]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
gas/testsuite/:
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
c906108c 2880* Breakpoint Menus:: Breakpoint menus
d4f3574e 2881* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2882* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2883@end menu
2884
6d2ebf8b 2885@node Set Breaks
79a6e687 2886@subsection Setting Breakpoints
c906108c 2887
5d161b24 2888@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2889@c consider in particular declaration with/without initialization.
2890@c
2891@c FIXME 2 is there stuff on this already? break at fun start, already init?
2892
2893@kindex break
41afff9a
EZ
2894@kindex b @r{(@code{break})}
2895@vindex $bpnum@r{, convenience variable}
c906108c
SS
2896@cindex latest breakpoint
2897Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2898@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2899number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2900Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2901convenience variables.
2902
c906108c 2903@table @code
2a25a5ba
EZ
2904@item break @var{location}
2905Set a breakpoint at the given @var{location}, which can specify a
2906function name, a line number, or an address of an instruction.
2907(@xref{Specify Location}, for a list of all the possible ways to
2908specify a @var{location}.) The breakpoint will stop your program just
2909before it executes any of the code in the specified @var{location}.
2910
c906108c 2911When using source languages that permit overloading of symbols, such as
2a25a5ba 2912C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2913@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
fcda367b 3075It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3076in your program. Examples of this situation are:
3077
3078@itemize @bullet
3079
3080@item
3081For a C@t{++} constructor, the @value{NGCC} compiler generates several
3082instances of the function body, used in different cases.
3083
3084@item
3085For a C@t{++} template function, a given line in the function can
3086correspond to any number of instantiations.
3087
3088@item
3089For an inlined function, a given source line can correspond to
3090several places where that function is inlined.
3091
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
3095the relevant locations.
3096
3b784c4f
EZ
3097A breakpoint with multiple locations is displayed in the breakpoint
3098table using several rows---one header row, followed by one row for
3099each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3100address column. The rows for individual locations contain the actual
3101addresses for locations, and show the functions to which those
3102locations belong. The number column for a location is of the form
fe6fbf8b
VP
3103@var{breakpoint-number}.@var{location-number}.
3104
3105For example:
3b784c4f 3106
fe6fbf8b
VP
3107@smallexample
3108Num Type Disp Enb Address What
31091 breakpoint keep y <MULTIPLE>
3110 stop only if i==1
3111 breakpoint already hit 1 time
31121.1 y 0x080486a2 in void foo<int>() at t.cc:8
31131.2 y 0x080486ca in void foo<double>() at t.cc:8
3114@end smallexample
3115
3116Each location can be individually enabled or disabled by passing
3117@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3118@code{enable} and @code{disable} commands. Note that you cannot
3119delete the individual locations from the list, you can only delete the
16bfc218 3120entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3121the @kbd{delete @var{num}} command, where @var{num} is the number of
3122the parent breakpoint, 1 in the above example). Disabling or enabling
3123the parent breakpoint (@pxref{Disabling}) affects all of the locations
3124that belong to that breakpoint.
fe6fbf8b 3125
2650777c 3126@cindex pending breakpoints
fe6fbf8b 3127It's quite common to have a breakpoint inside a shared library.
3b784c4f 3128Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3129and possibly repeatedly, as the program is executed. To support
3130this use case, @value{GDBN} updates breakpoint locations whenever
3131any shared library is loaded or unloaded. Typically, you would
fcda367b 3132set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3133debugging session, when the library is not loaded, and when the
3134symbols from the library are not available. When you try to set
3135breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3136a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3137is not yet resolved.
3138
3139After the program is run, whenever a new shared library is loaded,
3140@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3141shared library contains the symbol or line referred to by some
3142pending breakpoint, that breakpoint is resolved and becomes an
3143ordinary breakpoint. When a library is unloaded, all breakpoints
3144that refer to its symbols or source lines become pending again.
3145
3146This logic works for breakpoints with multiple locations, too. For
3147example, if you have a breakpoint in a C@t{++} template function, and
3148a newly loaded shared library has an instantiation of that template,
3149a new location is added to the list of locations for the breakpoint.
3150
3151Except for having unresolved address, pending breakpoints do not
3152differ from regular breakpoints. You can set conditions or commands,
3153enable and disable them and perform other breakpoint operations.
3154
3155@value{GDBN} provides some additional commands for controlling what
3156happens when the @samp{break} command cannot resolve breakpoint
3157address specification to an address:
dd79a6cf
JJ
3158
3159@kindex set breakpoint pending
3160@kindex show breakpoint pending
3161@table @code
3162@item set breakpoint pending auto
3163This is the default behavior. When @value{GDBN} cannot find the breakpoint
3164location, it queries you whether a pending breakpoint should be created.
3165
3166@item set breakpoint pending on
3167This indicates that an unrecognized breakpoint location should automatically
3168result in a pending breakpoint being created.
3169
3170@item set breakpoint pending off
3171This indicates that pending breakpoints are not to be created. Any
3172unrecognized breakpoint location results in an error. This setting does
3173not affect any pending breakpoints previously created.
3174
3175@item show breakpoint pending
3176Show the current behavior setting for creating pending breakpoints.
3177@end table
2650777c 3178
fe6fbf8b
VP
3179The settings above only affect the @code{break} command and its
3180variants. Once breakpoint is set, it will be automatically updated
3181as shared libraries are loaded and unloaded.
2650777c 3182
765dc015
VP
3183@cindex automatic hardware breakpoints
3184For some targets, @value{GDBN} can automatically decide if hardware or
3185software breakpoints should be used, depending on whether the
3186breakpoint address is read-only or read-write. This applies to
3187breakpoints set with the @code{break} command as well as to internal
3188breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3189breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3190breakpoints.
3191
3192You can control this automatic behaviour with the following commands::
3193
3194@kindex set breakpoint auto-hw
3195@kindex show breakpoint auto-hw
3196@table @code
3197@item set breakpoint auto-hw on
3198This is the default behavior. When @value{GDBN} sets a breakpoint, it
3199will try to use the target memory map to decide if software or hardware
3200breakpoint must be used.
3201
3202@item set breakpoint auto-hw off
3203This indicates @value{GDBN} should not automatically select breakpoint
3204type. If the target provides a memory map, @value{GDBN} will warn when
3205trying to set software breakpoint at a read-only address.
3206@end table
3207
3208
c906108c
SS
3209@cindex negative breakpoint numbers
3210@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3211@value{GDBN} itself sometimes sets breakpoints in your program for
3212special purposes, such as proper handling of @code{longjmp} (in C
3213programs). These internal breakpoints are assigned negative numbers,
3214starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3215You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3216@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3217
3218
6d2ebf8b 3219@node Set Watchpoints
79a6e687 3220@subsection Setting Watchpoints
c906108c
SS
3221
3222@cindex setting watchpoints
c906108c
SS
3223You can use a watchpoint to stop execution whenever the value of an
3224expression changes, without having to predict a particular place where
fd60e0df
EZ
3225this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3226The expression may be as simple as the value of a single variable, or
3227as complex as many variables combined by operators. Examples include:
3228
3229@itemize @bullet
3230@item
3231A reference to the value of a single variable.
3232
3233@item
3234An address cast to an appropriate data type. For example,
3235@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3236address (assuming an @code{int} occupies 4 bytes).
3237
3238@item
3239An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3240expression can use any operators valid in the program's native
3241language (@pxref{Languages}).
3242@end itemize
c906108c 3243
fa4727a6
DJ
3244You can set a watchpoint on an expression even if the expression can
3245not be evaluated yet. For instance, you can set a watchpoint on
3246@samp{*global_ptr} before @samp{global_ptr} is initialized.
3247@value{GDBN} will stop when your program sets @samp{global_ptr} and
3248the expression produces a valid value. If the expression becomes
3249valid in some other way than changing a variable (e.g.@: if the memory
3250pointed to by @samp{*global_ptr} becomes readable as the result of a
3251@code{malloc} call), @value{GDBN} may not stop until the next time
3252the expression changes.
3253
82f2d802
EZ
3254@cindex software watchpoints
3255@cindex hardware watchpoints
c906108c 3256Depending on your system, watchpoints may be implemented in software or
2df3850c 3257hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3258program and testing the variable's value each time, which is hundreds of
3259times slower than normal execution. (But this may still be worth it, to
3260catch errors where you have no clue what part of your program is the
3261culprit.)
3262
37e4754d 3263On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3264x86-based targets, @value{GDBN} includes support for hardware
3265watchpoints, which do not slow down the running of your program.
c906108c
SS
3266
3267@table @code
3268@kindex watch
d8b2a693 3269@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3270Set a watchpoint for an expression. @value{GDBN} will break when the
3271expression @var{expr} is written into by the program and its value
3272changes. The simplest (and the most popular) use of this command is
3273to watch the value of a single variable:
3274
3275@smallexample
3276(@value{GDBP}) watch foo
3277@end smallexample
c906108c 3278
d8b2a693
JB
3279If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3280clause, @value{GDBN} breaks only when the thread identified by
3281@var{threadnum} changes the value of @var{expr}. If any other threads
3282change the value of @var{expr}, @value{GDBN} will not break. Note
3283that watchpoints restricted to a single thread in this way only work
3284with Hardware Watchpoints.
3285
c906108c 3286@kindex rwatch
d8b2a693 3287@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3288Set a watchpoint that will break when the value of @var{expr} is read
3289by the program.
c906108c
SS
3290
3291@kindex awatch
d8b2a693 3292@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3293Set a watchpoint that will break when @var{expr} is either read from
3294or written into by the program.
c906108c 3295
45ac1734 3296@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3297@item info watchpoints
3298This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3299it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3300@end table
3301
3302@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3303watchpoints execute very quickly, and the debugger reports a change in
3304value at the exact instruction where the change occurs. If @value{GDBN}
3305cannot set a hardware watchpoint, it sets a software watchpoint, which
3306executes more slowly and reports the change in value at the next
82f2d802
EZ
3307@emph{statement}, not the instruction, after the change occurs.
3308
82f2d802
EZ
3309@cindex use only software watchpoints
3310You can force @value{GDBN} to use only software watchpoints with the
3311@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3312zero, @value{GDBN} will never try to use hardware watchpoints, even if
3313the underlying system supports them. (Note that hardware-assisted
3314watchpoints that were set @emph{before} setting
3315@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3316mechanism of watching expression values.)
c906108c 3317
9c16f35a
EZ
3318@table @code
3319@item set can-use-hw-watchpoints
3320@kindex set can-use-hw-watchpoints
3321Set whether or not to use hardware watchpoints.
3322
3323@item show can-use-hw-watchpoints
3324@kindex show can-use-hw-watchpoints
3325Show the current mode of using hardware watchpoints.
3326@end table
3327
3328For remote targets, you can restrict the number of hardware
3329watchpoints @value{GDBN} will use, see @ref{set remote
3330hardware-breakpoint-limit}.
3331
c906108c
SS
3332When you issue the @code{watch} command, @value{GDBN} reports
3333
474c8240 3334@smallexample
c906108c 3335Hardware watchpoint @var{num}: @var{expr}
474c8240 3336@end smallexample
c906108c
SS
3337
3338@noindent
3339if it was able to set a hardware watchpoint.
3340
7be570e7
JM
3341Currently, the @code{awatch} and @code{rwatch} commands can only set
3342hardware watchpoints, because accesses to data that don't change the
3343value of the watched expression cannot be detected without examining
3344every instruction as it is being executed, and @value{GDBN} does not do
3345that currently. If @value{GDBN} finds that it is unable to set a
3346hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3347will print a message like this:
3348
3349@smallexample
3350Expression cannot be implemented with read/access watchpoint.
3351@end smallexample
3352
3353Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3354data type of the watched expression is wider than what a hardware
3355watchpoint on the target machine can handle. For example, some systems
3356can only watch regions that are up to 4 bytes wide; on such systems you
3357cannot set hardware watchpoints for an expression that yields a
3358double-precision floating-point number (which is typically 8 bytes
3359wide). As a work-around, it might be possible to break the large region
3360into a series of smaller ones and watch them with separate watchpoints.
3361
3362If you set too many hardware watchpoints, @value{GDBN} might be unable
3363to insert all of them when you resume the execution of your program.
3364Since the precise number of active watchpoints is unknown until such
3365time as the program is about to be resumed, @value{GDBN} might not be
3366able to warn you about this when you set the watchpoints, and the
3367warning will be printed only when the program is resumed:
3368
3369@smallexample
3370Hardware watchpoint @var{num}: Could not insert watchpoint
3371@end smallexample
3372
3373@noindent
3374If this happens, delete or disable some of the watchpoints.
3375
fd60e0df
EZ
3376Watching complex expressions that reference many variables can also
3377exhaust the resources available for hardware-assisted watchpoints.
3378That's because @value{GDBN} needs to watch every variable in the
3379expression with separately allocated resources.
3380
c906108c 3381If you call a function interactively using @code{print} or @code{call},
2df3850c 3382any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3383kind of breakpoint or the call completes.
3384
7be570e7
JM
3385@value{GDBN} automatically deletes watchpoints that watch local
3386(automatic) variables, or expressions that involve such variables, when
3387they go out of scope, that is, when the execution leaves the block in
3388which these variables were defined. In particular, when the program
3389being debugged terminates, @emph{all} local variables go out of scope,
3390and so only watchpoints that watch global variables remain set. If you
3391rerun the program, you will need to set all such watchpoints again. One
3392way of doing that would be to set a code breakpoint at the entry to the
3393@code{main} function and when it breaks, set all the watchpoints.
3394
c906108c
SS
3395@cindex watchpoints and threads
3396@cindex threads and watchpoints
d983da9c
DJ
3397In multi-threaded programs, watchpoints will detect changes to the
3398watched expression from every thread.
3399
3400@quotation
3401@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3402have only limited usefulness. If @value{GDBN} creates a software
3403watchpoint, it can only watch the value of an expression @emph{in a
3404single thread}. If you are confident that the expression can only
3405change due to the current thread's activity (and if you are also
3406confident that no other thread can become current), then you can use
3407software watchpoints as usual. However, @value{GDBN} may not notice
3408when a non-current thread's activity changes the expression. (Hardware
3409watchpoints, in contrast, watch an expression in all threads.)
c906108c 3410@end quotation
c906108c 3411
501eef12
AC
3412@xref{set remote hardware-watchpoint-limit}.
3413
6d2ebf8b 3414@node Set Catchpoints
79a6e687 3415@subsection Setting Catchpoints
d4f3574e 3416@cindex catchpoints, setting
c906108c
SS
3417@cindex exception handlers
3418@cindex event handling
3419
3420You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3421kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3422shared library. Use the @code{catch} command to set a catchpoint.
3423
3424@table @code
3425@kindex catch
3426@item catch @var{event}
3427Stop when @var{event} occurs. @var{event} can be any of the following:
3428@table @code
3429@item throw
4644b6e3 3430@cindex stop on C@t{++} exceptions
b37052ae 3431The throwing of a C@t{++} exception.
c906108c
SS
3432
3433@item catch
b37052ae 3434The catching of a C@t{++} exception.
c906108c 3435
8936fcda
JB
3436@item exception
3437@cindex Ada exception catching
3438@cindex catch Ada exceptions
3439An Ada exception being raised. If an exception name is specified
3440at the end of the command (eg @code{catch exception Program_Error}),
3441the debugger will stop only when this specific exception is raised.
3442Otherwise, the debugger stops execution when any Ada exception is raised.
3443
3444@item exception unhandled
3445An exception that was raised but is not handled by the program.
3446
3447@item assert
3448A failed Ada assertion.
3449
c906108c 3450@item exec
4644b6e3 3451@cindex break on fork/exec
5ee187d7
DJ
3452A call to @code{exec}. This is currently only available for HP-UX
3453and @sc{gnu}/Linux.
c906108c
SS
3454
3455@item fork
5ee187d7
DJ
3456A call to @code{fork}. This is currently only available for HP-UX
3457and @sc{gnu}/Linux.
c906108c
SS
3458
3459@item vfork
5ee187d7
DJ
3460A call to @code{vfork}. This is currently only available for HP-UX
3461and @sc{gnu}/Linux.
c906108c
SS
3462
3463@item load
3464@itemx load @var{libname}
4644b6e3 3465@cindex break on load/unload of shared library
c906108c
SS
3466The dynamic loading of any shared library, or the loading of the library
3467@var{libname}. This is currently only available for HP-UX.
3468
3469@item unload
3470@itemx unload @var{libname}
c906108c
SS
3471The unloading of any dynamically loaded shared library, or the unloading
3472of the library @var{libname}. This is currently only available for HP-UX.
3473@end table
3474
3475@item tcatch @var{event}
3476Set a catchpoint that is enabled only for one stop. The catchpoint is
3477automatically deleted after the first time the event is caught.
3478
3479@end table
3480
3481Use the @code{info break} command to list the current catchpoints.
3482
b37052ae 3483There are currently some limitations to C@t{++} exception handling
c906108c
SS
3484(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3485
3486@itemize @bullet
3487@item
3488If you call a function interactively, @value{GDBN} normally returns
3489control to you when the function has finished executing. If the call
3490raises an exception, however, the call may bypass the mechanism that
3491returns control to you and cause your program either to abort or to
3492simply continue running until it hits a breakpoint, catches a signal
3493that @value{GDBN} is listening for, or exits. This is the case even if
3494you set a catchpoint for the exception; catchpoints on exceptions are
3495disabled within interactive calls.
3496
3497@item
3498You cannot raise an exception interactively.
3499
3500@item
3501You cannot install an exception handler interactively.
3502@end itemize
3503
3504@cindex raise exceptions
3505Sometimes @code{catch} is not the best way to debug exception handling:
3506if you need to know exactly where an exception is raised, it is better to
3507stop @emph{before} the exception handler is called, since that way you
3508can see the stack before any unwinding takes place. If you set a
3509breakpoint in an exception handler instead, it may not be easy to find
3510out where the exception was raised.
3511
3512To stop just before an exception handler is called, you need some
b37052ae 3513knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3514raised by calling a library function named @code{__raise_exception}
3515which has the following ANSI C interface:
3516
474c8240 3517@smallexample
c906108c 3518 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3519 @var{id} is the exception identifier. */
3520 void __raise_exception (void **addr, void *id);
474c8240 3521@end smallexample
c906108c
SS
3522
3523@noindent
3524To make the debugger catch all exceptions before any stack
3525unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3526(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3527
79a6e687 3528With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3529that depends on the value of @var{id}, you can stop your program when
3530a specific exception is raised. You can use multiple conditional
3531breakpoints to stop your program when any of a number of exceptions are
3532raised.
3533
3534
6d2ebf8b 3535@node Delete Breaks
79a6e687 3536@subsection Deleting Breakpoints
c906108c
SS
3537
3538@cindex clearing breakpoints, watchpoints, catchpoints
3539@cindex deleting breakpoints, watchpoints, catchpoints
3540It is often necessary to eliminate a breakpoint, watchpoint, or
3541catchpoint once it has done its job and you no longer want your program
3542to stop there. This is called @dfn{deleting} the breakpoint. A
3543breakpoint that has been deleted no longer exists; it is forgotten.
3544
3545With the @code{clear} command you can delete breakpoints according to
3546where they are in your program. With the @code{delete} command you can
3547delete individual breakpoints, watchpoints, or catchpoints by specifying
3548their breakpoint numbers.
3549
3550It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3551automatically ignores breakpoints on the first instruction to be executed
3552when you continue execution without changing the execution address.
3553
3554@table @code
3555@kindex clear
3556@item clear
3557Delete any breakpoints at the next instruction to be executed in the
79a6e687 3558selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3559the innermost frame is selected, this is a good way to delete a
3560breakpoint where your program just stopped.
3561
2a25a5ba
EZ
3562@item clear @var{location}
3563Delete any breakpoints set at the specified @var{location}.
3564@xref{Specify Location}, for the various forms of @var{location}; the
3565most useful ones are listed below:
3566
3567@table @code
c906108c
SS
3568@item clear @var{function}
3569@itemx clear @var{filename}:@var{function}
09d4efe1 3570Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3571
3572@item clear @var{linenum}
3573@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3574Delete any breakpoints set at or within the code of the specified
3575@var{linenum} of the specified @var{filename}.
2a25a5ba 3576@end table
c906108c
SS
3577
3578@cindex delete breakpoints
3579@kindex delete
41afff9a 3580@kindex d @r{(@code{delete})}
c5394b80
JM
3581@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3582Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3583ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3584breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3585confirm off}). You can abbreviate this command as @code{d}.
3586@end table
3587
6d2ebf8b 3588@node Disabling
79a6e687 3589@subsection Disabling Breakpoints
c906108c 3590
4644b6e3 3591@cindex enable/disable a breakpoint
c906108c
SS
3592Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3593prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3594it had been deleted, but remembers the information on the breakpoint so
3595that you can @dfn{enable} it again later.
3596
3597You disable and enable breakpoints, watchpoints, and catchpoints with
3598the @code{enable} and @code{disable} commands, optionally specifying one
3599or more breakpoint numbers as arguments. Use @code{info break} or
3600@code{info watch} to print a list of breakpoints, watchpoints, and
3601catchpoints if you do not know which numbers to use.
3602
3b784c4f
EZ
3603Disabling and enabling a breakpoint that has multiple locations
3604affects all of its locations.
3605
c906108c
SS
3606A breakpoint, watchpoint, or catchpoint can have any of four different
3607states of enablement:
3608
3609@itemize @bullet
3610@item
3611Enabled. The breakpoint stops your program. A breakpoint set
3612with the @code{break} command starts out in this state.
3613@item
3614Disabled. The breakpoint has no effect on your program.
3615@item
3616Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3617disabled.
c906108c
SS
3618@item
3619Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3620immediately after it does so it is deleted permanently. A breakpoint
3621set with the @code{tbreak} command starts out in this state.
c906108c
SS
3622@end itemize
3623
3624You can use the following commands to enable or disable breakpoints,
3625watchpoints, and catchpoints:
3626
3627@table @code
c906108c 3628@kindex disable
41afff9a 3629@kindex dis @r{(@code{disable})}
c5394b80 3630@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3631Disable the specified breakpoints---or all breakpoints, if none are
3632listed. A disabled breakpoint has no effect but is not forgotten. All
3633options such as ignore-counts, conditions and commands are remembered in
3634case the breakpoint is enabled again later. You may abbreviate
3635@code{disable} as @code{dis}.
3636
c906108c 3637@kindex enable
c5394b80 3638@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3639Enable the specified breakpoints (or all defined breakpoints). They
3640become effective once again in stopping your program.
3641
c5394b80 3642@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3643Enable the specified breakpoints temporarily. @value{GDBN} disables any
3644of these breakpoints immediately after stopping your program.
3645
c5394b80 3646@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3647Enable the specified breakpoints to work once, then die. @value{GDBN}
3648deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3649Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3650@end table
3651
d4f3574e
SS
3652@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3653@c confusing: tbreak is also initially enabled.
c906108c 3654Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3655,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3656subsequently, they become disabled or enabled only when you use one of
3657the commands above. (The command @code{until} can set and delete a
3658breakpoint of its own, but it does not change the state of your other
3659breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3660Stepping}.)
c906108c 3661
6d2ebf8b 3662@node Conditions
79a6e687 3663@subsection Break Conditions
c906108c
SS
3664@cindex conditional breakpoints
3665@cindex breakpoint conditions
3666
3667@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3668@c in particular for a watchpoint?
c906108c
SS
3669The simplest sort of breakpoint breaks every time your program reaches a
3670specified place. You can also specify a @dfn{condition} for a
3671breakpoint. A condition is just a Boolean expression in your
3672programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3673a condition evaluates the expression each time your program reaches it,
3674and your program stops only if the condition is @emph{true}.
3675
3676This is the converse of using assertions for program validation; in that
3677situation, you want to stop when the assertion is violated---that is,
3678when the condition is false. In C, if you want to test an assertion expressed
3679by the condition @var{assert}, you should set the condition
3680@samp{! @var{assert}} on the appropriate breakpoint.
3681
3682Conditions are also accepted for watchpoints; you may not need them,
3683since a watchpoint is inspecting the value of an expression anyhow---but
3684it might be simpler, say, to just set a watchpoint on a variable name,
3685and specify a condition that tests whether the new value is an interesting
3686one.
3687
3688Break conditions can have side effects, and may even call functions in
3689your program. This can be useful, for example, to activate functions
3690that log program progress, or to use your own print functions to
3691format special data structures. The effects are completely predictable
3692unless there is another enabled breakpoint at the same address. (In
3693that case, @value{GDBN} might see the other breakpoint first and stop your
3694program without checking the condition of this one.) Note that
d4f3574e
SS
3695breakpoint commands are usually more convenient and flexible than break
3696conditions for the
c906108c 3697purpose of performing side effects when a breakpoint is reached
79a6e687 3698(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3699
3700Break conditions can be specified when a breakpoint is set, by using
3701@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3702Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3703with the @code{condition} command.
53a5351d 3704
c906108c
SS
3705You can also use the @code{if} keyword with the @code{watch} command.
3706The @code{catch} command does not recognize the @code{if} keyword;
3707@code{condition} is the only way to impose a further condition on a
3708catchpoint.
c906108c
SS
3709
3710@table @code
3711@kindex condition
3712@item condition @var{bnum} @var{expression}
3713Specify @var{expression} as the break condition for breakpoint,
3714watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3715breakpoint @var{bnum} stops your program only if the value of
3716@var{expression} is true (nonzero, in C). When you use
3717@code{condition}, @value{GDBN} checks @var{expression} immediately for
3718syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3719referents in the context of your breakpoint. If @var{expression} uses
3720symbols not referenced in the context of the breakpoint, @value{GDBN}
3721prints an error message:
3722
474c8240 3723@smallexample
d4f3574e 3724No symbol "foo" in current context.
474c8240 3725@end smallexample
d4f3574e
SS
3726
3727@noindent
c906108c
SS
3728@value{GDBN} does
3729not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3730command (or a command that sets a breakpoint with a condition, like
3731@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3732
3733@item condition @var{bnum}
3734Remove the condition from breakpoint number @var{bnum}. It becomes
3735an ordinary unconditional breakpoint.
3736@end table
3737
3738@cindex ignore count (of breakpoint)
3739A special case of a breakpoint condition is to stop only when the
3740breakpoint has been reached a certain number of times. This is so
3741useful that there is a special way to do it, using the @dfn{ignore
3742count} of the breakpoint. Every breakpoint has an ignore count, which
3743is an integer. Most of the time, the ignore count is zero, and
3744therefore has no effect. But if your program reaches a breakpoint whose
3745ignore count is positive, then instead of stopping, it just decrements
3746the ignore count by one and continues. As a result, if the ignore count
3747value is @var{n}, the breakpoint does not stop the next @var{n} times
3748your program reaches it.
3749
3750@table @code
3751@kindex ignore
3752@item ignore @var{bnum} @var{count}
3753Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3754The next @var{count} times the breakpoint is reached, your program's
3755execution does not stop; other than to decrement the ignore count, @value{GDBN}
3756takes no action.
3757
3758To make the breakpoint stop the next time it is reached, specify
3759a count of zero.
3760
3761When you use @code{continue} to resume execution of your program from a
3762breakpoint, you can specify an ignore count directly as an argument to
3763@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3764Stepping,,Continuing and Stepping}.
c906108c
SS
3765
3766If a breakpoint has a positive ignore count and a condition, the
3767condition is not checked. Once the ignore count reaches zero,
3768@value{GDBN} resumes checking the condition.
3769
3770You could achieve the effect of the ignore count with a condition such
3771as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3772is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3773Variables}.
c906108c
SS
3774@end table
3775
3776Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3777
3778
6d2ebf8b 3779@node Break Commands
79a6e687 3780@subsection Breakpoint Command Lists
c906108c
SS
3781
3782@cindex breakpoint commands
3783You can give any breakpoint (or watchpoint or catchpoint) a series of
3784commands to execute when your program stops due to that breakpoint. For
3785example, you might want to print the values of certain expressions, or
3786enable other breakpoints.
3787
3788@table @code
3789@kindex commands
ca91424e 3790@kindex end@r{ (breakpoint commands)}
c906108c
SS
3791@item commands @r{[}@var{bnum}@r{]}
3792@itemx @dots{} @var{command-list} @dots{}
3793@itemx end
3794Specify a list of commands for breakpoint number @var{bnum}. The commands
3795themselves appear on the following lines. Type a line containing just
3796@code{end} to terminate the commands.
3797
3798To remove all commands from a breakpoint, type @code{commands} and
3799follow it immediately with @code{end}; that is, give no commands.
3800
3801With no @var{bnum} argument, @code{commands} refers to the last
3802breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3803recently encountered).
3804@end table
3805
3806Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3807disabled within a @var{command-list}.
3808
3809You can use breakpoint commands to start your program up again. Simply
3810use the @code{continue} command, or @code{step}, or any other command
3811that resumes execution.
3812
3813Any other commands in the command list, after a command that resumes
3814execution, are ignored. This is because any time you resume execution
3815(even with a simple @code{next} or @code{step}), you may encounter
3816another breakpoint---which could have its own command list, leading to
3817ambiguities about which list to execute.
3818
3819@kindex silent
3820If the first command you specify in a command list is @code{silent}, the
3821usual message about stopping at a breakpoint is not printed. This may
3822be desirable for breakpoints that are to print a specific message and
3823then continue. If none of the remaining commands print anything, you
3824see no sign that the breakpoint was reached. @code{silent} is
3825meaningful only at the beginning of a breakpoint command list.
3826
3827The commands @code{echo}, @code{output}, and @code{printf} allow you to
3828print precisely controlled output, and are often useful in silent
79a6e687 3829breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3830
3831For example, here is how you could use breakpoint commands to print the
3832value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3833
474c8240 3834@smallexample
c906108c
SS
3835break foo if x>0
3836commands
3837silent
3838printf "x is %d\n",x
3839cont
3840end
474c8240 3841@end smallexample
c906108c
SS
3842
3843One application for breakpoint commands is to compensate for one bug so
3844you can test for another. Put a breakpoint just after the erroneous line
3845of code, give it a condition to detect the case in which something
3846erroneous has been done, and give it commands to assign correct values
3847to any variables that need them. End with the @code{continue} command
3848so that your program does not stop, and start with the @code{silent}
3849command so that no output is produced. Here is an example:
3850
474c8240 3851@smallexample
c906108c
SS
3852break 403
3853commands
3854silent
3855set x = y + 4
3856cont
3857end
474c8240 3858@end smallexample
c906108c 3859
6d2ebf8b 3860@node Breakpoint Menus
79a6e687 3861@subsection Breakpoint Menus
c906108c
SS
3862@cindex overloading
3863@cindex symbol overloading
3864
b383017d 3865Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3866single function name
c906108c
SS
3867to be defined several times, for application in different contexts.
3868This is called @dfn{overloading}. When a function name is overloaded,
3869@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3870a breakpoint. You can use explicit signature of the function, as in
3871@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3872particular version of the function you want. Otherwise, @value{GDBN} offers
3873you a menu of numbered choices for different possible breakpoints, and
3874waits for your selection with the prompt @samp{>}. The first two
3875options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3876sets a breakpoint at each definition of @var{function}, and typing
3877@kbd{0} aborts the @code{break} command without setting any new
3878breakpoints.
3879
3880For example, the following session excerpt shows an attempt to set a
3881breakpoint at the overloaded symbol @code{String::after}.
3882We choose three particular definitions of that function name:
3883
3884@c FIXME! This is likely to change to show arg type lists, at least
3885@smallexample
3886@group
3887(@value{GDBP}) b String::after
3888[0] cancel
3889[1] all
3890[2] file:String.cc; line number:867
3891[3] file:String.cc; line number:860
3892[4] file:String.cc; line number:875
3893[5] file:String.cc; line number:853
3894[6] file:String.cc; line number:846
3895[7] file:String.cc; line number:735
3896> 2 4 6
3897Breakpoint 1 at 0xb26c: file String.cc, line 867.
3898Breakpoint 2 at 0xb344: file String.cc, line 875.
3899Breakpoint 3 at 0xafcc: file String.cc, line 846.
3900Multiple breakpoints were set.
3901Use the "delete" command to delete unwanted
3902 breakpoints.
3903(@value{GDBP})
3904@end group
3905@end smallexample
c906108c
SS
3906
3907@c @ifclear BARETARGET
6d2ebf8b 3908@node Error in Breakpoints
d4f3574e 3909@subsection ``Cannot insert breakpoints''
c906108c
SS
3910@c
3911@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3912@c
d4f3574e
SS
3913Under some operating systems, breakpoints cannot be used in a program if
3914any other process is running that program. In this situation,
5d161b24 3915attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3916@value{GDBN} to print an error message:
3917
474c8240 3918@smallexample
d4f3574e
SS
3919Cannot insert breakpoints.
3920The same program may be running in another process.
474c8240 3921@end smallexample
d4f3574e
SS
3922
3923When this happens, you have three ways to proceed:
3924
3925@enumerate
3926@item
3927Remove or disable the breakpoints, then continue.
3928
3929@item
5d161b24 3930Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3931name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3932that @value{GDBN} should run your program under that name.
d4f3574e
SS
3933Then start your program again.
3934
3935@item
3936Relink your program so that the text segment is nonsharable, using the
3937linker option @samp{-N}. The operating system limitation may not apply
3938to nonsharable executables.
3939@end enumerate
c906108c
SS
3940@c @end ifclear
3941
d4f3574e
SS
3942A similar message can be printed if you request too many active
3943hardware-assisted breakpoints and watchpoints:
3944
3945@c FIXME: the precise wording of this message may change; the relevant
3946@c source change is not committed yet (Sep 3, 1999).
3947@smallexample
3948Stopped; cannot insert breakpoints.
3949You may have requested too many hardware breakpoints and watchpoints.
3950@end smallexample
3951
3952@noindent
3953This message is printed when you attempt to resume the program, since
3954only then @value{GDBN} knows exactly how many hardware breakpoints and
3955watchpoints it needs to insert.
3956
3957When this message is printed, you need to disable or remove some of the
3958hardware-assisted breakpoints and watchpoints, and then continue.
3959
79a6e687 3960@node Breakpoint-related Warnings
1485d690
KB
3961@subsection ``Breakpoint address adjusted...''
3962@cindex breakpoint address adjusted
3963
3964Some processor architectures place constraints on the addresses at
3965which breakpoints may be placed. For architectures thus constrained,
3966@value{GDBN} will attempt to adjust the breakpoint's address to comply
3967with the constraints dictated by the architecture.
3968
3969One example of such an architecture is the Fujitsu FR-V. The FR-V is
3970a VLIW architecture in which a number of RISC-like instructions may be
3971bundled together for parallel execution. The FR-V architecture
3972constrains the location of a breakpoint instruction within such a
3973bundle to the instruction with the lowest address. @value{GDBN}
3974honors this constraint by adjusting a breakpoint's address to the
3975first in the bundle.
3976
3977It is not uncommon for optimized code to have bundles which contain
3978instructions from different source statements, thus it may happen that
3979a breakpoint's address will be adjusted from one source statement to
3980another. Since this adjustment may significantly alter @value{GDBN}'s
3981breakpoint related behavior from what the user expects, a warning is
3982printed when the breakpoint is first set and also when the breakpoint
3983is hit.
3984
3985A warning like the one below is printed when setting a breakpoint
3986that's been subject to address adjustment:
3987
3988@smallexample
3989warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3990@end smallexample
3991
3992Such warnings are printed both for user settable and @value{GDBN}'s
3993internal breakpoints. If you see one of these warnings, you should
3994verify that a breakpoint set at the adjusted address will have the
3995desired affect. If not, the breakpoint in question may be removed and
b383017d 3996other breakpoints may be set which will have the desired behavior.
1485d690
KB
3997E.g., it may be sufficient to place the breakpoint at a later
3998instruction. A conditional breakpoint may also be useful in some
3999cases to prevent the breakpoint from triggering too often.
4000
4001@value{GDBN} will also issue a warning when stopping at one of these
4002adjusted breakpoints:
4003
4004@smallexample
4005warning: Breakpoint 1 address previously adjusted from 0x00010414
4006to 0x00010410.
4007@end smallexample
4008
4009When this warning is encountered, it may be too late to take remedial
4010action except in cases where the breakpoint is hit earlier or more
4011frequently than expected.
d4f3574e 4012
6d2ebf8b 4013@node Continuing and Stepping
79a6e687 4014@section Continuing and Stepping
c906108c
SS
4015
4016@cindex stepping
4017@cindex continuing
4018@cindex resuming execution
4019@dfn{Continuing} means resuming program execution until your program
4020completes normally. In contrast, @dfn{stepping} means executing just
4021one more ``step'' of your program, where ``step'' may mean either one
4022line of source code, or one machine instruction (depending on what
7a292a7a
SS
4023particular command you use). Either when continuing or when stepping,
4024your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4025it stops due to a signal, you may want to use @code{handle}, or use
4026@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4027
4028@table @code
4029@kindex continue
41afff9a
EZ
4030@kindex c @r{(@code{continue})}
4031@kindex fg @r{(resume foreground execution)}
c906108c
SS
4032@item continue @r{[}@var{ignore-count}@r{]}
4033@itemx c @r{[}@var{ignore-count}@r{]}
4034@itemx fg @r{[}@var{ignore-count}@r{]}
4035Resume program execution, at the address where your program last stopped;
4036any breakpoints set at that address are bypassed. The optional argument
4037@var{ignore-count} allows you to specify a further number of times to
4038ignore a breakpoint at this location; its effect is like that of
79a6e687 4039@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4040
4041The argument @var{ignore-count} is meaningful only when your program
4042stopped due to a breakpoint. At other times, the argument to
4043@code{continue} is ignored.
4044
d4f3574e
SS
4045The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4046debugged program is deemed to be the foreground program) are provided
4047purely for convenience, and have exactly the same behavior as
4048@code{continue}.
c906108c
SS
4049@end table
4050
4051To resume execution at a different place, you can use @code{return}
79a6e687 4052(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4053calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4054Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4055
4056A typical technique for using stepping is to set a breakpoint
79a6e687 4057(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4058beginning of the function or the section of your program where a problem
4059is believed to lie, run your program until it stops at that breakpoint,
4060and then step through the suspect area, examining the variables that are
4061interesting, until you see the problem happen.
4062
4063@table @code
4064@kindex step
41afff9a 4065@kindex s @r{(@code{step})}
c906108c
SS
4066@item step
4067Continue running your program until control reaches a different source
4068line, then stop it and return control to @value{GDBN}. This command is
4069abbreviated @code{s}.
4070
4071@quotation
4072@c "without debugging information" is imprecise; actually "without line
4073@c numbers in the debugging information". (gcc -g1 has debugging info but
4074@c not line numbers). But it seems complex to try to make that
4075@c distinction here.
4076@emph{Warning:} If you use the @code{step} command while control is
4077within a function that was compiled without debugging information,
4078execution proceeds until control reaches a function that does have
4079debugging information. Likewise, it will not step into a function which
4080is compiled without debugging information. To step through functions
4081without debugging information, use the @code{stepi} command, described
4082below.
4083@end quotation
4084
4a92d011
EZ
4085The @code{step} command only stops at the first instruction of a source
4086line. This prevents the multiple stops that could otherwise occur in
4087@code{switch} statements, @code{for} loops, etc. @code{step} continues
4088to stop if a function that has debugging information is called within
4089the line. In other words, @code{step} @emph{steps inside} any functions
4090called within the line.
c906108c 4091
d4f3574e
SS
4092Also, the @code{step} command only enters a function if there is line
4093number information for the function. Otherwise it acts like the
5d161b24 4094@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4095on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4096was any debugging information about the routine.
c906108c
SS
4097
4098@item step @var{count}
4099Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4100breakpoint is reached, or a signal not related to stepping occurs before
4101@var{count} steps, stepping stops right away.
c906108c
SS
4102
4103@kindex next
41afff9a 4104@kindex n @r{(@code{next})}
c906108c
SS
4105@item next @r{[}@var{count}@r{]}
4106Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4107This is similar to @code{step}, but function calls that appear within
4108the line of code are executed without stopping. Execution stops when
4109control reaches a different line of code at the original stack level
4110that was executing when you gave the @code{next} command. This command
4111is abbreviated @code{n}.
c906108c
SS
4112
4113An argument @var{count} is a repeat count, as for @code{step}.
4114
4115
4116@c FIX ME!! Do we delete this, or is there a way it fits in with
4117@c the following paragraph? --- Vctoria
4118@c
4119@c @code{next} within a function that lacks debugging information acts like
4120@c @code{step}, but any function calls appearing within the code of the
4121@c function are executed without stopping.
4122
d4f3574e
SS
4123The @code{next} command only stops at the first instruction of a
4124source line. This prevents multiple stops that could otherwise occur in
4a92d011 4125@code{switch} statements, @code{for} loops, etc.
c906108c 4126
b90a5f51
CF
4127@kindex set step-mode
4128@item set step-mode
4129@cindex functions without line info, and stepping
4130@cindex stepping into functions with no line info
4131@itemx set step-mode on
4a92d011 4132The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4133stop at the first instruction of a function which contains no debug line
4134information rather than stepping over it.
4135
4a92d011
EZ
4136This is useful in cases where you may be interested in inspecting the
4137machine instructions of a function which has no symbolic info and do not
4138want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4139
4140@item set step-mode off
4a92d011 4141Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4142debug information. This is the default.
4143
9c16f35a
EZ
4144@item show step-mode
4145Show whether @value{GDBN} will stop in or step over functions without
4146source line debug information.
4147
c906108c
SS
4148@kindex finish
4149@item finish
4150Continue running until just after function in the selected stack frame
4151returns. Print the returned value (if any).
4152
4153Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4154,Returning from a Function}).
c906108c
SS
4155
4156@kindex until
41afff9a 4157@kindex u @r{(@code{until})}
09d4efe1 4158@cindex run until specified location
c906108c
SS
4159@item until
4160@itemx u
4161Continue running until a source line past the current line, in the
4162current stack frame, is reached. This command is used to avoid single
4163stepping through a loop more than once. It is like the @code{next}
4164command, except that when @code{until} encounters a jump, it
4165automatically continues execution until the program counter is greater
4166than the address of the jump.
4167
4168This means that when you reach the end of a loop after single stepping
4169though it, @code{until} makes your program continue execution until it
4170exits the loop. In contrast, a @code{next} command at the end of a loop
4171simply steps back to the beginning of the loop, which forces you to step
4172through the next iteration.
4173
4174@code{until} always stops your program if it attempts to exit the current
4175stack frame.
4176
4177@code{until} may produce somewhat counterintuitive results if the order
4178of machine code does not match the order of the source lines. For
4179example, in the following excerpt from a debugging session, the @code{f}
4180(@code{frame}) command shows that execution is stopped at line
4181@code{206}; yet when we use @code{until}, we get to line @code{195}:
4182
474c8240 4183@smallexample
c906108c
SS
4184(@value{GDBP}) f
4185#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4186206 expand_input();
4187(@value{GDBP}) until
4188195 for ( ; argc > 0; NEXTARG) @{
474c8240 4189@end smallexample
c906108c
SS
4190
4191This happened because, for execution efficiency, the compiler had
4192generated code for the loop closure test at the end, rather than the
4193start, of the loop---even though the test in a C @code{for}-loop is
4194written before the body of the loop. The @code{until} command appeared
4195to step back to the beginning of the loop when it advanced to this
4196expression; however, it has not really gone to an earlier
4197statement---not in terms of the actual machine code.
4198
4199@code{until} with no argument works by means of single
4200instruction stepping, and hence is slower than @code{until} with an
4201argument.
4202
4203@item until @var{location}
4204@itemx u @var{location}
4205Continue running your program until either the specified location is
4206reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4207the forms described in @ref{Specify Location}.
4208This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4209hence is quicker than @code{until} without an argument. The specified
4210location is actually reached only if it is in the current frame. This
4211implies that @code{until} can be used to skip over recursive function
4212invocations. For instance in the code below, if the current location is
4213line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4214line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4215invocations have returned.
4216
4217@smallexample
421894 int factorial (int value)
421995 @{
422096 if (value > 1) @{
422197 value *= factorial (value - 1);
422298 @}
422399 return (value);
4224100 @}
4225@end smallexample
4226
4227
4228@kindex advance @var{location}
4229@itemx advance @var{location}
09d4efe1 4230Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4231required, which should be of one of the forms described in
4232@ref{Specify Location}.
4233Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4234frame. This command is similar to @code{until}, but @code{advance} will
4235not skip over recursive function calls, and the target location doesn't
4236have to be in the same frame as the current one.
4237
c906108c
SS
4238
4239@kindex stepi
41afff9a 4240@kindex si @r{(@code{stepi})}
c906108c 4241@item stepi
96a2c332 4242@itemx stepi @var{arg}
c906108c
SS
4243@itemx si
4244Execute one machine instruction, then stop and return to the debugger.
4245
4246It is often useful to do @samp{display/i $pc} when stepping by machine
4247instructions. This makes @value{GDBN} automatically display the next
4248instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4249Display,, Automatic Display}.
c906108c
SS
4250
4251An argument is a repeat count, as in @code{step}.
4252
4253@need 750
4254@kindex nexti
41afff9a 4255@kindex ni @r{(@code{nexti})}
c906108c 4256@item nexti
96a2c332 4257@itemx nexti @var{arg}
c906108c
SS
4258@itemx ni
4259Execute one machine instruction, but if it is a function call,
4260proceed until the function returns.
4261
4262An argument is a repeat count, as in @code{next}.
4263@end table
4264
6d2ebf8b 4265@node Signals
c906108c
SS
4266@section Signals
4267@cindex signals
4268
4269A signal is an asynchronous event that can happen in a program. The
4270operating system defines the possible kinds of signals, and gives each
4271kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4272signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4273@code{SIGSEGV} is the signal a program gets from referencing a place in
4274memory far away from all the areas in use; @code{SIGALRM} occurs when
4275the alarm clock timer goes off (which happens only if your program has
4276requested an alarm).
4277
4278@cindex fatal signals
4279Some signals, including @code{SIGALRM}, are a normal part of the
4280functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4281errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4282program has not specified in advance some other way to handle the signal.
4283@code{SIGINT} does not indicate an error in your program, but it is normally
4284fatal so it can carry out the purpose of the interrupt: to kill the program.
4285
4286@value{GDBN} has the ability to detect any occurrence of a signal in your
4287program. You can tell @value{GDBN} in advance what to do for each kind of
4288signal.
4289
4290@cindex handling signals
24f93129
EZ
4291Normally, @value{GDBN} is set up to let the non-erroneous signals like
4292@code{SIGALRM} be silently passed to your program
4293(so as not to interfere with their role in the program's functioning)
c906108c
SS
4294but to stop your program immediately whenever an error signal happens.
4295You can change these settings with the @code{handle} command.
4296
4297@table @code
4298@kindex info signals
09d4efe1 4299@kindex info handle
c906108c 4300@item info signals
96a2c332 4301@itemx info handle
c906108c
SS
4302Print a table of all the kinds of signals and how @value{GDBN} has been told to
4303handle each one. You can use this to see the signal numbers of all
4304the defined types of signals.
4305
45ac1734
EZ
4306@item info signals @var{sig}
4307Similar, but print information only about the specified signal number.
4308
d4f3574e 4309@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4310
4311@kindex handle
45ac1734 4312@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4313Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4314can be the number of a signal or its name (with or without the
24f93129 4315@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4316@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4317known signals. Optional arguments @var{keywords}, described below,
4318say what change to make.
c906108c
SS
4319@end table
4320
4321@c @group
4322The keywords allowed by the @code{handle} command can be abbreviated.
4323Their full names are:
4324
4325@table @code
4326@item nostop
4327@value{GDBN} should not stop your program when this signal happens. It may
4328still print a message telling you that the signal has come in.
4329
4330@item stop
4331@value{GDBN} should stop your program when this signal happens. This implies
4332the @code{print} keyword as well.
4333
4334@item print
4335@value{GDBN} should print a message when this signal happens.
4336
4337@item noprint
4338@value{GDBN} should not mention the occurrence of the signal at all. This
4339implies the @code{nostop} keyword as well.
4340
4341@item pass
5ece1a18 4342@itemx noignore
c906108c
SS
4343@value{GDBN} should allow your program to see this signal; your program
4344can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4345and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4346
4347@item nopass
5ece1a18 4348@itemx ignore
c906108c 4349@value{GDBN} should not allow your program to see this signal.
5ece1a18 4350@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4351@end table
4352@c @end group
4353
d4f3574e
SS
4354When a signal stops your program, the signal is not visible to the
4355program until you
c906108c
SS
4356continue. Your program sees the signal then, if @code{pass} is in
4357effect for the signal in question @emph{at that time}. In other words,
4358after @value{GDBN} reports a signal, you can use the @code{handle}
4359command with @code{pass} or @code{nopass} to control whether your
4360program sees that signal when you continue.
4361
24f93129
EZ
4362The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4363non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4364@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4365erroneous signals.
4366
c906108c
SS
4367You can also use the @code{signal} command to prevent your program from
4368seeing a signal, or cause it to see a signal it normally would not see,
4369or to give it any signal at any time. For example, if your program stopped
4370due to some sort of memory reference error, you might store correct
4371values into the erroneous variables and continue, hoping to see more
4372execution; but your program would probably terminate immediately as
4373a result of the fatal signal once it saw the signal. To prevent this,
4374you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4375Program a Signal}.
c906108c 4376
6d2ebf8b 4377@node Thread Stops
79a6e687 4378@section Stopping and Starting Multi-thread Programs
c906108c
SS
4379
4380When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4381Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4382breakpoints on all threads, or on a particular thread.
4383
4384@table @code
4385@cindex breakpoints and threads
4386@cindex thread breakpoints
4387@kindex break @dots{} thread @var{threadno}
4388@item break @var{linespec} thread @var{threadno}
4389@itemx break @var{linespec} thread @var{threadno} if @dots{}
4390@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4391writing them (@pxref{Specify Location}), but the effect is always to
4392specify some source line.
c906108c
SS
4393
4394Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4395to specify that you only want @value{GDBN} to stop the program when a
4396particular thread reaches this breakpoint. @var{threadno} is one of the
4397numeric thread identifiers assigned by @value{GDBN}, shown in the first
4398column of the @samp{info threads} display.
4399
4400If you do not specify @samp{thread @var{threadno}} when you set a
4401breakpoint, the breakpoint applies to @emph{all} threads of your
4402program.
4403
4404You can use the @code{thread} qualifier on conditional breakpoints as
4405well; in this case, place @samp{thread @var{threadno}} before the
4406breakpoint condition, like this:
4407
4408@smallexample
2df3850c 4409(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4410@end smallexample
4411
4412@end table
4413
4414@cindex stopped threads
4415@cindex threads, stopped
4416Whenever your program stops under @value{GDBN} for any reason,
4417@emph{all} threads of execution stop, not just the current thread. This
4418allows you to examine the overall state of the program, including
4419switching between threads, without worrying that things may change
4420underfoot.
4421
36d86913
MC
4422@cindex thread breakpoints and system calls
4423@cindex system calls and thread breakpoints
4424@cindex premature return from system calls
4425There is an unfortunate side effect. If one thread stops for a
4426breakpoint, or for some other reason, and another thread is blocked in a
4427system call, then the system call may return prematurely. This is a
4428consequence of the interaction between multiple threads and the signals
4429that @value{GDBN} uses to implement breakpoints and other events that
4430stop execution.
4431
4432To handle this problem, your program should check the return value of
4433each system call and react appropriately. This is good programming
4434style anyways.
4435
4436For example, do not write code like this:
4437
4438@smallexample
4439 sleep (10);
4440@end smallexample
4441
4442The call to @code{sleep} will return early if a different thread stops
4443at a breakpoint or for some other reason.
4444
4445Instead, write this:
4446
4447@smallexample
4448 int unslept = 10;
4449 while (unslept > 0)
4450 unslept = sleep (unslept);
4451@end smallexample
4452
4453A system call is allowed to return early, so the system is still
4454conforming to its specification. But @value{GDBN} does cause your
4455multi-threaded program to behave differently than it would without
4456@value{GDBN}.
4457
4458Also, @value{GDBN} uses internal breakpoints in the thread library to
4459monitor certain events such as thread creation and thread destruction.
4460When such an event happens, a system call in another thread may return
4461prematurely, even though your program does not appear to stop.
4462
c906108c
SS
4463@cindex continuing threads
4464@cindex threads, continuing
4465Conversely, whenever you restart the program, @emph{all} threads start
4466executing. @emph{This is true even when single-stepping} with commands
5d161b24 4467like @code{step} or @code{next}.
c906108c
SS
4468
4469In particular, @value{GDBN} cannot single-step all threads in lockstep.
4470Since thread scheduling is up to your debugging target's operating
4471system (not controlled by @value{GDBN}), other threads may
4472execute more than one statement while the current thread completes a
4473single step. Moreover, in general other threads stop in the middle of a
4474statement, rather than at a clean statement boundary, when the program
4475stops.
4476
4477You might even find your program stopped in another thread after
4478continuing or even single-stepping. This happens whenever some other
4479thread runs into a breakpoint, a signal, or an exception before the
4480first thread completes whatever you requested.
4481
4482On some OSes, you can lock the OS scheduler and thus allow only a single
4483thread to run.
4484
4485@table @code
4486@item set scheduler-locking @var{mode}
9c16f35a
EZ
4487@cindex scheduler locking mode
4488@cindex lock scheduler
c906108c
SS
4489Set the scheduler locking mode. If it is @code{off}, then there is no
4490locking and any thread may run at any time. If @code{on}, then only the
4491current thread may run when the inferior is resumed. The @code{step}
4492mode optimizes for single-stepping. It stops other threads from
4493``seizing the prompt'' by preempting the current thread while you are
4494stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4495when you step. They are more likely to run when you @samp{next} over a
c906108c 4496function call, and they are completely free to run when you use commands
d4f3574e 4497like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4498thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4499@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4500
4501@item show scheduler-locking
4502Display the current scheduler locking mode.
4503@end table
4504
c906108c 4505
6d2ebf8b 4506@node Stack
c906108c
SS
4507@chapter Examining the Stack
4508
4509When your program has stopped, the first thing you need to know is where it
4510stopped and how it got there.
4511
4512@cindex call stack
5d161b24
DB
4513Each time your program performs a function call, information about the call
4514is generated.
4515That information includes the location of the call in your program,
4516the arguments of the call,
c906108c 4517and the local variables of the function being called.
5d161b24 4518The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4519The stack frames are allocated in a region of memory called the @dfn{call
4520stack}.
4521
4522When your program stops, the @value{GDBN} commands for examining the
4523stack allow you to see all of this information.
4524
4525@cindex selected frame
4526One of the stack frames is @dfn{selected} by @value{GDBN} and many
4527@value{GDBN} commands refer implicitly to the selected frame. In
4528particular, whenever you ask @value{GDBN} for the value of a variable in
4529your program, the value is found in the selected frame. There are
4530special @value{GDBN} commands to select whichever frame you are
79a6e687 4531interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4532
4533When your program stops, @value{GDBN} automatically selects the
5d161b24 4534currently executing frame and describes it briefly, similar to the
79a6e687 4535@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4536
4537@menu
4538* Frames:: Stack frames
4539* Backtrace:: Backtraces
4540* Selection:: Selecting a frame
4541* Frame Info:: Information on a frame
c906108c
SS
4542
4543@end menu
4544
6d2ebf8b 4545@node Frames
79a6e687 4546@section Stack Frames
c906108c 4547
d4f3574e 4548@cindex frame, definition
c906108c
SS
4549@cindex stack frame
4550The call stack is divided up into contiguous pieces called @dfn{stack
4551frames}, or @dfn{frames} for short; each frame is the data associated
4552with one call to one function. The frame contains the arguments given
4553to the function, the function's local variables, and the address at
4554which the function is executing.
4555
4556@cindex initial frame
4557@cindex outermost frame
4558@cindex innermost frame
4559When your program is started, the stack has only one frame, that of the
4560function @code{main}. This is called the @dfn{initial} frame or the
4561@dfn{outermost} frame. Each time a function is called, a new frame is
4562made. Each time a function returns, the frame for that function invocation
4563is eliminated. If a function is recursive, there can be many frames for
4564the same function. The frame for the function in which execution is
4565actually occurring is called the @dfn{innermost} frame. This is the most
4566recently created of all the stack frames that still exist.
4567
4568@cindex frame pointer
4569Inside your program, stack frames are identified by their addresses. A
4570stack frame consists of many bytes, each of which has its own address; each
4571kind of computer has a convention for choosing one byte whose
4572address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4573in a register called the @dfn{frame pointer register}
4574(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4575
4576@cindex frame number
4577@value{GDBN} assigns numbers to all existing stack frames, starting with
4578zero for the innermost frame, one for the frame that called it,
4579and so on upward. These numbers do not really exist in your program;
4580they are assigned by @value{GDBN} to give you a way of designating stack
4581frames in @value{GDBN} commands.
4582
6d2ebf8b
SS
4583@c The -fomit-frame-pointer below perennially causes hbox overflow
4584@c underflow problems.
c906108c
SS
4585@cindex frameless execution
4586Some compilers provide a way to compile functions so that they operate
e22ea452 4587without stack frames. (For example, the @value{NGCC} option
474c8240 4588@smallexample
6d2ebf8b 4589@samp{-fomit-frame-pointer}
474c8240 4590@end smallexample
6d2ebf8b 4591generates functions without a frame.)
c906108c
SS
4592This is occasionally done with heavily used library functions to save
4593the frame setup time. @value{GDBN} has limited facilities for dealing
4594with these function invocations. If the innermost function invocation
4595has no stack frame, @value{GDBN} nevertheless regards it as though
4596it had a separate frame, which is numbered zero as usual, allowing
4597correct tracing of the function call chain. However, @value{GDBN} has
4598no provision for frameless functions elsewhere in the stack.
4599
4600@table @code
d4f3574e 4601@kindex frame@r{, command}
41afff9a 4602@cindex current stack frame
c906108c 4603@item frame @var{args}
5d161b24 4604The @code{frame} command allows you to move from one stack frame to another,
c906108c 4605and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4606address of the frame or the stack frame number. Without an argument,
4607@code{frame} prints the current stack frame.
c906108c
SS
4608
4609@kindex select-frame
41afff9a 4610@cindex selecting frame silently
c906108c
SS
4611@item select-frame
4612The @code{select-frame} command allows you to move from one stack frame
4613to another without printing the frame. This is the silent version of
4614@code{frame}.
4615@end table
4616
6d2ebf8b 4617@node Backtrace
c906108c
SS
4618@section Backtraces
4619
09d4efe1
EZ
4620@cindex traceback
4621@cindex call stack traces
c906108c
SS
4622A backtrace is a summary of how your program got where it is. It shows one
4623line per frame, for many frames, starting with the currently executing
4624frame (frame zero), followed by its caller (frame one), and on up the
4625stack.
4626
4627@table @code
4628@kindex backtrace
41afff9a 4629@kindex bt @r{(@code{backtrace})}
c906108c
SS
4630@item backtrace
4631@itemx bt
4632Print a backtrace of the entire stack: one line per frame for all
4633frames in the stack.
4634
4635You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4636character, normally @kbd{Ctrl-c}.
c906108c
SS
4637
4638@item backtrace @var{n}
4639@itemx bt @var{n}
4640Similar, but print only the innermost @var{n} frames.
4641
4642@item backtrace -@var{n}
4643@itemx bt -@var{n}
4644Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4645
4646@item backtrace full
0f061b69 4647@itemx bt full
dd74f6ae
NR
4648@itemx bt full @var{n}
4649@itemx bt full -@var{n}
e7109c7e 4650Print the values of the local variables also. @var{n} specifies the
286ba84d 4651number of frames to print, as described above.
c906108c
SS
4652@end table
4653
4654@kindex where
4655@kindex info stack
c906108c
SS
4656The names @code{where} and @code{info stack} (abbreviated @code{info s})
4657are additional aliases for @code{backtrace}.
4658
839c27b7
EZ
4659@cindex multiple threads, backtrace
4660In a multi-threaded program, @value{GDBN} by default shows the
4661backtrace only for the current thread. To display the backtrace for
4662several or all of the threads, use the command @code{thread apply}
4663(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4664apply all backtrace}, @value{GDBN} will display the backtrace for all
4665the threads; this is handy when you debug a core dump of a
4666multi-threaded program.
4667
c906108c
SS
4668Each line in the backtrace shows the frame number and the function name.
4669The program counter value is also shown---unless you use @code{set
4670print address off}. The backtrace also shows the source file name and
4671line number, as well as the arguments to the function. The program
4672counter value is omitted if it is at the beginning of the code for that
4673line number.
4674
4675Here is an example of a backtrace. It was made with the command
4676@samp{bt 3}, so it shows the innermost three frames.
4677
4678@smallexample
4679@group
5d161b24 4680#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4681 at builtin.c:993
4682#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4683#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4684 at macro.c:71
4685(More stack frames follow...)
4686@end group
4687@end smallexample
4688
4689@noindent
4690The display for frame zero does not begin with a program counter
4691value, indicating that your program has stopped at the beginning of the
4692code for line @code{993} of @code{builtin.c}.
4693
18999be5
EZ
4694@cindex value optimized out, in backtrace
4695@cindex function call arguments, optimized out
4696If your program was compiled with optimizations, some compilers will
4697optimize away arguments passed to functions if those arguments are
4698never used after the call. Such optimizations generate code that
4699passes arguments through registers, but doesn't store those arguments
4700in the stack frame. @value{GDBN} has no way of displaying such
4701arguments in stack frames other than the innermost one. Here's what
4702such a backtrace might look like:
4703
4704@smallexample
4705@group
4706#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4707 at builtin.c:993
4708#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4709#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4710 at macro.c:71
4711(More stack frames follow...)
4712@end group
4713@end smallexample
4714
4715@noindent
4716The values of arguments that were not saved in their stack frames are
4717shown as @samp{<value optimized out>}.
4718
4719If you need to display the values of such optimized-out arguments,
4720either deduce that from other variables whose values depend on the one
4721you are interested in, or recompile without optimizations.
4722
a8f24a35
EZ
4723@cindex backtrace beyond @code{main} function
4724@cindex program entry point
4725@cindex startup code, and backtrace
25d29d70
AC
4726Most programs have a standard user entry point---a place where system
4727libraries and startup code transition into user code. For C this is
d416eeec
EZ
4728@code{main}@footnote{
4729Note that embedded programs (the so-called ``free-standing''
4730environment) are not required to have a @code{main} function as the
4731entry point. They could even have multiple entry points.}.
4732When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4733it will terminate the backtrace, to avoid tracing into highly
4734system-specific (and generally uninteresting) code.
4735
4736If you need to examine the startup code, or limit the number of levels
4737in a backtrace, you can change this behavior:
95f90d25
DJ
4738
4739@table @code
25d29d70
AC
4740@item set backtrace past-main
4741@itemx set backtrace past-main on
4644b6e3 4742@kindex set backtrace
25d29d70
AC
4743Backtraces will continue past the user entry point.
4744
4745@item set backtrace past-main off
95f90d25
DJ
4746Backtraces will stop when they encounter the user entry point. This is the
4747default.
4748
25d29d70 4749@item show backtrace past-main
4644b6e3 4750@kindex show backtrace
25d29d70
AC
4751Display the current user entry point backtrace policy.
4752
2315ffec
RC
4753@item set backtrace past-entry
4754@itemx set backtrace past-entry on
a8f24a35 4755Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4756This entry point is encoded by the linker when the application is built,
4757and is likely before the user entry point @code{main} (or equivalent) is called.
4758
4759@item set backtrace past-entry off
d3e8051b 4760Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4761application. This is the default.
4762
4763@item show backtrace past-entry
4764Display the current internal entry point backtrace policy.
4765
25d29d70
AC
4766@item set backtrace limit @var{n}
4767@itemx set backtrace limit 0
4768@cindex backtrace limit
4769Limit the backtrace to @var{n} levels. A value of zero means
4770unlimited.
95f90d25 4771
25d29d70
AC
4772@item show backtrace limit
4773Display the current limit on backtrace levels.
95f90d25
DJ
4774@end table
4775
6d2ebf8b 4776@node Selection
79a6e687 4777@section Selecting a Frame
c906108c
SS
4778
4779Most commands for examining the stack and other data in your program work on
4780whichever stack frame is selected at the moment. Here are the commands for
4781selecting a stack frame; all of them finish by printing a brief description
4782of the stack frame just selected.
4783
4784@table @code
d4f3574e 4785@kindex frame@r{, selecting}
41afff9a 4786@kindex f @r{(@code{frame})}
c906108c
SS
4787@item frame @var{n}
4788@itemx f @var{n}
4789Select frame number @var{n}. Recall that frame zero is the innermost
4790(currently executing) frame, frame one is the frame that called the
4791innermost one, and so on. The highest-numbered frame is the one for
4792@code{main}.
4793
4794@item frame @var{addr}
4795@itemx f @var{addr}
4796Select the frame at address @var{addr}. This is useful mainly if the
4797chaining of stack frames has been damaged by a bug, making it
4798impossible for @value{GDBN} to assign numbers properly to all frames. In
4799addition, this can be useful when your program has multiple stacks and
4800switches between them.
4801
c906108c
SS
4802On the SPARC architecture, @code{frame} needs two addresses to
4803select an arbitrary frame: a frame pointer and a stack pointer.
4804
4805On the MIPS and Alpha architecture, it needs two addresses: a stack
4806pointer and a program counter.
4807
4808On the 29k architecture, it needs three addresses: a register stack
4809pointer, a program counter, and a memory stack pointer.
c906108c
SS
4810
4811@kindex up
4812@item up @var{n}
4813Move @var{n} frames up the stack. For positive numbers @var{n}, this
4814advances toward the outermost frame, to higher frame numbers, to frames
4815that have existed longer. @var{n} defaults to one.
4816
4817@kindex down
41afff9a 4818@kindex do @r{(@code{down})}
c906108c
SS
4819@item down @var{n}
4820Move @var{n} frames down the stack. For positive numbers @var{n}, this
4821advances toward the innermost frame, to lower frame numbers, to frames
4822that were created more recently. @var{n} defaults to one. You may
4823abbreviate @code{down} as @code{do}.
4824@end table
4825
4826All of these commands end by printing two lines of output describing the
4827frame. The first line shows the frame number, the function name, the
4828arguments, and the source file and line number of execution in that
5d161b24 4829frame. The second line shows the text of that source line.
c906108c
SS
4830
4831@need 1000
4832For example:
4833
4834@smallexample
4835@group
4836(@value{GDBP}) up
4837#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4838 at env.c:10
483910 read_input_file (argv[i]);
4840@end group
4841@end smallexample
4842
4843After such a printout, the @code{list} command with no arguments
4844prints ten lines centered on the point of execution in the frame.
87885426
FN
4845You can also edit the program at the point of execution with your favorite
4846editing program by typing @code{edit}.
79a6e687 4847@xref{List, ,Printing Source Lines},
87885426 4848for details.
c906108c
SS
4849
4850@table @code
4851@kindex down-silently
4852@kindex up-silently
4853@item up-silently @var{n}
4854@itemx down-silently @var{n}
4855These two commands are variants of @code{up} and @code{down},
4856respectively; they differ in that they do their work silently, without
4857causing display of the new frame. They are intended primarily for use
4858in @value{GDBN} command scripts, where the output might be unnecessary and
4859distracting.
4860@end table
4861
6d2ebf8b 4862@node Frame Info
79a6e687 4863@section Information About a Frame
c906108c
SS
4864
4865There are several other commands to print information about the selected
4866stack frame.
4867
4868@table @code
4869@item frame
4870@itemx f
4871When used without any argument, this command does not change which
4872frame is selected, but prints a brief description of the currently
4873selected stack frame. It can be abbreviated @code{f}. With an
4874argument, this command is used to select a stack frame.
79a6e687 4875@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4876
4877@kindex info frame
41afff9a 4878@kindex info f @r{(@code{info frame})}
c906108c
SS
4879@item info frame
4880@itemx info f
4881This command prints a verbose description of the selected stack frame,
4882including:
4883
4884@itemize @bullet
5d161b24
DB
4885@item
4886the address of the frame
c906108c
SS
4887@item
4888the address of the next frame down (called by this frame)
4889@item
4890the address of the next frame up (caller of this frame)
4891@item
4892the language in which the source code corresponding to this frame is written
4893@item
4894the address of the frame's arguments
4895@item
d4f3574e
SS
4896the address of the frame's local variables
4897@item
c906108c
SS
4898the program counter saved in it (the address of execution in the caller frame)
4899@item
4900which registers were saved in the frame
4901@end itemize
4902
4903@noindent The verbose description is useful when
4904something has gone wrong that has made the stack format fail to fit
4905the usual conventions.
4906
4907@item info frame @var{addr}
4908@itemx info f @var{addr}
4909Print a verbose description of the frame at address @var{addr}, without
4910selecting that frame. The selected frame remains unchanged by this
4911command. This requires the same kind of address (more than one for some
4912architectures) that you specify in the @code{frame} command.
79a6e687 4913@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4914
4915@kindex info args
4916@item info args
4917Print the arguments of the selected frame, each on a separate line.
4918
4919@item info locals
4920@kindex info locals
4921Print the local variables of the selected frame, each on a separate
4922line. These are all variables (declared either static or automatic)
4923accessible at the point of execution of the selected frame.
4924
c906108c 4925@kindex info catch
d4f3574e
SS
4926@cindex catch exceptions, list active handlers
4927@cindex exception handlers, how to list
c906108c
SS
4928@item info catch
4929Print a list of all the exception handlers that are active in the
4930current stack frame at the current point of execution. To see other
4931exception handlers, visit the associated frame (using the @code{up},
4932@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4933@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4934
c906108c
SS
4935@end table
4936
c906108c 4937
6d2ebf8b 4938@node Source
c906108c
SS
4939@chapter Examining Source Files
4940
4941@value{GDBN} can print parts of your program's source, since the debugging
4942information recorded in the program tells @value{GDBN} what source files were
4943used to build it. When your program stops, @value{GDBN} spontaneously prints
4944the line where it stopped. Likewise, when you select a stack frame
79a6e687 4945(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4946execution in that frame has stopped. You can print other portions of
4947source files by explicit command.
4948
7a292a7a 4949If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4950prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4951@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4952
4953@menu
4954* List:: Printing source lines
2a25a5ba 4955* Specify Location:: How to specify code locations
87885426 4956* Edit:: Editing source files
c906108c 4957* Search:: Searching source files
c906108c
SS
4958* Source Path:: Specifying source directories
4959* Machine Code:: Source and machine code
4960@end menu
4961
6d2ebf8b 4962@node List
79a6e687 4963@section Printing Source Lines
c906108c
SS
4964
4965@kindex list
41afff9a 4966@kindex l @r{(@code{list})}
c906108c 4967To print lines from a source file, use the @code{list} command
5d161b24 4968(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4969There are several ways to specify what part of the file you want to
4970print; see @ref{Specify Location}, for the full list.
c906108c
SS
4971
4972Here are the forms of the @code{list} command most commonly used:
4973
4974@table @code
4975@item list @var{linenum}
4976Print lines centered around line number @var{linenum} in the
4977current source file.
4978
4979@item list @var{function}
4980Print lines centered around the beginning of function
4981@var{function}.
4982
4983@item list
4984Print more lines. If the last lines printed were printed with a
4985@code{list} command, this prints lines following the last lines
4986printed; however, if the last line printed was a solitary line printed
4987as part of displaying a stack frame (@pxref{Stack, ,Examining the
4988Stack}), this prints lines centered around that line.
4989
4990@item list -
4991Print lines just before the lines last printed.
4992@end table
4993
9c16f35a 4994@cindex @code{list}, how many lines to display
c906108c
SS
4995By default, @value{GDBN} prints ten source lines with any of these forms of
4996the @code{list} command. You can change this using @code{set listsize}:
4997
4998@table @code
4999@kindex set listsize
5000@item set listsize @var{count}
5001Make the @code{list} command display @var{count} source lines (unless
5002the @code{list} argument explicitly specifies some other number).
5003
5004@kindex show listsize
5005@item show listsize
5006Display the number of lines that @code{list} prints.
5007@end table
5008
5009Repeating a @code{list} command with @key{RET} discards the argument,
5010so it is equivalent to typing just @code{list}. This is more useful
5011than listing the same lines again. An exception is made for an
5012argument of @samp{-}; that argument is preserved in repetition so that
5013each repetition moves up in the source file.
5014
c906108c
SS
5015In general, the @code{list} command expects you to supply zero, one or two
5016@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
5017of writing them (@pxref{Specify Location}), but the effect is always
5018to specify some source line.
5019
c906108c
SS
5020Here is a complete description of the possible arguments for @code{list}:
5021
5022@table @code
5023@item list @var{linespec}
5024Print lines centered around the line specified by @var{linespec}.
5025
5026@item list @var{first},@var{last}
5027Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5028linespecs. When a @code{list} command has two linespecs, and the
5029source file of the second linespec is omitted, this refers to
5030the same source file as the first linespec.
c906108c
SS
5031
5032@item list ,@var{last}
5033Print lines ending with @var{last}.
5034
5035@item list @var{first},
5036Print lines starting with @var{first}.
5037
5038@item list +
5039Print lines just after the lines last printed.
5040
5041@item list -
5042Print lines just before the lines last printed.
5043
5044@item list
5045As described in the preceding table.
5046@end table
5047
2a25a5ba
EZ
5048@node Specify Location
5049@section Specifying a Location
5050@cindex specifying location
5051@cindex linespec
c906108c 5052
2a25a5ba
EZ
5053Several @value{GDBN} commands accept arguments that specify a location
5054of your program's code. Since @value{GDBN} is a source-level
5055debugger, a location usually specifies some line in the source code;
5056for that reason, locations are also known as @dfn{linespecs}.
c906108c 5057
2a25a5ba
EZ
5058Here are all the different ways of specifying a code location that
5059@value{GDBN} understands:
c906108c 5060
2a25a5ba
EZ
5061@table @code
5062@item @var{linenum}
5063Specifies the line number @var{linenum} of the current source file.
c906108c 5064
2a25a5ba
EZ
5065@item -@var{offset}
5066@itemx +@var{offset}
5067Specifies the line @var{offset} lines before or after the @dfn{current
5068line}. For the @code{list} command, the current line is the last one
5069printed; for the breakpoint commands, this is the line at which
5070execution stopped in the currently selected @dfn{stack frame}
5071(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5072used as the second of the two linespecs in a @code{list} command,
5073this specifies the line @var{offset} lines up or down from the first
5074linespec.
5075
5076@item @var{filename}:@var{linenum}
5077Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5078
5079@item @var{function}
5080Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5081For example, in C, this is the line with the open brace.
c906108c
SS
5082
5083@item @var{filename}:@var{function}
2a25a5ba
EZ
5084Specifies the line that begins the body of the function @var{function}
5085in the file @var{filename}. You only need the file name with a
5086function name to avoid ambiguity when there are identically named
5087functions in different source files.
c906108c
SS
5088
5089@item *@var{address}
2a25a5ba
EZ
5090Specifies the program address @var{address}. For line-oriented
5091commands, such as @code{list} and @code{edit}, this specifies a source
5092line that contains @var{address}. For @code{break} and other
5093breakpoint oriented commands, this can be used to set breakpoints in
5094parts of your program which do not have debugging information or
5095source files.
5096
5097Here @var{address} may be any expression valid in the current working
5098language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5099address. In addition, as a convenience, @value{GDBN} extends the
5100semantics of expressions used in locations to cover the situations
5101that frequently happen during debugging. Here are the various forms
5102of @var{address}:
2a25a5ba
EZ
5103
5104@table @code
5105@item @var{expression}
5106Any expression valid in the current working language.
5107
5108@item @var{funcaddr}
5109An address of a function or procedure derived from its name. In C,
5110C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5111simply the function's name @var{function} (and actually a special case
5112of a valid expression). In Pascal and Modula-2, this is
5113@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5114(although the Pascal form also works).
5115
5116This form specifies the address of the function's first instruction,
5117before the stack frame and arguments have been set up.
5118
5119@item '@var{filename}'::@var{funcaddr}
5120Like @var{funcaddr} above, but also specifies the name of the source
5121file explicitly. This is useful if the name of the function does not
5122specify the function unambiguously, e.g., if there are several
5123functions with identical names in different source files.
c906108c
SS
5124@end table
5125
2a25a5ba
EZ
5126@end table
5127
5128
87885426 5129@node Edit
79a6e687 5130@section Editing Source Files
87885426
FN
5131@cindex editing source files
5132
5133@kindex edit
5134@kindex e @r{(@code{edit})}
5135To edit the lines in a source file, use the @code{edit} command.
5136The editing program of your choice
5137is invoked with the current line set to
5138the active line in the program.
5139Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5140want to print if you want to see other parts of the program:
87885426
FN
5141
5142@table @code
2a25a5ba
EZ
5143@item edit @var{location}
5144Edit the source file specified by @code{location}. Editing starts at
5145that @var{location}, e.g., at the specified source line of the
5146specified file. @xref{Specify Location}, for all the possible forms
5147of the @var{location} argument; here are the forms of the @code{edit}
5148command most commonly used:
87885426 5149
2a25a5ba 5150@table @code
87885426
FN
5151@item edit @var{number}
5152Edit the current source file with @var{number} as the active line number.
5153
5154@item edit @var{function}
5155Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5156@end table
87885426 5157
87885426
FN
5158@end table
5159
79a6e687 5160@subsection Choosing your Editor
87885426
FN
5161You can customize @value{GDBN} to use any editor you want
5162@footnote{
5163The only restriction is that your editor (say @code{ex}), recognizes the
5164following command-line syntax:
10998722 5165@smallexample
87885426 5166ex +@var{number} file
10998722 5167@end smallexample
15387254
EZ
5168The optional numeric value +@var{number} specifies the number of the line in
5169the file where to start editing.}.
5170By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5171by setting the environment variable @code{EDITOR} before using
5172@value{GDBN}. For example, to configure @value{GDBN} to use the
5173@code{vi} editor, you could use these commands with the @code{sh} shell:
5174@smallexample
87885426
FN
5175EDITOR=/usr/bin/vi
5176export EDITOR
15387254 5177gdb @dots{}
10998722 5178@end smallexample
87885426 5179or in the @code{csh} shell,
10998722 5180@smallexample
87885426 5181setenv EDITOR /usr/bin/vi
15387254 5182gdb @dots{}
10998722 5183@end smallexample
87885426 5184
6d2ebf8b 5185@node Search
79a6e687 5186@section Searching Source Files
15387254 5187@cindex searching source files
c906108c
SS
5188
5189There are two commands for searching through the current source file for a
5190regular expression.
5191
5192@table @code
5193@kindex search
5194@kindex forward-search
5195@item forward-search @var{regexp}
5196@itemx search @var{regexp}
5197The command @samp{forward-search @var{regexp}} checks each line,
5198starting with the one following the last line listed, for a match for
5d161b24 5199@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5200synonym @samp{search @var{regexp}} or abbreviate the command name as
5201@code{fo}.
5202
09d4efe1 5203@kindex reverse-search
c906108c
SS
5204@item reverse-search @var{regexp}
5205The command @samp{reverse-search @var{regexp}} checks each line, starting
5206with the one before the last line listed and going backward, for a match
5207for @var{regexp}. It lists the line that is found. You can abbreviate
5208this command as @code{rev}.
5209@end table
c906108c 5210
6d2ebf8b 5211@node Source Path
79a6e687 5212@section Specifying Source Directories
c906108c
SS
5213
5214@cindex source path
5215@cindex directories for source files
5216Executable programs sometimes do not record the directories of the source
5217files from which they were compiled, just the names. Even when they do,
5218the directories could be moved between the compilation and your debugging
5219session. @value{GDBN} has a list of directories to search for source files;
5220this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5221it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5222in the list, until it finds a file with the desired name.
5223
5224For example, suppose an executable references the file
5225@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5226@file{/mnt/cross}. The file is first looked up literally; if this
5227fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5228fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5229message is printed. @value{GDBN} does not look up the parts of the
5230source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5231Likewise, the subdirectories of the source path are not searched: if
5232the source path is @file{/mnt/cross}, and the binary refers to
5233@file{foo.c}, @value{GDBN} would not find it under
5234@file{/mnt/cross/usr/src/foo-1.0/lib}.
5235
5236Plain file names, relative file names with leading directories, file
5237names containing dots, etc.@: are all treated as described above; for
5238instance, if the source path is @file{/mnt/cross}, and the source file
5239is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5240@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5241that---@file{/mnt/cross/foo.c}.
5242
5243Note that the executable search path is @emph{not} used to locate the
cd852561 5244source files.
c906108c
SS
5245
5246Whenever you reset or rearrange the source path, @value{GDBN} clears out
5247any information it has cached about where source files are found and where
5248each line is in the file.
5249
5250@kindex directory
5251@kindex dir
d4f3574e
SS
5252When you start @value{GDBN}, its source path includes only @samp{cdir}
5253and @samp{cwd}, in that order.
c906108c
SS
5254To add other directories, use the @code{directory} command.
5255
4b505b12
AS
5256The search path is used to find both program source files and @value{GDBN}
5257script files (read using the @samp{-command} option and @samp{source} command).
5258
30daae6c
JB
5259In addition to the source path, @value{GDBN} provides a set of commands
5260that manage a list of source path substitution rules. A @dfn{substitution
5261rule} specifies how to rewrite source directories stored in the program's
5262debug information in case the sources were moved to a different
5263directory between compilation and debugging. A rule is made of
5264two strings, the first specifying what needs to be rewritten in
5265the path, and the second specifying how it should be rewritten.
5266In @ref{set substitute-path}, we name these two parts @var{from} and
5267@var{to} respectively. @value{GDBN} does a simple string replacement
5268of @var{from} with @var{to} at the start of the directory part of the
5269source file name, and uses that result instead of the original file
5270name to look up the sources.
5271
5272Using the previous example, suppose the @file{foo-1.0} tree has been
5273moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5274@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5275@file{/mnt/cross}. The first lookup will then be
5276@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5277of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5278substitution rule, use the @code{set substitute-path} command
5279(@pxref{set substitute-path}).
5280
5281To avoid unexpected substitution results, a rule is applied only if the
5282@var{from} part of the directory name ends at a directory separator.
5283For instance, a rule substituting @file{/usr/source} into
5284@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5285not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5286is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5287not be applied to @file{/root/usr/source/baz.c} either.
5288
5289In many cases, you can achieve the same result using the @code{directory}
5290command. However, @code{set substitute-path} can be more efficient in
5291the case where the sources are organized in a complex tree with multiple
5292subdirectories. With the @code{directory} command, you need to add each
5293subdirectory of your project. If you moved the entire tree while
5294preserving its internal organization, then @code{set substitute-path}
5295allows you to direct the debugger to all the sources with one single
5296command.
5297
5298@code{set substitute-path} is also more than just a shortcut command.
5299The source path is only used if the file at the original location no
5300longer exists. On the other hand, @code{set substitute-path} modifies
5301the debugger behavior to look at the rewritten location instead. So, if
5302for any reason a source file that is not relevant to your executable is
5303located at the original location, a substitution rule is the only
3f94c067 5304method available to point @value{GDBN} at the new location.
30daae6c 5305
c906108c
SS
5306@table @code
5307@item directory @var{dirname} @dots{}
5308@item dir @var{dirname} @dots{}
5309Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5310directory names may be given to this command, separated by @samp{:}
5311(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5312part of absolute file names) or
c906108c
SS
5313whitespace. You may specify a directory that is already in the source
5314path; this moves it forward, so @value{GDBN} searches it sooner.
5315
5316@kindex cdir
5317@kindex cwd
41afff9a 5318@vindex $cdir@r{, convenience variable}
d3e8051b 5319@vindex $cwd@r{, convenience variable}
c906108c
SS
5320@cindex compilation directory
5321@cindex current directory
5322@cindex working directory
5323@cindex directory, current
5324@cindex directory, compilation
5325You can use the string @samp{$cdir} to refer to the compilation
5326directory (if one is recorded), and @samp{$cwd} to refer to the current
5327working directory. @samp{$cwd} is not the same as @samp{.}---the former
5328tracks the current working directory as it changes during your @value{GDBN}
5329session, while the latter is immediately expanded to the current
5330directory at the time you add an entry to the source path.
5331
5332@item directory
cd852561 5333Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5334
5335@c RET-repeat for @code{directory} is explicitly disabled, but since
5336@c repeating it would be a no-op we do not say that. (thanks to RMS)
5337
5338@item show directories
5339@kindex show directories
5340Print the source path: show which directories it contains.
30daae6c
JB
5341
5342@anchor{set substitute-path}
5343@item set substitute-path @var{from} @var{to}
5344@kindex set substitute-path
5345Define a source path substitution rule, and add it at the end of the
5346current list of existing substitution rules. If a rule with the same
5347@var{from} was already defined, then the old rule is also deleted.
5348
5349For example, if the file @file{/foo/bar/baz.c} was moved to
5350@file{/mnt/cross/baz.c}, then the command
5351
5352@smallexample
5353(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5354@end smallexample
5355
5356@noindent
5357will tell @value{GDBN} to replace @samp{/usr/src} with
5358@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5359@file{baz.c} even though it was moved.
5360
5361In the case when more than one substitution rule have been defined,
5362the rules are evaluated one by one in the order where they have been
5363defined. The first one matching, if any, is selected to perform
5364the substitution.
5365
5366For instance, if we had entered the following commands:
5367
5368@smallexample
5369(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5370(@value{GDBP}) set substitute-path /usr/src /mnt/src
5371@end smallexample
5372
5373@noindent
5374@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5375@file{/mnt/include/defs.h} by using the first rule. However, it would
5376use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5377@file{/mnt/src/lib/foo.c}.
5378
5379
5380@item unset substitute-path [path]
5381@kindex unset substitute-path
5382If a path is specified, search the current list of substitution rules
5383for a rule that would rewrite that path. Delete that rule if found.
5384A warning is emitted by the debugger if no rule could be found.
5385
5386If no path is specified, then all substitution rules are deleted.
5387
5388@item show substitute-path [path]
5389@kindex show substitute-path
5390If a path is specified, then print the source path substitution rule
5391which would rewrite that path, if any.
5392
5393If no path is specified, then print all existing source path substitution
5394rules.
5395
c906108c
SS
5396@end table
5397
5398If your source path is cluttered with directories that are no longer of
5399interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5400versions of source. You can correct the situation as follows:
5401
5402@enumerate
5403@item
cd852561 5404Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5405
5406@item
5407Use @code{directory} with suitable arguments to reinstall the
5408directories you want in the source path. You can add all the
5409directories in one command.
5410@end enumerate
5411
6d2ebf8b 5412@node Machine Code
79a6e687 5413@section Source and Machine Code
15387254 5414@cindex source line and its code address
c906108c
SS
5415
5416You can use the command @code{info line} to map source lines to program
5417addresses (and vice versa), and the command @code{disassemble} to display
5418a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5419mode, the @code{info line} command causes the arrow to point to the
5d161b24 5420line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5421well as hex.
5422
5423@table @code
5424@kindex info line
5425@item info line @var{linespec}
5426Print the starting and ending addresses of the compiled code for
5427source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5428the ways documented in @ref{Specify Location}.
c906108c
SS
5429@end table
5430
5431For example, we can use @code{info line} to discover the location of
5432the object code for the first line of function
5433@code{m4_changequote}:
5434
d4f3574e
SS
5435@c FIXME: I think this example should also show the addresses in
5436@c symbolic form, as they usually would be displayed.
c906108c 5437@smallexample
96a2c332 5438(@value{GDBP}) info line m4_changequote
c906108c
SS
5439Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5440@end smallexample
5441
5442@noindent
15387254 5443@cindex code address and its source line
c906108c
SS
5444We can also inquire (using @code{*@var{addr}} as the form for
5445@var{linespec}) what source line covers a particular address:
5446@smallexample
5447(@value{GDBP}) info line *0x63ff
5448Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5449@end smallexample
5450
5451@cindex @code{$_} and @code{info line}
15387254 5452@cindex @code{x} command, default address
41afff9a 5453@kindex x@r{(examine), and} info line
c906108c
SS
5454After @code{info line}, the default address for the @code{x} command
5455is changed to the starting address of the line, so that @samp{x/i} is
5456sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5457,Examining Memory}). Also, this address is saved as the value of the
c906108c 5458convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5459Variables}).
c906108c
SS
5460
5461@table @code
5462@kindex disassemble
5463@cindex assembly instructions
5464@cindex instructions, assembly
5465@cindex machine instructions
5466@cindex listing machine instructions
5467@item disassemble
5468This specialized command dumps a range of memory as machine
5469instructions. The default memory range is the function surrounding the
5470program counter of the selected frame. A single argument to this
5471command is a program counter value; @value{GDBN} dumps the function
5472surrounding this value. Two arguments specify a range of addresses
5473(first inclusive, second exclusive) to dump.
5474@end table
5475
c906108c
SS
5476The following example shows the disassembly of a range of addresses of
5477HP PA-RISC 2.0 code:
5478
5479@smallexample
5480(@value{GDBP}) disas 0x32c4 0x32e4
5481Dump of assembler code from 0x32c4 to 0x32e4:
54820x32c4 <main+204>: addil 0,dp
54830x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54840x32cc <main+212>: ldil 0x3000,r31
54850x32d0 <main+216>: ble 0x3f8(sr4,r31)
54860x32d4 <main+220>: ldo 0(r31),rp
54870x32d8 <main+224>: addil -0x800,dp
54880x32dc <main+228>: ldo 0x588(r1),r26
54890x32e0 <main+232>: ldil 0x3000,r31
5490End of assembler dump.
5491@end smallexample
c906108c
SS
5492
5493Some architectures have more than one commonly-used set of instruction
5494mnemonics or other syntax.
5495
76d17f34
EZ
5496For programs that were dynamically linked and use shared libraries,
5497instructions that call functions or branch to locations in the shared
5498libraries might show a seemingly bogus location---it's actually a
5499location of the relocation table. On some architectures, @value{GDBN}
5500might be able to resolve these to actual function names.
5501
c906108c 5502@table @code
d4f3574e 5503@kindex set disassembly-flavor
d4f3574e
SS
5504@cindex Intel disassembly flavor
5505@cindex AT&T disassembly flavor
5506@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5507Select the instruction set to use when disassembling the
5508program via the @code{disassemble} or @code{x/i} commands.
5509
5510Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5511can set @var{instruction-set} to either @code{intel} or @code{att}.
5512The default is @code{att}, the AT&T flavor used by default by Unix
5513assemblers for x86-based targets.
9c16f35a
EZ
5514
5515@kindex show disassembly-flavor
5516@item show disassembly-flavor
5517Show the current setting of the disassembly flavor.
c906108c
SS
5518@end table
5519
5520
6d2ebf8b 5521@node Data
c906108c
SS
5522@chapter Examining Data
5523
5524@cindex printing data
5525@cindex examining data
5526@kindex print
5527@kindex inspect
5528@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5529@c document because it is nonstandard... Under Epoch it displays in a
5530@c different window or something like that.
5531The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5532command (abbreviated @code{p}), or its synonym @code{inspect}. It
5533evaluates and prints the value of an expression of the language your
5534program is written in (@pxref{Languages, ,Using @value{GDBN} with
5535Different Languages}).
c906108c
SS
5536
5537@table @code
d4f3574e
SS
5538@item print @var{expr}
5539@itemx print /@var{f} @var{expr}
5540@var{expr} is an expression (in the source language). By default the
5541value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5542you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5543@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5544Formats}.
c906108c
SS
5545
5546@item print
5547@itemx print /@var{f}
15387254 5548@cindex reprint the last value
d4f3574e 5549If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5550@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5551conveniently inspect the same value in an alternative format.
5552@end table
5553
5554A more low-level way of examining data is with the @code{x} command.
5555It examines data in memory at a specified address and prints it in a
79a6e687 5556specified format. @xref{Memory, ,Examining Memory}.
c906108c 5557
7a292a7a 5558If you are interested in information about types, or about how the
d4f3574e
SS
5559fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5560command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5561Table}.
c906108c
SS
5562
5563@menu
5564* Expressions:: Expressions
5565* Variables:: Program variables
5566* Arrays:: Artificial arrays
5567* Output Formats:: Output formats
5568* Memory:: Examining memory
5569* Auto Display:: Automatic display
5570* Print Settings:: Print settings
5571* Value History:: Value history
5572* Convenience Vars:: Convenience variables
5573* Registers:: Registers
c906108c 5574* Floating Point Hardware:: Floating point hardware
53c69bd7 5575* Vector Unit:: Vector Unit
721c2651 5576* OS Information:: Auxiliary data provided by operating system
29e57380 5577* Memory Region Attributes:: Memory region attributes
16d9dec6 5578* Dump/Restore Files:: Copy between memory and a file
384ee23f 5579* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5580* Character Sets:: Debugging programs that use a different
5581 character set than GDB does
09d4efe1 5582* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5583@end menu
5584
6d2ebf8b 5585@node Expressions
c906108c
SS
5586@section Expressions
5587
5588@cindex expressions
5589@code{print} and many other @value{GDBN} commands accept an expression and
5590compute its value. Any kind of constant, variable or operator defined
5591by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5592@value{GDBN}. This includes conditional expressions, function calls,
5593casts, and string constants. It also includes preprocessor macros, if
5594you compiled your program to include this information; see
5595@ref{Compilation}.
c906108c 5596
15387254 5597@cindex arrays in expressions
d4f3574e
SS
5598@value{GDBN} supports array constants in expressions input by
5599the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5600you can use the command @code{print @{1, 2, 3@}} to create an array
5601of three integers. If you pass an array to a function or assign it
5602to a program variable, @value{GDBN} copies the array to memory that
5603is @code{malloc}ed in the target program.
c906108c 5604
c906108c
SS
5605Because C is so widespread, most of the expressions shown in examples in
5606this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5607Languages}, for information on how to use expressions in other
5608languages.
5609
5610In this section, we discuss operators that you can use in @value{GDBN}
5611expressions regardless of your programming language.
5612
15387254 5613@cindex casts, in expressions
c906108c
SS
5614Casts are supported in all languages, not just in C, because it is so
5615useful to cast a number into a pointer in order to examine a structure
5616at that address in memory.
5617@c FIXME: casts supported---Mod2 true?
c906108c
SS
5618
5619@value{GDBN} supports these operators, in addition to those common
5620to programming languages:
5621
5622@table @code
5623@item @@
5624@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5625@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5626
5627@item ::
5628@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5629function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5630
5631@cindex @{@var{type}@}
5632@cindex type casting memory
5633@cindex memory, viewing as typed object
5634@cindex casts, to view memory
5635@item @{@var{type}@} @var{addr}
5636Refers to an object of type @var{type} stored at address @var{addr} in
5637memory. @var{addr} may be any expression whose value is an integer or
5638pointer (but parentheses are required around binary operators, just as in
5639a cast). This construct is allowed regardless of what kind of data is
5640normally supposed to reside at @var{addr}.
5641@end table
5642
6d2ebf8b 5643@node Variables
79a6e687 5644@section Program Variables
c906108c
SS
5645
5646The most common kind of expression to use is the name of a variable
5647in your program.
5648
5649Variables in expressions are understood in the selected stack frame
79a6e687 5650(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5651
5652@itemize @bullet
5653@item
5654global (or file-static)
5655@end itemize
5656
5d161b24 5657@noindent or
c906108c
SS
5658
5659@itemize @bullet
5660@item
5661visible according to the scope rules of the
5662programming language from the point of execution in that frame
5d161b24 5663@end itemize
c906108c
SS
5664
5665@noindent This means that in the function
5666
474c8240 5667@smallexample
c906108c
SS
5668foo (a)
5669 int a;
5670@{
5671 bar (a);
5672 @{
5673 int b = test ();
5674 bar (b);
5675 @}
5676@}
474c8240 5677@end smallexample
c906108c
SS
5678
5679@noindent
5680you can examine and use the variable @code{a} whenever your program is
5681executing within the function @code{foo}, but you can only use or
5682examine the variable @code{b} while your program is executing inside
5683the block where @code{b} is declared.
5684
5685@cindex variable name conflict
5686There is an exception: you can refer to a variable or function whose
5687scope is a single source file even if the current execution point is not
5688in this file. But it is possible to have more than one such variable or
5689function with the same name (in different source files). If that
5690happens, referring to that name has unpredictable effects. If you wish,
5691you can specify a static variable in a particular function or file,
15387254 5692using the colon-colon (@code{::}) notation:
c906108c 5693
d4f3574e 5694@cindex colon-colon, context for variables/functions
12c27660 5695@ifnotinfo
c906108c 5696@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5697@cindex @code{::}, context for variables/functions
12c27660 5698@end ifnotinfo
474c8240 5699@smallexample
c906108c
SS
5700@var{file}::@var{variable}
5701@var{function}::@var{variable}
474c8240 5702@end smallexample
c906108c
SS
5703
5704@noindent
5705Here @var{file} or @var{function} is the name of the context for the
5706static @var{variable}. In the case of file names, you can use quotes to
5707make sure @value{GDBN} parses the file name as a single word---for example,
5708to print a global value of @code{x} defined in @file{f2.c}:
5709
474c8240 5710@smallexample
c906108c 5711(@value{GDBP}) p 'f2.c'::x
474c8240 5712@end smallexample
c906108c 5713
b37052ae 5714@cindex C@t{++} scope resolution
c906108c 5715This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5716use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5717scope resolution operator in @value{GDBN} expressions.
5718@c FIXME: Um, so what happens in one of those rare cases where it's in
5719@c conflict?? --mew
c906108c
SS
5720
5721@cindex wrong values
5722@cindex variable values, wrong
15387254
EZ
5723@cindex function entry/exit, wrong values of variables
5724@cindex optimized code, wrong values of variables
c906108c
SS
5725@quotation
5726@emph{Warning:} Occasionally, a local variable may appear to have the
5727wrong value at certain points in a function---just after entry to a new
5728scope, and just before exit.
5729@end quotation
5730You may see this problem when you are stepping by machine instructions.
5731This is because, on most machines, it takes more than one instruction to
5732set up a stack frame (including local variable definitions); if you are
5733stepping by machine instructions, variables may appear to have the wrong
5734values until the stack frame is completely built. On exit, it usually
5735also takes more than one machine instruction to destroy a stack frame;
5736after you begin stepping through that group of instructions, local
5737variable definitions may be gone.
5738
5739This may also happen when the compiler does significant optimizations.
5740To be sure of always seeing accurate values, turn off all optimization
5741when compiling.
5742
d4f3574e
SS
5743@cindex ``No symbol "foo" in current context''
5744Another possible effect of compiler optimizations is to optimize
5745unused variables out of existence, or assign variables to registers (as
5746opposed to memory addresses). Depending on the support for such cases
5747offered by the debug info format used by the compiler, @value{GDBN}
5748might not be able to display values for such local variables. If that
5749happens, @value{GDBN} will print a message like this:
5750
474c8240 5751@smallexample
d4f3574e 5752No symbol "foo" in current context.
474c8240 5753@end smallexample
d4f3574e
SS
5754
5755To solve such problems, either recompile without optimizations, or use a
5756different debug info format, if the compiler supports several such
15387254 5757formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5758usually supports the @option{-gstabs+} option. @option{-gstabs+}
5759produces debug info in a format that is superior to formats such as
5760COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5761an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5762for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5763Compiler Collection (GCC)}.
79a6e687 5764@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5765that are best suited to C@t{++} programs.
d4f3574e 5766
ab1adacd
EZ
5767If you ask to print an object whose contents are unknown to
5768@value{GDBN}, e.g., because its data type is not completely specified
5769by the debug information, @value{GDBN} will say @samp{<incomplete
5770type>}. @xref{Symbols, incomplete type}, for more about this.
5771
3a60f64e
JK
5772Strings are identified as arrays of @code{char} values without specified
5773signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5774printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5775@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5776defines literal string type @code{"char"} as @code{char} without a sign.
5777For program code
5778
5779@smallexample
5780char var0[] = "A";
5781signed char var1[] = "A";
5782@end smallexample
5783
5784You get during debugging
5785@smallexample
5786(gdb) print var0
5787$1 = "A"
5788(gdb) print var1
5789$2 = @{65 'A', 0 '\0'@}
5790@end smallexample
5791
6d2ebf8b 5792@node Arrays
79a6e687 5793@section Artificial Arrays
c906108c
SS
5794
5795@cindex artificial array
15387254 5796@cindex arrays
41afff9a 5797@kindex @@@r{, referencing memory as an array}
c906108c
SS
5798It is often useful to print out several successive objects of the
5799same type in memory; a section of an array, or an array of
5800dynamically determined size for which only a pointer exists in the
5801program.
5802
5803You can do this by referring to a contiguous span of memory as an
5804@dfn{artificial array}, using the binary operator @samp{@@}. The left
5805operand of @samp{@@} should be the first element of the desired array
5806and be an individual object. The right operand should be the desired length
5807of the array. The result is an array value whose elements are all of
5808the type of the left argument. The first element is actually the left
5809argument; the second element comes from bytes of memory immediately
5810following those that hold the first element, and so on. Here is an
5811example. If a program says
5812
474c8240 5813@smallexample
c906108c 5814int *array = (int *) malloc (len * sizeof (int));
474c8240 5815@end smallexample
c906108c
SS
5816
5817@noindent
5818you can print the contents of @code{array} with
5819
474c8240 5820@smallexample
c906108c 5821p *array@@len
474c8240 5822@end smallexample
c906108c
SS
5823
5824The left operand of @samp{@@} must reside in memory. Array values made
5825with @samp{@@} in this way behave just like other arrays in terms of
5826subscripting, and are coerced to pointers when used in expressions.
5827Artificial arrays most often appear in expressions via the value history
79a6e687 5828(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5829
5830Another way to create an artificial array is to use a cast.
5831This re-interprets a value as if it were an array.
5832The value need not be in memory:
474c8240 5833@smallexample
c906108c
SS
5834(@value{GDBP}) p/x (short[2])0x12345678
5835$1 = @{0x1234, 0x5678@}
474c8240 5836@end smallexample
c906108c
SS
5837
5838As a convenience, if you leave the array length out (as in
c3f6f71d 5839@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5840the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5841@smallexample
c906108c
SS
5842(@value{GDBP}) p/x (short[])0x12345678
5843$2 = @{0x1234, 0x5678@}
474c8240 5844@end smallexample
c906108c
SS
5845
5846Sometimes the artificial array mechanism is not quite enough; in
5847moderately complex data structures, the elements of interest may not
5848actually be adjacent---for example, if you are interested in the values
5849of pointers in an array. One useful work-around in this situation is
5850to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5851Variables}) as a counter in an expression that prints the first
c906108c
SS
5852interesting value, and then repeat that expression via @key{RET}. For
5853instance, suppose you have an array @code{dtab} of pointers to
5854structures, and you are interested in the values of a field @code{fv}
5855in each structure. Here is an example of what you might type:
5856
474c8240 5857@smallexample
c906108c
SS
5858set $i = 0
5859p dtab[$i++]->fv
5860@key{RET}
5861@key{RET}
5862@dots{}
474c8240 5863@end smallexample
c906108c 5864
6d2ebf8b 5865@node Output Formats
79a6e687 5866@section Output Formats
c906108c
SS
5867
5868@cindex formatted output
5869@cindex output formats
5870By default, @value{GDBN} prints a value according to its data type. Sometimes
5871this is not what you want. For example, you might want to print a number
5872in hex, or a pointer in decimal. Or you might want to view data in memory
5873at a certain address as a character string or as an instruction. To do
5874these things, specify an @dfn{output format} when you print a value.
5875
5876The simplest use of output formats is to say how to print a value
5877already computed. This is done by starting the arguments of the
5878@code{print} command with a slash and a format letter. The format
5879letters supported are:
5880
5881@table @code
5882@item x
5883Regard the bits of the value as an integer, and print the integer in
5884hexadecimal.
5885
5886@item d
5887Print as integer in signed decimal.
5888
5889@item u
5890Print as integer in unsigned decimal.
5891
5892@item o
5893Print as integer in octal.
5894
5895@item t
5896Print as integer in binary. The letter @samp{t} stands for ``two''.
5897@footnote{@samp{b} cannot be used because these format letters are also
5898used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5899see @ref{Memory,,Examining Memory}.}
c906108c
SS
5900
5901@item a
5902@cindex unknown address, locating
3d67e040 5903@cindex locate address
c906108c
SS
5904Print as an address, both absolute in hexadecimal and as an offset from
5905the nearest preceding symbol. You can use this format used to discover
5906where (in what function) an unknown address is located:
5907
474c8240 5908@smallexample
c906108c
SS
5909(@value{GDBP}) p/a 0x54320
5910$3 = 0x54320 <_initialize_vx+396>
474c8240 5911@end smallexample
c906108c 5912
3d67e040
EZ
5913@noindent
5914The command @code{info symbol 0x54320} yields similar results.
5915@xref{Symbols, info symbol}.
5916
c906108c 5917@item c
51274035
EZ
5918Regard as an integer and print it as a character constant. This
5919prints both the numerical value and its character representation. The
5920character representation is replaced with the octal escape @samp{\nnn}
5921for characters outside the 7-bit @sc{ascii} range.
c906108c 5922
ea37ba09
DJ
5923Without this format, @value{GDBN} displays @code{char},
5924@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5925constants. Single-byte members of vectors are displayed as integer
5926data.
5927
c906108c
SS
5928@item f
5929Regard the bits of the value as a floating point number and print
5930using typical floating point syntax.
ea37ba09
DJ
5931
5932@item s
5933@cindex printing strings
5934@cindex printing byte arrays
5935Regard as a string, if possible. With this format, pointers to single-byte
5936data are displayed as null-terminated strings and arrays of single-byte data
5937are displayed as fixed-length strings. Other values are displayed in their
5938natural types.
5939
5940Without this format, @value{GDBN} displays pointers to and arrays of
5941@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5942strings. Single-byte members of a vector are displayed as an integer
5943array.
c906108c
SS
5944@end table
5945
5946For example, to print the program counter in hex (@pxref{Registers}), type
5947
474c8240 5948@smallexample
c906108c 5949p/x $pc
474c8240 5950@end smallexample
c906108c
SS
5951
5952@noindent
5953Note that no space is required before the slash; this is because command
5954names in @value{GDBN} cannot contain a slash.
5955
5956To reprint the last value in the value history with a different format,
5957you can use the @code{print} command with just a format and no
5958expression. For example, @samp{p/x} reprints the last value in hex.
5959
6d2ebf8b 5960@node Memory
79a6e687 5961@section Examining Memory
c906108c
SS
5962
5963You can use the command @code{x} (for ``examine'') to examine memory in
5964any of several formats, independently of your program's data types.
5965
5966@cindex examining memory
5967@table @code
41afff9a 5968@kindex x @r{(examine memory)}
c906108c
SS
5969@item x/@var{nfu} @var{addr}
5970@itemx x @var{addr}
5971@itemx x
5972Use the @code{x} command to examine memory.
5973@end table
5974
5975@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5976much memory to display and how to format it; @var{addr} is an
5977expression giving the address where you want to start displaying memory.
5978If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5979Several commands set convenient defaults for @var{addr}.
5980
5981@table @r
5982@item @var{n}, the repeat count
5983The repeat count is a decimal integer; the default is 1. It specifies
5984how much memory (counting by units @var{u}) to display.
5985@c This really is **decimal**; unaffected by 'set radix' as of GDB
5986@c 4.1.2.
5987
5988@item @var{f}, the display format
51274035
EZ
5989The display format is one of the formats used by @code{print}
5990(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5991@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5992The default is @samp{x} (hexadecimal) initially. The default changes
5993each time you use either @code{x} or @code{print}.
c906108c
SS
5994
5995@item @var{u}, the unit size
5996The unit size is any of
5997
5998@table @code
5999@item b
6000Bytes.
6001@item h
6002Halfwords (two bytes).
6003@item w
6004Words (four bytes). This is the initial default.
6005@item g
6006Giant words (eight bytes).
6007@end table
6008
6009Each time you specify a unit size with @code{x}, that size becomes the
6010default unit the next time you use @code{x}. (For the @samp{s} and
6011@samp{i} formats, the unit size is ignored and is normally not written.)
6012
6013@item @var{addr}, starting display address
6014@var{addr} is the address where you want @value{GDBN} to begin displaying
6015memory. The expression need not have a pointer value (though it may);
6016it is always interpreted as an integer address of a byte of memory.
6017@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6018@var{addr} is usually just after the last address examined---but several
6019other commands also set the default address: @code{info breakpoints} (to
6020the address of the last breakpoint listed), @code{info line} (to the
6021starting address of a line), and @code{print} (if you use it to display
6022a value from memory).
6023@end table
6024
6025For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6026(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6027starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6028words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6029@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6030
6031Since the letters indicating unit sizes are all distinct from the
6032letters specifying output formats, you do not have to remember whether
6033unit size or format comes first; either order works. The output
6034specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6035(However, the count @var{n} must come first; @samp{wx4} does not work.)
6036
6037Even though the unit size @var{u} is ignored for the formats @samp{s}
6038and @samp{i}, you might still want to use a count @var{n}; for example,
6039@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6040including any operands. For convenience, especially when used with
6041the @code{display} command, the @samp{i} format also prints branch delay
6042slot instructions, if any, beyond the count specified, which immediately
6043follow the last instruction that is within the count. The command
6044@code{disassemble} gives an alternative way of inspecting machine
6045instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6046
6047All the defaults for the arguments to @code{x} are designed to make it
6048easy to continue scanning memory with minimal specifications each time
6049you use @code{x}. For example, after you have inspected three machine
6050instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6051with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6052the repeat count @var{n} is used again; the other arguments default as
6053for successive uses of @code{x}.
6054
6055@cindex @code{$_}, @code{$__}, and value history
6056The addresses and contents printed by the @code{x} command are not saved
6057in the value history because there is often too much of them and they
6058would get in the way. Instead, @value{GDBN} makes these values available for
6059subsequent use in expressions as values of the convenience variables
6060@code{$_} and @code{$__}. After an @code{x} command, the last address
6061examined is available for use in expressions in the convenience variable
6062@code{$_}. The contents of that address, as examined, are available in
6063the convenience variable @code{$__}.
6064
6065If the @code{x} command has a repeat count, the address and contents saved
6066are from the last memory unit printed; this is not the same as the last
6067address printed if several units were printed on the last line of output.
6068
09d4efe1
EZ
6069@cindex remote memory comparison
6070@cindex verify remote memory image
6071When you are debugging a program running on a remote target machine
ea35711c 6072(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6073remote machine's memory against the executable file you downloaded to
6074the target. The @code{compare-sections} command is provided for such
6075situations.
6076
6077@table @code
6078@kindex compare-sections
6079@item compare-sections @r{[}@var{section-name}@r{]}
6080Compare the data of a loadable section @var{section-name} in the
6081executable file of the program being debugged with the same section in
6082the remote machine's memory, and report any mismatches. With no
6083arguments, compares all loadable sections. This command's
6084availability depends on the target's support for the @code{"qCRC"}
6085remote request.
6086@end table
6087
6d2ebf8b 6088@node Auto Display
79a6e687 6089@section Automatic Display
c906108c
SS
6090@cindex automatic display
6091@cindex display of expressions
6092
6093If you find that you want to print the value of an expression frequently
6094(to see how it changes), you might want to add it to the @dfn{automatic
6095display list} so that @value{GDBN} prints its value each time your program stops.
6096Each expression added to the list is given a number to identify it;
6097to remove an expression from the list, you specify that number.
6098The automatic display looks like this:
6099
474c8240 6100@smallexample
c906108c
SS
61012: foo = 38
61023: bar[5] = (struct hack *) 0x3804
474c8240 6103@end smallexample
c906108c
SS
6104
6105@noindent
6106This display shows item numbers, expressions and their current values. As with
6107displays you request manually using @code{x} or @code{print}, you can
6108specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6109whether to use @code{print} or @code{x} depending your format
6110specification---it uses @code{x} if you specify either the @samp{i}
6111or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6112
6113@table @code
6114@kindex display
d4f3574e
SS
6115@item display @var{expr}
6116Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6117each time your program stops. @xref{Expressions, ,Expressions}.
6118
6119@code{display} does not repeat if you press @key{RET} again after using it.
6120
d4f3574e 6121@item display/@var{fmt} @var{expr}
c906108c 6122For @var{fmt} specifying only a display format and not a size or
d4f3574e 6123count, add the expression @var{expr} to the auto-display list but
c906108c 6124arrange to display it each time in the specified format @var{fmt}.
79a6e687 6125@xref{Output Formats,,Output Formats}.
c906108c
SS
6126
6127@item display/@var{fmt} @var{addr}
6128For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6129number of units, add the expression @var{addr} as a memory address to
6130be examined each time your program stops. Examining means in effect
79a6e687 6131doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6132@end table
6133
6134For example, @samp{display/i $pc} can be helpful, to see the machine
6135instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6136is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6137
6138@table @code
6139@kindex delete display
6140@kindex undisplay
6141@item undisplay @var{dnums}@dots{}
6142@itemx delete display @var{dnums}@dots{}
6143Remove item numbers @var{dnums} from the list of expressions to display.
6144
6145@code{undisplay} does not repeat if you press @key{RET} after using it.
6146(Otherwise you would just get the error @samp{No display number @dots{}}.)
6147
6148@kindex disable display
6149@item disable display @var{dnums}@dots{}
6150Disable the display of item numbers @var{dnums}. A disabled display
6151item is not printed automatically, but is not forgotten. It may be
6152enabled again later.
6153
6154@kindex enable display
6155@item enable display @var{dnums}@dots{}
6156Enable display of item numbers @var{dnums}. It becomes effective once
6157again in auto display of its expression, until you specify otherwise.
6158
6159@item display
6160Display the current values of the expressions on the list, just as is
6161done when your program stops.
6162
6163@kindex info display
6164@item info display
6165Print the list of expressions previously set up to display
6166automatically, each one with its item number, but without showing the
6167values. This includes disabled expressions, which are marked as such.
6168It also includes expressions which would not be displayed right now
6169because they refer to automatic variables not currently available.
6170@end table
6171
15387254 6172@cindex display disabled out of scope
c906108c
SS
6173If a display expression refers to local variables, then it does not make
6174sense outside the lexical context for which it was set up. Such an
6175expression is disabled when execution enters a context where one of its
6176variables is not defined. For example, if you give the command
6177@code{display last_char} while inside a function with an argument
6178@code{last_char}, @value{GDBN} displays this argument while your program
6179continues to stop inside that function. When it stops elsewhere---where
6180there is no variable @code{last_char}---the display is disabled
6181automatically. The next time your program stops where @code{last_char}
6182is meaningful, you can enable the display expression once again.
6183
6d2ebf8b 6184@node Print Settings
79a6e687 6185@section Print Settings
c906108c
SS
6186
6187@cindex format options
6188@cindex print settings
6189@value{GDBN} provides the following ways to control how arrays, structures,
6190and symbols are printed.
6191
6192@noindent
6193These settings are useful for debugging programs in any language:
6194
6195@table @code
4644b6e3 6196@kindex set print
c906108c
SS
6197@item set print address
6198@itemx set print address on
4644b6e3 6199@cindex print/don't print memory addresses
c906108c
SS
6200@value{GDBN} prints memory addresses showing the location of stack
6201traces, structure values, pointer values, breakpoints, and so forth,
6202even when it also displays the contents of those addresses. The default
6203is @code{on}. For example, this is what a stack frame display looks like with
6204@code{set print address on}:
6205
6206@smallexample
6207@group
6208(@value{GDBP}) f
6209#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6210 at input.c:530
6211530 if (lquote != def_lquote)
6212@end group
6213@end smallexample
6214
6215@item set print address off
6216Do not print addresses when displaying their contents. For example,
6217this is the same stack frame displayed with @code{set print address off}:
6218
6219@smallexample
6220@group
6221(@value{GDBP}) set print addr off
6222(@value{GDBP}) f
6223#0 set_quotes (lq="<<", rq=">>") at input.c:530
6224530 if (lquote != def_lquote)
6225@end group
6226@end smallexample
6227
6228You can use @samp{set print address off} to eliminate all machine
6229dependent displays from the @value{GDBN} interface. For example, with
6230@code{print address off}, you should get the same text for backtraces on
6231all machines---whether or not they involve pointer arguments.
6232
4644b6e3 6233@kindex show print
c906108c
SS
6234@item show print address
6235Show whether or not addresses are to be printed.
6236@end table
6237
6238When @value{GDBN} prints a symbolic address, it normally prints the
6239closest earlier symbol plus an offset. If that symbol does not uniquely
6240identify the address (for example, it is a name whose scope is a single
6241source file), you may need to clarify. One way to do this is with
6242@code{info line}, for example @samp{info line *0x4537}. Alternately,
6243you can set @value{GDBN} to print the source file and line number when
6244it prints a symbolic address:
6245
6246@table @code
c906108c 6247@item set print symbol-filename on
9c16f35a
EZ
6248@cindex source file and line of a symbol
6249@cindex symbol, source file and line
c906108c
SS
6250Tell @value{GDBN} to print the source file name and line number of a
6251symbol in the symbolic form of an address.
6252
6253@item set print symbol-filename off
6254Do not print source file name and line number of a symbol. This is the
6255default.
6256
c906108c
SS
6257@item show print symbol-filename
6258Show whether or not @value{GDBN} will print the source file name and
6259line number of a symbol in the symbolic form of an address.
6260@end table
6261
6262Another situation where it is helpful to show symbol filenames and line
6263numbers is when disassembling code; @value{GDBN} shows you the line
6264number and source file that corresponds to each instruction.
6265
6266Also, you may wish to see the symbolic form only if the address being
6267printed is reasonably close to the closest earlier symbol:
6268
6269@table @code
c906108c 6270@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6271@cindex maximum value for offset of closest symbol
c906108c
SS
6272Tell @value{GDBN} to only display the symbolic form of an address if the
6273offset between the closest earlier symbol and the address is less than
5d161b24 6274@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6275to always print the symbolic form of an address if any symbol precedes it.
6276
c906108c
SS
6277@item show print max-symbolic-offset
6278Ask how large the maximum offset is that @value{GDBN} prints in a
6279symbolic address.
6280@end table
6281
6282@cindex wild pointer, interpreting
6283@cindex pointer, finding referent
6284If you have a pointer and you are not sure where it points, try
6285@samp{set print symbol-filename on}. Then you can determine the name
6286and source file location of the variable where it points, using
6287@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6288For example, here @value{GDBN} shows that a variable @code{ptt} points
6289at another variable @code{t}, defined in @file{hi2.c}:
6290
474c8240 6291@smallexample
c906108c
SS
6292(@value{GDBP}) set print symbol-filename on
6293(@value{GDBP}) p/a ptt
6294$4 = 0xe008 <t in hi2.c>
474c8240 6295@end smallexample
c906108c
SS
6296
6297@quotation
6298@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6299does not show the symbol name and filename of the referent, even with
6300the appropriate @code{set print} options turned on.
6301@end quotation
6302
6303Other settings control how different kinds of objects are printed:
6304
6305@table @code
c906108c
SS
6306@item set print array
6307@itemx set print array on
4644b6e3 6308@cindex pretty print arrays
c906108c
SS
6309Pretty print arrays. This format is more convenient to read,
6310but uses more space. The default is off.
6311
6312@item set print array off
6313Return to compressed format for arrays.
6314
c906108c
SS
6315@item show print array
6316Show whether compressed or pretty format is selected for displaying
6317arrays.
6318
3c9c013a
JB
6319@cindex print array indexes
6320@item set print array-indexes
6321@itemx set print array-indexes on
6322Print the index of each element when displaying arrays. May be more
6323convenient to locate a given element in the array or quickly find the
6324index of a given element in that printed array. The default is off.
6325
6326@item set print array-indexes off
6327Stop printing element indexes when displaying arrays.
6328
6329@item show print array-indexes
6330Show whether the index of each element is printed when displaying
6331arrays.
6332
c906108c 6333@item set print elements @var{number-of-elements}
4644b6e3 6334@cindex number of array elements to print
9c16f35a 6335@cindex limit on number of printed array elements
c906108c
SS
6336Set a limit on how many elements of an array @value{GDBN} will print.
6337If @value{GDBN} is printing a large array, it stops printing after it has
6338printed the number of elements set by the @code{set print elements} command.
6339This limit also applies to the display of strings.
d4f3574e 6340When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6341Setting @var{number-of-elements} to zero means that the printing is unlimited.
6342
c906108c
SS
6343@item show print elements
6344Display the number of elements of a large array that @value{GDBN} will print.
6345If the number is 0, then the printing is unlimited.
6346
b4740add
JB
6347@item set print frame-arguments @var{value}
6348@cindex printing frame argument values
6349@cindex print all frame argument values
6350@cindex print frame argument values for scalars only
6351@cindex do not print frame argument values
6352This command allows to control how the values of arguments are printed
6353when the debugger prints a frame (@pxref{Frames}). The possible
6354values are:
6355
6356@table @code
6357@item all
6358The values of all arguments are printed. This is the default.
6359
6360@item scalars
6361Print the value of an argument only if it is a scalar. The value of more
6362complex arguments such as arrays, structures, unions, etc, is replaced
6363by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6364
6365@smallexample
6366#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6367 at frame-args.c:23
6368@end smallexample
6369
6370@item none
6371None of the argument values are printed. Instead, the value of each argument
6372is replaced by @code{@dots{}}. In this case, the example above now becomes:
6373
6374@smallexample
6375#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6376 at frame-args.c:23
6377@end smallexample
6378@end table
6379
6380By default, all argument values are always printed. But this command
6381can be useful in several cases. For instance, it can be used to reduce
6382the amount of information printed in each frame, making the backtrace
6383more readable. Also, this command can be used to improve performance
6384when displaying Ada frames, because the computation of large arguments
6385can sometimes be CPU-intensive, especiallly in large applications.
6386Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6387avoids this computation, thus speeding up the display of each Ada frame.
6388
6389@item show print frame-arguments
6390Show how the value of arguments should be displayed when printing a frame.
6391
9c16f35a
EZ
6392@item set print repeats
6393@cindex repeated array elements
6394Set the threshold for suppressing display of repeated array
d3e8051b 6395elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6396array exceeds the threshold, @value{GDBN} prints the string
6397@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6398identical repetitions, instead of displaying the identical elements
6399themselves. Setting the threshold to zero will cause all elements to
6400be individually printed. The default threshold is 10.
6401
6402@item show print repeats
6403Display the current threshold for printing repeated identical
6404elements.
6405
c906108c 6406@item set print null-stop
4644b6e3 6407@cindex @sc{null} elements in arrays
c906108c 6408Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6409@sc{null} is encountered. This is useful when large arrays actually
c906108c 6410contain only short strings.
d4f3574e 6411The default is off.
c906108c 6412
9c16f35a
EZ
6413@item show print null-stop
6414Show whether @value{GDBN} stops printing an array on the first
6415@sc{null} character.
6416
c906108c 6417@item set print pretty on
9c16f35a
EZ
6418@cindex print structures in indented form
6419@cindex indentation in structure display
5d161b24 6420Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6421per line, like this:
6422
6423@smallexample
6424@group
6425$1 = @{
6426 next = 0x0,
6427 flags = @{
6428 sweet = 1,
6429 sour = 1
6430 @},
6431 meat = 0x54 "Pork"
6432@}
6433@end group
6434@end smallexample
6435
6436@item set print pretty off
6437Cause @value{GDBN} to print structures in a compact format, like this:
6438
6439@smallexample
6440@group
6441$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6442meat = 0x54 "Pork"@}
6443@end group
6444@end smallexample
6445
6446@noindent
6447This is the default format.
6448
c906108c
SS
6449@item show print pretty
6450Show which format @value{GDBN} is using to print structures.
6451
c906108c 6452@item set print sevenbit-strings on
4644b6e3
EZ
6453@cindex eight-bit characters in strings
6454@cindex octal escapes in strings
c906108c
SS
6455Print using only seven-bit characters; if this option is set,
6456@value{GDBN} displays any eight-bit characters (in strings or
6457character values) using the notation @code{\}@var{nnn}. This setting is
6458best if you are working in English (@sc{ascii}) and you use the
6459high-order bit of characters as a marker or ``meta'' bit.
6460
6461@item set print sevenbit-strings off
6462Print full eight-bit characters. This allows the use of more
6463international character sets, and is the default.
6464
c906108c
SS
6465@item show print sevenbit-strings
6466Show whether or not @value{GDBN} is printing only seven-bit characters.
6467
c906108c 6468@item set print union on
4644b6e3 6469@cindex unions in structures, printing
9c16f35a
EZ
6470Tell @value{GDBN} to print unions which are contained in structures
6471and other unions. This is the default setting.
c906108c
SS
6472
6473@item set print union off
9c16f35a
EZ
6474Tell @value{GDBN} not to print unions which are contained in
6475structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6476instead.
c906108c 6477
c906108c
SS
6478@item show print union
6479Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6480structures and other unions.
c906108c
SS
6481
6482For example, given the declarations
6483
6484@smallexample
6485typedef enum @{Tree, Bug@} Species;
6486typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6487typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6488 Bug_forms;
6489
6490struct thing @{
6491 Species it;
6492 union @{
6493 Tree_forms tree;
6494 Bug_forms bug;
6495 @} form;
6496@};
6497
6498struct thing foo = @{Tree, @{Acorn@}@};
6499@end smallexample
6500
6501@noindent
6502with @code{set print union on} in effect @samp{p foo} would print
6503
6504@smallexample
6505$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6506@end smallexample
6507
6508@noindent
6509and with @code{set print union off} in effect it would print
6510
6511@smallexample
6512$1 = @{it = Tree, form = @{...@}@}
6513@end smallexample
9c16f35a
EZ
6514
6515@noindent
6516@code{set print union} affects programs written in C-like languages
6517and in Pascal.
c906108c
SS
6518@end table
6519
c906108c
SS
6520@need 1000
6521@noindent
b37052ae 6522These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6523
6524@table @code
4644b6e3 6525@cindex demangling C@t{++} names
c906108c
SS
6526@item set print demangle
6527@itemx set print demangle on
b37052ae 6528Print C@t{++} names in their source form rather than in the encoded
c906108c 6529(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6530linkage. The default is on.
c906108c 6531
c906108c 6532@item show print demangle
b37052ae 6533Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6534
c906108c
SS
6535@item set print asm-demangle
6536@itemx set print asm-demangle on
b37052ae 6537Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6538in assembler code printouts such as instruction disassemblies.
6539The default is off.
6540
c906108c 6541@item show print asm-demangle
b37052ae 6542Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6543or demangled form.
6544
b37052ae
EZ
6545@cindex C@t{++} symbol decoding style
6546@cindex symbol decoding style, C@t{++}
a8f24a35 6547@kindex set demangle-style
c906108c
SS
6548@item set demangle-style @var{style}
6549Choose among several encoding schemes used by different compilers to
b37052ae 6550represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6551
6552@table @code
6553@item auto
6554Allow @value{GDBN} to choose a decoding style by inspecting your program.
6555
6556@item gnu
b37052ae 6557Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6558This is the default.
c906108c
SS
6559
6560@item hp
b37052ae 6561Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6562
6563@item lucid
b37052ae 6564Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6565
6566@item arm
b37052ae 6567Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6568@strong{Warning:} this setting alone is not sufficient to allow
6569debugging @code{cfront}-generated executables. @value{GDBN} would
6570require further enhancement to permit that.
6571
6572@end table
6573If you omit @var{style}, you will see a list of possible formats.
6574
c906108c 6575@item show demangle-style
b37052ae 6576Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6577
c906108c
SS
6578@item set print object
6579@itemx set print object on
4644b6e3 6580@cindex derived type of an object, printing
9c16f35a 6581@cindex display derived types
c906108c
SS
6582When displaying a pointer to an object, identify the @emph{actual}
6583(derived) type of the object rather than the @emph{declared} type, using
6584the virtual function table.
6585
6586@item set print object off
6587Display only the declared type of objects, without reference to the
6588virtual function table. This is the default setting.
6589
c906108c
SS
6590@item show print object
6591Show whether actual, or declared, object types are displayed.
6592
c906108c
SS
6593@item set print static-members
6594@itemx set print static-members on
4644b6e3 6595@cindex static members of C@t{++} objects
b37052ae 6596Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6597
6598@item set print static-members off
b37052ae 6599Do not print static members when displaying a C@t{++} object.
c906108c 6600
c906108c 6601@item show print static-members
9c16f35a
EZ
6602Show whether C@t{++} static members are printed or not.
6603
6604@item set print pascal_static-members
6605@itemx set print pascal_static-members on
d3e8051b
EZ
6606@cindex static members of Pascal objects
6607@cindex Pascal objects, static members display
9c16f35a
EZ
6608Print static members when displaying a Pascal object. The default is on.
6609
6610@item set print pascal_static-members off
6611Do not print static members when displaying a Pascal object.
6612
6613@item show print pascal_static-members
6614Show whether Pascal static members are printed or not.
c906108c
SS
6615
6616@c These don't work with HP ANSI C++ yet.
c906108c
SS
6617@item set print vtbl
6618@itemx set print vtbl on
4644b6e3 6619@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6620@cindex virtual functions (C@t{++}) display
6621@cindex VTBL display
b37052ae 6622Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6623(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6624ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6625
6626@item set print vtbl off
b37052ae 6627Do not pretty print C@t{++} virtual function tables.
c906108c 6628
c906108c 6629@item show print vtbl
b37052ae 6630Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6631@end table
c906108c 6632
6d2ebf8b 6633@node Value History
79a6e687 6634@section Value History
c906108c
SS
6635
6636@cindex value history
9c16f35a 6637@cindex history of values printed by @value{GDBN}
5d161b24
DB
6638Values printed by the @code{print} command are saved in the @value{GDBN}
6639@dfn{value history}. This allows you to refer to them in other expressions.
6640Values are kept until the symbol table is re-read or discarded
6641(for example with the @code{file} or @code{symbol-file} commands).
6642When the symbol table changes, the value history is discarded,
6643since the values may contain pointers back to the types defined in the
c906108c
SS
6644symbol table.
6645
6646@cindex @code{$}
6647@cindex @code{$$}
6648@cindex history number
6649The values printed are given @dfn{history numbers} by which you can
6650refer to them. These are successive integers starting with one.
6651@code{print} shows you the history number assigned to a value by
6652printing @samp{$@var{num} = } before the value; here @var{num} is the
6653history number.
6654
6655To refer to any previous value, use @samp{$} followed by the value's
6656history number. The way @code{print} labels its output is designed to
6657remind you of this. Just @code{$} refers to the most recent value in
6658the history, and @code{$$} refers to the value before that.
6659@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6660is the value just prior to @code{$$}, @code{$$1} is equivalent to
6661@code{$$}, and @code{$$0} is equivalent to @code{$}.
6662
6663For example, suppose you have just printed a pointer to a structure and
6664want to see the contents of the structure. It suffices to type
6665
474c8240 6666@smallexample
c906108c 6667p *$
474c8240 6668@end smallexample
c906108c
SS
6669
6670If you have a chain of structures where the component @code{next} points
6671to the next one, you can print the contents of the next one with this:
6672
474c8240 6673@smallexample
c906108c 6674p *$.next
474c8240 6675@end smallexample
c906108c
SS
6676
6677@noindent
6678You can print successive links in the chain by repeating this
6679command---which you can do by just typing @key{RET}.
6680
6681Note that the history records values, not expressions. If the value of
6682@code{x} is 4 and you type these commands:
6683
474c8240 6684@smallexample
c906108c
SS
6685print x
6686set x=5
474c8240 6687@end smallexample
c906108c
SS
6688
6689@noindent
6690then the value recorded in the value history by the @code{print} command
6691remains 4 even though the value of @code{x} has changed.
6692
6693@table @code
6694@kindex show values
6695@item show values
6696Print the last ten values in the value history, with their item numbers.
6697This is like @samp{p@ $$9} repeated ten times, except that @code{show
6698values} does not change the history.
6699
6700@item show values @var{n}
6701Print ten history values centered on history item number @var{n}.
6702
6703@item show values +
6704Print ten history values just after the values last printed. If no more
6705values are available, @code{show values +} produces no display.
6706@end table
6707
6708Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6709same effect as @samp{show values +}.
6710
6d2ebf8b 6711@node Convenience Vars
79a6e687 6712@section Convenience Variables
c906108c
SS
6713
6714@cindex convenience variables
9c16f35a 6715@cindex user-defined variables
c906108c
SS
6716@value{GDBN} provides @dfn{convenience variables} that you can use within
6717@value{GDBN} to hold on to a value and refer to it later. These variables
6718exist entirely within @value{GDBN}; they are not part of your program, and
6719setting a convenience variable has no direct effect on further execution
6720of your program. That is why you can use them freely.
6721
6722Convenience variables are prefixed with @samp{$}. Any name preceded by
6723@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6724the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6725(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6726by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6727
6728You can save a value in a convenience variable with an assignment
6729expression, just as you would set a variable in your program.
6730For example:
6731
474c8240 6732@smallexample
c906108c 6733set $foo = *object_ptr
474c8240 6734@end smallexample
c906108c
SS
6735
6736@noindent
6737would save in @code{$foo} the value contained in the object pointed to by
6738@code{object_ptr}.
6739
6740Using a convenience variable for the first time creates it, but its
6741value is @code{void} until you assign a new value. You can alter the
6742value with another assignment at any time.
6743
6744Convenience variables have no fixed types. You can assign a convenience
6745variable any type of value, including structures and arrays, even if
6746that variable already has a value of a different type. The convenience
6747variable, when used as an expression, has the type of its current value.
6748
6749@table @code
6750@kindex show convenience
9c16f35a 6751@cindex show all user variables
c906108c
SS
6752@item show convenience
6753Print a list of convenience variables used so far, and their values.
d4f3574e 6754Abbreviated @code{show conv}.
53e5f3cf
AS
6755
6756@kindex init-if-undefined
6757@cindex convenience variables, initializing
6758@item init-if-undefined $@var{variable} = @var{expression}
6759Set a convenience variable if it has not already been set. This is useful
6760for user-defined commands that keep some state. It is similar, in concept,
6761to using local static variables with initializers in C (except that
6762convenience variables are global). It can also be used to allow users to
6763override default values used in a command script.
6764
6765If the variable is already defined then the expression is not evaluated so
6766any side-effects do not occur.
c906108c
SS
6767@end table
6768
6769One of the ways to use a convenience variable is as a counter to be
6770incremented or a pointer to be advanced. For example, to print
6771a field from successive elements of an array of structures:
6772
474c8240 6773@smallexample
c906108c
SS
6774set $i = 0
6775print bar[$i++]->contents
474c8240 6776@end smallexample
c906108c 6777
d4f3574e
SS
6778@noindent
6779Repeat that command by typing @key{RET}.
c906108c
SS
6780
6781Some convenience variables are created automatically by @value{GDBN} and given
6782values likely to be useful.
6783
6784@table @code
41afff9a 6785@vindex $_@r{, convenience variable}
c906108c
SS
6786@item $_
6787The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6788the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6789commands which provide a default address for @code{x} to examine also
6790set @code{$_} to that address; these commands include @code{info line}
6791and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6792except when set by the @code{x} command, in which case it is a pointer
6793to the type of @code{$__}.
6794
41afff9a 6795@vindex $__@r{, convenience variable}
c906108c
SS
6796@item $__
6797The variable @code{$__} is automatically set by the @code{x} command
6798to the value found in the last address examined. Its type is chosen
6799to match the format in which the data was printed.
6800
6801@item $_exitcode
41afff9a 6802@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6803The variable @code{$_exitcode} is automatically set to the exit code when
6804the program being debugged terminates.
6805@end table
6806
53a5351d
JM
6807On HP-UX systems, if you refer to a function or variable name that
6808begins with a dollar sign, @value{GDBN} searches for a user or system
6809name first, before it searches for a convenience variable.
c906108c 6810
6d2ebf8b 6811@node Registers
c906108c
SS
6812@section Registers
6813
6814@cindex registers
6815You can refer to machine register contents, in expressions, as variables
6816with names starting with @samp{$}. The names of registers are different
6817for each machine; use @code{info registers} to see the names used on
6818your machine.
6819
6820@table @code
6821@kindex info registers
6822@item info registers
6823Print the names and values of all registers except floating-point
c85508ee 6824and vector registers (in the selected stack frame).
c906108c
SS
6825
6826@kindex info all-registers
6827@cindex floating point registers
6828@item info all-registers
6829Print the names and values of all registers, including floating-point
c85508ee 6830and vector registers (in the selected stack frame).
c906108c
SS
6831
6832@item info registers @var{regname} @dots{}
6833Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6834As discussed in detail below, register values are normally relative to
6835the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6836the machine you are using, with or without the initial @samp{$}.
6837@end table
6838
e09f16f9
EZ
6839@cindex stack pointer register
6840@cindex program counter register
6841@cindex process status register
6842@cindex frame pointer register
6843@cindex standard registers
c906108c
SS
6844@value{GDBN} has four ``standard'' register names that are available (in
6845expressions) on most machines---whenever they do not conflict with an
6846architecture's canonical mnemonics for registers. The register names
6847@code{$pc} and @code{$sp} are used for the program counter register and
6848the stack pointer. @code{$fp} is used for a register that contains a
6849pointer to the current stack frame, and @code{$ps} is used for a
6850register that contains the processor status. For example,
6851you could print the program counter in hex with
6852
474c8240 6853@smallexample
c906108c 6854p/x $pc
474c8240 6855@end smallexample
c906108c
SS
6856
6857@noindent
6858or print the instruction to be executed next with
6859
474c8240 6860@smallexample
c906108c 6861x/i $pc
474c8240 6862@end smallexample
c906108c
SS
6863
6864@noindent
6865or add four to the stack pointer@footnote{This is a way of removing
6866one word from the stack, on machines where stacks grow downward in
6867memory (most machines, nowadays). This assumes that the innermost
6868stack frame is selected; setting @code{$sp} is not allowed when other
6869stack frames are selected. To pop entire frames off the stack,
6870regardless of machine architecture, use @code{return};
79a6e687 6871see @ref{Returning, ,Returning from a Function}.} with
c906108c 6872
474c8240 6873@smallexample
c906108c 6874set $sp += 4
474c8240 6875@end smallexample
c906108c
SS
6876
6877Whenever possible, these four standard register names are available on
6878your machine even though the machine has different canonical mnemonics,
6879so long as there is no conflict. The @code{info registers} command
6880shows the canonical names. For example, on the SPARC, @code{info
6881registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6882can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6883is an alias for the @sc{eflags} register.
c906108c
SS
6884
6885@value{GDBN} always considers the contents of an ordinary register as an
6886integer when the register is examined in this way. Some machines have
6887special registers which can hold nothing but floating point; these
6888registers are considered to have floating point values. There is no way
6889to refer to the contents of an ordinary register as floating point value
6890(although you can @emph{print} it as a floating point value with
6891@samp{print/f $@var{regname}}).
6892
6893Some registers have distinct ``raw'' and ``virtual'' data formats. This
6894means that the data format in which the register contents are saved by
6895the operating system is not the same one that your program normally
6896sees. For example, the registers of the 68881 floating point
6897coprocessor are always saved in ``extended'' (raw) format, but all C
6898programs expect to work with ``double'' (virtual) format. In such
5d161b24 6899cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6900that makes sense for your program), but the @code{info registers} command
6901prints the data in both formats.
6902
36b80e65
EZ
6903@cindex SSE registers (x86)
6904@cindex MMX registers (x86)
6905Some machines have special registers whose contents can be interpreted
6906in several different ways. For example, modern x86-based machines
6907have SSE and MMX registers that can hold several values packed
6908together in several different formats. @value{GDBN} refers to such
6909registers in @code{struct} notation:
6910
6911@smallexample
6912(@value{GDBP}) print $xmm1
6913$1 = @{
6914 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6915 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6916 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6917 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6918 v4_int32 = @{0, 20657912, 11, 13@},
6919 v2_int64 = @{88725056443645952, 55834574859@},
6920 uint128 = 0x0000000d0000000b013b36f800000000
6921@}
6922@end smallexample
6923
6924@noindent
6925To set values of such registers, you need to tell @value{GDBN} which
6926view of the register you wish to change, as if you were assigning
6927value to a @code{struct} member:
6928
6929@smallexample
6930 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6931@end smallexample
6932
c906108c 6933Normally, register values are relative to the selected stack frame
79a6e687 6934(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6935value that the register would contain if all stack frames farther in
6936were exited and their saved registers restored. In order to see the
6937true contents of hardware registers, you must select the innermost
6938frame (with @samp{frame 0}).
6939
6940However, @value{GDBN} must deduce where registers are saved, from the machine
6941code generated by your compiler. If some registers are not saved, or if
6942@value{GDBN} is unable to locate the saved registers, the selected stack
6943frame makes no difference.
6944
6d2ebf8b 6945@node Floating Point Hardware
79a6e687 6946@section Floating Point Hardware
c906108c
SS
6947@cindex floating point
6948
6949Depending on the configuration, @value{GDBN} may be able to give
6950you more information about the status of the floating point hardware.
6951
6952@table @code
6953@kindex info float
6954@item info float
6955Display hardware-dependent information about the floating
6956point unit. The exact contents and layout vary depending on the
6957floating point chip. Currently, @samp{info float} is supported on
6958the ARM and x86 machines.
6959@end table
c906108c 6960
e76f1f2e
AC
6961@node Vector Unit
6962@section Vector Unit
6963@cindex vector unit
6964
6965Depending on the configuration, @value{GDBN} may be able to give you
6966more information about the status of the vector unit.
6967
6968@table @code
6969@kindex info vector
6970@item info vector
6971Display information about the vector unit. The exact contents and
6972layout vary depending on the hardware.
6973@end table
6974
721c2651 6975@node OS Information
79a6e687 6976@section Operating System Auxiliary Information
721c2651
EZ
6977@cindex OS information
6978
6979@value{GDBN} provides interfaces to useful OS facilities that can help
6980you debug your program.
6981
6982@cindex @code{ptrace} system call
6983@cindex @code{struct user} contents
6984When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6985machines), it interfaces with the inferior via the @code{ptrace}
6986system call. The operating system creates a special sata structure,
6987called @code{struct user}, for this interface. You can use the
6988command @code{info udot} to display the contents of this data
6989structure.
6990
6991@table @code
6992@item info udot
6993@kindex info udot
6994Display the contents of the @code{struct user} maintained by the OS
6995kernel for the program being debugged. @value{GDBN} displays the
6996contents of @code{struct user} as a list of hex numbers, similar to
6997the @code{examine} command.
6998@end table
6999
b383017d
RM
7000@cindex auxiliary vector
7001@cindex vector, auxiliary
b383017d
RM
7002Some operating systems supply an @dfn{auxiliary vector} to programs at
7003startup. This is akin to the arguments and environment that you
7004specify for a program, but contains a system-dependent variety of
7005binary values that tell system libraries important details about the
7006hardware, operating system, and process. Each value's purpose is
7007identified by an integer tag; the meanings are well-known but system-specific.
7008Depending on the configuration and operating system facilities,
9c16f35a
EZ
7009@value{GDBN} may be able to show you this information. For remote
7010targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7011support of the @samp{qXfer:auxv:read} packet, see
7012@ref{qXfer auxiliary vector read}.
b383017d
RM
7013
7014@table @code
7015@kindex info auxv
7016@item info auxv
7017Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7018live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7019numerically, and also shows names and text descriptions for recognized
7020tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7021pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7022most appropriate form for a recognized tag, and in hexadecimal for
7023an unrecognized tag.
7024@end table
7025
721c2651 7026
29e57380 7027@node Memory Region Attributes
79a6e687 7028@section Memory Region Attributes
29e57380
C
7029@cindex memory region attributes
7030
b383017d 7031@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7032required by regions of your target's memory. @value{GDBN} uses
7033attributes to determine whether to allow certain types of memory
7034accesses; whether to use specific width accesses; and whether to cache
7035target memory. By default the description of memory regions is
7036fetched from the target (if the current target supports this), but the
7037user can override the fetched regions.
29e57380
C
7038
7039Defined memory regions can be individually enabled and disabled. When a
7040memory region is disabled, @value{GDBN} uses the default attributes when
7041accessing memory in that region. Similarly, if no memory regions have
7042been defined, @value{GDBN} uses the default attributes when accessing
7043all memory.
7044
b383017d 7045When a memory region is defined, it is given a number to identify it;
29e57380
C
7046to enable, disable, or remove a memory region, you specify that number.
7047
7048@table @code
7049@kindex mem
bfac230e 7050@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7051Define a memory region bounded by @var{lower} and @var{upper} with
7052attributes @var{attributes}@dots{}, and add it to the list of regions
7053monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7054case: it is treated as the target's maximum memory address.
bfac230e 7055(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7056
fd79ecee
DJ
7057@item mem auto
7058Discard any user changes to the memory regions and use target-supplied
7059regions, if available, or no regions if the target does not support.
7060
29e57380
C
7061@kindex delete mem
7062@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7063Remove memory regions @var{nums}@dots{} from the list of regions
7064monitored by @value{GDBN}.
29e57380
C
7065
7066@kindex disable mem
7067@item disable mem @var{nums}@dots{}
09d4efe1 7068Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7069A disabled memory region is not forgotten.
29e57380
C
7070It may be enabled again later.
7071
7072@kindex enable mem
7073@item enable mem @var{nums}@dots{}
09d4efe1 7074Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7075
7076@kindex info mem
7077@item info mem
7078Print a table of all defined memory regions, with the following columns
09d4efe1 7079for each region:
29e57380
C
7080
7081@table @emph
7082@item Memory Region Number
7083@item Enabled or Disabled.
b383017d 7084Enabled memory regions are marked with @samp{y}.
29e57380
C
7085Disabled memory regions are marked with @samp{n}.
7086
7087@item Lo Address
7088The address defining the inclusive lower bound of the memory region.
7089
7090@item Hi Address
7091The address defining the exclusive upper bound of the memory region.
7092
7093@item Attributes
7094The list of attributes set for this memory region.
7095@end table
7096@end table
7097
7098
7099@subsection Attributes
7100
b383017d 7101@subsubsection Memory Access Mode
29e57380
C
7102The access mode attributes set whether @value{GDBN} may make read or
7103write accesses to a memory region.
7104
7105While these attributes prevent @value{GDBN} from performing invalid
7106memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7107etc.@: from accessing memory.
29e57380
C
7108
7109@table @code
7110@item ro
7111Memory is read only.
7112@item wo
7113Memory is write only.
7114@item rw
6ca652b0 7115Memory is read/write. This is the default.
29e57380
C
7116@end table
7117
7118@subsubsection Memory Access Size
d3e8051b 7119The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7120accesses in the memory region. Often memory mapped device registers
7121require specific sized accesses. If no access size attribute is
7122specified, @value{GDBN} may use accesses of any size.
7123
7124@table @code
7125@item 8
7126Use 8 bit memory accesses.
7127@item 16
7128Use 16 bit memory accesses.
7129@item 32
7130Use 32 bit memory accesses.
7131@item 64
7132Use 64 bit memory accesses.
7133@end table
7134
7135@c @subsubsection Hardware/Software Breakpoints
7136@c The hardware/software breakpoint attributes set whether @value{GDBN}
7137@c will use hardware or software breakpoints for the internal breakpoints
7138@c used by the step, next, finish, until, etc. commands.
7139@c
7140@c @table @code
7141@c @item hwbreak
b383017d 7142@c Always use hardware breakpoints
29e57380
C
7143@c @item swbreak (default)
7144@c @end table
7145
7146@subsubsection Data Cache
7147The data cache attributes set whether @value{GDBN} will cache target
7148memory. While this generally improves performance by reducing debug
7149protocol overhead, it can lead to incorrect results because @value{GDBN}
7150does not know about volatile variables or memory mapped device
7151registers.
7152
7153@table @code
7154@item cache
b383017d 7155Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7156@item nocache
7157Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7158@end table
7159
4b5752d0
VP
7160@subsection Memory Access Checking
7161@value{GDBN} can be instructed to refuse accesses to memory that is
7162not explicitly described. This can be useful if accessing such
7163regions has undesired effects for a specific target, or to provide
7164better error checking. The following commands control this behaviour.
7165
7166@table @code
7167@kindex set mem inaccessible-by-default
7168@item set mem inaccessible-by-default [on|off]
7169If @code{on} is specified, make @value{GDBN} treat memory not
7170explicitly described by the memory ranges as non-existent and refuse accesses
7171to such memory. The checks are only performed if there's at least one
7172memory range defined. If @code{off} is specified, make @value{GDBN}
7173treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7174The default value is @code{on}.
4b5752d0
VP
7175@kindex show mem inaccessible-by-default
7176@item show mem inaccessible-by-default
7177Show the current handling of accesses to unknown memory.
7178@end table
7179
7180
29e57380 7181@c @subsubsection Memory Write Verification
b383017d 7182@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7183@c will re-reads data after each write to verify the write was successful.
7184@c
7185@c @table @code
7186@c @item verify
7187@c @item noverify (default)
7188@c @end table
7189
16d9dec6 7190@node Dump/Restore Files
79a6e687 7191@section Copy Between Memory and a File
16d9dec6
MS
7192@cindex dump/restore files
7193@cindex append data to a file
7194@cindex dump data to a file
7195@cindex restore data from a file
16d9dec6 7196
df5215a6
JB
7197You can use the commands @code{dump}, @code{append}, and
7198@code{restore} to copy data between target memory and a file. The
7199@code{dump} and @code{append} commands write data to a file, and the
7200@code{restore} command reads data from a file back into the inferior's
7201memory. Files may be in binary, Motorola S-record, Intel hex, or
7202Tektronix Hex format; however, @value{GDBN} can only append to binary
7203files.
7204
7205@table @code
7206
7207@kindex dump
7208@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7209@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7210Dump the contents of memory from @var{start_addr} to @var{end_addr},
7211or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7212
df5215a6 7213The @var{format} parameter may be any one of:
16d9dec6 7214@table @code
df5215a6
JB
7215@item binary
7216Raw binary form.
7217@item ihex
7218Intel hex format.
7219@item srec
7220Motorola S-record format.
7221@item tekhex
7222Tektronix Hex format.
7223@end table
7224
7225@value{GDBN} uses the same definitions of these formats as the
7226@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7227@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7228form.
7229
7230@kindex append
7231@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7232@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7233Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7234or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7235(@value{GDBN} can only append data to files in raw binary form.)
7236
7237@kindex restore
7238@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7239Restore the contents of file @var{filename} into memory. The
7240@code{restore} command can automatically recognize any known @sc{bfd}
7241file format, except for raw binary. To restore a raw binary file you
7242must specify the optional keyword @code{binary} after the filename.
16d9dec6 7243
b383017d 7244If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7245contained in the file. Binary files always start at address zero, so
7246they will be restored at address @var{bias}. Other bfd files have
7247a built-in location; they will be restored at offset @var{bias}
7248from that location.
7249
7250If @var{start} and/or @var{end} are non-zero, then only data between
7251file offset @var{start} and file offset @var{end} will be restored.
b383017d 7252These offsets are relative to the addresses in the file, before
16d9dec6
MS
7253the @var{bias} argument is applied.
7254
7255@end table
7256
384ee23f
EZ
7257@node Core File Generation
7258@section How to Produce a Core File from Your Program
7259@cindex dump core from inferior
7260
7261A @dfn{core file} or @dfn{core dump} is a file that records the memory
7262image of a running process and its process status (register values
7263etc.). Its primary use is post-mortem debugging of a program that
7264crashed while it ran outside a debugger. A program that crashes
7265automatically produces a core file, unless this feature is disabled by
7266the user. @xref{Files}, for information on invoking @value{GDBN} in
7267the post-mortem debugging mode.
7268
7269Occasionally, you may wish to produce a core file of the program you
7270are debugging in order to preserve a snapshot of its state.
7271@value{GDBN} has a special command for that.
7272
7273@table @code
7274@kindex gcore
7275@kindex generate-core-file
7276@item generate-core-file [@var{file}]
7277@itemx gcore [@var{file}]
7278Produce a core dump of the inferior process. The optional argument
7279@var{file} specifies the file name where to put the core dump. If not
7280specified, the file name defaults to @file{core.@var{pid}}, where
7281@var{pid} is the inferior process ID.
7282
7283Note that this command is implemented only for some systems (as of
7284this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7285@end table
7286
a0eb71c5
KB
7287@node Character Sets
7288@section Character Sets
7289@cindex character sets
7290@cindex charset
7291@cindex translating between character sets
7292@cindex host character set
7293@cindex target character set
7294
7295If the program you are debugging uses a different character set to
7296represent characters and strings than the one @value{GDBN} uses itself,
7297@value{GDBN} can automatically translate between the character sets for
7298you. The character set @value{GDBN} uses we call the @dfn{host
7299character set}; the one the inferior program uses we call the
7300@dfn{target character set}.
7301
7302For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7303uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7304remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7305running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7306then the host character set is Latin-1, and the target character set is
7307@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7308target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7309@sc{ebcdic} and Latin 1 as you print character or string values, or use
7310character and string literals in expressions.
7311
7312@value{GDBN} has no way to automatically recognize which character set
7313the inferior program uses; you must tell it, using the @code{set
7314target-charset} command, described below.
7315
7316Here are the commands for controlling @value{GDBN}'s character set
7317support:
7318
7319@table @code
7320@item set target-charset @var{charset}
7321@kindex set target-charset
7322Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7323character set names @value{GDBN} recognizes below, but if you type
7324@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7325list the target character sets it supports.
a0eb71c5
KB
7326@end table
7327
7328@table @code
7329@item set host-charset @var{charset}
7330@kindex set host-charset
7331Set the current host character set to @var{charset}.
7332
7333By default, @value{GDBN} uses a host character set appropriate to the
7334system it is running on; you can override that default using the
7335@code{set host-charset} command.
7336
7337@value{GDBN} can only use certain character sets as its host character
7338set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7339indicate which can be host character sets, but if you type
7340@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7341list the host character sets it supports.
a0eb71c5
KB
7342
7343@item set charset @var{charset}
7344@kindex set charset
e33d66ec
EZ
7345Set the current host and target character sets to @var{charset}. As
7346above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7347@value{GDBN} will list the name of the character sets that can be used
7348for both host and target.
7349
a0eb71c5
KB
7350
7351@item show charset
a0eb71c5 7352@kindex show charset
b383017d 7353Show the names of the current host and target charsets.
e33d66ec
EZ
7354
7355@itemx show host-charset
a0eb71c5 7356@kindex show host-charset
b383017d 7357Show the name of the current host charset.
e33d66ec
EZ
7358
7359@itemx show target-charset
a0eb71c5 7360@kindex show target-charset
b383017d 7361Show the name of the current target charset.
a0eb71c5
KB
7362
7363@end table
7364
7365@value{GDBN} currently includes support for the following character
7366sets:
7367
7368@table @code
7369
7370@item ASCII
7371@cindex ASCII character set
7372Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7373character set.
7374
7375@item ISO-8859-1
7376@cindex ISO 8859-1 character set
7377@cindex ISO Latin 1 character set
e33d66ec 7378The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7379characters needed for French, German, and Spanish. @value{GDBN} can use
7380this as its host character set.
7381
7382@item EBCDIC-US
7383@itemx IBM1047
7384@cindex EBCDIC character set
7385@cindex IBM1047 character set
7386Variants of the @sc{ebcdic} character set, used on some of IBM's
7387mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7388@value{GDBN} cannot use these as its host character set.
7389
7390@end table
7391
7392Note that these are all single-byte character sets. More work inside
3f94c067 7393@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7394encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7395
7396Here is an example of @value{GDBN}'s character set support in action.
7397Assume that the following source code has been placed in the file
7398@file{charset-test.c}:
7399
7400@smallexample
7401#include <stdio.h>
7402
7403char ascii_hello[]
7404 = @{72, 101, 108, 108, 111, 44, 32, 119,
7405 111, 114, 108, 100, 33, 10, 0@};
7406char ibm1047_hello[]
7407 = @{200, 133, 147, 147, 150, 107, 64, 166,
7408 150, 153, 147, 132, 90, 37, 0@};
7409
7410main ()
7411@{
7412 printf ("Hello, world!\n");
7413@}
10998722 7414@end smallexample
a0eb71c5
KB
7415
7416In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7417containing the string @samp{Hello, world!} followed by a newline,
7418encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7419
7420We compile the program, and invoke the debugger on it:
7421
7422@smallexample
7423$ gcc -g charset-test.c -o charset-test
7424$ gdb -nw charset-test
7425GNU gdb 2001-12-19-cvs
7426Copyright 2001 Free Software Foundation, Inc.
7427@dots{}
f7dc1244 7428(@value{GDBP})
10998722 7429@end smallexample
a0eb71c5
KB
7430
7431We can use the @code{show charset} command to see what character sets
7432@value{GDBN} is currently using to interpret and display characters and
7433strings:
7434
7435@smallexample
f7dc1244 7436(@value{GDBP}) show charset
e33d66ec 7437The current host and target character set is `ISO-8859-1'.
f7dc1244 7438(@value{GDBP})
10998722 7439@end smallexample
a0eb71c5
KB
7440
7441For the sake of printing this manual, let's use @sc{ascii} as our
7442initial character set:
7443@smallexample
f7dc1244
EZ
7444(@value{GDBP}) set charset ASCII
7445(@value{GDBP}) show charset
e33d66ec 7446The current host and target character set is `ASCII'.
f7dc1244 7447(@value{GDBP})
10998722 7448@end smallexample
a0eb71c5
KB
7449
7450Let's assume that @sc{ascii} is indeed the correct character set for our
7451host system --- in other words, let's assume that if @value{GDBN} prints
7452characters using the @sc{ascii} character set, our terminal will display
7453them properly. Since our current target character set is also
7454@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7455
7456@smallexample
f7dc1244 7457(@value{GDBP}) print ascii_hello
a0eb71c5 7458$1 = 0x401698 "Hello, world!\n"
f7dc1244 7459(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7460$2 = 72 'H'
f7dc1244 7461(@value{GDBP})
10998722 7462@end smallexample
a0eb71c5
KB
7463
7464@value{GDBN} uses the target character set for character and string
7465literals you use in expressions:
7466
7467@smallexample
f7dc1244 7468(@value{GDBP}) print '+'
a0eb71c5 7469$3 = 43 '+'
f7dc1244 7470(@value{GDBP})
10998722 7471@end smallexample
a0eb71c5
KB
7472
7473The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7474character.
7475
7476@value{GDBN} relies on the user to tell it which character set the
7477target program uses. If we print @code{ibm1047_hello} while our target
7478character set is still @sc{ascii}, we get jibberish:
7479
7480@smallexample
f7dc1244 7481(@value{GDBP}) print ibm1047_hello
a0eb71c5 7482$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7483(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7484$5 = 200 '\310'
f7dc1244 7485(@value{GDBP})
10998722 7486@end smallexample
a0eb71c5 7487
e33d66ec 7488If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7489@value{GDBN} tells us the character sets it supports:
7490
7491@smallexample
f7dc1244 7492(@value{GDBP}) set target-charset
b383017d 7493ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7494(@value{GDBP}) set target-charset
10998722 7495@end smallexample
a0eb71c5
KB
7496
7497We can select @sc{ibm1047} as our target character set, and examine the
7498program's strings again. Now the @sc{ascii} string is wrong, but
7499@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7500target character set, @sc{ibm1047}, to the host character set,
7501@sc{ascii}, and they display correctly:
7502
7503@smallexample
f7dc1244
EZ
7504(@value{GDBP}) set target-charset IBM1047
7505(@value{GDBP}) show charset
e33d66ec
EZ
7506The current host character set is `ASCII'.
7507The current target character set is `IBM1047'.
f7dc1244 7508(@value{GDBP}) print ascii_hello
a0eb71c5 7509$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7510(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7511$7 = 72 '\110'
f7dc1244 7512(@value{GDBP}) print ibm1047_hello
a0eb71c5 7513$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7514(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7515$9 = 200 'H'
f7dc1244 7516(@value{GDBP})
10998722 7517@end smallexample
a0eb71c5
KB
7518
7519As above, @value{GDBN} uses the target character set for character and
7520string literals you use in expressions:
7521
7522@smallexample
f7dc1244 7523(@value{GDBP}) print '+'
a0eb71c5 7524$10 = 78 '+'
f7dc1244 7525(@value{GDBP})
10998722 7526@end smallexample
a0eb71c5 7527
e33d66ec 7528The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7529character.
7530
09d4efe1
EZ
7531@node Caching Remote Data
7532@section Caching Data of Remote Targets
7533@cindex caching data of remote targets
7534
7535@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7536remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7537performance, because it reduces the overhead of the remote protocol by
7538bundling memory reads and writes into large chunks. Unfortunately,
7539@value{GDBN} does not currently know anything about volatile
7540registers, and thus data caching will produce incorrect results when
7541volatile registers are in use.
7542
7543@table @code
7544@kindex set remotecache
7545@item set remotecache on
7546@itemx set remotecache off
7547Set caching state for remote targets. When @code{ON}, use data
7548caching. By default, this option is @code{OFF}.
7549
7550@kindex show remotecache
7551@item show remotecache
7552Show the current state of data caching for remote targets.
7553
7554@kindex info dcache
7555@item info dcache
7556Print the information about the data cache performance. The
7557information displayed includes: the dcache width and depth; and for
7558each cache line, how many times it was referenced, and its data and
7559state (dirty, bad, ok, etc.). This command is useful for debugging
7560the data cache operation.
7561@end table
7562
a0eb71c5 7563
e2e0bcd1
JB
7564@node Macros
7565@chapter C Preprocessor Macros
7566
49efadf5 7567Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7568``preprocessor macros'' which expand into strings of tokens.
7569@value{GDBN} can evaluate expressions containing macro invocations, show
7570the result of macro expansion, and show a macro's definition, including
7571where it was defined.
7572
7573You may need to compile your program specially to provide @value{GDBN}
7574with information about preprocessor macros. Most compilers do not
7575include macros in their debugging information, even when you compile
7576with the @option{-g} flag. @xref{Compilation}.
7577
7578A program may define a macro at one point, remove that definition later,
7579and then provide a different definition after that. Thus, at different
7580points in the program, a macro may have different definitions, or have
7581no definition at all. If there is a current stack frame, @value{GDBN}
7582uses the macros in scope at that frame's source code line. Otherwise,
7583@value{GDBN} uses the macros in scope at the current listing location;
7584see @ref{List}.
7585
7586At the moment, @value{GDBN} does not support the @code{##}
7587token-splicing operator, the @code{#} stringification operator, or
7588variable-arity macros.
7589
7590Whenever @value{GDBN} evaluates an expression, it always expands any
7591macro invocations present in the expression. @value{GDBN} also provides
7592the following commands for working with macros explicitly.
7593
7594@table @code
7595
7596@kindex macro expand
7597@cindex macro expansion, showing the results of preprocessor
7598@cindex preprocessor macro expansion, showing the results of
7599@cindex expanding preprocessor macros
7600@item macro expand @var{expression}
7601@itemx macro exp @var{expression}
7602Show the results of expanding all preprocessor macro invocations in
7603@var{expression}. Since @value{GDBN} simply expands macros, but does
7604not parse the result, @var{expression} need not be a valid expression;
7605it can be any string of tokens.
7606
09d4efe1 7607@kindex macro exp1
e2e0bcd1
JB
7608@item macro expand-once @var{expression}
7609@itemx macro exp1 @var{expression}
4644b6e3 7610@cindex expand macro once
e2e0bcd1
JB
7611@i{(This command is not yet implemented.)} Show the results of
7612expanding those preprocessor macro invocations that appear explicitly in
7613@var{expression}. Macro invocations appearing in that expansion are
7614left unchanged. This command allows you to see the effect of a
7615particular macro more clearly, without being confused by further
7616expansions. Since @value{GDBN} simply expands macros, but does not
7617parse the result, @var{expression} need not be a valid expression; it
7618can be any string of tokens.
7619
475b0867 7620@kindex info macro
e2e0bcd1
JB
7621@cindex macro definition, showing
7622@cindex definition, showing a macro's
475b0867 7623@item info macro @var{macro}
e2e0bcd1
JB
7624Show the definition of the macro named @var{macro}, and describe the
7625source location where that definition was established.
7626
7627@kindex macro define
7628@cindex user-defined macros
7629@cindex defining macros interactively
7630@cindex macros, user-defined
7631@item macro define @var{macro} @var{replacement-list}
7632@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7633@i{(This command is not yet implemented.)} Introduce a definition for a
7634preprocessor macro named @var{macro}, invocations of which are replaced
7635by the tokens given in @var{replacement-list}. The first form of this
7636command defines an ``object-like'' macro, which takes no arguments; the
7637second form defines a ``function-like'' macro, which takes the arguments
7638given in @var{arglist}.
7639
7640A definition introduced by this command is in scope in every expression
7641evaluated in @value{GDBN}, until it is removed with the @command{macro
7642undef} command, described below. The definition overrides all
7643definitions for @var{macro} present in the program being debugged, as
7644well as any previous user-supplied definition.
7645
7646@kindex macro undef
7647@item macro undef @var{macro}
7648@i{(This command is not yet implemented.)} Remove any user-supplied
7649definition for the macro named @var{macro}. This command only affects
7650definitions provided with the @command{macro define} command, described
7651above; it cannot remove definitions present in the program being
7652debugged.
7653
09d4efe1
EZ
7654@kindex macro list
7655@item macro list
7656@i{(This command is not yet implemented.)} List all the macros
7657defined using the @code{macro define} command.
e2e0bcd1
JB
7658@end table
7659
7660@cindex macros, example of debugging with
7661Here is a transcript showing the above commands in action. First, we
7662show our source files:
7663
7664@smallexample
7665$ cat sample.c
7666#include <stdio.h>
7667#include "sample.h"
7668
7669#define M 42
7670#define ADD(x) (M + x)
7671
7672main ()
7673@{
7674#define N 28
7675 printf ("Hello, world!\n");
7676#undef N
7677 printf ("We're so creative.\n");
7678#define N 1729
7679 printf ("Goodbye, world!\n");
7680@}
7681$ cat sample.h
7682#define Q <
7683$
7684@end smallexample
7685
7686Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7687We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7688compiler includes information about preprocessor macros in the debugging
7689information.
7690
7691@smallexample
7692$ gcc -gdwarf-2 -g3 sample.c -o sample
7693$
7694@end smallexample
7695
7696Now, we start @value{GDBN} on our sample program:
7697
7698@smallexample
7699$ gdb -nw sample
7700GNU gdb 2002-05-06-cvs
7701Copyright 2002 Free Software Foundation, Inc.
7702GDB is free software, @dots{}
f7dc1244 7703(@value{GDBP})
e2e0bcd1
JB
7704@end smallexample
7705
7706We can expand macros and examine their definitions, even when the
7707program is not running. @value{GDBN} uses the current listing position
7708to decide which macro definitions are in scope:
7709
7710@smallexample
f7dc1244 7711(@value{GDBP}) list main
e2e0bcd1
JB
77123
77134 #define M 42
77145 #define ADD(x) (M + x)
77156
77167 main ()
77178 @{
77189 #define N 28
771910 printf ("Hello, world!\n");
772011 #undef N
772112 printf ("We're so creative.\n");
f7dc1244 7722(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7723Defined at /home/jimb/gdb/macros/play/sample.c:5
7724#define ADD(x) (M + x)
f7dc1244 7725(@value{GDBP}) info macro Q
e2e0bcd1
JB
7726Defined at /home/jimb/gdb/macros/play/sample.h:1
7727 included at /home/jimb/gdb/macros/play/sample.c:2
7728#define Q <
f7dc1244 7729(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7730expands to: (42 + 1)
f7dc1244 7731(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7732expands to: once (M + 1)
f7dc1244 7733(@value{GDBP})
e2e0bcd1
JB
7734@end smallexample
7735
7736In the example above, note that @command{macro expand-once} expands only
7737the macro invocation explicit in the original text --- the invocation of
7738@code{ADD} --- but does not expand the invocation of the macro @code{M},
7739which was introduced by @code{ADD}.
7740
3f94c067
BW
7741Once the program is running, @value{GDBN} uses the macro definitions in
7742force at the source line of the current stack frame:
e2e0bcd1
JB
7743
7744@smallexample
f7dc1244 7745(@value{GDBP}) break main
e2e0bcd1 7746Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7747(@value{GDBP}) run
b383017d 7748Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7749
7750Breakpoint 1, main () at sample.c:10
775110 printf ("Hello, world!\n");
f7dc1244 7752(@value{GDBP})
e2e0bcd1
JB
7753@end smallexample
7754
7755At line 10, the definition of the macro @code{N} at line 9 is in force:
7756
7757@smallexample
f7dc1244 7758(@value{GDBP}) info macro N
e2e0bcd1
JB
7759Defined at /home/jimb/gdb/macros/play/sample.c:9
7760#define N 28
f7dc1244 7761(@value{GDBP}) macro expand N Q M
e2e0bcd1 7762expands to: 28 < 42
f7dc1244 7763(@value{GDBP}) print N Q M
e2e0bcd1 7764$1 = 1
f7dc1244 7765(@value{GDBP})
e2e0bcd1
JB
7766@end smallexample
7767
7768As we step over directives that remove @code{N}'s definition, and then
7769give it a new definition, @value{GDBN} finds the definition (or lack
7770thereof) in force at each point:
7771
7772@smallexample
f7dc1244 7773(@value{GDBP}) next
e2e0bcd1
JB
7774Hello, world!
777512 printf ("We're so creative.\n");
f7dc1244 7776(@value{GDBP}) info macro N
e2e0bcd1
JB
7777The symbol `N' has no definition as a C/C++ preprocessor macro
7778at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7779(@value{GDBP}) next
e2e0bcd1
JB
7780We're so creative.
778114 printf ("Goodbye, world!\n");
f7dc1244 7782(@value{GDBP}) info macro N
e2e0bcd1
JB
7783Defined at /home/jimb/gdb/macros/play/sample.c:13
7784#define N 1729
f7dc1244 7785(@value{GDBP}) macro expand N Q M
e2e0bcd1 7786expands to: 1729 < 42
f7dc1244 7787(@value{GDBP}) print N Q M
e2e0bcd1 7788$2 = 0
f7dc1244 7789(@value{GDBP})
e2e0bcd1
JB
7790@end smallexample
7791
7792
b37052ae
EZ
7793@node Tracepoints
7794@chapter Tracepoints
7795@c This chapter is based on the documentation written by Michael
7796@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7797
7798@cindex tracepoints
7799In some applications, it is not feasible for the debugger to interrupt
7800the program's execution long enough for the developer to learn
7801anything helpful about its behavior. If the program's correctness
7802depends on its real-time behavior, delays introduced by a debugger
7803might cause the program to change its behavior drastically, or perhaps
7804fail, even when the code itself is correct. It is useful to be able
7805to observe the program's behavior without interrupting it.
7806
7807Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7808specify locations in the program, called @dfn{tracepoints}, and
7809arbitrary expressions to evaluate when those tracepoints are reached.
7810Later, using the @code{tfind} command, you can examine the values
7811those expressions had when the program hit the tracepoints. The
7812expressions may also denote objects in memory---structures or arrays,
7813for example---whose values @value{GDBN} should record; while visiting
7814a particular tracepoint, you may inspect those objects as if they were
7815in memory at that moment. However, because @value{GDBN} records these
7816values without interacting with you, it can do so quickly and
7817unobtrusively, hopefully not disturbing the program's behavior.
7818
7819The tracepoint facility is currently available only for remote
9d29849a
JB
7820targets. @xref{Targets}. In addition, your remote target must know
7821how to collect trace data. This functionality is implemented in the
7822remote stub; however, none of the stubs distributed with @value{GDBN}
7823support tracepoints as of this writing. The format of the remote
7824packets used to implement tracepoints are described in @ref{Tracepoint
7825Packets}.
b37052ae
EZ
7826
7827This chapter describes the tracepoint commands and features.
7828
7829@menu
b383017d
RM
7830* Set Tracepoints::
7831* Analyze Collected Data::
7832* Tracepoint Variables::
b37052ae
EZ
7833@end menu
7834
7835@node Set Tracepoints
7836@section Commands to Set Tracepoints
7837
7838Before running such a @dfn{trace experiment}, an arbitrary number of
7839tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7840tracepoint has a number assigned to it by @value{GDBN}. Like with
7841breakpoints, tracepoint numbers are successive integers starting from
7842one. Many of the commands associated with tracepoints take the
7843tracepoint number as their argument, to identify which tracepoint to
7844work on.
7845
7846For each tracepoint, you can specify, in advance, some arbitrary set
7847of data that you want the target to collect in the trace buffer when
7848it hits that tracepoint. The collected data can include registers,
7849local variables, or global data. Later, you can use @value{GDBN}
7850commands to examine the values these data had at the time the
7851tracepoint was hit.
7852
7853This section describes commands to set tracepoints and associated
7854conditions and actions.
7855
7856@menu
b383017d
RM
7857* Create and Delete Tracepoints::
7858* Enable and Disable Tracepoints::
7859* Tracepoint Passcounts::
7860* Tracepoint Actions::
7861* Listing Tracepoints::
79a6e687 7862* Starting and Stopping Trace Experiments::
b37052ae
EZ
7863@end menu
7864
7865@node Create and Delete Tracepoints
7866@subsection Create and Delete Tracepoints
7867
7868@table @code
7869@cindex set tracepoint
7870@kindex trace
7871@item trace
7872The @code{trace} command is very similar to the @code{break} command.
7873Its argument can be a source line, a function name, or an address in
7874the target program. @xref{Set Breaks}. The @code{trace} command
7875defines a tracepoint, which is a point in the target program where the
7876debugger will briefly stop, collect some data, and then allow the
7877program to continue. Setting a tracepoint or changing its commands
7878doesn't take effect until the next @code{tstart} command; thus, you
7879cannot change the tracepoint attributes once a trace experiment is
7880running.
7881
7882Here are some examples of using the @code{trace} command:
7883
7884@smallexample
7885(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7886
7887(@value{GDBP}) @b{trace +2} // 2 lines forward
7888
7889(@value{GDBP}) @b{trace my_function} // first source line of function
7890
7891(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7892
7893(@value{GDBP}) @b{trace *0x2117c4} // an address
7894@end smallexample
7895
7896@noindent
7897You can abbreviate @code{trace} as @code{tr}.
7898
7899@vindex $tpnum
7900@cindex last tracepoint number
7901@cindex recent tracepoint number
7902@cindex tracepoint number
7903The convenience variable @code{$tpnum} records the tracepoint number
7904of the most recently set tracepoint.
7905
7906@kindex delete tracepoint
7907@cindex tracepoint deletion
7908@item delete tracepoint @r{[}@var{num}@r{]}
7909Permanently delete one or more tracepoints. With no argument, the
7910default is to delete all tracepoints.
7911
7912Examples:
7913
7914@smallexample
7915(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7916
7917(@value{GDBP}) @b{delete trace} // remove all tracepoints
7918@end smallexample
7919
7920@noindent
7921You can abbreviate this command as @code{del tr}.
7922@end table
7923
7924@node Enable and Disable Tracepoints
7925@subsection Enable and Disable Tracepoints
7926
7927@table @code
7928@kindex disable tracepoint
7929@item disable tracepoint @r{[}@var{num}@r{]}
7930Disable tracepoint @var{num}, or all tracepoints if no argument
7931@var{num} is given. A disabled tracepoint will have no effect during
7932the next trace experiment, but it is not forgotten. You can re-enable
7933a disabled tracepoint using the @code{enable tracepoint} command.
7934
7935@kindex enable tracepoint
7936@item enable tracepoint @r{[}@var{num}@r{]}
7937Enable tracepoint @var{num}, or all tracepoints. The enabled
7938tracepoints will become effective the next time a trace experiment is
7939run.
7940@end table
7941
7942@node Tracepoint Passcounts
7943@subsection Tracepoint Passcounts
7944
7945@table @code
7946@kindex passcount
7947@cindex tracepoint pass count
7948@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7949Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7950automatically stop a trace experiment. If a tracepoint's passcount is
7951@var{n}, then the trace experiment will be automatically stopped on
7952the @var{n}'th time that tracepoint is hit. If the tracepoint number
7953@var{num} is not specified, the @code{passcount} command sets the
7954passcount of the most recently defined tracepoint. If no passcount is
7955given, the trace experiment will run until stopped explicitly by the
7956user.
7957
7958Examples:
7959
7960@smallexample
b383017d 7961(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7962@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7963
7964(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7965@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7966(@value{GDBP}) @b{trace foo}
7967(@value{GDBP}) @b{pass 3}
7968(@value{GDBP}) @b{trace bar}
7969(@value{GDBP}) @b{pass 2}
7970(@value{GDBP}) @b{trace baz}
7971(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7972@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7973@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7974@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7975@end smallexample
7976@end table
7977
7978@node Tracepoint Actions
7979@subsection Tracepoint Action Lists
7980
7981@table @code
7982@kindex actions
7983@cindex tracepoint actions
7984@item actions @r{[}@var{num}@r{]}
7985This command will prompt for a list of actions to be taken when the
7986tracepoint is hit. If the tracepoint number @var{num} is not
7987specified, this command sets the actions for the one that was most
7988recently defined (so that you can define a tracepoint and then say
7989@code{actions} without bothering about its number). You specify the
7990actions themselves on the following lines, one action at a time, and
7991terminate the actions list with a line containing just @code{end}. So
7992far, the only defined actions are @code{collect} and
7993@code{while-stepping}.
7994
7995@cindex remove actions from a tracepoint
7996To remove all actions from a tracepoint, type @samp{actions @var{num}}
7997and follow it immediately with @samp{end}.
7998
7999@smallexample
8000(@value{GDBP}) @b{collect @var{data}} // collect some data
8001
6826cf00 8002(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8003
6826cf00 8004(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8005@end smallexample
8006
8007In the following example, the action list begins with @code{collect}
8008commands indicating the things to be collected when the tracepoint is
8009hit. Then, in order to single-step and collect additional data
8010following the tracepoint, a @code{while-stepping} command is used,
8011followed by the list of things to be collected while stepping. The
8012@code{while-stepping} command is terminated by its own separate
8013@code{end} command. Lastly, the action list is terminated by an
8014@code{end} command.
8015
8016@smallexample
8017(@value{GDBP}) @b{trace foo}
8018(@value{GDBP}) @b{actions}
8019Enter actions for tracepoint 1, one per line:
8020> collect bar,baz
8021> collect $regs
8022> while-stepping 12
8023 > collect $fp, $sp
8024 > end
8025end
8026@end smallexample
8027
8028@kindex collect @r{(tracepoints)}
8029@item collect @var{expr1}, @var{expr2}, @dots{}
8030Collect values of the given expressions when the tracepoint is hit.
8031This command accepts a comma-separated list of any valid expressions.
8032In addition to global, static, or local variables, the following
8033special arguments are supported:
8034
8035@table @code
8036@item $regs
8037collect all registers
8038
8039@item $args
8040collect all function arguments
8041
8042@item $locals
8043collect all local variables.
8044@end table
8045
8046You can give several consecutive @code{collect} commands, each one
8047with a single argument, or one @code{collect} command with several
8048arguments separated by commas: the effect is the same.
8049
f5c37c66
EZ
8050The command @code{info scope} (@pxref{Symbols, info scope}) is
8051particularly useful for figuring out what data to collect.
8052
b37052ae
EZ
8053@kindex while-stepping @r{(tracepoints)}
8054@item while-stepping @var{n}
8055Perform @var{n} single-step traces after the tracepoint, collecting
8056new data at each step. The @code{while-stepping} command is
8057followed by the list of what to collect while stepping (followed by
8058its own @code{end} command):
8059
8060@smallexample
8061> while-stepping 12
8062 > collect $regs, myglobal
8063 > end
8064>
8065@end smallexample
8066
8067@noindent
8068You may abbreviate @code{while-stepping} as @code{ws} or
8069@code{stepping}.
8070@end table
8071
8072@node Listing Tracepoints
8073@subsection Listing Tracepoints
8074
8075@table @code
8076@kindex info tracepoints
09d4efe1 8077@kindex info tp
b37052ae
EZ
8078@cindex information about tracepoints
8079@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8080Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8081a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8082defined so far. For each tracepoint, the following information is
8083shown:
8084
8085@itemize @bullet
8086@item
8087its number
8088@item
8089whether it is enabled or disabled
8090@item
8091its address
8092@item
8093its passcount as given by the @code{passcount @var{n}} command
8094@item
8095its step count as given by the @code{while-stepping @var{n}} command
8096@item
8097where in the source files is the tracepoint set
8098@item
8099its action list as given by the @code{actions} command
8100@end itemize
8101
8102@smallexample
8103(@value{GDBP}) @b{info trace}
8104Num Enb Address PassC StepC What
81051 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81062 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81073 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8108(@value{GDBP})
8109@end smallexample
8110
8111@noindent
8112This command can be abbreviated @code{info tp}.
8113@end table
8114
79a6e687
BW
8115@node Starting and Stopping Trace Experiments
8116@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8117
8118@table @code
8119@kindex tstart
8120@cindex start a new trace experiment
8121@cindex collected data discarded
8122@item tstart
8123This command takes no arguments. It starts the trace experiment, and
8124begins collecting data. This has the side effect of discarding all
8125the data collected in the trace buffer during the previous trace
8126experiment.
8127
8128@kindex tstop
8129@cindex stop a running trace experiment
8130@item tstop
8131This command takes no arguments. It ends the trace experiment, and
8132stops collecting data.
8133
68c71a2e 8134@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8135automatically if any tracepoint's passcount is reached
8136(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8137
8138@kindex tstatus
8139@cindex status of trace data collection
8140@cindex trace experiment, status of
8141@item tstatus
8142This command displays the status of the current trace data
8143collection.
8144@end table
8145
8146Here is an example of the commands we described so far:
8147
8148@smallexample
8149(@value{GDBP}) @b{trace gdb_c_test}
8150(@value{GDBP}) @b{actions}
8151Enter actions for tracepoint #1, one per line.
8152> collect $regs,$locals,$args
8153> while-stepping 11
8154 > collect $regs
8155 > end
8156> end
8157(@value{GDBP}) @b{tstart}
8158 [time passes @dots{}]
8159(@value{GDBP}) @b{tstop}
8160@end smallexample
8161
8162
8163@node Analyze Collected Data
79a6e687 8164@section Using the Collected Data
b37052ae
EZ
8165
8166After the tracepoint experiment ends, you use @value{GDBN} commands
8167for examining the trace data. The basic idea is that each tracepoint
8168collects a trace @dfn{snapshot} every time it is hit and another
8169snapshot every time it single-steps. All these snapshots are
8170consecutively numbered from zero and go into a buffer, and you can
8171examine them later. The way you examine them is to @dfn{focus} on a
8172specific trace snapshot. When the remote stub is focused on a trace
8173snapshot, it will respond to all @value{GDBN} requests for memory and
8174registers by reading from the buffer which belongs to that snapshot,
8175rather than from @emph{real} memory or registers of the program being
8176debugged. This means that @strong{all} @value{GDBN} commands
8177(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8178behave as if we were currently debugging the program state as it was
8179when the tracepoint occurred. Any requests for data that are not in
8180the buffer will fail.
8181
8182@menu
8183* tfind:: How to select a trace snapshot
8184* tdump:: How to display all data for a snapshot
8185* save-tracepoints:: How to save tracepoints for a future run
8186@end menu
8187
8188@node tfind
8189@subsection @code{tfind @var{n}}
8190
8191@kindex tfind
8192@cindex select trace snapshot
8193@cindex find trace snapshot
8194The basic command for selecting a trace snapshot from the buffer is
8195@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8196counting from zero. If no argument @var{n} is given, the next
8197snapshot is selected.
8198
8199Here are the various forms of using the @code{tfind} command.
8200
8201@table @code
8202@item tfind start
8203Find the first snapshot in the buffer. This is a synonym for
8204@code{tfind 0} (since 0 is the number of the first snapshot).
8205
8206@item tfind none
8207Stop debugging trace snapshots, resume @emph{live} debugging.
8208
8209@item tfind end
8210Same as @samp{tfind none}.
8211
8212@item tfind
8213No argument means find the next trace snapshot.
8214
8215@item tfind -
8216Find the previous trace snapshot before the current one. This permits
8217retracing earlier steps.
8218
8219@item tfind tracepoint @var{num}
8220Find the next snapshot associated with tracepoint @var{num}. Search
8221proceeds forward from the last examined trace snapshot. If no
8222argument @var{num} is given, it means find the next snapshot collected
8223for the same tracepoint as the current snapshot.
8224
8225@item tfind pc @var{addr}
8226Find the next snapshot associated with the value @var{addr} of the
8227program counter. Search proceeds forward from the last examined trace
8228snapshot. If no argument @var{addr} is given, it means find the next
8229snapshot with the same value of PC as the current snapshot.
8230
8231@item tfind outside @var{addr1}, @var{addr2}
8232Find the next snapshot whose PC is outside the given range of
8233addresses.
8234
8235@item tfind range @var{addr1}, @var{addr2}
8236Find the next snapshot whose PC is between @var{addr1} and
8237@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8238
8239@item tfind line @r{[}@var{file}:@r{]}@var{n}
8240Find the next snapshot associated with the source line @var{n}. If
8241the optional argument @var{file} is given, refer to line @var{n} in
8242that source file. Search proceeds forward from the last examined
8243trace snapshot. If no argument @var{n} is given, it means find the
8244next line other than the one currently being examined; thus saying
8245@code{tfind line} repeatedly can appear to have the same effect as
8246stepping from line to line in a @emph{live} debugging session.
8247@end table
8248
8249The default arguments for the @code{tfind} commands are specifically
8250designed to make it easy to scan through the trace buffer. For
8251instance, @code{tfind} with no argument selects the next trace
8252snapshot, and @code{tfind -} with no argument selects the previous
8253trace snapshot. So, by giving one @code{tfind} command, and then
8254simply hitting @key{RET} repeatedly you can examine all the trace
8255snapshots in order. Or, by saying @code{tfind -} and then hitting
8256@key{RET} repeatedly you can examine the snapshots in reverse order.
8257The @code{tfind line} command with no argument selects the snapshot
8258for the next source line executed. The @code{tfind pc} command with
8259no argument selects the next snapshot with the same program counter
8260(PC) as the current frame. The @code{tfind tracepoint} command with
8261no argument selects the next trace snapshot collected by the same
8262tracepoint as the current one.
8263
8264In addition to letting you scan through the trace buffer manually,
8265these commands make it easy to construct @value{GDBN} scripts that
8266scan through the trace buffer and print out whatever collected data
8267you are interested in. Thus, if we want to examine the PC, FP, and SP
8268registers from each trace frame in the buffer, we can say this:
8269
8270@smallexample
8271(@value{GDBP}) @b{tfind start}
8272(@value{GDBP}) @b{while ($trace_frame != -1)}
8273> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8274 $trace_frame, $pc, $sp, $fp
8275> tfind
8276> end
8277
8278Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8279Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8280Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8281Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8282Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8283Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8284Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8285Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8286Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8287Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8288Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8289@end smallexample
8290
8291Or, if we want to examine the variable @code{X} at each source line in
8292the buffer:
8293
8294@smallexample
8295(@value{GDBP}) @b{tfind start}
8296(@value{GDBP}) @b{while ($trace_frame != -1)}
8297> printf "Frame %d, X == %d\n", $trace_frame, X
8298> tfind line
8299> end
8300
8301Frame 0, X = 1
8302Frame 7, X = 2
8303Frame 13, X = 255
8304@end smallexample
8305
8306@node tdump
8307@subsection @code{tdump}
8308@kindex tdump
8309@cindex dump all data collected at tracepoint
8310@cindex tracepoint data, display
8311
8312This command takes no arguments. It prints all the data collected at
8313the current trace snapshot.
8314
8315@smallexample
8316(@value{GDBP}) @b{trace 444}
8317(@value{GDBP}) @b{actions}
8318Enter actions for tracepoint #2, one per line:
8319> collect $regs, $locals, $args, gdb_long_test
8320> end
8321
8322(@value{GDBP}) @b{tstart}
8323
8324(@value{GDBP}) @b{tfind line 444}
8325#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8326at gdb_test.c:444
8327444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8328
8329(@value{GDBP}) @b{tdump}
8330Data collected at tracepoint 2, trace frame 1:
8331d0 0xc4aa0085 -995491707
8332d1 0x18 24
8333d2 0x80 128
8334d3 0x33 51
8335d4 0x71aea3d 119204413
8336d5 0x22 34
8337d6 0xe0 224
8338d7 0x380035 3670069
8339a0 0x19e24a 1696330
8340a1 0x3000668 50333288
8341a2 0x100 256
8342a3 0x322000 3284992
8343a4 0x3000698 50333336
8344a5 0x1ad3cc 1758156
8345fp 0x30bf3c 0x30bf3c
8346sp 0x30bf34 0x30bf34
8347ps 0x0 0
8348pc 0x20b2c8 0x20b2c8
8349fpcontrol 0x0 0
8350fpstatus 0x0 0
8351fpiaddr 0x0 0
8352p = 0x20e5b4 "gdb-test"
8353p1 = (void *) 0x11
8354p2 = (void *) 0x22
8355p3 = (void *) 0x33
8356p4 = (void *) 0x44
8357p5 = (void *) 0x55
8358p6 = (void *) 0x66
8359gdb_long_test = 17 '\021'
8360
8361(@value{GDBP})
8362@end smallexample
8363
8364@node save-tracepoints
8365@subsection @code{save-tracepoints @var{filename}}
8366@kindex save-tracepoints
8367@cindex save tracepoints for future sessions
8368
8369This command saves all current tracepoint definitions together with
8370their actions and passcounts, into a file @file{@var{filename}}
8371suitable for use in a later debugging session. To read the saved
8372tracepoint definitions, use the @code{source} command (@pxref{Command
8373Files}).
8374
8375@node Tracepoint Variables
8376@section Convenience Variables for Tracepoints
8377@cindex tracepoint variables
8378@cindex convenience variables for tracepoints
8379
8380@table @code
8381@vindex $trace_frame
8382@item (int) $trace_frame
8383The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8384snapshot is selected.
8385
8386@vindex $tracepoint
8387@item (int) $tracepoint
8388The tracepoint for the current trace snapshot.
8389
8390@vindex $trace_line
8391@item (int) $trace_line
8392The line number for the current trace snapshot.
8393
8394@vindex $trace_file
8395@item (char []) $trace_file
8396The source file for the current trace snapshot.
8397
8398@vindex $trace_func
8399@item (char []) $trace_func
8400The name of the function containing @code{$tracepoint}.
8401@end table
8402
8403Note: @code{$trace_file} is not suitable for use in @code{printf},
8404use @code{output} instead.
8405
8406Here's a simple example of using these convenience variables for
8407stepping through all the trace snapshots and printing some of their
8408data.
8409
8410@smallexample
8411(@value{GDBP}) @b{tfind start}
8412
8413(@value{GDBP}) @b{while $trace_frame != -1}
8414> output $trace_file
8415> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8416> tfind
8417> end
8418@end smallexample
8419
df0cd8c5
JB
8420@node Overlays
8421@chapter Debugging Programs That Use Overlays
8422@cindex overlays
8423
8424If your program is too large to fit completely in your target system's
8425memory, you can sometimes use @dfn{overlays} to work around this
8426problem. @value{GDBN} provides some support for debugging programs that
8427use overlays.
8428
8429@menu
8430* How Overlays Work:: A general explanation of overlays.
8431* Overlay Commands:: Managing overlays in @value{GDBN}.
8432* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8433 mapped by asking the inferior.
8434* Overlay Sample Program:: A sample program using overlays.
8435@end menu
8436
8437@node How Overlays Work
8438@section How Overlays Work
8439@cindex mapped overlays
8440@cindex unmapped overlays
8441@cindex load address, overlay's
8442@cindex mapped address
8443@cindex overlay area
8444
8445Suppose you have a computer whose instruction address space is only 64
8446kilobytes long, but which has much more memory which can be accessed by
8447other means: special instructions, segment registers, or memory
8448management hardware, for example. Suppose further that you want to
8449adapt a program which is larger than 64 kilobytes to run on this system.
8450
8451One solution is to identify modules of your program which are relatively
8452independent, and need not call each other directly; call these modules
8453@dfn{overlays}. Separate the overlays from the main program, and place
8454their machine code in the larger memory. Place your main program in
8455instruction memory, but leave at least enough space there to hold the
8456largest overlay as well.
8457
8458Now, to call a function located in an overlay, you must first copy that
8459overlay's machine code from the large memory into the space set aside
8460for it in the instruction memory, and then jump to its entry point
8461there.
8462
c928edc0
AC
8463@c NB: In the below the mapped area's size is greater or equal to the
8464@c size of all overlays. This is intentional to remind the developer
8465@c that overlays don't necessarily need to be the same size.
8466
474c8240 8467@smallexample
df0cd8c5 8468@group
c928edc0
AC
8469 Data Instruction Larger
8470Address Space Address Space Address Space
8471+-----------+ +-----------+ +-----------+
8472| | | | | |
8473+-----------+ +-----------+ +-----------+<-- overlay 1
8474| program | | main | .----| overlay 1 | load address
8475| variables | | program | | +-----------+
8476| and heap | | | | | |
8477+-----------+ | | | +-----------+<-- overlay 2
8478| | +-----------+ | | | load address
8479+-----------+ | | | .-| overlay 2 |
8480 | | | | | |
8481 mapped --->+-----------+ | | +-----------+
8482 address | | | | | |
8483 | overlay | <-' | | |
8484 | area | <---' +-----------+<-- overlay 3
8485 | | <---. | | load address
8486 +-----------+ `--| overlay 3 |
8487 | | | |
8488 +-----------+ | |
8489 +-----------+
8490 | |
8491 +-----------+
8492
8493 @anchor{A code overlay}A code overlay
df0cd8c5 8494@end group
474c8240 8495@end smallexample
df0cd8c5 8496
c928edc0
AC
8497The diagram (@pxref{A code overlay}) shows a system with separate data
8498and instruction address spaces. To map an overlay, the program copies
8499its code from the larger address space to the instruction address space.
8500Since the overlays shown here all use the same mapped address, only one
8501may be mapped at a time. For a system with a single address space for
8502data and instructions, the diagram would be similar, except that the
8503program variables and heap would share an address space with the main
8504program and the overlay area.
df0cd8c5
JB
8505
8506An overlay loaded into instruction memory and ready for use is called a
8507@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8508instruction memory. An overlay not present (or only partially present)
8509in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8510is its address in the larger memory. The mapped address is also called
8511the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8512called the @dfn{load memory address}, or @dfn{LMA}.
8513
8514Unfortunately, overlays are not a completely transparent way to adapt a
8515program to limited instruction memory. They introduce a new set of
8516global constraints you must keep in mind as you design your program:
8517
8518@itemize @bullet
8519
8520@item
8521Before calling or returning to a function in an overlay, your program
8522must make sure that overlay is actually mapped. Otherwise, the call or
8523return will transfer control to the right address, but in the wrong
8524overlay, and your program will probably crash.
8525
8526@item
8527If the process of mapping an overlay is expensive on your system, you
8528will need to choose your overlays carefully to minimize their effect on
8529your program's performance.
8530
8531@item
8532The executable file you load onto your system must contain each
8533overlay's instructions, appearing at the overlay's load address, not its
8534mapped address. However, each overlay's instructions must be relocated
8535and its symbols defined as if the overlay were at its mapped address.
8536You can use GNU linker scripts to specify different load and relocation
8537addresses for pieces of your program; see @ref{Overlay Description,,,
8538ld.info, Using ld: the GNU linker}.
8539
8540@item
8541The procedure for loading executable files onto your system must be able
8542to load their contents into the larger address space as well as the
8543instruction and data spaces.
8544
8545@end itemize
8546
8547The overlay system described above is rather simple, and could be
8548improved in many ways:
8549
8550@itemize @bullet
8551
8552@item
8553If your system has suitable bank switch registers or memory management
8554hardware, you could use those facilities to make an overlay's load area
8555contents simply appear at their mapped address in instruction space.
8556This would probably be faster than copying the overlay to its mapped
8557area in the usual way.
8558
8559@item
8560If your overlays are small enough, you could set aside more than one
8561overlay area, and have more than one overlay mapped at a time.
8562
8563@item
8564You can use overlays to manage data, as well as instructions. In
8565general, data overlays are even less transparent to your design than
8566code overlays: whereas code overlays only require care when you call or
8567return to functions, data overlays require care every time you access
8568the data. Also, if you change the contents of a data overlay, you
8569must copy its contents back out to its load address before you can copy a
8570different data overlay into the same mapped area.
8571
8572@end itemize
8573
8574
8575@node Overlay Commands
8576@section Overlay Commands
8577
8578To use @value{GDBN}'s overlay support, each overlay in your program must
8579correspond to a separate section of the executable file. The section's
8580virtual memory address and load memory address must be the overlay's
8581mapped and load addresses. Identifying overlays with sections allows
8582@value{GDBN} to determine the appropriate address of a function or
8583variable, depending on whether the overlay is mapped or not.
8584
8585@value{GDBN}'s overlay commands all start with the word @code{overlay};
8586you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8587
8588@table @code
8589@item overlay off
4644b6e3 8590@kindex overlay
df0cd8c5
JB
8591Disable @value{GDBN}'s overlay support. When overlay support is
8592disabled, @value{GDBN} assumes that all functions and variables are
8593always present at their mapped addresses. By default, @value{GDBN}'s
8594overlay support is disabled.
8595
8596@item overlay manual
df0cd8c5
JB
8597@cindex manual overlay debugging
8598Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8599relies on you to tell it which overlays are mapped, and which are not,
8600using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8601commands described below.
8602
8603@item overlay map-overlay @var{overlay}
8604@itemx overlay map @var{overlay}
df0cd8c5
JB
8605@cindex map an overlay
8606Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8607be the name of the object file section containing the overlay. When an
8608overlay is mapped, @value{GDBN} assumes it can find the overlay's
8609functions and variables at their mapped addresses. @value{GDBN} assumes
8610that any other overlays whose mapped ranges overlap that of
8611@var{overlay} are now unmapped.
8612
8613@item overlay unmap-overlay @var{overlay}
8614@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8615@cindex unmap an overlay
8616Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8617must be the name of the object file section containing the overlay.
8618When an overlay is unmapped, @value{GDBN} assumes it can find the
8619overlay's functions and variables at their load addresses.
8620
8621@item overlay auto
df0cd8c5
JB
8622Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8623consults a data structure the overlay manager maintains in the inferior
8624to see which overlays are mapped. For details, see @ref{Automatic
8625Overlay Debugging}.
8626
8627@item overlay load-target
8628@itemx overlay load
df0cd8c5
JB
8629@cindex reloading the overlay table
8630Re-read the overlay table from the inferior. Normally, @value{GDBN}
8631re-reads the table @value{GDBN} automatically each time the inferior
8632stops, so this command should only be necessary if you have changed the
8633overlay mapping yourself using @value{GDBN}. This command is only
8634useful when using automatic overlay debugging.
8635
8636@item overlay list-overlays
8637@itemx overlay list
8638@cindex listing mapped overlays
8639Display a list of the overlays currently mapped, along with their mapped
8640addresses, load addresses, and sizes.
8641
8642@end table
8643
8644Normally, when @value{GDBN} prints a code address, it includes the name
8645of the function the address falls in:
8646
474c8240 8647@smallexample
f7dc1244 8648(@value{GDBP}) print main
df0cd8c5 8649$3 = @{int ()@} 0x11a0 <main>
474c8240 8650@end smallexample
df0cd8c5
JB
8651@noindent
8652When overlay debugging is enabled, @value{GDBN} recognizes code in
8653unmapped overlays, and prints the names of unmapped functions with
8654asterisks around them. For example, if @code{foo} is a function in an
8655unmapped overlay, @value{GDBN} prints it this way:
8656
474c8240 8657@smallexample
f7dc1244 8658(@value{GDBP}) overlay list
df0cd8c5 8659No sections are mapped.
f7dc1244 8660(@value{GDBP}) print foo
df0cd8c5 8661$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8662@end smallexample
df0cd8c5
JB
8663@noindent
8664When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8665name normally:
8666
474c8240 8667@smallexample
f7dc1244 8668(@value{GDBP}) overlay list
b383017d 8669Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8670 mapped at 0x1016 - 0x104a
f7dc1244 8671(@value{GDBP}) print foo
df0cd8c5 8672$6 = @{int (int)@} 0x1016 <foo>
474c8240 8673@end smallexample
df0cd8c5
JB
8674
8675When overlay debugging is enabled, @value{GDBN} can find the correct
8676address for functions and variables in an overlay, whether or not the
8677overlay is mapped. This allows most @value{GDBN} commands, like
8678@code{break} and @code{disassemble}, to work normally, even on unmapped
8679code. However, @value{GDBN}'s breakpoint support has some limitations:
8680
8681@itemize @bullet
8682@item
8683@cindex breakpoints in overlays
8684@cindex overlays, setting breakpoints in
8685You can set breakpoints in functions in unmapped overlays, as long as
8686@value{GDBN} can write to the overlay at its load address.
8687@item
8688@value{GDBN} can not set hardware or simulator-based breakpoints in
8689unmapped overlays. However, if you set a breakpoint at the end of your
8690overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8691you are using manual overlay management), @value{GDBN} will re-set its
8692breakpoints properly.
8693@end itemize
8694
8695
8696@node Automatic Overlay Debugging
8697@section Automatic Overlay Debugging
8698@cindex automatic overlay debugging
8699
8700@value{GDBN} can automatically track which overlays are mapped and which
8701are not, given some simple co-operation from the overlay manager in the
8702inferior. If you enable automatic overlay debugging with the
8703@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8704looks in the inferior's memory for certain variables describing the
8705current state of the overlays.
8706
8707Here are the variables your overlay manager must define to support
8708@value{GDBN}'s automatic overlay debugging:
8709
8710@table @asis
8711
8712@item @code{_ovly_table}:
8713This variable must be an array of the following structures:
8714
474c8240 8715@smallexample
df0cd8c5
JB
8716struct
8717@{
8718 /* The overlay's mapped address. */
8719 unsigned long vma;
8720
8721 /* The size of the overlay, in bytes. */
8722 unsigned long size;
8723
8724 /* The overlay's load address. */
8725 unsigned long lma;
8726
8727 /* Non-zero if the overlay is currently mapped;
8728 zero otherwise. */
8729 unsigned long mapped;
8730@}
474c8240 8731@end smallexample
df0cd8c5
JB
8732
8733@item @code{_novlys}:
8734This variable must be a four-byte signed integer, holding the total
8735number of elements in @code{_ovly_table}.
8736
8737@end table
8738
8739To decide whether a particular overlay is mapped or not, @value{GDBN}
8740looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8741@code{lma} members equal the VMA and LMA of the overlay's section in the
8742executable file. When @value{GDBN} finds a matching entry, it consults
8743the entry's @code{mapped} member to determine whether the overlay is
8744currently mapped.
8745
81d46470 8746In addition, your overlay manager may define a function called
def71bfa 8747@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8748will silently set a breakpoint there. If the overlay manager then
8749calls this function whenever it has changed the overlay table, this
8750will enable @value{GDBN} to accurately keep track of which overlays
8751are in program memory, and update any breakpoints that may be set
b383017d 8752in overlays. This will allow breakpoints to work even if the
81d46470
MS
8753overlays are kept in ROM or other non-writable memory while they
8754are not being executed.
df0cd8c5
JB
8755
8756@node Overlay Sample Program
8757@section Overlay Sample Program
8758@cindex overlay example program
8759
8760When linking a program which uses overlays, you must place the overlays
8761at their load addresses, while relocating them to run at their mapped
8762addresses. To do this, you must write a linker script (@pxref{Overlay
8763Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8764since linker scripts are specific to a particular host system, target
8765architecture, and target memory layout, this manual cannot provide
8766portable sample code demonstrating @value{GDBN}'s overlay support.
8767
8768However, the @value{GDBN} source distribution does contain an overlaid
8769program, with linker scripts for a few systems, as part of its test
8770suite. The program consists of the following files from
8771@file{gdb/testsuite/gdb.base}:
8772
8773@table @file
8774@item overlays.c
8775The main program file.
8776@item ovlymgr.c
8777A simple overlay manager, used by @file{overlays.c}.
8778@item foo.c
8779@itemx bar.c
8780@itemx baz.c
8781@itemx grbx.c
8782Overlay modules, loaded and used by @file{overlays.c}.
8783@item d10v.ld
8784@itemx m32r.ld
8785Linker scripts for linking the test program on the @code{d10v-elf}
8786and @code{m32r-elf} targets.
8787@end table
8788
8789You can build the test program using the @code{d10v-elf} GCC
8790cross-compiler like this:
8791
474c8240 8792@smallexample
df0cd8c5
JB
8793$ d10v-elf-gcc -g -c overlays.c
8794$ d10v-elf-gcc -g -c ovlymgr.c
8795$ d10v-elf-gcc -g -c foo.c
8796$ d10v-elf-gcc -g -c bar.c
8797$ d10v-elf-gcc -g -c baz.c
8798$ d10v-elf-gcc -g -c grbx.c
8799$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8800 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8801@end smallexample
df0cd8c5
JB
8802
8803The build process is identical for any other architecture, except that
8804you must substitute the appropriate compiler and linker script for the
8805target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8806
8807
6d2ebf8b 8808@node Languages
c906108c
SS
8809@chapter Using @value{GDBN} with Different Languages
8810@cindex languages
8811
c906108c
SS
8812Although programming languages generally have common aspects, they are
8813rarely expressed in the same manner. For instance, in ANSI C,
8814dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8815Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8816represented (and displayed) differently. Hex numbers in C appear as
c906108c 8817@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8818
8819@cindex working language
8820Language-specific information is built into @value{GDBN} for some languages,
8821allowing you to express operations like the above in your program's
8822native language, and allowing @value{GDBN} to output values in a manner
8823consistent with the syntax of your program's native language. The
8824language you use to build expressions is called the @dfn{working
8825language}.
8826
8827@menu
8828* Setting:: Switching between source languages
8829* Show:: Displaying the language
c906108c 8830* Checks:: Type and range checks
79a6e687
BW
8831* Supported Languages:: Supported languages
8832* Unsupported Languages:: Unsupported languages
c906108c
SS
8833@end menu
8834
6d2ebf8b 8835@node Setting
79a6e687 8836@section Switching Between Source Languages
c906108c
SS
8837
8838There are two ways to control the working language---either have @value{GDBN}
8839set it automatically, or select it manually yourself. You can use the
8840@code{set language} command for either purpose. On startup, @value{GDBN}
8841defaults to setting the language automatically. The working language is
8842used to determine how expressions you type are interpreted, how values
8843are printed, etc.
8844
8845In addition to the working language, every source file that
8846@value{GDBN} knows about has its own working language. For some object
8847file formats, the compiler might indicate which language a particular
8848source file is in. However, most of the time @value{GDBN} infers the
8849language from the name of the file. The language of a source file
b37052ae 8850controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8851show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8852set the language of a source file from within @value{GDBN}, but you can
8853set the language associated with a filename extension. @xref{Show, ,
79a6e687 8854Displaying the Language}.
c906108c
SS
8855
8856This is most commonly a problem when you use a program, such
5d161b24 8857as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8858another language. In that case, make the
8859program use @code{#line} directives in its C output; that way
8860@value{GDBN} will know the correct language of the source code of the original
8861program, and will display that source code, not the generated C code.
8862
8863@menu
8864* Filenames:: Filename extensions and languages.
8865* Manually:: Setting the working language manually
8866* Automatically:: Having @value{GDBN} infer the source language
8867@end menu
8868
6d2ebf8b 8869@node Filenames
79a6e687 8870@subsection List of Filename Extensions and Languages
c906108c
SS
8871
8872If a source file name ends in one of the following extensions, then
8873@value{GDBN} infers that its language is the one indicated.
8874
8875@table @file
e07c999f
PH
8876@item .ada
8877@itemx .ads
8878@itemx .adb
8879@itemx .a
8880Ada source file.
c906108c
SS
8881
8882@item .c
8883C source file
8884
8885@item .C
8886@itemx .cc
8887@itemx .cp
8888@itemx .cpp
8889@itemx .cxx
8890@itemx .c++
b37052ae 8891C@t{++} source file
c906108c 8892
b37303ee
AF
8893@item .m
8894Objective-C source file
8895
c906108c
SS
8896@item .f
8897@itemx .F
8898Fortran source file
8899
c906108c
SS
8900@item .mod
8901Modula-2 source file
c906108c
SS
8902
8903@item .s
8904@itemx .S
8905Assembler source file. This actually behaves almost like C, but
8906@value{GDBN} does not skip over function prologues when stepping.
8907@end table
8908
8909In addition, you may set the language associated with a filename
79a6e687 8910extension. @xref{Show, , Displaying the Language}.
c906108c 8911
6d2ebf8b 8912@node Manually
79a6e687 8913@subsection Setting the Working Language
c906108c
SS
8914
8915If you allow @value{GDBN} to set the language automatically,
8916expressions are interpreted the same way in your debugging session and
8917your program.
8918
8919@kindex set language
8920If you wish, you may set the language manually. To do this, issue the
8921command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8922a language, such as
c906108c 8923@code{c} or @code{modula-2}.
c906108c
SS
8924For a list of the supported languages, type @samp{set language}.
8925
c906108c
SS
8926Setting the language manually prevents @value{GDBN} from updating the working
8927language automatically. This can lead to confusion if you try
8928to debug a program when the working language is not the same as the
8929source language, when an expression is acceptable to both
8930languages---but means different things. For instance, if the current
8931source file were written in C, and @value{GDBN} was parsing Modula-2, a
8932command such as:
8933
474c8240 8934@smallexample
c906108c 8935print a = b + c
474c8240 8936@end smallexample
c906108c
SS
8937
8938@noindent
8939might not have the effect you intended. In C, this means to add
8940@code{b} and @code{c} and place the result in @code{a}. The result
8941printed would be the value of @code{a}. In Modula-2, this means to compare
8942@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8943
6d2ebf8b 8944@node Automatically
79a6e687 8945@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8946
8947To have @value{GDBN} set the working language automatically, use
8948@samp{set language local} or @samp{set language auto}. @value{GDBN}
8949then infers the working language. That is, when your program stops in a
8950frame (usually by encountering a breakpoint), @value{GDBN} sets the
8951working language to the language recorded for the function in that
8952frame. If the language for a frame is unknown (that is, if the function
8953or block corresponding to the frame was defined in a source file that
8954does not have a recognized extension), the current working language is
8955not changed, and @value{GDBN} issues a warning.
8956
8957This may not seem necessary for most programs, which are written
8958entirely in one source language. However, program modules and libraries
8959written in one source language can be used by a main program written in
8960a different source language. Using @samp{set language auto} in this
8961case frees you from having to set the working language manually.
8962
6d2ebf8b 8963@node Show
79a6e687 8964@section Displaying the Language
c906108c
SS
8965
8966The following commands help you find out which language is the
8967working language, and also what language source files were written in.
8968
c906108c
SS
8969@table @code
8970@item show language
9c16f35a 8971@kindex show language
c906108c
SS
8972Display the current working language. This is the
8973language you can use with commands such as @code{print} to
8974build and compute expressions that may involve variables in your program.
8975
8976@item info frame
4644b6e3 8977@kindex info frame@r{, show the source language}
5d161b24 8978Display the source language for this frame. This language becomes the
c906108c 8979working language if you use an identifier from this frame.
79a6e687 8980@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8981information listed here.
8982
8983@item info source
4644b6e3 8984@kindex info source@r{, show the source language}
c906108c 8985Display the source language of this source file.
5d161b24 8986@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8987information listed here.
8988@end table
8989
8990In unusual circumstances, you may have source files with extensions
8991not in the standard list. You can then set the extension associated
8992with a language explicitly:
8993
c906108c 8994@table @code
09d4efe1 8995@item set extension-language @var{ext} @var{language}
9c16f35a 8996@kindex set extension-language
09d4efe1
EZ
8997Tell @value{GDBN} that source files with extension @var{ext} are to be
8998assumed as written in the source language @var{language}.
c906108c
SS
8999
9000@item info extensions
9c16f35a 9001@kindex info extensions
c906108c
SS
9002List all the filename extensions and the associated languages.
9003@end table
9004
6d2ebf8b 9005@node Checks
79a6e687 9006@section Type and Range Checking
c906108c
SS
9007
9008@quotation
9009@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9010checking are included, but they do not yet have any effect. This
9011section documents the intended facilities.
9012@end quotation
9013@c FIXME remove warning when type/range code added
9014
9015Some languages are designed to guard you against making seemingly common
9016errors through a series of compile- and run-time checks. These include
9017checking the type of arguments to functions and operators, and making
9018sure mathematical overflows are caught at run time. Checks such as
9019these help to ensure a program's correctness once it has been compiled
9020by eliminating type mismatches, and providing active checks for range
9021errors when your program is running.
9022
9023@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9024Although @value{GDBN} does not check the statements in your program,
9025it can check expressions entered directly into @value{GDBN} for
9026evaluation via the @code{print} command, for example. As with the
9027working language, @value{GDBN} can also decide whether or not to check
9028automatically based on your program's source language.
79a6e687 9029@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9030settings of supported languages.
c906108c
SS
9031
9032@menu
9033* Type Checking:: An overview of type checking
9034* Range Checking:: An overview of range checking
9035@end menu
9036
9037@cindex type checking
9038@cindex checks, type
6d2ebf8b 9039@node Type Checking
79a6e687 9040@subsection An Overview of Type Checking
c906108c
SS
9041
9042Some languages, such as Modula-2, are strongly typed, meaning that the
9043arguments to operators and functions have to be of the correct type,
9044otherwise an error occurs. These checks prevent type mismatch
9045errors from ever causing any run-time problems. For example,
9046
9047@smallexample
90481 + 2 @result{} 3
9049@exdent but
9050@error{} 1 + 2.3
9051@end smallexample
9052
9053The second example fails because the @code{CARDINAL} 1 is not
9054type-compatible with the @code{REAL} 2.3.
9055
5d161b24
DB
9056For the expressions you use in @value{GDBN} commands, you can tell the
9057@value{GDBN} type checker to skip checking;
9058to treat any mismatches as errors and abandon the expression;
9059or to only issue warnings when type mismatches occur,
c906108c
SS
9060but evaluate the expression anyway. When you choose the last of
9061these, @value{GDBN} evaluates expressions like the second example above, but
9062also issues a warning.
9063
5d161b24
DB
9064Even if you turn type checking off, there may be other reasons
9065related to type that prevent @value{GDBN} from evaluating an expression.
9066For instance, @value{GDBN} does not know how to add an @code{int} and
9067a @code{struct foo}. These particular type errors have nothing to do
9068with the language in use, and usually arise from expressions, such as
c906108c
SS
9069the one described above, which make little sense to evaluate anyway.
9070
9071Each language defines to what degree it is strict about type. For
9072instance, both Modula-2 and C require the arguments to arithmetical
9073operators to be numbers. In C, enumerated types and pointers can be
9074represented as numbers, so that they are valid arguments to mathematical
79a6e687 9075operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9076details on specific languages.
9077
9078@value{GDBN} provides some additional commands for controlling the type checker:
9079
c906108c
SS
9080@kindex set check type
9081@kindex show check type
9082@table @code
9083@item set check type auto
9084Set type checking on or off based on the current working language.
79a6e687 9085@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9086each language.
9087
9088@item set check type on
9089@itemx set check type off
9090Set type checking on or off, overriding the default setting for the
9091current working language. Issue a warning if the setting does not
9092match the language default. If any type mismatches occur in
d4f3574e 9093evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9094message and aborts evaluation of the expression.
9095
9096@item set check type warn
9097Cause the type checker to issue warnings, but to always attempt to
9098evaluate the expression. Evaluating the expression may still
9099be impossible for other reasons. For example, @value{GDBN} cannot add
9100numbers and structures.
9101
9102@item show type
5d161b24 9103Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9104is setting it automatically.
9105@end table
9106
9107@cindex range checking
9108@cindex checks, range
6d2ebf8b 9109@node Range Checking
79a6e687 9110@subsection An Overview of Range Checking
c906108c
SS
9111
9112In some languages (such as Modula-2), it is an error to exceed the
9113bounds of a type; this is enforced with run-time checks. Such range
9114checking is meant to ensure program correctness by making sure
9115computations do not overflow, or indices on an array element access do
9116not exceed the bounds of the array.
9117
9118For expressions you use in @value{GDBN} commands, you can tell
9119@value{GDBN} to treat range errors in one of three ways: ignore them,
9120always treat them as errors and abandon the expression, or issue
9121warnings but evaluate the expression anyway.
9122
9123A range error can result from numerical overflow, from exceeding an
9124array index bound, or when you type a constant that is not a member
9125of any type. Some languages, however, do not treat overflows as an
9126error. In many implementations of C, mathematical overflow causes the
9127result to ``wrap around'' to lower values---for example, if @var{m} is
9128the largest integer value, and @var{s} is the smallest, then
9129
474c8240 9130@smallexample
c906108c 9131@var{m} + 1 @result{} @var{s}
474c8240 9132@end smallexample
c906108c
SS
9133
9134This, too, is specific to individual languages, and in some cases
79a6e687
BW
9135specific to individual compilers or machines. @xref{Supported Languages, ,
9136Supported Languages}, for further details on specific languages.
c906108c
SS
9137
9138@value{GDBN} provides some additional commands for controlling the range checker:
9139
c906108c
SS
9140@kindex set check range
9141@kindex show check range
9142@table @code
9143@item set check range auto
9144Set range checking on or off based on the current working language.
79a6e687 9145@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9146each language.
9147
9148@item set check range on
9149@itemx set check range off
9150Set range checking on or off, overriding the default setting for the
9151current working language. A warning is issued if the setting does not
c3f6f71d
JM
9152match the language default. If a range error occurs and range checking is on,
9153then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9154
9155@item set check range warn
9156Output messages when the @value{GDBN} range checker detects a range error,
9157but attempt to evaluate the expression anyway. Evaluating the
9158expression may still be impossible for other reasons, such as accessing
9159memory that the process does not own (a typical example from many Unix
9160systems).
9161
9162@item show range
9163Show the current setting of the range checker, and whether or not it is
9164being set automatically by @value{GDBN}.
9165@end table
c906108c 9166
79a6e687
BW
9167@node Supported Languages
9168@section Supported Languages
c906108c 9169
9c16f35a
EZ
9170@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9171assembly, Modula-2, and Ada.
cce74817 9172@c This is false ...
c906108c
SS
9173Some @value{GDBN} features may be used in expressions regardless of the
9174language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9175and the @samp{@{type@}addr} construct (@pxref{Expressions,
9176,Expressions}) can be used with the constructs of any supported
9177language.
9178
9179The following sections detail to what degree each source language is
9180supported by @value{GDBN}. These sections are not meant to be language
9181tutorials or references, but serve only as a reference guide to what the
9182@value{GDBN} expression parser accepts, and what input and output
9183formats should look like for different languages. There are many good
9184books written on each of these languages; please look to these for a
9185language reference or tutorial.
9186
c906108c 9187@menu
b37303ee 9188* C:: C and C@t{++}
b383017d 9189* Objective-C:: Objective-C
09d4efe1 9190* Fortran:: Fortran
9c16f35a 9191* Pascal:: Pascal
b37303ee 9192* Modula-2:: Modula-2
e07c999f 9193* Ada:: Ada
c906108c
SS
9194@end menu
9195
6d2ebf8b 9196@node C
b37052ae 9197@subsection C and C@t{++}
7a292a7a 9198
b37052ae
EZ
9199@cindex C and C@t{++}
9200@cindex expressions in C or C@t{++}
c906108c 9201
b37052ae 9202Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9203to both languages. Whenever this is the case, we discuss those languages
9204together.
9205
41afff9a
EZ
9206@cindex C@t{++}
9207@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9208@cindex @sc{gnu} C@t{++}
9209The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9210compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9211effectively, you must compile your C@t{++} programs with a supported
9212C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9213compiler (@code{aCC}).
9214
0179ffac
DC
9215For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9216format; if it doesn't work on your system, try the stabs+ debugging
9217format. You can select those formats explicitly with the @code{g++}
9218command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9219@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9220gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9221
c906108c 9222@menu
b37052ae
EZ
9223* C Operators:: C and C@t{++} operators
9224* C Constants:: C and C@t{++} constants
79a6e687 9225* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9226* C Defaults:: Default settings for C and C@t{++}
9227* C Checks:: C and C@t{++} type and range checks
c906108c 9228* Debugging C:: @value{GDBN} and C
79a6e687 9229* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9230* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9231@end menu
c906108c 9232
6d2ebf8b 9233@node C Operators
79a6e687 9234@subsubsection C and C@t{++} Operators
7a292a7a 9235
b37052ae 9236@cindex C and C@t{++} operators
c906108c
SS
9237
9238Operators must be defined on values of specific types. For instance,
9239@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9240often defined on groups of types.
c906108c 9241
b37052ae 9242For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9243
9244@itemize @bullet
53a5351d 9245
c906108c 9246@item
c906108c 9247@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9248specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9249
9250@item
d4f3574e
SS
9251@emph{Floating-point types} include @code{float}, @code{double}, and
9252@code{long double} (if supported by the target platform).
c906108c
SS
9253
9254@item
53a5351d 9255@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9256
9257@item
9258@emph{Scalar types} include all of the above.
53a5351d 9259
c906108c
SS
9260@end itemize
9261
9262@noindent
9263The following operators are supported. They are listed here
9264in order of increasing precedence:
9265
9266@table @code
9267@item ,
9268The comma or sequencing operator. Expressions in a comma-separated list
9269are evaluated from left to right, with the result of the entire
9270expression being the last expression evaluated.
9271
9272@item =
9273Assignment. The value of an assignment expression is the value
9274assigned. Defined on scalar types.
9275
9276@item @var{op}=
9277Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9278and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9279@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9280@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9281@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9282
9283@item ?:
9284The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9285of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9286integral type.
9287
9288@item ||
9289Logical @sc{or}. Defined on integral types.
9290
9291@item &&
9292Logical @sc{and}. Defined on integral types.
9293
9294@item |
9295Bitwise @sc{or}. Defined on integral types.
9296
9297@item ^
9298Bitwise exclusive-@sc{or}. Defined on integral types.
9299
9300@item &
9301Bitwise @sc{and}. Defined on integral types.
9302
9303@item ==@r{, }!=
9304Equality and inequality. Defined on scalar types. The value of these
9305expressions is 0 for false and non-zero for true.
9306
9307@item <@r{, }>@r{, }<=@r{, }>=
9308Less than, greater than, less than or equal, greater than or equal.
9309Defined on scalar types. The value of these expressions is 0 for false
9310and non-zero for true.
9311
9312@item <<@r{, }>>
9313left shift, and right shift. Defined on integral types.
9314
9315@item @@
9316The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9317
9318@item +@r{, }-
9319Addition and subtraction. Defined on integral types, floating-point types and
9320pointer types.
9321
9322@item *@r{, }/@r{, }%
9323Multiplication, division, and modulus. Multiplication and division are
9324defined on integral and floating-point types. Modulus is defined on
9325integral types.
9326
9327@item ++@r{, }--
9328Increment and decrement. When appearing before a variable, the
9329operation is performed before the variable is used in an expression;
9330when appearing after it, the variable's value is used before the
9331operation takes place.
9332
9333@item *
9334Pointer dereferencing. Defined on pointer types. Same precedence as
9335@code{++}.
9336
9337@item &
9338Address operator. Defined on variables. Same precedence as @code{++}.
9339
b37052ae
EZ
9340For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9341allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9342to examine the address
b37052ae 9343where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9344stored.
c906108c
SS
9345
9346@item -
9347Negative. Defined on integral and floating-point types. Same
9348precedence as @code{++}.
9349
9350@item !
9351Logical negation. Defined on integral types. Same precedence as
9352@code{++}.
9353
9354@item ~
9355Bitwise complement operator. Defined on integral types. Same precedence as
9356@code{++}.
9357
9358
9359@item .@r{, }->
9360Structure member, and pointer-to-structure member. For convenience,
9361@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9362pointer based on the stored type information.
9363Defined on @code{struct} and @code{union} data.
9364
c906108c
SS
9365@item .*@r{, }->*
9366Dereferences of pointers to members.
c906108c
SS
9367
9368@item []
9369Array indexing. @code{@var{a}[@var{i}]} is defined as
9370@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9371
9372@item ()
9373Function parameter list. Same precedence as @code{->}.
9374
c906108c 9375@item ::
b37052ae 9376C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9377and @code{class} types.
c906108c
SS
9378
9379@item ::
7a292a7a
SS
9380Doubled colons also represent the @value{GDBN} scope operator
9381(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9382above.
c906108c
SS
9383@end table
9384
c906108c
SS
9385If an operator is redefined in the user code, @value{GDBN} usually
9386attempts to invoke the redefined version instead of using the operator's
9387predefined meaning.
c906108c 9388
6d2ebf8b 9389@node C Constants
79a6e687 9390@subsubsection C and C@t{++} Constants
c906108c 9391
b37052ae 9392@cindex C and C@t{++} constants
c906108c 9393
b37052ae 9394@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9395following ways:
c906108c
SS
9396
9397@itemize @bullet
9398@item
9399Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9400specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9401by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9402@samp{l}, specifying that the constant should be treated as a
9403@code{long} value.
9404
9405@item
9406Floating point constants are a sequence of digits, followed by a decimal
9407point, followed by a sequence of digits, and optionally followed by an
9408exponent. An exponent is of the form:
9409@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9410sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9411A floating-point constant may also end with a letter @samp{f} or
9412@samp{F}, specifying that the constant should be treated as being of
9413the @code{float} (as opposed to the default @code{double}) type; or with
9414a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9415constant.
c906108c
SS
9416
9417@item
9418Enumerated constants consist of enumerated identifiers, or their
9419integral equivalents.
9420
9421@item
9422Character constants are a single character surrounded by single quotes
9423(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9424(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9425be represented by a letter or by @dfn{escape sequences}, which are of
9426the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9427of the character's ordinal value; or of the form @samp{\@var{x}}, where
9428@samp{@var{x}} is a predefined special character---for example,
9429@samp{\n} for newline.
9430
9431@item
96a2c332
SS
9432String constants are a sequence of character constants surrounded by
9433double quotes (@code{"}). Any valid character constant (as described
9434above) may appear. Double quotes within the string must be preceded by
9435a backslash, so for instance @samp{"a\"b'c"} is a string of five
9436characters.
c906108c
SS
9437
9438@item
9439Pointer constants are an integral value. You can also write pointers
9440to constants using the C operator @samp{&}.
9441
9442@item
9443Array constants are comma-separated lists surrounded by braces @samp{@{}
9444and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9445integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9446and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9447@end itemize
9448
79a6e687
BW
9449@node C Plus Plus Expressions
9450@subsubsection C@t{++} Expressions
b37052ae
EZ
9451
9452@cindex expressions in C@t{++}
9453@value{GDBN} expression handling can interpret most C@t{++} expressions.
9454
0179ffac
DC
9455@cindex debugging C@t{++} programs
9456@cindex C@t{++} compilers
9457@cindex debug formats and C@t{++}
9458@cindex @value{NGCC} and C@t{++}
c906108c 9459@quotation
b37052ae 9460@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9461proper compiler and the proper debug format. Currently, @value{GDBN}
9462works best when debugging C@t{++} code that is compiled with
9463@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9464@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9465stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9466stabs+ as their default debug format, so you usually don't need to
9467specify a debug format explicitly. Other compilers and/or debug formats
9468are likely to work badly or not at all when using @value{GDBN} to debug
9469C@t{++} code.
c906108c 9470@end quotation
c906108c
SS
9471
9472@enumerate
9473
9474@cindex member functions
9475@item
9476Member function calls are allowed; you can use expressions like
9477
474c8240 9478@smallexample
c906108c 9479count = aml->GetOriginal(x, y)
474c8240 9480@end smallexample
c906108c 9481
41afff9a 9482@vindex this@r{, inside C@t{++} member functions}
b37052ae 9483@cindex namespace in C@t{++}
c906108c
SS
9484@item
9485While a member function is active (in the selected stack frame), your
9486expressions have the same namespace available as the member function;
9487that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9488pointer @code{this} following the same rules as C@t{++}.
c906108c 9489
c906108c 9490@cindex call overloaded functions
d4f3574e 9491@cindex overloaded functions, calling
b37052ae 9492@cindex type conversions in C@t{++}
c906108c
SS
9493@item
9494You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9495call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9496perform overload resolution involving user-defined type conversions,
9497calls to constructors, or instantiations of templates that do not exist
9498in the program. It also cannot handle ellipsis argument lists or
9499default arguments.
9500
9501It does perform integral conversions and promotions, floating-point
9502promotions, arithmetic conversions, pointer conversions, conversions of
9503class objects to base classes, and standard conversions such as those of
9504functions or arrays to pointers; it requires an exact match on the
9505number of function arguments.
9506
9507Overload resolution is always performed, unless you have specified
79a6e687
BW
9508@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9509,@value{GDBN} Features for C@t{++}}.
c906108c 9510
d4f3574e 9511You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9512explicit function signature to call an overloaded function, as in
9513@smallexample
9514p 'foo(char,int)'('x', 13)
9515@end smallexample
d4f3574e 9516
c906108c 9517The @value{GDBN} command-completion facility can simplify this;
79a6e687 9518see @ref{Completion, ,Command Completion}.
c906108c 9519
c906108c
SS
9520@cindex reference declarations
9521@item
b37052ae
EZ
9522@value{GDBN} understands variables declared as C@t{++} references; you can use
9523them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9524dereferenced.
9525
9526In the parameter list shown when @value{GDBN} displays a frame, the values of
9527reference variables are not displayed (unlike other variables); this
9528avoids clutter, since references are often used for large structures.
9529The @emph{address} of a reference variable is always shown, unless
9530you have specified @samp{set print address off}.
9531
9532@item
b37052ae 9533@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9534expressions can use it just as expressions in your program do. Since
9535one scope may be defined in another, you can use @code{::} repeatedly if
9536necessary, for example in an expression like
9537@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9538resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9539debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9540@end enumerate
9541
b37052ae 9542In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9543calling virtual functions correctly, printing out virtual bases of
9544objects, calling functions in a base subobject, casting objects, and
9545invoking user-defined operators.
c906108c 9546
6d2ebf8b 9547@node C Defaults
79a6e687 9548@subsubsection C and C@t{++} Defaults
7a292a7a 9549
b37052ae 9550@cindex C and C@t{++} defaults
c906108c 9551
c906108c
SS
9552If you allow @value{GDBN} to set type and range checking automatically, they
9553both default to @code{off} whenever the working language changes to
b37052ae 9554C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9555selects the working language.
c906108c
SS
9556
9557If you allow @value{GDBN} to set the language automatically, it
9558recognizes source files whose names end with @file{.c}, @file{.C}, or
9559@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9560these files, it sets the working language to C or C@t{++}.
79a6e687 9561@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9562for further details.
9563
c906108c
SS
9564@c Type checking is (a) primarily motivated by Modula-2, and (b)
9565@c unimplemented. If (b) changes, it might make sense to let this node
9566@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9567
6d2ebf8b 9568@node C Checks
79a6e687 9569@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9570
b37052ae 9571@cindex C and C@t{++} checks
c906108c 9572
b37052ae 9573By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9574is not used. However, if you turn type checking on, @value{GDBN}
9575considers two variables type equivalent if:
9576
9577@itemize @bullet
9578@item
9579The two variables are structured and have the same structure, union, or
9580enumerated tag.
9581
9582@item
9583The two variables have the same type name, or types that have been
9584declared equivalent through @code{typedef}.
9585
9586@ignore
9587@c leaving this out because neither J Gilmore nor R Pesch understand it.
9588@c FIXME--beers?
9589@item
9590The two @code{struct}, @code{union}, or @code{enum} variables are
9591declared in the same declaration. (Note: this may not be true for all C
9592compilers.)
9593@end ignore
9594@end itemize
9595
9596Range checking, if turned on, is done on mathematical operations. Array
9597indices are not checked, since they are often used to index a pointer
9598that is not itself an array.
c906108c 9599
6d2ebf8b 9600@node Debugging C
c906108c 9601@subsubsection @value{GDBN} and C
c906108c
SS
9602
9603The @code{set print union} and @code{show print union} commands apply to
9604the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9605inside a @code{struct} or @code{class} is also printed. Otherwise, it
9606appears as @samp{@{...@}}.
c906108c
SS
9607
9608The @code{@@} operator aids in the debugging of dynamic arrays, formed
9609with pointers and a memory allocation function. @xref{Expressions,
9610,Expressions}.
9611
79a6e687
BW
9612@node Debugging C Plus Plus
9613@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9614
b37052ae 9615@cindex commands for C@t{++}
7a292a7a 9616
b37052ae
EZ
9617Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9618designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9619
9620@table @code
9621@cindex break in overloaded functions
9622@item @r{breakpoint menus}
9623When you want a breakpoint in a function whose name is overloaded,
9624@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9625you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9626
b37052ae 9627@cindex overloading in C@t{++}
c906108c
SS
9628@item rbreak @var{regex}
9629Setting breakpoints using regular expressions is helpful for setting
9630breakpoints on overloaded functions that are not members of any special
9631classes.
79a6e687 9632@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9633
b37052ae 9634@cindex C@t{++} exception handling
c906108c
SS
9635@item catch throw
9636@itemx catch catch
b37052ae 9637Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9638Catchpoints, , Setting Catchpoints}.
c906108c
SS
9639
9640@cindex inheritance
9641@item ptype @var{typename}
9642Print inheritance relationships as well as other information for type
9643@var{typename}.
9644@xref{Symbols, ,Examining the Symbol Table}.
9645
b37052ae 9646@cindex C@t{++} symbol display
c906108c
SS
9647@item set print demangle
9648@itemx show print demangle
9649@itemx set print asm-demangle
9650@itemx show print asm-demangle
b37052ae
EZ
9651Control whether C@t{++} symbols display in their source form, both when
9652displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9653@xref{Print Settings, ,Print Settings}.
c906108c
SS
9654
9655@item set print object
9656@itemx show print object
9657Choose whether to print derived (actual) or declared types of objects.
79a6e687 9658@xref{Print Settings, ,Print Settings}.
c906108c
SS
9659
9660@item set print vtbl
9661@itemx show print vtbl
9662Control the format for printing virtual function tables.
79a6e687 9663@xref{Print Settings, ,Print Settings}.
c906108c 9664(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9665ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9666
9667@kindex set overload-resolution
d4f3574e 9668@cindex overloaded functions, overload resolution
c906108c 9669@item set overload-resolution on
b37052ae 9670Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9671is on. For overloaded functions, @value{GDBN} evaluates the arguments
9672and searches for a function whose signature matches the argument types,
79a6e687
BW
9673using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9674Expressions, ,C@t{++} Expressions}, for details).
9675If it cannot find a match, it emits a message.
c906108c
SS
9676
9677@item set overload-resolution off
b37052ae 9678Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9679overloaded functions that are not class member functions, @value{GDBN}
9680chooses the first function of the specified name that it finds in the
9681symbol table, whether or not its arguments are of the correct type. For
9682overloaded functions that are class member functions, @value{GDBN}
9683searches for a function whose signature @emph{exactly} matches the
9684argument types.
c906108c 9685
9c16f35a
EZ
9686@kindex show overload-resolution
9687@item show overload-resolution
9688Show the current setting of overload resolution.
9689
c906108c
SS
9690@item @r{Overloaded symbol names}
9691You can specify a particular definition of an overloaded symbol, using
b37052ae 9692the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9693@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9694also use the @value{GDBN} command-line word completion facilities to list the
9695available choices, or to finish the type list for you.
79a6e687 9696@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9697@end table
c906108c 9698
febe4383
TJB
9699@node Decimal Floating Point
9700@subsubsection Decimal Floating Point format
9701@cindex decimal floating point format
9702
9703@value{GDBN} can examine, set and perform computations with numbers in
9704decimal floating point format, which in the C language correspond to the
9705@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9706specified by the extension to support decimal floating-point arithmetic.
9707
9708There are two encodings in use, depending on the architecture: BID (Binary
9709Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9710PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9711target.
9712
9713Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9714to manipulate decimal floating point numbers, it is not possible to convert
9715(using a cast, for example) integers wider than 32-bit to decimal float.
9716
9717In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9718point computations, error checking in decimal float operations ignores
9719underflow, overflow and divide by zero exceptions.
9720
4acd40f3
TJB
9721In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9722to inspect @code{_Decimal128} values stored in floating point registers. See
9723@ref{PowerPC,,PowerPC} for more details.
9724
b37303ee
AF
9725@node Objective-C
9726@subsection Objective-C
9727
9728@cindex Objective-C
9729This section provides information about some commands and command
721c2651
EZ
9730options that are useful for debugging Objective-C code. See also
9731@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9732few more commands specific to Objective-C support.
b37303ee
AF
9733
9734@menu
b383017d
RM
9735* Method Names in Commands::
9736* The Print Command with Objective-C::
b37303ee
AF
9737@end menu
9738
c8f4133a 9739@node Method Names in Commands
b37303ee
AF
9740@subsubsection Method Names in Commands
9741
9742The following commands have been extended to accept Objective-C method
9743names as line specifications:
9744
9745@kindex clear@r{, and Objective-C}
9746@kindex break@r{, and Objective-C}
9747@kindex info line@r{, and Objective-C}
9748@kindex jump@r{, and Objective-C}
9749@kindex list@r{, and Objective-C}
9750@itemize
9751@item @code{clear}
9752@item @code{break}
9753@item @code{info line}
9754@item @code{jump}
9755@item @code{list}
9756@end itemize
9757
9758A fully qualified Objective-C method name is specified as
9759
9760@smallexample
9761-[@var{Class} @var{methodName}]
9762@end smallexample
9763
c552b3bb
JM
9764where the minus sign is used to indicate an instance method and a
9765plus sign (not shown) is used to indicate a class method. The class
9766name @var{Class} and method name @var{methodName} are enclosed in
9767brackets, similar to the way messages are specified in Objective-C
9768source code. For example, to set a breakpoint at the @code{create}
9769instance method of class @code{Fruit} in the program currently being
9770debugged, enter:
b37303ee
AF
9771
9772@smallexample
9773break -[Fruit create]
9774@end smallexample
9775
9776To list ten program lines around the @code{initialize} class method,
9777enter:
9778
9779@smallexample
9780list +[NSText initialize]
9781@end smallexample
9782
c552b3bb
JM
9783In the current version of @value{GDBN}, the plus or minus sign is
9784required. In future versions of @value{GDBN}, the plus or minus
9785sign will be optional, but you can use it to narrow the search. It
9786is also possible to specify just a method name:
b37303ee
AF
9787
9788@smallexample
9789break create
9790@end smallexample
9791
9792You must specify the complete method name, including any colons. If
9793your program's source files contain more than one @code{create} method,
9794you'll be presented with a numbered list of classes that implement that
9795method. Indicate your choice by number, or type @samp{0} to exit if
9796none apply.
9797
9798As another example, to clear a breakpoint established at the
9799@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9800
9801@smallexample
9802clear -[NSWindow makeKeyAndOrderFront:]
9803@end smallexample
9804
9805@node The Print Command with Objective-C
9806@subsubsection The Print Command With Objective-C
721c2651 9807@cindex Objective-C, print objects
c552b3bb
JM
9808@kindex print-object
9809@kindex po @r{(@code{print-object})}
b37303ee 9810
c552b3bb 9811The print command has also been extended to accept methods. For example:
b37303ee
AF
9812
9813@smallexample
c552b3bb 9814print -[@var{object} hash]
b37303ee
AF
9815@end smallexample
9816
9817@cindex print an Objective-C object description
c552b3bb
JM
9818@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9819@noindent
9820will tell @value{GDBN} to send the @code{hash} message to @var{object}
9821and print the result. Also, an additional command has been added,
9822@code{print-object} or @code{po} for short, which is meant to print
9823the description of an object. However, this command may only work
9824with certain Objective-C libraries that have a particular hook
9825function, @code{_NSPrintForDebugger}, defined.
b37303ee 9826
09d4efe1
EZ
9827@node Fortran
9828@subsection Fortran
9829@cindex Fortran-specific support in @value{GDBN}
9830
814e32d7
WZ
9831@value{GDBN} can be used to debug programs written in Fortran, but it
9832currently supports only the features of Fortran 77 language.
9833
9834@cindex trailing underscore, in Fortran symbols
9835Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9836among them) append an underscore to the names of variables and
9837functions. When you debug programs compiled by those compilers, you
9838will need to refer to variables and functions with a trailing
9839underscore.
9840
9841@menu
9842* Fortran Operators:: Fortran operators and expressions
9843* Fortran Defaults:: Default settings for Fortran
79a6e687 9844* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9845@end menu
9846
9847@node Fortran Operators
79a6e687 9848@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9849
9850@cindex Fortran operators and expressions
9851
9852Operators must be defined on values of specific types. For instance,
9853@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9854arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9855
9856@table @code
9857@item **
9858The exponentiation operator. It raises the first operand to the power
9859of the second one.
9860
9861@item :
9862The range operator. Normally used in the form of array(low:high) to
9863represent a section of array.
9864@end table
9865
9866@node Fortran Defaults
9867@subsubsection Fortran Defaults
9868
9869@cindex Fortran Defaults
9870
9871Fortran symbols are usually case-insensitive, so @value{GDBN} by
9872default uses case-insensitive matches for Fortran symbols. You can
9873change that with the @samp{set case-insensitive} command, see
9874@ref{Symbols}, for the details.
9875
79a6e687
BW
9876@node Special Fortran Commands
9877@subsubsection Special Fortran Commands
814e32d7
WZ
9878
9879@cindex Special Fortran commands
9880
db2e3e2e
BW
9881@value{GDBN} has some commands to support Fortran-specific features,
9882such as displaying common blocks.
814e32d7 9883
09d4efe1
EZ
9884@table @code
9885@cindex @code{COMMON} blocks, Fortran
9886@kindex info common
9887@item info common @r{[}@var{common-name}@r{]}
9888This command prints the values contained in the Fortran @code{COMMON}
9889block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9890all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9891printed.
9892@end table
9893
9c16f35a
EZ
9894@node Pascal
9895@subsection Pascal
9896
9897@cindex Pascal support in @value{GDBN}, limitations
9898Debugging Pascal programs which use sets, subranges, file variables, or
9899nested functions does not currently work. @value{GDBN} does not support
9900entering expressions, printing values, or similar features using Pascal
9901syntax.
9902
9903The Pascal-specific command @code{set print pascal_static-members}
9904controls whether static members of Pascal objects are displayed.
9905@xref{Print Settings, pascal_static-members}.
9906
09d4efe1 9907@node Modula-2
c906108c 9908@subsection Modula-2
7a292a7a 9909
d4f3574e 9910@cindex Modula-2, @value{GDBN} support
c906108c
SS
9911
9912The extensions made to @value{GDBN} to support Modula-2 only support
9913output from the @sc{gnu} Modula-2 compiler (which is currently being
9914developed). Other Modula-2 compilers are not currently supported, and
9915attempting to debug executables produced by them is most likely
9916to give an error as @value{GDBN} reads in the executable's symbol
9917table.
9918
9919@cindex expressions in Modula-2
9920@menu
9921* M2 Operators:: Built-in operators
9922* Built-In Func/Proc:: Built-in functions and procedures
9923* M2 Constants:: Modula-2 constants
72019c9c 9924* M2 Types:: Modula-2 types
c906108c
SS
9925* M2 Defaults:: Default settings for Modula-2
9926* Deviations:: Deviations from standard Modula-2
9927* M2 Checks:: Modula-2 type and range checks
9928* M2 Scope:: The scope operators @code{::} and @code{.}
9929* GDB/M2:: @value{GDBN} and Modula-2
9930@end menu
9931
6d2ebf8b 9932@node M2 Operators
c906108c
SS
9933@subsubsection Operators
9934@cindex Modula-2 operators
9935
9936Operators must be defined on values of specific types. For instance,
9937@code{+} is defined on numbers, but not on structures. Operators are
9938often defined on groups of types. For the purposes of Modula-2, the
9939following definitions hold:
9940
9941@itemize @bullet
9942
9943@item
9944@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9945their subranges.
9946
9947@item
9948@emph{Character types} consist of @code{CHAR} and its subranges.
9949
9950@item
9951@emph{Floating-point types} consist of @code{REAL}.
9952
9953@item
9954@emph{Pointer types} consist of anything declared as @code{POINTER TO
9955@var{type}}.
9956
9957@item
9958@emph{Scalar types} consist of all of the above.
9959
9960@item
9961@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9962
9963@item
9964@emph{Boolean types} consist of @code{BOOLEAN}.
9965@end itemize
9966
9967@noindent
9968The following operators are supported, and appear in order of
9969increasing precedence:
9970
9971@table @code
9972@item ,
9973Function argument or array index separator.
9974
9975@item :=
9976Assignment. The value of @var{var} @code{:=} @var{value} is
9977@var{value}.
9978
9979@item <@r{, }>
9980Less than, greater than on integral, floating-point, or enumerated
9981types.
9982
9983@item <=@r{, }>=
96a2c332 9984Less than or equal to, greater than or equal to
c906108c
SS
9985on integral, floating-point and enumerated types, or set inclusion on
9986set types. Same precedence as @code{<}.
9987
9988@item =@r{, }<>@r{, }#
9989Equality and two ways of expressing inequality, valid on scalar types.
9990Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9991available for inequality, since @code{#} conflicts with the script
9992comment character.
9993
9994@item IN
9995Set membership. Defined on set types and the types of their members.
9996Same precedence as @code{<}.
9997
9998@item OR
9999Boolean disjunction. Defined on boolean types.
10000
10001@item AND@r{, }&
d4f3574e 10002Boolean conjunction. Defined on boolean types.
c906108c
SS
10003
10004@item @@
10005The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10006
10007@item +@r{, }-
10008Addition and subtraction on integral and floating-point types, or union
10009and difference on set types.
10010
10011@item *
10012Multiplication on integral and floating-point types, or set intersection
10013on set types.
10014
10015@item /
10016Division on floating-point types, or symmetric set difference on set
10017types. Same precedence as @code{*}.
10018
10019@item DIV@r{, }MOD
10020Integer division and remainder. Defined on integral types. Same
10021precedence as @code{*}.
10022
10023@item -
10024Negative. Defined on @code{INTEGER} and @code{REAL} data.
10025
10026@item ^
10027Pointer dereferencing. Defined on pointer types.
10028
10029@item NOT
10030Boolean negation. Defined on boolean types. Same precedence as
10031@code{^}.
10032
10033@item .
10034@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10035precedence as @code{^}.
10036
10037@item []
10038Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10039
10040@item ()
10041Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10042as @code{^}.
10043
10044@item ::@r{, }.
10045@value{GDBN} and Modula-2 scope operators.
10046@end table
10047
10048@quotation
72019c9c 10049@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10050treats the use of the operator @code{IN}, or the use of operators
10051@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10052@code{<=}, and @code{>=} on sets as an error.
10053@end quotation
10054
cb51c4e0 10055
6d2ebf8b 10056@node Built-In Func/Proc
79a6e687 10057@subsubsection Built-in Functions and Procedures
cb51c4e0 10058@cindex Modula-2 built-ins
c906108c
SS
10059
10060Modula-2 also makes available several built-in procedures and functions.
10061In describing these, the following metavariables are used:
10062
10063@table @var
10064
10065@item a
10066represents an @code{ARRAY} variable.
10067
10068@item c
10069represents a @code{CHAR} constant or variable.
10070
10071@item i
10072represents a variable or constant of integral type.
10073
10074@item m
10075represents an identifier that belongs to a set. Generally used in the
10076same function with the metavariable @var{s}. The type of @var{s} should
10077be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10078
10079@item n
10080represents a variable or constant of integral or floating-point type.
10081
10082@item r
10083represents a variable or constant of floating-point type.
10084
10085@item t
10086represents a type.
10087
10088@item v
10089represents a variable.
10090
10091@item x
10092represents a variable or constant of one of many types. See the
10093explanation of the function for details.
10094@end table
10095
10096All Modula-2 built-in procedures also return a result, described below.
10097
10098@table @code
10099@item ABS(@var{n})
10100Returns the absolute value of @var{n}.
10101
10102@item CAP(@var{c})
10103If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10104equivalent, otherwise it returns its argument.
c906108c
SS
10105
10106@item CHR(@var{i})
10107Returns the character whose ordinal value is @var{i}.
10108
10109@item DEC(@var{v})
c3f6f71d 10110Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10111
10112@item DEC(@var{v},@var{i})
10113Decrements the value in the variable @var{v} by @var{i}. Returns the
10114new value.
10115
10116@item EXCL(@var{m},@var{s})
10117Removes the element @var{m} from the set @var{s}. Returns the new
10118set.
10119
10120@item FLOAT(@var{i})
10121Returns the floating point equivalent of the integer @var{i}.
10122
10123@item HIGH(@var{a})
10124Returns the index of the last member of @var{a}.
10125
10126@item INC(@var{v})
c3f6f71d 10127Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10128
10129@item INC(@var{v},@var{i})
10130Increments the value in the variable @var{v} by @var{i}. Returns the
10131new value.
10132
10133@item INCL(@var{m},@var{s})
10134Adds the element @var{m} to the set @var{s} if it is not already
10135there. Returns the new set.
10136
10137@item MAX(@var{t})
10138Returns the maximum value of the type @var{t}.
10139
10140@item MIN(@var{t})
10141Returns the minimum value of the type @var{t}.
10142
10143@item ODD(@var{i})
10144Returns boolean TRUE if @var{i} is an odd number.
10145
10146@item ORD(@var{x})
10147Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10148value of a character is its @sc{ascii} value (on machines supporting the
10149@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10150integral, character and enumerated types.
10151
10152@item SIZE(@var{x})
10153Returns the size of its argument. @var{x} can be a variable or a type.
10154
10155@item TRUNC(@var{r})
10156Returns the integral part of @var{r}.
10157
844781a1
GM
10158@item TSIZE(@var{x})
10159Returns the size of its argument. @var{x} can be a variable or a type.
10160
c906108c
SS
10161@item VAL(@var{t},@var{i})
10162Returns the member of the type @var{t} whose ordinal value is @var{i}.
10163@end table
10164
10165@quotation
10166@emph{Warning:} Sets and their operations are not yet supported, so
10167@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10168an error.
10169@end quotation
10170
10171@cindex Modula-2 constants
6d2ebf8b 10172@node M2 Constants
c906108c
SS
10173@subsubsection Constants
10174
10175@value{GDBN} allows you to express the constants of Modula-2 in the following
10176ways:
10177
10178@itemize @bullet
10179
10180@item
10181Integer constants are simply a sequence of digits. When used in an
10182expression, a constant is interpreted to be type-compatible with the
10183rest of the expression. Hexadecimal integers are specified by a
10184trailing @samp{H}, and octal integers by a trailing @samp{B}.
10185
10186@item
10187Floating point constants appear as a sequence of digits, followed by a
10188decimal point and another sequence of digits. An optional exponent can
10189then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10190@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10191digits of the floating point constant must be valid decimal (base 10)
10192digits.
10193
10194@item
10195Character constants consist of a single character enclosed by a pair of
10196like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10197also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10198followed by a @samp{C}.
10199
10200@item
10201String constants consist of a sequence of characters enclosed by a
10202pair of like quotes, either single (@code{'}) or double (@code{"}).
10203Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10204Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10205sequences.
10206
10207@item
10208Enumerated constants consist of an enumerated identifier.
10209
10210@item
10211Boolean constants consist of the identifiers @code{TRUE} and
10212@code{FALSE}.
10213
10214@item
10215Pointer constants consist of integral values only.
10216
10217@item
10218Set constants are not yet supported.
10219@end itemize
10220
72019c9c
GM
10221@node M2 Types
10222@subsubsection Modula-2 Types
10223@cindex Modula-2 types
10224
10225Currently @value{GDBN} can print the following data types in Modula-2
10226syntax: array types, record types, set types, pointer types, procedure
10227types, enumerated types, subrange types and base types. You can also
10228print the contents of variables declared using these type.
10229This section gives a number of simple source code examples together with
10230sample @value{GDBN} sessions.
10231
10232The first example contains the following section of code:
10233
10234@smallexample
10235VAR
10236 s: SET OF CHAR ;
10237 r: [20..40] ;
10238@end smallexample
10239
10240@noindent
10241and you can request @value{GDBN} to interrogate the type and value of
10242@code{r} and @code{s}.
10243
10244@smallexample
10245(@value{GDBP}) print s
10246@{'A'..'C', 'Z'@}
10247(@value{GDBP}) ptype s
10248SET OF CHAR
10249(@value{GDBP}) print r
1025021
10251(@value{GDBP}) ptype r
10252[20..40]
10253@end smallexample
10254
10255@noindent
10256Likewise if your source code declares @code{s} as:
10257
10258@smallexample
10259VAR
10260 s: SET ['A'..'Z'] ;
10261@end smallexample
10262
10263@noindent
10264then you may query the type of @code{s} by:
10265
10266@smallexample
10267(@value{GDBP}) ptype s
10268type = SET ['A'..'Z']
10269@end smallexample
10270
10271@noindent
10272Note that at present you cannot interactively manipulate set
10273expressions using the debugger.
10274
10275The following example shows how you might declare an array in Modula-2
10276and how you can interact with @value{GDBN} to print its type and contents:
10277
10278@smallexample
10279VAR
10280 s: ARRAY [-10..10] OF CHAR ;
10281@end smallexample
10282
10283@smallexample
10284(@value{GDBP}) ptype s
10285ARRAY [-10..10] OF CHAR
10286@end smallexample
10287
10288Note that the array handling is not yet complete and although the type
10289is printed correctly, expression handling still assumes that all
10290arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10291above.
72019c9c
GM
10292
10293Here are some more type related Modula-2 examples:
10294
10295@smallexample
10296TYPE
10297 colour = (blue, red, yellow, green) ;
10298 t = [blue..yellow] ;
10299VAR
10300 s: t ;
10301BEGIN
10302 s := blue ;
10303@end smallexample
10304
10305@noindent
10306The @value{GDBN} interaction shows how you can query the data type
10307and value of a variable.
10308
10309@smallexample
10310(@value{GDBP}) print s
10311$1 = blue
10312(@value{GDBP}) ptype t
10313type = [blue..yellow]
10314@end smallexample
10315
10316@noindent
10317In this example a Modula-2 array is declared and its contents
10318displayed. Observe that the contents are written in the same way as
10319their @code{C} counterparts.
10320
10321@smallexample
10322VAR
10323 s: ARRAY [1..5] OF CARDINAL ;
10324BEGIN
10325 s[1] := 1 ;
10326@end smallexample
10327
10328@smallexample
10329(@value{GDBP}) print s
10330$1 = @{1, 0, 0, 0, 0@}
10331(@value{GDBP}) ptype s
10332type = ARRAY [1..5] OF CARDINAL
10333@end smallexample
10334
10335The Modula-2 language interface to @value{GDBN} also understands
10336pointer types as shown in this example:
10337
10338@smallexample
10339VAR
10340 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10341BEGIN
10342 NEW(s) ;
10343 s^[1] := 1 ;
10344@end smallexample
10345
10346@noindent
10347and you can request that @value{GDBN} describes the type of @code{s}.
10348
10349@smallexample
10350(@value{GDBP}) ptype s
10351type = POINTER TO ARRAY [1..5] OF CARDINAL
10352@end smallexample
10353
10354@value{GDBN} handles compound types as we can see in this example.
10355Here we combine array types, record types, pointer types and subrange
10356types:
10357
10358@smallexample
10359TYPE
10360 foo = RECORD
10361 f1: CARDINAL ;
10362 f2: CHAR ;
10363 f3: myarray ;
10364 END ;
10365
10366 myarray = ARRAY myrange OF CARDINAL ;
10367 myrange = [-2..2] ;
10368VAR
10369 s: POINTER TO ARRAY myrange OF foo ;
10370@end smallexample
10371
10372@noindent
10373and you can ask @value{GDBN} to describe the type of @code{s} as shown
10374below.
10375
10376@smallexample
10377(@value{GDBP}) ptype s
10378type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10379 f1 : CARDINAL;
10380 f2 : CHAR;
10381 f3 : ARRAY [-2..2] OF CARDINAL;
10382END
10383@end smallexample
10384
6d2ebf8b 10385@node M2 Defaults
79a6e687 10386@subsubsection Modula-2 Defaults
c906108c
SS
10387@cindex Modula-2 defaults
10388
10389If type and range checking are set automatically by @value{GDBN}, they
10390both default to @code{on} whenever the working language changes to
d4f3574e 10391Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10392selected the working language.
10393
10394If you allow @value{GDBN} to set the language automatically, then entering
10395code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10396working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10397Infer the Source Language}, for further details.
c906108c 10398
6d2ebf8b 10399@node Deviations
79a6e687 10400@subsubsection Deviations from Standard Modula-2
c906108c
SS
10401@cindex Modula-2, deviations from
10402
10403A few changes have been made to make Modula-2 programs easier to debug.
10404This is done primarily via loosening its type strictness:
10405
10406@itemize @bullet
10407@item
10408Unlike in standard Modula-2, pointer constants can be formed by
10409integers. This allows you to modify pointer variables during
10410debugging. (In standard Modula-2, the actual address contained in a
10411pointer variable is hidden from you; it can only be modified
10412through direct assignment to another pointer variable or expression that
10413returned a pointer.)
10414
10415@item
10416C escape sequences can be used in strings and characters to represent
10417non-printable characters. @value{GDBN} prints out strings with these
10418escape sequences embedded. Single non-printable characters are
10419printed using the @samp{CHR(@var{nnn})} format.
10420
10421@item
10422The assignment operator (@code{:=}) returns the value of its right-hand
10423argument.
10424
10425@item
10426All built-in procedures both modify @emph{and} return their argument.
10427@end itemize
10428
6d2ebf8b 10429@node M2 Checks
79a6e687 10430@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10431@cindex Modula-2 checks
10432
10433@quotation
10434@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10435range checking.
10436@end quotation
10437@c FIXME remove warning when type/range checks added
10438
10439@value{GDBN} considers two Modula-2 variables type equivalent if:
10440
10441@itemize @bullet
10442@item
10443They are of types that have been declared equivalent via a @code{TYPE
10444@var{t1} = @var{t2}} statement
10445
10446@item
10447They have been declared on the same line. (Note: This is true of the
10448@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10449@end itemize
10450
10451As long as type checking is enabled, any attempt to combine variables
10452whose types are not equivalent is an error.
10453
10454Range checking is done on all mathematical operations, assignment, array
10455index bounds, and all built-in functions and procedures.
10456
6d2ebf8b 10457@node M2 Scope
79a6e687 10458@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10459@cindex scope
41afff9a 10460@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10461@cindex colon, doubled as scope operator
10462@ifinfo
41afff9a 10463@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10464@c Info cannot handle :: but TeX can.
10465@end ifinfo
10466@iftex
41afff9a 10467@vindex ::@r{, in Modula-2}
c906108c
SS
10468@end iftex
10469
10470There are a few subtle differences between the Modula-2 scope operator
10471(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10472similar syntax:
10473
474c8240 10474@smallexample
c906108c
SS
10475
10476@var{module} . @var{id}
10477@var{scope} :: @var{id}
474c8240 10478@end smallexample
c906108c
SS
10479
10480@noindent
10481where @var{scope} is the name of a module or a procedure,
10482@var{module} the name of a module, and @var{id} is any declared
10483identifier within your program, except another module.
10484
10485Using the @code{::} operator makes @value{GDBN} search the scope
10486specified by @var{scope} for the identifier @var{id}. If it is not
10487found in the specified scope, then @value{GDBN} searches all scopes
10488enclosing the one specified by @var{scope}.
10489
10490Using the @code{.} operator makes @value{GDBN} search the current scope for
10491the identifier specified by @var{id} that was imported from the
10492definition module specified by @var{module}. With this operator, it is
10493an error if the identifier @var{id} was not imported from definition
10494module @var{module}, or if @var{id} is not an identifier in
10495@var{module}.
10496
6d2ebf8b 10497@node GDB/M2
c906108c
SS
10498@subsubsection @value{GDBN} and Modula-2
10499
10500Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10501Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10502specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10503@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10504apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10505analogue in Modula-2.
10506
10507The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10508with any language, is not useful with Modula-2. Its
c906108c 10509intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10510created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10511address can be specified by an integral constant, the construct
d4f3574e 10512@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10513
10514@cindex @code{#} in Modula-2
10515In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10516interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10517
e07c999f
PH
10518@node Ada
10519@subsection Ada
10520@cindex Ada
10521
10522The extensions made to @value{GDBN} for Ada only support
10523output from the @sc{gnu} Ada (GNAT) compiler.
10524Other Ada compilers are not currently supported, and
10525attempting to debug executables produced by them is most likely
10526to be difficult.
10527
10528
10529@cindex expressions in Ada
10530@menu
10531* Ada Mode Intro:: General remarks on the Ada syntax
10532 and semantics supported by Ada mode
10533 in @value{GDBN}.
10534* Omissions from Ada:: Restrictions on the Ada expression syntax.
10535* Additions to Ada:: Extensions of the Ada expression syntax.
10536* Stopping Before Main Program:: Debugging the program during elaboration.
10537* Ada Glitches:: Known peculiarities of Ada mode.
10538@end menu
10539
10540@node Ada Mode Intro
10541@subsubsection Introduction
10542@cindex Ada mode, general
10543
10544The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10545syntax, with some extensions.
10546The philosophy behind the design of this subset is
10547
10548@itemize @bullet
10549@item
10550That @value{GDBN} should provide basic literals and access to operations for
10551arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10552leaving more sophisticated computations to subprograms written into the
10553program (which therefore may be called from @value{GDBN}).
10554
10555@item
10556That type safety and strict adherence to Ada language restrictions
10557are not particularly important to the @value{GDBN} user.
10558
10559@item
10560That brevity is important to the @value{GDBN} user.
10561@end itemize
10562
10563Thus, for brevity, the debugger acts as if there were
10564implicit @code{with} and @code{use} clauses in effect for all user-written
10565packages, making it unnecessary to fully qualify most names with
10566their packages, regardless of context. Where this causes ambiguity,
10567@value{GDBN} asks the user's intent.
10568
10569The debugger will start in Ada mode if it detects an Ada main program.
10570As for other languages, it will enter Ada mode when stopped in a program that
10571was translated from an Ada source file.
10572
10573While in Ada mode, you may use `@t{--}' for comments. This is useful
10574mostly for documenting command files. The standard @value{GDBN} comment
10575(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10576middle (to allow based literals).
10577
10578The debugger supports limited overloading. Given a subprogram call in which
10579the function symbol has multiple definitions, it will use the number of
10580actual parameters and some information about their types to attempt to narrow
10581the set of definitions. It also makes very limited use of context, preferring
10582procedures to functions in the context of the @code{call} command, and
10583functions to procedures elsewhere.
10584
10585@node Omissions from Ada
10586@subsubsection Omissions from Ada
10587@cindex Ada, omissions from
10588
10589Here are the notable omissions from the subset:
10590
10591@itemize @bullet
10592@item
10593Only a subset of the attributes are supported:
10594
10595@itemize @minus
10596@item
10597@t{'First}, @t{'Last}, and @t{'Length}
10598 on array objects (not on types and subtypes).
10599
10600@item
10601@t{'Min} and @t{'Max}.
10602
10603@item
10604@t{'Pos} and @t{'Val}.
10605
10606@item
10607@t{'Tag}.
10608
10609@item
10610@t{'Range} on array objects (not subtypes), but only as the right
10611operand of the membership (@code{in}) operator.
10612
10613@item
10614@t{'Access}, @t{'Unchecked_Access}, and
10615@t{'Unrestricted_Access} (a GNAT extension).
10616
10617@item
10618@t{'Address}.
10619@end itemize
10620
10621@item
10622The names in
10623@code{Characters.Latin_1} are not available and
10624concatenation is not implemented. Thus, escape characters in strings are
10625not currently available.
10626
10627@item
10628Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10629equality of representations. They will generally work correctly
10630for strings and arrays whose elements have integer or enumeration types.
10631They may not work correctly for arrays whose element
10632types have user-defined equality, for arrays of real values
10633(in particular, IEEE-conformant floating point, because of negative
10634zeroes and NaNs), and for arrays whose elements contain unused bits with
10635indeterminate values.
10636
10637@item
10638The other component-by-component array operations (@code{and}, @code{or},
10639@code{xor}, @code{not}, and relational tests other than equality)
10640are not implemented.
10641
10642@item
860701dc
PH
10643@cindex array aggregates (Ada)
10644@cindex record aggregates (Ada)
10645@cindex aggregates (Ada)
10646There is limited support for array and record aggregates. They are
10647permitted only on the right sides of assignments, as in these examples:
10648
10649@smallexample
10650set An_Array := (1, 2, 3, 4, 5, 6)
10651set An_Array := (1, others => 0)
10652set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10653set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10654set A_Record := (1, "Peter", True);
10655set A_Record := (Name => "Peter", Id => 1, Alive => True)
10656@end smallexample
10657
10658Changing a
10659discriminant's value by assigning an aggregate has an
10660undefined effect if that discriminant is used within the record.
10661However, you can first modify discriminants by directly assigning to
10662them (which normally would not be allowed in Ada), and then performing an
10663aggregate assignment. For example, given a variable @code{A_Rec}
10664declared to have a type such as:
10665
10666@smallexample
10667type Rec (Len : Small_Integer := 0) is record
10668 Id : Integer;
10669 Vals : IntArray (1 .. Len);
10670end record;
10671@end smallexample
10672
10673you can assign a value with a different size of @code{Vals} with two
10674assignments:
10675
10676@smallexample
10677set A_Rec.Len := 4
10678set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10679@end smallexample
10680
10681As this example also illustrates, @value{GDBN} is very loose about the usual
10682rules concerning aggregates. You may leave out some of the
10683components of an array or record aggregate (such as the @code{Len}
10684component in the assignment to @code{A_Rec} above); they will retain their
10685original values upon assignment. You may freely use dynamic values as
10686indices in component associations. You may even use overlapping or
10687redundant component associations, although which component values are
10688assigned in such cases is not defined.
e07c999f
PH
10689
10690@item
10691Calls to dispatching subprograms are not implemented.
10692
10693@item
10694The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10695than that of real Ada. It makes only limited use of the context in
10696which a subexpression appears to resolve its meaning, and it is much
10697looser in its rules for allowing type matches. As a result, some
10698function calls will be ambiguous, and the user will be asked to choose
10699the proper resolution.
e07c999f
PH
10700
10701@item
10702The @code{new} operator is not implemented.
10703
10704@item
10705Entry calls are not implemented.
10706
10707@item
10708Aside from printing, arithmetic operations on the native VAX floating-point
10709formats are not supported.
10710
10711@item
10712It is not possible to slice a packed array.
10713@end itemize
10714
10715@node Additions to Ada
10716@subsubsection Additions to Ada
10717@cindex Ada, deviations from
10718
10719As it does for other languages, @value{GDBN} makes certain generic
10720extensions to Ada (@pxref{Expressions}):
10721
10722@itemize @bullet
10723@item
ae21e955
BW
10724If the expression @var{E} is a variable residing in memory (typically
10725a local variable or array element) and @var{N} is a positive integer,
10726then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10727@var{N}-1 adjacent variables following it in memory as an array. In
10728Ada, this operator is generally not necessary, since its prime use is
10729in displaying parts of an array, and slicing will usually do this in
10730Ada. However, there are occasional uses when debugging programs in
10731which certain debugging information has been optimized away.
e07c999f
PH
10732
10733@item
ae21e955
BW
10734@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10735appears in function or file @var{B}.'' When @var{B} is a file name,
10736you must typically surround it in single quotes.
e07c999f
PH
10737
10738@item
10739The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10740@var{type} that appears at address @var{addr}.''
10741
10742@item
10743A name starting with @samp{$} is a convenience variable
10744(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10745@end itemize
10746
ae21e955
BW
10747In addition, @value{GDBN} provides a few other shortcuts and outright
10748additions specific to Ada:
e07c999f
PH
10749
10750@itemize @bullet
10751@item
10752The assignment statement is allowed as an expression, returning
10753its right-hand operand as its value. Thus, you may enter
10754
10755@smallexample
10756set x := y + 3
10757print A(tmp := y + 1)
10758@end smallexample
10759
10760@item
10761The semicolon is allowed as an ``operator,'' returning as its value
10762the value of its right-hand operand.
10763This allows, for example,
10764complex conditional breaks:
10765
10766@smallexample
10767break f
10768condition 1 (report(i); k += 1; A(k) > 100)
10769@end smallexample
10770
10771@item
10772Rather than use catenation and symbolic character names to introduce special
10773characters into strings, one may instead use a special bracket notation,
10774which is also used to print strings. A sequence of characters of the form
10775@samp{["@var{XX}"]} within a string or character literal denotes the
10776(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10777sequence of characters @samp{["""]} also denotes a single quotation mark
10778in strings. For example,
10779@smallexample
10780 "One line.["0a"]Next line.["0a"]"
10781@end smallexample
10782@noindent
ae21e955
BW
10783contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10784after each period.
e07c999f
PH
10785
10786@item
10787The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10788@t{'Max} is optional (and is ignored in any case). For example, it is valid
10789to write
10790
10791@smallexample
10792print 'max(x, y)
10793@end smallexample
10794
10795@item
10796When printing arrays, @value{GDBN} uses positional notation when the
10797array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10798For example, a one-dimensional array of three integers with a lower bound
10799of 3 might print as
e07c999f
PH
10800
10801@smallexample
10802(3 => 10, 17, 1)
10803@end smallexample
10804
10805@noindent
10806That is, in contrast to valid Ada, only the first component has a @code{=>}
10807clause.
10808
10809@item
10810You may abbreviate attributes in expressions with any unique,
10811multi-character subsequence of
10812their names (an exact match gets preference).
10813For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10814in place of @t{a'length}.
10815
10816@item
10817@cindex quoting Ada internal identifiers
10818Since Ada is case-insensitive, the debugger normally maps identifiers you type
10819to lower case. The GNAT compiler uses upper-case characters for
10820some of its internal identifiers, which are normally of no interest to users.
10821For the rare occasions when you actually have to look at them,
10822enclose them in angle brackets to avoid the lower-case mapping.
10823For example,
10824@smallexample
10825@value{GDBP} print <JMPBUF_SAVE>[0]
10826@end smallexample
10827
10828@item
10829Printing an object of class-wide type or dereferencing an
10830access-to-class-wide value will display all the components of the object's
10831specific type (as indicated by its run-time tag). Likewise, component
10832selection on such a value will operate on the specific type of the
10833object.
10834
10835@end itemize
10836
10837@node Stopping Before Main Program
10838@subsubsection Stopping at the Very Beginning
10839
10840@cindex breakpointing Ada elaboration code
10841It is sometimes necessary to debug the program during elaboration, and
10842before reaching the main procedure.
10843As defined in the Ada Reference
10844Manual, the elaboration code is invoked from a procedure called
10845@code{adainit}. To run your program up to the beginning of
10846elaboration, simply use the following two commands:
10847@code{tbreak adainit} and @code{run}.
10848
10849@node Ada Glitches
10850@subsubsection Known Peculiarities of Ada Mode
10851@cindex Ada, problems
10852
10853Besides the omissions listed previously (@pxref{Omissions from Ada}),
10854we know of several problems with and limitations of Ada mode in
10855@value{GDBN},
10856some of which will be fixed with planned future releases of the debugger
10857and the GNU Ada compiler.
10858
10859@itemize @bullet
10860@item
10861Currently, the debugger
10862has insufficient information to determine whether certain pointers represent
10863pointers to objects or the objects themselves.
10864Thus, the user may have to tack an extra @code{.all} after an expression
10865to get it printed properly.
10866
10867@item
10868Static constants that the compiler chooses not to materialize as objects in
10869storage are invisible to the debugger.
10870
10871@item
10872Named parameter associations in function argument lists are ignored (the
10873argument lists are treated as positional).
10874
10875@item
10876Many useful library packages are currently invisible to the debugger.
10877
10878@item
10879Fixed-point arithmetic, conversions, input, and output is carried out using
10880floating-point arithmetic, and may give results that only approximate those on
10881the host machine.
10882
10883@item
10884The type of the @t{'Address} attribute may not be @code{System.Address}.
10885
10886@item
10887The GNAT compiler never generates the prefix @code{Standard} for any of
10888the standard symbols defined by the Ada language. @value{GDBN} knows about
10889this: it will strip the prefix from names when you use it, and will never
10890look for a name you have so qualified among local symbols, nor match against
10891symbols in other packages or subprograms. If you have
10892defined entities anywhere in your program other than parameters and
10893local variables whose simple names match names in @code{Standard},
10894GNAT's lack of qualification here can cause confusion. When this happens,
10895you can usually resolve the confusion
10896by qualifying the problematic names with package
10897@code{Standard} explicitly.
10898@end itemize
10899
79a6e687
BW
10900@node Unsupported Languages
10901@section Unsupported Languages
4e562065
JB
10902
10903@cindex unsupported languages
10904@cindex minimal language
10905In addition to the other fully-supported programming languages,
10906@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10907It does not represent a real programming language, but provides a set
10908of capabilities close to what the C or assembly languages provide.
10909This should allow most simple operations to be performed while debugging
10910an application that uses a language currently not supported by @value{GDBN}.
10911
10912If the language is set to @code{auto}, @value{GDBN} will automatically
10913select this language if the current frame corresponds to an unsupported
10914language.
10915
6d2ebf8b 10916@node Symbols
c906108c
SS
10917@chapter Examining the Symbol Table
10918
d4f3574e 10919The commands described in this chapter allow you to inquire about the
c906108c
SS
10920symbols (names of variables, functions and types) defined in your
10921program. This information is inherent in the text of your program and
10922does not change as your program executes. @value{GDBN} finds it in your
10923program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10924(@pxref{File Options, ,Choosing Files}), or by one of the
10925file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10926
10927@cindex symbol names
10928@cindex names of symbols
10929@cindex quoting names
10930Occasionally, you may need to refer to symbols that contain unusual
10931characters, which @value{GDBN} ordinarily treats as word delimiters. The
10932most frequent case is in referring to static variables in other
79a6e687 10933source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10934are recorded in object files as debugging symbols, but @value{GDBN} would
10935ordinarily parse a typical file name, like @file{foo.c}, as the three words
10936@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10937@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10938
474c8240 10939@smallexample
c906108c 10940p 'foo.c'::x
474c8240 10941@end smallexample
c906108c
SS
10942
10943@noindent
10944looks up the value of @code{x} in the scope of the file @file{foo.c}.
10945
10946@table @code
a8f24a35
EZ
10947@cindex case-insensitive symbol names
10948@cindex case sensitivity in symbol names
10949@kindex set case-sensitive
10950@item set case-sensitive on
10951@itemx set case-sensitive off
10952@itemx set case-sensitive auto
10953Normally, when @value{GDBN} looks up symbols, it matches their names
10954with case sensitivity determined by the current source language.
10955Occasionally, you may wish to control that. The command @code{set
10956case-sensitive} lets you do that by specifying @code{on} for
10957case-sensitive matches or @code{off} for case-insensitive ones. If
10958you specify @code{auto}, case sensitivity is reset to the default
10959suitable for the source language. The default is case-sensitive
10960matches for all languages except for Fortran, for which the default is
10961case-insensitive matches.
10962
9c16f35a
EZ
10963@kindex show case-sensitive
10964@item show case-sensitive
a8f24a35
EZ
10965This command shows the current setting of case sensitivity for symbols
10966lookups.
10967
c906108c 10968@kindex info address
b37052ae 10969@cindex address of a symbol
c906108c
SS
10970@item info address @var{symbol}
10971Describe where the data for @var{symbol} is stored. For a register
10972variable, this says which register it is kept in. For a non-register
10973local variable, this prints the stack-frame offset at which the variable
10974is always stored.
10975
10976Note the contrast with @samp{print &@var{symbol}}, which does not work
10977at all for a register variable, and for a stack local variable prints
10978the exact address of the current instantiation of the variable.
10979
3d67e040 10980@kindex info symbol
b37052ae 10981@cindex symbol from address
9c16f35a 10982@cindex closest symbol and offset for an address
3d67e040
EZ
10983@item info symbol @var{addr}
10984Print the name of a symbol which is stored at the address @var{addr}.
10985If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10986nearest symbol and an offset from it:
10987
474c8240 10988@smallexample
3d67e040
EZ
10989(@value{GDBP}) info symbol 0x54320
10990_initialize_vx + 396 in section .text
474c8240 10991@end smallexample
3d67e040
EZ
10992
10993@noindent
10994This is the opposite of the @code{info address} command. You can use
10995it to find out the name of a variable or a function given its address.
10996
c906108c 10997@kindex whatis
62f3a2ba
FF
10998@item whatis [@var{arg}]
10999Print the data type of @var{arg}, which can be either an expression or
11000a data type. With no argument, print the data type of @code{$}, the
11001last value in the value history. If @var{arg} is an expression, it is
11002not actually evaluated, and any side-effecting operations (such as
11003assignments or function calls) inside it do not take place. If
11004@var{arg} is a type name, it may be the name of a type or typedef, or
11005for C code it may have the form @samp{class @var{class-name}},
11006@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11007@samp{enum @var{enum-tag}}.
c906108c
SS
11008@xref{Expressions, ,Expressions}.
11009
c906108c 11010@kindex ptype
62f3a2ba
FF
11011@item ptype [@var{arg}]
11012@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11013detailed description of the type, instead of just the name of the type.
11014@xref{Expressions, ,Expressions}.
c906108c
SS
11015
11016For example, for this variable declaration:
11017
474c8240 11018@smallexample
c906108c 11019struct complex @{double real; double imag;@} v;
474c8240 11020@end smallexample
c906108c
SS
11021
11022@noindent
11023the two commands give this output:
11024
474c8240 11025@smallexample
c906108c
SS
11026@group
11027(@value{GDBP}) whatis v
11028type = struct complex
11029(@value{GDBP}) ptype v
11030type = struct complex @{
11031 double real;
11032 double imag;
11033@}
11034@end group
474c8240 11035@end smallexample
c906108c
SS
11036
11037@noindent
11038As with @code{whatis}, using @code{ptype} without an argument refers to
11039the type of @code{$}, the last value in the value history.
11040
ab1adacd
EZ
11041@cindex incomplete type
11042Sometimes, programs use opaque data types or incomplete specifications
11043of complex data structure. If the debug information included in the
11044program does not allow @value{GDBN} to display a full declaration of
11045the data type, it will say @samp{<incomplete type>}. For example,
11046given these declarations:
11047
11048@smallexample
11049 struct foo;
11050 struct foo *fooptr;
11051@end smallexample
11052
11053@noindent
11054but no definition for @code{struct foo} itself, @value{GDBN} will say:
11055
11056@smallexample
ddb50cd7 11057 (@value{GDBP}) ptype foo
ab1adacd
EZ
11058 $1 = <incomplete type>
11059@end smallexample
11060
11061@noindent
11062``Incomplete type'' is C terminology for data types that are not
11063completely specified.
11064
c906108c
SS
11065@kindex info types
11066@item info types @var{regexp}
11067@itemx info types
09d4efe1
EZ
11068Print a brief description of all types whose names match the regular
11069expression @var{regexp} (or all types in your program, if you supply
11070no argument). Each complete typename is matched as though it were a
11071complete line; thus, @samp{i type value} gives information on all
11072types in your program whose names include the string @code{value}, but
11073@samp{i type ^value$} gives information only on types whose complete
11074name is @code{value}.
c906108c
SS
11075
11076This command differs from @code{ptype} in two ways: first, like
11077@code{whatis}, it does not print a detailed description; second, it
11078lists all source files where a type is defined.
11079
b37052ae
EZ
11080@kindex info scope
11081@cindex local variables
09d4efe1 11082@item info scope @var{location}
b37052ae 11083List all the variables local to a particular scope. This command
09d4efe1
EZ
11084accepts a @var{location} argument---a function name, a source line, or
11085an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11086to the scope defined by that location. (@xref{Specify Location}, for
11087details about supported forms of @var{location}.) For example:
b37052ae
EZ
11088
11089@smallexample
11090(@value{GDBP}) @b{info scope command_line_handler}
11091Scope for command_line_handler:
11092Symbol rl is an argument at stack/frame offset 8, length 4.
11093Symbol linebuffer is in static storage at address 0x150a18, length 4.
11094Symbol linelength is in static storage at address 0x150a1c, length 4.
11095Symbol p is a local variable in register $esi, length 4.
11096Symbol p1 is a local variable in register $ebx, length 4.
11097Symbol nline is a local variable in register $edx, length 4.
11098Symbol repeat is a local variable at frame offset -8, length 4.
11099@end smallexample
11100
f5c37c66
EZ
11101@noindent
11102This command is especially useful for determining what data to collect
11103during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11104collect}.
11105
c906108c
SS
11106@kindex info source
11107@item info source
919d772c
JB
11108Show information about the current source file---that is, the source file for
11109the function containing the current point of execution:
11110@itemize @bullet
11111@item
11112the name of the source file, and the directory containing it,
11113@item
11114the directory it was compiled in,
11115@item
11116its length, in lines,
11117@item
11118which programming language it is written in,
11119@item
11120whether the executable includes debugging information for that file, and
11121if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11122@item
11123whether the debugging information includes information about
11124preprocessor macros.
11125@end itemize
11126
c906108c
SS
11127
11128@kindex info sources
11129@item info sources
11130Print the names of all source files in your program for which there is
11131debugging information, organized into two lists: files whose symbols
11132have already been read, and files whose symbols will be read when needed.
11133
11134@kindex info functions
11135@item info functions
11136Print the names and data types of all defined functions.
11137
11138@item info functions @var{regexp}
11139Print the names and data types of all defined functions
11140whose names contain a match for regular expression @var{regexp}.
11141Thus, @samp{info fun step} finds all functions whose names
11142include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11143start with @code{step}. If a function name contains characters
c1468174 11144that conflict with the regular expression language (e.g.@:
1c5dfdad 11145@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11146
11147@kindex info variables
11148@item info variables
11149Print the names and data types of all variables that are declared
6ca652b0 11150outside of functions (i.e.@: excluding local variables).
c906108c
SS
11151
11152@item info variables @var{regexp}
11153Print the names and data types of all variables (except for local
11154variables) whose names contain a match for regular expression
11155@var{regexp}.
11156
b37303ee 11157@kindex info classes
721c2651 11158@cindex Objective-C, classes and selectors
b37303ee
AF
11159@item info classes
11160@itemx info classes @var{regexp}
11161Display all Objective-C classes in your program, or
11162(with the @var{regexp} argument) all those matching a particular regular
11163expression.
11164
11165@kindex info selectors
11166@item info selectors
11167@itemx info selectors @var{regexp}
11168Display all Objective-C selectors in your program, or
11169(with the @var{regexp} argument) all those matching a particular regular
11170expression.
11171
c906108c
SS
11172@ignore
11173This was never implemented.
11174@kindex info methods
11175@item info methods
11176@itemx info methods @var{regexp}
11177The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11178methods within C@t{++} program, or (with the @var{regexp} argument) a
11179specific set of methods found in the various C@t{++} classes. Many
11180C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11181from the @code{ptype} command can be overwhelming and hard to use. The
11182@code{info-methods} command filters the methods, printing only those
11183which match the regular-expression @var{regexp}.
11184@end ignore
11185
c906108c
SS
11186@cindex reloading symbols
11187Some systems allow individual object files that make up your program to
7a292a7a
SS
11188be replaced without stopping and restarting your program. For example,
11189in VxWorks you can simply recompile a defective object file and keep on
11190running. If you are running on one of these systems, you can allow
11191@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11192
11193@table @code
11194@kindex set symbol-reloading
11195@item set symbol-reloading on
11196Replace symbol definitions for the corresponding source file when an
11197object file with a particular name is seen again.
11198
11199@item set symbol-reloading off
6d2ebf8b
SS
11200Do not replace symbol definitions when encountering object files of the
11201same name more than once. This is the default state; if you are not
11202running on a system that permits automatic relinking of modules, you
11203should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11204may discard symbols when linking large programs, that may contain
11205several modules (from different directories or libraries) with the same
11206name.
c906108c
SS
11207
11208@kindex show symbol-reloading
11209@item show symbol-reloading
11210Show the current @code{on} or @code{off} setting.
11211@end table
c906108c 11212
9c16f35a 11213@cindex opaque data types
c906108c
SS
11214@kindex set opaque-type-resolution
11215@item set opaque-type-resolution on
11216Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11217declared as a pointer to a @code{struct}, @code{class}, or
11218@code{union}---for example, @code{struct MyType *}---that is used in one
11219source file although the full declaration of @code{struct MyType} is in
11220another source file. The default is on.
11221
11222A change in the setting of this subcommand will not take effect until
11223the next time symbols for a file are loaded.
11224
11225@item set opaque-type-resolution off
11226Tell @value{GDBN} not to resolve opaque types. In this case, the type
11227is printed as follows:
11228@smallexample
11229@{<no data fields>@}
11230@end smallexample
11231
11232@kindex show opaque-type-resolution
11233@item show opaque-type-resolution
11234Show whether opaque types are resolved or not.
c906108c
SS
11235
11236@kindex maint print symbols
11237@cindex symbol dump
11238@kindex maint print psymbols
11239@cindex partial symbol dump
11240@item maint print symbols @var{filename}
11241@itemx maint print psymbols @var{filename}
11242@itemx maint print msymbols @var{filename}
11243Write a dump of debugging symbol data into the file @var{filename}.
11244These commands are used to debug the @value{GDBN} symbol-reading code. Only
11245symbols with debugging data are included. If you use @samp{maint print
11246symbols}, @value{GDBN} includes all the symbols for which it has already
11247collected full details: that is, @var{filename} reflects symbols for
11248only those files whose symbols @value{GDBN} has read. You can use the
11249command @code{info sources} to find out which files these are. If you
11250use @samp{maint print psymbols} instead, the dump shows information about
11251symbols that @value{GDBN} only knows partially---that is, symbols defined in
11252files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11253@samp{maint print msymbols} dumps just the minimal symbol information
11254required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11255@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11256@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11257
5e7b2f39
JB
11258@kindex maint info symtabs
11259@kindex maint info psymtabs
44ea7b70
JB
11260@cindex listing @value{GDBN}'s internal symbol tables
11261@cindex symbol tables, listing @value{GDBN}'s internal
11262@cindex full symbol tables, listing @value{GDBN}'s internal
11263@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11264@item maint info symtabs @r{[} @var{regexp} @r{]}
11265@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11266
11267List the @code{struct symtab} or @code{struct partial_symtab}
11268structures whose names match @var{regexp}. If @var{regexp} is not
11269given, list them all. The output includes expressions which you can
11270copy into a @value{GDBN} debugging this one to examine a particular
11271structure in more detail. For example:
11272
11273@smallexample
5e7b2f39 11274(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11275@{ objfile /home/gnu/build/gdb/gdb
11276 ((struct objfile *) 0x82e69d0)
b383017d 11277 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11278 ((struct partial_symtab *) 0x8474b10)
11279 readin no
11280 fullname (null)
11281 text addresses 0x814d3c8 -- 0x8158074
11282 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11283 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11284 dependencies (none)
11285 @}
11286@}
5e7b2f39 11287(@value{GDBP}) maint info symtabs
44ea7b70
JB
11288(@value{GDBP})
11289@end smallexample
11290@noindent
11291We see that there is one partial symbol table whose filename contains
11292the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11293and we see that @value{GDBN} has not read in any symtabs yet at all.
11294If we set a breakpoint on a function, that will cause @value{GDBN} to
11295read the symtab for the compilation unit containing that function:
11296
11297@smallexample
11298(@value{GDBP}) break dwarf2_psymtab_to_symtab
11299Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11300line 1574.
5e7b2f39 11301(@value{GDBP}) maint info symtabs
b383017d 11302@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11303 ((struct objfile *) 0x82e69d0)
b383017d 11304 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11305 ((struct symtab *) 0x86c1f38)
11306 dirname (null)
11307 fullname (null)
11308 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11309 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11310 debugformat DWARF 2
11311 @}
11312@}
b383017d 11313(@value{GDBP})
44ea7b70 11314@end smallexample
c906108c
SS
11315@end table
11316
44ea7b70 11317
6d2ebf8b 11318@node Altering
c906108c
SS
11319@chapter Altering Execution
11320
11321Once you think you have found an error in your program, you might want to
11322find out for certain whether correcting the apparent error would lead to
11323correct results in the rest of the run. You can find the answer by
11324experiment, using the @value{GDBN} features for altering execution of the
11325program.
11326
11327For example, you can store new values into variables or memory
7a292a7a
SS
11328locations, give your program a signal, restart it at a different
11329address, or even return prematurely from a function.
c906108c
SS
11330
11331@menu
11332* Assignment:: Assignment to variables
11333* Jumping:: Continuing at a different address
c906108c 11334* Signaling:: Giving your program a signal
c906108c
SS
11335* Returning:: Returning from a function
11336* Calling:: Calling your program's functions
11337* Patching:: Patching your program
11338@end menu
11339
6d2ebf8b 11340@node Assignment
79a6e687 11341@section Assignment to Variables
c906108c
SS
11342
11343@cindex assignment
11344@cindex setting variables
11345To alter the value of a variable, evaluate an assignment expression.
11346@xref{Expressions, ,Expressions}. For example,
11347
474c8240 11348@smallexample
c906108c 11349print x=4
474c8240 11350@end smallexample
c906108c
SS
11351
11352@noindent
11353stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11354value of the assignment expression (which is 4).
c906108c
SS
11355@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11356information on operators in supported languages.
c906108c
SS
11357
11358@kindex set variable
11359@cindex variables, setting
11360If you are not interested in seeing the value of the assignment, use the
11361@code{set} command instead of the @code{print} command. @code{set} is
11362really the same as @code{print} except that the expression's value is
11363not printed and is not put in the value history (@pxref{Value History,
79a6e687 11364,Value History}). The expression is evaluated only for its effects.
c906108c 11365
c906108c
SS
11366If the beginning of the argument string of the @code{set} command
11367appears identical to a @code{set} subcommand, use the @code{set
11368variable} command instead of just @code{set}. This command is identical
11369to @code{set} except for its lack of subcommands. For example, if your
11370program has a variable @code{width}, you get an error if you try to set
11371a new value with just @samp{set width=13}, because @value{GDBN} has the
11372command @code{set width}:
11373
474c8240 11374@smallexample
c906108c
SS
11375(@value{GDBP}) whatis width
11376type = double
11377(@value{GDBP}) p width
11378$4 = 13
11379(@value{GDBP}) set width=47
11380Invalid syntax in expression.
474c8240 11381@end smallexample
c906108c
SS
11382
11383@noindent
11384The invalid expression, of course, is @samp{=47}. In
11385order to actually set the program's variable @code{width}, use
11386
474c8240 11387@smallexample
c906108c 11388(@value{GDBP}) set var width=47
474c8240 11389@end smallexample
53a5351d 11390
c906108c
SS
11391Because the @code{set} command has many subcommands that can conflict
11392with the names of program variables, it is a good idea to use the
11393@code{set variable} command instead of just @code{set}. For example, if
11394your program has a variable @code{g}, you run into problems if you try
11395to set a new value with just @samp{set g=4}, because @value{GDBN} has
11396the command @code{set gnutarget}, abbreviated @code{set g}:
11397
474c8240 11398@smallexample
c906108c
SS
11399@group
11400(@value{GDBP}) whatis g
11401type = double
11402(@value{GDBP}) p g
11403$1 = 1
11404(@value{GDBP}) set g=4
2df3850c 11405(@value{GDBP}) p g
c906108c
SS
11406$2 = 1
11407(@value{GDBP}) r
11408The program being debugged has been started already.
11409Start it from the beginning? (y or n) y
11410Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11411"/home/smith/cc_progs/a.out": can't open to read symbols:
11412 Invalid bfd target.
c906108c
SS
11413(@value{GDBP}) show g
11414The current BFD target is "=4".
11415@end group
474c8240 11416@end smallexample
c906108c
SS
11417
11418@noindent
11419The program variable @code{g} did not change, and you silently set the
11420@code{gnutarget} to an invalid value. In order to set the variable
11421@code{g}, use
11422
474c8240 11423@smallexample
c906108c 11424(@value{GDBP}) set var g=4
474c8240 11425@end smallexample
c906108c
SS
11426
11427@value{GDBN} allows more implicit conversions in assignments than C; you can
11428freely store an integer value into a pointer variable or vice versa,
11429and you can convert any structure to any other structure that is the
11430same length or shorter.
11431@comment FIXME: how do structs align/pad in these conversions?
11432@comment /doc@cygnus.com 18dec1990
11433
11434To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11435construct to generate a value of specified type at a specified address
11436(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11437to memory location @code{0x83040} as an integer (which implies a certain size
11438and representation in memory), and
11439
474c8240 11440@smallexample
c906108c 11441set @{int@}0x83040 = 4
474c8240 11442@end smallexample
c906108c
SS
11443
11444@noindent
11445stores the value 4 into that memory location.
11446
6d2ebf8b 11447@node Jumping
79a6e687 11448@section Continuing at a Different Address
c906108c
SS
11449
11450Ordinarily, when you continue your program, you do so at the place where
11451it stopped, with the @code{continue} command. You can instead continue at
11452an address of your own choosing, with the following commands:
11453
11454@table @code
11455@kindex jump
11456@item jump @var{linespec}
2a25a5ba
EZ
11457@itemx jump @var{location}
11458Resume execution at line @var{linespec} or at address given by
11459@var{location}. Execution stops again immediately if there is a
11460breakpoint there. @xref{Specify Location}, for a description of the
11461different forms of @var{linespec} and @var{location}. It is common
11462practice to use the @code{tbreak} command in conjunction with
11463@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11464
11465The @code{jump} command does not change the current stack frame, or
11466the stack pointer, or the contents of any memory location or any
11467register other than the program counter. If line @var{linespec} is in
11468a different function from the one currently executing, the results may
11469be bizarre if the two functions expect different patterns of arguments or
11470of local variables. For this reason, the @code{jump} command requests
11471confirmation if the specified line is not in the function currently
11472executing. However, even bizarre results are predictable if you are
11473well acquainted with the machine-language code of your program.
c906108c
SS
11474@end table
11475
c906108c 11476@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11477On many systems, you can get much the same effect as the @code{jump}
11478command by storing a new value into the register @code{$pc}. The
11479difference is that this does not start your program running; it only
11480changes the address of where it @emph{will} run when you continue. For
11481example,
c906108c 11482
474c8240 11483@smallexample
c906108c 11484set $pc = 0x485
474c8240 11485@end smallexample
c906108c
SS
11486
11487@noindent
11488makes the next @code{continue} command or stepping command execute at
11489address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11490@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11491
11492The most common occasion to use the @code{jump} command is to back
11493up---perhaps with more breakpoints set---over a portion of a program
11494that has already executed, in order to examine its execution in more
11495detail.
11496
c906108c 11497@c @group
6d2ebf8b 11498@node Signaling
79a6e687 11499@section Giving your Program a Signal
9c16f35a 11500@cindex deliver a signal to a program
c906108c
SS
11501
11502@table @code
11503@kindex signal
11504@item signal @var{signal}
11505Resume execution where your program stopped, but immediately give it the
11506signal @var{signal}. @var{signal} can be the name or the number of a
11507signal. For example, on many systems @code{signal 2} and @code{signal
11508SIGINT} are both ways of sending an interrupt signal.
11509
11510Alternatively, if @var{signal} is zero, continue execution without
11511giving a signal. This is useful when your program stopped on account of
11512a signal and would ordinary see the signal when resumed with the
11513@code{continue} command; @samp{signal 0} causes it to resume without a
11514signal.
11515
11516@code{signal} does not repeat when you press @key{RET} a second time
11517after executing the command.
11518@end table
11519@c @end group
11520
11521Invoking the @code{signal} command is not the same as invoking the
11522@code{kill} utility from the shell. Sending a signal with @code{kill}
11523causes @value{GDBN} to decide what to do with the signal depending on
11524the signal handling tables (@pxref{Signals}). The @code{signal} command
11525passes the signal directly to your program.
11526
c906108c 11527
6d2ebf8b 11528@node Returning
79a6e687 11529@section Returning from a Function
c906108c
SS
11530
11531@table @code
11532@cindex returning from a function
11533@kindex return
11534@item return
11535@itemx return @var{expression}
11536You can cancel execution of a function call with the @code{return}
11537command. If you give an
11538@var{expression} argument, its value is used as the function's return
11539value.
11540@end table
11541
11542When you use @code{return}, @value{GDBN} discards the selected stack frame
11543(and all frames within it). You can think of this as making the
11544discarded frame return prematurely. If you wish to specify a value to
11545be returned, give that value as the argument to @code{return}.
11546
11547This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11548Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11549innermost remaining frame. That frame becomes selected. The
11550specified value is stored in the registers used for returning values
11551of functions.
11552
11553The @code{return} command does not resume execution; it leaves the
11554program stopped in the state that would exist if the function had just
11555returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11556and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11557selected stack frame returns naturally.
11558
6d2ebf8b 11559@node Calling
79a6e687 11560@section Calling Program Functions
c906108c 11561
f8568604 11562@table @code
c906108c 11563@cindex calling functions
f8568604
EZ
11564@cindex inferior functions, calling
11565@item print @var{expr}
d3e8051b 11566Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11567@var{expr} may include calls to functions in the program being
11568debugged.
11569
c906108c 11570@kindex call
c906108c
SS
11571@item call @var{expr}
11572Evaluate the expression @var{expr} without displaying @code{void}
11573returned values.
c906108c
SS
11574
11575You can use this variant of the @code{print} command if you want to
f8568604
EZ
11576execute a function from your program that does not return anything
11577(a.k.a.@: @dfn{a void function}), but without cluttering the output
11578with @code{void} returned values that @value{GDBN} will otherwise
11579print. If the result is not void, it is printed and saved in the
11580value history.
11581@end table
11582
9c16f35a
EZ
11583It is possible for the function you call via the @code{print} or
11584@code{call} command to generate a signal (e.g., if there's a bug in
11585the function, or if you passed it incorrect arguments). What happens
11586in that case is controlled by the @code{set unwindonsignal} command.
11587
11588@table @code
11589@item set unwindonsignal
11590@kindex set unwindonsignal
11591@cindex unwind stack in called functions
11592@cindex call dummy stack unwinding
11593Set unwinding of the stack if a signal is received while in a function
11594that @value{GDBN} called in the program being debugged. If set to on,
11595@value{GDBN} unwinds the stack it created for the call and restores
11596the context to what it was before the call. If set to off (the
11597default), @value{GDBN} stops in the frame where the signal was
11598received.
11599
11600@item show unwindonsignal
11601@kindex show unwindonsignal
11602Show the current setting of stack unwinding in the functions called by
11603@value{GDBN}.
11604@end table
11605
f8568604
EZ
11606@cindex weak alias functions
11607Sometimes, a function you wish to call is actually a @dfn{weak alias}
11608for another function. In such case, @value{GDBN} might not pick up
11609the type information, including the types of the function arguments,
11610which causes @value{GDBN} to call the inferior function incorrectly.
11611As a result, the called function will function erroneously and may
11612even crash. A solution to that is to use the name of the aliased
11613function instead.
c906108c 11614
6d2ebf8b 11615@node Patching
79a6e687 11616@section Patching Programs
7a292a7a 11617
c906108c
SS
11618@cindex patching binaries
11619@cindex writing into executables
c906108c 11620@cindex writing into corefiles
c906108c 11621
7a292a7a
SS
11622By default, @value{GDBN} opens the file containing your program's
11623executable code (or the corefile) read-only. This prevents accidental
11624alterations to machine code; but it also prevents you from intentionally
11625patching your program's binary.
c906108c
SS
11626
11627If you'd like to be able to patch the binary, you can specify that
11628explicitly with the @code{set write} command. For example, you might
11629want to turn on internal debugging flags, or even to make emergency
11630repairs.
11631
11632@table @code
11633@kindex set write
11634@item set write on
11635@itemx set write off
7a292a7a
SS
11636If you specify @samp{set write on}, @value{GDBN} opens executable and
11637core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11638off} (the default), @value{GDBN} opens them read-only.
11639
11640If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11641@code{exec-file} or @code{core-file} command) after changing @code{set
11642write}, for your new setting to take effect.
c906108c
SS
11643
11644@item show write
11645@kindex show write
7a292a7a
SS
11646Display whether executable files and core files are opened for writing
11647as well as reading.
c906108c
SS
11648@end table
11649
6d2ebf8b 11650@node GDB Files
c906108c
SS
11651@chapter @value{GDBN} Files
11652
7a292a7a
SS
11653@value{GDBN} needs to know the file name of the program to be debugged,
11654both in order to read its symbol table and in order to start your
11655program. To debug a core dump of a previous run, you must also tell
11656@value{GDBN} the name of the core dump file.
c906108c
SS
11657
11658@menu
11659* Files:: Commands to specify files
5b5d99cf 11660* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11661* Symbol Errors:: Errors reading symbol files
11662@end menu
11663
6d2ebf8b 11664@node Files
79a6e687 11665@section Commands to Specify Files
c906108c 11666
7a292a7a 11667@cindex symbol table
c906108c 11668@cindex core dump file
7a292a7a
SS
11669
11670You may want to specify executable and core dump file names. The usual
11671way to do this is at start-up time, using the arguments to
11672@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11673Out of @value{GDBN}}).
c906108c
SS
11674
11675Occasionally it is necessary to change to a different file during a
397ca115
EZ
11676@value{GDBN} session. Or you may run @value{GDBN} and forget to
11677specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11678via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11679Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11680new files are useful.
c906108c
SS
11681
11682@table @code
11683@cindex executable file
11684@kindex file
11685@item file @var{filename}
11686Use @var{filename} as the program to be debugged. It is read for its
11687symbols and for the contents of pure memory. It is also the program
11688executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11689directory and the file is not found in the @value{GDBN} working directory,
11690@value{GDBN} uses the environment variable @code{PATH} as a list of
11691directories to search, just as the shell does when looking for a program
11692to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11693and your program, using the @code{path} command.
11694
fc8be69e
EZ
11695@cindex unlinked object files
11696@cindex patching object files
11697You can load unlinked object @file{.o} files into @value{GDBN} using
11698the @code{file} command. You will not be able to ``run'' an object
11699file, but you can disassemble functions and inspect variables. Also,
11700if the underlying BFD functionality supports it, you could use
11701@kbd{gdb -write} to patch object files using this technique. Note
11702that @value{GDBN} can neither interpret nor modify relocations in this
11703case, so branches and some initialized variables will appear to go to
11704the wrong place. But this feature is still handy from time to time.
11705
c906108c
SS
11706@item file
11707@code{file} with no argument makes @value{GDBN} discard any information it
11708has on both executable file and the symbol table.
11709
11710@kindex exec-file
11711@item exec-file @r{[} @var{filename} @r{]}
11712Specify that the program to be run (but not the symbol table) is found
11713in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11714if necessary to locate your program. Omitting @var{filename} means to
11715discard information on the executable file.
11716
11717@kindex symbol-file
11718@item symbol-file @r{[} @var{filename} @r{]}
11719Read symbol table information from file @var{filename}. @code{PATH} is
11720searched when necessary. Use the @code{file} command to get both symbol
11721table and program to run from the same file.
11722
11723@code{symbol-file} with no argument clears out @value{GDBN} information on your
11724program's symbol table.
11725
ae5a43e0
DJ
11726The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11727some breakpoints and auto-display expressions. This is because they may
11728contain pointers to the internal data recording symbols and data types,
11729which are part of the old symbol table data being discarded inside
11730@value{GDBN}.
c906108c
SS
11731
11732@code{symbol-file} does not repeat if you press @key{RET} again after
11733executing it once.
11734
11735When @value{GDBN} is configured for a particular environment, it
11736understands debugging information in whatever format is the standard
11737generated for that environment; you may use either a @sc{gnu} compiler, or
11738other compilers that adhere to the local conventions.
c906108c 11739Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11740using @code{@value{NGCC}} you can generate debugging information for
c906108c 11741optimized code.
c906108c
SS
11742
11743For most kinds of object files, with the exception of old SVR3 systems
11744using COFF, the @code{symbol-file} command does not normally read the
11745symbol table in full right away. Instead, it scans the symbol table
11746quickly to find which source files and which symbols are present. The
11747details are read later, one source file at a time, as they are needed.
11748
11749The purpose of this two-stage reading strategy is to make @value{GDBN}
11750start up faster. For the most part, it is invisible except for
11751occasional pauses while the symbol table details for a particular source
11752file are being read. (The @code{set verbose} command can turn these
11753pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11754Warnings and Messages}.)
c906108c 11755
c906108c
SS
11756We have not implemented the two-stage strategy for COFF yet. When the
11757symbol table is stored in COFF format, @code{symbol-file} reads the
11758symbol table data in full right away. Note that ``stabs-in-COFF''
11759still does the two-stage strategy, since the debug info is actually
11760in stabs format.
11761
11762@kindex readnow
11763@cindex reading symbols immediately
11764@cindex symbols, reading immediately
a94ab193
EZ
11765@item symbol-file @var{filename} @r{[} -readnow @r{]}
11766@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11767You can override the @value{GDBN} two-stage strategy for reading symbol
11768tables by using the @samp{-readnow} option with any of the commands that
11769load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11770entire symbol table available.
c906108c 11771
c906108c
SS
11772@c FIXME: for now no mention of directories, since this seems to be in
11773@c flux. 13mar1992 status is that in theory GDB would look either in
11774@c current dir or in same dir as myprog; but issues like competing
11775@c GDB's, or clutter in system dirs, mean that in practice right now
11776@c only current dir is used. FFish says maybe a special GDB hierarchy
11777@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11778@c files.
11779
c906108c 11780@kindex core-file
09d4efe1 11781@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11782@itemx core
c906108c
SS
11783Specify the whereabouts of a core dump file to be used as the ``contents
11784of memory''. Traditionally, core files contain only some parts of the
11785address space of the process that generated them; @value{GDBN} can access the
11786executable file itself for other parts.
11787
11788@code{core-file} with no argument specifies that no core file is
11789to be used.
11790
11791Note that the core file is ignored when your program is actually running
7a292a7a
SS
11792under @value{GDBN}. So, if you have been running your program and you
11793wish to debug a core file instead, you must kill the subprocess in which
11794the program is running. To do this, use the @code{kill} command
79a6e687 11795(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11796
c906108c
SS
11797@kindex add-symbol-file
11798@cindex dynamic linking
11799@item add-symbol-file @var{filename} @var{address}
a94ab193 11800@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11801@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11802The @code{add-symbol-file} command reads additional symbol table
11803information from the file @var{filename}. You would use this command
11804when @var{filename} has been dynamically loaded (by some other means)
11805into the program that is running. @var{address} should be the memory
11806address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11807this out for itself. You can additionally specify an arbitrary number
11808of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11809section name and base address for that section. You can specify any
11810@var{address} as an expression.
c906108c
SS
11811
11812The symbol table of the file @var{filename} is added to the symbol table
11813originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11814@code{add-symbol-file} command any number of times; the new symbol data
11815thus read keeps adding to the old. To discard all old symbol data
11816instead, use the @code{symbol-file} command without any arguments.
c906108c 11817
17d9d558
JB
11818@cindex relocatable object files, reading symbols from
11819@cindex object files, relocatable, reading symbols from
11820@cindex reading symbols from relocatable object files
11821@cindex symbols, reading from relocatable object files
11822@cindex @file{.o} files, reading symbols from
11823Although @var{filename} is typically a shared library file, an
11824executable file, or some other object file which has been fully
11825relocated for loading into a process, you can also load symbolic
11826information from relocatable @file{.o} files, as long as:
11827
11828@itemize @bullet
11829@item
11830the file's symbolic information refers only to linker symbols defined in
11831that file, not to symbols defined by other object files,
11832@item
11833every section the file's symbolic information refers to has actually
11834been loaded into the inferior, as it appears in the file, and
11835@item
11836you can determine the address at which every section was loaded, and
11837provide these to the @code{add-symbol-file} command.
11838@end itemize
11839
11840@noindent
11841Some embedded operating systems, like Sun Chorus and VxWorks, can load
11842relocatable files into an already running program; such systems
11843typically make the requirements above easy to meet. However, it's
11844important to recognize that many native systems use complex link
49efadf5 11845procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11846assembly, for example) that make the requirements difficult to meet. In
11847general, one cannot assume that using @code{add-symbol-file} to read a
11848relocatable object file's symbolic information will have the same effect
11849as linking the relocatable object file into the program in the normal
11850way.
11851
c906108c
SS
11852@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11853
c45da7e6
EZ
11854@kindex add-symbol-file-from-memory
11855@cindex @code{syscall DSO}
11856@cindex load symbols from memory
11857@item add-symbol-file-from-memory @var{address}
11858Load symbols from the given @var{address} in a dynamically loaded
11859object file whose image is mapped directly into the inferior's memory.
11860For example, the Linux kernel maps a @code{syscall DSO} into each
11861process's address space; this DSO provides kernel-specific code for
11862some system calls. The argument can be any expression whose
11863evaluation yields the address of the file's shared object file header.
11864For this command to work, you must have used @code{symbol-file} or
11865@code{exec-file} commands in advance.
11866
09d4efe1
EZ
11867@kindex add-shared-symbol-files
11868@kindex assf
11869@item add-shared-symbol-files @var{library-file}
11870@itemx assf @var{library-file}
11871The @code{add-shared-symbol-files} command can currently be used only
11872in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11873alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11874@value{GDBN} automatically looks for shared libraries, however if
11875@value{GDBN} does not find yours, you can invoke
11876@code{add-shared-symbol-files}. It takes one argument: the shared
11877library's file name. @code{assf} is a shorthand alias for
11878@code{add-shared-symbol-files}.
c906108c 11879
c906108c 11880@kindex section
09d4efe1
EZ
11881@item section @var{section} @var{addr}
11882The @code{section} command changes the base address of the named
11883@var{section} of the exec file to @var{addr}. This can be used if the
11884exec file does not contain section addresses, (such as in the
11885@code{a.out} format), or when the addresses specified in the file
11886itself are wrong. Each section must be changed separately. The
11887@code{info files} command, described below, lists all the sections and
11888their addresses.
c906108c
SS
11889
11890@kindex info files
11891@kindex info target
11892@item info files
11893@itemx info target
7a292a7a
SS
11894@code{info files} and @code{info target} are synonymous; both print the
11895current target (@pxref{Targets, ,Specifying a Debugging Target}),
11896including the names of the executable and core dump files currently in
11897use by @value{GDBN}, and the files from which symbols were loaded. The
11898command @code{help target} lists all possible targets rather than
11899current ones.
11900
fe95c787
MS
11901@kindex maint info sections
11902@item maint info sections
11903Another command that can give you extra information about program sections
11904is @code{maint info sections}. In addition to the section information
11905displayed by @code{info files}, this command displays the flags and file
11906offset of each section in the executable and core dump files. In addition,
11907@code{maint info sections} provides the following command options (which
11908may be arbitrarily combined):
11909
11910@table @code
11911@item ALLOBJ
11912Display sections for all loaded object files, including shared libraries.
11913@item @var{sections}
6600abed 11914Display info only for named @var{sections}.
fe95c787
MS
11915@item @var{section-flags}
11916Display info only for sections for which @var{section-flags} are true.
11917The section flags that @value{GDBN} currently knows about are:
11918@table @code
11919@item ALLOC
11920Section will have space allocated in the process when loaded.
11921Set for all sections except those containing debug information.
11922@item LOAD
11923Section will be loaded from the file into the child process memory.
11924Set for pre-initialized code and data, clear for @code{.bss} sections.
11925@item RELOC
11926Section needs to be relocated before loading.
11927@item READONLY
11928Section cannot be modified by the child process.
11929@item CODE
11930Section contains executable code only.
6600abed 11931@item DATA
fe95c787
MS
11932Section contains data only (no executable code).
11933@item ROM
11934Section will reside in ROM.
11935@item CONSTRUCTOR
11936Section contains data for constructor/destructor lists.
11937@item HAS_CONTENTS
11938Section is not empty.
11939@item NEVER_LOAD
11940An instruction to the linker to not output the section.
11941@item COFF_SHARED_LIBRARY
11942A notification to the linker that the section contains
11943COFF shared library information.
11944@item IS_COMMON
11945Section contains common symbols.
11946@end table
11947@end table
6763aef9 11948@kindex set trust-readonly-sections
9c16f35a 11949@cindex read-only sections
6763aef9
MS
11950@item set trust-readonly-sections on
11951Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11952really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11953In that case, @value{GDBN} can fetch values from these sections
11954out of the object file, rather than from the target program.
11955For some targets (notably embedded ones), this can be a significant
11956enhancement to debugging performance.
11957
11958The default is off.
11959
11960@item set trust-readonly-sections off
15110bc3 11961Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11962the contents of the section might change while the program is running,
11963and must therefore be fetched from the target when needed.
9c16f35a
EZ
11964
11965@item show trust-readonly-sections
11966Show the current setting of trusting readonly sections.
c906108c
SS
11967@end table
11968
11969All file-specifying commands allow both absolute and relative file names
11970as arguments. @value{GDBN} always converts the file name to an absolute file
11971name and remembers it that way.
11972
c906108c 11973@cindex shared libraries
9cceb671
DJ
11974@anchor{Shared Libraries}
11975@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11976and IBM RS/6000 AIX shared libraries.
53a5351d 11977
9cceb671
DJ
11978On MS-Windows @value{GDBN} must be linked with the Expat library to support
11979shared libraries. @xref{Expat}.
11980
c906108c
SS
11981@value{GDBN} automatically loads symbol definitions from shared libraries
11982when you use the @code{run} command, or when you examine a core file.
11983(Before you issue the @code{run} command, @value{GDBN} does not understand
11984references to a function in a shared library, however---unless you are
11985debugging a core file).
53a5351d
JM
11986
11987On HP-UX, if the program loads a library explicitly, @value{GDBN}
11988automatically loads the symbols at the time of the @code{shl_load} call.
11989
c906108c
SS
11990@c FIXME: some @value{GDBN} release may permit some refs to undef
11991@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11992@c FIXME...lib; check this from time to time when updating manual
11993
b7209cb4
FF
11994There are times, however, when you may wish to not automatically load
11995symbol definitions from shared libraries, such as when they are
11996particularly large or there are many of them.
11997
11998To control the automatic loading of shared library symbols, use the
11999commands:
12000
12001@table @code
12002@kindex set auto-solib-add
12003@item set auto-solib-add @var{mode}
12004If @var{mode} is @code{on}, symbols from all shared object libraries
12005will be loaded automatically when the inferior begins execution, you
12006attach to an independently started inferior, or when the dynamic linker
12007informs @value{GDBN} that a new library has been loaded. If @var{mode}
12008is @code{off}, symbols must be loaded manually, using the
12009@code{sharedlibrary} command. The default value is @code{on}.
12010
dcaf7c2c
EZ
12011@cindex memory used for symbol tables
12012If your program uses lots of shared libraries with debug info that
12013takes large amounts of memory, you can decrease the @value{GDBN}
12014memory footprint by preventing it from automatically loading the
12015symbols from shared libraries. To that end, type @kbd{set
12016auto-solib-add off} before running the inferior, then load each
12017library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12018@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12019the libraries whose symbols you want to be loaded.
12020
b7209cb4
FF
12021@kindex show auto-solib-add
12022@item show auto-solib-add
12023Display the current autoloading mode.
12024@end table
12025
c45da7e6 12026@cindex load shared library
b7209cb4
FF
12027To explicitly load shared library symbols, use the @code{sharedlibrary}
12028command:
12029
c906108c
SS
12030@table @code
12031@kindex info sharedlibrary
12032@kindex info share
12033@item info share
12034@itemx info sharedlibrary
12035Print the names of the shared libraries which are currently loaded.
12036
12037@kindex sharedlibrary
12038@kindex share
12039@item sharedlibrary @var{regex}
12040@itemx share @var{regex}
c906108c
SS
12041Load shared object library symbols for files matching a
12042Unix regular expression.
12043As with files loaded automatically, it only loads shared libraries
12044required by your program for a core file or after typing @code{run}. If
12045@var{regex} is omitted all shared libraries required by your program are
12046loaded.
c45da7e6
EZ
12047
12048@item nosharedlibrary
12049@kindex nosharedlibrary
12050@cindex unload symbols from shared libraries
12051Unload all shared object library symbols. This discards all symbols
12052that have been loaded from all shared libraries. Symbols from shared
12053libraries that were loaded by explicit user requests are not
12054discarded.
c906108c
SS
12055@end table
12056
721c2651
EZ
12057Sometimes you may wish that @value{GDBN} stops and gives you control
12058when any of shared library events happen. Use the @code{set
12059stop-on-solib-events} command for this:
12060
12061@table @code
12062@item set stop-on-solib-events
12063@kindex set stop-on-solib-events
12064This command controls whether @value{GDBN} should give you control
12065when the dynamic linker notifies it about some shared library event.
12066The most common event of interest is loading or unloading of a new
12067shared library.
12068
12069@item show stop-on-solib-events
12070@kindex show stop-on-solib-events
12071Show whether @value{GDBN} stops and gives you control when shared
12072library events happen.
12073@end table
12074
f5ebfba0
DJ
12075Shared libraries are also supported in many cross or remote debugging
12076configurations. A copy of the target's libraries need to be present on the
12077host system; they need to be the same as the target libraries, although the
12078copies on the target can be stripped as long as the copies on the host are
12079not.
12080
59b7b46f
EZ
12081@cindex where to look for shared libraries
12082For remote debugging, you need to tell @value{GDBN} where the target
12083libraries are, so that it can load the correct copies---otherwise, it
12084may try to load the host's libraries. @value{GDBN} has two variables
12085to specify the search directories for target libraries.
f5ebfba0
DJ
12086
12087@table @code
59b7b46f 12088@cindex prefix for shared library file names
f822c95b 12089@cindex system root, alternate
f5ebfba0 12090@kindex set solib-absolute-prefix
f822c95b
DJ
12091@kindex set sysroot
12092@item set sysroot @var{path}
12093Use @var{path} as the system root for the program being debugged. Any
12094absolute shared library paths will be prefixed with @var{path}; many
12095runtime loaders store the absolute paths to the shared library in the
12096target program's memory. If you use @code{set sysroot} to find shared
12097libraries, they need to be laid out in the same way that they are on
12098the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12099under @var{path}.
12100
12101The @code{set solib-absolute-prefix} command is an alias for @code{set
12102sysroot}.
12103
12104@cindex default system root
59b7b46f 12105@cindex @samp{--with-sysroot}
f822c95b
DJ
12106You can set the default system root by using the configure-time
12107@samp{--with-sysroot} option. If the system root is inside
12108@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12109@samp{--exec-prefix}), then the default system root will be updated
12110automatically if the installed @value{GDBN} is moved to a new
12111location.
12112
12113@kindex show sysroot
12114@item show sysroot
f5ebfba0
DJ
12115Display the current shared library prefix.
12116
12117@kindex set solib-search-path
12118@item set solib-search-path @var{path}
f822c95b
DJ
12119If this variable is set, @var{path} is a colon-separated list of
12120directories to search for shared libraries. @samp{solib-search-path}
12121is used after @samp{sysroot} fails to locate the library, or if the
12122path to the library is relative instead of absolute. If you want to
12123use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12124@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12125finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12126it to a nonexistent directory may interfere with automatic loading
f822c95b 12127of shared library symbols.
f5ebfba0
DJ
12128
12129@kindex show solib-search-path
12130@item show solib-search-path
12131Display the current shared library search path.
12132@end table
12133
5b5d99cf
JB
12134
12135@node Separate Debug Files
12136@section Debugging Information in Separate Files
12137@cindex separate debugging information files
12138@cindex debugging information in separate files
12139@cindex @file{.debug} subdirectories
12140@cindex debugging information directory, global
12141@cindex global debugging information directory
c7e83d54
EZ
12142@cindex build ID, and separate debugging files
12143@cindex @file{.build-id} directory
5b5d99cf
JB
12144
12145@value{GDBN} allows you to put a program's debugging information in a
12146file separate from the executable itself, in a way that allows
12147@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12148Since debugging information can be very large---sometimes larger
12149than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12150information for their executables in separate files, which users can
12151install only when they need to debug a problem.
12152
c7e83d54
EZ
12153@value{GDBN} supports two ways of specifying the separate debug info
12154file:
5b5d99cf
JB
12155
12156@itemize @bullet
12157@item
c7e83d54
EZ
12158The executable contains a @dfn{debug link} that specifies the name of
12159the separate debug info file. The separate debug file's name is
12160usually @file{@var{executable}.debug}, where @var{executable} is the
12161name of the corresponding executable file without leading directories
12162(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12163debug link specifies a CRC32 checksum for the debug file, which
12164@value{GDBN} uses to validate that the executable and the debug file
12165came from the same build.
12166
12167@item
7e27a47a 12168The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12169also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12170only on some operating systems, notably those which use the ELF format
12171for binary files and the @sc{gnu} Binutils.) For more details about
12172this feature, see the description of the @option{--build-id}
12173command-line option in @ref{Options, , Command Line Options, ld.info,
12174The GNU Linker}. The debug info file's name is not specified
12175explicitly by the build ID, but can be computed from the build ID, see
12176below.
d3750b24
JK
12177@end itemize
12178
c7e83d54
EZ
12179Depending on the way the debug info file is specified, @value{GDBN}
12180uses two different methods of looking for the debug file:
d3750b24
JK
12181
12182@itemize @bullet
12183@item
c7e83d54
EZ
12184For the ``debug link'' method, @value{GDBN} looks up the named file in
12185the directory of the executable file, then in a subdirectory of that
12186directory named @file{.debug}, and finally under the global debug
12187directory, in a subdirectory whose name is identical to the leading
12188directories of the executable's absolute file name.
12189
12190@item
83f83d7f 12191For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12192@file{.build-id} subdirectory of the global debug directory for a file
12193named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12194first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12195are the rest of the bit string. (Real build ID strings are 32 or more
12196hex characters, not 10.)
c7e83d54
EZ
12197@end itemize
12198
12199So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12200@file{/usr/bin/ls}, which has a debug link that specifies the
12201file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12202@code{abcdef1234}. If the global debug directory is
12203@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12204debug information files, in the indicated order:
12205
12206@itemize @minus
12207@item
12208@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12209@item
c7e83d54 12210@file{/usr/bin/ls.debug}
5b5d99cf 12211@item
c7e83d54 12212@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12213@item
c7e83d54 12214@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12215@end itemize
5b5d99cf
JB
12216
12217You can set the global debugging info directory's name, and view the
12218name @value{GDBN} is currently using.
12219
12220@table @code
12221
12222@kindex set debug-file-directory
12223@item set debug-file-directory @var{directory}
12224Set the directory which @value{GDBN} searches for separate debugging
12225information files to @var{directory}.
12226
12227@kindex show debug-file-directory
12228@item show debug-file-directory
12229Show the directory @value{GDBN} searches for separate debugging
12230information files.
12231
12232@end table
12233
12234@cindex @code{.gnu_debuglink} sections
c7e83d54 12235@cindex debug link sections
5b5d99cf
JB
12236A debug link is a special section of the executable file named
12237@code{.gnu_debuglink}. The section must contain:
12238
12239@itemize
12240@item
12241A filename, with any leading directory components removed, followed by
12242a zero byte,
12243@item
12244zero to three bytes of padding, as needed to reach the next four-byte
12245boundary within the section, and
12246@item
12247a four-byte CRC checksum, stored in the same endianness used for the
12248executable file itself. The checksum is computed on the debugging
12249information file's full contents by the function given below, passing
12250zero as the @var{crc} argument.
12251@end itemize
12252
12253Any executable file format can carry a debug link, as long as it can
12254contain a section named @code{.gnu_debuglink} with the contents
12255described above.
12256
d3750b24 12257@cindex @code{.note.gnu.build-id} sections
c7e83d54 12258@cindex build ID sections
7e27a47a
EZ
12259The build ID is a special section in the executable file (and in other
12260ELF binary files that @value{GDBN} may consider). This section is
12261often named @code{.note.gnu.build-id}, but that name is not mandatory.
12262It contains unique identification for the built files---the ID remains
12263the same across multiple builds of the same build tree. The default
12264algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12265content for the build ID string. The same section with an identical
12266value is present in the original built binary with symbols, in its
12267stripped variant, and in the separate debugging information file.
d3750b24 12268
5b5d99cf
JB
12269The debugging information file itself should be an ordinary
12270executable, containing a full set of linker symbols, sections, and
12271debugging information. The sections of the debugging information file
c7e83d54
EZ
12272should have the same names, addresses, and sizes as the original file,
12273but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12274in an ordinary executable.
12275
7e27a47a 12276The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12277@samp{objcopy} utility that can produce
12278the separated executable / debugging information file pairs using the
12279following commands:
12280
12281@smallexample
12282@kbd{objcopy --only-keep-debug foo foo.debug}
12283@kbd{strip -g foo}
c7e83d54
EZ
12284@end smallexample
12285
12286@noindent
12287These commands remove the debugging
83f83d7f
JK
12288information from the executable file @file{foo} and place it in the file
12289@file{foo.debug}. You can use the first, second or both methods to link the
12290two files:
12291
12292@itemize @bullet
12293@item
12294The debug link method needs the following additional command to also leave
12295behind a debug link in @file{foo}:
12296
12297@smallexample
12298@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12299@end smallexample
12300
12301Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12302a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12303foo.debug} has the same functionality as the two @code{objcopy} commands and
12304the @code{ln -s} command above, together.
12305
12306@item
12307Build ID gets embedded into the main executable using @code{ld --build-id} or
12308the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12309compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12310utilities (Binutils) package since version 2.18.
83f83d7f
JK
12311@end itemize
12312
12313@noindent
d3750b24 12314
c7e83d54
EZ
12315Since there are many different ways to compute CRC's for the debug
12316link (different polynomials, reversals, byte ordering, etc.), the
12317simplest way to describe the CRC used in @code{.gnu_debuglink}
12318sections is to give the complete code for a function that computes it:
5b5d99cf 12319
4644b6e3 12320@kindex gnu_debuglink_crc32
5b5d99cf
JB
12321@smallexample
12322unsigned long
12323gnu_debuglink_crc32 (unsigned long crc,
12324 unsigned char *buf, size_t len)
12325@{
12326 static const unsigned long crc32_table[256] =
12327 @{
12328 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12329 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12330 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12331 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12332 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12333 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12334 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12335 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12336 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12337 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12338 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12339 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12340 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12341 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12342 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12343 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12344 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12345 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12346 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12347 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12348 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12349 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12350 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12351 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12352 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12353 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12354 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12355 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12356 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12357 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12358 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12359 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12360 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12361 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12362 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12363 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12364 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12365 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12366 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12367 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12368 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12369 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12370 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12371 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12372 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12373 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12374 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12375 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12376 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12377 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12378 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12379 0x2d02ef8d
12380 @};
12381 unsigned char *end;
12382
12383 crc = ~crc & 0xffffffff;
12384 for (end = buf + len; buf < end; ++buf)
12385 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12386 return ~crc & 0xffffffff;
5b5d99cf
JB
12387@}
12388@end smallexample
12389
c7e83d54
EZ
12390@noindent
12391This computation does not apply to the ``build ID'' method.
12392
5b5d99cf 12393
6d2ebf8b 12394@node Symbol Errors
79a6e687 12395@section Errors Reading Symbol Files
c906108c
SS
12396
12397While reading a symbol file, @value{GDBN} occasionally encounters problems,
12398such as symbol types it does not recognize, or known bugs in compiler
12399output. By default, @value{GDBN} does not notify you of such problems, since
12400they are relatively common and primarily of interest to people
12401debugging compilers. If you are interested in seeing information
12402about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12403only one message about each such type of problem, no matter how many
12404times the problem occurs; or you can ask @value{GDBN} to print more messages,
12405to see how many times the problems occur, with the @code{set
79a6e687
BW
12406complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12407Messages}).
c906108c
SS
12408
12409The messages currently printed, and their meanings, include:
12410
12411@table @code
12412@item inner block not inside outer block in @var{symbol}
12413
12414The symbol information shows where symbol scopes begin and end
12415(such as at the start of a function or a block of statements). This
12416error indicates that an inner scope block is not fully contained
12417in its outer scope blocks.
12418
12419@value{GDBN} circumvents the problem by treating the inner block as if it had
12420the same scope as the outer block. In the error message, @var{symbol}
12421may be shown as ``@code{(don't know)}'' if the outer block is not a
12422function.
12423
12424@item block at @var{address} out of order
12425
12426The symbol information for symbol scope blocks should occur in
12427order of increasing addresses. This error indicates that it does not
12428do so.
12429
12430@value{GDBN} does not circumvent this problem, and has trouble
12431locating symbols in the source file whose symbols it is reading. (You
12432can often determine what source file is affected by specifying
79a6e687
BW
12433@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12434Messages}.)
c906108c
SS
12435
12436@item bad block start address patched
12437
12438The symbol information for a symbol scope block has a start address
12439smaller than the address of the preceding source line. This is known
12440to occur in the SunOS 4.1.1 (and earlier) C compiler.
12441
12442@value{GDBN} circumvents the problem by treating the symbol scope block as
12443starting on the previous source line.
12444
12445@item bad string table offset in symbol @var{n}
12446
12447@cindex foo
12448Symbol number @var{n} contains a pointer into the string table which is
12449larger than the size of the string table.
12450
12451@value{GDBN} circumvents the problem by considering the symbol to have the
12452name @code{foo}, which may cause other problems if many symbols end up
12453with this name.
12454
12455@item unknown symbol type @code{0x@var{nn}}
12456
7a292a7a
SS
12457The symbol information contains new data types that @value{GDBN} does
12458not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12459uncomprehended information, in hexadecimal.
c906108c 12460
7a292a7a
SS
12461@value{GDBN} circumvents the error by ignoring this symbol information.
12462This usually allows you to debug your program, though certain symbols
c906108c 12463are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12464debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12465on @code{complain}, then go up to the function @code{read_dbx_symtab}
12466and examine @code{*bufp} to see the symbol.
c906108c
SS
12467
12468@item stub type has NULL name
c906108c 12469
7a292a7a 12470@value{GDBN} could not find the full definition for a struct or class.
c906108c 12471
7a292a7a 12472@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12473The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12474information that recent versions of the compiler should have output for
12475it.
c906108c
SS
12476
12477@item info mismatch between compiler and debugger
12478
12479@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12480
c906108c
SS
12481@end table
12482
6d2ebf8b 12483@node Targets
c906108c 12484@chapter Specifying a Debugging Target
7a292a7a 12485
c906108c 12486@cindex debugging target
c906108c 12487A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12488
12489Often, @value{GDBN} runs in the same host environment as your program;
12490in that case, the debugging target is specified as a side effect when
12491you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12492flexibility---for example, running @value{GDBN} on a physically separate
12493host, or controlling a standalone system over a serial port or a
53a5351d
JM
12494realtime system over a TCP/IP connection---you can use the @code{target}
12495command to specify one of the target types configured for @value{GDBN}
79a6e687 12496(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12497
a8f24a35
EZ
12498@cindex target architecture
12499It is possible to build @value{GDBN} for several different @dfn{target
12500architectures}. When @value{GDBN} is built like that, you can choose
12501one of the available architectures with the @kbd{set architecture}
12502command.
12503
12504@table @code
12505@kindex set architecture
12506@kindex show architecture
12507@item set architecture @var{arch}
12508This command sets the current target architecture to @var{arch}. The
12509value of @var{arch} can be @code{"auto"}, in addition to one of the
12510supported architectures.
12511
12512@item show architecture
12513Show the current target architecture.
9c16f35a
EZ
12514
12515@item set processor
12516@itemx processor
12517@kindex set processor
12518@kindex show processor
12519These are alias commands for, respectively, @code{set architecture}
12520and @code{show architecture}.
a8f24a35
EZ
12521@end table
12522
c906108c
SS
12523@menu
12524* Active Targets:: Active targets
12525* Target Commands:: Commands for managing targets
c906108c 12526* Byte Order:: Choosing target byte order
c906108c
SS
12527@end menu
12528
6d2ebf8b 12529@node Active Targets
79a6e687 12530@section Active Targets
7a292a7a 12531
c906108c
SS
12532@cindex stacking targets
12533@cindex active targets
12534@cindex multiple targets
12535
c906108c 12536There are three classes of targets: processes, core files, and
7a292a7a
SS
12537executable files. @value{GDBN} can work concurrently on up to three
12538active targets, one in each class. This allows you to (for example)
12539start a process and inspect its activity without abandoning your work on
12540a core file.
c906108c
SS
12541
12542For example, if you execute @samp{gdb a.out}, then the executable file
12543@code{a.out} is the only active target. If you designate a core file as
12544well---presumably from a prior run that crashed and coredumped---then
12545@value{GDBN} has two active targets and uses them in tandem, looking
12546first in the corefile target, then in the executable file, to satisfy
12547requests for memory addresses. (Typically, these two classes of target
12548are complementary, since core files contain only a program's
12549read-write memory---variables and so on---plus machine status, while
12550executable files contain only the program text and initialized data.)
c906108c
SS
12551
12552When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12553target as well. When a process target is active, all @value{GDBN}
12554commands requesting memory addresses refer to that target; addresses in
12555an active core file or executable file target are obscured while the
12556process target is active.
c906108c 12557
7a292a7a 12558Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12559core file or executable target (@pxref{Files, ,Commands to Specify
12560Files}). To specify as a target a process that is already running, use
12561the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12562Process}).
c906108c 12563
6d2ebf8b 12564@node Target Commands
79a6e687 12565@section Commands for Managing Targets
c906108c
SS
12566
12567@table @code
12568@item target @var{type} @var{parameters}
7a292a7a
SS
12569Connects the @value{GDBN} host environment to a target machine or
12570process. A target is typically a protocol for talking to debugging
12571facilities. You use the argument @var{type} to specify the type or
12572protocol of the target machine.
c906108c
SS
12573
12574Further @var{parameters} are interpreted by the target protocol, but
12575typically include things like device names or host names to connect
12576with, process numbers, and baud rates.
c906108c
SS
12577
12578The @code{target} command does not repeat if you press @key{RET} again
12579after executing the command.
12580
12581@kindex help target
12582@item help target
12583Displays the names of all targets available. To display targets
12584currently selected, use either @code{info target} or @code{info files}
79a6e687 12585(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12586
12587@item help target @var{name}
12588Describe a particular target, including any parameters necessary to
12589select it.
12590
12591@kindex set gnutarget
12592@item set gnutarget @var{args}
5d161b24 12593@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12594knows whether it is reading an @dfn{executable},
5d161b24
DB
12595a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12596with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12597with @code{gnutarget} the @code{target} refers to a program, not a machine.
12598
d4f3574e 12599@quotation
c906108c
SS
12600@emph{Warning:} To specify a file format with @code{set gnutarget},
12601you must know the actual BFD name.
d4f3574e 12602@end quotation
c906108c 12603
d4f3574e 12604@noindent
79a6e687 12605@xref{Files, , Commands to Specify Files}.
c906108c 12606
5d161b24 12607@kindex show gnutarget
c906108c
SS
12608@item show gnutarget
12609Use the @code{show gnutarget} command to display what file format
12610@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12611@value{GDBN} will determine the file format for each file automatically,
12612and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12613@end table
12614
4644b6e3 12615@cindex common targets
c906108c
SS
12616Here are some common targets (available, or not, depending on the GDB
12617configuration):
c906108c
SS
12618
12619@table @code
4644b6e3 12620@kindex target
c906108c 12621@item target exec @var{program}
4644b6e3 12622@cindex executable file target
c906108c
SS
12623An executable file. @samp{target exec @var{program}} is the same as
12624@samp{exec-file @var{program}}.
12625
c906108c 12626@item target core @var{filename}
4644b6e3 12627@cindex core dump file target
c906108c
SS
12628A core dump file. @samp{target core @var{filename}} is the same as
12629@samp{core-file @var{filename}}.
c906108c 12630
1a10341b 12631@item target remote @var{medium}
4644b6e3 12632@cindex remote target
1a10341b
JB
12633A remote system connected to @value{GDBN} via a serial line or network
12634connection. This command tells @value{GDBN} to use its own remote
12635protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12636
12637For example, if you have a board connected to @file{/dev/ttya} on the
12638machine running @value{GDBN}, you could say:
12639
12640@smallexample
12641target remote /dev/ttya
12642@end smallexample
12643
12644@code{target remote} supports the @code{load} command. This is only
12645useful if you have some other way of getting the stub to the target
12646system, and you can put it somewhere in memory where it won't get
12647clobbered by the download.
c906108c 12648
c906108c 12649@item target sim
4644b6e3 12650@cindex built-in simulator target
2df3850c 12651Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12652In general,
474c8240 12653@smallexample
104c1213
JM
12654 target sim
12655 load
12656 run
474c8240 12657@end smallexample
d4f3574e 12658@noindent
104c1213 12659works; however, you cannot assume that a specific memory map, device
d4f3574e 12660drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12661provide these. For info about any processor-specific simulator details,
12662see the appropriate section in @ref{Embedded Processors, ,Embedded
12663Processors}.
12664
c906108c
SS
12665@end table
12666
104c1213 12667Some configurations may include these targets as well:
c906108c
SS
12668
12669@table @code
12670
c906108c 12671@item target nrom @var{dev}
4644b6e3 12672@cindex NetROM ROM emulator target
c906108c
SS
12673NetROM ROM emulator. This target only supports downloading.
12674
c906108c
SS
12675@end table
12676
5d161b24 12677Different targets are available on different configurations of @value{GDBN};
c906108c 12678your configuration may have more or fewer targets.
c906108c 12679
721c2651
EZ
12680Many remote targets require you to download the executable's code once
12681you've successfully established a connection. You may wish to control
3d00d119
DJ
12682various aspects of this process.
12683
12684@table @code
721c2651
EZ
12685
12686@item set hash
12687@kindex set hash@r{, for remote monitors}
12688@cindex hash mark while downloading
12689This command controls whether a hash mark @samp{#} is displayed while
12690downloading a file to the remote monitor. If on, a hash mark is
12691displayed after each S-record is successfully downloaded to the
12692monitor.
12693
12694@item show hash
12695@kindex show hash@r{, for remote monitors}
12696Show the current status of displaying the hash mark.
12697
12698@item set debug monitor
12699@kindex set debug monitor
12700@cindex display remote monitor communications
12701Enable or disable display of communications messages between
12702@value{GDBN} and the remote monitor.
12703
12704@item show debug monitor
12705@kindex show debug monitor
12706Show the current status of displaying communications between
12707@value{GDBN} and the remote monitor.
a8f24a35 12708@end table
c906108c
SS
12709
12710@table @code
12711
12712@kindex load @var{filename}
12713@item load @var{filename}
8edfe269 12714@anchor{load}
c906108c
SS
12715Depending on what remote debugging facilities are configured into
12716@value{GDBN}, the @code{load} command may be available. Where it exists, it
12717is meant to make @var{filename} (an executable) available for debugging
12718on the remote system---by downloading, or dynamic linking, for example.
12719@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12720the @code{add-symbol-file} command.
12721
12722If your @value{GDBN} does not have a @code{load} command, attempting to
12723execute it gets the error message ``@code{You can't do that when your
12724target is @dots{}}''
c906108c
SS
12725
12726The file is loaded at whatever address is specified in the executable.
12727For some object file formats, you can specify the load address when you
12728link the program; for other formats, like a.out, the object file format
12729specifies a fixed address.
12730@c FIXME! This would be a good place for an xref to the GNU linker doc.
12731
68437a39
DJ
12732Depending on the remote side capabilities, @value{GDBN} may be able to
12733load programs into flash memory.
12734
c906108c
SS
12735@code{load} does not repeat if you press @key{RET} again after using it.
12736@end table
12737
6d2ebf8b 12738@node Byte Order
79a6e687 12739@section Choosing Target Byte Order
7a292a7a 12740
c906108c
SS
12741@cindex choosing target byte order
12742@cindex target byte order
c906108c 12743
172c2a43 12744Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12745offer the ability to run either big-endian or little-endian byte
12746orders. Usually the executable or symbol will include a bit to
12747designate the endian-ness, and you will not need to worry about
12748which to use. However, you may still find it useful to adjust
d4f3574e 12749@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12750
12751@table @code
4644b6e3 12752@kindex set endian
c906108c
SS
12753@item set endian big
12754Instruct @value{GDBN} to assume the target is big-endian.
12755
c906108c
SS
12756@item set endian little
12757Instruct @value{GDBN} to assume the target is little-endian.
12758
c906108c
SS
12759@item set endian auto
12760Instruct @value{GDBN} to use the byte order associated with the
12761executable.
12762
12763@item show endian
12764Display @value{GDBN}'s current idea of the target byte order.
12765
12766@end table
12767
12768Note that these commands merely adjust interpretation of symbolic
12769data on the host, and that they have absolutely no effect on the
12770target system.
12771
ea35711c
DJ
12772
12773@node Remote Debugging
12774@chapter Debugging Remote Programs
c906108c
SS
12775@cindex remote debugging
12776
12777If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12778@value{GDBN} in the usual way, it is often useful to use remote debugging.
12779For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12780or on a small system which does not have a general purpose operating system
12781powerful enough to run a full-featured debugger.
12782
12783Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12784to make this work with particular debugging targets. In addition,
5d161b24 12785@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12786but not specific to any particular target system) which you can use if you
12787write the remote stubs---the code that runs on the remote system to
12788communicate with @value{GDBN}.
12789
12790Other remote targets may be available in your
12791configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12792
6b2f586d 12793@menu
07f31aa6 12794* Connecting:: Connecting to a remote target
a6b151f1 12795* File Transfer:: Sending files to a remote system
6b2f586d 12796* Server:: Using the gdbserver program
79a6e687
BW
12797* Remote Configuration:: Remote configuration
12798* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12799@end menu
12800
07f31aa6 12801@node Connecting
79a6e687 12802@section Connecting to a Remote Target
07f31aa6
DJ
12803
12804On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12805your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12806Start up @value{GDBN} as usual, using the name of the local copy of your
12807program as the first argument.
12808
86941c27
JB
12809@cindex @code{target remote}
12810@value{GDBN} can communicate with the target over a serial line, or
12811over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12812each case, @value{GDBN} uses the same protocol for debugging your
12813program; only the medium carrying the debugging packets varies. The
12814@code{target remote} command establishes a connection to the target.
12815Its arguments indicate which medium to use:
12816
12817@table @code
12818
12819@item target remote @var{serial-device}
07f31aa6 12820@cindex serial line, @code{target remote}
86941c27
JB
12821Use @var{serial-device} to communicate with the target. For example,
12822to use a serial line connected to the device named @file{/dev/ttyb}:
12823
12824@smallexample
12825target remote /dev/ttyb
12826@end smallexample
12827
07f31aa6
DJ
12828If you're using a serial line, you may want to give @value{GDBN} the
12829@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12830(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12831@code{target} command.
07f31aa6 12832
86941c27
JB
12833@item target remote @code{@var{host}:@var{port}}
12834@itemx target remote @code{tcp:@var{host}:@var{port}}
12835@cindex @acronym{TCP} port, @code{target remote}
12836Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12837The @var{host} may be either a host name or a numeric @acronym{IP}
12838address; @var{port} must be a decimal number. The @var{host} could be
12839the target machine itself, if it is directly connected to the net, or
12840it might be a terminal server which in turn has a serial line to the
12841target.
07f31aa6 12842
86941c27
JB
12843For example, to connect to port 2828 on a terminal server named
12844@code{manyfarms}:
07f31aa6
DJ
12845
12846@smallexample
12847target remote manyfarms:2828
12848@end smallexample
12849
86941c27
JB
12850If your remote target is actually running on the same machine as your
12851debugger session (e.g.@: a simulator for your target running on the
12852same host), you can omit the hostname. For example, to connect to
12853port 1234 on your local machine:
07f31aa6
DJ
12854
12855@smallexample
12856target remote :1234
12857@end smallexample
12858@noindent
12859
12860Note that the colon is still required here.
12861
86941c27
JB
12862@item target remote @code{udp:@var{host}:@var{port}}
12863@cindex @acronym{UDP} port, @code{target remote}
12864Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12865connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12866
12867@smallexample
12868target remote udp:manyfarms:2828
12869@end smallexample
12870
86941c27
JB
12871When using a @acronym{UDP} connection for remote debugging, you should
12872keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12873can silently drop packets on busy or unreliable networks, which will
12874cause havoc with your debugging session.
12875
66b8c7f6
JB
12876@item target remote | @var{command}
12877@cindex pipe, @code{target remote} to
12878Run @var{command} in the background and communicate with it using a
12879pipe. The @var{command} is a shell command, to be parsed and expanded
12880by the system's command shell, @code{/bin/sh}; it should expect remote
12881protocol packets on its standard input, and send replies on its
12882standard output. You could use this to run a stand-alone simulator
12883that speaks the remote debugging protocol, to make net connections
12884using programs like @code{ssh}, or for other similar tricks.
12885
12886If @var{command} closes its standard output (perhaps by exiting),
12887@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12888program has already exited, this will have no effect.)
12889
86941c27 12890@end table
07f31aa6 12891
86941c27 12892Once the connection has been established, you can use all the usual
8edfe269
DJ
12893commands to examine and change data. The remote program is already
12894running; you can use @kbd{step} and @kbd{continue}, and you do not
12895need to use @kbd{run}.
07f31aa6
DJ
12896
12897@cindex interrupting remote programs
12898@cindex remote programs, interrupting
12899Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12900interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12901program. This may or may not succeed, depending in part on the hardware
12902and the serial drivers the remote system uses. If you type the
12903interrupt character once again, @value{GDBN} displays this prompt:
12904
12905@smallexample
12906Interrupted while waiting for the program.
12907Give up (and stop debugging it)? (y or n)
12908@end smallexample
12909
12910If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12911(If you decide you want to try again later, you can use @samp{target
12912remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12913goes back to waiting.
12914
12915@table @code
12916@kindex detach (remote)
12917@item detach
12918When you have finished debugging the remote program, you can use the
12919@code{detach} command to release it from @value{GDBN} control.
12920Detaching from the target normally resumes its execution, but the results
12921will depend on your particular remote stub. After the @code{detach}
12922command, @value{GDBN} is free to connect to another target.
12923
12924@kindex disconnect
12925@item disconnect
12926The @code{disconnect} command behaves like @code{detach}, except that
12927the target is generally not resumed. It will wait for @value{GDBN}
12928(this instance or another one) to connect and continue debugging. After
12929the @code{disconnect} command, @value{GDBN} is again free to connect to
12930another target.
09d4efe1
EZ
12931
12932@cindex send command to remote monitor
fad38dfa
EZ
12933@cindex extend @value{GDBN} for remote targets
12934@cindex add new commands for external monitor
09d4efe1
EZ
12935@kindex monitor
12936@item monitor @var{cmd}
fad38dfa
EZ
12937This command allows you to send arbitrary commands directly to the
12938remote monitor. Since @value{GDBN} doesn't care about the commands it
12939sends like this, this command is the way to extend @value{GDBN}---you
12940can add new commands that only the external monitor will understand
12941and implement.
07f31aa6
DJ
12942@end table
12943
a6b151f1
DJ
12944@node File Transfer
12945@section Sending files to a remote system
12946@cindex remote target, file transfer
12947@cindex file transfer
12948@cindex sending files to remote systems
12949
12950Some remote targets offer the ability to transfer files over the same
12951connection used to communicate with @value{GDBN}. This is convenient
12952for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12953running @code{gdbserver} over a network interface. For other targets,
12954e.g.@: embedded devices with only a single serial port, this may be
12955the only way to upload or download files.
12956
12957Not all remote targets support these commands.
12958
12959@table @code
12960@kindex remote put
12961@item remote put @var{hostfile} @var{targetfile}
12962Copy file @var{hostfile} from the host system (the machine running
12963@value{GDBN}) to @var{targetfile} on the target system.
12964
12965@kindex remote get
12966@item remote get @var{targetfile} @var{hostfile}
12967Copy file @var{targetfile} from the target system to @var{hostfile}
12968on the host system.
12969
12970@kindex remote delete
12971@item remote delete @var{targetfile}
12972Delete @var{targetfile} from the target system.
12973
12974@end table
12975
6f05cf9f 12976@node Server
79a6e687 12977@section Using the @code{gdbserver} Program
6f05cf9f
AC
12978
12979@kindex gdbserver
12980@cindex remote connection without stubs
12981@code{gdbserver} is a control program for Unix-like systems, which
12982allows you to connect your program with a remote @value{GDBN} via
12983@code{target remote}---but without linking in the usual debugging stub.
12984
12985@code{gdbserver} is not a complete replacement for the debugging stubs,
12986because it requires essentially the same operating-system facilities
12987that @value{GDBN} itself does. In fact, a system that can run
12988@code{gdbserver} to connect to a remote @value{GDBN} could also run
12989@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12990because it is a much smaller program than @value{GDBN} itself. It is
12991also easier to port than all of @value{GDBN}, so you may be able to get
12992started more quickly on a new system by using @code{gdbserver}.
12993Finally, if you develop code for real-time systems, you may find that
12994the tradeoffs involved in real-time operation make it more convenient to
12995do as much development work as possible on another system, for example
12996by cross-compiling. You can use @code{gdbserver} to make a similar
12997choice for debugging.
12998
12999@value{GDBN} and @code{gdbserver} communicate via either a serial line
13000or a TCP connection, using the standard @value{GDBN} remote serial
13001protocol.
13002
2d717e4f
DJ
13003@quotation
13004@emph{Warning:} @code{gdbserver} does not have any built-in security.
13005Do not run @code{gdbserver} connected to any public network; a
13006@value{GDBN} connection to @code{gdbserver} provides access to the
13007target system with the same privileges as the user running
13008@code{gdbserver}.
13009@end quotation
13010
13011@subsection Running @code{gdbserver}
13012@cindex arguments, to @code{gdbserver}
13013
13014Run @code{gdbserver} on the target system. You need a copy of the
13015program you want to debug, including any libraries it requires.
6f05cf9f
AC
13016@code{gdbserver} does not need your program's symbol table, so you can
13017strip the program if necessary to save space. @value{GDBN} on the host
13018system does all the symbol handling.
13019
13020To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13021the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13022syntax is:
13023
13024@smallexample
13025target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13026@end smallexample
13027
13028@var{comm} is either a device name (to use a serial line) or a TCP
13029hostname and portnumber. For example, to debug Emacs with the argument
13030@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13031@file{/dev/com1}:
13032
13033@smallexample
13034target> gdbserver /dev/com1 emacs foo.txt
13035@end smallexample
13036
13037@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13038with it.
13039
13040To use a TCP connection instead of a serial line:
13041
13042@smallexample
13043target> gdbserver host:2345 emacs foo.txt
13044@end smallexample
13045
13046The only difference from the previous example is the first argument,
13047specifying that you are communicating with the host @value{GDBN} via
13048TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13049expect a TCP connection from machine @samp{host} to local TCP port 2345.
13050(Currently, the @samp{host} part is ignored.) You can choose any number
13051you want for the port number as long as it does not conflict with any
13052TCP ports already in use on the target system (for example, @code{23} is
13053reserved for @code{telnet}).@footnote{If you choose a port number that
13054conflicts with another service, @code{gdbserver} prints an error message
13055and exits.} You must use the same port number with the host @value{GDBN}
13056@code{target remote} command.
13057
2d717e4f
DJ
13058@subsubsection Attaching to a Running Program
13059
56460a61
DJ
13060On some targets, @code{gdbserver} can also attach to running programs.
13061This is accomplished via the @code{--attach} argument. The syntax is:
13062
13063@smallexample
2d717e4f 13064target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13065@end smallexample
13066
13067@var{pid} is the process ID of a currently running process. It isn't necessary
13068to point @code{gdbserver} at a binary for the running process.
13069
b1fe9455
DJ
13070@pindex pidof
13071@cindex attach to a program by name
13072You can debug processes by name instead of process ID if your target has the
13073@code{pidof} utility:
13074
13075@smallexample
2d717e4f 13076target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13077@end smallexample
13078
f822c95b 13079In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13080has multiple threads, most versions of @code{pidof} support the
13081@code{-s} option to only return the first process ID.
13082
2d717e4f
DJ
13083@subsubsection Multi-Process Mode for @code{gdbserver}
13084@cindex gdbserver, multiple processes
13085@cindex multiple processes with gdbserver
13086
13087When you connect to @code{gdbserver} using @code{target remote},
13088@code{gdbserver} debugs the specified program only once. When the
13089program exits, or you detach from it, @value{GDBN} closes the connection
13090and @code{gdbserver} exits.
13091
6e6c6f50 13092If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13093enters multi-process mode. When the debugged program exits, or you
13094detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13095though no program is running. The @code{run} and @code{attach}
13096commands instruct @code{gdbserver} to run or attach to a new program.
13097The @code{run} command uses @code{set remote exec-file} (@pxref{set
13098remote exec-file}) to select the program to run. Command line
13099arguments are supported, except for wildcard expansion and I/O
13100redirection (@pxref{Arguments}).
13101
13102To start @code{gdbserver} without supplying an initial command to run
13103or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13104Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13105the program you want to debug.
13106
13107@code{gdbserver} does not automatically exit in multi-process mode.
13108You can terminate it by using @code{monitor exit}
13109(@pxref{Monitor Commands for gdbserver}).
13110
13111@subsubsection Other Command-Line Arguments for @code{gdbserver}
13112
13113You can include @option{--debug} on the @code{gdbserver} command line.
13114@code{gdbserver} will display extra status information about the debugging
13115process. This option is intended for @code{gdbserver} development and
13116for bug reports to the developers.
13117
ccd213ac
DJ
13118The @option{--wrapper} option specifies a wrapper to launch programs
13119for debugging. The option should be followed by the name of the
13120wrapper, then any command-line arguments to pass to the wrapper, then
13121@kbd{--} indicating the end of the wrapper arguments.
13122
13123@code{gdbserver} runs the specified wrapper program with a combined
13124command line including the wrapper arguments, then the name of the
13125program to debug, then any arguments to the program. The wrapper
13126runs until it executes your program, and then @value{GDBN} gains control.
13127
13128You can use any program that eventually calls @code{execve} with
13129its arguments as a wrapper. Several standard Unix utilities do
13130this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13131with @code{exec "$@@"} will also work.
13132
13133For example, you can use @code{env} to pass an environment variable to
13134the debugged program, without setting the variable in @code{gdbserver}'s
13135environment:
13136
13137@smallexample
13138$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13139@end smallexample
13140
2d717e4f
DJ
13141@subsection Connecting to @code{gdbserver}
13142
13143Run @value{GDBN} on the host system.
13144
13145First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13146your application using the @code{file} command before you connect. Use
13147@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13148was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13149
13150The symbol file and target libraries must exactly match the executable
13151and libraries on the target, with one exception: the files on the host
13152system should not be stripped, even if the files on the target system
13153are. Mismatched or missing files will lead to confusing results
13154during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13155files may also prevent @code{gdbserver} from debugging multi-threaded
13156programs.
13157
79a6e687 13158Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13159For TCP connections, you must start up @code{gdbserver} prior to using
13160the @code{target remote} command. Otherwise you may get an error whose
13161text depends on the host system, but which usually looks something like
2d717e4f 13162@samp{Connection refused}. Don't use the @code{load}
397ca115 13163command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13164already on the target.
07f31aa6 13165
79a6e687 13166@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13167@cindex monitor commands, for @code{gdbserver}
2d717e4f 13168@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13169
13170During a @value{GDBN} session using @code{gdbserver}, you can use the
13171@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13172Here are the available commands.
c74d0ad8
DJ
13173
13174@table @code
13175@item monitor help
13176List the available monitor commands.
13177
13178@item monitor set debug 0
13179@itemx monitor set debug 1
13180Disable or enable general debugging messages.
13181
13182@item monitor set remote-debug 0
13183@itemx monitor set remote-debug 1
13184Disable or enable specific debugging messages associated with the remote
13185protocol (@pxref{Remote Protocol}).
13186
2d717e4f
DJ
13187@item monitor exit
13188Tell gdbserver to exit immediately. This command should be followed by
13189@code{disconnect} to close the debugging session. @code{gdbserver} will
13190detach from any attached processes and kill any processes it created.
13191Use @code{monitor exit} to terminate @code{gdbserver} at the end
13192of a multi-process mode debug session.
13193
c74d0ad8
DJ
13194@end table
13195
79a6e687
BW
13196@node Remote Configuration
13197@section Remote Configuration
501eef12 13198
9c16f35a
EZ
13199@kindex set remote
13200@kindex show remote
13201This section documents the configuration options available when
13202debugging remote programs. For the options related to the File I/O
fc320d37 13203extensions of the remote protocol, see @ref{system,
9c16f35a 13204system-call-allowed}.
501eef12
AC
13205
13206@table @code
9c16f35a 13207@item set remoteaddresssize @var{bits}
d3e8051b 13208@cindex address size for remote targets
9c16f35a
EZ
13209@cindex bits in remote address
13210Set the maximum size of address in a memory packet to the specified
13211number of bits. @value{GDBN} will mask off the address bits above
13212that number, when it passes addresses to the remote target. The
13213default value is the number of bits in the target's address.
13214
13215@item show remoteaddresssize
13216Show the current value of remote address size in bits.
13217
13218@item set remotebaud @var{n}
13219@cindex baud rate for remote targets
13220Set the baud rate for the remote serial I/O to @var{n} baud. The
13221value is used to set the speed of the serial port used for debugging
13222remote targets.
13223
13224@item show remotebaud
13225Show the current speed of the remote connection.
13226
13227@item set remotebreak
13228@cindex interrupt remote programs
13229@cindex BREAK signal instead of Ctrl-C
9a6253be 13230@anchor{set remotebreak}
9c16f35a 13231If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13232when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13233on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13234character instead. The default is off, since most remote systems
13235expect to see @samp{Ctrl-C} as the interrupt signal.
13236
13237@item show remotebreak
13238Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13239interrupt the remote program.
13240
23776285
MR
13241@item set remoteflow on
13242@itemx set remoteflow off
13243@kindex set remoteflow
13244Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13245on the serial port used to communicate to the remote target.
13246
13247@item show remoteflow
13248@kindex show remoteflow
13249Show the current setting of hardware flow control.
13250
9c16f35a
EZ
13251@item set remotelogbase @var{base}
13252Set the base (a.k.a.@: radix) of logging serial protocol
13253communications to @var{base}. Supported values of @var{base} are:
13254@code{ascii}, @code{octal}, and @code{hex}. The default is
13255@code{ascii}.
13256
13257@item show remotelogbase
13258Show the current setting of the radix for logging remote serial
13259protocol.
13260
13261@item set remotelogfile @var{file}
13262@cindex record serial communications on file
13263Record remote serial communications on the named @var{file}. The
13264default is not to record at all.
13265
13266@item show remotelogfile.
13267Show the current setting of the file name on which to record the
13268serial communications.
13269
13270@item set remotetimeout @var{num}
13271@cindex timeout for serial communications
13272@cindex remote timeout
13273Set the timeout limit to wait for the remote target to respond to
13274@var{num} seconds. The default is 2 seconds.
13275
13276@item show remotetimeout
13277Show the current number of seconds to wait for the remote target
13278responses.
13279
13280@cindex limit hardware breakpoints and watchpoints
13281@cindex remote target, limit break- and watchpoints
501eef12
AC
13282@anchor{set remote hardware-watchpoint-limit}
13283@anchor{set remote hardware-breakpoint-limit}
13284@item set remote hardware-watchpoint-limit @var{limit}
13285@itemx set remote hardware-breakpoint-limit @var{limit}
13286Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13287watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13288
13289@item set remote exec-file @var{filename}
13290@itemx show remote exec-file
13291@anchor{set remote exec-file}
13292@cindex executable file, for remote target
13293Select the file used for @code{run} with @code{target
13294extended-remote}. This should be set to a filename valid on the
13295target system. If it is not set, the target will use a default
13296filename (e.g.@: the last program run).
501eef12
AC
13297@end table
13298
427c3a89
DJ
13299@cindex remote packets, enabling and disabling
13300The @value{GDBN} remote protocol autodetects the packets supported by
13301your debugging stub. If you need to override the autodetection, you
13302can use these commands to enable or disable individual packets. Each
13303packet can be set to @samp{on} (the remote target supports this
13304packet), @samp{off} (the remote target does not support this packet),
13305or @samp{auto} (detect remote target support for this packet). They
13306all default to @samp{auto}. For more information about each packet,
13307see @ref{Remote Protocol}.
13308
13309During normal use, you should not have to use any of these commands.
13310If you do, that may be a bug in your remote debugging stub, or a bug
13311in @value{GDBN}. You may want to report the problem to the
13312@value{GDBN} developers.
13313
cfa9d6d9
DJ
13314For each packet @var{name}, the command to enable or disable the
13315packet is @code{set remote @var{name}-packet}. The available settings
13316are:
427c3a89 13317
cfa9d6d9 13318@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13319@item Command Name
13320@tab Remote Packet
13321@tab Related Features
13322
cfa9d6d9 13323@item @code{fetch-register}
427c3a89
DJ
13324@tab @code{p}
13325@tab @code{info registers}
13326
cfa9d6d9 13327@item @code{set-register}
427c3a89
DJ
13328@tab @code{P}
13329@tab @code{set}
13330
cfa9d6d9 13331@item @code{binary-download}
427c3a89
DJ
13332@tab @code{X}
13333@tab @code{load}, @code{set}
13334
cfa9d6d9 13335@item @code{read-aux-vector}
427c3a89
DJ
13336@tab @code{qXfer:auxv:read}
13337@tab @code{info auxv}
13338
cfa9d6d9 13339@item @code{symbol-lookup}
427c3a89
DJ
13340@tab @code{qSymbol}
13341@tab Detecting multiple threads
13342
2d717e4f
DJ
13343@item @code{attach}
13344@tab @code{vAttach}
13345@tab @code{attach}
13346
cfa9d6d9 13347@item @code{verbose-resume}
427c3a89
DJ
13348@tab @code{vCont}
13349@tab Stepping or resuming multiple threads
13350
2d717e4f
DJ
13351@item @code{run}
13352@tab @code{vRun}
13353@tab @code{run}
13354
cfa9d6d9 13355@item @code{software-breakpoint}
427c3a89
DJ
13356@tab @code{Z0}
13357@tab @code{break}
13358
cfa9d6d9 13359@item @code{hardware-breakpoint}
427c3a89
DJ
13360@tab @code{Z1}
13361@tab @code{hbreak}
13362
cfa9d6d9 13363@item @code{write-watchpoint}
427c3a89
DJ
13364@tab @code{Z2}
13365@tab @code{watch}
13366
cfa9d6d9 13367@item @code{read-watchpoint}
427c3a89
DJ
13368@tab @code{Z3}
13369@tab @code{rwatch}
13370
cfa9d6d9 13371@item @code{access-watchpoint}
427c3a89
DJ
13372@tab @code{Z4}
13373@tab @code{awatch}
13374
cfa9d6d9
DJ
13375@item @code{target-features}
13376@tab @code{qXfer:features:read}
13377@tab @code{set architecture}
13378
13379@item @code{library-info}
13380@tab @code{qXfer:libraries:read}
13381@tab @code{info sharedlibrary}
13382
13383@item @code{memory-map}
13384@tab @code{qXfer:memory-map:read}
13385@tab @code{info mem}
13386
13387@item @code{read-spu-object}
13388@tab @code{qXfer:spu:read}
13389@tab @code{info spu}
13390
13391@item @code{write-spu-object}
13392@tab @code{qXfer:spu:write}
13393@tab @code{info spu}
13394
13395@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13396@tab @code{qGetTLSAddr}
13397@tab Displaying @code{__thread} variables
13398
13399@item @code{supported-packets}
13400@tab @code{qSupported}
13401@tab Remote communications parameters
13402
cfa9d6d9 13403@item @code{pass-signals}
89be2091
DJ
13404@tab @code{QPassSignals}
13405@tab @code{handle @var{signal}}
13406
a6b151f1
DJ
13407@item @code{hostio-close-packet}
13408@tab @code{vFile:close}
13409@tab @code{remote get}, @code{remote put}
13410
13411@item @code{hostio-open-packet}
13412@tab @code{vFile:open}
13413@tab @code{remote get}, @code{remote put}
13414
13415@item @code{hostio-pread-packet}
13416@tab @code{vFile:pread}
13417@tab @code{remote get}, @code{remote put}
13418
13419@item @code{hostio-pwrite-packet}
13420@tab @code{vFile:pwrite}
13421@tab @code{remote get}, @code{remote put}
13422
13423@item @code{hostio-unlink-packet}
13424@tab @code{vFile:unlink}
13425@tab @code{remote delete}
427c3a89
DJ
13426@end multitable
13427
79a6e687
BW
13428@node Remote Stub
13429@section Implementing a Remote Stub
7a292a7a 13430
8e04817f
AC
13431@cindex debugging stub, example
13432@cindex remote stub, example
13433@cindex stub example, remote debugging
13434The stub files provided with @value{GDBN} implement the target side of the
13435communication protocol, and the @value{GDBN} side is implemented in the
13436@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13437these subroutines to communicate, and ignore the details. (If you're
13438implementing your own stub file, you can still ignore the details: start
13439with one of the existing stub files. @file{sparc-stub.c} is the best
13440organized, and therefore the easiest to read.)
13441
104c1213
JM
13442@cindex remote serial debugging, overview
13443To debug a program running on another machine (the debugging
13444@dfn{target} machine), you must first arrange for all the usual
13445prerequisites for the program to run by itself. For example, for a C
13446program, you need:
c906108c 13447
104c1213
JM
13448@enumerate
13449@item
13450A startup routine to set up the C runtime environment; these usually
13451have a name like @file{crt0}. The startup routine may be supplied by
13452your hardware supplier, or you may have to write your own.
96baa820 13453
5d161b24 13454@item
d4f3574e 13455A C subroutine library to support your program's
104c1213 13456subroutine calls, notably managing input and output.
96baa820 13457
104c1213
JM
13458@item
13459A way of getting your program to the other machine---for example, a
13460download program. These are often supplied by the hardware
13461manufacturer, but you may have to write your own from hardware
13462documentation.
13463@end enumerate
96baa820 13464
104c1213
JM
13465The next step is to arrange for your program to use a serial port to
13466communicate with the machine where @value{GDBN} is running (the @dfn{host}
13467machine). In general terms, the scheme looks like this:
96baa820 13468
104c1213
JM
13469@table @emph
13470@item On the host,
13471@value{GDBN} already understands how to use this protocol; when everything
13472else is set up, you can simply use the @samp{target remote} command
13473(@pxref{Targets,,Specifying a Debugging Target}).
13474
13475@item On the target,
13476you must link with your program a few special-purpose subroutines that
13477implement the @value{GDBN} remote serial protocol. The file containing these
13478subroutines is called a @dfn{debugging stub}.
13479
13480On certain remote targets, you can use an auxiliary program
13481@code{gdbserver} instead of linking a stub into your program.
79a6e687 13482@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13483@end table
96baa820 13484
104c1213
JM
13485The debugging stub is specific to the architecture of the remote
13486machine; for example, use @file{sparc-stub.c} to debug programs on
13487@sc{sparc} boards.
96baa820 13488
104c1213
JM
13489@cindex remote serial stub list
13490These working remote stubs are distributed with @value{GDBN}:
96baa820 13491
104c1213
JM
13492@table @code
13493
13494@item i386-stub.c
41afff9a 13495@cindex @file{i386-stub.c}
104c1213
JM
13496@cindex Intel
13497@cindex i386
13498For Intel 386 and compatible architectures.
13499
13500@item m68k-stub.c
41afff9a 13501@cindex @file{m68k-stub.c}
104c1213
JM
13502@cindex Motorola 680x0
13503@cindex m680x0
13504For Motorola 680x0 architectures.
13505
13506@item sh-stub.c
41afff9a 13507@cindex @file{sh-stub.c}
172c2a43 13508@cindex Renesas
104c1213 13509@cindex SH
172c2a43 13510For Renesas SH architectures.
104c1213
JM
13511
13512@item sparc-stub.c
41afff9a 13513@cindex @file{sparc-stub.c}
104c1213
JM
13514@cindex Sparc
13515For @sc{sparc} architectures.
13516
13517@item sparcl-stub.c
41afff9a 13518@cindex @file{sparcl-stub.c}
104c1213
JM
13519@cindex Fujitsu
13520@cindex SparcLite
13521For Fujitsu @sc{sparclite} architectures.
13522
13523@end table
13524
13525The @file{README} file in the @value{GDBN} distribution may list other
13526recently added stubs.
13527
13528@menu
13529* Stub Contents:: What the stub can do for you
13530* Bootstrapping:: What you must do for the stub
13531* Debug Session:: Putting it all together
104c1213
JM
13532@end menu
13533
6d2ebf8b 13534@node Stub Contents
79a6e687 13535@subsection What the Stub Can Do for You
104c1213
JM
13536
13537@cindex remote serial stub
13538The debugging stub for your architecture supplies these three
13539subroutines:
13540
13541@table @code
13542@item set_debug_traps
4644b6e3 13543@findex set_debug_traps
104c1213
JM
13544@cindex remote serial stub, initialization
13545This routine arranges for @code{handle_exception} to run when your
13546program stops. You must call this subroutine explicitly near the
13547beginning of your program.
13548
13549@item handle_exception
4644b6e3 13550@findex handle_exception
104c1213
JM
13551@cindex remote serial stub, main routine
13552This is the central workhorse, but your program never calls it
13553explicitly---the setup code arranges for @code{handle_exception} to
13554run when a trap is triggered.
13555
13556@code{handle_exception} takes control when your program stops during
13557execution (for example, on a breakpoint), and mediates communications
13558with @value{GDBN} on the host machine. This is where the communications
13559protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13560representative on the target machine. It begins by sending summary
104c1213
JM
13561information on the state of your program, then continues to execute,
13562retrieving and transmitting any information @value{GDBN} needs, until you
13563execute a @value{GDBN} command that makes your program resume; at that point,
13564@code{handle_exception} returns control to your own code on the target
5d161b24 13565machine.
104c1213
JM
13566
13567@item breakpoint
13568@cindex @code{breakpoint} subroutine, remote
13569Use this auxiliary subroutine to make your program contain a
13570breakpoint. Depending on the particular situation, this may be the only
13571way for @value{GDBN} to get control. For instance, if your target
13572machine has some sort of interrupt button, you won't need to call this;
13573pressing the interrupt button transfers control to
13574@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13575simply receiving characters on the serial port may also trigger a trap;
13576again, in that situation, you don't need to call @code{breakpoint} from
13577your own program---simply running @samp{target remote} from the host
5d161b24 13578@value{GDBN} session gets control.
104c1213
JM
13579
13580Call @code{breakpoint} if none of these is true, or if you simply want
13581to make certain your program stops at a predetermined point for the
13582start of your debugging session.
13583@end table
13584
6d2ebf8b 13585@node Bootstrapping
79a6e687 13586@subsection What You Must Do for the Stub
104c1213
JM
13587
13588@cindex remote stub, support routines
13589The debugging stubs that come with @value{GDBN} are set up for a particular
13590chip architecture, but they have no information about the rest of your
13591debugging target machine.
13592
13593First of all you need to tell the stub how to communicate with the
13594serial port.
13595
13596@table @code
13597@item int getDebugChar()
4644b6e3 13598@findex getDebugChar
104c1213
JM
13599Write this subroutine to read a single character from the serial port.
13600It may be identical to @code{getchar} for your target system; a
13601different name is used to allow you to distinguish the two if you wish.
13602
13603@item void putDebugChar(int)
4644b6e3 13604@findex putDebugChar
104c1213 13605Write this subroutine to write a single character to the serial port.
5d161b24 13606It may be identical to @code{putchar} for your target system; a
104c1213
JM
13607different name is used to allow you to distinguish the two if you wish.
13608@end table
13609
13610@cindex control C, and remote debugging
13611@cindex interrupting remote targets
13612If you want @value{GDBN} to be able to stop your program while it is
13613running, you need to use an interrupt-driven serial driver, and arrange
13614for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13615character). That is the character which @value{GDBN} uses to tell the
13616remote system to stop.
13617
13618Getting the debugging target to return the proper status to @value{GDBN}
13619probably requires changes to the standard stub; one quick and dirty way
13620is to just execute a breakpoint instruction (the ``dirty'' part is that
13621@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13622
13623Other routines you need to supply are:
13624
13625@table @code
13626@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13627@findex exceptionHandler
104c1213
JM
13628Write this function to install @var{exception_address} in the exception
13629handling tables. You need to do this because the stub does not have any
13630way of knowing what the exception handling tables on your target system
13631are like (for example, the processor's table might be in @sc{rom},
13632containing entries which point to a table in @sc{ram}).
13633@var{exception_number} is the exception number which should be changed;
13634its meaning is architecture-dependent (for example, different numbers
13635might represent divide by zero, misaligned access, etc). When this
13636exception occurs, control should be transferred directly to
13637@var{exception_address}, and the processor state (stack, registers,
13638and so on) should be just as it is when a processor exception occurs. So if
13639you want to use a jump instruction to reach @var{exception_address}, it
13640should be a simple jump, not a jump to subroutine.
13641
13642For the 386, @var{exception_address} should be installed as an interrupt
13643gate so that interrupts are masked while the handler runs. The gate
13644should be at privilege level 0 (the most privileged level). The
13645@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13646help from @code{exceptionHandler}.
13647
13648@item void flush_i_cache()
4644b6e3 13649@findex flush_i_cache
d4f3574e 13650On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13651instruction cache, if any, on your target machine. If there is no
13652instruction cache, this subroutine may be a no-op.
13653
13654On target machines that have instruction caches, @value{GDBN} requires this
13655function to make certain that the state of your program is stable.
13656@end table
13657
13658@noindent
13659You must also make sure this library routine is available:
13660
13661@table @code
13662@item void *memset(void *, int, int)
4644b6e3 13663@findex memset
104c1213
JM
13664This is the standard library function @code{memset} that sets an area of
13665memory to a known value. If you have one of the free versions of
13666@code{libc.a}, @code{memset} can be found there; otherwise, you must
13667either obtain it from your hardware manufacturer, or write your own.
13668@end table
13669
13670If you do not use the GNU C compiler, you may need other standard
13671library subroutines as well; this varies from one stub to another,
13672but in general the stubs are likely to use any of the common library
e22ea452 13673subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13674
13675
6d2ebf8b 13676@node Debug Session
79a6e687 13677@subsection Putting it All Together
104c1213
JM
13678
13679@cindex remote serial debugging summary
13680In summary, when your program is ready to debug, you must follow these
13681steps.
13682
13683@enumerate
13684@item
6d2ebf8b 13685Make sure you have defined the supporting low-level routines
79a6e687 13686(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13687@display
13688@code{getDebugChar}, @code{putDebugChar},
13689@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13690@end display
13691
13692@item
13693Insert these lines near the top of your program:
13694
474c8240 13695@smallexample
104c1213
JM
13696set_debug_traps();
13697breakpoint();
474c8240 13698@end smallexample
104c1213
JM
13699
13700@item
13701For the 680x0 stub only, you need to provide a variable called
13702@code{exceptionHook}. Normally you just use:
13703
474c8240 13704@smallexample
104c1213 13705void (*exceptionHook)() = 0;
474c8240 13706@end smallexample
104c1213 13707
d4f3574e 13708@noindent
104c1213 13709but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13710function in your program, that function is called when
104c1213
JM
13711@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13712error). The function indicated by @code{exceptionHook} is called with
13713one parameter: an @code{int} which is the exception number.
13714
13715@item
13716Compile and link together: your program, the @value{GDBN} debugging stub for
13717your target architecture, and the supporting subroutines.
13718
13719@item
13720Make sure you have a serial connection between your target machine and
13721the @value{GDBN} host, and identify the serial port on the host.
13722
13723@item
13724@c The "remote" target now provides a `load' command, so we should
13725@c document that. FIXME.
13726Download your program to your target machine (or get it there by
13727whatever means the manufacturer provides), and start it.
13728
13729@item
07f31aa6 13730Start @value{GDBN} on the host, and connect to the target
79a6e687 13731(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13732
104c1213
JM
13733@end enumerate
13734
8e04817f
AC
13735@node Configurations
13736@chapter Configuration-Specific Information
104c1213 13737
8e04817f
AC
13738While nearly all @value{GDBN} commands are available for all native and
13739cross versions of the debugger, there are some exceptions. This chapter
13740describes things that are only available in certain configurations.
104c1213 13741
8e04817f
AC
13742There are three major categories of configurations: native
13743configurations, where the host and target are the same, embedded
13744operating system configurations, which are usually the same for several
13745different processor architectures, and bare embedded processors, which
13746are quite different from each other.
104c1213 13747
8e04817f
AC
13748@menu
13749* Native::
13750* Embedded OS::
13751* Embedded Processors::
13752* Architectures::
13753@end menu
104c1213 13754
8e04817f
AC
13755@node Native
13756@section Native
104c1213 13757
8e04817f
AC
13758This section describes details specific to particular native
13759configurations.
6cf7e474 13760
8e04817f
AC
13761@menu
13762* HP-UX:: HP-UX
7561d450 13763* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13764* SVR4 Process Information:: SVR4 process information
13765* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13766* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13767* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13768* Neutrino:: Features specific to QNX Neutrino
8e04817f 13769@end menu
6cf7e474 13770
8e04817f
AC
13771@node HP-UX
13772@subsection HP-UX
104c1213 13773
8e04817f
AC
13774On HP-UX systems, if you refer to a function or variable name that
13775begins with a dollar sign, @value{GDBN} searches for a user or system
13776name first, before it searches for a convenience variable.
104c1213 13777
9c16f35a 13778
7561d450
MK
13779@node BSD libkvm Interface
13780@subsection BSD libkvm Interface
13781
13782@cindex libkvm
13783@cindex kernel memory image
13784@cindex kernel crash dump
13785
13786BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13787interface that provides a uniform interface for accessing kernel virtual
13788memory images, including live systems and crash dumps. @value{GDBN}
13789uses this interface to allow you to debug live kernels and kernel crash
13790dumps on many native BSD configurations. This is implemented as a
13791special @code{kvm} debugging target. For debugging a live system, load
13792the currently running kernel into @value{GDBN} and connect to the
13793@code{kvm} target:
13794
13795@smallexample
13796(@value{GDBP}) @b{target kvm}
13797@end smallexample
13798
13799For debugging crash dumps, provide the file name of the crash dump as an
13800argument:
13801
13802@smallexample
13803(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13804@end smallexample
13805
13806Once connected to the @code{kvm} target, the following commands are
13807available:
13808
13809@table @code
13810@kindex kvm
13811@item kvm pcb
721c2651 13812Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13813
13814@item kvm proc
13815Set current context from proc address. This command isn't available on
13816modern FreeBSD systems.
13817@end table
13818
8e04817f 13819@node SVR4 Process Information
79a6e687 13820@subsection SVR4 Process Information
60bf7e09
EZ
13821@cindex /proc
13822@cindex examine process image
13823@cindex process info via @file{/proc}
104c1213 13824
60bf7e09
EZ
13825Many versions of SVR4 and compatible systems provide a facility called
13826@samp{/proc} that can be used to examine the image of a running
13827process using file-system subroutines. If @value{GDBN} is configured
13828for an operating system with this facility, the command @code{info
13829proc} is available to report information about the process running
13830your program, or about any process running on your system. @code{info
13831proc} works only on SVR4 systems that include the @code{procfs} code.
13832This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13833Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13834
8e04817f
AC
13835@table @code
13836@kindex info proc
60bf7e09 13837@cindex process ID
8e04817f 13838@item info proc
60bf7e09
EZ
13839@itemx info proc @var{process-id}
13840Summarize available information about any running process. If a
13841process ID is specified by @var{process-id}, display information about
13842that process; otherwise display information about the program being
13843debugged. The summary includes the debugged process ID, the command
13844line used to invoke it, its current working directory, and its
13845executable file's absolute file name.
13846
13847On some systems, @var{process-id} can be of the form
13848@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13849within a process. If the optional @var{pid} part is missing, it means
13850a thread from the process being debugged (the leading @samp{/} still
13851needs to be present, or else @value{GDBN} will interpret the number as
13852a process ID rather than a thread ID).
6cf7e474 13853
8e04817f 13854@item info proc mappings
60bf7e09
EZ
13855@cindex memory address space mappings
13856Report the memory address space ranges accessible in the program, with
13857information on whether the process has read, write, or execute access
13858rights to each range. On @sc{gnu}/Linux systems, each memory range
13859includes the object file which is mapped to that range, instead of the
13860memory access rights to that range.
13861
13862@item info proc stat
13863@itemx info proc status
13864@cindex process detailed status information
13865These subcommands are specific to @sc{gnu}/Linux systems. They show
13866the process-related information, including the user ID and group ID;
13867how many threads are there in the process; its virtual memory usage;
13868the signals that are pending, blocked, and ignored; its TTY; its
13869consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13870value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13871(type @kbd{man 5 proc} from your shell prompt).
13872
13873@item info proc all
13874Show all the information about the process described under all of the
13875above @code{info proc} subcommands.
13876
8e04817f
AC
13877@ignore
13878@comment These sub-options of 'info proc' were not included when
13879@comment procfs.c was re-written. Keep their descriptions around
13880@comment against the day when someone finds the time to put them back in.
13881@kindex info proc times
13882@item info proc times
13883Starting time, user CPU time, and system CPU time for your program and
13884its children.
6cf7e474 13885
8e04817f
AC
13886@kindex info proc id
13887@item info proc id
13888Report on the process IDs related to your program: its own process ID,
13889the ID of its parent, the process group ID, and the session ID.
8e04817f 13890@end ignore
721c2651
EZ
13891
13892@item set procfs-trace
13893@kindex set procfs-trace
13894@cindex @code{procfs} API calls
13895This command enables and disables tracing of @code{procfs} API calls.
13896
13897@item show procfs-trace
13898@kindex show procfs-trace
13899Show the current state of @code{procfs} API call tracing.
13900
13901@item set procfs-file @var{file}
13902@kindex set procfs-file
13903Tell @value{GDBN} to write @code{procfs} API trace to the named
13904@var{file}. @value{GDBN} appends the trace info to the previous
13905contents of the file. The default is to display the trace on the
13906standard output.
13907
13908@item show procfs-file
13909@kindex show procfs-file
13910Show the file to which @code{procfs} API trace is written.
13911
13912@item proc-trace-entry
13913@itemx proc-trace-exit
13914@itemx proc-untrace-entry
13915@itemx proc-untrace-exit
13916@kindex proc-trace-entry
13917@kindex proc-trace-exit
13918@kindex proc-untrace-entry
13919@kindex proc-untrace-exit
13920These commands enable and disable tracing of entries into and exits
13921from the @code{syscall} interface.
13922
13923@item info pidlist
13924@kindex info pidlist
13925@cindex process list, QNX Neutrino
13926For QNX Neutrino only, this command displays the list of all the
13927processes and all the threads within each process.
13928
13929@item info meminfo
13930@kindex info meminfo
13931@cindex mapinfo list, QNX Neutrino
13932For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13933@end table
104c1213 13934
8e04817f
AC
13935@node DJGPP Native
13936@subsection Features for Debugging @sc{djgpp} Programs
13937@cindex @sc{djgpp} debugging
13938@cindex native @sc{djgpp} debugging
13939@cindex MS-DOS-specific commands
104c1213 13940
514c4d71
EZ
13941@cindex DPMI
13942@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13943MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13944that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13945top of real-mode DOS systems and their emulations.
104c1213 13946
8e04817f
AC
13947@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13948defines a few commands specific to the @sc{djgpp} port. This
13949subsection describes those commands.
104c1213 13950
8e04817f
AC
13951@table @code
13952@kindex info dos
13953@item info dos
13954This is a prefix of @sc{djgpp}-specific commands which print
13955information about the target system and important OS structures.
f1251bdd 13956
8e04817f
AC
13957@kindex sysinfo
13958@cindex MS-DOS system info
13959@cindex free memory information (MS-DOS)
13960@item info dos sysinfo
13961This command displays assorted information about the underlying
13962platform: the CPU type and features, the OS version and flavor, the
13963DPMI version, and the available conventional and DPMI memory.
104c1213 13964
8e04817f
AC
13965@cindex GDT
13966@cindex LDT
13967@cindex IDT
13968@cindex segment descriptor tables
13969@cindex descriptor tables display
13970@item info dos gdt
13971@itemx info dos ldt
13972@itemx info dos idt
13973These 3 commands display entries from, respectively, Global, Local,
13974and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13975tables are data structures which store a descriptor for each segment
13976that is currently in use. The segment's selector is an index into a
13977descriptor table; the table entry for that index holds the
13978descriptor's base address and limit, and its attributes and access
13979rights.
104c1213 13980
8e04817f
AC
13981A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13982segment (used for both data and the stack), and a DOS segment (which
13983allows access to DOS/BIOS data structures and absolute addresses in
13984conventional memory). However, the DPMI host will usually define
13985additional segments in order to support the DPMI environment.
d4f3574e 13986
8e04817f
AC
13987@cindex garbled pointers
13988These commands allow to display entries from the descriptor tables.
13989Without an argument, all entries from the specified table are
13990displayed. An argument, which should be an integer expression, means
13991display a single entry whose index is given by the argument. For
13992example, here's a convenient way to display information about the
13993debugged program's data segment:
104c1213 13994
8e04817f
AC
13995@smallexample
13996@exdent @code{(@value{GDBP}) info dos ldt $ds}
13997@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13998@end smallexample
104c1213 13999
8e04817f
AC
14000@noindent
14001This comes in handy when you want to see whether a pointer is outside
14002the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14003
8e04817f
AC
14004@cindex page tables display (MS-DOS)
14005@item info dos pde
14006@itemx info dos pte
14007These two commands display entries from, respectively, the Page
14008Directory and the Page Tables. Page Directories and Page Tables are
14009data structures which control how virtual memory addresses are mapped
14010into physical addresses. A Page Table includes an entry for every
14011page of memory that is mapped into the program's address space; there
14012may be several Page Tables, each one holding up to 4096 entries. A
14013Page Directory has up to 4096 entries, one each for every Page Table
14014that is currently in use.
104c1213 14015
8e04817f
AC
14016Without an argument, @kbd{info dos pde} displays the entire Page
14017Directory, and @kbd{info dos pte} displays all the entries in all of
14018the Page Tables. An argument, an integer expression, given to the
14019@kbd{info dos pde} command means display only that entry from the Page
14020Directory table. An argument given to the @kbd{info dos pte} command
14021means display entries from a single Page Table, the one pointed to by
14022the specified entry in the Page Directory.
104c1213 14023
8e04817f
AC
14024@cindex direct memory access (DMA) on MS-DOS
14025These commands are useful when your program uses @dfn{DMA} (Direct
14026Memory Access), which needs physical addresses to program the DMA
14027controller.
104c1213 14028
8e04817f 14029These commands are supported only with some DPMI servers.
104c1213 14030
8e04817f
AC
14031@cindex physical address from linear address
14032@item info dos address-pte @var{addr}
14033This command displays the Page Table entry for a specified linear
514c4d71
EZ
14034address. The argument @var{addr} is a linear address which should
14035already have the appropriate segment's base address added to it,
14036because this command accepts addresses which may belong to @emph{any}
14037segment. For example, here's how to display the Page Table entry for
14038the page where a variable @code{i} is stored:
104c1213 14039
b383017d 14040@smallexample
8e04817f
AC
14041@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14042@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14043@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14044@end smallexample
104c1213 14045
8e04817f
AC
14046@noindent
14047This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14048whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14049attributes of that page.
104c1213 14050
8e04817f
AC
14051Note that you must cast the addresses of variables to a @code{char *},
14052since otherwise the value of @code{__djgpp_base_address}, the base
14053address of all variables and functions in a @sc{djgpp} program, will
14054be added using the rules of C pointer arithmetics: if @code{i} is
14055declared an @code{int}, @value{GDBN} will add 4 times the value of
14056@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14057
8e04817f
AC
14058Here's another example, it displays the Page Table entry for the
14059transfer buffer:
104c1213 14060
8e04817f
AC
14061@smallexample
14062@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14063@exdent @code{Page Table entry for address 0x29110:}
14064@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14065@end smallexample
104c1213 14066
8e04817f
AC
14067@noindent
14068(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
140693rd member of the @code{_go32_info_block} structure.) The output
14070clearly shows that this DPMI server maps the addresses in conventional
14071memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14072linear (@code{0x29110}) addresses are identical.
104c1213 14073
8e04817f
AC
14074This command is supported only with some DPMI servers.
14075@end table
104c1213 14076
c45da7e6 14077@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14078In addition to native debugging, the DJGPP port supports remote
14079debugging via a serial data link. The following commands are specific
14080to remote serial debugging in the DJGPP port of @value{GDBN}.
14081
14082@table @code
14083@kindex set com1base
14084@kindex set com1irq
14085@kindex set com2base
14086@kindex set com2irq
14087@kindex set com3base
14088@kindex set com3irq
14089@kindex set com4base
14090@kindex set com4irq
14091@item set com1base @var{addr}
14092This command sets the base I/O port address of the @file{COM1} serial
14093port.
14094
14095@item set com1irq @var{irq}
14096This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14097for the @file{COM1} serial port.
14098
14099There are similar commands @samp{set com2base}, @samp{set com3irq},
14100etc.@: for setting the port address and the @code{IRQ} lines for the
14101other 3 COM ports.
14102
14103@kindex show com1base
14104@kindex show com1irq
14105@kindex show com2base
14106@kindex show com2irq
14107@kindex show com3base
14108@kindex show com3irq
14109@kindex show com4base
14110@kindex show com4irq
14111The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14112display the current settings of the base address and the @code{IRQ}
14113lines used by the COM ports.
c45da7e6
EZ
14114
14115@item info serial
14116@kindex info serial
14117@cindex DOS serial port status
14118This command prints the status of the 4 DOS serial ports. For each
14119port, it prints whether it's active or not, its I/O base address and
14120IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14121counts of various errors encountered so far.
a8f24a35
EZ
14122@end table
14123
14124
78c47bea 14125@node Cygwin Native
79a6e687 14126@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14127@cindex MS Windows debugging
14128@cindex native Cygwin debugging
14129@cindex Cygwin-specific commands
14130
be448670 14131@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14132DLLs with and without symbolic debugging information. There are various
14133additional Cygwin-specific commands, described in this section.
14134Working with DLLs that have no debugging symbols is described in
14135@ref{Non-debug DLL Symbols}.
78c47bea
PM
14136
14137@table @code
14138@kindex info w32
14139@item info w32
db2e3e2e 14140This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14141information about the target system and important OS structures.
14142
14143@item info w32 selector
14144This command displays information returned by
14145the Win32 API @code{GetThreadSelectorEntry} function.
14146It takes an optional argument that is evaluated to
14147a long value to give the information about this given selector.
14148Without argument, this command displays information
d3e8051b 14149about the six segment registers.
78c47bea
PM
14150
14151@kindex info dll
14152@item info dll
db2e3e2e 14153This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14154
14155@kindex dll-symbols
14156@item dll-symbols
14157This command loads symbols from a dll similarly to
14158add-sym command but without the need to specify a base address.
14159
be90c084 14160@kindex set cygwin-exceptions
e16b02ee
EZ
14161@cindex debugging the Cygwin DLL
14162@cindex Cygwin DLL, debugging
be90c084 14163@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14164If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14165happen inside the Cygwin DLL. If @var{mode} is @code{off},
14166@value{GDBN} will delay recognition of exceptions, and may ignore some
14167exceptions which seem to be caused by internal Cygwin DLL
14168``bookkeeping''. This option is meant primarily for debugging the
14169Cygwin DLL itself; the default value is @code{off} to avoid annoying
14170@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14171
14172@kindex show cygwin-exceptions
14173@item show cygwin-exceptions
e16b02ee
EZ
14174Displays whether @value{GDBN} will break on exceptions that happen
14175inside the Cygwin DLL itself.
be90c084 14176
b383017d 14177@kindex set new-console
78c47bea 14178@item set new-console @var{mode}
b383017d 14179If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14180be started in a new console on next start.
14181If @var{mode} is @code{off}i, the debuggee will
14182be started in the same console as the debugger.
14183
14184@kindex show new-console
14185@item show new-console
14186Displays whether a new console is used
14187when the debuggee is started.
14188
14189@kindex set new-group
14190@item set new-group @var{mode}
14191This boolean value controls whether the debuggee should
14192start a new group or stay in the same group as the debugger.
14193This affects the way the Windows OS handles
c8aa23ab 14194@samp{Ctrl-C}.
78c47bea
PM
14195
14196@kindex show new-group
14197@item show new-group
14198Displays current value of new-group boolean.
14199
14200@kindex set debugevents
14201@item set debugevents
219eec71
EZ
14202This boolean value adds debug output concerning kernel events related
14203to the debuggee seen by the debugger. This includes events that
14204signal thread and process creation and exit, DLL loading and
14205unloading, console interrupts, and debugging messages produced by the
14206Windows @code{OutputDebugString} API call.
78c47bea
PM
14207
14208@kindex set debugexec
14209@item set debugexec
b383017d 14210This boolean value adds debug output concerning execute events
219eec71 14211(such as resume thread) seen by the debugger.
78c47bea
PM
14212
14213@kindex set debugexceptions
14214@item set debugexceptions
219eec71
EZ
14215This boolean value adds debug output concerning exceptions in the
14216debuggee seen by the debugger.
78c47bea
PM
14217
14218@kindex set debugmemory
14219@item set debugmemory
219eec71
EZ
14220This boolean value adds debug output concerning debuggee memory reads
14221and writes by the debugger.
78c47bea
PM
14222
14223@kindex set shell
14224@item set shell
14225This boolean values specifies whether the debuggee is called
14226via a shell or directly (default value is on).
14227
14228@kindex show shell
14229@item show shell
14230Displays if the debuggee will be started with a shell.
14231
14232@end table
14233
be448670 14234@menu
79a6e687 14235* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14236@end menu
14237
79a6e687
BW
14238@node Non-debug DLL Symbols
14239@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14240@cindex DLLs with no debugging symbols
14241@cindex Minimal symbols and DLLs
14242
14243Very often on windows, some of the DLLs that your program relies on do
14244not include symbolic debugging information (for example,
db2e3e2e 14245@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14246symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14247information contained in the DLL's export table. This section
be448670
CF
14248describes working with such symbols, known internally to @value{GDBN} as
14249``minimal symbols''.
14250
14251Note that before the debugged program has started execution, no DLLs
db2e3e2e 14252will have been loaded. The easiest way around this problem is simply to
be448670 14253start the program --- either by setting a breakpoint or letting the
db2e3e2e 14254program run once to completion. It is also possible to force
be448670 14255@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14256see the shared library information in @ref{Files}, or the
db2e3e2e 14257@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14258explicitly loading symbols from a DLL with no debugging information will
14259cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14260which may adversely affect symbol lookup performance.
14261
79a6e687 14262@subsubsection DLL Name Prefixes
be448670
CF
14263
14264In keeping with the naming conventions used by the Microsoft debugging
14265tools, DLL export symbols are made available with a prefix based on the
14266DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14267also entered into the symbol table, so @code{CreateFileA} is often
14268sufficient. In some cases there will be name clashes within a program
14269(particularly if the executable itself includes full debugging symbols)
14270necessitating the use of the fully qualified name when referring to the
14271contents of the DLL. Use single-quotes around the name to avoid the
14272exclamation mark (``!'') being interpreted as a language operator.
14273
14274Note that the internal name of the DLL may be all upper-case, even
14275though the file name of the DLL is lower-case, or vice-versa. Since
14276symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14277some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14278@code{info variables} commands or even @code{maint print msymbols}
14279(@pxref{Symbols}). Here's an example:
be448670
CF
14280
14281@smallexample
f7dc1244 14282(@value{GDBP}) info function CreateFileA
be448670
CF
14283All functions matching regular expression "CreateFileA":
14284
14285Non-debugging symbols:
142860x77e885f4 CreateFileA
142870x77e885f4 KERNEL32!CreateFileA
14288@end smallexample
14289
14290@smallexample
f7dc1244 14291(@value{GDBP}) info function !
be448670
CF
14292All functions matching regular expression "!":
14293
14294Non-debugging symbols:
142950x6100114c cygwin1!__assert
142960x61004034 cygwin1!_dll_crt0@@0
142970x61004240 cygwin1!dll_crt0(per_process *)
14298[etc...]
14299@end smallexample
14300
79a6e687 14301@subsubsection Working with Minimal Symbols
be448670
CF
14302
14303Symbols extracted from a DLL's export table do not contain very much
14304type information. All that @value{GDBN} can do is guess whether a symbol
14305refers to a function or variable depending on the linker section that
14306contains the symbol. Also note that the actual contents of the memory
14307contained in a DLL are not available unless the program is running. This
14308means that you cannot examine the contents of a variable or disassemble
14309a function within a DLL without a running program.
14310
14311Variables are generally treated as pointers and dereferenced
14312automatically. For this reason, it is often necessary to prefix a
14313variable name with the address-of operator (``&'') and provide explicit
14314type information in the command. Here's an example of the type of
14315problem:
14316
14317@smallexample
f7dc1244 14318(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14319$1 = 268572168
14320@end smallexample
14321
14322@smallexample
f7dc1244 14323(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143240x10021610: "\230y\""
14325@end smallexample
14326
14327And two possible solutions:
14328
14329@smallexample
f7dc1244 14330(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14331$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14332@end smallexample
14333
14334@smallexample
f7dc1244 14335(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 143360x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14337(@value{GDBP}) x/x 0x10021608
be448670 143380x10021608: 0x0022fd98
f7dc1244 14339(@value{GDBP}) x/s 0x0022fd98
be448670
CF
143400x22fd98: "/cygdrive/c/mydirectory/myprogram"
14341@end smallexample
14342
14343Setting a break point within a DLL is possible even before the program
14344starts execution. However, under these circumstances, @value{GDBN} can't
14345examine the initial instructions of the function in order to skip the
14346function's frame set-up code. You can work around this by using ``*&''
14347to set the breakpoint at a raw memory address:
14348
14349@smallexample
f7dc1244 14350(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14351Breakpoint 1 at 0x1e04eff0
14352@end smallexample
14353
14354The author of these extensions is not entirely convinced that setting a
14355break point within a shared DLL like @file{kernel32.dll} is completely
14356safe.
14357
14d6dd68 14358@node Hurd Native
79a6e687 14359@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14360@cindex @sc{gnu} Hurd debugging
14361
14362This subsection describes @value{GDBN} commands specific to the
14363@sc{gnu} Hurd native debugging.
14364
14365@table @code
14366@item set signals
14367@itemx set sigs
14368@kindex set signals@r{, Hurd command}
14369@kindex set sigs@r{, Hurd command}
14370This command toggles the state of inferior signal interception by
14371@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14372affected by this command. @code{sigs} is a shorthand alias for
14373@code{signals}.
14374
14375@item show signals
14376@itemx show sigs
14377@kindex show signals@r{, Hurd command}
14378@kindex show sigs@r{, Hurd command}
14379Show the current state of intercepting inferior's signals.
14380
14381@item set signal-thread
14382@itemx set sigthread
14383@kindex set signal-thread
14384@kindex set sigthread
14385This command tells @value{GDBN} which thread is the @code{libc} signal
14386thread. That thread is run when a signal is delivered to a running
14387process. @code{set sigthread} is the shorthand alias of @code{set
14388signal-thread}.
14389
14390@item show signal-thread
14391@itemx show sigthread
14392@kindex show signal-thread
14393@kindex show sigthread
14394These two commands show which thread will run when the inferior is
14395delivered a signal.
14396
14397@item set stopped
14398@kindex set stopped@r{, Hurd command}
14399This commands tells @value{GDBN} that the inferior process is stopped,
14400as with the @code{SIGSTOP} signal. The stopped process can be
14401continued by delivering a signal to it.
14402
14403@item show stopped
14404@kindex show stopped@r{, Hurd command}
14405This command shows whether @value{GDBN} thinks the debuggee is
14406stopped.
14407
14408@item set exceptions
14409@kindex set exceptions@r{, Hurd command}
14410Use this command to turn off trapping of exceptions in the inferior.
14411When exception trapping is off, neither breakpoints nor
14412single-stepping will work. To restore the default, set exception
14413trapping on.
14414
14415@item show exceptions
14416@kindex show exceptions@r{, Hurd command}
14417Show the current state of trapping exceptions in the inferior.
14418
14419@item set task pause
14420@kindex set task@r{, Hurd commands}
14421@cindex task attributes (@sc{gnu} Hurd)
14422@cindex pause current task (@sc{gnu} Hurd)
14423This command toggles task suspension when @value{GDBN} has control.
14424Setting it to on takes effect immediately, and the task is suspended
14425whenever @value{GDBN} gets control. Setting it to off will take
14426effect the next time the inferior is continued. If this option is set
14427to off, you can use @code{set thread default pause on} or @code{set
14428thread pause on} (see below) to pause individual threads.
14429
14430@item show task pause
14431@kindex show task@r{, Hurd commands}
14432Show the current state of task suspension.
14433
14434@item set task detach-suspend-count
14435@cindex task suspend count
14436@cindex detach from task, @sc{gnu} Hurd
14437This command sets the suspend count the task will be left with when
14438@value{GDBN} detaches from it.
14439
14440@item show task detach-suspend-count
14441Show the suspend count the task will be left with when detaching.
14442
14443@item set task exception-port
14444@itemx set task excp
14445@cindex task exception port, @sc{gnu} Hurd
14446This command sets the task exception port to which @value{GDBN} will
14447forward exceptions. The argument should be the value of the @dfn{send
14448rights} of the task. @code{set task excp} is a shorthand alias.
14449
14450@item set noninvasive
14451@cindex noninvasive task options
14452This command switches @value{GDBN} to a mode that is the least
14453invasive as far as interfering with the inferior is concerned. This
14454is the same as using @code{set task pause}, @code{set exceptions}, and
14455@code{set signals} to values opposite to the defaults.
14456
14457@item info send-rights
14458@itemx info receive-rights
14459@itemx info port-rights
14460@itemx info port-sets
14461@itemx info dead-names
14462@itemx info ports
14463@itemx info psets
14464@cindex send rights, @sc{gnu} Hurd
14465@cindex receive rights, @sc{gnu} Hurd
14466@cindex port rights, @sc{gnu} Hurd
14467@cindex port sets, @sc{gnu} Hurd
14468@cindex dead names, @sc{gnu} Hurd
14469These commands display information about, respectively, send rights,
14470receive rights, port rights, port sets, and dead names of a task.
14471There are also shorthand aliases: @code{info ports} for @code{info
14472port-rights} and @code{info psets} for @code{info port-sets}.
14473
14474@item set thread pause
14475@kindex set thread@r{, Hurd command}
14476@cindex thread properties, @sc{gnu} Hurd
14477@cindex pause current thread (@sc{gnu} Hurd)
14478This command toggles current thread suspension when @value{GDBN} has
14479control. Setting it to on takes effect immediately, and the current
14480thread is suspended whenever @value{GDBN} gets control. Setting it to
14481off will take effect the next time the inferior is continued.
14482Normally, this command has no effect, since when @value{GDBN} has
14483control, the whole task is suspended. However, if you used @code{set
14484task pause off} (see above), this command comes in handy to suspend
14485only the current thread.
14486
14487@item show thread pause
14488@kindex show thread@r{, Hurd command}
14489This command shows the state of current thread suspension.
14490
14491@item set thread run
d3e8051b 14492This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14493
14494@item show thread run
14495Show whether the current thread is allowed to run.
14496
14497@item set thread detach-suspend-count
14498@cindex thread suspend count, @sc{gnu} Hurd
14499@cindex detach from thread, @sc{gnu} Hurd
14500This command sets the suspend count @value{GDBN} will leave on a
14501thread when detaching. This number is relative to the suspend count
14502found by @value{GDBN} when it notices the thread; use @code{set thread
14503takeover-suspend-count} to force it to an absolute value.
14504
14505@item show thread detach-suspend-count
14506Show the suspend count @value{GDBN} will leave on the thread when
14507detaching.
14508
14509@item set thread exception-port
14510@itemx set thread excp
14511Set the thread exception port to which to forward exceptions. This
14512overrides the port set by @code{set task exception-port} (see above).
14513@code{set thread excp} is the shorthand alias.
14514
14515@item set thread takeover-suspend-count
14516Normally, @value{GDBN}'s thread suspend counts are relative to the
14517value @value{GDBN} finds when it notices each thread. This command
14518changes the suspend counts to be absolute instead.
14519
14520@item set thread default
14521@itemx show thread default
14522@cindex thread default settings, @sc{gnu} Hurd
14523Each of the above @code{set thread} commands has a @code{set thread
14524default} counterpart (e.g., @code{set thread default pause}, @code{set
14525thread default exception-port}, etc.). The @code{thread default}
14526variety of commands sets the default thread properties for all
14527threads; you can then change the properties of individual threads with
14528the non-default commands.
14529@end table
14530
14531
a64548ea
EZ
14532@node Neutrino
14533@subsection QNX Neutrino
14534@cindex QNX Neutrino
14535
14536@value{GDBN} provides the following commands specific to the QNX
14537Neutrino target:
14538
14539@table @code
14540@item set debug nto-debug
14541@kindex set debug nto-debug
14542When set to on, enables debugging messages specific to the QNX
14543Neutrino support.
14544
14545@item show debug nto-debug
14546@kindex show debug nto-debug
14547Show the current state of QNX Neutrino messages.
14548@end table
14549
14550
8e04817f
AC
14551@node Embedded OS
14552@section Embedded Operating Systems
104c1213 14553
8e04817f
AC
14554This section describes configurations involving the debugging of
14555embedded operating systems that are available for several different
14556architectures.
d4f3574e 14557
8e04817f
AC
14558@menu
14559* VxWorks:: Using @value{GDBN} with VxWorks
14560@end menu
104c1213 14561
8e04817f
AC
14562@value{GDBN} includes the ability to debug programs running on
14563various real-time operating systems.
104c1213 14564
8e04817f
AC
14565@node VxWorks
14566@subsection Using @value{GDBN} with VxWorks
104c1213 14567
8e04817f 14568@cindex VxWorks
104c1213 14569
8e04817f 14570@table @code
104c1213 14571
8e04817f
AC
14572@kindex target vxworks
14573@item target vxworks @var{machinename}
14574A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14575is the target system's machine name or IP address.
104c1213 14576
8e04817f 14577@end table
104c1213 14578
8e04817f
AC
14579On VxWorks, @code{load} links @var{filename} dynamically on the
14580current target system as well as adding its symbols in @value{GDBN}.
104c1213 14581
8e04817f
AC
14582@value{GDBN} enables developers to spawn and debug tasks running on networked
14583VxWorks targets from a Unix host. Already-running tasks spawned from
14584the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14585both the Unix host and on the VxWorks target. The program
14586@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14587installed with the name @code{vxgdb}, to distinguish it from a
14588@value{GDBN} for debugging programs on the host itself.)
104c1213 14589
8e04817f
AC
14590@table @code
14591@item VxWorks-timeout @var{args}
14592@kindex vxworks-timeout
14593All VxWorks-based targets now support the option @code{vxworks-timeout}.
14594This option is set by the user, and @var{args} represents the number of
14595seconds @value{GDBN} waits for responses to rpc's. You might use this if
14596your VxWorks target is a slow software simulator or is on the far side
14597of a thin network line.
14598@end table
104c1213 14599
8e04817f
AC
14600The following information on connecting to VxWorks was current when
14601this manual was produced; newer releases of VxWorks may use revised
14602procedures.
104c1213 14603
4644b6e3 14604@findex INCLUDE_RDB
8e04817f
AC
14605To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14606to include the remote debugging interface routines in the VxWorks
14607library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14608VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14609kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14610source debugging task @code{tRdbTask} when VxWorks is booted. For more
14611information on configuring and remaking VxWorks, see the manufacturer's
14612manual.
14613@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14614
8e04817f
AC
14615Once you have included @file{rdb.a} in your VxWorks system image and set
14616your Unix execution search path to find @value{GDBN}, you are ready to
14617run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14618@code{vxgdb}, depending on your installation).
104c1213 14619
8e04817f 14620@value{GDBN} comes up showing the prompt:
104c1213 14621
474c8240 14622@smallexample
8e04817f 14623(vxgdb)
474c8240 14624@end smallexample
104c1213 14625
8e04817f
AC
14626@menu
14627* VxWorks Connection:: Connecting to VxWorks
14628* VxWorks Download:: VxWorks download
14629* VxWorks Attach:: Running tasks
14630@end menu
104c1213 14631
8e04817f
AC
14632@node VxWorks Connection
14633@subsubsection Connecting to VxWorks
104c1213 14634
8e04817f
AC
14635The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14636network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14637
474c8240 14638@smallexample
8e04817f 14639(vxgdb) target vxworks tt
474c8240 14640@end smallexample
104c1213 14641
8e04817f
AC
14642@need 750
14643@value{GDBN} displays messages like these:
104c1213 14644
8e04817f
AC
14645@smallexample
14646Attaching remote machine across net...
14647Connected to tt.
14648@end smallexample
104c1213 14649
8e04817f
AC
14650@need 1000
14651@value{GDBN} then attempts to read the symbol tables of any object modules
14652loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14653these files by searching the directories listed in the command search
79a6e687 14654path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14655to find an object file, it displays a message such as:
5d161b24 14656
474c8240 14657@smallexample
8e04817f 14658prog.o: No such file or directory.
474c8240 14659@end smallexample
104c1213 14660
8e04817f
AC
14661When this happens, add the appropriate directory to the search path with
14662the @value{GDBN} command @code{path}, and execute the @code{target}
14663command again.
104c1213 14664
8e04817f 14665@node VxWorks Download
79a6e687 14666@subsubsection VxWorks Download
104c1213 14667
8e04817f
AC
14668@cindex download to VxWorks
14669If you have connected to the VxWorks target and you want to debug an
14670object that has not yet been loaded, you can use the @value{GDBN}
14671@code{load} command to download a file from Unix to VxWorks
14672incrementally. The object file given as an argument to the @code{load}
14673command is actually opened twice: first by the VxWorks target in order
14674to download the code, then by @value{GDBN} in order to read the symbol
14675table. This can lead to problems if the current working directories on
14676the two systems differ. If both systems have NFS mounted the same
14677filesystems, you can avoid these problems by using absolute paths.
14678Otherwise, it is simplest to set the working directory on both systems
14679to the directory in which the object file resides, and then to reference
14680the file by its name, without any path. For instance, a program
14681@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14682and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14683program, type this on VxWorks:
104c1213 14684
474c8240 14685@smallexample
8e04817f 14686-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14687@end smallexample
104c1213 14688
8e04817f
AC
14689@noindent
14690Then, in @value{GDBN}, type:
104c1213 14691
474c8240 14692@smallexample
8e04817f
AC
14693(vxgdb) cd @var{hostpath}/vw/demo/rdb
14694(vxgdb) load prog.o
474c8240 14695@end smallexample
104c1213 14696
8e04817f 14697@value{GDBN} displays a response similar to this:
104c1213 14698
8e04817f
AC
14699@smallexample
14700Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14701@end smallexample
104c1213 14702
8e04817f
AC
14703You can also use the @code{load} command to reload an object module
14704after editing and recompiling the corresponding source file. Note that
14705this makes @value{GDBN} delete all currently-defined breakpoints,
14706auto-displays, and convenience variables, and to clear the value
14707history. (This is necessary in order to preserve the integrity of
14708debugger's data structures that reference the target system's symbol
14709table.)
104c1213 14710
8e04817f 14711@node VxWorks Attach
79a6e687 14712@subsubsection Running Tasks
104c1213
JM
14713
14714@cindex running VxWorks tasks
14715You can also attach to an existing task using the @code{attach} command as
14716follows:
14717
474c8240 14718@smallexample
104c1213 14719(vxgdb) attach @var{task}
474c8240 14720@end smallexample
104c1213
JM
14721
14722@noindent
14723where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14724or suspended when you attach to it. Running tasks are suspended at
14725the time of attachment.
14726
6d2ebf8b 14727@node Embedded Processors
104c1213
JM
14728@section Embedded Processors
14729
14730This section goes into details specific to particular embedded
14731configurations.
14732
c45da7e6
EZ
14733@cindex send command to simulator
14734Whenever a specific embedded processor has a simulator, @value{GDBN}
14735allows to send an arbitrary command to the simulator.
14736
14737@table @code
14738@item sim @var{command}
14739@kindex sim@r{, a command}
14740Send an arbitrary @var{command} string to the simulator. Consult the
14741documentation for the specific simulator in use for information about
14742acceptable commands.
14743@end table
14744
7d86b5d5 14745
104c1213 14746@menu
c45da7e6 14747* ARM:: ARM RDI
172c2a43 14748* M32R/D:: Renesas M32R/D
104c1213 14749* M68K:: Motorola M68K
104c1213 14750* MIPS Embedded:: MIPS Embedded
a37295f9 14751* OpenRISC 1000:: OpenRisc 1000
104c1213 14752* PA:: HP PA Embedded
4acd40f3 14753* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14754* Sparclet:: Tsqware Sparclet
14755* Sparclite:: Fujitsu Sparclite
104c1213 14756* Z8000:: Zilog Z8000
a64548ea
EZ
14757* AVR:: Atmel AVR
14758* CRIS:: CRIS
14759* Super-H:: Renesas Super-H
104c1213
JM
14760@end menu
14761
6d2ebf8b 14762@node ARM
104c1213 14763@subsection ARM
c45da7e6 14764@cindex ARM RDI
104c1213
JM
14765
14766@table @code
8e04817f
AC
14767@kindex target rdi
14768@item target rdi @var{dev}
14769ARM Angel monitor, via RDI library interface to ADP protocol. You may
14770use this target to communicate with both boards running the Angel
14771monitor, or with the EmbeddedICE JTAG debug device.
14772
14773@kindex target rdp
14774@item target rdp @var{dev}
14775ARM Demon monitor.
14776
14777@end table
14778
e2f4edfd
EZ
14779@value{GDBN} provides the following ARM-specific commands:
14780
14781@table @code
14782@item set arm disassembler
14783@kindex set arm
14784This commands selects from a list of disassembly styles. The
14785@code{"std"} style is the standard style.
14786
14787@item show arm disassembler
14788@kindex show arm
14789Show the current disassembly style.
14790
14791@item set arm apcs32
14792@cindex ARM 32-bit mode
14793This command toggles ARM operation mode between 32-bit and 26-bit.
14794
14795@item show arm apcs32
14796Display the current usage of the ARM 32-bit mode.
14797
14798@item set arm fpu @var{fputype}
14799This command sets the ARM floating-point unit (FPU) type. The
14800argument @var{fputype} can be one of these:
14801
14802@table @code
14803@item auto
14804Determine the FPU type by querying the OS ABI.
14805@item softfpa
14806Software FPU, with mixed-endian doubles on little-endian ARM
14807processors.
14808@item fpa
14809GCC-compiled FPA co-processor.
14810@item softvfp
14811Software FPU with pure-endian doubles.
14812@item vfp
14813VFP co-processor.
14814@end table
14815
14816@item show arm fpu
14817Show the current type of the FPU.
14818
14819@item set arm abi
14820This command forces @value{GDBN} to use the specified ABI.
14821
14822@item show arm abi
14823Show the currently used ABI.
14824
14825@item set debug arm
14826Toggle whether to display ARM-specific debugging messages from the ARM
14827target support subsystem.
14828
14829@item show debug arm
14830Show whether ARM-specific debugging messages are enabled.
14831@end table
14832
c45da7e6
EZ
14833The following commands are available when an ARM target is debugged
14834using the RDI interface:
14835
14836@table @code
14837@item rdilogfile @r{[}@var{file}@r{]}
14838@kindex rdilogfile
14839@cindex ADP (Angel Debugger Protocol) logging
14840Set the filename for the ADP (Angel Debugger Protocol) packet log.
14841With an argument, sets the log file to the specified @var{file}. With
14842no argument, show the current log file name. The default log file is
14843@file{rdi.log}.
14844
14845@item rdilogenable @r{[}@var{arg}@r{]}
14846@kindex rdilogenable
14847Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14848enables logging, with an argument 0 or @code{"no"} disables it. With
14849no arguments displays the current setting. When logging is enabled,
14850ADP packets exchanged between @value{GDBN} and the RDI target device
14851are logged to a file.
14852
14853@item set rdiromatzero
14854@kindex set rdiromatzero
14855@cindex ROM at zero address, RDI
14856Tell @value{GDBN} whether the target has ROM at address 0. If on,
14857vector catching is disabled, so that zero address can be used. If off
14858(the default), vector catching is enabled. For this command to take
14859effect, it needs to be invoked prior to the @code{target rdi} command.
14860
14861@item show rdiromatzero
14862@kindex show rdiromatzero
14863Show the current setting of ROM at zero address.
14864
14865@item set rdiheartbeat
14866@kindex set rdiheartbeat
14867@cindex RDI heartbeat
14868Enable or disable RDI heartbeat packets. It is not recommended to
14869turn on this option, since it confuses ARM and EPI JTAG interface, as
14870well as the Angel monitor.
14871
14872@item show rdiheartbeat
14873@kindex show rdiheartbeat
14874Show the setting of RDI heartbeat packets.
14875@end table
14876
e2f4edfd 14877
8e04817f 14878@node M32R/D
ba04e063 14879@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14880
14881@table @code
8e04817f
AC
14882@kindex target m32r
14883@item target m32r @var{dev}
172c2a43 14884Renesas M32R/D ROM monitor.
8e04817f 14885
fb3e19c0
KI
14886@kindex target m32rsdi
14887@item target m32rsdi @var{dev}
14888Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14889@end table
14890
14891The following @value{GDBN} commands are specific to the M32R monitor:
14892
14893@table @code
14894@item set download-path @var{path}
14895@kindex set download-path
14896@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14897Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14898
14899@item show download-path
14900@kindex show download-path
14901Show the default path for downloadable @sc{srec} files.
fb3e19c0 14902
721c2651
EZ
14903@item set board-address @var{addr}
14904@kindex set board-address
14905@cindex M32-EVA target board address
14906Set the IP address for the M32R-EVA target board.
14907
14908@item show board-address
14909@kindex show board-address
14910Show the current IP address of the target board.
14911
14912@item set server-address @var{addr}
14913@kindex set server-address
14914@cindex download server address (M32R)
14915Set the IP address for the download server, which is the @value{GDBN}'s
14916host machine.
14917
14918@item show server-address
14919@kindex show server-address
14920Display the IP address of the download server.
14921
14922@item upload @r{[}@var{file}@r{]}
14923@kindex upload@r{, M32R}
14924Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14925upload capability. If no @var{file} argument is given, the current
14926executable file is uploaded.
14927
14928@item tload @r{[}@var{file}@r{]}
14929@kindex tload@r{, M32R}
14930Test the @code{upload} command.
8e04817f
AC
14931@end table
14932
ba04e063
EZ
14933The following commands are available for M32R/SDI:
14934
14935@table @code
14936@item sdireset
14937@kindex sdireset
14938@cindex reset SDI connection, M32R
14939This command resets the SDI connection.
14940
14941@item sdistatus
14942@kindex sdistatus
14943This command shows the SDI connection status.
14944
14945@item debug_chaos
14946@kindex debug_chaos
14947@cindex M32R/Chaos debugging
14948Instructs the remote that M32R/Chaos debugging is to be used.
14949
14950@item use_debug_dma
14951@kindex use_debug_dma
14952Instructs the remote to use the DEBUG_DMA method of accessing memory.
14953
14954@item use_mon_code
14955@kindex use_mon_code
14956Instructs the remote to use the MON_CODE method of accessing memory.
14957
14958@item use_ib_break
14959@kindex use_ib_break
14960Instructs the remote to set breakpoints by IB break.
14961
14962@item use_dbt_break
14963@kindex use_dbt_break
14964Instructs the remote to set breakpoints by DBT.
14965@end table
14966
8e04817f
AC
14967@node M68K
14968@subsection M68k
14969
7ce59000
DJ
14970The Motorola m68k configuration includes ColdFire support, and a
14971target command for the following ROM monitor.
8e04817f
AC
14972
14973@table @code
14974
8e04817f
AC
14975@kindex target dbug
14976@item target dbug @var{dev}
14977dBUG ROM monitor for Motorola ColdFire.
14978
8e04817f
AC
14979@end table
14980
8e04817f
AC
14981@node MIPS Embedded
14982@subsection MIPS Embedded
14983
14984@cindex MIPS boards
14985@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14986MIPS board attached to a serial line. This is available when
14987you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14988
8e04817f
AC
14989@need 1000
14990Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14991
8e04817f
AC
14992@table @code
14993@item target mips @var{port}
14994@kindex target mips @var{port}
14995To run a program on the board, start up @code{@value{GDBP}} with the
14996name of your program as the argument. To connect to the board, use the
14997command @samp{target mips @var{port}}, where @var{port} is the name of
14998the serial port connected to the board. If the program has not already
14999been downloaded to the board, you may use the @code{load} command to
15000download it. You can then use all the usual @value{GDBN} commands.
104c1213 15001
8e04817f
AC
15002For example, this sequence connects to the target board through a serial
15003port, and loads and runs a program called @var{prog} through the
15004debugger:
104c1213 15005
474c8240 15006@smallexample
8e04817f
AC
15007host$ @value{GDBP} @var{prog}
15008@value{GDBN} is free software and @dots{}
15009(@value{GDBP}) target mips /dev/ttyb
15010(@value{GDBP}) load @var{prog}
15011(@value{GDBP}) run
474c8240 15012@end smallexample
104c1213 15013
8e04817f
AC
15014@item target mips @var{hostname}:@var{portnumber}
15015On some @value{GDBN} host configurations, you can specify a TCP
15016connection (for instance, to a serial line managed by a terminal
15017concentrator) instead of a serial port, using the syntax
15018@samp{@var{hostname}:@var{portnumber}}.
104c1213 15019
8e04817f
AC
15020@item target pmon @var{port}
15021@kindex target pmon @var{port}
15022PMON ROM monitor.
104c1213 15023
8e04817f
AC
15024@item target ddb @var{port}
15025@kindex target ddb @var{port}
15026NEC's DDB variant of PMON for Vr4300.
104c1213 15027
8e04817f
AC
15028@item target lsi @var{port}
15029@kindex target lsi @var{port}
15030LSI variant of PMON.
104c1213 15031
8e04817f
AC
15032@kindex target r3900
15033@item target r3900 @var{dev}
15034Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15035
8e04817f
AC
15036@kindex target array
15037@item target array @var{dev}
15038Array Tech LSI33K RAID controller board.
104c1213 15039
8e04817f 15040@end table
104c1213 15041
104c1213 15042
8e04817f
AC
15043@noindent
15044@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15045
8e04817f 15046@table @code
8e04817f
AC
15047@item set mipsfpu double
15048@itemx set mipsfpu single
15049@itemx set mipsfpu none
a64548ea 15050@itemx set mipsfpu auto
8e04817f
AC
15051@itemx show mipsfpu
15052@kindex set mipsfpu
15053@kindex show mipsfpu
15054@cindex MIPS remote floating point
15055@cindex floating point, MIPS remote
15056If your target board does not support the MIPS floating point
15057coprocessor, you should use the command @samp{set mipsfpu none} (if you
15058need this, you may wish to put the command in your @value{GDBN} init
15059file). This tells @value{GDBN} how to find the return value of
15060functions which return floating point values. It also allows
15061@value{GDBN} to avoid saving the floating point registers when calling
15062functions on the board. If you are using a floating point coprocessor
15063with only single precision floating point support, as on the @sc{r4650}
15064processor, use the command @samp{set mipsfpu single}. The default
15065double precision floating point coprocessor may be selected using
15066@samp{set mipsfpu double}.
104c1213 15067
8e04817f
AC
15068In previous versions the only choices were double precision or no
15069floating point, so @samp{set mipsfpu on} will select double precision
15070and @samp{set mipsfpu off} will select no floating point.
104c1213 15071
8e04817f
AC
15072As usual, you can inquire about the @code{mipsfpu} variable with
15073@samp{show mipsfpu}.
104c1213 15074
8e04817f
AC
15075@item set timeout @var{seconds}
15076@itemx set retransmit-timeout @var{seconds}
15077@itemx show timeout
15078@itemx show retransmit-timeout
15079@cindex @code{timeout}, MIPS protocol
15080@cindex @code{retransmit-timeout}, MIPS protocol
15081@kindex set timeout
15082@kindex show timeout
15083@kindex set retransmit-timeout
15084@kindex show retransmit-timeout
15085You can control the timeout used while waiting for a packet, in the MIPS
15086remote protocol, with the @code{set timeout @var{seconds}} command. The
15087default is 5 seconds. Similarly, you can control the timeout used while
15088waiting for an acknowledgement of a packet with the @code{set
15089retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15090You can inspect both values with @code{show timeout} and @code{show
15091retransmit-timeout}. (These commands are @emph{only} available when
15092@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15093
8e04817f
AC
15094The timeout set by @code{set timeout} does not apply when @value{GDBN}
15095is waiting for your program to stop. In that case, @value{GDBN} waits
15096forever because it has no way of knowing how long the program is going
15097to run before stopping.
ba04e063
EZ
15098
15099@item set syn-garbage-limit @var{num}
15100@kindex set syn-garbage-limit@r{, MIPS remote}
15101@cindex synchronize with remote MIPS target
15102Limit the maximum number of characters @value{GDBN} should ignore when
15103it tries to synchronize with the remote target. The default is 10
15104characters. Setting the limit to -1 means there's no limit.
15105
15106@item show syn-garbage-limit
15107@kindex show syn-garbage-limit@r{, MIPS remote}
15108Show the current limit on the number of characters to ignore when
15109trying to synchronize with the remote system.
15110
15111@item set monitor-prompt @var{prompt}
15112@kindex set monitor-prompt@r{, MIPS remote}
15113@cindex remote monitor prompt
15114Tell @value{GDBN} to expect the specified @var{prompt} string from the
15115remote monitor. The default depends on the target:
15116@table @asis
15117@item pmon target
15118@samp{PMON}
15119@item ddb target
15120@samp{NEC010}
15121@item lsi target
15122@samp{PMON>}
15123@end table
15124
15125@item show monitor-prompt
15126@kindex show monitor-prompt@r{, MIPS remote}
15127Show the current strings @value{GDBN} expects as the prompt from the
15128remote monitor.
15129
15130@item set monitor-warnings
15131@kindex set monitor-warnings@r{, MIPS remote}
15132Enable or disable monitor warnings about hardware breakpoints. This
15133has effect only for the @code{lsi} target. When on, @value{GDBN} will
15134display warning messages whose codes are returned by the @code{lsi}
15135PMON monitor for breakpoint commands.
15136
15137@item show monitor-warnings
15138@kindex show monitor-warnings@r{, MIPS remote}
15139Show the current setting of printing monitor warnings.
15140
15141@item pmon @var{command}
15142@kindex pmon@r{, MIPS remote}
15143@cindex send PMON command
15144This command allows sending an arbitrary @var{command} string to the
15145monitor. The monitor must be in debug mode for this to work.
8e04817f 15146@end table
104c1213 15147
a37295f9
MM
15148@node OpenRISC 1000
15149@subsection OpenRISC 1000
15150@cindex OpenRISC 1000
15151
15152@cindex or1k boards
15153See OR1k Architecture document (@uref{www.opencores.org}) for more information
15154about platform and commands.
15155
15156@table @code
15157
15158@kindex target jtag
15159@item target jtag jtag://@var{host}:@var{port}
15160
15161Connects to remote JTAG server.
15162JTAG remote server can be either an or1ksim or JTAG server,
15163connected via parallel port to the board.
15164
15165Example: @code{target jtag jtag://localhost:9999}
15166
15167@kindex or1ksim
15168@item or1ksim @var{command}
15169If connected to @code{or1ksim} OpenRISC 1000 Architectural
15170Simulator, proprietary commands can be executed.
15171
15172@kindex info or1k spr
15173@item info or1k spr
15174Displays spr groups.
15175
15176@item info or1k spr @var{group}
15177@itemx info or1k spr @var{groupno}
15178Displays register names in selected group.
15179
15180@item info or1k spr @var{group} @var{register}
15181@itemx info or1k spr @var{register}
15182@itemx info or1k spr @var{groupno} @var{registerno}
15183@itemx info or1k spr @var{registerno}
15184Shows information about specified spr register.
15185
15186@kindex spr
15187@item spr @var{group} @var{register} @var{value}
15188@itemx spr @var{register @var{value}}
15189@itemx spr @var{groupno} @var{registerno @var{value}}
15190@itemx spr @var{registerno @var{value}}
15191Writes @var{value} to specified spr register.
15192@end table
15193
15194Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15195It is very similar to @value{GDBN} trace, except it does not interfere with normal
15196program execution and is thus much faster. Hardware breakpoints/watchpoint
15197triggers can be set using:
15198@table @code
15199@item $LEA/$LDATA
15200Load effective address/data
15201@item $SEA/$SDATA
15202Store effective address/data
15203@item $AEA/$ADATA
15204Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15205@item $FETCH
15206Fetch data
15207@end table
15208
15209When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15210@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15211
15212@code{htrace} commands:
15213@cindex OpenRISC 1000 htrace
15214@table @code
15215@kindex hwatch
15216@item hwatch @var{conditional}
d3e8051b 15217Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15218or Data. For example:
15219
15220@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15221
15222@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15223
4644b6e3 15224@kindex htrace
a37295f9
MM
15225@item htrace info
15226Display information about current HW trace configuration.
15227
a37295f9
MM
15228@item htrace trigger @var{conditional}
15229Set starting criteria for HW trace.
15230
a37295f9
MM
15231@item htrace qualifier @var{conditional}
15232Set acquisition qualifier for HW trace.
15233
a37295f9
MM
15234@item htrace stop @var{conditional}
15235Set HW trace stopping criteria.
15236
f153cc92 15237@item htrace record [@var{data}]*
a37295f9
MM
15238Selects the data to be recorded, when qualifier is met and HW trace was
15239triggered.
15240
a37295f9 15241@item htrace enable
a37295f9
MM
15242@itemx htrace disable
15243Enables/disables the HW trace.
15244
f153cc92 15245@item htrace rewind [@var{filename}]
a37295f9
MM
15246Clears currently recorded trace data.
15247
15248If filename is specified, new trace file is made and any newly collected data
15249will be written there.
15250
f153cc92 15251@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15252Prints trace buffer, using current record configuration.
15253
a37295f9
MM
15254@item htrace mode continuous
15255Set continuous trace mode.
15256
a37295f9
MM
15257@item htrace mode suspend
15258Set suspend trace mode.
15259
15260@end table
15261
4acd40f3
TJB
15262@node PowerPC Embedded
15263@subsection PowerPC Embedded
104c1213 15264
55eddb0f
DJ
15265@value{GDBN} provides the following PowerPC-specific commands:
15266
104c1213 15267@table @code
55eddb0f
DJ
15268@kindex set powerpc
15269@item set powerpc soft-float
15270@itemx show powerpc soft-float
15271Force @value{GDBN} to use (or not use) a software floating point calling
15272convention. By default, @value{GDBN} selects the calling convention based
15273on the selected architecture and the provided executable file.
15274
15275@item set powerpc vector-abi
15276@itemx show powerpc vector-abi
15277Force @value{GDBN} to use the specified calling convention for vector
15278arguments and return values. The valid options are @samp{auto};
15279@samp{generic}, to avoid vector registers even if they are present;
15280@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15281registers. By default, @value{GDBN} selects the calling convention
15282based on the selected architecture and the provided executable file.
15283
8e04817f
AC
15284@kindex target dink32
15285@item target dink32 @var{dev}
15286DINK32 ROM monitor.
104c1213 15287
8e04817f
AC
15288@kindex target ppcbug
15289@item target ppcbug @var{dev}
15290@kindex target ppcbug1
15291@item target ppcbug1 @var{dev}
15292PPCBUG ROM monitor for PowerPC.
104c1213 15293
8e04817f
AC
15294@kindex target sds
15295@item target sds @var{dev}
15296SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15297@end table
8e04817f 15298
c45da7e6 15299@cindex SDS protocol
d52fb0e9 15300The following commands specific to the SDS protocol are supported
55eddb0f 15301by @value{GDBN}:
c45da7e6
EZ
15302
15303@table @code
15304@item set sdstimeout @var{nsec}
15305@kindex set sdstimeout
15306Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15307default is 2 seconds.
15308
15309@item show sdstimeout
15310@kindex show sdstimeout
15311Show the current value of the SDS timeout.
15312
15313@item sds @var{command}
15314@kindex sds@r{, a command}
15315Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15316@end table
15317
c45da7e6 15318
8e04817f
AC
15319@node PA
15320@subsection HP PA Embedded
104c1213
JM
15321
15322@table @code
15323
8e04817f
AC
15324@kindex target op50n
15325@item target op50n @var{dev}
15326OP50N monitor, running on an OKI HPPA board.
15327
15328@kindex target w89k
15329@item target w89k @var{dev}
15330W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15331
15332@end table
15333
8e04817f
AC
15334@node Sparclet
15335@subsection Tsqware Sparclet
104c1213 15336
8e04817f
AC
15337@cindex Sparclet
15338
15339@value{GDBN} enables developers to debug tasks running on
15340Sparclet targets from a Unix host.
15341@value{GDBN} uses code that runs on
15342both the Unix host and on the Sparclet target. The program
15343@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15344
8e04817f
AC
15345@table @code
15346@item remotetimeout @var{args}
15347@kindex remotetimeout
15348@value{GDBN} supports the option @code{remotetimeout}.
15349This option is set by the user, and @var{args} represents the number of
15350seconds @value{GDBN} waits for responses.
104c1213
JM
15351@end table
15352
8e04817f
AC
15353@cindex compiling, on Sparclet
15354When compiling for debugging, include the options @samp{-g} to get debug
15355information and @samp{-Ttext} to relocate the program to where you wish to
15356load it on the target. You may also want to add the options @samp{-n} or
15357@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15358
474c8240 15359@smallexample
8e04817f 15360sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15361@end smallexample
104c1213 15362
8e04817f 15363You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15364
474c8240 15365@smallexample
8e04817f 15366sparclet-aout-objdump --headers --syms prog
474c8240 15367@end smallexample
104c1213 15368
8e04817f
AC
15369@cindex running, on Sparclet
15370Once you have set
15371your Unix execution search path to find @value{GDBN}, you are ready to
15372run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15373(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15374
8e04817f
AC
15375@value{GDBN} comes up showing the prompt:
15376
474c8240 15377@smallexample
8e04817f 15378(gdbslet)
474c8240 15379@end smallexample
104c1213
JM
15380
15381@menu
8e04817f
AC
15382* Sparclet File:: Setting the file to debug
15383* Sparclet Connection:: Connecting to Sparclet
15384* Sparclet Download:: Sparclet download
15385* Sparclet Execution:: Running and debugging
104c1213
JM
15386@end menu
15387
8e04817f 15388@node Sparclet File
79a6e687 15389@subsubsection Setting File to Debug
104c1213 15390
8e04817f 15391The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15392
474c8240 15393@smallexample
8e04817f 15394(gdbslet) file prog
474c8240 15395@end smallexample
104c1213 15396
8e04817f
AC
15397@need 1000
15398@value{GDBN} then attempts to read the symbol table of @file{prog}.
15399@value{GDBN} locates
15400the file by searching the directories listed in the command search
15401path.
12c27660 15402If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15403files will be searched as well.
15404@value{GDBN} locates
15405the source files by searching the directories listed in the directory search
79a6e687 15406path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15407If it fails
15408to find a file, it displays a message such as:
104c1213 15409
474c8240 15410@smallexample
8e04817f 15411prog: No such file or directory.
474c8240 15412@end smallexample
104c1213 15413
8e04817f
AC
15414When this happens, add the appropriate directories to the search paths with
15415the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15416@code{target} command again.
104c1213 15417
8e04817f
AC
15418@node Sparclet Connection
15419@subsubsection Connecting to Sparclet
104c1213 15420
8e04817f
AC
15421The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15422To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15423
474c8240 15424@smallexample
8e04817f
AC
15425(gdbslet) target sparclet /dev/ttya
15426Remote target sparclet connected to /dev/ttya
15427main () at ../prog.c:3
474c8240 15428@end smallexample
104c1213 15429
8e04817f
AC
15430@need 750
15431@value{GDBN} displays messages like these:
104c1213 15432
474c8240 15433@smallexample
8e04817f 15434Connected to ttya.
474c8240 15435@end smallexample
104c1213 15436
8e04817f 15437@node Sparclet Download
79a6e687 15438@subsubsection Sparclet Download
104c1213 15439
8e04817f
AC
15440@cindex download to Sparclet
15441Once connected to the Sparclet target,
15442you can use the @value{GDBN}
15443@code{load} command to download the file from the host to the target.
15444The file name and load offset should be given as arguments to the @code{load}
15445command.
15446Since the file format is aout, the program must be loaded to the starting
15447address. You can use @code{objdump} to find out what this value is. The load
15448offset is an offset which is added to the VMA (virtual memory address)
15449of each of the file's sections.
15450For instance, if the program
15451@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15452and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15453
474c8240 15454@smallexample
8e04817f
AC
15455(gdbslet) load prog 0x12010000
15456Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15457@end smallexample
104c1213 15458
8e04817f
AC
15459If the code is loaded at a different address then what the program was linked
15460to, you may need to use the @code{section} and @code{add-symbol-file} commands
15461to tell @value{GDBN} where to map the symbol table.
15462
15463@node Sparclet Execution
79a6e687 15464@subsubsection Running and Debugging
8e04817f
AC
15465
15466@cindex running and debugging Sparclet programs
15467You can now begin debugging the task using @value{GDBN}'s execution control
15468commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15469manual for the list of commands.
15470
474c8240 15471@smallexample
8e04817f
AC
15472(gdbslet) b main
15473Breakpoint 1 at 0x12010000: file prog.c, line 3.
15474(gdbslet) run
15475Starting program: prog
15476Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154773 char *symarg = 0;
15478(gdbslet) step
154794 char *execarg = "hello!";
15480(gdbslet)
474c8240 15481@end smallexample
8e04817f
AC
15482
15483@node Sparclite
15484@subsection Fujitsu Sparclite
104c1213
JM
15485
15486@table @code
15487
8e04817f
AC
15488@kindex target sparclite
15489@item target sparclite @var{dev}
15490Fujitsu sparclite boards, used only for the purpose of loading.
15491You must use an additional command to debug the program.
15492For example: target remote @var{dev} using @value{GDBN} standard
15493remote protocol.
104c1213
JM
15494
15495@end table
15496
8e04817f
AC
15497@node Z8000
15498@subsection Zilog Z8000
104c1213 15499
8e04817f
AC
15500@cindex Z8000
15501@cindex simulator, Z8000
15502@cindex Zilog Z8000 simulator
104c1213 15503
8e04817f
AC
15504When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15505a Z8000 simulator.
15506
15507For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15508unsegmented variant of the Z8000 architecture) or the Z8001 (the
15509segmented variant). The simulator recognizes which architecture is
15510appropriate by inspecting the object code.
104c1213 15511
8e04817f
AC
15512@table @code
15513@item target sim @var{args}
15514@kindex sim
15515@kindex target sim@r{, with Z8000}
15516Debug programs on a simulated CPU. If the simulator supports setup
15517options, specify them via @var{args}.
104c1213
JM
15518@end table
15519
8e04817f
AC
15520@noindent
15521After specifying this target, you can debug programs for the simulated
15522CPU in the same style as programs for your host computer; use the
15523@code{file} command to load a new program image, the @code{run} command
15524to run your program, and so on.
15525
15526As well as making available all the usual machine registers
15527(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15528additional items of information as specially named registers:
104c1213
JM
15529
15530@table @code
15531
8e04817f
AC
15532@item cycles
15533Counts clock-ticks in the simulator.
104c1213 15534
8e04817f
AC
15535@item insts
15536Counts instructions run in the simulator.
104c1213 15537
8e04817f
AC
15538@item time
15539Execution time in 60ths of a second.
104c1213 15540
8e04817f 15541@end table
104c1213 15542
8e04817f
AC
15543You can refer to these values in @value{GDBN} expressions with the usual
15544conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15545conditional breakpoint that suspends only after at least 5000
15546simulated clock ticks.
104c1213 15547
a64548ea
EZ
15548@node AVR
15549@subsection Atmel AVR
15550@cindex AVR
15551
15552When configured for debugging the Atmel AVR, @value{GDBN} supports the
15553following AVR-specific commands:
15554
15555@table @code
15556@item info io_registers
15557@kindex info io_registers@r{, AVR}
15558@cindex I/O registers (Atmel AVR)
15559This command displays information about the AVR I/O registers. For
15560each register, @value{GDBN} prints its number and value.
15561@end table
15562
15563@node CRIS
15564@subsection CRIS
15565@cindex CRIS
15566
15567When configured for debugging CRIS, @value{GDBN} provides the
15568following CRIS-specific commands:
15569
15570@table @code
15571@item set cris-version @var{ver}
15572@cindex CRIS version
e22e55c9
OF
15573Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15574The CRIS version affects register names and sizes. This command is useful in
15575case autodetection of the CRIS version fails.
a64548ea
EZ
15576
15577@item show cris-version
15578Show the current CRIS version.
15579
15580@item set cris-dwarf2-cfi
15581@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15582Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15583Change to @samp{off} when using @code{gcc-cris} whose version is below
15584@code{R59}.
a64548ea
EZ
15585
15586@item show cris-dwarf2-cfi
15587Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15588
15589@item set cris-mode @var{mode}
15590@cindex CRIS mode
15591Set the current CRIS mode to @var{mode}. It should only be changed when
15592debugging in guru mode, in which case it should be set to
15593@samp{guru} (the default is @samp{normal}).
15594
15595@item show cris-mode
15596Show the current CRIS mode.
a64548ea
EZ
15597@end table
15598
15599@node Super-H
15600@subsection Renesas Super-H
15601@cindex Super-H
15602
15603For the Renesas Super-H processor, @value{GDBN} provides these
15604commands:
15605
15606@table @code
15607@item regs
15608@kindex regs@r{, Super-H}
15609Show the values of all Super-H registers.
15610@end table
15611
15612
8e04817f
AC
15613@node Architectures
15614@section Architectures
104c1213 15615
8e04817f
AC
15616This section describes characteristics of architectures that affect
15617all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15618
8e04817f 15619@menu
9c16f35a 15620* i386::
8e04817f
AC
15621* A29K::
15622* Alpha::
15623* MIPS::
a64548ea 15624* HPPA:: HP PA architecture
23d964e7 15625* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15626* PowerPC::
8e04817f 15627@end menu
104c1213 15628
9c16f35a 15629@node i386
db2e3e2e 15630@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15631
15632@table @code
15633@item set struct-convention @var{mode}
15634@kindex set struct-convention
15635@cindex struct return convention
15636@cindex struct/union returned in registers
15637Set the convention used by the inferior to return @code{struct}s and
15638@code{union}s from functions to @var{mode}. Possible values of
15639@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15640default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15641are returned on the stack, while @code{"reg"} means that a
15642@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15643be returned in a register.
15644
15645@item show struct-convention
15646@kindex show struct-convention
15647Show the current setting of the convention to return @code{struct}s
15648from functions.
15649@end table
15650
8e04817f
AC
15651@node A29K
15652@subsection A29K
104c1213
JM
15653
15654@table @code
104c1213 15655
8e04817f
AC
15656@kindex set rstack_high_address
15657@cindex AMD 29K register stack
15658@cindex register stack, AMD29K
15659@item set rstack_high_address @var{address}
15660On AMD 29000 family processors, registers are saved in a separate
15661@dfn{register stack}. There is no way for @value{GDBN} to determine the
15662extent of this stack. Normally, @value{GDBN} just assumes that the
15663stack is ``large enough''. This may result in @value{GDBN} referencing
15664memory locations that do not exist. If necessary, you can get around
15665this problem by specifying the ending address of the register stack with
15666the @code{set rstack_high_address} command. The argument should be an
15667address, which you probably want to precede with @samp{0x} to specify in
15668hexadecimal.
104c1213 15669
8e04817f
AC
15670@kindex show rstack_high_address
15671@item show rstack_high_address
15672Display the current limit of the register stack, on AMD 29000 family
15673processors.
104c1213 15674
8e04817f 15675@end table
104c1213 15676
8e04817f
AC
15677@node Alpha
15678@subsection Alpha
104c1213 15679
8e04817f 15680See the following section.
104c1213 15681
8e04817f
AC
15682@node MIPS
15683@subsection MIPS
104c1213 15684
8e04817f
AC
15685@cindex stack on Alpha
15686@cindex stack on MIPS
15687@cindex Alpha stack
15688@cindex MIPS stack
15689Alpha- and MIPS-based computers use an unusual stack frame, which
15690sometimes requires @value{GDBN} to search backward in the object code to
15691find the beginning of a function.
104c1213 15692
8e04817f
AC
15693@cindex response time, MIPS debugging
15694To improve response time (especially for embedded applications, where
15695@value{GDBN} may be restricted to a slow serial line for this search)
15696you may want to limit the size of this search, using one of these
15697commands:
104c1213 15698
8e04817f
AC
15699@table @code
15700@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15701@item set heuristic-fence-post @var{limit}
15702Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15703search for the beginning of a function. A value of @var{0} (the
15704default) means there is no limit. However, except for @var{0}, the
15705larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15706and therefore the longer it takes to run. You should only need to use
15707this command when debugging a stripped executable.
104c1213 15708
8e04817f
AC
15709@item show heuristic-fence-post
15710Display the current limit.
15711@end table
104c1213
JM
15712
15713@noindent
8e04817f
AC
15714These commands are available @emph{only} when @value{GDBN} is configured
15715for debugging programs on Alpha or MIPS processors.
104c1213 15716
a64548ea
EZ
15717Several MIPS-specific commands are available when debugging MIPS
15718programs:
15719
15720@table @code
a64548ea
EZ
15721@item set mips abi @var{arg}
15722@kindex set mips abi
15723@cindex set ABI for MIPS
15724Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15725values of @var{arg} are:
15726
15727@table @samp
15728@item auto
15729The default ABI associated with the current binary (this is the
15730default).
15731@item o32
15732@item o64
15733@item n32
15734@item n64
15735@item eabi32
15736@item eabi64
15737@item auto
15738@end table
15739
15740@item show mips abi
15741@kindex show mips abi
15742Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15743
15744@item set mipsfpu
15745@itemx show mipsfpu
15746@xref{MIPS Embedded, set mipsfpu}.
15747
15748@item set mips mask-address @var{arg}
15749@kindex set mips mask-address
15750@cindex MIPS addresses, masking
15751This command determines whether the most-significant 32 bits of 64-bit
15752MIPS addresses are masked off. The argument @var{arg} can be
15753@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15754setting, which lets @value{GDBN} determine the correct value.
15755
15756@item show mips mask-address
15757@kindex show mips mask-address
15758Show whether the upper 32 bits of MIPS addresses are masked off or
15759not.
15760
15761@item set remote-mips64-transfers-32bit-regs
15762@kindex set remote-mips64-transfers-32bit-regs
15763This command controls compatibility with 64-bit MIPS targets that
15764transfer data in 32-bit quantities. If you have an old MIPS 64 target
15765that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15766and 64 bits for other registers, set this option to @samp{on}.
15767
15768@item show remote-mips64-transfers-32bit-regs
15769@kindex show remote-mips64-transfers-32bit-regs
15770Show the current setting of compatibility with older MIPS 64 targets.
15771
15772@item set debug mips
15773@kindex set debug mips
15774This command turns on and off debugging messages for the MIPS-specific
15775target code in @value{GDBN}.
15776
15777@item show debug mips
15778@kindex show debug mips
15779Show the current setting of MIPS debugging messages.
15780@end table
15781
15782
15783@node HPPA
15784@subsection HPPA
15785@cindex HPPA support
15786
d3e8051b 15787When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15788following special commands:
15789
15790@table @code
15791@item set debug hppa
15792@kindex set debug hppa
db2e3e2e 15793This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15794messages are to be displayed.
15795
15796@item show debug hppa
15797Show whether HPPA debugging messages are displayed.
15798
15799@item maint print unwind @var{address}
15800@kindex maint print unwind@r{, HPPA}
15801This command displays the contents of the unwind table entry at the
15802given @var{address}.
15803
15804@end table
15805
104c1213 15806
23d964e7
UW
15807@node SPU
15808@subsection Cell Broadband Engine SPU architecture
15809@cindex Cell Broadband Engine
15810@cindex SPU
15811
15812When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15813it provides the following special commands:
15814
15815@table @code
15816@item info spu event
15817@kindex info spu
15818Display SPU event facility status. Shows current event mask
15819and pending event status.
15820
15821@item info spu signal
15822Display SPU signal notification facility status. Shows pending
15823signal-control word and signal notification mode of both signal
15824notification channels.
15825
15826@item info spu mailbox
15827Display SPU mailbox facility status. Shows all pending entries,
15828in order of processing, in each of the SPU Write Outbound,
15829SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15830
15831@item info spu dma
15832Display MFC DMA status. Shows all pending commands in the MFC
15833DMA queue. For each entry, opcode, tag, class IDs, effective
15834and local store addresses and transfer size are shown.
15835
15836@item info spu proxydma
15837Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15838Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15839and local store addresses and transfer size are shown.
15840
15841@end table
15842
4acd40f3
TJB
15843@node PowerPC
15844@subsection PowerPC
15845@cindex PowerPC architecture
15846
15847When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15848pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15849numbers stored in the floating point registers. These values must be stored
15850in two consecutive registers, always starting at an even register like
15851@code{f0} or @code{f2}.
15852
15853The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15854by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15855@code{f2} and @code{f3} for @code{$dl1} and so on.
15856
23d964e7 15857
8e04817f
AC
15858@node Controlling GDB
15859@chapter Controlling @value{GDBN}
15860
15861You can alter the way @value{GDBN} interacts with you by using the
15862@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15863data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15864described here.
15865
15866@menu
15867* Prompt:: Prompt
15868* Editing:: Command editing
d620b259 15869* Command History:: Command history
8e04817f
AC
15870* Screen Size:: Screen size
15871* Numbers:: Numbers
1e698235 15872* ABI:: Configuring the current ABI
8e04817f
AC
15873* Messages/Warnings:: Optional warnings and messages
15874* Debugging Output:: Optional messages about internal happenings
15875@end menu
15876
15877@node Prompt
15878@section Prompt
104c1213 15879
8e04817f 15880@cindex prompt
104c1213 15881
8e04817f
AC
15882@value{GDBN} indicates its readiness to read a command by printing a string
15883called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15884can change the prompt string with the @code{set prompt} command. For
15885instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15886the prompt in one of the @value{GDBN} sessions so that you can always tell
15887which one you are talking to.
104c1213 15888
8e04817f
AC
15889@emph{Note:} @code{set prompt} does not add a space for you after the
15890prompt you set. This allows you to set a prompt which ends in a space
15891or a prompt that does not.
104c1213 15892
8e04817f
AC
15893@table @code
15894@kindex set prompt
15895@item set prompt @var{newprompt}
15896Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15897
8e04817f
AC
15898@kindex show prompt
15899@item show prompt
15900Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15901@end table
15902
8e04817f 15903@node Editing
79a6e687 15904@section Command Editing
8e04817f
AC
15905@cindex readline
15906@cindex command line editing
104c1213 15907
703663ab 15908@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15909@sc{gnu} library provides consistent behavior for programs which provide a
15910command line interface to the user. Advantages are @sc{gnu} Emacs-style
15911or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15912substitution, and a storage and recall of command history across
15913debugging sessions.
104c1213 15914
8e04817f
AC
15915You may control the behavior of command line editing in @value{GDBN} with the
15916command @code{set}.
104c1213 15917
8e04817f
AC
15918@table @code
15919@kindex set editing
15920@cindex editing
15921@item set editing
15922@itemx set editing on
15923Enable command line editing (enabled by default).
104c1213 15924
8e04817f
AC
15925@item set editing off
15926Disable command line editing.
104c1213 15927
8e04817f
AC
15928@kindex show editing
15929@item show editing
15930Show whether command line editing is enabled.
104c1213
JM
15931@end table
15932
703663ab
EZ
15933@xref{Command Line Editing}, for more details about the Readline
15934interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15935encouraged to read that chapter.
15936
d620b259 15937@node Command History
79a6e687 15938@section Command History
703663ab 15939@cindex command history
8e04817f
AC
15940
15941@value{GDBN} can keep track of the commands you type during your
15942debugging sessions, so that you can be certain of precisely what
15943happened. Use these commands to manage the @value{GDBN} command
15944history facility.
104c1213 15945
703663ab
EZ
15946@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15947package, to provide the history facility. @xref{Using History
15948Interactively}, for the detailed description of the History library.
15949
d620b259 15950To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15951the state which is seen by users, prefix it with @samp{server }
15952(@pxref{Server Prefix}). This
d620b259
NR
15953means that this command will not affect the command history, nor will it
15954affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15955pressed on a line by itself.
15956
15957@cindex @code{server}, command prefix
15958The server prefix does not affect the recording of values into the value
15959history; to print a value without recording it into the value history,
15960use the @code{output} command instead of the @code{print} command.
15961
703663ab
EZ
15962Here is the description of @value{GDBN} commands related to command
15963history.
15964
104c1213 15965@table @code
8e04817f
AC
15966@cindex history substitution
15967@cindex history file
15968@kindex set history filename
4644b6e3 15969@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15970@item set history filename @var{fname}
15971Set the name of the @value{GDBN} command history file to @var{fname}.
15972This is the file where @value{GDBN} reads an initial command history
15973list, and where it writes the command history from this session when it
15974exits. You can access this list through history expansion or through
15975the history command editing characters listed below. This file defaults
15976to the value of the environment variable @code{GDBHISTFILE}, or to
15977@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15978is not set.
104c1213 15979
9c16f35a
EZ
15980@cindex save command history
15981@kindex set history save
8e04817f
AC
15982@item set history save
15983@itemx set history save on
15984Record command history in a file, whose name may be specified with the
15985@code{set history filename} command. By default, this option is disabled.
104c1213 15986
8e04817f
AC
15987@item set history save off
15988Stop recording command history in a file.
104c1213 15989
8e04817f 15990@cindex history size
9c16f35a 15991@kindex set history size
6fc08d32 15992@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15993@item set history size @var{size}
15994Set the number of commands which @value{GDBN} keeps in its history list.
15995This defaults to the value of the environment variable
15996@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15997@end table
15998
8e04817f 15999History expansion assigns special meaning to the character @kbd{!}.
703663ab 16000@xref{Event Designators}, for more details.
8e04817f 16001
703663ab 16002@cindex history expansion, turn on/off
8e04817f
AC
16003Since @kbd{!} is also the logical not operator in C, history expansion
16004is off by default. If you decide to enable history expansion with the
16005@code{set history expansion on} command, you may sometimes need to
16006follow @kbd{!} (when it is used as logical not, in an expression) with
16007a space or a tab to prevent it from being expanded. The readline
16008history facilities do not attempt substitution on the strings
16009@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16010
16011The commands to control history expansion are:
104c1213
JM
16012
16013@table @code
8e04817f
AC
16014@item set history expansion on
16015@itemx set history expansion
703663ab 16016@kindex set history expansion
8e04817f 16017Enable history expansion. History expansion is off by default.
104c1213 16018
8e04817f
AC
16019@item set history expansion off
16020Disable history expansion.
104c1213 16021
8e04817f
AC
16022@c @group
16023@kindex show history
16024@item show history
16025@itemx show history filename
16026@itemx show history save
16027@itemx show history size
16028@itemx show history expansion
16029These commands display the state of the @value{GDBN} history parameters.
16030@code{show history} by itself displays all four states.
16031@c @end group
16032@end table
16033
16034@table @code
9c16f35a
EZ
16035@kindex show commands
16036@cindex show last commands
16037@cindex display command history
8e04817f
AC
16038@item show commands
16039Display the last ten commands in the command history.
104c1213 16040
8e04817f
AC
16041@item show commands @var{n}
16042Print ten commands centered on command number @var{n}.
16043
16044@item show commands +
16045Print ten commands just after the commands last printed.
104c1213
JM
16046@end table
16047
8e04817f 16048@node Screen Size
79a6e687 16049@section Screen Size
8e04817f
AC
16050@cindex size of screen
16051@cindex pauses in output
104c1213 16052
8e04817f
AC
16053Certain commands to @value{GDBN} may produce large amounts of
16054information output to the screen. To help you read all of it,
16055@value{GDBN} pauses and asks you for input at the end of each page of
16056output. Type @key{RET} when you want to continue the output, or @kbd{q}
16057to discard the remaining output. Also, the screen width setting
16058determines when to wrap lines of output. Depending on what is being
16059printed, @value{GDBN} tries to break the line at a readable place,
16060rather than simply letting it overflow onto the following line.
16061
16062Normally @value{GDBN} knows the size of the screen from the terminal
16063driver software. For example, on Unix @value{GDBN} uses the termcap data base
16064together with the value of the @code{TERM} environment variable and the
16065@code{stty rows} and @code{stty cols} settings. If this is not correct,
16066you can override it with the @code{set height} and @code{set
16067width} commands:
16068
16069@table @code
16070@kindex set height
16071@kindex set width
16072@kindex show width
16073@kindex show height
16074@item set height @var{lpp}
16075@itemx show height
16076@itemx set width @var{cpl}
16077@itemx show width
16078These @code{set} commands specify a screen height of @var{lpp} lines and
16079a screen width of @var{cpl} characters. The associated @code{show}
16080commands display the current settings.
104c1213 16081
8e04817f
AC
16082If you specify a height of zero lines, @value{GDBN} does not pause during
16083output no matter how long the output is. This is useful if output is to a
16084file or to an editor buffer.
104c1213 16085
8e04817f
AC
16086Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16087from wrapping its output.
9c16f35a
EZ
16088
16089@item set pagination on
16090@itemx set pagination off
16091@kindex set pagination
16092Turn the output pagination on or off; the default is on. Turning
16093pagination off is the alternative to @code{set height 0}.
16094
16095@item show pagination
16096@kindex show pagination
16097Show the current pagination mode.
104c1213
JM
16098@end table
16099
8e04817f
AC
16100@node Numbers
16101@section Numbers
16102@cindex number representation
16103@cindex entering numbers
104c1213 16104
8e04817f
AC
16105You can always enter numbers in octal, decimal, or hexadecimal in
16106@value{GDBN} by the usual conventions: octal numbers begin with
16107@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16108begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16109@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1611010; likewise, the default display for numbers---when no particular
16111format is specified---is base 10. You can change the default base for
16112both input and output with the commands described below.
104c1213 16113
8e04817f
AC
16114@table @code
16115@kindex set input-radix
16116@item set input-radix @var{base}
16117Set the default base for numeric input. Supported choices
16118for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16119specified either unambiguously or using the current input radix; for
8e04817f 16120example, any of
104c1213 16121
8e04817f 16122@smallexample
9c16f35a
EZ
16123set input-radix 012
16124set input-radix 10.
16125set input-radix 0xa
8e04817f 16126@end smallexample
104c1213 16127
8e04817f 16128@noindent
9c16f35a 16129sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16130leaves the input radix unchanged, no matter what it was, since
16131@samp{10}, being without any leading or trailing signs of its base, is
16132interpreted in the current radix. Thus, if the current radix is 16,
16133@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16134change the radix.
104c1213 16135
8e04817f
AC
16136@kindex set output-radix
16137@item set output-radix @var{base}
16138Set the default base for numeric display. Supported choices
16139for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16140specified either unambiguously or using the current input radix.
104c1213 16141
8e04817f
AC
16142@kindex show input-radix
16143@item show input-radix
16144Display the current default base for numeric input.
104c1213 16145
8e04817f
AC
16146@kindex show output-radix
16147@item show output-radix
16148Display the current default base for numeric display.
9c16f35a
EZ
16149
16150@item set radix @r{[}@var{base}@r{]}
16151@itemx show radix
16152@kindex set radix
16153@kindex show radix
16154These commands set and show the default base for both input and output
16155of numbers. @code{set radix} sets the radix of input and output to
16156the same base; without an argument, it resets the radix back to its
16157default value of 10.
16158
8e04817f 16159@end table
104c1213 16160
1e698235 16161@node ABI
79a6e687 16162@section Configuring the Current ABI
1e698235
DJ
16163
16164@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16165application automatically. However, sometimes you need to override its
16166conclusions. Use these commands to manage @value{GDBN}'s view of the
16167current ABI.
16168
98b45e30
DJ
16169@cindex OS ABI
16170@kindex set osabi
b4e9345d 16171@kindex show osabi
98b45e30
DJ
16172
16173One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16174system targets, either via remote debugging or native emulation.
98b45e30
DJ
16175@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16176but you can override its conclusion using the @code{set osabi} command.
16177One example where this is useful is in debugging of binaries which use
16178an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16179not have the same identifying marks that the standard C library for your
16180platform provides.
16181
16182@table @code
16183@item show osabi
16184Show the OS ABI currently in use.
16185
16186@item set osabi
16187With no argument, show the list of registered available OS ABI's.
16188
16189@item set osabi @var{abi}
16190Set the current OS ABI to @var{abi}.
16191@end table
16192
1e698235 16193@cindex float promotion
1e698235
DJ
16194
16195Generally, the way that an argument of type @code{float} is passed to a
16196function depends on whether the function is prototyped. For a prototyped
16197(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16198according to the architecture's convention for @code{float}. For unprototyped
16199(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16200@code{double} and then passed.
16201
16202Unfortunately, some forms of debug information do not reliably indicate whether
16203a function is prototyped. If @value{GDBN} calls a function that is not marked
16204as prototyped, it consults @kbd{set coerce-float-to-double}.
16205
16206@table @code
a8f24a35 16207@kindex set coerce-float-to-double
1e698235
DJ
16208@item set coerce-float-to-double
16209@itemx set coerce-float-to-double on
16210Arguments of type @code{float} will be promoted to @code{double} when passed
16211to an unprototyped function. This is the default setting.
16212
16213@item set coerce-float-to-double off
16214Arguments of type @code{float} will be passed directly to unprototyped
16215functions.
9c16f35a
EZ
16216
16217@kindex show coerce-float-to-double
16218@item show coerce-float-to-double
16219Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16220@end table
16221
f1212245
DJ
16222@kindex set cp-abi
16223@kindex show cp-abi
16224@value{GDBN} needs to know the ABI used for your program's C@t{++}
16225objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16226used to build your application. @value{GDBN} only fully supports
16227programs with a single C@t{++} ABI; if your program contains code using
16228multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16229program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16230Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16231before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16232``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16233use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16234``auto''.
16235
16236@table @code
16237@item show cp-abi
16238Show the C@t{++} ABI currently in use.
16239
16240@item set cp-abi
16241With no argument, show the list of supported C@t{++} ABI's.
16242
16243@item set cp-abi @var{abi}
16244@itemx set cp-abi auto
16245Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16246@end table
16247
8e04817f 16248@node Messages/Warnings
79a6e687 16249@section Optional Warnings and Messages
104c1213 16250
9c16f35a
EZ
16251@cindex verbose operation
16252@cindex optional warnings
8e04817f
AC
16253By default, @value{GDBN} is silent about its inner workings. If you are
16254running on a slow machine, you may want to use the @code{set verbose}
16255command. This makes @value{GDBN} tell you when it does a lengthy
16256internal operation, so you will not think it has crashed.
104c1213 16257
8e04817f
AC
16258Currently, the messages controlled by @code{set verbose} are those
16259which announce that the symbol table for a source file is being read;
79a6e687 16260see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16261
8e04817f
AC
16262@table @code
16263@kindex set verbose
16264@item set verbose on
16265Enables @value{GDBN} output of certain informational messages.
104c1213 16266
8e04817f
AC
16267@item set verbose off
16268Disables @value{GDBN} output of certain informational messages.
104c1213 16269
8e04817f
AC
16270@kindex show verbose
16271@item show verbose
16272Displays whether @code{set verbose} is on or off.
16273@end table
104c1213 16274
8e04817f
AC
16275By default, if @value{GDBN} encounters bugs in the symbol table of an
16276object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16277find this information useful (@pxref{Symbol Errors, ,Errors Reading
16278Symbol Files}).
104c1213 16279
8e04817f 16280@table @code
104c1213 16281
8e04817f
AC
16282@kindex set complaints
16283@item set complaints @var{limit}
16284Permits @value{GDBN} to output @var{limit} complaints about each type of
16285unusual symbols before becoming silent about the problem. Set
16286@var{limit} to zero to suppress all complaints; set it to a large number
16287to prevent complaints from being suppressed.
104c1213 16288
8e04817f
AC
16289@kindex show complaints
16290@item show complaints
16291Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16292
8e04817f 16293@end table
104c1213 16294
8e04817f
AC
16295By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16296lot of stupid questions to confirm certain commands. For example, if
16297you try to run a program which is already running:
104c1213 16298
474c8240 16299@smallexample
8e04817f
AC
16300(@value{GDBP}) run
16301The program being debugged has been started already.
16302Start it from the beginning? (y or n)
474c8240 16303@end smallexample
104c1213 16304
8e04817f
AC
16305If you are willing to unflinchingly face the consequences of your own
16306commands, you can disable this ``feature'':
104c1213 16307
8e04817f 16308@table @code
104c1213 16309
8e04817f
AC
16310@kindex set confirm
16311@cindex flinching
16312@cindex confirmation
16313@cindex stupid questions
16314@item set confirm off
16315Disables confirmation requests.
104c1213 16316
8e04817f
AC
16317@item set confirm on
16318Enables confirmation requests (the default).
104c1213 16319
8e04817f
AC
16320@kindex show confirm
16321@item show confirm
16322Displays state of confirmation requests.
16323
16324@end table
104c1213 16325
16026cd7
AS
16326@cindex command tracing
16327If you need to debug user-defined commands or sourced files you may find it
16328useful to enable @dfn{command tracing}. In this mode each command will be
16329printed as it is executed, prefixed with one or more @samp{+} symbols, the
16330quantity denoting the call depth of each command.
16331
16332@table @code
16333@kindex set trace-commands
16334@cindex command scripts, debugging
16335@item set trace-commands on
16336Enable command tracing.
16337@item set trace-commands off
16338Disable command tracing.
16339@item show trace-commands
16340Display the current state of command tracing.
16341@end table
16342
8e04817f 16343@node Debugging Output
79a6e687 16344@section Optional Messages about Internal Happenings
4644b6e3
EZ
16345@cindex optional debugging messages
16346
da316a69
EZ
16347@value{GDBN} has commands that enable optional debugging messages from
16348various @value{GDBN} subsystems; normally these commands are of
16349interest to @value{GDBN} maintainers, or when reporting a bug. This
16350section documents those commands.
16351
104c1213 16352@table @code
a8f24a35
EZ
16353@kindex set exec-done-display
16354@item set exec-done-display
16355Turns on or off the notification of asynchronous commands'
16356completion. When on, @value{GDBN} will print a message when an
16357asynchronous command finishes its execution. The default is off.
16358@kindex show exec-done-display
16359@item show exec-done-display
16360Displays the current setting of asynchronous command completion
16361notification.
4644b6e3
EZ
16362@kindex set debug
16363@cindex gdbarch debugging info
a8f24a35 16364@cindex architecture debugging info
8e04817f 16365@item set debug arch
a8f24a35 16366Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16367@kindex show debug
8e04817f
AC
16368@item show debug arch
16369Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16370@item set debug aix-thread
16371@cindex AIX threads
16372Display debugging messages about inner workings of the AIX thread
16373module.
16374@item show debug aix-thread
16375Show the current state of AIX thread debugging info display.
8e04817f 16376@item set debug event
4644b6e3 16377@cindex event debugging info
a8f24a35 16378Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16379default is off.
8e04817f
AC
16380@item show debug event
16381Displays the current state of displaying @value{GDBN} event debugging
16382info.
8e04817f 16383@item set debug expression
4644b6e3 16384@cindex expression debugging info
721c2651
EZ
16385Turns on or off display of debugging info about @value{GDBN}
16386expression parsing. The default is off.
8e04817f 16387@item show debug expression
721c2651
EZ
16388Displays the current state of displaying debugging info about
16389@value{GDBN} expression parsing.
7453dc06 16390@item set debug frame
4644b6e3 16391@cindex frame debugging info
7453dc06
AC
16392Turns on or off display of @value{GDBN} frame debugging info. The
16393default is off.
7453dc06
AC
16394@item show debug frame
16395Displays the current state of displaying @value{GDBN} frame debugging
16396info.
30e91e0b
RC
16397@item set debug infrun
16398@cindex inferior debugging info
16399Turns on or off display of @value{GDBN} debugging info for running the inferior.
16400The default is off. @file{infrun.c} contains GDB's runtime state machine used
16401for implementing operations such as single-stepping the inferior.
16402@item show debug infrun
16403Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16404@item set debug lin-lwp
16405@cindex @sc{gnu}/Linux LWP debug messages
16406@cindex Linux lightweight processes
721c2651 16407Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16408@item show debug lin-lwp
16409Show the current state of Linux LWP debugging messages.
b84876c2
PA
16410@item set debug lin-lwp-async
16411@cindex @sc{gnu}/Linux LWP async debug messages
16412@cindex Linux lightweight processes
16413Turns on or off debugging messages from the Linux LWP async debug support.
16414@item show debug lin-lwp-async
16415Show the current state of Linux LWP async debugging messages.
2b4855ab 16416@item set debug observer
4644b6e3 16417@cindex observer debugging info
2b4855ab
AC
16418Turns on or off display of @value{GDBN} observer debugging. This
16419includes info such as the notification of observable events.
2b4855ab
AC
16420@item show debug observer
16421Displays the current state of observer debugging.
8e04817f 16422@item set debug overload
4644b6e3 16423@cindex C@t{++} overload debugging info
8e04817f 16424Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16425info. This includes info such as ranking of functions, etc. The default
8e04817f 16426is off.
8e04817f
AC
16427@item show debug overload
16428Displays the current state of displaying @value{GDBN} C@t{++} overload
16429debugging info.
8e04817f
AC
16430@cindex packets, reporting on stdout
16431@cindex serial connections, debugging
605a56cb
DJ
16432@cindex debug remote protocol
16433@cindex remote protocol debugging
16434@cindex display remote packets
8e04817f
AC
16435@item set debug remote
16436Turns on or off display of reports on all packets sent back and forth across
16437the serial line to the remote machine. The info is printed on the
16438@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16439@item show debug remote
16440Displays the state of display of remote packets.
8e04817f
AC
16441@item set debug serial
16442Turns on or off display of @value{GDBN} serial debugging info. The
16443default is off.
8e04817f
AC
16444@item show debug serial
16445Displays the current state of displaying @value{GDBN} serial debugging
16446info.
c45da7e6
EZ
16447@item set debug solib-frv
16448@cindex FR-V shared-library debugging
16449Turns on or off debugging messages for FR-V shared-library code.
16450@item show debug solib-frv
16451Display the current state of FR-V shared-library code debugging
16452messages.
8e04817f 16453@item set debug target
4644b6e3 16454@cindex target debugging info
8e04817f
AC
16455Turns on or off display of @value{GDBN} target debugging info. This info
16456includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16457default is 0. Set it to 1 to track events, and to 2 to also track the
16458value of large memory transfers. Changes to this flag do not take effect
16459until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16460@item show debug target
16461Displays the current state of displaying @value{GDBN} target debugging
16462info.
75feb17d
DJ
16463@item set debug timestamp
16464@cindex timestampping debugging info
16465Turns on or off display of timestamps with @value{GDBN} debugging info.
16466When enabled, seconds and microseconds are displayed before each debugging
16467message.
16468@item show debug timestamp
16469Displays the current state of displaying timestamps with @value{GDBN}
16470debugging info.
c45da7e6 16471@item set debugvarobj
4644b6e3 16472@cindex variable object debugging info
8e04817f
AC
16473Turns on or off display of @value{GDBN} variable object debugging
16474info. The default is off.
c45da7e6 16475@item show debugvarobj
8e04817f
AC
16476Displays the current state of displaying @value{GDBN} variable object
16477debugging info.
e776119f
DJ
16478@item set debug xml
16479@cindex XML parser debugging
16480Turns on or off debugging messages for built-in XML parsers.
16481@item show debug xml
16482Displays the current state of XML debugging messages.
8e04817f 16483@end table
104c1213 16484
8e04817f
AC
16485@node Sequences
16486@chapter Canned Sequences of Commands
104c1213 16487
8e04817f 16488Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16489Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16490commands for execution as a unit: user-defined commands and command
16491files.
104c1213 16492
8e04817f 16493@menu
fcc73fe3
EZ
16494* Define:: How to define your own commands
16495* Hooks:: Hooks for user-defined commands
16496* Command Files:: How to write scripts of commands to be stored in a file
16497* Output:: Commands for controlled output
8e04817f 16498@end menu
104c1213 16499
8e04817f 16500@node Define
79a6e687 16501@section User-defined Commands
104c1213 16502
8e04817f 16503@cindex user-defined command
fcc73fe3 16504@cindex arguments, to user-defined commands
8e04817f
AC
16505A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16506which you assign a new name as a command. This is done with the
16507@code{define} command. User commands may accept up to 10 arguments
16508separated by whitespace. Arguments are accessed within the user command
c03c782f 16509via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16510
8e04817f
AC
16511@smallexample
16512define adder
16513 print $arg0 + $arg1 + $arg2
c03c782f 16514end
8e04817f 16515@end smallexample
104c1213
JM
16516
16517@noindent
8e04817f 16518To execute the command use:
104c1213 16519
8e04817f
AC
16520@smallexample
16521adder 1 2 3
16522@end smallexample
104c1213 16523
8e04817f
AC
16524@noindent
16525This defines the command @code{adder}, which prints the sum of
16526its three arguments. Note the arguments are text substitutions, so they may
16527reference variables, use complex expressions, or even perform inferior
16528functions calls.
104c1213 16529
fcc73fe3
EZ
16530@cindex argument count in user-defined commands
16531@cindex how many arguments (user-defined commands)
c03c782f
AS
16532In addition, @code{$argc} may be used to find out how many arguments have
16533been passed. This expands to a number in the range 0@dots{}10.
16534
16535@smallexample
16536define adder
16537 if $argc == 2
16538 print $arg0 + $arg1
16539 end
16540 if $argc == 3
16541 print $arg0 + $arg1 + $arg2
16542 end
16543end
16544@end smallexample
16545
104c1213 16546@table @code
104c1213 16547
8e04817f
AC
16548@kindex define
16549@item define @var{commandname}
16550Define a command named @var{commandname}. If there is already a command
16551by that name, you are asked to confirm that you want to redefine it.
104c1213 16552
8e04817f
AC
16553The definition of the command is made up of other @value{GDBN} command lines,
16554which are given following the @code{define} command. The end of these
16555commands is marked by a line containing @code{end}.
104c1213 16556
8e04817f 16557@kindex document
ca91424e 16558@kindex end@r{ (user-defined commands)}
8e04817f
AC
16559@item document @var{commandname}
16560Document the user-defined command @var{commandname}, so that it can be
16561accessed by @code{help}. The command @var{commandname} must already be
16562defined. This command reads lines of documentation just as @code{define}
16563reads the lines of the command definition, ending with @code{end}.
16564After the @code{document} command is finished, @code{help} on command
16565@var{commandname} displays the documentation you have written.
104c1213 16566
8e04817f
AC
16567You may use the @code{document} command again to change the
16568documentation of a command. Redefining the command with @code{define}
16569does not change the documentation.
104c1213 16570
c45da7e6
EZ
16571@kindex dont-repeat
16572@cindex don't repeat command
16573@item dont-repeat
16574Used inside a user-defined command, this tells @value{GDBN} that this
16575command should not be repeated when the user hits @key{RET}
16576(@pxref{Command Syntax, repeat last command}).
16577
8e04817f
AC
16578@kindex help user-defined
16579@item help user-defined
16580List all user-defined commands, with the first line of the documentation
16581(if any) for each.
104c1213 16582
8e04817f
AC
16583@kindex show user
16584@item show user
16585@itemx show user @var{commandname}
16586Display the @value{GDBN} commands used to define @var{commandname} (but
16587not its documentation). If no @var{commandname} is given, display the
16588definitions for all user-defined commands.
104c1213 16589
fcc73fe3 16590@cindex infinite recursion in user-defined commands
20f01a46
DH
16591@kindex show max-user-call-depth
16592@kindex set max-user-call-depth
16593@item show max-user-call-depth
5ca0cb28
DH
16594@itemx set max-user-call-depth
16595The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16596levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16597infinite recursion and aborts the command.
104c1213
JM
16598@end table
16599
fcc73fe3
EZ
16600In addition to the above commands, user-defined commands frequently
16601use control flow commands, described in @ref{Command Files}.
16602
8e04817f
AC
16603When user-defined commands are executed, the
16604commands of the definition are not printed. An error in any command
16605stops execution of the user-defined command.
104c1213 16606
8e04817f
AC
16607If used interactively, commands that would ask for confirmation proceed
16608without asking when used inside a user-defined command. Many @value{GDBN}
16609commands that normally print messages to say what they are doing omit the
16610messages when used in a user-defined command.
104c1213 16611
8e04817f 16612@node Hooks
79a6e687 16613@section User-defined Command Hooks
8e04817f
AC
16614@cindex command hooks
16615@cindex hooks, for commands
16616@cindex hooks, pre-command
104c1213 16617
8e04817f 16618@kindex hook
8e04817f
AC
16619You may define @dfn{hooks}, which are a special kind of user-defined
16620command. Whenever you run the command @samp{foo}, if the user-defined
16621command @samp{hook-foo} exists, it is executed (with no arguments)
16622before that command.
104c1213 16623
8e04817f
AC
16624@cindex hooks, post-command
16625@kindex hookpost
8e04817f
AC
16626A hook may also be defined which is run after the command you executed.
16627Whenever you run the command @samp{foo}, if the user-defined command
16628@samp{hookpost-foo} exists, it is executed (with no arguments) after
16629that command. Post-execution hooks may exist simultaneously with
16630pre-execution hooks, for the same command.
104c1213 16631
8e04817f 16632It is valid for a hook to call the command which it hooks. If this
9f1c6395 16633occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16634
8e04817f
AC
16635@c It would be nice if hookpost could be passed a parameter indicating
16636@c if the command it hooks executed properly or not. FIXME!
104c1213 16637
8e04817f
AC
16638@kindex stop@r{, a pseudo-command}
16639In addition, a pseudo-command, @samp{stop} exists. Defining
16640(@samp{hook-stop}) makes the associated commands execute every time
16641execution stops in your program: before breakpoint commands are run,
16642displays are printed, or the stack frame is printed.
104c1213 16643
8e04817f
AC
16644For example, to ignore @code{SIGALRM} signals while
16645single-stepping, but treat them normally during normal execution,
16646you could define:
104c1213 16647
474c8240 16648@smallexample
8e04817f
AC
16649define hook-stop
16650handle SIGALRM nopass
16651end
104c1213 16652
8e04817f
AC
16653define hook-run
16654handle SIGALRM pass
16655end
104c1213 16656
8e04817f 16657define hook-continue
d3e8051b 16658handle SIGALRM pass
8e04817f 16659end
474c8240 16660@end smallexample
104c1213 16661
d3e8051b 16662As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16663command, and to add extra text to the beginning and end of the message,
8e04817f 16664you could define:
104c1213 16665
474c8240 16666@smallexample
8e04817f
AC
16667define hook-echo
16668echo <<<---
16669end
104c1213 16670
8e04817f
AC
16671define hookpost-echo
16672echo --->>>\n
16673end
104c1213 16674
8e04817f
AC
16675(@value{GDBP}) echo Hello World
16676<<<---Hello World--->>>
16677(@value{GDBP})
104c1213 16678
474c8240 16679@end smallexample
104c1213 16680
8e04817f
AC
16681You can define a hook for any single-word command in @value{GDBN}, but
16682not for command aliases; you should define a hook for the basic command
c1468174 16683name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16684@c FIXME! So how does Joe User discover whether a command is an alias
16685@c or not?
16686If an error occurs during the execution of your hook, execution of
16687@value{GDBN} commands stops and @value{GDBN} issues a prompt
16688(before the command that you actually typed had a chance to run).
104c1213 16689
8e04817f
AC
16690If you try to define a hook which does not match any known command, you
16691get a warning from the @code{define} command.
c906108c 16692
8e04817f 16693@node Command Files
79a6e687 16694@section Command Files
c906108c 16695
8e04817f 16696@cindex command files
fcc73fe3 16697@cindex scripting commands
6fc08d32
EZ
16698A command file for @value{GDBN} is a text file made of lines that are
16699@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16700also be included. An empty line in a command file does nothing; it
16701does not mean to repeat the last command, as it would from the
16702terminal.
c906108c 16703
6fc08d32
EZ
16704You can request the execution of a command file with the @code{source}
16705command:
c906108c 16706
8e04817f
AC
16707@table @code
16708@kindex source
ca91424e 16709@cindex execute commands from a file
16026cd7 16710@item source [@code{-v}] @var{filename}
8e04817f 16711Execute the command file @var{filename}.
c906108c
SS
16712@end table
16713
fcc73fe3
EZ
16714The lines in a command file are generally executed sequentially,
16715unless the order of execution is changed by one of the
16716@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16717printed as they are executed. An error in any command terminates
16718execution of the command file and control is returned to the console.
c906108c 16719
4b505b12
AS
16720@value{GDBN} searches for @var{filename} in the current directory and then
16721on the search path (specified with the @samp{directory} command).
16722
16026cd7
AS
16723If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16724each command as it is executed. The option must be given before
16725@var{filename}, and is interpreted as part of the filename anywhere else.
16726
8e04817f
AC
16727Commands that would ask for confirmation if used interactively proceed
16728without asking when used in a command file. Many @value{GDBN} commands that
16729normally print messages to say what they are doing omit the messages
16730when called from command files.
c906108c 16731
8e04817f
AC
16732@value{GDBN} also accepts command input from standard input. In this
16733mode, normal output goes to standard output and error output goes to
16734standard error. Errors in a command file supplied on standard input do
6fc08d32 16735not terminate execution of the command file---execution continues with
8e04817f 16736the next command.
c906108c 16737
474c8240 16738@smallexample
8e04817f 16739gdb < cmds > log 2>&1
474c8240 16740@end smallexample
c906108c 16741
8e04817f
AC
16742(The syntax above will vary depending on the shell used.) This example
16743will execute commands from the file @file{cmds}. All output and errors
16744would be directed to @file{log}.
c906108c 16745
fcc73fe3
EZ
16746Since commands stored on command files tend to be more general than
16747commands typed interactively, they frequently need to deal with
16748complicated situations, such as different or unexpected values of
16749variables and symbols, changes in how the program being debugged is
16750built, etc. @value{GDBN} provides a set of flow-control commands to
16751deal with these complexities. Using these commands, you can write
16752complex scripts that loop over data structures, execute commands
16753conditionally, etc.
16754
16755@table @code
16756@kindex if
16757@kindex else
16758@item if
16759@itemx else
16760This command allows to include in your script conditionally executed
16761commands. The @code{if} command takes a single argument, which is an
16762expression to evaluate. It is followed by a series of commands that
16763are executed only if the expression is true (its value is nonzero).
16764There can then optionally be an @code{else} line, followed by a series
16765of commands that are only executed if the expression was false. The
16766end of the list is marked by a line containing @code{end}.
16767
16768@kindex while
16769@item while
16770This command allows to write loops. Its syntax is similar to
16771@code{if}: the command takes a single argument, which is an expression
16772to evaluate, and must be followed by the commands to execute, one per
16773line, terminated by an @code{end}. These commands are called the
16774@dfn{body} of the loop. The commands in the body of @code{while} are
16775executed repeatedly as long as the expression evaluates to true.
16776
16777@kindex loop_break
16778@item loop_break
16779This command exits the @code{while} loop in whose body it is included.
16780Execution of the script continues after that @code{while}s @code{end}
16781line.
16782
16783@kindex loop_continue
16784@item loop_continue
16785This command skips the execution of the rest of the body of commands
16786in the @code{while} loop in whose body it is included. Execution
16787branches to the beginning of the @code{while} loop, where it evaluates
16788the controlling expression.
ca91424e
EZ
16789
16790@kindex end@r{ (if/else/while commands)}
16791@item end
16792Terminate the block of commands that are the body of @code{if},
16793@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16794@end table
16795
16796
8e04817f 16797@node Output
79a6e687 16798@section Commands for Controlled Output
c906108c 16799
8e04817f
AC
16800During the execution of a command file or a user-defined command, normal
16801@value{GDBN} output is suppressed; the only output that appears is what is
16802explicitly printed by the commands in the definition. This section
16803describes three commands useful for generating exactly the output you
16804want.
c906108c
SS
16805
16806@table @code
8e04817f
AC
16807@kindex echo
16808@item echo @var{text}
16809@c I do not consider backslash-space a standard C escape sequence
16810@c because it is not in ANSI.
16811Print @var{text}. Nonprinting characters can be included in
16812@var{text} using C escape sequences, such as @samp{\n} to print a
16813newline. @strong{No newline is printed unless you specify one.}
16814In addition to the standard C escape sequences, a backslash followed
16815by a space stands for a space. This is useful for displaying a
16816string with spaces at the beginning or the end, since leading and
16817trailing spaces are otherwise trimmed from all arguments.
16818To print @samp{@w{ }and foo =@w{ }}, use the command
16819@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16820
8e04817f
AC
16821A backslash at the end of @var{text} can be used, as in C, to continue
16822the command onto subsequent lines. For example,
c906108c 16823
474c8240 16824@smallexample
8e04817f
AC
16825echo This is some text\n\
16826which is continued\n\
16827onto several lines.\n
474c8240 16828@end smallexample
c906108c 16829
8e04817f 16830produces the same output as
c906108c 16831
474c8240 16832@smallexample
8e04817f
AC
16833echo This is some text\n
16834echo which is continued\n
16835echo onto several lines.\n
474c8240 16836@end smallexample
c906108c 16837
8e04817f
AC
16838@kindex output
16839@item output @var{expression}
16840Print the value of @var{expression} and nothing but that value: no
16841newlines, no @samp{$@var{nn} = }. The value is not entered in the
16842value history either. @xref{Expressions, ,Expressions}, for more information
16843on expressions.
c906108c 16844
8e04817f
AC
16845@item output/@var{fmt} @var{expression}
16846Print the value of @var{expression} in format @var{fmt}. You can use
16847the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16848Formats}, for more information.
c906108c 16849
8e04817f 16850@kindex printf
82160952
EZ
16851@item printf @var{template}, @var{expressions}@dots{}
16852Print the values of one or more @var{expressions} under the control of
16853the string @var{template}. To print several values, make
16854@var{expressions} be a comma-separated list of individual expressions,
16855which may be either numbers or pointers. Their values are printed as
16856specified by @var{template}, exactly as a C program would do by
16857executing the code below:
c906108c 16858
474c8240 16859@smallexample
82160952 16860printf (@var{template}, @var{expressions}@dots{});
474c8240 16861@end smallexample
c906108c 16862
82160952
EZ
16863As in @code{C} @code{printf}, ordinary characters in @var{template}
16864are printed verbatim, while @dfn{conversion specification} introduced
16865by the @samp{%} character cause subsequent @var{expressions} to be
16866evaluated, their values converted and formatted according to type and
16867style information encoded in the conversion specifications, and then
16868printed.
16869
8e04817f 16870For example, you can print two values in hex like this:
c906108c 16871
8e04817f
AC
16872@smallexample
16873printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16874@end smallexample
c906108c 16875
82160952
EZ
16876@code{printf} supports all the standard @code{C} conversion
16877specifications, including the flags and modifiers between the @samp{%}
16878character and the conversion letter, with the following exceptions:
16879
16880@itemize @bullet
16881@item
16882The argument-ordering modifiers, such as @samp{2$}, are not supported.
16883
16884@item
16885The modifier @samp{*} is not supported for specifying precision or
16886width.
16887
16888@item
16889The @samp{'} flag (for separation of digits into groups according to
16890@code{LC_NUMERIC'}) is not supported.
16891
16892@item
16893The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16894supported.
16895
16896@item
16897The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16898
16899@item
16900The conversion letters @samp{a} and @samp{A} are not supported.
16901@end itemize
16902
16903@noindent
16904Note that the @samp{ll} type modifier is supported only if the
16905underlying @code{C} implementation used to build @value{GDBN} supports
16906the @code{long long int} type, and the @samp{L} type modifier is
16907supported only if @code{long double} type is available.
16908
16909As in @code{C}, @code{printf} supports simple backslash-escape
16910sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16911@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16912single character. Octal and hexadecimal escape sequences are not
16913supported.
1a619819
LM
16914
16915Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16916(@dfn{Decimal Floating Point}) types using the following length modifiers
16917together with a floating point specifier.
1a619819
LM
16918letters:
16919
16920@itemize @bullet
16921@item
16922@samp{H} for printing @code{Decimal32} types.
16923
16924@item
16925@samp{D} for printing @code{Decimal64} types.
16926
16927@item
16928@samp{DD} for printing @code{Decimal128} types.
16929@end itemize
16930
16931If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16932support for the three length modifiers for DFP types, other modifiers
3b784c4f 16933such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16934
16935In case there is no such @code{C} support, no additional modifiers will be
16936available and the value will be printed in the standard way.
16937
16938Here's an example of printing DFP types using the above conversion letters:
16939@smallexample
0aea4bf3 16940printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16941@end smallexample
16942
c906108c
SS
16943@end table
16944
21c294e6
AC
16945@node Interpreters
16946@chapter Command Interpreters
16947@cindex command interpreters
16948
16949@value{GDBN} supports multiple command interpreters, and some command
16950infrastructure to allow users or user interface writers to switch
16951between interpreters or run commands in other interpreters.
16952
16953@value{GDBN} currently supports two command interpreters, the console
16954interpreter (sometimes called the command-line interpreter or @sc{cli})
16955and the machine interface interpreter (or @sc{gdb/mi}). This manual
16956describes both of these interfaces in great detail.
16957
16958By default, @value{GDBN} will start with the console interpreter.
16959However, the user may choose to start @value{GDBN} with another
16960interpreter by specifying the @option{-i} or @option{--interpreter}
16961startup options. Defined interpreters include:
16962
16963@table @code
16964@item console
16965@cindex console interpreter
16966The traditional console or command-line interpreter. This is the most often
16967used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16968@value{GDBN} will use this interpreter.
16969
16970@item mi
16971@cindex mi interpreter
16972The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16973by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16974or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16975Interface}.
16976
16977@item mi2
16978@cindex mi2 interpreter
16979The current @sc{gdb/mi} interface.
16980
16981@item mi1
16982@cindex mi1 interpreter
16983The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16984
16985@end table
16986
16987@cindex invoke another interpreter
16988The interpreter being used by @value{GDBN} may not be dynamically
16989switched at runtime. Although possible, this could lead to a very
16990precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16991enters the command "interpreter-set console" in a console view,
16992@value{GDBN} would switch to using the console interpreter, rendering
16993the IDE inoperable!
16994
16995@kindex interpreter-exec
16996Although you may only choose a single interpreter at startup, you may execute
16997commands in any interpreter from the current interpreter using the appropriate
16998command. If you are running the console interpreter, simply use the
16999@code{interpreter-exec} command:
17000
17001@smallexample
17002interpreter-exec mi "-data-list-register-names"
17003@end smallexample
17004
17005@sc{gdb/mi} has a similar command, although it is only available in versions of
17006@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17007
8e04817f
AC
17008@node TUI
17009@chapter @value{GDBN} Text User Interface
17010@cindex TUI
d0d5df6f 17011@cindex Text User Interface
c906108c 17012
8e04817f
AC
17013@menu
17014* TUI Overview:: TUI overview
17015* TUI Keys:: TUI key bindings
7cf36c78 17016* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17017* TUI Commands:: TUI-specific commands
8e04817f
AC
17018* TUI Configuration:: TUI configuration variables
17019@end menu
c906108c 17020
46ba6afa 17021The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17022interface which uses the @code{curses} library to show the source
17023file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17024commands in separate text windows. The TUI mode is supported only
17025on platforms where a suitable version of the @code{curses} library
17026is available.
d0d5df6f 17027
46ba6afa
BW
17028@pindex @value{GDBTUI}
17029The TUI mode is enabled by default when you invoke @value{GDBN} as
17030either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17031You can also switch in and out of TUI mode while @value{GDBN} runs by
17032using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17033@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17034
8e04817f 17035@node TUI Overview
79a6e687 17036@section TUI Overview
c906108c 17037
46ba6afa 17038In TUI mode, @value{GDBN} can display several text windows:
c906108c 17039
8e04817f
AC
17040@table @emph
17041@item command
17042This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17043prompt and the @value{GDBN} output. The @value{GDBN} input is still
17044managed using readline.
c906108c 17045
8e04817f
AC
17046@item source
17047The source window shows the source file of the program. The current
46ba6afa 17048line and active breakpoints are displayed in this window.
c906108c 17049
8e04817f
AC
17050@item assembly
17051The assembly window shows the disassembly output of the program.
c906108c 17052
8e04817f 17053@item register
46ba6afa
BW
17054This window shows the processor registers. Registers are highlighted
17055when their values change.
c906108c
SS
17056@end table
17057
269c21fe 17058The source and assembly windows show the current program position
46ba6afa
BW
17059by highlighting the current line and marking it with a @samp{>} marker.
17060Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17061indicates the breakpoint type:
17062
17063@table @code
17064@item B
17065Breakpoint which was hit at least once.
17066
17067@item b
17068Breakpoint which was never hit.
17069
17070@item H
17071Hardware breakpoint which was hit at least once.
17072
17073@item h
17074Hardware breakpoint which was never hit.
269c21fe
SC
17075@end table
17076
17077The second marker indicates whether the breakpoint is enabled or not:
17078
17079@table @code
17080@item +
17081Breakpoint is enabled.
17082
17083@item -
17084Breakpoint is disabled.
269c21fe
SC
17085@end table
17086
46ba6afa
BW
17087The source, assembly and register windows are updated when the current
17088thread changes, when the frame changes, or when the program counter
17089changes.
17090
17091These windows are not all visible at the same time. The command
17092window is always visible. The others can be arranged in several
17093layouts:
c906108c 17094
8e04817f
AC
17095@itemize @bullet
17096@item
46ba6afa 17097source only,
2df3850c 17098
8e04817f 17099@item
46ba6afa 17100assembly only,
8e04817f
AC
17101
17102@item
46ba6afa 17103source and assembly,
8e04817f
AC
17104
17105@item
46ba6afa 17106source and registers, or
c906108c 17107
8e04817f 17108@item
46ba6afa 17109assembly and registers.
8e04817f 17110@end itemize
c906108c 17111
46ba6afa 17112A status line above the command window shows the following information:
b7bb15bc
SC
17113
17114@table @emph
17115@item target
46ba6afa 17116Indicates the current @value{GDBN} target.
b7bb15bc
SC
17117(@pxref{Targets, ,Specifying a Debugging Target}).
17118
17119@item process
46ba6afa 17120Gives the current process or thread number.
b7bb15bc
SC
17121When no process is being debugged, this field is set to @code{No process}.
17122
17123@item function
17124Gives the current function name for the selected frame.
17125The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17126When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17127the string @code{??} is displayed.
17128
17129@item line
17130Indicates the current line number for the selected frame.
46ba6afa 17131When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17132
17133@item pc
17134Indicates the current program counter address.
b7bb15bc
SC
17135@end table
17136
8e04817f
AC
17137@node TUI Keys
17138@section TUI Key Bindings
17139@cindex TUI key bindings
c906108c 17140
8e04817f 17141The TUI installs several key bindings in the readline keymaps
46ba6afa 17142(@pxref{Command Line Editing}). The following key bindings
8e04817f 17143are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17144
8e04817f
AC
17145@table @kbd
17146@kindex C-x C-a
17147@item C-x C-a
17148@kindex C-x a
17149@itemx C-x a
17150@kindex C-x A
17151@itemx C-x A
46ba6afa
BW
17152Enter or leave the TUI mode. When leaving the TUI mode,
17153the curses window management stops and @value{GDBN} operates using
17154its standard mode, writing on the terminal directly. When reentering
17155the TUI mode, control is given back to the curses windows.
8e04817f 17156The screen is then refreshed.
c906108c 17157
8e04817f
AC
17158@kindex C-x 1
17159@item C-x 1
17160Use a TUI layout with only one window. The layout will
17161either be @samp{source} or @samp{assembly}. When the TUI mode
17162is not active, it will switch to the TUI mode.
2df3850c 17163
8e04817f 17164Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17165
8e04817f
AC
17166@kindex C-x 2
17167@item C-x 2
17168Use a TUI layout with at least two windows. When the current
46ba6afa 17169layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17170When a new layout is chosen, one window will always be common to the
17171previous layout and the new one.
c906108c 17172
8e04817f 17173Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17174
72ffddc9
SC
17175@kindex C-x o
17176@item C-x o
17177Change the active window. The TUI associates several key bindings
46ba6afa 17178(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17179gives the focus to the next TUI window.
17180
17181Think of it as the Emacs @kbd{C-x o} binding.
17182
7cf36c78
SC
17183@kindex C-x s
17184@item C-x s
46ba6afa
BW
17185Switch in and out of the TUI SingleKey mode that binds single
17186keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17187@end table
17188
46ba6afa 17189The following key bindings only work in the TUI mode:
5d161b24 17190
46ba6afa 17191@table @asis
8e04817f 17192@kindex PgUp
46ba6afa 17193@item @key{PgUp}
8e04817f 17194Scroll the active window one page up.
c906108c 17195
8e04817f 17196@kindex PgDn
46ba6afa 17197@item @key{PgDn}
8e04817f 17198Scroll the active window one page down.
c906108c 17199
8e04817f 17200@kindex Up
46ba6afa 17201@item @key{Up}
8e04817f 17202Scroll the active window one line up.
c906108c 17203
8e04817f 17204@kindex Down
46ba6afa 17205@item @key{Down}
8e04817f 17206Scroll the active window one line down.
c906108c 17207
8e04817f 17208@kindex Left
46ba6afa 17209@item @key{Left}
8e04817f 17210Scroll the active window one column left.
c906108c 17211
8e04817f 17212@kindex Right
46ba6afa 17213@item @key{Right}
8e04817f 17214Scroll the active window one column right.
c906108c 17215
8e04817f 17216@kindex C-L
46ba6afa 17217@item @kbd{C-L}
8e04817f 17218Refresh the screen.
8e04817f 17219@end table
c906108c 17220
46ba6afa
BW
17221Because the arrow keys scroll the active window in the TUI mode, they
17222are not available for their normal use by readline unless the command
17223window has the focus. When another window is active, you must use
17224other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17225and @kbd{C-f} to control the command window.
8e04817f 17226
7cf36c78
SC
17227@node TUI Single Key Mode
17228@section TUI Single Key Mode
17229@cindex TUI single key mode
17230
46ba6afa
BW
17231The TUI also provides a @dfn{SingleKey} mode, which binds several
17232frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17233switch into this mode, where the following key bindings are used:
7cf36c78
SC
17234
17235@table @kbd
17236@kindex c @r{(SingleKey TUI key)}
17237@item c
17238continue
17239
17240@kindex d @r{(SingleKey TUI key)}
17241@item d
17242down
17243
17244@kindex f @r{(SingleKey TUI key)}
17245@item f
17246finish
17247
17248@kindex n @r{(SingleKey TUI key)}
17249@item n
17250next
17251
17252@kindex q @r{(SingleKey TUI key)}
17253@item q
46ba6afa 17254exit the SingleKey mode.
7cf36c78
SC
17255
17256@kindex r @r{(SingleKey TUI key)}
17257@item r
17258run
17259
17260@kindex s @r{(SingleKey TUI key)}
17261@item s
17262step
17263
17264@kindex u @r{(SingleKey TUI key)}
17265@item u
17266up
17267
17268@kindex v @r{(SingleKey TUI key)}
17269@item v
17270info locals
17271
17272@kindex w @r{(SingleKey TUI key)}
17273@item w
17274where
7cf36c78
SC
17275@end table
17276
17277Other keys temporarily switch to the @value{GDBN} command prompt.
17278The key that was pressed is inserted in the editing buffer so that
17279it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17280with the TUI SingleKey mode. Once the command is entered the TUI
17281SingleKey mode is restored. The only way to permanently leave
7f9087cb 17282this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17283
17284
8e04817f 17285@node TUI Commands
db2e3e2e 17286@section TUI-specific Commands
8e04817f
AC
17287@cindex TUI commands
17288
17289The TUI has specific commands to control the text windows.
46ba6afa
BW
17290These commands are always available, even when @value{GDBN} is not in
17291the TUI mode. When @value{GDBN} is in the standard mode, most
17292of these commands will automatically switch to the TUI mode.
c906108c
SS
17293
17294@table @code
3d757584
SC
17295@item info win
17296@kindex info win
17297List and give the size of all displayed windows.
17298
8e04817f 17299@item layout next
4644b6e3 17300@kindex layout
8e04817f 17301Display the next layout.
2df3850c 17302
8e04817f 17303@item layout prev
8e04817f 17304Display the previous layout.
c906108c 17305
8e04817f 17306@item layout src
8e04817f 17307Display the source window only.
c906108c 17308
8e04817f 17309@item layout asm
8e04817f 17310Display the assembly window only.
c906108c 17311
8e04817f 17312@item layout split
8e04817f 17313Display the source and assembly window.
c906108c 17314
8e04817f 17315@item layout regs
8e04817f
AC
17316Display the register window together with the source or assembly window.
17317
46ba6afa 17318@item focus next
8e04817f 17319@kindex focus
46ba6afa
BW
17320Make the next window active for scrolling.
17321
17322@item focus prev
17323Make the previous window active for scrolling.
17324
17325@item focus src
17326Make the source window active for scrolling.
17327
17328@item focus asm
17329Make the assembly window active for scrolling.
17330
17331@item focus regs
17332Make the register window active for scrolling.
17333
17334@item focus cmd
17335Make the command window active for scrolling.
c906108c 17336
8e04817f
AC
17337@item refresh
17338@kindex refresh
7f9087cb 17339Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17340
6a1b180d
SC
17341@item tui reg float
17342@kindex tui reg
17343Show the floating point registers in the register window.
17344
17345@item tui reg general
17346Show the general registers in the register window.
17347
17348@item tui reg next
17349Show the next register group. The list of register groups as well as
17350their order is target specific. The predefined register groups are the
17351following: @code{general}, @code{float}, @code{system}, @code{vector},
17352@code{all}, @code{save}, @code{restore}.
17353
17354@item tui reg system
17355Show the system registers in the register window.
17356
8e04817f
AC
17357@item update
17358@kindex update
17359Update the source window and the current execution point.
c906108c 17360
8e04817f
AC
17361@item winheight @var{name} +@var{count}
17362@itemx winheight @var{name} -@var{count}
17363@kindex winheight
17364Change the height of the window @var{name} by @var{count}
17365lines. Positive counts increase the height, while negative counts
17366decrease it.
2df3850c 17367
46ba6afa
BW
17368@item tabset @var{nchars}
17369@kindex tabset
c45da7e6 17370Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17371@end table
17372
8e04817f 17373@node TUI Configuration
79a6e687 17374@section TUI Configuration Variables
8e04817f 17375@cindex TUI configuration variables
c906108c 17376
46ba6afa 17377Several configuration variables control the appearance of TUI windows.
c906108c 17378
8e04817f
AC
17379@table @code
17380@item set tui border-kind @var{kind}
17381@kindex set tui border-kind
17382Select the border appearance for the source, assembly and register windows.
17383The possible values are the following:
17384@table @code
17385@item space
17386Use a space character to draw the border.
c906108c 17387
8e04817f 17388@item ascii
46ba6afa 17389Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17390
8e04817f
AC
17391@item acs
17392Use the Alternate Character Set to draw the border. The border is
17393drawn using character line graphics if the terminal supports them.
8e04817f 17394@end table
c78b4128 17395
8e04817f
AC
17396@item set tui border-mode @var{mode}
17397@kindex set tui border-mode
46ba6afa
BW
17398@itemx set tui active-border-mode @var{mode}
17399@kindex set tui active-border-mode
17400Select the display attributes for the borders of the inactive windows
17401or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17402@table @code
17403@item normal
17404Use normal attributes to display the border.
c906108c 17405
8e04817f
AC
17406@item standout
17407Use standout mode.
c906108c 17408
8e04817f
AC
17409@item reverse
17410Use reverse video mode.
c906108c 17411
8e04817f
AC
17412@item half
17413Use half bright mode.
c906108c 17414
8e04817f
AC
17415@item half-standout
17416Use half bright and standout mode.
c906108c 17417
8e04817f
AC
17418@item bold
17419Use extra bright or bold mode.
c78b4128 17420
8e04817f
AC
17421@item bold-standout
17422Use extra bright or bold and standout mode.
8e04817f 17423@end table
8e04817f 17424@end table
c78b4128 17425
8e04817f
AC
17426@node Emacs
17427@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17428
8e04817f
AC
17429@cindex Emacs
17430@cindex @sc{gnu} Emacs
17431A special interface allows you to use @sc{gnu} Emacs to view (and
17432edit) the source files for the program you are debugging with
17433@value{GDBN}.
c906108c 17434
8e04817f
AC
17435To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17436executable file you want to debug as an argument. This command starts
17437@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17438created Emacs buffer.
17439@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17440
5e252a2e 17441Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17442things:
c906108c 17443
8e04817f
AC
17444@itemize @bullet
17445@item
5e252a2e
NR
17446All ``terminal'' input and output goes through an Emacs buffer, called
17447the GUD buffer.
c906108c 17448
8e04817f
AC
17449This applies both to @value{GDBN} commands and their output, and to the input
17450and output done by the program you are debugging.
bf0184be 17451
8e04817f
AC
17452This is useful because it means that you can copy the text of previous
17453commands and input them again; you can even use parts of the output
17454in this way.
bf0184be 17455
8e04817f
AC
17456All the facilities of Emacs' Shell mode are available for interacting
17457with your program. In particular, you can send signals the usual
17458way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17459stop.
bf0184be
ND
17460
17461@item
8e04817f 17462@value{GDBN} displays source code through Emacs.
bf0184be 17463
8e04817f
AC
17464Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17465source file for that frame and puts an arrow (@samp{=>}) at the
17466left margin of the current line. Emacs uses a separate buffer for
17467source display, and splits the screen to show both your @value{GDBN} session
17468and the source.
bf0184be 17469
8e04817f
AC
17470Explicit @value{GDBN} @code{list} or search commands still produce output as
17471usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17472@end itemize
17473
17474We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17475a graphical mode, enabled by default, which provides further buffers
17476that can control the execution and describe the state of your program.
17477@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17478
64fabec2
AC
17479If you specify an absolute file name when prompted for the @kbd{M-x
17480gdb} argument, then Emacs sets your current working directory to where
17481your program resides. If you only specify the file name, then Emacs
17482sets your current working directory to to the directory associated
17483with the previous buffer. In this case, @value{GDBN} may find your
17484program by searching your environment's @code{PATH} variable, but on
17485some operating systems it might not find the source. So, although the
17486@value{GDBN} input and output session proceeds normally, the auxiliary
17487buffer does not display the current source and line of execution.
17488
17489The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17490line of the GUD buffer and this serves as a default for the commands
17491that specify files for @value{GDBN} to operate on. @xref{Files,
17492,Commands to Specify Files}.
64fabec2
AC
17493
17494By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17495need to call @value{GDBN} by a different name (for example, if you
17496keep several configurations around, with different names) you can
17497customize the Emacs variable @code{gud-gdb-command-name} to run the
17498one you want.
8e04817f 17499
5e252a2e 17500In the GUD buffer, you can use these special Emacs commands in
8e04817f 17501addition to the standard Shell mode commands:
c906108c 17502
8e04817f
AC
17503@table @kbd
17504@item C-h m
5e252a2e 17505Describe the features of Emacs' GUD Mode.
c906108c 17506
64fabec2 17507@item C-c C-s
8e04817f
AC
17508Execute to another source line, like the @value{GDBN} @code{step} command; also
17509update the display window to show the current file and location.
c906108c 17510
64fabec2 17511@item C-c C-n
8e04817f
AC
17512Execute to next source line in this function, skipping all function
17513calls, like the @value{GDBN} @code{next} command. Then update the display window
17514to show the current file and location.
c906108c 17515
64fabec2 17516@item C-c C-i
8e04817f
AC
17517Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17518display window accordingly.
c906108c 17519
8e04817f
AC
17520@item C-c C-f
17521Execute until exit from the selected stack frame, like the @value{GDBN}
17522@code{finish} command.
c906108c 17523
64fabec2 17524@item C-c C-r
8e04817f
AC
17525Continue execution of your program, like the @value{GDBN} @code{continue}
17526command.
b433d00b 17527
64fabec2 17528@item C-c <
8e04817f
AC
17529Go up the number of frames indicated by the numeric argument
17530(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17531like the @value{GDBN} @code{up} command.
b433d00b 17532
64fabec2 17533@item C-c >
8e04817f
AC
17534Go down the number of frames indicated by the numeric argument, like the
17535@value{GDBN} @code{down} command.
8e04817f 17536@end table
c906108c 17537
7f9087cb 17538In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17539tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17540
5e252a2e
NR
17541In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17542separate frame which shows a backtrace when the GUD buffer is current.
17543Move point to any frame in the stack and type @key{RET} to make it
17544become the current frame and display the associated source in the
17545source buffer. Alternatively, click @kbd{Mouse-2} to make the
17546selected frame become the current one. In graphical mode, the
17547speedbar displays watch expressions.
64fabec2 17548
8e04817f
AC
17549If you accidentally delete the source-display buffer, an easy way to get
17550it back is to type the command @code{f} in the @value{GDBN} buffer, to
17551request a frame display; when you run under Emacs, this recreates
17552the source buffer if necessary to show you the context of the current
17553frame.
c906108c 17554
8e04817f
AC
17555The source files displayed in Emacs are in ordinary Emacs buffers
17556which are visiting the source files in the usual way. You can edit
17557the files with these buffers if you wish; but keep in mind that @value{GDBN}
17558communicates with Emacs in terms of line numbers. If you add or
17559delete lines from the text, the line numbers that @value{GDBN} knows cease
17560to correspond properly with the code.
b383017d 17561
5e252a2e
NR
17562A more detailed description of Emacs' interaction with @value{GDBN} is
17563given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17564Emacs Manual}).
c906108c 17565
8e04817f
AC
17566@c The following dropped because Epoch is nonstandard. Reactivate
17567@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17568@ignore
17569@kindex Emacs Epoch environment
17570@kindex Epoch
17571@kindex inspect
c906108c 17572
8e04817f
AC
17573Version 18 of @sc{gnu} Emacs has a built-in window system
17574called the @code{epoch}
17575environment. Users of this environment can use a new command,
17576@code{inspect} which performs identically to @code{print} except that
17577each value is printed in its own window.
17578@end ignore
c906108c 17579
922fbb7b
AC
17580
17581@node GDB/MI
17582@chapter The @sc{gdb/mi} Interface
17583
17584@unnumberedsec Function and Purpose
17585
17586@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17587@sc{gdb/mi} is a line based machine oriented text interface to
17588@value{GDBN} and is activated by specifying using the
17589@option{--interpreter} command line option (@pxref{Mode Options}). It
17590is specifically intended to support the development of systems which
17591use the debugger as just one small component of a larger system.
922fbb7b
AC
17592
17593This chapter is a specification of the @sc{gdb/mi} interface. It is written
17594in the form of a reference manual.
17595
17596Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17597features described below are incomplete and subject to change
17598(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17599
17600@unnumberedsec Notation and Terminology
17601
17602@cindex notational conventions, for @sc{gdb/mi}
17603This chapter uses the following notation:
17604
17605@itemize @bullet
17606@item
17607@code{|} separates two alternatives.
17608
17609@item
17610@code{[ @var{something} ]} indicates that @var{something} is optional:
17611it may or may not be given.
17612
17613@item
17614@code{( @var{group} )*} means that @var{group} inside the parentheses
17615may repeat zero or more times.
17616
17617@item
17618@code{( @var{group} )+} means that @var{group} inside the parentheses
17619may repeat one or more times.
17620
17621@item
17622@code{"@var{string}"} means a literal @var{string}.
17623@end itemize
17624
17625@ignore
17626@heading Dependencies
17627@end ignore
17628
922fbb7b
AC
17629@menu
17630* GDB/MI Command Syntax::
17631* GDB/MI Compatibility with CLI::
af6eff6f 17632* GDB/MI Development and Front Ends::
922fbb7b 17633* GDB/MI Output Records::
ef21caaf 17634* GDB/MI Simple Examples::
922fbb7b 17635* GDB/MI Command Description Format::
ef21caaf 17636* GDB/MI Breakpoint Commands::
a2c02241
NR
17637* GDB/MI Program Context::
17638* GDB/MI Thread Commands::
17639* GDB/MI Program Execution::
17640* GDB/MI Stack Manipulation::
17641* GDB/MI Variable Objects::
922fbb7b 17642* GDB/MI Data Manipulation::
a2c02241
NR
17643* GDB/MI Tracepoint Commands::
17644* GDB/MI Symbol Query::
351ff01a 17645* GDB/MI File Commands::
922fbb7b
AC
17646@ignore
17647* GDB/MI Kod Commands::
17648* GDB/MI Memory Overlay Commands::
17649* GDB/MI Signal Handling Commands::
17650@end ignore
922fbb7b 17651* GDB/MI Target Manipulation::
a6b151f1 17652* GDB/MI File Transfer Commands::
ef21caaf 17653* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17654@end menu
17655
17656@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17657@node GDB/MI Command Syntax
17658@section @sc{gdb/mi} Command Syntax
17659
17660@menu
17661* GDB/MI Input Syntax::
17662* GDB/MI Output Syntax::
922fbb7b
AC
17663@end menu
17664
17665@node GDB/MI Input Syntax
17666@subsection @sc{gdb/mi} Input Syntax
17667
17668@cindex input syntax for @sc{gdb/mi}
17669@cindex @sc{gdb/mi}, input syntax
17670@table @code
17671@item @var{command} @expansion{}
17672@code{@var{cli-command} | @var{mi-command}}
17673
17674@item @var{cli-command} @expansion{}
17675@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17676@var{cli-command} is any existing @value{GDBN} CLI command.
17677
17678@item @var{mi-command} @expansion{}
17679@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17680@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17681
17682@item @var{token} @expansion{}
17683"any sequence of digits"
17684
17685@item @var{option} @expansion{}
17686@code{"-" @var{parameter} [ " " @var{parameter} ]}
17687
17688@item @var{parameter} @expansion{}
17689@code{@var{non-blank-sequence} | @var{c-string}}
17690
17691@item @var{operation} @expansion{}
17692@emph{any of the operations described in this chapter}
17693
17694@item @var{non-blank-sequence} @expansion{}
17695@emph{anything, provided it doesn't contain special characters such as
17696"-", @var{nl}, """ and of course " "}
17697
17698@item @var{c-string} @expansion{}
17699@code{""" @var{seven-bit-iso-c-string-content} """}
17700
17701@item @var{nl} @expansion{}
17702@code{CR | CR-LF}
17703@end table
17704
17705@noindent
17706Notes:
17707
17708@itemize @bullet
17709@item
17710The CLI commands are still handled by the @sc{mi} interpreter; their
17711output is described below.
17712
17713@item
17714The @code{@var{token}}, when present, is passed back when the command
17715finishes.
17716
17717@item
17718Some @sc{mi} commands accept optional arguments as part of the parameter
17719list. Each option is identified by a leading @samp{-} (dash) and may be
17720followed by an optional argument parameter. Options occur first in the
17721parameter list and can be delimited from normal parameters using
17722@samp{--} (this is useful when some parameters begin with a dash).
17723@end itemize
17724
17725Pragmatics:
17726
17727@itemize @bullet
17728@item
17729We want easy access to the existing CLI syntax (for debugging).
17730
17731@item
17732We want it to be easy to spot a @sc{mi} operation.
17733@end itemize
17734
17735@node GDB/MI Output Syntax
17736@subsection @sc{gdb/mi} Output Syntax
17737
17738@cindex output syntax of @sc{gdb/mi}
17739@cindex @sc{gdb/mi}, output syntax
17740The output from @sc{gdb/mi} consists of zero or more out-of-band records
17741followed, optionally, by a single result record. This result record
17742is for the most recent command. The sequence of output records is
594fe323 17743terminated by @samp{(gdb)}.
922fbb7b
AC
17744
17745If an input command was prefixed with a @code{@var{token}} then the
17746corresponding output for that command will also be prefixed by that same
17747@var{token}.
17748
17749@table @code
17750@item @var{output} @expansion{}
594fe323 17751@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17752
17753@item @var{result-record} @expansion{}
17754@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17755
17756@item @var{out-of-band-record} @expansion{}
17757@code{@var{async-record} | @var{stream-record}}
17758
17759@item @var{async-record} @expansion{}
17760@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17761
17762@item @var{exec-async-output} @expansion{}
17763@code{[ @var{token} ] "*" @var{async-output}}
17764
17765@item @var{status-async-output} @expansion{}
17766@code{[ @var{token} ] "+" @var{async-output}}
17767
17768@item @var{notify-async-output} @expansion{}
17769@code{[ @var{token} ] "=" @var{async-output}}
17770
17771@item @var{async-output} @expansion{}
17772@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17773
17774@item @var{result-class} @expansion{}
17775@code{"done" | "running" | "connected" | "error" | "exit"}
17776
17777@item @var{async-class} @expansion{}
17778@code{"stopped" | @var{others}} (where @var{others} will be added
17779depending on the needs---this is still in development).
17780
17781@item @var{result} @expansion{}
17782@code{ @var{variable} "=" @var{value}}
17783
17784@item @var{variable} @expansion{}
17785@code{ @var{string} }
17786
17787@item @var{value} @expansion{}
17788@code{ @var{const} | @var{tuple} | @var{list} }
17789
17790@item @var{const} @expansion{}
17791@code{@var{c-string}}
17792
17793@item @var{tuple} @expansion{}
17794@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17795
17796@item @var{list} @expansion{}
17797@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17798@var{result} ( "," @var{result} )* "]" }
17799
17800@item @var{stream-record} @expansion{}
17801@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17802
17803@item @var{console-stream-output} @expansion{}
17804@code{"~" @var{c-string}}
17805
17806@item @var{target-stream-output} @expansion{}
17807@code{"@@" @var{c-string}}
17808
17809@item @var{log-stream-output} @expansion{}
17810@code{"&" @var{c-string}}
17811
17812@item @var{nl} @expansion{}
17813@code{CR | CR-LF}
17814
17815@item @var{token} @expansion{}
17816@emph{any sequence of digits}.
17817@end table
17818
17819@noindent
17820Notes:
17821
17822@itemize @bullet
17823@item
17824All output sequences end in a single line containing a period.
17825
17826@item
17827The @code{@var{token}} is from the corresponding request. If an execution
17828command is interrupted by the @samp{-exec-interrupt} command, the
17829@var{token} associated with the @samp{*stopped} message is the one of the
17830original execution command, not the one of the interrupt command.
17831
17832@item
17833@cindex status output in @sc{gdb/mi}
17834@var{status-async-output} contains on-going status information about the
17835progress of a slow operation. It can be discarded. All status output is
17836prefixed by @samp{+}.
17837
17838@item
17839@cindex async output in @sc{gdb/mi}
17840@var{exec-async-output} contains asynchronous state change on the target
17841(stopped, started, disappeared). All async output is prefixed by
17842@samp{*}.
17843
17844@item
17845@cindex notify output in @sc{gdb/mi}
17846@var{notify-async-output} contains supplementary information that the
17847client should handle (e.g., a new breakpoint information). All notify
17848output is prefixed by @samp{=}.
17849
17850@item
17851@cindex console output in @sc{gdb/mi}
17852@var{console-stream-output} is output that should be displayed as is in the
17853console. It is the textual response to a CLI command. All the console
17854output is prefixed by @samp{~}.
17855
17856@item
17857@cindex target output in @sc{gdb/mi}
17858@var{target-stream-output} is the output produced by the target program.
17859All the target output is prefixed by @samp{@@}.
17860
17861@item
17862@cindex log output in @sc{gdb/mi}
17863@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17864instance messages that should be displayed as part of an error log. All
17865the log output is prefixed by @samp{&}.
17866
17867@item
17868@cindex list output in @sc{gdb/mi}
17869New @sc{gdb/mi} commands should only output @var{lists} containing
17870@var{values}.
17871
17872
17873@end itemize
17874
17875@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17876details about the various output records.
17877
922fbb7b
AC
17878@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17879@node GDB/MI Compatibility with CLI
17880@section @sc{gdb/mi} Compatibility with CLI
17881
17882@cindex compatibility, @sc{gdb/mi} and CLI
17883@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17884
a2c02241
NR
17885For the developers convenience CLI commands can be entered directly,
17886but there may be some unexpected behaviour. For example, commands
17887that query the user will behave as if the user replied yes, breakpoint
17888command lists are not executed and some CLI commands, such as
17889@code{if}, @code{when} and @code{define}, prompt for further input with
17890@samp{>}, which is not valid MI output.
ef21caaf
NR
17891
17892This feature may be removed at some stage in the future and it is
a2c02241
NR
17893recommended that front ends use the @code{-interpreter-exec} command
17894(@pxref{-interpreter-exec}).
922fbb7b 17895
af6eff6f
NR
17896@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17897@node GDB/MI Development and Front Ends
17898@section @sc{gdb/mi} Development and Front Ends
17899@cindex @sc{gdb/mi} development
17900
17901The application which takes the MI output and presents the state of the
17902program being debugged to the user is called a @dfn{front end}.
17903
17904Although @sc{gdb/mi} is still incomplete, it is currently being used
17905by a variety of front ends to @value{GDBN}. This makes it difficult
17906to introduce new functionality without breaking existing usage. This
17907section tries to minimize the problems by describing how the protocol
17908might change.
17909
17910Some changes in MI need not break a carefully designed front end, and
17911for these the MI version will remain unchanged. The following is a
17912list of changes that may occur within one level, so front ends should
17913parse MI output in a way that can handle them:
17914
17915@itemize @bullet
17916@item
17917New MI commands may be added.
17918
17919@item
17920New fields may be added to the output of any MI command.
17921
36ece8b3
NR
17922@item
17923The range of values for fields with specified values, e.g.,
9f708cb2 17924@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17925
af6eff6f
NR
17926@c The format of field's content e.g type prefix, may change so parse it
17927@c at your own risk. Yes, in general?
17928
17929@c The order of fields may change? Shouldn't really matter but it might
17930@c resolve inconsistencies.
17931@end itemize
17932
17933If the changes are likely to break front ends, the MI version level
17934will be increased by one. This will allow the front end to parse the
17935output according to the MI version. Apart from mi0, new versions of
17936@value{GDBN} will not support old versions of MI and it will be the
17937responsibility of the front end to work with the new one.
17938
17939@c Starting with mi3, add a new command -mi-version that prints the MI
17940@c version?
17941
17942The best way to avoid unexpected changes in MI that might break your front
17943end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17944follow development on @email{gdb@@sourceware.org} and
17945@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17946@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17947Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17948called Debugger Machine Interface (DMI) that will become a standard
17949for all debuggers, not just @value{GDBN}.
17950@cindex mailing lists
17951
922fbb7b
AC
17952@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17953@node GDB/MI Output Records
17954@section @sc{gdb/mi} Output Records
17955
17956@menu
17957* GDB/MI Result Records::
17958* GDB/MI Stream Records::
17959* GDB/MI Out-of-band Records::
17960@end menu
17961
17962@node GDB/MI Result Records
17963@subsection @sc{gdb/mi} Result Records
17964
17965@cindex result records in @sc{gdb/mi}
17966@cindex @sc{gdb/mi}, result records
17967In addition to a number of out-of-band notifications, the response to a
17968@sc{gdb/mi} command includes one of the following result indications:
17969
17970@table @code
17971@findex ^done
17972@item "^done" [ "," @var{results} ]
17973The synchronous operation was successful, @code{@var{results}} are the return
17974values.
17975
17976@item "^running"
17977@findex ^running
17978@c Is this one correct? Should it be an out-of-band notification?
17979The asynchronous operation was successfully started. The target is
17980running.
17981
ef21caaf
NR
17982@item "^connected"
17983@findex ^connected
3f94c067 17984@value{GDBN} has connected to a remote target.
ef21caaf 17985
922fbb7b
AC
17986@item "^error" "," @var{c-string}
17987@findex ^error
17988The operation failed. The @code{@var{c-string}} contains the corresponding
17989error message.
ef21caaf
NR
17990
17991@item "^exit"
17992@findex ^exit
3f94c067 17993@value{GDBN} has terminated.
ef21caaf 17994
922fbb7b
AC
17995@end table
17996
17997@node GDB/MI Stream Records
17998@subsection @sc{gdb/mi} Stream Records
17999
18000@cindex @sc{gdb/mi}, stream records
18001@cindex stream records in @sc{gdb/mi}
18002@value{GDBN} internally maintains a number of output streams: the console, the
18003target, and the log. The output intended for each of these streams is
18004funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18005
18006Each stream record begins with a unique @dfn{prefix character} which
18007identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18008Syntax}). In addition to the prefix, each stream record contains a
18009@code{@var{string-output}}. This is either raw text (with an implicit new
18010line) or a quoted C string (which does not contain an implicit newline).
18011
18012@table @code
18013@item "~" @var{string-output}
18014The console output stream contains text that should be displayed in the
18015CLI console window. It contains the textual responses to CLI commands.
18016
18017@item "@@" @var{string-output}
18018The target output stream contains any textual output from the running
ef21caaf
NR
18019target. This is only present when GDB's event loop is truly
18020asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18021
18022@item "&" @var{string-output}
18023The log stream contains debugging messages being produced by @value{GDBN}'s
18024internals.
18025@end table
18026
18027@node GDB/MI Out-of-band Records
18028@subsection @sc{gdb/mi} Out-of-band Records
18029
18030@cindex out-of-band records in @sc{gdb/mi}
18031@cindex @sc{gdb/mi}, out-of-band records
18032@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18033additional changes that have occurred. Those changes can either be a
18034consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18035target activity (e.g., target stopped).
18036
18037The following is a preliminary list of possible out-of-band records.
034dad6f 18038In particular, the @var{exec-async-output} records.
922fbb7b
AC
18039
18040@table @code
034dad6f
BR
18041@item *stopped,reason="@var{reason}"
18042@end table
18043
18044@var{reason} can be one of the following:
18045
18046@table @code
18047@item breakpoint-hit
18048A breakpoint was reached.
18049@item watchpoint-trigger
18050A watchpoint was triggered.
18051@item read-watchpoint-trigger
18052A read watchpoint was triggered.
18053@item access-watchpoint-trigger
18054An access watchpoint was triggered.
18055@item function-finished
18056An -exec-finish or similar CLI command was accomplished.
18057@item location-reached
18058An -exec-until or similar CLI command was accomplished.
18059@item watchpoint-scope
18060A watchpoint has gone out of scope.
18061@item end-stepping-range
18062An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18063similar CLI command was accomplished.
18064@item exited-signalled
18065The inferior exited because of a signal.
18066@item exited
18067The inferior exited.
18068@item exited-normally
18069The inferior exited normally.
18070@item signal-received
18071A signal was received by the inferior.
922fbb7b
AC
18072@end table
18073
18074
ef21caaf
NR
18075@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18076@node GDB/MI Simple Examples
18077@section Simple Examples of @sc{gdb/mi} Interaction
18078@cindex @sc{gdb/mi}, simple examples
18079
18080This subsection presents several simple examples of interaction using
18081the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18082following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18083the output received from @sc{gdb/mi}.
18084
d3e8051b 18085Note the line breaks shown in the examples are here only for
ef21caaf
NR
18086readability, they don't appear in the real output.
18087
79a6e687 18088@subheading Setting a Breakpoint
ef21caaf
NR
18089
18090Setting a breakpoint generates synchronous output which contains detailed
18091information of the breakpoint.
18092
18093@smallexample
18094-> -break-insert main
18095<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18096 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18097 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18098<- (gdb)
18099@end smallexample
18100
18101@subheading Program Execution
18102
18103Program execution generates asynchronous records and MI gives the
18104reason that execution stopped.
18105
18106@smallexample
18107-> -exec-run
18108<- ^running
18109<- (gdb)
18110<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18111 frame=@{addr="0x08048564",func="main",
18112 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18113 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18114<- (gdb)
18115-> -exec-continue
18116<- ^running
18117<- (gdb)
18118<- *stopped,reason="exited-normally"
18119<- (gdb)
18120@end smallexample
18121
3f94c067 18122@subheading Quitting @value{GDBN}
ef21caaf 18123
3f94c067 18124Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18125
18126@smallexample
18127-> (gdb)
18128<- -gdb-exit
18129<- ^exit
18130@end smallexample
18131
a2c02241 18132@subheading A Bad Command
ef21caaf
NR
18133
18134Here's what happens if you pass a non-existent command:
18135
18136@smallexample
18137-> -rubbish
18138<- ^error,msg="Undefined MI command: rubbish"
594fe323 18139<- (gdb)
ef21caaf
NR
18140@end smallexample
18141
18142
922fbb7b
AC
18143@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18144@node GDB/MI Command Description Format
18145@section @sc{gdb/mi} Command Description Format
18146
18147The remaining sections describe blocks of commands. Each block of
18148commands is laid out in a fashion similar to this section.
18149
922fbb7b
AC
18150@subheading Motivation
18151
18152The motivation for this collection of commands.
18153
18154@subheading Introduction
18155
18156A brief introduction to this collection of commands as a whole.
18157
18158@subheading Commands
18159
18160For each command in the block, the following is described:
18161
18162@subsubheading Synopsis
18163
18164@smallexample
18165 -command @var{args}@dots{}
18166@end smallexample
18167
922fbb7b
AC
18168@subsubheading Result
18169
265eeb58 18170@subsubheading @value{GDBN} Command
922fbb7b 18171
265eeb58 18172The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18173
18174@subsubheading Example
18175
ef21caaf
NR
18176Example(s) formatted for readability. Some of the described commands have
18177not been implemented yet and these are labeled N.A.@: (not available).
18178
18179
922fbb7b 18180@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18181@node GDB/MI Breakpoint Commands
18182@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18183
18184@cindex breakpoint commands for @sc{gdb/mi}
18185@cindex @sc{gdb/mi}, breakpoint commands
18186This section documents @sc{gdb/mi} commands for manipulating
18187breakpoints.
18188
18189@subheading The @code{-break-after} Command
18190@findex -break-after
18191
18192@subsubheading Synopsis
18193
18194@smallexample
18195 -break-after @var{number} @var{count}
18196@end smallexample
18197
18198The breakpoint number @var{number} is not in effect until it has been
18199hit @var{count} times. To see how this is reflected in the output of
18200the @samp{-break-list} command, see the description of the
18201@samp{-break-list} command below.
18202
18203@subsubheading @value{GDBN} Command
18204
18205The corresponding @value{GDBN} command is @samp{ignore}.
18206
18207@subsubheading Example
18208
18209@smallexample
594fe323 18210(gdb)
922fbb7b 18211-break-insert main
948d5102
NR
18212^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18213fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18214(gdb)
922fbb7b
AC
18215-break-after 1 3
18216~
18217^done
594fe323 18218(gdb)
922fbb7b
AC
18219-break-list
18220^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18221hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18222@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18223@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18224@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18225@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18226@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18227body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18228addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18229line="5",times="0",ignore="3"@}]@}
594fe323 18230(gdb)
922fbb7b
AC
18231@end smallexample
18232
18233@ignore
18234@subheading The @code{-break-catch} Command
18235@findex -break-catch
18236
18237@subheading The @code{-break-commands} Command
18238@findex -break-commands
18239@end ignore
18240
18241
18242@subheading The @code{-break-condition} Command
18243@findex -break-condition
18244
18245@subsubheading Synopsis
18246
18247@smallexample
18248 -break-condition @var{number} @var{expr}
18249@end smallexample
18250
18251Breakpoint @var{number} will stop the program only if the condition in
18252@var{expr} is true. The condition becomes part of the
18253@samp{-break-list} output (see the description of the @samp{-break-list}
18254command below).
18255
18256@subsubheading @value{GDBN} Command
18257
18258The corresponding @value{GDBN} command is @samp{condition}.
18259
18260@subsubheading Example
18261
18262@smallexample
594fe323 18263(gdb)
922fbb7b
AC
18264-break-condition 1 1
18265^done
594fe323 18266(gdb)
922fbb7b
AC
18267-break-list
18268^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18269hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18270@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18271@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18272@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18273@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18274@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18275body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18276addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18277line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18278(gdb)
922fbb7b
AC
18279@end smallexample
18280
18281@subheading The @code{-break-delete} Command
18282@findex -break-delete
18283
18284@subsubheading Synopsis
18285
18286@smallexample
18287 -break-delete ( @var{breakpoint} )+
18288@end smallexample
18289
18290Delete the breakpoint(s) whose number(s) are specified in the argument
18291list. This is obviously reflected in the breakpoint list.
18292
79a6e687 18293@subsubheading @value{GDBN} Command
922fbb7b
AC
18294
18295The corresponding @value{GDBN} command is @samp{delete}.
18296
18297@subsubheading Example
18298
18299@smallexample
594fe323 18300(gdb)
922fbb7b
AC
18301-break-delete 1
18302^done
594fe323 18303(gdb)
922fbb7b
AC
18304-break-list
18305^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18306hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18307@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18308@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18309@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18310@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18311@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18312body=[]@}
594fe323 18313(gdb)
922fbb7b
AC
18314@end smallexample
18315
18316@subheading The @code{-break-disable} Command
18317@findex -break-disable
18318
18319@subsubheading Synopsis
18320
18321@smallexample
18322 -break-disable ( @var{breakpoint} )+
18323@end smallexample
18324
18325Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18326break list is now set to @samp{n} for the named @var{breakpoint}(s).
18327
18328@subsubheading @value{GDBN} Command
18329
18330The corresponding @value{GDBN} command is @samp{disable}.
18331
18332@subsubheading Example
18333
18334@smallexample
594fe323 18335(gdb)
922fbb7b
AC
18336-break-disable 2
18337^done
594fe323 18338(gdb)
922fbb7b
AC
18339-break-list
18340^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18341hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18342@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18343@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18344@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18345@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18346@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18347body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18348addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18349line="5",times="0"@}]@}
594fe323 18350(gdb)
922fbb7b
AC
18351@end smallexample
18352
18353@subheading The @code{-break-enable} Command
18354@findex -break-enable
18355
18356@subsubheading Synopsis
18357
18358@smallexample
18359 -break-enable ( @var{breakpoint} )+
18360@end smallexample
18361
18362Enable (previously disabled) @var{breakpoint}(s).
18363
18364@subsubheading @value{GDBN} Command
18365
18366The corresponding @value{GDBN} command is @samp{enable}.
18367
18368@subsubheading Example
18369
18370@smallexample
594fe323 18371(gdb)
922fbb7b
AC
18372-break-enable 2
18373^done
594fe323 18374(gdb)
922fbb7b
AC
18375-break-list
18376^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18377hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18378@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18379@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18380@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18381@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18382@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18383body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18384addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18385line="5",times="0"@}]@}
594fe323 18386(gdb)
922fbb7b
AC
18387@end smallexample
18388
18389@subheading The @code{-break-info} Command
18390@findex -break-info
18391
18392@subsubheading Synopsis
18393
18394@smallexample
18395 -break-info @var{breakpoint}
18396@end smallexample
18397
18398@c REDUNDANT???
18399Get information about a single breakpoint.
18400
79a6e687 18401@subsubheading @value{GDBN} Command
922fbb7b
AC
18402
18403The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18404
18405@subsubheading Example
18406N.A.
18407
18408@subheading The @code{-break-insert} Command
18409@findex -break-insert
18410
18411@subsubheading Synopsis
18412
18413@smallexample
afe8ab22 18414 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18415 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18416 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18417@end smallexample
18418
18419@noindent
afe8ab22 18420If specified, @var{location}, can be one of:
922fbb7b
AC
18421
18422@itemize @bullet
18423@item function
18424@c @item +offset
18425@c @item -offset
18426@c @item linenum
18427@item filename:linenum
18428@item filename:function
18429@item *address
18430@end itemize
18431
18432The possible optional parameters of this command are:
18433
18434@table @samp
18435@item -t
948d5102 18436Insert a temporary breakpoint.
922fbb7b
AC
18437@item -h
18438Insert a hardware breakpoint.
18439@item -c @var{condition}
18440Make the breakpoint conditional on @var{condition}.
18441@item -i @var{ignore-count}
18442Initialize the @var{ignore-count}.
afe8ab22
VP
18443@item -f
18444If @var{location} cannot be parsed (for example if it
18445refers to unknown files or functions), create a pending
18446breakpoint. Without this flag, @value{GDBN} will report
18447an error, and won't create a breakpoint, if @var{location}
18448cannot be parsed.
922fbb7b
AC
18449@end table
18450
18451@subsubheading Result
18452
18453The result is in the form:
18454
18455@smallexample
948d5102
NR
18456^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18457enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18458fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18459times="@var{times}"@}
922fbb7b
AC
18460@end smallexample
18461
18462@noindent
948d5102
NR
18463where @var{number} is the @value{GDBN} number for this breakpoint,
18464@var{funcname} is the name of the function where the breakpoint was
18465inserted, @var{filename} is the name of the source file which contains
18466this function, @var{lineno} is the source line number within that file
18467and @var{times} the number of times that the breakpoint has been hit
18468(always 0 for -break-insert but may be greater for -break-info or -break-list
18469which use the same output).
922fbb7b
AC
18470
18471Note: this format is open to change.
18472@c An out-of-band breakpoint instead of part of the result?
18473
18474@subsubheading @value{GDBN} Command
18475
18476The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18477@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18478
18479@subsubheading Example
18480
18481@smallexample
594fe323 18482(gdb)
922fbb7b 18483-break-insert main
948d5102
NR
18484^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18485fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18486(gdb)
922fbb7b 18487-break-insert -t foo
948d5102
NR
18488^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18489fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18490(gdb)
922fbb7b
AC
18491-break-list
18492^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18493hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18494@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18495@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18496@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18497@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18498@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18499body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18500addr="0x0001072c", func="main",file="recursive2.c",
18501fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18502bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18503addr="0x00010774",func="foo",file="recursive2.c",
18504fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18505(gdb)
922fbb7b
AC
18506-break-insert -r foo.*
18507~int foo(int, int);
948d5102
NR
18508^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18509"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18510(gdb)
922fbb7b
AC
18511@end smallexample
18512
18513@subheading The @code{-break-list} Command
18514@findex -break-list
18515
18516@subsubheading Synopsis
18517
18518@smallexample
18519 -break-list
18520@end smallexample
18521
18522Displays the list of inserted breakpoints, showing the following fields:
18523
18524@table @samp
18525@item Number
18526number of the breakpoint
18527@item Type
18528type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18529@item Disposition
18530should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18531or @samp{nokeep}
18532@item Enabled
18533is the breakpoint enabled or no: @samp{y} or @samp{n}
18534@item Address
18535memory location at which the breakpoint is set
18536@item What
18537logical location of the breakpoint, expressed by function name, file
18538name, line number
18539@item Times
18540number of times the breakpoint has been hit
18541@end table
18542
18543If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18544@code{body} field is an empty list.
18545
18546@subsubheading @value{GDBN} Command
18547
18548The corresponding @value{GDBN} command is @samp{info break}.
18549
18550@subsubheading Example
18551
18552@smallexample
594fe323 18553(gdb)
922fbb7b
AC
18554-break-list
18555^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18556hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18557@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18558@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18559@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18560@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18561@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18562body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18563addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18564bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18565addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18566line="13",times="0"@}]@}
594fe323 18567(gdb)
922fbb7b
AC
18568@end smallexample
18569
18570Here's an example of the result when there are no breakpoints:
18571
18572@smallexample
594fe323 18573(gdb)
922fbb7b
AC
18574-break-list
18575^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18576hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18577@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18578@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18579@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18580@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18581@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18582body=[]@}
594fe323 18583(gdb)
922fbb7b
AC
18584@end smallexample
18585
18586@subheading The @code{-break-watch} Command
18587@findex -break-watch
18588
18589@subsubheading Synopsis
18590
18591@smallexample
18592 -break-watch [ -a | -r ]
18593@end smallexample
18594
18595Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18596@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18597read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18598option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18599trigger only when the memory location is accessed for reading. Without
18600either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18601i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18602@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18603
18604Note that @samp{-break-list} will report a single list of watchpoints and
18605breakpoints inserted.
18606
18607@subsubheading @value{GDBN} Command
18608
18609The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18610@samp{rwatch}.
18611
18612@subsubheading Example
18613
18614Setting a watchpoint on a variable in the @code{main} function:
18615
18616@smallexample
594fe323 18617(gdb)
922fbb7b
AC
18618-break-watch x
18619^done,wpt=@{number="2",exp="x"@}
594fe323 18620(gdb)
922fbb7b
AC
18621-exec-continue
18622^running
0869d01b
NR
18623(gdb)
18624*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18625value=@{old="-268439212",new="55"@},
76ff342d 18626frame=@{func="main",args=[],file="recursive2.c",
948d5102 18627fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18628(gdb)
922fbb7b
AC
18629@end smallexample
18630
18631Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18632the program execution twice: first for the variable changing value, then
18633for the watchpoint going out of scope.
18634
18635@smallexample
594fe323 18636(gdb)
922fbb7b
AC
18637-break-watch C
18638^done,wpt=@{number="5",exp="C"@}
594fe323 18639(gdb)
922fbb7b
AC
18640-exec-continue
18641^running
0869d01b
NR
18642(gdb)
18643*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18644wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18645frame=@{func="callee4",args=[],
76ff342d
DJ
18646file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18647fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18648(gdb)
922fbb7b
AC
18649-exec-continue
18650^running
0869d01b
NR
18651(gdb)
18652*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18653frame=@{func="callee3",args=[@{name="strarg",
18654value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18655file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18656fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18657(gdb)
922fbb7b
AC
18658@end smallexample
18659
18660Listing breakpoints and watchpoints, at different points in the program
18661execution. Note that once the watchpoint goes out of scope, it is
18662deleted.
18663
18664@smallexample
594fe323 18665(gdb)
922fbb7b
AC
18666-break-watch C
18667^done,wpt=@{number="2",exp="C"@}
594fe323 18668(gdb)
922fbb7b
AC
18669-break-list
18670^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18671hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18672@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18673@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18674@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18675@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18676@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18677body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18678addr="0x00010734",func="callee4",
948d5102
NR
18679file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18680fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18681bkpt=@{number="2",type="watchpoint",disp="keep",
18682enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18683(gdb)
922fbb7b
AC
18684-exec-continue
18685^running
0869d01b
NR
18686(gdb)
18687*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18688value=@{old="-276895068",new="3"@},
18689frame=@{func="callee4",args=[],
76ff342d
DJ
18690file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18691fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18692(gdb)
922fbb7b
AC
18693-break-list
18694^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18695hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18696@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18697@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18698@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18699@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18700@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18701body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18702addr="0x00010734",func="callee4",
948d5102
NR
18703file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18704fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18705bkpt=@{number="2",type="watchpoint",disp="keep",
18706enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18707(gdb)
922fbb7b
AC
18708-exec-continue
18709^running
18710^done,reason="watchpoint-scope",wpnum="2",
18711frame=@{func="callee3",args=[@{name="strarg",
18712value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18713file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18714fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18715(gdb)
922fbb7b
AC
18716-break-list
18717^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18718hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18719@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18720@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18721@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18722@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18723@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18724body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18725addr="0x00010734",func="callee4",
948d5102
NR
18726file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18727fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18728times="1"@}]@}
594fe323 18729(gdb)
922fbb7b
AC
18730@end smallexample
18731
18732@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18733@node GDB/MI Program Context
18734@section @sc{gdb/mi} Program Context
922fbb7b 18735
a2c02241
NR
18736@subheading The @code{-exec-arguments} Command
18737@findex -exec-arguments
922fbb7b 18738
922fbb7b
AC
18739
18740@subsubheading Synopsis
18741
18742@smallexample
a2c02241 18743 -exec-arguments @var{args}
922fbb7b
AC
18744@end smallexample
18745
a2c02241
NR
18746Set the inferior program arguments, to be used in the next
18747@samp{-exec-run}.
922fbb7b 18748
a2c02241 18749@subsubheading @value{GDBN} Command
922fbb7b 18750
a2c02241 18751The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18752
a2c02241 18753@subsubheading Example
922fbb7b 18754
a2c02241
NR
18755@c FIXME!
18756Don't have one around.
922fbb7b 18757
a2c02241
NR
18758
18759@subheading The @code{-exec-show-arguments} Command
18760@findex -exec-show-arguments
18761
18762@subsubheading Synopsis
18763
18764@smallexample
18765 -exec-show-arguments
18766@end smallexample
18767
18768Print the arguments of the program.
922fbb7b
AC
18769
18770@subsubheading @value{GDBN} Command
18771
a2c02241 18772The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18773
18774@subsubheading Example
a2c02241 18775N.A.
922fbb7b 18776
922fbb7b 18777
a2c02241
NR
18778@subheading The @code{-environment-cd} Command
18779@findex -environment-cd
922fbb7b 18780
a2c02241 18781@subsubheading Synopsis
922fbb7b
AC
18782
18783@smallexample
a2c02241 18784 -environment-cd @var{pathdir}
922fbb7b
AC
18785@end smallexample
18786
a2c02241 18787Set @value{GDBN}'s working directory.
922fbb7b 18788
a2c02241 18789@subsubheading @value{GDBN} Command
922fbb7b 18790
a2c02241
NR
18791The corresponding @value{GDBN} command is @samp{cd}.
18792
18793@subsubheading Example
922fbb7b
AC
18794
18795@smallexample
594fe323 18796(gdb)
a2c02241
NR
18797-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18798^done
594fe323 18799(gdb)
922fbb7b
AC
18800@end smallexample
18801
18802
a2c02241
NR
18803@subheading The @code{-environment-directory} Command
18804@findex -environment-directory
922fbb7b
AC
18805
18806@subsubheading Synopsis
18807
18808@smallexample
a2c02241 18809 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18810@end smallexample
18811
a2c02241
NR
18812Add directories @var{pathdir} to beginning of search path for source files.
18813If the @samp{-r} option is used, the search path is reset to the default
18814search path. If directories @var{pathdir} are supplied in addition to the
18815@samp{-r} option, the search path is first reset and then addition
18816occurs as normal.
18817Multiple directories may be specified, separated by blanks. Specifying
18818multiple directories in a single command
18819results in the directories added to the beginning of the
18820search path in the same order they were presented in the command.
18821If blanks are needed as
18822part of a directory name, double-quotes should be used around
18823the name. In the command output, the path will show up separated
d3e8051b 18824by the system directory-separator character. The directory-separator
a2c02241
NR
18825character must not be used
18826in any directory name.
18827If no directories are specified, the current search path is displayed.
922fbb7b
AC
18828
18829@subsubheading @value{GDBN} Command
18830
a2c02241 18831The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18832
18833@subsubheading Example
18834
922fbb7b 18835@smallexample
594fe323 18836(gdb)
a2c02241
NR
18837-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18838^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18839(gdb)
a2c02241
NR
18840-environment-directory ""
18841^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18842(gdb)
a2c02241
NR
18843-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18844^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18845(gdb)
a2c02241
NR
18846-environment-directory -r
18847^done,source-path="$cdir:$cwd"
594fe323 18848(gdb)
922fbb7b
AC
18849@end smallexample
18850
18851
a2c02241
NR
18852@subheading The @code{-environment-path} Command
18853@findex -environment-path
922fbb7b
AC
18854
18855@subsubheading Synopsis
18856
18857@smallexample
a2c02241 18858 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18859@end smallexample
18860
a2c02241
NR
18861Add directories @var{pathdir} to beginning of search path for object files.
18862If the @samp{-r} option is used, the search path is reset to the original
18863search path that existed at gdb start-up. If directories @var{pathdir} are
18864supplied in addition to the
18865@samp{-r} option, the search path is first reset and then addition
18866occurs as normal.
18867Multiple directories may be specified, separated by blanks. Specifying
18868multiple directories in a single command
18869results in the directories added to the beginning of the
18870search path in the same order they were presented in the command.
18871If blanks are needed as
18872part of a directory name, double-quotes should be used around
18873the name. In the command output, the path will show up separated
d3e8051b 18874by the system directory-separator character. The directory-separator
a2c02241
NR
18875character must not be used
18876in any directory name.
18877If no directories are specified, the current path is displayed.
18878
922fbb7b
AC
18879
18880@subsubheading @value{GDBN} Command
18881
a2c02241 18882The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18883
18884@subsubheading Example
18885
922fbb7b 18886@smallexample
594fe323 18887(gdb)
a2c02241
NR
18888-environment-path
18889^done,path="/usr/bin"
594fe323 18890(gdb)
a2c02241
NR
18891-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18892^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18893(gdb)
a2c02241
NR
18894-environment-path -r /usr/local/bin
18895^done,path="/usr/local/bin:/usr/bin"
594fe323 18896(gdb)
922fbb7b
AC
18897@end smallexample
18898
18899
a2c02241
NR
18900@subheading The @code{-environment-pwd} Command
18901@findex -environment-pwd
922fbb7b
AC
18902
18903@subsubheading Synopsis
18904
18905@smallexample
a2c02241 18906 -environment-pwd
922fbb7b
AC
18907@end smallexample
18908
a2c02241 18909Show the current working directory.
922fbb7b 18910
79a6e687 18911@subsubheading @value{GDBN} Command
922fbb7b 18912
a2c02241 18913The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18914
18915@subsubheading Example
18916
922fbb7b 18917@smallexample
594fe323 18918(gdb)
a2c02241
NR
18919-environment-pwd
18920^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18921(gdb)
922fbb7b
AC
18922@end smallexample
18923
a2c02241
NR
18924@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18925@node GDB/MI Thread Commands
18926@section @sc{gdb/mi} Thread Commands
18927
18928
18929@subheading The @code{-thread-info} Command
18930@findex -thread-info
922fbb7b
AC
18931
18932@subsubheading Synopsis
18933
18934@smallexample
8e8901c5 18935 -thread-info [ @var{thread-id} ]
922fbb7b
AC
18936@end smallexample
18937
8e8901c5
VP
18938Reports information about either a specific thread, if
18939the @var{thread-id} parameter is present, or about all
18940threads. When printing information about all threads,
18941also reports the current thread.
18942
79a6e687 18943@subsubheading @value{GDBN} Command
922fbb7b 18944
8e8901c5
VP
18945The @samp{info thread} command prints the same information
18946about all threads.
922fbb7b
AC
18947
18948@subsubheading Example
922fbb7b
AC
18949
18950@smallexample
8e8901c5
VP
18951-thread-info
18952^done,threads=[
18953@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
18954 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
18955@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
18956 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
18957 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
18958current-thread-id="1"
18959(gdb)
922fbb7b
AC
18960@end smallexample
18961
a2c02241
NR
18962@subheading The @code{-thread-list-ids} Command
18963@findex -thread-list-ids
922fbb7b 18964
a2c02241 18965@subsubheading Synopsis
922fbb7b 18966
a2c02241
NR
18967@smallexample
18968 -thread-list-ids
18969@end smallexample
922fbb7b 18970
a2c02241
NR
18971Produces a list of the currently known @value{GDBN} thread ids. At the
18972end of the list it also prints the total number of such threads.
922fbb7b
AC
18973
18974@subsubheading @value{GDBN} Command
18975
a2c02241 18976Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18977
18978@subsubheading Example
18979
a2c02241 18980No threads present, besides the main process:
922fbb7b
AC
18981
18982@smallexample
594fe323 18983(gdb)
a2c02241
NR
18984-thread-list-ids
18985^done,thread-ids=@{@},number-of-threads="0"
594fe323 18986(gdb)
922fbb7b
AC
18987@end smallexample
18988
922fbb7b 18989
a2c02241 18990Several threads:
922fbb7b
AC
18991
18992@smallexample
594fe323 18993(gdb)
a2c02241
NR
18994-thread-list-ids
18995^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18996number-of-threads="3"
594fe323 18997(gdb)
922fbb7b
AC
18998@end smallexample
18999
a2c02241
NR
19000
19001@subheading The @code{-thread-select} Command
19002@findex -thread-select
922fbb7b
AC
19003
19004@subsubheading Synopsis
19005
19006@smallexample
a2c02241 19007 -thread-select @var{threadnum}
922fbb7b
AC
19008@end smallexample
19009
a2c02241
NR
19010Make @var{threadnum} the current thread. It prints the number of the new
19011current thread, and the topmost frame for that thread.
922fbb7b
AC
19012
19013@subsubheading @value{GDBN} Command
19014
a2c02241 19015The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19016
19017@subsubheading Example
922fbb7b
AC
19018
19019@smallexample
594fe323 19020(gdb)
a2c02241
NR
19021-exec-next
19022^running
594fe323 19023(gdb)
a2c02241
NR
19024*stopped,reason="end-stepping-range",thread-id="2",line="187",
19025file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19026(gdb)
a2c02241
NR
19027-thread-list-ids
19028^done,
19029thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19030number-of-threads="3"
594fe323 19031(gdb)
a2c02241
NR
19032-thread-select 3
19033^done,new-thread-id="3",
19034frame=@{level="0",func="vprintf",
19035args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19036@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19037(gdb)
922fbb7b
AC
19038@end smallexample
19039
a2c02241
NR
19040@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19041@node GDB/MI Program Execution
19042@section @sc{gdb/mi} Program Execution
922fbb7b 19043
ef21caaf 19044These are the asynchronous commands which generate the out-of-band
3f94c067 19045record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19046asynchronously with remote targets and this interaction is mimicked in
19047other cases.
922fbb7b 19048
922fbb7b
AC
19049@subheading The @code{-exec-continue} Command
19050@findex -exec-continue
19051
19052@subsubheading Synopsis
19053
19054@smallexample
19055 -exec-continue
19056@end smallexample
19057
ef21caaf
NR
19058Resumes the execution of the inferior program until a breakpoint is
19059encountered, or until the inferior exits.
922fbb7b
AC
19060
19061@subsubheading @value{GDBN} Command
19062
19063The corresponding @value{GDBN} corresponding is @samp{continue}.
19064
19065@subsubheading Example
19066
19067@smallexample
19068-exec-continue
19069^running
594fe323 19070(gdb)
922fbb7b
AC
19071@@Hello world
19072*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 19073file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 19074(gdb)
922fbb7b
AC
19075@end smallexample
19076
19077
19078@subheading The @code{-exec-finish} Command
19079@findex -exec-finish
19080
19081@subsubheading Synopsis
19082
19083@smallexample
19084 -exec-finish
19085@end smallexample
19086
ef21caaf
NR
19087Resumes the execution of the inferior program until the current
19088function is exited. Displays the results returned by the function.
922fbb7b
AC
19089
19090@subsubheading @value{GDBN} Command
19091
19092The corresponding @value{GDBN} command is @samp{finish}.
19093
19094@subsubheading Example
19095
19096Function returning @code{void}.
19097
19098@smallexample
19099-exec-finish
19100^running
594fe323 19101(gdb)
922fbb7b
AC
19102@@hello from foo
19103*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19104file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19105(gdb)
922fbb7b
AC
19106@end smallexample
19107
19108Function returning other than @code{void}. The name of the internal
19109@value{GDBN} variable storing the result is printed, together with the
19110value itself.
19111
19112@smallexample
19113-exec-finish
19114^running
594fe323 19115(gdb)
922fbb7b
AC
19116*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19117args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19118file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19119gdb-result-var="$1",return-value="0"
594fe323 19120(gdb)
922fbb7b
AC
19121@end smallexample
19122
19123
19124@subheading The @code{-exec-interrupt} Command
19125@findex -exec-interrupt
19126
19127@subsubheading Synopsis
19128
19129@smallexample
19130 -exec-interrupt
19131@end smallexample
19132
ef21caaf
NR
19133Interrupts the background execution of the target. Note how the token
19134associated with the stop message is the one for the execution command
19135that has been interrupted. The token for the interrupt itself only
19136appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19137interrupt a non-running program, an error message will be printed.
19138
19139@subsubheading @value{GDBN} Command
19140
19141The corresponding @value{GDBN} command is @samp{interrupt}.
19142
19143@subsubheading Example
19144
19145@smallexample
594fe323 19146(gdb)
922fbb7b
AC
19147111-exec-continue
19148111^running
19149
594fe323 19150(gdb)
922fbb7b
AC
19151222-exec-interrupt
19152222^done
594fe323 19153(gdb)
922fbb7b 19154111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19155frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19156fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19157(gdb)
922fbb7b 19158
594fe323 19159(gdb)
922fbb7b
AC
19160-exec-interrupt
19161^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19162(gdb)
922fbb7b
AC
19163@end smallexample
19164
19165
19166@subheading The @code{-exec-next} Command
19167@findex -exec-next
19168
19169@subsubheading Synopsis
19170
19171@smallexample
19172 -exec-next
19173@end smallexample
19174
ef21caaf
NR
19175Resumes execution of the inferior program, stopping when the beginning
19176of the next source line is reached.
922fbb7b
AC
19177
19178@subsubheading @value{GDBN} Command
19179
19180The corresponding @value{GDBN} command is @samp{next}.
19181
19182@subsubheading Example
19183
19184@smallexample
19185-exec-next
19186^running
594fe323 19187(gdb)
922fbb7b 19188*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19189(gdb)
922fbb7b
AC
19190@end smallexample
19191
19192
19193@subheading The @code{-exec-next-instruction} Command
19194@findex -exec-next-instruction
19195
19196@subsubheading Synopsis
19197
19198@smallexample
19199 -exec-next-instruction
19200@end smallexample
19201
ef21caaf
NR
19202Executes one machine instruction. If the instruction is a function
19203call, continues until the function returns. If the program stops at an
19204instruction in the middle of a source line, the address will be
19205printed as well.
922fbb7b
AC
19206
19207@subsubheading @value{GDBN} Command
19208
19209The corresponding @value{GDBN} command is @samp{nexti}.
19210
19211@subsubheading Example
19212
19213@smallexample
594fe323 19214(gdb)
922fbb7b
AC
19215-exec-next-instruction
19216^running
19217
594fe323 19218(gdb)
922fbb7b
AC
19219*stopped,reason="end-stepping-range",
19220addr="0x000100d4",line="5",file="hello.c"
594fe323 19221(gdb)
922fbb7b
AC
19222@end smallexample
19223
19224
19225@subheading The @code{-exec-return} Command
19226@findex -exec-return
19227
19228@subsubheading Synopsis
19229
19230@smallexample
19231 -exec-return
19232@end smallexample
19233
19234Makes current function return immediately. Doesn't execute the inferior.
19235Displays the new current frame.
19236
19237@subsubheading @value{GDBN} Command
19238
19239The corresponding @value{GDBN} command is @samp{return}.
19240
19241@subsubheading Example
19242
19243@smallexample
594fe323 19244(gdb)
922fbb7b
AC
19245200-break-insert callee4
19246200^done,bkpt=@{number="1",addr="0x00010734",
19247file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19248(gdb)
922fbb7b
AC
19249000-exec-run
19250000^running
594fe323 19251(gdb)
922fbb7b
AC
19252000*stopped,reason="breakpoint-hit",bkptno="1",
19253frame=@{func="callee4",args=[],
76ff342d
DJ
19254file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19255fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19256(gdb)
922fbb7b
AC
19257205-break-delete
19258205^done
594fe323 19259(gdb)
922fbb7b
AC
19260111-exec-return
19261111^done,frame=@{level="0",func="callee3",
19262args=[@{name="strarg",
19263value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19264file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19265fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19266(gdb)
922fbb7b
AC
19267@end smallexample
19268
19269
19270@subheading The @code{-exec-run} Command
19271@findex -exec-run
19272
19273@subsubheading Synopsis
19274
19275@smallexample
19276 -exec-run
19277@end smallexample
19278
ef21caaf
NR
19279Starts execution of the inferior from the beginning. The inferior
19280executes until either a breakpoint is encountered or the program
19281exits. In the latter case the output will include an exit code, if
19282the program has exited exceptionally.
922fbb7b
AC
19283
19284@subsubheading @value{GDBN} Command
19285
19286The corresponding @value{GDBN} command is @samp{run}.
19287
ef21caaf 19288@subsubheading Examples
922fbb7b
AC
19289
19290@smallexample
594fe323 19291(gdb)
922fbb7b
AC
19292-break-insert main
19293^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19294(gdb)
922fbb7b
AC
19295-exec-run
19296^running
594fe323 19297(gdb)
922fbb7b 19298*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19299frame=@{func="main",args=[],file="recursive2.c",
948d5102 19300fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19301(gdb)
922fbb7b
AC
19302@end smallexample
19303
ef21caaf
NR
19304@noindent
19305Program exited normally:
19306
19307@smallexample
594fe323 19308(gdb)
ef21caaf
NR
19309-exec-run
19310^running
594fe323 19311(gdb)
ef21caaf
NR
19312x = 55
19313*stopped,reason="exited-normally"
594fe323 19314(gdb)
ef21caaf
NR
19315@end smallexample
19316
19317@noindent
19318Program exited exceptionally:
19319
19320@smallexample
594fe323 19321(gdb)
ef21caaf
NR
19322-exec-run
19323^running
594fe323 19324(gdb)
ef21caaf
NR
19325x = 55
19326*stopped,reason="exited",exit-code="01"
594fe323 19327(gdb)
ef21caaf
NR
19328@end smallexample
19329
19330Another way the program can terminate is if it receives a signal such as
19331@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19332
19333@smallexample
594fe323 19334(gdb)
ef21caaf
NR
19335*stopped,reason="exited-signalled",signal-name="SIGINT",
19336signal-meaning="Interrupt"
19337@end smallexample
19338
922fbb7b 19339
a2c02241
NR
19340@c @subheading -exec-signal
19341
19342
19343@subheading The @code{-exec-step} Command
19344@findex -exec-step
922fbb7b
AC
19345
19346@subsubheading Synopsis
19347
19348@smallexample
a2c02241 19349 -exec-step
922fbb7b
AC
19350@end smallexample
19351
a2c02241
NR
19352Resumes execution of the inferior program, stopping when the beginning
19353of the next source line is reached, if the next source line is not a
19354function call. If it is, stop at the first instruction of the called
19355function.
922fbb7b
AC
19356
19357@subsubheading @value{GDBN} Command
19358
a2c02241 19359The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19360
19361@subsubheading Example
19362
19363Stepping into a function:
19364
19365@smallexample
19366-exec-step
19367^running
594fe323 19368(gdb)
922fbb7b
AC
19369*stopped,reason="end-stepping-range",
19370frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19371@{name="b",value="0"@}],file="recursive2.c",
948d5102 19372fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19373(gdb)
922fbb7b
AC
19374@end smallexample
19375
19376Regular stepping:
19377
19378@smallexample
19379-exec-step
19380^running
594fe323 19381(gdb)
922fbb7b 19382*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19383(gdb)
922fbb7b
AC
19384@end smallexample
19385
19386
19387@subheading The @code{-exec-step-instruction} Command
19388@findex -exec-step-instruction
19389
19390@subsubheading Synopsis
19391
19392@smallexample
19393 -exec-step-instruction
19394@end smallexample
19395
ef21caaf
NR
19396Resumes the inferior which executes one machine instruction. The
19397output, once @value{GDBN} has stopped, will vary depending on whether
19398we have stopped in the middle of a source line or not. In the former
19399case, the address at which the program stopped will be printed as
922fbb7b
AC
19400well.
19401
19402@subsubheading @value{GDBN} Command
19403
19404The corresponding @value{GDBN} command is @samp{stepi}.
19405
19406@subsubheading Example
19407
19408@smallexample
594fe323 19409(gdb)
922fbb7b
AC
19410-exec-step-instruction
19411^running
19412
594fe323 19413(gdb)
922fbb7b 19414*stopped,reason="end-stepping-range",
76ff342d 19415frame=@{func="foo",args=[],file="try.c",
948d5102 19416fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19417(gdb)
922fbb7b
AC
19418-exec-step-instruction
19419^running
19420
594fe323 19421(gdb)
922fbb7b 19422*stopped,reason="end-stepping-range",
76ff342d 19423frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19424fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19425(gdb)
922fbb7b
AC
19426@end smallexample
19427
19428
19429@subheading The @code{-exec-until} Command
19430@findex -exec-until
19431
19432@subsubheading Synopsis
19433
19434@smallexample
19435 -exec-until [ @var{location} ]
19436@end smallexample
19437
ef21caaf
NR
19438Executes the inferior until the @var{location} specified in the
19439argument is reached. If there is no argument, the inferior executes
19440until a source line greater than the current one is reached. The
19441reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19442
19443@subsubheading @value{GDBN} Command
19444
19445The corresponding @value{GDBN} command is @samp{until}.
19446
19447@subsubheading Example
19448
19449@smallexample
594fe323 19450(gdb)
922fbb7b
AC
19451-exec-until recursive2.c:6
19452^running
594fe323 19453(gdb)
922fbb7b
AC
19454x = 55
19455*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19456file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19457(gdb)
922fbb7b
AC
19458@end smallexample
19459
19460@ignore
19461@subheading -file-clear
19462Is this going away????
19463@end ignore
19464
351ff01a 19465@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19466@node GDB/MI Stack Manipulation
19467@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19468
922fbb7b 19469
a2c02241
NR
19470@subheading The @code{-stack-info-frame} Command
19471@findex -stack-info-frame
922fbb7b
AC
19472
19473@subsubheading Synopsis
19474
19475@smallexample
a2c02241 19476 -stack-info-frame
922fbb7b
AC
19477@end smallexample
19478
a2c02241 19479Get info on the selected frame.
922fbb7b
AC
19480
19481@subsubheading @value{GDBN} Command
19482
a2c02241
NR
19483The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19484(without arguments).
922fbb7b
AC
19485
19486@subsubheading Example
19487
19488@smallexample
594fe323 19489(gdb)
a2c02241
NR
19490-stack-info-frame
19491^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19492file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19493fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19494(gdb)
922fbb7b
AC
19495@end smallexample
19496
a2c02241
NR
19497@subheading The @code{-stack-info-depth} Command
19498@findex -stack-info-depth
922fbb7b
AC
19499
19500@subsubheading Synopsis
19501
19502@smallexample
a2c02241 19503 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19504@end smallexample
19505
a2c02241
NR
19506Return the depth of the stack. If the integer argument @var{max-depth}
19507is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19508
19509@subsubheading @value{GDBN} Command
19510
a2c02241 19511There's no equivalent @value{GDBN} command.
922fbb7b
AC
19512
19513@subsubheading Example
19514
a2c02241
NR
19515For a stack with frame levels 0 through 11:
19516
922fbb7b 19517@smallexample
594fe323 19518(gdb)
a2c02241
NR
19519-stack-info-depth
19520^done,depth="12"
594fe323 19521(gdb)
a2c02241
NR
19522-stack-info-depth 4
19523^done,depth="4"
594fe323 19524(gdb)
a2c02241
NR
19525-stack-info-depth 12
19526^done,depth="12"
594fe323 19527(gdb)
a2c02241
NR
19528-stack-info-depth 11
19529^done,depth="11"
594fe323 19530(gdb)
a2c02241
NR
19531-stack-info-depth 13
19532^done,depth="12"
594fe323 19533(gdb)
922fbb7b
AC
19534@end smallexample
19535
a2c02241
NR
19536@subheading The @code{-stack-list-arguments} Command
19537@findex -stack-list-arguments
922fbb7b
AC
19538
19539@subsubheading Synopsis
19540
19541@smallexample
a2c02241
NR
19542 -stack-list-arguments @var{show-values}
19543 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19544@end smallexample
19545
a2c02241
NR
19546Display a list of the arguments for the frames between @var{low-frame}
19547and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19548@var{high-frame} are not provided, list the arguments for the whole
19549call stack. If the two arguments are equal, show the single frame
19550at the corresponding level. It is an error if @var{low-frame} is
19551larger than the actual number of frames. On the other hand,
19552@var{high-frame} may be larger than the actual number of frames, in
19553which case only existing frames will be returned.
a2c02241
NR
19554
19555The @var{show-values} argument must have a value of 0 or 1. A value of
195560 means that only the names of the arguments are listed, a value of 1
19557means that both names and values of the arguments are printed.
922fbb7b
AC
19558
19559@subsubheading @value{GDBN} Command
19560
a2c02241
NR
19561@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19562@samp{gdb_get_args} command which partially overlaps with the
19563functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19564
19565@subsubheading Example
922fbb7b 19566
a2c02241 19567@smallexample
594fe323 19568(gdb)
a2c02241
NR
19569-stack-list-frames
19570^done,
19571stack=[
19572frame=@{level="0",addr="0x00010734",func="callee4",
19573file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19574fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19575frame=@{level="1",addr="0x0001076c",func="callee3",
19576file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19577fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19578frame=@{level="2",addr="0x0001078c",func="callee2",
19579file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19580fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19581frame=@{level="3",addr="0x000107b4",func="callee1",
19582file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19583fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19584frame=@{level="4",addr="0x000107e0",func="main",
19585file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19586fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19587(gdb)
a2c02241
NR
19588-stack-list-arguments 0
19589^done,
19590stack-args=[
19591frame=@{level="0",args=[]@},
19592frame=@{level="1",args=[name="strarg"]@},
19593frame=@{level="2",args=[name="intarg",name="strarg"]@},
19594frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19595frame=@{level="4",args=[]@}]
594fe323 19596(gdb)
a2c02241
NR
19597-stack-list-arguments 1
19598^done,
19599stack-args=[
19600frame=@{level="0",args=[]@},
19601frame=@{level="1",
19602 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19603frame=@{level="2",args=[
19604@{name="intarg",value="2"@},
19605@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19606@{frame=@{level="3",args=[
19607@{name="intarg",value="2"@},
19608@{name="strarg",value="0x11940 \"A string argument.\""@},
19609@{name="fltarg",value="3.5"@}]@},
19610frame=@{level="4",args=[]@}]
594fe323 19611(gdb)
a2c02241
NR
19612-stack-list-arguments 0 2 2
19613^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19614(gdb)
a2c02241
NR
19615-stack-list-arguments 1 2 2
19616^done,stack-args=[frame=@{level="2",
19617args=[@{name="intarg",value="2"@},
19618@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19619(gdb)
a2c02241
NR
19620@end smallexample
19621
19622@c @subheading -stack-list-exception-handlers
922fbb7b 19623
a2c02241
NR
19624
19625@subheading The @code{-stack-list-frames} Command
19626@findex -stack-list-frames
1abaf70c
BR
19627
19628@subsubheading Synopsis
19629
19630@smallexample
a2c02241 19631 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19632@end smallexample
19633
a2c02241
NR
19634List the frames currently on the stack. For each frame it displays the
19635following info:
19636
19637@table @samp
19638@item @var{level}
d3e8051b 19639The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19640@item @var{addr}
19641The @code{$pc} value for that frame.
19642@item @var{func}
19643Function name.
19644@item @var{file}
19645File name of the source file where the function lives.
19646@item @var{line}
19647Line number corresponding to the @code{$pc}.
19648@end table
19649
19650If invoked without arguments, this command prints a backtrace for the
19651whole stack. If given two integer arguments, it shows the frames whose
19652levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19653are equal, it shows the single frame at the corresponding level. It is
19654an error if @var{low-frame} is larger than the actual number of
a5451f4e 19655frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19656actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19657
19658@subsubheading @value{GDBN} Command
19659
a2c02241 19660The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19661
19662@subsubheading Example
19663
a2c02241
NR
19664Full stack backtrace:
19665
1abaf70c 19666@smallexample
594fe323 19667(gdb)
a2c02241
NR
19668-stack-list-frames
19669^done,stack=
19670[frame=@{level="0",addr="0x0001076c",func="foo",
19671 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19672frame=@{level="1",addr="0x000107a4",func="foo",
19673 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19674frame=@{level="2",addr="0x000107a4",func="foo",
19675 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19676frame=@{level="3",addr="0x000107a4",func="foo",
19677 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19678frame=@{level="4",addr="0x000107a4",func="foo",
19679 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19680frame=@{level="5",addr="0x000107a4",func="foo",
19681 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19682frame=@{level="6",addr="0x000107a4",func="foo",
19683 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19684frame=@{level="7",addr="0x000107a4",func="foo",
19685 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19686frame=@{level="8",addr="0x000107a4",func="foo",
19687 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19688frame=@{level="9",addr="0x000107a4",func="foo",
19689 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19690frame=@{level="10",addr="0x000107a4",func="foo",
19691 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19692frame=@{level="11",addr="0x00010738",func="main",
19693 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19694(gdb)
1abaf70c
BR
19695@end smallexample
19696
a2c02241 19697Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19698
a2c02241 19699@smallexample
594fe323 19700(gdb)
a2c02241
NR
19701-stack-list-frames 3 5
19702^done,stack=
19703[frame=@{level="3",addr="0x000107a4",func="foo",
19704 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19705frame=@{level="4",addr="0x000107a4",func="foo",
19706 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19707frame=@{level="5",addr="0x000107a4",func="foo",
19708 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19709(gdb)
a2c02241 19710@end smallexample
922fbb7b 19711
a2c02241 19712Show a single frame:
922fbb7b
AC
19713
19714@smallexample
594fe323 19715(gdb)
a2c02241
NR
19716-stack-list-frames 3 3
19717^done,stack=
19718[frame=@{level="3",addr="0x000107a4",func="foo",
19719 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19720(gdb)
922fbb7b
AC
19721@end smallexample
19722
922fbb7b 19723
a2c02241
NR
19724@subheading The @code{-stack-list-locals} Command
19725@findex -stack-list-locals
57c22c6c 19726
a2c02241 19727@subsubheading Synopsis
922fbb7b
AC
19728
19729@smallexample
a2c02241 19730 -stack-list-locals @var{print-values}
922fbb7b
AC
19731@end smallexample
19732
a2c02241
NR
19733Display the local variable names for the selected frame. If
19734@var{print-values} is 0 or @code{--no-values}, print only the names of
19735the variables; if it is 1 or @code{--all-values}, print also their
19736values; and if it is 2 or @code{--simple-values}, print the name,
19737type and value for simple data types and the name and type for arrays,
19738structures and unions. In this last case, a frontend can immediately
19739display the value of simple data types and create variable objects for
d3e8051b 19740other data types when the user wishes to explore their values in
a2c02241 19741more detail.
922fbb7b
AC
19742
19743@subsubheading @value{GDBN} Command
19744
a2c02241 19745@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19746
19747@subsubheading Example
922fbb7b
AC
19748
19749@smallexample
594fe323 19750(gdb)
a2c02241
NR
19751-stack-list-locals 0
19752^done,locals=[name="A",name="B",name="C"]
594fe323 19753(gdb)
a2c02241
NR
19754-stack-list-locals --all-values
19755^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19756 @{name="C",value="@{1, 2, 3@}"@}]
19757-stack-list-locals --simple-values
19758^done,locals=[@{name="A",type="int",value="1"@},
19759 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19760(gdb)
922fbb7b
AC
19761@end smallexample
19762
922fbb7b 19763
a2c02241
NR
19764@subheading The @code{-stack-select-frame} Command
19765@findex -stack-select-frame
922fbb7b
AC
19766
19767@subsubheading Synopsis
19768
19769@smallexample
a2c02241 19770 -stack-select-frame @var{framenum}
922fbb7b
AC
19771@end smallexample
19772
a2c02241
NR
19773Change the selected frame. Select a different frame @var{framenum} on
19774the stack.
922fbb7b
AC
19775
19776@subsubheading @value{GDBN} Command
19777
a2c02241
NR
19778The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19779@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19780
19781@subsubheading Example
19782
19783@smallexample
594fe323 19784(gdb)
a2c02241 19785-stack-select-frame 2
922fbb7b 19786^done
594fe323 19787(gdb)
922fbb7b
AC
19788@end smallexample
19789
19790@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19791@node GDB/MI Variable Objects
19792@section @sc{gdb/mi} Variable Objects
922fbb7b 19793
a1b5960f 19794@ignore
922fbb7b 19795
a2c02241 19796@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19797
a2c02241
NR
19798For the implementation of a variable debugger window (locals, watched
19799expressions, etc.), we are proposing the adaptation of the existing code
19800used by @code{Insight}.
922fbb7b 19801
a2c02241 19802The two main reasons for that are:
922fbb7b 19803
a2c02241
NR
19804@enumerate 1
19805@item
19806It has been proven in practice (it is already on its second generation).
922fbb7b 19807
a2c02241
NR
19808@item
19809It will shorten development time (needless to say how important it is
19810now).
19811@end enumerate
922fbb7b 19812
a2c02241
NR
19813The original interface was designed to be used by Tcl code, so it was
19814slightly changed so it could be used through @sc{gdb/mi}. This section
19815describes the @sc{gdb/mi} operations that will be available and gives some
19816hints about their use.
922fbb7b 19817
a2c02241
NR
19818@emph{Note}: In addition to the set of operations described here, we
19819expect the @sc{gui} implementation of a variable window to require, at
19820least, the following operations:
922fbb7b 19821
a2c02241
NR
19822@itemize @bullet
19823@item @code{-gdb-show} @code{output-radix}
19824@item @code{-stack-list-arguments}
19825@item @code{-stack-list-locals}
19826@item @code{-stack-select-frame}
19827@end itemize
922fbb7b 19828
a1b5960f
VP
19829@end ignore
19830
c8b2f53c 19831@subheading Introduction to Variable Objects
922fbb7b 19832
a2c02241 19833@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19834
19835Variable objects are "object-oriented" MI interface for examining and
19836changing values of expressions. Unlike some other MI interfaces that
19837work with expressions, variable objects are specifically designed for
19838simple and efficient presentation in the frontend. A variable object
19839is identified by string name. When a variable object is created, the
19840frontend specifies the expression for that variable object. The
19841expression can be a simple variable, or it can be an arbitrary complex
19842expression, and can even involve CPU registers. After creating a
19843variable object, the frontend can invoke other variable object
19844operations---for example to obtain or change the value of a variable
19845object, or to change display format.
19846
19847Variable objects have hierarchical tree structure. Any variable object
19848that corresponds to a composite type, such as structure in C, has
19849a number of child variable objects, for example corresponding to each
19850element of a structure. A child variable object can itself have
19851children, recursively. Recursion ends when we reach
25d5ea92
VP
19852leaf variable objects, which always have built-in types. Child variable
19853objects are created only by explicit request, so if a frontend
19854is not interested in the children of a particular variable object, no
19855child will be created.
c8b2f53c
VP
19856
19857For a leaf variable object it is possible to obtain its value as a
19858string, or set the value from a string. String value can be also
19859obtained for a non-leaf variable object, but it's generally a string
19860that only indicates the type of the object, and does not list its
19861contents. Assignment to a non-leaf variable object is not allowed.
19862
19863A frontend does not need to read the values of all variable objects each time
19864the program stops. Instead, MI provides an update command that lists all
19865variable objects whose values has changed since the last update
19866operation. This considerably reduces the amount of data that must
25d5ea92
VP
19867be transferred to the frontend. As noted above, children variable
19868objects are created on demand, and only leaf variable objects have a
19869real value. As result, gdb will read target memory only for leaf
19870variables that frontend has created.
19871
19872The automatic update is not always desirable. For example, a frontend
19873might want to keep a value of some expression for future reference,
19874and never update it. For another example, fetching memory is
19875relatively slow for embedded targets, so a frontend might want
19876to disable automatic update for the variables that are either not
19877visible on the screen, or ``closed''. This is possible using so
19878called ``frozen variable objects''. Such variable objects are never
19879implicitly updated.
922fbb7b 19880
a2c02241
NR
19881The following is the complete set of @sc{gdb/mi} operations defined to
19882access this functionality:
922fbb7b 19883
a2c02241
NR
19884@multitable @columnfractions .4 .6
19885@item @strong{Operation}
19886@tab @strong{Description}
922fbb7b 19887
a2c02241
NR
19888@item @code{-var-create}
19889@tab create a variable object
19890@item @code{-var-delete}
22d8a470 19891@tab delete the variable object and/or its children
a2c02241
NR
19892@item @code{-var-set-format}
19893@tab set the display format of this variable
19894@item @code{-var-show-format}
19895@tab show the display format of this variable
19896@item @code{-var-info-num-children}
19897@tab tells how many children this object has
19898@item @code{-var-list-children}
19899@tab return a list of the object's children
19900@item @code{-var-info-type}
19901@tab show the type of this variable object
19902@item @code{-var-info-expression}
02142340
VP
19903@tab print parent-relative expression that this variable object represents
19904@item @code{-var-info-path-expression}
19905@tab print full expression that this variable object represents
a2c02241
NR
19906@item @code{-var-show-attributes}
19907@tab is this variable editable? does it exist here?
19908@item @code{-var-evaluate-expression}
19909@tab get the value of this variable
19910@item @code{-var-assign}
19911@tab set the value of this variable
19912@item @code{-var-update}
19913@tab update the variable and its children
25d5ea92
VP
19914@item @code{-var-set-frozen}
19915@tab set frozeness attribute
a2c02241 19916@end multitable
922fbb7b 19917
a2c02241
NR
19918In the next subsection we describe each operation in detail and suggest
19919how it can be used.
922fbb7b 19920
a2c02241 19921@subheading Description And Use of Operations on Variable Objects
922fbb7b 19922
a2c02241
NR
19923@subheading The @code{-var-create} Command
19924@findex -var-create
ef21caaf 19925
a2c02241 19926@subsubheading Synopsis
ef21caaf 19927
a2c02241
NR
19928@smallexample
19929 -var-create @{@var{name} | "-"@}
19930 @{@var{frame-addr} | "*"@} @var{expression}
19931@end smallexample
19932
19933This operation creates a variable object, which allows the monitoring of
19934a variable, the result of an expression, a memory cell or a CPU
19935register.
ef21caaf 19936
a2c02241
NR
19937The @var{name} parameter is the string by which the object can be
19938referenced. It must be unique. If @samp{-} is specified, the varobj
19939system will generate a string ``varNNNNNN'' automatically. It will be
19940unique provided that one does not specify @var{name} on that format.
19941The command fails if a duplicate name is found.
ef21caaf 19942
a2c02241
NR
19943The frame under which the expression should be evaluated can be
19944specified by @var{frame-addr}. A @samp{*} indicates that the current
19945frame should be used.
922fbb7b 19946
a2c02241
NR
19947@var{expression} is any expression valid on the current language set (must not
19948begin with a @samp{*}), or one of the following:
922fbb7b 19949
a2c02241
NR
19950@itemize @bullet
19951@item
19952@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19953
a2c02241
NR
19954@item
19955@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19956
a2c02241
NR
19957@item
19958@samp{$@var{regname}} --- a CPU register name
19959@end itemize
922fbb7b 19960
a2c02241 19961@subsubheading Result
922fbb7b 19962
a2c02241
NR
19963This operation returns the name, number of children and the type of the
19964object created. Type is returned as a string as the ones generated by
19965the @value{GDBN} CLI:
922fbb7b
AC
19966
19967@smallexample
a2c02241 19968 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19969@end smallexample
19970
a2c02241
NR
19971
19972@subheading The @code{-var-delete} Command
19973@findex -var-delete
922fbb7b
AC
19974
19975@subsubheading Synopsis
19976
19977@smallexample
22d8a470 19978 -var-delete [ -c ] @var{name}
922fbb7b
AC
19979@end smallexample
19980
a2c02241 19981Deletes a previously created variable object and all of its children.
22d8a470 19982With the @samp{-c} option, just deletes the children.
922fbb7b 19983
a2c02241 19984Returns an error if the object @var{name} is not found.
922fbb7b 19985
922fbb7b 19986
a2c02241
NR
19987@subheading The @code{-var-set-format} Command
19988@findex -var-set-format
922fbb7b 19989
a2c02241 19990@subsubheading Synopsis
922fbb7b
AC
19991
19992@smallexample
a2c02241 19993 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19994@end smallexample
19995
a2c02241
NR
19996Sets the output format for the value of the object @var{name} to be
19997@var{format-spec}.
19998
19999The syntax for the @var{format-spec} is as follows:
20000
20001@smallexample
20002 @var{format-spec} @expansion{}
20003 @{binary | decimal | hexadecimal | octal | natural@}
20004@end smallexample
20005
c8b2f53c
VP
20006The natural format is the default format choosen automatically
20007based on the variable type (like decimal for an @code{int}, hex
20008for pointers, etc.).
20009
20010For a variable with children, the format is set only on the
20011variable itself, and the children are not affected.
a2c02241
NR
20012
20013@subheading The @code{-var-show-format} Command
20014@findex -var-show-format
922fbb7b
AC
20015
20016@subsubheading Synopsis
20017
20018@smallexample
a2c02241 20019 -var-show-format @var{name}
922fbb7b
AC
20020@end smallexample
20021
a2c02241 20022Returns the format used to display the value of the object @var{name}.
922fbb7b 20023
a2c02241
NR
20024@smallexample
20025 @var{format} @expansion{}
20026 @var{format-spec}
20027@end smallexample
922fbb7b 20028
922fbb7b 20029
a2c02241
NR
20030@subheading The @code{-var-info-num-children} Command
20031@findex -var-info-num-children
20032
20033@subsubheading Synopsis
20034
20035@smallexample
20036 -var-info-num-children @var{name}
20037@end smallexample
20038
20039Returns the number of children of a variable object @var{name}:
20040
20041@smallexample
20042 numchild=@var{n}
20043@end smallexample
20044
20045
20046@subheading The @code{-var-list-children} Command
20047@findex -var-list-children
20048
20049@subsubheading Synopsis
20050
20051@smallexample
20052 -var-list-children [@var{print-values}] @var{name}
20053@end smallexample
20054@anchor{-var-list-children}
20055
20056Return a list of the children of the specified variable object and
20057create variable objects for them, if they do not already exist. With
20058a single argument or if @var{print-values} has a value for of 0 or
20059@code{--no-values}, print only the names of the variables; if
20060@var{print-values} is 1 or @code{--all-values}, also print their
20061values; and if it is 2 or @code{--simple-values} print the name and
20062value for simple data types and just the name for arrays, structures
20063and unions.
922fbb7b
AC
20064
20065@subsubheading Example
20066
20067@smallexample
594fe323 20068(gdb)
a2c02241
NR
20069 -var-list-children n
20070 ^done,numchild=@var{n},children=[@{name=@var{name},
20071 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20072(gdb)
a2c02241
NR
20073 -var-list-children --all-values n
20074 ^done,numchild=@var{n},children=[@{name=@var{name},
20075 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20076@end smallexample
20077
922fbb7b 20078
a2c02241
NR
20079@subheading The @code{-var-info-type} Command
20080@findex -var-info-type
922fbb7b 20081
a2c02241
NR
20082@subsubheading Synopsis
20083
20084@smallexample
20085 -var-info-type @var{name}
20086@end smallexample
20087
20088Returns the type of the specified variable @var{name}. The type is
20089returned as a string in the same format as it is output by the
20090@value{GDBN} CLI:
20091
20092@smallexample
20093 type=@var{typename}
20094@end smallexample
20095
20096
20097@subheading The @code{-var-info-expression} Command
20098@findex -var-info-expression
922fbb7b
AC
20099
20100@subsubheading Synopsis
20101
20102@smallexample
a2c02241 20103 -var-info-expression @var{name}
922fbb7b
AC
20104@end smallexample
20105
02142340
VP
20106Returns a string that is suitable for presenting this
20107variable object in user interface. The string is generally
20108not valid expression in the current language, and cannot be evaluated.
20109
20110For example, if @code{a} is an array, and variable object
20111@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20112
a2c02241 20113@smallexample
02142340
VP
20114(gdb) -var-info-expression A.1
20115^done,lang="C",exp="1"
a2c02241 20116@end smallexample
922fbb7b 20117
a2c02241 20118@noindent
02142340
VP
20119Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20120
20121Note that the output of the @code{-var-list-children} command also
20122includes those expressions, so the @code{-var-info-expression} command
20123is of limited use.
20124
20125@subheading The @code{-var-info-path-expression} Command
20126@findex -var-info-path-expression
20127
20128@subsubheading Synopsis
20129
20130@smallexample
20131 -var-info-path-expression @var{name}
20132@end smallexample
20133
20134Returns an expression that can be evaluated in the current
20135context and will yield the same value that a variable object has.
20136Compare this with the @code{-var-info-expression} command, which
20137result can be used only for UI presentation. Typical use of
20138the @code{-var-info-path-expression} command is creating a
20139watchpoint from a variable object.
20140
20141For example, suppose @code{C} is a C@t{++} class, derived from class
20142@code{Base}, and that the @code{Base} class has a member called
20143@code{m_size}. Assume a variable @code{c} is has the type of
20144@code{C} and a variable object @code{C} was created for variable
20145@code{c}. Then, we'll get this output:
20146@smallexample
20147(gdb) -var-info-path-expression C.Base.public.m_size
20148^done,path_expr=((Base)c).m_size)
20149@end smallexample
922fbb7b 20150
a2c02241
NR
20151@subheading The @code{-var-show-attributes} Command
20152@findex -var-show-attributes
922fbb7b 20153
a2c02241 20154@subsubheading Synopsis
922fbb7b 20155
a2c02241
NR
20156@smallexample
20157 -var-show-attributes @var{name}
20158@end smallexample
922fbb7b 20159
a2c02241 20160List attributes of the specified variable object @var{name}:
922fbb7b
AC
20161
20162@smallexample
a2c02241 20163 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20164@end smallexample
20165
a2c02241
NR
20166@noindent
20167where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20168
20169@subheading The @code{-var-evaluate-expression} Command
20170@findex -var-evaluate-expression
20171
20172@subsubheading Synopsis
20173
20174@smallexample
20175 -var-evaluate-expression @var{name}
20176@end smallexample
20177
20178Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20179object and returns its value as a string. The format of the
20180string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20181
20182@smallexample
20183 value=@var{value}
20184@end smallexample
20185
20186Note that one must invoke @code{-var-list-children} for a variable
20187before the value of a child variable can be evaluated.
20188
20189@subheading The @code{-var-assign} Command
20190@findex -var-assign
20191
20192@subsubheading Synopsis
20193
20194@smallexample
20195 -var-assign @var{name} @var{expression}
20196@end smallexample
20197
20198Assigns the value of @var{expression} to the variable object specified
20199by @var{name}. The object must be @samp{editable}. If the variable's
20200value is altered by the assign, the variable will show up in any
20201subsequent @code{-var-update} list.
20202
20203@subsubheading Example
922fbb7b
AC
20204
20205@smallexample
594fe323 20206(gdb)
a2c02241
NR
20207-var-assign var1 3
20208^done,value="3"
594fe323 20209(gdb)
a2c02241
NR
20210-var-update *
20211^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20212(gdb)
922fbb7b
AC
20213@end smallexample
20214
a2c02241
NR
20215@subheading The @code{-var-update} Command
20216@findex -var-update
20217
20218@subsubheading Synopsis
20219
20220@smallexample
20221 -var-update [@var{print-values}] @{@var{name} | "*"@}
20222@end smallexample
20223
c8b2f53c
VP
20224Reevaluate the expressions corresponding to the variable object
20225@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20226list of variable objects whose values have changed; @var{name} must
20227be a root variable object. Here, ``changed'' means that the result of
20228@code{-var-evaluate-expression} before and after the
20229@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20230object names, all existing variable objects are updated, except
20231for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20232@var{print-values} determines whether both names and values, or just
20233names are printed. The possible values of this options are the same
20234as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20235recommended to use the @samp{--all-values} option, to reduce the
20236number of MI commands needed on each program stop.
c8b2f53c 20237
a2c02241
NR
20238
20239@subsubheading Example
922fbb7b
AC
20240
20241@smallexample
594fe323 20242(gdb)
a2c02241
NR
20243-var-assign var1 3
20244^done,value="3"
594fe323 20245(gdb)
a2c02241
NR
20246-var-update --all-values var1
20247^done,changelist=[@{name="var1",value="3",in_scope="true",
20248type_changed="false"@}]
594fe323 20249(gdb)
922fbb7b
AC
20250@end smallexample
20251
9f708cb2 20252@anchor{-var-update}
36ece8b3
NR
20253The field in_scope may take three values:
20254
20255@table @code
20256@item "true"
20257The variable object's current value is valid.
20258
20259@item "false"
20260The variable object does not currently hold a valid value but it may
20261hold one in the future if its associated expression comes back into
20262scope.
20263
20264@item "invalid"
20265The variable object no longer holds a valid value.
20266This can occur when the executable file being debugged has changed,
20267either through recompilation or by using the @value{GDBN} @code{file}
20268command. The front end should normally choose to delete these variable
20269objects.
20270@end table
20271
20272In the future new values may be added to this list so the front should
20273be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20274
25d5ea92
VP
20275@subheading The @code{-var-set-frozen} Command
20276@findex -var-set-frozen
9f708cb2 20277@anchor{-var-set-frozen}
25d5ea92
VP
20278
20279@subsubheading Synopsis
20280
20281@smallexample
9f708cb2 20282 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20283@end smallexample
20284
9f708cb2 20285Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20286@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20287frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20288frozen, then neither itself, nor any of its children, are
9f708cb2 20289implicitly updated by @code{-var-update} of
25d5ea92
VP
20290a parent variable or by @code{-var-update *}. Only
20291@code{-var-update} of the variable itself will update its value and
20292values of its children. After a variable object is unfrozen, it is
20293implicitly updated by all subsequent @code{-var-update} operations.
20294Unfreezing a variable does not update it, only subsequent
20295@code{-var-update} does.
20296
20297@subsubheading Example
20298
20299@smallexample
20300(gdb)
20301-var-set-frozen V 1
20302^done
20303(gdb)
20304@end smallexample
20305
20306
a2c02241
NR
20307@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20308@node GDB/MI Data Manipulation
20309@section @sc{gdb/mi} Data Manipulation
922fbb7b 20310
a2c02241
NR
20311@cindex data manipulation, in @sc{gdb/mi}
20312@cindex @sc{gdb/mi}, data manipulation
20313This section describes the @sc{gdb/mi} commands that manipulate data:
20314examine memory and registers, evaluate expressions, etc.
20315
20316@c REMOVED FROM THE INTERFACE.
20317@c @subheading -data-assign
20318@c Change the value of a program variable. Plenty of side effects.
79a6e687 20319@c @subsubheading GDB Command
a2c02241
NR
20320@c set variable
20321@c @subsubheading Example
20322@c N.A.
20323
20324@subheading The @code{-data-disassemble} Command
20325@findex -data-disassemble
922fbb7b
AC
20326
20327@subsubheading Synopsis
20328
20329@smallexample
a2c02241
NR
20330 -data-disassemble
20331 [ -s @var{start-addr} -e @var{end-addr} ]
20332 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20333 -- @var{mode}
922fbb7b
AC
20334@end smallexample
20335
a2c02241
NR
20336@noindent
20337Where:
20338
20339@table @samp
20340@item @var{start-addr}
20341is the beginning address (or @code{$pc})
20342@item @var{end-addr}
20343is the end address
20344@item @var{filename}
20345is the name of the file to disassemble
20346@item @var{linenum}
20347is the line number to disassemble around
20348@item @var{lines}
d3e8051b 20349is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20350the whole function will be disassembled, in case no @var{end-addr} is
20351specified. If @var{end-addr} is specified as a non-zero value, and
20352@var{lines} is lower than the number of disassembly lines between
20353@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20354displayed; if @var{lines} is higher than the number of lines between
20355@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20356are displayed.
20357@item @var{mode}
20358is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20359disassembly).
20360@end table
20361
20362@subsubheading Result
20363
20364The output for each instruction is composed of four fields:
20365
20366@itemize @bullet
20367@item Address
20368@item Func-name
20369@item Offset
20370@item Instruction
20371@end itemize
20372
20373Note that whatever included in the instruction field, is not manipulated
d3e8051b 20374directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20375
20376@subsubheading @value{GDBN} Command
20377
a2c02241 20378There's no direct mapping from this command to the CLI.
922fbb7b
AC
20379
20380@subsubheading Example
20381
a2c02241
NR
20382Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20383
922fbb7b 20384@smallexample
594fe323 20385(gdb)
a2c02241
NR
20386-data-disassemble -s $pc -e "$pc + 20" -- 0
20387^done,
20388asm_insns=[
20389@{address="0x000107c0",func-name="main",offset="4",
20390inst="mov 2, %o0"@},
20391@{address="0x000107c4",func-name="main",offset="8",
20392inst="sethi %hi(0x11800), %o2"@},
20393@{address="0x000107c8",func-name="main",offset="12",
20394inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20395@{address="0x000107cc",func-name="main",offset="16",
20396inst="sethi %hi(0x11800), %o2"@},
20397@{address="0x000107d0",func-name="main",offset="20",
20398inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20399(gdb)
a2c02241
NR
20400@end smallexample
20401
20402Disassemble the whole @code{main} function. Line 32 is part of
20403@code{main}.
20404
20405@smallexample
20406-data-disassemble -f basics.c -l 32 -- 0
20407^done,asm_insns=[
20408@{address="0x000107bc",func-name="main",offset="0",
20409inst="save %sp, -112, %sp"@},
20410@{address="0x000107c0",func-name="main",offset="4",
20411inst="mov 2, %o0"@},
20412@{address="0x000107c4",func-name="main",offset="8",
20413inst="sethi %hi(0x11800), %o2"@},
20414[@dots{}]
20415@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20416@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20417(gdb)
922fbb7b
AC
20418@end smallexample
20419
a2c02241 20420Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20421
a2c02241 20422@smallexample
594fe323 20423(gdb)
a2c02241
NR
20424-data-disassemble -f basics.c -l 32 -n 3 -- 0
20425^done,asm_insns=[
20426@{address="0x000107bc",func-name="main",offset="0",
20427inst="save %sp, -112, %sp"@},
20428@{address="0x000107c0",func-name="main",offset="4",
20429inst="mov 2, %o0"@},
20430@{address="0x000107c4",func-name="main",offset="8",
20431inst="sethi %hi(0x11800), %o2"@}]
594fe323 20432(gdb)
a2c02241
NR
20433@end smallexample
20434
20435Disassemble 3 instructions from the start of @code{main} in mixed mode:
20436
20437@smallexample
594fe323 20438(gdb)
a2c02241
NR
20439-data-disassemble -f basics.c -l 32 -n 3 -- 1
20440^done,asm_insns=[
20441src_and_asm_line=@{line="31",
20442file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20443 testsuite/gdb.mi/basics.c",line_asm_insn=[
20444@{address="0x000107bc",func-name="main",offset="0",
20445inst="save %sp, -112, %sp"@}]@},
20446src_and_asm_line=@{line="32",
20447file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20448 testsuite/gdb.mi/basics.c",line_asm_insn=[
20449@{address="0x000107c0",func-name="main",offset="4",
20450inst="mov 2, %o0"@},
20451@{address="0x000107c4",func-name="main",offset="8",
20452inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20453(gdb)
a2c02241
NR
20454@end smallexample
20455
20456
20457@subheading The @code{-data-evaluate-expression} Command
20458@findex -data-evaluate-expression
922fbb7b
AC
20459
20460@subsubheading Synopsis
20461
20462@smallexample
a2c02241 20463 -data-evaluate-expression @var{expr}
922fbb7b
AC
20464@end smallexample
20465
a2c02241
NR
20466Evaluate @var{expr} as an expression. The expression could contain an
20467inferior function call. The function call will execute synchronously.
20468If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20469
20470@subsubheading @value{GDBN} Command
20471
a2c02241
NR
20472The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20473@samp{call}. In @code{gdbtk} only, there's a corresponding
20474@samp{gdb_eval} command.
922fbb7b
AC
20475
20476@subsubheading Example
20477
a2c02241
NR
20478In the following example, the numbers that precede the commands are the
20479@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20480Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20481output.
20482
922fbb7b 20483@smallexample
a2c02241
NR
20484211-data-evaluate-expression A
20485211^done,value="1"
594fe323 20486(gdb)
a2c02241
NR
20487311-data-evaluate-expression &A
20488311^done,value="0xefffeb7c"
594fe323 20489(gdb)
a2c02241
NR
20490411-data-evaluate-expression A+3
20491411^done,value="4"
594fe323 20492(gdb)
a2c02241
NR
20493511-data-evaluate-expression "A + 3"
20494511^done,value="4"
594fe323 20495(gdb)
a2c02241 20496@end smallexample
922fbb7b
AC
20497
20498
a2c02241
NR
20499@subheading The @code{-data-list-changed-registers} Command
20500@findex -data-list-changed-registers
922fbb7b
AC
20501
20502@subsubheading Synopsis
20503
20504@smallexample
a2c02241 20505 -data-list-changed-registers
922fbb7b
AC
20506@end smallexample
20507
a2c02241 20508Display a list of the registers that have changed.
922fbb7b
AC
20509
20510@subsubheading @value{GDBN} Command
20511
a2c02241
NR
20512@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20513has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20514
20515@subsubheading Example
922fbb7b 20516
a2c02241 20517On a PPC MBX board:
922fbb7b
AC
20518
20519@smallexample
594fe323 20520(gdb)
a2c02241
NR
20521-exec-continue
20522^running
922fbb7b 20523
594fe323 20524(gdb)
a2c02241
NR
20525*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20526args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20527(gdb)
a2c02241
NR
20528-data-list-changed-registers
20529^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20530"10","11","13","14","15","16","17","18","19","20","21","22","23",
20531"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20532(gdb)
a2c02241 20533@end smallexample
922fbb7b
AC
20534
20535
a2c02241
NR
20536@subheading The @code{-data-list-register-names} Command
20537@findex -data-list-register-names
922fbb7b
AC
20538
20539@subsubheading Synopsis
20540
20541@smallexample
a2c02241 20542 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20543@end smallexample
20544
a2c02241
NR
20545Show a list of register names for the current target. If no arguments
20546are given, it shows a list of the names of all the registers. If
20547integer numbers are given as arguments, it will print a list of the
20548names of the registers corresponding to the arguments. To ensure
20549consistency between a register name and its number, the output list may
20550include empty register names.
922fbb7b
AC
20551
20552@subsubheading @value{GDBN} Command
20553
a2c02241
NR
20554@value{GDBN} does not have a command which corresponds to
20555@samp{-data-list-register-names}. In @code{gdbtk} there is a
20556corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20557
20558@subsubheading Example
922fbb7b 20559
a2c02241
NR
20560For the PPC MBX board:
20561@smallexample
594fe323 20562(gdb)
a2c02241
NR
20563-data-list-register-names
20564^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20565"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20566"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20567"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20568"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20569"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20570"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20571(gdb)
a2c02241
NR
20572-data-list-register-names 1 2 3
20573^done,register-names=["r1","r2","r3"]
594fe323 20574(gdb)
a2c02241 20575@end smallexample
922fbb7b 20576
a2c02241
NR
20577@subheading The @code{-data-list-register-values} Command
20578@findex -data-list-register-values
922fbb7b
AC
20579
20580@subsubheading Synopsis
20581
20582@smallexample
a2c02241 20583 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20584@end smallexample
20585
a2c02241
NR
20586Display the registers' contents. @var{fmt} is the format according to
20587which the registers' contents are to be returned, followed by an optional
20588list of numbers specifying the registers to display. A missing list of
20589numbers indicates that the contents of all the registers must be returned.
20590
20591Allowed formats for @var{fmt} are:
20592
20593@table @code
20594@item x
20595Hexadecimal
20596@item o
20597Octal
20598@item t
20599Binary
20600@item d
20601Decimal
20602@item r
20603Raw
20604@item N
20605Natural
20606@end table
922fbb7b
AC
20607
20608@subsubheading @value{GDBN} Command
20609
a2c02241
NR
20610The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20611all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20612
20613@subsubheading Example
922fbb7b 20614
a2c02241
NR
20615For a PPC MBX board (note: line breaks are for readability only, they
20616don't appear in the actual output):
20617
20618@smallexample
594fe323 20619(gdb)
a2c02241
NR
20620-data-list-register-values r 64 65
20621^done,register-values=[@{number="64",value="0xfe00a300"@},
20622@{number="65",value="0x00029002"@}]
594fe323 20623(gdb)
a2c02241
NR
20624-data-list-register-values x
20625^done,register-values=[@{number="0",value="0xfe0043c8"@},
20626@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20627@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20628@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20629@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20630@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20631@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20632@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20633@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20634@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20635@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20636@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20637@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20638@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20639@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20640@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20641@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20642@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20643@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20644@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20645@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20646@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20647@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20648@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20649@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20650@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20651@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20652@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20653@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20654@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20655@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20656@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20657@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20658@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20659@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20660@{number="69",value="0x20002b03"@}]
594fe323 20661(gdb)
a2c02241 20662@end smallexample
922fbb7b 20663
a2c02241
NR
20664
20665@subheading The @code{-data-read-memory} Command
20666@findex -data-read-memory
922fbb7b
AC
20667
20668@subsubheading Synopsis
20669
20670@smallexample
a2c02241
NR
20671 -data-read-memory [ -o @var{byte-offset} ]
20672 @var{address} @var{word-format} @var{word-size}
20673 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20674@end smallexample
20675
a2c02241
NR
20676@noindent
20677where:
922fbb7b 20678
a2c02241
NR
20679@table @samp
20680@item @var{address}
20681An expression specifying the address of the first memory word to be
20682read. Complex expressions containing embedded white space should be
20683quoted using the C convention.
922fbb7b 20684
a2c02241
NR
20685@item @var{word-format}
20686The format to be used to print the memory words. The notation is the
20687same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20688,Output Formats}).
922fbb7b 20689
a2c02241
NR
20690@item @var{word-size}
20691The size of each memory word in bytes.
922fbb7b 20692
a2c02241
NR
20693@item @var{nr-rows}
20694The number of rows in the output table.
922fbb7b 20695
a2c02241
NR
20696@item @var{nr-cols}
20697The number of columns in the output table.
922fbb7b 20698
a2c02241
NR
20699@item @var{aschar}
20700If present, indicates that each row should include an @sc{ascii} dump. The
20701value of @var{aschar} is used as a padding character when a byte is not a
20702member of the printable @sc{ascii} character set (printable @sc{ascii}
20703characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20704
a2c02241
NR
20705@item @var{byte-offset}
20706An offset to add to the @var{address} before fetching memory.
20707@end table
922fbb7b 20708
a2c02241
NR
20709This command displays memory contents as a table of @var{nr-rows} by
20710@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20711@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20712(returned as @samp{total-bytes}). Should less than the requested number
20713of bytes be returned by the target, the missing words are identified
20714using @samp{N/A}. The number of bytes read from the target is returned
20715in @samp{nr-bytes} and the starting address used to read memory in
20716@samp{addr}.
20717
20718The address of the next/previous row or page is available in
20719@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20720@samp{prev-page}.
922fbb7b
AC
20721
20722@subsubheading @value{GDBN} Command
20723
a2c02241
NR
20724The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20725@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20726
20727@subsubheading Example
32e7087d 20728
a2c02241
NR
20729Read six bytes of memory starting at @code{bytes+6} but then offset by
20730@code{-6} bytes. Format as three rows of two columns. One byte per
20731word. Display each word in hex.
32e7087d
JB
20732
20733@smallexample
594fe323 20734(gdb)
a2c02241
NR
207359-data-read-memory -o -6 -- bytes+6 x 1 3 2
207369^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20737next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20738prev-page="0x0000138a",memory=[
20739@{addr="0x00001390",data=["0x00","0x01"]@},
20740@{addr="0x00001392",data=["0x02","0x03"]@},
20741@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20742(gdb)
32e7087d
JB
20743@end smallexample
20744
a2c02241
NR
20745Read two bytes of memory starting at address @code{shorts + 64} and
20746display as a single word formatted in decimal.
32e7087d 20747
32e7087d 20748@smallexample
594fe323 20749(gdb)
a2c02241
NR
207505-data-read-memory shorts+64 d 2 1 1
207515^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20752next-row="0x00001512",prev-row="0x0000150e",
20753next-page="0x00001512",prev-page="0x0000150e",memory=[
20754@{addr="0x00001510",data=["128"]@}]
594fe323 20755(gdb)
32e7087d
JB
20756@end smallexample
20757
a2c02241
NR
20758Read thirty two bytes of memory starting at @code{bytes+16} and format
20759as eight rows of four columns. Include a string encoding with @samp{x}
20760used as the non-printable character.
922fbb7b
AC
20761
20762@smallexample
594fe323 20763(gdb)
a2c02241
NR
207644-data-read-memory bytes+16 x 1 8 4 x
207654^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20766next-row="0x000013c0",prev-row="0x0000139c",
20767next-page="0x000013c0",prev-page="0x00001380",memory=[
20768@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20769@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20770@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20771@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20772@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20773@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20774@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20775@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20776(gdb)
922fbb7b
AC
20777@end smallexample
20778
a2c02241
NR
20779@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20780@node GDB/MI Tracepoint Commands
20781@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20782
a2c02241 20783The tracepoint commands are not yet implemented.
922fbb7b 20784
a2c02241 20785@c @subheading -trace-actions
922fbb7b 20786
a2c02241 20787@c @subheading -trace-delete
922fbb7b 20788
a2c02241 20789@c @subheading -trace-disable
922fbb7b 20790
a2c02241 20791@c @subheading -trace-dump
922fbb7b 20792
a2c02241 20793@c @subheading -trace-enable
922fbb7b 20794
a2c02241 20795@c @subheading -trace-exists
922fbb7b 20796
a2c02241 20797@c @subheading -trace-find
922fbb7b 20798
a2c02241 20799@c @subheading -trace-frame-number
922fbb7b 20800
a2c02241 20801@c @subheading -trace-info
922fbb7b 20802
a2c02241 20803@c @subheading -trace-insert
922fbb7b 20804
a2c02241 20805@c @subheading -trace-list
922fbb7b 20806
a2c02241 20807@c @subheading -trace-pass-count
922fbb7b 20808
a2c02241 20809@c @subheading -trace-save
922fbb7b 20810
a2c02241 20811@c @subheading -trace-start
922fbb7b 20812
a2c02241 20813@c @subheading -trace-stop
922fbb7b 20814
922fbb7b 20815
a2c02241
NR
20816@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20817@node GDB/MI Symbol Query
20818@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20819
20820
a2c02241
NR
20821@subheading The @code{-symbol-info-address} Command
20822@findex -symbol-info-address
922fbb7b
AC
20823
20824@subsubheading Synopsis
20825
20826@smallexample
a2c02241 20827 -symbol-info-address @var{symbol}
922fbb7b
AC
20828@end smallexample
20829
a2c02241 20830Describe where @var{symbol} is stored.
922fbb7b
AC
20831
20832@subsubheading @value{GDBN} Command
20833
a2c02241 20834The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20835
20836@subsubheading Example
20837N.A.
20838
20839
a2c02241
NR
20840@subheading The @code{-symbol-info-file} Command
20841@findex -symbol-info-file
922fbb7b
AC
20842
20843@subsubheading Synopsis
20844
20845@smallexample
a2c02241 20846 -symbol-info-file
922fbb7b
AC
20847@end smallexample
20848
a2c02241 20849Show the file for the symbol.
922fbb7b 20850
a2c02241 20851@subsubheading @value{GDBN} Command
922fbb7b 20852
a2c02241
NR
20853There's no equivalent @value{GDBN} command. @code{gdbtk} has
20854@samp{gdb_find_file}.
922fbb7b
AC
20855
20856@subsubheading Example
20857N.A.
20858
20859
a2c02241
NR
20860@subheading The @code{-symbol-info-function} Command
20861@findex -symbol-info-function
922fbb7b
AC
20862
20863@subsubheading Synopsis
20864
20865@smallexample
a2c02241 20866 -symbol-info-function
922fbb7b
AC
20867@end smallexample
20868
a2c02241 20869Show which function the symbol lives in.
922fbb7b
AC
20870
20871@subsubheading @value{GDBN} Command
20872
a2c02241 20873@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20874
20875@subsubheading Example
20876N.A.
20877
20878
a2c02241
NR
20879@subheading The @code{-symbol-info-line} Command
20880@findex -symbol-info-line
922fbb7b
AC
20881
20882@subsubheading Synopsis
20883
20884@smallexample
a2c02241 20885 -symbol-info-line
922fbb7b
AC
20886@end smallexample
20887
a2c02241 20888Show the core addresses of the code for a source line.
922fbb7b 20889
a2c02241 20890@subsubheading @value{GDBN} Command
922fbb7b 20891
a2c02241
NR
20892The corresponding @value{GDBN} command is @samp{info line}.
20893@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20894
20895@subsubheading Example
a2c02241 20896N.A.
922fbb7b
AC
20897
20898
a2c02241
NR
20899@subheading The @code{-symbol-info-symbol} Command
20900@findex -symbol-info-symbol
07f31aa6
DJ
20901
20902@subsubheading Synopsis
20903
a2c02241
NR
20904@smallexample
20905 -symbol-info-symbol @var{addr}
20906@end smallexample
07f31aa6 20907
a2c02241 20908Describe what symbol is at location @var{addr}.
07f31aa6 20909
a2c02241 20910@subsubheading @value{GDBN} Command
07f31aa6 20911
a2c02241 20912The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20913
20914@subsubheading Example
a2c02241 20915N.A.
07f31aa6
DJ
20916
20917
a2c02241
NR
20918@subheading The @code{-symbol-list-functions} Command
20919@findex -symbol-list-functions
922fbb7b
AC
20920
20921@subsubheading Synopsis
20922
20923@smallexample
a2c02241 20924 -symbol-list-functions
922fbb7b
AC
20925@end smallexample
20926
a2c02241 20927List the functions in the executable.
922fbb7b
AC
20928
20929@subsubheading @value{GDBN} Command
20930
a2c02241
NR
20931@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20932@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20933
20934@subsubheading Example
a2c02241 20935N.A.
922fbb7b
AC
20936
20937
a2c02241
NR
20938@subheading The @code{-symbol-list-lines} Command
20939@findex -symbol-list-lines
922fbb7b
AC
20940
20941@subsubheading Synopsis
20942
20943@smallexample
a2c02241 20944 -symbol-list-lines @var{filename}
922fbb7b
AC
20945@end smallexample
20946
a2c02241
NR
20947Print the list of lines that contain code and their associated program
20948addresses for the given source filename. The entries are sorted in
20949ascending PC order.
922fbb7b
AC
20950
20951@subsubheading @value{GDBN} Command
20952
a2c02241 20953There is no corresponding @value{GDBN} command.
922fbb7b
AC
20954
20955@subsubheading Example
a2c02241 20956@smallexample
594fe323 20957(gdb)
a2c02241
NR
20958-symbol-list-lines basics.c
20959^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20960(gdb)
a2c02241 20961@end smallexample
922fbb7b
AC
20962
20963
a2c02241
NR
20964@subheading The @code{-symbol-list-types} Command
20965@findex -symbol-list-types
922fbb7b
AC
20966
20967@subsubheading Synopsis
20968
20969@smallexample
a2c02241 20970 -symbol-list-types
922fbb7b
AC
20971@end smallexample
20972
a2c02241 20973List all the type names.
922fbb7b
AC
20974
20975@subsubheading @value{GDBN} Command
20976
a2c02241
NR
20977The corresponding commands are @samp{info types} in @value{GDBN},
20978@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20979
20980@subsubheading Example
20981N.A.
20982
20983
a2c02241
NR
20984@subheading The @code{-symbol-list-variables} Command
20985@findex -symbol-list-variables
922fbb7b
AC
20986
20987@subsubheading Synopsis
20988
20989@smallexample
a2c02241 20990 -symbol-list-variables
922fbb7b
AC
20991@end smallexample
20992
a2c02241 20993List all the global and static variable names.
922fbb7b
AC
20994
20995@subsubheading @value{GDBN} Command
20996
a2c02241 20997@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20998
20999@subsubheading Example
21000N.A.
21001
21002
a2c02241
NR
21003@subheading The @code{-symbol-locate} Command
21004@findex -symbol-locate
922fbb7b
AC
21005
21006@subsubheading Synopsis
21007
21008@smallexample
a2c02241 21009 -symbol-locate
922fbb7b
AC
21010@end smallexample
21011
922fbb7b
AC
21012@subsubheading @value{GDBN} Command
21013
a2c02241 21014@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21015
21016@subsubheading Example
21017N.A.
21018
21019
a2c02241
NR
21020@subheading The @code{-symbol-type} Command
21021@findex -symbol-type
922fbb7b
AC
21022
21023@subsubheading Synopsis
21024
21025@smallexample
a2c02241 21026 -symbol-type @var{variable}
922fbb7b
AC
21027@end smallexample
21028
a2c02241 21029Show type of @var{variable}.
922fbb7b 21030
a2c02241 21031@subsubheading @value{GDBN} Command
922fbb7b 21032
a2c02241
NR
21033The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21034@samp{gdb_obj_variable}.
21035
21036@subsubheading Example
21037N.A.
21038
21039
21040@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21041@node GDB/MI File Commands
21042@section @sc{gdb/mi} File Commands
21043
21044This section describes the GDB/MI commands to specify executable file names
21045and to read in and obtain symbol table information.
21046
21047@subheading The @code{-file-exec-and-symbols} Command
21048@findex -file-exec-and-symbols
21049
21050@subsubheading Synopsis
922fbb7b
AC
21051
21052@smallexample
a2c02241 21053 -file-exec-and-symbols @var{file}
922fbb7b
AC
21054@end smallexample
21055
a2c02241
NR
21056Specify the executable file to be debugged. This file is the one from
21057which the symbol table is also read. If no file is specified, the
21058command clears the executable and symbol information. If breakpoints
21059are set when using this command with no arguments, @value{GDBN} will produce
21060error messages. Otherwise, no output is produced, except a completion
21061notification.
21062
922fbb7b
AC
21063@subsubheading @value{GDBN} Command
21064
a2c02241 21065The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21066
21067@subsubheading Example
21068
21069@smallexample
594fe323 21070(gdb)
a2c02241
NR
21071-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21072^done
594fe323 21073(gdb)
922fbb7b
AC
21074@end smallexample
21075
922fbb7b 21076
a2c02241
NR
21077@subheading The @code{-file-exec-file} Command
21078@findex -file-exec-file
922fbb7b
AC
21079
21080@subsubheading Synopsis
21081
21082@smallexample
a2c02241 21083 -file-exec-file @var{file}
922fbb7b
AC
21084@end smallexample
21085
a2c02241
NR
21086Specify the executable file to be debugged. Unlike
21087@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21088from this file. If used without argument, @value{GDBN} clears the information
21089about the executable file. No output is produced, except a completion
21090notification.
922fbb7b 21091
a2c02241
NR
21092@subsubheading @value{GDBN} Command
21093
21094The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21095
21096@subsubheading Example
a2c02241
NR
21097
21098@smallexample
594fe323 21099(gdb)
a2c02241
NR
21100-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21101^done
594fe323 21102(gdb)
a2c02241 21103@end smallexample
922fbb7b
AC
21104
21105
a2c02241
NR
21106@subheading The @code{-file-list-exec-sections} Command
21107@findex -file-list-exec-sections
922fbb7b
AC
21108
21109@subsubheading Synopsis
21110
21111@smallexample
a2c02241 21112 -file-list-exec-sections
922fbb7b
AC
21113@end smallexample
21114
a2c02241
NR
21115List the sections of the current executable file.
21116
922fbb7b
AC
21117@subsubheading @value{GDBN} Command
21118
a2c02241
NR
21119The @value{GDBN} command @samp{info file} shows, among the rest, the same
21120information as this command. @code{gdbtk} has a corresponding command
21121@samp{gdb_load_info}.
922fbb7b
AC
21122
21123@subsubheading Example
21124N.A.
21125
21126
a2c02241
NR
21127@subheading The @code{-file-list-exec-source-file} Command
21128@findex -file-list-exec-source-file
922fbb7b
AC
21129
21130@subsubheading Synopsis
21131
21132@smallexample
a2c02241 21133 -file-list-exec-source-file
922fbb7b
AC
21134@end smallexample
21135
a2c02241 21136List the line number, the current source file, and the absolute path
44288b44
NR
21137to the current source file for the current executable. The macro
21138information field has a value of @samp{1} or @samp{0} depending on
21139whether or not the file includes preprocessor macro information.
922fbb7b
AC
21140
21141@subsubheading @value{GDBN} Command
21142
a2c02241 21143The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21144
21145@subsubheading Example
21146
922fbb7b 21147@smallexample
594fe323 21148(gdb)
a2c02241 21149123-file-list-exec-source-file
44288b44 21150123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21151(gdb)
922fbb7b
AC
21152@end smallexample
21153
21154
a2c02241
NR
21155@subheading The @code{-file-list-exec-source-files} Command
21156@findex -file-list-exec-source-files
922fbb7b
AC
21157
21158@subsubheading Synopsis
21159
21160@smallexample
a2c02241 21161 -file-list-exec-source-files
922fbb7b
AC
21162@end smallexample
21163
a2c02241
NR
21164List the source files for the current executable.
21165
3f94c067
BW
21166It will always output the filename, but only when @value{GDBN} can find
21167the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21168
21169@subsubheading @value{GDBN} Command
21170
a2c02241
NR
21171The @value{GDBN} equivalent is @samp{info sources}.
21172@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21173
21174@subsubheading Example
922fbb7b 21175@smallexample
594fe323 21176(gdb)
a2c02241
NR
21177-file-list-exec-source-files
21178^done,files=[
21179@{file=foo.c,fullname=/home/foo.c@},
21180@{file=/home/bar.c,fullname=/home/bar.c@},
21181@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21182(gdb)
922fbb7b
AC
21183@end smallexample
21184
a2c02241
NR
21185@subheading The @code{-file-list-shared-libraries} Command
21186@findex -file-list-shared-libraries
922fbb7b 21187
a2c02241 21188@subsubheading Synopsis
922fbb7b 21189
a2c02241
NR
21190@smallexample
21191 -file-list-shared-libraries
21192@end smallexample
922fbb7b 21193
a2c02241 21194List the shared libraries in the program.
922fbb7b 21195
a2c02241 21196@subsubheading @value{GDBN} Command
922fbb7b 21197
a2c02241 21198The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21199
a2c02241
NR
21200@subsubheading Example
21201N.A.
922fbb7b
AC
21202
21203
a2c02241
NR
21204@subheading The @code{-file-list-symbol-files} Command
21205@findex -file-list-symbol-files
922fbb7b 21206
a2c02241 21207@subsubheading Synopsis
922fbb7b 21208
a2c02241
NR
21209@smallexample
21210 -file-list-symbol-files
21211@end smallexample
922fbb7b 21212
a2c02241 21213List symbol files.
922fbb7b 21214
a2c02241 21215@subsubheading @value{GDBN} Command
922fbb7b 21216
a2c02241 21217The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21218
a2c02241
NR
21219@subsubheading Example
21220N.A.
922fbb7b 21221
922fbb7b 21222
a2c02241
NR
21223@subheading The @code{-file-symbol-file} Command
21224@findex -file-symbol-file
922fbb7b 21225
a2c02241 21226@subsubheading Synopsis
922fbb7b 21227
a2c02241
NR
21228@smallexample
21229 -file-symbol-file @var{file}
21230@end smallexample
922fbb7b 21231
a2c02241
NR
21232Read symbol table info from the specified @var{file} argument. When
21233used without arguments, clears @value{GDBN}'s symbol table info. No output is
21234produced, except for a completion notification.
922fbb7b 21235
a2c02241 21236@subsubheading @value{GDBN} Command
922fbb7b 21237
a2c02241 21238The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21239
a2c02241 21240@subsubheading Example
922fbb7b 21241
a2c02241 21242@smallexample
594fe323 21243(gdb)
a2c02241
NR
21244-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21245^done
594fe323 21246(gdb)
a2c02241 21247@end smallexample
922fbb7b 21248
a2c02241 21249@ignore
a2c02241
NR
21250@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21251@node GDB/MI Memory Overlay Commands
21252@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21253
a2c02241 21254The memory overlay commands are not implemented.
922fbb7b 21255
a2c02241 21256@c @subheading -overlay-auto
922fbb7b 21257
a2c02241 21258@c @subheading -overlay-list-mapping-state
922fbb7b 21259
a2c02241 21260@c @subheading -overlay-list-overlays
922fbb7b 21261
a2c02241 21262@c @subheading -overlay-map
922fbb7b 21263
a2c02241 21264@c @subheading -overlay-off
922fbb7b 21265
a2c02241 21266@c @subheading -overlay-on
922fbb7b 21267
a2c02241 21268@c @subheading -overlay-unmap
922fbb7b 21269
a2c02241
NR
21270@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21271@node GDB/MI Signal Handling Commands
21272@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21273
a2c02241 21274Signal handling commands are not implemented.
922fbb7b 21275
a2c02241 21276@c @subheading -signal-handle
922fbb7b 21277
a2c02241 21278@c @subheading -signal-list-handle-actions
922fbb7b 21279
a2c02241
NR
21280@c @subheading -signal-list-signal-types
21281@end ignore
922fbb7b 21282
922fbb7b 21283
a2c02241
NR
21284@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21285@node GDB/MI Target Manipulation
21286@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21287
21288
a2c02241
NR
21289@subheading The @code{-target-attach} Command
21290@findex -target-attach
922fbb7b
AC
21291
21292@subsubheading Synopsis
21293
21294@smallexample
a2c02241 21295 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21296@end smallexample
21297
a2c02241 21298Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21299
79a6e687 21300@subsubheading @value{GDBN} Command
922fbb7b 21301
a2c02241 21302The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21303
a2c02241
NR
21304@subsubheading Example
21305N.A.
922fbb7b 21306
a2c02241
NR
21307
21308@subheading The @code{-target-compare-sections} Command
21309@findex -target-compare-sections
922fbb7b
AC
21310
21311@subsubheading Synopsis
21312
21313@smallexample
a2c02241 21314 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21315@end smallexample
21316
a2c02241
NR
21317Compare data of section @var{section} on target to the exec file.
21318Without the argument, all sections are compared.
922fbb7b 21319
a2c02241 21320@subsubheading @value{GDBN} Command
922fbb7b 21321
a2c02241 21322The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21323
a2c02241
NR
21324@subsubheading Example
21325N.A.
21326
21327
21328@subheading The @code{-target-detach} Command
21329@findex -target-detach
922fbb7b
AC
21330
21331@subsubheading Synopsis
21332
21333@smallexample
a2c02241 21334 -target-detach
922fbb7b
AC
21335@end smallexample
21336
a2c02241
NR
21337Detach from the remote target which normally resumes its execution.
21338There's no output.
21339
79a6e687 21340@subsubheading @value{GDBN} Command
a2c02241
NR
21341
21342The corresponding @value{GDBN} command is @samp{detach}.
21343
21344@subsubheading Example
922fbb7b
AC
21345
21346@smallexample
594fe323 21347(gdb)
a2c02241
NR
21348-target-detach
21349^done
594fe323 21350(gdb)
922fbb7b
AC
21351@end smallexample
21352
21353
a2c02241
NR
21354@subheading The @code{-target-disconnect} Command
21355@findex -target-disconnect
922fbb7b
AC
21356
21357@subsubheading Synopsis
21358
123dc839 21359@smallexample
a2c02241 21360 -target-disconnect
123dc839 21361@end smallexample
922fbb7b 21362
a2c02241
NR
21363Disconnect from the remote target. There's no output and the target is
21364generally not resumed.
21365
79a6e687 21366@subsubheading @value{GDBN} Command
a2c02241
NR
21367
21368The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21369
21370@subsubheading Example
922fbb7b
AC
21371
21372@smallexample
594fe323 21373(gdb)
a2c02241
NR
21374-target-disconnect
21375^done
594fe323 21376(gdb)
922fbb7b
AC
21377@end smallexample
21378
21379
a2c02241
NR
21380@subheading The @code{-target-download} Command
21381@findex -target-download
922fbb7b
AC
21382
21383@subsubheading Synopsis
21384
21385@smallexample
a2c02241 21386 -target-download
922fbb7b
AC
21387@end smallexample
21388
a2c02241
NR
21389Loads the executable onto the remote target.
21390It prints out an update message every half second, which includes the fields:
21391
21392@table @samp
21393@item section
21394The name of the section.
21395@item section-sent
21396The size of what has been sent so far for that section.
21397@item section-size
21398The size of the section.
21399@item total-sent
21400The total size of what was sent so far (the current and the previous sections).
21401@item total-size
21402The size of the overall executable to download.
21403@end table
21404
21405@noindent
21406Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21407@sc{gdb/mi} Output Syntax}).
21408
21409In addition, it prints the name and size of the sections, as they are
21410downloaded. These messages include the following fields:
21411
21412@table @samp
21413@item section
21414The name of the section.
21415@item section-size
21416The size of the section.
21417@item total-size
21418The size of the overall executable to download.
21419@end table
21420
21421@noindent
21422At the end, a summary is printed.
21423
21424@subsubheading @value{GDBN} Command
21425
21426The corresponding @value{GDBN} command is @samp{load}.
21427
21428@subsubheading Example
21429
21430Note: each status message appears on a single line. Here the messages
21431have been broken down so that they can fit onto a page.
922fbb7b
AC
21432
21433@smallexample
594fe323 21434(gdb)
a2c02241
NR
21435-target-download
21436+download,@{section=".text",section-size="6668",total-size="9880"@}
21437+download,@{section=".text",section-sent="512",section-size="6668",
21438total-sent="512",total-size="9880"@}
21439+download,@{section=".text",section-sent="1024",section-size="6668",
21440total-sent="1024",total-size="9880"@}
21441+download,@{section=".text",section-sent="1536",section-size="6668",
21442total-sent="1536",total-size="9880"@}
21443+download,@{section=".text",section-sent="2048",section-size="6668",
21444total-sent="2048",total-size="9880"@}
21445+download,@{section=".text",section-sent="2560",section-size="6668",
21446total-sent="2560",total-size="9880"@}
21447+download,@{section=".text",section-sent="3072",section-size="6668",
21448total-sent="3072",total-size="9880"@}
21449+download,@{section=".text",section-sent="3584",section-size="6668",
21450total-sent="3584",total-size="9880"@}
21451+download,@{section=".text",section-sent="4096",section-size="6668",
21452total-sent="4096",total-size="9880"@}
21453+download,@{section=".text",section-sent="4608",section-size="6668",
21454total-sent="4608",total-size="9880"@}
21455+download,@{section=".text",section-sent="5120",section-size="6668",
21456total-sent="5120",total-size="9880"@}
21457+download,@{section=".text",section-sent="5632",section-size="6668",
21458total-sent="5632",total-size="9880"@}
21459+download,@{section=".text",section-sent="6144",section-size="6668",
21460total-sent="6144",total-size="9880"@}
21461+download,@{section=".text",section-sent="6656",section-size="6668",
21462total-sent="6656",total-size="9880"@}
21463+download,@{section=".init",section-size="28",total-size="9880"@}
21464+download,@{section=".fini",section-size="28",total-size="9880"@}
21465+download,@{section=".data",section-size="3156",total-size="9880"@}
21466+download,@{section=".data",section-sent="512",section-size="3156",
21467total-sent="7236",total-size="9880"@}
21468+download,@{section=".data",section-sent="1024",section-size="3156",
21469total-sent="7748",total-size="9880"@}
21470+download,@{section=".data",section-sent="1536",section-size="3156",
21471total-sent="8260",total-size="9880"@}
21472+download,@{section=".data",section-sent="2048",section-size="3156",
21473total-sent="8772",total-size="9880"@}
21474+download,@{section=".data",section-sent="2560",section-size="3156",
21475total-sent="9284",total-size="9880"@}
21476+download,@{section=".data",section-sent="3072",section-size="3156",
21477total-sent="9796",total-size="9880"@}
21478^done,address="0x10004",load-size="9880",transfer-rate="6586",
21479write-rate="429"
594fe323 21480(gdb)
922fbb7b
AC
21481@end smallexample
21482
21483
a2c02241
NR
21484@subheading The @code{-target-exec-status} Command
21485@findex -target-exec-status
922fbb7b
AC
21486
21487@subsubheading Synopsis
21488
21489@smallexample
a2c02241 21490 -target-exec-status
922fbb7b
AC
21491@end smallexample
21492
a2c02241
NR
21493Provide information on the state of the target (whether it is running or
21494not, for instance).
922fbb7b 21495
a2c02241 21496@subsubheading @value{GDBN} Command
922fbb7b 21497
a2c02241
NR
21498There's no equivalent @value{GDBN} command.
21499
21500@subsubheading Example
21501N.A.
922fbb7b 21502
a2c02241
NR
21503
21504@subheading The @code{-target-list-available-targets} Command
21505@findex -target-list-available-targets
922fbb7b
AC
21506
21507@subsubheading Synopsis
21508
21509@smallexample
a2c02241 21510 -target-list-available-targets
922fbb7b
AC
21511@end smallexample
21512
a2c02241 21513List the possible targets to connect to.
922fbb7b 21514
a2c02241 21515@subsubheading @value{GDBN} Command
922fbb7b 21516
a2c02241 21517The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21518
a2c02241
NR
21519@subsubheading Example
21520N.A.
21521
21522
21523@subheading The @code{-target-list-current-targets} Command
21524@findex -target-list-current-targets
922fbb7b
AC
21525
21526@subsubheading Synopsis
21527
21528@smallexample
a2c02241 21529 -target-list-current-targets
922fbb7b
AC
21530@end smallexample
21531
a2c02241 21532Describe the current target.
922fbb7b 21533
a2c02241 21534@subsubheading @value{GDBN} Command
922fbb7b 21535
a2c02241
NR
21536The corresponding information is printed by @samp{info file} (among
21537other things).
922fbb7b 21538
a2c02241
NR
21539@subsubheading Example
21540N.A.
21541
21542
21543@subheading The @code{-target-list-parameters} Command
21544@findex -target-list-parameters
922fbb7b
AC
21545
21546@subsubheading Synopsis
21547
21548@smallexample
a2c02241 21549 -target-list-parameters
922fbb7b
AC
21550@end smallexample
21551
a2c02241
NR
21552@c ????
21553
21554@subsubheading @value{GDBN} Command
21555
21556No equivalent.
922fbb7b
AC
21557
21558@subsubheading Example
a2c02241
NR
21559N.A.
21560
21561
21562@subheading The @code{-target-select} Command
21563@findex -target-select
21564
21565@subsubheading Synopsis
922fbb7b
AC
21566
21567@smallexample
a2c02241 21568 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21569@end smallexample
21570
a2c02241 21571Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21572
a2c02241
NR
21573@table @samp
21574@item @var{type}
21575The type of target, for instance @samp{async}, @samp{remote}, etc.
21576@item @var{parameters}
21577Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21578Commands for Managing Targets}, for more details.
a2c02241
NR
21579@end table
21580
21581The output is a connection notification, followed by the address at
21582which the target program is, in the following form:
922fbb7b
AC
21583
21584@smallexample
a2c02241
NR
21585^connected,addr="@var{address}",func="@var{function name}",
21586 args=[@var{arg list}]
922fbb7b
AC
21587@end smallexample
21588
a2c02241
NR
21589@subsubheading @value{GDBN} Command
21590
21591The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21592
21593@subsubheading Example
922fbb7b 21594
265eeb58 21595@smallexample
594fe323 21596(gdb)
a2c02241
NR
21597-target-select async /dev/ttya
21598^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21599(gdb)
265eeb58 21600@end smallexample
ef21caaf 21601
a6b151f1
DJ
21602@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21603@node GDB/MI File Transfer Commands
21604@section @sc{gdb/mi} File Transfer Commands
21605
21606
21607@subheading The @code{-target-file-put} Command
21608@findex -target-file-put
21609
21610@subsubheading Synopsis
21611
21612@smallexample
21613 -target-file-put @var{hostfile} @var{targetfile}
21614@end smallexample
21615
21616Copy file @var{hostfile} from the host system (the machine running
21617@value{GDBN}) to @var{targetfile} on the target system.
21618
21619@subsubheading @value{GDBN} Command
21620
21621The corresponding @value{GDBN} command is @samp{remote put}.
21622
21623@subsubheading Example
21624
21625@smallexample
21626(gdb)
21627-target-file-put localfile remotefile
21628^done
21629(gdb)
21630@end smallexample
21631
21632
21633@subheading The @code{-target-file-put} Command
21634@findex -target-file-get
21635
21636@subsubheading Synopsis
21637
21638@smallexample
21639 -target-file-get @var{targetfile} @var{hostfile}
21640@end smallexample
21641
21642Copy file @var{targetfile} from the target system to @var{hostfile}
21643on the host system.
21644
21645@subsubheading @value{GDBN} Command
21646
21647The corresponding @value{GDBN} command is @samp{remote get}.
21648
21649@subsubheading Example
21650
21651@smallexample
21652(gdb)
21653-target-file-get remotefile localfile
21654^done
21655(gdb)
21656@end smallexample
21657
21658
21659@subheading The @code{-target-file-delete} Command
21660@findex -target-file-delete
21661
21662@subsubheading Synopsis
21663
21664@smallexample
21665 -target-file-delete @var{targetfile}
21666@end smallexample
21667
21668Delete @var{targetfile} from the target system.
21669
21670@subsubheading @value{GDBN} Command
21671
21672The corresponding @value{GDBN} command is @samp{remote delete}.
21673
21674@subsubheading Example
21675
21676@smallexample
21677(gdb)
21678-target-file-delete remotefile
21679^done
21680(gdb)
21681@end smallexample
21682
21683
ef21caaf
NR
21684@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21685@node GDB/MI Miscellaneous Commands
21686@section Miscellaneous @sc{gdb/mi} Commands
21687
21688@c @subheading -gdb-complete
21689
21690@subheading The @code{-gdb-exit} Command
21691@findex -gdb-exit
21692
21693@subsubheading Synopsis
21694
21695@smallexample
21696 -gdb-exit
21697@end smallexample
21698
21699Exit @value{GDBN} immediately.
21700
21701@subsubheading @value{GDBN} Command
21702
21703Approximately corresponds to @samp{quit}.
21704
21705@subsubheading Example
21706
21707@smallexample
594fe323 21708(gdb)
ef21caaf
NR
21709-gdb-exit
21710^exit
21711@end smallexample
21712
a2c02241
NR
21713
21714@subheading The @code{-exec-abort} Command
21715@findex -exec-abort
21716
21717@subsubheading Synopsis
21718
21719@smallexample
21720 -exec-abort
21721@end smallexample
21722
21723Kill the inferior running program.
21724
21725@subsubheading @value{GDBN} Command
21726
21727The corresponding @value{GDBN} command is @samp{kill}.
21728
21729@subsubheading Example
21730N.A.
21731
21732
ef21caaf
NR
21733@subheading The @code{-gdb-set} Command
21734@findex -gdb-set
21735
21736@subsubheading Synopsis
21737
21738@smallexample
21739 -gdb-set
21740@end smallexample
21741
21742Set an internal @value{GDBN} variable.
21743@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21744
21745@subsubheading @value{GDBN} Command
21746
21747The corresponding @value{GDBN} command is @samp{set}.
21748
21749@subsubheading Example
21750
21751@smallexample
594fe323 21752(gdb)
ef21caaf
NR
21753-gdb-set $foo=3
21754^done
594fe323 21755(gdb)
ef21caaf
NR
21756@end smallexample
21757
21758
21759@subheading The @code{-gdb-show} Command
21760@findex -gdb-show
21761
21762@subsubheading Synopsis
21763
21764@smallexample
21765 -gdb-show
21766@end smallexample
21767
21768Show the current value of a @value{GDBN} variable.
21769
79a6e687 21770@subsubheading @value{GDBN} Command
ef21caaf
NR
21771
21772The corresponding @value{GDBN} command is @samp{show}.
21773
21774@subsubheading Example
21775
21776@smallexample
594fe323 21777(gdb)
ef21caaf
NR
21778-gdb-show annotate
21779^done,value="0"
594fe323 21780(gdb)
ef21caaf
NR
21781@end smallexample
21782
21783@c @subheading -gdb-source
21784
21785
21786@subheading The @code{-gdb-version} Command
21787@findex -gdb-version
21788
21789@subsubheading Synopsis
21790
21791@smallexample
21792 -gdb-version
21793@end smallexample
21794
21795Show version information for @value{GDBN}. Used mostly in testing.
21796
21797@subsubheading @value{GDBN} Command
21798
21799The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21800default shows this information when you start an interactive session.
21801
21802@subsubheading Example
21803
21804@c This example modifies the actual output from GDB to avoid overfull
21805@c box in TeX.
21806@smallexample
594fe323 21807(gdb)
ef21caaf
NR
21808-gdb-version
21809~GNU gdb 5.2.1
21810~Copyright 2000 Free Software Foundation, Inc.
21811~GDB is free software, covered by the GNU General Public License, and
21812~you are welcome to change it and/or distribute copies of it under
21813~ certain conditions.
21814~Type "show copying" to see the conditions.
21815~There is absolutely no warranty for GDB. Type "show warranty" for
21816~ details.
21817~This GDB was configured as
21818 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21819^done
594fe323 21820(gdb)
ef21caaf
NR
21821@end smallexample
21822
084344da
VP
21823@subheading The @code{-list-features} Command
21824@findex -list-features
21825
21826Returns a list of particular features of the MI protocol that
21827this version of gdb implements. A feature can be a command,
21828or a new field in an output of some command, or even an
21829important bugfix. While a frontend can sometimes detect presence
21830of a feature at runtime, it is easier to perform detection at debugger
21831startup.
21832
21833The command returns a list of strings, with each string naming an
21834available feature. Each returned string is just a name, it does not
21835have any internal structure. The list of possible feature names
21836is given below.
21837
21838Example output:
21839
21840@smallexample
21841(gdb) -list-features
21842^done,result=["feature1","feature2"]
21843@end smallexample
21844
21845The current list of features is:
21846
21847@itemize @minus
21848@item
21849@samp{frozen-varobjs}---indicates presence of the
21850@code{-var-set-frozen} command, as well as possible presense of the
21851@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21852@item
21853@samp{pending-breakpoints}---indicates presence of the @code{-f}
21854option to the @code{-break-insert} command.
8e8901c5
VP
21855@item
21856@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21857
084344da
VP
21858@end itemize
21859
ef21caaf
NR
21860@subheading The @code{-interpreter-exec} Command
21861@findex -interpreter-exec
21862
21863@subheading Synopsis
21864
21865@smallexample
21866-interpreter-exec @var{interpreter} @var{command}
21867@end smallexample
a2c02241 21868@anchor{-interpreter-exec}
ef21caaf
NR
21869
21870Execute the specified @var{command} in the given @var{interpreter}.
21871
21872@subheading @value{GDBN} Command
21873
21874The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21875
21876@subheading Example
21877
21878@smallexample
594fe323 21879(gdb)
ef21caaf
NR
21880-interpreter-exec console "break main"
21881&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21882&"During symbol reading, bad structure-type format.\n"
21883~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21884^done
594fe323 21885(gdb)
ef21caaf
NR
21886@end smallexample
21887
21888@subheading The @code{-inferior-tty-set} Command
21889@findex -inferior-tty-set
21890
21891@subheading Synopsis
21892
21893@smallexample
21894-inferior-tty-set /dev/pts/1
21895@end smallexample
21896
21897Set terminal for future runs of the program being debugged.
21898
21899@subheading @value{GDBN} Command
21900
21901The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21902
21903@subheading Example
21904
21905@smallexample
594fe323 21906(gdb)
ef21caaf
NR
21907-inferior-tty-set /dev/pts/1
21908^done
594fe323 21909(gdb)
ef21caaf
NR
21910@end smallexample
21911
21912@subheading The @code{-inferior-tty-show} Command
21913@findex -inferior-tty-show
21914
21915@subheading Synopsis
21916
21917@smallexample
21918-inferior-tty-show
21919@end smallexample
21920
21921Show terminal for future runs of program being debugged.
21922
21923@subheading @value{GDBN} Command
21924
21925The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21926
21927@subheading Example
21928
21929@smallexample
594fe323 21930(gdb)
ef21caaf
NR
21931-inferior-tty-set /dev/pts/1
21932^done
594fe323 21933(gdb)
ef21caaf
NR
21934-inferior-tty-show
21935^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21936(gdb)
ef21caaf 21937@end smallexample
922fbb7b 21938
a4eefcd8
NR
21939@subheading The @code{-enable-timings} Command
21940@findex -enable-timings
21941
21942@subheading Synopsis
21943
21944@smallexample
21945-enable-timings [yes | no]
21946@end smallexample
21947
21948Toggle the printing of the wallclock, user and system times for an MI
21949command as a field in its output. This command is to help frontend
21950developers optimize the performance of their code. No argument is
21951equivalent to @samp{yes}.
21952
21953@subheading @value{GDBN} Command
21954
21955No equivalent.
21956
21957@subheading Example
21958
21959@smallexample
21960(gdb)
21961-enable-timings
21962^done
21963(gdb)
21964-break-insert main
21965^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21966addr="0x080484ed",func="main",file="myprog.c",
21967fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21968time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21969(gdb)
21970-enable-timings no
21971^done
21972(gdb)
21973-exec-run
21974^running
21975(gdb)
21976*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21977frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21978@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21979fullname="/home/nickrob/myprog.c",line="73"@}
21980(gdb)
21981@end smallexample
21982
922fbb7b
AC
21983@node Annotations
21984@chapter @value{GDBN} Annotations
21985
086432e2
AC
21986This chapter describes annotations in @value{GDBN}. Annotations were
21987designed to interface @value{GDBN} to graphical user interfaces or other
21988similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21989relatively high level.
21990
d3e8051b 21991The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21992(@pxref{GDB/MI}).
21993
922fbb7b
AC
21994@ignore
21995This is Edition @value{EDITION}, @value{DATE}.
21996@end ignore
21997
21998@menu
21999* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22000* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22001* Prompting:: Annotations marking @value{GDBN}'s need for input.
22002* Errors:: Annotations for error messages.
922fbb7b
AC
22003* Invalidation:: Some annotations describe things now invalid.
22004* Annotations for Running::
22005 Whether the program is running, how it stopped, etc.
22006* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22007@end menu
22008
22009@node Annotations Overview
22010@section What is an Annotation?
22011@cindex annotations
22012
922fbb7b
AC
22013Annotations start with a newline character, two @samp{control-z}
22014characters, and the name of the annotation. If there is no additional
22015information associated with this annotation, the name of the annotation
22016is followed immediately by a newline. If there is additional
22017information, the name of the annotation is followed by a space, the
22018additional information, and a newline. The additional information
22019cannot contain newline characters.
22020
22021Any output not beginning with a newline and two @samp{control-z}
22022characters denotes literal output from @value{GDBN}. Currently there is
22023no need for @value{GDBN} to output a newline followed by two
22024@samp{control-z} characters, but if there was such a need, the
22025annotations could be extended with an @samp{escape} annotation which
22026means those three characters as output.
22027
086432e2
AC
22028The annotation @var{level}, which is specified using the
22029@option{--annotate} command line option (@pxref{Mode Options}), controls
22030how much information @value{GDBN} prints together with its prompt,
22031values of expressions, source lines, and other types of output. Level 0
d3e8051b 22032is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22033subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22034for programs that control @value{GDBN}, and level 2 annotations have
22035been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22036Interface, annotate, GDB's Obsolete Annotations}).
22037
22038@table @code
22039@kindex set annotate
22040@item set annotate @var{level}
e09f16f9 22041The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22042annotations to the specified @var{level}.
9c16f35a
EZ
22043
22044@item show annotate
22045@kindex show annotate
22046Show the current annotation level.
09d4efe1
EZ
22047@end table
22048
22049This chapter describes level 3 annotations.
086432e2 22050
922fbb7b
AC
22051A simple example of starting up @value{GDBN} with annotations is:
22052
22053@smallexample
086432e2
AC
22054$ @kbd{gdb --annotate=3}
22055GNU gdb 6.0
22056Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22057GDB is free software, covered by the GNU General Public License,
22058and you are welcome to change it and/or distribute copies of it
22059under certain conditions.
22060Type "show copying" to see the conditions.
22061There is absolutely no warranty for GDB. Type "show warranty"
22062for details.
086432e2 22063This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22064
22065^Z^Zpre-prompt
f7dc1244 22066(@value{GDBP})
922fbb7b 22067^Z^Zprompt
086432e2 22068@kbd{quit}
922fbb7b
AC
22069
22070^Z^Zpost-prompt
b383017d 22071$
922fbb7b
AC
22072@end smallexample
22073
22074Here @samp{quit} is input to @value{GDBN}; the rest is output from
22075@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22076denotes a @samp{control-z} character) are annotations; the rest is
22077output from @value{GDBN}.
22078
9e6c4bd5
NR
22079@node Server Prefix
22080@section The Server Prefix
22081@cindex server prefix
22082
22083If you prefix a command with @samp{server } then it will not affect
22084the command history, nor will it affect @value{GDBN}'s notion of which
22085command to repeat if @key{RET} is pressed on a line by itself. This
22086means that commands can be run behind a user's back by a front-end in
22087a transparent manner.
22088
22089The server prefix does not affect the recording of values into the value
22090history; to print a value without recording it into the value history,
22091use the @code{output} command instead of the @code{print} command.
22092
922fbb7b
AC
22093@node Prompting
22094@section Annotation for @value{GDBN} Input
22095
22096@cindex annotations for prompts
22097When @value{GDBN} prompts for input, it annotates this fact so it is possible
22098to know when to send output, when the output from a given command is
22099over, etc.
22100
22101Different kinds of input each have a different @dfn{input type}. Each
22102input type has three annotations: a @code{pre-} annotation, which
22103denotes the beginning of any prompt which is being output, a plain
22104annotation, which denotes the end of the prompt, and then a @code{post-}
22105annotation which denotes the end of any echo which may (or may not) be
22106associated with the input. For example, the @code{prompt} input type
22107features the following annotations:
22108
22109@smallexample
22110^Z^Zpre-prompt
22111^Z^Zprompt
22112^Z^Zpost-prompt
22113@end smallexample
22114
22115The input types are
22116
22117@table @code
e5ac9b53
EZ
22118@findex pre-prompt annotation
22119@findex prompt annotation
22120@findex post-prompt annotation
922fbb7b
AC
22121@item prompt
22122When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22123
e5ac9b53
EZ
22124@findex pre-commands annotation
22125@findex commands annotation
22126@findex post-commands annotation
922fbb7b
AC
22127@item commands
22128When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22129command. The annotations are repeated for each command which is input.
22130
e5ac9b53
EZ
22131@findex pre-overload-choice annotation
22132@findex overload-choice annotation
22133@findex post-overload-choice annotation
922fbb7b
AC
22134@item overload-choice
22135When @value{GDBN} wants the user to select between various overloaded functions.
22136
e5ac9b53
EZ
22137@findex pre-query annotation
22138@findex query annotation
22139@findex post-query annotation
922fbb7b
AC
22140@item query
22141When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22142
e5ac9b53
EZ
22143@findex pre-prompt-for-continue annotation
22144@findex prompt-for-continue annotation
22145@findex post-prompt-for-continue annotation
922fbb7b
AC
22146@item prompt-for-continue
22147When @value{GDBN} is asking the user to press return to continue. Note: Don't
22148expect this to work well; instead use @code{set height 0} to disable
22149prompting. This is because the counting of lines is buggy in the
22150presence of annotations.
22151@end table
22152
22153@node Errors
22154@section Errors
22155@cindex annotations for errors, warnings and interrupts
22156
e5ac9b53 22157@findex quit annotation
922fbb7b
AC
22158@smallexample
22159^Z^Zquit
22160@end smallexample
22161
22162This annotation occurs right before @value{GDBN} responds to an interrupt.
22163
e5ac9b53 22164@findex error annotation
922fbb7b
AC
22165@smallexample
22166^Z^Zerror
22167@end smallexample
22168
22169This annotation occurs right before @value{GDBN} responds to an error.
22170
22171Quit and error annotations indicate that any annotations which @value{GDBN} was
22172in the middle of may end abruptly. For example, if a
22173@code{value-history-begin} annotation is followed by a @code{error}, one
22174cannot expect to receive the matching @code{value-history-end}. One
22175cannot expect not to receive it either, however; an error annotation
22176does not necessarily mean that @value{GDBN} is immediately returning all the way
22177to the top level.
22178
e5ac9b53 22179@findex error-begin annotation
922fbb7b
AC
22180A quit or error annotation may be preceded by
22181
22182@smallexample
22183^Z^Zerror-begin
22184@end smallexample
22185
22186Any output between that and the quit or error annotation is the error
22187message.
22188
22189Warning messages are not yet annotated.
22190@c If we want to change that, need to fix warning(), type_error(),
22191@c range_error(), and possibly other places.
22192
922fbb7b
AC
22193@node Invalidation
22194@section Invalidation Notices
22195
22196@cindex annotations for invalidation messages
22197The following annotations say that certain pieces of state may have
22198changed.
22199
22200@table @code
e5ac9b53 22201@findex frames-invalid annotation
922fbb7b
AC
22202@item ^Z^Zframes-invalid
22203
22204The frames (for example, output from the @code{backtrace} command) may
22205have changed.
22206
e5ac9b53 22207@findex breakpoints-invalid annotation
922fbb7b
AC
22208@item ^Z^Zbreakpoints-invalid
22209
22210The breakpoints may have changed. For example, the user just added or
22211deleted a breakpoint.
22212@end table
22213
22214@node Annotations for Running
22215@section Running the Program
22216@cindex annotations for running programs
22217
e5ac9b53
EZ
22218@findex starting annotation
22219@findex stopping annotation
922fbb7b 22220When the program starts executing due to a @value{GDBN} command such as
b383017d 22221@code{step} or @code{continue},
922fbb7b
AC
22222
22223@smallexample
22224^Z^Zstarting
22225@end smallexample
22226
b383017d 22227is output. When the program stops,
922fbb7b
AC
22228
22229@smallexample
22230^Z^Zstopped
22231@end smallexample
22232
22233is output. Before the @code{stopped} annotation, a variety of
22234annotations describe how the program stopped.
22235
22236@table @code
e5ac9b53 22237@findex exited annotation
922fbb7b
AC
22238@item ^Z^Zexited @var{exit-status}
22239The program exited, and @var{exit-status} is the exit status (zero for
22240successful exit, otherwise nonzero).
22241
e5ac9b53
EZ
22242@findex signalled annotation
22243@findex signal-name annotation
22244@findex signal-name-end annotation
22245@findex signal-string annotation
22246@findex signal-string-end annotation
922fbb7b
AC
22247@item ^Z^Zsignalled
22248The program exited with a signal. After the @code{^Z^Zsignalled}, the
22249annotation continues:
22250
22251@smallexample
22252@var{intro-text}
22253^Z^Zsignal-name
22254@var{name}
22255^Z^Zsignal-name-end
22256@var{middle-text}
22257^Z^Zsignal-string
22258@var{string}
22259^Z^Zsignal-string-end
22260@var{end-text}
22261@end smallexample
22262
22263@noindent
22264where @var{name} is the name of the signal, such as @code{SIGILL} or
22265@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22266as @code{Illegal Instruction} or @code{Segmentation fault}.
22267@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22268user's benefit and have no particular format.
22269
e5ac9b53 22270@findex signal annotation
922fbb7b
AC
22271@item ^Z^Zsignal
22272The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22273just saying that the program received the signal, not that it was
22274terminated with it.
22275
e5ac9b53 22276@findex breakpoint annotation
922fbb7b
AC
22277@item ^Z^Zbreakpoint @var{number}
22278The program hit breakpoint number @var{number}.
22279
e5ac9b53 22280@findex watchpoint annotation
922fbb7b
AC
22281@item ^Z^Zwatchpoint @var{number}
22282The program hit watchpoint number @var{number}.
22283@end table
22284
22285@node Source Annotations
22286@section Displaying Source
22287@cindex annotations for source display
22288
e5ac9b53 22289@findex source annotation
922fbb7b
AC
22290The following annotation is used instead of displaying source code:
22291
22292@smallexample
22293^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22294@end smallexample
22295
22296where @var{filename} is an absolute file name indicating which source
22297file, @var{line} is the line number within that file (where 1 is the
22298first line in the file), @var{character} is the character position
22299within the file (where 0 is the first character in the file) (for most
22300debug formats this will necessarily point to the beginning of a line),
22301@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22302line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22303@var{addr} is the address in the target program associated with the
22304source which is being displayed. @var{addr} is in the form @samp{0x}
22305followed by one or more lowercase hex digits (note that this does not
22306depend on the language).
22307
8e04817f
AC
22308@node GDB Bugs
22309@chapter Reporting Bugs in @value{GDBN}
22310@cindex bugs in @value{GDBN}
22311@cindex reporting bugs in @value{GDBN}
c906108c 22312
8e04817f 22313Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22314
8e04817f
AC
22315Reporting a bug may help you by bringing a solution to your problem, or it
22316may not. But in any case the principal function of a bug report is to help
22317the entire community by making the next version of @value{GDBN} work better. Bug
22318reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22319
8e04817f
AC
22320In order for a bug report to serve its purpose, you must include the
22321information that enables us to fix the bug.
c4555f82
SC
22322
22323@menu
8e04817f
AC
22324* Bug Criteria:: Have you found a bug?
22325* Bug Reporting:: How to report bugs
c4555f82
SC
22326@end menu
22327
8e04817f 22328@node Bug Criteria
79a6e687 22329@section Have You Found a Bug?
8e04817f 22330@cindex bug criteria
c4555f82 22331
8e04817f 22332If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22333
22334@itemize @bullet
8e04817f
AC
22335@cindex fatal signal
22336@cindex debugger crash
22337@cindex crash of debugger
c4555f82 22338@item
8e04817f
AC
22339If the debugger gets a fatal signal, for any input whatever, that is a
22340@value{GDBN} bug. Reliable debuggers never crash.
22341
22342@cindex error on valid input
22343@item
22344If @value{GDBN} produces an error message for valid input, that is a
22345bug. (Note that if you're cross debugging, the problem may also be
22346somewhere in the connection to the target.)
c4555f82 22347
8e04817f 22348@cindex invalid input
c4555f82 22349@item
8e04817f
AC
22350If @value{GDBN} does not produce an error message for invalid input,
22351that is a bug. However, you should note that your idea of
22352``invalid input'' might be our idea of ``an extension'' or ``support
22353for traditional practice''.
22354
22355@item
22356If you are an experienced user of debugging tools, your suggestions
22357for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22358@end itemize
22359
8e04817f 22360@node Bug Reporting
79a6e687 22361@section How to Report Bugs
8e04817f
AC
22362@cindex bug reports
22363@cindex @value{GDBN} bugs, reporting
22364
22365A number of companies and individuals offer support for @sc{gnu} products.
22366If you obtained @value{GDBN} from a support organization, we recommend you
22367contact that organization first.
22368
22369You can find contact information for many support companies and
22370individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22371distribution.
22372@c should add a web page ref...
22373
129188f6 22374In any event, we also recommend that you submit bug reports for
d3e8051b 22375@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22376@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22377page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22378be used.
8e04817f
AC
22379
22380@strong{Do not send bug reports to @samp{info-gdb}, or to
22381@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22382not want to receive bug reports. Those that do have arranged to receive
22383@samp{bug-gdb}.
22384
22385The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22386serves as a repeater. The mailing list and the newsgroup carry exactly
22387the same messages. Often people think of posting bug reports to the
22388newsgroup instead of mailing them. This appears to work, but it has one
22389problem which can be crucial: a newsgroup posting often lacks a mail
22390path back to the sender. Thus, if we need to ask for more information,
22391we may be unable to reach you. For this reason, it is better to send
22392bug reports to the mailing list.
c4555f82 22393
8e04817f
AC
22394The fundamental principle of reporting bugs usefully is this:
22395@strong{report all the facts}. If you are not sure whether to state a
22396fact or leave it out, state it!
c4555f82 22397
8e04817f
AC
22398Often people omit facts because they think they know what causes the
22399problem and assume that some details do not matter. Thus, you might
22400assume that the name of the variable you use in an example does not matter.
22401Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22402stray memory reference which happens to fetch from the location where that
22403name is stored in memory; perhaps, if the name were different, the contents
22404of that location would fool the debugger into doing the right thing despite
22405the bug. Play it safe and give a specific, complete example. That is the
22406easiest thing for you to do, and the most helpful.
c4555f82 22407
8e04817f
AC
22408Keep in mind that the purpose of a bug report is to enable us to fix the
22409bug. It may be that the bug has been reported previously, but neither
22410you nor we can know that unless your bug report is complete and
22411self-contained.
c4555f82 22412
8e04817f
AC
22413Sometimes people give a few sketchy facts and ask, ``Does this ring a
22414bell?'' Those bug reports are useless, and we urge everyone to
22415@emph{refuse to respond to them} except to chide the sender to report
22416bugs properly.
22417
22418To enable us to fix the bug, you should include all these things:
c4555f82
SC
22419
22420@itemize @bullet
22421@item
8e04817f
AC
22422The version of @value{GDBN}. @value{GDBN} announces it if you start
22423with no arguments; you can also print it at any time using @code{show
22424version}.
c4555f82 22425
8e04817f
AC
22426Without this, we will not know whether there is any point in looking for
22427the bug in the current version of @value{GDBN}.
c4555f82
SC
22428
22429@item
8e04817f
AC
22430The type of machine you are using, and the operating system name and
22431version number.
c4555f82
SC
22432
22433@item
c1468174 22434What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22435``@value{GCC}--2.8.1''.
c4555f82
SC
22436
22437@item
8e04817f 22438What compiler (and its version) was used to compile the program you are
c1468174 22439debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22440C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22441to get this information; for other compilers, see the documentation for
22442those compilers.
c4555f82 22443
8e04817f
AC
22444@item
22445The command arguments you gave the compiler to compile your example and
22446observe the bug. For example, did you use @samp{-O}? To guarantee
22447you will not omit something important, list them all. A copy of the
22448Makefile (or the output from make) is sufficient.
c4555f82 22449
8e04817f
AC
22450If we were to try to guess the arguments, we would probably guess wrong
22451and then we might not encounter the bug.
c4555f82 22452
8e04817f
AC
22453@item
22454A complete input script, and all necessary source files, that will
22455reproduce the bug.
c4555f82 22456
8e04817f
AC
22457@item
22458A description of what behavior you observe that you believe is
22459incorrect. For example, ``It gets a fatal signal.''
c4555f82 22460
8e04817f
AC
22461Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22462will certainly notice it. But if the bug is incorrect output, we might
22463not notice unless it is glaringly wrong. You might as well not give us
22464a chance to make a mistake.
c4555f82 22465
8e04817f
AC
22466Even if the problem you experience is a fatal signal, you should still
22467say so explicitly. Suppose something strange is going on, such as, your
22468copy of @value{GDBN} is out of synch, or you have encountered a bug in
22469the C library on your system. (This has happened!) Your copy might
22470crash and ours would not. If you told us to expect a crash, then when
22471ours fails to crash, we would know that the bug was not happening for
22472us. If you had not told us to expect a crash, then we would not be able
22473to draw any conclusion from our observations.
c4555f82 22474
e0c07bf0
MC
22475@pindex script
22476@cindex recording a session script
22477To collect all this information, you can use a session recording program
22478such as @command{script}, which is available on many Unix systems.
22479Just run your @value{GDBN} session inside @command{script} and then
22480include the @file{typescript} file with your bug report.
22481
22482Another way to record a @value{GDBN} session is to run @value{GDBN}
22483inside Emacs and then save the entire buffer to a file.
22484
8e04817f
AC
22485@item
22486If you wish to suggest changes to the @value{GDBN} source, send us context
22487diffs. If you even discuss something in the @value{GDBN} source, refer to
22488it by context, not by line number.
c4555f82 22489
8e04817f
AC
22490The line numbers in our development sources will not match those in your
22491sources. Your line numbers would convey no useful information to us.
c4555f82 22492
8e04817f 22493@end itemize
c4555f82 22494
8e04817f 22495Here are some things that are not necessary:
c4555f82 22496
8e04817f
AC
22497@itemize @bullet
22498@item
22499A description of the envelope of the bug.
c4555f82 22500
8e04817f
AC
22501Often people who encounter a bug spend a lot of time investigating
22502which changes to the input file will make the bug go away and which
22503changes will not affect it.
c4555f82 22504
8e04817f
AC
22505This is often time consuming and not very useful, because the way we
22506will find the bug is by running a single example under the debugger
22507with breakpoints, not by pure deduction from a series of examples.
22508We recommend that you save your time for something else.
c4555f82 22509
8e04817f
AC
22510Of course, if you can find a simpler example to report @emph{instead}
22511of the original one, that is a convenience for us. Errors in the
22512output will be easier to spot, running under the debugger will take
22513less time, and so on.
c4555f82 22514
8e04817f
AC
22515However, simplification is not vital; if you do not want to do this,
22516report the bug anyway and send us the entire test case you used.
c4555f82 22517
8e04817f
AC
22518@item
22519A patch for the bug.
c4555f82 22520
8e04817f
AC
22521A patch for the bug does help us if it is a good one. But do not omit
22522the necessary information, such as the test case, on the assumption that
22523a patch is all we need. We might see problems with your patch and decide
22524to fix the problem another way, or we might not understand it at all.
c4555f82 22525
8e04817f
AC
22526Sometimes with a program as complicated as @value{GDBN} it is very hard to
22527construct an example that will make the program follow a certain path
22528through the code. If you do not send us the example, we will not be able
22529to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22530
8e04817f
AC
22531And if we cannot understand what bug you are trying to fix, or why your
22532patch should be an improvement, we will not install it. A test case will
22533help us to understand.
c4555f82 22534
8e04817f
AC
22535@item
22536A guess about what the bug is or what it depends on.
c4555f82 22537
8e04817f
AC
22538Such guesses are usually wrong. Even we cannot guess right about such
22539things without first using the debugger to find the facts.
22540@end itemize
c4555f82 22541
8e04817f
AC
22542@c The readline documentation is distributed with the readline code
22543@c and consists of the two following files:
22544@c rluser.texinfo
22545@c inc-hist.texinfo
22546@c Use -I with makeinfo to point to the appropriate directory,
22547@c environment var TEXINPUTS with TeX.
5bdf8622 22548@include rluser.texi
8e04817f 22549@include inc-hist.texinfo
c4555f82 22550
c4555f82 22551
8e04817f
AC
22552@node Formatting Documentation
22553@appendix Formatting Documentation
c4555f82 22554
8e04817f
AC
22555@cindex @value{GDBN} reference card
22556@cindex reference card
22557The @value{GDBN} 4 release includes an already-formatted reference card, ready
22558for printing with PostScript or Ghostscript, in the @file{gdb}
22559subdirectory of the main source directory@footnote{In
22560@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22561release.}. If you can use PostScript or Ghostscript with your printer,
22562you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22563
8e04817f
AC
22564The release also includes the source for the reference card. You
22565can format it, using @TeX{}, by typing:
c4555f82 22566
474c8240 22567@smallexample
8e04817f 22568make refcard.dvi
474c8240 22569@end smallexample
c4555f82 22570
8e04817f
AC
22571The @value{GDBN} reference card is designed to print in @dfn{landscape}
22572mode on US ``letter'' size paper;
22573that is, on a sheet 11 inches wide by 8.5 inches
22574high. You will need to specify this form of printing as an option to
22575your @sc{dvi} output program.
c4555f82 22576
8e04817f 22577@cindex documentation
c4555f82 22578
8e04817f
AC
22579All the documentation for @value{GDBN} comes as part of the machine-readable
22580distribution. The documentation is written in Texinfo format, which is
22581a documentation system that uses a single source file to produce both
22582on-line information and a printed manual. You can use one of the Info
22583formatting commands to create the on-line version of the documentation
22584and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22585
8e04817f
AC
22586@value{GDBN} includes an already formatted copy of the on-line Info
22587version of this manual in the @file{gdb} subdirectory. The main Info
22588file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22589subordinate files matching @samp{gdb.info*} in the same directory. If
22590necessary, you can print out these files, or read them with any editor;
22591but they are easier to read using the @code{info} subsystem in @sc{gnu}
22592Emacs or the standalone @code{info} program, available as part of the
22593@sc{gnu} Texinfo distribution.
c4555f82 22594
8e04817f
AC
22595If you want to format these Info files yourself, you need one of the
22596Info formatting programs, such as @code{texinfo-format-buffer} or
22597@code{makeinfo}.
c4555f82 22598
8e04817f
AC
22599If you have @code{makeinfo} installed, and are in the top level
22600@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22601version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22602
474c8240 22603@smallexample
8e04817f
AC
22604cd gdb
22605make gdb.info
474c8240 22606@end smallexample
c4555f82 22607
8e04817f
AC
22608If you want to typeset and print copies of this manual, you need @TeX{},
22609a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22610Texinfo definitions file.
c4555f82 22611
8e04817f
AC
22612@TeX{} is a typesetting program; it does not print files directly, but
22613produces output files called @sc{dvi} files. To print a typeset
22614document, you need a program to print @sc{dvi} files. If your system
22615has @TeX{} installed, chances are it has such a program. The precise
22616command to use depends on your system; @kbd{lpr -d} is common; another
22617(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22618require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22619
8e04817f
AC
22620@TeX{} also requires a macro definitions file called
22621@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22622written in Texinfo format. On its own, @TeX{} cannot either read or
22623typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22624and is located in the @file{gdb-@var{version-number}/texinfo}
22625directory.
c4555f82 22626
8e04817f 22627If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22628typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22629subdirectory of the main source directory (for example, to
22630@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22631
474c8240 22632@smallexample
8e04817f 22633make gdb.dvi
474c8240 22634@end smallexample
c4555f82 22635
8e04817f 22636Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22637
8e04817f
AC
22638@node Installing GDB
22639@appendix Installing @value{GDBN}
8e04817f 22640@cindex installation
c4555f82 22641
7fa2210b
DJ
22642@menu
22643* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22644* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22645* Separate Objdir:: Compiling @value{GDBN} in another directory
22646* Config Names:: Specifying names for hosts and targets
22647* Configure Options:: Summary of options for configure
22648@end menu
22649
22650@node Requirements
79a6e687 22651@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22652@cindex building @value{GDBN}, requirements for
22653
22654Building @value{GDBN} requires various tools and packages to be available.
22655Other packages will be used only if they are found.
22656
79a6e687 22657@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22658@table @asis
22659@item ISO C90 compiler
22660@value{GDBN} is written in ISO C90. It should be buildable with any
22661working C90 compiler, e.g.@: GCC.
22662
22663@end table
22664
79a6e687 22665@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22666@table @asis
22667@item Expat
123dc839 22668@anchor{Expat}
7fa2210b
DJ
22669@value{GDBN} can use the Expat XML parsing library. This library may be
22670included with your operating system distribution; if it is not, you
22671can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22672The @file{configure} script will search for this library in several
7fa2210b
DJ
22673standard locations; if it is installed in an unusual path, you can
22674use the @option{--with-libexpat-prefix} option to specify its location.
22675
9cceb671
DJ
22676Expat is used for:
22677
22678@itemize @bullet
22679@item
22680Remote protocol memory maps (@pxref{Memory Map Format})
22681@item
22682Target descriptions (@pxref{Target Descriptions})
22683@item
22684Remote shared library lists (@pxref{Library List Format})
22685@item
22686MS-Windows shared libraries (@pxref{Shared Libraries})
22687@end itemize
7fa2210b
DJ
22688
22689@end table
22690
22691@node Running Configure
db2e3e2e 22692@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22693@cindex configuring @value{GDBN}
db2e3e2e 22694@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22695of preparing @value{GDBN} for installation; you can then use @code{make} to
22696build the @code{gdb} program.
22697@iftex
22698@c irrelevant in info file; it's as current as the code it lives with.
22699@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22700look at the @file{README} file in the sources; we may have improved the
22701installation procedures since publishing this manual.}
22702@end iftex
c4555f82 22703
8e04817f
AC
22704The @value{GDBN} distribution includes all the source code you need for
22705@value{GDBN} in a single directory, whose name is usually composed by
22706appending the version number to @samp{gdb}.
c4555f82 22707
8e04817f
AC
22708For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22709@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22710
8e04817f
AC
22711@table @code
22712@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22713script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22714
8e04817f
AC
22715@item gdb-@value{GDBVN}/gdb
22716the source specific to @value{GDBN} itself
c4555f82 22717
8e04817f
AC
22718@item gdb-@value{GDBVN}/bfd
22719source for the Binary File Descriptor library
c906108c 22720
8e04817f
AC
22721@item gdb-@value{GDBVN}/include
22722@sc{gnu} include files
c906108c 22723
8e04817f
AC
22724@item gdb-@value{GDBVN}/libiberty
22725source for the @samp{-liberty} free software library
c906108c 22726
8e04817f
AC
22727@item gdb-@value{GDBVN}/opcodes
22728source for the library of opcode tables and disassemblers
c906108c 22729
8e04817f
AC
22730@item gdb-@value{GDBVN}/readline
22731source for the @sc{gnu} command-line interface
c906108c 22732
8e04817f
AC
22733@item gdb-@value{GDBVN}/glob
22734source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22735
8e04817f
AC
22736@item gdb-@value{GDBVN}/mmalloc
22737source for the @sc{gnu} memory-mapped malloc package
22738@end table
c906108c 22739
db2e3e2e 22740The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22741from the @file{gdb-@var{version-number}} source directory, which in
22742this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22743
8e04817f 22744First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22745if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22746identifier for the platform on which @value{GDBN} will run as an
22747argument.
c906108c 22748
8e04817f 22749For example:
c906108c 22750
474c8240 22751@smallexample
8e04817f
AC
22752cd gdb-@value{GDBVN}
22753./configure @var{host}
22754make
474c8240 22755@end smallexample
c906108c 22756
8e04817f
AC
22757@noindent
22758where @var{host} is an identifier such as @samp{sun4} or
22759@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22760(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22761correct value by examining your system.)
c906108c 22762
8e04817f
AC
22763Running @samp{configure @var{host}} and then running @code{make} builds the
22764@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22765libraries, then @code{gdb} itself. The configured source files, and the
22766binaries, are left in the corresponding source directories.
c906108c 22767
8e04817f 22768@need 750
db2e3e2e 22769@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22770system does not recognize this automatically when you run a different
22771shell, you may need to run @code{sh} on it explicitly:
c906108c 22772
474c8240 22773@smallexample
8e04817f 22774sh configure @var{host}
474c8240 22775@end smallexample
c906108c 22776
db2e3e2e 22777If you run @file{configure} from a directory that contains source
8e04817f 22778directories for multiple libraries or programs, such as the
db2e3e2e
BW
22779@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22780@file{configure}
8e04817f
AC
22781creates configuration files for every directory level underneath (unless
22782you tell it not to, with the @samp{--norecursion} option).
22783
db2e3e2e 22784You should run the @file{configure} script from the top directory in the
94e91d6d 22785source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22786@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22787that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22788if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22789of the @file{gdb-@var{version-number}} directory, you will omit the
22790configuration of @file{bfd}, @file{readline}, and other sibling
22791directories of the @file{gdb} subdirectory. This leads to build errors
22792about missing include files such as @file{bfd/bfd.h}.
c906108c 22793
8e04817f
AC
22794You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22795However, you should make sure that the shell on your path (named by
22796the @samp{SHELL} environment variable) is publicly readable. Remember
22797that @value{GDBN} uses the shell to start your program---some systems refuse to
22798let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22799
8e04817f 22800@node Separate Objdir
79a6e687 22801@section Compiling @value{GDBN} in Another Directory
c906108c 22802
8e04817f
AC
22803If you want to run @value{GDBN} versions for several host or target machines,
22804you need a different @code{gdb} compiled for each combination of
db2e3e2e 22805host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22806allowing you to generate each configuration in a separate subdirectory,
22807rather than in the source directory. If your @code{make} program
22808handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22809@code{make} in each of these directories builds the @code{gdb}
22810program specified there.
c906108c 22811
db2e3e2e 22812To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22813with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22814(You also need to specify a path to find @file{configure}
22815itself from your working directory. If the path to @file{configure}
8e04817f
AC
22816would be the same as the argument to @samp{--srcdir}, you can leave out
22817the @samp{--srcdir} option; it is assumed.)
c906108c 22818
8e04817f
AC
22819For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22820separate directory for a Sun 4 like this:
c906108c 22821
474c8240 22822@smallexample
8e04817f
AC
22823@group
22824cd gdb-@value{GDBVN}
22825mkdir ../gdb-sun4
22826cd ../gdb-sun4
22827../gdb-@value{GDBVN}/configure sun4
22828make
22829@end group
474c8240 22830@end smallexample
c906108c 22831
db2e3e2e 22832When @file{configure} builds a configuration using a remote source
8e04817f
AC
22833directory, it creates a tree for the binaries with the same structure
22834(and using the same names) as the tree under the source directory. In
22835the example, you'd find the Sun 4 library @file{libiberty.a} in the
22836directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22837@file{gdb-sun4/gdb}.
c906108c 22838
94e91d6d
MC
22839Make sure that your path to the @file{configure} script has just one
22840instance of @file{gdb} in it. If your path to @file{configure} looks
22841like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22842one subdirectory of @value{GDBN}, not the whole package. This leads to
22843build errors about missing include files such as @file{bfd/bfd.h}.
22844
8e04817f
AC
22845One popular reason to build several @value{GDBN} configurations in separate
22846directories is to configure @value{GDBN} for cross-compiling (where
22847@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22848programs that run on another machine---the @dfn{target}).
22849You specify a cross-debugging target by
db2e3e2e 22850giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22851
8e04817f
AC
22852When you run @code{make} to build a program or library, you must run
22853it in a configured directory---whatever directory you were in when you
db2e3e2e 22854called @file{configure} (or one of its subdirectories).
c906108c 22855
db2e3e2e 22856The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22857directory also runs recursively. If you type @code{make} in a source
22858directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22859directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22860will build all the required libraries, and then build GDB.
c906108c 22861
8e04817f
AC
22862When you have multiple hosts or targets configured in separate
22863directories, you can run @code{make} on them in parallel (for example,
22864if they are NFS-mounted on each of the hosts); they will not interfere
22865with each other.
c906108c 22866
8e04817f 22867@node Config Names
79a6e687 22868@section Specifying Names for Hosts and Targets
c906108c 22869
db2e3e2e 22870The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22871script are based on a three-part naming scheme, but some short predefined
22872aliases are also supported. The full naming scheme encodes three pieces
22873of information in the following pattern:
c906108c 22874
474c8240 22875@smallexample
8e04817f 22876@var{architecture}-@var{vendor}-@var{os}
474c8240 22877@end smallexample
c906108c 22878
8e04817f
AC
22879For example, you can use the alias @code{sun4} as a @var{host} argument,
22880or as the value for @var{target} in a @code{--target=@var{target}}
22881option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22882
db2e3e2e 22883The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22884any query facility to list all supported host and target names or
db2e3e2e 22885aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22886@code{config.sub} to map abbreviations to full names; you can read the
22887script, if you wish, or you can use it to test your guesses on
22888abbreviations---for example:
c906108c 22889
8e04817f
AC
22890@smallexample
22891% sh config.sub i386-linux
22892i386-pc-linux-gnu
22893% sh config.sub alpha-linux
22894alpha-unknown-linux-gnu
22895% sh config.sub hp9k700
22896hppa1.1-hp-hpux
22897% sh config.sub sun4
22898sparc-sun-sunos4.1.1
22899% sh config.sub sun3
22900m68k-sun-sunos4.1.1
22901% sh config.sub i986v
22902Invalid configuration `i986v': machine `i986v' not recognized
22903@end smallexample
c906108c 22904
8e04817f
AC
22905@noindent
22906@code{config.sub} is also distributed in the @value{GDBN} source
22907directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22908
8e04817f 22909@node Configure Options
db2e3e2e 22910@section @file{configure} Options
c906108c 22911
db2e3e2e
BW
22912Here is a summary of the @file{configure} options and arguments that
22913are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22914several other options not listed here. @inforef{What Configure
db2e3e2e 22915Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22916
474c8240 22917@smallexample
8e04817f
AC
22918configure @r{[}--help@r{]}
22919 @r{[}--prefix=@var{dir}@r{]}
22920 @r{[}--exec-prefix=@var{dir}@r{]}
22921 @r{[}--srcdir=@var{dirname}@r{]}
22922 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22923 @r{[}--target=@var{target}@r{]}
22924 @var{host}
474c8240 22925@end smallexample
c906108c 22926
8e04817f
AC
22927@noindent
22928You may introduce options with a single @samp{-} rather than
22929@samp{--} if you prefer; but you may abbreviate option names if you use
22930@samp{--}.
c906108c 22931
8e04817f
AC
22932@table @code
22933@item --help
db2e3e2e 22934Display a quick summary of how to invoke @file{configure}.
c906108c 22935
8e04817f
AC
22936@item --prefix=@var{dir}
22937Configure the source to install programs and files under directory
22938@file{@var{dir}}.
c906108c 22939
8e04817f
AC
22940@item --exec-prefix=@var{dir}
22941Configure the source to install programs under directory
22942@file{@var{dir}}.
c906108c 22943
8e04817f
AC
22944@c avoid splitting the warning from the explanation:
22945@need 2000
22946@item --srcdir=@var{dirname}
22947@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22948@code{make} that implements the @code{VPATH} feature.}@*
22949Use this option to make configurations in directories separate from the
22950@value{GDBN} source directories. Among other things, you can use this to
22951build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22952directories. @file{configure} writes configuration-specific files in
8e04817f 22953the current directory, but arranges for them to use the source in the
db2e3e2e 22954directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22955the working directory in parallel to the source directories below
22956@var{dirname}.
c906108c 22957
8e04817f 22958@item --norecursion
db2e3e2e 22959Configure only the directory level where @file{configure} is executed; do not
8e04817f 22960propagate configuration to subdirectories.
c906108c 22961
8e04817f
AC
22962@item --target=@var{target}
22963Configure @value{GDBN} for cross-debugging programs running on the specified
22964@var{target}. Without this option, @value{GDBN} is configured to debug
22965programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22966
8e04817f 22967There is no convenient way to generate a list of all available targets.
c906108c 22968
8e04817f
AC
22969@item @var{host} @dots{}
22970Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22971
8e04817f
AC
22972There is no convenient way to generate a list of all available hosts.
22973@end table
c906108c 22974
8e04817f
AC
22975There are many other options available as well, but they are generally
22976needed for special purposes only.
c906108c 22977
8e04817f
AC
22978@node Maintenance Commands
22979@appendix Maintenance Commands
22980@cindex maintenance commands
22981@cindex internal commands
c906108c 22982
8e04817f 22983In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22984includes a number of commands intended for @value{GDBN} developers,
22985that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22986provided here for reference. (For commands that turn on debugging
22987messages, see @ref{Debugging Output}.)
c906108c 22988
8e04817f 22989@table @code
09d4efe1
EZ
22990@kindex maint agent
22991@item maint agent @var{expression}
22992Translate the given @var{expression} into remote agent bytecodes.
22993This command is useful for debugging the Agent Expression mechanism
22994(@pxref{Agent Expressions}).
22995
8e04817f
AC
22996@kindex maint info breakpoints
22997@item @anchor{maint info breakpoints}maint info breakpoints
22998Using the same format as @samp{info breakpoints}, display both the
22999breakpoints you've set explicitly, and those @value{GDBN} is using for
23000internal purposes. Internal breakpoints are shown with negative
23001breakpoint numbers. The type column identifies what kind of breakpoint
23002is shown:
c906108c 23003
8e04817f
AC
23004@table @code
23005@item breakpoint
23006Normal, explicitly set breakpoint.
c906108c 23007
8e04817f
AC
23008@item watchpoint
23009Normal, explicitly set watchpoint.
c906108c 23010
8e04817f
AC
23011@item longjmp
23012Internal breakpoint, used to handle correctly stepping through
23013@code{longjmp} calls.
c906108c 23014
8e04817f
AC
23015@item longjmp resume
23016Internal breakpoint at the target of a @code{longjmp}.
c906108c 23017
8e04817f
AC
23018@item until
23019Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23020
8e04817f
AC
23021@item finish
23022Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23023
8e04817f
AC
23024@item shlib events
23025Shared library events.
c906108c 23026
8e04817f 23027@end table
c906108c 23028
09d4efe1
EZ
23029@kindex maint check-symtabs
23030@item maint check-symtabs
23031Check the consistency of psymtabs and symtabs.
23032
23033@kindex maint cplus first_component
23034@item maint cplus first_component @var{name}
23035Print the first C@t{++} class/namespace component of @var{name}.
23036
23037@kindex maint cplus namespace
23038@item maint cplus namespace
23039Print the list of possible C@t{++} namespaces.
23040
23041@kindex maint demangle
23042@item maint demangle @var{name}
d3e8051b 23043Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23044
23045@kindex maint deprecate
23046@kindex maint undeprecate
23047@cindex deprecated commands
23048@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23049@itemx maint undeprecate @var{command}
23050Deprecate or undeprecate the named @var{command}. Deprecated commands
23051cause @value{GDBN} to issue a warning when you use them. The optional
23052argument @var{replacement} says which newer command should be used in
23053favor of the deprecated one; if it is given, @value{GDBN} will mention
23054the replacement as part of the warning.
23055
23056@kindex maint dump-me
23057@item maint dump-me
721c2651 23058@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23059Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23060This is supported only on systems which support aborting a program
23061with the @code{SIGQUIT} signal.
09d4efe1 23062
8d30a00d
AC
23063@kindex maint internal-error
23064@kindex maint internal-warning
09d4efe1
EZ
23065@item maint internal-error @r{[}@var{message-text}@r{]}
23066@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23067Cause @value{GDBN} to call the internal function @code{internal_error}
23068or @code{internal_warning} and hence behave as though an internal error
23069or internal warning has been detected. In addition to reporting the
23070internal problem, these functions give the user the opportunity to
23071either quit @value{GDBN} or create a core file of the current
23072@value{GDBN} session.
23073
09d4efe1
EZ
23074These commands take an optional parameter @var{message-text} that is
23075used as the text of the error or warning message.
23076
d3e8051b 23077Here's an example of using @code{internal-error}:
09d4efe1 23078
8d30a00d 23079@smallexample
f7dc1244 23080(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23081@dots{}/maint.c:121: internal-error: testing, 1, 2
23082A problem internal to GDB has been detected. Further
23083debugging may prove unreliable.
23084Quit this debugging session? (y or n) @kbd{n}
23085Create a core file? (y or n) @kbd{n}
f7dc1244 23086(@value{GDBP})
8d30a00d
AC
23087@end smallexample
23088
09d4efe1
EZ
23089@kindex maint packet
23090@item maint packet @var{text}
23091If @value{GDBN} is talking to an inferior via the serial protocol,
23092then this command sends the string @var{text} to the inferior, and
23093displays the response packet. @value{GDBN} supplies the initial
23094@samp{$} character, the terminating @samp{#} character, and the
23095checksum.
23096
23097@kindex maint print architecture
23098@item maint print architecture @r{[}@var{file}@r{]}
23099Print the entire architecture configuration. The optional argument
23100@var{file} names the file where the output goes.
8d30a00d 23101
81adfced
DJ
23102@kindex maint print c-tdesc
23103@item maint print c-tdesc
23104Print the current target description (@pxref{Target Descriptions}) as
23105a C source file. The created source file can be used in @value{GDBN}
23106when an XML parser is not available to parse the description.
23107
00905d52
AC
23108@kindex maint print dummy-frames
23109@item maint print dummy-frames
00905d52
AC
23110Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23111
23112@smallexample
f7dc1244 23113(@value{GDBP}) @kbd{b add}
00905d52 23114@dots{}
f7dc1244 23115(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23116Breakpoint 2, add (a=2, b=3) at @dots{}
2311758 return (a + b);
23118The program being debugged stopped while in a function called from GDB.
23119@dots{}
f7dc1244 23120(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
231210x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23122 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23123 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23124(@value{GDBP})
00905d52
AC
23125@end smallexample
23126
23127Takes an optional file parameter.
23128
0680b120
AC
23129@kindex maint print registers
23130@kindex maint print raw-registers
23131@kindex maint print cooked-registers
617073a9 23132@kindex maint print register-groups
09d4efe1
EZ
23133@item maint print registers @r{[}@var{file}@r{]}
23134@itemx maint print raw-registers @r{[}@var{file}@r{]}
23135@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23136@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23137Print @value{GDBN}'s internal register data structures.
23138
617073a9
AC
23139The command @code{maint print raw-registers} includes the contents of
23140the raw register cache; the command @code{maint print cooked-registers}
23141includes the (cooked) value of all registers; and the command
23142@code{maint print register-groups} includes the groups that each
23143register is a member of. @xref{Registers,, Registers, gdbint,
23144@value{GDBN} Internals}.
0680b120 23145
09d4efe1
EZ
23146These commands take an optional parameter, a file name to which to
23147write the information.
0680b120 23148
617073a9 23149@kindex maint print reggroups
09d4efe1
EZ
23150@item maint print reggroups @r{[}@var{file}@r{]}
23151Print @value{GDBN}'s internal register group data structures. The
23152optional argument @var{file} tells to what file to write the
23153information.
617073a9 23154
09d4efe1 23155The register groups info looks like this:
617073a9
AC
23156
23157@smallexample
f7dc1244 23158(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23159 Group Type
23160 general user
23161 float user
23162 all user
23163 vector user
23164 system user
23165 save internal
23166 restore internal
617073a9
AC
23167@end smallexample
23168
09d4efe1
EZ
23169@kindex flushregs
23170@item flushregs
23171This command forces @value{GDBN} to flush its internal register cache.
23172
23173@kindex maint print objfiles
23174@cindex info for known object files
23175@item maint print objfiles
23176Print a dump of all known object files. For each object file, this
23177command prints its name, address in memory, and all of its psymtabs
23178and symtabs.
23179
23180@kindex maint print statistics
23181@cindex bcache statistics
23182@item maint print statistics
23183This command prints, for each object file in the program, various data
23184about that object file followed by the byte cache (@dfn{bcache})
23185statistics for the object file. The objfile data includes the number
d3e8051b 23186of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23187defined by the objfile, the number of as yet unexpanded psym tables,
23188the number of line tables and string tables, and the amount of memory
23189used by the various tables. The bcache statistics include the counts,
23190sizes, and counts of duplicates of all and unique objects, max,
23191average, and median entry size, total memory used and its overhead and
23192savings, and various measures of the hash table size and chain
23193lengths.
23194
c7ba131e
JB
23195@kindex maint print target-stack
23196@cindex target stack description
23197@item maint print target-stack
23198A @dfn{target} is an interface between the debugger and a particular
23199kind of file or process. Targets can be stacked in @dfn{strata},
23200so that more than one target can potentially respond to a request.
23201In particular, memory accesses will walk down the stack of targets
23202until they find a target that is interested in handling that particular
23203address.
23204
23205This command prints a short description of each layer that was pushed on
23206the @dfn{target stack}, starting from the top layer down to the bottom one.
23207
09d4efe1
EZ
23208@kindex maint print type
23209@cindex type chain of a data type
23210@item maint print type @var{expr}
23211Print the type chain for a type specified by @var{expr}. The argument
23212can be either a type name or a symbol. If it is a symbol, the type of
23213that symbol is described. The type chain produced by this command is
23214a recursive definition of the data type as stored in @value{GDBN}'s
23215data structures, including its flags and contained types.
23216
23217@kindex maint set dwarf2 max-cache-age
23218@kindex maint show dwarf2 max-cache-age
23219@item maint set dwarf2 max-cache-age
23220@itemx maint show dwarf2 max-cache-age
23221Control the DWARF 2 compilation unit cache.
23222
23223@cindex DWARF 2 compilation units cache
23224In object files with inter-compilation-unit references, such as those
23225produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23226reader needs to frequently refer to previously read compilation units.
23227This setting controls how long a compilation unit will remain in the
23228cache if it is not referenced. A higher limit means that cached
23229compilation units will be stored in memory longer, and more total
23230memory will be used. Setting it to zero disables caching, which will
23231slow down @value{GDBN} startup, but reduce memory consumption.
23232
e7ba9c65
DJ
23233@kindex maint set profile
23234@kindex maint show profile
23235@cindex profiling GDB
23236@item maint set profile
23237@itemx maint show profile
23238Control profiling of @value{GDBN}.
23239
23240Profiling will be disabled until you use the @samp{maint set profile}
23241command to enable it. When you enable profiling, the system will begin
23242collecting timing and execution count data; when you disable profiling or
23243exit @value{GDBN}, the results will be written to a log file. Remember that
23244if you use profiling, @value{GDBN} will overwrite the profiling log file
23245(often called @file{gmon.out}). If you have a record of important profiling
23246data in a @file{gmon.out} file, be sure to move it to a safe location.
23247
23248Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23249compiled with the @samp{-pg} compiler option.
e7ba9c65 23250
b84876c2
PA
23251@kindex maint set linux-async
23252@kindex maint show linux-async
23253@cindex asynchronous support
23254@item maint set linux-async
23255@itemx maint show linux-async
23256Control the GNU/Linux native asynchronous support of @value{GDBN}.
23257
23258GNU/Linux native asynchronous support will be disabled until you use
23259the @samp{maint set linux-async} command to enable it.
23260
09d4efe1
EZ
23261@kindex maint show-debug-regs
23262@cindex x86 hardware debug registers
23263@item maint show-debug-regs
23264Control whether to show variables that mirror the x86 hardware debug
23265registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23266enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23267removes a hardware breakpoint or watchpoint, and when the inferior
23268triggers a hardware-assisted breakpoint or watchpoint.
23269
23270@kindex maint space
23271@cindex memory used by commands
23272@item maint space
23273Control whether to display memory usage for each command. If set to a
23274nonzero value, @value{GDBN} will display how much memory each command
23275took, following the command's own output. This can also be requested
23276by invoking @value{GDBN} with the @option{--statistics} command-line
23277switch (@pxref{Mode Options}).
23278
23279@kindex maint time
23280@cindex time of command execution
23281@item maint time
23282Control whether to display the execution time for each command. If
23283set to a nonzero value, @value{GDBN} will display how much time it
23284took to execute each command, following the command's own output.
23285This can also be requested by invoking @value{GDBN} with the
23286@option{--statistics} command-line switch (@pxref{Mode Options}).
23287
23288@kindex maint translate-address
23289@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23290Find the symbol stored at the location specified by the address
23291@var{addr} and an optional section name @var{section}. If found,
23292@value{GDBN} prints the name of the closest symbol and an offset from
23293the symbol's location to the specified address. This is similar to
23294the @code{info address} command (@pxref{Symbols}), except that this
23295command also allows to find symbols in other sections.
ae038cb0 23296
8e04817f 23297@end table
c906108c 23298
9c16f35a
EZ
23299The following command is useful for non-interactive invocations of
23300@value{GDBN}, such as in the test suite.
23301
23302@table @code
23303@item set watchdog @var{nsec}
23304@kindex set watchdog
23305@cindex watchdog timer
23306@cindex timeout for commands
23307Set the maximum number of seconds @value{GDBN} will wait for the
23308target operation to finish. If this time expires, @value{GDBN}
23309reports and error and the command is aborted.
23310
23311@item show watchdog
23312Show the current setting of the target wait timeout.
23313@end table
c906108c 23314
e0ce93ac 23315@node Remote Protocol
8e04817f 23316@appendix @value{GDBN} Remote Serial Protocol
c906108c 23317
ee2d5c50
AC
23318@menu
23319* Overview::
23320* Packets::
23321* Stop Reply Packets::
23322* General Query Packets::
23323* Register Packet Format::
9d29849a 23324* Tracepoint Packets::
a6b151f1 23325* Host I/O Packets::
9a6253be 23326* Interrupts::
ee2d5c50 23327* Examples::
79a6e687 23328* File-I/O Remote Protocol Extension::
cfa9d6d9 23329* Library List Format::
79a6e687 23330* Memory Map Format::
ee2d5c50
AC
23331@end menu
23332
23333@node Overview
23334@section Overview
23335
8e04817f
AC
23336There may be occasions when you need to know something about the
23337protocol---for example, if there is only one serial port to your target
23338machine, you might want your program to do something special if it
23339recognizes a packet meant for @value{GDBN}.
c906108c 23340
d2c6833e 23341In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23342transmitted and received data, respectively.
c906108c 23343
8e04817f
AC
23344@cindex protocol, @value{GDBN} remote serial
23345@cindex serial protocol, @value{GDBN} remote
23346@cindex remote serial protocol
23347All @value{GDBN} commands and responses (other than acknowledgments) are
23348sent as a @var{packet}. A @var{packet} is introduced with the character
23349@samp{$}, the actual @var{packet-data}, and the terminating character
23350@samp{#} followed by a two-digit @var{checksum}:
c906108c 23351
474c8240 23352@smallexample
8e04817f 23353@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23354@end smallexample
8e04817f 23355@noindent
c906108c 23356
8e04817f
AC
23357@cindex checksum, for @value{GDBN} remote
23358@noindent
23359The two-digit @var{checksum} is computed as the modulo 256 sum of all
23360characters between the leading @samp{$} and the trailing @samp{#} (an
23361eight bit unsigned checksum).
c906108c 23362
8e04817f
AC
23363Implementors should note that prior to @value{GDBN} 5.0 the protocol
23364specification also included an optional two-digit @var{sequence-id}:
c906108c 23365
474c8240 23366@smallexample
8e04817f 23367@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23368@end smallexample
c906108c 23369
8e04817f
AC
23370@cindex sequence-id, for @value{GDBN} remote
23371@noindent
23372That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23373has never output @var{sequence-id}s. Stubs that handle packets added
23374since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23375
8e04817f
AC
23376@cindex acknowledgment, for @value{GDBN} remote
23377When either the host or the target machine receives a packet, the first
23378response expected is an acknowledgment: either @samp{+} (to indicate
23379the package was received correctly) or @samp{-} (to request
23380retransmission):
c906108c 23381
474c8240 23382@smallexample
d2c6833e
AC
23383-> @code{$}@var{packet-data}@code{#}@var{checksum}
23384<- @code{+}
474c8240 23385@end smallexample
8e04817f 23386@noindent
53a5351d 23387
8e04817f
AC
23388The host (@value{GDBN}) sends @var{command}s, and the target (the
23389debugging stub incorporated in your program) sends a @var{response}. In
23390the case of step and continue @var{command}s, the response is only sent
23391when the operation has completed (the target has again stopped).
c906108c 23392
8e04817f
AC
23393@var{packet-data} consists of a sequence of characters with the
23394exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23395exceptions).
c906108c 23396
ee2d5c50 23397@cindex remote protocol, field separator
0876f84a 23398Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23399@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23400@sc{hex} with leading zeros suppressed.
c906108c 23401
8e04817f
AC
23402Implementors should note that prior to @value{GDBN} 5.0, the character
23403@samp{:} could not appear as the third character in a packet (as it
23404would potentially conflict with the @var{sequence-id}).
c906108c 23405
0876f84a
DJ
23406@cindex remote protocol, binary data
23407@anchor{Binary Data}
23408Binary data in most packets is encoded either as two hexadecimal
23409digits per byte of binary data. This allowed the traditional remote
23410protocol to work over connections which were only seven-bit clean.
23411Some packets designed more recently assume an eight-bit clean
23412connection, and use a more efficient encoding to send and receive
23413binary data.
23414
23415The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23416as an escape character. Any escaped byte is transmitted as the escape
23417character followed by the original character XORed with @code{0x20}.
23418For example, the byte @code{0x7d} would be transmitted as the two
23419bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23420@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23421@samp{@}}) must always be escaped. Responses sent by the stub
23422must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23423is not interpreted as the start of a run-length encoded sequence
23424(described next).
23425
1d3811f6
DJ
23426Response @var{data} can be run-length encoded to save space.
23427Run-length encoding replaces runs of identical characters with one
23428instance of the repeated character, followed by a @samp{*} and a
23429repeat count. The repeat count is itself sent encoded, to avoid
23430binary characters in @var{data}: a value of @var{n} is sent as
23431@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23432produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23433code 32) for a repeat count of 3. (This is because run-length
23434encoding starts to win for counts 3 or more.) Thus, for example,
23435@samp{0* } is a run-length encoding of ``0000'': the space character
23436after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
234373}} more times.
23438
23439The printable characters @samp{#} and @samp{$} or with a numeric value
23440greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23441seven repeats (@samp{$}) can be expanded using a repeat count of only
23442five (@samp{"}). For example, @samp{00000000} can be encoded as
23443@samp{0*"00}.
c906108c 23444
8e04817f
AC
23445The error response returned for some packets includes a two character
23446error number. That number is not well defined.
c906108c 23447
f8da2bff 23448@cindex empty response, for unsupported packets
8e04817f
AC
23449For any @var{command} not supported by the stub, an empty response
23450(@samp{$#00}) should be returned. That way it is possible to extend the
23451protocol. A newer @value{GDBN} can tell if a packet is supported based
23452on that response.
c906108c 23453
b383017d
RM
23454A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23455@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23456optional.
c906108c 23457
ee2d5c50
AC
23458@node Packets
23459@section Packets
23460
23461The following table provides a complete list of all currently defined
23462@var{command}s and their corresponding response @var{data}.
79a6e687 23463@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23464I/O extension of the remote protocol.
ee2d5c50 23465
b8ff78ce
JB
23466Each packet's description has a template showing the packet's overall
23467syntax, followed by an explanation of the packet's meaning. We
23468include spaces in some of the templates for clarity; these are not
23469part of the packet's syntax. No @value{GDBN} packet uses spaces to
23470separate its components. For example, a template like @samp{foo
23471@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23472bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23473@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23474@samp{foo} and the @var{bar}, or between the @var{bar} and the
23475@var{baz}.
23476
8ffe2530
JB
23477Note that all packet forms beginning with an upper- or lower-case
23478letter, other than those described here, are reserved for future use.
23479
b8ff78ce 23480Here are the packet descriptions.
ee2d5c50 23481
b8ff78ce 23482@table @samp
ee2d5c50 23483
b8ff78ce
JB
23484@item !
23485@cindex @samp{!} packet
2d717e4f 23486@anchor{extended mode}
8e04817f
AC
23487Enable extended mode. In extended mode, the remote server is made
23488persistent. The @samp{R} packet is used to restart the program being
23489debugged.
ee2d5c50
AC
23490
23491Reply:
23492@table @samp
23493@item OK
8e04817f 23494The remote target both supports and has enabled extended mode.
ee2d5c50 23495@end table
c906108c 23496
b8ff78ce
JB
23497@item ?
23498@cindex @samp{?} packet
ee2d5c50
AC
23499Indicate the reason the target halted. The reply is the same as for
23500step and continue.
c906108c 23501
ee2d5c50
AC
23502Reply:
23503@xref{Stop Reply Packets}, for the reply specifications.
23504
b8ff78ce
JB
23505@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23506@cindex @samp{A} packet
23507Initialized @code{argv[]} array passed into program. @var{arglen}
23508specifies the number of bytes in the hex encoded byte stream
23509@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23510
23511Reply:
23512@table @samp
23513@item OK
b8ff78ce
JB
23514The arguments were set.
23515@item E @var{NN}
23516An error occurred.
ee2d5c50
AC
23517@end table
23518
b8ff78ce
JB
23519@item b @var{baud}
23520@cindex @samp{b} packet
23521(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23522Change the serial line speed to @var{baud}.
23523
23524JTC: @emph{When does the transport layer state change? When it's
23525received, or after the ACK is transmitted. In either case, there are
23526problems if the command or the acknowledgment packet is dropped.}
23527
23528Stan: @emph{If people really wanted to add something like this, and get
23529it working for the first time, they ought to modify ser-unix.c to send
23530some kind of out-of-band message to a specially-setup stub and have the
23531switch happen "in between" packets, so that from remote protocol's point
23532of view, nothing actually happened.}
23533
b8ff78ce
JB
23534@item B @var{addr},@var{mode}
23535@cindex @samp{B} packet
8e04817f 23536Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23537breakpoint at @var{addr}.
23538
b8ff78ce 23539Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23540(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23541
4f553f88 23542@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23543@cindex @samp{c} packet
23544Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23545resume at current address.
c906108c 23546
ee2d5c50
AC
23547Reply:
23548@xref{Stop Reply Packets}, for the reply specifications.
23549
4f553f88 23550@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23551@cindex @samp{C} packet
8e04817f 23552Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23553@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23554
ee2d5c50
AC
23555Reply:
23556@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23557
b8ff78ce
JB
23558@item d
23559@cindex @samp{d} packet
ee2d5c50
AC
23560Toggle debug flag.
23561
b8ff78ce
JB
23562Don't use this packet; instead, define a general set packet
23563(@pxref{General Query Packets}).
ee2d5c50 23564
b8ff78ce
JB
23565@item D
23566@cindex @samp{D} packet
ee2d5c50 23567Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23568before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23569
23570Reply:
23571@table @samp
10fac096
NW
23572@item OK
23573for success
b8ff78ce 23574@item E @var{NN}
10fac096 23575for an error
ee2d5c50 23576@end table
c906108c 23577
b8ff78ce
JB
23578@item F @var{RC},@var{EE},@var{CF};@var{XX}
23579@cindex @samp{F} packet
23580A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23581This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23582Remote Protocol Extension}, for the specification.
ee2d5c50 23583
b8ff78ce 23584@item g
ee2d5c50 23585@anchor{read registers packet}
b8ff78ce 23586@cindex @samp{g} packet
ee2d5c50
AC
23587Read general registers.
23588
23589Reply:
23590@table @samp
23591@item @var{XX@dots{}}
8e04817f
AC
23592Each byte of register data is described by two hex digits. The bytes
23593with the register are transmitted in target byte order. The size of
b8ff78ce 23594each register and their position within the @samp{g} packet are
4a9bb1df
UW
23595determined by the @value{GDBN} internal gdbarch functions
23596@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23597specification of several standard @samp{g} packets is specified below.
23598@item E @var{NN}
ee2d5c50
AC
23599for an error.
23600@end table
c906108c 23601
b8ff78ce
JB
23602@item G @var{XX@dots{}}
23603@cindex @samp{G} packet
23604Write general registers. @xref{read registers packet}, for a
23605description of the @var{XX@dots{}} data.
ee2d5c50
AC
23606
23607Reply:
23608@table @samp
23609@item OK
23610for success
b8ff78ce 23611@item E @var{NN}
ee2d5c50
AC
23612for an error
23613@end table
23614
b8ff78ce
JB
23615@item H @var{c} @var{t}
23616@cindex @samp{H} packet
8e04817f 23617Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23618@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23619should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23620operations. The thread designator @var{t} may be @samp{-1}, meaning all
23621the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23622
23623Reply:
23624@table @samp
23625@item OK
23626for success
b8ff78ce 23627@item E @var{NN}
ee2d5c50
AC
23628for an error
23629@end table
c906108c 23630
8e04817f
AC
23631@c FIXME: JTC:
23632@c 'H': How restrictive (or permissive) is the thread model. If a
23633@c thread is selected and stopped, are other threads allowed
23634@c to continue to execute? As I mentioned above, I think the
23635@c semantics of each command when a thread is selected must be
23636@c described. For example:
23637@c
23638@c 'g': If the stub supports threads and a specific thread is
23639@c selected, returns the register block from that thread;
23640@c otherwise returns current registers.
23641@c
23642@c 'G' If the stub supports threads and a specific thread is
23643@c selected, sets the registers of the register block of
23644@c that thread; otherwise sets current registers.
c906108c 23645
b8ff78ce 23646@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23647@anchor{cycle step packet}
b8ff78ce
JB
23648@cindex @samp{i} packet
23649Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23650present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23651step starting at that address.
c906108c 23652
b8ff78ce
JB
23653@item I
23654@cindex @samp{I} packet
23655Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23656step packet}.
ee2d5c50 23657
b8ff78ce
JB
23658@item k
23659@cindex @samp{k} packet
23660Kill request.
c906108c 23661
ac282366 23662FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23663thread context has been selected (i.e.@: does 'k' kill only that
23664thread?)}.
c906108c 23665
b8ff78ce
JB
23666@item m @var{addr},@var{length}
23667@cindex @samp{m} packet
8e04817f 23668Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23669Note that @var{addr} may not be aligned to any particular boundary.
23670
23671The stub need not use any particular size or alignment when gathering
23672data from memory for the response; even if @var{addr} is word-aligned
23673and @var{length} is a multiple of the word size, the stub is free to
23674use byte accesses, or not. For this reason, this packet may not be
23675suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23676@cindex alignment of remote memory accesses
23677@cindex size of remote memory accesses
23678@cindex memory, alignment and size of remote accesses
c906108c 23679
ee2d5c50
AC
23680Reply:
23681@table @samp
23682@item @var{XX@dots{}}
599b237a 23683Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23684number. The reply may contain fewer bytes than requested if the
23685server was able to read only part of the region of memory.
23686@item E @var{NN}
ee2d5c50
AC
23687@var{NN} is errno
23688@end table
23689
b8ff78ce
JB
23690@item M @var{addr},@var{length}:@var{XX@dots{}}
23691@cindex @samp{M} packet
8e04817f 23692Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23693@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23694hexadecimal number.
ee2d5c50
AC
23695
23696Reply:
23697@table @samp
23698@item OK
23699for success
b8ff78ce 23700@item E @var{NN}
8e04817f
AC
23701for an error (this includes the case where only part of the data was
23702written).
ee2d5c50 23703@end table
c906108c 23704
b8ff78ce
JB
23705@item p @var{n}
23706@cindex @samp{p} packet
23707Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23708@xref{read registers packet}, for a description of how the returned
23709register value is encoded.
ee2d5c50
AC
23710
23711Reply:
23712@table @samp
2e868123
AC
23713@item @var{XX@dots{}}
23714the register's value
b8ff78ce 23715@item E @var{NN}
2e868123
AC
23716for an error
23717@item
23718Indicating an unrecognized @var{query}.
ee2d5c50
AC
23719@end table
23720
b8ff78ce 23721@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23722@anchor{write register packet}
b8ff78ce
JB
23723@cindex @samp{P} packet
23724Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23725number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23726digits for each byte in the register (target byte order).
c906108c 23727
ee2d5c50
AC
23728Reply:
23729@table @samp
23730@item OK
23731for success
b8ff78ce 23732@item E @var{NN}
ee2d5c50
AC
23733for an error
23734@end table
23735
5f3bebba
JB
23736@item q @var{name} @var{params}@dots{}
23737@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23738@cindex @samp{q} packet
b8ff78ce 23739@cindex @samp{Q} packet
5f3bebba
JB
23740General query (@samp{q}) and set (@samp{Q}). These packets are
23741described fully in @ref{General Query Packets}.
c906108c 23742
b8ff78ce
JB
23743@item r
23744@cindex @samp{r} packet
8e04817f 23745Reset the entire system.
c906108c 23746
b8ff78ce 23747Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23748
b8ff78ce
JB
23749@item R @var{XX}
23750@cindex @samp{R} packet
8e04817f 23751Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23752This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23753
8e04817f 23754The @samp{R} packet has no reply.
ee2d5c50 23755
4f553f88 23756@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23757@cindex @samp{s} packet
23758Single step. @var{addr} is the address at which to resume. If
23759@var{addr} is omitted, resume at same address.
c906108c 23760
ee2d5c50
AC
23761Reply:
23762@xref{Stop Reply Packets}, for the reply specifications.
23763
4f553f88 23764@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23765@anchor{step with signal packet}
b8ff78ce
JB
23766@cindex @samp{S} packet
23767Step with signal. This is analogous to the @samp{C} packet, but
23768requests a single-step, rather than a normal resumption of execution.
c906108c 23769
ee2d5c50
AC
23770Reply:
23771@xref{Stop Reply Packets}, for the reply specifications.
23772
b8ff78ce
JB
23773@item t @var{addr}:@var{PP},@var{MM}
23774@cindex @samp{t} packet
8e04817f 23775Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23776@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23777@var{addr} must be at least 3 digits.
c906108c 23778
b8ff78ce
JB
23779@item T @var{XX}
23780@cindex @samp{T} packet
ee2d5c50 23781Find out if the thread XX is alive.
c906108c 23782
ee2d5c50
AC
23783Reply:
23784@table @samp
23785@item OK
23786thread is still alive
b8ff78ce 23787@item E @var{NN}
ee2d5c50
AC
23788thread is dead
23789@end table
23790
b8ff78ce
JB
23791@item v
23792Packets starting with @samp{v} are identified by a multi-letter name,
23793up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23794
2d717e4f
DJ
23795@item vAttach;@var{pid}
23796@cindex @samp{vAttach} packet
23797Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23798hexadecimal integer identifying the process. If the stub is currently
23799controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23800
23801This packet is only available in extended mode (@pxref{extended mode}).
23802
23803Reply:
23804@table @samp
23805@item E @var{nn}
23806for an error
23807@item @r{Any stop packet}
23808for success (@pxref{Stop Reply Packets})
23809@end table
23810
b8ff78ce
JB
23811@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23812@cindex @samp{vCont} packet
23813Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23814If an action is specified with no @var{tid}, then it is applied to any
23815threads that don't have a specific action specified; if no default action is
23816specified then other threads should remain stopped. Specifying multiple
23817default actions is an error; specifying no actions is also an error.
23818Thread IDs are specified in hexadecimal. Currently supported actions are:
23819
b8ff78ce 23820@table @samp
86d30acc
DJ
23821@item c
23822Continue.
b8ff78ce 23823@item C @var{sig}
86d30acc
DJ
23824Continue with signal @var{sig}. @var{sig} should be two hex digits.
23825@item s
23826Step.
b8ff78ce 23827@item S @var{sig}
86d30acc
DJ
23828Step with signal @var{sig}. @var{sig} should be two hex digits.
23829@end table
23830
23831The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23832not supported in @samp{vCont}.
86d30acc
DJ
23833
23834Reply:
23835@xref{Stop Reply Packets}, for the reply specifications.
23836
b8ff78ce
JB
23837@item vCont?
23838@cindex @samp{vCont?} packet
d3e8051b 23839Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23840
23841Reply:
23842@table @samp
b8ff78ce
JB
23843@item vCont@r{[};@var{action}@dots{}@r{]}
23844The @samp{vCont} packet is supported. Each @var{action} is a supported
23845command in the @samp{vCont} packet.
86d30acc 23846@item
b8ff78ce 23847The @samp{vCont} packet is not supported.
86d30acc 23848@end table
ee2d5c50 23849
a6b151f1
DJ
23850@item vFile:@var{operation}:@var{parameter}@dots{}
23851@cindex @samp{vFile} packet
23852Perform a file operation on the target system. For details,
23853see @ref{Host I/O Packets}.
23854
68437a39
DJ
23855@item vFlashErase:@var{addr},@var{length}
23856@cindex @samp{vFlashErase} packet
23857Direct the stub to erase @var{length} bytes of flash starting at
23858@var{addr}. The region may enclose any number of flash blocks, but
23859its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23860flash block size appearing in the memory map (@pxref{Memory Map
23861Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23862together, and sends a @samp{vFlashDone} request after each group; the
23863stub is allowed to delay erase operation until the @samp{vFlashDone}
23864packet is received.
23865
23866Reply:
23867@table @samp
23868@item OK
23869for success
23870@item E @var{NN}
23871for an error
23872@end table
23873
23874@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23875@cindex @samp{vFlashWrite} packet
23876Direct the stub to write data to flash address @var{addr}. The data
23877is passed in binary form using the same encoding as for the @samp{X}
23878packet (@pxref{Binary Data}). The memory ranges specified by
23879@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23880not overlap, and must appear in order of increasing addresses
23881(although @samp{vFlashErase} packets for higher addresses may already
23882have been received; the ordering is guaranteed only between
23883@samp{vFlashWrite} packets). If a packet writes to an address that was
23884neither erased by a preceding @samp{vFlashErase} packet nor by some other
23885target-specific method, the results are unpredictable.
23886
23887
23888Reply:
23889@table @samp
23890@item OK
23891for success
23892@item E.memtype
23893for vFlashWrite addressing non-flash memory
23894@item E @var{NN}
23895for an error
23896@end table
23897
23898@item vFlashDone
23899@cindex @samp{vFlashDone} packet
23900Indicate to the stub that flash programming operation is finished.
23901The stub is permitted to delay or batch the effects of a group of
23902@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23903@samp{vFlashDone} packet is received. The contents of the affected
23904regions of flash memory are unpredictable until the @samp{vFlashDone}
23905request is completed.
23906
2d717e4f
DJ
23907@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23908@cindex @samp{vRun} packet
23909Run the program @var{filename}, passing it each @var{argument} on its
23910command line. The file and arguments are hex-encoded strings. If
23911@var{filename} is an empty string, the stub may use a default program
23912(e.g.@: the last program run). The program is created in the stopped
1fddbabb 23913state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
23914
23915This packet is only available in extended mode (@pxref{extended mode}).
23916
23917Reply:
23918@table @samp
23919@item E @var{nn}
23920for an error
23921@item @r{Any stop packet}
23922for success (@pxref{Stop Reply Packets})
23923@end table
23924
b8ff78ce 23925@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23926@anchor{X packet}
b8ff78ce
JB
23927@cindex @samp{X} packet
23928Write data to memory, where the data is transmitted in binary.
23929@var{addr} is address, @var{length} is number of bytes,
0876f84a 23930@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23931
ee2d5c50
AC
23932Reply:
23933@table @samp
23934@item OK
23935for success
b8ff78ce 23936@item E @var{NN}
ee2d5c50
AC
23937for an error
23938@end table
23939
b8ff78ce
JB
23940@item z @var{type},@var{addr},@var{length}
23941@itemx Z @var{type},@var{addr},@var{length}
2f870471 23942@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23943@cindex @samp{z} packet
23944@cindex @samp{Z} packets
23945Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23946watchpoint starting at address @var{address} and covering the next
23947@var{length} bytes.
ee2d5c50 23948
2f870471
AC
23949Each breakpoint and watchpoint packet @var{type} is documented
23950separately.
23951
512217c7
AC
23952@emph{Implementation notes: A remote target shall return an empty string
23953for an unrecognized breakpoint or watchpoint packet @var{type}. A
23954remote target shall support either both or neither of a given
b8ff78ce 23955@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23956avoid potential problems with duplicate packets, the operations should
23957be implemented in an idempotent way.}
23958
b8ff78ce
JB
23959@item z0,@var{addr},@var{length}
23960@itemx Z0,@var{addr},@var{length}
23961@cindex @samp{z0} packet
23962@cindex @samp{Z0} packet
23963Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23964@var{addr} of size @var{length}.
2f870471
AC
23965
23966A memory breakpoint is implemented by replacing the instruction at
23967@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23968@var{length} is used by targets that indicates the size of the
2f870471
AC
23969breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23970@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23971
2f870471
AC
23972@emph{Implementation note: It is possible for a target to copy or move
23973code that contains memory breakpoints (e.g., when implementing
23974overlays). The behavior of this packet, in the presence of such a
23975target, is not defined.}
c906108c 23976
ee2d5c50
AC
23977Reply:
23978@table @samp
2f870471
AC
23979@item OK
23980success
23981@item
23982not supported
b8ff78ce 23983@item E @var{NN}
ee2d5c50 23984for an error
2f870471
AC
23985@end table
23986
b8ff78ce
JB
23987@item z1,@var{addr},@var{length}
23988@itemx Z1,@var{addr},@var{length}
23989@cindex @samp{z1} packet
23990@cindex @samp{Z1} packet
23991Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23992address @var{addr} of size @var{length}.
2f870471
AC
23993
23994A hardware breakpoint is implemented using a mechanism that is not
23995dependant on being able to modify the target's memory.
23996
23997@emph{Implementation note: A hardware breakpoint is not affected by code
23998movement.}
23999
24000Reply:
24001@table @samp
ee2d5c50 24002@item OK
2f870471
AC
24003success
24004@item
24005not supported
b8ff78ce 24006@item E @var{NN}
2f870471
AC
24007for an error
24008@end table
24009
b8ff78ce
JB
24010@item z2,@var{addr},@var{length}
24011@itemx Z2,@var{addr},@var{length}
24012@cindex @samp{z2} packet
24013@cindex @samp{Z2} packet
24014Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24015
24016Reply:
24017@table @samp
24018@item OK
24019success
24020@item
24021not supported
b8ff78ce 24022@item E @var{NN}
2f870471
AC
24023for an error
24024@end table
24025
b8ff78ce
JB
24026@item z3,@var{addr},@var{length}
24027@itemx Z3,@var{addr},@var{length}
24028@cindex @samp{z3} packet
24029@cindex @samp{Z3} packet
24030Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24031
24032Reply:
24033@table @samp
24034@item OK
24035success
24036@item
24037not supported
b8ff78ce 24038@item E @var{NN}
2f870471
AC
24039for an error
24040@end table
24041
b8ff78ce
JB
24042@item z4,@var{addr},@var{length}
24043@itemx Z4,@var{addr},@var{length}
24044@cindex @samp{z4} packet
24045@cindex @samp{Z4} packet
24046Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24047
24048Reply:
24049@table @samp
24050@item OK
24051success
24052@item
24053not supported
b8ff78ce 24054@item E @var{NN}
2f870471 24055for an error
ee2d5c50
AC
24056@end table
24057
24058@end table
c906108c 24059
ee2d5c50
AC
24060@node Stop Reply Packets
24061@section Stop Reply Packets
24062@cindex stop reply packets
c906108c 24063
8e04817f
AC
24064The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24065receive any of the below as a reply. In the case of the @samp{C},
24066@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24067when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24068number} is defined by the header @file{include/gdb/signals.h} in the
24069@value{GDBN} source code.
c906108c 24070
b8ff78ce
JB
24071As in the description of request packets, we include spaces in the
24072reply templates for clarity; these are not part of the reply packet's
24073syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24074components.
c906108c 24075
b8ff78ce 24076@table @samp
ee2d5c50 24077
b8ff78ce 24078@item S @var{AA}
599b237a 24079The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24080number). This is equivalent to a @samp{T} response with no
24081@var{n}:@var{r} pairs.
c906108c 24082
b8ff78ce
JB
24083@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24084@cindex @samp{T} packet reply
599b237a 24085The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24086number). This is equivalent to an @samp{S} response, except that the
24087@samp{@var{n}:@var{r}} pairs can carry values of important registers
24088and other information directly in the stop reply packet, reducing
24089round-trip latency. Single-step and breakpoint traps are reported
24090this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24091
24092@itemize @bullet
b8ff78ce 24093@item
599b237a 24094If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24095corresponding @var{r} gives that register's value. @var{r} is a
24096series of bytes in target byte order, with each byte given by a
24097two-digit hex number.
cfa9d6d9 24098
b8ff78ce
JB
24099@item
24100If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24101hex.
cfa9d6d9 24102
b8ff78ce 24103@item
cfa9d6d9
DJ
24104If @var{n} is a recognized @dfn{stop reason}, it describes a more
24105specific event that stopped the target. The currently defined stop
24106reasons are listed below. @var{aa} should be @samp{05}, the trap
24107signal. At most one stop reason should be present.
24108
b8ff78ce
JB
24109@item
24110Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24111and go on to the next; this allows us to extend the protocol in the
24112future.
cfa9d6d9
DJ
24113@end itemize
24114
24115The currently defined stop reasons are:
24116
24117@table @samp
24118@item watch
24119@itemx rwatch
24120@itemx awatch
24121The packet indicates a watchpoint hit, and @var{r} is the data address, in
24122hex.
24123
24124@cindex shared library events, remote reply
24125@item library
24126The packet indicates that the loaded libraries have changed.
24127@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24128list of loaded libraries. @var{r} is ignored.
24129@end table
ee2d5c50 24130
b8ff78ce 24131@item W @var{AA}
8e04817f 24132The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24133applicable to certain targets.
24134
b8ff78ce 24135@item X @var{AA}
8e04817f 24136The process terminated with signal @var{AA}.
c906108c 24137
b8ff78ce
JB
24138@item O @var{XX}@dots{}
24139@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24140written as the program's console output. This can happen at any time
24141while the program is running and the debugger should continue to wait
24142for @samp{W}, @samp{T}, etc.
0ce1b118 24143
b8ff78ce 24144@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24145@var{call-id} is the identifier which says which host system call should
24146be called. This is just the name of the function. Translation into the
24147correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24148@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24149system calls.
24150
b8ff78ce
JB
24151@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24152this very system call.
0ce1b118 24153
b8ff78ce
JB
24154The target replies with this packet when it expects @value{GDBN} to
24155call a host system call on behalf of the target. @value{GDBN} replies
24156with an appropriate @samp{F} packet and keeps up waiting for the next
24157reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24158or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24159Protocol Extension}, for more details.
0ce1b118 24160
ee2d5c50
AC
24161@end table
24162
24163@node General Query Packets
24164@section General Query Packets
9c16f35a 24165@cindex remote query requests
c906108c 24166
5f3bebba
JB
24167Packets starting with @samp{q} are @dfn{general query packets};
24168packets starting with @samp{Q} are @dfn{general set packets}. General
24169query and set packets are a semi-unified form for retrieving and
24170sending information to and from the stub.
24171
24172The initial letter of a query or set packet is followed by a name
24173indicating what sort of thing the packet applies to. For example,
24174@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24175definitions with the stub. These packet names follow some
24176conventions:
24177
24178@itemize @bullet
24179@item
24180The name must not contain commas, colons or semicolons.
24181@item
24182Most @value{GDBN} query and set packets have a leading upper case
24183letter.
24184@item
24185The names of custom vendor packets should use a company prefix, in
24186lower case, followed by a period. For example, packets designed at
24187the Acme Corporation might begin with @samp{qacme.foo} (for querying
24188foos) or @samp{Qacme.bar} (for setting bars).
24189@end itemize
24190
aa56d27a
JB
24191The name of a query or set packet should be separated from any
24192parameters by a @samp{:}; the parameters themselves should be
24193separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24194full packet name, and check for a separator or the end of the packet,
24195in case two packet names share a common prefix. New packets should not begin
24196with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24197packets predate these conventions, and have arguments without any terminator
24198for the packet name; we suspect they are in widespread use in places that
24199are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24200existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24201packet.}.
c906108c 24202
b8ff78ce
JB
24203Like the descriptions of the other packets, each description here
24204has a template showing the packet's overall syntax, followed by an
24205explanation of the packet's meaning. We include spaces in some of the
24206templates for clarity; these are not part of the packet's syntax. No
24207@value{GDBN} packet uses spaces to separate its components.
24208
5f3bebba
JB
24209Here are the currently defined query and set packets:
24210
b8ff78ce 24211@table @samp
c906108c 24212
b8ff78ce 24213@item qC
9c16f35a 24214@cindex current thread, remote request
b8ff78ce 24215@cindex @samp{qC} packet
ee2d5c50
AC
24216Return the current thread id.
24217
24218Reply:
24219@table @samp
b8ff78ce 24220@item QC @var{pid}
599b237a 24221Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24222@item @r{(anything else)}
ee2d5c50
AC
24223Any other reply implies the old pid.
24224@end table
24225
b8ff78ce 24226@item qCRC:@var{addr},@var{length}
ff2587ec 24227@cindex CRC of memory block, remote request
b8ff78ce
JB
24228@cindex @samp{qCRC} packet
24229Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24230Reply:
24231@table @samp
b8ff78ce 24232@item E @var{NN}
ff2587ec 24233An error (such as memory fault)
b8ff78ce
JB
24234@item C @var{crc32}
24235The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24236@end table
24237
b8ff78ce
JB
24238@item qfThreadInfo
24239@itemx qsThreadInfo
9c16f35a 24240@cindex list active threads, remote request
b8ff78ce
JB
24241@cindex @samp{qfThreadInfo} packet
24242@cindex @samp{qsThreadInfo} packet
24243Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24244may be too many active threads to fit into one reply packet, this query
24245works iteratively: it may require more than one query/reply sequence to
24246obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24247be the @samp{qfThreadInfo} query; subsequent queries in the
24248sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24249
b8ff78ce 24250NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24251
24252Reply:
24253@table @samp
b8ff78ce 24254@item m @var{id}
ee2d5c50 24255A single thread id
b8ff78ce 24256@item m @var{id},@var{id}@dots{}
ee2d5c50 24257a comma-separated list of thread ids
b8ff78ce
JB
24258@item l
24259(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24260@end table
24261
24262In response to each query, the target will reply with a list of one or
e1aac25b
JB
24263more thread ids, in big-endian unsigned hex, separated by commas.
24264@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24265ids (using the @samp{qs} form of the query), until the target responds
24266with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24267
b8ff78ce 24268@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24269@cindex get thread-local storage address, remote request
b8ff78ce 24270@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24271Fetch the address associated with thread local storage specified
24272by @var{thread-id}, @var{offset}, and @var{lm}.
24273
24274@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24275thread for which to fetch the TLS address.
24276
24277@var{offset} is the (big endian, hex encoded) offset associated with the
24278thread local variable. (This offset is obtained from the debug
24279information associated with the variable.)
24280
db2e3e2e 24281@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24282the load module associated with the thread local storage. For example,
24283a @sc{gnu}/Linux system will pass the link map address of the shared
24284object associated with the thread local storage under consideration.
24285Other operating environments may choose to represent the load module
24286differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24287
24288Reply:
b8ff78ce
JB
24289@table @samp
24290@item @var{XX}@dots{}
ff2587ec
WZ
24291Hex encoded (big endian) bytes representing the address of the thread
24292local storage requested.
24293
b8ff78ce
JB
24294@item E @var{nn}
24295An error occurred. @var{nn} are hex digits.
ff2587ec 24296
b8ff78ce
JB
24297@item
24298An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24299@end table
24300
b8ff78ce 24301@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24302Obtain thread information from RTOS. Where: @var{startflag} (one hex
24303digit) is one to indicate the first query and zero to indicate a
24304subsequent query; @var{threadcount} (two hex digits) is the maximum
24305number of threads the response packet can contain; and @var{nextthread}
24306(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24307returned in the response as @var{argthread}.
ee2d5c50 24308
b8ff78ce 24309Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24310
24311Reply:
24312@table @samp
b8ff78ce 24313@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24314Where: @var{count} (two hex digits) is the number of threads being
24315returned; @var{done} (one hex digit) is zero to indicate more threads
24316and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24317digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24318is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24319digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24320@end table
c906108c 24321
b8ff78ce 24322@item qOffsets
9c16f35a 24323@cindex section offsets, remote request
b8ff78ce 24324@cindex @samp{qOffsets} packet
31d99776
DJ
24325Get section offsets that the target used when relocating the downloaded
24326image.
c906108c 24327
ee2d5c50
AC
24328Reply:
24329@table @samp
31d99776
DJ
24330@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24331Relocate the @code{Text} section by @var{xxx} from its original address.
24332Relocate the @code{Data} section by @var{yyy} from its original address.
24333If the object file format provides segment information (e.g.@: @sc{elf}
24334@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24335segments by the supplied offsets.
24336
24337@emph{Note: while a @code{Bss} offset may be included in the response,
24338@value{GDBN} ignores this and instead applies the @code{Data} offset
24339to the @code{Bss} section.}
24340
24341@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24342Relocate the first segment of the object file, which conventionally
24343contains program code, to a starting address of @var{xxx}. If
24344@samp{DataSeg} is specified, relocate the second segment, which
24345conventionally contains modifiable data, to a starting address of
24346@var{yyy}. @value{GDBN} will report an error if the object file
24347does not contain segment information, or does not contain at least
24348as many segments as mentioned in the reply. Extra segments are
24349kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24350@end table
24351
b8ff78ce 24352@item qP @var{mode} @var{threadid}
9c16f35a 24353@cindex thread information, remote request
b8ff78ce 24354@cindex @samp{qP} packet
8e04817f
AC
24355Returns information on @var{threadid}. Where: @var{mode} is a hex
24356encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24357
aa56d27a
JB
24358Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24359(see below).
24360
b8ff78ce 24361Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24362
89be2091
DJ
24363@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24364@cindex pass signals to inferior, remote request
24365@cindex @samp{QPassSignals} packet
23181151 24366@anchor{QPassSignals}
89be2091
DJ
24367Each listed @var{signal} should be passed directly to the inferior process.
24368Signals are numbered identically to continue packets and stop replies
24369(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24370strictly greater than the previous item. These signals do not need to stop
24371the inferior, or be reported to @value{GDBN}. All other signals should be
24372reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24373combine; any earlier @samp{QPassSignals} list is completely replaced by the
24374new list. This packet improves performance when using @samp{handle
24375@var{signal} nostop noprint pass}.
24376
24377Reply:
24378@table @samp
24379@item OK
24380The request succeeded.
24381
24382@item E @var{nn}
24383An error occurred. @var{nn} are hex digits.
24384
24385@item
24386An empty reply indicates that @samp{QPassSignals} is not supported by
24387the stub.
24388@end table
24389
24390Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24391command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24392This packet is not probed by default; the remote stub must request it,
24393by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24394
b8ff78ce 24395@item qRcmd,@var{command}
ff2587ec 24396@cindex execute remote command, remote request
b8ff78ce 24397@cindex @samp{qRcmd} packet
ff2587ec 24398@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24399execution. Invalid commands should be reported using the output
24400string. Before the final result packet, the target may also respond
24401with a number of intermediate @samp{O@var{output}} console output
24402packets. @emph{Implementors should note that providing access to a
24403stubs's interpreter may have security implications}.
fa93a9d8 24404
ff2587ec
WZ
24405Reply:
24406@table @samp
24407@item OK
24408A command response with no output.
24409@item @var{OUTPUT}
24410A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24411@item E @var{NN}
ff2587ec 24412Indicate a badly formed request.
b8ff78ce
JB
24413@item
24414An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24415@end table
fa93a9d8 24416
aa56d27a
JB
24417(Note that the @code{qRcmd} packet's name is separated from the
24418command by a @samp{,}, not a @samp{:}, contrary to the naming
24419conventions above. Please don't use this packet as a model for new
24420packets.)
24421
be2a5f71
DJ
24422@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24423@cindex supported packets, remote query
24424@cindex features of the remote protocol
24425@cindex @samp{qSupported} packet
0876f84a 24426@anchor{qSupported}
be2a5f71
DJ
24427Tell the remote stub about features supported by @value{GDBN}, and
24428query the stub for features it supports. This packet allows
24429@value{GDBN} and the remote stub to take advantage of each others'
24430features. @samp{qSupported} also consolidates multiple feature probes
24431at startup, to improve @value{GDBN} performance---a single larger
24432packet performs better than multiple smaller probe packets on
24433high-latency links. Some features may enable behavior which must not
24434be on by default, e.g.@: because it would confuse older clients or
24435stubs. Other features may describe packets which could be
24436automatically probed for, but are not. These features must be
24437reported before @value{GDBN} will use them. This ``default
24438unsupported'' behavior is not appropriate for all packets, but it
24439helps to keep the initial connection time under control with new
24440versions of @value{GDBN} which support increasing numbers of packets.
24441
24442Reply:
24443@table @samp
24444@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24445The stub supports or does not support each returned @var{stubfeature},
24446depending on the form of each @var{stubfeature} (see below for the
24447possible forms).
24448@item
24449An empty reply indicates that @samp{qSupported} is not recognized,
24450or that no features needed to be reported to @value{GDBN}.
24451@end table
24452
24453The allowed forms for each feature (either a @var{gdbfeature} in the
24454@samp{qSupported} packet, or a @var{stubfeature} in the response)
24455are:
24456
24457@table @samp
24458@item @var{name}=@var{value}
24459The remote protocol feature @var{name} is supported, and associated
24460with the specified @var{value}. The format of @var{value} depends
24461on the feature, but it must not include a semicolon.
24462@item @var{name}+
24463The remote protocol feature @var{name} is supported, and does not
24464need an associated value.
24465@item @var{name}-
24466The remote protocol feature @var{name} is not supported.
24467@item @var{name}?
24468The remote protocol feature @var{name} may be supported, and
24469@value{GDBN} should auto-detect support in some other way when it is
24470needed. This form will not be used for @var{gdbfeature} notifications,
24471but may be used for @var{stubfeature} responses.
24472@end table
24473
24474Whenever the stub receives a @samp{qSupported} request, the
24475supplied set of @value{GDBN} features should override any previous
24476request. This allows @value{GDBN} to put the stub in a known
24477state, even if the stub had previously been communicating with
24478a different version of @value{GDBN}.
24479
24480No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24481are defined yet. Stubs should ignore any unknown values for
24482@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24483packet supports receiving packets of unlimited length (earlier
24484versions of @value{GDBN} may reject overly long responses). Values
24485for @var{gdbfeature} may be defined in the future to let the stub take
24486advantage of new features in @value{GDBN}, e.g.@: incompatible
24487improvements in the remote protocol---support for unlimited length
24488responses would be a @var{gdbfeature} example, if it were not implied by
24489the @samp{qSupported} query. The stub's reply should be independent
24490of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24491describes all the features it supports, and then the stub replies with
24492all the features it supports.
24493
24494Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24495responses, as long as each response uses one of the standard forms.
24496
24497Some features are flags. A stub which supports a flag feature
24498should respond with a @samp{+} form response. Other features
24499require values, and the stub should respond with an @samp{=}
24500form response.
24501
24502Each feature has a default value, which @value{GDBN} will use if
24503@samp{qSupported} is not available or if the feature is not mentioned
24504in the @samp{qSupported} response. The default values are fixed; a
24505stub is free to omit any feature responses that match the defaults.
24506
24507Not all features can be probed, but for those which can, the probing
24508mechanism is useful: in some cases, a stub's internal
24509architecture may not allow the protocol layer to know some information
24510about the underlying target in advance. This is especially common in
24511stubs which may be configured for multiple targets.
24512
24513These are the currently defined stub features and their properties:
24514
cfa9d6d9 24515@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24516@c NOTE: The first row should be @headitem, but we do not yet require
24517@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24518@item Feature Name
be2a5f71
DJ
24519@tab Value Required
24520@tab Default
24521@tab Probe Allowed
24522
24523@item @samp{PacketSize}
24524@tab Yes
24525@tab @samp{-}
24526@tab No
24527
0876f84a
DJ
24528@item @samp{qXfer:auxv:read}
24529@tab No
24530@tab @samp{-}
24531@tab Yes
24532
23181151
DJ
24533@item @samp{qXfer:features:read}
24534@tab No
24535@tab @samp{-}
24536@tab Yes
24537
cfa9d6d9
DJ
24538@item @samp{qXfer:libraries:read}
24539@tab No
24540@tab @samp{-}
24541@tab Yes
24542
68437a39
DJ
24543@item @samp{qXfer:memory-map:read}
24544@tab No
24545@tab @samp{-}
24546@tab Yes
24547
0e7f50da
UW
24548@item @samp{qXfer:spu:read}
24549@tab No
24550@tab @samp{-}
24551@tab Yes
24552
24553@item @samp{qXfer:spu:write}
24554@tab No
24555@tab @samp{-}
24556@tab Yes
24557
89be2091
DJ
24558@item @samp{QPassSignals}
24559@tab No
24560@tab @samp{-}
24561@tab Yes
24562
be2a5f71
DJ
24563@end multitable
24564
24565These are the currently defined stub features, in more detail:
24566
24567@table @samp
24568@cindex packet size, remote protocol
24569@item PacketSize=@var{bytes}
24570The remote stub can accept packets up to at least @var{bytes} in
24571length. @value{GDBN} will send packets up to this size for bulk
24572transfers, and will never send larger packets. This is a limit on the
24573data characters in the packet, including the frame and checksum.
24574There is no trailing NUL byte in a remote protocol packet; if the stub
24575stores packets in a NUL-terminated format, it should allow an extra
24576byte in its buffer for the NUL. If this stub feature is not supported,
24577@value{GDBN} guesses based on the size of the @samp{g} packet response.
24578
0876f84a
DJ
24579@item qXfer:auxv:read
24580The remote stub understands the @samp{qXfer:auxv:read} packet
24581(@pxref{qXfer auxiliary vector read}).
24582
23181151
DJ
24583@item qXfer:features:read
24584The remote stub understands the @samp{qXfer:features:read} packet
24585(@pxref{qXfer target description read}).
24586
cfa9d6d9
DJ
24587@item qXfer:libraries:read
24588The remote stub understands the @samp{qXfer:libraries:read} packet
24589(@pxref{qXfer library list read}).
24590
23181151
DJ
24591@item qXfer:memory-map:read
24592The remote stub understands the @samp{qXfer:memory-map:read} packet
24593(@pxref{qXfer memory map read}).
24594
0e7f50da
UW
24595@item qXfer:spu:read
24596The remote stub understands the @samp{qXfer:spu:read} packet
24597(@pxref{qXfer spu read}).
24598
24599@item qXfer:spu:write
24600The remote stub understands the @samp{qXfer:spu:write} packet
24601(@pxref{qXfer spu write}).
24602
23181151
DJ
24603@item QPassSignals
24604The remote stub understands the @samp{QPassSignals} packet
24605(@pxref{QPassSignals}).
24606
be2a5f71
DJ
24607@end table
24608
b8ff78ce 24609@item qSymbol::
ff2587ec 24610@cindex symbol lookup, remote request
b8ff78ce 24611@cindex @samp{qSymbol} packet
ff2587ec
WZ
24612Notify the target that @value{GDBN} is prepared to serve symbol lookup
24613requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24614
24615Reply:
ff2587ec 24616@table @samp
b8ff78ce 24617@item OK
ff2587ec 24618The target does not need to look up any (more) symbols.
b8ff78ce 24619@item qSymbol:@var{sym_name}
ff2587ec
WZ
24620The target requests the value of symbol @var{sym_name} (hex encoded).
24621@value{GDBN} may provide the value by using the
b8ff78ce
JB
24622@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24623below.
ff2587ec 24624@end table
83761cbd 24625
b8ff78ce 24626@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24627Set the value of @var{sym_name} to @var{sym_value}.
24628
24629@var{sym_name} (hex encoded) is the name of a symbol whose value the
24630target has previously requested.
24631
24632@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24633@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24634will be empty.
24635
24636Reply:
24637@table @samp
b8ff78ce 24638@item OK
ff2587ec 24639The target does not need to look up any (more) symbols.
b8ff78ce 24640@item qSymbol:@var{sym_name}
ff2587ec
WZ
24641The target requests the value of a new symbol @var{sym_name} (hex
24642encoded). @value{GDBN} will continue to supply the values of symbols
24643(if available), until the target ceases to request them.
fa93a9d8 24644@end table
0abb7bc7 24645
9d29849a
JB
24646@item QTDP
24647@itemx QTFrame
24648@xref{Tracepoint Packets}.
24649
b8ff78ce 24650@item qThreadExtraInfo,@var{id}
ff2587ec 24651@cindex thread attributes info, remote request
b8ff78ce
JB
24652@cindex @samp{qThreadExtraInfo} packet
24653Obtain a printable string description of a thread's attributes from
24654the target OS. @var{id} is a thread-id in big-endian hex. This
24655string may contain anything that the target OS thinks is interesting
24656for @value{GDBN} to tell the user about the thread. The string is
24657displayed in @value{GDBN}'s @code{info threads} display. Some
24658examples of possible thread extra info strings are @samp{Runnable}, or
24659@samp{Blocked on Mutex}.
ff2587ec
WZ
24660
24661Reply:
24662@table @samp
b8ff78ce
JB
24663@item @var{XX}@dots{}
24664Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24665comprising the printable string containing the extra information about
24666the thread's attributes.
ff2587ec 24667@end table
814e32d7 24668
aa56d27a
JB
24669(Note that the @code{qThreadExtraInfo} packet's name is separated from
24670the command by a @samp{,}, not a @samp{:}, contrary to the naming
24671conventions above. Please don't use this packet as a model for new
24672packets.)
24673
9d29849a
JB
24674@item QTStart
24675@itemx QTStop
24676@itemx QTinit
24677@itemx QTro
24678@itemx qTStatus
24679@xref{Tracepoint Packets}.
24680
0876f84a
DJ
24681@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24682@cindex read special object, remote request
24683@cindex @samp{qXfer} packet
68437a39 24684@anchor{qXfer read}
0876f84a
DJ
24685Read uninterpreted bytes from the target's special data area
24686identified by the keyword @var{object}. Request @var{length} bytes
24687starting at @var{offset} bytes into the data. The content and
0e7f50da 24688encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24689additional details about what data to access.
24690
24691Here are the specific requests of this form defined so far. All
24692@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24693formats, listed below.
24694
24695@table @samp
24696@item qXfer:auxv:read::@var{offset},@var{length}
24697@anchor{qXfer auxiliary vector read}
24698Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24699auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24700
24701This packet is not probed by default; the remote stub must request it,
89be2091 24702by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24703
23181151
DJ
24704@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24705@anchor{qXfer target description read}
24706Access the @dfn{target description}. @xref{Target Descriptions}. The
24707annex specifies which XML document to access. The main description is
24708always loaded from the @samp{target.xml} annex.
24709
24710This packet is not probed by default; the remote stub must request it,
24711by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24712
cfa9d6d9
DJ
24713@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24714@anchor{qXfer library list read}
24715Access the target's list of loaded libraries. @xref{Library List Format}.
24716The annex part of the generic @samp{qXfer} packet must be empty
24717(@pxref{qXfer read}).
24718
24719Targets which maintain a list of libraries in the program's memory do
24720not need to implement this packet; it is designed for platforms where
24721the operating system manages the list of loaded libraries.
24722
24723This packet is not probed by default; the remote stub must request it,
24724by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24725
68437a39
DJ
24726@item qXfer:memory-map:read::@var{offset},@var{length}
24727@anchor{qXfer memory map read}
79a6e687 24728Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24729annex part of the generic @samp{qXfer} packet must be empty
24730(@pxref{qXfer read}).
24731
0e7f50da
UW
24732This packet is not probed by default; the remote stub must request it,
24733by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24734
24735@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24736@anchor{qXfer spu read}
24737Read contents of an @code{spufs} file on the target system. The
24738annex specifies which file to read; it must be of the form
24739@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24740in the target process, and @var{name} identifes the @code{spufs} file
24741in that context to be accessed.
24742
68437a39
DJ
24743This packet is not probed by default; the remote stub must request it,
24744by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24745@end table
24746
0876f84a
DJ
24747Reply:
24748@table @samp
24749@item m @var{data}
24750Data @var{data} (@pxref{Binary Data}) has been read from the
24751target. There may be more data at a higher address (although
24752it is permitted to return @samp{m} even for the last valid
24753block of data, as long as at least one byte of data was read).
24754@var{data} may have fewer bytes than the @var{length} in the
24755request.
24756
24757@item l @var{data}
24758Data @var{data} (@pxref{Binary Data}) has been read from the target.
24759There is no more data to be read. @var{data} may have fewer bytes
24760than the @var{length} in the request.
24761
24762@item l
24763The @var{offset} in the request is at the end of the data.
24764There is no more data to be read.
24765
24766@item E00
24767The request was malformed, or @var{annex} was invalid.
24768
24769@item E @var{nn}
24770The offset was invalid, or there was an error encountered reading the data.
24771@var{nn} is a hex-encoded @code{errno} value.
24772
24773@item
24774An empty reply indicates the @var{object} string was not recognized by
24775the stub, or that the object does not support reading.
24776@end table
24777
24778@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24779@cindex write data into object, remote request
24780Write uninterpreted bytes into the target's special data area
24781identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24782into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24783(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24784is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24785to access.
24786
0e7f50da
UW
24787Here are the specific requests of this form defined so far. All
24788@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24789formats, listed below.
24790
24791@table @samp
24792@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24793@anchor{qXfer spu write}
24794Write @var{data} to an @code{spufs} file on the target system. The
24795annex specifies which file to write; it must be of the form
24796@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24797in the target process, and @var{name} identifes the @code{spufs} file
24798in that context to be accessed.
24799
24800This packet is not probed by default; the remote stub must request it,
24801by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24802@end table
0876f84a
DJ
24803
24804Reply:
24805@table @samp
24806@item @var{nn}
24807@var{nn} (hex encoded) is the number of bytes written.
24808This may be fewer bytes than supplied in the request.
24809
24810@item E00
24811The request was malformed, or @var{annex} was invalid.
24812
24813@item E @var{nn}
24814The offset was invalid, or there was an error encountered writing the data.
24815@var{nn} is a hex-encoded @code{errno} value.
24816
24817@item
24818An empty reply indicates the @var{object} string was not
24819recognized by the stub, or that the object does not support writing.
24820@end table
24821
24822@item qXfer:@var{object}:@var{operation}:@dots{}
24823Requests of this form may be added in the future. When a stub does
24824not recognize the @var{object} keyword, or its support for
24825@var{object} does not recognize the @var{operation} keyword, the stub
24826must respond with an empty packet.
24827
ee2d5c50
AC
24828@end table
24829
24830@node Register Packet Format
24831@section Register Packet Format
eb12ee30 24832
b8ff78ce 24833The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24834In the below, some thirty-two bit registers are transferred as
24835sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24836to fill the space allocated. Register bytes are transferred in target
24837byte order. The two nibbles within a register byte are transferred
ee2d5c50 24838most-significant - least-significant.
eb12ee30 24839
ee2d5c50 24840@table @r
eb12ee30 24841
8e04817f 24842@item MIPS32
ee2d5c50 24843
599b237a 24844All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2484532 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24846registers; fsr; fir; fp.
eb12ee30 24847
8e04817f 24848@item MIPS64
ee2d5c50 24849
599b237a 24850All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24851thirty-two bit registers such as @code{sr}). The ordering is the same
24852as @code{MIPS32}.
eb12ee30 24853
ee2d5c50
AC
24854@end table
24855
9d29849a
JB
24856@node Tracepoint Packets
24857@section Tracepoint Packets
24858@cindex tracepoint packets
24859@cindex packets, tracepoint
24860
24861Here we describe the packets @value{GDBN} uses to implement
24862tracepoints (@pxref{Tracepoints}).
24863
24864@table @samp
24865
24866@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24867Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24868is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24869the tracepoint is disabled. @var{step} is the tracepoint's step
24870count, and @var{pass} is its pass count. If the trailing @samp{-} is
24871present, further @samp{QTDP} packets will follow to specify this
24872tracepoint's actions.
24873
24874Replies:
24875@table @samp
24876@item OK
24877The packet was understood and carried out.
24878@item
24879The packet was not recognized.
24880@end table
24881
24882@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24883Define actions to be taken when a tracepoint is hit. @var{n} and
24884@var{addr} must be the same as in the initial @samp{QTDP} packet for
24885this tracepoint. This packet may only be sent immediately after
24886another @samp{QTDP} packet that ended with a @samp{-}. If the
24887trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24888specifying more actions for this tracepoint.
24889
24890In the series of action packets for a given tracepoint, at most one
24891can have an @samp{S} before its first @var{action}. If such a packet
24892is sent, it and the following packets define ``while-stepping''
24893actions. Any prior packets define ordinary actions --- that is, those
24894taken when the tracepoint is first hit. If no action packet has an
24895@samp{S}, then all the packets in the series specify ordinary
24896tracepoint actions.
24897
24898The @samp{@var{action}@dots{}} portion of the packet is a series of
24899actions, concatenated without separators. Each action has one of the
24900following forms:
24901
24902@table @samp
24903
24904@item R @var{mask}
24905Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24906a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24907@var{i} should be collected. (The least significant bit is numbered
24908zero.) Note that @var{mask} may be any number of digits long; it may
24909not fit in a 32-bit word.
24910
24911@item M @var{basereg},@var{offset},@var{len}
24912Collect @var{len} bytes of memory starting at the address in register
24913number @var{basereg}, plus @var{offset}. If @var{basereg} is
24914@samp{-1}, then the range has a fixed address: @var{offset} is the
24915address of the lowest byte to collect. The @var{basereg},
599b237a 24916@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24917values (the @samp{-1} value for @var{basereg} is a special case).
24918
24919@item X @var{len},@var{expr}
24920Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24921it directs. @var{expr} is an agent expression, as described in
24922@ref{Agent Expressions}. Each byte of the expression is encoded as a
24923two-digit hex number in the packet; @var{len} is the number of bytes
24924in the expression (and thus one-half the number of hex digits in the
24925packet).
24926
24927@end table
24928
24929Any number of actions may be packed together in a single @samp{QTDP}
24930packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24931length (400 bytes, for many stubs). There may be only one @samp{R}
24932action per tracepoint, and it must precede any @samp{M} or @samp{X}
24933actions. Any registers referred to by @samp{M} and @samp{X} actions
24934must be collected by a preceding @samp{R} action. (The
24935``while-stepping'' actions are treated as if they were attached to a
24936separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24937
24938Replies:
24939@table @samp
24940@item OK
24941The packet was understood and carried out.
24942@item
24943The packet was not recognized.
24944@end table
24945
24946@item QTFrame:@var{n}
24947Select the @var{n}'th tracepoint frame from the buffer, and use the
24948register and memory contents recorded there to answer subsequent
24949request packets from @value{GDBN}.
24950
24951A successful reply from the stub indicates that the stub has found the
24952requested frame. The response is a series of parts, concatenated
24953without separators, describing the frame we selected. Each part has
24954one of the following forms:
24955
24956@table @samp
24957@item F @var{f}
24958The selected frame is number @var{n} in the trace frame buffer;
599b237a 24959@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24960was no frame matching the criteria in the request packet.
24961
24962@item T @var{t}
24963The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24964@var{t} is a hexadecimal number.
9d29849a
JB
24965
24966@end table
24967
24968@item QTFrame:pc:@var{addr}
24969Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24970currently selected frame whose PC is @var{addr};
599b237a 24971@var{addr} is a hexadecimal number.
9d29849a
JB
24972
24973@item QTFrame:tdp:@var{t}
24974Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24975currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24976is a hexadecimal number.
9d29849a
JB
24977
24978@item QTFrame:range:@var{start}:@var{end}
24979Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24980currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24981and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24982numbers.
24983
24984@item QTFrame:outside:@var{start}:@var{end}
24985Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24986frame @emph{outside} the given range of addresses.
24987
24988@item QTStart
24989Begin the tracepoint experiment. Begin collecting data from tracepoint
24990hits in the trace frame buffer.
24991
24992@item QTStop
24993End the tracepoint experiment. Stop collecting trace frames.
24994
24995@item QTinit
24996Clear the table of tracepoints, and empty the trace frame buffer.
24997
24998@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24999Establish the given ranges of memory as ``transparent''. The stub
25000will answer requests for these ranges from memory's current contents,
25001if they were not collected as part of the tracepoint hit.
25002
25003@value{GDBN} uses this to mark read-only regions of memory, like those
25004containing program code. Since these areas never change, they should
25005still have the same contents they did when the tracepoint was hit, so
25006there's no reason for the stub to refuse to provide their contents.
25007
25008@item qTStatus
25009Ask the stub if there is a trace experiment running right now.
25010
25011Replies:
25012@table @samp
25013@item T0
25014There is no trace experiment running.
25015@item T1
25016There is a trace experiment running.
25017@end table
25018
25019@end table
25020
25021
a6b151f1
DJ
25022@node Host I/O Packets
25023@section Host I/O Packets
25024@cindex Host I/O, remote protocol
25025@cindex file transfer, remote protocol
25026
25027The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25028operations on the far side of a remote link. For example, Host I/O is
25029used to upload and download files to a remote target with its own
25030filesystem. Host I/O uses the same constant values and data structure
25031layout as the target-initiated File-I/O protocol. However, the
25032Host I/O packets are structured differently. The target-initiated
25033protocol relies on target memory to store parameters and buffers.
25034Host I/O requests are initiated by @value{GDBN}, and the
25035target's memory is not involved. @xref{File-I/O Remote Protocol
25036Extension}, for more details on the target-initiated protocol.
25037
25038The Host I/O request packets all encode a single operation along with
25039its arguments. They have this format:
25040
25041@table @samp
25042
25043@item vFile:@var{operation}: @var{parameter}@dots{}
25044@var{operation} is the name of the particular request; the target
25045should compare the entire packet name up to the second colon when checking
25046for a supported operation. The format of @var{parameter} depends on
25047the operation. Numbers are always passed in hexadecimal. Negative
25048numbers have an explicit minus sign (i.e.@: two's complement is not
25049used). Strings (e.g.@: filenames) are encoded as a series of
25050hexadecimal bytes. The last argument to a system call may be a
25051buffer of escaped binary data (@pxref{Binary Data}).
25052
25053@end table
25054
25055The valid responses to Host I/O packets are:
25056
25057@table @samp
25058
25059@item F @var{result} [, @var{errno}] [; @var{attachment}]
25060@var{result} is the integer value returned by this operation, usually
25061non-negative for success and -1 for errors. If an error has occured,
25062@var{errno} will be included in the result. @var{errno} will have a
25063value defined by the File-I/O protocol (@pxref{Errno Values}). For
25064operations which return data, @var{attachment} supplies the data as a
25065binary buffer. Binary buffers in response packets are escaped in the
25066normal way (@pxref{Binary Data}). See the individual packet
25067documentation for the interpretation of @var{result} and
25068@var{attachment}.
25069
25070@item
25071An empty response indicates that this operation is not recognized.
25072
25073@end table
25074
25075These are the supported Host I/O operations:
25076
25077@table @samp
25078@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25079Open a file at @var{pathname} and return a file descriptor for it, or
25080return -1 if an error occurs. @var{pathname} is a string,
25081@var{flags} is an integer indicating a mask of open flags
25082(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25083of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25084@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25085
25086@item vFile:close: @var{fd}
25087Close the open file corresponding to @var{fd} and return 0, or
25088-1 if an error occurs.
25089
25090@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25091Read data from the open file corresponding to @var{fd}. Up to
25092@var{count} bytes will be read from the file, starting at @var{offset}
25093relative to the start of the file. The target may read fewer bytes;
25094common reasons include packet size limits and an end-of-file
25095condition. The number of bytes read is returned. Zero should only be
25096returned for a successful read at the end of the file, or if
25097@var{count} was zero.
25098
25099The data read should be returned as a binary attachment on success.
25100If zero bytes were read, the response should include an empty binary
25101attachment (i.e.@: a trailing semicolon). The return value is the
25102number of target bytes read; the binary attachment may be longer if
25103some characters were escaped.
25104
25105@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25106Write @var{data} (a binary buffer) to the open file corresponding
25107to @var{fd}. Start the write at @var{offset} from the start of the
25108file. Unlike many @code{write} system calls, there is no
25109separate @var{count} argument; the length of @var{data} in the
25110packet is used. @samp{vFile:write} returns the number of bytes written,
25111which may be shorter than the length of @var{data}, or -1 if an
25112error occurred.
25113
25114@item vFile:unlink: @var{pathname}
25115Delete the file at @var{pathname} on the target. Return 0,
25116or -1 if an error occurs. @var{pathname} is a string.
25117
25118@end table
25119
9a6253be
KB
25120@node Interrupts
25121@section Interrupts
25122@cindex interrupts (remote protocol)
25123
25124When a program on the remote target is running, @value{GDBN} may
25125attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25126control of which is specified via @value{GDBN}'s @samp{remotebreak}
25127setting (@pxref{set remotebreak}).
25128
25129The precise meaning of @code{BREAK} is defined by the transport
25130mechanism and may, in fact, be undefined. @value{GDBN} does
25131not currently define a @code{BREAK} mechanism for any of the network
25132interfaces.
25133
25134@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25135transport mechanisms. It is represented by sending the single byte
25136@code{0x03} without any of the usual packet overhead described in
25137the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25138transmitted as part of a packet, it is considered to be packet data
25139and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25140(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25141@code{0x03} as part of its packet.
25142
25143Stubs are not required to recognize these interrupt mechanisms and the
25144precise meaning associated with receipt of the interrupt is
25145implementation defined. If the stub is successful at interrupting the
25146running program, it is expected that it will send one of the Stop
25147Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25148of successfully stopping the program. Interrupts received while the
25149program is stopped will be discarded.
25150
ee2d5c50
AC
25151@node Examples
25152@section Examples
eb12ee30 25153
8e04817f
AC
25154Example sequence of a target being re-started. Notice how the restart
25155does not get any direct output:
eb12ee30 25156
474c8240 25157@smallexample
d2c6833e
AC
25158-> @code{R00}
25159<- @code{+}
8e04817f 25160@emph{target restarts}
d2c6833e 25161-> @code{?}
8e04817f 25162<- @code{+}
d2c6833e
AC
25163<- @code{T001:1234123412341234}
25164-> @code{+}
474c8240 25165@end smallexample
eb12ee30 25166
8e04817f 25167Example sequence of a target being stepped by a single instruction:
eb12ee30 25168
474c8240 25169@smallexample
d2c6833e 25170-> @code{G1445@dots{}}
8e04817f 25171<- @code{+}
d2c6833e
AC
25172-> @code{s}
25173<- @code{+}
25174@emph{time passes}
25175<- @code{T001:1234123412341234}
8e04817f 25176-> @code{+}
d2c6833e 25177-> @code{g}
8e04817f 25178<- @code{+}
d2c6833e
AC
25179<- @code{1455@dots{}}
25180-> @code{+}
474c8240 25181@end smallexample
eb12ee30 25182
79a6e687
BW
25183@node File-I/O Remote Protocol Extension
25184@section File-I/O Remote Protocol Extension
0ce1b118
CV
25185@cindex File-I/O remote protocol extension
25186
25187@menu
25188* File-I/O Overview::
79a6e687
BW
25189* Protocol Basics::
25190* The F Request Packet::
25191* The F Reply Packet::
25192* The Ctrl-C Message::
0ce1b118 25193* Console I/O::
79a6e687 25194* List of Supported Calls::
db2e3e2e 25195* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25196* Constants::
25197* File-I/O Examples::
25198@end menu
25199
25200@node File-I/O Overview
25201@subsection File-I/O Overview
25202@cindex file-i/o overview
25203
9c16f35a 25204The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25205target to use the host's file system and console I/O to perform various
0ce1b118 25206system calls. System calls on the target system are translated into a
fc320d37
SL
25207remote protocol packet to the host system, which then performs the needed
25208actions and returns a response packet to the target system.
0ce1b118
CV
25209This simulates file system operations even on targets that lack file systems.
25210
fc320d37
SL
25211The protocol is defined to be independent of both the host and target systems.
25212It uses its own internal representation of datatypes and values. Both
0ce1b118 25213@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25214translating the system-dependent value representations into the internal
25215protocol representations when data is transmitted.
0ce1b118 25216
fc320d37
SL
25217The communication is synchronous. A system call is possible only when
25218@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25219or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25220the target is stopped to allow deterministic access to the target's
fc320d37
SL
25221memory. Therefore File-I/O is not interruptible by target signals. On
25222the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25223(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25224
25225The target's request to perform a host system call does not finish
25226the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25227after finishing the system call, the target returns to continuing the
25228previous activity (continue, step). No additional continue or step
25229request from @value{GDBN} is required.
25230
25231@smallexample
f7dc1244 25232(@value{GDBP}) continue
0ce1b118
CV
25233 <- target requests 'system call X'
25234 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25235 -> @value{GDBN} returns result
25236 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25237 <- target hits breakpoint and sends a Txx packet
25238@end smallexample
25239
fc320d37
SL
25240The protocol only supports I/O on the console and to regular files on
25241the host file system. Character or block special devices, pipes,
25242named pipes, sockets or any other communication method on the host
0ce1b118
CV
25243system are not supported by this protocol.
25244
79a6e687
BW
25245@node Protocol Basics
25246@subsection Protocol Basics
0ce1b118
CV
25247@cindex protocol basics, file-i/o
25248
fc320d37
SL
25249The File-I/O protocol uses the @code{F} packet as the request as well
25250as reply packet. Since a File-I/O system call can only occur when
25251@value{GDBN} is waiting for a response from the continuing or stepping target,
25252the File-I/O request is a reply that @value{GDBN} has to expect as a result
25253of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25254This @code{F} packet contains all information needed to allow @value{GDBN}
25255to call the appropriate host system call:
25256
25257@itemize @bullet
b383017d 25258@item
0ce1b118
CV
25259A unique identifier for the requested system call.
25260
25261@item
25262All parameters to the system call. Pointers are given as addresses
25263in the target memory address space. Pointers to strings are given as
b383017d 25264pointer/length pair. Numerical values are given as they are.
db2e3e2e 25265Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25266
25267@end itemize
25268
fc320d37 25269At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25270
25271@itemize @bullet
b383017d 25272@item
fc320d37
SL
25273If the parameters include pointer values to data needed as input to a
25274system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25275standard @code{m} packet request. This additional communication has to be
25276expected by the target implementation and is handled as any other @code{m}
25277packet.
25278
25279@item
25280@value{GDBN} translates all value from protocol representation to host
25281representation as needed. Datatypes are coerced into the host types.
25282
25283@item
fc320d37 25284@value{GDBN} calls the system call.
0ce1b118
CV
25285
25286@item
25287It then coerces datatypes back to protocol representation.
25288
25289@item
fc320d37
SL
25290If the system call is expected to return data in buffer space specified
25291by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25292target using a @code{M} or @code{X} packet. This packet has to be expected
25293by the target implementation and is handled as any other @code{M} or @code{X}
25294packet.
25295
25296@end itemize
25297
25298Eventually @value{GDBN} replies with another @code{F} packet which contains all
25299necessary information for the target to continue. This at least contains
25300
25301@itemize @bullet
25302@item
25303Return value.
25304
25305@item
25306@code{errno}, if has been changed by the system call.
25307
25308@item
25309``Ctrl-C'' flag.
25310
25311@end itemize
25312
25313After having done the needed type and value coercion, the target continues
25314the latest continue or step action.
25315
79a6e687
BW
25316@node The F Request Packet
25317@subsection The @code{F} Request Packet
0ce1b118
CV
25318@cindex file-i/o request packet
25319@cindex @code{F} request packet
25320
25321The @code{F} request packet has the following format:
25322
25323@table @samp
fc320d37 25324@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25325
25326@var{call-id} is the identifier to indicate the host system call to be called.
25327This is just the name of the function.
25328
fc320d37
SL
25329@var{parameter@dots{}} are the parameters to the system call.
25330Parameters are hexadecimal integer values, either the actual values in case
25331of scalar datatypes, pointers to target buffer space in case of compound
25332datatypes and unspecified memory areas, or pointer/length pairs in case
25333of string parameters. These are appended to the @var{call-id} as a
25334comma-delimited list. All values are transmitted in ASCII
25335string representation, pointer/length pairs separated by a slash.
0ce1b118 25336
b383017d 25337@end table
0ce1b118 25338
fc320d37 25339
0ce1b118 25340
79a6e687
BW
25341@node The F Reply Packet
25342@subsection The @code{F} Reply Packet
0ce1b118
CV
25343@cindex file-i/o reply packet
25344@cindex @code{F} reply packet
25345
25346The @code{F} reply packet has the following format:
25347
25348@table @samp
25349
d3bdde98 25350@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25351
25352@var{retcode} is the return code of the system call as hexadecimal value.
25353
db2e3e2e
BW
25354@var{errno} is the @code{errno} set by the call, in protocol-specific
25355representation.
0ce1b118
CV
25356This parameter can be omitted if the call was successful.
25357
fc320d37
SL
25358@var{Ctrl-C flag} is only sent if the user requested a break. In this
25359case, @var{errno} must be sent as well, even if the call was successful.
25360The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25361
25362@smallexample
25363F0,0,C
25364@end smallexample
25365
25366@noindent
fc320d37 25367or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25368
25369@smallexample
25370F-1,4,C
25371@end smallexample
25372
25373@noindent
db2e3e2e 25374assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25375
25376@end table
25377
0ce1b118 25378
79a6e687
BW
25379@node The Ctrl-C Message
25380@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25381@cindex ctrl-c message, in file-i/o protocol
25382
c8aa23ab 25383If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25384reply packet (@pxref{The F Reply Packet}),
fc320d37 25385the target should behave as if it had
0ce1b118 25386gotten a break message. The meaning for the target is ``system call
fc320d37 25387interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25388(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25389packet.
fc320d37
SL
25390
25391It's important for the target to know in which
25392state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25393
25394@itemize @bullet
25395@item
25396The system call hasn't been performed on the host yet.
25397
25398@item
25399The system call on the host has been finished.
25400
25401@end itemize
25402
25403These two states can be distinguished by the target by the value of the
25404returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25405call hasn't been performed. This is equivalent to the @code{EINTR} handling
25406on POSIX systems. In any other case, the target may presume that the
fc320d37 25407system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25408as if the break message arrived right after the system call.
25409
fc320d37 25410@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25411yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25412@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25413before the user requests a break, the full action must be finished by
25414@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25415The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25416or the full action has been completed.
25417
25418@node Console I/O
25419@subsection Console I/O
25420@cindex console i/o as part of file-i/o
25421
d3e8051b 25422By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25423descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25424on the @value{GDBN} console is handled as any other file output operation
25425(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25426by @value{GDBN} so that after the target read request from file descriptor
254270 all following typing is buffered until either one of the following
25428conditions is met:
25429
25430@itemize @bullet
25431@item
c8aa23ab 25432The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25433@code{read}
25434system call is treated as finished.
25435
25436@item
7f9087cb 25437The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25438newline.
0ce1b118
CV
25439
25440@item
c8aa23ab
EZ
25441The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25442character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25443
25444@end itemize
25445
fc320d37
SL
25446If the user has typed more characters than fit in the buffer given to
25447the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25448either another @code{read(0, @dots{})} is requested by the target, or debugging
25449is stopped at the user's request.
0ce1b118 25450
0ce1b118 25451
79a6e687
BW
25452@node List of Supported Calls
25453@subsection List of Supported Calls
0ce1b118
CV
25454@cindex list of supported file-i/o calls
25455
25456@menu
25457* open::
25458* close::
25459* read::
25460* write::
25461* lseek::
25462* rename::
25463* unlink::
25464* stat/fstat::
25465* gettimeofday::
25466* isatty::
25467* system::
25468@end menu
25469
25470@node open
25471@unnumberedsubsubsec open
25472@cindex open, file-i/o system call
25473
fc320d37
SL
25474@table @asis
25475@item Synopsis:
0ce1b118 25476@smallexample
0ce1b118
CV
25477int open(const char *pathname, int flags);
25478int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25479@end smallexample
25480
fc320d37
SL
25481@item Request:
25482@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25483
0ce1b118 25484@noindent
fc320d37 25485@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25486
25487@table @code
b383017d 25488@item O_CREAT
0ce1b118
CV
25489If the file does not exist it will be created. The host
25490rules apply as far as file ownership and time stamps
25491are concerned.
25492
b383017d 25493@item O_EXCL
fc320d37 25494When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25495an error and open() fails.
25496
b383017d 25497@item O_TRUNC
0ce1b118 25498If the file already exists and the open mode allows
fc320d37
SL
25499writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25500truncated to zero length.
0ce1b118 25501
b383017d 25502@item O_APPEND
0ce1b118
CV
25503The file is opened in append mode.
25504
b383017d 25505@item O_RDONLY
0ce1b118
CV
25506The file is opened for reading only.
25507
b383017d 25508@item O_WRONLY
0ce1b118
CV
25509The file is opened for writing only.
25510
b383017d 25511@item O_RDWR
0ce1b118 25512The file is opened for reading and writing.
fc320d37 25513@end table
0ce1b118
CV
25514
25515@noindent
fc320d37 25516Other bits are silently ignored.
0ce1b118 25517
0ce1b118
CV
25518
25519@noindent
fc320d37 25520@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25521
25522@table @code
b383017d 25523@item S_IRUSR
0ce1b118
CV
25524User has read permission.
25525
b383017d 25526@item S_IWUSR
0ce1b118
CV
25527User has write permission.
25528
b383017d 25529@item S_IRGRP
0ce1b118
CV
25530Group has read permission.
25531
b383017d 25532@item S_IWGRP
0ce1b118
CV
25533Group has write permission.
25534
b383017d 25535@item S_IROTH
0ce1b118
CV
25536Others have read permission.
25537
b383017d 25538@item S_IWOTH
0ce1b118 25539Others have write permission.
fc320d37 25540@end table
0ce1b118
CV
25541
25542@noindent
fc320d37 25543Other bits are silently ignored.
0ce1b118 25544
0ce1b118 25545
fc320d37
SL
25546@item Return value:
25547@code{open} returns the new file descriptor or -1 if an error
25548occurred.
0ce1b118 25549
fc320d37 25550@item Errors:
0ce1b118
CV
25551
25552@table @code
b383017d 25553@item EEXIST
fc320d37 25554@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25555
b383017d 25556@item EISDIR
fc320d37 25557@var{pathname} refers to a directory.
0ce1b118 25558
b383017d 25559@item EACCES
0ce1b118
CV
25560The requested access is not allowed.
25561
25562@item ENAMETOOLONG
fc320d37 25563@var{pathname} was too long.
0ce1b118 25564
b383017d 25565@item ENOENT
fc320d37 25566A directory component in @var{pathname} does not exist.
0ce1b118 25567
b383017d 25568@item ENODEV
fc320d37 25569@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25570
b383017d 25571@item EROFS
fc320d37 25572@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25573write access was requested.
25574
b383017d 25575@item EFAULT
fc320d37 25576@var{pathname} is an invalid pointer value.
0ce1b118 25577
b383017d 25578@item ENOSPC
0ce1b118
CV
25579No space on device to create the file.
25580
b383017d 25581@item EMFILE
0ce1b118
CV
25582The process already has the maximum number of files open.
25583
b383017d 25584@item ENFILE
0ce1b118
CV
25585The limit on the total number of files open on the system
25586has been reached.
25587
b383017d 25588@item EINTR
0ce1b118
CV
25589The call was interrupted by the user.
25590@end table
25591
fc320d37
SL
25592@end table
25593
0ce1b118
CV
25594@node close
25595@unnumberedsubsubsec close
25596@cindex close, file-i/o system call
25597
fc320d37
SL
25598@table @asis
25599@item Synopsis:
0ce1b118 25600@smallexample
0ce1b118 25601int close(int fd);
fc320d37 25602@end smallexample
0ce1b118 25603
fc320d37
SL
25604@item Request:
25605@samp{Fclose,@var{fd}}
0ce1b118 25606
fc320d37
SL
25607@item Return value:
25608@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25609
fc320d37 25610@item Errors:
0ce1b118
CV
25611
25612@table @code
b383017d 25613@item EBADF
fc320d37 25614@var{fd} isn't a valid open file descriptor.
0ce1b118 25615
b383017d 25616@item EINTR
0ce1b118
CV
25617The call was interrupted by the user.
25618@end table
25619
fc320d37
SL
25620@end table
25621
0ce1b118
CV
25622@node read
25623@unnumberedsubsubsec read
25624@cindex read, file-i/o system call
25625
fc320d37
SL
25626@table @asis
25627@item Synopsis:
0ce1b118 25628@smallexample
0ce1b118 25629int read(int fd, void *buf, unsigned int count);
fc320d37 25630@end smallexample
0ce1b118 25631
fc320d37
SL
25632@item Request:
25633@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25634
fc320d37 25635@item Return value:
0ce1b118
CV
25636On success, the number of bytes read is returned.
25637Zero indicates end of file. If count is zero, read
b383017d 25638returns zero as well. On error, -1 is returned.
0ce1b118 25639
fc320d37 25640@item Errors:
0ce1b118
CV
25641
25642@table @code
b383017d 25643@item EBADF
fc320d37 25644@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25645reading.
25646
b383017d 25647@item EFAULT
fc320d37 25648@var{bufptr} is an invalid pointer value.
0ce1b118 25649
b383017d 25650@item EINTR
0ce1b118
CV
25651The call was interrupted by the user.
25652@end table
25653
fc320d37
SL
25654@end table
25655
0ce1b118
CV
25656@node write
25657@unnumberedsubsubsec write
25658@cindex write, file-i/o system call
25659
fc320d37
SL
25660@table @asis
25661@item Synopsis:
0ce1b118 25662@smallexample
0ce1b118 25663int write(int fd, const void *buf, unsigned int count);
fc320d37 25664@end smallexample
0ce1b118 25665
fc320d37
SL
25666@item Request:
25667@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25668
fc320d37 25669@item Return value:
0ce1b118
CV
25670On success, the number of bytes written are returned.
25671Zero indicates nothing was written. On error, -1
25672is returned.
25673
fc320d37 25674@item Errors:
0ce1b118
CV
25675
25676@table @code
b383017d 25677@item EBADF
fc320d37 25678@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25679writing.
25680
b383017d 25681@item EFAULT
fc320d37 25682@var{bufptr} is an invalid pointer value.
0ce1b118 25683
b383017d 25684@item EFBIG
0ce1b118 25685An attempt was made to write a file that exceeds the
db2e3e2e 25686host-specific maximum file size allowed.
0ce1b118 25687
b383017d 25688@item ENOSPC
0ce1b118
CV
25689No space on device to write the data.
25690
b383017d 25691@item EINTR
0ce1b118
CV
25692The call was interrupted by the user.
25693@end table
25694
fc320d37
SL
25695@end table
25696
0ce1b118
CV
25697@node lseek
25698@unnumberedsubsubsec lseek
25699@cindex lseek, file-i/o system call
25700
fc320d37
SL
25701@table @asis
25702@item Synopsis:
0ce1b118 25703@smallexample
0ce1b118 25704long lseek (int fd, long offset, int flag);
0ce1b118
CV
25705@end smallexample
25706
fc320d37
SL
25707@item Request:
25708@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25709
25710@var{flag} is one of:
0ce1b118
CV
25711
25712@table @code
b383017d 25713@item SEEK_SET
fc320d37 25714The offset is set to @var{offset} bytes.
0ce1b118 25715
b383017d 25716@item SEEK_CUR
fc320d37 25717The offset is set to its current location plus @var{offset}
0ce1b118
CV
25718bytes.
25719
b383017d 25720@item SEEK_END
fc320d37 25721The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25722bytes.
25723@end table
25724
fc320d37 25725@item Return value:
0ce1b118
CV
25726On success, the resulting unsigned offset in bytes from
25727the beginning of the file is returned. Otherwise, a
25728value of -1 is returned.
25729
fc320d37 25730@item Errors:
0ce1b118
CV
25731
25732@table @code
b383017d 25733@item EBADF
fc320d37 25734@var{fd} is not a valid open file descriptor.
0ce1b118 25735
b383017d 25736@item ESPIPE
fc320d37 25737@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25738
b383017d 25739@item EINVAL
fc320d37 25740@var{flag} is not a proper value.
0ce1b118 25741
b383017d 25742@item EINTR
0ce1b118
CV
25743The call was interrupted by the user.
25744@end table
25745
fc320d37
SL
25746@end table
25747
0ce1b118
CV
25748@node rename
25749@unnumberedsubsubsec rename
25750@cindex rename, file-i/o system call
25751
fc320d37
SL
25752@table @asis
25753@item Synopsis:
0ce1b118 25754@smallexample
0ce1b118 25755int rename(const char *oldpath, const char *newpath);
fc320d37 25756@end smallexample
0ce1b118 25757
fc320d37
SL
25758@item Request:
25759@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25760
fc320d37 25761@item Return value:
0ce1b118
CV
25762On success, zero is returned. On error, -1 is returned.
25763
fc320d37 25764@item Errors:
0ce1b118
CV
25765
25766@table @code
b383017d 25767@item EISDIR
fc320d37 25768@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25769directory.
25770
b383017d 25771@item EEXIST
fc320d37 25772@var{newpath} is a non-empty directory.
0ce1b118 25773
b383017d 25774@item EBUSY
fc320d37 25775@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25776process.
25777
b383017d 25778@item EINVAL
0ce1b118
CV
25779An attempt was made to make a directory a subdirectory
25780of itself.
25781
b383017d 25782@item ENOTDIR
fc320d37
SL
25783A component used as a directory in @var{oldpath} or new
25784path is not a directory. Or @var{oldpath} is a directory
25785and @var{newpath} exists but is not a directory.
0ce1b118 25786
b383017d 25787@item EFAULT
fc320d37 25788@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25789
b383017d 25790@item EACCES
0ce1b118
CV
25791No access to the file or the path of the file.
25792
25793@item ENAMETOOLONG
b383017d 25794
fc320d37 25795@var{oldpath} or @var{newpath} was too long.
0ce1b118 25796
b383017d 25797@item ENOENT
fc320d37 25798A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25799
b383017d 25800@item EROFS
0ce1b118
CV
25801The file is on a read-only filesystem.
25802
b383017d 25803@item ENOSPC
0ce1b118
CV
25804The device containing the file has no room for the new
25805directory entry.
25806
b383017d 25807@item EINTR
0ce1b118
CV
25808The call was interrupted by the user.
25809@end table
25810
fc320d37
SL
25811@end table
25812
0ce1b118
CV
25813@node unlink
25814@unnumberedsubsubsec unlink
25815@cindex unlink, file-i/o system call
25816
fc320d37
SL
25817@table @asis
25818@item Synopsis:
0ce1b118 25819@smallexample
0ce1b118 25820int unlink(const char *pathname);
fc320d37 25821@end smallexample
0ce1b118 25822
fc320d37
SL
25823@item Request:
25824@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25825
fc320d37 25826@item Return value:
0ce1b118
CV
25827On success, zero is returned. On error, -1 is returned.
25828
fc320d37 25829@item Errors:
0ce1b118
CV
25830
25831@table @code
b383017d 25832@item EACCES
0ce1b118
CV
25833No access to the file or the path of the file.
25834
b383017d 25835@item EPERM
0ce1b118
CV
25836The system does not allow unlinking of directories.
25837
b383017d 25838@item EBUSY
fc320d37 25839The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25840being used by another process.
25841
b383017d 25842@item EFAULT
fc320d37 25843@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25844
25845@item ENAMETOOLONG
fc320d37 25846@var{pathname} was too long.
0ce1b118 25847
b383017d 25848@item ENOENT
fc320d37 25849A directory component in @var{pathname} does not exist.
0ce1b118 25850
b383017d 25851@item ENOTDIR
0ce1b118
CV
25852A component of the path is not a directory.
25853
b383017d 25854@item EROFS
0ce1b118
CV
25855The file is on a read-only filesystem.
25856
b383017d 25857@item EINTR
0ce1b118
CV
25858The call was interrupted by the user.
25859@end table
25860
fc320d37
SL
25861@end table
25862
0ce1b118
CV
25863@node stat/fstat
25864@unnumberedsubsubsec stat/fstat
25865@cindex fstat, file-i/o system call
25866@cindex stat, file-i/o system call
25867
fc320d37
SL
25868@table @asis
25869@item Synopsis:
0ce1b118 25870@smallexample
0ce1b118
CV
25871int stat(const char *pathname, struct stat *buf);
25872int fstat(int fd, struct stat *buf);
fc320d37 25873@end smallexample
0ce1b118 25874
fc320d37
SL
25875@item Request:
25876@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25877@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25878
fc320d37 25879@item Return value:
0ce1b118
CV
25880On success, zero is returned. On error, -1 is returned.
25881
fc320d37 25882@item Errors:
0ce1b118
CV
25883
25884@table @code
b383017d 25885@item EBADF
fc320d37 25886@var{fd} is not a valid open file.
0ce1b118 25887
b383017d 25888@item ENOENT
fc320d37 25889A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25890path is an empty string.
25891
b383017d 25892@item ENOTDIR
0ce1b118
CV
25893A component of the path is not a directory.
25894
b383017d 25895@item EFAULT
fc320d37 25896@var{pathnameptr} is an invalid pointer value.
0ce1b118 25897
b383017d 25898@item EACCES
0ce1b118
CV
25899No access to the file or the path of the file.
25900
25901@item ENAMETOOLONG
fc320d37 25902@var{pathname} was too long.
0ce1b118 25903
b383017d 25904@item EINTR
0ce1b118
CV
25905The call was interrupted by the user.
25906@end table
25907
fc320d37
SL
25908@end table
25909
0ce1b118
CV
25910@node gettimeofday
25911@unnumberedsubsubsec gettimeofday
25912@cindex gettimeofday, file-i/o system call
25913
fc320d37
SL
25914@table @asis
25915@item Synopsis:
0ce1b118 25916@smallexample
0ce1b118 25917int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25918@end smallexample
0ce1b118 25919
fc320d37
SL
25920@item Request:
25921@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25922
fc320d37 25923@item Return value:
0ce1b118
CV
25924On success, 0 is returned, -1 otherwise.
25925
fc320d37 25926@item Errors:
0ce1b118
CV
25927
25928@table @code
b383017d 25929@item EINVAL
fc320d37 25930@var{tz} is a non-NULL pointer.
0ce1b118 25931
b383017d 25932@item EFAULT
fc320d37
SL
25933@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25934@end table
25935
0ce1b118
CV
25936@end table
25937
25938@node isatty
25939@unnumberedsubsubsec isatty
25940@cindex isatty, file-i/o system call
25941
fc320d37
SL
25942@table @asis
25943@item Synopsis:
0ce1b118 25944@smallexample
0ce1b118 25945int isatty(int fd);
fc320d37 25946@end smallexample
0ce1b118 25947
fc320d37
SL
25948@item Request:
25949@samp{Fisatty,@var{fd}}
0ce1b118 25950
fc320d37
SL
25951@item Return value:
25952Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25953
fc320d37 25954@item Errors:
0ce1b118
CV
25955
25956@table @code
b383017d 25957@item EINTR
0ce1b118
CV
25958The call was interrupted by the user.
25959@end table
25960
fc320d37
SL
25961@end table
25962
25963Note that the @code{isatty} call is treated as a special case: it returns
259641 to the target if the file descriptor is attached
25965to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25966would require implementing @code{ioctl} and would be more complex than
25967needed.
25968
25969
0ce1b118
CV
25970@node system
25971@unnumberedsubsubsec system
25972@cindex system, file-i/o system call
25973
fc320d37
SL
25974@table @asis
25975@item Synopsis:
0ce1b118 25976@smallexample
0ce1b118 25977int system(const char *command);
fc320d37 25978@end smallexample
0ce1b118 25979
fc320d37
SL
25980@item Request:
25981@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25982
fc320d37 25983@item Return value:
5600ea19
NS
25984If @var{len} is zero, the return value indicates whether a shell is
25985available. A zero return value indicates a shell is not available.
25986For non-zero @var{len}, the value returned is -1 on error and the
25987return status of the command otherwise. Only the exit status of the
25988command is returned, which is extracted from the host's @code{system}
25989return value by calling @code{WEXITSTATUS(retval)}. In case
25990@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25991
fc320d37 25992@item Errors:
0ce1b118
CV
25993
25994@table @code
b383017d 25995@item EINTR
0ce1b118
CV
25996The call was interrupted by the user.
25997@end table
25998
fc320d37
SL
25999@end table
26000
26001@value{GDBN} takes over the full task of calling the necessary host calls
26002to perform the @code{system} call. The return value of @code{system} on
26003the host is simplified before it's returned
26004to the target. Any termination signal information from the child process
26005is discarded, and the return value consists
26006entirely of the exit status of the called command.
26007
26008Due to security concerns, the @code{system} call is by default refused
26009by @value{GDBN}. The user has to allow this call explicitly with the
26010@code{set remote system-call-allowed 1} command.
26011
26012@table @code
26013@item set remote system-call-allowed
26014@kindex set remote system-call-allowed
26015Control whether to allow the @code{system} calls in the File I/O
26016protocol for the remote target. The default is zero (disabled).
26017
26018@item show remote system-call-allowed
26019@kindex show remote system-call-allowed
26020Show whether the @code{system} calls are allowed in the File I/O
26021protocol.
26022@end table
26023
db2e3e2e
BW
26024@node Protocol-specific Representation of Datatypes
26025@subsection Protocol-specific Representation of Datatypes
26026@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26027
26028@menu
79a6e687
BW
26029* Integral Datatypes::
26030* Pointer Values::
26031* Memory Transfer::
0ce1b118
CV
26032* struct stat::
26033* struct timeval::
26034@end menu
26035
79a6e687
BW
26036@node Integral Datatypes
26037@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26038@cindex integral datatypes, in file-i/o protocol
26039
fc320d37
SL
26040The integral datatypes used in the system calls are @code{int},
26041@code{unsigned int}, @code{long}, @code{unsigned long},
26042@code{mode_t}, and @code{time_t}.
0ce1b118 26043
fc320d37 26044@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26045implemented as 32 bit values in this protocol.
26046
fc320d37 26047@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26048
0ce1b118
CV
26049@xref{Limits}, for corresponding MIN and MAX values (similar to those
26050in @file{limits.h}) to allow range checking on host and target.
26051
26052@code{time_t} datatypes are defined as seconds since the Epoch.
26053
26054All integral datatypes transferred as part of a memory read or write of a
26055structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26056byte order.
26057
79a6e687
BW
26058@node Pointer Values
26059@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26060@cindex pointer values, in file-i/o protocol
26061
26062Pointers to target data are transmitted as they are. An exception
26063is made for pointers to buffers for which the length isn't
26064transmitted as part of the function call, namely strings. Strings
26065are transmitted as a pointer/length pair, both as hex values, e.g.@:
26066
26067@smallexample
26068@code{1aaf/12}
26069@end smallexample
26070
26071@noindent
26072which is a pointer to data of length 18 bytes at position 0x1aaf.
26073The length is defined as the full string length in bytes, including
fc320d37
SL
26074the trailing null byte. For example, the string @code{"hello world"}
26075at address 0x123456 is transmitted as
0ce1b118
CV
26076
26077@smallexample
fc320d37 26078@code{123456/d}
0ce1b118
CV
26079@end smallexample
26080
79a6e687
BW
26081@node Memory Transfer
26082@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26083@cindex memory transfer, in file-i/o protocol
26084
26085Structured data which is transferred using a memory read or write (for
db2e3e2e 26086example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26087with all scalar multibyte datatypes being big endian. Translation to
26088this representation needs to be done both by the target before the @code{F}
26089packet is sent, and by @value{GDBN} before
26090it transfers memory to the target. Transferred pointers to structured
26091data should point to the already-coerced data at any time.
0ce1b118 26092
0ce1b118
CV
26093
26094@node struct stat
26095@unnumberedsubsubsec struct stat
26096@cindex struct stat, in file-i/o protocol
26097
fc320d37
SL
26098The buffer of type @code{struct stat} used by the target and @value{GDBN}
26099is defined as follows:
0ce1b118
CV
26100
26101@smallexample
26102struct stat @{
26103 unsigned int st_dev; /* device */
26104 unsigned int st_ino; /* inode */
26105 mode_t st_mode; /* protection */
26106 unsigned int st_nlink; /* number of hard links */
26107 unsigned int st_uid; /* user ID of owner */
26108 unsigned int st_gid; /* group ID of owner */
26109 unsigned int st_rdev; /* device type (if inode device) */
26110 unsigned long st_size; /* total size, in bytes */
26111 unsigned long st_blksize; /* blocksize for filesystem I/O */
26112 unsigned long st_blocks; /* number of blocks allocated */
26113 time_t st_atime; /* time of last access */
26114 time_t st_mtime; /* time of last modification */
26115 time_t st_ctime; /* time of last change */
26116@};
26117@end smallexample
26118
fc320d37 26119The integral datatypes conform to the definitions given in the
79a6e687 26120appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26121structure is of size 64 bytes.
26122
26123The values of several fields have a restricted meaning and/or
26124range of values.
26125
fc320d37 26126@table @code
0ce1b118 26127
fc320d37
SL
26128@item st_dev
26129A value of 0 represents a file, 1 the console.
0ce1b118 26130
fc320d37
SL
26131@item st_ino
26132No valid meaning for the target. Transmitted unchanged.
0ce1b118 26133
fc320d37
SL
26134@item st_mode
26135Valid mode bits are described in @ref{Constants}. Any other
26136bits have currently no meaning for the target.
0ce1b118 26137
fc320d37
SL
26138@item st_uid
26139@itemx st_gid
26140@itemx st_rdev
26141No valid meaning for the target. Transmitted unchanged.
0ce1b118 26142
fc320d37
SL
26143@item st_atime
26144@itemx st_mtime
26145@itemx st_ctime
26146These values have a host and file system dependent
26147accuracy. Especially on Windows hosts, the file system may not
26148support exact timing values.
26149@end table
0ce1b118 26150
fc320d37
SL
26151The target gets a @code{struct stat} of the above representation and is
26152responsible for coercing it to the target representation before
0ce1b118
CV
26153continuing.
26154
fc320d37
SL
26155Note that due to size differences between the host, target, and protocol
26156representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26157get truncated on the target.
26158
26159@node struct timeval
26160@unnumberedsubsubsec struct timeval
26161@cindex struct timeval, in file-i/o protocol
26162
fc320d37 26163The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26164is defined as follows:
26165
26166@smallexample
b383017d 26167struct timeval @{
0ce1b118
CV
26168 time_t tv_sec; /* second */
26169 long tv_usec; /* microsecond */
26170@};
26171@end smallexample
26172
fc320d37 26173The integral datatypes conform to the definitions given in the
79a6e687 26174appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26175structure is of size 8 bytes.
26176
26177@node Constants
26178@subsection Constants
26179@cindex constants, in file-i/o protocol
26180
26181The following values are used for the constants inside of the
fc320d37 26182protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26183values before and after the call as needed.
26184
26185@menu
79a6e687
BW
26186* Open Flags::
26187* mode_t Values::
26188* Errno Values::
26189* Lseek Flags::
0ce1b118
CV
26190* Limits::
26191@end menu
26192
79a6e687
BW
26193@node Open Flags
26194@unnumberedsubsubsec Open Flags
0ce1b118
CV
26195@cindex open flags, in file-i/o protocol
26196
26197All values are given in hexadecimal representation.
26198
26199@smallexample
26200 O_RDONLY 0x0
26201 O_WRONLY 0x1
26202 O_RDWR 0x2
26203 O_APPEND 0x8
26204 O_CREAT 0x200
26205 O_TRUNC 0x400
26206 O_EXCL 0x800
26207@end smallexample
26208
79a6e687
BW
26209@node mode_t Values
26210@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26211@cindex mode_t values, in file-i/o protocol
26212
26213All values are given in octal representation.
26214
26215@smallexample
26216 S_IFREG 0100000
26217 S_IFDIR 040000
26218 S_IRUSR 0400
26219 S_IWUSR 0200
26220 S_IXUSR 0100
26221 S_IRGRP 040
26222 S_IWGRP 020
26223 S_IXGRP 010
26224 S_IROTH 04
26225 S_IWOTH 02
26226 S_IXOTH 01
26227@end smallexample
26228
79a6e687
BW
26229@node Errno Values
26230@unnumberedsubsubsec Errno Values
0ce1b118
CV
26231@cindex errno values, in file-i/o protocol
26232
26233All values are given in decimal representation.
26234
26235@smallexample
26236 EPERM 1
26237 ENOENT 2
26238 EINTR 4
26239 EBADF 9
26240 EACCES 13
26241 EFAULT 14
26242 EBUSY 16
26243 EEXIST 17
26244 ENODEV 19
26245 ENOTDIR 20
26246 EISDIR 21
26247 EINVAL 22
26248 ENFILE 23
26249 EMFILE 24
26250 EFBIG 27
26251 ENOSPC 28
26252 ESPIPE 29
26253 EROFS 30
26254 ENAMETOOLONG 91
26255 EUNKNOWN 9999
26256@end smallexample
26257
fc320d37 26258 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26259 any error value not in the list of supported error numbers.
26260
79a6e687
BW
26261@node Lseek Flags
26262@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26263@cindex lseek flags, in file-i/o protocol
26264
26265@smallexample
26266 SEEK_SET 0
26267 SEEK_CUR 1
26268 SEEK_END 2
26269@end smallexample
26270
26271@node Limits
26272@unnumberedsubsubsec Limits
26273@cindex limits, in file-i/o protocol
26274
26275All values are given in decimal representation.
26276
26277@smallexample
26278 INT_MIN -2147483648
26279 INT_MAX 2147483647
26280 UINT_MAX 4294967295
26281 LONG_MIN -9223372036854775808
26282 LONG_MAX 9223372036854775807
26283 ULONG_MAX 18446744073709551615
26284@end smallexample
26285
26286@node File-I/O Examples
26287@subsection File-I/O Examples
26288@cindex file-i/o examples
26289
26290Example sequence of a write call, file descriptor 3, buffer is at target
26291address 0x1234, 6 bytes should be written:
26292
26293@smallexample
26294<- @code{Fwrite,3,1234,6}
26295@emph{request memory read from target}
26296-> @code{m1234,6}
26297<- XXXXXX
26298@emph{return "6 bytes written"}
26299-> @code{F6}
26300@end smallexample
26301
26302Example sequence of a read call, file descriptor 3, buffer is at target
26303address 0x1234, 6 bytes should be read:
26304
26305@smallexample
26306<- @code{Fread,3,1234,6}
26307@emph{request memory write to target}
26308-> @code{X1234,6:XXXXXX}
26309@emph{return "6 bytes read"}
26310-> @code{F6}
26311@end smallexample
26312
26313Example sequence of a read call, call fails on the host due to invalid
fc320d37 26314file descriptor (@code{EBADF}):
0ce1b118
CV
26315
26316@smallexample
26317<- @code{Fread,3,1234,6}
26318-> @code{F-1,9}
26319@end smallexample
26320
c8aa23ab 26321Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26322host is called:
26323
26324@smallexample
26325<- @code{Fread,3,1234,6}
26326-> @code{F-1,4,C}
26327<- @code{T02}
26328@end smallexample
26329
c8aa23ab 26330Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26331host is called:
26332
26333@smallexample
26334<- @code{Fread,3,1234,6}
26335-> @code{X1234,6:XXXXXX}
26336<- @code{T02}
26337@end smallexample
26338
cfa9d6d9
DJ
26339@node Library List Format
26340@section Library List Format
26341@cindex library list format, remote protocol
26342
26343On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26344same process as your application to manage libraries. In this case,
26345@value{GDBN} can use the loader's symbol table and normal memory
26346operations to maintain a list of shared libraries. On other
26347platforms, the operating system manages loaded libraries.
26348@value{GDBN} can not retrieve the list of currently loaded libraries
26349through memory operations, so it uses the @samp{qXfer:libraries:read}
26350packet (@pxref{qXfer library list read}) instead. The remote stub
26351queries the target's operating system and reports which libraries
26352are loaded.
26353
26354The @samp{qXfer:libraries:read} packet returns an XML document which
26355lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26356associated name and one or more segment or section base addresses,
26357which report where the library was loaded in memory.
26358
26359For the common case of libraries that are fully linked binaries, the
26360library should have a list of segments. If the target supports
26361dynamic linking of a relocatable object file, its library XML element
26362should instead include a list of allocated sections. The segment or
26363section bases are start addresses, not relocation offsets; they do not
26364depend on the library's link-time base addresses.
cfa9d6d9 26365
9cceb671
DJ
26366@value{GDBN} must be linked with the Expat library to support XML
26367library lists. @xref{Expat}.
26368
cfa9d6d9
DJ
26369A simple memory map, with one loaded library relocated by a single
26370offset, looks like this:
26371
26372@smallexample
26373<library-list>
26374 <library name="/lib/libc.so.6">
26375 <segment address="0x10000000"/>
26376 </library>
26377</library-list>
26378@end smallexample
26379
1fddbabb
PA
26380Another simple memory map, with one loaded library with three
26381allocated sections (.text, .data, .bss), looks like this:
26382
26383@smallexample
26384<library-list>
26385 <library name="sharedlib.o">
26386 <section address="0x10000000"/>
26387 <section address="0x20000000"/>
26388 <section address="0x30000000"/>
26389 </library>
26390</library-list>
26391@end smallexample
26392
cfa9d6d9
DJ
26393The format of a library list is described by this DTD:
26394
26395@smallexample
26396<!-- library-list: Root element with versioning -->
26397<!ELEMENT library-list (library)*>
26398<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26399<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26400<!ATTLIST library name CDATA #REQUIRED>
26401<!ELEMENT segment EMPTY>
26402<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26403<!ELEMENT section EMPTY>
26404<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26405@end smallexample
26406
1fddbabb
PA
26407In addition, segments and section descriptors cannot be mixed within a
26408single library element, and you must supply at least one segment or
26409section for each library.
26410
79a6e687
BW
26411@node Memory Map Format
26412@section Memory Map Format
68437a39
DJ
26413@cindex memory map format
26414
26415To be able to write into flash memory, @value{GDBN} needs to obtain a
26416memory map from the target. This section describes the format of the
26417memory map.
26418
26419The memory map is obtained using the @samp{qXfer:memory-map:read}
26420(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26421lists memory regions.
26422
26423@value{GDBN} must be linked with the Expat library to support XML
26424memory maps. @xref{Expat}.
26425
26426The top-level structure of the document is shown below:
68437a39
DJ
26427
26428@smallexample
26429<?xml version="1.0"?>
26430<!DOCTYPE memory-map
26431 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26432 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26433<memory-map>
26434 region...
26435</memory-map>
26436@end smallexample
26437
26438Each region can be either:
26439
26440@itemize
26441
26442@item
26443A region of RAM starting at @var{addr} and extending for @var{length}
26444bytes from there:
26445
26446@smallexample
26447<memory type="ram" start="@var{addr}" length="@var{length}"/>
26448@end smallexample
26449
26450
26451@item
26452A region of read-only memory:
26453
26454@smallexample
26455<memory type="rom" start="@var{addr}" length="@var{length}"/>
26456@end smallexample
26457
26458
26459@item
26460A region of flash memory, with erasure blocks @var{blocksize}
26461bytes in length:
26462
26463@smallexample
26464<memory type="flash" start="@var{addr}" length="@var{length}">
26465 <property name="blocksize">@var{blocksize}</property>
26466</memory>
26467@end smallexample
26468
26469@end itemize
26470
26471Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26472by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26473packets to write to addresses in such ranges.
26474
26475The formal DTD for memory map format is given below:
26476
26477@smallexample
26478<!-- ................................................... -->
26479<!-- Memory Map XML DTD ................................ -->
26480<!-- File: memory-map.dtd .............................. -->
26481<!-- .................................... .............. -->
26482<!-- memory-map.dtd -->
26483<!-- memory-map: Root element with versioning -->
26484<!ELEMENT memory-map (memory | property)>
26485<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26486<!ELEMENT memory (property)>
26487<!-- memory: Specifies a memory region,
26488 and its type, or device. -->
26489<!ATTLIST memory type CDATA #REQUIRED
26490 start CDATA #REQUIRED
26491 length CDATA #REQUIRED
26492 device CDATA #IMPLIED>
26493<!-- property: Generic attribute tag -->
26494<!ELEMENT property (#PCDATA | property)*>
26495<!ATTLIST property name CDATA #REQUIRED>
26496@end smallexample
26497
f418dd93
DJ
26498@include agentexpr.texi
26499
23181151
DJ
26500@node Target Descriptions
26501@appendix Target Descriptions
26502@cindex target descriptions
26503
26504@strong{Warning:} target descriptions are still under active development,
26505and the contents and format may change between @value{GDBN} releases.
26506The format is expected to stabilize in the future.
26507
26508One of the challenges of using @value{GDBN} to debug embedded systems
26509is that there are so many minor variants of each processor
26510architecture in use. It is common practice for vendors to start with
26511a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26512and then make changes to adapt it to a particular market niche. Some
26513architectures have hundreds of variants, available from dozens of
26514vendors. This leads to a number of problems:
26515
26516@itemize @bullet
26517@item
26518With so many different customized processors, it is difficult for
26519the @value{GDBN} maintainers to keep up with the changes.
26520@item
26521Since individual variants may have short lifetimes or limited
26522audiences, it may not be worthwhile to carry information about every
26523variant in the @value{GDBN} source tree.
26524@item
26525When @value{GDBN} does support the architecture of the embedded system
26526at hand, the task of finding the correct architecture name to give the
26527@command{set architecture} command can be error-prone.
26528@end itemize
26529
26530To address these problems, the @value{GDBN} remote protocol allows a
26531target system to not only identify itself to @value{GDBN}, but to
26532actually describe its own features. This lets @value{GDBN} support
26533processor variants it has never seen before --- to the extent that the
26534descriptions are accurate, and that @value{GDBN} understands them.
26535
9cceb671
DJ
26536@value{GDBN} must be linked with the Expat library to support XML
26537target descriptions. @xref{Expat}.
123dc839 26538
23181151
DJ
26539@menu
26540* Retrieving Descriptions:: How descriptions are fetched from a target.
26541* Target Description Format:: The contents of a target description.
123dc839
DJ
26542* Predefined Target Types:: Standard types available for target
26543 descriptions.
26544* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26545@end menu
26546
26547@node Retrieving Descriptions
26548@section Retrieving Descriptions
26549
26550Target descriptions can be read from the target automatically, or
26551specified by the user manually. The default behavior is to read the
26552description from the target. @value{GDBN} retrieves it via the remote
26553protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26554qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26555@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26556XML document, of the form described in @ref{Target Description
26557Format}.
26558
26559Alternatively, you can specify a file to read for the target description.
26560If a file is set, the target will not be queried. The commands to
26561specify a file are:
26562
26563@table @code
26564@cindex set tdesc filename
26565@item set tdesc filename @var{path}
26566Read the target description from @var{path}.
26567
26568@cindex unset tdesc filename
26569@item unset tdesc filename
26570Do not read the XML target description from a file. @value{GDBN}
26571will use the description supplied by the current target.
26572
26573@cindex show tdesc filename
26574@item show tdesc filename
26575Show the filename to read for a target description, if any.
26576@end table
26577
26578
26579@node Target Description Format
26580@section Target Description Format
26581@cindex target descriptions, XML format
26582
26583A target description annex is an @uref{http://www.w3.org/XML/, XML}
26584document which complies with the Document Type Definition provided in
26585the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26586means you can use generally available tools like @command{xmllint} to
26587check that your feature descriptions are well-formed and valid.
26588However, to help people unfamiliar with XML write descriptions for
26589their targets, we also describe the grammar here.
26590
123dc839
DJ
26591Target descriptions can identify the architecture of the remote target
26592and (for some architectures) provide information about custom register
26593sets. @value{GDBN} can use this information to autoconfigure for your
26594target, or to warn you if you connect to an unsupported target.
23181151
DJ
26595
26596Here is a simple target description:
26597
123dc839 26598@smallexample
1780a0ed 26599<target version="1.0">
23181151
DJ
26600 <architecture>i386:x86-64</architecture>
26601</target>
123dc839 26602@end smallexample
23181151
DJ
26603
26604@noindent
26605This minimal description only says that the target uses
26606the x86-64 architecture.
26607
123dc839
DJ
26608A target description has the following overall form, with [ ] marking
26609optional elements and @dots{} marking repeatable elements. The elements
26610are explained further below.
23181151 26611
123dc839 26612@smallexample
23181151
DJ
26613<?xml version="1.0"?>
26614<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26615<target version="1.0">
123dc839
DJ
26616 @r{[}@var{architecture}@r{]}
26617 @r{[}@var{feature}@dots{}@r{]}
23181151 26618</target>
123dc839 26619@end smallexample
23181151
DJ
26620
26621@noindent
26622The description is generally insensitive to whitespace and line
26623breaks, under the usual common-sense rules. The XML version
26624declaration and document type declaration can generally be omitted
26625(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26626useful for XML validation tools. The @samp{version} attribute for
26627@samp{<target>} may also be omitted, but we recommend
26628including it; if future versions of @value{GDBN} use an incompatible
26629revision of @file{gdb-target.dtd}, they will detect and report
26630the version mismatch.
23181151 26631
108546a0
DJ
26632@subsection Inclusion
26633@cindex target descriptions, inclusion
26634@cindex XInclude
26635@ifnotinfo
26636@cindex <xi:include>
26637@end ifnotinfo
26638
26639It can sometimes be valuable to split a target description up into
26640several different annexes, either for organizational purposes, or to
26641share files between different possible target descriptions. You can
26642divide a description into multiple files by replacing any element of
26643the target description with an inclusion directive of the form:
26644
123dc839 26645@smallexample
108546a0 26646<xi:include href="@var{document}"/>
123dc839 26647@end smallexample
108546a0
DJ
26648
26649@noindent
26650When @value{GDBN} encounters an element of this form, it will retrieve
26651the named XML @var{document}, and replace the inclusion directive with
26652the contents of that document. If the current description was read
26653using @samp{qXfer}, then so will be the included document;
26654@var{document} will be interpreted as the name of an annex. If the
26655current description was read from a file, @value{GDBN} will look for
26656@var{document} as a file in the same directory where it found the
26657original description.
26658
123dc839
DJ
26659@subsection Architecture
26660@cindex <architecture>
26661
26662An @samp{<architecture>} element has this form:
26663
26664@smallexample
26665 <architecture>@var{arch}</architecture>
26666@end smallexample
26667
26668@var{arch} is an architecture name from the same selection
26669accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26670Debugging Target}).
26671
26672@subsection Features
26673@cindex <feature>
26674
26675Each @samp{<feature>} describes some logical portion of the target
26676system. Features are currently used to describe available CPU
26677registers and the types of their contents. A @samp{<feature>} element
26678has this form:
26679
26680@smallexample
26681<feature name="@var{name}">
26682 @r{[}@var{type}@dots{}@r{]}
26683 @var{reg}@dots{}
26684</feature>
26685@end smallexample
26686
26687@noindent
26688Each feature's name should be unique within the description. The name
26689of a feature does not matter unless @value{GDBN} has some special
26690knowledge of the contents of that feature; if it does, the feature
26691should have its standard name. @xref{Standard Target Features}.
26692
26693@subsection Types
26694
26695Any register's value is a collection of bits which @value{GDBN} must
26696interpret. The default interpretation is a two's complement integer,
26697but other types can be requested by name in the register description.
26698Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26699Target Types}), and the description can define additional composite types.
26700
26701Each type element must have an @samp{id} attribute, which gives
26702a unique (within the containing @samp{<feature>}) name to the type.
26703Types must be defined before they are used.
26704
26705@cindex <vector>
26706Some targets offer vector registers, which can be treated as arrays
26707of scalar elements. These types are written as @samp{<vector>} elements,
26708specifying the array element type, @var{type}, and the number of elements,
26709@var{count}:
26710
26711@smallexample
26712<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26713@end smallexample
26714
26715@cindex <union>
26716If a register's value is usefully viewed in multiple ways, define it
26717with a union type containing the useful representations. The
26718@samp{<union>} element contains one or more @samp{<field>} elements,
26719each of which has a @var{name} and a @var{type}:
26720
26721@smallexample
26722<union id="@var{id}">
26723 <field name="@var{name}" type="@var{type}"/>
26724 @dots{}
26725</union>
26726@end smallexample
26727
26728@subsection Registers
26729@cindex <reg>
26730
26731Each register is represented as an element with this form:
26732
26733@smallexample
26734<reg name="@var{name}"
26735 bitsize="@var{size}"
26736 @r{[}regnum="@var{num}"@r{]}
26737 @r{[}save-restore="@var{save-restore}"@r{]}
26738 @r{[}type="@var{type}"@r{]}
26739 @r{[}group="@var{group}"@r{]}/>
26740@end smallexample
26741
26742@noindent
26743The components are as follows:
26744
26745@table @var
26746
26747@item name
26748The register's name; it must be unique within the target description.
26749
26750@item bitsize
26751The register's size, in bits.
26752
26753@item regnum
26754The register's number. If omitted, a register's number is one greater
26755than that of the previous register (either in the current feature or in
26756a preceeding feature); the first register in the target description
26757defaults to zero. This register number is used to read or write
26758the register; e.g.@: it is used in the remote @code{p} and @code{P}
26759packets, and registers appear in the @code{g} and @code{G} packets
26760in order of increasing register number.
26761
26762@item save-restore
26763Whether the register should be preserved across inferior function
26764calls; this must be either @code{yes} or @code{no}. The default is
26765@code{yes}, which is appropriate for most registers except for
26766some system control registers; this is not related to the target's
26767ABI.
26768
26769@item type
26770The type of the register. @var{type} may be a predefined type, a type
26771defined in the current feature, or one of the special types @code{int}
26772and @code{float}. @code{int} is an integer type of the correct size
26773for @var{bitsize}, and @code{float} is a floating point type (in the
26774architecture's normal floating point format) of the correct size for
26775@var{bitsize}. The default is @code{int}.
26776
26777@item group
26778The register group to which this register belongs. @var{group} must
26779be either @code{general}, @code{float}, or @code{vector}. If no
26780@var{group} is specified, @value{GDBN} will not display the register
26781in @code{info registers}.
26782
26783@end table
26784
26785@node Predefined Target Types
26786@section Predefined Target Types
26787@cindex target descriptions, predefined types
26788
26789Type definitions in the self-description can build up composite types
26790from basic building blocks, but can not define fundamental types. Instead,
26791standard identifiers are provided by @value{GDBN} for the fundamental
26792types. The currently supported types are:
26793
26794@table @code
26795
26796@item int8
26797@itemx int16
26798@itemx int32
26799@itemx int64
7cc46491 26800@itemx int128
123dc839
DJ
26801Signed integer types holding the specified number of bits.
26802
26803@item uint8
26804@itemx uint16
26805@itemx uint32
26806@itemx uint64
7cc46491 26807@itemx uint128
123dc839
DJ
26808Unsigned integer types holding the specified number of bits.
26809
26810@item code_ptr
26811@itemx data_ptr
26812Pointers to unspecified code and data. The program counter and
26813any dedicated return address register may be marked as code
26814pointers; printing a code pointer converts it into a symbolic
26815address. The stack pointer and any dedicated address registers
26816may be marked as data pointers.
26817
6e3bbd1a
PB
26818@item ieee_single
26819Single precision IEEE floating point.
26820
26821@item ieee_double
26822Double precision IEEE floating point.
26823
123dc839
DJ
26824@item arm_fpa_ext
26825The 12-byte extended precision format used by ARM FPA registers.
26826
26827@end table
26828
26829@node Standard Target Features
26830@section Standard Target Features
26831@cindex target descriptions, standard features
26832
26833A target description must contain either no registers or all the
26834target's registers. If the description contains no registers, then
26835@value{GDBN} will assume a default register layout, selected based on
26836the architecture. If the description contains any registers, the
26837default layout will not be used; the standard registers must be
26838described in the target description, in such a way that @value{GDBN}
26839can recognize them.
26840
26841This is accomplished by giving specific names to feature elements
26842which contain standard registers. @value{GDBN} will look for features
26843with those names and verify that they contain the expected registers;
26844if any known feature is missing required registers, or if any required
26845feature is missing, @value{GDBN} will reject the target
26846description. You can add additional registers to any of the
26847standard features --- @value{GDBN} will display them just as if
26848they were added to an unrecognized feature.
26849
26850This section lists the known features and their expected contents.
26851Sample XML documents for these features are included in the
26852@value{GDBN} source tree, in the directory @file{gdb/features}.
26853
26854Names recognized by @value{GDBN} should include the name of the
26855company or organization which selected the name, and the overall
26856architecture to which the feature applies; so e.g.@: the feature
26857containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26858
ff6f572f
DJ
26859The names of registers are not case sensitive for the purpose
26860of recognizing standard features, but @value{GDBN} will only display
26861registers using the capitalization used in the description.
26862
e9c17194
VP
26863@menu
26864* ARM Features::
26865* M68K Features::
26866@end menu
26867
26868
26869@node ARM Features
123dc839
DJ
26870@subsection ARM Features
26871@cindex target descriptions, ARM features
26872
26873The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26874It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26875@samp{lr}, @samp{pc}, and @samp{cpsr}.
26876
26877The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26878should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26879
ff6f572f
DJ
26880The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26881it should contain at least registers @samp{wR0} through @samp{wR15} and
26882@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26883@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26884
f8b73d13
DJ
26885@subsection MIPS Features
26886@cindex target descriptions, MIPS features
26887
26888The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26889It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26890@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26891on the target.
26892
26893The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26894contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26895registers. They may be 32-bit or 64-bit depending on the target.
26896
26897The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26898it may be optional in a future version of @value{GDBN}. It should
26899contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26900@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26901
822b6570
DJ
26902The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26903contain a single register, @samp{restart}, which is used by the
26904Linux kernel to control restartable syscalls.
26905
e9c17194
VP
26906@node M68K Features
26907@subsection M68K Features
26908@cindex target descriptions, M68K features
26909
26910@table @code
26911@item @samp{org.gnu.gdb.m68k.core}
26912@itemx @samp{org.gnu.gdb.coldfire.core}
26913@itemx @samp{org.gnu.gdb.fido.core}
26914One of those features must be always present.
26915The feature that is present determines which flavor of m86k is
26916used. The feature that is present should contain registers
26917@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26918@samp{sp}, @samp{ps} and @samp{pc}.
26919
26920@item @samp{org.gnu.gdb.coldfire.fp}
26921This feature is optional. If present, it should contain registers
26922@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26923@samp{fpiaddr}.
26924@end table
26925
7cc46491
DJ
26926@subsection PowerPC Features
26927@cindex target descriptions, PowerPC features
26928
26929The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26930targets. It should contain registers @samp{r0} through @samp{r31},
26931@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26932@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26933
26934The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26935contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26936
26937The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26938contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26939and @samp{vrsave}.
26940
26941The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26942contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26943@samp{spefscr}. SPE targets should provide 32-bit registers in
26944@samp{org.gnu.gdb.power.core} and provide the upper halves in
26945@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26946these to present registers @samp{ev0} through @samp{ev31} to the
26947user.
26948
aab4e0ec 26949@include gpl.texi
eb12ee30 26950
2154891a 26951@raisesections
6826cf00 26952@include fdl.texi
2154891a 26953@lowersections
6826cf00 26954
6d2ebf8b 26955@node Index
c906108c
SS
26956@unnumbered Index
26957
26958@printindex cp
26959
26960@tex
26961% I think something like @colophon should be in texinfo. In the
26962% meantime:
26963\long\def\colophon{\hbox to0pt{}\vfill
26964\centerline{The body of this manual is set in}
26965\centerline{\fontname\tenrm,}
26966\centerline{with headings in {\bf\fontname\tenbf}}
26967\centerline{and examples in {\tt\fontname\tentt}.}
26968\centerline{{\it\fontname\tenit\/},}
26969\centerline{{\bf\fontname\tenbf}, and}
26970\centerline{{\sl\fontname\tensl\/}}
26971\centerline{are used for emphasis.}\vfill}
26972\page\colophon
26973% Blame: doc@cygnus.com, 1991.
26974@end tex
26975
c906108c 26976@bye