALUE_ADDRESS (sym) = valu;
3643 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3644 add_symbol_to_list (sym, &local_symbols);
3645 break;
3646
3647 case 'v':
3648 /* Reference parameter */
3649 SYMBOL_CLASS (sym) = LOC_REF_ARG;
3650 SYMBOL_VALUE (sym) = valu;
3651 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3652 add_symbol_to_list (sym, &local_symbols);
3653 break;
3654
3655 case 'X':
3656 /* This is used by Sun FORTRAN for "function result value".
3657 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
3658 that Pascal uses it too, but when I tried it Pascal used
3659 "x:3" (local symbol) instead. */
3660 SYMBOL_CLASS (sym) = LOC_LOCAL;
3661 SYMBOL_VALUE (sym) = valu;
3662 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3663 add_symbol_to_list (sym, &local_symbols);
3664 break;
3665
3666 default:
3667 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
3668 }
3669 return sym;
3670}
3671\f
3672/* What about types defined as forward references inside of a small lexical
3673 scope? */
3674/* Add a type to the list of undefined types to be checked through
3675 once this file has been read in. */
3676static void
3677add_undefined_type (type)
3678 struct type *type;
3679{
3680 if (undef_types_length == undef_types_allocated)
3681 {
3682 undef_types_allocated *= 2;
3683 undef_types = (struct type **)
3684 xrealloc (undef_types,
3685 undef_types_allocated * sizeof (struct type *));
3686 }
3687 undef_types[undef_types_length++] = type;
3688}
3689
3690/* Add here something to go through each undefined type, see if it's
3691 still undefined, and do a full lookup if so. */
3692static void
3693cleanup_undefined_types ()
3694{
3695 struct type **type;
3696
3697 for (type = undef_types; type < undef_types + undef_types_length; type++)
3698 {
3699 /* Reasonable test to see if it's been defined since. */
3700 if (TYPE_NFIELDS (*type) == 0)
3701 {
3702 struct pending *ppt;
3703 int i;
3704 /* Name of the type, without "struct" or "union" */
3705 char *typename = TYPE_NAME (*type);
3706
3707 if (!strncmp (typename, "struct ", 7))
3708 typename += 7;
3709 if (!strncmp (typename, "union ", 6))
3710 typename += 6;
3711
3712 for (ppt = file_symbols; ppt; ppt = ppt->next)
3713 for (i = 0; i < ppt->nsyms; i++)
3714 {
3715 struct symbol *sym = ppt->symbol[i];
3716
3717 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3718 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3719 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3720 TYPE_CODE (*type))
3721 && !strcmp (SYMBOL_NAME (sym), typename))
3722 bcopy (SYMBOL_TYPE (sym), *type, sizeof (struct type));
3723 }
3724 }
3725 else
3726 /* It has been defined; don't mark it as a stub. */
3727 TYPE_FLAGS (*type) &= ~TYPE_FLAG_STUB;
3728 }
3729 undef_types_length = 0;
3730}
3731
3732/* Skip rest of this symbol and return an error type.
3733
3734 General notes on error recovery: error_type always skips to the
3735 end of the symbol (modulo cretinous dbx symbol name continuation).
3736 Thus code like this:
3737
3738 if (*(*pp)++ != ';')
3739 return error_type (pp);
3740
3741 is wrong because if *pp starts out pointing at '\0' (typically as the
3742 result of an earlier error), it will be incremented to point to the
3743 start of the next symbol, which might produce strange results, at least
3744 if you run off the end of the string table. Instead use
3745
3746 if (**pp != ';')
3747 return error_type (pp);
3748 ++*pp;
3749
3750 or
3751
3752 if (**pp != ';')
3753 foo = error_type (pp);
3754 else
3755 ++*pp;
3756
3757 And in case it isn't obvious, the point of all this hair is so the compiler
3758 can define new types and new syntaxes, and old versions of the
3759 debugger will be able to read the new symbol tables. */
3760
3761static struct type *
3762error_type (pp)
3763 char **pp;
3764{
3765 complain (&error_type_complaint, 0);
3766 while (1)
3767 {
3768 /* Skip to end of symbol. */
3769 while (**pp != '\0')
3770 (*pp)++;
3771
3772 /* Check for and handle cretinous dbx symbol name continuation! */
3773 if ((*pp)[-1] == '\\')
3774 *pp = next_symbol_text ();
3775 else
3776 break;
3777 }
3778 return builtin_type_error;
3779}
3780\f
3781/* Read a dbx type reference or definition;
3782 return the type that is meant.
3783 This can be just a number, in which case it references
3784 a type already defined and placed in type_vector.
3785 Or the number can be followed by an =, in which case
3786 it means to define a new type according to the text that
3787 follows the =. */
3788
3789static
3790struct type *
3791read_type (pp)
3792 register char **pp;
3793{
3794 register struct type *type = 0;
3795 struct type *type1;
3796 int typenums[2];
3797 int xtypenums[2];
3798
3799 /* Read type number if present. The type number may be omitted.
3800 for instance in a two-dimensional array declared with type
3801 "ar1;1;10;ar1;1;10;4". */
3802 if ((**pp >= '0' && **pp <= '9')
3803 || **pp == '(')
3804 {
3805 read_type_number (pp, typenums);
3806
3807 /* Detect random reference to type not yet defined.
3808 Allocate a type object but leave it zeroed. */
3809 if (**pp != '=')
3810 return dbx_alloc_type (typenums);
3811
3812 *pp += 2;
3813 }
3814 else
3815 {
3816 /* 'typenums=' not present, type is anonymous. Read and return
3817 the definition, but don't put it in the type vector. */
3818 typenums[0] = typenums[1] = -1;
3819 *pp += 1;
3820 }
3821
3822 switch ((*pp)[-1])
3823 {
3824 case 'x':
3825 {
3826 enum type_code code;
3827
3828 /* Used to index through file_symbols. */
3829 struct pending *ppt;
3830 int i;
3831
3832 /* Name including "struct", etc. */
3833 char *type_name;
3834
3835 /* Name without "struct", etc. */
3836 char *type_name_only;
3837
3838 {
3839 char *prefix;
3840 char *from, *to;
3841
3842 /* Set the type code according to the following letter. */
3843 switch ((*pp)[0])
3844 {
3845 case 's':
3846 code = TYPE_CODE_STRUCT;
3847 prefix = "struct ";
3848 break;
3849 case 'u':
3850 code = TYPE_CODE_UNION;
3851 prefix = "union ";
3852 break;
3853 case 'e':
3854 code = TYPE_CODE_ENUM;
3855 prefix = "enum ";
3856 break;
3857 default:
3858 return error_type (pp);
3859 }
3860
3861 to = type_name = (char *)
3862 obstack_alloc (symbol_obstack,
3863 (strlen (prefix) +
3864 ((char *) strchr (*pp, ':') - (*pp)) + 1));
3865
3866 /* Copy the prefix. */
3867 from = prefix;
3868 while (*to++ = *from++)
3869 ;
3870 to--;
3871
3872 type_name_only = to;
3873
3874 /* Copy the name. */
3875 from = *pp + 1;
3876 while ((*to++ = *from++) != ':')
3877 ;
3878 *--to = '\0';
3879
3880 /* Set the pointer ahead of the name which we just read. */
3881 *pp = from;
3882
3883#if 0
3884 /* The following hack is clearly wrong, because it doesn't
3885 check whether we are in a baseclass. I tried to reproduce
3886 the case that it is trying to fix, but I couldn't get
3887 g++ to put out a cross reference to a basetype. Perhaps
3888 it doesn't do it anymore. */
3889 /* Note: for C++, the cross reference may be to a base type which
3890 has not yet been seen. In this case, we skip to the comma,
3891 which will mark the end of the base class name. (The ':'
3892 at the end of the base class name will be skipped as well.)
3893 But sometimes (ie. when the cross ref is the last thing on
3894 the line) there will be no ','. */
3895 from = (char *) strchr (*pp, ',');
3896 if (from)
3897 *pp = from;
3898#endif /* 0 */
3899 }
3900
3901 /* Now check to see whether the type has already been declared. */
3902 /* This is necessary at least in the case where the
3903 program says something like
3904 struct foo bar[5];
3905 The compiler puts out a cross-reference; we better find
3906 set the length of the structure correctly so we can
3907 set the length of the array. */
3908 for (ppt = file_symbols; ppt; ppt = ppt->next)
3909 for (i = 0; i < ppt->nsyms; i++)
3910 {
3911 struct symbol *sym = ppt->symbol[i];
3912
3913 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3914 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3915 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
3916 && !strcmp (SYMBOL_NAME (sym), type_name_only))
3917 {
3918 obstack_free (symbol_obstack, type_name);
3919 type = SYMBOL_TYPE (sym);
3920 return type;
3921 }
3922 }
3923
3924 /* Didn't find the type to which this refers, so we must
3925 be dealing with a forward reference. Allocate a type
3926 structure for it, and keep track of it so we can
3927 fill in the rest of the fields when we get the full
3928 type. */
3929 type = dbx_alloc_type (typenums);
3930 TYPE_CODE (type) = code;
3931 TYPE_NAME (type) = type_name;
3932
3933 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3934
3935 add_undefined_type (type);
3936 return type;
3937 }
3938
3939 case '0':
3940 case '1':
3941 case '2':
3942 case '3':
3943 case '4':
3944 case '5':
3945 case '6':
3946 case '7':
3947 case '8':
3948 case '9':
3949 case '(':
3950 (*pp)--;
3951 read_type_number (pp, xtypenums);
3952 type = *dbx_lookup_type (xtypenums);
3953 if (type == 0)
3954 type = builtin_type_void;
3955 if (typenums[0] != -1)
3956 *dbx_lookup_type (typenums) = type;
3957 break;
3958
3959 case '*':
3960 type1 = read_type (pp);
3961 type = lookup_pointer_type (type1);
3962 if (typenums[0] != -1)
3963 *dbx_lookup_type (typenums) = type;
3964 break;
3965
3966 case '@':
3967 {
3968 struct type *domain = read_type (pp);
3969 struct type *memtype;
3970
3971 if (**pp != ',')
3972 /* Invalid member type data format. */
3973 return error_type (pp);
3974 ++*pp;
3975
3976 memtype = read_type (pp);
3977 type = dbx_alloc_type (typenums);
3978 smash_to_member_type (type, domain, memtype);
3979 }
3980 break;
3981
3982 case '#':
3983 if ((*pp)[0] == '#')
3984 {
3985 /* We'll get the parameter types from the name. */
3986 struct type *return_type;
3987
3988 *pp += 1;
3989 return_type = read_type (pp);
3990 if (*(*pp)++ != ';')
3991 complain (&invalid_member_complaint, symnum);
3992 type = lookup_function_type (return_type);
3993 if (typenums[0] != -1)
3994 *dbx_lookup_type (typenums) = type;
3995 TYPE_CODE (type) = TYPE_CODE_METHOD;
3996 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3997 }
3998 else
3999 {
4000 struct type *domain = read_type (pp);
4001 struct type *return_type;
4002 struct type **args;
4003
4004 if (*(*pp)++ != ',')
4005 error ("invalid member type data format, at symtab pos %d.",
4006 symnum);
4007
4008 return_type = read_type (pp);
4009 args = read_args (pp, ';');
4010 type = dbx_alloc_type (typenums);
4011 smash_to_method_type (type, domain, return_type, args);
4012 }
4013 break;
4014
4015 case '&':
4016 type1 = read_type (pp);
4017 type = lookup_reference_type (type1);
4018 if (typenums[0] != -1)
4019 *dbx_lookup_type (typenums) = type;
4020 break;
4021
4022 case 'f':
4023 type1 = read_type (pp);
4024 type = lookup_function_type (type1);
4025 if (typenums[0] != -1)
4026 *dbx_lookup_type (typenums) = type;
4027 break;
4028
4029 case 'r':
4030 type = read_range_type (pp, typenums);
4031 if (typenums[0] != -1)
4032 *dbx_lookup_type (typenums) = type;
4033 break;
4034
4035 case 'e':
4036 type = dbx_alloc_type (typenums);
4037 type = read_enum_type (pp, type);
4038 *dbx_lookup_type (typenums) = type;
4039 break;
4040
4041 case 's':
4042 type = dbx_alloc_type (typenums);
4043 TYPE_NAME (type) = type_synonym_name;
4044 type_synonym_name = 0;
4045 type = read_struct_type (pp, type);
4046 break;
4047
4048 case 'u':
4049 type = dbx_alloc_type (typenums);
4050 TYPE_NAME (type) = type_synonym_name;
4051 type_synonym_name = 0;
4052 type = read_struct_type (pp, type);
4053 TYPE_CODE (type) = TYPE_CODE_UNION;
4054 break;
4055
4056 case 'a':
4057 if (**pp != 'r')
4058 return error_type (pp);
4059 ++*pp;
4060
4061 type = dbx_alloc_type (typenums);
4062 type = read_array_type (pp, type);
4063 break;
4064
4065 default:
4066 return error_type (pp);
4067 }
4068
4069 if (type == 0)
4070 abort ();
4071
4072#if 0
4073 /* If this is an overriding temporary alteration for a header file's
4074 contents, and this type number is unknown in the global definition,
4075 put this type into the global definition at this type number. */
4076 if (header_file_prev_index >= 0)
4077 {
4078 register struct type **tp
4079 = explicit_lookup_type (header_file_prev_index, typenums[1]);
4080 if (*tp == 0)
4081 *tp = type;
4082 }
4083#endif
4084 return type;
4085}
4086\f
4087#if 0
4088/* This would be a good idea, but it doesn't really work. The problem
4089 is that in order to get the virtual context for a particular type,
4090 you need to know the virtual info from all of its basetypes,
4091 and you need to have processed its methods. Since GDB reads
4092 symbols on a file-by-file basis, this means processing the symbols
4093 of all the files that are needed for each baseclass, which
4094 means potentially reading in all the debugging info just to fill
4095 in information we may never need. */
4096
4097/* This page contains subroutines of read_type. */
4098
4099/* FOR_TYPE is a struct type defining a virtual function NAME with type
4100 FN_TYPE. The `virtual context' for this virtual function is the
4101 first base class of FOR_TYPE in which NAME is defined with signature
4102 matching FN_TYPE. OFFSET serves as a hash on matches here.
4103
4104 TYPE is the current type in which we are searching. */
4105
4106static struct type *
4107virtual_context (for_type, type, name, fn_type, offset)
4108 struct type *for_type, *type;
4109 char *name;
4110 struct type *fn_type;
4111 int offset;
4112{
4113 struct type *basetype = 0;
4114 int i;
4115
4116 if (for_type != type)
4117 {
4118 /* Check the methods of TYPE. */
4119 /* Need to do a check_stub_type here, but that breaks
4120 things because we can get infinite regress. */
4121 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
4122 if (!strcmp (TYPE_FN_FIELDLIST_NAME (type, i), name))
4123 break;
4124 if (i >= 0)
4125 {
4126 int j = TYPE_FN_FIELDLIST_LENGTH (type, i);
4127 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
4128
4129 while (--j >= 0)
4130 if (TYPE_FN_FIELD_VOFFSET (f, j) == offset-1)
4131 return TYPE_FN_FIELD_FCONTEXT (f, j);
4132 }
4133 }
4134 for (i = TYPE_N_BASECLASSES (type); i > 0; i--)
4135 {
4136 basetype = virtual_context (for_type, TYPE_BASECLASS (type, i), name,
4137 fn_type, offset);
4138 if (basetype != for_type)
4139 return basetype;
4140 }
4141 return for_type;
4142}
4143#endif
4144
4145/* Read the description of a structure (or union type)
4146 and return an object describing the type. */
4147
4148static struct type *
4149read_struct_type (pp, type)
4150 char **pp;
4151 register struct type *type;
4152{
4153 /* Total number of methods defined in this class.
4154 If the class defines two `f' methods, and one `g' method,
4155 then this will have the value 3. */
4156 int total_length = 0;
4157
4158 struct nextfield
4159 {
4160 struct nextfield *next;
4161 int visibility; /* 0=public, 1=protected, 2=public */
4162 struct field field;
4163 };
4164
4165 struct next_fnfield
4166 {
4167 struct next_fnfield *next;
4168 int visibility; /* 0=public, 1=protected, 2=public */
4169 struct fn_field fn_field;
4170 };
4171
4172 struct next_fnfieldlist
4173 {
4174 struct next_fnfieldlist *next;
4175 struct fn_fieldlist fn_fieldlist;
4176 };
4177
4178 register struct nextfield *list = 0;
4179 struct nextfield *new;
4180 register char *p;
4181 int nfields = 0;
4182 register int n;
4183
4184 register struct next_fnfieldlist *mainlist = 0;
4185 int nfn_fields = 0;
4186
4187 if (TYPE_MAIN_VARIANT (type) == 0)
4188 {
4189 TYPE_MAIN_VARIANT (type) = type;
4190 }
4191
4192 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4193
4194 /* First comes the total size in bytes. */
4195
4196 TYPE_LENGTH (type) = read_number (pp, 0);
4197
4198 /* C++: Now, if the class is a derived class, then the next character
4199 will be a '!', followed by the number of base classes derived from.
4200 Each element in the list contains visibility information,
4201 the offset of this base class in the derived structure,
4202 and then the base type. */
4203 if (**pp == '!')
4204 {
4205 int i, n_baseclasses, offset;
4206 struct type *baseclass;
4207 int via_public;
4208
4209 /* Nonzero if it is a virtual baseclass, i.e.,
4210
4211 struct A{};
4212 struct B{};
4213 struct C : public B, public virtual A {};
4214
4215 B is a baseclass of C; A is a virtual baseclass for C. This is a C++
4216 2.0 language feature. */
4217 int via_virtual;
4218
4219 *pp += 1;
4220
4221 n_baseclasses = read_number (pp, ',');
4222 TYPE_FIELD_VIRTUAL_BITS (type) =
4223 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (n_baseclasses));
4224 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), n_baseclasses);
4225
4226 for (i = 0; i < n_baseclasses; i++)
4227 {
4228 if (**pp == '\\')
4229 *pp = next_symbol_text ();
4230
4231 switch (**pp)
4232 {
4233 case '0':
4234 via_virtual = 0;
4235 break;
4236 case '1':
4237 via_virtual = 1;
4238 break;
4239 default:
4240 /* Bad visibility format. */
4241 return error_type (pp);
4242 }
4243 ++*pp;
4244
4245 switch (**pp)
4246 {
4247 case '0':
4248 via_public = 0;
4249 break;
4250 case '2':
4251 via_public = 2;
4252 break;
4253 default:
4254 /* Bad visibility format. */
4255 return error_type (pp);
4256 }
4257 if (via_virtual)
4258 SET_TYPE_FIELD_VIRTUAL (type, i);
4259 ++*pp;
4260
4261 /* Offset of the portion of the object corresponding to
4262 this baseclass. Always zero in the absence of
4263 multiple inheritance. */
4264 offset = read_number (pp, ',');
4265 baseclass = read_type (pp);
4266 *pp += 1; /* skip trailing ';' */
4267
4268#if 0
4269/* One's understanding improves, grasshopper... */
4270 if (offset != 0)
4271 {
4272 static int error_printed = 0;
4273
4274 if (!error_printed)
4275 {
4276 fprintf (stderr,
4277"\nWarning: GDB has limited understanding of multiple inheritance...");
4278 if (!info_verbose)
4279 fprintf(stderr, "\n");
4280 error_printed = 1;
4281 }
4282 }
4283#endif
4284
4285 /* Make this baseclass visible for structure-printing purposes. */
4286 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4287 new->next = list;
4288 list = new;
4289 list->visibility = via_public;
4290 list->field.type = baseclass;
4291 list->field.name = type_name_no_tag (baseclass);
4292 list->field.bitpos = offset;
4293 list->field.bitsize = 0; /* this should be an unpacked field! */
4294 nfields++;
4295 }
4296 TYPE_N_BASECLASSES (type) = n_baseclasses;
4297 }
4298
4299 /* Now come the fields, as NAME:?TYPENUM,BITPOS,BITSIZE; for each one.
4300 At the end, we see a semicolon instead of a field.
4301
4302 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
4303 a static field.
4304
4305 The `?' is a placeholder for one of '/2' (public visibility),
4306 '/1' (protected visibility), '/0' (private visibility), or nothing
4307 (C style symbol table, public visibility). */
4308
4309 /* We better set p right now, in case there are no fields at all... */
4310 p = *pp;
4311
4312 while (**pp != ';')
4313 {
4314 /* Check for and handle cretinous dbx symbol name continuation! */
4315 if (**pp == '\\') *pp = next_symbol_text ();
4316
4317 /* Get space to record the next field's data. */
4318 new = (struct nextfield *) alloca (sizeof (struct nextfield));
4319 new->next = list;
4320 list = new;
4321
4322 /* Get the field name. */
4323 p = *pp;
4324 if (*p == CPLUS_MARKER)
4325 {
4326 /* Special GNU C++ name. */
4327 if (*++p == 'v')
4328 {
4329 char *prefix, *name; /* FIXME: NAME never set! */
4330 struct type *context;
4331
4332 switch (*++p)
4333 {
4334 case 'f':
4335 prefix = vptr_name;
4336 break;
4337 case 'b':
4338 prefix = vb_name;
4339 break;
4340 default:
4341 error ("invalid abbreviation at symtab pos %d.", symnum);
4342 }
4343 *pp = p + 1;
4344 context = read_type (pp);
4345 if (type_name_no_tag (context) == 0)
4346 {
4347 if (name == 0)
4348 error ("type name unknown at symtab pos %d.", symnum);
4349 TYPE_NAME (context) = obsavestring (name, p - name - 1);
4350 }
4351 list->field.name = obconcat (prefix, type_name_no_tag (context), "");
4352 p = ++(*pp);
4353 if (p[-1] != ':')
4354 error ("invalid abbreviation at symtab pos %d.", symnum);
4355 list->field.type = read_type (pp);
4356 (*pp)++; /* Skip the comma. */
4357 list->field.bitpos = read_number (pp, ';');
4358 /* This field is unpacked. */
4359 list->field.bitsize = 0;
4360 }
4361 else
4362 error ("invalid abbreviation at symtab pos %d.", symnum);
4363
4364 nfields++;
4365 continue;
4366 }
4367
4368 while (*p != ':') p++;
4369 list->field.name = obsavestring (*pp, p - *pp);
4370
4371 /* C++: Check to see if we have hit the methods yet. */
4372 if (p[1] == ':')
4373 break;
4374
4375 *pp = p + 1;
4376
4377 /* This means we have a visibility for a field coming. */
4378 if (**pp == '/')
4379 {
4380 switch (*++*pp)
4381 {
4382 case '0':
4383 list->visibility = 0; /* private */
4384 *pp += 1;
4385 break;
4386
4387 case '1':
4388 list->visibility = 1; /* protected */
4389 *pp += 1;
4390 break;
4391
4392 case '2':
4393 list->visibility = 2; /* public */
4394 *pp += 1;
4395 break;
4396 }
4397 }
4398 else /* normal dbx-style format. */
4399 list->visibility = 2; /* public */
4400
4401 list->field.type = read_type (pp);
4402 if (**pp == ':')
4403 {
4404 /* Static class member. */
4405 list->field.bitpos = (long)-1;
4406 p = ++(*pp);
4407 while (*p != ';') p++;
4408 list->field.bitsize = (long) savestring (*pp, p - *pp);
4409 *pp = p + 1;
4410 nfields++;
4411 continue;
4412 }
4413 else if (**pp != ',')
4414 /* Bad structure-type format. */
4415 return error_type (pp);
4416
4417 (*pp)++; /* Skip the comma. */
4418 list->field.bitpos = read_number (pp, ',');
4419 list->field.bitsize = read_number (pp, ';');
4420
4421#if 0
4422 /* FIXME tiemann: what is the story here? What does the compiler
4423 really do? Also, patch gdb.texinfo for this case; I document
4424 it as a possible problem there. Search for "DBX-style". */
4425
4426 /* This is wrong because this is identical to the symbols
4427 produced for GCC 0-size arrays. For example:
4428 typedef union {
4429 int num;
4430 char str[0];
4431 } foo;
4432 The code which dumped core in such circumstances should be
4433 fixed not to dump core. */
4434
4435 /* g++ -g0 can put out bitpos & bitsize zero for a static
4436 field. This does not give us any way of getting its
4437 class, so we can't know its name. But we can just
4438 ignore the field so we don't dump core and other nasty
4439 stuff. */
4440 if (list->field.bitpos == 0
4441 && list->field.bitsize == 0)
4442 {
4443 complain (&dbx_class_complaint, 0);
4444 /* Ignore this field. */
4445 list = list->next;
4446 }
4447 else
4448#endif /* 0 */
4449 {
4450 /* Detect an unpacked field and mark it as such.
4451 dbx gives a bit size for all fields.
4452 Note that forward refs cannot be packed,
4453 and treat enums as if they had the width of ints. */
4454 if (TYPE_CODE (list->field.type) != TYPE_CODE_INT
4455 && TYPE_CODE (list->field.type) != TYPE_CODE_ENUM)
4456 list->field.bitsize = 0;
4457 if ((list->field.bitsize == 8 * TYPE_LENGTH (list->field.type)
4458 || (TYPE_CODE (list->field.type) == TYPE_CODE_ENUM
4459 && (list->field.bitsize
4460 == 8 * TYPE_LENGTH (builtin_type_int))
4461 )
4462 )
4463 &&
4464 list->field.bitpos % 8 == 0)
4465 list->field.bitsize = 0;
4466 nfields++;
4467 }
4468 }
4469
4470 if (p[1] == ':')
4471 /* chill the list of fields: the last entry (at the head)
4472 is a partially constructed entry which we now scrub. */
4473 list = list->next;
4474
4475 /* Now create the vector of fields, and record how big it is.
4476 We need this info to record proper virtual function table information
4477 for this class's virtual functions. */
4478
4479 TYPE_NFIELDS (type) = nfields;
4480 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack,
4481 sizeof (struct field) * nfields);
4482
4483 TYPE_FIELD_PRIVATE_BITS (type) =
4484 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4485 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4486
4487 TYPE_FIELD_PROTECTED_BITS (type) =
4488 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (nfields));
4489 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4490
4491 /* Copy the saved-up fields into the field vector. */
4492
4493 for (n = nfields; list; list = list->next)
4494 {
4495 n -= 1;
4496 TYPE_FIELD (type, n) = list->field;
4497 if (list->visibility == 0)
4498 SET_TYPE_FIELD_PRIVATE (type, n);
4499 else if (list->visibility == 1)
4500 SET_TYPE_FIELD_PROTECTED (type, n);
4501 }
4502
4503 /* Now come the method fields, as NAME::methods
4504 where each method is of the form TYPENUM,ARGS,...:PHYSNAME;
4505 At the end, we see a semicolon instead of a field.
4506
4507 For the case of overloaded operators, the format is
4508 OPERATOR::*.methods, where OPERATOR is the string "operator",
4509 `*' holds the place for an operator name (such as `+=')
4510 and `.' marks the end of the operator name. */
4511 if (p[1] == ':')
4512 {
4513 /* Now, read in the methods. To simplify matters, we
4514 "unread" the name that has been read, so that we can
4515 start from the top. */
4516
4517 /* For each list of method lists... */
4518 do
4519 {
4520 int i;
4521 struct next_fnfield *sublist = 0;
4522 int length = 0;
4523 struct next_fnfieldlist *new_mainlist =
4524 (struct next_fnfieldlist *)alloca (sizeof (struct next_fnfieldlist));
4525 char *main_fn_name;
4526
4527 p = *pp;
4528
4529 /* read in the name. */
4530 while (*p != ':') p++;
4531 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
4532 {
4533 /* This lets the user type "break operator+".
4534 We could just put in "+" as the name, but that wouldn't
4535 work for "*". */
4536 static char opname[32] = "operator";
4537 char *o = opname + 8;
4538
4539 /* Skip past '::'. */
4540 p += 2;
4541 while (*p != '.')
4542 *o++ = *p++;
4543 main_fn_name = savestring (opname, o - opname);
4544 /* Skip past '.' */
4545 *pp = p + 1;
4546 }
4547 else
4548 {
4549 i = 0;
4550 main_fn_name = savestring (*pp, p - *pp);
4551 /* Skip past '::'. */
4552 *pp = p + 2;
4553 }
4554 new_mainlist->fn_fieldlist.name = main_fn_name;
4555
4556 do
4557 {
4558 struct next_fnfield *new_sublist =
4559 (struct next_fnfield *)alloca (sizeof (struct next_fnfield));
4560
4561 /* Check for and handle cretinous dbx symbol name continuation! */
4562 if (**pp == '\\') *pp = next_symbol_text ();
4563
4564 new_sublist->fn_field.type = read_type (pp);
4565 if (**pp != ':')
4566 /* Invalid symtab info for method. */
4567 return error_type (pp);
4568
4569 *pp += 1;
4570 p = *pp;
4571 while (*p != ';') p++;
4572 /* If this is just a stub, then we don't have the
4573 real name here. */
4574 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
4575 *pp = p + 1;
4576 new_sublist->visibility = *(*pp)++ - '0';
4577 if (**pp == '\\') *pp = next_symbol_text ();
4578 /* FIXME: tiemann needs to add const/volatile info
4579 to the methods. For now, just skip the char.
4580 In future, here's what we need to implement:
4581
4582 A for normal functions.
4583 B for `const' member functions.
4584 C for `volatile' member functions.
4585 D for `const volatile' member functions. */
4586 if (**pp == 'A' || **pp == 'B' || **pp == 'C' || **pp == 'D')
4587 (*pp)++;
4588 else
4589 complain(&const_vol_complaint, **pp);
4590
4591 switch (*(*pp)++)
4592 {
4593 case '*':
4594 /* virtual member function, followed by index. */
4595 /* The sign bit is set to distinguish pointers-to-methods
4596 from virtual function indicies. Since the array is
4597 in words, the quantity must be shifted left by 1
4598 on 16 bit machine, and by 2 on 32 bit machine, forcing
4599 the sign bit out, and usable as a valid index into
4600 the array. Remove the sign bit here. */
4601 new_sublist->fn_field.voffset =
4602 (0x7fffffff & read_number (pp, ';')) + 1;
4603
4604 /* Figure out from whence this virtual function came.
4605 It may belong to virtual function table of
4606 one of its baseclasses. */
4607 new_sublist->fn_field.fcontext = read_type (pp);
4608 if (**pp != ';')
4609 error_type (pp);
4610 else
4611 ++*pp;
4612 break;
4613
4614 case '?':
4615 /* static member function. */
4616 new_sublist->fn_field.voffset = VOFFSET_STATIC;
4617 break;
4618 default:
4619 /* **pp == '.'. */
4620 /* normal member function. */
4621 new_sublist->fn_field.voffset = 0;
4622 break;
4623 }
4624
4625 new_sublist->next = sublist;
4626 sublist = new_sublist;
4627 length++;
4628 }
4629 while (**pp != ';' && *pp != '\0');
4630
4631 *pp += 1;
4632
4633 new_mainlist->fn_fieldlist.fn_fields =
4634 (struct fn_field *) obstack_alloc (symbol_obstack,
4635 sizeof (struct fn_field) * length);
4636 TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist) =
4637 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4638 B_CLRALL (TYPE_FN_PRIVATE_BITS (new_mainlist->fn_fieldlist), length);
4639
4640 TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist) =
4641 (B_TYPE *) obstack_alloc (symbol_obstack, B_BYTES (length));
4642 B_CLRALL (TYPE_FN_PROTECTED_BITS (new_mainlist->fn_fieldlist), length);
4643
4644 for (i = length; (i--, sublist); sublist = sublist->next)
4645 {
4646 new_mainlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
4647 if (sublist->visibility == 0)
4648 B_SET (new_mainlist->fn_fieldlist.private_fn_field_bits, i);
4649 else if (sublist->visibility == 1)
4650 B_SET (new_mainlist->fn_fieldlist.protected_fn_field_bits, i);
4651 }
4652
4653 new_mainlist->fn_fieldlist.length = length;
4654 new_mainlist->next = mainlist;
4655 mainlist = new_mainlist;
4656 nfn_fields++;
4657 total_length += length;
4658 }
4659 while (**pp != ';');
4660 }
4661
4662 *pp += 1;
4663
4664 TYPE_FN_FIELDLISTS (type) =
4665 (struct fn_fieldlist *) obstack_alloc (symbol_obstack,
4666 sizeof (struct fn_fieldlist) * nfn_fields);
4667
4668 TYPE_NFN_FIELDS (type) = nfn_fields;
4669 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
4670
4671 {
4672 int i;
4673 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
4674 TYPE_NFN_FIELDS_TOTAL (type) +=
4675 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, i));
4676 }
4677
4678 for (n = nfn_fields; mainlist; mainlist = mainlist->next)
4679 TYPE_FN_FIELDLISTS (type)[--n] = mainlist->fn_fieldlist;
4680
4681 if (**pp == '~')
4682 {
4683 *pp += 1;
4684
4685 if (**pp == '=')
4686 {
4687 TYPE_FLAGS (type)
4688 |= TYPE_FLAG_HAS_CONSTRUCTOR | TYPE_FLAG_HAS_DESTRUCTOR;
4689 *pp += 1;
4690 }
4691 else if (**pp == '+')
4692 {
4693 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_CONSTRUCTOR;
4694 *pp += 1;
4695 }
4696 else if (**pp == '-')
4697 {
4698 TYPE_FLAGS (type) |= TYPE_FLAG_HAS_DESTRUCTOR;
4699 *pp += 1;
4700 }
4701
4702 /* Read either a '%' or the final ';'. */
4703 if (*(*pp)++ == '%')
4704 {
4705 /* Now we must record the virtual function table pointer's
4706 field information. */
4707
4708 struct type *t;
4709 int i;
4710
4711 t = read_type (pp);
4712 p = (*pp)++;
4713 while (*p != '\0' && *p != ';')
4714 p++;
4715 if (*p == '\0')
4716 /* Premature end of symbol. */
4717 return error_type (pp);
4718
4719 TYPE_VPTR_BASETYPE (type) = t;
4720 if (type == t)
4721 {
4722 if (TYPE_FIELD_NAME (t, TYPE_N_BASECLASSES (t)) == 0)
4723 TYPE_VPTR_FIELDNO (type) = i = TYPE_N_BASECLASSES (t);
4724 else for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); --i)
4725 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
4726 sizeof (vptr_name) -1))
4727 {
4728 TYPE_VPTR_FIELDNO (type) = i;
4729 break;
4730 }
4731 if (i < 0)
4732 /* Virtual function table field not found. */
4733 return error_type (pp);
4734 }
4735 else
4736 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4737 *pp = p + 1;
4738 }
4739 else
4740 {
4741 TYPE_VPTR_BASETYPE (type) = 0;
4742 TYPE_VPTR_FIELDNO (type) = -1;
4743 }
4744 }
4745 else
4746 {
4747 TYPE_VPTR_BASETYPE (type) = 0;
4748 TYPE_VPTR_FIELDNO (type) = -1;
4749 }
4750
4751 return type;
4752}
4753
4754/* Read a definition of an array type,
4755 and create and return a suitable type object.
4756 Also creates a range type which represents the bounds of that
4757 array. */
4758static struct type *
4759read_array_type (pp, type)
4760 register char **pp;
4761 register struct type *type;
4762{
4763 struct type *index_type, *element_type, *range_type;
4764 int lower, upper;
4765 int adjustable = 0;
4766
4767 /* Format of an array type:
4768 "ar<index type>;lower;upper;<array_contents_type>". Put code in
4769 to handle this.
4770
4771 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4772 for these, produce a type like float[][]. */
4773
4774 index_type = read_type (pp);
4775 if (**pp != ';')
4776 /* Improper format of array type decl. */
4777 return error_type (pp);
4778 ++*pp;
4779
4780 if (!(**pp >= '0' && **pp <= '9'))
4781 {
4782 *pp += 1;
4783 adjustable = 1;
4784 }
4785 lower = read_number (pp, ';');
4786
4787 if (!(**pp >= '0' && **pp <= '9'))
4788 {
4789 *pp += 1;
4790 adjustable = 1;
4791 }
4792 upper = read_number (pp, ';');
4793
4794 element_type = read_type (pp);
4795
4796 if (adjustable)
4797 {
4798 lower = 0;
4799 upper = -1;
4800 }
4801
4802 {
4803 /* Create range type. */
4804 range_type = (struct type *) obstack_alloc (symbol_obstack,
4805 sizeof (struct type));
4806 TYPE_CODE (range_type) = TYPE_CODE_RANGE;
4807 TYPE_TARGET_TYPE (range_type) = index_type;
4808
4809 /* This should never be needed. */
4810 TYPE_LENGTH (range_type) = sizeof (int);
4811
4812 TYPE_NFIELDS (range_type) = 2;
4813 TYPE_FIELDS (range_type) =
4814 (struct field *) obstack_alloc (symbol_obstack,
4815 2 * sizeof (struct field));
4816 TYPE_FIELD_BITPOS (range_type, 0) = lower;
4817 TYPE_FIELD_BITPOS (range_type, 1) = upper;
4818 }
4819
4820 TYPE_CODE (type) = TYPE_CODE_ARRAY;
4821 TYPE_TARGET_TYPE (type) = element_type;
4822 TYPE_LENGTH (type) = (upper - lower + 1) * TYPE_LENGTH (element_type);
4823 TYPE_NFIELDS (type) = 1;
4824 TYPE_FIELDS (type) =
4825 (struct field *) obstack_alloc (symbol_obstack,
4826 sizeof (struct field));
4827 TYPE_FIELD_TYPE (type, 0) = range_type;
4828
4829 return type;
4830}
4831
4832
4833/* Read a definition of an enumeration type,
4834 and create and return a suitable type object.
4835 Also defines the symbols that represent the values of the type. */
4836
4837static struct type *
4838read_enum_type (pp, type)
4839 register char **pp;
4840 register struct type *type;
4841{
4842 register char *p;
4843 char *name;
4844 register long n;
4845 register struct symbol *sym;
4846 int nsyms = 0;
4847 struct pending **symlist;
4848 struct pending *osyms, *syms;
4849 int o_nsyms;
4850
4851 if (within_function)
4852 symlist = &local_symbols;
4853 else
4854 symlist = &file_symbols;
4855 osyms = *symlist;
4856 o_nsyms = osyms ? osyms->nsyms : 0;
4857
4858 /* Read the value-names and their values.
4859 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4860 A semicolon or comman instead of a NAME means the end. */
4861 while (**pp && **pp != ';' && **pp != ',')
4862 {
4863 /* Check for and handle cretinous dbx symbol name continuation! */
4864 if (**pp == '\\') *pp = next_symbol_text ();
4865
4866 p = *pp;
4867 while (*p != ':') p++;
4868 name = obsavestring (*pp, p - *pp);
4869 *pp = p + 1;
4870 n = read_number (pp, ',');
4871
4872 sym = (struct symbol *) obstack_alloc (symbol_obstack, sizeof (struct symbol));
4873 bzero (sym, sizeof (struct symbol));
4874 SYMBOL_NAME (sym) = name;
4875 SYMBOL_CLASS (sym) = LOC_CONST;
4876 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4877 SYMBOL_VALUE (sym) = n;
4878 add_symbol_to_list (sym, symlist);
4879 nsyms++;
4880 }
4881
4882 if (**pp == ';')
4883 (*pp)++; /* Skip the semicolon. */
4884
4885 /* Now fill in the fields of the type-structure. */
4886
4887 TYPE_LENGTH (type) = sizeof (int);
4888 TYPE_CODE (type) = TYPE_CODE_ENUM;
4889 TYPE_NFIELDS (type) = nsyms;
4890 TYPE_FIELDS (type) = (struct field *) obstack_alloc (symbol_obstack, sizeof (struct field) * nsyms);
4891
4892 /* Find the symbols for the values and put them into the type.
4893 The symbols can be found in the symlist that we put them on
4894 to cause them to be defined. osyms contains the old value
4895 of that symlist; everything up to there was defined by us. */
4896 /* Note that we preserve the order of the enum constants, so
4897 that in something like "enum {FOO, LAST_THING=FOO}" we print
4898 FOO, not LAST_THING. */
4899
4900 for (syms = *symlist, n = 0; syms; syms = syms->next)
4901 {
4902 int j = 0;
4903 if (syms == osyms)
4904 j = o_nsyms;
4905 for (; j < syms->nsyms; j++,n++)
4906 {
4907 struct symbol *sym = syms->symbol[j];
4908 SYMBOL_TYPE (sym) = type;
4909 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (sym);
4910 TYPE_FIELD_VALUE (type, n) = 0;
4911 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (sym);
4912 TYPE_FIELD_BITSIZE (type, n) = 0;
4913 }
4914 if (syms == osyms)
4915 break;
4916 }
4917
4918 return type;
4919}
4920
4921/* Read a number from the string pointed to by *PP.
4922 The value of *PP is advanced over the number.
4923 If END is nonzero, the character that ends the
4924 number must match END, or an error happens;
4925 and that character is skipped if it does match.
4926 If END is zero, *PP is left pointing to that character.
4927
4928 If the number fits in a long, set *VALUE and set *BITS to 0.
4929 If not, set *BITS to be the number of bits in the number.
4930
4931 If encounter garbage, set *BITS to -1. */
4932
4933static void
4934read_huge_number (pp, end, valu, bits)
4935 char **pp;
4936 int end;
4937 long *valu;
4938 int *bits;
4939{
4940 char *p = *pp;
4941 int sign = 1;
4942 long n = 0;
4943 int radix = 10;
4944 char overflow = 0;
4945 int nbits = 0;
4946 int c;
4947
4948 if (*p == '-')
4949 {
4950 sign = -1;
4951 p++;
4952 }
4953
4954 /* Leading zero means octal. GCC uses this to output values larger
4955 than an int (because that would be hard in decimal). */
4956 if (*p == '0')
4957 {
4958 radix = 8;
4959 p++;
4960 }
4961
4962 while ((c = *p++) >= '0' && c <= ('0' + radix))
4963 {
4964 if (n <= LONG_MAX / radix)
4965 {
4966 n *= radix;
4967 n += c - '0'; /* FIXME this overflows anyway */
4968 }
4969 else
4970 overflow = 1;
4971
4972 /* This depends on large values being output in octal, which is
4973 what GCC does. */
4974 if (radix == 8)
4975 {
4976 if (nbits == 0)
4977 {
4978 if (c == '0')
4979 /* Ignore leading zeroes. */
4980 ;
4981 else if (c == '1')
4982 nbits = 1;
4983 else if (c == '2' || c == '3')
4984 nbits = 2;
4985 else
4986 nbits = 3;
4987 }
4988 else
4989 nbits += 3;
4990 }
4991 }
4992 if (end)
4993 {
4994 if (c && c != end)
4995 {
4996 if (bits != NULL)
4997 *bits = -1;
4998 return;
4999 }
5000 }
5001 else
5002 --p;
5003
5004 *pp = p;
5005 if (overflow)
5006 {
5007 if (nbits == 0)
5008 {
5009 /* Large decimal constants are an error (because it is hard to
5010 count how many bits are in them). */
5011 if (bits != NULL)
5012 *bits = -1;
5013 return;
5014 }
5015
5016 /* -0x7f is the same as 0x80. So deal with it by adding one to
5017 the number of bits. */
5018 if (sign == -1)
5019 ++nbits;
5020 if (bits)
5021 *bits = nbits;
5022 }
5023 else
5024 {
5025 if (valu)
5026 *valu = n * sign;
5027 if (bits)
5028 *bits = 0;
5029 }
5030}
5031
5032#define MAX_OF_TYPE(t) ((1 << (sizeof (t)*8 - 1)) - 1)
5033#define MIN_OF_TYPE(t) (-(1 << (sizeof (t)*8 - 1)))
5034
5035static struct type *
5036read_range_type (pp, typenums)
5037 char **pp;
5038 int typenums[2];
5039{
5040 int rangenums[2];
5041 long n2, n3;
5042 int n2bits, n3bits;
5043 int self_subrange;
5044 struct type *result_type;
5045
5046 /* First comes a type we are a subrange of.
5047 In C it is usually 0, 1 or the type being defined. */
5048 read_type_number (pp, rangenums);
5049 self_subrange = (rangenums[0] == typenums[0] &&
5050 rangenums[1] == typenums[1]);
5051
5052 /* A semicolon should now follow; skip it. */
5053 if (**pp == ';')
5054 (*pp)++;
5055
5056 /* The remaining two operands are usually lower and upper bounds
5057 of the range. But in some special cases they mean something else. */
5058 read_huge_number (pp, ';', &n2, &n2bits);
5059 read_huge_number (pp, ';', &n3, &n3bits);
5060
5061 if (n2bits == -1 || n3bits == -1)
5062 return error_type (pp);
5063
5064 /* If limits are huge, must be large integral type. */
5065 if (n2bits != 0 || n3bits != 0)
5066 {
5067 char got_signed = 0;
5068 char got_unsigned = 0;
5069 /* Number of bits in the type. */
5070 int nbits;
5071
5072 /* Range from 0 to <large number> is an unsigned large integral type. */
5073 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
5074 {
5075 got_unsigned = 1;
5076 nbits = n3bits;
5077 }
5078 /* Range from <large number> to <large number>-1 is a large signed
5079 integral type. */
5080 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
5081 {
5082 got_signed = 1;
5083 nbits = n2bits;
5084 }
5085
5086 if (got_signed || got_unsigned)
5087 {
5088 result_type = (struct type *) obstack_alloc (symbol_obstack,
5089 sizeof (struct type));
5090 bzero (result_type, sizeof (struct type));
5091 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
5092 TYPE_MAIN_VARIANT (result_type) = result_type;
5093 TYPE_CODE (result_type) = TYPE_CODE_INT;
5094 if (got_unsigned)
5095 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
5096 return result_type;
5097 }
5098 else
5099 return error_type (pp);
5100 }
5101
5102 /* A type defined as a subrange of itself, with bounds both 0, is void. */
5103 if (self_subrange && n2 == 0 && n3 == 0)
5104 return builtin_type_void;
5105
5106 /* If n3 is zero and n2 is not, we want a floating type,
5107 and n2 is the width in bytes.
5108
5109 Fortran programs appear to use this for complex types also,
5110 and they give no way to distinguish between double and single-complex!
5111 We don't have complex types, so we would lose on all fortran files!
5112 So return type `double' for all of those. It won't work right
5113 for the complex values, but at least it makes the file loadable. */
5114
5115 if (n3 == 0 && n2 > 0)
5116 {
5117 if (n2 == sizeof (float))
5118 return builtin_type_float;
5119 return builtin_type_double;
5120 }
5121
5122 /* If the upper bound is -1, it must really be an unsigned int. */
5123
5124 else if (n2 == 0 && n3 == -1)
5125 {
5126 if (sizeof (int) == sizeof (long))
5127 return builtin_type_unsigned_int;
5128 else
5129 return builtin_type_unsigned_long;
5130 }
5131
5132 /* Special case: char is defined (Who knows why) as a subrange of
5133 itself with range 0-127. */
5134 else if (self_subrange && n2 == 0 && n3 == 127)
5135 return builtin_type_char;
5136
5137 /* Assumptions made here: Subrange of self is equivalent to subrange
5138 of int. */
5139 else if (n2 == 0
5140 && (self_subrange ||
5141 *dbx_lookup_type (rangenums) == builtin_type_int))
5142 {
5143 /* an unsigned type */
5144#ifdef LONG_LONG
5145 if (n3 == - sizeof (long long))
5146 return builtin_type_unsigned_long_long;
5147#endif
5148 if (n3 == (unsigned int)~0L)
5149 return builtin_type_unsigned_int;
5150 if (n3 == (unsigned long)~0L)
5151 return builtin_type_unsigned_long;
5152 if (n3 == (unsigned short)~0L)
5153 return builtin_type_unsigned_short;
5154 if (n3 == (unsigned char)~0L)
5155 return builtin_type_unsigned_char;
5156 }
5157#ifdef LONG_LONG
5158 else if (n3 == 0 && n2 == -sizeof (long long))
5159 return builtin_type_long_long;
5160#endif
5161 else if (n2 == -n3 -1)
5162 {
5163 /* a signed type */
5164 if (n3 == (1 << (8 * sizeof (int) - 1)) - 1)
5165 return builtin_type_int;
5166 if (n3 == (1 << (8 * sizeof (long) - 1)) - 1)
5167 return builtin_type_long;
5168 if (n3 == (1 << (8 * sizeof (short) - 1)) - 1)
5169 return builtin_type_short;
5170 if (n3 == (1 << (8 * sizeof (char) - 1)) - 1)
5171 return builtin_type_char;
5172 }
5173
5174 /* We have a real range type on our hands. Allocate space and
5175 return a real pointer. */
5176
5177 /* At this point I don't have the faintest idea how to deal with
5178 a self_subrange type; I'm going to assume that this is used
5179 as an idiom, and that all of them are special cases. So . . . */
5180 if (self_subrange)
5181 return error_type (pp);
5182
5183 result_type = (struct type *) obstack_alloc (symbol_obstack,
5184 sizeof (struct type));
5185 bzero (result_type, sizeof (struct type));
5186
5187 TYPE_TARGET_TYPE (result_type) = (self_subrange ?
5188 builtin_type_int :
5189 *dbx_lookup_type(rangenums));
5190
5191 /* We have to figure out how many bytes it takes to hold this
5192 range type. I'm going to assume that anything that is pushing
5193 the bounds of a long was taken care of above. */
5194 if (n2 >= MIN_OF_TYPE(char) && n3 <= MAX_OF_TYPE(char))
5195 TYPE_LENGTH (result_type) = 1;
5196 else if (n2 >= MIN_OF_TYPE(short) && n3 <= MAX_OF_TYPE(short))
5197 TYPE_LENGTH (result_type) = sizeof (short);
5198 else if (n2 >= MIN_OF_TYPE(int) && n3 <= MAX_OF_TYPE(int))
5199 TYPE_LENGTH (result_type) = sizeof (int);
5200 else if (n2 >= MIN_OF_TYPE(long) && n3 <= MAX_OF_TYPE(long))
5201 TYPE_LENGTH (result_type) = sizeof (long);
5202 else
5203 /* Ranged type doesn't fit within known sizes. */
5204 return error_type (pp);
5205
5206 TYPE_LENGTH (result_type) = TYPE_LENGTH (TYPE_TARGET_TYPE (result_type));
5207 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
5208 TYPE_NFIELDS (result_type) = 2;
5209 TYPE_FIELDS (result_type) =
5210 (struct field *) obstack_alloc (symbol_obstack,
5211 2 * sizeof (struct field));
5212 bzero (TYPE_FIELDS (result_type), 2 * sizeof (struct field));
5213 TYPE_FIELD_BITPOS (result_type, 0) = n2;
5214 TYPE_FIELD_BITPOS (result_type, 1) = n3;
5215
5216 return result_type;
5217}
5218
5219/* Read a number from the string pointed to by *PP.
5220 The value of *PP is advanced over the number.
5221 If END is nonzero, the character that ends the
5222 number must match END, or an error happens;
5223 and that character is skipped if it does match.
5224 If END is zero, *PP is left pointing to that character. */
5225
5226static long
5227read_number (pp, end)
5228 char **pp;
5229 int end;
5230{
5231 register char *p = *pp;
5232 register long n = 0;
5233 register int c;
5234 int sign = 1;
5235
5236 /* Handle an optional leading minus sign. */
5237
5238 if (*p == '-')
5239 {
5240 sign = -1;
5241 p++;
5242 }
5243
5244 /* Read the digits, as far as they go. */
5245
5246 while ((c = *p++) >= '0' && c <= '9')
5247 {
5248 n *= 10;
5249 n += c - '0';
5250 }
5251 if (end)
5252 {
5253 if (c && c != end)
5254 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
5255 }
5256 else
5257 --p;
5258
5259 *pp = p;
5260 return n * sign;
5261}
5262
5263/* Read in an argument list. This is a list of types, separated by commas
5264 and terminated with END. Return the list of types read in, or (struct type
5265 **)-1 if there is an error. */
5266static struct type **
5267read_args (pp, end)
5268 char **pp;
5269 int end;
5270{
5271 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
5272 int n = 0;
5273
5274 while (**pp != end)
5275 {
5276 if (**pp != ',')
5277 /* Invalid argument list: no ','. */
5278 return (struct type **)-1;
5279 *pp += 1;
5280
5281 /* Check for and handle cretinous dbx symbol name continuation! */
5282 if (**pp == '\\')
5283 *pp = next_symbol_text ();
5284
5285 types[n++] = read_type (pp);
5286 }
5287 *pp += 1; /* get past `end' (the ':' character) */
5288
5289 if (n == 1)
5290 {
5291 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
5292 }
5293 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
5294 {
5295 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
5296 bzero (rval + n, sizeof (struct type *));
5297 }
5298 else
5299 {
5300 rval = (struct type **) xmalloc (n * sizeof (struct type *));
5301 }
5302 bcopy (types, rval, n * sizeof (struct type *));
5303 return rval;
5304}
5305\f
5306/* Copy a pending list, used to record the contents of a common
5307 block for later fixup. */
5308static struct pending *
5309copy_pending (beg, begi, end)
5310 struct pending *beg, *end;
5311 int begi;
5312{
5313 struct pending *new = 0;
5314 struct pending *next;
5315
5316 for (next = beg; next != 0 && (next != end || begi < end->nsyms);
5317 next = next->next, begi = 0)
5318 {
5319 register int j;
5320 for (j = begi; j < next->nsyms; j++)
5321 add_symbol_to_list (next->symbol[j], &new);
5322 }
5323 return new;
5324}
5325
5326/* Add a common block's start address to the offset of each symbol
5327 declared to be in it (by being between a BCOMM/ECOMM pair that uses
5328 the common block name). */
5329
5330static void
5331fix_common_block (sym, valu)
5332 struct symbol *sym;
5333 int valu;
5334{
5335 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
5336 for ( ; next; next = next->next)
5337 {
5338 register int j;
5339 for (j = next->nsyms - 1; j >= 0; j--)
5340 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
5341 }
5342}
5343\f
5344/* Register our willingness to decode symbols for SunOS and a.out and
5345 b.out files handled by BFD... */
5346static struct sym_fns sunos_sym_fns = {"sunOs", 6,
5347 dbx_new_init, dbx_symfile_init,
5348 dbx_symfile_read, dbx_symfile_discard};
5349
5350static struct sym_fns aout_sym_fns = {"a.out", 5,
5351 dbx_new_init, dbx_symfile_init,
5352 dbx_symfile_read, dbx_symfile_discard};
5353
5354static struct sym_fns bout_sym_fns = {"b.out", 5,
5355 dbx_new_init, dbx_symfile_init,
5356 dbx_symfile_read, dbx_symfile_discard};
5357
5358void
5359_initialize_dbxread ()
5360{
5361 add_symtab_fns(&sunos_sym_fns);
5362 add_symtab_fns(&aout_sym_fns);
5363 add_symtab_fns(&bout_sym_fns);
5364
5365 undef_types_allocated = 20;
5366 undef_types_length = 0;
5367 undef_types = (struct type **) xmalloc (undef_types_allocated *
5368 sizeof (struct type *));
5369}