]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
* breakpoint.c (bpstat_stop_status): Check an additional
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c
SS
944
945@item -c @var{number}
19837790
MS
946@item -pid @var{number}
947@itemx -p @var{number}
948@cindex @code{--pid}
949@cindex @code{-p}
950Connect to process ID @var{number}, as with the @code{attach} command.
951If there is no such process, @value{GDBN} will attempt to open a core
952file named @var{number}.
c906108c
SS
953
954@item -command @var{file}
955@itemx -x @var{file}
d700128c
EZ
956@cindex @code{--command}
957@cindex @code{-x}
c906108c
SS
958Execute @value{GDBN} commands from file @var{file}. @xref{Command
959Files,, Command files}.
960
8a5a3c82
AS
961@item -eval-command @var{command}
962@itemx -ex @var{command}
963@cindex @code{--eval-command}
964@cindex @code{-ex}
965Execute a single @value{GDBN} command.
966
967This option may be used multiple times to call multiple commands. It may
968also be interleaved with @samp{-command} as required.
969
970@smallexample
971@value{GDBP} -ex 'target sim' -ex 'load' \
972 -x setbreakpoints -ex 'run' a.out
973@end smallexample
974
c906108c
SS
975@item -directory @var{directory}
976@itemx -d @var{directory}
d700128c
EZ
977@cindex @code{--directory}
978@cindex @code{-d}
4b505b12 979Add @var{directory} to the path to search for source and script files.
c906108c 980
c906108c
SS
981@item -r
982@itemx -readnow
d700128c
EZ
983@cindex @code{--readnow}
984@cindex @code{-r}
c906108c
SS
985Read each symbol file's entire symbol table immediately, rather than
986the default, which is to read it incrementally as it is needed.
987This makes startup slower, but makes future operations faster.
53a5351d 988
c906108c
SS
989@end table
990
6d2ebf8b 991@node Mode Options
79a6e687 992@subsection Choosing Modes
c906108c
SS
993
994You can run @value{GDBN} in various alternative modes---for example, in
995batch mode or quiet mode.
996
997@table @code
998@item -nx
999@itemx -n
d700128c
EZ
1000@cindex @code{--nx}
1001@cindex @code{-n}
96565e91 1002Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1003@value{GDBN} executes the commands in these files after all the command
1004options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1005Files}.
c906108c
SS
1006
1007@item -quiet
d700128c 1008@itemx -silent
c906108c 1009@itemx -q
d700128c
EZ
1010@cindex @code{--quiet}
1011@cindex @code{--silent}
1012@cindex @code{-q}
c906108c
SS
1013``Quiet''. Do not print the introductory and copyright messages. These
1014messages are also suppressed in batch mode.
1015
1016@item -batch
d700128c 1017@cindex @code{--batch}
c906108c
SS
1018Run in batch mode. Exit with status @code{0} after processing all the
1019command files specified with @samp{-x} (and all commands from
1020initialization files, if not inhibited with @samp{-n}). Exit with
1021nonzero status if an error occurs in executing the @value{GDBN} commands
1022in the command files.
1023
2df3850c
JM
1024Batch mode may be useful for running @value{GDBN} as a filter, for
1025example to download and run a program on another computer; in order to
1026make this more useful, the message
c906108c 1027
474c8240 1028@smallexample
c906108c 1029Program exited normally.
474c8240 1030@end smallexample
c906108c
SS
1031
1032@noindent
2df3850c
JM
1033(which is ordinarily issued whenever a program running under
1034@value{GDBN} control terminates) is not issued when running in batch
1035mode.
1036
1a088d06
AS
1037@item -batch-silent
1038@cindex @code{--batch-silent}
1039Run in batch mode exactly like @samp{-batch}, but totally silently. All
1040@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1041unaffected). This is much quieter than @samp{-silent} and would be useless
1042for an interactive session.
1043
1044This is particularly useful when using targets that give @samp{Loading section}
1045messages, for example.
1046
1047Note that targets that give their output via @value{GDBN}, as opposed to
1048writing directly to @code{stdout}, will also be made silent.
1049
4b0ad762
AS
1050@item -return-child-result
1051@cindex @code{--return-child-result}
1052The return code from @value{GDBN} will be the return code from the child
1053process (the process being debugged), with the following exceptions:
1054
1055@itemize @bullet
1056@item
1057@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1058internal error. In this case the exit code is the same as it would have been
1059without @samp{-return-child-result}.
1060@item
1061The user quits with an explicit value. E.g., @samp{quit 1}.
1062@item
1063The child process never runs, or is not allowed to terminate, in which case
1064the exit code will be -1.
1065@end itemize
1066
1067This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1068when @value{GDBN} is being used as a remote program loader or simulator
1069interface.
1070
2df3850c
JM
1071@item -nowindows
1072@itemx -nw
d700128c
EZ
1073@cindex @code{--nowindows}
1074@cindex @code{-nw}
2df3850c 1075``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1076(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1077interface. If no GUI is available, this option has no effect.
1078
1079@item -windows
1080@itemx -w
d700128c
EZ
1081@cindex @code{--windows}
1082@cindex @code{-w}
2df3850c
JM
1083If @value{GDBN} includes a GUI, then this option requires it to be
1084used if possible.
c906108c
SS
1085
1086@item -cd @var{directory}
d700128c 1087@cindex @code{--cd}
c906108c
SS
1088Run @value{GDBN} using @var{directory} as its working directory,
1089instead of the current directory.
1090
c906108c
SS
1091@item -fullname
1092@itemx -f
d700128c
EZ
1093@cindex @code{--fullname}
1094@cindex @code{-f}
7a292a7a
SS
1095@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1096subprocess. It tells @value{GDBN} to output the full file name and line
1097number in a standard, recognizable fashion each time a stack frame is
1098displayed (which includes each time your program stops). This
1099recognizable format looks like two @samp{\032} characters, followed by
1100the file name, line number and character position separated by colons,
1101and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1102@samp{\032} characters as a signal to display the source code for the
1103frame.
c906108c 1104
d700128c
EZ
1105@item -epoch
1106@cindex @code{--epoch}
1107The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1108@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1109routines so as to allow Epoch to display values of expressions in a
1110separate window.
1111
1112@item -annotate @var{level}
1113@cindex @code{--annotate}
1114This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1115effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1116(@pxref{Annotations}). The annotation @var{level} controls how much
1117information @value{GDBN} prints together with its prompt, values of
1118expressions, source lines, and other types of output. Level 0 is the
1119normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1120@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1121that control @value{GDBN}, and level 2 has been deprecated.
1122
265eeb58 1123The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1124(@pxref{GDB/MI}).
d700128c 1125
aa26fa3a
TT
1126@item --args
1127@cindex @code{--args}
1128Change interpretation of command line so that arguments following the
1129executable file are passed as command line arguments to the inferior.
1130This option stops option processing.
1131
2df3850c
JM
1132@item -baud @var{bps}
1133@itemx -b @var{bps}
d700128c
EZ
1134@cindex @code{--baud}
1135@cindex @code{-b}
c906108c
SS
1136Set the line speed (baud rate or bits per second) of any serial
1137interface used by @value{GDBN} for remote debugging.
c906108c 1138
f47b1503
AS
1139@item -l @var{timeout}
1140@cindex @code{-l}
1141Set the timeout (in seconds) of any communication used by @value{GDBN}
1142for remote debugging.
1143
c906108c 1144@item -tty @var{device}
d700128c
EZ
1145@itemx -t @var{device}
1146@cindex @code{--tty}
1147@cindex @code{-t}
c906108c
SS
1148Run using @var{device} for your program's standard input and output.
1149@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1150
53a5351d 1151@c resolve the situation of these eventually
c4555f82
SC
1152@item -tui
1153@cindex @code{--tui}
d0d5df6f
AC
1154Activate the @dfn{Text User Interface} when starting. The Text User
1155Interface manages several text windows on the terminal, showing
1156source, assembly, registers and @value{GDBN} command outputs
1157(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1158Text User Interface can be enabled by invoking the program
46ba6afa 1159@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1160Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1161
1162@c @item -xdb
d700128c 1163@c @cindex @code{--xdb}
53a5351d
JM
1164@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1165@c For information, see the file @file{xdb_trans.html}, which is usually
1166@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1167@c systems.
1168
d700128c
EZ
1169@item -interpreter @var{interp}
1170@cindex @code{--interpreter}
1171Use the interpreter @var{interp} for interface with the controlling
1172program or device. This option is meant to be set by programs which
94bbb2c0 1173communicate with @value{GDBN} using it as a back end.
21c294e6 1174@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1175
da0f9dcd 1176@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1177@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1178The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1179previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1180selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1181@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1182
1183@item -write
1184@cindex @code{--write}
1185Open the executable and core files for both reading and writing. This
1186is equivalent to the @samp{set write on} command inside @value{GDBN}
1187(@pxref{Patching}).
1188
1189@item -statistics
1190@cindex @code{--statistics}
1191This option causes @value{GDBN} to print statistics about time and
1192memory usage after it completes each command and returns to the prompt.
1193
1194@item -version
1195@cindex @code{--version}
1196This option causes @value{GDBN} to print its version number and
1197no-warranty blurb, and exit.
1198
c906108c
SS
1199@end table
1200
6fc08d32 1201@node Startup
79a6e687 1202@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1203@cindex @value{GDBN} startup
1204
1205Here's the description of what @value{GDBN} does during session startup:
1206
1207@enumerate
1208@item
1209Sets up the command interpreter as specified by the command line
1210(@pxref{Mode Options, interpreter}).
1211
1212@item
1213@cindex init file
1214Reads the @dfn{init file} (if any) in your home directory@footnote{On
1215DOS/Windows systems, the home directory is the one pointed to by the
1216@code{HOME} environment variable.} and executes all the commands in
1217that file.
1218
1219@item
1220Processes command line options and operands.
1221
1222@item
1223Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1224working directory. This is only done if the current directory is
1225different from your home directory. Thus, you can have more than one
1226init file, one generic in your home directory, and another, specific
1227to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1228@value{GDBN}.
1229
1230@item
1231Reads command files specified by the @samp{-x} option. @xref{Command
1232Files}, for more details about @value{GDBN} command files.
1233
1234@item
1235Reads the command history recorded in the @dfn{history file}.
d620b259 1236@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1237files where @value{GDBN} records it.
1238@end enumerate
1239
1240Init files use the same syntax as @dfn{command files} (@pxref{Command
1241Files}) and are processed by @value{GDBN} in the same way. The init
1242file in your home directory can set options (such as @samp{set
1243complaints}) that affect subsequent processing of command line options
1244and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1245option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1246
1247@cindex init file name
1248@cindex @file{.gdbinit}
119b882a 1249@cindex @file{gdb.ini}
8807d78b 1250The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1251The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1252the limitations of file names imposed by DOS filesystems. The Windows
1253ports of @value{GDBN} use the standard name, but if they find a
1254@file{gdb.ini} file, they warn you about that and suggest to rename
1255the file to the standard name.
1256
6fc08d32 1257
6d2ebf8b 1258@node Quitting GDB
c906108c
SS
1259@section Quitting @value{GDBN}
1260@cindex exiting @value{GDBN}
1261@cindex leaving @value{GDBN}
1262
1263@table @code
1264@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1265@kindex q @r{(@code{quit})}
96a2c332
SS
1266@item quit @r{[}@var{expression}@r{]}
1267@itemx q
1268To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1269@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1270do not supply @var{expression}, @value{GDBN} will terminate normally;
1271otherwise it will terminate using the result of @var{expression} as the
1272error code.
c906108c
SS
1273@end table
1274
1275@cindex interrupt
c8aa23ab 1276An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1277terminates the action of any @value{GDBN} command that is in progress and
1278returns to @value{GDBN} command level. It is safe to type the interrupt
1279character at any time because @value{GDBN} does not allow it to take effect
1280until a time when it is safe.
1281
c906108c
SS
1282If you have been using @value{GDBN} to control an attached process or
1283device, you can release it with the @code{detach} command
79a6e687 1284(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1285
6d2ebf8b 1286@node Shell Commands
79a6e687 1287@section Shell Commands
c906108c
SS
1288
1289If you need to execute occasional shell commands during your
1290debugging session, there is no need to leave or suspend @value{GDBN}; you can
1291just use the @code{shell} command.
1292
1293@table @code
1294@kindex shell
1295@cindex shell escape
1296@item shell @var{command string}
1297Invoke a standard shell to execute @var{command string}.
c906108c 1298If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1299shell to run. Otherwise @value{GDBN} uses the default shell
1300(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1301@end table
1302
1303The utility @code{make} is often needed in development environments.
1304You do not have to use the @code{shell} command for this purpose in
1305@value{GDBN}:
1306
1307@table @code
1308@kindex make
1309@cindex calling make
1310@item make @var{make-args}
1311Execute the @code{make} program with the specified
1312arguments. This is equivalent to @samp{shell make @var{make-args}}.
1313@end table
1314
79a6e687
BW
1315@node Logging Output
1316@section Logging Output
0fac0b41 1317@cindex logging @value{GDBN} output
9c16f35a 1318@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1319
1320You may want to save the output of @value{GDBN} commands to a file.
1321There are several commands to control @value{GDBN}'s logging.
1322
1323@table @code
1324@kindex set logging
1325@item set logging on
1326Enable logging.
1327@item set logging off
1328Disable logging.
9c16f35a 1329@cindex logging file name
0fac0b41
DJ
1330@item set logging file @var{file}
1331Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1332@item set logging overwrite [on|off]
1333By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1334you want @code{set logging on} to overwrite the logfile instead.
1335@item set logging redirect [on|off]
1336By default, @value{GDBN} output will go to both the terminal and the logfile.
1337Set @code{redirect} if you want output to go only to the log file.
1338@kindex show logging
1339@item show logging
1340Show the current values of the logging settings.
1341@end table
1342
6d2ebf8b 1343@node Commands
c906108c
SS
1344@chapter @value{GDBN} Commands
1345
1346You can abbreviate a @value{GDBN} command to the first few letters of the command
1347name, if that abbreviation is unambiguous; and you can repeat certain
1348@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1349key to get @value{GDBN} to fill out the rest of a word in a command (or to
1350show you the alternatives available, if there is more than one possibility).
1351
1352@menu
1353* Command Syntax:: How to give commands to @value{GDBN}
1354* Completion:: Command completion
1355* Help:: How to ask @value{GDBN} for help
1356@end menu
1357
6d2ebf8b 1358@node Command Syntax
79a6e687 1359@section Command Syntax
c906108c
SS
1360
1361A @value{GDBN} command is a single line of input. There is no limit on
1362how long it can be. It starts with a command name, which is followed by
1363arguments whose meaning depends on the command name. For example, the
1364command @code{step} accepts an argument which is the number of times to
1365step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1366with no arguments. Some commands do not allow any arguments.
c906108c
SS
1367
1368@cindex abbreviation
1369@value{GDBN} command names may always be truncated if that abbreviation is
1370unambiguous. Other possible command abbreviations are listed in the
1371documentation for individual commands. In some cases, even ambiguous
1372abbreviations are allowed; for example, @code{s} is specially defined as
1373equivalent to @code{step} even though there are other commands whose
1374names start with @code{s}. You can test abbreviations by using them as
1375arguments to the @code{help} command.
1376
1377@cindex repeating commands
41afff9a 1378@kindex RET @r{(repeat last command)}
c906108c 1379A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1380repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1381will not repeat this way; these are commands whose unintentional
1382repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1383repeat. User-defined commands can disable this feature; see
1384@ref{Define, dont-repeat}.
c906108c
SS
1385
1386The @code{list} and @code{x} commands, when you repeat them with
1387@key{RET}, construct new arguments rather than repeating
1388exactly as typed. This permits easy scanning of source or memory.
1389
1390@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1391output, in a way similar to the common utility @code{more}
79a6e687 1392(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1393@key{RET} too many in this situation, @value{GDBN} disables command
1394repetition after any command that generates this sort of display.
1395
41afff9a 1396@kindex # @r{(a comment)}
c906108c
SS
1397@cindex comment
1398Any text from a @kbd{#} to the end of the line is a comment; it does
1399nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1400Files,,Command Files}).
c906108c 1401
88118b3a 1402@cindex repeating command sequences
c8aa23ab
EZ
1403@kindex Ctrl-o @r{(operate-and-get-next)}
1404The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1405commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1406then fetches the next line relative to the current line from the history
1407for editing.
1408
6d2ebf8b 1409@node Completion
79a6e687 1410@section Command Completion
c906108c
SS
1411
1412@cindex completion
1413@cindex word completion
1414@value{GDBN} can fill in the rest of a word in a command for you, if there is
1415only one possibility; it can also show you what the valid possibilities
1416are for the next word in a command, at any time. This works for @value{GDBN}
1417commands, @value{GDBN} subcommands, and the names of symbols in your program.
1418
1419Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1420of a word. If there is only one possibility, @value{GDBN} fills in the
1421word, and waits for you to finish the command (or press @key{RET} to
1422enter it). For example, if you type
1423
1424@c FIXME "@key" does not distinguish its argument sufficiently to permit
1425@c complete accuracy in these examples; space introduced for clarity.
1426@c If texinfo enhancements make it unnecessary, it would be nice to
1427@c replace " @key" by "@key" in the following...
474c8240 1428@smallexample
c906108c 1429(@value{GDBP}) info bre @key{TAB}
474c8240 1430@end smallexample
c906108c
SS
1431
1432@noindent
1433@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1434the only @code{info} subcommand beginning with @samp{bre}:
1435
474c8240 1436@smallexample
c906108c 1437(@value{GDBP}) info breakpoints
474c8240 1438@end smallexample
c906108c
SS
1439
1440@noindent
1441You can either press @key{RET} at this point, to run the @code{info
1442breakpoints} command, or backspace and enter something else, if
1443@samp{breakpoints} does not look like the command you expected. (If you
1444were sure you wanted @code{info breakpoints} in the first place, you
1445might as well just type @key{RET} immediately after @samp{info bre},
1446to exploit command abbreviations rather than command completion).
1447
1448If there is more than one possibility for the next word when you press
1449@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1450characters and try again, or just press @key{TAB} a second time;
1451@value{GDBN} displays all the possible completions for that word. For
1452example, you might want to set a breakpoint on a subroutine whose name
1453begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1454just sounds the bell. Typing @key{TAB} again displays all the
1455function names in your program that begin with those characters, for
1456example:
1457
474c8240 1458@smallexample
c906108c
SS
1459(@value{GDBP}) b make_ @key{TAB}
1460@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1461make_a_section_from_file make_environ
1462make_abs_section make_function_type
1463make_blockvector make_pointer_type
1464make_cleanup make_reference_type
c906108c
SS
1465make_command make_symbol_completion_list
1466(@value{GDBP}) b make_
474c8240 1467@end smallexample
c906108c
SS
1468
1469@noindent
1470After displaying the available possibilities, @value{GDBN} copies your
1471partial input (@samp{b make_} in the example) so you can finish the
1472command.
1473
1474If you just want to see the list of alternatives in the first place, you
b37052ae 1475can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1476means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1477key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1478one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1479
1480@cindex quotes in commands
1481@cindex completion of quoted strings
1482Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1483parentheses or other characters that @value{GDBN} normally excludes from
1484its notion of a word. To permit word completion to work in this
1485situation, you may enclose words in @code{'} (single quote marks) in
1486@value{GDBN} commands.
c906108c 1487
c906108c 1488The most likely situation where you might need this is in typing the
b37052ae
EZ
1489name of a C@t{++} function. This is because C@t{++} allows function
1490overloading (multiple definitions of the same function, distinguished
1491by argument type). For example, when you want to set a breakpoint you
1492may need to distinguish whether you mean the version of @code{name}
1493that takes an @code{int} parameter, @code{name(int)}, or the version
1494that takes a @code{float} parameter, @code{name(float)}. To use the
1495word-completion facilities in this situation, type a single quote
1496@code{'} at the beginning of the function name. This alerts
1497@value{GDBN} that it may need to consider more information than usual
1498when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1499
474c8240 1500@smallexample
96a2c332 1501(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1502bubble(double,double) bubble(int,int)
1503(@value{GDBP}) b 'bubble(
474c8240 1504@end smallexample
c906108c
SS
1505
1506In some cases, @value{GDBN} can tell that completing a name requires using
1507quotes. When this happens, @value{GDBN} inserts the quote for you (while
1508completing as much as it can) if you do not type the quote in the first
1509place:
1510
474c8240 1511@smallexample
c906108c
SS
1512(@value{GDBP}) b bub @key{TAB}
1513@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1514(@value{GDBP}) b 'bubble(
474c8240 1515@end smallexample
c906108c
SS
1516
1517@noindent
1518In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1519you have not yet started typing the argument list when you ask for
1520completion on an overloaded symbol.
1521
79a6e687
BW
1522For more information about overloaded functions, see @ref{C Plus Plus
1523Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1524overload-resolution off} to disable overload resolution;
79a6e687 1525see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1526
1527
6d2ebf8b 1528@node Help
79a6e687 1529@section Getting Help
c906108c
SS
1530@cindex online documentation
1531@kindex help
1532
5d161b24 1533You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1534using the command @code{help}.
1535
1536@table @code
41afff9a 1537@kindex h @r{(@code{help})}
c906108c
SS
1538@item help
1539@itemx h
1540You can use @code{help} (abbreviated @code{h}) with no arguments to
1541display a short list of named classes of commands:
1542
1543@smallexample
1544(@value{GDBP}) help
1545List of classes of commands:
1546
2df3850c 1547aliases -- Aliases of other commands
c906108c 1548breakpoints -- Making program stop at certain points
2df3850c 1549data -- Examining data
c906108c 1550files -- Specifying and examining files
2df3850c
JM
1551internals -- Maintenance commands
1552obscure -- Obscure features
1553running -- Running the program
1554stack -- Examining the stack
c906108c
SS
1555status -- Status inquiries
1556support -- Support facilities
12c27660 1557tracepoints -- Tracing of program execution without
96a2c332 1558 stopping the program
c906108c 1559user-defined -- User-defined commands
c906108c 1560
5d161b24 1561Type "help" followed by a class name for a list of
c906108c 1562commands in that class.
5d161b24 1563Type "help" followed by command name for full
c906108c
SS
1564documentation.
1565Command name abbreviations are allowed if unambiguous.
1566(@value{GDBP})
1567@end smallexample
96a2c332 1568@c the above line break eliminates huge line overfull...
c906108c
SS
1569
1570@item help @var{class}
1571Using one of the general help classes as an argument, you can get a
1572list of the individual commands in that class. For example, here is the
1573help display for the class @code{status}:
1574
1575@smallexample
1576(@value{GDBP}) help status
1577Status inquiries.
1578
1579List of commands:
1580
1581@c Line break in "show" line falsifies real output, but needed
1582@c to fit in smallbook page size.
2df3850c 1583info -- Generic command for showing things
12c27660 1584 about the program being debugged
2df3850c 1585show -- Generic command for showing things
12c27660 1586 about the debugger
c906108c 1587
5d161b24 1588Type "help" followed by command name for full
c906108c
SS
1589documentation.
1590Command name abbreviations are allowed if unambiguous.
1591(@value{GDBP})
1592@end smallexample
1593
1594@item help @var{command}
1595With a command name as @code{help} argument, @value{GDBN} displays a
1596short paragraph on how to use that command.
1597
6837a0a2
DB
1598@kindex apropos
1599@item apropos @var{args}
09d4efe1 1600The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1601commands, and their documentation, for the regular expression specified in
1602@var{args}. It prints out all matches found. For example:
1603
1604@smallexample
1605apropos reload
1606@end smallexample
1607
b37052ae
EZ
1608@noindent
1609results in:
6837a0a2
DB
1610
1611@smallexample
6d2ebf8b
SS
1612@c @group
1613set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1614 multiple times in one run
6d2ebf8b 1615show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1616 multiple times in one run
6d2ebf8b 1617@c @end group
6837a0a2
DB
1618@end smallexample
1619
c906108c
SS
1620@kindex complete
1621@item complete @var{args}
1622The @code{complete @var{args}} command lists all the possible completions
1623for the beginning of a command. Use @var{args} to specify the beginning of the
1624command you want completed. For example:
1625
1626@smallexample
1627complete i
1628@end smallexample
1629
1630@noindent results in:
1631
1632@smallexample
1633@group
2df3850c
JM
1634if
1635ignore
c906108c
SS
1636info
1637inspect
c906108c
SS
1638@end group
1639@end smallexample
1640
1641@noindent This is intended for use by @sc{gnu} Emacs.
1642@end table
1643
1644In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1645and @code{show} to inquire about the state of your program, or the state
1646of @value{GDBN} itself. Each command supports many topics of inquiry; this
1647manual introduces each of them in the appropriate context. The listings
1648under @code{info} and under @code{show} in the Index point to
1649all the sub-commands. @xref{Index}.
1650
1651@c @group
1652@table @code
1653@kindex info
41afff9a 1654@kindex i @r{(@code{info})}
c906108c
SS
1655@item info
1656This command (abbreviated @code{i}) is for describing the state of your
1657program. For example, you can list the arguments given to your program
1658with @code{info args}, list the registers currently in use with @code{info
1659registers}, or list the breakpoints you have set with @code{info breakpoints}.
1660You can get a complete list of the @code{info} sub-commands with
1661@w{@code{help info}}.
1662
1663@kindex set
1664@item set
5d161b24 1665You can assign the result of an expression to an environment variable with
c906108c
SS
1666@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1667@code{set prompt $}.
1668
1669@kindex show
1670@item show
5d161b24 1671In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1672@value{GDBN} itself.
1673You can change most of the things you can @code{show}, by using the
1674related command @code{set}; for example, you can control what number
1675system is used for displays with @code{set radix}, or simply inquire
1676which is currently in use with @code{show radix}.
1677
1678@kindex info set
1679To display all the settable parameters and their current
1680values, you can use @code{show} with no arguments; you may also use
1681@code{info set}. Both commands produce the same display.
1682@c FIXME: "info set" violates the rule that "info" is for state of
1683@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1684@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1685@end table
1686@c @end group
1687
1688Here are three miscellaneous @code{show} subcommands, all of which are
1689exceptional in lacking corresponding @code{set} commands:
1690
1691@table @code
1692@kindex show version
9c16f35a 1693@cindex @value{GDBN} version number
c906108c
SS
1694@item show version
1695Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1696information in @value{GDBN} bug-reports. If multiple versions of
1697@value{GDBN} are in use at your site, you may need to determine which
1698version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1699commands are introduced, and old ones may wither away. Also, many
1700system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1701variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1702The version number is the same as the one announced when you start
1703@value{GDBN}.
c906108c
SS
1704
1705@kindex show copying
09d4efe1 1706@kindex info copying
9c16f35a 1707@cindex display @value{GDBN} copyright
c906108c 1708@item show copying
09d4efe1 1709@itemx info copying
c906108c
SS
1710Display information about permission for copying @value{GDBN}.
1711
1712@kindex show warranty
09d4efe1 1713@kindex info warranty
c906108c 1714@item show warranty
09d4efe1 1715@itemx info warranty
2df3850c 1716Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1717if your version of @value{GDBN} comes with one.
2df3850c 1718
c906108c
SS
1719@end table
1720
6d2ebf8b 1721@node Running
c906108c
SS
1722@chapter Running Programs Under @value{GDBN}
1723
1724When you run a program under @value{GDBN}, you must first generate
1725debugging information when you compile it.
7a292a7a
SS
1726
1727You may start @value{GDBN} with its arguments, if any, in an environment
1728of your choice. If you are doing native debugging, you may redirect
1729your program's input and output, debug an already running process, or
1730kill a child process.
c906108c
SS
1731
1732@menu
1733* Compilation:: Compiling for debugging
1734* Starting:: Starting your program
c906108c
SS
1735* Arguments:: Your program's arguments
1736* Environment:: Your program's environment
c906108c
SS
1737
1738* Working Directory:: Your program's working directory
1739* Input/Output:: Your program's input and output
1740* Attach:: Debugging an already-running process
1741* Kill Process:: Killing the child process
c906108c
SS
1742
1743* Threads:: Debugging programs with multiple threads
1744* Processes:: Debugging programs with multiple processes
5c95884b 1745* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1746@end menu
1747
6d2ebf8b 1748@node Compilation
79a6e687 1749@section Compiling for Debugging
c906108c
SS
1750
1751In order to debug a program effectively, you need to generate
1752debugging information when you compile it. This debugging information
1753is stored in the object file; it describes the data type of each
1754variable or function and the correspondence between source line numbers
1755and addresses in the executable code.
1756
1757To request debugging information, specify the @samp{-g} option when you run
1758the compiler.
1759
514c4d71
EZ
1760Programs that are to be shipped to your customers are compiled with
1761optimizations, using the @samp{-O} compiler option. However, many
1762compilers are unable to handle the @samp{-g} and @samp{-O} options
1763together. Using those compilers, you cannot generate optimized
c906108c
SS
1764executables containing debugging information.
1765
514c4d71 1766@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1767without @samp{-O}, making it possible to debug optimized code. We
1768recommend that you @emph{always} use @samp{-g} whenever you compile a
1769program. You may think your program is correct, but there is no sense
1770in pushing your luck.
c906108c
SS
1771
1772@cindex optimized code, debugging
1773@cindex debugging optimized code
1774When you debug a program compiled with @samp{-g -O}, remember that the
1775optimizer is rearranging your code; the debugger shows you what is
1776really there. Do not be too surprised when the execution path does not
1777exactly match your source file! An extreme example: if you define a
1778variable, but never use it, @value{GDBN} never sees that
1779variable---because the compiler optimizes it out of existence.
1780
1781Some things do not work as well with @samp{-g -O} as with just
1782@samp{-g}, particularly on machines with instruction scheduling. If in
1783doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1784please report it to us as a bug (including a test case!).
15387254 1785@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1786
1787Older versions of the @sc{gnu} C compiler permitted a variant option
1788@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1789format; if your @sc{gnu} C compiler has this option, do not use it.
1790
514c4d71
EZ
1791@value{GDBN} knows about preprocessor macros and can show you their
1792expansion (@pxref{Macros}). Most compilers do not include information
1793about preprocessor macros in the debugging information if you specify
1794the @option{-g} flag alone, because this information is rather large.
1795Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1796provides macro information if you specify the options
1797@option{-gdwarf-2} and @option{-g3}; the former option requests
1798debugging information in the Dwarf 2 format, and the latter requests
1799``extra information''. In the future, we hope to find more compact
1800ways to represent macro information, so that it can be included with
1801@option{-g} alone.
1802
c906108c 1803@need 2000
6d2ebf8b 1804@node Starting
79a6e687 1805@section Starting your Program
c906108c
SS
1806@cindex starting
1807@cindex running
1808
1809@table @code
1810@kindex run
41afff9a 1811@kindex r @r{(@code{run})}
c906108c
SS
1812@item run
1813@itemx r
7a292a7a
SS
1814Use the @code{run} command to start your program under @value{GDBN}.
1815You must first specify the program name (except on VxWorks) with an
1816argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1817@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1818(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1819
1820@end table
1821
c906108c
SS
1822If you are running your program in an execution environment that
1823supports processes, @code{run} creates an inferior process and makes
1824that process run your program. (In environments without processes,
1825@code{run} jumps to the start of your program.)
1826
1827The execution of a program is affected by certain information it
1828receives from its superior. @value{GDBN} provides ways to specify this
1829information, which you must do @emph{before} starting your program. (You
1830can change it after starting your program, but such changes only affect
1831your program the next time you start it.) This information may be
1832divided into four categories:
1833
1834@table @asis
1835@item The @emph{arguments.}
1836Specify the arguments to give your program as the arguments of the
1837@code{run} command. If a shell is available on your target, the shell
1838is used to pass the arguments, so that you may use normal conventions
1839(such as wildcard expansion or variable substitution) in describing
1840the arguments.
1841In Unix systems, you can control which shell is used with the
1842@code{SHELL} environment variable.
79a6e687 1843@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1844
1845@item The @emph{environment.}
1846Your program normally inherits its environment from @value{GDBN}, but you can
1847use the @value{GDBN} commands @code{set environment} and @code{unset
1848environment} to change parts of the environment that affect
79a6e687 1849your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1850
1851@item The @emph{working directory.}
1852Your program inherits its working directory from @value{GDBN}. You can set
1853the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1854@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1855
1856@item The @emph{standard input and output.}
1857Your program normally uses the same device for standard input and
1858standard output as @value{GDBN} is using. You can redirect input and output
1859in the @code{run} command line, or you can use the @code{tty} command to
1860set a different device for your program.
79a6e687 1861@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1862
1863@cindex pipes
1864@emph{Warning:} While input and output redirection work, you cannot use
1865pipes to pass the output of the program you are debugging to another
1866program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1867wrong program.
1868@end table
c906108c
SS
1869
1870When you issue the @code{run} command, your program begins to execute
79a6e687 1871immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1872of how to arrange for your program to stop. Once your program has
1873stopped, you may call functions in your program, using the @code{print}
1874or @code{call} commands. @xref{Data, ,Examining Data}.
1875
1876If the modification time of your symbol file has changed since the last
1877time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1878table, and reads it again. When it does this, @value{GDBN} tries to retain
1879your current breakpoints.
1880
4e8b0763
JB
1881@table @code
1882@kindex start
1883@item start
1884@cindex run to main procedure
1885The name of the main procedure can vary from language to language.
1886With C or C@t{++}, the main procedure name is always @code{main}, but
1887other languages such as Ada do not require a specific name for their
1888main procedure. The debugger provides a convenient way to start the
1889execution of the program and to stop at the beginning of the main
1890procedure, depending on the language used.
1891
1892The @samp{start} command does the equivalent of setting a temporary
1893breakpoint at the beginning of the main procedure and then invoking
1894the @samp{run} command.
1895
f018e82f
EZ
1896@cindex elaboration phase
1897Some programs contain an @dfn{elaboration} phase where some startup code is
1898executed before the main procedure is called. This depends on the
1899languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1900constructors for static and global objects are executed before
1901@code{main} is called. It is therefore possible that the debugger stops
1902before reaching the main procedure. However, the temporary breakpoint
1903will remain to halt execution.
1904
1905Specify the arguments to give to your program as arguments to the
1906@samp{start} command. These arguments will be given verbatim to the
1907underlying @samp{run} command. Note that the same arguments will be
1908reused if no argument is provided during subsequent calls to
1909@samp{start} or @samp{run}.
1910
1911It is sometimes necessary to debug the program during elaboration. In
1912these cases, using the @code{start} command would stop the execution of
1913your program too late, as the program would have already completed the
1914elaboration phase. Under these circumstances, insert breakpoints in your
1915elaboration code before running your program.
1916@end table
1917
6d2ebf8b 1918@node Arguments
79a6e687 1919@section Your Program's Arguments
c906108c
SS
1920
1921@cindex arguments (to your program)
1922The arguments to your program can be specified by the arguments of the
5d161b24 1923@code{run} command.
c906108c
SS
1924They are passed to a shell, which expands wildcard characters and
1925performs redirection of I/O, and thence to your program. Your
1926@code{SHELL} environment variable (if it exists) specifies what shell
1927@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1928the default shell (@file{/bin/sh} on Unix).
1929
1930On non-Unix systems, the program is usually invoked directly by
1931@value{GDBN}, which emulates I/O redirection via the appropriate system
1932calls, and the wildcard characters are expanded by the startup code of
1933the program, not by the shell.
c906108c
SS
1934
1935@code{run} with no arguments uses the same arguments used by the previous
1936@code{run}, or those set by the @code{set args} command.
1937
c906108c 1938@table @code
41afff9a 1939@kindex set args
c906108c
SS
1940@item set args
1941Specify the arguments to be used the next time your program is run. If
1942@code{set args} has no arguments, @code{run} executes your program
1943with no arguments. Once you have run your program with arguments,
1944using @code{set args} before the next @code{run} is the only way to run
1945it again without arguments.
1946
1947@kindex show args
1948@item show args
1949Show the arguments to give your program when it is started.
1950@end table
1951
6d2ebf8b 1952@node Environment
79a6e687 1953@section Your Program's Environment
c906108c
SS
1954
1955@cindex environment (of your program)
1956The @dfn{environment} consists of a set of environment variables and
1957their values. Environment variables conventionally record such things as
1958your user name, your home directory, your terminal type, and your search
1959path for programs to run. Usually you set up environment variables with
1960the shell and they are inherited by all the other programs you run. When
1961debugging, it can be useful to try running your program with a modified
1962environment without having to start @value{GDBN} over again.
1963
1964@table @code
1965@kindex path
1966@item path @var{directory}
1967Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1968(the search path for executables) that will be passed to your program.
1969The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1970You may specify several directory names, separated by whitespace or by a
1971system-dependent separator character (@samp{:} on Unix, @samp{;} on
1972MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1973is moved to the front, so it is searched sooner.
c906108c
SS
1974
1975You can use the string @samp{$cwd} to refer to whatever is the current
1976working directory at the time @value{GDBN} searches the path. If you
1977use @samp{.} instead, it refers to the directory where you executed the
1978@code{path} command. @value{GDBN} replaces @samp{.} in the
1979@var{directory} argument (with the current path) before adding
1980@var{directory} to the search path.
1981@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1982@c document that, since repeating it would be a no-op.
1983
1984@kindex show paths
1985@item show paths
1986Display the list of search paths for executables (the @code{PATH}
1987environment variable).
1988
1989@kindex show environment
1990@item show environment @r{[}@var{varname}@r{]}
1991Print the value of environment variable @var{varname} to be given to
1992your program when it starts. If you do not supply @var{varname},
1993print the names and values of all environment variables to be given to
1994your program. You can abbreviate @code{environment} as @code{env}.
1995
1996@kindex set environment
53a5351d 1997@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1998Set environment variable @var{varname} to @var{value}. The value
1999changes for your program only, not for @value{GDBN} itself. @var{value} may
2000be any string; the values of environment variables are just strings, and
2001any interpretation is supplied by your program itself. The @var{value}
2002parameter is optional; if it is eliminated, the variable is set to a
2003null value.
2004@c "any string" here does not include leading, trailing
2005@c blanks. Gnu asks: does anyone care?
2006
2007For example, this command:
2008
474c8240 2009@smallexample
c906108c 2010set env USER = foo
474c8240 2011@end smallexample
c906108c
SS
2012
2013@noindent
d4f3574e 2014tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2015@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2016are not actually required.)
2017
2018@kindex unset environment
2019@item unset environment @var{varname}
2020Remove variable @var{varname} from the environment to be passed to your
2021program. This is different from @samp{set env @var{varname} =};
2022@code{unset environment} removes the variable from the environment,
2023rather than assigning it an empty value.
2024@end table
2025
d4f3574e
SS
2026@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2027the shell indicated
c906108c
SS
2028by your @code{SHELL} environment variable if it exists (or
2029@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2030that runs an initialization file---such as @file{.cshrc} for C-shell, or
2031@file{.bashrc} for BASH---any variables you set in that file affect
2032your program. You may wish to move setting of environment variables to
2033files that are only run when you sign on, such as @file{.login} or
2034@file{.profile}.
2035
6d2ebf8b 2036@node Working Directory
79a6e687 2037@section Your Program's Working Directory
c906108c
SS
2038
2039@cindex working directory (of your program)
2040Each time you start your program with @code{run}, it inherits its
2041working directory from the current working directory of @value{GDBN}.
2042The @value{GDBN} working directory is initially whatever it inherited
2043from its parent process (typically the shell), but you can specify a new
2044working directory in @value{GDBN} with the @code{cd} command.
2045
2046The @value{GDBN} working directory also serves as a default for the commands
2047that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2048Specify Files}.
c906108c
SS
2049
2050@table @code
2051@kindex cd
721c2651 2052@cindex change working directory
c906108c
SS
2053@item cd @var{directory}
2054Set the @value{GDBN} working directory to @var{directory}.
2055
2056@kindex pwd
2057@item pwd
2058Print the @value{GDBN} working directory.
2059@end table
2060
60bf7e09
EZ
2061It is generally impossible to find the current working directory of
2062the process being debugged (since a program can change its directory
2063during its run). If you work on a system where @value{GDBN} is
2064configured with the @file{/proc} support, you can use the @code{info
2065proc} command (@pxref{SVR4 Process Information}) to find out the
2066current working directory of the debuggee.
2067
6d2ebf8b 2068@node Input/Output
79a6e687 2069@section Your Program's Input and Output
c906108c
SS
2070
2071@cindex redirection
2072@cindex i/o
2073@cindex terminal
2074By default, the program you run under @value{GDBN} does input and output to
5d161b24 2075the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2076to its own terminal modes to interact with you, but it records the terminal
2077modes your program was using and switches back to them when you continue
2078running your program.
2079
2080@table @code
2081@kindex info terminal
2082@item info terminal
2083Displays information recorded by @value{GDBN} about the terminal modes your
2084program is using.
2085@end table
2086
2087You can redirect your program's input and/or output using shell
2088redirection with the @code{run} command. For example,
2089
474c8240 2090@smallexample
c906108c 2091run > outfile
474c8240 2092@end smallexample
c906108c
SS
2093
2094@noindent
2095starts your program, diverting its output to the file @file{outfile}.
2096
2097@kindex tty
2098@cindex controlling terminal
2099Another way to specify where your program should do input and output is
2100with the @code{tty} command. This command accepts a file name as
2101argument, and causes this file to be the default for future @code{run}
2102commands. It also resets the controlling terminal for the child
2103process, for future @code{run} commands. For example,
2104
474c8240 2105@smallexample
c906108c 2106tty /dev/ttyb
474c8240 2107@end smallexample
c906108c
SS
2108
2109@noindent
2110directs that processes started with subsequent @code{run} commands
2111default to do input and output on the terminal @file{/dev/ttyb} and have
2112that as their controlling terminal.
2113
2114An explicit redirection in @code{run} overrides the @code{tty} command's
2115effect on the input/output device, but not its effect on the controlling
2116terminal.
2117
2118When you use the @code{tty} command or redirect input in the @code{run}
2119command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2120for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2121for @code{set inferior-tty}.
2122
2123@cindex inferior tty
2124@cindex set inferior controlling terminal
2125You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2126display the name of the terminal that will be used for future runs of your
2127program.
2128
2129@table @code
2130@item set inferior-tty /dev/ttyb
2131@kindex set inferior-tty
2132Set the tty for the program being debugged to /dev/ttyb.
2133
2134@item show inferior-tty
2135@kindex show inferior-tty
2136Show the current tty for the program being debugged.
2137@end table
c906108c 2138
6d2ebf8b 2139@node Attach
79a6e687 2140@section Debugging an Already-running Process
c906108c
SS
2141@kindex attach
2142@cindex attach
2143
2144@table @code
2145@item attach @var{process-id}
2146This command attaches to a running process---one that was started
2147outside @value{GDBN}. (@code{info files} shows your active
2148targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2149find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2150or with the @samp{jobs -l} shell command.
2151
2152@code{attach} does not repeat if you press @key{RET} a second time after
2153executing the command.
2154@end table
2155
2156To use @code{attach}, your program must be running in an environment
2157which supports processes; for example, @code{attach} does not work for
2158programs on bare-board targets that lack an operating system. You must
2159also have permission to send the process a signal.
2160
2161When you use @code{attach}, the debugger finds the program running in
2162the process first by looking in the current working directory, then (if
2163the program is not found) by using the source file search path
79a6e687 2164(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2165the @code{file} command to load the program. @xref{Files, ,Commands to
2166Specify Files}.
2167
2168The first thing @value{GDBN} does after arranging to debug the specified
2169process is to stop it. You can examine and modify an attached process
53a5351d
JM
2170with all the @value{GDBN} commands that are ordinarily available when
2171you start processes with @code{run}. You can insert breakpoints; you
2172can step and continue; you can modify storage. If you would rather the
2173process continue running, you may use the @code{continue} command after
c906108c
SS
2174attaching @value{GDBN} to the process.
2175
2176@table @code
2177@kindex detach
2178@item detach
2179When you have finished debugging the attached process, you can use the
2180@code{detach} command to release it from @value{GDBN} control. Detaching
2181the process continues its execution. After the @code{detach} command,
2182that process and @value{GDBN} become completely independent once more, and you
2183are ready to @code{attach} another process or start one with @code{run}.
2184@code{detach} does not repeat if you press @key{RET} again after
2185executing the command.
2186@end table
2187
159fcc13
JK
2188If you exit @value{GDBN} while you have an attached process, you detach
2189that process. If you use the @code{run} command, you kill that process.
2190By default, @value{GDBN} asks for confirmation if you try to do either of these
2191things; you can control whether or not you need to confirm by using the
2192@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2193Messages}).
c906108c 2194
6d2ebf8b 2195@node Kill Process
79a6e687 2196@section Killing the Child Process
c906108c
SS
2197
2198@table @code
2199@kindex kill
2200@item kill
2201Kill the child process in which your program is running under @value{GDBN}.
2202@end table
2203
2204This command is useful if you wish to debug a core dump instead of a
2205running process. @value{GDBN} ignores any core dump file while your program
2206is running.
2207
2208On some operating systems, a program cannot be executed outside @value{GDBN}
2209while you have breakpoints set on it inside @value{GDBN}. You can use the
2210@code{kill} command in this situation to permit running your program
2211outside the debugger.
2212
2213The @code{kill} command is also useful if you wish to recompile and
2214relink your program, since on many systems it is impossible to modify an
2215executable file while it is running in a process. In this case, when you
2216next type @code{run}, @value{GDBN} notices that the file has changed, and
2217reads the symbol table again (while trying to preserve your current
2218breakpoint settings).
2219
6d2ebf8b 2220@node Threads
79a6e687 2221@section Debugging Programs with Multiple Threads
c906108c
SS
2222
2223@cindex threads of execution
2224@cindex multiple threads
2225@cindex switching threads
2226In some operating systems, such as HP-UX and Solaris, a single program
2227may have more than one @dfn{thread} of execution. The precise semantics
2228of threads differ from one operating system to another, but in general
2229the threads of a single program are akin to multiple processes---except
2230that they share one address space (that is, they can all examine and
2231modify the same variables). On the other hand, each thread has its own
2232registers and execution stack, and perhaps private memory.
2233
2234@value{GDBN} provides these facilities for debugging multi-thread
2235programs:
2236
2237@itemize @bullet
2238@item automatic notification of new threads
2239@item @samp{thread @var{threadno}}, a command to switch among threads
2240@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2241@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2242a command to apply a command to a list of threads
2243@item thread-specific breakpoints
2244@end itemize
2245
c906108c
SS
2246@quotation
2247@emph{Warning:} These facilities are not yet available on every
2248@value{GDBN} configuration where the operating system supports threads.
2249If your @value{GDBN} does not support threads, these commands have no
2250effect. For example, a system without thread support shows no output
2251from @samp{info threads}, and always rejects the @code{thread} command,
2252like this:
2253
2254@smallexample
2255(@value{GDBP}) info threads
2256(@value{GDBP}) thread 1
2257Thread ID 1 not known. Use the "info threads" command to
2258see the IDs of currently known threads.
2259@end smallexample
2260@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2261@c doesn't support threads"?
2262@end quotation
c906108c
SS
2263
2264@cindex focus of debugging
2265@cindex current thread
2266The @value{GDBN} thread debugging facility allows you to observe all
2267threads while your program runs---but whenever @value{GDBN} takes
2268control, one thread in particular is always the focus of debugging.
2269This thread is called the @dfn{current thread}. Debugging commands show
2270program information from the perspective of the current thread.
2271
41afff9a 2272@cindex @code{New} @var{systag} message
c906108c
SS
2273@cindex thread identifier (system)
2274@c FIXME-implementors!! It would be more helpful if the [New...] message
2275@c included GDB's numeric thread handle, so you could just go to that
2276@c thread without first checking `info threads'.
2277Whenever @value{GDBN} detects a new thread in your program, it displays
2278the target system's identification for the thread with a message in the
2279form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2280whose form varies depending on the particular system. For example, on
8807d78b 2281@sc{gnu}/Linux, you might see
c906108c 2282
474c8240 2283@smallexample
8807d78b 2284[New Thread 46912507313328 (LWP 25582)]
474c8240 2285@end smallexample
c906108c
SS
2286
2287@noindent
2288when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2289the @var{systag} is simply something like @samp{process 368}, with no
2290further qualifier.
2291
2292@c FIXME!! (1) Does the [New...] message appear even for the very first
2293@c thread of a program, or does it only appear for the
6ca652b0 2294@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2295@c program?
2296@c (2) *Is* there necessarily a first thread always? Or do some
2297@c multithread systems permit starting a program with multiple
5d161b24 2298@c threads ab initio?
c906108c
SS
2299
2300@cindex thread number
2301@cindex thread identifier (GDB)
2302For debugging purposes, @value{GDBN} associates its own thread
2303number---always a single integer---with each thread in your program.
2304
2305@table @code
2306@kindex info threads
2307@item info threads
2308Display a summary of all threads currently in your
2309program. @value{GDBN} displays for each thread (in this order):
2310
2311@enumerate
09d4efe1
EZ
2312@item
2313the thread number assigned by @value{GDBN}
c906108c 2314
09d4efe1
EZ
2315@item
2316the target system's thread identifier (@var{systag})
c906108c 2317
09d4efe1
EZ
2318@item
2319the current stack frame summary for that thread
c906108c
SS
2320@end enumerate
2321
2322@noindent
2323An asterisk @samp{*} to the left of the @value{GDBN} thread number
2324indicates the current thread.
2325
5d161b24 2326For example,
c906108c
SS
2327@end table
2328@c end table here to get a little more width for example
2329
2330@smallexample
2331(@value{GDBP}) info threads
2332 3 process 35 thread 27 0x34e5 in sigpause ()
2333 2 process 35 thread 23 0x34e5 in sigpause ()
2334* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2335 at threadtest.c:68
2336@end smallexample
53a5351d
JM
2337
2338On HP-UX systems:
c906108c 2339
4644b6e3
EZ
2340@cindex debugging multithreaded programs (on HP-UX)
2341@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---a small integer assigned in thread-creation order---with each
2344thread in your program.
2345
41afff9a
EZ
2346@cindex @code{New} @var{systag} message, on HP-UX
2347@cindex thread identifier (system), on HP-UX
c906108c
SS
2348@c FIXME-implementors!! It would be more helpful if the [New...] message
2349@c included GDB's numeric thread handle, so you could just go to that
2350@c thread without first checking `info threads'.
2351Whenever @value{GDBN} detects a new thread in your program, it displays
2352both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2353form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2354whose form varies depending on the particular system. For example, on
2355HP-UX, you see
2356
474c8240 2357@smallexample
c906108c 2358[New thread 2 (system thread 26594)]
474c8240 2359@end smallexample
c906108c
SS
2360
2361@noindent
5d161b24 2362when @value{GDBN} notices a new thread.
c906108c
SS
2363
2364@table @code
4644b6e3 2365@kindex info threads (HP-UX)
c906108c
SS
2366@item info threads
2367Display a summary of all threads currently in your
2368program. @value{GDBN} displays for each thread (in this order):
2369
2370@enumerate
2371@item the thread number assigned by @value{GDBN}
2372
2373@item the target system's thread identifier (@var{systag})
2374
2375@item the current stack frame summary for that thread
2376@end enumerate
2377
2378@noindent
2379An asterisk @samp{*} to the left of the @value{GDBN} thread number
2380indicates the current thread.
2381
5d161b24 2382For example,
c906108c
SS
2383@end table
2384@c end table here to get a little more width for example
2385
474c8240 2386@smallexample
c906108c 2387(@value{GDBP}) info threads
6d2ebf8b
SS
2388 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2389 at quicksort.c:137
2390 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2391 from /usr/lib/libc.2
2392 1 system thread 27905 0x7b003498 in _brk () \@*
2393 from /usr/lib/libc.2
474c8240 2394@end smallexample
c906108c 2395
c45da7e6
EZ
2396On Solaris, you can display more information about user threads with a
2397Solaris-specific command:
2398
2399@table @code
2400@item maint info sol-threads
2401@kindex maint info sol-threads
2402@cindex thread info (Solaris)
2403Display info on Solaris user threads.
2404@end table
2405
c906108c
SS
2406@table @code
2407@kindex thread @var{threadno}
2408@item thread @var{threadno}
2409Make thread number @var{threadno} the current thread. The command
2410argument @var{threadno} is the internal @value{GDBN} thread number, as
2411shown in the first field of the @samp{info threads} display.
2412@value{GDBN} responds by displaying the system identifier of the thread
2413you selected, and its current stack frame summary:
2414
2415@smallexample
2416@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2417(@value{GDBP}) thread 2
c906108c 2418[Switching to process 35 thread 23]
c906108c
SS
24190x34e5 in sigpause ()
2420@end smallexample
2421
2422@noindent
2423As with the @samp{[New @dots{}]} message, the form of the text after
2424@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2425threads.
c906108c 2426
9c16f35a 2427@kindex thread apply
638ac427 2428@cindex apply command to several threads
839c27b7
EZ
2429@item thread apply [@var{threadno}] [@var{all}] @var{command}
2430The @code{thread apply} command allows you to apply the named
2431@var{command} to one or more threads. Specify the numbers of the
2432threads that you want affected with the command argument
2433@var{threadno}. It can be a single thread number, one of the numbers
2434shown in the first field of the @samp{info threads} display; or it
2435could be a range of thread numbers, as in @code{2-4}. To apply a
2436command to all threads, type @kbd{thread apply all @var{command}}.
c906108c
SS
2437@end table
2438
2439@cindex automatic thread selection
2440@cindex switching threads automatically
2441@cindex threads, automatic switching
2442Whenever @value{GDBN} stops your program, due to a breakpoint or a
2443signal, it automatically selects the thread where that breakpoint or
2444signal happened. @value{GDBN} alerts you to the context switch with a
2445message of the form @samp{[Switching to @var{systag}]} to identify the
2446thread.
2447
79a6e687 2448@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2449more information about how @value{GDBN} behaves when you stop and start
2450programs with multiple threads.
2451
79a6e687 2452@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2453watchpoints in programs with multiple threads.
c906108c 2454
6d2ebf8b 2455@node Processes
79a6e687 2456@section Debugging Programs with Multiple Processes
c906108c
SS
2457
2458@cindex fork, debugging programs which call
2459@cindex multiple processes
2460@cindex processes, multiple
53a5351d
JM
2461On most systems, @value{GDBN} has no special support for debugging
2462programs which create additional processes using the @code{fork}
2463function. When a program forks, @value{GDBN} will continue to debug the
2464parent process and the child process will run unimpeded. If you have
2465set a breakpoint in any code which the child then executes, the child
2466will get a @code{SIGTRAP} signal which (unless it catches the signal)
2467will cause it to terminate.
c906108c
SS
2468
2469However, if you want to debug the child process there is a workaround
2470which isn't too painful. Put a call to @code{sleep} in the code which
2471the child process executes after the fork. It may be useful to sleep
2472only if a certain environment variable is set, or a certain file exists,
2473so that the delay need not occur when you don't want to run @value{GDBN}
2474on the child. While the child is sleeping, use the @code{ps} program to
2475get its process ID. Then tell @value{GDBN} (a new invocation of
2476@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2477the child process (@pxref{Attach}). From that point on you can debug
c906108c 2478the child process just like any other process which you attached to.
c906108c 2479
b51970ac
DJ
2480On some systems, @value{GDBN} provides support for debugging programs that
2481create additional processes using the @code{fork} or @code{vfork} functions.
2482Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2483only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2484
2485By default, when a program forks, @value{GDBN} will continue to debug
2486the parent process and the child process will run unimpeded.
2487
2488If you want to follow the child process instead of the parent process,
2489use the command @w{@code{set follow-fork-mode}}.
2490
2491@table @code
2492@kindex set follow-fork-mode
2493@item set follow-fork-mode @var{mode}
2494Set the debugger response to a program call of @code{fork} or
2495@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2496process. The @var{mode} argument can be:
c906108c
SS
2497
2498@table @code
2499@item parent
2500The original process is debugged after a fork. The child process runs
2df3850c 2501unimpeded. This is the default.
c906108c
SS
2502
2503@item child
2504The new process is debugged after a fork. The parent process runs
2505unimpeded.
2506
c906108c
SS
2507@end table
2508
9c16f35a 2509@kindex show follow-fork-mode
c906108c 2510@item show follow-fork-mode
2df3850c 2511Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2512@end table
2513
5c95884b
MS
2514@cindex debugging multiple processes
2515On Linux, if you want to debug both the parent and child processes, use the
2516command @w{@code{set detach-on-fork}}.
2517
2518@table @code
2519@kindex set detach-on-fork
2520@item set detach-on-fork @var{mode}
2521Tells gdb whether to detach one of the processes after a fork, or
2522retain debugger control over them both.
2523
2524@table @code
2525@item on
2526The child process (or parent process, depending on the value of
2527@code{follow-fork-mode}) will be detached and allowed to run
2528independently. This is the default.
2529
2530@item off
2531Both processes will be held under the control of @value{GDBN}.
2532One process (child or parent, depending on the value of
2533@code{follow-fork-mode}) is debugged as usual, while the other
2534is held suspended.
2535
2536@end table
2537
2538@kindex show detach-on-follow
2539@item show detach-on-follow
2540Show whether detach-on-follow mode is on/off.
2541@end table
2542
2543If you choose to set @var{detach-on-follow} mode off, then
2544@value{GDBN} will retain control of all forked processes (including
2545nested forks). You can list the forked processes under the control of
2546@value{GDBN} by using the @w{@code{info forks}} command, and switch
2547from one fork to another by using the @w{@code{fork}} command.
2548
2549@table @code
2550@kindex info forks
2551@item info forks
2552Print a list of all forked processes under the control of @value{GDBN}.
2553The listing will include a fork id, a process id, and the current
2554position (program counter) of the process.
2555
2556
2557@kindex fork @var{fork-id}
2558@item fork @var{fork-id}
2559Make fork number @var{fork-id} the current process. The argument
2560@var{fork-id} is the internal fork number assigned by @value{GDBN},
2561as shown in the first field of the @samp{info forks} display.
2562
2563@end table
2564
2565To quit debugging one of the forked processes, you can either detach
f73adfeb 2566from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2567run independently), or delete (and kill) it using the
b8db102d 2568@w{@code{delete fork}} command.
5c95884b
MS
2569
2570@table @code
f73adfeb
AS
2571@kindex detach fork @var{fork-id}
2572@item detach fork @var{fork-id}
5c95884b
MS
2573Detach from the process identified by @value{GDBN} fork number
2574@var{fork-id}, and remove it from the fork list. The process will be
2575allowed to run independently.
2576
b8db102d
MS
2577@kindex delete fork @var{fork-id}
2578@item delete fork @var{fork-id}
5c95884b
MS
2579Kill the process identified by @value{GDBN} fork number @var{fork-id},
2580and remove it from the fork list.
2581
2582@end table
2583
c906108c
SS
2584If you ask to debug a child process and a @code{vfork} is followed by an
2585@code{exec}, @value{GDBN} executes the new target up to the first
2586breakpoint in the new target. If you have a breakpoint set on
2587@code{main} in your original program, the breakpoint will also be set on
2588the child process's @code{main}.
2589
2590When a child process is spawned by @code{vfork}, you cannot debug the
2591child or parent until an @code{exec} call completes.
2592
2593If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2594call executes, the new target restarts. To restart the parent process,
2595use the @code{file} command with the parent executable name as its
2596argument.
2597
2598You can use the @code{catch} command to make @value{GDBN} stop whenever
2599a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2600Catchpoints, ,Setting Catchpoints}.
c906108c 2601
5c95884b 2602@node Checkpoint/Restart
79a6e687 2603@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2604
2605@cindex checkpoint
2606@cindex restart
2607@cindex bookmark
2608@cindex snapshot of a process
2609@cindex rewind program state
2610
2611On certain operating systems@footnote{Currently, only
2612@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2613program's state, called a @dfn{checkpoint}, and come back to it
2614later.
2615
2616Returning to a checkpoint effectively undoes everything that has
2617happened in the program since the @code{checkpoint} was saved. This
2618includes changes in memory, registers, and even (within some limits)
2619system state. Effectively, it is like going back in time to the
2620moment when the checkpoint was saved.
2621
2622Thus, if you're stepping thru a program and you think you're
2623getting close to the point where things go wrong, you can save
2624a checkpoint. Then, if you accidentally go too far and miss
2625the critical statement, instead of having to restart your program
2626from the beginning, you can just go back to the checkpoint and
2627start again from there.
2628
2629This can be especially useful if it takes a lot of time or
2630steps to reach the point where you think the bug occurs.
2631
2632To use the @code{checkpoint}/@code{restart} method of debugging:
2633
2634@table @code
2635@kindex checkpoint
2636@item checkpoint
2637Save a snapshot of the debugged program's current execution state.
2638The @code{checkpoint} command takes no arguments, but each checkpoint
2639is assigned a small integer id, similar to a breakpoint id.
2640
2641@kindex info checkpoints
2642@item info checkpoints
2643List the checkpoints that have been saved in the current debugging
2644session. For each checkpoint, the following information will be
2645listed:
2646
2647@table @code
2648@item Checkpoint ID
2649@item Process ID
2650@item Code Address
2651@item Source line, or label
2652@end table
2653
2654@kindex restart @var{checkpoint-id}
2655@item restart @var{checkpoint-id}
2656Restore the program state that was saved as checkpoint number
2657@var{checkpoint-id}. All program variables, registers, stack frames
2658etc.@: will be returned to the values that they had when the checkpoint
2659was saved. In essence, gdb will ``wind back the clock'' to the point
2660in time when the checkpoint was saved.
2661
2662Note that breakpoints, @value{GDBN} variables, command history etc.
2663are not affected by restoring a checkpoint. In general, a checkpoint
2664only restores things that reside in the program being debugged, not in
2665the debugger.
2666
b8db102d
MS
2667@kindex delete checkpoint @var{checkpoint-id}
2668@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2669Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2670
2671@end table
2672
2673Returning to a previously saved checkpoint will restore the user state
2674of the program being debugged, plus a significant subset of the system
2675(OS) state, including file pointers. It won't ``un-write'' data from
2676a file, but it will rewind the file pointer to the previous location,
2677so that the previously written data can be overwritten. For files
2678opened in read mode, the pointer will also be restored so that the
2679previously read data can be read again.
2680
2681Of course, characters that have been sent to a printer (or other
2682external device) cannot be ``snatched back'', and characters received
2683from eg.@: a serial device can be removed from internal program buffers,
2684but they cannot be ``pushed back'' into the serial pipeline, ready to
2685be received again. Similarly, the actual contents of files that have
2686been changed cannot be restored (at this time).
2687
2688However, within those constraints, you actually can ``rewind'' your
2689program to a previously saved point in time, and begin debugging it
2690again --- and you can change the course of events so as to debug a
2691different execution path this time.
2692
2693@cindex checkpoints and process id
2694Finally, there is one bit of internal program state that will be
2695different when you return to a checkpoint --- the program's process
2696id. Each checkpoint will have a unique process id (or @var{pid}),
2697and each will be different from the program's original @var{pid}.
2698If your program has saved a local copy of its process id, this could
2699potentially pose a problem.
2700
79a6e687 2701@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2702
2703On some systems such as @sc{gnu}/Linux, address space randomization
2704is performed on new processes for security reasons. This makes it
2705difficult or impossible to set a breakpoint, or watchpoint, on an
2706absolute address if you have to restart the program, since the
2707absolute location of a symbol will change from one execution to the
2708next.
2709
2710A checkpoint, however, is an @emph{identical} copy of a process.
2711Therefore if you create a checkpoint at (eg.@:) the start of main,
2712and simply return to that checkpoint instead of restarting the
2713process, you can avoid the effects of address randomization and
2714your symbols will all stay in the same place.
2715
6d2ebf8b 2716@node Stopping
c906108c
SS
2717@chapter Stopping and Continuing
2718
2719The principal purposes of using a debugger are so that you can stop your
2720program before it terminates; or so that, if your program runs into
2721trouble, you can investigate and find out why.
2722
7a292a7a
SS
2723Inside @value{GDBN}, your program may stop for any of several reasons,
2724such as a signal, a breakpoint, or reaching a new line after a
2725@value{GDBN} command such as @code{step}. You may then examine and
2726change variables, set new breakpoints or remove old ones, and then
2727continue execution. Usually, the messages shown by @value{GDBN} provide
2728ample explanation of the status of your program---but you can also
2729explicitly request this information at any time.
c906108c
SS
2730
2731@table @code
2732@kindex info program
2733@item info program
2734Display information about the status of your program: whether it is
7a292a7a 2735running or not, what process it is, and why it stopped.
c906108c
SS
2736@end table
2737
2738@menu
2739* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2740* Continuing and Stepping:: Resuming execution
c906108c 2741* Signals:: Signals
c906108c 2742* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2743@end menu
2744
6d2ebf8b 2745@node Breakpoints
79a6e687 2746@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2747
2748@cindex breakpoints
2749A @dfn{breakpoint} makes your program stop whenever a certain point in
2750the program is reached. For each breakpoint, you can add conditions to
2751control in finer detail whether your program stops. You can set
2752breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2753Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2754should stop by line number, function name or exact address in the
2755program.
2756
09d4efe1
EZ
2757On some systems, you can set breakpoints in shared libraries before
2758the executable is run. There is a minor limitation on HP-UX systems:
2759you must wait until the executable is run in order to set breakpoints
2760in shared library routines that are not called directly by the program
2761(for example, routines that are arguments in a @code{pthread_create}
2762call).
c906108c
SS
2763
2764@cindex watchpoints
fd60e0df 2765@cindex data breakpoints
c906108c
SS
2766@cindex memory tracing
2767@cindex breakpoint on memory address
2768@cindex breakpoint on variable modification
2769A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2770when the value of an expression changes. The expression may be a value
0ced0c34 2771of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2772combined by operators, such as @samp{a + b}. This is sometimes called
2773@dfn{data breakpoints}. You must use a different command to set
79a6e687 2774watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2775from that, you can manage a watchpoint like any other breakpoint: you
2776enable, disable, and delete both breakpoints and watchpoints using the
2777same commands.
c906108c
SS
2778
2779You can arrange to have values from your program displayed automatically
2780whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2781Automatic Display}.
c906108c
SS
2782
2783@cindex catchpoints
2784@cindex breakpoint on events
2785A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2786when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2787exception or the loading of a library. As with watchpoints, you use a
2788different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2789Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2790other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2791@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2792
2793@cindex breakpoint numbers
2794@cindex numbers for breakpoints
2795@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2796catchpoint when you create it; these numbers are successive integers
2797starting with one. In many of the commands for controlling various
2798features of breakpoints you use the breakpoint number to say which
2799breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2800@dfn{disabled}; if disabled, it has no effect on your program until you
2801enable it again.
2802
c5394b80
JM
2803@cindex breakpoint ranges
2804@cindex ranges of breakpoints
2805Some @value{GDBN} commands accept a range of breakpoints on which to
2806operate. A breakpoint range is either a single breakpoint number, like
2807@samp{5}, or two such numbers, in increasing order, separated by a
2808hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2809all breakpoints in that range are operated on.
c5394b80 2810
c906108c
SS
2811@menu
2812* Set Breaks:: Setting breakpoints
2813* Set Watchpoints:: Setting watchpoints
2814* Set Catchpoints:: Setting catchpoints
2815* Delete Breaks:: Deleting breakpoints
2816* Disabling:: Disabling breakpoints
2817* Conditions:: Break conditions
2818* Break Commands:: Breakpoint command lists
c906108c 2819* Breakpoint Menus:: Breakpoint menus
d4f3574e 2820* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2821* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2822@end menu
2823
6d2ebf8b 2824@node Set Breaks
79a6e687 2825@subsection Setting Breakpoints
c906108c 2826
5d161b24 2827@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2828@c consider in particular declaration with/without initialization.
2829@c
2830@c FIXME 2 is there stuff on this already? break at fun start, already init?
2831
2832@kindex break
41afff9a
EZ
2833@kindex b @r{(@code{break})}
2834@vindex $bpnum@r{, convenience variable}
c906108c
SS
2835@cindex latest breakpoint
2836Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2837@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2838number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2839Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2840convenience variables.
2841
2842You have several ways to say where the breakpoint should go.
2843
2844@table @code
2845@item break @var{function}
5d161b24 2846Set a breakpoint at entry to function @var{function}.
c906108c 2847When using source languages that permit overloading of symbols, such as
b37052ae 2848C@t{++}, @var{function} may refer to more than one possible place to break.
79a6e687 2849@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c
SS
2850
2851@item break +@var{offset}
2852@itemx break -@var{offset}
2853Set a breakpoint some number of lines forward or back from the position
d4f3574e 2854at which execution stopped in the currently selected @dfn{stack frame}.
2df3850c 2855(@xref{Frames, ,Frames}, for a description of stack frames.)
c906108c
SS
2856
2857@item break @var{linenum}
2858Set a breakpoint at line @var{linenum} in the current source file.
d4f3574e
SS
2859The current source file is the last file whose source text was printed.
2860The breakpoint will stop your program just before it executes any of the
c906108c
SS
2861code on that line.
2862
2863@item break @var{filename}:@var{linenum}
2864Set a breakpoint at line @var{linenum} in source file @var{filename}.
2865
2866@item break @var{filename}:@var{function}
2867Set a breakpoint at entry to function @var{function} found in file
2868@var{filename}. Specifying a file name as well as a function name is
2869superfluous except when multiple files contain similarly named
2870functions.
2871
2872@item break *@var{address}
2873Set a breakpoint at address @var{address}. You can use this to set
2874breakpoints in parts of your program which do not have debugging
2875information or source files.
2876
2877@item break
2878When called without any arguments, @code{break} sets a breakpoint at
2879the next instruction to be executed in the selected stack frame
2880(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2881innermost, this makes your program stop as soon as control
2882returns to that frame. This is similar to the effect of a
2883@code{finish} command in the frame inside the selected frame---except
2884that @code{finish} does not leave an active breakpoint. If you use
2885@code{break} without an argument in the innermost frame, @value{GDBN} stops
2886the next time it reaches the current location; this may be useful
2887inside loops.
2888
2889@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2890least one instruction has been executed. If it did not do this, you
2891would be unable to proceed past a breakpoint without first disabling the
2892breakpoint. This rule applies whether or not the breakpoint already
2893existed when your program stopped.
2894
2895@item break @dots{} if @var{cond}
2896Set a breakpoint with condition @var{cond}; evaluate the expression
2897@var{cond} each time the breakpoint is reached, and stop only if the
2898value is nonzero---that is, if @var{cond} evaluates as true.
2899@samp{@dots{}} stands for one of the possible arguments described
2900above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2901,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2902
2903@kindex tbreak
2904@item tbreak @var{args}
2905Set a breakpoint enabled only for one stop. @var{args} are the
2906same as for the @code{break} command, and the breakpoint is set in the same
2907way, but the breakpoint is automatically deleted after the first time your
79a6e687 2908program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2909
c906108c 2910@kindex hbreak
ba04e063 2911@cindex hardware breakpoints
c906108c 2912@item hbreak @var{args}
d4f3574e
SS
2913Set a hardware-assisted breakpoint. @var{args} are the same as for the
2914@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2915breakpoint requires hardware support and some target hardware may not
2916have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2917debugging, so you can set a breakpoint at an instruction without
2918changing the instruction. This can be used with the new trap-generation
09d4efe1 2919provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2920will generate traps when a program accesses some data or instruction
2921address that is assigned to the debug registers. However the hardware
2922breakpoint registers can take a limited number of breakpoints. For
2923example, on the DSU, only two data breakpoints can be set at a time, and
2924@value{GDBN} will reject this command if more than two are used. Delete
2925or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2926(@pxref{Disabling, ,Disabling Breakpoints}).
2927@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2928For remote targets, you can restrict the number of hardware
2929breakpoints @value{GDBN} will use, see @ref{set remote
2930hardware-breakpoint-limit}.
501eef12 2931
c906108c
SS
2932
2933@kindex thbreak
2934@item thbreak @var{args}
2935Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2936are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2937the same way. However, like the @code{tbreak} command,
c906108c
SS
2938the breakpoint is automatically deleted after the
2939first time your program stops there. Also, like the @code{hbreak}
5d161b24 2940command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2941may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2942See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2943
2944@kindex rbreak
2945@cindex regular expression
c45da7e6
EZ
2946@cindex breakpoints in functions matching a regexp
2947@cindex set breakpoints in many functions
c906108c 2948@item rbreak @var{regex}
c906108c 2949Set breakpoints on all functions matching the regular expression
11cf8741
JM
2950@var{regex}. This command sets an unconditional breakpoint on all
2951matches, printing a list of all breakpoints it set. Once these
2952breakpoints are set, they are treated just like the breakpoints set with
2953the @code{break} command. You can delete them, disable them, or make
2954them conditional the same way as any other breakpoint.
2955
2956The syntax of the regular expression is the standard one used with tools
2957like @file{grep}. Note that this is different from the syntax used by
2958shells, so for instance @code{foo*} matches all functions that include
2959an @code{fo} followed by zero or more @code{o}s. There is an implicit
2960@code{.*} leading and trailing the regular expression you supply, so to
2961match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2962
f7dc1244 2963@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2964When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2965breakpoints on overloaded functions that are not members of any special
2966classes.
c906108c 2967
f7dc1244
EZ
2968@cindex set breakpoints on all functions
2969The @code{rbreak} command can be used to set breakpoints in
2970@strong{all} the functions in a program, like this:
2971
2972@smallexample
2973(@value{GDBP}) rbreak .
2974@end smallexample
2975
c906108c
SS
2976@kindex info breakpoints
2977@cindex @code{$_} and @code{info breakpoints}
2978@item info breakpoints @r{[}@var{n}@r{]}
2979@itemx info break @r{[}@var{n}@r{]}
2980@itemx info watchpoints @r{[}@var{n}@r{]}
2981Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2982not deleted. Optional argument @var{n} means print information only
2983about the specified breakpoint (or watchpoint or catchpoint). For
2984each breakpoint, following columns are printed:
c906108c
SS
2985
2986@table @emph
2987@item Breakpoint Numbers
2988@item Type
2989Breakpoint, watchpoint, or catchpoint.
2990@item Disposition
2991Whether the breakpoint is marked to be disabled or deleted when hit.
2992@item Enabled or Disabled
2993Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2994that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2995breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2996resolved, pending load of a shared library, or for which address was
2997in a shared library that was since unloaded. Such breakpoint won't
2998fire until a shared library that has the symbol or line referred by
2999breakpoint is loaded. See below for details.
c906108c 3000@item Address
fe6fbf8b
VP
3001Where the breakpoint is in your program, as a memory address. For a
3002pending breakpoint whose address is not yet known, this field will
3003contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 3004have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3005@item What
3006Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3007line number. For a pending breakpoint, the original string passed to
3008the breakpoint command will be listed as it cannot be resolved until
3009the appropriate shared library is loaded in the future.
c906108c
SS
3010@end table
3011
3012@noindent
3013If a breakpoint is conditional, @code{info break} shows the condition on
3014the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3015are listed after that. A pending breakpoint is allowed to have a condition
3016specified for it. The condition is not parsed for validity until a shared
3017library is loaded that allows the pending breakpoint to resolve to a
3018valid location.
c906108c
SS
3019
3020@noindent
3021@code{info break} with a breakpoint
3022number @var{n} as argument lists only that breakpoint. The
3023convenience variable @code{$_} and the default examining-address for
3024the @code{x} command are set to the address of the last breakpoint
79a6e687 3025listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3026
3027@noindent
3028@code{info break} displays a count of the number of times the breakpoint
3029has been hit. This is especially useful in conjunction with the
3030@code{ignore} command. You can ignore a large number of breakpoint
3031hits, look at the breakpoint info to see how many times the breakpoint
3032was hit, and then run again, ignoring one less than that number. This
3033will get you quickly to the last hit of that breakpoint.
3034@end table
3035
3036@value{GDBN} allows you to set any number of breakpoints at the same place in
3037your program. There is nothing silly or meaningless about this. When
3038the breakpoints are conditional, this is even useful
79a6e687 3039(@pxref{Conditions, ,Break Conditions}).
c906108c 3040
fcda367b 3041It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3042in your program. Examples of this situation are:
3043
3044@itemize @bullet
3045
3046@item
3047For a C@t{++} constructor, the @value{NGCC} compiler generates several
3048instances of the function body, used in different cases.
3049
3050@item
3051For a C@t{++} template function, a given line in the function can
3052correspond to any number of instantiations.
3053
3054@item
3055For an inlined function, a given source line can correspond to
3056several places where that function is inlined.
3057
3058@end itemize
3059
3060In all those cases, @value{GDBN} will insert a breakpoint at all
3061the relevant locations.
3062
3b784c4f
EZ
3063A breakpoint with multiple locations is displayed in the breakpoint
3064table using several rows---one header row, followed by one row for
3065each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3066address column. The rows for individual locations contain the actual
3067addresses for locations, and show the functions to which those
3068locations belong. The number column for a location is of the form
fe6fbf8b
VP
3069@var{breakpoint-number}.@var{location-number}.
3070
3071For example:
3b784c4f 3072
fe6fbf8b
VP
3073@smallexample
3074Num Type Disp Enb Address What
30751 breakpoint keep y <MULTIPLE>
3076 stop only if i==1
3077 breakpoint already hit 1 time
30781.1 y 0x080486a2 in void foo<int>() at t.cc:8
30791.2 y 0x080486ca in void foo<double>() at t.cc:8
3080@end smallexample
3081
3082Each location can be individually enabled or disabled by passing
3083@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3084@code{enable} and @code{disable} commands. Note that you cannot
3085delete the individual locations from the list, you can only delete the
16bfc218 3086entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3087the @kbd{delete @var{num}} command, where @var{num} is the number of
3088the parent breakpoint, 1 in the above example). Disabling or enabling
3089the parent breakpoint (@pxref{Disabling}) affects all of the locations
3090that belong to that breakpoint.
fe6fbf8b 3091
2650777c 3092@cindex pending breakpoints
fe6fbf8b 3093It's quite common to have a breakpoint inside a shared library.
3b784c4f 3094Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3095and possibly repeatedly, as the program is executed. To support
3096this use case, @value{GDBN} updates breakpoint locations whenever
3097any shared library is loaded or unloaded. Typically, you would
fcda367b 3098set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3099debugging session, when the library is not loaded, and when the
3100symbols from the library are not available. When you try to set
3101breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3102a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3103is not yet resolved.
3104
3105After the program is run, whenever a new shared library is loaded,
3106@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3107shared library contains the symbol or line referred to by some
3108pending breakpoint, that breakpoint is resolved and becomes an
3109ordinary breakpoint. When a library is unloaded, all breakpoints
3110that refer to its symbols or source lines become pending again.
3111
3112This logic works for breakpoints with multiple locations, too. For
3113example, if you have a breakpoint in a C@t{++} template function, and
3114a newly loaded shared library has an instantiation of that template,
3115a new location is added to the list of locations for the breakpoint.
3116
3117Except for having unresolved address, pending breakpoints do not
3118differ from regular breakpoints. You can set conditions or commands,
3119enable and disable them and perform other breakpoint operations.
3120
3121@value{GDBN} provides some additional commands for controlling what
3122happens when the @samp{break} command cannot resolve breakpoint
3123address specification to an address:
dd79a6cf
JJ
3124
3125@kindex set breakpoint pending
3126@kindex show breakpoint pending
3127@table @code
3128@item set breakpoint pending auto
3129This is the default behavior. When @value{GDBN} cannot find the breakpoint
3130location, it queries you whether a pending breakpoint should be created.
3131
3132@item set breakpoint pending on
3133This indicates that an unrecognized breakpoint location should automatically
3134result in a pending breakpoint being created.
3135
3136@item set breakpoint pending off
3137This indicates that pending breakpoints are not to be created. Any
3138unrecognized breakpoint location results in an error. This setting does
3139not affect any pending breakpoints previously created.
3140
3141@item show breakpoint pending
3142Show the current behavior setting for creating pending breakpoints.
3143@end table
2650777c 3144
fe6fbf8b
VP
3145The settings above only affect the @code{break} command and its
3146variants. Once breakpoint is set, it will be automatically updated
3147as shared libraries are loaded and unloaded.
2650777c 3148
765dc015
VP
3149@cindex automatic hardware breakpoints
3150For some targets, @value{GDBN} can automatically decide if hardware or
3151software breakpoints should be used, depending on whether the
3152breakpoint address is read-only or read-write. This applies to
3153breakpoints set with the @code{break} command as well as to internal
3154breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3155breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3156breakpoints.
3157
3158You can control this automatic behaviour with the following commands::
3159
3160@kindex set breakpoint auto-hw
3161@kindex show breakpoint auto-hw
3162@table @code
3163@item set breakpoint auto-hw on
3164This is the default behavior. When @value{GDBN} sets a breakpoint, it
3165will try to use the target memory map to decide if software or hardware
3166breakpoint must be used.
3167
3168@item set breakpoint auto-hw off
3169This indicates @value{GDBN} should not automatically select breakpoint
3170type. If the target provides a memory map, @value{GDBN} will warn when
3171trying to set software breakpoint at a read-only address.
3172@end table
3173
3174
c906108c
SS
3175@cindex negative breakpoint numbers
3176@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3177@value{GDBN} itself sometimes sets breakpoints in your program for
3178special purposes, such as proper handling of @code{longjmp} (in C
3179programs). These internal breakpoints are assigned negative numbers,
3180starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3181You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3182@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3183
3184
6d2ebf8b 3185@node Set Watchpoints
79a6e687 3186@subsection Setting Watchpoints
c906108c
SS
3187
3188@cindex setting watchpoints
c906108c
SS
3189You can use a watchpoint to stop execution whenever the value of an
3190expression changes, without having to predict a particular place where
fd60e0df
EZ
3191this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3192The expression may be as simple as the value of a single variable, or
3193as complex as many variables combined by operators. Examples include:
3194
3195@itemize @bullet
3196@item
3197A reference to the value of a single variable.
3198
3199@item
3200An address cast to an appropriate data type. For example,
3201@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3202address (assuming an @code{int} occupies 4 bytes).
3203
3204@item
3205An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3206expression can use any operators valid in the program's native
3207language (@pxref{Languages}).
3208@end itemize
c906108c 3209
82f2d802
EZ
3210@cindex software watchpoints
3211@cindex hardware watchpoints
c906108c 3212Depending on your system, watchpoints may be implemented in software or
2df3850c 3213hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3214program and testing the variable's value each time, which is hundreds of
3215times slower than normal execution. (But this may still be worth it, to
3216catch errors where you have no clue what part of your program is the
3217culprit.)
3218
82f2d802
EZ
3219On some systems, such as HP-UX, @sc{gnu}/Linux and most other
3220x86-based targets, @value{GDBN} includes support for hardware
3221watchpoints, which do not slow down the running of your program.
c906108c
SS
3222
3223@table @code
3224@kindex watch
3225@item watch @var{expr}
fd60e0df
EZ
3226Set a watchpoint for an expression. @value{GDBN} will break when the
3227expression @var{expr} is written into by the program and its value
3228changes. The simplest (and the most popular) use of this command is
3229to watch the value of a single variable:
3230
3231@smallexample
3232(@value{GDBP}) watch foo
3233@end smallexample
c906108c
SS
3234
3235@kindex rwatch
3236@item rwatch @var{expr}
09d4efe1
EZ
3237Set a watchpoint that will break when the value of @var{expr} is read
3238by the program.
c906108c
SS
3239
3240@kindex awatch
3241@item awatch @var{expr}
09d4efe1
EZ
3242Set a watchpoint that will break when @var{expr} is either read from
3243or written into by the program.
c906108c 3244
45ac1734 3245@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3246@item info watchpoints
3247This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3248it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3249@end table
3250
3251@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3252watchpoints execute very quickly, and the debugger reports a change in
3253value at the exact instruction where the change occurs. If @value{GDBN}
3254cannot set a hardware watchpoint, it sets a software watchpoint, which
3255executes more slowly and reports the change in value at the next
82f2d802
EZ
3256@emph{statement}, not the instruction, after the change occurs.
3257
82f2d802
EZ
3258@cindex use only software watchpoints
3259You can force @value{GDBN} to use only software watchpoints with the
3260@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3261zero, @value{GDBN} will never try to use hardware watchpoints, even if
3262the underlying system supports them. (Note that hardware-assisted
3263watchpoints that were set @emph{before} setting
3264@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3265mechanism of watching expression values.)
c906108c 3266
9c16f35a
EZ
3267@table @code
3268@item set can-use-hw-watchpoints
3269@kindex set can-use-hw-watchpoints
3270Set whether or not to use hardware watchpoints.
3271
3272@item show can-use-hw-watchpoints
3273@kindex show can-use-hw-watchpoints
3274Show the current mode of using hardware watchpoints.
3275@end table
3276
3277For remote targets, you can restrict the number of hardware
3278watchpoints @value{GDBN} will use, see @ref{set remote
3279hardware-breakpoint-limit}.
3280
c906108c
SS
3281When you issue the @code{watch} command, @value{GDBN} reports
3282
474c8240 3283@smallexample
c906108c 3284Hardware watchpoint @var{num}: @var{expr}
474c8240 3285@end smallexample
c906108c
SS
3286
3287@noindent
3288if it was able to set a hardware watchpoint.
3289
7be570e7
JM
3290Currently, the @code{awatch} and @code{rwatch} commands can only set
3291hardware watchpoints, because accesses to data that don't change the
3292value of the watched expression cannot be detected without examining
3293every instruction as it is being executed, and @value{GDBN} does not do
3294that currently. If @value{GDBN} finds that it is unable to set a
3295hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3296will print a message like this:
3297
3298@smallexample
3299Expression cannot be implemented with read/access watchpoint.
3300@end smallexample
3301
3302Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3303data type of the watched expression is wider than what a hardware
3304watchpoint on the target machine can handle. For example, some systems
3305can only watch regions that are up to 4 bytes wide; on such systems you
3306cannot set hardware watchpoints for an expression that yields a
3307double-precision floating-point number (which is typically 8 bytes
3308wide). As a work-around, it might be possible to break the large region
3309into a series of smaller ones and watch them with separate watchpoints.
3310
3311If you set too many hardware watchpoints, @value{GDBN} might be unable
3312to insert all of them when you resume the execution of your program.
3313Since the precise number of active watchpoints is unknown until such
3314time as the program is about to be resumed, @value{GDBN} might not be
3315able to warn you about this when you set the watchpoints, and the
3316warning will be printed only when the program is resumed:
3317
3318@smallexample
3319Hardware watchpoint @var{num}: Could not insert watchpoint
3320@end smallexample
3321
3322@noindent
3323If this happens, delete or disable some of the watchpoints.
3324
fd60e0df
EZ
3325Watching complex expressions that reference many variables can also
3326exhaust the resources available for hardware-assisted watchpoints.
3327That's because @value{GDBN} needs to watch every variable in the
3328expression with separately allocated resources.
3329
7be570e7
JM
3330The SPARClite DSU will generate traps when a program accesses some data
3331or instruction address that is assigned to the debug registers. For the
3332data addresses, DSU facilitates the @code{watch} command. However the
3333hardware breakpoint registers can only take two data watchpoints, and
3334both watchpoints must be the same kind. For example, you can set two
3335watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3336@strong{or} two with @code{awatch} commands, but you cannot set one
3337watchpoint with one command and the other with a different command.
c906108c
SS
3338@value{GDBN} will reject the command if you try to mix watchpoints.
3339Delete or disable unused watchpoint commands before setting new ones.
3340
3341If you call a function interactively using @code{print} or @code{call},
2df3850c 3342any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3343kind of breakpoint or the call completes.
3344
7be570e7
JM
3345@value{GDBN} automatically deletes watchpoints that watch local
3346(automatic) variables, or expressions that involve such variables, when
3347they go out of scope, that is, when the execution leaves the block in
3348which these variables were defined. In particular, when the program
3349being debugged terminates, @emph{all} local variables go out of scope,
3350and so only watchpoints that watch global variables remain set. If you
3351rerun the program, you will need to set all such watchpoints again. One
3352way of doing that would be to set a code breakpoint at the entry to the
3353@code{main} function and when it breaks, set all the watchpoints.
3354
c906108c
SS
3355@cindex watchpoints and threads
3356@cindex threads and watchpoints
d983da9c
DJ
3357In multi-threaded programs, watchpoints will detect changes to the
3358watched expression from every thread.
3359
3360@quotation
3361@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3362have only limited usefulness. If @value{GDBN} creates a software
3363watchpoint, it can only watch the value of an expression @emph{in a
3364single thread}. If you are confident that the expression can only
3365change due to the current thread's activity (and if you are also
3366confident that no other thread can become current), then you can use
3367software watchpoints as usual. However, @value{GDBN} may not notice
3368when a non-current thread's activity changes the expression. (Hardware
3369watchpoints, in contrast, watch an expression in all threads.)
c906108c 3370@end quotation
c906108c 3371
501eef12
AC
3372@xref{set remote hardware-watchpoint-limit}.
3373
6d2ebf8b 3374@node Set Catchpoints
79a6e687 3375@subsection Setting Catchpoints
d4f3574e 3376@cindex catchpoints, setting
c906108c
SS
3377@cindex exception handlers
3378@cindex event handling
3379
3380You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3381kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3382shared library. Use the @code{catch} command to set a catchpoint.
3383
3384@table @code
3385@kindex catch
3386@item catch @var{event}
3387Stop when @var{event} occurs. @var{event} can be any of the following:
3388@table @code
3389@item throw
4644b6e3 3390@cindex stop on C@t{++} exceptions
b37052ae 3391The throwing of a C@t{++} exception.
c906108c
SS
3392
3393@item catch
b37052ae 3394The catching of a C@t{++} exception.
c906108c 3395
8936fcda
JB
3396@item exception
3397@cindex Ada exception catching
3398@cindex catch Ada exceptions
3399An Ada exception being raised. If an exception name is specified
3400at the end of the command (eg @code{catch exception Program_Error}),
3401the debugger will stop only when this specific exception is raised.
3402Otherwise, the debugger stops execution when any Ada exception is raised.
3403
3404@item exception unhandled
3405An exception that was raised but is not handled by the program.
3406
3407@item assert
3408A failed Ada assertion.
3409
c906108c 3410@item exec
4644b6e3 3411@cindex break on fork/exec
c906108c
SS
3412A call to @code{exec}. This is currently only available for HP-UX.
3413
3414@item fork
c906108c
SS
3415A call to @code{fork}. This is currently only available for HP-UX.
3416
3417@item vfork
c906108c
SS
3418A call to @code{vfork}. This is currently only available for HP-UX.
3419
3420@item load
3421@itemx load @var{libname}
4644b6e3 3422@cindex break on load/unload of shared library
c906108c
SS
3423The dynamic loading of any shared library, or the loading of the library
3424@var{libname}. This is currently only available for HP-UX.
3425
3426@item unload
3427@itemx unload @var{libname}
c906108c
SS
3428The unloading of any dynamically loaded shared library, or the unloading
3429of the library @var{libname}. This is currently only available for HP-UX.
3430@end table
3431
3432@item tcatch @var{event}
3433Set a catchpoint that is enabled only for one stop. The catchpoint is
3434automatically deleted after the first time the event is caught.
3435
3436@end table
3437
3438Use the @code{info break} command to list the current catchpoints.
3439
b37052ae 3440There are currently some limitations to C@t{++} exception handling
c906108c
SS
3441(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3442
3443@itemize @bullet
3444@item
3445If you call a function interactively, @value{GDBN} normally returns
3446control to you when the function has finished executing. If the call
3447raises an exception, however, the call may bypass the mechanism that
3448returns control to you and cause your program either to abort or to
3449simply continue running until it hits a breakpoint, catches a signal
3450that @value{GDBN} is listening for, or exits. This is the case even if
3451you set a catchpoint for the exception; catchpoints on exceptions are
3452disabled within interactive calls.
3453
3454@item
3455You cannot raise an exception interactively.
3456
3457@item
3458You cannot install an exception handler interactively.
3459@end itemize
3460
3461@cindex raise exceptions
3462Sometimes @code{catch} is not the best way to debug exception handling:
3463if you need to know exactly where an exception is raised, it is better to
3464stop @emph{before} the exception handler is called, since that way you
3465can see the stack before any unwinding takes place. If you set a
3466breakpoint in an exception handler instead, it may not be easy to find
3467out where the exception was raised.
3468
3469To stop just before an exception handler is called, you need some
b37052ae 3470knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3471raised by calling a library function named @code{__raise_exception}
3472which has the following ANSI C interface:
3473
474c8240 3474@smallexample
c906108c 3475 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3476 @var{id} is the exception identifier. */
3477 void __raise_exception (void **addr, void *id);
474c8240 3478@end smallexample
c906108c
SS
3479
3480@noindent
3481To make the debugger catch all exceptions before any stack
3482unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3483(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3484
79a6e687 3485With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3486that depends on the value of @var{id}, you can stop your program when
3487a specific exception is raised. You can use multiple conditional
3488breakpoints to stop your program when any of a number of exceptions are
3489raised.
3490
3491
6d2ebf8b 3492@node Delete Breaks
79a6e687 3493@subsection Deleting Breakpoints
c906108c
SS
3494
3495@cindex clearing breakpoints, watchpoints, catchpoints
3496@cindex deleting breakpoints, watchpoints, catchpoints
3497It is often necessary to eliminate a breakpoint, watchpoint, or
3498catchpoint once it has done its job and you no longer want your program
3499to stop there. This is called @dfn{deleting} the breakpoint. A
3500breakpoint that has been deleted no longer exists; it is forgotten.
3501
3502With the @code{clear} command you can delete breakpoints according to
3503where they are in your program. With the @code{delete} command you can
3504delete individual breakpoints, watchpoints, or catchpoints by specifying
3505their breakpoint numbers.
3506
3507It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3508automatically ignores breakpoints on the first instruction to be executed
3509when you continue execution without changing the execution address.
3510
3511@table @code
3512@kindex clear
3513@item clear
3514Delete any breakpoints at the next instruction to be executed in the
79a6e687 3515selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3516the innermost frame is selected, this is a good way to delete a
3517breakpoint where your program just stopped.
3518
3519@item clear @var{function}
3520@itemx clear @var{filename}:@var{function}
09d4efe1 3521Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3522
3523@item clear @var{linenum}
3524@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3525Delete any breakpoints set at or within the code of the specified
3526@var{linenum} of the specified @var{filename}.
c906108c
SS
3527
3528@cindex delete breakpoints
3529@kindex delete
41afff9a 3530@kindex d @r{(@code{delete})}
c5394b80
JM
3531@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3532Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3533ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3534breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3535confirm off}). You can abbreviate this command as @code{d}.
3536@end table
3537
6d2ebf8b 3538@node Disabling
79a6e687 3539@subsection Disabling Breakpoints
c906108c 3540
4644b6e3 3541@cindex enable/disable a breakpoint
c906108c
SS
3542Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3543prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3544it had been deleted, but remembers the information on the breakpoint so
3545that you can @dfn{enable} it again later.
3546
3547You disable and enable breakpoints, watchpoints, and catchpoints with
3548the @code{enable} and @code{disable} commands, optionally specifying one
3549or more breakpoint numbers as arguments. Use @code{info break} or
3550@code{info watch} to print a list of breakpoints, watchpoints, and
3551catchpoints if you do not know which numbers to use.
3552
3b784c4f
EZ
3553Disabling and enabling a breakpoint that has multiple locations
3554affects all of its locations.
3555
c906108c
SS
3556A breakpoint, watchpoint, or catchpoint can have any of four different
3557states of enablement:
3558
3559@itemize @bullet
3560@item
3561Enabled. The breakpoint stops your program. A breakpoint set
3562with the @code{break} command starts out in this state.
3563@item
3564Disabled. The breakpoint has no effect on your program.
3565@item
3566Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3567disabled.
c906108c
SS
3568@item
3569Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3570immediately after it does so it is deleted permanently. A breakpoint
3571set with the @code{tbreak} command starts out in this state.
c906108c
SS
3572@end itemize
3573
3574You can use the following commands to enable or disable breakpoints,
3575watchpoints, and catchpoints:
3576
3577@table @code
c906108c 3578@kindex disable
41afff9a 3579@kindex dis @r{(@code{disable})}
c5394b80 3580@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3581Disable the specified breakpoints---or all breakpoints, if none are
3582listed. A disabled breakpoint has no effect but is not forgotten. All
3583options such as ignore-counts, conditions and commands are remembered in
3584case the breakpoint is enabled again later. You may abbreviate
3585@code{disable} as @code{dis}.
3586
c906108c 3587@kindex enable
c5394b80 3588@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3589Enable the specified breakpoints (or all defined breakpoints). They
3590become effective once again in stopping your program.
3591
c5394b80 3592@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3593Enable the specified breakpoints temporarily. @value{GDBN} disables any
3594of these breakpoints immediately after stopping your program.
3595
c5394b80 3596@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3597Enable the specified breakpoints to work once, then die. @value{GDBN}
3598deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3599Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3600@end table
3601
d4f3574e
SS
3602@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3603@c confusing: tbreak is also initially enabled.
c906108c 3604Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3605,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3606subsequently, they become disabled or enabled only when you use one of
3607the commands above. (The command @code{until} can set and delete a
3608breakpoint of its own, but it does not change the state of your other
3609breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3610Stepping}.)
c906108c 3611
6d2ebf8b 3612@node Conditions
79a6e687 3613@subsection Break Conditions
c906108c
SS
3614@cindex conditional breakpoints
3615@cindex breakpoint conditions
3616
3617@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3618@c in particular for a watchpoint?
c906108c
SS
3619The simplest sort of breakpoint breaks every time your program reaches a
3620specified place. You can also specify a @dfn{condition} for a
3621breakpoint. A condition is just a Boolean expression in your
3622programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3623a condition evaluates the expression each time your program reaches it,
3624and your program stops only if the condition is @emph{true}.
3625
3626This is the converse of using assertions for program validation; in that
3627situation, you want to stop when the assertion is violated---that is,
3628when the condition is false. In C, if you want to test an assertion expressed
3629by the condition @var{assert}, you should set the condition
3630@samp{! @var{assert}} on the appropriate breakpoint.
3631
3632Conditions are also accepted for watchpoints; you may not need them,
3633since a watchpoint is inspecting the value of an expression anyhow---but
3634it might be simpler, say, to just set a watchpoint on a variable name,
3635and specify a condition that tests whether the new value is an interesting
3636one.
3637
3638Break conditions can have side effects, and may even call functions in
3639your program. This can be useful, for example, to activate functions
3640that log program progress, or to use your own print functions to
3641format special data structures. The effects are completely predictable
3642unless there is another enabled breakpoint at the same address. (In
3643that case, @value{GDBN} might see the other breakpoint first and stop your
3644program without checking the condition of this one.) Note that
d4f3574e
SS
3645breakpoint commands are usually more convenient and flexible than break
3646conditions for the
c906108c 3647purpose of performing side effects when a breakpoint is reached
79a6e687 3648(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3649
3650Break conditions can be specified when a breakpoint is set, by using
3651@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3652Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3653with the @code{condition} command.
53a5351d 3654
c906108c
SS
3655You can also use the @code{if} keyword with the @code{watch} command.
3656The @code{catch} command does not recognize the @code{if} keyword;
3657@code{condition} is the only way to impose a further condition on a
3658catchpoint.
c906108c
SS
3659
3660@table @code
3661@kindex condition
3662@item condition @var{bnum} @var{expression}
3663Specify @var{expression} as the break condition for breakpoint,
3664watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3665breakpoint @var{bnum} stops your program only if the value of
3666@var{expression} is true (nonzero, in C). When you use
3667@code{condition}, @value{GDBN} checks @var{expression} immediately for
3668syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3669referents in the context of your breakpoint. If @var{expression} uses
3670symbols not referenced in the context of the breakpoint, @value{GDBN}
3671prints an error message:
3672
474c8240 3673@smallexample
d4f3574e 3674No symbol "foo" in current context.
474c8240 3675@end smallexample
d4f3574e
SS
3676
3677@noindent
c906108c
SS
3678@value{GDBN} does
3679not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3680command (or a command that sets a breakpoint with a condition, like
3681@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3682
3683@item condition @var{bnum}
3684Remove the condition from breakpoint number @var{bnum}. It becomes
3685an ordinary unconditional breakpoint.
3686@end table
3687
3688@cindex ignore count (of breakpoint)
3689A special case of a breakpoint condition is to stop only when the
3690breakpoint has been reached a certain number of times. This is so
3691useful that there is a special way to do it, using the @dfn{ignore
3692count} of the breakpoint. Every breakpoint has an ignore count, which
3693is an integer. Most of the time, the ignore count is zero, and
3694therefore has no effect. But if your program reaches a breakpoint whose
3695ignore count is positive, then instead of stopping, it just decrements
3696the ignore count by one and continues. As a result, if the ignore count
3697value is @var{n}, the breakpoint does not stop the next @var{n} times
3698your program reaches it.
3699
3700@table @code
3701@kindex ignore
3702@item ignore @var{bnum} @var{count}
3703Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3704The next @var{count} times the breakpoint is reached, your program's
3705execution does not stop; other than to decrement the ignore count, @value{GDBN}
3706takes no action.
3707
3708To make the breakpoint stop the next time it is reached, specify
3709a count of zero.
3710
3711When you use @code{continue} to resume execution of your program from a
3712breakpoint, you can specify an ignore count directly as an argument to
3713@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3714Stepping,,Continuing and Stepping}.
c906108c
SS
3715
3716If a breakpoint has a positive ignore count and a condition, the
3717condition is not checked. Once the ignore count reaches zero,
3718@value{GDBN} resumes checking the condition.
3719
3720You could achieve the effect of the ignore count with a condition such
3721as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3722is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3723Variables}.
c906108c
SS
3724@end table
3725
3726Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3727
3728
6d2ebf8b 3729@node Break Commands
79a6e687 3730@subsection Breakpoint Command Lists
c906108c
SS
3731
3732@cindex breakpoint commands
3733You can give any breakpoint (or watchpoint or catchpoint) a series of
3734commands to execute when your program stops due to that breakpoint. For
3735example, you might want to print the values of certain expressions, or
3736enable other breakpoints.
3737
3738@table @code
3739@kindex commands
ca91424e 3740@kindex end@r{ (breakpoint commands)}
c906108c
SS
3741@item commands @r{[}@var{bnum}@r{]}
3742@itemx @dots{} @var{command-list} @dots{}
3743@itemx end
3744Specify a list of commands for breakpoint number @var{bnum}. The commands
3745themselves appear on the following lines. Type a line containing just
3746@code{end} to terminate the commands.
3747
3748To remove all commands from a breakpoint, type @code{commands} and
3749follow it immediately with @code{end}; that is, give no commands.
3750
3751With no @var{bnum} argument, @code{commands} refers to the last
3752breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3753recently encountered).
3754@end table
3755
3756Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3757disabled within a @var{command-list}.
3758
3759You can use breakpoint commands to start your program up again. Simply
3760use the @code{continue} command, or @code{step}, or any other command
3761that resumes execution.
3762
3763Any other commands in the command list, after a command that resumes
3764execution, are ignored. This is because any time you resume execution
3765(even with a simple @code{next} or @code{step}), you may encounter
3766another breakpoint---which could have its own command list, leading to
3767ambiguities about which list to execute.
3768
3769@kindex silent
3770If the first command you specify in a command list is @code{silent}, the
3771usual message about stopping at a breakpoint is not printed. This may
3772be desirable for breakpoints that are to print a specific message and
3773then continue. If none of the remaining commands print anything, you
3774see no sign that the breakpoint was reached. @code{silent} is
3775meaningful only at the beginning of a breakpoint command list.
3776
3777The commands @code{echo}, @code{output}, and @code{printf} allow you to
3778print precisely controlled output, and are often useful in silent
79a6e687 3779breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3780
3781For example, here is how you could use breakpoint commands to print the
3782value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3783
474c8240 3784@smallexample
c906108c
SS
3785break foo if x>0
3786commands
3787silent
3788printf "x is %d\n",x
3789cont
3790end
474c8240 3791@end smallexample
c906108c
SS
3792
3793One application for breakpoint commands is to compensate for one bug so
3794you can test for another. Put a breakpoint just after the erroneous line
3795of code, give it a condition to detect the case in which something
3796erroneous has been done, and give it commands to assign correct values
3797to any variables that need them. End with the @code{continue} command
3798so that your program does not stop, and start with the @code{silent}
3799command so that no output is produced. Here is an example:
3800
474c8240 3801@smallexample
c906108c
SS
3802break 403
3803commands
3804silent
3805set x = y + 4
3806cont
3807end
474c8240 3808@end smallexample
c906108c 3809
6d2ebf8b 3810@node Breakpoint Menus
79a6e687 3811@subsection Breakpoint Menus
c906108c
SS
3812@cindex overloading
3813@cindex symbol overloading
3814
b383017d 3815Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3816single function name
c906108c
SS
3817to be defined several times, for application in different contexts.
3818This is called @dfn{overloading}. When a function name is overloaded,
3819@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3820a breakpoint. You can use explicit signature of the function, as in
3821@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3822particular version of the function you want. Otherwise, @value{GDBN} offers
3823you a menu of numbered choices for different possible breakpoints, and
3824waits for your selection with the prompt @samp{>}. The first two
3825options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3826sets a breakpoint at each definition of @var{function}, and typing
3827@kbd{0} aborts the @code{break} command without setting any new
3828breakpoints.
3829
3830For example, the following session excerpt shows an attempt to set a
3831breakpoint at the overloaded symbol @code{String::after}.
3832We choose three particular definitions of that function name:
3833
3834@c FIXME! This is likely to change to show arg type lists, at least
3835@smallexample
3836@group
3837(@value{GDBP}) b String::after
3838[0] cancel
3839[1] all
3840[2] file:String.cc; line number:867
3841[3] file:String.cc; line number:860
3842[4] file:String.cc; line number:875
3843[5] file:String.cc; line number:853
3844[6] file:String.cc; line number:846
3845[7] file:String.cc; line number:735
3846> 2 4 6
3847Breakpoint 1 at 0xb26c: file String.cc, line 867.
3848Breakpoint 2 at 0xb344: file String.cc, line 875.
3849Breakpoint 3 at 0xafcc: file String.cc, line 846.
3850Multiple breakpoints were set.
3851Use the "delete" command to delete unwanted
3852 breakpoints.
3853(@value{GDBP})
3854@end group
3855@end smallexample
c906108c
SS
3856
3857@c @ifclear BARETARGET
6d2ebf8b 3858@node Error in Breakpoints
d4f3574e 3859@subsection ``Cannot insert breakpoints''
c906108c
SS
3860@c
3861@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3862@c
d4f3574e
SS
3863Under some operating systems, breakpoints cannot be used in a program if
3864any other process is running that program. In this situation,
5d161b24 3865attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3866@value{GDBN} to print an error message:
3867
474c8240 3868@smallexample
d4f3574e
SS
3869Cannot insert breakpoints.
3870The same program may be running in another process.
474c8240 3871@end smallexample
d4f3574e
SS
3872
3873When this happens, you have three ways to proceed:
3874
3875@enumerate
3876@item
3877Remove or disable the breakpoints, then continue.
3878
3879@item
5d161b24 3880Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3881name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3882that @value{GDBN} should run your program under that name.
d4f3574e
SS
3883Then start your program again.
3884
3885@item
3886Relink your program so that the text segment is nonsharable, using the
3887linker option @samp{-N}. The operating system limitation may not apply
3888to nonsharable executables.
3889@end enumerate
c906108c
SS
3890@c @end ifclear
3891
d4f3574e
SS
3892A similar message can be printed if you request too many active
3893hardware-assisted breakpoints and watchpoints:
3894
3895@c FIXME: the precise wording of this message may change; the relevant
3896@c source change is not committed yet (Sep 3, 1999).
3897@smallexample
3898Stopped; cannot insert breakpoints.
3899You may have requested too many hardware breakpoints and watchpoints.
3900@end smallexample
3901
3902@noindent
3903This message is printed when you attempt to resume the program, since
3904only then @value{GDBN} knows exactly how many hardware breakpoints and
3905watchpoints it needs to insert.
3906
3907When this message is printed, you need to disable or remove some of the
3908hardware-assisted breakpoints and watchpoints, and then continue.
3909
79a6e687 3910@node Breakpoint-related Warnings
1485d690
KB
3911@subsection ``Breakpoint address adjusted...''
3912@cindex breakpoint address adjusted
3913
3914Some processor architectures place constraints on the addresses at
3915which breakpoints may be placed. For architectures thus constrained,
3916@value{GDBN} will attempt to adjust the breakpoint's address to comply
3917with the constraints dictated by the architecture.
3918
3919One example of such an architecture is the Fujitsu FR-V. The FR-V is
3920a VLIW architecture in which a number of RISC-like instructions may be
3921bundled together for parallel execution. The FR-V architecture
3922constrains the location of a breakpoint instruction within such a
3923bundle to the instruction with the lowest address. @value{GDBN}
3924honors this constraint by adjusting a breakpoint's address to the
3925first in the bundle.
3926
3927It is not uncommon for optimized code to have bundles which contain
3928instructions from different source statements, thus it may happen that
3929a breakpoint's address will be adjusted from one source statement to
3930another. Since this adjustment may significantly alter @value{GDBN}'s
3931breakpoint related behavior from what the user expects, a warning is
3932printed when the breakpoint is first set and also when the breakpoint
3933is hit.
3934
3935A warning like the one below is printed when setting a breakpoint
3936that's been subject to address adjustment:
3937
3938@smallexample
3939warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3940@end smallexample
3941
3942Such warnings are printed both for user settable and @value{GDBN}'s
3943internal breakpoints. If you see one of these warnings, you should
3944verify that a breakpoint set at the adjusted address will have the
3945desired affect. If not, the breakpoint in question may be removed and
b383017d 3946other breakpoints may be set which will have the desired behavior.
1485d690
KB
3947E.g., it may be sufficient to place the breakpoint at a later
3948instruction. A conditional breakpoint may also be useful in some
3949cases to prevent the breakpoint from triggering too often.
3950
3951@value{GDBN} will also issue a warning when stopping at one of these
3952adjusted breakpoints:
3953
3954@smallexample
3955warning: Breakpoint 1 address previously adjusted from 0x00010414
3956to 0x00010410.
3957@end smallexample
3958
3959When this warning is encountered, it may be too late to take remedial
3960action except in cases where the breakpoint is hit earlier or more
3961frequently than expected.
d4f3574e 3962
6d2ebf8b 3963@node Continuing and Stepping
79a6e687 3964@section Continuing and Stepping
c906108c
SS
3965
3966@cindex stepping
3967@cindex continuing
3968@cindex resuming execution
3969@dfn{Continuing} means resuming program execution until your program
3970completes normally. In contrast, @dfn{stepping} means executing just
3971one more ``step'' of your program, where ``step'' may mean either one
3972line of source code, or one machine instruction (depending on what
7a292a7a
SS
3973particular command you use). Either when continuing or when stepping,
3974your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3975it stops due to a signal, you may want to use @code{handle}, or use
3976@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3977
3978@table @code
3979@kindex continue
41afff9a
EZ
3980@kindex c @r{(@code{continue})}
3981@kindex fg @r{(resume foreground execution)}
c906108c
SS
3982@item continue @r{[}@var{ignore-count}@r{]}
3983@itemx c @r{[}@var{ignore-count}@r{]}
3984@itemx fg @r{[}@var{ignore-count}@r{]}
3985Resume program execution, at the address where your program last stopped;
3986any breakpoints set at that address are bypassed. The optional argument
3987@var{ignore-count} allows you to specify a further number of times to
3988ignore a breakpoint at this location; its effect is like that of
79a6e687 3989@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3990
3991The argument @var{ignore-count} is meaningful only when your program
3992stopped due to a breakpoint. At other times, the argument to
3993@code{continue} is ignored.
3994
d4f3574e
SS
3995The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3996debugged program is deemed to be the foreground program) are provided
3997purely for convenience, and have exactly the same behavior as
3998@code{continue}.
c906108c
SS
3999@end table
4000
4001To resume execution at a different place, you can use @code{return}
79a6e687 4002(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4003calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4004Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4005
4006A typical technique for using stepping is to set a breakpoint
79a6e687 4007(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4008beginning of the function or the section of your program where a problem
4009is believed to lie, run your program until it stops at that breakpoint,
4010and then step through the suspect area, examining the variables that are
4011interesting, until you see the problem happen.
4012
4013@table @code
4014@kindex step
41afff9a 4015@kindex s @r{(@code{step})}
c906108c
SS
4016@item step
4017Continue running your program until control reaches a different source
4018line, then stop it and return control to @value{GDBN}. This command is
4019abbreviated @code{s}.
4020
4021@quotation
4022@c "without debugging information" is imprecise; actually "without line
4023@c numbers in the debugging information". (gcc -g1 has debugging info but
4024@c not line numbers). But it seems complex to try to make that
4025@c distinction here.
4026@emph{Warning:} If you use the @code{step} command while control is
4027within a function that was compiled without debugging information,
4028execution proceeds until control reaches a function that does have
4029debugging information. Likewise, it will not step into a function which
4030is compiled without debugging information. To step through functions
4031without debugging information, use the @code{stepi} command, described
4032below.
4033@end quotation
4034
4a92d011
EZ
4035The @code{step} command only stops at the first instruction of a source
4036line. This prevents the multiple stops that could otherwise occur in
4037@code{switch} statements, @code{for} loops, etc. @code{step} continues
4038to stop if a function that has debugging information is called within
4039the line. In other words, @code{step} @emph{steps inside} any functions
4040called within the line.
c906108c 4041
d4f3574e
SS
4042Also, the @code{step} command only enters a function if there is line
4043number information for the function. Otherwise it acts like the
5d161b24 4044@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4045on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4046was any debugging information about the routine.
c906108c
SS
4047
4048@item step @var{count}
4049Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4050breakpoint is reached, or a signal not related to stepping occurs before
4051@var{count} steps, stepping stops right away.
c906108c
SS
4052
4053@kindex next
41afff9a 4054@kindex n @r{(@code{next})}
c906108c
SS
4055@item next @r{[}@var{count}@r{]}
4056Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4057This is similar to @code{step}, but function calls that appear within
4058the line of code are executed without stopping. Execution stops when
4059control reaches a different line of code at the original stack level
4060that was executing when you gave the @code{next} command. This command
4061is abbreviated @code{n}.
c906108c
SS
4062
4063An argument @var{count} is a repeat count, as for @code{step}.
4064
4065
4066@c FIX ME!! Do we delete this, or is there a way it fits in with
4067@c the following paragraph? --- Vctoria
4068@c
4069@c @code{next} within a function that lacks debugging information acts like
4070@c @code{step}, but any function calls appearing within the code of the
4071@c function are executed without stopping.
4072
d4f3574e
SS
4073The @code{next} command only stops at the first instruction of a
4074source line. This prevents multiple stops that could otherwise occur in
4a92d011 4075@code{switch} statements, @code{for} loops, etc.
c906108c 4076
b90a5f51
CF
4077@kindex set step-mode
4078@item set step-mode
4079@cindex functions without line info, and stepping
4080@cindex stepping into functions with no line info
4081@itemx set step-mode on
4a92d011 4082The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4083stop at the first instruction of a function which contains no debug line
4084information rather than stepping over it.
4085
4a92d011
EZ
4086This is useful in cases where you may be interested in inspecting the
4087machine instructions of a function which has no symbolic info and do not
4088want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4089
4090@item set step-mode off
4a92d011 4091Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4092debug information. This is the default.
4093
9c16f35a
EZ
4094@item show step-mode
4095Show whether @value{GDBN} will stop in or step over functions without
4096source line debug information.
4097
c906108c
SS
4098@kindex finish
4099@item finish
4100Continue running until just after function in the selected stack frame
4101returns. Print the returned value (if any).
4102
4103Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4104,Returning from a Function}).
c906108c
SS
4105
4106@kindex until
41afff9a 4107@kindex u @r{(@code{until})}
09d4efe1 4108@cindex run until specified location
c906108c
SS
4109@item until
4110@itemx u
4111Continue running until a source line past the current line, in the
4112current stack frame, is reached. This command is used to avoid single
4113stepping through a loop more than once. It is like the @code{next}
4114command, except that when @code{until} encounters a jump, it
4115automatically continues execution until the program counter is greater
4116than the address of the jump.
4117
4118This means that when you reach the end of a loop after single stepping
4119though it, @code{until} makes your program continue execution until it
4120exits the loop. In contrast, a @code{next} command at the end of a loop
4121simply steps back to the beginning of the loop, which forces you to step
4122through the next iteration.
4123
4124@code{until} always stops your program if it attempts to exit the current
4125stack frame.
4126
4127@code{until} may produce somewhat counterintuitive results if the order
4128of machine code does not match the order of the source lines. For
4129example, in the following excerpt from a debugging session, the @code{f}
4130(@code{frame}) command shows that execution is stopped at line
4131@code{206}; yet when we use @code{until}, we get to line @code{195}:
4132
474c8240 4133@smallexample
c906108c
SS
4134(@value{GDBP}) f
4135#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4136206 expand_input();
4137(@value{GDBP}) until
4138195 for ( ; argc > 0; NEXTARG) @{
474c8240 4139@end smallexample
c906108c
SS
4140
4141This happened because, for execution efficiency, the compiler had
4142generated code for the loop closure test at the end, rather than the
4143start, of the loop---even though the test in a C @code{for}-loop is
4144written before the body of the loop. The @code{until} command appeared
4145to step back to the beginning of the loop when it advanced to this
4146expression; however, it has not really gone to an earlier
4147statement---not in terms of the actual machine code.
4148
4149@code{until} with no argument works by means of single
4150instruction stepping, and hence is slower than @code{until} with an
4151argument.
4152
4153@item until @var{location}
4154@itemx u @var{location}
4155Continue running your program until either the specified location is
4156reached, or the current stack frame returns. @var{location} is any of
4157the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
79a6e687 4158,Setting Breakpoints}). This form of the command uses breakpoints, and
c60eb6f1
EZ
4159hence is quicker than @code{until} without an argument. The specified
4160location is actually reached only if it is in the current frame. This
4161implies that @code{until} can be used to skip over recursive function
4162invocations. For instance in the code below, if the current location is
4163line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4164line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4165invocations have returned.
4166
4167@smallexample
416894 int factorial (int value)
416995 @{
417096 if (value > 1) @{
417197 value *= factorial (value - 1);
417298 @}
417399 return (value);
4174100 @}
4175@end smallexample
4176
4177
4178@kindex advance @var{location}
4179@itemx advance @var{location}
09d4efe1
EZ
4180Continue running the program up to the given @var{location}. An argument is
4181required, which should be of the same form as arguments for the @code{break}
c60eb6f1
EZ
4182command. Execution will also stop upon exit from the current stack
4183frame. This command is similar to @code{until}, but @code{advance} will
4184not skip over recursive function calls, and the target location doesn't
4185have to be in the same frame as the current one.
4186
c906108c
SS
4187
4188@kindex stepi
41afff9a 4189@kindex si @r{(@code{stepi})}
c906108c 4190@item stepi
96a2c332 4191@itemx stepi @var{arg}
c906108c
SS
4192@itemx si
4193Execute one machine instruction, then stop and return to the debugger.
4194
4195It is often useful to do @samp{display/i $pc} when stepping by machine
4196instructions. This makes @value{GDBN} automatically display the next
4197instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4198Display,, Automatic Display}.
c906108c
SS
4199
4200An argument is a repeat count, as in @code{step}.
4201
4202@need 750
4203@kindex nexti
41afff9a 4204@kindex ni @r{(@code{nexti})}
c906108c 4205@item nexti
96a2c332 4206@itemx nexti @var{arg}
c906108c
SS
4207@itemx ni
4208Execute one machine instruction, but if it is a function call,
4209proceed until the function returns.
4210
4211An argument is a repeat count, as in @code{next}.
4212@end table
4213
6d2ebf8b 4214@node Signals
c906108c
SS
4215@section Signals
4216@cindex signals
4217
4218A signal is an asynchronous event that can happen in a program. The
4219operating system defines the possible kinds of signals, and gives each
4220kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4221signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4222@code{SIGSEGV} is the signal a program gets from referencing a place in
4223memory far away from all the areas in use; @code{SIGALRM} occurs when
4224the alarm clock timer goes off (which happens only if your program has
4225requested an alarm).
4226
4227@cindex fatal signals
4228Some signals, including @code{SIGALRM}, are a normal part of the
4229functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4230errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4231program has not specified in advance some other way to handle the signal.
4232@code{SIGINT} does not indicate an error in your program, but it is normally
4233fatal so it can carry out the purpose of the interrupt: to kill the program.
4234
4235@value{GDBN} has the ability to detect any occurrence of a signal in your
4236program. You can tell @value{GDBN} in advance what to do for each kind of
4237signal.
4238
4239@cindex handling signals
24f93129
EZ
4240Normally, @value{GDBN} is set up to let the non-erroneous signals like
4241@code{SIGALRM} be silently passed to your program
4242(so as not to interfere with their role in the program's functioning)
c906108c
SS
4243but to stop your program immediately whenever an error signal happens.
4244You can change these settings with the @code{handle} command.
4245
4246@table @code
4247@kindex info signals
09d4efe1 4248@kindex info handle
c906108c 4249@item info signals
96a2c332 4250@itemx info handle
c906108c
SS
4251Print a table of all the kinds of signals and how @value{GDBN} has been told to
4252handle each one. You can use this to see the signal numbers of all
4253the defined types of signals.
4254
45ac1734
EZ
4255@item info signals @var{sig}
4256Similar, but print information only about the specified signal number.
4257
d4f3574e 4258@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4259
4260@kindex handle
45ac1734 4261@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4262Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4263can be the number of a signal or its name (with or without the
24f93129 4264@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4265@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4266known signals. Optional arguments @var{keywords}, described below,
4267say what change to make.
c906108c
SS
4268@end table
4269
4270@c @group
4271The keywords allowed by the @code{handle} command can be abbreviated.
4272Their full names are:
4273
4274@table @code
4275@item nostop
4276@value{GDBN} should not stop your program when this signal happens. It may
4277still print a message telling you that the signal has come in.
4278
4279@item stop
4280@value{GDBN} should stop your program when this signal happens. This implies
4281the @code{print} keyword as well.
4282
4283@item print
4284@value{GDBN} should print a message when this signal happens.
4285
4286@item noprint
4287@value{GDBN} should not mention the occurrence of the signal at all. This
4288implies the @code{nostop} keyword as well.
4289
4290@item pass
5ece1a18 4291@itemx noignore
c906108c
SS
4292@value{GDBN} should allow your program to see this signal; your program
4293can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4294and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4295
4296@item nopass
5ece1a18 4297@itemx ignore
c906108c 4298@value{GDBN} should not allow your program to see this signal.
5ece1a18 4299@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4300@end table
4301@c @end group
4302
d4f3574e
SS
4303When a signal stops your program, the signal is not visible to the
4304program until you
c906108c
SS
4305continue. Your program sees the signal then, if @code{pass} is in
4306effect for the signal in question @emph{at that time}. In other words,
4307after @value{GDBN} reports a signal, you can use the @code{handle}
4308command with @code{pass} or @code{nopass} to control whether your
4309program sees that signal when you continue.
4310
24f93129
EZ
4311The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4312non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4313@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4314erroneous signals.
4315
c906108c
SS
4316You can also use the @code{signal} command to prevent your program from
4317seeing a signal, or cause it to see a signal it normally would not see,
4318or to give it any signal at any time. For example, if your program stopped
4319due to some sort of memory reference error, you might store correct
4320values into the erroneous variables and continue, hoping to see more
4321execution; but your program would probably terminate immediately as
4322a result of the fatal signal once it saw the signal. To prevent this,
4323you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4324Program a Signal}.
c906108c 4325
6d2ebf8b 4326@node Thread Stops
79a6e687 4327@section Stopping and Starting Multi-thread Programs
c906108c
SS
4328
4329When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4330Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4331breakpoints on all threads, or on a particular thread.
4332
4333@table @code
4334@cindex breakpoints and threads
4335@cindex thread breakpoints
4336@kindex break @dots{} thread @var{threadno}
4337@item break @var{linespec} thread @var{threadno}
4338@itemx break @var{linespec} thread @var{threadno} if @dots{}
4339@var{linespec} specifies source lines; there are several ways of
4340writing them, but the effect is always to specify some source line.
4341
4342Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4343to specify that you only want @value{GDBN} to stop the program when a
4344particular thread reaches this breakpoint. @var{threadno} is one of the
4345numeric thread identifiers assigned by @value{GDBN}, shown in the first
4346column of the @samp{info threads} display.
4347
4348If you do not specify @samp{thread @var{threadno}} when you set a
4349breakpoint, the breakpoint applies to @emph{all} threads of your
4350program.
4351
4352You can use the @code{thread} qualifier on conditional breakpoints as
4353well; in this case, place @samp{thread @var{threadno}} before the
4354breakpoint condition, like this:
4355
4356@smallexample
2df3850c 4357(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4358@end smallexample
4359
4360@end table
4361
4362@cindex stopped threads
4363@cindex threads, stopped
4364Whenever your program stops under @value{GDBN} for any reason,
4365@emph{all} threads of execution stop, not just the current thread. This
4366allows you to examine the overall state of the program, including
4367switching between threads, without worrying that things may change
4368underfoot.
4369
36d86913
MC
4370@cindex thread breakpoints and system calls
4371@cindex system calls and thread breakpoints
4372@cindex premature return from system calls
4373There is an unfortunate side effect. If one thread stops for a
4374breakpoint, or for some other reason, and another thread is blocked in a
4375system call, then the system call may return prematurely. This is a
4376consequence of the interaction between multiple threads and the signals
4377that @value{GDBN} uses to implement breakpoints and other events that
4378stop execution.
4379
4380To handle this problem, your program should check the return value of
4381each system call and react appropriately. This is good programming
4382style anyways.
4383
4384For example, do not write code like this:
4385
4386@smallexample
4387 sleep (10);
4388@end smallexample
4389
4390The call to @code{sleep} will return early if a different thread stops
4391at a breakpoint or for some other reason.
4392
4393Instead, write this:
4394
4395@smallexample
4396 int unslept = 10;
4397 while (unslept > 0)
4398 unslept = sleep (unslept);
4399@end smallexample
4400
4401A system call is allowed to return early, so the system is still
4402conforming to its specification. But @value{GDBN} does cause your
4403multi-threaded program to behave differently than it would without
4404@value{GDBN}.
4405
4406Also, @value{GDBN} uses internal breakpoints in the thread library to
4407monitor certain events such as thread creation and thread destruction.
4408When such an event happens, a system call in another thread may return
4409prematurely, even though your program does not appear to stop.
4410
c906108c
SS
4411@cindex continuing threads
4412@cindex threads, continuing
4413Conversely, whenever you restart the program, @emph{all} threads start
4414executing. @emph{This is true even when single-stepping} with commands
5d161b24 4415like @code{step} or @code{next}.
c906108c
SS
4416
4417In particular, @value{GDBN} cannot single-step all threads in lockstep.
4418Since thread scheduling is up to your debugging target's operating
4419system (not controlled by @value{GDBN}), other threads may
4420execute more than one statement while the current thread completes a
4421single step. Moreover, in general other threads stop in the middle of a
4422statement, rather than at a clean statement boundary, when the program
4423stops.
4424
4425You might even find your program stopped in another thread after
4426continuing or even single-stepping. This happens whenever some other
4427thread runs into a breakpoint, a signal, or an exception before the
4428first thread completes whatever you requested.
4429
4430On some OSes, you can lock the OS scheduler and thus allow only a single
4431thread to run.
4432
4433@table @code
4434@item set scheduler-locking @var{mode}
9c16f35a
EZ
4435@cindex scheduler locking mode
4436@cindex lock scheduler
c906108c
SS
4437Set the scheduler locking mode. If it is @code{off}, then there is no
4438locking and any thread may run at any time. If @code{on}, then only the
4439current thread may run when the inferior is resumed. The @code{step}
4440mode optimizes for single-stepping. It stops other threads from
4441``seizing the prompt'' by preempting the current thread while you are
4442stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4443when you step. They are more likely to run when you @samp{next} over a
c906108c 4444function call, and they are completely free to run when you use commands
d4f3574e 4445like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4446thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4447@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4448
4449@item show scheduler-locking
4450Display the current scheduler locking mode.
4451@end table
4452
c906108c 4453
6d2ebf8b 4454@node Stack
c906108c
SS
4455@chapter Examining the Stack
4456
4457When your program has stopped, the first thing you need to know is where it
4458stopped and how it got there.
4459
4460@cindex call stack
5d161b24
DB
4461Each time your program performs a function call, information about the call
4462is generated.
4463That information includes the location of the call in your program,
4464the arguments of the call,
c906108c 4465and the local variables of the function being called.
5d161b24 4466The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4467The stack frames are allocated in a region of memory called the @dfn{call
4468stack}.
4469
4470When your program stops, the @value{GDBN} commands for examining the
4471stack allow you to see all of this information.
4472
4473@cindex selected frame
4474One of the stack frames is @dfn{selected} by @value{GDBN} and many
4475@value{GDBN} commands refer implicitly to the selected frame. In
4476particular, whenever you ask @value{GDBN} for the value of a variable in
4477your program, the value is found in the selected frame. There are
4478special @value{GDBN} commands to select whichever frame you are
79a6e687 4479interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4480
4481When your program stops, @value{GDBN} automatically selects the
5d161b24 4482currently executing frame and describes it briefly, similar to the
79a6e687 4483@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4484
4485@menu
4486* Frames:: Stack frames
4487* Backtrace:: Backtraces
4488* Selection:: Selecting a frame
4489* Frame Info:: Information on a frame
c906108c
SS
4490
4491@end menu
4492
6d2ebf8b 4493@node Frames
79a6e687 4494@section Stack Frames
c906108c 4495
d4f3574e 4496@cindex frame, definition
c906108c
SS
4497@cindex stack frame
4498The call stack is divided up into contiguous pieces called @dfn{stack
4499frames}, or @dfn{frames} for short; each frame is the data associated
4500with one call to one function. The frame contains the arguments given
4501to the function, the function's local variables, and the address at
4502which the function is executing.
4503
4504@cindex initial frame
4505@cindex outermost frame
4506@cindex innermost frame
4507When your program is started, the stack has only one frame, that of the
4508function @code{main}. This is called the @dfn{initial} frame or the
4509@dfn{outermost} frame. Each time a function is called, a new frame is
4510made. Each time a function returns, the frame for that function invocation
4511is eliminated. If a function is recursive, there can be many frames for
4512the same function. The frame for the function in which execution is
4513actually occurring is called the @dfn{innermost} frame. This is the most
4514recently created of all the stack frames that still exist.
4515
4516@cindex frame pointer
4517Inside your program, stack frames are identified by their addresses. A
4518stack frame consists of many bytes, each of which has its own address; each
4519kind of computer has a convention for choosing one byte whose
4520address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4521in a register called the @dfn{frame pointer register}
4522(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4523
4524@cindex frame number
4525@value{GDBN} assigns numbers to all existing stack frames, starting with
4526zero for the innermost frame, one for the frame that called it,
4527and so on upward. These numbers do not really exist in your program;
4528they are assigned by @value{GDBN} to give you a way of designating stack
4529frames in @value{GDBN} commands.
4530
6d2ebf8b
SS
4531@c The -fomit-frame-pointer below perennially causes hbox overflow
4532@c underflow problems.
c906108c
SS
4533@cindex frameless execution
4534Some compilers provide a way to compile functions so that they operate
e22ea452 4535without stack frames. (For example, the @value{NGCC} option
474c8240 4536@smallexample
6d2ebf8b 4537@samp{-fomit-frame-pointer}
474c8240 4538@end smallexample
6d2ebf8b 4539generates functions without a frame.)
c906108c
SS
4540This is occasionally done with heavily used library functions to save
4541the frame setup time. @value{GDBN} has limited facilities for dealing
4542with these function invocations. If the innermost function invocation
4543has no stack frame, @value{GDBN} nevertheless regards it as though
4544it had a separate frame, which is numbered zero as usual, allowing
4545correct tracing of the function call chain. However, @value{GDBN} has
4546no provision for frameless functions elsewhere in the stack.
4547
4548@table @code
d4f3574e 4549@kindex frame@r{, command}
41afff9a 4550@cindex current stack frame
c906108c 4551@item frame @var{args}
5d161b24 4552The @code{frame} command allows you to move from one stack frame to another,
c906108c 4553and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4554address of the frame or the stack frame number. Without an argument,
4555@code{frame} prints the current stack frame.
c906108c
SS
4556
4557@kindex select-frame
41afff9a 4558@cindex selecting frame silently
c906108c
SS
4559@item select-frame
4560The @code{select-frame} command allows you to move from one stack frame
4561to another without printing the frame. This is the silent version of
4562@code{frame}.
4563@end table
4564
6d2ebf8b 4565@node Backtrace
c906108c
SS
4566@section Backtraces
4567
09d4efe1
EZ
4568@cindex traceback
4569@cindex call stack traces
c906108c
SS
4570A backtrace is a summary of how your program got where it is. It shows one
4571line per frame, for many frames, starting with the currently executing
4572frame (frame zero), followed by its caller (frame one), and on up the
4573stack.
4574
4575@table @code
4576@kindex backtrace
41afff9a 4577@kindex bt @r{(@code{backtrace})}
c906108c
SS
4578@item backtrace
4579@itemx bt
4580Print a backtrace of the entire stack: one line per frame for all
4581frames in the stack.
4582
4583You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4584character, normally @kbd{Ctrl-c}.
c906108c
SS
4585
4586@item backtrace @var{n}
4587@itemx bt @var{n}
4588Similar, but print only the innermost @var{n} frames.
4589
4590@item backtrace -@var{n}
4591@itemx bt -@var{n}
4592Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4593
4594@item backtrace full
0f061b69 4595@itemx bt full
dd74f6ae
NR
4596@itemx bt full @var{n}
4597@itemx bt full -@var{n}
e7109c7e 4598Print the values of the local variables also. @var{n} specifies the
286ba84d 4599number of frames to print, as described above.
c906108c
SS
4600@end table
4601
4602@kindex where
4603@kindex info stack
c906108c
SS
4604The names @code{where} and @code{info stack} (abbreviated @code{info s})
4605are additional aliases for @code{backtrace}.
4606
839c27b7
EZ
4607@cindex multiple threads, backtrace
4608In a multi-threaded program, @value{GDBN} by default shows the
4609backtrace only for the current thread. To display the backtrace for
4610several or all of the threads, use the command @code{thread apply}
4611(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4612apply all backtrace}, @value{GDBN} will display the backtrace for all
4613the threads; this is handy when you debug a core dump of a
4614multi-threaded program.
4615
c906108c
SS
4616Each line in the backtrace shows the frame number and the function name.
4617The program counter value is also shown---unless you use @code{set
4618print address off}. The backtrace also shows the source file name and
4619line number, as well as the arguments to the function. The program
4620counter value is omitted if it is at the beginning of the code for that
4621line number.
4622
4623Here is an example of a backtrace. It was made with the command
4624@samp{bt 3}, so it shows the innermost three frames.
4625
4626@smallexample
4627@group
5d161b24 4628#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4629 at builtin.c:993
4630#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4631#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4632 at macro.c:71
4633(More stack frames follow...)
4634@end group
4635@end smallexample
4636
4637@noindent
4638The display for frame zero does not begin with a program counter
4639value, indicating that your program has stopped at the beginning of the
4640code for line @code{993} of @code{builtin.c}.
4641
18999be5
EZ
4642@cindex value optimized out, in backtrace
4643@cindex function call arguments, optimized out
4644If your program was compiled with optimizations, some compilers will
4645optimize away arguments passed to functions if those arguments are
4646never used after the call. Such optimizations generate code that
4647passes arguments through registers, but doesn't store those arguments
4648in the stack frame. @value{GDBN} has no way of displaying such
4649arguments in stack frames other than the innermost one. Here's what
4650such a backtrace might look like:
4651
4652@smallexample
4653@group
4654#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4655 at builtin.c:993
4656#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4657#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4658 at macro.c:71
4659(More stack frames follow...)
4660@end group
4661@end smallexample
4662
4663@noindent
4664The values of arguments that were not saved in their stack frames are
4665shown as @samp{<value optimized out>}.
4666
4667If you need to display the values of such optimized-out arguments,
4668either deduce that from other variables whose values depend on the one
4669you are interested in, or recompile without optimizations.
4670
a8f24a35
EZ
4671@cindex backtrace beyond @code{main} function
4672@cindex program entry point
4673@cindex startup code, and backtrace
25d29d70
AC
4674Most programs have a standard user entry point---a place where system
4675libraries and startup code transition into user code. For C this is
d416eeec
EZ
4676@code{main}@footnote{
4677Note that embedded programs (the so-called ``free-standing''
4678environment) are not required to have a @code{main} function as the
4679entry point. They could even have multiple entry points.}.
4680When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4681it will terminate the backtrace, to avoid tracing into highly
4682system-specific (and generally uninteresting) code.
4683
4684If you need to examine the startup code, or limit the number of levels
4685in a backtrace, you can change this behavior:
95f90d25
DJ
4686
4687@table @code
25d29d70
AC
4688@item set backtrace past-main
4689@itemx set backtrace past-main on
4644b6e3 4690@kindex set backtrace
25d29d70
AC
4691Backtraces will continue past the user entry point.
4692
4693@item set backtrace past-main off
95f90d25
DJ
4694Backtraces will stop when they encounter the user entry point. This is the
4695default.
4696
25d29d70 4697@item show backtrace past-main
4644b6e3 4698@kindex show backtrace
25d29d70
AC
4699Display the current user entry point backtrace policy.
4700
2315ffec
RC
4701@item set backtrace past-entry
4702@itemx set backtrace past-entry on
a8f24a35 4703Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4704This entry point is encoded by the linker when the application is built,
4705and is likely before the user entry point @code{main} (or equivalent) is called.
4706
4707@item set backtrace past-entry off
d3e8051b 4708Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4709application. This is the default.
4710
4711@item show backtrace past-entry
4712Display the current internal entry point backtrace policy.
4713
25d29d70
AC
4714@item set backtrace limit @var{n}
4715@itemx set backtrace limit 0
4716@cindex backtrace limit
4717Limit the backtrace to @var{n} levels. A value of zero means
4718unlimited.
95f90d25 4719
25d29d70
AC
4720@item show backtrace limit
4721Display the current limit on backtrace levels.
95f90d25
DJ
4722@end table
4723
6d2ebf8b 4724@node Selection
79a6e687 4725@section Selecting a Frame
c906108c
SS
4726
4727Most commands for examining the stack and other data in your program work on
4728whichever stack frame is selected at the moment. Here are the commands for
4729selecting a stack frame; all of them finish by printing a brief description
4730of the stack frame just selected.
4731
4732@table @code
d4f3574e 4733@kindex frame@r{, selecting}
41afff9a 4734@kindex f @r{(@code{frame})}
c906108c
SS
4735@item frame @var{n}
4736@itemx f @var{n}
4737Select frame number @var{n}. Recall that frame zero is the innermost
4738(currently executing) frame, frame one is the frame that called the
4739innermost one, and so on. The highest-numbered frame is the one for
4740@code{main}.
4741
4742@item frame @var{addr}
4743@itemx f @var{addr}
4744Select the frame at address @var{addr}. This is useful mainly if the
4745chaining of stack frames has been damaged by a bug, making it
4746impossible for @value{GDBN} to assign numbers properly to all frames. In
4747addition, this can be useful when your program has multiple stacks and
4748switches between them.
4749
c906108c
SS
4750On the SPARC architecture, @code{frame} needs two addresses to
4751select an arbitrary frame: a frame pointer and a stack pointer.
4752
4753On the MIPS and Alpha architecture, it needs two addresses: a stack
4754pointer and a program counter.
4755
4756On the 29k architecture, it needs three addresses: a register stack
4757pointer, a program counter, and a memory stack pointer.
c906108c
SS
4758
4759@kindex up
4760@item up @var{n}
4761Move @var{n} frames up the stack. For positive numbers @var{n}, this
4762advances toward the outermost frame, to higher frame numbers, to frames
4763that have existed longer. @var{n} defaults to one.
4764
4765@kindex down
41afff9a 4766@kindex do @r{(@code{down})}
c906108c
SS
4767@item down @var{n}
4768Move @var{n} frames down the stack. For positive numbers @var{n}, this
4769advances toward the innermost frame, to lower frame numbers, to frames
4770that were created more recently. @var{n} defaults to one. You may
4771abbreviate @code{down} as @code{do}.
4772@end table
4773
4774All of these commands end by printing two lines of output describing the
4775frame. The first line shows the frame number, the function name, the
4776arguments, and the source file and line number of execution in that
5d161b24 4777frame. The second line shows the text of that source line.
c906108c
SS
4778
4779@need 1000
4780For example:
4781
4782@smallexample
4783@group
4784(@value{GDBP}) up
4785#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4786 at env.c:10
478710 read_input_file (argv[i]);
4788@end group
4789@end smallexample
4790
4791After such a printout, the @code{list} command with no arguments
4792prints ten lines centered on the point of execution in the frame.
87885426
FN
4793You can also edit the program at the point of execution with your favorite
4794editing program by typing @code{edit}.
79a6e687 4795@xref{List, ,Printing Source Lines},
87885426 4796for details.
c906108c
SS
4797
4798@table @code
4799@kindex down-silently
4800@kindex up-silently
4801@item up-silently @var{n}
4802@itemx down-silently @var{n}
4803These two commands are variants of @code{up} and @code{down},
4804respectively; they differ in that they do their work silently, without
4805causing display of the new frame. They are intended primarily for use
4806in @value{GDBN} command scripts, where the output might be unnecessary and
4807distracting.
4808@end table
4809
6d2ebf8b 4810@node Frame Info
79a6e687 4811@section Information About a Frame
c906108c
SS
4812
4813There are several other commands to print information about the selected
4814stack frame.
4815
4816@table @code
4817@item frame
4818@itemx f
4819When used without any argument, this command does not change which
4820frame is selected, but prints a brief description of the currently
4821selected stack frame. It can be abbreviated @code{f}. With an
4822argument, this command is used to select a stack frame.
79a6e687 4823@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4824
4825@kindex info frame
41afff9a 4826@kindex info f @r{(@code{info frame})}
c906108c
SS
4827@item info frame
4828@itemx info f
4829This command prints a verbose description of the selected stack frame,
4830including:
4831
4832@itemize @bullet
5d161b24
DB
4833@item
4834the address of the frame
c906108c
SS
4835@item
4836the address of the next frame down (called by this frame)
4837@item
4838the address of the next frame up (caller of this frame)
4839@item
4840the language in which the source code corresponding to this frame is written
4841@item
4842the address of the frame's arguments
4843@item
d4f3574e
SS
4844the address of the frame's local variables
4845@item
c906108c
SS
4846the program counter saved in it (the address of execution in the caller frame)
4847@item
4848which registers were saved in the frame
4849@end itemize
4850
4851@noindent The verbose description is useful when
4852something has gone wrong that has made the stack format fail to fit
4853the usual conventions.
4854
4855@item info frame @var{addr}
4856@itemx info f @var{addr}
4857Print a verbose description of the frame at address @var{addr}, without
4858selecting that frame. The selected frame remains unchanged by this
4859command. This requires the same kind of address (more than one for some
4860architectures) that you specify in the @code{frame} command.
79a6e687 4861@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4862
4863@kindex info args
4864@item info args
4865Print the arguments of the selected frame, each on a separate line.
4866
4867@item info locals
4868@kindex info locals
4869Print the local variables of the selected frame, each on a separate
4870line. These are all variables (declared either static or automatic)
4871accessible at the point of execution of the selected frame.
4872
c906108c 4873@kindex info catch
d4f3574e
SS
4874@cindex catch exceptions, list active handlers
4875@cindex exception handlers, how to list
c906108c
SS
4876@item info catch
4877Print a list of all the exception handlers that are active in the
4878current stack frame at the current point of execution. To see other
4879exception handlers, visit the associated frame (using the @code{up},
4880@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4881@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4882
c906108c
SS
4883@end table
4884
c906108c 4885
6d2ebf8b 4886@node Source
c906108c
SS
4887@chapter Examining Source Files
4888
4889@value{GDBN} can print parts of your program's source, since the debugging
4890information recorded in the program tells @value{GDBN} what source files were
4891used to build it. When your program stops, @value{GDBN} spontaneously prints
4892the line where it stopped. Likewise, when you select a stack frame
79a6e687 4893(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4894execution in that frame has stopped. You can print other portions of
4895source files by explicit command.
4896
7a292a7a 4897If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4898prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4899@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4900
4901@menu
4902* List:: Printing source lines
87885426 4903* Edit:: Editing source files
c906108c 4904* Search:: Searching source files
c906108c
SS
4905* Source Path:: Specifying source directories
4906* Machine Code:: Source and machine code
4907@end menu
4908
6d2ebf8b 4909@node List
79a6e687 4910@section Printing Source Lines
c906108c
SS
4911
4912@kindex list
41afff9a 4913@kindex l @r{(@code{list})}
c906108c 4914To print lines from a source file, use the @code{list} command
5d161b24 4915(abbreviated @code{l}). By default, ten lines are printed.
c906108c
SS
4916There are several ways to specify what part of the file you want to print.
4917
4918Here are the forms of the @code{list} command most commonly used:
4919
4920@table @code
4921@item list @var{linenum}
4922Print lines centered around line number @var{linenum} in the
4923current source file.
4924
4925@item list @var{function}
4926Print lines centered around the beginning of function
4927@var{function}.
4928
4929@item list
4930Print more lines. If the last lines printed were printed with a
4931@code{list} command, this prints lines following the last lines
4932printed; however, if the last line printed was a solitary line printed
4933as part of displaying a stack frame (@pxref{Stack, ,Examining the
4934Stack}), this prints lines centered around that line.
4935
4936@item list -
4937Print lines just before the lines last printed.
4938@end table
4939
9c16f35a 4940@cindex @code{list}, how many lines to display
c906108c
SS
4941By default, @value{GDBN} prints ten source lines with any of these forms of
4942the @code{list} command. You can change this using @code{set listsize}:
4943
4944@table @code
4945@kindex set listsize
4946@item set listsize @var{count}
4947Make the @code{list} command display @var{count} source lines (unless
4948the @code{list} argument explicitly specifies some other number).
4949
4950@kindex show listsize
4951@item show listsize
4952Display the number of lines that @code{list} prints.
4953@end table
4954
4955Repeating a @code{list} command with @key{RET} discards the argument,
4956so it is equivalent to typing just @code{list}. This is more useful
4957than listing the same lines again. An exception is made for an
4958argument of @samp{-}; that argument is preserved in repetition so that
4959each repetition moves up in the source file.
4960
4961@cindex linespec
4962In general, the @code{list} command expects you to supply zero, one or two
4963@dfn{linespecs}. Linespecs specify source lines; there are several ways
d4f3574e 4964of writing them, but the effect is always to specify some source line.
c906108c
SS
4965Here is a complete description of the possible arguments for @code{list}:
4966
4967@table @code
4968@item list @var{linespec}
4969Print lines centered around the line specified by @var{linespec}.
4970
4971@item list @var{first},@var{last}
4972Print lines from @var{first} to @var{last}. Both arguments are
4973linespecs.
4974
4975@item list ,@var{last}
4976Print lines ending with @var{last}.
4977
4978@item list @var{first},
4979Print lines starting with @var{first}.
4980
4981@item list +
4982Print lines just after the lines last printed.
4983
4984@item list -
4985Print lines just before the lines last printed.
4986
4987@item list
4988As described in the preceding table.
4989@end table
4990
4991Here are the ways of specifying a single source line---all the
4992kinds of linespec.
4993
4994@table @code
4995@item @var{number}
4996Specifies line @var{number} of the current source file.
4997When a @code{list} command has two linespecs, this refers to
4998the same source file as the first linespec.
4999
5000@item +@var{offset}
5001Specifies the line @var{offset} lines after the last line printed.
5002When used as the second linespec in a @code{list} command that has
5003two, this specifies the line @var{offset} lines down from the
5004first linespec.
5005
5006@item -@var{offset}
5007Specifies the line @var{offset} lines before the last line printed.
5008
5009@item @var{filename}:@var{number}
5010Specifies line @var{number} in the source file @var{filename}.
5011
5012@item @var{function}
5013Specifies the line that begins the body of the function @var{function}.
5014For example: in C, this is the line with the open brace.
5015
5016@item @var{filename}:@var{function}
5017Specifies the line of the open-brace that begins the body of the
5018function @var{function} in the file @var{filename}. You only need the
5019file name with a function name to avoid ambiguity when there are
5020identically named functions in different source files.
5021
5022@item *@var{address}
5023Specifies the line containing the program address @var{address}.
5024@var{address} may be any expression.
5025@end table
5026
87885426 5027@node Edit
79a6e687 5028@section Editing Source Files
87885426
FN
5029@cindex editing source files
5030
5031@kindex edit
5032@kindex e @r{(@code{edit})}
5033To edit the lines in a source file, use the @code{edit} command.
5034The editing program of your choice
5035is invoked with the current line set to
5036the active line in the program.
5037Alternatively, there are several ways to specify what part of the file you
5038want to print if you want to see other parts of the program.
5039
5040Here are the forms of the @code{edit} command most commonly used:
5041
5042@table @code
5043@item edit
5044Edit the current source file at the active line number in the program.
5045
5046@item edit @var{number}
5047Edit the current source file with @var{number} as the active line number.
5048
5049@item edit @var{function}
5050Edit the file containing @var{function} at the beginning of its definition.
5051
5052@item edit @var{filename}:@var{number}
5053Specifies line @var{number} in the source file @var{filename}.
5054
5055@item edit @var{filename}:@var{function}
5056Specifies the line that begins the body of the
5057function @var{function} in the file @var{filename}. You only need the
5058file name with a function name to avoid ambiguity when there are
5059identically named functions in different source files.
5060
5061@item edit *@var{address}
5062Specifies the line containing the program address @var{address}.
5063@var{address} may be any expression.
5064@end table
5065
79a6e687 5066@subsection Choosing your Editor
87885426
FN
5067You can customize @value{GDBN} to use any editor you want
5068@footnote{
5069The only restriction is that your editor (say @code{ex}), recognizes the
5070following command-line syntax:
10998722 5071@smallexample
87885426 5072ex +@var{number} file
10998722 5073@end smallexample
15387254
EZ
5074The optional numeric value +@var{number} specifies the number of the line in
5075the file where to start editing.}.
5076By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5077by setting the environment variable @code{EDITOR} before using
5078@value{GDBN}. For example, to configure @value{GDBN} to use the
5079@code{vi} editor, you could use these commands with the @code{sh} shell:
5080@smallexample
87885426
FN
5081EDITOR=/usr/bin/vi
5082export EDITOR
15387254 5083gdb @dots{}
10998722 5084@end smallexample
87885426 5085or in the @code{csh} shell,
10998722 5086@smallexample
87885426 5087setenv EDITOR /usr/bin/vi
15387254 5088gdb @dots{}
10998722 5089@end smallexample
87885426 5090
6d2ebf8b 5091@node Search
79a6e687 5092@section Searching Source Files
15387254 5093@cindex searching source files
c906108c
SS
5094
5095There are two commands for searching through the current source file for a
5096regular expression.
5097
5098@table @code
5099@kindex search
5100@kindex forward-search
5101@item forward-search @var{regexp}
5102@itemx search @var{regexp}
5103The command @samp{forward-search @var{regexp}} checks each line,
5104starting with the one following the last line listed, for a match for
5d161b24 5105@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5106synonym @samp{search @var{regexp}} or abbreviate the command name as
5107@code{fo}.
5108
09d4efe1 5109@kindex reverse-search
c906108c
SS
5110@item reverse-search @var{regexp}
5111The command @samp{reverse-search @var{regexp}} checks each line, starting
5112with the one before the last line listed and going backward, for a match
5113for @var{regexp}. It lists the line that is found. You can abbreviate
5114this command as @code{rev}.
5115@end table
c906108c 5116
6d2ebf8b 5117@node Source Path
79a6e687 5118@section Specifying Source Directories
c906108c
SS
5119
5120@cindex source path
5121@cindex directories for source files
5122Executable programs sometimes do not record the directories of the source
5123files from which they were compiled, just the names. Even when they do,
5124the directories could be moved between the compilation and your debugging
5125session. @value{GDBN} has a list of directories to search for source files;
5126this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5127it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5128in the list, until it finds a file with the desired name.
5129
5130For example, suppose an executable references the file
5131@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5132@file{/mnt/cross}. The file is first looked up literally; if this
5133fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5134fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5135message is printed. @value{GDBN} does not look up the parts of the
5136source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5137Likewise, the subdirectories of the source path are not searched: if
5138the source path is @file{/mnt/cross}, and the binary refers to
5139@file{foo.c}, @value{GDBN} would not find it under
5140@file{/mnt/cross/usr/src/foo-1.0/lib}.
5141
5142Plain file names, relative file names with leading directories, file
5143names containing dots, etc.@: are all treated as described above; for
5144instance, if the source path is @file{/mnt/cross}, and the source file
5145is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5146@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5147that---@file{/mnt/cross/foo.c}.
5148
5149Note that the executable search path is @emph{not} used to locate the
cd852561 5150source files.
c906108c
SS
5151
5152Whenever you reset or rearrange the source path, @value{GDBN} clears out
5153any information it has cached about where source files are found and where
5154each line is in the file.
5155
5156@kindex directory
5157@kindex dir
d4f3574e
SS
5158When you start @value{GDBN}, its source path includes only @samp{cdir}
5159and @samp{cwd}, in that order.
c906108c
SS
5160To add other directories, use the @code{directory} command.
5161
4b505b12
AS
5162The search path is used to find both program source files and @value{GDBN}
5163script files (read using the @samp{-command} option and @samp{source} command).
5164
30daae6c
JB
5165In addition to the source path, @value{GDBN} provides a set of commands
5166that manage a list of source path substitution rules. A @dfn{substitution
5167rule} specifies how to rewrite source directories stored in the program's
5168debug information in case the sources were moved to a different
5169directory between compilation and debugging. A rule is made of
5170two strings, the first specifying what needs to be rewritten in
5171the path, and the second specifying how it should be rewritten.
5172In @ref{set substitute-path}, we name these two parts @var{from} and
5173@var{to} respectively. @value{GDBN} does a simple string replacement
5174of @var{from} with @var{to} at the start of the directory part of the
5175source file name, and uses that result instead of the original file
5176name to look up the sources.
5177
5178Using the previous example, suppose the @file{foo-1.0} tree has been
5179moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5180@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5181@file{/mnt/cross}. The first lookup will then be
5182@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5183of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5184substitution rule, use the @code{set substitute-path} command
5185(@pxref{set substitute-path}).
5186
5187To avoid unexpected substitution results, a rule is applied only if the
5188@var{from} part of the directory name ends at a directory separator.
5189For instance, a rule substituting @file{/usr/source} into
5190@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5191not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5192is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5193not be applied to @file{/root/usr/source/baz.c} either.
5194
5195In many cases, you can achieve the same result using the @code{directory}
5196command. However, @code{set substitute-path} can be more efficient in
5197the case where the sources are organized in a complex tree with multiple
5198subdirectories. With the @code{directory} command, you need to add each
5199subdirectory of your project. If you moved the entire tree while
5200preserving its internal organization, then @code{set substitute-path}
5201allows you to direct the debugger to all the sources with one single
5202command.
5203
5204@code{set substitute-path} is also more than just a shortcut command.
5205The source path is only used if the file at the original location no
5206longer exists. On the other hand, @code{set substitute-path} modifies
5207the debugger behavior to look at the rewritten location instead. So, if
5208for any reason a source file that is not relevant to your executable is
5209located at the original location, a substitution rule is the only
3f94c067 5210method available to point @value{GDBN} at the new location.
30daae6c 5211
c906108c
SS
5212@table @code
5213@item directory @var{dirname} @dots{}
5214@item dir @var{dirname} @dots{}
5215Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5216directory names may be given to this command, separated by @samp{:}
5217(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5218part of absolute file names) or
c906108c
SS
5219whitespace. You may specify a directory that is already in the source
5220path; this moves it forward, so @value{GDBN} searches it sooner.
5221
5222@kindex cdir
5223@kindex cwd
41afff9a 5224@vindex $cdir@r{, convenience variable}
d3e8051b 5225@vindex $cwd@r{, convenience variable}
c906108c
SS
5226@cindex compilation directory
5227@cindex current directory
5228@cindex working directory
5229@cindex directory, current
5230@cindex directory, compilation
5231You can use the string @samp{$cdir} to refer to the compilation
5232directory (if one is recorded), and @samp{$cwd} to refer to the current
5233working directory. @samp{$cwd} is not the same as @samp{.}---the former
5234tracks the current working directory as it changes during your @value{GDBN}
5235session, while the latter is immediately expanded to the current
5236directory at the time you add an entry to the source path.
5237
5238@item directory
cd852561 5239Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5240
5241@c RET-repeat for @code{directory} is explicitly disabled, but since
5242@c repeating it would be a no-op we do not say that. (thanks to RMS)
5243
5244@item show directories
5245@kindex show directories
5246Print the source path: show which directories it contains.
30daae6c
JB
5247
5248@anchor{set substitute-path}
5249@item set substitute-path @var{from} @var{to}
5250@kindex set substitute-path
5251Define a source path substitution rule, and add it at the end of the
5252current list of existing substitution rules. If a rule with the same
5253@var{from} was already defined, then the old rule is also deleted.
5254
5255For example, if the file @file{/foo/bar/baz.c} was moved to
5256@file{/mnt/cross/baz.c}, then the command
5257
5258@smallexample
5259(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5260@end smallexample
5261
5262@noindent
5263will tell @value{GDBN} to replace @samp{/usr/src} with
5264@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5265@file{baz.c} even though it was moved.
5266
5267In the case when more than one substitution rule have been defined,
5268the rules are evaluated one by one in the order where they have been
5269defined. The first one matching, if any, is selected to perform
5270the substitution.
5271
5272For instance, if we had entered the following commands:
5273
5274@smallexample
5275(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5276(@value{GDBP}) set substitute-path /usr/src /mnt/src
5277@end smallexample
5278
5279@noindent
5280@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5281@file{/mnt/include/defs.h} by using the first rule. However, it would
5282use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5283@file{/mnt/src/lib/foo.c}.
5284
5285
5286@item unset substitute-path [path]
5287@kindex unset substitute-path
5288If a path is specified, search the current list of substitution rules
5289for a rule that would rewrite that path. Delete that rule if found.
5290A warning is emitted by the debugger if no rule could be found.
5291
5292If no path is specified, then all substitution rules are deleted.
5293
5294@item show substitute-path [path]
5295@kindex show substitute-path
5296If a path is specified, then print the source path substitution rule
5297which would rewrite that path, if any.
5298
5299If no path is specified, then print all existing source path substitution
5300rules.
5301
c906108c
SS
5302@end table
5303
5304If your source path is cluttered with directories that are no longer of
5305interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5306versions of source. You can correct the situation as follows:
5307
5308@enumerate
5309@item
cd852561 5310Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5311
5312@item
5313Use @code{directory} with suitable arguments to reinstall the
5314directories you want in the source path. You can add all the
5315directories in one command.
5316@end enumerate
5317
6d2ebf8b 5318@node Machine Code
79a6e687 5319@section Source and Machine Code
15387254 5320@cindex source line and its code address
c906108c
SS
5321
5322You can use the command @code{info line} to map source lines to program
5323addresses (and vice versa), and the command @code{disassemble} to display
5324a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5325mode, the @code{info line} command causes the arrow to point to the
5d161b24 5326line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5327well as hex.
5328
5329@table @code
5330@kindex info line
5331@item info line @var{linespec}
5332Print the starting and ending addresses of the compiled code for
5333source line @var{linespec}. You can specify source lines in any of
5334the ways understood by the @code{list} command (@pxref{List, ,Printing
79a6e687 5335Source Lines}).
c906108c
SS
5336@end table
5337
5338For example, we can use @code{info line} to discover the location of
5339the object code for the first line of function
5340@code{m4_changequote}:
5341
d4f3574e
SS
5342@c FIXME: I think this example should also show the addresses in
5343@c symbolic form, as they usually would be displayed.
c906108c 5344@smallexample
96a2c332 5345(@value{GDBP}) info line m4_changequote
c906108c
SS
5346Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5347@end smallexample
5348
5349@noindent
15387254 5350@cindex code address and its source line
c906108c
SS
5351We can also inquire (using @code{*@var{addr}} as the form for
5352@var{linespec}) what source line covers a particular address:
5353@smallexample
5354(@value{GDBP}) info line *0x63ff
5355Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5356@end smallexample
5357
5358@cindex @code{$_} and @code{info line}
15387254 5359@cindex @code{x} command, default address
41afff9a 5360@kindex x@r{(examine), and} info line
c906108c
SS
5361After @code{info line}, the default address for the @code{x} command
5362is changed to the starting address of the line, so that @samp{x/i} is
5363sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5364,Examining Memory}). Also, this address is saved as the value of the
c906108c 5365convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5366Variables}).
c906108c
SS
5367
5368@table @code
5369@kindex disassemble
5370@cindex assembly instructions
5371@cindex instructions, assembly
5372@cindex machine instructions
5373@cindex listing machine instructions
5374@item disassemble
5375This specialized command dumps a range of memory as machine
5376instructions. The default memory range is the function surrounding the
5377program counter of the selected frame. A single argument to this
5378command is a program counter value; @value{GDBN} dumps the function
5379surrounding this value. Two arguments specify a range of addresses
5380(first inclusive, second exclusive) to dump.
5381@end table
5382
c906108c
SS
5383The following example shows the disassembly of a range of addresses of
5384HP PA-RISC 2.0 code:
5385
5386@smallexample
5387(@value{GDBP}) disas 0x32c4 0x32e4
5388Dump of assembler code from 0x32c4 to 0x32e4:
53890x32c4 <main+204>: addil 0,dp
53900x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
53910x32cc <main+212>: ldil 0x3000,r31
53920x32d0 <main+216>: ble 0x3f8(sr4,r31)
53930x32d4 <main+220>: ldo 0(r31),rp
53940x32d8 <main+224>: addil -0x800,dp
53950x32dc <main+228>: ldo 0x588(r1),r26
53960x32e0 <main+232>: ldil 0x3000,r31
5397End of assembler dump.
5398@end smallexample
c906108c
SS
5399
5400Some architectures have more than one commonly-used set of instruction
5401mnemonics or other syntax.
5402
76d17f34
EZ
5403For programs that were dynamically linked and use shared libraries,
5404instructions that call functions or branch to locations in the shared
5405libraries might show a seemingly bogus location---it's actually a
5406location of the relocation table. On some architectures, @value{GDBN}
5407might be able to resolve these to actual function names.
5408
c906108c 5409@table @code
d4f3574e 5410@kindex set disassembly-flavor
d4f3574e
SS
5411@cindex Intel disassembly flavor
5412@cindex AT&T disassembly flavor
5413@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5414Select the instruction set to use when disassembling the
5415program via the @code{disassemble} or @code{x/i} commands.
5416
5417Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5418can set @var{instruction-set} to either @code{intel} or @code{att}.
5419The default is @code{att}, the AT&T flavor used by default by Unix
5420assemblers for x86-based targets.
9c16f35a
EZ
5421
5422@kindex show disassembly-flavor
5423@item show disassembly-flavor
5424Show the current setting of the disassembly flavor.
c906108c
SS
5425@end table
5426
5427
6d2ebf8b 5428@node Data
c906108c
SS
5429@chapter Examining Data
5430
5431@cindex printing data
5432@cindex examining data
5433@kindex print
5434@kindex inspect
5435@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5436@c document because it is nonstandard... Under Epoch it displays in a
5437@c different window or something like that.
5438The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5439command (abbreviated @code{p}), or its synonym @code{inspect}. It
5440evaluates and prints the value of an expression of the language your
5441program is written in (@pxref{Languages, ,Using @value{GDBN} with
5442Different Languages}).
c906108c
SS
5443
5444@table @code
d4f3574e
SS
5445@item print @var{expr}
5446@itemx print /@var{f} @var{expr}
5447@var{expr} is an expression (in the source language). By default the
5448value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5449you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5450@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5451Formats}.
c906108c
SS
5452
5453@item print
5454@itemx print /@var{f}
15387254 5455@cindex reprint the last value
d4f3574e 5456If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5457@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5458conveniently inspect the same value in an alternative format.
5459@end table
5460
5461A more low-level way of examining data is with the @code{x} command.
5462It examines data in memory at a specified address and prints it in a
79a6e687 5463specified format. @xref{Memory, ,Examining Memory}.
c906108c 5464
7a292a7a 5465If you are interested in information about types, or about how the
d4f3574e
SS
5466fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5467command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5468Table}.
c906108c
SS
5469
5470@menu
5471* Expressions:: Expressions
5472* Variables:: Program variables
5473* Arrays:: Artificial arrays
5474* Output Formats:: Output formats
5475* Memory:: Examining memory
5476* Auto Display:: Automatic display
5477* Print Settings:: Print settings
5478* Value History:: Value history
5479* Convenience Vars:: Convenience variables
5480* Registers:: Registers
c906108c 5481* Floating Point Hardware:: Floating point hardware
53c69bd7 5482* Vector Unit:: Vector Unit
721c2651 5483* OS Information:: Auxiliary data provided by operating system
29e57380 5484* Memory Region Attributes:: Memory region attributes
16d9dec6 5485* Dump/Restore Files:: Copy between memory and a file
384ee23f 5486* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5487* Character Sets:: Debugging programs that use a different
5488 character set than GDB does
09d4efe1 5489* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5490@end menu
5491
6d2ebf8b 5492@node Expressions
c906108c
SS
5493@section Expressions
5494
5495@cindex expressions
5496@code{print} and many other @value{GDBN} commands accept an expression and
5497compute its value. Any kind of constant, variable or operator defined
5498by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5499@value{GDBN}. This includes conditional expressions, function calls,
5500casts, and string constants. It also includes preprocessor macros, if
5501you compiled your program to include this information; see
5502@ref{Compilation}.
c906108c 5503
15387254 5504@cindex arrays in expressions
d4f3574e
SS
5505@value{GDBN} supports array constants in expressions input by
5506the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5507you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5508memory that is @code{malloc}ed in the target program.
c906108c 5509
c906108c
SS
5510Because C is so widespread, most of the expressions shown in examples in
5511this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5512Languages}, for information on how to use expressions in other
5513languages.
5514
5515In this section, we discuss operators that you can use in @value{GDBN}
5516expressions regardless of your programming language.
5517
15387254 5518@cindex casts, in expressions
c906108c
SS
5519Casts are supported in all languages, not just in C, because it is so
5520useful to cast a number into a pointer in order to examine a structure
5521at that address in memory.
5522@c FIXME: casts supported---Mod2 true?
c906108c
SS
5523
5524@value{GDBN} supports these operators, in addition to those common
5525to programming languages:
5526
5527@table @code
5528@item @@
5529@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5530@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5531
5532@item ::
5533@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5534function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5535
5536@cindex @{@var{type}@}
5537@cindex type casting memory
5538@cindex memory, viewing as typed object
5539@cindex casts, to view memory
5540@item @{@var{type}@} @var{addr}
5541Refers to an object of type @var{type} stored at address @var{addr} in
5542memory. @var{addr} may be any expression whose value is an integer or
5543pointer (but parentheses are required around binary operators, just as in
5544a cast). This construct is allowed regardless of what kind of data is
5545normally supposed to reside at @var{addr}.
5546@end table
5547
6d2ebf8b 5548@node Variables
79a6e687 5549@section Program Variables
c906108c
SS
5550
5551The most common kind of expression to use is the name of a variable
5552in your program.
5553
5554Variables in expressions are understood in the selected stack frame
79a6e687 5555(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5556
5557@itemize @bullet
5558@item
5559global (or file-static)
5560@end itemize
5561
5d161b24 5562@noindent or
c906108c
SS
5563
5564@itemize @bullet
5565@item
5566visible according to the scope rules of the
5567programming language from the point of execution in that frame
5d161b24 5568@end itemize
c906108c
SS
5569
5570@noindent This means that in the function
5571
474c8240 5572@smallexample
c906108c
SS
5573foo (a)
5574 int a;
5575@{
5576 bar (a);
5577 @{
5578 int b = test ();
5579 bar (b);
5580 @}
5581@}
474c8240 5582@end smallexample
c906108c
SS
5583
5584@noindent
5585you can examine and use the variable @code{a} whenever your program is
5586executing within the function @code{foo}, but you can only use or
5587examine the variable @code{b} while your program is executing inside
5588the block where @code{b} is declared.
5589
5590@cindex variable name conflict
5591There is an exception: you can refer to a variable or function whose
5592scope is a single source file even if the current execution point is not
5593in this file. But it is possible to have more than one such variable or
5594function with the same name (in different source files). If that
5595happens, referring to that name has unpredictable effects. If you wish,
5596you can specify a static variable in a particular function or file,
15387254 5597using the colon-colon (@code{::}) notation:
c906108c 5598
d4f3574e 5599@cindex colon-colon, context for variables/functions
12c27660 5600@ifnotinfo
c906108c 5601@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5602@cindex @code{::}, context for variables/functions
12c27660 5603@end ifnotinfo
474c8240 5604@smallexample
c906108c
SS
5605@var{file}::@var{variable}
5606@var{function}::@var{variable}
474c8240 5607@end smallexample
c906108c
SS
5608
5609@noindent
5610Here @var{file} or @var{function} is the name of the context for the
5611static @var{variable}. In the case of file names, you can use quotes to
5612make sure @value{GDBN} parses the file name as a single word---for example,
5613to print a global value of @code{x} defined in @file{f2.c}:
5614
474c8240 5615@smallexample
c906108c 5616(@value{GDBP}) p 'f2.c'::x
474c8240 5617@end smallexample
c906108c 5618
b37052ae 5619@cindex C@t{++} scope resolution
c906108c 5620This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5621use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5622scope resolution operator in @value{GDBN} expressions.
5623@c FIXME: Um, so what happens in one of those rare cases where it's in
5624@c conflict?? --mew
c906108c
SS
5625
5626@cindex wrong values
5627@cindex variable values, wrong
15387254
EZ
5628@cindex function entry/exit, wrong values of variables
5629@cindex optimized code, wrong values of variables
c906108c
SS
5630@quotation
5631@emph{Warning:} Occasionally, a local variable may appear to have the
5632wrong value at certain points in a function---just after entry to a new
5633scope, and just before exit.
5634@end quotation
5635You may see this problem when you are stepping by machine instructions.
5636This is because, on most machines, it takes more than one instruction to
5637set up a stack frame (including local variable definitions); if you are
5638stepping by machine instructions, variables may appear to have the wrong
5639values until the stack frame is completely built. On exit, it usually
5640also takes more than one machine instruction to destroy a stack frame;
5641after you begin stepping through that group of instructions, local
5642variable definitions may be gone.
5643
5644This may also happen when the compiler does significant optimizations.
5645To be sure of always seeing accurate values, turn off all optimization
5646when compiling.
5647
d4f3574e
SS
5648@cindex ``No symbol "foo" in current context''
5649Another possible effect of compiler optimizations is to optimize
5650unused variables out of existence, or assign variables to registers (as
5651opposed to memory addresses). Depending on the support for such cases
5652offered by the debug info format used by the compiler, @value{GDBN}
5653might not be able to display values for such local variables. If that
5654happens, @value{GDBN} will print a message like this:
5655
474c8240 5656@smallexample
d4f3574e 5657No symbol "foo" in current context.
474c8240 5658@end smallexample
d4f3574e
SS
5659
5660To solve such problems, either recompile without optimizations, or use a
5661different debug info format, if the compiler supports several such
15387254 5662formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5663usually supports the @option{-gstabs+} option. @option{-gstabs+}
5664produces debug info in a format that is superior to formats such as
5665COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5666an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5667for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5668Compiler Collection (GCC)}.
79a6e687 5669@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5670that are best suited to C@t{++} programs.
d4f3574e 5671
ab1adacd
EZ
5672If you ask to print an object whose contents are unknown to
5673@value{GDBN}, e.g., because its data type is not completely specified
5674by the debug information, @value{GDBN} will say @samp{<incomplete
5675type>}. @xref{Symbols, incomplete type}, for more about this.
5676
3a60f64e
JK
5677Strings are identified as arrays of @code{char} values without specified
5678signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5679printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5680@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5681defines literal string type @code{"char"} as @code{char} without a sign.
5682For program code
5683
5684@smallexample
5685char var0[] = "A";
5686signed char var1[] = "A";
5687@end smallexample
5688
5689You get during debugging
5690@smallexample
5691(gdb) print var0
5692$1 = "A"
5693(gdb) print var1
5694$2 = @{65 'A', 0 '\0'@}
5695@end smallexample
5696
6d2ebf8b 5697@node Arrays
79a6e687 5698@section Artificial Arrays
c906108c
SS
5699
5700@cindex artificial array
15387254 5701@cindex arrays
41afff9a 5702@kindex @@@r{, referencing memory as an array}
c906108c
SS
5703It is often useful to print out several successive objects of the
5704same type in memory; a section of an array, or an array of
5705dynamically determined size for which only a pointer exists in the
5706program.
5707
5708You can do this by referring to a contiguous span of memory as an
5709@dfn{artificial array}, using the binary operator @samp{@@}. The left
5710operand of @samp{@@} should be the first element of the desired array
5711and be an individual object. The right operand should be the desired length
5712of the array. The result is an array value whose elements are all of
5713the type of the left argument. The first element is actually the left
5714argument; the second element comes from bytes of memory immediately
5715following those that hold the first element, and so on. Here is an
5716example. If a program says
5717
474c8240 5718@smallexample
c906108c 5719int *array = (int *) malloc (len * sizeof (int));
474c8240 5720@end smallexample
c906108c
SS
5721
5722@noindent
5723you can print the contents of @code{array} with
5724
474c8240 5725@smallexample
c906108c 5726p *array@@len
474c8240 5727@end smallexample
c906108c
SS
5728
5729The left operand of @samp{@@} must reside in memory. Array values made
5730with @samp{@@} in this way behave just like other arrays in terms of
5731subscripting, and are coerced to pointers when used in expressions.
5732Artificial arrays most often appear in expressions via the value history
79a6e687 5733(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5734
5735Another way to create an artificial array is to use a cast.
5736This re-interprets a value as if it were an array.
5737The value need not be in memory:
474c8240 5738@smallexample
c906108c
SS
5739(@value{GDBP}) p/x (short[2])0x12345678
5740$1 = @{0x1234, 0x5678@}
474c8240 5741@end smallexample
c906108c
SS
5742
5743As a convenience, if you leave the array length out (as in
c3f6f71d 5744@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5745the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5746@smallexample
c906108c
SS
5747(@value{GDBP}) p/x (short[])0x12345678
5748$2 = @{0x1234, 0x5678@}
474c8240 5749@end smallexample
c906108c
SS
5750
5751Sometimes the artificial array mechanism is not quite enough; in
5752moderately complex data structures, the elements of interest may not
5753actually be adjacent---for example, if you are interested in the values
5754of pointers in an array. One useful work-around in this situation is
5755to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5756Variables}) as a counter in an expression that prints the first
c906108c
SS
5757interesting value, and then repeat that expression via @key{RET}. For
5758instance, suppose you have an array @code{dtab} of pointers to
5759structures, and you are interested in the values of a field @code{fv}
5760in each structure. Here is an example of what you might type:
5761
474c8240 5762@smallexample
c906108c
SS
5763set $i = 0
5764p dtab[$i++]->fv
5765@key{RET}
5766@key{RET}
5767@dots{}
474c8240 5768@end smallexample
c906108c 5769
6d2ebf8b 5770@node Output Formats
79a6e687 5771@section Output Formats
c906108c
SS
5772
5773@cindex formatted output
5774@cindex output formats
5775By default, @value{GDBN} prints a value according to its data type. Sometimes
5776this is not what you want. For example, you might want to print a number
5777in hex, or a pointer in decimal. Or you might want to view data in memory
5778at a certain address as a character string or as an instruction. To do
5779these things, specify an @dfn{output format} when you print a value.
5780
5781The simplest use of output formats is to say how to print a value
5782already computed. This is done by starting the arguments of the
5783@code{print} command with a slash and a format letter. The format
5784letters supported are:
5785
5786@table @code
5787@item x
5788Regard the bits of the value as an integer, and print the integer in
5789hexadecimal.
5790
5791@item d
5792Print as integer in signed decimal.
5793
5794@item u
5795Print as integer in unsigned decimal.
5796
5797@item o
5798Print as integer in octal.
5799
5800@item t
5801Print as integer in binary. The letter @samp{t} stands for ``two''.
5802@footnote{@samp{b} cannot be used because these format letters are also
5803used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5804see @ref{Memory,,Examining Memory}.}
c906108c
SS
5805
5806@item a
5807@cindex unknown address, locating
3d67e040 5808@cindex locate address
c906108c
SS
5809Print as an address, both absolute in hexadecimal and as an offset from
5810the nearest preceding symbol. You can use this format used to discover
5811where (in what function) an unknown address is located:
5812
474c8240 5813@smallexample
c906108c
SS
5814(@value{GDBP}) p/a 0x54320
5815$3 = 0x54320 <_initialize_vx+396>
474c8240 5816@end smallexample
c906108c 5817
3d67e040
EZ
5818@noindent
5819The command @code{info symbol 0x54320} yields similar results.
5820@xref{Symbols, info symbol}.
5821
c906108c 5822@item c
51274035
EZ
5823Regard as an integer and print it as a character constant. This
5824prints both the numerical value and its character representation. The
5825character representation is replaced with the octal escape @samp{\nnn}
5826for characters outside the 7-bit @sc{ascii} range.
c906108c 5827
ea37ba09
DJ
5828Without this format, @value{GDBN} displays @code{char},
5829@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5830constants. Single-byte members of vectors are displayed as integer
5831data.
5832
c906108c
SS
5833@item f
5834Regard the bits of the value as a floating point number and print
5835using typical floating point syntax.
ea37ba09
DJ
5836
5837@item s
5838@cindex printing strings
5839@cindex printing byte arrays
5840Regard as a string, if possible. With this format, pointers to single-byte
5841data are displayed as null-terminated strings and arrays of single-byte data
5842are displayed as fixed-length strings. Other values are displayed in their
5843natural types.
5844
5845Without this format, @value{GDBN} displays pointers to and arrays of
5846@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5847strings. Single-byte members of a vector are displayed as an integer
5848array.
c906108c
SS
5849@end table
5850
5851For example, to print the program counter in hex (@pxref{Registers}), type
5852
474c8240 5853@smallexample
c906108c 5854p/x $pc
474c8240 5855@end smallexample
c906108c
SS
5856
5857@noindent
5858Note that no space is required before the slash; this is because command
5859names in @value{GDBN} cannot contain a slash.
5860
5861To reprint the last value in the value history with a different format,
5862you can use the @code{print} command with just a format and no
5863expression. For example, @samp{p/x} reprints the last value in hex.
5864
6d2ebf8b 5865@node Memory
79a6e687 5866@section Examining Memory
c906108c
SS
5867
5868You can use the command @code{x} (for ``examine'') to examine memory in
5869any of several formats, independently of your program's data types.
5870
5871@cindex examining memory
5872@table @code
41afff9a 5873@kindex x @r{(examine memory)}
c906108c
SS
5874@item x/@var{nfu} @var{addr}
5875@itemx x @var{addr}
5876@itemx x
5877Use the @code{x} command to examine memory.
5878@end table
5879
5880@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5881much memory to display and how to format it; @var{addr} is an
5882expression giving the address where you want to start displaying memory.
5883If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5884Several commands set convenient defaults for @var{addr}.
5885
5886@table @r
5887@item @var{n}, the repeat count
5888The repeat count is a decimal integer; the default is 1. It specifies
5889how much memory (counting by units @var{u}) to display.
5890@c This really is **decimal**; unaffected by 'set radix' as of GDB
5891@c 4.1.2.
5892
5893@item @var{f}, the display format
51274035
EZ
5894The display format is one of the formats used by @code{print}
5895(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5896@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5897The default is @samp{x} (hexadecimal) initially. The default changes
5898each time you use either @code{x} or @code{print}.
c906108c
SS
5899
5900@item @var{u}, the unit size
5901The unit size is any of
5902
5903@table @code
5904@item b
5905Bytes.
5906@item h
5907Halfwords (two bytes).
5908@item w
5909Words (four bytes). This is the initial default.
5910@item g
5911Giant words (eight bytes).
5912@end table
5913
5914Each time you specify a unit size with @code{x}, that size becomes the
5915default unit the next time you use @code{x}. (For the @samp{s} and
5916@samp{i} formats, the unit size is ignored and is normally not written.)
5917
5918@item @var{addr}, starting display address
5919@var{addr} is the address where you want @value{GDBN} to begin displaying
5920memory. The expression need not have a pointer value (though it may);
5921it is always interpreted as an integer address of a byte of memory.
5922@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5923@var{addr} is usually just after the last address examined---but several
5924other commands also set the default address: @code{info breakpoints} (to
5925the address of the last breakpoint listed), @code{info line} (to the
5926starting address of a line), and @code{print} (if you use it to display
5927a value from memory).
5928@end table
5929
5930For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5931(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5932starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5933words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5934@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5935
5936Since the letters indicating unit sizes are all distinct from the
5937letters specifying output formats, you do not have to remember whether
5938unit size or format comes first; either order works. The output
5939specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5940(However, the count @var{n} must come first; @samp{wx4} does not work.)
5941
5942Even though the unit size @var{u} is ignored for the formats @samp{s}
5943and @samp{i}, you might still want to use a count @var{n}; for example,
5944@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5945including any operands. For convenience, especially when used with
5946the @code{display} command, the @samp{i} format also prints branch delay
5947slot instructions, if any, beyond the count specified, which immediately
5948follow the last instruction that is within the count. The command
5949@code{disassemble} gives an alternative way of inspecting machine
5950instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
5951
5952All the defaults for the arguments to @code{x} are designed to make it
5953easy to continue scanning memory with minimal specifications each time
5954you use @code{x}. For example, after you have inspected three machine
5955instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5956with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
5957the repeat count @var{n} is used again; the other arguments default as
5958for successive uses of @code{x}.
5959
5960@cindex @code{$_}, @code{$__}, and value history
5961The addresses and contents printed by the @code{x} command are not saved
5962in the value history because there is often too much of them and they
5963would get in the way. Instead, @value{GDBN} makes these values available for
5964subsequent use in expressions as values of the convenience variables
5965@code{$_} and @code{$__}. After an @code{x} command, the last address
5966examined is available for use in expressions in the convenience variable
5967@code{$_}. The contents of that address, as examined, are available in
5968the convenience variable @code{$__}.
5969
5970If the @code{x} command has a repeat count, the address and contents saved
5971are from the last memory unit printed; this is not the same as the last
5972address printed if several units were printed on the last line of output.
5973
09d4efe1
EZ
5974@cindex remote memory comparison
5975@cindex verify remote memory image
5976When you are debugging a program running on a remote target machine
ea35711c 5977(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
5978remote machine's memory against the executable file you downloaded to
5979the target. The @code{compare-sections} command is provided for such
5980situations.
5981
5982@table @code
5983@kindex compare-sections
5984@item compare-sections @r{[}@var{section-name}@r{]}
5985Compare the data of a loadable section @var{section-name} in the
5986executable file of the program being debugged with the same section in
5987the remote machine's memory, and report any mismatches. With no
5988arguments, compares all loadable sections. This command's
5989availability depends on the target's support for the @code{"qCRC"}
5990remote request.
5991@end table
5992
6d2ebf8b 5993@node Auto Display
79a6e687 5994@section Automatic Display
c906108c
SS
5995@cindex automatic display
5996@cindex display of expressions
5997
5998If you find that you want to print the value of an expression frequently
5999(to see how it changes), you might want to add it to the @dfn{automatic
6000display list} so that @value{GDBN} prints its value each time your program stops.
6001Each expression added to the list is given a number to identify it;
6002to remove an expression from the list, you specify that number.
6003The automatic display looks like this:
6004
474c8240 6005@smallexample
c906108c
SS
60062: foo = 38
60073: bar[5] = (struct hack *) 0x3804
474c8240 6008@end smallexample
c906108c
SS
6009
6010@noindent
6011This display shows item numbers, expressions and their current values. As with
6012displays you request manually using @code{x} or @code{print}, you can
6013specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6014whether to use @code{print} or @code{x} depending your format
6015specification---it uses @code{x} if you specify either the @samp{i}
6016or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6017
6018@table @code
6019@kindex display
d4f3574e
SS
6020@item display @var{expr}
6021Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6022each time your program stops. @xref{Expressions, ,Expressions}.
6023
6024@code{display} does not repeat if you press @key{RET} again after using it.
6025
d4f3574e 6026@item display/@var{fmt} @var{expr}
c906108c 6027For @var{fmt} specifying only a display format and not a size or
d4f3574e 6028count, add the expression @var{expr} to the auto-display list but
c906108c 6029arrange to display it each time in the specified format @var{fmt}.
79a6e687 6030@xref{Output Formats,,Output Formats}.
c906108c
SS
6031
6032@item display/@var{fmt} @var{addr}
6033For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6034number of units, add the expression @var{addr} as a memory address to
6035be examined each time your program stops. Examining means in effect
79a6e687 6036doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6037@end table
6038
6039For example, @samp{display/i $pc} can be helpful, to see the machine
6040instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6041is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6042
6043@table @code
6044@kindex delete display
6045@kindex undisplay
6046@item undisplay @var{dnums}@dots{}
6047@itemx delete display @var{dnums}@dots{}
6048Remove item numbers @var{dnums} from the list of expressions to display.
6049
6050@code{undisplay} does not repeat if you press @key{RET} after using it.
6051(Otherwise you would just get the error @samp{No display number @dots{}}.)
6052
6053@kindex disable display
6054@item disable display @var{dnums}@dots{}
6055Disable the display of item numbers @var{dnums}. A disabled display
6056item is not printed automatically, but is not forgotten. It may be
6057enabled again later.
6058
6059@kindex enable display
6060@item enable display @var{dnums}@dots{}
6061Enable display of item numbers @var{dnums}. It becomes effective once
6062again in auto display of its expression, until you specify otherwise.
6063
6064@item display
6065Display the current values of the expressions on the list, just as is
6066done when your program stops.
6067
6068@kindex info display
6069@item info display
6070Print the list of expressions previously set up to display
6071automatically, each one with its item number, but without showing the
6072values. This includes disabled expressions, which are marked as such.
6073It also includes expressions which would not be displayed right now
6074because they refer to automatic variables not currently available.
6075@end table
6076
15387254 6077@cindex display disabled out of scope
c906108c
SS
6078If a display expression refers to local variables, then it does not make
6079sense outside the lexical context for which it was set up. Such an
6080expression is disabled when execution enters a context where one of its
6081variables is not defined. For example, if you give the command
6082@code{display last_char} while inside a function with an argument
6083@code{last_char}, @value{GDBN} displays this argument while your program
6084continues to stop inside that function. When it stops elsewhere---where
6085there is no variable @code{last_char}---the display is disabled
6086automatically. The next time your program stops where @code{last_char}
6087is meaningful, you can enable the display expression once again.
6088
6d2ebf8b 6089@node Print Settings
79a6e687 6090@section Print Settings
c906108c
SS
6091
6092@cindex format options
6093@cindex print settings
6094@value{GDBN} provides the following ways to control how arrays, structures,
6095and symbols are printed.
6096
6097@noindent
6098These settings are useful for debugging programs in any language:
6099
6100@table @code
4644b6e3 6101@kindex set print
c906108c
SS
6102@item set print address
6103@itemx set print address on
4644b6e3 6104@cindex print/don't print memory addresses
c906108c
SS
6105@value{GDBN} prints memory addresses showing the location of stack
6106traces, structure values, pointer values, breakpoints, and so forth,
6107even when it also displays the contents of those addresses. The default
6108is @code{on}. For example, this is what a stack frame display looks like with
6109@code{set print address on}:
6110
6111@smallexample
6112@group
6113(@value{GDBP}) f
6114#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6115 at input.c:530
6116530 if (lquote != def_lquote)
6117@end group
6118@end smallexample
6119
6120@item set print address off
6121Do not print addresses when displaying their contents. For example,
6122this is the same stack frame displayed with @code{set print address off}:
6123
6124@smallexample
6125@group
6126(@value{GDBP}) set print addr off
6127(@value{GDBP}) f
6128#0 set_quotes (lq="<<", rq=">>") at input.c:530
6129530 if (lquote != def_lquote)
6130@end group
6131@end smallexample
6132
6133You can use @samp{set print address off} to eliminate all machine
6134dependent displays from the @value{GDBN} interface. For example, with
6135@code{print address off}, you should get the same text for backtraces on
6136all machines---whether or not they involve pointer arguments.
6137
4644b6e3 6138@kindex show print
c906108c
SS
6139@item show print address
6140Show whether or not addresses are to be printed.
6141@end table
6142
6143When @value{GDBN} prints a symbolic address, it normally prints the
6144closest earlier symbol plus an offset. If that symbol does not uniquely
6145identify the address (for example, it is a name whose scope is a single
6146source file), you may need to clarify. One way to do this is with
6147@code{info line}, for example @samp{info line *0x4537}. Alternately,
6148you can set @value{GDBN} to print the source file and line number when
6149it prints a symbolic address:
6150
6151@table @code
c906108c 6152@item set print symbol-filename on
9c16f35a
EZ
6153@cindex source file and line of a symbol
6154@cindex symbol, source file and line
c906108c
SS
6155Tell @value{GDBN} to print the source file name and line number of a
6156symbol in the symbolic form of an address.
6157
6158@item set print symbol-filename off
6159Do not print source file name and line number of a symbol. This is the
6160default.
6161
c906108c
SS
6162@item show print symbol-filename
6163Show whether or not @value{GDBN} will print the source file name and
6164line number of a symbol in the symbolic form of an address.
6165@end table
6166
6167Another situation where it is helpful to show symbol filenames and line
6168numbers is when disassembling code; @value{GDBN} shows you the line
6169number and source file that corresponds to each instruction.
6170
6171Also, you may wish to see the symbolic form only if the address being
6172printed is reasonably close to the closest earlier symbol:
6173
6174@table @code
c906108c 6175@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6176@cindex maximum value for offset of closest symbol
c906108c
SS
6177Tell @value{GDBN} to only display the symbolic form of an address if the
6178offset between the closest earlier symbol and the address is less than
5d161b24 6179@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6180to always print the symbolic form of an address if any symbol precedes it.
6181
c906108c
SS
6182@item show print max-symbolic-offset
6183Ask how large the maximum offset is that @value{GDBN} prints in a
6184symbolic address.
6185@end table
6186
6187@cindex wild pointer, interpreting
6188@cindex pointer, finding referent
6189If you have a pointer and you are not sure where it points, try
6190@samp{set print symbol-filename on}. Then you can determine the name
6191and source file location of the variable where it points, using
6192@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6193For example, here @value{GDBN} shows that a variable @code{ptt} points
6194at another variable @code{t}, defined in @file{hi2.c}:
6195
474c8240 6196@smallexample
c906108c
SS
6197(@value{GDBP}) set print symbol-filename on
6198(@value{GDBP}) p/a ptt
6199$4 = 0xe008 <t in hi2.c>
474c8240 6200@end smallexample
c906108c
SS
6201
6202@quotation
6203@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6204does not show the symbol name and filename of the referent, even with
6205the appropriate @code{set print} options turned on.
6206@end quotation
6207
6208Other settings control how different kinds of objects are printed:
6209
6210@table @code
c906108c
SS
6211@item set print array
6212@itemx set print array on
4644b6e3 6213@cindex pretty print arrays
c906108c
SS
6214Pretty print arrays. This format is more convenient to read,
6215but uses more space. The default is off.
6216
6217@item set print array off
6218Return to compressed format for arrays.
6219
c906108c
SS
6220@item show print array
6221Show whether compressed or pretty format is selected for displaying
6222arrays.
6223
3c9c013a
JB
6224@cindex print array indexes
6225@item set print array-indexes
6226@itemx set print array-indexes on
6227Print the index of each element when displaying arrays. May be more
6228convenient to locate a given element in the array or quickly find the
6229index of a given element in that printed array. The default is off.
6230
6231@item set print array-indexes off
6232Stop printing element indexes when displaying arrays.
6233
6234@item show print array-indexes
6235Show whether the index of each element is printed when displaying
6236arrays.
6237
c906108c 6238@item set print elements @var{number-of-elements}
4644b6e3 6239@cindex number of array elements to print
9c16f35a 6240@cindex limit on number of printed array elements
c906108c
SS
6241Set a limit on how many elements of an array @value{GDBN} will print.
6242If @value{GDBN} is printing a large array, it stops printing after it has
6243printed the number of elements set by the @code{set print elements} command.
6244This limit also applies to the display of strings.
d4f3574e 6245When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6246Setting @var{number-of-elements} to zero means that the printing is unlimited.
6247
c906108c
SS
6248@item show print elements
6249Display the number of elements of a large array that @value{GDBN} will print.
6250If the number is 0, then the printing is unlimited.
6251
b4740add
JB
6252@item set print frame-arguments @var{value}
6253@cindex printing frame argument values
6254@cindex print all frame argument values
6255@cindex print frame argument values for scalars only
6256@cindex do not print frame argument values
6257This command allows to control how the values of arguments are printed
6258when the debugger prints a frame (@pxref{Frames}). The possible
6259values are:
6260
6261@table @code
6262@item all
6263The values of all arguments are printed. This is the default.
6264
6265@item scalars
6266Print the value of an argument only if it is a scalar. The value of more
6267complex arguments such as arrays, structures, unions, etc, is replaced
6268by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6269
6270@smallexample
6271#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6272 at frame-args.c:23
6273@end smallexample
6274
6275@item none
6276None of the argument values are printed. Instead, the value of each argument
6277is replaced by @code{@dots{}}. In this case, the example above now becomes:
6278
6279@smallexample
6280#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6281 at frame-args.c:23
6282@end smallexample
6283@end table
6284
6285By default, all argument values are always printed. But this command
6286can be useful in several cases. For instance, it can be used to reduce
6287the amount of information printed in each frame, making the backtrace
6288more readable. Also, this command can be used to improve performance
6289when displaying Ada frames, because the computation of large arguments
6290can sometimes be CPU-intensive, especiallly in large applications.
6291Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6292avoids this computation, thus speeding up the display of each Ada frame.
6293
6294@item show print frame-arguments
6295Show how the value of arguments should be displayed when printing a frame.
6296
9c16f35a
EZ
6297@item set print repeats
6298@cindex repeated array elements
6299Set the threshold for suppressing display of repeated array
d3e8051b 6300elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6301array exceeds the threshold, @value{GDBN} prints the string
6302@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6303identical repetitions, instead of displaying the identical elements
6304themselves. Setting the threshold to zero will cause all elements to
6305be individually printed. The default threshold is 10.
6306
6307@item show print repeats
6308Display the current threshold for printing repeated identical
6309elements.
6310
c906108c 6311@item set print null-stop
4644b6e3 6312@cindex @sc{null} elements in arrays
c906108c 6313Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6314@sc{null} is encountered. This is useful when large arrays actually
c906108c 6315contain only short strings.
d4f3574e 6316The default is off.
c906108c 6317
9c16f35a
EZ
6318@item show print null-stop
6319Show whether @value{GDBN} stops printing an array on the first
6320@sc{null} character.
6321
c906108c 6322@item set print pretty on
9c16f35a
EZ
6323@cindex print structures in indented form
6324@cindex indentation in structure display
5d161b24 6325Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6326per line, like this:
6327
6328@smallexample
6329@group
6330$1 = @{
6331 next = 0x0,
6332 flags = @{
6333 sweet = 1,
6334 sour = 1
6335 @},
6336 meat = 0x54 "Pork"
6337@}
6338@end group
6339@end smallexample
6340
6341@item set print pretty off
6342Cause @value{GDBN} to print structures in a compact format, like this:
6343
6344@smallexample
6345@group
6346$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6347meat = 0x54 "Pork"@}
6348@end group
6349@end smallexample
6350
6351@noindent
6352This is the default format.
6353
c906108c
SS
6354@item show print pretty
6355Show which format @value{GDBN} is using to print structures.
6356
c906108c 6357@item set print sevenbit-strings on
4644b6e3
EZ
6358@cindex eight-bit characters in strings
6359@cindex octal escapes in strings
c906108c
SS
6360Print using only seven-bit characters; if this option is set,
6361@value{GDBN} displays any eight-bit characters (in strings or
6362character values) using the notation @code{\}@var{nnn}. This setting is
6363best if you are working in English (@sc{ascii}) and you use the
6364high-order bit of characters as a marker or ``meta'' bit.
6365
6366@item set print sevenbit-strings off
6367Print full eight-bit characters. This allows the use of more
6368international character sets, and is the default.
6369
c906108c
SS
6370@item show print sevenbit-strings
6371Show whether or not @value{GDBN} is printing only seven-bit characters.
6372
c906108c 6373@item set print union on
4644b6e3 6374@cindex unions in structures, printing
9c16f35a
EZ
6375Tell @value{GDBN} to print unions which are contained in structures
6376and other unions. This is the default setting.
c906108c
SS
6377
6378@item set print union off
9c16f35a
EZ
6379Tell @value{GDBN} not to print unions which are contained in
6380structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6381instead.
c906108c 6382
c906108c
SS
6383@item show print union
6384Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6385structures and other unions.
c906108c
SS
6386
6387For example, given the declarations
6388
6389@smallexample
6390typedef enum @{Tree, Bug@} Species;
6391typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6392typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6393 Bug_forms;
6394
6395struct thing @{
6396 Species it;
6397 union @{
6398 Tree_forms tree;
6399 Bug_forms bug;
6400 @} form;
6401@};
6402
6403struct thing foo = @{Tree, @{Acorn@}@};
6404@end smallexample
6405
6406@noindent
6407with @code{set print union on} in effect @samp{p foo} would print
6408
6409@smallexample
6410$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6411@end smallexample
6412
6413@noindent
6414and with @code{set print union off} in effect it would print
6415
6416@smallexample
6417$1 = @{it = Tree, form = @{...@}@}
6418@end smallexample
9c16f35a
EZ
6419
6420@noindent
6421@code{set print union} affects programs written in C-like languages
6422and in Pascal.
c906108c
SS
6423@end table
6424
c906108c
SS
6425@need 1000
6426@noindent
b37052ae 6427These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6428
6429@table @code
4644b6e3 6430@cindex demangling C@t{++} names
c906108c
SS
6431@item set print demangle
6432@itemx set print demangle on
b37052ae 6433Print C@t{++} names in their source form rather than in the encoded
c906108c 6434(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6435linkage. The default is on.
c906108c 6436
c906108c 6437@item show print demangle
b37052ae 6438Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6439
c906108c
SS
6440@item set print asm-demangle
6441@itemx set print asm-demangle on
b37052ae 6442Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6443in assembler code printouts such as instruction disassemblies.
6444The default is off.
6445
c906108c 6446@item show print asm-demangle
b37052ae 6447Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6448or demangled form.
6449
b37052ae
EZ
6450@cindex C@t{++} symbol decoding style
6451@cindex symbol decoding style, C@t{++}
a8f24a35 6452@kindex set demangle-style
c906108c
SS
6453@item set demangle-style @var{style}
6454Choose among several encoding schemes used by different compilers to
b37052ae 6455represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6456
6457@table @code
6458@item auto
6459Allow @value{GDBN} to choose a decoding style by inspecting your program.
6460
6461@item gnu
b37052ae 6462Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6463This is the default.
c906108c
SS
6464
6465@item hp
b37052ae 6466Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6467
6468@item lucid
b37052ae 6469Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6470
6471@item arm
b37052ae 6472Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6473@strong{Warning:} this setting alone is not sufficient to allow
6474debugging @code{cfront}-generated executables. @value{GDBN} would
6475require further enhancement to permit that.
6476
6477@end table
6478If you omit @var{style}, you will see a list of possible formats.
6479
c906108c 6480@item show demangle-style
b37052ae 6481Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6482
c906108c
SS
6483@item set print object
6484@itemx set print object on
4644b6e3 6485@cindex derived type of an object, printing
9c16f35a 6486@cindex display derived types
c906108c
SS
6487When displaying a pointer to an object, identify the @emph{actual}
6488(derived) type of the object rather than the @emph{declared} type, using
6489the virtual function table.
6490
6491@item set print object off
6492Display only the declared type of objects, without reference to the
6493virtual function table. This is the default setting.
6494
c906108c
SS
6495@item show print object
6496Show whether actual, or declared, object types are displayed.
6497
c906108c
SS
6498@item set print static-members
6499@itemx set print static-members on
4644b6e3 6500@cindex static members of C@t{++} objects
b37052ae 6501Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6502
6503@item set print static-members off
b37052ae 6504Do not print static members when displaying a C@t{++} object.
c906108c 6505
c906108c 6506@item show print static-members
9c16f35a
EZ
6507Show whether C@t{++} static members are printed or not.
6508
6509@item set print pascal_static-members
6510@itemx set print pascal_static-members on
d3e8051b
EZ
6511@cindex static members of Pascal objects
6512@cindex Pascal objects, static members display
9c16f35a
EZ
6513Print static members when displaying a Pascal object. The default is on.
6514
6515@item set print pascal_static-members off
6516Do not print static members when displaying a Pascal object.
6517
6518@item show print pascal_static-members
6519Show whether Pascal static members are printed or not.
c906108c
SS
6520
6521@c These don't work with HP ANSI C++ yet.
c906108c
SS
6522@item set print vtbl
6523@itemx set print vtbl on
4644b6e3 6524@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6525@cindex virtual functions (C@t{++}) display
6526@cindex VTBL display
b37052ae 6527Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6528(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6529ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6530
6531@item set print vtbl off
b37052ae 6532Do not pretty print C@t{++} virtual function tables.
c906108c 6533
c906108c 6534@item show print vtbl
b37052ae 6535Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6536@end table
c906108c 6537
6d2ebf8b 6538@node Value History
79a6e687 6539@section Value History
c906108c
SS
6540
6541@cindex value history
9c16f35a 6542@cindex history of values printed by @value{GDBN}
5d161b24
DB
6543Values printed by the @code{print} command are saved in the @value{GDBN}
6544@dfn{value history}. This allows you to refer to them in other expressions.
6545Values are kept until the symbol table is re-read or discarded
6546(for example with the @code{file} or @code{symbol-file} commands).
6547When the symbol table changes, the value history is discarded,
6548since the values may contain pointers back to the types defined in the
c906108c
SS
6549symbol table.
6550
6551@cindex @code{$}
6552@cindex @code{$$}
6553@cindex history number
6554The values printed are given @dfn{history numbers} by which you can
6555refer to them. These are successive integers starting with one.
6556@code{print} shows you the history number assigned to a value by
6557printing @samp{$@var{num} = } before the value; here @var{num} is the
6558history number.
6559
6560To refer to any previous value, use @samp{$} followed by the value's
6561history number. The way @code{print} labels its output is designed to
6562remind you of this. Just @code{$} refers to the most recent value in
6563the history, and @code{$$} refers to the value before that.
6564@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6565is the value just prior to @code{$$}, @code{$$1} is equivalent to
6566@code{$$}, and @code{$$0} is equivalent to @code{$}.
6567
6568For example, suppose you have just printed a pointer to a structure and
6569want to see the contents of the structure. It suffices to type
6570
474c8240 6571@smallexample
c906108c 6572p *$
474c8240 6573@end smallexample
c906108c
SS
6574
6575If you have a chain of structures where the component @code{next} points
6576to the next one, you can print the contents of the next one with this:
6577
474c8240 6578@smallexample
c906108c 6579p *$.next
474c8240 6580@end smallexample
c906108c
SS
6581
6582@noindent
6583You can print successive links in the chain by repeating this
6584command---which you can do by just typing @key{RET}.
6585
6586Note that the history records values, not expressions. If the value of
6587@code{x} is 4 and you type these commands:
6588
474c8240 6589@smallexample
c906108c
SS
6590print x
6591set x=5
474c8240 6592@end smallexample
c906108c
SS
6593
6594@noindent
6595then the value recorded in the value history by the @code{print} command
6596remains 4 even though the value of @code{x} has changed.
6597
6598@table @code
6599@kindex show values
6600@item show values
6601Print the last ten values in the value history, with their item numbers.
6602This is like @samp{p@ $$9} repeated ten times, except that @code{show
6603values} does not change the history.
6604
6605@item show values @var{n}
6606Print ten history values centered on history item number @var{n}.
6607
6608@item show values +
6609Print ten history values just after the values last printed. If no more
6610values are available, @code{show values +} produces no display.
6611@end table
6612
6613Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6614same effect as @samp{show values +}.
6615
6d2ebf8b 6616@node Convenience Vars
79a6e687 6617@section Convenience Variables
c906108c
SS
6618
6619@cindex convenience variables
9c16f35a 6620@cindex user-defined variables
c906108c
SS
6621@value{GDBN} provides @dfn{convenience variables} that you can use within
6622@value{GDBN} to hold on to a value and refer to it later. These variables
6623exist entirely within @value{GDBN}; they are not part of your program, and
6624setting a convenience variable has no direct effect on further execution
6625of your program. That is why you can use them freely.
6626
6627Convenience variables are prefixed with @samp{$}. Any name preceded by
6628@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6629the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6630(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6631by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6632
6633You can save a value in a convenience variable with an assignment
6634expression, just as you would set a variable in your program.
6635For example:
6636
474c8240 6637@smallexample
c906108c 6638set $foo = *object_ptr
474c8240 6639@end smallexample
c906108c
SS
6640
6641@noindent
6642would save in @code{$foo} the value contained in the object pointed to by
6643@code{object_ptr}.
6644
6645Using a convenience variable for the first time creates it, but its
6646value is @code{void} until you assign a new value. You can alter the
6647value with another assignment at any time.
6648
6649Convenience variables have no fixed types. You can assign a convenience
6650variable any type of value, including structures and arrays, even if
6651that variable already has a value of a different type. The convenience
6652variable, when used as an expression, has the type of its current value.
6653
6654@table @code
6655@kindex show convenience
9c16f35a 6656@cindex show all user variables
c906108c
SS
6657@item show convenience
6658Print a list of convenience variables used so far, and their values.
d4f3574e 6659Abbreviated @code{show conv}.
53e5f3cf
AS
6660
6661@kindex init-if-undefined
6662@cindex convenience variables, initializing
6663@item init-if-undefined $@var{variable} = @var{expression}
6664Set a convenience variable if it has not already been set. This is useful
6665for user-defined commands that keep some state. It is similar, in concept,
6666to using local static variables with initializers in C (except that
6667convenience variables are global). It can also be used to allow users to
6668override default values used in a command script.
6669
6670If the variable is already defined then the expression is not evaluated so
6671any side-effects do not occur.
c906108c
SS
6672@end table
6673
6674One of the ways to use a convenience variable is as a counter to be
6675incremented or a pointer to be advanced. For example, to print
6676a field from successive elements of an array of structures:
6677
474c8240 6678@smallexample
c906108c
SS
6679set $i = 0
6680print bar[$i++]->contents
474c8240 6681@end smallexample
c906108c 6682
d4f3574e
SS
6683@noindent
6684Repeat that command by typing @key{RET}.
c906108c
SS
6685
6686Some convenience variables are created automatically by @value{GDBN} and given
6687values likely to be useful.
6688
6689@table @code
41afff9a 6690@vindex $_@r{, convenience variable}
c906108c
SS
6691@item $_
6692The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6693the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6694commands which provide a default address for @code{x} to examine also
6695set @code{$_} to that address; these commands include @code{info line}
6696and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6697except when set by the @code{x} command, in which case it is a pointer
6698to the type of @code{$__}.
6699
41afff9a 6700@vindex $__@r{, convenience variable}
c906108c
SS
6701@item $__
6702The variable @code{$__} is automatically set by the @code{x} command
6703to the value found in the last address examined. Its type is chosen
6704to match the format in which the data was printed.
6705
6706@item $_exitcode
41afff9a 6707@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6708The variable @code{$_exitcode} is automatically set to the exit code when
6709the program being debugged terminates.
6710@end table
6711
53a5351d
JM
6712On HP-UX systems, if you refer to a function or variable name that
6713begins with a dollar sign, @value{GDBN} searches for a user or system
6714name first, before it searches for a convenience variable.
c906108c 6715
6d2ebf8b 6716@node Registers
c906108c
SS
6717@section Registers
6718
6719@cindex registers
6720You can refer to machine register contents, in expressions, as variables
6721with names starting with @samp{$}. The names of registers are different
6722for each machine; use @code{info registers} to see the names used on
6723your machine.
6724
6725@table @code
6726@kindex info registers
6727@item info registers
6728Print the names and values of all registers except floating-point
c85508ee 6729and vector registers (in the selected stack frame).
c906108c
SS
6730
6731@kindex info all-registers
6732@cindex floating point registers
6733@item info all-registers
6734Print the names and values of all registers, including floating-point
c85508ee 6735and vector registers (in the selected stack frame).
c906108c
SS
6736
6737@item info registers @var{regname} @dots{}
6738Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6739As discussed in detail below, register values are normally relative to
6740the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6741the machine you are using, with or without the initial @samp{$}.
6742@end table
6743
e09f16f9
EZ
6744@cindex stack pointer register
6745@cindex program counter register
6746@cindex process status register
6747@cindex frame pointer register
6748@cindex standard registers
c906108c
SS
6749@value{GDBN} has four ``standard'' register names that are available (in
6750expressions) on most machines---whenever they do not conflict with an
6751architecture's canonical mnemonics for registers. The register names
6752@code{$pc} and @code{$sp} are used for the program counter register and
6753the stack pointer. @code{$fp} is used for a register that contains a
6754pointer to the current stack frame, and @code{$ps} is used for a
6755register that contains the processor status. For example,
6756you could print the program counter in hex with
6757
474c8240 6758@smallexample
c906108c 6759p/x $pc
474c8240 6760@end smallexample
c906108c
SS
6761
6762@noindent
6763or print the instruction to be executed next with
6764
474c8240 6765@smallexample
c906108c 6766x/i $pc
474c8240 6767@end smallexample
c906108c
SS
6768
6769@noindent
6770or add four to the stack pointer@footnote{This is a way of removing
6771one word from the stack, on machines where stacks grow downward in
6772memory (most machines, nowadays). This assumes that the innermost
6773stack frame is selected; setting @code{$sp} is not allowed when other
6774stack frames are selected. To pop entire frames off the stack,
6775regardless of machine architecture, use @code{return};
79a6e687 6776see @ref{Returning, ,Returning from a Function}.} with
c906108c 6777
474c8240 6778@smallexample
c906108c 6779set $sp += 4
474c8240 6780@end smallexample
c906108c
SS
6781
6782Whenever possible, these four standard register names are available on
6783your machine even though the machine has different canonical mnemonics,
6784so long as there is no conflict. The @code{info registers} command
6785shows the canonical names. For example, on the SPARC, @code{info
6786registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6787can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6788is an alias for the @sc{eflags} register.
c906108c
SS
6789
6790@value{GDBN} always considers the contents of an ordinary register as an
6791integer when the register is examined in this way. Some machines have
6792special registers which can hold nothing but floating point; these
6793registers are considered to have floating point values. There is no way
6794to refer to the contents of an ordinary register as floating point value
6795(although you can @emph{print} it as a floating point value with
6796@samp{print/f $@var{regname}}).
6797
6798Some registers have distinct ``raw'' and ``virtual'' data formats. This
6799means that the data format in which the register contents are saved by
6800the operating system is not the same one that your program normally
6801sees. For example, the registers of the 68881 floating point
6802coprocessor are always saved in ``extended'' (raw) format, but all C
6803programs expect to work with ``double'' (virtual) format. In such
5d161b24 6804cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6805that makes sense for your program), but the @code{info registers} command
6806prints the data in both formats.
6807
36b80e65
EZ
6808@cindex SSE registers (x86)
6809@cindex MMX registers (x86)
6810Some machines have special registers whose contents can be interpreted
6811in several different ways. For example, modern x86-based machines
6812have SSE and MMX registers that can hold several values packed
6813together in several different formats. @value{GDBN} refers to such
6814registers in @code{struct} notation:
6815
6816@smallexample
6817(@value{GDBP}) print $xmm1
6818$1 = @{
6819 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6820 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6821 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6822 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6823 v4_int32 = @{0, 20657912, 11, 13@},
6824 v2_int64 = @{88725056443645952, 55834574859@},
6825 uint128 = 0x0000000d0000000b013b36f800000000
6826@}
6827@end smallexample
6828
6829@noindent
6830To set values of such registers, you need to tell @value{GDBN} which
6831view of the register you wish to change, as if you were assigning
6832value to a @code{struct} member:
6833
6834@smallexample
6835 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6836@end smallexample
6837
c906108c 6838Normally, register values are relative to the selected stack frame
79a6e687 6839(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6840value that the register would contain if all stack frames farther in
6841were exited and their saved registers restored. In order to see the
6842true contents of hardware registers, you must select the innermost
6843frame (with @samp{frame 0}).
6844
6845However, @value{GDBN} must deduce where registers are saved, from the machine
6846code generated by your compiler. If some registers are not saved, or if
6847@value{GDBN} is unable to locate the saved registers, the selected stack
6848frame makes no difference.
6849
6d2ebf8b 6850@node Floating Point Hardware
79a6e687 6851@section Floating Point Hardware
c906108c
SS
6852@cindex floating point
6853
6854Depending on the configuration, @value{GDBN} may be able to give
6855you more information about the status of the floating point hardware.
6856
6857@table @code
6858@kindex info float
6859@item info float
6860Display hardware-dependent information about the floating
6861point unit. The exact contents and layout vary depending on the
6862floating point chip. Currently, @samp{info float} is supported on
6863the ARM and x86 machines.
6864@end table
c906108c 6865
e76f1f2e
AC
6866@node Vector Unit
6867@section Vector Unit
6868@cindex vector unit
6869
6870Depending on the configuration, @value{GDBN} may be able to give you
6871more information about the status of the vector unit.
6872
6873@table @code
6874@kindex info vector
6875@item info vector
6876Display information about the vector unit. The exact contents and
6877layout vary depending on the hardware.
6878@end table
6879
721c2651 6880@node OS Information
79a6e687 6881@section Operating System Auxiliary Information
721c2651
EZ
6882@cindex OS information
6883
6884@value{GDBN} provides interfaces to useful OS facilities that can help
6885you debug your program.
6886
6887@cindex @code{ptrace} system call
6888@cindex @code{struct user} contents
6889When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6890machines), it interfaces with the inferior via the @code{ptrace}
6891system call. The operating system creates a special sata structure,
6892called @code{struct user}, for this interface. You can use the
6893command @code{info udot} to display the contents of this data
6894structure.
6895
6896@table @code
6897@item info udot
6898@kindex info udot
6899Display the contents of the @code{struct user} maintained by the OS
6900kernel for the program being debugged. @value{GDBN} displays the
6901contents of @code{struct user} as a list of hex numbers, similar to
6902the @code{examine} command.
6903@end table
6904
b383017d
RM
6905@cindex auxiliary vector
6906@cindex vector, auxiliary
b383017d
RM
6907Some operating systems supply an @dfn{auxiliary vector} to programs at
6908startup. This is akin to the arguments and environment that you
6909specify for a program, but contains a system-dependent variety of
6910binary values that tell system libraries important details about the
6911hardware, operating system, and process. Each value's purpose is
6912identified by an integer tag; the meanings are well-known but system-specific.
6913Depending on the configuration and operating system facilities,
9c16f35a
EZ
6914@value{GDBN} may be able to show you this information. For remote
6915targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6916support of the @samp{qXfer:auxv:read} packet, see
6917@ref{qXfer auxiliary vector read}.
b383017d
RM
6918
6919@table @code
6920@kindex info auxv
6921@item info auxv
6922Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6923live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6924numerically, and also shows names and text descriptions for recognized
6925tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6926pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6927most appropriate form for a recognized tag, and in hexadecimal for
6928an unrecognized tag.
6929@end table
6930
721c2651 6931
29e57380 6932@node Memory Region Attributes
79a6e687 6933@section Memory Region Attributes
29e57380
C
6934@cindex memory region attributes
6935
b383017d 6936@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6937required by regions of your target's memory. @value{GDBN} uses
6938attributes to determine whether to allow certain types of memory
6939accesses; whether to use specific width accesses; and whether to cache
6940target memory. By default the description of memory regions is
6941fetched from the target (if the current target supports this), but the
6942user can override the fetched regions.
29e57380
C
6943
6944Defined memory regions can be individually enabled and disabled. When a
6945memory region is disabled, @value{GDBN} uses the default attributes when
6946accessing memory in that region. Similarly, if no memory regions have
6947been defined, @value{GDBN} uses the default attributes when accessing
6948all memory.
6949
b383017d 6950When a memory region is defined, it is given a number to identify it;
29e57380
C
6951to enable, disable, or remove a memory region, you specify that number.
6952
6953@table @code
6954@kindex mem
bfac230e 6955@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
6956Define a memory region bounded by @var{lower} and @var{upper} with
6957attributes @var{attributes}@dots{}, and add it to the list of regions
6958monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 6959case: it is treated as the target's maximum memory address.
bfac230e 6960(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 6961
fd79ecee
DJ
6962@item mem auto
6963Discard any user changes to the memory regions and use target-supplied
6964regions, if available, or no regions if the target does not support.
6965
29e57380
C
6966@kindex delete mem
6967@item delete mem @var{nums}@dots{}
09d4efe1
EZ
6968Remove memory regions @var{nums}@dots{} from the list of regions
6969monitored by @value{GDBN}.
29e57380
C
6970
6971@kindex disable mem
6972@item disable mem @var{nums}@dots{}
09d4efe1 6973Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 6974A disabled memory region is not forgotten.
29e57380
C
6975It may be enabled again later.
6976
6977@kindex enable mem
6978@item enable mem @var{nums}@dots{}
09d4efe1 6979Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
6980
6981@kindex info mem
6982@item info mem
6983Print a table of all defined memory regions, with the following columns
09d4efe1 6984for each region:
29e57380
C
6985
6986@table @emph
6987@item Memory Region Number
6988@item Enabled or Disabled.
b383017d 6989Enabled memory regions are marked with @samp{y}.
29e57380
C
6990Disabled memory regions are marked with @samp{n}.
6991
6992@item Lo Address
6993The address defining the inclusive lower bound of the memory region.
6994
6995@item Hi Address
6996The address defining the exclusive upper bound of the memory region.
6997
6998@item Attributes
6999The list of attributes set for this memory region.
7000@end table
7001@end table
7002
7003
7004@subsection Attributes
7005
b383017d 7006@subsubsection Memory Access Mode
29e57380
C
7007The access mode attributes set whether @value{GDBN} may make read or
7008write accesses to a memory region.
7009
7010While these attributes prevent @value{GDBN} from performing invalid
7011memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7012etc.@: from accessing memory.
29e57380
C
7013
7014@table @code
7015@item ro
7016Memory is read only.
7017@item wo
7018Memory is write only.
7019@item rw
6ca652b0 7020Memory is read/write. This is the default.
29e57380
C
7021@end table
7022
7023@subsubsection Memory Access Size
d3e8051b 7024The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7025accesses in the memory region. Often memory mapped device registers
7026require specific sized accesses. If no access size attribute is
7027specified, @value{GDBN} may use accesses of any size.
7028
7029@table @code
7030@item 8
7031Use 8 bit memory accesses.
7032@item 16
7033Use 16 bit memory accesses.
7034@item 32
7035Use 32 bit memory accesses.
7036@item 64
7037Use 64 bit memory accesses.
7038@end table
7039
7040@c @subsubsection Hardware/Software Breakpoints
7041@c The hardware/software breakpoint attributes set whether @value{GDBN}
7042@c will use hardware or software breakpoints for the internal breakpoints
7043@c used by the step, next, finish, until, etc. commands.
7044@c
7045@c @table @code
7046@c @item hwbreak
b383017d 7047@c Always use hardware breakpoints
29e57380
C
7048@c @item swbreak (default)
7049@c @end table
7050
7051@subsubsection Data Cache
7052The data cache attributes set whether @value{GDBN} will cache target
7053memory. While this generally improves performance by reducing debug
7054protocol overhead, it can lead to incorrect results because @value{GDBN}
7055does not know about volatile variables or memory mapped device
7056registers.
7057
7058@table @code
7059@item cache
b383017d 7060Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7061@item nocache
7062Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7063@end table
7064
4b5752d0
VP
7065@subsection Memory Access Checking
7066@value{GDBN} can be instructed to refuse accesses to memory that is
7067not explicitly described. This can be useful if accessing such
7068regions has undesired effects for a specific target, or to provide
7069better error checking. The following commands control this behaviour.
7070
7071@table @code
7072@kindex set mem inaccessible-by-default
7073@item set mem inaccessible-by-default [on|off]
7074If @code{on} is specified, make @value{GDBN} treat memory not
7075explicitly described by the memory ranges as non-existent and refuse accesses
7076to such memory. The checks are only performed if there's at least one
7077memory range defined. If @code{off} is specified, make @value{GDBN}
7078treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7079The default value is @code{on}.
4b5752d0
VP
7080@kindex show mem inaccessible-by-default
7081@item show mem inaccessible-by-default
7082Show the current handling of accesses to unknown memory.
7083@end table
7084
7085
29e57380 7086@c @subsubsection Memory Write Verification
b383017d 7087@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7088@c will re-reads data after each write to verify the write was successful.
7089@c
7090@c @table @code
7091@c @item verify
7092@c @item noverify (default)
7093@c @end table
7094
16d9dec6 7095@node Dump/Restore Files
79a6e687 7096@section Copy Between Memory and a File
16d9dec6
MS
7097@cindex dump/restore files
7098@cindex append data to a file
7099@cindex dump data to a file
7100@cindex restore data from a file
16d9dec6 7101
df5215a6
JB
7102You can use the commands @code{dump}, @code{append}, and
7103@code{restore} to copy data between target memory and a file. The
7104@code{dump} and @code{append} commands write data to a file, and the
7105@code{restore} command reads data from a file back into the inferior's
7106memory. Files may be in binary, Motorola S-record, Intel hex, or
7107Tektronix Hex format; however, @value{GDBN} can only append to binary
7108files.
7109
7110@table @code
7111
7112@kindex dump
7113@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7114@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7115Dump the contents of memory from @var{start_addr} to @var{end_addr},
7116or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7117
df5215a6 7118The @var{format} parameter may be any one of:
16d9dec6 7119@table @code
df5215a6
JB
7120@item binary
7121Raw binary form.
7122@item ihex
7123Intel hex format.
7124@item srec
7125Motorola S-record format.
7126@item tekhex
7127Tektronix Hex format.
7128@end table
7129
7130@value{GDBN} uses the same definitions of these formats as the
7131@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7132@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7133form.
7134
7135@kindex append
7136@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7137@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7138Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7139or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7140(@value{GDBN} can only append data to files in raw binary form.)
7141
7142@kindex restore
7143@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7144Restore the contents of file @var{filename} into memory. The
7145@code{restore} command can automatically recognize any known @sc{bfd}
7146file format, except for raw binary. To restore a raw binary file you
7147must specify the optional keyword @code{binary} after the filename.
16d9dec6 7148
b383017d 7149If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7150contained in the file. Binary files always start at address zero, so
7151they will be restored at address @var{bias}. Other bfd files have
7152a built-in location; they will be restored at offset @var{bias}
7153from that location.
7154
7155If @var{start} and/or @var{end} are non-zero, then only data between
7156file offset @var{start} and file offset @var{end} will be restored.
b383017d 7157These offsets are relative to the addresses in the file, before
16d9dec6
MS
7158the @var{bias} argument is applied.
7159
7160@end table
7161
384ee23f
EZ
7162@node Core File Generation
7163@section How to Produce a Core File from Your Program
7164@cindex dump core from inferior
7165
7166A @dfn{core file} or @dfn{core dump} is a file that records the memory
7167image of a running process and its process status (register values
7168etc.). Its primary use is post-mortem debugging of a program that
7169crashed while it ran outside a debugger. A program that crashes
7170automatically produces a core file, unless this feature is disabled by
7171the user. @xref{Files}, for information on invoking @value{GDBN} in
7172the post-mortem debugging mode.
7173
7174Occasionally, you may wish to produce a core file of the program you
7175are debugging in order to preserve a snapshot of its state.
7176@value{GDBN} has a special command for that.
7177
7178@table @code
7179@kindex gcore
7180@kindex generate-core-file
7181@item generate-core-file [@var{file}]
7182@itemx gcore [@var{file}]
7183Produce a core dump of the inferior process. The optional argument
7184@var{file} specifies the file name where to put the core dump. If not
7185specified, the file name defaults to @file{core.@var{pid}}, where
7186@var{pid} is the inferior process ID.
7187
7188Note that this command is implemented only for some systems (as of
7189this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7190@end table
7191
a0eb71c5
KB
7192@node Character Sets
7193@section Character Sets
7194@cindex character sets
7195@cindex charset
7196@cindex translating between character sets
7197@cindex host character set
7198@cindex target character set
7199
7200If the program you are debugging uses a different character set to
7201represent characters and strings than the one @value{GDBN} uses itself,
7202@value{GDBN} can automatically translate between the character sets for
7203you. The character set @value{GDBN} uses we call the @dfn{host
7204character set}; the one the inferior program uses we call the
7205@dfn{target character set}.
7206
7207For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7208uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7209remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7210running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7211then the host character set is Latin-1, and the target character set is
7212@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7213target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7214@sc{ebcdic} and Latin 1 as you print character or string values, or use
7215character and string literals in expressions.
7216
7217@value{GDBN} has no way to automatically recognize which character set
7218the inferior program uses; you must tell it, using the @code{set
7219target-charset} command, described below.
7220
7221Here are the commands for controlling @value{GDBN}'s character set
7222support:
7223
7224@table @code
7225@item set target-charset @var{charset}
7226@kindex set target-charset
7227Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7228character set names @value{GDBN} recognizes below, but if you type
7229@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7230list the target character sets it supports.
a0eb71c5
KB
7231@end table
7232
7233@table @code
7234@item set host-charset @var{charset}
7235@kindex set host-charset
7236Set the current host character set to @var{charset}.
7237
7238By default, @value{GDBN} uses a host character set appropriate to the
7239system it is running on; you can override that default using the
7240@code{set host-charset} command.
7241
7242@value{GDBN} can only use certain character sets as its host character
7243set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7244indicate which can be host character sets, but if you type
7245@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7246list the host character sets it supports.
a0eb71c5
KB
7247
7248@item set charset @var{charset}
7249@kindex set charset
e33d66ec
EZ
7250Set the current host and target character sets to @var{charset}. As
7251above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7252@value{GDBN} will list the name of the character sets that can be used
7253for both host and target.
7254
a0eb71c5
KB
7255
7256@item show charset
a0eb71c5 7257@kindex show charset
b383017d 7258Show the names of the current host and target charsets.
e33d66ec
EZ
7259
7260@itemx show host-charset
a0eb71c5 7261@kindex show host-charset
b383017d 7262Show the name of the current host charset.
e33d66ec
EZ
7263
7264@itemx show target-charset
a0eb71c5 7265@kindex show target-charset
b383017d 7266Show the name of the current target charset.
a0eb71c5
KB
7267
7268@end table
7269
7270@value{GDBN} currently includes support for the following character
7271sets:
7272
7273@table @code
7274
7275@item ASCII
7276@cindex ASCII character set
7277Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7278character set.
7279
7280@item ISO-8859-1
7281@cindex ISO 8859-1 character set
7282@cindex ISO Latin 1 character set
e33d66ec 7283The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7284characters needed for French, German, and Spanish. @value{GDBN} can use
7285this as its host character set.
7286
7287@item EBCDIC-US
7288@itemx IBM1047
7289@cindex EBCDIC character set
7290@cindex IBM1047 character set
7291Variants of the @sc{ebcdic} character set, used on some of IBM's
7292mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7293@value{GDBN} cannot use these as its host character set.
7294
7295@end table
7296
7297Note that these are all single-byte character sets. More work inside
3f94c067 7298@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7299encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7300
7301Here is an example of @value{GDBN}'s character set support in action.
7302Assume that the following source code has been placed in the file
7303@file{charset-test.c}:
7304
7305@smallexample
7306#include <stdio.h>
7307
7308char ascii_hello[]
7309 = @{72, 101, 108, 108, 111, 44, 32, 119,
7310 111, 114, 108, 100, 33, 10, 0@};
7311char ibm1047_hello[]
7312 = @{200, 133, 147, 147, 150, 107, 64, 166,
7313 150, 153, 147, 132, 90, 37, 0@};
7314
7315main ()
7316@{
7317 printf ("Hello, world!\n");
7318@}
10998722 7319@end smallexample
a0eb71c5
KB
7320
7321In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7322containing the string @samp{Hello, world!} followed by a newline,
7323encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7324
7325We compile the program, and invoke the debugger on it:
7326
7327@smallexample
7328$ gcc -g charset-test.c -o charset-test
7329$ gdb -nw charset-test
7330GNU gdb 2001-12-19-cvs
7331Copyright 2001 Free Software Foundation, Inc.
7332@dots{}
f7dc1244 7333(@value{GDBP})
10998722 7334@end smallexample
a0eb71c5
KB
7335
7336We can use the @code{show charset} command to see what character sets
7337@value{GDBN} is currently using to interpret and display characters and
7338strings:
7339
7340@smallexample
f7dc1244 7341(@value{GDBP}) show charset
e33d66ec 7342The current host and target character set is `ISO-8859-1'.
f7dc1244 7343(@value{GDBP})
10998722 7344@end smallexample
a0eb71c5
KB
7345
7346For the sake of printing this manual, let's use @sc{ascii} as our
7347initial character set:
7348@smallexample
f7dc1244
EZ
7349(@value{GDBP}) set charset ASCII
7350(@value{GDBP}) show charset
e33d66ec 7351The current host and target character set is `ASCII'.
f7dc1244 7352(@value{GDBP})
10998722 7353@end smallexample
a0eb71c5
KB
7354
7355Let's assume that @sc{ascii} is indeed the correct character set for our
7356host system --- in other words, let's assume that if @value{GDBN} prints
7357characters using the @sc{ascii} character set, our terminal will display
7358them properly. Since our current target character set is also
7359@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7360
7361@smallexample
f7dc1244 7362(@value{GDBP}) print ascii_hello
a0eb71c5 7363$1 = 0x401698 "Hello, world!\n"
f7dc1244 7364(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7365$2 = 72 'H'
f7dc1244 7366(@value{GDBP})
10998722 7367@end smallexample
a0eb71c5
KB
7368
7369@value{GDBN} uses the target character set for character and string
7370literals you use in expressions:
7371
7372@smallexample
f7dc1244 7373(@value{GDBP}) print '+'
a0eb71c5 7374$3 = 43 '+'
f7dc1244 7375(@value{GDBP})
10998722 7376@end smallexample
a0eb71c5
KB
7377
7378The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7379character.
7380
7381@value{GDBN} relies on the user to tell it which character set the
7382target program uses. If we print @code{ibm1047_hello} while our target
7383character set is still @sc{ascii}, we get jibberish:
7384
7385@smallexample
f7dc1244 7386(@value{GDBP}) print ibm1047_hello
a0eb71c5 7387$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7388(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7389$5 = 200 '\310'
f7dc1244 7390(@value{GDBP})
10998722 7391@end smallexample
a0eb71c5 7392
e33d66ec 7393If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7394@value{GDBN} tells us the character sets it supports:
7395
7396@smallexample
f7dc1244 7397(@value{GDBP}) set target-charset
b383017d 7398ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7399(@value{GDBP}) set target-charset
10998722 7400@end smallexample
a0eb71c5
KB
7401
7402We can select @sc{ibm1047} as our target character set, and examine the
7403program's strings again. Now the @sc{ascii} string is wrong, but
7404@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7405target character set, @sc{ibm1047}, to the host character set,
7406@sc{ascii}, and they display correctly:
7407
7408@smallexample
f7dc1244
EZ
7409(@value{GDBP}) set target-charset IBM1047
7410(@value{GDBP}) show charset
e33d66ec
EZ
7411The current host character set is `ASCII'.
7412The current target character set is `IBM1047'.
f7dc1244 7413(@value{GDBP}) print ascii_hello
a0eb71c5 7414$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7415(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7416$7 = 72 '\110'
f7dc1244 7417(@value{GDBP}) print ibm1047_hello
a0eb71c5 7418$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7419(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7420$9 = 200 'H'
f7dc1244 7421(@value{GDBP})
10998722 7422@end smallexample
a0eb71c5
KB
7423
7424As above, @value{GDBN} uses the target character set for character and
7425string literals you use in expressions:
7426
7427@smallexample
f7dc1244 7428(@value{GDBP}) print '+'
a0eb71c5 7429$10 = 78 '+'
f7dc1244 7430(@value{GDBP})
10998722 7431@end smallexample
a0eb71c5 7432
e33d66ec 7433The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7434character.
7435
09d4efe1
EZ
7436@node Caching Remote Data
7437@section Caching Data of Remote Targets
7438@cindex caching data of remote targets
7439
7440@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7441remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7442performance, because it reduces the overhead of the remote protocol by
7443bundling memory reads and writes into large chunks. Unfortunately,
7444@value{GDBN} does not currently know anything about volatile
7445registers, and thus data caching will produce incorrect results when
7446volatile registers are in use.
7447
7448@table @code
7449@kindex set remotecache
7450@item set remotecache on
7451@itemx set remotecache off
7452Set caching state for remote targets. When @code{ON}, use data
7453caching. By default, this option is @code{OFF}.
7454
7455@kindex show remotecache
7456@item show remotecache
7457Show the current state of data caching for remote targets.
7458
7459@kindex info dcache
7460@item info dcache
7461Print the information about the data cache performance. The
7462information displayed includes: the dcache width and depth; and for
7463each cache line, how many times it was referenced, and its data and
7464state (dirty, bad, ok, etc.). This command is useful for debugging
7465the data cache operation.
7466@end table
7467
a0eb71c5 7468
e2e0bcd1
JB
7469@node Macros
7470@chapter C Preprocessor Macros
7471
49efadf5 7472Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7473``preprocessor macros'' which expand into strings of tokens.
7474@value{GDBN} can evaluate expressions containing macro invocations, show
7475the result of macro expansion, and show a macro's definition, including
7476where it was defined.
7477
7478You may need to compile your program specially to provide @value{GDBN}
7479with information about preprocessor macros. Most compilers do not
7480include macros in their debugging information, even when you compile
7481with the @option{-g} flag. @xref{Compilation}.
7482
7483A program may define a macro at one point, remove that definition later,
7484and then provide a different definition after that. Thus, at different
7485points in the program, a macro may have different definitions, or have
7486no definition at all. If there is a current stack frame, @value{GDBN}
7487uses the macros in scope at that frame's source code line. Otherwise,
7488@value{GDBN} uses the macros in scope at the current listing location;
7489see @ref{List}.
7490
7491At the moment, @value{GDBN} does not support the @code{##}
7492token-splicing operator, the @code{#} stringification operator, or
7493variable-arity macros.
7494
7495Whenever @value{GDBN} evaluates an expression, it always expands any
7496macro invocations present in the expression. @value{GDBN} also provides
7497the following commands for working with macros explicitly.
7498
7499@table @code
7500
7501@kindex macro expand
7502@cindex macro expansion, showing the results of preprocessor
7503@cindex preprocessor macro expansion, showing the results of
7504@cindex expanding preprocessor macros
7505@item macro expand @var{expression}
7506@itemx macro exp @var{expression}
7507Show the results of expanding all preprocessor macro invocations in
7508@var{expression}. Since @value{GDBN} simply expands macros, but does
7509not parse the result, @var{expression} need not be a valid expression;
7510it can be any string of tokens.
7511
09d4efe1 7512@kindex macro exp1
e2e0bcd1
JB
7513@item macro expand-once @var{expression}
7514@itemx macro exp1 @var{expression}
4644b6e3 7515@cindex expand macro once
e2e0bcd1
JB
7516@i{(This command is not yet implemented.)} Show the results of
7517expanding those preprocessor macro invocations that appear explicitly in
7518@var{expression}. Macro invocations appearing in that expansion are
7519left unchanged. This command allows you to see the effect of a
7520particular macro more clearly, without being confused by further
7521expansions. Since @value{GDBN} simply expands macros, but does not
7522parse the result, @var{expression} need not be a valid expression; it
7523can be any string of tokens.
7524
475b0867 7525@kindex info macro
e2e0bcd1
JB
7526@cindex macro definition, showing
7527@cindex definition, showing a macro's
475b0867 7528@item info macro @var{macro}
e2e0bcd1
JB
7529Show the definition of the macro named @var{macro}, and describe the
7530source location where that definition was established.
7531
7532@kindex macro define
7533@cindex user-defined macros
7534@cindex defining macros interactively
7535@cindex macros, user-defined
7536@item macro define @var{macro} @var{replacement-list}
7537@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7538@i{(This command is not yet implemented.)} Introduce a definition for a
7539preprocessor macro named @var{macro}, invocations of which are replaced
7540by the tokens given in @var{replacement-list}. The first form of this
7541command defines an ``object-like'' macro, which takes no arguments; the
7542second form defines a ``function-like'' macro, which takes the arguments
7543given in @var{arglist}.
7544
7545A definition introduced by this command is in scope in every expression
7546evaluated in @value{GDBN}, until it is removed with the @command{macro
7547undef} command, described below. The definition overrides all
7548definitions for @var{macro} present in the program being debugged, as
7549well as any previous user-supplied definition.
7550
7551@kindex macro undef
7552@item macro undef @var{macro}
7553@i{(This command is not yet implemented.)} Remove any user-supplied
7554definition for the macro named @var{macro}. This command only affects
7555definitions provided with the @command{macro define} command, described
7556above; it cannot remove definitions present in the program being
7557debugged.
7558
09d4efe1
EZ
7559@kindex macro list
7560@item macro list
7561@i{(This command is not yet implemented.)} List all the macros
7562defined using the @code{macro define} command.
e2e0bcd1
JB
7563@end table
7564
7565@cindex macros, example of debugging with
7566Here is a transcript showing the above commands in action. First, we
7567show our source files:
7568
7569@smallexample
7570$ cat sample.c
7571#include <stdio.h>
7572#include "sample.h"
7573
7574#define M 42
7575#define ADD(x) (M + x)
7576
7577main ()
7578@{
7579#define N 28
7580 printf ("Hello, world!\n");
7581#undef N
7582 printf ("We're so creative.\n");
7583#define N 1729
7584 printf ("Goodbye, world!\n");
7585@}
7586$ cat sample.h
7587#define Q <
7588$
7589@end smallexample
7590
7591Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7592We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7593compiler includes information about preprocessor macros in the debugging
7594information.
7595
7596@smallexample
7597$ gcc -gdwarf-2 -g3 sample.c -o sample
7598$
7599@end smallexample
7600
7601Now, we start @value{GDBN} on our sample program:
7602
7603@smallexample
7604$ gdb -nw sample
7605GNU gdb 2002-05-06-cvs
7606Copyright 2002 Free Software Foundation, Inc.
7607GDB is free software, @dots{}
f7dc1244 7608(@value{GDBP})
e2e0bcd1
JB
7609@end smallexample
7610
7611We can expand macros and examine their definitions, even when the
7612program is not running. @value{GDBN} uses the current listing position
7613to decide which macro definitions are in scope:
7614
7615@smallexample
f7dc1244 7616(@value{GDBP}) list main
e2e0bcd1
JB
76173
76184 #define M 42
76195 #define ADD(x) (M + x)
76206
76217 main ()
76228 @{
76239 #define N 28
762410 printf ("Hello, world!\n");
762511 #undef N
762612 printf ("We're so creative.\n");
f7dc1244 7627(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7628Defined at /home/jimb/gdb/macros/play/sample.c:5
7629#define ADD(x) (M + x)
f7dc1244 7630(@value{GDBP}) info macro Q
e2e0bcd1
JB
7631Defined at /home/jimb/gdb/macros/play/sample.h:1
7632 included at /home/jimb/gdb/macros/play/sample.c:2
7633#define Q <
f7dc1244 7634(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7635expands to: (42 + 1)
f7dc1244 7636(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7637expands to: once (M + 1)
f7dc1244 7638(@value{GDBP})
e2e0bcd1
JB
7639@end smallexample
7640
7641In the example above, note that @command{macro expand-once} expands only
7642the macro invocation explicit in the original text --- the invocation of
7643@code{ADD} --- but does not expand the invocation of the macro @code{M},
7644which was introduced by @code{ADD}.
7645
3f94c067
BW
7646Once the program is running, @value{GDBN} uses the macro definitions in
7647force at the source line of the current stack frame:
e2e0bcd1
JB
7648
7649@smallexample
f7dc1244 7650(@value{GDBP}) break main
e2e0bcd1 7651Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7652(@value{GDBP}) run
b383017d 7653Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7654
7655Breakpoint 1, main () at sample.c:10
765610 printf ("Hello, world!\n");
f7dc1244 7657(@value{GDBP})
e2e0bcd1
JB
7658@end smallexample
7659
7660At line 10, the definition of the macro @code{N} at line 9 is in force:
7661
7662@smallexample
f7dc1244 7663(@value{GDBP}) info macro N
e2e0bcd1
JB
7664Defined at /home/jimb/gdb/macros/play/sample.c:9
7665#define N 28
f7dc1244 7666(@value{GDBP}) macro expand N Q M
e2e0bcd1 7667expands to: 28 < 42
f7dc1244 7668(@value{GDBP}) print N Q M
e2e0bcd1 7669$1 = 1
f7dc1244 7670(@value{GDBP})
e2e0bcd1
JB
7671@end smallexample
7672
7673As we step over directives that remove @code{N}'s definition, and then
7674give it a new definition, @value{GDBN} finds the definition (or lack
7675thereof) in force at each point:
7676
7677@smallexample
f7dc1244 7678(@value{GDBP}) next
e2e0bcd1
JB
7679Hello, world!
768012 printf ("We're so creative.\n");
f7dc1244 7681(@value{GDBP}) info macro N
e2e0bcd1
JB
7682The symbol `N' has no definition as a C/C++ preprocessor macro
7683at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7684(@value{GDBP}) next
e2e0bcd1
JB
7685We're so creative.
768614 printf ("Goodbye, world!\n");
f7dc1244 7687(@value{GDBP}) info macro N
e2e0bcd1
JB
7688Defined at /home/jimb/gdb/macros/play/sample.c:13
7689#define N 1729
f7dc1244 7690(@value{GDBP}) macro expand N Q M
e2e0bcd1 7691expands to: 1729 < 42
f7dc1244 7692(@value{GDBP}) print N Q M
e2e0bcd1 7693$2 = 0
f7dc1244 7694(@value{GDBP})
e2e0bcd1
JB
7695@end smallexample
7696
7697
b37052ae
EZ
7698@node Tracepoints
7699@chapter Tracepoints
7700@c This chapter is based on the documentation written by Michael
7701@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7702
7703@cindex tracepoints
7704In some applications, it is not feasible for the debugger to interrupt
7705the program's execution long enough for the developer to learn
7706anything helpful about its behavior. If the program's correctness
7707depends on its real-time behavior, delays introduced by a debugger
7708might cause the program to change its behavior drastically, or perhaps
7709fail, even when the code itself is correct. It is useful to be able
7710to observe the program's behavior without interrupting it.
7711
7712Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7713specify locations in the program, called @dfn{tracepoints}, and
7714arbitrary expressions to evaluate when those tracepoints are reached.
7715Later, using the @code{tfind} command, you can examine the values
7716those expressions had when the program hit the tracepoints. The
7717expressions may also denote objects in memory---structures or arrays,
7718for example---whose values @value{GDBN} should record; while visiting
7719a particular tracepoint, you may inspect those objects as if they were
7720in memory at that moment. However, because @value{GDBN} records these
7721values without interacting with you, it can do so quickly and
7722unobtrusively, hopefully not disturbing the program's behavior.
7723
7724The tracepoint facility is currently available only for remote
9d29849a
JB
7725targets. @xref{Targets}. In addition, your remote target must know
7726how to collect trace data. This functionality is implemented in the
7727remote stub; however, none of the stubs distributed with @value{GDBN}
7728support tracepoints as of this writing. The format of the remote
7729packets used to implement tracepoints are described in @ref{Tracepoint
7730Packets}.
b37052ae
EZ
7731
7732This chapter describes the tracepoint commands and features.
7733
7734@menu
b383017d
RM
7735* Set Tracepoints::
7736* Analyze Collected Data::
7737* Tracepoint Variables::
b37052ae
EZ
7738@end menu
7739
7740@node Set Tracepoints
7741@section Commands to Set Tracepoints
7742
7743Before running such a @dfn{trace experiment}, an arbitrary number of
7744tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7745tracepoint has a number assigned to it by @value{GDBN}. Like with
7746breakpoints, tracepoint numbers are successive integers starting from
7747one. Many of the commands associated with tracepoints take the
7748tracepoint number as their argument, to identify which tracepoint to
7749work on.
7750
7751For each tracepoint, you can specify, in advance, some arbitrary set
7752of data that you want the target to collect in the trace buffer when
7753it hits that tracepoint. The collected data can include registers,
7754local variables, or global data. Later, you can use @value{GDBN}
7755commands to examine the values these data had at the time the
7756tracepoint was hit.
7757
7758This section describes commands to set tracepoints and associated
7759conditions and actions.
7760
7761@menu
b383017d
RM
7762* Create and Delete Tracepoints::
7763* Enable and Disable Tracepoints::
7764* Tracepoint Passcounts::
7765* Tracepoint Actions::
7766* Listing Tracepoints::
79a6e687 7767* Starting and Stopping Trace Experiments::
b37052ae
EZ
7768@end menu
7769
7770@node Create and Delete Tracepoints
7771@subsection Create and Delete Tracepoints
7772
7773@table @code
7774@cindex set tracepoint
7775@kindex trace
7776@item trace
7777The @code{trace} command is very similar to the @code{break} command.
7778Its argument can be a source line, a function name, or an address in
7779the target program. @xref{Set Breaks}. The @code{trace} command
7780defines a tracepoint, which is a point in the target program where the
7781debugger will briefly stop, collect some data, and then allow the
7782program to continue. Setting a tracepoint or changing its commands
7783doesn't take effect until the next @code{tstart} command; thus, you
7784cannot change the tracepoint attributes once a trace experiment is
7785running.
7786
7787Here are some examples of using the @code{trace} command:
7788
7789@smallexample
7790(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7791
7792(@value{GDBP}) @b{trace +2} // 2 lines forward
7793
7794(@value{GDBP}) @b{trace my_function} // first source line of function
7795
7796(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7797
7798(@value{GDBP}) @b{trace *0x2117c4} // an address
7799@end smallexample
7800
7801@noindent
7802You can abbreviate @code{trace} as @code{tr}.
7803
7804@vindex $tpnum
7805@cindex last tracepoint number
7806@cindex recent tracepoint number
7807@cindex tracepoint number
7808The convenience variable @code{$tpnum} records the tracepoint number
7809of the most recently set tracepoint.
7810
7811@kindex delete tracepoint
7812@cindex tracepoint deletion
7813@item delete tracepoint @r{[}@var{num}@r{]}
7814Permanently delete one or more tracepoints. With no argument, the
7815default is to delete all tracepoints.
7816
7817Examples:
7818
7819@smallexample
7820(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7821
7822(@value{GDBP}) @b{delete trace} // remove all tracepoints
7823@end smallexample
7824
7825@noindent
7826You can abbreviate this command as @code{del tr}.
7827@end table
7828
7829@node Enable and Disable Tracepoints
7830@subsection Enable and Disable Tracepoints
7831
7832@table @code
7833@kindex disable tracepoint
7834@item disable tracepoint @r{[}@var{num}@r{]}
7835Disable tracepoint @var{num}, or all tracepoints if no argument
7836@var{num} is given. A disabled tracepoint will have no effect during
7837the next trace experiment, but it is not forgotten. You can re-enable
7838a disabled tracepoint using the @code{enable tracepoint} command.
7839
7840@kindex enable tracepoint
7841@item enable tracepoint @r{[}@var{num}@r{]}
7842Enable tracepoint @var{num}, or all tracepoints. The enabled
7843tracepoints will become effective the next time a trace experiment is
7844run.
7845@end table
7846
7847@node Tracepoint Passcounts
7848@subsection Tracepoint Passcounts
7849
7850@table @code
7851@kindex passcount
7852@cindex tracepoint pass count
7853@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7854Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7855automatically stop a trace experiment. If a tracepoint's passcount is
7856@var{n}, then the trace experiment will be automatically stopped on
7857the @var{n}'th time that tracepoint is hit. If the tracepoint number
7858@var{num} is not specified, the @code{passcount} command sets the
7859passcount of the most recently defined tracepoint. If no passcount is
7860given, the trace experiment will run until stopped explicitly by the
7861user.
7862
7863Examples:
7864
7865@smallexample
b383017d 7866(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7867@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7868
7869(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7870@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7871(@value{GDBP}) @b{trace foo}
7872(@value{GDBP}) @b{pass 3}
7873(@value{GDBP}) @b{trace bar}
7874(@value{GDBP}) @b{pass 2}
7875(@value{GDBP}) @b{trace baz}
7876(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7877@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7878@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7879@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7880@end smallexample
7881@end table
7882
7883@node Tracepoint Actions
7884@subsection Tracepoint Action Lists
7885
7886@table @code
7887@kindex actions
7888@cindex tracepoint actions
7889@item actions @r{[}@var{num}@r{]}
7890This command will prompt for a list of actions to be taken when the
7891tracepoint is hit. If the tracepoint number @var{num} is not
7892specified, this command sets the actions for the one that was most
7893recently defined (so that you can define a tracepoint and then say
7894@code{actions} without bothering about its number). You specify the
7895actions themselves on the following lines, one action at a time, and
7896terminate the actions list with a line containing just @code{end}. So
7897far, the only defined actions are @code{collect} and
7898@code{while-stepping}.
7899
7900@cindex remove actions from a tracepoint
7901To remove all actions from a tracepoint, type @samp{actions @var{num}}
7902and follow it immediately with @samp{end}.
7903
7904@smallexample
7905(@value{GDBP}) @b{collect @var{data}} // collect some data
7906
6826cf00 7907(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7908
6826cf00 7909(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7910@end smallexample
7911
7912In the following example, the action list begins with @code{collect}
7913commands indicating the things to be collected when the tracepoint is
7914hit. Then, in order to single-step and collect additional data
7915following the tracepoint, a @code{while-stepping} command is used,
7916followed by the list of things to be collected while stepping. The
7917@code{while-stepping} command is terminated by its own separate
7918@code{end} command. Lastly, the action list is terminated by an
7919@code{end} command.
7920
7921@smallexample
7922(@value{GDBP}) @b{trace foo}
7923(@value{GDBP}) @b{actions}
7924Enter actions for tracepoint 1, one per line:
7925> collect bar,baz
7926> collect $regs
7927> while-stepping 12
7928 > collect $fp, $sp
7929 > end
7930end
7931@end smallexample
7932
7933@kindex collect @r{(tracepoints)}
7934@item collect @var{expr1}, @var{expr2}, @dots{}
7935Collect values of the given expressions when the tracepoint is hit.
7936This command accepts a comma-separated list of any valid expressions.
7937In addition to global, static, or local variables, the following
7938special arguments are supported:
7939
7940@table @code
7941@item $regs
7942collect all registers
7943
7944@item $args
7945collect all function arguments
7946
7947@item $locals
7948collect all local variables.
7949@end table
7950
7951You can give several consecutive @code{collect} commands, each one
7952with a single argument, or one @code{collect} command with several
7953arguments separated by commas: the effect is the same.
7954
f5c37c66
EZ
7955The command @code{info scope} (@pxref{Symbols, info scope}) is
7956particularly useful for figuring out what data to collect.
7957
b37052ae
EZ
7958@kindex while-stepping @r{(tracepoints)}
7959@item while-stepping @var{n}
7960Perform @var{n} single-step traces after the tracepoint, collecting
7961new data at each step. The @code{while-stepping} command is
7962followed by the list of what to collect while stepping (followed by
7963its own @code{end} command):
7964
7965@smallexample
7966> while-stepping 12
7967 > collect $regs, myglobal
7968 > end
7969>
7970@end smallexample
7971
7972@noindent
7973You may abbreviate @code{while-stepping} as @code{ws} or
7974@code{stepping}.
7975@end table
7976
7977@node Listing Tracepoints
7978@subsection Listing Tracepoints
7979
7980@table @code
7981@kindex info tracepoints
09d4efe1 7982@kindex info tp
b37052ae
EZ
7983@cindex information about tracepoints
7984@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 7985Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 7986a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
7987defined so far. For each tracepoint, the following information is
7988shown:
7989
7990@itemize @bullet
7991@item
7992its number
7993@item
7994whether it is enabled or disabled
7995@item
7996its address
7997@item
7998its passcount as given by the @code{passcount @var{n}} command
7999@item
8000its step count as given by the @code{while-stepping @var{n}} command
8001@item
8002where in the source files is the tracepoint set
8003@item
8004its action list as given by the @code{actions} command
8005@end itemize
8006
8007@smallexample
8008(@value{GDBP}) @b{info trace}
8009Num Enb Address PassC StepC What
80101 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80112 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80123 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8013(@value{GDBP})
8014@end smallexample
8015
8016@noindent
8017This command can be abbreviated @code{info tp}.
8018@end table
8019
79a6e687
BW
8020@node Starting and Stopping Trace Experiments
8021@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8022
8023@table @code
8024@kindex tstart
8025@cindex start a new trace experiment
8026@cindex collected data discarded
8027@item tstart
8028This command takes no arguments. It starts the trace experiment, and
8029begins collecting data. This has the side effect of discarding all
8030the data collected in the trace buffer during the previous trace
8031experiment.
8032
8033@kindex tstop
8034@cindex stop a running trace experiment
8035@item tstop
8036This command takes no arguments. It ends the trace experiment, and
8037stops collecting data.
8038
68c71a2e 8039@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8040automatically if any tracepoint's passcount is reached
8041(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8042
8043@kindex tstatus
8044@cindex status of trace data collection
8045@cindex trace experiment, status of
8046@item tstatus
8047This command displays the status of the current trace data
8048collection.
8049@end table
8050
8051Here is an example of the commands we described so far:
8052
8053@smallexample
8054(@value{GDBP}) @b{trace gdb_c_test}
8055(@value{GDBP}) @b{actions}
8056Enter actions for tracepoint #1, one per line.
8057> collect $regs,$locals,$args
8058> while-stepping 11
8059 > collect $regs
8060 > end
8061> end
8062(@value{GDBP}) @b{tstart}
8063 [time passes @dots{}]
8064(@value{GDBP}) @b{tstop}
8065@end smallexample
8066
8067
8068@node Analyze Collected Data
79a6e687 8069@section Using the Collected Data
b37052ae
EZ
8070
8071After the tracepoint experiment ends, you use @value{GDBN} commands
8072for examining the trace data. The basic idea is that each tracepoint
8073collects a trace @dfn{snapshot} every time it is hit and another
8074snapshot every time it single-steps. All these snapshots are
8075consecutively numbered from zero and go into a buffer, and you can
8076examine them later. The way you examine them is to @dfn{focus} on a
8077specific trace snapshot. When the remote stub is focused on a trace
8078snapshot, it will respond to all @value{GDBN} requests for memory and
8079registers by reading from the buffer which belongs to that snapshot,
8080rather than from @emph{real} memory or registers of the program being
8081debugged. This means that @strong{all} @value{GDBN} commands
8082(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8083behave as if we were currently debugging the program state as it was
8084when the tracepoint occurred. Any requests for data that are not in
8085the buffer will fail.
8086
8087@menu
8088* tfind:: How to select a trace snapshot
8089* tdump:: How to display all data for a snapshot
8090* save-tracepoints:: How to save tracepoints for a future run
8091@end menu
8092
8093@node tfind
8094@subsection @code{tfind @var{n}}
8095
8096@kindex tfind
8097@cindex select trace snapshot
8098@cindex find trace snapshot
8099The basic command for selecting a trace snapshot from the buffer is
8100@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8101counting from zero. If no argument @var{n} is given, the next
8102snapshot is selected.
8103
8104Here are the various forms of using the @code{tfind} command.
8105
8106@table @code
8107@item tfind start
8108Find the first snapshot in the buffer. This is a synonym for
8109@code{tfind 0} (since 0 is the number of the first snapshot).
8110
8111@item tfind none
8112Stop debugging trace snapshots, resume @emph{live} debugging.
8113
8114@item tfind end
8115Same as @samp{tfind none}.
8116
8117@item tfind
8118No argument means find the next trace snapshot.
8119
8120@item tfind -
8121Find the previous trace snapshot before the current one. This permits
8122retracing earlier steps.
8123
8124@item tfind tracepoint @var{num}
8125Find the next snapshot associated with tracepoint @var{num}. Search
8126proceeds forward from the last examined trace snapshot. If no
8127argument @var{num} is given, it means find the next snapshot collected
8128for the same tracepoint as the current snapshot.
8129
8130@item tfind pc @var{addr}
8131Find the next snapshot associated with the value @var{addr} of the
8132program counter. Search proceeds forward from the last examined trace
8133snapshot. If no argument @var{addr} is given, it means find the next
8134snapshot with the same value of PC as the current snapshot.
8135
8136@item tfind outside @var{addr1}, @var{addr2}
8137Find the next snapshot whose PC is outside the given range of
8138addresses.
8139
8140@item tfind range @var{addr1}, @var{addr2}
8141Find the next snapshot whose PC is between @var{addr1} and
8142@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8143
8144@item tfind line @r{[}@var{file}:@r{]}@var{n}
8145Find the next snapshot associated with the source line @var{n}. If
8146the optional argument @var{file} is given, refer to line @var{n} in
8147that source file. Search proceeds forward from the last examined
8148trace snapshot. If no argument @var{n} is given, it means find the
8149next line other than the one currently being examined; thus saying
8150@code{tfind line} repeatedly can appear to have the same effect as
8151stepping from line to line in a @emph{live} debugging session.
8152@end table
8153
8154The default arguments for the @code{tfind} commands are specifically
8155designed to make it easy to scan through the trace buffer. For
8156instance, @code{tfind} with no argument selects the next trace
8157snapshot, and @code{tfind -} with no argument selects the previous
8158trace snapshot. So, by giving one @code{tfind} command, and then
8159simply hitting @key{RET} repeatedly you can examine all the trace
8160snapshots in order. Or, by saying @code{tfind -} and then hitting
8161@key{RET} repeatedly you can examine the snapshots in reverse order.
8162The @code{tfind line} command with no argument selects the snapshot
8163for the next source line executed. The @code{tfind pc} command with
8164no argument selects the next snapshot with the same program counter
8165(PC) as the current frame. The @code{tfind tracepoint} command with
8166no argument selects the next trace snapshot collected by the same
8167tracepoint as the current one.
8168
8169In addition to letting you scan through the trace buffer manually,
8170these commands make it easy to construct @value{GDBN} scripts that
8171scan through the trace buffer and print out whatever collected data
8172you are interested in. Thus, if we want to examine the PC, FP, and SP
8173registers from each trace frame in the buffer, we can say this:
8174
8175@smallexample
8176(@value{GDBP}) @b{tfind start}
8177(@value{GDBP}) @b{while ($trace_frame != -1)}
8178> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8179 $trace_frame, $pc, $sp, $fp
8180> tfind
8181> end
8182
8183Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8184Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8185Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8186Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8187Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8188Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8189Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8190Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8191Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8192Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8193Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8194@end smallexample
8195
8196Or, if we want to examine the variable @code{X} at each source line in
8197the buffer:
8198
8199@smallexample
8200(@value{GDBP}) @b{tfind start}
8201(@value{GDBP}) @b{while ($trace_frame != -1)}
8202> printf "Frame %d, X == %d\n", $trace_frame, X
8203> tfind line
8204> end
8205
8206Frame 0, X = 1
8207Frame 7, X = 2
8208Frame 13, X = 255
8209@end smallexample
8210
8211@node tdump
8212@subsection @code{tdump}
8213@kindex tdump
8214@cindex dump all data collected at tracepoint
8215@cindex tracepoint data, display
8216
8217This command takes no arguments. It prints all the data collected at
8218the current trace snapshot.
8219
8220@smallexample
8221(@value{GDBP}) @b{trace 444}
8222(@value{GDBP}) @b{actions}
8223Enter actions for tracepoint #2, one per line:
8224> collect $regs, $locals, $args, gdb_long_test
8225> end
8226
8227(@value{GDBP}) @b{tstart}
8228
8229(@value{GDBP}) @b{tfind line 444}
8230#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8231at gdb_test.c:444
8232444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8233
8234(@value{GDBP}) @b{tdump}
8235Data collected at tracepoint 2, trace frame 1:
8236d0 0xc4aa0085 -995491707
8237d1 0x18 24
8238d2 0x80 128
8239d3 0x33 51
8240d4 0x71aea3d 119204413
8241d5 0x22 34
8242d6 0xe0 224
8243d7 0x380035 3670069
8244a0 0x19e24a 1696330
8245a1 0x3000668 50333288
8246a2 0x100 256
8247a3 0x322000 3284992
8248a4 0x3000698 50333336
8249a5 0x1ad3cc 1758156
8250fp 0x30bf3c 0x30bf3c
8251sp 0x30bf34 0x30bf34
8252ps 0x0 0
8253pc 0x20b2c8 0x20b2c8
8254fpcontrol 0x0 0
8255fpstatus 0x0 0
8256fpiaddr 0x0 0
8257p = 0x20e5b4 "gdb-test"
8258p1 = (void *) 0x11
8259p2 = (void *) 0x22
8260p3 = (void *) 0x33
8261p4 = (void *) 0x44
8262p5 = (void *) 0x55
8263p6 = (void *) 0x66
8264gdb_long_test = 17 '\021'
8265
8266(@value{GDBP})
8267@end smallexample
8268
8269@node save-tracepoints
8270@subsection @code{save-tracepoints @var{filename}}
8271@kindex save-tracepoints
8272@cindex save tracepoints for future sessions
8273
8274This command saves all current tracepoint definitions together with
8275their actions and passcounts, into a file @file{@var{filename}}
8276suitable for use in a later debugging session. To read the saved
8277tracepoint definitions, use the @code{source} command (@pxref{Command
8278Files}).
8279
8280@node Tracepoint Variables
8281@section Convenience Variables for Tracepoints
8282@cindex tracepoint variables
8283@cindex convenience variables for tracepoints
8284
8285@table @code
8286@vindex $trace_frame
8287@item (int) $trace_frame
8288The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8289snapshot is selected.
8290
8291@vindex $tracepoint
8292@item (int) $tracepoint
8293The tracepoint for the current trace snapshot.
8294
8295@vindex $trace_line
8296@item (int) $trace_line
8297The line number for the current trace snapshot.
8298
8299@vindex $trace_file
8300@item (char []) $trace_file
8301The source file for the current trace snapshot.
8302
8303@vindex $trace_func
8304@item (char []) $trace_func
8305The name of the function containing @code{$tracepoint}.
8306@end table
8307
8308Note: @code{$trace_file} is not suitable for use in @code{printf},
8309use @code{output} instead.
8310
8311Here's a simple example of using these convenience variables for
8312stepping through all the trace snapshots and printing some of their
8313data.
8314
8315@smallexample
8316(@value{GDBP}) @b{tfind start}
8317
8318(@value{GDBP}) @b{while $trace_frame != -1}
8319> output $trace_file
8320> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8321> tfind
8322> end
8323@end smallexample
8324
df0cd8c5
JB
8325@node Overlays
8326@chapter Debugging Programs That Use Overlays
8327@cindex overlays
8328
8329If your program is too large to fit completely in your target system's
8330memory, you can sometimes use @dfn{overlays} to work around this
8331problem. @value{GDBN} provides some support for debugging programs that
8332use overlays.
8333
8334@menu
8335* How Overlays Work:: A general explanation of overlays.
8336* Overlay Commands:: Managing overlays in @value{GDBN}.
8337* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8338 mapped by asking the inferior.
8339* Overlay Sample Program:: A sample program using overlays.
8340@end menu
8341
8342@node How Overlays Work
8343@section How Overlays Work
8344@cindex mapped overlays
8345@cindex unmapped overlays
8346@cindex load address, overlay's
8347@cindex mapped address
8348@cindex overlay area
8349
8350Suppose you have a computer whose instruction address space is only 64
8351kilobytes long, but which has much more memory which can be accessed by
8352other means: special instructions, segment registers, or memory
8353management hardware, for example. Suppose further that you want to
8354adapt a program which is larger than 64 kilobytes to run on this system.
8355
8356One solution is to identify modules of your program which are relatively
8357independent, and need not call each other directly; call these modules
8358@dfn{overlays}. Separate the overlays from the main program, and place
8359their machine code in the larger memory. Place your main program in
8360instruction memory, but leave at least enough space there to hold the
8361largest overlay as well.
8362
8363Now, to call a function located in an overlay, you must first copy that
8364overlay's machine code from the large memory into the space set aside
8365for it in the instruction memory, and then jump to its entry point
8366there.
8367
c928edc0
AC
8368@c NB: In the below the mapped area's size is greater or equal to the
8369@c size of all overlays. This is intentional to remind the developer
8370@c that overlays don't necessarily need to be the same size.
8371
474c8240 8372@smallexample
df0cd8c5 8373@group
c928edc0
AC
8374 Data Instruction Larger
8375Address Space Address Space Address Space
8376+-----------+ +-----------+ +-----------+
8377| | | | | |
8378+-----------+ +-----------+ +-----------+<-- overlay 1
8379| program | | main | .----| overlay 1 | load address
8380| variables | | program | | +-----------+
8381| and heap | | | | | |
8382+-----------+ | | | +-----------+<-- overlay 2
8383| | +-----------+ | | | load address
8384+-----------+ | | | .-| overlay 2 |
8385 | | | | | |
8386 mapped --->+-----------+ | | +-----------+
8387 address | | | | | |
8388 | overlay | <-' | | |
8389 | area | <---' +-----------+<-- overlay 3
8390 | | <---. | | load address
8391 +-----------+ `--| overlay 3 |
8392 | | | |
8393 +-----------+ | |
8394 +-----------+
8395 | |
8396 +-----------+
8397
8398 @anchor{A code overlay}A code overlay
df0cd8c5 8399@end group
474c8240 8400@end smallexample
df0cd8c5 8401
c928edc0
AC
8402The diagram (@pxref{A code overlay}) shows a system with separate data
8403and instruction address spaces. To map an overlay, the program copies
8404its code from the larger address space to the instruction address space.
8405Since the overlays shown here all use the same mapped address, only one
8406may be mapped at a time. For a system with a single address space for
8407data and instructions, the diagram would be similar, except that the
8408program variables and heap would share an address space with the main
8409program and the overlay area.
df0cd8c5
JB
8410
8411An overlay loaded into instruction memory and ready for use is called a
8412@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8413instruction memory. An overlay not present (or only partially present)
8414in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8415is its address in the larger memory. The mapped address is also called
8416the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8417called the @dfn{load memory address}, or @dfn{LMA}.
8418
8419Unfortunately, overlays are not a completely transparent way to adapt a
8420program to limited instruction memory. They introduce a new set of
8421global constraints you must keep in mind as you design your program:
8422
8423@itemize @bullet
8424
8425@item
8426Before calling or returning to a function in an overlay, your program
8427must make sure that overlay is actually mapped. Otherwise, the call or
8428return will transfer control to the right address, but in the wrong
8429overlay, and your program will probably crash.
8430
8431@item
8432If the process of mapping an overlay is expensive on your system, you
8433will need to choose your overlays carefully to minimize their effect on
8434your program's performance.
8435
8436@item
8437The executable file you load onto your system must contain each
8438overlay's instructions, appearing at the overlay's load address, not its
8439mapped address. However, each overlay's instructions must be relocated
8440and its symbols defined as if the overlay were at its mapped address.
8441You can use GNU linker scripts to specify different load and relocation
8442addresses for pieces of your program; see @ref{Overlay Description,,,
8443ld.info, Using ld: the GNU linker}.
8444
8445@item
8446The procedure for loading executable files onto your system must be able
8447to load their contents into the larger address space as well as the
8448instruction and data spaces.
8449
8450@end itemize
8451
8452The overlay system described above is rather simple, and could be
8453improved in many ways:
8454
8455@itemize @bullet
8456
8457@item
8458If your system has suitable bank switch registers or memory management
8459hardware, you could use those facilities to make an overlay's load area
8460contents simply appear at their mapped address in instruction space.
8461This would probably be faster than copying the overlay to its mapped
8462area in the usual way.
8463
8464@item
8465If your overlays are small enough, you could set aside more than one
8466overlay area, and have more than one overlay mapped at a time.
8467
8468@item
8469You can use overlays to manage data, as well as instructions. In
8470general, data overlays are even less transparent to your design than
8471code overlays: whereas code overlays only require care when you call or
8472return to functions, data overlays require care every time you access
8473the data. Also, if you change the contents of a data overlay, you
8474must copy its contents back out to its load address before you can copy a
8475different data overlay into the same mapped area.
8476
8477@end itemize
8478
8479
8480@node Overlay Commands
8481@section Overlay Commands
8482
8483To use @value{GDBN}'s overlay support, each overlay in your program must
8484correspond to a separate section of the executable file. The section's
8485virtual memory address and load memory address must be the overlay's
8486mapped and load addresses. Identifying overlays with sections allows
8487@value{GDBN} to determine the appropriate address of a function or
8488variable, depending on whether the overlay is mapped or not.
8489
8490@value{GDBN}'s overlay commands all start with the word @code{overlay};
8491you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8492
8493@table @code
8494@item overlay off
4644b6e3 8495@kindex overlay
df0cd8c5
JB
8496Disable @value{GDBN}'s overlay support. When overlay support is
8497disabled, @value{GDBN} assumes that all functions and variables are
8498always present at their mapped addresses. By default, @value{GDBN}'s
8499overlay support is disabled.
8500
8501@item overlay manual
df0cd8c5
JB
8502@cindex manual overlay debugging
8503Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8504relies on you to tell it which overlays are mapped, and which are not,
8505using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8506commands described below.
8507
8508@item overlay map-overlay @var{overlay}
8509@itemx overlay map @var{overlay}
df0cd8c5
JB
8510@cindex map an overlay
8511Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8512be the name of the object file section containing the overlay. When an
8513overlay is mapped, @value{GDBN} assumes it can find the overlay's
8514functions and variables at their mapped addresses. @value{GDBN} assumes
8515that any other overlays whose mapped ranges overlap that of
8516@var{overlay} are now unmapped.
8517
8518@item overlay unmap-overlay @var{overlay}
8519@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8520@cindex unmap an overlay
8521Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8522must be the name of the object file section containing the overlay.
8523When an overlay is unmapped, @value{GDBN} assumes it can find the
8524overlay's functions and variables at their load addresses.
8525
8526@item overlay auto
df0cd8c5
JB
8527Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8528consults a data structure the overlay manager maintains in the inferior
8529to see which overlays are mapped. For details, see @ref{Automatic
8530Overlay Debugging}.
8531
8532@item overlay load-target
8533@itemx overlay load
df0cd8c5
JB
8534@cindex reloading the overlay table
8535Re-read the overlay table from the inferior. Normally, @value{GDBN}
8536re-reads the table @value{GDBN} automatically each time the inferior
8537stops, so this command should only be necessary if you have changed the
8538overlay mapping yourself using @value{GDBN}. This command is only
8539useful when using automatic overlay debugging.
8540
8541@item overlay list-overlays
8542@itemx overlay list
8543@cindex listing mapped overlays
8544Display a list of the overlays currently mapped, along with their mapped
8545addresses, load addresses, and sizes.
8546
8547@end table
8548
8549Normally, when @value{GDBN} prints a code address, it includes the name
8550of the function the address falls in:
8551
474c8240 8552@smallexample
f7dc1244 8553(@value{GDBP}) print main
df0cd8c5 8554$3 = @{int ()@} 0x11a0 <main>
474c8240 8555@end smallexample
df0cd8c5
JB
8556@noindent
8557When overlay debugging is enabled, @value{GDBN} recognizes code in
8558unmapped overlays, and prints the names of unmapped functions with
8559asterisks around them. For example, if @code{foo} is a function in an
8560unmapped overlay, @value{GDBN} prints it this way:
8561
474c8240 8562@smallexample
f7dc1244 8563(@value{GDBP}) overlay list
df0cd8c5 8564No sections are mapped.
f7dc1244 8565(@value{GDBP}) print foo
df0cd8c5 8566$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8567@end smallexample
df0cd8c5
JB
8568@noindent
8569When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8570name normally:
8571
474c8240 8572@smallexample
f7dc1244 8573(@value{GDBP}) overlay list
b383017d 8574Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8575 mapped at 0x1016 - 0x104a
f7dc1244 8576(@value{GDBP}) print foo
df0cd8c5 8577$6 = @{int (int)@} 0x1016 <foo>
474c8240 8578@end smallexample
df0cd8c5
JB
8579
8580When overlay debugging is enabled, @value{GDBN} can find the correct
8581address for functions and variables in an overlay, whether or not the
8582overlay is mapped. This allows most @value{GDBN} commands, like
8583@code{break} and @code{disassemble}, to work normally, even on unmapped
8584code. However, @value{GDBN}'s breakpoint support has some limitations:
8585
8586@itemize @bullet
8587@item
8588@cindex breakpoints in overlays
8589@cindex overlays, setting breakpoints in
8590You can set breakpoints in functions in unmapped overlays, as long as
8591@value{GDBN} can write to the overlay at its load address.
8592@item
8593@value{GDBN} can not set hardware or simulator-based breakpoints in
8594unmapped overlays. However, if you set a breakpoint at the end of your
8595overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8596you are using manual overlay management), @value{GDBN} will re-set its
8597breakpoints properly.
8598@end itemize
8599
8600
8601@node Automatic Overlay Debugging
8602@section Automatic Overlay Debugging
8603@cindex automatic overlay debugging
8604
8605@value{GDBN} can automatically track which overlays are mapped and which
8606are not, given some simple co-operation from the overlay manager in the
8607inferior. If you enable automatic overlay debugging with the
8608@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8609looks in the inferior's memory for certain variables describing the
8610current state of the overlays.
8611
8612Here are the variables your overlay manager must define to support
8613@value{GDBN}'s automatic overlay debugging:
8614
8615@table @asis
8616
8617@item @code{_ovly_table}:
8618This variable must be an array of the following structures:
8619
474c8240 8620@smallexample
df0cd8c5
JB
8621struct
8622@{
8623 /* The overlay's mapped address. */
8624 unsigned long vma;
8625
8626 /* The size of the overlay, in bytes. */
8627 unsigned long size;
8628
8629 /* The overlay's load address. */
8630 unsigned long lma;
8631
8632 /* Non-zero if the overlay is currently mapped;
8633 zero otherwise. */
8634 unsigned long mapped;
8635@}
474c8240 8636@end smallexample
df0cd8c5
JB
8637
8638@item @code{_novlys}:
8639This variable must be a four-byte signed integer, holding the total
8640number of elements in @code{_ovly_table}.
8641
8642@end table
8643
8644To decide whether a particular overlay is mapped or not, @value{GDBN}
8645looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8646@code{lma} members equal the VMA and LMA of the overlay's section in the
8647executable file. When @value{GDBN} finds a matching entry, it consults
8648the entry's @code{mapped} member to determine whether the overlay is
8649currently mapped.
8650
81d46470 8651In addition, your overlay manager may define a function called
def71bfa 8652@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8653will silently set a breakpoint there. If the overlay manager then
8654calls this function whenever it has changed the overlay table, this
8655will enable @value{GDBN} to accurately keep track of which overlays
8656are in program memory, and update any breakpoints that may be set
b383017d 8657in overlays. This will allow breakpoints to work even if the
81d46470
MS
8658overlays are kept in ROM or other non-writable memory while they
8659are not being executed.
df0cd8c5
JB
8660
8661@node Overlay Sample Program
8662@section Overlay Sample Program
8663@cindex overlay example program
8664
8665When linking a program which uses overlays, you must place the overlays
8666at their load addresses, while relocating them to run at their mapped
8667addresses. To do this, you must write a linker script (@pxref{Overlay
8668Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8669since linker scripts are specific to a particular host system, target
8670architecture, and target memory layout, this manual cannot provide
8671portable sample code demonstrating @value{GDBN}'s overlay support.
8672
8673However, the @value{GDBN} source distribution does contain an overlaid
8674program, with linker scripts for a few systems, as part of its test
8675suite. The program consists of the following files from
8676@file{gdb/testsuite/gdb.base}:
8677
8678@table @file
8679@item overlays.c
8680The main program file.
8681@item ovlymgr.c
8682A simple overlay manager, used by @file{overlays.c}.
8683@item foo.c
8684@itemx bar.c
8685@itemx baz.c
8686@itemx grbx.c
8687Overlay modules, loaded and used by @file{overlays.c}.
8688@item d10v.ld
8689@itemx m32r.ld
8690Linker scripts for linking the test program on the @code{d10v-elf}
8691and @code{m32r-elf} targets.
8692@end table
8693
8694You can build the test program using the @code{d10v-elf} GCC
8695cross-compiler like this:
8696
474c8240 8697@smallexample
df0cd8c5
JB
8698$ d10v-elf-gcc -g -c overlays.c
8699$ d10v-elf-gcc -g -c ovlymgr.c
8700$ d10v-elf-gcc -g -c foo.c
8701$ d10v-elf-gcc -g -c bar.c
8702$ d10v-elf-gcc -g -c baz.c
8703$ d10v-elf-gcc -g -c grbx.c
8704$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8705 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8706@end smallexample
df0cd8c5
JB
8707
8708The build process is identical for any other architecture, except that
8709you must substitute the appropriate compiler and linker script for the
8710target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8711
8712
6d2ebf8b 8713@node Languages
c906108c
SS
8714@chapter Using @value{GDBN} with Different Languages
8715@cindex languages
8716
c906108c
SS
8717Although programming languages generally have common aspects, they are
8718rarely expressed in the same manner. For instance, in ANSI C,
8719dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8720Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8721represented (and displayed) differently. Hex numbers in C appear as
c906108c 8722@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8723
8724@cindex working language
8725Language-specific information is built into @value{GDBN} for some languages,
8726allowing you to express operations like the above in your program's
8727native language, and allowing @value{GDBN} to output values in a manner
8728consistent with the syntax of your program's native language. The
8729language you use to build expressions is called the @dfn{working
8730language}.
8731
8732@menu
8733* Setting:: Switching between source languages
8734* Show:: Displaying the language
c906108c 8735* Checks:: Type and range checks
79a6e687
BW
8736* Supported Languages:: Supported languages
8737* Unsupported Languages:: Unsupported languages
c906108c
SS
8738@end menu
8739
6d2ebf8b 8740@node Setting
79a6e687 8741@section Switching Between Source Languages
c906108c
SS
8742
8743There are two ways to control the working language---either have @value{GDBN}
8744set it automatically, or select it manually yourself. You can use the
8745@code{set language} command for either purpose. On startup, @value{GDBN}
8746defaults to setting the language automatically. The working language is
8747used to determine how expressions you type are interpreted, how values
8748are printed, etc.
8749
8750In addition to the working language, every source file that
8751@value{GDBN} knows about has its own working language. For some object
8752file formats, the compiler might indicate which language a particular
8753source file is in. However, most of the time @value{GDBN} infers the
8754language from the name of the file. The language of a source file
b37052ae 8755controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8756show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8757set the language of a source file from within @value{GDBN}, but you can
8758set the language associated with a filename extension. @xref{Show, ,
79a6e687 8759Displaying the Language}.
c906108c
SS
8760
8761This is most commonly a problem when you use a program, such
5d161b24 8762as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8763another language. In that case, make the
8764program use @code{#line} directives in its C output; that way
8765@value{GDBN} will know the correct language of the source code of the original
8766program, and will display that source code, not the generated C code.
8767
8768@menu
8769* Filenames:: Filename extensions and languages.
8770* Manually:: Setting the working language manually
8771* Automatically:: Having @value{GDBN} infer the source language
8772@end menu
8773
6d2ebf8b 8774@node Filenames
79a6e687 8775@subsection List of Filename Extensions and Languages
c906108c
SS
8776
8777If a source file name ends in one of the following extensions, then
8778@value{GDBN} infers that its language is the one indicated.
8779
8780@table @file
e07c999f
PH
8781@item .ada
8782@itemx .ads
8783@itemx .adb
8784@itemx .a
8785Ada source file.
c906108c
SS
8786
8787@item .c
8788C source file
8789
8790@item .C
8791@itemx .cc
8792@itemx .cp
8793@itemx .cpp
8794@itemx .cxx
8795@itemx .c++
b37052ae 8796C@t{++} source file
c906108c 8797
b37303ee
AF
8798@item .m
8799Objective-C source file
8800
c906108c
SS
8801@item .f
8802@itemx .F
8803Fortran source file
8804
c906108c
SS
8805@item .mod
8806Modula-2 source file
c906108c
SS
8807
8808@item .s
8809@itemx .S
8810Assembler source file. This actually behaves almost like C, but
8811@value{GDBN} does not skip over function prologues when stepping.
8812@end table
8813
8814In addition, you may set the language associated with a filename
79a6e687 8815extension. @xref{Show, , Displaying the Language}.
c906108c 8816
6d2ebf8b 8817@node Manually
79a6e687 8818@subsection Setting the Working Language
c906108c
SS
8819
8820If you allow @value{GDBN} to set the language automatically,
8821expressions are interpreted the same way in your debugging session and
8822your program.
8823
8824@kindex set language
8825If you wish, you may set the language manually. To do this, issue the
8826command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8827a language, such as
c906108c 8828@code{c} or @code{modula-2}.
c906108c
SS
8829For a list of the supported languages, type @samp{set language}.
8830
c906108c
SS
8831Setting the language manually prevents @value{GDBN} from updating the working
8832language automatically. This can lead to confusion if you try
8833to debug a program when the working language is not the same as the
8834source language, when an expression is acceptable to both
8835languages---but means different things. For instance, if the current
8836source file were written in C, and @value{GDBN} was parsing Modula-2, a
8837command such as:
8838
474c8240 8839@smallexample
c906108c 8840print a = b + c
474c8240 8841@end smallexample
c906108c
SS
8842
8843@noindent
8844might not have the effect you intended. In C, this means to add
8845@code{b} and @code{c} and place the result in @code{a}. The result
8846printed would be the value of @code{a}. In Modula-2, this means to compare
8847@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8848
6d2ebf8b 8849@node Automatically
79a6e687 8850@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8851
8852To have @value{GDBN} set the working language automatically, use
8853@samp{set language local} or @samp{set language auto}. @value{GDBN}
8854then infers the working language. That is, when your program stops in a
8855frame (usually by encountering a breakpoint), @value{GDBN} sets the
8856working language to the language recorded for the function in that
8857frame. If the language for a frame is unknown (that is, if the function
8858or block corresponding to the frame was defined in a source file that
8859does not have a recognized extension), the current working language is
8860not changed, and @value{GDBN} issues a warning.
8861
8862This may not seem necessary for most programs, which are written
8863entirely in one source language. However, program modules and libraries
8864written in one source language can be used by a main program written in
8865a different source language. Using @samp{set language auto} in this
8866case frees you from having to set the working language manually.
8867
6d2ebf8b 8868@node Show
79a6e687 8869@section Displaying the Language
c906108c
SS
8870
8871The following commands help you find out which language is the
8872working language, and also what language source files were written in.
8873
c906108c
SS
8874@table @code
8875@item show language
9c16f35a 8876@kindex show language
c906108c
SS
8877Display the current working language. This is the
8878language you can use with commands such as @code{print} to
8879build and compute expressions that may involve variables in your program.
8880
8881@item info frame
4644b6e3 8882@kindex info frame@r{, show the source language}
5d161b24 8883Display the source language for this frame. This language becomes the
c906108c 8884working language if you use an identifier from this frame.
79a6e687 8885@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8886information listed here.
8887
8888@item info source
4644b6e3 8889@kindex info source@r{, show the source language}
c906108c 8890Display the source language of this source file.
5d161b24 8891@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8892information listed here.
8893@end table
8894
8895In unusual circumstances, you may have source files with extensions
8896not in the standard list. You can then set the extension associated
8897with a language explicitly:
8898
c906108c 8899@table @code
09d4efe1 8900@item set extension-language @var{ext} @var{language}
9c16f35a 8901@kindex set extension-language
09d4efe1
EZ
8902Tell @value{GDBN} that source files with extension @var{ext} are to be
8903assumed as written in the source language @var{language}.
c906108c
SS
8904
8905@item info extensions
9c16f35a 8906@kindex info extensions
c906108c
SS
8907List all the filename extensions and the associated languages.
8908@end table
8909
6d2ebf8b 8910@node Checks
79a6e687 8911@section Type and Range Checking
c906108c
SS
8912
8913@quotation
8914@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8915checking are included, but they do not yet have any effect. This
8916section documents the intended facilities.
8917@end quotation
8918@c FIXME remove warning when type/range code added
8919
8920Some languages are designed to guard you against making seemingly common
8921errors through a series of compile- and run-time checks. These include
8922checking the type of arguments to functions and operators, and making
8923sure mathematical overflows are caught at run time. Checks such as
8924these help to ensure a program's correctness once it has been compiled
8925by eliminating type mismatches, and providing active checks for range
8926errors when your program is running.
8927
8928@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8929Although @value{GDBN} does not check the statements in your program,
8930it can check expressions entered directly into @value{GDBN} for
8931evaluation via the @code{print} command, for example. As with the
8932working language, @value{GDBN} can also decide whether or not to check
8933automatically based on your program's source language.
79a6e687 8934@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8935settings of supported languages.
c906108c
SS
8936
8937@menu
8938* Type Checking:: An overview of type checking
8939* Range Checking:: An overview of range checking
8940@end menu
8941
8942@cindex type checking
8943@cindex checks, type
6d2ebf8b 8944@node Type Checking
79a6e687 8945@subsection An Overview of Type Checking
c906108c
SS
8946
8947Some languages, such as Modula-2, are strongly typed, meaning that the
8948arguments to operators and functions have to be of the correct type,
8949otherwise an error occurs. These checks prevent type mismatch
8950errors from ever causing any run-time problems. For example,
8951
8952@smallexample
89531 + 2 @result{} 3
8954@exdent but
8955@error{} 1 + 2.3
8956@end smallexample
8957
8958The second example fails because the @code{CARDINAL} 1 is not
8959type-compatible with the @code{REAL} 2.3.
8960
5d161b24
DB
8961For the expressions you use in @value{GDBN} commands, you can tell the
8962@value{GDBN} type checker to skip checking;
8963to treat any mismatches as errors and abandon the expression;
8964or to only issue warnings when type mismatches occur,
c906108c
SS
8965but evaluate the expression anyway. When you choose the last of
8966these, @value{GDBN} evaluates expressions like the second example above, but
8967also issues a warning.
8968
5d161b24
DB
8969Even if you turn type checking off, there may be other reasons
8970related to type that prevent @value{GDBN} from evaluating an expression.
8971For instance, @value{GDBN} does not know how to add an @code{int} and
8972a @code{struct foo}. These particular type errors have nothing to do
8973with the language in use, and usually arise from expressions, such as
c906108c
SS
8974the one described above, which make little sense to evaluate anyway.
8975
8976Each language defines to what degree it is strict about type. For
8977instance, both Modula-2 and C require the arguments to arithmetical
8978operators to be numbers. In C, enumerated types and pointers can be
8979represented as numbers, so that they are valid arguments to mathematical
79a6e687 8980operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
8981details on specific languages.
8982
8983@value{GDBN} provides some additional commands for controlling the type checker:
8984
c906108c
SS
8985@kindex set check type
8986@kindex show check type
8987@table @code
8988@item set check type auto
8989Set type checking on or off based on the current working language.
79a6e687 8990@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
8991each language.
8992
8993@item set check type on
8994@itemx set check type off
8995Set type checking on or off, overriding the default setting for the
8996current working language. Issue a warning if the setting does not
8997match the language default. If any type mismatches occur in
d4f3574e 8998evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
8999message and aborts evaluation of the expression.
9000
9001@item set check type warn
9002Cause the type checker to issue warnings, but to always attempt to
9003evaluate the expression. Evaluating the expression may still
9004be impossible for other reasons. For example, @value{GDBN} cannot add
9005numbers and structures.
9006
9007@item show type
5d161b24 9008Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9009is setting it automatically.
9010@end table
9011
9012@cindex range checking
9013@cindex checks, range
6d2ebf8b 9014@node Range Checking
79a6e687 9015@subsection An Overview of Range Checking
c906108c
SS
9016
9017In some languages (such as Modula-2), it is an error to exceed the
9018bounds of a type; this is enforced with run-time checks. Such range
9019checking is meant to ensure program correctness by making sure
9020computations do not overflow, or indices on an array element access do
9021not exceed the bounds of the array.
9022
9023For expressions you use in @value{GDBN} commands, you can tell
9024@value{GDBN} to treat range errors in one of three ways: ignore them,
9025always treat them as errors and abandon the expression, or issue
9026warnings but evaluate the expression anyway.
9027
9028A range error can result from numerical overflow, from exceeding an
9029array index bound, or when you type a constant that is not a member
9030of any type. Some languages, however, do not treat overflows as an
9031error. In many implementations of C, mathematical overflow causes the
9032result to ``wrap around'' to lower values---for example, if @var{m} is
9033the largest integer value, and @var{s} is the smallest, then
9034
474c8240 9035@smallexample
c906108c 9036@var{m} + 1 @result{} @var{s}
474c8240 9037@end smallexample
c906108c
SS
9038
9039This, too, is specific to individual languages, and in some cases
79a6e687
BW
9040specific to individual compilers or machines. @xref{Supported Languages, ,
9041Supported Languages}, for further details on specific languages.
c906108c
SS
9042
9043@value{GDBN} provides some additional commands for controlling the range checker:
9044
c906108c
SS
9045@kindex set check range
9046@kindex show check range
9047@table @code
9048@item set check range auto
9049Set range checking on or off based on the current working language.
79a6e687 9050@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9051each language.
9052
9053@item set check range on
9054@itemx set check range off
9055Set range checking on or off, overriding the default setting for the
9056current working language. A warning is issued if the setting does not
c3f6f71d
JM
9057match the language default. If a range error occurs and range checking is on,
9058then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9059
9060@item set check range warn
9061Output messages when the @value{GDBN} range checker detects a range error,
9062but attempt to evaluate the expression anyway. Evaluating the
9063expression may still be impossible for other reasons, such as accessing
9064memory that the process does not own (a typical example from many Unix
9065systems).
9066
9067@item show range
9068Show the current setting of the range checker, and whether or not it is
9069being set automatically by @value{GDBN}.
9070@end table
c906108c 9071
79a6e687
BW
9072@node Supported Languages
9073@section Supported Languages
c906108c 9074
9c16f35a
EZ
9075@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9076assembly, Modula-2, and Ada.
cce74817 9077@c This is false ...
c906108c
SS
9078Some @value{GDBN} features may be used in expressions regardless of the
9079language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9080and the @samp{@{type@}addr} construct (@pxref{Expressions,
9081,Expressions}) can be used with the constructs of any supported
9082language.
9083
9084The following sections detail to what degree each source language is
9085supported by @value{GDBN}. These sections are not meant to be language
9086tutorials or references, but serve only as a reference guide to what the
9087@value{GDBN} expression parser accepts, and what input and output
9088formats should look like for different languages. There are many good
9089books written on each of these languages; please look to these for a
9090language reference or tutorial.
9091
c906108c 9092@menu
b37303ee 9093* C:: C and C@t{++}
b383017d 9094* Objective-C:: Objective-C
09d4efe1 9095* Fortran:: Fortran
9c16f35a 9096* Pascal:: Pascal
b37303ee 9097* Modula-2:: Modula-2
e07c999f 9098* Ada:: Ada
c906108c
SS
9099@end menu
9100
6d2ebf8b 9101@node C
b37052ae 9102@subsection C and C@t{++}
7a292a7a 9103
b37052ae
EZ
9104@cindex C and C@t{++}
9105@cindex expressions in C or C@t{++}
c906108c 9106
b37052ae 9107Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9108to both languages. Whenever this is the case, we discuss those languages
9109together.
9110
41afff9a
EZ
9111@cindex C@t{++}
9112@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9113@cindex @sc{gnu} C@t{++}
9114The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9115compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9116effectively, you must compile your C@t{++} programs with a supported
9117C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9118compiler (@code{aCC}).
9119
0179ffac
DC
9120For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9121format; if it doesn't work on your system, try the stabs+ debugging
9122format. You can select those formats explicitly with the @code{g++}
9123command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9124@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9125gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9126
c906108c 9127@menu
b37052ae
EZ
9128* C Operators:: C and C@t{++} operators
9129* C Constants:: C and C@t{++} constants
79a6e687 9130* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9131* C Defaults:: Default settings for C and C@t{++}
9132* C Checks:: C and C@t{++} type and range checks
c906108c 9133* Debugging C:: @value{GDBN} and C
79a6e687 9134* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
c906108c 9135@end menu
c906108c 9136
6d2ebf8b 9137@node C Operators
79a6e687 9138@subsubsection C and C@t{++} Operators
7a292a7a 9139
b37052ae 9140@cindex C and C@t{++} operators
c906108c
SS
9141
9142Operators must be defined on values of specific types. For instance,
9143@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9144often defined on groups of types.
c906108c 9145
b37052ae 9146For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9147
9148@itemize @bullet
53a5351d 9149
c906108c 9150@item
c906108c 9151@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9152specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9153
9154@item
d4f3574e
SS
9155@emph{Floating-point types} include @code{float}, @code{double}, and
9156@code{long double} (if supported by the target platform).
c906108c
SS
9157
9158@item
53a5351d 9159@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9160
9161@item
9162@emph{Scalar types} include all of the above.
53a5351d 9163
c906108c
SS
9164@end itemize
9165
9166@noindent
9167The following operators are supported. They are listed here
9168in order of increasing precedence:
9169
9170@table @code
9171@item ,
9172The comma or sequencing operator. Expressions in a comma-separated list
9173are evaluated from left to right, with the result of the entire
9174expression being the last expression evaluated.
9175
9176@item =
9177Assignment. The value of an assignment expression is the value
9178assigned. Defined on scalar types.
9179
9180@item @var{op}=
9181Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9182and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9183@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9184@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9185@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9186
9187@item ?:
9188The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9189of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9190integral type.
9191
9192@item ||
9193Logical @sc{or}. Defined on integral types.
9194
9195@item &&
9196Logical @sc{and}. Defined on integral types.
9197
9198@item |
9199Bitwise @sc{or}. Defined on integral types.
9200
9201@item ^
9202Bitwise exclusive-@sc{or}. Defined on integral types.
9203
9204@item &
9205Bitwise @sc{and}. Defined on integral types.
9206
9207@item ==@r{, }!=
9208Equality and inequality. Defined on scalar types. The value of these
9209expressions is 0 for false and non-zero for true.
9210
9211@item <@r{, }>@r{, }<=@r{, }>=
9212Less than, greater than, less than or equal, greater than or equal.
9213Defined on scalar types. The value of these expressions is 0 for false
9214and non-zero for true.
9215
9216@item <<@r{, }>>
9217left shift, and right shift. Defined on integral types.
9218
9219@item @@
9220The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9221
9222@item +@r{, }-
9223Addition and subtraction. Defined on integral types, floating-point types and
9224pointer types.
9225
9226@item *@r{, }/@r{, }%
9227Multiplication, division, and modulus. Multiplication and division are
9228defined on integral and floating-point types. Modulus is defined on
9229integral types.
9230
9231@item ++@r{, }--
9232Increment and decrement. When appearing before a variable, the
9233operation is performed before the variable is used in an expression;
9234when appearing after it, the variable's value is used before the
9235operation takes place.
9236
9237@item *
9238Pointer dereferencing. Defined on pointer types. Same precedence as
9239@code{++}.
9240
9241@item &
9242Address operator. Defined on variables. Same precedence as @code{++}.
9243
b37052ae
EZ
9244For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9245allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
c906108c 9246(or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
b37052ae 9247where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9248stored.
c906108c
SS
9249
9250@item -
9251Negative. Defined on integral and floating-point types. Same
9252precedence as @code{++}.
9253
9254@item !
9255Logical negation. Defined on integral types. Same precedence as
9256@code{++}.
9257
9258@item ~
9259Bitwise complement operator. Defined on integral types. Same precedence as
9260@code{++}.
9261
9262
9263@item .@r{, }->
9264Structure member, and pointer-to-structure member. For convenience,
9265@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9266pointer based on the stored type information.
9267Defined on @code{struct} and @code{union} data.
9268
c906108c
SS
9269@item .*@r{, }->*
9270Dereferences of pointers to members.
c906108c
SS
9271
9272@item []
9273Array indexing. @code{@var{a}[@var{i}]} is defined as
9274@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9275
9276@item ()
9277Function parameter list. Same precedence as @code{->}.
9278
c906108c 9279@item ::
b37052ae 9280C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9281and @code{class} types.
c906108c
SS
9282
9283@item ::
7a292a7a
SS
9284Doubled colons also represent the @value{GDBN} scope operator
9285(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9286above.
c906108c
SS
9287@end table
9288
c906108c
SS
9289If an operator is redefined in the user code, @value{GDBN} usually
9290attempts to invoke the redefined version instead of using the operator's
9291predefined meaning.
c906108c 9292
6d2ebf8b 9293@node C Constants
79a6e687 9294@subsubsection C and C@t{++} Constants
c906108c 9295
b37052ae 9296@cindex C and C@t{++} constants
c906108c 9297
b37052ae 9298@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9299following ways:
c906108c
SS
9300
9301@itemize @bullet
9302@item
9303Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9304specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9305by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9306@samp{l}, specifying that the constant should be treated as a
9307@code{long} value.
9308
9309@item
9310Floating point constants are a sequence of digits, followed by a decimal
9311point, followed by a sequence of digits, and optionally followed by an
9312exponent. An exponent is of the form:
9313@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9314sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9315A floating-point constant may also end with a letter @samp{f} or
9316@samp{F}, specifying that the constant should be treated as being of
9317the @code{float} (as opposed to the default @code{double}) type; or with
9318a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9319constant.
c906108c
SS
9320
9321@item
9322Enumerated constants consist of enumerated identifiers, or their
9323integral equivalents.
9324
9325@item
9326Character constants are a single character surrounded by single quotes
9327(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9328(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9329be represented by a letter or by @dfn{escape sequences}, which are of
9330the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9331of the character's ordinal value; or of the form @samp{\@var{x}}, where
9332@samp{@var{x}} is a predefined special character---for example,
9333@samp{\n} for newline.
9334
9335@item
96a2c332
SS
9336String constants are a sequence of character constants surrounded by
9337double quotes (@code{"}). Any valid character constant (as described
9338above) may appear. Double quotes within the string must be preceded by
9339a backslash, so for instance @samp{"a\"b'c"} is a string of five
9340characters.
c906108c
SS
9341
9342@item
9343Pointer constants are an integral value. You can also write pointers
9344to constants using the C operator @samp{&}.
9345
9346@item
9347Array constants are comma-separated lists surrounded by braces @samp{@{}
9348and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9349integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9350and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9351@end itemize
9352
79a6e687
BW
9353@node C Plus Plus Expressions
9354@subsubsection C@t{++} Expressions
b37052ae
EZ
9355
9356@cindex expressions in C@t{++}
9357@value{GDBN} expression handling can interpret most C@t{++} expressions.
9358
0179ffac
DC
9359@cindex debugging C@t{++} programs
9360@cindex C@t{++} compilers
9361@cindex debug formats and C@t{++}
9362@cindex @value{NGCC} and C@t{++}
c906108c 9363@quotation
b37052ae 9364@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9365proper compiler and the proper debug format. Currently, @value{GDBN}
9366works best when debugging C@t{++} code that is compiled with
9367@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9368@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9369stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9370stabs+ as their default debug format, so you usually don't need to
9371specify a debug format explicitly. Other compilers and/or debug formats
9372are likely to work badly or not at all when using @value{GDBN} to debug
9373C@t{++} code.
c906108c 9374@end quotation
c906108c
SS
9375
9376@enumerate
9377
9378@cindex member functions
9379@item
9380Member function calls are allowed; you can use expressions like
9381
474c8240 9382@smallexample
c906108c 9383count = aml->GetOriginal(x, y)
474c8240 9384@end smallexample
c906108c 9385
41afff9a 9386@vindex this@r{, inside C@t{++} member functions}
b37052ae 9387@cindex namespace in C@t{++}
c906108c
SS
9388@item
9389While a member function is active (in the selected stack frame), your
9390expressions have the same namespace available as the member function;
9391that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9392pointer @code{this} following the same rules as C@t{++}.
c906108c 9393
c906108c 9394@cindex call overloaded functions
d4f3574e 9395@cindex overloaded functions, calling
b37052ae 9396@cindex type conversions in C@t{++}
c906108c
SS
9397@item
9398You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9399call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9400perform overload resolution involving user-defined type conversions,
9401calls to constructors, or instantiations of templates that do not exist
9402in the program. It also cannot handle ellipsis argument lists or
9403default arguments.
9404
9405It does perform integral conversions and promotions, floating-point
9406promotions, arithmetic conversions, pointer conversions, conversions of
9407class objects to base classes, and standard conversions such as those of
9408functions or arrays to pointers; it requires an exact match on the
9409number of function arguments.
9410
9411Overload resolution is always performed, unless you have specified
79a6e687
BW
9412@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9413,@value{GDBN} Features for C@t{++}}.
c906108c 9414
d4f3574e 9415You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9416explicit function signature to call an overloaded function, as in
9417@smallexample
9418p 'foo(char,int)'('x', 13)
9419@end smallexample
d4f3574e 9420
c906108c 9421The @value{GDBN} command-completion facility can simplify this;
79a6e687 9422see @ref{Completion, ,Command Completion}.
c906108c 9423
c906108c
SS
9424@cindex reference declarations
9425@item
b37052ae
EZ
9426@value{GDBN} understands variables declared as C@t{++} references; you can use
9427them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9428dereferenced.
9429
9430In the parameter list shown when @value{GDBN} displays a frame, the values of
9431reference variables are not displayed (unlike other variables); this
9432avoids clutter, since references are often used for large structures.
9433The @emph{address} of a reference variable is always shown, unless
9434you have specified @samp{set print address off}.
9435
9436@item
b37052ae 9437@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9438expressions can use it just as expressions in your program do. Since
9439one scope may be defined in another, you can use @code{::} repeatedly if
9440necessary, for example in an expression like
9441@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9442resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9443debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9444@end enumerate
9445
b37052ae 9446In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9447calling virtual functions correctly, printing out virtual bases of
9448objects, calling functions in a base subobject, casting objects, and
9449invoking user-defined operators.
c906108c 9450
6d2ebf8b 9451@node C Defaults
79a6e687 9452@subsubsection C and C@t{++} Defaults
7a292a7a 9453
b37052ae 9454@cindex C and C@t{++} defaults
c906108c 9455
c906108c
SS
9456If you allow @value{GDBN} to set type and range checking automatically, they
9457both default to @code{off} whenever the working language changes to
b37052ae 9458C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9459selects the working language.
c906108c
SS
9460
9461If you allow @value{GDBN} to set the language automatically, it
9462recognizes source files whose names end with @file{.c}, @file{.C}, or
9463@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9464these files, it sets the working language to C or C@t{++}.
79a6e687 9465@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9466for further details.
9467
c906108c
SS
9468@c Type checking is (a) primarily motivated by Modula-2, and (b)
9469@c unimplemented. If (b) changes, it might make sense to let this node
9470@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9471
6d2ebf8b 9472@node C Checks
79a6e687 9473@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9474
b37052ae 9475@cindex C and C@t{++} checks
c906108c 9476
b37052ae 9477By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9478is not used. However, if you turn type checking on, @value{GDBN}
9479considers two variables type equivalent if:
9480
9481@itemize @bullet
9482@item
9483The two variables are structured and have the same structure, union, or
9484enumerated tag.
9485
9486@item
9487The two variables have the same type name, or types that have been
9488declared equivalent through @code{typedef}.
9489
9490@ignore
9491@c leaving this out because neither J Gilmore nor R Pesch understand it.
9492@c FIXME--beers?
9493@item
9494The two @code{struct}, @code{union}, or @code{enum} variables are
9495declared in the same declaration. (Note: this may not be true for all C
9496compilers.)
9497@end ignore
9498@end itemize
9499
9500Range checking, if turned on, is done on mathematical operations. Array
9501indices are not checked, since they are often used to index a pointer
9502that is not itself an array.
c906108c 9503
6d2ebf8b 9504@node Debugging C
c906108c 9505@subsubsection @value{GDBN} and C
c906108c
SS
9506
9507The @code{set print union} and @code{show print union} commands apply to
9508the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9509inside a @code{struct} or @code{class} is also printed. Otherwise, it
9510appears as @samp{@{...@}}.
c906108c
SS
9511
9512The @code{@@} operator aids in the debugging of dynamic arrays, formed
9513with pointers and a memory allocation function. @xref{Expressions,
9514,Expressions}.
9515
79a6e687
BW
9516@node Debugging C Plus Plus
9517@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9518
b37052ae 9519@cindex commands for C@t{++}
7a292a7a 9520
b37052ae
EZ
9521Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9522designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9523
9524@table @code
9525@cindex break in overloaded functions
9526@item @r{breakpoint menus}
9527When you want a breakpoint in a function whose name is overloaded,
9528@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9529you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9530
b37052ae 9531@cindex overloading in C@t{++}
c906108c
SS
9532@item rbreak @var{regex}
9533Setting breakpoints using regular expressions is helpful for setting
9534breakpoints on overloaded functions that are not members of any special
9535classes.
79a6e687 9536@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9537
b37052ae 9538@cindex C@t{++} exception handling
c906108c
SS
9539@item catch throw
9540@itemx catch catch
b37052ae 9541Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9542Catchpoints, , Setting Catchpoints}.
c906108c
SS
9543
9544@cindex inheritance
9545@item ptype @var{typename}
9546Print inheritance relationships as well as other information for type
9547@var{typename}.
9548@xref{Symbols, ,Examining the Symbol Table}.
9549
b37052ae 9550@cindex C@t{++} symbol display
c906108c
SS
9551@item set print demangle
9552@itemx show print demangle
9553@itemx set print asm-demangle
9554@itemx show print asm-demangle
b37052ae
EZ
9555Control whether C@t{++} symbols display in their source form, both when
9556displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9557@xref{Print Settings, ,Print Settings}.
c906108c
SS
9558
9559@item set print object
9560@itemx show print object
9561Choose whether to print derived (actual) or declared types of objects.
79a6e687 9562@xref{Print Settings, ,Print Settings}.
c906108c
SS
9563
9564@item set print vtbl
9565@itemx show print vtbl
9566Control the format for printing virtual function tables.
79a6e687 9567@xref{Print Settings, ,Print Settings}.
c906108c 9568(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9569ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9570
9571@kindex set overload-resolution
d4f3574e 9572@cindex overloaded functions, overload resolution
c906108c 9573@item set overload-resolution on
b37052ae 9574Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9575is on. For overloaded functions, @value{GDBN} evaluates the arguments
9576and searches for a function whose signature matches the argument types,
79a6e687
BW
9577using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9578Expressions, ,C@t{++} Expressions}, for details).
9579If it cannot find a match, it emits a message.
c906108c
SS
9580
9581@item set overload-resolution off
b37052ae 9582Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9583overloaded functions that are not class member functions, @value{GDBN}
9584chooses the first function of the specified name that it finds in the
9585symbol table, whether or not its arguments are of the correct type. For
9586overloaded functions that are class member functions, @value{GDBN}
9587searches for a function whose signature @emph{exactly} matches the
9588argument types.
c906108c 9589
9c16f35a
EZ
9590@kindex show overload-resolution
9591@item show overload-resolution
9592Show the current setting of overload resolution.
9593
c906108c
SS
9594@item @r{Overloaded symbol names}
9595You can specify a particular definition of an overloaded symbol, using
b37052ae 9596the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9597@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9598also use the @value{GDBN} command-line word completion facilities to list the
9599available choices, or to finish the type list for you.
79a6e687 9600@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9601@end table
c906108c 9602
b37303ee
AF
9603@node Objective-C
9604@subsection Objective-C
9605
9606@cindex Objective-C
9607This section provides information about some commands and command
721c2651
EZ
9608options that are useful for debugging Objective-C code. See also
9609@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9610few more commands specific to Objective-C support.
b37303ee
AF
9611
9612@menu
b383017d
RM
9613* Method Names in Commands::
9614* The Print Command with Objective-C::
b37303ee
AF
9615@end menu
9616
c8f4133a 9617@node Method Names in Commands
b37303ee
AF
9618@subsubsection Method Names in Commands
9619
9620The following commands have been extended to accept Objective-C method
9621names as line specifications:
9622
9623@kindex clear@r{, and Objective-C}
9624@kindex break@r{, and Objective-C}
9625@kindex info line@r{, and Objective-C}
9626@kindex jump@r{, and Objective-C}
9627@kindex list@r{, and Objective-C}
9628@itemize
9629@item @code{clear}
9630@item @code{break}
9631@item @code{info line}
9632@item @code{jump}
9633@item @code{list}
9634@end itemize
9635
9636A fully qualified Objective-C method name is specified as
9637
9638@smallexample
9639-[@var{Class} @var{methodName}]
9640@end smallexample
9641
c552b3bb
JM
9642where the minus sign is used to indicate an instance method and a
9643plus sign (not shown) is used to indicate a class method. The class
9644name @var{Class} and method name @var{methodName} are enclosed in
9645brackets, similar to the way messages are specified in Objective-C
9646source code. For example, to set a breakpoint at the @code{create}
9647instance method of class @code{Fruit} in the program currently being
9648debugged, enter:
b37303ee
AF
9649
9650@smallexample
9651break -[Fruit create]
9652@end smallexample
9653
9654To list ten program lines around the @code{initialize} class method,
9655enter:
9656
9657@smallexample
9658list +[NSText initialize]
9659@end smallexample
9660
c552b3bb
JM
9661In the current version of @value{GDBN}, the plus or minus sign is
9662required. In future versions of @value{GDBN}, the plus or minus
9663sign will be optional, but you can use it to narrow the search. It
9664is also possible to specify just a method name:
b37303ee
AF
9665
9666@smallexample
9667break create
9668@end smallexample
9669
9670You must specify the complete method name, including any colons. If
9671your program's source files contain more than one @code{create} method,
9672you'll be presented with a numbered list of classes that implement that
9673method. Indicate your choice by number, or type @samp{0} to exit if
9674none apply.
9675
9676As another example, to clear a breakpoint established at the
9677@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9678
9679@smallexample
9680clear -[NSWindow makeKeyAndOrderFront:]
9681@end smallexample
9682
9683@node The Print Command with Objective-C
9684@subsubsection The Print Command With Objective-C
721c2651 9685@cindex Objective-C, print objects
c552b3bb
JM
9686@kindex print-object
9687@kindex po @r{(@code{print-object})}
b37303ee 9688
c552b3bb 9689The print command has also been extended to accept methods. For example:
b37303ee
AF
9690
9691@smallexample
c552b3bb 9692print -[@var{object} hash]
b37303ee
AF
9693@end smallexample
9694
9695@cindex print an Objective-C object description
c552b3bb
JM
9696@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9697@noindent
9698will tell @value{GDBN} to send the @code{hash} message to @var{object}
9699and print the result. Also, an additional command has been added,
9700@code{print-object} or @code{po} for short, which is meant to print
9701the description of an object. However, this command may only work
9702with certain Objective-C libraries that have a particular hook
9703function, @code{_NSPrintForDebugger}, defined.
b37303ee 9704
09d4efe1
EZ
9705@node Fortran
9706@subsection Fortran
9707@cindex Fortran-specific support in @value{GDBN}
9708
814e32d7
WZ
9709@value{GDBN} can be used to debug programs written in Fortran, but it
9710currently supports only the features of Fortran 77 language.
9711
9712@cindex trailing underscore, in Fortran symbols
9713Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9714among them) append an underscore to the names of variables and
9715functions. When you debug programs compiled by those compilers, you
9716will need to refer to variables and functions with a trailing
9717underscore.
9718
9719@menu
9720* Fortran Operators:: Fortran operators and expressions
9721* Fortran Defaults:: Default settings for Fortran
79a6e687 9722* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9723@end menu
9724
9725@node Fortran Operators
79a6e687 9726@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9727
9728@cindex Fortran operators and expressions
9729
9730Operators must be defined on values of specific types. For instance,
9731@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9732arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9733
9734@table @code
9735@item **
9736The exponentiation operator. It raises the first operand to the power
9737of the second one.
9738
9739@item :
9740The range operator. Normally used in the form of array(low:high) to
9741represent a section of array.
9742@end table
9743
9744@node Fortran Defaults
9745@subsubsection Fortran Defaults
9746
9747@cindex Fortran Defaults
9748
9749Fortran symbols are usually case-insensitive, so @value{GDBN} by
9750default uses case-insensitive matches for Fortran symbols. You can
9751change that with the @samp{set case-insensitive} command, see
9752@ref{Symbols}, for the details.
9753
79a6e687
BW
9754@node Special Fortran Commands
9755@subsubsection Special Fortran Commands
814e32d7
WZ
9756
9757@cindex Special Fortran commands
9758
db2e3e2e
BW
9759@value{GDBN} has some commands to support Fortran-specific features,
9760such as displaying common blocks.
814e32d7 9761
09d4efe1
EZ
9762@table @code
9763@cindex @code{COMMON} blocks, Fortran
9764@kindex info common
9765@item info common @r{[}@var{common-name}@r{]}
9766This command prints the values contained in the Fortran @code{COMMON}
9767block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9768all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9769printed.
9770@end table
9771
9c16f35a
EZ
9772@node Pascal
9773@subsection Pascal
9774
9775@cindex Pascal support in @value{GDBN}, limitations
9776Debugging Pascal programs which use sets, subranges, file variables, or
9777nested functions does not currently work. @value{GDBN} does not support
9778entering expressions, printing values, or similar features using Pascal
9779syntax.
9780
9781The Pascal-specific command @code{set print pascal_static-members}
9782controls whether static members of Pascal objects are displayed.
9783@xref{Print Settings, pascal_static-members}.
9784
09d4efe1 9785@node Modula-2
c906108c 9786@subsection Modula-2
7a292a7a 9787
d4f3574e 9788@cindex Modula-2, @value{GDBN} support
c906108c
SS
9789
9790The extensions made to @value{GDBN} to support Modula-2 only support
9791output from the @sc{gnu} Modula-2 compiler (which is currently being
9792developed). Other Modula-2 compilers are not currently supported, and
9793attempting to debug executables produced by them is most likely
9794to give an error as @value{GDBN} reads in the executable's symbol
9795table.
9796
9797@cindex expressions in Modula-2
9798@menu
9799* M2 Operators:: Built-in operators
9800* Built-In Func/Proc:: Built-in functions and procedures
9801* M2 Constants:: Modula-2 constants
72019c9c 9802* M2 Types:: Modula-2 types
c906108c
SS
9803* M2 Defaults:: Default settings for Modula-2
9804* Deviations:: Deviations from standard Modula-2
9805* M2 Checks:: Modula-2 type and range checks
9806* M2 Scope:: The scope operators @code{::} and @code{.}
9807* GDB/M2:: @value{GDBN} and Modula-2
9808@end menu
9809
6d2ebf8b 9810@node M2 Operators
c906108c
SS
9811@subsubsection Operators
9812@cindex Modula-2 operators
9813
9814Operators must be defined on values of specific types. For instance,
9815@code{+} is defined on numbers, but not on structures. Operators are
9816often defined on groups of types. For the purposes of Modula-2, the
9817following definitions hold:
9818
9819@itemize @bullet
9820
9821@item
9822@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9823their subranges.
9824
9825@item
9826@emph{Character types} consist of @code{CHAR} and its subranges.
9827
9828@item
9829@emph{Floating-point types} consist of @code{REAL}.
9830
9831@item
9832@emph{Pointer types} consist of anything declared as @code{POINTER TO
9833@var{type}}.
9834
9835@item
9836@emph{Scalar types} consist of all of the above.
9837
9838@item
9839@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9840
9841@item
9842@emph{Boolean types} consist of @code{BOOLEAN}.
9843@end itemize
9844
9845@noindent
9846The following operators are supported, and appear in order of
9847increasing precedence:
9848
9849@table @code
9850@item ,
9851Function argument or array index separator.
9852
9853@item :=
9854Assignment. The value of @var{var} @code{:=} @var{value} is
9855@var{value}.
9856
9857@item <@r{, }>
9858Less than, greater than on integral, floating-point, or enumerated
9859types.
9860
9861@item <=@r{, }>=
96a2c332 9862Less than or equal to, greater than or equal to
c906108c
SS
9863on integral, floating-point and enumerated types, or set inclusion on
9864set types. Same precedence as @code{<}.
9865
9866@item =@r{, }<>@r{, }#
9867Equality and two ways of expressing inequality, valid on scalar types.
9868Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9869available for inequality, since @code{#} conflicts with the script
9870comment character.
9871
9872@item IN
9873Set membership. Defined on set types and the types of their members.
9874Same precedence as @code{<}.
9875
9876@item OR
9877Boolean disjunction. Defined on boolean types.
9878
9879@item AND@r{, }&
d4f3574e 9880Boolean conjunction. Defined on boolean types.
c906108c
SS
9881
9882@item @@
9883The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9884
9885@item +@r{, }-
9886Addition and subtraction on integral and floating-point types, or union
9887and difference on set types.
9888
9889@item *
9890Multiplication on integral and floating-point types, or set intersection
9891on set types.
9892
9893@item /
9894Division on floating-point types, or symmetric set difference on set
9895types. Same precedence as @code{*}.
9896
9897@item DIV@r{, }MOD
9898Integer division and remainder. Defined on integral types. Same
9899precedence as @code{*}.
9900
9901@item -
9902Negative. Defined on @code{INTEGER} and @code{REAL} data.
9903
9904@item ^
9905Pointer dereferencing. Defined on pointer types.
9906
9907@item NOT
9908Boolean negation. Defined on boolean types. Same precedence as
9909@code{^}.
9910
9911@item .
9912@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9913precedence as @code{^}.
9914
9915@item []
9916Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9917
9918@item ()
9919Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
9920as @code{^}.
9921
9922@item ::@r{, }.
9923@value{GDBN} and Modula-2 scope operators.
9924@end table
9925
9926@quotation
72019c9c 9927@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
9928treats the use of the operator @code{IN}, or the use of operators
9929@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9930@code{<=}, and @code{>=} on sets as an error.
9931@end quotation
9932
cb51c4e0 9933
6d2ebf8b 9934@node Built-In Func/Proc
79a6e687 9935@subsubsection Built-in Functions and Procedures
cb51c4e0 9936@cindex Modula-2 built-ins
c906108c
SS
9937
9938Modula-2 also makes available several built-in procedures and functions.
9939In describing these, the following metavariables are used:
9940
9941@table @var
9942
9943@item a
9944represents an @code{ARRAY} variable.
9945
9946@item c
9947represents a @code{CHAR} constant or variable.
9948
9949@item i
9950represents a variable or constant of integral type.
9951
9952@item m
9953represents an identifier that belongs to a set. Generally used in the
9954same function with the metavariable @var{s}. The type of @var{s} should
9955be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
9956
9957@item n
9958represents a variable or constant of integral or floating-point type.
9959
9960@item r
9961represents a variable or constant of floating-point type.
9962
9963@item t
9964represents a type.
9965
9966@item v
9967represents a variable.
9968
9969@item x
9970represents a variable or constant of one of many types. See the
9971explanation of the function for details.
9972@end table
9973
9974All Modula-2 built-in procedures also return a result, described below.
9975
9976@table @code
9977@item ABS(@var{n})
9978Returns the absolute value of @var{n}.
9979
9980@item CAP(@var{c})
9981If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 9982equivalent, otherwise it returns its argument.
c906108c
SS
9983
9984@item CHR(@var{i})
9985Returns the character whose ordinal value is @var{i}.
9986
9987@item DEC(@var{v})
c3f6f71d 9988Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
9989
9990@item DEC(@var{v},@var{i})
9991Decrements the value in the variable @var{v} by @var{i}. Returns the
9992new value.
9993
9994@item EXCL(@var{m},@var{s})
9995Removes the element @var{m} from the set @var{s}. Returns the new
9996set.
9997
9998@item FLOAT(@var{i})
9999Returns the floating point equivalent of the integer @var{i}.
10000
10001@item HIGH(@var{a})
10002Returns the index of the last member of @var{a}.
10003
10004@item INC(@var{v})
c3f6f71d 10005Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10006
10007@item INC(@var{v},@var{i})
10008Increments the value in the variable @var{v} by @var{i}. Returns the
10009new value.
10010
10011@item INCL(@var{m},@var{s})
10012Adds the element @var{m} to the set @var{s} if it is not already
10013there. Returns the new set.
10014
10015@item MAX(@var{t})
10016Returns the maximum value of the type @var{t}.
10017
10018@item MIN(@var{t})
10019Returns the minimum value of the type @var{t}.
10020
10021@item ODD(@var{i})
10022Returns boolean TRUE if @var{i} is an odd number.
10023
10024@item ORD(@var{x})
10025Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10026value of a character is its @sc{ascii} value (on machines supporting the
10027@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10028integral, character and enumerated types.
10029
10030@item SIZE(@var{x})
10031Returns the size of its argument. @var{x} can be a variable or a type.
10032
10033@item TRUNC(@var{r})
10034Returns the integral part of @var{r}.
10035
844781a1
GM
10036@item TSIZE(@var{x})
10037Returns the size of its argument. @var{x} can be a variable or a type.
10038
c906108c
SS
10039@item VAL(@var{t},@var{i})
10040Returns the member of the type @var{t} whose ordinal value is @var{i}.
10041@end table
10042
10043@quotation
10044@emph{Warning:} Sets and their operations are not yet supported, so
10045@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10046an error.
10047@end quotation
10048
10049@cindex Modula-2 constants
6d2ebf8b 10050@node M2 Constants
c906108c
SS
10051@subsubsection Constants
10052
10053@value{GDBN} allows you to express the constants of Modula-2 in the following
10054ways:
10055
10056@itemize @bullet
10057
10058@item
10059Integer constants are simply a sequence of digits. When used in an
10060expression, a constant is interpreted to be type-compatible with the
10061rest of the expression. Hexadecimal integers are specified by a
10062trailing @samp{H}, and octal integers by a trailing @samp{B}.
10063
10064@item
10065Floating point constants appear as a sequence of digits, followed by a
10066decimal point and another sequence of digits. An optional exponent can
10067then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10068@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10069digits of the floating point constant must be valid decimal (base 10)
10070digits.
10071
10072@item
10073Character constants consist of a single character enclosed by a pair of
10074like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10075also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10076followed by a @samp{C}.
10077
10078@item
10079String constants consist of a sequence of characters enclosed by a
10080pair of like quotes, either single (@code{'}) or double (@code{"}).
10081Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10082Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10083sequences.
10084
10085@item
10086Enumerated constants consist of an enumerated identifier.
10087
10088@item
10089Boolean constants consist of the identifiers @code{TRUE} and
10090@code{FALSE}.
10091
10092@item
10093Pointer constants consist of integral values only.
10094
10095@item
10096Set constants are not yet supported.
10097@end itemize
10098
72019c9c
GM
10099@node M2 Types
10100@subsubsection Modula-2 Types
10101@cindex Modula-2 types
10102
10103Currently @value{GDBN} can print the following data types in Modula-2
10104syntax: array types, record types, set types, pointer types, procedure
10105types, enumerated types, subrange types and base types. You can also
10106print the contents of variables declared using these type.
10107This section gives a number of simple source code examples together with
10108sample @value{GDBN} sessions.
10109
10110The first example contains the following section of code:
10111
10112@smallexample
10113VAR
10114 s: SET OF CHAR ;
10115 r: [20..40] ;
10116@end smallexample
10117
10118@noindent
10119and you can request @value{GDBN} to interrogate the type and value of
10120@code{r} and @code{s}.
10121
10122@smallexample
10123(@value{GDBP}) print s
10124@{'A'..'C', 'Z'@}
10125(@value{GDBP}) ptype s
10126SET OF CHAR
10127(@value{GDBP}) print r
1012821
10129(@value{GDBP}) ptype r
10130[20..40]
10131@end smallexample
10132
10133@noindent
10134Likewise if your source code declares @code{s} as:
10135
10136@smallexample
10137VAR
10138 s: SET ['A'..'Z'] ;
10139@end smallexample
10140
10141@noindent
10142then you may query the type of @code{s} by:
10143
10144@smallexample
10145(@value{GDBP}) ptype s
10146type = SET ['A'..'Z']
10147@end smallexample
10148
10149@noindent
10150Note that at present you cannot interactively manipulate set
10151expressions using the debugger.
10152
10153The following example shows how you might declare an array in Modula-2
10154and how you can interact with @value{GDBN} to print its type and contents:
10155
10156@smallexample
10157VAR
10158 s: ARRAY [-10..10] OF CHAR ;
10159@end smallexample
10160
10161@smallexample
10162(@value{GDBP}) ptype s
10163ARRAY [-10..10] OF CHAR
10164@end smallexample
10165
10166Note that the array handling is not yet complete and although the type
10167is printed correctly, expression handling still assumes that all
10168arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10169above.
72019c9c
GM
10170
10171Here are some more type related Modula-2 examples:
10172
10173@smallexample
10174TYPE
10175 colour = (blue, red, yellow, green) ;
10176 t = [blue..yellow] ;
10177VAR
10178 s: t ;
10179BEGIN
10180 s := blue ;
10181@end smallexample
10182
10183@noindent
10184The @value{GDBN} interaction shows how you can query the data type
10185and value of a variable.
10186
10187@smallexample
10188(@value{GDBP}) print s
10189$1 = blue
10190(@value{GDBP}) ptype t
10191type = [blue..yellow]
10192@end smallexample
10193
10194@noindent
10195In this example a Modula-2 array is declared and its contents
10196displayed. Observe that the contents are written in the same way as
10197their @code{C} counterparts.
10198
10199@smallexample
10200VAR
10201 s: ARRAY [1..5] OF CARDINAL ;
10202BEGIN
10203 s[1] := 1 ;
10204@end smallexample
10205
10206@smallexample
10207(@value{GDBP}) print s
10208$1 = @{1, 0, 0, 0, 0@}
10209(@value{GDBP}) ptype s
10210type = ARRAY [1..5] OF CARDINAL
10211@end smallexample
10212
10213The Modula-2 language interface to @value{GDBN} also understands
10214pointer types as shown in this example:
10215
10216@smallexample
10217VAR
10218 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10219BEGIN
10220 NEW(s) ;
10221 s^[1] := 1 ;
10222@end smallexample
10223
10224@noindent
10225and you can request that @value{GDBN} describes the type of @code{s}.
10226
10227@smallexample
10228(@value{GDBP}) ptype s
10229type = POINTER TO ARRAY [1..5] OF CARDINAL
10230@end smallexample
10231
10232@value{GDBN} handles compound types as we can see in this example.
10233Here we combine array types, record types, pointer types and subrange
10234types:
10235
10236@smallexample
10237TYPE
10238 foo = RECORD
10239 f1: CARDINAL ;
10240 f2: CHAR ;
10241 f3: myarray ;
10242 END ;
10243
10244 myarray = ARRAY myrange OF CARDINAL ;
10245 myrange = [-2..2] ;
10246VAR
10247 s: POINTER TO ARRAY myrange OF foo ;
10248@end smallexample
10249
10250@noindent
10251and you can ask @value{GDBN} to describe the type of @code{s} as shown
10252below.
10253
10254@smallexample
10255(@value{GDBP}) ptype s
10256type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10257 f1 : CARDINAL;
10258 f2 : CHAR;
10259 f3 : ARRAY [-2..2] OF CARDINAL;
10260END
10261@end smallexample
10262
6d2ebf8b 10263@node M2 Defaults
79a6e687 10264@subsubsection Modula-2 Defaults
c906108c
SS
10265@cindex Modula-2 defaults
10266
10267If type and range checking are set automatically by @value{GDBN}, they
10268both default to @code{on} whenever the working language changes to
d4f3574e 10269Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10270selected the working language.
10271
10272If you allow @value{GDBN} to set the language automatically, then entering
10273code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10274working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10275Infer the Source Language}, for further details.
c906108c 10276
6d2ebf8b 10277@node Deviations
79a6e687 10278@subsubsection Deviations from Standard Modula-2
c906108c
SS
10279@cindex Modula-2, deviations from
10280
10281A few changes have been made to make Modula-2 programs easier to debug.
10282This is done primarily via loosening its type strictness:
10283
10284@itemize @bullet
10285@item
10286Unlike in standard Modula-2, pointer constants can be formed by
10287integers. This allows you to modify pointer variables during
10288debugging. (In standard Modula-2, the actual address contained in a
10289pointer variable is hidden from you; it can only be modified
10290through direct assignment to another pointer variable or expression that
10291returned a pointer.)
10292
10293@item
10294C escape sequences can be used in strings and characters to represent
10295non-printable characters. @value{GDBN} prints out strings with these
10296escape sequences embedded. Single non-printable characters are
10297printed using the @samp{CHR(@var{nnn})} format.
10298
10299@item
10300The assignment operator (@code{:=}) returns the value of its right-hand
10301argument.
10302
10303@item
10304All built-in procedures both modify @emph{and} return their argument.
10305@end itemize
10306
6d2ebf8b 10307@node M2 Checks
79a6e687 10308@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10309@cindex Modula-2 checks
10310
10311@quotation
10312@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10313range checking.
10314@end quotation
10315@c FIXME remove warning when type/range checks added
10316
10317@value{GDBN} considers two Modula-2 variables type equivalent if:
10318
10319@itemize @bullet
10320@item
10321They are of types that have been declared equivalent via a @code{TYPE
10322@var{t1} = @var{t2}} statement
10323
10324@item
10325They have been declared on the same line. (Note: This is true of the
10326@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10327@end itemize
10328
10329As long as type checking is enabled, any attempt to combine variables
10330whose types are not equivalent is an error.
10331
10332Range checking is done on all mathematical operations, assignment, array
10333index bounds, and all built-in functions and procedures.
10334
6d2ebf8b 10335@node M2 Scope
79a6e687 10336@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10337@cindex scope
41afff9a 10338@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10339@cindex colon, doubled as scope operator
10340@ifinfo
41afff9a 10341@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10342@c Info cannot handle :: but TeX can.
10343@end ifinfo
10344@iftex
41afff9a 10345@vindex ::@r{, in Modula-2}
c906108c
SS
10346@end iftex
10347
10348There are a few subtle differences between the Modula-2 scope operator
10349(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10350similar syntax:
10351
474c8240 10352@smallexample
c906108c
SS
10353
10354@var{module} . @var{id}
10355@var{scope} :: @var{id}
474c8240 10356@end smallexample
c906108c
SS
10357
10358@noindent
10359where @var{scope} is the name of a module or a procedure,
10360@var{module} the name of a module, and @var{id} is any declared
10361identifier within your program, except another module.
10362
10363Using the @code{::} operator makes @value{GDBN} search the scope
10364specified by @var{scope} for the identifier @var{id}. If it is not
10365found in the specified scope, then @value{GDBN} searches all scopes
10366enclosing the one specified by @var{scope}.
10367
10368Using the @code{.} operator makes @value{GDBN} search the current scope for
10369the identifier specified by @var{id} that was imported from the
10370definition module specified by @var{module}. With this operator, it is
10371an error if the identifier @var{id} was not imported from definition
10372module @var{module}, or if @var{id} is not an identifier in
10373@var{module}.
10374
6d2ebf8b 10375@node GDB/M2
c906108c
SS
10376@subsubsection @value{GDBN} and Modula-2
10377
10378Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10379Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10380specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10381@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10382apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10383analogue in Modula-2.
10384
10385The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10386with any language, is not useful with Modula-2. Its
c906108c 10387intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10388created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10389address can be specified by an integral constant, the construct
d4f3574e 10390@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10391
10392@cindex @code{#} in Modula-2
10393In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10394interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10395
e07c999f
PH
10396@node Ada
10397@subsection Ada
10398@cindex Ada
10399
10400The extensions made to @value{GDBN} for Ada only support
10401output from the @sc{gnu} Ada (GNAT) compiler.
10402Other Ada compilers are not currently supported, and
10403attempting to debug executables produced by them is most likely
10404to be difficult.
10405
10406
10407@cindex expressions in Ada
10408@menu
10409* Ada Mode Intro:: General remarks on the Ada syntax
10410 and semantics supported by Ada mode
10411 in @value{GDBN}.
10412* Omissions from Ada:: Restrictions on the Ada expression syntax.
10413* Additions to Ada:: Extensions of the Ada expression syntax.
10414* Stopping Before Main Program:: Debugging the program during elaboration.
10415* Ada Glitches:: Known peculiarities of Ada mode.
10416@end menu
10417
10418@node Ada Mode Intro
10419@subsubsection Introduction
10420@cindex Ada mode, general
10421
10422The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10423syntax, with some extensions.
10424The philosophy behind the design of this subset is
10425
10426@itemize @bullet
10427@item
10428That @value{GDBN} should provide basic literals and access to operations for
10429arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10430leaving more sophisticated computations to subprograms written into the
10431program (which therefore may be called from @value{GDBN}).
10432
10433@item
10434That type safety and strict adherence to Ada language restrictions
10435are not particularly important to the @value{GDBN} user.
10436
10437@item
10438That brevity is important to the @value{GDBN} user.
10439@end itemize
10440
10441Thus, for brevity, the debugger acts as if there were
10442implicit @code{with} and @code{use} clauses in effect for all user-written
10443packages, making it unnecessary to fully qualify most names with
10444their packages, regardless of context. Where this causes ambiguity,
10445@value{GDBN} asks the user's intent.
10446
10447The debugger will start in Ada mode if it detects an Ada main program.
10448As for other languages, it will enter Ada mode when stopped in a program that
10449was translated from an Ada source file.
10450
10451While in Ada mode, you may use `@t{--}' for comments. This is useful
10452mostly for documenting command files. The standard @value{GDBN} comment
10453(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10454middle (to allow based literals).
10455
10456The debugger supports limited overloading. Given a subprogram call in which
10457the function symbol has multiple definitions, it will use the number of
10458actual parameters and some information about their types to attempt to narrow
10459the set of definitions. It also makes very limited use of context, preferring
10460procedures to functions in the context of the @code{call} command, and
10461functions to procedures elsewhere.
10462
10463@node Omissions from Ada
10464@subsubsection Omissions from Ada
10465@cindex Ada, omissions from
10466
10467Here are the notable omissions from the subset:
10468
10469@itemize @bullet
10470@item
10471Only a subset of the attributes are supported:
10472
10473@itemize @minus
10474@item
10475@t{'First}, @t{'Last}, and @t{'Length}
10476 on array objects (not on types and subtypes).
10477
10478@item
10479@t{'Min} and @t{'Max}.
10480
10481@item
10482@t{'Pos} and @t{'Val}.
10483
10484@item
10485@t{'Tag}.
10486
10487@item
10488@t{'Range} on array objects (not subtypes), but only as the right
10489operand of the membership (@code{in}) operator.
10490
10491@item
10492@t{'Access}, @t{'Unchecked_Access}, and
10493@t{'Unrestricted_Access} (a GNAT extension).
10494
10495@item
10496@t{'Address}.
10497@end itemize
10498
10499@item
10500The names in
10501@code{Characters.Latin_1} are not available and
10502concatenation is not implemented. Thus, escape characters in strings are
10503not currently available.
10504
10505@item
10506Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10507equality of representations. They will generally work correctly
10508for strings and arrays whose elements have integer or enumeration types.
10509They may not work correctly for arrays whose element
10510types have user-defined equality, for arrays of real values
10511(in particular, IEEE-conformant floating point, because of negative
10512zeroes and NaNs), and for arrays whose elements contain unused bits with
10513indeterminate values.
10514
10515@item
10516The other component-by-component array operations (@code{and}, @code{or},
10517@code{xor}, @code{not}, and relational tests other than equality)
10518are not implemented.
10519
10520@item
860701dc
PH
10521@cindex array aggregates (Ada)
10522@cindex record aggregates (Ada)
10523@cindex aggregates (Ada)
10524There is limited support for array and record aggregates. They are
10525permitted only on the right sides of assignments, as in these examples:
10526
10527@smallexample
10528set An_Array := (1, 2, 3, 4, 5, 6)
10529set An_Array := (1, others => 0)
10530set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10531set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10532set A_Record := (1, "Peter", True);
10533set A_Record := (Name => "Peter", Id => 1, Alive => True)
10534@end smallexample
10535
10536Changing a
10537discriminant's value by assigning an aggregate has an
10538undefined effect if that discriminant is used within the record.
10539However, you can first modify discriminants by directly assigning to
10540them (which normally would not be allowed in Ada), and then performing an
10541aggregate assignment. For example, given a variable @code{A_Rec}
10542declared to have a type such as:
10543
10544@smallexample
10545type Rec (Len : Small_Integer := 0) is record
10546 Id : Integer;
10547 Vals : IntArray (1 .. Len);
10548end record;
10549@end smallexample
10550
10551you can assign a value with a different size of @code{Vals} with two
10552assignments:
10553
10554@smallexample
10555set A_Rec.Len := 4
10556set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10557@end smallexample
10558
10559As this example also illustrates, @value{GDBN} is very loose about the usual
10560rules concerning aggregates. You may leave out some of the
10561components of an array or record aggregate (such as the @code{Len}
10562component in the assignment to @code{A_Rec} above); they will retain their
10563original values upon assignment. You may freely use dynamic values as
10564indices in component associations. You may even use overlapping or
10565redundant component associations, although which component values are
10566assigned in such cases is not defined.
e07c999f
PH
10567
10568@item
10569Calls to dispatching subprograms are not implemented.
10570
10571@item
10572The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10573than that of real Ada. It makes only limited use of the context in
10574which a subexpression appears to resolve its meaning, and it is much
10575looser in its rules for allowing type matches. As a result, some
10576function calls will be ambiguous, and the user will be asked to choose
10577the proper resolution.
e07c999f
PH
10578
10579@item
10580The @code{new} operator is not implemented.
10581
10582@item
10583Entry calls are not implemented.
10584
10585@item
10586Aside from printing, arithmetic operations on the native VAX floating-point
10587formats are not supported.
10588
10589@item
10590It is not possible to slice a packed array.
10591@end itemize
10592
10593@node Additions to Ada
10594@subsubsection Additions to Ada
10595@cindex Ada, deviations from
10596
10597As it does for other languages, @value{GDBN} makes certain generic
10598extensions to Ada (@pxref{Expressions}):
10599
10600@itemize @bullet
10601@item
ae21e955
BW
10602If the expression @var{E} is a variable residing in memory (typically
10603a local variable or array element) and @var{N} is a positive integer,
10604then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10605@var{N}-1 adjacent variables following it in memory as an array. In
10606Ada, this operator is generally not necessary, since its prime use is
10607in displaying parts of an array, and slicing will usually do this in
10608Ada. However, there are occasional uses when debugging programs in
10609which certain debugging information has been optimized away.
e07c999f
PH
10610
10611@item
ae21e955
BW
10612@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10613appears in function or file @var{B}.'' When @var{B} is a file name,
10614you must typically surround it in single quotes.
e07c999f
PH
10615
10616@item
10617The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10618@var{type} that appears at address @var{addr}.''
10619
10620@item
10621A name starting with @samp{$} is a convenience variable
10622(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10623@end itemize
10624
ae21e955
BW
10625In addition, @value{GDBN} provides a few other shortcuts and outright
10626additions specific to Ada:
e07c999f
PH
10627
10628@itemize @bullet
10629@item
10630The assignment statement is allowed as an expression, returning
10631its right-hand operand as its value. Thus, you may enter
10632
10633@smallexample
10634set x := y + 3
10635print A(tmp := y + 1)
10636@end smallexample
10637
10638@item
10639The semicolon is allowed as an ``operator,'' returning as its value
10640the value of its right-hand operand.
10641This allows, for example,
10642complex conditional breaks:
10643
10644@smallexample
10645break f
10646condition 1 (report(i); k += 1; A(k) > 100)
10647@end smallexample
10648
10649@item
10650Rather than use catenation and symbolic character names to introduce special
10651characters into strings, one may instead use a special bracket notation,
10652which is also used to print strings. A sequence of characters of the form
10653@samp{["@var{XX}"]} within a string or character literal denotes the
10654(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10655sequence of characters @samp{["""]} also denotes a single quotation mark
10656in strings. For example,
10657@smallexample
10658 "One line.["0a"]Next line.["0a"]"
10659@end smallexample
10660@noindent
ae21e955
BW
10661contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10662after each period.
e07c999f
PH
10663
10664@item
10665The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10666@t{'Max} is optional (and is ignored in any case). For example, it is valid
10667to write
10668
10669@smallexample
10670print 'max(x, y)
10671@end smallexample
10672
10673@item
10674When printing arrays, @value{GDBN} uses positional notation when the
10675array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10676For example, a one-dimensional array of three integers with a lower bound
10677of 3 might print as
e07c999f
PH
10678
10679@smallexample
10680(3 => 10, 17, 1)
10681@end smallexample
10682
10683@noindent
10684That is, in contrast to valid Ada, only the first component has a @code{=>}
10685clause.
10686
10687@item
10688You may abbreviate attributes in expressions with any unique,
10689multi-character subsequence of
10690their names (an exact match gets preference).
10691For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10692in place of @t{a'length}.
10693
10694@item
10695@cindex quoting Ada internal identifiers
10696Since Ada is case-insensitive, the debugger normally maps identifiers you type
10697to lower case. The GNAT compiler uses upper-case characters for
10698some of its internal identifiers, which are normally of no interest to users.
10699For the rare occasions when you actually have to look at them,
10700enclose them in angle brackets to avoid the lower-case mapping.
10701For example,
10702@smallexample
10703@value{GDBP} print <JMPBUF_SAVE>[0]
10704@end smallexample
10705
10706@item
10707Printing an object of class-wide type or dereferencing an
10708access-to-class-wide value will display all the components of the object's
10709specific type (as indicated by its run-time tag). Likewise, component
10710selection on such a value will operate on the specific type of the
10711object.
10712
10713@end itemize
10714
10715@node Stopping Before Main Program
10716@subsubsection Stopping at the Very Beginning
10717
10718@cindex breakpointing Ada elaboration code
10719It is sometimes necessary to debug the program during elaboration, and
10720before reaching the main procedure.
10721As defined in the Ada Reference
10722Manual, the elaboration code is invoked from a procedure called
10723@code{adainit}. To run your program up to the beginning of
10724elaboration, simply use the following two commands:
10725@code{tbreak adainit} and @code{run}.
10726
10727@node Ada Glitches
10728@subsubsection Known Peculiarities of Ada Mode
10729@cindex Ada, problems
10730
10731Besides the omissions listed previously (@pxref{Omissions from Ada}),
10732we know of several problems with and limitations of Ada mode in
10733@value{GDBN},
10734some of which will be fixed with planned future releases of the debugger
10735and the GNU Ada compiler.
10736
10737@itemize @bullet
10738@item
10739Currently, the debugger
10740has insufficient information to determine whether certain pointers represent
10741pointers to objects or the objects themselves.
10742Thus, the user may have to tack an extra @code{.all} after an expression
10743to get it printed properly.
10744
10745@item
10746Static constants that the compiler chooses not to materialize as objects in
10747storage are invisible to the debugger.
10748
10749@item
10750Named parameter associations in function argument lists are ignored (the
10751argument lists are treated as positional).
10752
10753@item
10754Many useful library packages are currently invisible to the debugger.
10755
10756@item
10757Fixed-point arithmetic, conversions, input, and output is carried out using
10758floating-point arithmetic, and may give results that only approximate those on
10759the host machine.
10760
10761@item
10762The type of the @t{'Address} attribute may not be @code{System.Address}.
10763
10764@item
10765The GNAT compiler never generates the prefix @code{Standard} for any of
10766the standard symbols defined by the Ada language. @value{GDBN} knows about
10767this: it will strip the prefix from names when you use it, and will never
10768look for a name you have so qualified among local symbols, nor match against
10769symbols in other packages or subprograms. If you have
10770defined entities anywhere in your program other than parameters and
10771local variables whose simple names match names in @code{Standard},
10772GNAT's lack of qualification here can cause confusion. When this happens,
10773you can usually resolve the confusion
10774by qualifying the problematic names with package
10775@code{Standard} explicitly.
10776@end itemize
10777
79a6e687
BW
10778@node Unsupported Languages
10779@section Unsupported Languages
4e562065
JB
10780
10781@cindex unsupported languages
10782@cindex minimal language
10783In addition to the other fully-supported programming languages,
10784@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10785It does not represent a real programming language, but provides a set
10786of capabilities close to what the C or assembly languages provide.
10787This should allow most simple operations to be performed while debugging
10788an application that uses a language currently not supported by @value{GDBN}.
10789
10790If the language is set to @code{auto}, @value{GDBN} will automatically
10791select this language if the current frame corresponds to an unsupported
10792language.
10793
6d2ebf8b 10794@node Symbols
c906108c
SS
10795@chapter Examining the Symbol Table
10796
d4f3574e 10797The commands described in this chapter allow you to inquire about the
c906108c
SS
10798symbols (names of variables, functions and types) defined in your
10799program. This information is inherent in the text of your program and
10800does not change as your program executes. @value{GDBN} finds it in your
10801program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10802(@pxref{File Options, ,Choosing Files}), or by one of the
10803file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10804
10805@cindex symbol names
10806@cindex names of symbols
10807@cindex quoting names
10808Occasionally, you may need to refer to symbols that contain unusual
10809characters, which @value{GDBN} ordinarily treats as word delimiters. The
10810most frequent case is in referring to static variables in other
79a6e687 10811source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10812are recorded in object files as debugging symbols, but @value{GDBN} would
10813ordinarily parse a typical file name, like @file{foo.c}, as the three words
10814@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10815@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10816
474c8240 10817@smallexample
c906108c 10818p 'foo.c'::x
474c8240 10819@end smallexample
c906108c
SS
10820
10821@noindent
10822looks up the value of @code{x} in the scope of the file @file{foo.c}.
10823
10824@table @code
a8f24a35
EZ
10825@cindex case-insensitive symbol names
10826@cindex case sensitivity in symbol names
10827@kindex set case-sensitive
10828@item set case-sensitive on
10829@itemx set case-sensitive off
10830@itemx set case-sensitive auto
10831Normally, when @value{GDBN} looks up symbols, it matches their names
10832with case sensitivity determined by the current source language.
10833Occasionally, you may wish to control that. The command @code{set
10834case-sensitive} lets you do that by specifying @code{on} for
10835case-sensitive matches or @code{off} for case-insensitive ones. If
10836you specify @code{auto}, case sensitivity is reset to the default
10837suitable for the source language. The default is case-sensitive
10838matches for all languages except for Fortran, for which the default is
10839case-insensitive matches.
10840
9c16f35a
EZ
10841@kindex show case-sensitive
10842@item show case-sensitive
a8f24a35
EZ
10843This command shows the current setting of case sensitivity for symbols
10844lookups.
10845
c906108c 10846@kindex info address
b37052ae 10847@cindex address of a symbol
c906108c
SS
10848@item info address @var{symbol}
10849Describe where the data for @var{symbol} is stored. For a register
10850variable, this says which register it is kept in. For a non-register
10851local variable, this prints the stack-frame offset at which the variable
10852is always stored.
10853
10854Note the contrast with @samp{print &@var{symbol}}, which does not work
10855at all for a register variable, and for a stack local variable prints
10856the exact address of the current instantiation of the variable.
10857
3d67e040 10858@kindex info symbol
b37052ae 10859@cindex symbol from address
9c16f35a 10860@cindex closest symbol and offset for an address
3d67e040
EZ
10861@item info symbol @var{addr}
10862Print the name of a symbol which is stored at the address @var{addr}.
10863If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10864nearest symbol and an offset from it:
10865
474c8240 10866@smallexample
3d67e040
EZ
10867(@value{GDBP}) info symbol 0x54320
10868_initialize_vx + 396 in section .text
474c8240 10869@end smallexample
3d67e040
EZ
10870
10871@noindent
10872This is the opposite of the @code{info address} command. You can use
10873it to find out the name of a variable or a function given its address.
10874
c906108c 10875@kindex whatis
62f3a2ba
FF
10876@item whatis [@var{arg}]
10877Print the data type of @var{arg}, which can be either an expression or
10878a data type. With no argument, print the data type of @code{$}, the
10879last value in the value history. If @var{arg} is an expression, it is
10880not actually evaluated, and any side-effecting operations (such as
10881assignments or function calls) inside it do not take place. If
10882@var{arg} is a type name, it may be the name of a type or typedef, or
10883for C code it may have the form @samp{class @var{class-name}},
10884@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10885@samp{enum @var{enum-tag}}.
c906108c
SS
10886@xref{Expressions, ,Expressions}.
10887
c906108c 10888@kindex ptype
62f3a2ba
FF
10889@item ptype [@var{arg}]
10890@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10891detailed description of the type, instead of just the name of the type.
10892@xref{Expressions, ,Expressions}.
c906108c
SS
10893
10894For example, for this variable declaration:
10895
474c8240 10896@smallexample
c906108c 10897struct complex @{double real; double imag;@} v;
474c8240 10898@end smallexample
c906108c
SS
10899
10900@noindent
10901the two commands give this output:
10902
474c8240 10903@smallexample
c906108c
SS
10904@group
10905(@value{GDBP}) whatis v
10906type = struct complex
10907(@value{GDBP}) ptype v
10908type = struct complex @{
10909 double real;
10910 double imag;
10911@}
10912@end group
474c8240 10913@end smallexample
c906108c
SS
10914
10915@noindent
10916As with @code{whatis}, using @code{ptype} without an argument refers to
10917the type of @code{$}, the last value in the value history.
10918
ab1adacd
EZ
10919@cindex incomplete type
10920Sometimes, programs use opaque data types or incomplete specifications
10921of complex data structure. If the debug information included in the
10922program does not allow @value{GDBN} to display a full declaration of
10923the data type, it will say @samp{<incomplete type>}. For example,
10924given these declarations:
10925
10926@smallexample
10927 struct foo;
10928 struct foo *fooptr;
10929@end smallexample
10930
10931@noindent
10932but no definition for @code{struct foo} itself, @value{GDBN} will say:
10933
10934@smallexample
ddb50cd7 10935 (@value{GDBP}) ptype foo
ab1adacd
EZ
10936 $1 = <incomplete type>
10937@end smallexample
10938
10939@noindent
10940``Incomplete type'' is C terminology for data types that are not
10941completely specified.
10942
c906108c
SS
10943@kindex info types
10944@item info types @var{regexp}
10945@itemx info types
09d4efe1
EZ
10946Print a brief description of all types whose names match the regular
10947expression @var{regexp} (or all types in your program, if you supply
10948no argument). Each complete typename is matched as though it were a
10949complete line; thus, @samp{i type value} gives information on all
10950types in your program whose names include the string @code{value}, but
10951@samp{i type ^value$} gives information only on types whose complete
10952name is @code{value}.
c906108c
SS
10953
10954This command differs from @code{ptype} in two ways: first, like
10955@code{whatis}, it does not print a detailed description; second, it
10956lists all source files where a type is defined.
10957
b37052ae
EZ
10958@kindex info scope
10959@cindex local variables
09d4efe1 10960@item info scope @var{location}
b37052ae 10961List all the variables local to a particular scope. This command
09d4efe1
EZ
10962accepts a @var{location} argument---a function name, a source line, or
10963an address preceded by a @samp{*}, and prints all the variables local
10964to the scope defined by that location. For example:
b37052ae
EZ
10965
10966@smallexample
10967(@value{GDBP}) @b{info scope command_line_handler}
10968Scope for command_line_handler:
10969Symbol rl is an argument at stack/frame offset 8, length 4.
10970Symbol linebuffer is in static storage at address 0x150a18, length 4.
10971Symbol linelength is in static storage at address 0x150a1c, length 4.
10972Symbol p is a local variable in register $esi, length 4.
10973Symbol p1 is a local variable in register $ebx, length 4.
10974Symbol nline is a local variable in register $edx, length 4.
10975Symbol repeat is a local variable at frame offset -8, length 4.
10976@end smallexample
10977
f5c37c66
EZ
10978@noindent
10979This command is especially useful for determining what data to collect
10980during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
10981collect}.
10982
c906108c
SS
10983@kindex info source
10984@item info source
919d772c
JB
10985Show information about the current source file---that is, the source file for
10986the function containing the current point of execution:
10987@itemize @bullet
10988@item
10989the name of the source file, and the directory containing it,
10990@item
10991the directory it was compiled in,
10992@item
10993its length, in lines,
10994@item
10995which programming language it is written in,
10996@item
10997whether the executable includes debugging information for that file, and
10998if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
10999@item
11000whether the debugging information includes information about
11001preprocessor macros.
11002@end itemize
11003
c906108c
SS
11004
11005@kindex info sources
11006@item info sources
11007Print the names of all source files in your program for which there is
11008debugging information, organized into two lists: files whose symbols
11009have already been read, and files whose symbols will be read when needed.
11010
11011@kindex info functions
11012@item info functions
11013Print the names and data types of all defined functions.
11014
11015@item info functions @var{regexp}
11016Print the names and data types of all defined functions
11017whose names contain a match for regular expression @var{regexp}.
11018Thus, @samp{info fun step} finds all functions whose names
11019include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11020start with @code{step}. If a function name contains characters
c1468174 11021that conflict with the regular expression language (e.g.@:
1c5dfdad 11022@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11023
11024@kindex info variables
11025@item info variables
11026Print the names and data types of all variables that are declared
6ca652b0 11027outside of functions (i.e.@: excluding local variables).
c906108c
SS
11028
11029@item info variables @var{regexp}
11030Print the names and data types of all variables (except for local
11031variables) whose names contain a match for regular expression
11032@var{regexp}.
11033
b37303ee 11034@kindex info classes
721c2651 11035@cindex Objective-C, classes and selectors
b37303ee
AF
11036@item info classes
11037@itemx info classes @var{regexp}
11038Display all Objective-C classes in your program, or
11039(with the @var{regexp} argument) all those matching a particular regular
11040expression.
11041
11042@kindex info selectors
11043@item info selectors
11044@itemx info selectors @var{regexp}
11045Display all Objective-C selectors in your program, or
11046(with the @var{regexp} argument) all those matching a particular regular
11047expression.
11048
c906108c
SS
11049@ignore
11050This was never implemented.
11051@kindex info methods
11052@item info methods
11053@itemx info methods @var{regexp}
11054The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11055methods within C@t{++} program, or (with the @var{regexp} argument) a
11056specific set of methods found in the various C@t{++} classes. Many
11057C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11058from the @code{ptype} command can be overwhelming and hard to use. The
11059@code{info-methods} command filters the methods, printing only those
11060which match the regular-expression @var{regexp}.
11061@end ignore
11062
c906108c
SS
11063@cindex reloading symbols
11064Some systems allow individual object files that make up your program to
7a292a7a
SS
11065be replaced without stopping and restarting your program. For example,
11066in VxWorks you can simply recompile a defective object file and keep on
11067running. If you are running on one of these systems, you can allow
11068@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11069
11070@table @code
11071@kindex set symbol-reloading
11072@item set symbol-reloading on
11073Replace symbol definitions for the corresponding source file when an
11074object file with a particular name is seen again.
11075
11076@item set symbol-reloading off
6d2ebf8b
SS
11077Do not replace symbol definitions when encountering object files of the
11078same name more than once. This is the default state; if you are not
11079running on a system that permits automatic relinking of modules, you
11080should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11081may discard symbols when linking large programs, that may contain
11082several modules (from different directories or libraries) with the same
11083name.
c906108c
SS
11084
11085@kindex show symbol-reloading
11086@item show symbol-reloading
11087Show the current @code{on} or @code{off} setting.
11088@end table
c906108c 11089
9c16f35a 11090@cindex opaque data types
c906108c
SS
11091@kindex set opaque-type-resolution
11092@item set opaque-type-resolution on
11093Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11094declared as a pointer to a @code{struct}, @code{class}, or
11095@code{union}---for example, @code{struct MyType *}---that is used in one
11096source file although the full declaration of @code{struct MyType} is in
11097another source file. The default is on.
11098
11099A change in the setting of this subcommand will not take effect until
11100the next time symbols for a file are loaded.
11101
11102@item set opaque-type-resolution off
11103Tell @value{GDBN} not to resolve opaque types. In this case, the type
11104is printed as follows:
11105@smallexample
11106@{<no data fields>@}
11107@end smallexample
11108
11109@kindex show opaque-type-resolution
11110@item show opaque-type-resolution
11111Show whether opaque types are resolved or not.
c906108c
SS
11112
11113@kindex maint print symbols
11114@cindex symbol dump
11115@kindex maint print psymbols
11116@cindex partial symbol dump
11117@item maint print symbols @var{filename}
11118@itemx maint print psymbols @var{filename}
11119@itemx maint print msymbols @var{filename}
11120Write a dump of debugging symbol data into the file @var{filename}.
11121These commands are used to debug the @value{GDBN} symbol-reading code. Only
11122symbols with debugging data are included. If you use @samp{maint print
11123symbols}, @value{GDBN} includes all the symbols for which it has already
11124collected full details: that is, @var{filename} reflects symbols for
11125only those files whose symbols @value{GDBN} has read. You can use the
11126command @code{info sources} to find out which files these are. If you
11127use @samp{maint print psymbols} instead, the dump shows information about
11128symbols that @value{GDBN} only knows partially---that is, symbols defined in
11129files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11130@samp{maint print msymbols} dumps just the minimal symbol information
11131required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11132@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11133@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11134
5e7b2f39
JB
11135@kindex maint info symtabs
11136@kindex maint info psymtabs
44ea7b70
JB
11137@cindex listing @value{GDBN}'s internal symbol tables
11138@cindex symbol tables, listing @value{GDBN}'s internal
11139@cindex full symbol tables, listing @value{GDBN}'s internal
11140@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11141@item maint info symtabs @r{[} @var{regexp} @r{]}
11142@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11143
11144List the @code{struct symtab} or @code{struct partial_symtab}
11145structures whose names match @var{regexp}. If @var{regexp} is not
11146given, list them all. The output includes expressions which you can
11147copy into a @value{GDBN} debugging this one to examine a particular
11148structure in more detail. For example:
11149
11150@smallexample
5e7b2f39 11151(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11152@{ objfile /home/gnu/build/gdb/gdb
11153 ((struct objfile *) 0x82e69d0)
b383017d 11154 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11155 ((struct partial_symtab *) 0x8474b10)
11156 readin no
11157 fullname (null)
11158 text addresses 0x814d3c8 -- 0x8158074
11159 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11160 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11161 dependencies (none)
11162 @}
11163@}
5e7b2f39 11164(@value{GDBP}) maint info symtabs
44ea7b70
JB
11165(@value{GDBP})
11166@end smallexample
11167@noindent
11168We see that there is one partial symbol table whose filename contains
11169the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11170and we see that @value{GDBN} has not read in any symtabs yet at all.
11171If we set a breakpoint on a function, that will cause @value{GDBN} to
11172read the symtab for the compilation unit containing that function:
11173
11174@smallexample
11175(@value{GDBP}) break dwarf2_psymtab_to_symtab
11176Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11177line 1574.
5e7b2f39 11178(@value{GDBP}) maint info symtabs
b383017d 11179@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11180 ((struct objfile *) 0x82e69d0)
b383017d 11181 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11182 ((struct symtab *) 0x86c1f38)
11183 dirname (null)
11184 fullname (null)
11185 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11186 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11187 debugformat DWARF 2
11188 @}
11189@}
b383017d 11190(@value{GDBP})
44ea7b70 11191@end smallexample
c906108c
SS
11192@end table
11193
44ea7b70 11194
6d2ebf8b 11195@node Altering
c906108c
SS
11196@chapter Altering Execution
11197
11198Once you think you have found an error in your program, you might want to
11199find out for certain whether correcting the apparent error would lead to
11200correct results in the rest of the run. You can find the answer by
11201experiment, using the @value{GDBN} features for altering execution of the
11202program.
11203
11204For example, you can store new values into variables or memory
7a292a7a
SS
11205locations, give your program a signal, restart it at a different
11206address, or even return prematurely from a function.
c906108c
SS
11207
11208@menu
11209* Assignment:: Assignment to variables
11210* Jumping:: Continuing at a different address
c906108c 11211* Signaling:: Giving your program a signal
c906108c
SS
11212* Returning:: Returning from a function
11213* Calling:: Calling your program's functions
11214* Patching:: Patching your program
11215@end menu
11216
6d2ebf8b 11217@node Assignment
79a6e687 11218@section Assignment to Variables
c906108c
SS
11219
11220@cindex assignment
11221@cindex setting variables
11222To alter the value of a variable, evaluate an assignment expression.
11223@xref{Expressions, ,Expressions}. For example,
11224
474c8240 11225@smallexample
c906108c 11226print x=4
474c8240 11227@end smallexample
c906108c
SS
11228
11229@noindent
11230stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11231value of the assignment expression (which is 4).
c906108c
SS
11232@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11233information on operators in supported languages.
c906108c
SS
11234
11235@kindex set variable
11236@cindex variables, setting
11237If you are not interested in seeing the value of the assignment, use the
11238@code{set} command instead of the @code{print} command. @code{set} is
11239really the same as @code{print} except that the expression's value is
11240not printed and is not put in the value history (@pxref{Value History,
79a6e687 11241,Value History}). The expression is evaluated only for its effects.
c906108c 11242
c906108c
SS
11243If the beginning of the argument string of the @code{set} command
11244appears identical to a @code{set} subcommand, use the @code{set
11245variable} command instead of just @code{set}. This command is identical
11246to @code{set} except for its lack of subcommands. For example, if your
11247program has a variable @code{width}, you get an error if you try to set
11248a new value with just @samp{set width=13}, because @value{GDBN} has the
11249command @code{set width}:
11250
474c8240 11251@smallexample
c906108c
SS
11252(@value{GDBP}) whatis width
11253type = double
11254(@value{GDBP}) p width
11255$4 = 13
11256(@value{GDBP}) set width=47
11257Invalid syntax in expression.
474c8240 11258@end smallexample
c906108c
SS
11259
11260@noindent
11261The invalid expression, of course, is @samp{=47}. In
11262order to actually set the program's variable @code{width}, use
11263
474c8240 11264@smallexample
c906108c 11265(@value{GDBP}) set var width=47
474c8240 11266@end smallexample
53a5351d 11267
c906108c
SS
11268Because the @code{set} command has many subcommands that can conflict
11269with the names of program variables, it is a good idea to use the
11270@code{set variable} command instead of just @code{set}. For example, if
11271your program has a variable @code{g}, you run into problems if you try
11272to set a new value with just @samp{set g=4}, because @value{GDBN} has
11273the command @code{set gnutarget}, abbreviated @code{set g}:
11274
474c8240 11275@smallexample
c906108c
SS
11276@group
11277(@value{GDBP}) whatis g
11278type = double
11279(@value{GDBP}) p g
11280$1 = 1
11281(@value{GDBP}) set g=4
2df3850c 11282(@value{GDBP}) p g
c906108c
SS
11283$2 = 1
11284(@value{GDBP}) r
11285The program being debugged has been started already.
11286Start it from the beginning? (y or n) y
11287Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11288"/home/smith/cc_progs/a.out": can't open to read symbols:
11289 Invalid bfd target.
c906108c
SS
11290(@value{GDBP}) show g
11291The current BFD target is "=4".
11292@end group
474c8240 11293@end smallexample
c906108c
SS
11294
11295@noindent
11296The program variable @code{g} did not change, and you silently set the
11297@code{gnutarget} to an invalid value. In order to set the variable
11298@code{g}, use
11299
474c8240 11300@smallexample
c906108c 11301(@value{GDBP}) set var g=4
474c8240 11302@end smallexample
c906108c
SS
11303
11304@value{GDBN} allows more implicit conversions in assignments than C; you can
11305freely store an integer value into a pointer variable or vice versa,
11306and you can convert any structure to any other structure that is the
11307same length or shorter.
11308@comment FIXME: how do structs align/pad in these conversions?
11309@comment /doc@cygnus.com 18dec1990
11310
11311To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11312construct to generate a value of specified type at a specified address
11313(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11314to memory location @code{0x83040} as an integer (which implies a certain size
11315and representation in memory), and
11316
474c8240 11317@smallexample
c906108c 11318set @{int@}0x83040 = 4
474c8240 11319@end smallexample
c906108c
SS
11320
11321@noindent
11322stores the value 4 into that memory location.
11323
6d2ebf8b 11324@node Jumping
79a6e687 11325@section Continuing at a Different Address
c906108c
SS
11326
11327Ordinarily, when you continue your program, you do so at the place where
11328it stopped, with the @code{continue} command. You can instead continue at
11329an address of your own choosing, with the following commands:
11330
11331@table @code
11332@kindex jump
11333@item jump @var{linespec}
11334Resume execution at line @var{linespec}. Execution stops again
11335immediately if there is a breakpoint there. @xref{List, ,Printing
79a6e687 11336Source Lines}, for a description of the different forms of
c906108c
SS
11337@var{linespec}. It is common practice to use the @code{tbreak} command
11338in conjunction with @code{jump}. @xref{Set Breaks, ,Setting
79a6e687 11339Breakpoints}.
c906108c
SS
11340
11341The @code{jump} command does not change the current stack frame, or
11342the stack pointer, or the contents of any memory location or any
11343register other than the program counter. If line @var{linespec} is in
11344a different function from the one currently executing, the results may
11345be bizarre if the two functions expect different patterns of arguments or
11346of local variables. For this reason, the @code{jump} command requests
11347confirmation if the specified line is not in the function currently
11348executing. However, even bizarre results are predictable if you are
11349well acquainted with the machine-language code of your program.
11350
11351@item jump *@var{address}
11352Resume execution at the instruction at address @var{address}.
11353@end table
11354
c906108c 11355@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11356On many systems, you can get much the same effect as the @code{jump}
11357command by storing a new value into the register @code{$pc}. The
11358difference is that this does not start your program running; it only
11359changes the address of where it @emph{will} run when you continue. For
11360example,
c906108c 11361
474c8240 11362@smallexample
c906108c 11363set $pc = 0x485
474c8240 11364@end smallexample
c906108c
SS
11365
11366@noindent
11367makes the next @code{continue} command or stepping command execute at
11368address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11369@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11370
11371The most common occasion to use the @code{jump} command is to back
11372up---perhaps with more breakpoints set---over a portion of a program
11373that has already executed, in order to examine its execution in more
11374detail.
11375
c906108c 11376@c @group
6d2ebf8b 11377@node Signaling
79a6e687 11378@section Giving your Program a Signal
9c16f35a 11379@cindex deliver a signal to a program
c906108c
SS
11380
11381@table @code
11382@kindex signal
11383@item signal @var{signal}
11384Resume execution where your program stopped, but immediately give it the
11385signal @var{signal}. @var{signal} can be the name or the number of a
11386signal. For example, on many systems @code{signal 2} and @code{signal
11387SIGINT} are both ways of sending an interrupt signal.
11388
11389Alternatively, if @var{signal} is zero, continue execution without
11390giving a signal. This is useful when your program stopped on account of
11391a signal and would ordinary see the signal when resumed with the
11392@code{continue} command; @samp{signal 0} causes it to resume without a
11393signal.
11394
11395@code{signal} does not repeat when you press @key{RET} a second time
11396after executing the command.
11397@end table
11398@c @end group
11399
11400Invoking the @code{signal} command is not the same as invoking the
11401@code{kill} utility from the shell. Sending a signal with @code{kill}
11402causes @value{GDBN} to decide what to do with the signal depending on
11403the signal handling tables (@pxref{Signals}). The @code{signal} command
11404passes the signal directly to your program.
11405
c906108c 11406
6d2ebf8b 11407@node Returning
79a6e687 11408@section Returning from a Function
c906108c
SS
11409
11410@table @code
11411@cindex returning from a function
11412@kindex return
11413@item return
11414@itemx return @var{expression}
11415You can cancel execution of a function call with the @code{return}
11416command. If you give an
11417@var{expression} argument, its value is used as the function's return
11418value.
11419@end table
11420
11421When you use @code{return}, @value{GDBN} discards the selected stack frame
11422(and all frames within it). You can think of this as making the
11423discarded frame return prematurely. If you wish to specify a value to
11424be returned, give that value as the argument to @code{return}.
11425
11426This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11427Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11428innermost remaining frame. That frame becomes selected. The
11429specified value is stored in the registers used for returning values
11430of functions.
11431
11432The @code{return} command does not resume execution; it leaves the
11433program stopped in the state that would exist if the function had just
11434returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11435and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11436selected stack frame returns naturally.
11437
6d2ebf8b 11438@node Calling
79a6e687 11439@section Calling Program Functions
c906108c 11440
f8568604 11441@table @code
c906108c 11442@cindex calling functions
f8568604
EZ
11443@cindex inferior functions, calling
11444@item print @var{expr}
d3e8051b 11445Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11446@var{expr} may include calls to functions in the program being
11447debugged.
11448
c906108c 11449@kindex call
c906108c
SS
11450@item call @var{expr}
11451Evaluate the expression @var{expr} without displaying @code{void}
11452returned values.
c906108c
SS
11453
11454You can use this variant of the @code{print} command if you want to
f8568604
EZ
11455execute a function from your program that does not return anything
11456(a.k.a.@: @dfn{a void function}), but without cluttering the output
11457with @code{void} returned values that @value{GDBN} will otherwise
11458print. If the result is not void, it is printed and saved in the
11459value history.
11460@end table
11461
9c16f35a
EZ
11462It is possible for the function you call via the @code{print} or
11463@code{call} command to generate a signal (e.g., if there's a bug in
11464the function, or if you passed it incorrect arguments). What happens
11465in that case is controlled by the @code{set unwindonsignal} command.
11466
11467@table @code
11468@item set unwindonsignal
11469@kindex set unwindonsignal
11470@cindex unwind stack in called functions
11471@cindex call dummy stack unwinding
11472Set unwinding of the stack if a signal is received while in a function
11473that @value{GDBN} called in the program being debugged. If set to on,
11474@value{GDBN} unwinds the stack it created for the call and restores
11475the context to what it was before the call. If set to off (the
11476default), @value{GDBN} stops in the frame where the signal was
11477received.
11478
11479@item show unwindonsignal
11480@kindex show unwindonsignal
11481Show the current setting of stack unwinding in the functions called by
11482@value{GDBN}.
11483@end table
11484
f8568604
EZ
11485@cindex weak alias functions
11486Sometimes, a function you wish to call is actually a @dfn{weak alias}
11487for another function. In such case, @value{GDBN} might not pick up
11488the type information, including the types of the function arguments,
11489which causes @value{GDBN} to call the inferior function incorrectly.
11490As a result, the called function will function erroneously and may
11491even crash. A solution to that is to use the name of the aliased
11492function instead.
c906108c 11493
6d2ebf8b 11494@node Patching
79a6e687 11495@section Patching Programs
7a292a7a 11496
c906108c
SS
11497@cindex patching binaries
11498@cindex writing into executables
c906108c 11499@cindex writing into corefiles
c906108c 11500
7a292a7a
SS
11501By default, @value{GDBN} opens the file containing your program's
11502executable code (or the corefile) read-only. This prevents accidental
11503alterations to machine code; but it also prevents you from intentionally
11504patching your program's binary.
c906108c
SS
11505
11506If you'd like to be able to patch the binary, you can specify that
11507explicitly with the @code{set write} command. For example, you might
11508want to turn on internal debugging flags, or even to make emergency
11509repairs.
11510
11511@table @code
11512@kindex set write
11513@item set write on
11514@itemx set write off
7a292a7a
SS
11515If you specify @samp{set write on}, @value{GDBN} opens executable and
11516core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11517off} (the default), @value{GDBN} opens them read-only.
11518
11519If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11520@code{exec-file} or @code{core-file} command) after changing @code{set
11521write}, for your new setting to take effect.
c906108c
SS
11522
11523@item show write
11524@kindex show write
7a292a7a
SS
11525Display whether executable files and core files are opened for writing
11526as well as reading.
c906108c
SS
11527@end table
11528
6d2ebf8b 11529@node GDB Files
c906108c
SS
11530@chapter @value{GDBN} Files
11531
7a292a7a
SS
11532@value{GDBN} needs to know the file name of the program to be debugged,
11533both in order to read its symbol table and in order to start your
11534program. To debug a core dump of a previous run, you must also tell
11535@value{GDBN} the name of the core dump file.
c906108c
SS
11536
11537@menu
11538* Files:: Commands to specify files
5b5d99cf 11539* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11540* Symbol Errors:: Errors reading symbol files
11541@end menu
11542
6d2ebf8b 11543@node Files
79a6e687 11544@section Commands to Specify Files
c906108c 11545
7a292a7a 11546@cindex symbol table
c906108c 11547@cindex core dump file
7a292a7a
SS
11548
11549You may want to specify executable and core dump file names. The usual
11550way to do this is at start-up time, using the arguments to
11551@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11552Out of @value{GDBN}}).
c906108c
SS
11553
11554Occasionally it is necessary to change to a different file during a
397ca115
EZ
11555@value{GDBN} session. Or you may run @value{GDBN} and forget to
11556specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11557via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11558Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11559new files are useful.
c906108c
SS
11560
11561@table @code
11562@cindex executable file
11563@kindex file
11564@item file @var{filename}
11565Use @var{filename} as the program to be debugged. It is read for its
11566symbols and for the contents of pure memory. It is also the program
11567executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11568directory and the file is not found in the @value{GDBN} working directory,
11569@value{GDBN} uses the environment variable @code{PATH} as a list of
11570directories to search, just as the shell does when looking for a program
11571to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11572and your program, using the @code{path} command.
11573
fc8be69e
EZ
11574@cindex unlinked object files
11575@cindex patching object files
11576You can load unlinked object @file{.o} files into @value{GDBN} using
11577the @code{file} command. You will not be able to ``run'' an object
11578file, but you can disassemble functions and inspect variables. Also,
11579if the underlying BFD functionality supports it, you could use
11580@kbd{gdb -write} to patch object files using this technique. Note
11581that @value{GDBN} can neither interpret nor modify relocations in this
11582case, so branches and some initialized variables will appear to go to
11583the wrong place. But this feature is still handy from time to time.
11584
c906108c
SS
11585@item file
11586@code{file} with no argument makes @value{GDBN} discard any information it
11587has on both executable file and the symbol table.
11588
11589@kindex exec-file
11590@item exec-file @r{[} @var{filename} @r{]}
11591Specify that the program to be run (but not the symbol table) is found
11592in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11593if necessary to locate your program. Omitting @var{filename} means to
11594discard information on the executable file.
11595
11596@kindex symbol-file
11597@item symbol-file @r{[} @var{filename} @r{]}
11598Read symbol table information from file @var{filename}. @code{PATH} is
11599searched when necessary. Use the @code{file} command to get both symbol
11600table and program to run from the same file.
11601
11602@code{symbol-file} with no argument clears out @value{GDBN} information on your
11603program's symbol table.
11604
ae5a43e0
DJ
11605The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11606some breakpoints and auto-display expressions. This is because they may
11607contain pointers to the internal data recording symbols and data types,
11608which are part of the old symbol table data being discarded inside
11609@value{GDBN}.
c906108c
SS
11610
11611@code{symbol-file} does not repeat if you press @key{RET} again after
11612executing it once.
11613
11614When @value{GDBN} is configured for a particular environment, it
11615understands debugging information in whatever format is the standard
11616generated for that environment; you may use either a @sc{gnu} compiler, or
11617other compilers that adhere to the local conventions.
c906108c 11618Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11619using @code{@value{NGCC}} you can generate debugging information for
c906108c 11620optimized code.
c906108c
SS
11621
11622For most kinds of object files, with the exception of old SVR3 systems
11623using COFF, the @code{symbol-file} command does not normally read the
11624symbol table in full right away. Instead, it scans the symbol table
11625quickly to find which source files and which symbols are present. The
11626details are read later, one source file at a time, as they are needed.
11627
11628The purpose of this two-stage reading strategy is to make @value{GDBN}
11629start up faster. For the most part, it is invisible except for
11630occasional pauses while the symbol table details for a particular source
11631file are being read. (The @code{set verbose} command can turn these
11632pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11633Warnings and Messages}.)
c906108c 11634
c906108c
SS
11635We have not implemented the two-stage strategy for COFF yet. When the
11636symbol table is stored in COFF format, @code{symbol-file} reads the
11637symbol table data in full right away. Note that ``stabs-in-COFF''
11638still does the two-stage strategy, since the debug info is actually
11639in stabs format.
11640
11641@kindex readnow
11642@cindex reading symbols immediately
11643@cindex symbols, reading immediately
a94ab193
EZ
11644@item symbol-file @var{filename} @r{[} -readnow @r{]}
11645@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11646You can override the @value{GDBN} two-stage strategy for reading symbol
11647tables by using the @samp{-readnow} option with any of the commands that
11648load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11649entire symbol table available.
c906108c 11650
c906108c
SS
11651@c FIXME: for now no mention of directories, since this seems to be in
11652@c flux. 13mar1992 status is that in theory GDB would look either in
11653@c current dir or in same dir as myprog; but issues like competing
11654@c GDB's, or clutter in system dirs, mean that in practice right now
11655@c only current dir is used. FFish says maybe a special GDB hierarchy
11656@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11657@c files.
11658
c906108c 11659@kindex core-file
09d4efe1 11660@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11661@itemx core
c906108c
SS
11662Specify the whereabouts of a core dump file to be used as the ``contents
11663of memory''. Traditionally, core files contain only some parts of the
11664address space of the process that generated them; @value{GDBN} can access the
11665executable file itself for other parts.
11666
11667@code{core-file} with no argument specifies that no core file is
11668to be used.
11669
11670Note that the core file is ignored when your program is actually running
7a292a7a
SS
11671under @value{GDBN}. So, if you have been running your program and you
11672wish to debug a core file instead, you must kill the subprocess in which
11673the program is running. To do this, use the @code{kill} command
79a6e687 11674(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11675
c906108c
SS
11676@kindex add-symbol-file
11677@cindex dynamic linking
11678@item add-symbol-file @var{filename} @var{address}
a94ab193 11679@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11680@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11681The @code{add-symbol-file} command reads additional symbol table
11682information from the file @var{filename}. You would use this command
11683when @var{filename} has been dynamically loaded (by some other means)
11684into the program that is running. @var{address} should be the memory
11685address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11686this out for itself. You can additionally specify an arbitrary number
11687of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11688section name and base address for that section. You can specify any
11689@var{address} as an expression.
c906108c
SS
11690
11691The symbol table of the file @var{filename} is added to the symbol table
11692originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11693@code{add-symbol-file} command any number of times; the new symbol data
11694thus read keeps adding to the old. To discard all old symbol data
11695instead, use the @code{symbol-file} command without any arguments.
c906108c 11696
17d9d558
JB
11697@cindex relocatable object files, reading symbols from
11698@cindex object files, relocatable, reading symbols from
11699@cindex reading symbols from relocatable object files
11700@cindex symbols, reading from relocatable object files
11701@cindex @file{.o} files, reading symbols from
11702Although @var{filename} is typically a shared library file, an
11703executable file, or some other object file which has been fully
11704relocated for loading into a process, you can also load symbolic
11705information from relocatable @file{.o} files, as long as:
11706
11707@itemize @bullet
11708@item
11709the file's symbolic information refers only to linker symbols defined in
11710that file, not to symbols defined by other object files,
11711@item
11712every section the file's symbolic information refers to has actually
11713been loaded into the inferior, as it appears in the file, and
11714@item
11715you can determine the address at which every section was loaded, and
11716provide these to the @code{add-symbol-file} command.
11717@end itemize
11718
11719@noindent
11720Some embedded operating systems, like Sun Chorus and VxWorks, can load
11721relocatable files into an already running program; such systems
11722typically make the requirements above easy to meet. However, it's
11723important to recognize that many native systems use complex link
49efadf5 11724procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11725assembly, for example) that make the requirements difficult to meet. In
11726general, one cannot assume that using @code{add-symbol-file} to read a
11727relocatable object file's symbolic information will have the same effect
11728as linking the relocatable object file into the program in the normal
11729way.
11730
c906108c
SS
11731@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11732
c45da7e6
EZ
11733@kindex add-symbol-file-from-memory
11734@cindex @code{syscall DSO}
11735@cindex load symbols from memory
11736@item add-symbol-file-from-memory @var{address}
11737Load symbols from the given @var{address} in a dynamically loaded
11738object file whose image is mapped directly into the inferior's memory.
11739For example, the Linux kernel maps a @code{syscall DSO} into each
11740process's address space; this DSO provides kernel-specific code for
11741some system calls. The argument can be any expression whose
11742evaluation yields the address of the file's shared object file header.
11743For this command to work, you must have used @code{symbol-file} or
11744@code{exec-file} commands in advance.
11745
09d4efe1
EZ
11746@kindex add-shared-symbol-files
11747@kindex assf
11748@item add-shared-symbol-files @var{library-file}
11749@itemx assf @var{library-file}
11750The @code{add-shared-symbol-files} command can currently be used only
11751in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11752alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11753@value{GDBN} automatically looks for shared libraries, however if
11754@value{GDBN} does not find yours, you can invoke
11755@code{add-shared-symbol-files}. It takes one argument: the shared
11756library's file name. @code{assf} is a shorthand alias for
11757@code{add-shared-symbol-files}.
c906108c 11758
c906108c 11759@kindex section
09d4efe1
EZ
11760@item section @var{section} @var{addr}
11761The @code{section} command changes the base address of the named
11762@var{section} of the exec file to @var{addr}. This can be used if the
11763exec file does not contain section addresses, (such as in the
11764@code{a.out} format), or when the addresses specified in the file
11765itself are wrong. Each section must be changed separately. The
11766@code{info files} command, described below, lists all the sections and
11767their addresses.
c906108c
SS
11768
11769@kindex info files
11770@kindex info target
11771@item info files
11772@itemx info target
7a292a7a
SS
11773@code{info files} and @code{info target} are synonymous; both print the
11774current target (@pxref{Targets, ,Specifying a Debugging Target}),
11775including the names of the executable and core dump files currently in
11776use by @value{GDBN}, and the files from which symbols were loaded. The
11777command @code{help target} lists all possible targets rather than
11778current ones.
11779
fe95c787
MS
11780@kindex maint info sections
11781@item maint info sections
11782Another command that can give you extra information about program sections
11783is @code{maint info sections}. In addition to the section information
11784displayed by @code{info files}, this command displays the flags and file
11785offset of each section in the executable and core dump files. In addition,
11786@code{maint info sections} provides the following command options (which
11787may be arbitrarily combined):
11788
11789@table @code
11790@item ALLOBJ
11791Display sections for all loaded object files, including shared libraries.
11792@item @var{sections}
6600abed 11793Display info only for named @var{sections}.
fe95c787
MS
11794@item @var{section-flags}
11795Display info only for sections for which @var{section-flags} are true.
11796The section flags that @value{GDBN} currently knows about are:
11797@table @code
11798@item ALLOC
11799Section will have space allocated in the process when loaded.
11800Set for all sections except those containing debug information.
11801@item LOAD
11802Section will be loaded from the file into the child process memory.
11803Set for pre-initialized code and data, clear for @code{.bss} sections.
11804@item RELOC
11805Section needs to be relocated before loading.
11806@item READONLY
11807Section cannot be modified by the child process.
11808@item CODE
11809Section contains executable code only.
6600abed 11810@item DATA
fe95c787
MS
11811Section contains data only (no executable code).
11812@item ROM
11813Section will reside in ROM.
11814@item CONSTRUCTOR
11815Section contains data for constructor/destructor lists.
11816@item HAS_CONTENTS
11817Section is not empty.
11818@item NEVER_LOAD
11819An instruction to the linker to not output the section.
11820@item COFF_SHARED_LIBRARY
11821A notification to the linker that the section contains
11822COFF shared library information.
11823@item IS_COMMON
11824Section contains common symbols.
11825@end table
11826@end table
6763aef9 11827@kindex set trust-readonly-sections
9c16f35a 11828@cindex read-only sections
6763aef9
MS
11829@item set trust-readonly-sections on
11830Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11831really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11832In that case, @value{GDBN} can fetch values from these sections
11833out of the object file, rather than from the target program.
11834For some targets (notably embedded ones), this can be a significant
11835enhancement to debugging performance.
11836
11837The default is off.
11838
11839@item set trust-readonly-sections off
15110bc3 11840Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11841the contents of the section might change while the program is running,
11842and must therefore be fetched from the target when needed.
9c16f35a
EZ
11843
11844@item show trust-readonly-sections
11845Show the current setting of trusting readonly sections.
c906108c
SS
11846@end table
11847
11848All file-specifying commands allow both absolute and relative file names
11849as arguments. @value{GDBN} always converts the file name to an absolute file
11850name and remembers it that way.
11851
c906108c 11852@cindex shared libraries
9cceb671
DJ
11853@anchor{Shared Libraries}
11854@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11855and IBM RS/6000 AIX shared libraries.
53a5351d 11856
9cceb671
DJ
11857On MS-Windows @value{GDBN} must be linked with the Expat library to support
11858shared libraries. @xref{Expat}.
11859
c906108c
SS
11860@value{GDBN} automatically loads symbol definitions from shared libraries
11861when you use the @code{run} command, or when you examine a core file.
11862(Before you issue the @code{run} command, @value{GDBN} does not understand
11863references to a function in a shared library, however---unless you are
11864debugging a core file).
53a5351d
JM
11865
11866On HP-UX, if the program loads a library explicitly, @value{GDBN}
11867automatically loads the symbols at the time of the @code{shl_load} call.
11868
c906108c
SS
11869@c FIXME: some @value{GDBN} release may permit some refs to undef
11870@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11871@c FIXME...lib; check this from time to time when updating manual
11872
b7209cb4
FF
11873There are times, however, when you may wish to not automatically load
11874symbol definitions from shared libraries, such as when they are
11875particularly large or there are many of them.
11876
11877To control the automatic loading of shared library symbols, use the
11878commands:
11879
11880@table @code
11881@kindex set auto-solib-add
11882@item set auto-solib-add @var{mode}
11883If @var{mode} is @code{on}, symbols from all shared object libraries
11884will be loaded automatically when the inferior begins execution, you
11885attach to an independently started inferior, or when the dynamic linker
11886informs @value{GDBN} that a new library has been loaded. If @var{mode}
11887is @code{off}, symbols must be loaded manually, using the
11888@code{sharedlibrary} command. The default value is @code{on}.
11889
dcaf7c2c
EZ
11890@cindex memory used for symbol tables
11891If your program uses lots of shared libraries with debug info that
11892takes large amounts of memory, you can decrease the @value{GDBN}
11893memory footprint by preventing it from automatically loading the
11894symbols from shared libraries. To that end, type @kbd{set
11895auto-solib-add off} before running the inferior, then load each
11896library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11897@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11898the libraries whose symbols you want to be loaded.
11899
b7209cb4
FF
11900@kindex show auto-solib-add
11901@item show auto-solib-add
11902Display the current autoloading mode.
11903@end table
11904
c45da7e6 11905@cindex load shared library
b7209cb4
FF
11906To explicitly load shared library symbols, use the @code{sharedlibrary}
11907command:
11908
c906108c
SS
11909@table @code
11910@kindex info sharedlibrary
11911@kindex info share
11912@item info share
11913@itemx info sharedlibrary
11914Print the names of the shared libraries which are currently loaded.
11915
11916@kindex sharedlibrary
11917@kindex share
11918@item sharedlibrary @var{regex}
11919@itemx share @var{regex}
c906108c
SS
11920Load shared object library symbols for files matching a
11921Unix regular expression.
11922As with files loaded automatically, it only loads shared libraries
11923required by your program for a core file or after typing @code{run}. If
11924@var{regex} is omitted all shared libraries required by your program are
11925loaded.
c45da7e6
EZ
11926
11927@item nosharedlibrary
11928@kindex nosharedlibrary
11929@cindex unload symbols from shared libraries
11930Unload all shared object library symbols. This discards all symbols
11931that have been loaded from all shared libraries. Symbols from shared
11932libraries that were loaded by explicit user requests are not
11933discarded.
c906108c
SS
11934@end table
11935
721c2651
EZ
11936Sometimes you may wish that @value{GDBN} stops and gives you control
11937when any of shared library events happen. Use the @code{set
11938stop-on-solib-events} command for this:
11939
11940@table @code
11941@item set stop-on-solib-events
11942@kindex set stop-on-solib-events
11943This command controls whether @value{GDBN} should give you control
11944when the dynamic linker notifies it about some shared library event.
11945The most common event of interest is loading or unloading of a new
11946shared library.
11947
11948@item show stop-on-solib-events
11949@kindex show stop-on-solib-events
11950Show whether @value{GDBN} stops and gives you control when shared
11951library events happen.
11952@end table
11953
f5ebfba0
DJ
11954Shared libraries are also supported in many cross or remote debugging
11955configurations. A copy of the target's libraries need to be present on the
11956host system; they need to be the same as the target libraries, although the
11957copies on the target can be stripped as long as the copies on the host are
11958not.
11959
59b7b46f
EZ
11960@cindex where to look for shared libraries
11961For remote debugging, you need to tell @value{GDBN} where the target
11962libraries are, so that it can load the correct copies---otherwise, it
11963may try to load the host's libraries. @value{GDBN} has two variables
11964to specify the search directories for target libraries.
f5ebfba0
DJ
11965
11966@table @code
59b7b46f 11967@cindex prefix for shared library file names
f822c95b 11968@cindex system root, alternate
f5ebfba0 11969@kindex set solib-absolute-prefix
f822c95b
DJ
11970@kindex set sysroot
11971@item set sysroot @var{path}
11972Use @var{path} as the system root for the program being debugged. Any
11973absolute shared library paths will be prefixed with @var{path}; many
11974runtime loaders store the absolute paths to the shared library in the
11975target program's memory. If you use @code{set sysroot} to find shared
11976libraries, they need to be laid out in the same way that they are on
11977the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
11978under @var{path}.
11979
11980The @code{set solib-absolute-prefix} command is an alias for @code{set
11981sysroot}.
11982
11983@cindex default system root
59b7b46f 11984@cindex @samp{--with-sysroot}
f822c95b
DJ
11985You can set the default system root by using the configure-time
11986@samp{--with-sysroot} option. If the system root is inside
11987@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
11988@samp{--exec-prefix}), then the default system root will be updated
11989automatically if the installed @value{GDBN} is moved to a new
11990location.
11991
11992@kindex show sysroot
11993@item show sysroot
f5ebfba0
DJ
11994Display the current shared library prefix.
11995
11996@kindex set solib-search-path
11997@item set solib-search-path @var{path}
f822c95b
DJ
11998If this variable is set, @var{path} is a colon-separated list of
11999directories to search for shared libraries. @samp{solib-search-path}
12000is used after @samp{sysroot} fails to locate the library, or if the
12001path to the library is relative instead of absolute. If you want to
12002use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12003@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12004finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12005it to a nonexistent directory may interfere with automatic loading
f822c95b 12006of shared library symbols.
f5ebfba0
DJ
12007
12008@kindex show solib-search-path
12009@item show solib-search-path
12010Display the current shared library search path.
12011@end table
12012
5b5d99cf
JB
12013
12014@node Separate Debug Files
12015@section Debugging Information in Separate Files
12016@cindex separate debugging information files
12017@cindex debugging information in separate files
12018@cindex @file{.debug} subdirectories
12019@cindex debugging information directory, global
12020@cindex global debugging information directory
c7e83d54
EZ
12021@cindex build ID, and separate debugging files
12022@cindex @file{.build-id} directory
5b5d99cf
JB
12023
12024@value{GDBN} allows you to put a program's debugging information in a
12025file separate from the executable itself, in a way that allows
12026@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12027Since debugging information can be very large---sometimes larger
12028than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12029information for their executables in separate files, which users can
12030install only when they need to debug a problem.
12031
c7e83d54
EZ
12032@value{GDBN} supports two ways of specifying the separate debug info
12033file:
5b5d99cf
JB
12034
12035@itemize @bullet
12036@item
c7e83d54
EZ
12037The executable contains a @dfn{debug link} that specifies the name of
12038the separate debug info file. The separate debug file's name is
12039usually @file{@var{executable}.debug}, where @var{executable} is the
12040name of the corresponding executable file without leading directories
12041(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12042debug link specifies a CRC32 checksum for the debug file, which
12043@value{GDBN} uses to validate that the executable and the debug file
12044came from the same build.
12045
12046@item
7e27a47a 12047The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12048also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12049only on some operating systems, notably those which use the ELF format
12050for binary files and the @sc{gnu} Binutils.) For more details about
12051this feature, see the description of the @option{--build-id}
12052command-line option in @ref{Options, , Command Line Options, ld.info,
12053The GNU Linker}. The debug info file's name is not specified
12054explicitly by the build ID, but can be computed from the build ID, see
12055below.
d3750b24
JK
12056@end itemize
12057
c7e83d54
EZ
12058Depending on the way the debug info file is specified, @value{GDBN}
12059uses two different methods of looking for the debug file:
d3750b24
JK
12060
12061@itemize @bullet
12062@item
c7e83d54
EZ
12063For the ``debug link'' method, @value{GDBN} looks up the named file in
12064the directory of the executable file, then in a subdirectory of that
12065directory named @file{.debug}, and finally under the global debug
12066directory, in a subdirectory whose name is identical to the leading
12067directories of the executable's absolute file name.
12068
12069@item
83f83d7f 12070For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12071@file{.build-id} subdirectory of the global debug directory for a file
12072named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12073first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12074are the rest of the bit string. (Real build ID strings are 32 or more
12075hex characters, not 10.)
c7e83d54
EZ
12076@end itemize
12077
12078So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12079@file{/usr/bin/ls}, which has a debug link that specifies the
12080file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12081@code{abcdef1234}. If the global debug directory is
12082@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12083debug information files, in the indicated order:
12084
12085@itemize @minus
12086@item
12087@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12088@item
c7e83d54 12089@file{/usr/bin/ls.debug}
5b5d99cf 12090@item
c7e83d54 12091@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12092@item
c7e83d54 12093@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12094@end itemize
5b5d99cf
JB
12095
12096You can set the global debugging info directory's name, and view the
12097name @value{GDBN} is currently using.
12098
12099@table @code
12100
12101@kindex set debug-file-directory
12102@item set debug-file-directory @var{directory}
12103Set the directory which @value{GDBN} searches for separate debugging
12104information files to @var{directory}.
12105
12106@kindex show debug-file-directory
12107@item show debug-file-directory
12108Show the directory @value{GDBN} searches for separate debugging
12109information files.
12110
12111@end table
12112
12113@cindex @code{.gnu_debuglink} sections
c7e83d54 12114@cindex debug link sections
5b5d99cf
JB
12115A debug link is a special section of the executable file named
12116@code{.gnu_debuglink}. The section must contain:
12117
12118@itemize
12119@item
12120A filename, with any leading directory components removed, followed by
12121a zero byte,
12122@item
12123zero to three bytes of padding, as needed to reach the next four-byte
12124boundary within the section, and
12125@item
12126a four-byte CRC checksum, stored in the same endianness used for the
12127executable file itself. The checksum is computed on the debugging
12128information file's full contents by the function given below, passing
12129zero as the @var{crc} argument.
12130@end itemize
12131
12132Any executable file format can carry a debug link, as long as it can
12133contain a section named @code{.gnu_debuglink} with the contents
12134described above.
12135
d3750b24 12136@cindex @code{.note.gnu.build-id} sections
c7e83d54 12137@cindex build ID sections
7e27a47a
EZ
12138The build ID is a special section in the executable file (and in other
12139ELF binary files that @value{GDBN} may consider). This section is
12140often named @code{.note.gnu.build-id}, but that name is not mandatory.
12141It contains unique identification for the built files---the ID remains
12142the same across multiple builds of the same build tree. The default
12143algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12144content for the build ID string. The same section with an identical
12145value is present in the original built binary with symbols, in its
12146stripped variant, and in the separate debugging information file.
d3750b24 12147
5b5d99cf
JB
12148The debugging information file itself should be an ordinary
12149executable, containing a full set of linker symbols, sections, and
12150debugging information. The sections of the debugging information file
c7e83d54
EZ
12151should have the same names, addresses, and sizes as the original file,
12152but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12153in an ordinary executable.
12154
7e27a47a 12155The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12156@samp{objcopy} utility that can produce
12157the separated executable / debugging information file pairs using the
12158following commands:
12159
12160@smallexample
12161@kbd{objcopy --only-keep-debug foo foo.debug}
12162@kbd{strip -g foo}
c7e83d54
EZ
12163@end smallexample
12164
12165@noindent
12166These commands remove the debugging
83f83d7f
JK
12167information from the executable file @file{foo} and place it in the file
12168@file{foo.debug}. You can use the first, second or both methods to link the
12169two files:
12170
12171@itemize @bullet
12172@item
12173The debug link method needs the following additional command to also leave
12174behind a debug link in @file{foo}:
12175
12176@smallexample
12177@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12178@end smallexample
12179
12180Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12181a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12182foo.debug} has the same functionality as the two @code{objcopy} commands and
12183the @code{ln -s} command above, together.
12184
12185@item
12186Build ID gets embedded into the main executable using @code{ld --build-id} or
12187the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12188compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12189utilities (Binutils) package since version 2.18.
83f83d7f
JK
12190@end itemize
12191
12192@noindent
d3750b24 12193
c7e83d54
EZ
12194Since there are many different ways to compute CRC's for the debug
12195link (different polynomials, reversals, byte ordering, etc.), the
12196simplest way to describe the CRC used in @code{.gnu_debuglink}
12197sections is to give the complete code for a function that computes it:
5b5d99cf 12198
4644b6e3 12199@kindex gnu_debuglink_crc32
5b5d99cf
JB
12200@smallexample
12201unsigned long
12202gnu_debuglink_crc32 (unsigned long crc,
12203 unsigned char *buf, size_t len)
12204@{
12205 static const unsigned long crc32_table[256] =
12206 @{
12207 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12208 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12209 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12210 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12211 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12212 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12213 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12214 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12215 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12216 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12217 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12218 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12219 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12220 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12221 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12222 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12223 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12224 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12225 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12226 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12227 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12228 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12229 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12230 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12231 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12232 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12233 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12234 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12235 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12236 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12237 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12238 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12239 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12240 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12241 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12242 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12243 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12244 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12245 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12246 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12247 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12248 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12249 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12250 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12251 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12252 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12253 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12254 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12255 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12256 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12257 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12258 0x2d02ef8d
12259 @};
12260 unsigned char *end;
12261
12262 crc = ~crc & 0xffffffff;
12263 for (end = buf + len; buf < end; ++buf)
12264 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12265 return ~crc & 0xffffffff;
5b5d99cf
JB
12266@}
12267@end smallexample
12268
c7e83d54
EZ
12269@noindent
12270This computation does not apply to the ``build ID'' method.
12271
5b5d99cf 12272
6d2ebf8b 12273@node Symbol Errors
79a6e687 12274@section Errors Reading Symbol Files
c906108c
SS
12275
12276While reading a symbol file, @value{GDBN} occasionally encounters problems,
12277such as symbol types it does not recognize, or known bugs in compiler
12278output. By default, @value{GDBN} does not notify you of such problems, since
12279they are relatively common and primarily of interest to people
12280debugging compilers. If you are interested in seeing information
12281about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12282only one message about each such type of problem, no matter how many
12283times the problem occurs; or you can ask @value{GDBN} to print more messages,
12284to see how many times the problems occur, with the @code{set
79a6e687
BW
12285complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12286Messages}).
c906108c
SS
12287
12288The messages currently printed, and their meanings, include:
12289
12290@table @code
12291@item inner block not inside outer block in @var{symbol}
12292
12293The symbol information shows where symbol scopes begin and end
12294(such as at the start of a function or a block of statements). This
12295error indicates that an inner scope block is not fully contained
12296in its outer scope blocks.
12297
12298@value{GDBN} circumvents the problem by treating the inner block as if it had
12299the same scope as the outer block. In the error message, @var{symbol}
12300may be shown as ``@code{(don't know)}'' if the outer block is not a
12301function.
12302
12303@item block at @var{address} out of order
12304
12305The symbol information for symbol scope blocks should occur in
12306order of increasing addresses. This error indicates that it does not
12307do so.
12308
12309@value{GDBN} does not circumvent this problem, and has trouble
12310locating symbols in the source file whose symbols it is reading. (You
12311can often determine what source file is affected by specifying
79a6e687
BW
12312@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12313Messages}.)
c906108c
SS
12314
12315@item bad block start address patched
12316
12317The symbol information for a symbol scope block has a start address
12318smaller than the address of the preceding source line. This is known
12319to occur in the SunOS 4.1.1 (and earlier) C compiler.
12320
12321@value{GDBN} circumvents the problem by treating the symbol scope block as
12322starting on the previous source line.
12323
12324@item bad string table offset in symbol @var{n}
12325
12326@cindex foo
12327Symbol number @var{n} contains a pointer into the string table which is
12328larger than the size of the string table.
12329
12330@value{GDBN} circumvents the problem by considering the symbol to have the
12331name @code{foo}, which may cause other problems if many symbols end up
12332with this name.
12333
12334@item unknown symbol type @code{0x@var{nn}}
12335
7a292a7a
SS
12336The symbol information contains new data types that @value{GDBN} does
12337not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12338uncomprehended information, in hexadecimal.
c906108c 12339
7a292a7a
SS
12340@value{GDBN} circumvents the error by ignoring this symbol information.
12341This usually allows you to debug your program, though certain symbols
c906108c 12342are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12343debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12344on @code{complain}, then go up to the function @code{read_dbx_symtab}
12345and examine @code{*bufp} to see the symbol.
c906108c
SS
12346
12347@item stub type has NULL name
c906108c 12348
7a292a7a 12349@value{GDBN} could not find the full definition for a struct or class.
c906108c 12350
7a292a7a 12351@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12352The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12353information that recent versions of the compiler should have output for
12354it.
c906108c
SS
12355
12356@item info mismatch between compiler and debugger
12357
12358@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12359
c906108c
SS
12360@end table
12361
6d2ebf8b 12362@node Targets
c906108c 12363@chapter Specifying a Debugging Target
7a292a7a 12364
c906108c 12365@cindex debugging target
c906108c 12366A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12367
12368Often, @value{GDBN} runs in the same host environment as your program;
12369in that case, the debugging target is specified as a side effect when
12370you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12371flexibility---for example, running @value{GDBN} on a physically separate
12372host, or controlling a standalone system over a serial port or a
53a5351d
JM
12373realtime system over a TCP/IP connection---you can use the @code{target}
12374command to specify one of the target types configured for @value{GDBN}
79a6e687 12375(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12376
a8f24a35
EZ
12377@cindex target architecture
12378It is possible to build @value{GDBN} for several different @dfn{target
12379architectures}. When @value{GDBN} is built like that, you can choose
12380one of the available architectures with the @kbd{set architecture}
12381command.
12382
12383@table @code
12384@kindex set architecture
12385@kindex show architecture
12386@item set architecture @var{arch}
12387This command sets the current target architecture to @var{arch}. The
12388value of @var{arch} can be @code{"auto"}, in addition to one of the
12389supported architectures.
12390
12391@item show architecture
12392Show the current target architecture.
9c16f35a
EZ
12393
12394@item set processor
12395@itemx processor
12396@kindex set processor
12397@kindex show processor
12398These are alias commands for, respectively, @code{set architecture}
12399and @code{show architecture}.
a8f24a35
EZ
12400@end table
12401
c906108c
SS
12402@menu
12403* Active Targets:: Active targets
12404* Target Commands:: Commands for managing targets
c906108c 12405* Byte Order:: Choosing target byte order
c906108c
SS
12406@end menu
12407
6d2ebf8b 12408@node Active Targets
79a6e687 12409@section Active Targets
7a292a7a 12410
c906108c
SS
12411@cindex stacking targets
12412@cindex active targets
12413@cindex multiple targets
12414
c906108c 12415There are three classes of targets: processes, core files, and
7a292a7a
SS
12416executable files. @value{GDBN} can work concurrently on up to three
12417active targets, one in each class. This allows you to (for example)
12418start a process and inspect its activity without abandoning your work on
12419a core file.
c906108c
SS
12420
12421For example, if you execute @samp{gdb a.out}, then the executable file
12422@code{a.out} is the only active target. If you designate a core file as
12423well---presumably from a prior run that crashed and coredumped---then
12424@value{GDBN} has two active targets and uses them in tandem, looking
12425first in the corefile target, then in the executable file, to satisfy
12426requests for memory addresses. (Typically, these two classes of target
12427are complementary, since core files contain only a program's
12428read-write memory---variables and so on---plus machine status, while
12429executable files contain only the program text and initialized data.)
c906108c
SS
12430
12431When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12432target as well. When a process target is active, all @value{GDBN}
12433commands requesting memory addresses refer to that target; addresses in
12434an active core file or executable file target are obscured while the
12435process target is active.
c906108c 12436
7a292a7a 12437Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12438core file or executable target (@pxref{Files, ,Commands to Specify
12439Files}). To specify as a target a process that is already running, use
12440the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12441Process}).
c906108c 12442
6d2ebf8b 12443@node Target Commands
79a6e687 12444@section Commands for Managing Targets
c906108c
SS
12445
12446@table @code
12447@item target @var{type} @var{parameters}
7a292a7a
SS
12448Connects the @value{GDBN} host environment to a target machine or
12449process. A target is typically a protocol for talking to debugging
12450facilities. You use the argument @var{type} to specify the type or
12451protocol of the target machine.
c906108c
SS
12452
12453Further @var{parameters} are interpreted by the target protocol, but
12454typically include things like device names or host names to connect
12455with, process numbers, and baud rates.
c906108c
SS
12456
12457The @code{target} command does not repeat if you press @key{RET} again
12458after executing the command.
12459
12460@kindex help target
12461@item help target
12462Displays the names of all targets available. To display targets
12463currently selected, use either @code{info target} or @code{info files}
79a6e687 12464(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12465
12466@item help target @var{name}
12467Describe a particular target, including any parameters necessary to
12468select it.
12469
12470@kindex set gnutarget
12471@item set gnutarget @var{args}
5d161b24 12472@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12473knows whether it is reading an @dfn{executable},
5d161b24
DB
12474a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12475with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12476with @code{gnutarget} the @code{target} refers to a program, not a machine.
12477
d4f3574e 12478@quotation
c906108c
SS
12479@emph{Warning:} To specify a file format with @code{set gnutarget},
12480you must know the actual BFD name.
d4f3574e 12481@end quotation
c906108c 12482
d4f3574e 12483@noindent
79a6e687 12484@xref{Files, , Commands to Specify Files}.
c906108c 12485
5d161b24 12486@kindex show gnutarget
c906108c
SS
12487@item show gnutarget
12488Use the @code{show gnutarget} command to display what file format
12489@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12490@value{GDBN} will determine the file format for each file automatically,
12491and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12492@end table
12493
4644b6e3 12494@cindex common targets
c906108c
SS
12495Here are some common targets (available, or not, depending on the GDB
12496configuration):
c906108c
SS
12497
12498@table @code
4644b6e3 12499@kindex target
c906108c 12500@item target exec @var{program}
4644b6e3 12501@cindex executable file target
c906108c
SS
12502An executable file. @samp{target exec @var{program}} is the same as
12503@samp{exec-file @var{program}}.
12504
c906108c 12505@item target core @var{filename}
4644b6e3 12506@cindex core dump file target
c906108c
SS
12507A core dump file. @samp{target core @var{filename}} is the same as
12508@samp{core-file @var{filename}}.
c906108c 12509
1a10341b 12510@item target remote @var{medium}
4644b6e3 12511@cindex remote target
1a10341b
JB
12512A remote system connected to @value{GDBN} via a serial line or network
12513connection. This command tells @value{GDBN} to use its own remote
12514protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12515
12516For example, if you have a board connected to @file{/dev/ttya} on the
12517machine running @value{GDBN}, you could say:
12518
12519@smallexample
12520target remote /dev/ttya
12521@end smallexample
12522
12523@code{target remote} supports the @code{load} command. This is only
12524useful if you have some other way of getting the stub to the target
12525system, and you can put it somewhere in memory where it won't get
12526clobbered by the download.
c906108c 12527
c906108c 12528@item target sim
4644b6e3 12529@cindex built-in simulator target
2df3850c 12530Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12531In general,
474c8240 12532@smallexample
104c1213
JM
12533 target sim
12534 load
12535 run
474c8240 12536@end smallexample
d4f3574e 12537@noindent
104c1213 12538works; however, you cannot assume that a specific memory map, device
d4f3574e 12539drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12540provide these. For info about any processor-specific simulator details,
12541see the appropriate section in @ref{Embedded Processors, ,Embedded
12542Processors}.
12543
c906108c
SS
12544@end table
12545
104c1213 12546Some configurations may include these targets as well:
c906108c
SS
12547
12548@table @code
12549
c906108c 12550@item target nrom @var{dev}
4644b6e3 12551@cindex NetROM ROM emulator target
c906108c
SS
12552NetROM ROM emulator. This target only supports downloading.
12553
c906108c
SS
12554@end table
12555
5d161b24 12556Different targets are available on different configurations of @value{GDBN};
c906108c 12557your configuration may have more or fewer targets.
c906108c 12558
721c2651
EZ
12559Many remote targets require you to download the executable's code once
12560you've successfully established a connection. You may wish to control
3d00d119
DJ
12561various aspects of this process.
12562
12563@table @code
721c2651
EZ
12564
12565@item set hash
12566@kindex set hash@r{, for remote monitors}
12567@cindex hash mark while downloading
12568This command controls whether a hash mark @samp{#} is displayed while
12569downloading a file to the remote monitor. If on, a hash mark is
12570displayed after each S-record is successfully downloaded to the
12571monitor.
12572
12573@item show hash
12574@kindex show hash@r{, for remote monitors}
12575Show the current status of displaying the hash mark.
12576
12577@item set debug monitor
12578@kindex set debug monitor
12579@cindex display remote monitor communications
12580Enable or disable display of communications messages between
12581@value{GDBN} and the remote monitor.
12582
12583@item show debug monitor
12584@kindex show debug monitor
12585Show the current status of displaying communications between
12586@value{GDBN} and the remote monitor.
a8f24a35 12587@end table
c906108c
SS
12588
12589@table @code
12590
12591@kindex load @var{filename}
12592@item load @var{filename}
c906108c
SS
12593Depending on what remote debugging facilities are configured into
12594@value{GDBN}, the @code{load} command may be available. Where it exists, it
12595is meant to make @var{filename} (an executable) available for debugging
12596on the remote system---by downloading, or dynamic linking, for example.
12597@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12598the @code{add-symbol-file} command.
12599
12600If your @value{GDBN} does not have a @code{load} command, attempting to
12601execute it gets the error message ``@code{You can't do that when your
12602target is @dots{}}''
c906108c
SS
12603
12604The file is loaded at whatever address is specified in the executable.
12605For some object file formats, you can specify the load address when you
12606link the program; for other formats, like a.out, the object file format
12607specifies a fixed address.
12608@c FIXME! This would be a good place for an xref to the GNU linker doc.
12609
68437a39
DJ
12610Depending on the remote side capabilities, @value{GDBN} may be able to
12611load programs into flash memory.
12612
c906108c
SS
12613@code{load} does not repeat if you press @key{RET} again after using it.
12614@end table
12615
6d2ebf8b 12616@node Byte Order
79a6e687 12617@section Choosing Target Byte Order
7a292a7a 12618
c906108c
SS
12619@cindex choosing target byte order
12620@cindex target byte order
c906108c 12621
172c2a43 12622Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12623offer the ability to run either big-endian or little-endian byte
12624orders. Usually the executable or symbol will include a bit to
12625designate the endian-ness, and you will not need to worry about
12626which to use. However, you may still find it useful to adjust
d4f3574e 12627@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12628
12629@table @code
4644b6e3 12630@kindex set endian
c906108c
SS
12631@item set endian big
12632Instruct @value{GDBN} to assume the target is big-endian.
12633
c906108c
SS
12634@item set endian little
12635Instruct @value{GDBN} to assume the target is little-endian.
12636
c906108c
SS
12637@item set endian auto
12638Instruct @value{GDBN} to use the byte order associated with the
12639executable.
12640
12641@item show endian
12642Display @value{GDBN}'s current idea of the target byte order.
12643
12644@end table
12645
12646Note that these commands merely adjust interpretation of symbolic
12647data on the host, and that they have absolutely no effect on the
12648target system.
12649
ea35711c
DJ
12650
12651@node Remote Debugging
12652@chapter Debugging Remote Programs
c906108c
SS
12653@cindex remote debugging
12654
12655If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12656@value{GDBN} in the usual way, it is often useful to use remote debugging.
12657For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12658or on a small system which does not have a general purpose operating system
12659powerful enough to run a full-featured debugger.
12660
12661Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12662to make this work with particular debugging targets. In addition,
5d161b24 12663@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12664but not specific to any particular target system) which you can use if you
12665write the remote stubs---the code that runs on the remote system to
12666communicate with @value{GDBN}.
12667
12668Other remote targets may be available in your
12669configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12670
6b2f586d 12671@menu
07f31aa6 12672* Connecting:: Connecting to a remote target
a6b151f1 12673* File Transfer:: Sending files to a remote system
6b2f586d 12674* Server:: Using the gdbserver program
79a6e687
BW
12675* Remote Configuration:: Remote configuration
12676* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12677@end menu
12678
07f31aa6 12679@node Connecting
79a6e687 12680@section Connecting to a Remote Target
07f31aa6
DJ
12681
12682On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12683your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12684Start up @value{GDBN} as usual, using the name of the local copy of your
12685program as the first argument.
12686
86941c27
JB
12687@cindex @code{target remote}
12688@value{GDBN} can communicate with the target over a serial line, or
12689over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12690each case, @value{GDBN} uses the same protocol for debugging your
12691program; only the medium carrying the debugging packets varies. The
12692@code{target remote} command establishes a connection to the target.
12693Its arguments indicate which medium to use:
12694
12695@table @code
12696
12697@item target remote @var{serial-device}
07f31aa6 12698@cindex serial line, @code{target remote}
86941c27
JB
12699Use @var{serial-device} to communicate with the target. For example,
12700to use a serial line connected to the device named @file{/dev/ttyb}:
12701
12702@smallexample
12703target remote /dev/ttyb
12704@end smallexample
12705
07f31aa6
DJ
12706If you're using a serial line, you may want to give @value{GDBN} the
12707@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12708(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12709@code{target} command.
07f31aa6 12710
86941c27
JB
12711@item target remote @code{@var{host}:@var{port}}
12712@itemx target remote @code{tcp:@var{host}:@var{port}}
12713@cindex @acronym{TCP} port, @code{target remote}
12714Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12715The @var{host} may be either a host name or a numeric @acronym{IP}
12716address; @var{port} must be a decimal number. The @var{host} could be
12717the target machine itself, if it is directly connected to the net, or
12718it might be a terminal server which in turn has a serial line to the
12719target.
07f31aa6 12720
86941c27
JB
12721For example, to connect to port 2828 on a terminal server named
12722@code{manyfarms}:
07f31aa6
DJ
12723
12724@smallexample
12725target remote manyfarms:2828
12726@end smallexample
12727
86941c27
JB
12728If your remote target is actually running on the same machine as your
12729debugger session (e.g.@: a simulator for your target running on the
12730same host), you can omit the hostname. For example, to connect to
12731port 1234 on your local machine:
07f31aa6
DJ
12732
12733@smallexample
12734target remote :1234
12735@end smallexample
12736@noindent
12737
12738Note that the colon is still required here.
12739
86941c27
JB
12740@item target remote @code{udp:@var{host}:@var{port}}
12741@cindex @acronym{UDP} port, @code{target remote}
12742Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12743connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12744
12745@smallexample
12746target remote udp:manyfarms:2828
12747@end smallexample
12748
86941c27
JB
12749When using a @acronym{UDP} connection for remote debugging, you should
12750keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12751can silently drop packets on busy or unreliable networks, which will
12752cause havoc with your debugging session.
12753
66b8c7f6
JB
12754@item target remote | @var{command}
12755@cindex pipe, @code{target remote} to
12756Run @var{command} in the background and communicate with it using a
12757pipe. The @var{command} is a shell command, to be parsed and expanded
12758by the system's command shell, @code{/bin/sh}; it should expect remote
12759protocol packets on its standard input, and send replies on its
12760standard output. You could use this to run a stand-alone simulator
12761that speaks the remote debugging protocol, to make net connections
12762using programs like @code{ssh}, or for other similar tricks.
12763
12764If @var{command} closes its standard output (perhaps by exiting),
12765@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12766program has already exited, this will have no effect.)
12767
86941c27 12768@end table
07f31aa6 12769
86941c27
JB
12770Once the connection has been established, you can use all the usual
12771commands to examine and change data and to step and continue the
12772remote program.
07f31aa6
DJ
12773
12774@cindex interrupting remote programs
12775@cindex remote programs, interrupting
12776Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12777interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12778program. This may or may not succeed, depending in part on the hardware
12779and the serial drivers the remote system uses. If you type the
12780interrupt character once again, @value{GDBN} displays this prompt:
12781
12782@smallexample
12783Interrupted while waiting for the program.
12784Give up (and stop debugging it)? (y or n)
12785@end smallexample
12786
12787If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12788(If you decide you want to try again later, you can use @samp{target
12789remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12790goes back to waiting.
12791
12792@table @code
12793@kindex detach (remote)
12794@item detach
12795When you have finished debugging the remote program, you can use the
12796@code{detach} command to release it from @value{GDBN} control.
12797Detaching from the target normally resumes its execution, but the results
12798will depend on your particular remote stub. After the @code{detach}
12799command, @value{GDBN} is free to connect to another target.
12800
12801@kindex disconnect
12802@item disconnect
12803The @code{disconnect} command behaves like @code{detach}, except that
12804the target is generally not resumed. It will wait for @value{GDBN}
12805(this instance or another one) to connect and continue debugging. After
12806the @code{disconnect} command, @value{GDBN} is again free to connect to
12807another target.
09d4efe1
EZ
12808
12809@cindex send command to remote monitor
fad38dfa
EZ
12810@cindex extend @value{GDBN} for remote targets
12811@cindex add new commands for external monitor
09d4efe1
EZ
12812@kindex monitor
12813@item monitor @var{cmd}
fad38dfa
EZ
12814This command allows you to send arbitrary commands directly to the
12815remote monitor. Since @value{GDBN} doesn't care about the commands it
12816sends like this, this command is the way to extend @value{GDBN}---you
12817can add new commands that only the external monitor will understand
12818and implement.
07f31aa6
DJ
12819@end table
12820
a6b151f1
DJ
12821@node File Transfer
12822@section Sending files to a remote system
12823@cindex remote target, file transfer
12824@cindex file transfer
12825@cindex sending files to remote systems
12826
12827Some remote targets offer the ability to transfer files over the same
12828connection used to communicate with @value{GDBN}. This is convenient
12829for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12830running @code{gdbserver} over a network interface. For other targets,
12831e.g.@: embedded devices with only a single serial port, this may be
12832the only way to upload or download files.
12833
12834Not all remote targets support these commands.
12835
12836@table @code
12837@kindex remote put
12838@item remote put @var{hostfile} @var{targetfile}
12839Copy file @var{hostfile} from the host system (the machine running
12840@value{GDBN}) to @var{targetfile} on the target system.
12841
12842@kindex remote get
12843@item remote get @var{targetfile} @var{hostfile}
12844Copy file @var{targetfile} from the target system to @var{hostfile}
12845on the host system.
12846
12847@kindex remote delete
12848@item remote delete @var{targetfile}
12849Delete @var{targetfile} from the target system.
12850
12851@end table
12852
6f05cf9f 12853@node Server
79a6e687 12854@section Using the @code{gdbserver} Program
6f05cf9f
AC
12855
12856@kindex gdbserver
12857@cindex remote connection without stubs
12858@code{gdbserver} is a control program for Unix-like systems, which
12859allows you to connect your program with a remote @value{GDBN} via
12860@code{target remote}---but without linking in the usual debugging stub.
12861
12862@code{gdbserver} is not a complete replacement for the debugging stubs,
12863because it requires essentially the same operating-system facilities
12864that @value{GDBN} itself does. In fact, a system that can run
12865@code{gdbserver} to connect to a remote @value{GDBN} could also run
12866@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12867because it is a much smaller program than @value{GDBN} itself. It is
12868also easier to port than all of @value{GDBN}, so you may be able to get
12869started more quickly on a new system by using @code{gdbserver}.
12870Finally, if you develop code for real-time systems, you may find that
12871the tradeoffs involved in real-time operation make it more convenient to
12872do as much development work as possible on another system, for example
12873by cross-compiling. You can use @code{gdbserver} to make a similar
12874choice for debugging.
12875
12876@value{GDBN} and @code{gdbserver} communicate via either a serial line
12877or a TCP connection, using the standard @value{GDBN} remote serial
12878protocol.
12879
12880@table @emph
12881@item On the target machine,
12882you need to have a copy of the program you want to debug.
12883@code{gdbserver} does not need your program's symbol table, so you can
12884strip the program if necessary to save space. @value{GDBN} on the host
12885system does all the symbol handling.
12886
12887To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12888the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12889syntax is:
12890
12891@smallexample
12892target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12893@end smallexample
12894
12895@var{comm} is either a device name (to use a serial line) or a TCP
12896hostname and portnumber. For example, to debug Emacs with the argument
12897@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12898@file{/dev/com1}:
12899
12900@smallexample
12901target> gdbserver /dev/com1 emacs foo.txt
12902@end smallexample
12903
12904@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12905with it.
12906
12907To use a TCP connection instead of a serial line:
12908
12909@smallexample
12910target> gdbserver host:2345 emacs foo.txt
12911@end smallexample
12912
12913The only difference from the previous example is the first argument,
12914specifying that you are communicating with the host @value{GDBN} via
12915TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
12916expect a TCP connection from machine @samp{host} to local TCP port 2345.
12917(Currently, the @samp{host} part is ignored.) You can choose any number
12918you want for the port number as long as it does not conflict with any
12919TCP ports already in use on the target system (for example, @code{23} is
12920reserved for @code{telnet}).@footnote{If you choose a port number that
12921conflicts with another service, @code{gdbserver} prints an error message
12922and exits.} You must use the same port number with the host @value{GDBN}
12923@code{target remote} command.
12924
56460a61
DJ
12925On some targets, @code{gdbserver} can also attach to running programs.
12926This is accomplished via the @code{--attach} argument. The syntax is:
12927
12928@smallexample
12929target> gdbserver @var{comm} --attach @var{pid}
12930@end smallexample
12931
12932@var{pid} is the process ID of a currently running process. It isn't necessary
12933to point @code{gdbserver} at a binary for the running process.
12934
b1fe9455
DJ
12935@pindex pidof
12936@cindex attach to a program by name
12937You can debug processes by name instead of process ID if your target has the
12938@code{pidof} utility:
12939
12940@smallexample
f822c95b 12941target> gdbserver @var{comm} --attach `pidof @var{program}`
b1fe9455
DJ
12942@end smallexample
12943
f822c95b 12944In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
12945has multiple threads, most versions of @code{pidof} support the
12946@code{-s} option to only return the first process ID.
12947
07f31aa6 12948@item On the host machine,
f822c95b
DJ
12949first make sure you have the necessary symbol files. Load symbols for
12950your application using the @code{file} command before you connect. Use
12951@code{set sysroot} to locate target libraries (unless your @value{GDBN}
12952was compiled with the correct sysroot using @code{--with-system-root}).
12953
12954The symbol file and target libraries must exactly match the executable
12955and libraries on the target, with one exception: the files on the host
12956system should not be stripped, even if the files on the target system
12957are. Mismatched or missing files will lead to confusing results
12958during debugging. On @sc{gnu}/Linux targets, mismatched or missing
12959files may also prevent @code{gdbserver} from debugging multi-threaded
12960programs.
12961
79a6e687 12962Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
12963For TCP connections, you must start up @code{gdbserver} prior to using
12964the @code{target remote} command. Otherwise you may get an error whose
12965text depends on the host system, but which usually looks something like
07f31aa6 12966@samp{Connection refused}. You don't need to use the @code{load}
397ca115 12967command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 12968already on the target.
07f31aa6 12969
6f05cf9f
AC
12970@end table
12971
79a6e687 12972@subsection Monitor Commands for @code{gdbserver}
c74d0ad8
DJ
12973@cindex monitor commands, for @code{gdbserver}
12974
12975During a @value{GDBN} session using @code{gdbserver}, you can use the
12976@code{monitor} command to send special requests to @code{gdbserver}.
12977Here are the available commands; they are only of interest when
12978debugging @value{GDBN} or @code{gdbserver}.
12979
12980@table @code
12981@item monitor help
12982List the available monitor commands.
12983
12984@item monitor set debug 0
12985@itemx monitor set debug 1
12986Disable or enable general debugging messages.
12987
12988@item monitor set remote-debug 0
12989@itemx monitor set remote-debug 1
12990Disable or enable specific debugging messages associated with the remote
12991protocol (@pxref{Remote Protocol}).
12992
12993@end table
12994
79a6e687
BW
12995@node Remote Configuration
12996@section Remote Configuration
501eef12 12997
9c16f35a
EZ
12998@kindex set remote
12999@kindex show remote
13000This section documents the configuration options available when
13001debugging remote programs. For the options related to the File I/O
fc320d37 13002extensions of the remote protocol, see @ref{system,
9c16f35a 13003system-call-allowed}.
501eef12
AC
13004
13005@table @code
9c16f35a 13006@item set remoteaddresssize @var{bits}
d3e8051b 13007@cindex address size for remote targets
9c16f35a
EZ
13008@cindex bits in remote address
13009Set the maximum size of address in a memory packet to the specified
13010number of bits. @value{GDBN} will mask off the address bits above
13011that number, when it passes addresses to the remote target. The
13012default value is the number of bits in the target's address.
13013
13014@item show remoteaddresssize
13015Show the current value of remote address size in bits.
13016
13017@item set remotebaud @var{n}
13018@cindex baud rate for remote targets
13019Set the baud rate for the remote serial I/O to @var{n} baud. The
13020value is used to set the speed of the serial port used for debugging
13021remote targets.
13022
13023@item show remotebaud
13024Show the current speed of the remote connection.
13025
13026@item set remotebreak
13027@cindex interrupt remote programs
13028@cindex BREAK signal instead of Ctrl-C
9a6253be 13029@anchor{set remotebreak}
9c16f35a 13030If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13031when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13032on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13033character instead. The default is off, since most remote systems
13034expect to see @samp{Ctrl-C} as the interrupt signal.
13035
13036@item show remotebreak
13037Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13038interrupt the remote program.
13039
23776285
MR
13040@item set remoteflow on
13041@itemx set remoteflow off
13042@kindex set remoteflow
13043Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13044on the serial port used to communicate to the remote target.
13045
13046@item show remoteflow
13047@kindex show remoteflow
13048Show the current setting of hardware flow control.
13049
9c16f35a
EZ
13050@item set remotelogbase @var{base}
13051Set the base (a.k.a.@: radix) of logging serial protocol
13052communications to @var{base}. Supported values of @var{base} are:
13053@code{ascii}, @code{octal}, and @code{hex}. The default is
13054@code{ascii}.
13055
13056@item show remotelogbase
13057Show the current setting of the radix for logging remote serial
13058protocol.
13059
13060@item set remotelogfile @var{file}
13061@cindex record serial communications on file
13062Record remote serial communications on the named @var{file}. The
13063default is not to record at all.
13064
13065@item show remotelogfile.
13066Show the current setting of the file name on which to record the
13067serial communications.
13068
13069@item set remotetimeout @var{num}
13070@cindex timeout for serial communications
13071@cindex remote timeout
13072Set the timeout limit to wait for the remote target to respond to
13073@var{num} seconds. The default is 2 seconds.
13074
13075@item show remotetimeout
13076Show the current number of seconds to wait for the remote target
13077responses.
13078
13079@cindex limit hardware breakpoints and watchpoints
13080@cindex remote target, limit break- and watchpoints
501eef12
AC
13081@anchor{set remote hardware-watchpoint-limit}
13082@anchor{set remote hardware-breakpoint-limit}
13083@item set remote hardware-watchpoint-limit @var{limit}
13084@itemx set remote hardware-breakpoint-limit @var{limit}
13085Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13086watchpoints. A limit of -1, the default, is treated as unlimited.
13087@end table
13088
427c3a89
DJ
13089@cindex remote packets, enabling and disabling
13090The @value{GDBN} remote protocol autodetects the packets supported by
13091your debugging stub. If you need to override the autodetection, you
13092can use these commands to enable or disable individual packets. Each
13093packet can be set to @samp{on} (the remote target supports this
13094packet), @samp{off} (the remote target does not support this packet),
13095or @samp{auto} (detect remote target support for this packet). They
13096all default to @samp{auto}. For more information about each packet,
13097see @ref{Remote Protocol}.
13098
13099During normal use, you should not have to use any of these commands.
13100If you do, that may be a bug in your remote debugging stub, or a bug
13101in @value{GDBN}. You may want to report the problem to the
13102@value{GDBN} developers.
13103
cfa9d6d9
DJ
13104For each packet @var{name}, the command to enable or disable the
13105packet is @code{set remote @var{name}-packet}. The available settings
13106are:
427c3a89 13107
cfa9d6d9 13108@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13109@item Command Name
13110@tab Remote Packet
13111@tab Related Features
13112
cfa9d6d9 13113@item @code{fetch-register}
427c3a89
DJ
13114@tab @code{p}
13115@tab @code{info registers}
13116
cfa9d6d9 13117@item @code{set-register}
427c3a89
DJ
13118@tab @code{P}
13119@tab @code{set}
13120
cfa9d6d9 13121@item @code{binary-download}
427c3a89
DJ
13122@tab @code{X}
13123@tab @code{load}, @code{set}
13124
cfa9d6d9 13125@item @code{read-aux-vector}
427c3a89
DJ
13126@tab @code{qXfer:auxv:read}
13127@tab @code{info auxv}
13128
cfa9d6d9 13129@item @code{symbol-lookup}
427c3a89
DJ
13130@tab @code{qSymbol}
13131@tab Detecting multiple threads
13132
cfa9d6d9 13133@item @code{verbose-resume}
427c3a89
DJ
13134@tab @code{vCont}
13135@tab Stepping or resuming multiple threads
13136
cfa9d6d9 13137@item @code{software-breakpoint}
427c3a89
DJ
13138@tab @code{Z0}
13139@tab @code{break}
13140
cfa9d6d9 13141@item @code{hardware-breakpoint}
427c3a89
DJ
13142@tab @code{Z1}
13143@tab @code{hbreak}
13144
cfa9d6d9 13145@item @code{write-watchpoint}
427c3a89
DJ
13146@tab @code{Z2}
13147@tab @code{watch}
13148
cfa9d6d9 13149@item @code{read-watchpoint}
427c3a89
DJ
13150@tab @code{Z3}
13151@tab @code{rwatch}
13152
cfa9d6d9 13153@item @code{access-watchpoint}
427c3a89
DJ
13154@tab @code{Z4}
13155@tab @code{awatch}
13156
cfa9d6d9
DJ
13157@item @code{target-features}
13158@tab @code{qXfer:features:read}
13159@tab @code{set architecture}
13160
13161@item @code{library-info}
13162@tab @code{qXfer:libraries:read}
13163@tab @code{info sharedlibrary}
13164
13165@item @code{memory-map}
13166@tab @code{qXfer:memory-map:read}
13167@tab @code{info mem}
13168
13169@item @code{read-spu-object}
13170@tab @code{qXfer:spu:read}
13171@tab @code{info spu}
13172
13173@item @code{write-spu-object}
13174@tab @code{qXfer:spu:write}
13175@tab @code{info spu}
13176
13177@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13178@tab @code{qGetTLSAddr}
13179@tab Displaying @code{__thread} variables
13180
13181@item @code{supported-packets}
13182@tab @code{qSupported}
13183@tab Remote communications parameters
13184
cfa9d6d9 13185@item @code{pass-signals}
89be2091
DJ
13186@tab @code{QPassSignals}
13187@tab @code{handle @var{signal}}
13188
a6b151f1
DJ
13189@item @code{hostio-close-packet}
13190@tab @code{vFile:close}
13191@tab @code{remote get}, @code{remote put}
13192
13193@item @code{hostio-open-packet}
13194@tab @code{vFile:open}
13195@tab @code{remote get}, @code{remote put}
13196
13197@item @code{hostio-pread-packet}
13198@tab @code{vFile:pread}
13199@tab @code{remote get}, @code{remote put}
13200
13201@item @code{hostio-pwrite-packet}
13202@tab @code{vFile:pwrite}
13203@tab @code{remote get}, @code{remote put}
13204
13205@item @code{hostio-unlink-packet}
13206@tab @code{vFile:unlink}
13207@tab @code{remote delete}
427c3a89
DJ
13208@end multitable
13209
79a6e687
BW
13210@node Remote Stub
13211@section Implementing a Remote Stub
7a292a7a 13212
8e04817f
AC
13213@cindex debugging stub, example
13214@cindex remote stub, example
13215@cindex stub example, remote debugging
13216The stub files provided with @value{GDBN} implement the target side of the
13217communication protocol, and the @value{GDBN} side is implemented in the
13218@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13219these subroutines to communicate, and ignore the details. (If you're
13220implementing your own stub file, you can still ignore the details: start
13221with one of the existing stub files. @file{sparc-stub.c} is the best
13222organized, and therefore the easiest to read.)
13223
104c1213
JM
13224@cindex remote serial debugging, overview
13225To debug a program running on another machine (the debugging
13226@dfn{target} machine), you must first arrange for all the usual
13227prerequisites for the program to run by itself. For example, for a C
13228program, you need:
c906108c 13229
104c1213
JM
13230@enumerate
13231@item
13232A startup routine to set up the C runtime environment; these usually
13233have a name like @file{crt0}. The startup routine may be supplied by
13234your hardware supplier, or you may have to write your own.
96baa820 13235
5d161b24 13236@item
d4f3574e 13237A C subroutine library to support your program's
104c1213 13238subroutine calls, notably managing input and output.
96baa820 13239
104c1213
JM
13240@item
13241A way of getting your program to the other machine---for example, a
13242download program. These are often supplied by the hardware
13243manufacturer, but you may have to write your own from hardware
13244documentation.
13245@end enumerate
96baa820 13246
104c1213
JM
13247The next step is to arrange for your program to use a serial port to
13248communicate with the machine where @value{GDBN} is running (the @dfn{host}
13249machine). In general terms, the scheme looks like this:
96baa820 13250
104c1213
JM
13251@table @emph
13252@item On the host,
13253@value{GDBN} already understands how to use this protocol; when everything
13254else is set up, you can simply use the @samp{target remote} command
13255(@pxref{Targets,,Specifying a Debugging Target}).
13256
13257@item On the target,
13258you must link with your program a few special-purpose subroutines that
13259implement the @value{GDBN} remote serial protocol. The file containing these
13260subroutines is called a @dfn{debugging stub}.
13261
13262On certain remote targets, you can use an auxiliary program
13263@code{gdbserver} instead of linking a stub into your program.
79a6e687 13264@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13265@end table
96baa820 13266
104c1213
JM
13267The debugging stub is specific to the architecture of the remote
13268machine; for example, use @file{sparc-stub.c} to debug programs on
13269@sc{sparc} boards.
96baa820 13270
104c1213
JM
13271@cindex remote serial stub list
13272These working remote stubs are distributed with @value{GDBN}:
96baa820 13273
104c1213
JM
13274@table @code
13275
13276@item i386-stub.c
41afff9a 13277@cindex @file{i386-stub.c}
104c1213
JM
13278@cindex Intel
13279@cindex i386
13280For Intel 386 and compatible architectures.
13281
13282@item m68k-stub.c
41afff9a 13283@cindex @file{m68k-stub.c}
104c1213
JM
13284@cindex Motorola 680x0
13285@cindex m680x0
13286For Motorola 680x0 architectures.
13287
13288@item sh-stub.c
41afff9a 13289@cindex @file{sh-stub.c}
172c2a43 13290@cindex Renesas
104c1213 13291@cindex SH
172c2a43 13292For Renesas SH architectures.
104c1213
JM
13293
13294@item sparc-stub.c
41afff9a 13295@cindex @file{sparc-stub.c}
104c1213
JM
13296@cindex Sparc
13297For @sc{sparc} architectures.
13298
13299@item sparcl-stub.c
41afff9a 13300@cindex @file{sparcl-stub.c}
104c1213
JM
13301@cindex Fujitsu
13302@cindex SparcLite
13303For Fujitsu @sc{sparclite} architectures.
13304
13305@end table
13306
13307The @file{README} file in the @value{GDBN} distribution may list other
13308recently added stubs.
13309
13310@menu
13311* Stub Contents:: What the stub can do for you
13312* Bootstrapping:: What you must do for the stub
13313* Debug Session:: Putting it all together
104c1213
JM
13314@end menu
13315
6d2ebf8b 13316@node Stub Contents
79a6e687 13317@subsection What the Stub Can Do for You
104c1213
JM
13318
13319@cindex remote serial stub
13320The debugging stub for your architecture supplies these three
13321subroutines:
13322
13323@table @code
13324@item set_debug_traps
4644b6e3 13325@findex set_debug_traps
104c1213
JM
13326@cindex remote serial stub, initialization
13327This routine arranges for @code{handle_exception} to run when your
13328program stops. You must call this subroutine explicitly near the
13329beginning of your program.
13330
13331@item handle_exception
4644b6e3 13332@findex handle_exception
104c1213
JM
13333@cindex remote serial stub, main routine
13334This is the central workhorse, but your program never calls it
13335explicitly---the setup code arranges for @code{handle_exception} to
13336run when a trap is triggered.
13337
13338@code{handle_exception} takes control when your program stops during
13339execution (for example, on a breakpoint), and mediates communications
13340with @value{GDBN} on the host machine. This is where the communications
13341protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13342representative on the target machine. It begins by sending summary
104c1213
JM
13343information on the state of your program, then continues to execute,
13344retrieving and transmitting any information @value{GDBN} needs, until you
13345execute a @value{GDBN} command that makes your program resume; at that point,
13346@code{handle_exception} returns control to your own code on the target
5d161b24 13347machine.
104c1213
JM
13348
13349@item breakpoint
13350@cindex @code{breakpoint} subroutine, remote
13351Use this auxiliary subroutine to make your program contain a
13352breakpoint. Depending on the particular situation, this may be the only
13353way for @value{GDBN} to get control. For instance, if your target
13354machine has some sort of interrupt button, you won't need to call this;
13355pressing the interrupt button transfers control to
13356@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13357simply receiving characters on the serial port may also trigger a trap;
13358again, in that situation, you don't need to call @code{breakpoint} from
13359your own program---simply running @samp{target remote} from the host
5d161b24 13360@value{GDBN} session gets control.
104c1213
JM
13361
13362Call @code{breakpoint} if none of these is true, or if you simply want
13363to make certain your program stops at a predetermined point for the
13364start of your debugging session.
13365@end table
13366
6d2ebf8b 13367@node Bootstrapping
79a6e687 13368@subsection What You Must Do for the Stub
104c1213
JM
13369
13370@cindex remote stub, support routines
13371The debugging stubs that come with @value{GDBN} are set up for a particular
13372chip architecture, but they have no information about the rest of your
13373debugging target machine.
13374
13375First of all you need to tell the stub how to communicate with the
13376serial port.
13377
13378@table @code
13379@item int getDebugChar()
4644b6e3 13380@findex getDebugChar
104c1213
JM
13381Write this subroutine to read a single character from the serial port.
13382It may be identical to @code{getchar} for your target system; a
13383different name is used to allow you to distinguish the two if you wish.
13384
13385@item void putDebugChar(int)
4644b6e3 13386@findex putDebugChar
104c1213 13387Write this subroutine to write a single character to the serial port.
5d161b24 13388It may be identical to @code{putchar} for your target system; a
104c1213
JM
13389different name is used to allow you to distinguish the two if you wish.
13390@end table
13391
13392@cindex control C, and remote debugging
13393@cindex interrupting remote targets
13394If you want @value{GDBN} to be able to stop your program while it is
13395running, you need to use an interrupt-driven serial driver, and arrange
13396for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13397character). That is the character which @value{GDBN} uses to tell the
13398remote system to stop.
13399
13400Getting the debugging target to return the proper status to @value{GDBN}
13401probably requires changes to the standard stub; one quick and dirty way
13402is to just execute a breakpoint instruction (the ``dirty'' part is that
13403@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13404
13405Other routines you need to supply are:
13406
13407@table @code
13408@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13409@findex exceptionHandler
104c1213
JM
13410Write this function to install @var{exception_address} in the exception
13411handling tables. You need to do this because the stub does not have any
13412way of knowing what the exception handling tables on your target system
13413are like (for example, the processor's table might be in @sc{rom},
13414containing entries which point to a table in @sc{ram}).
13415@var{exception_number} is the exception number which should be changed;
13416its meaning is architecture-dependent (for example, different numbers
13417might represent divide by zero, misaligned access, etc). When this
13418exception occurs, control should be transferred directly to
13419@var{exception_address}, and the processor state (stack, registers,
13420and so on) should be just as it is when a processor exception occurs. So if
13421you want to use a jump instruction to reach @var{exception_address}, it
13422should be a simple jump, not a jump to subroutine.
13423
13424For the 386, @var{exception_address} should be installed as an interrupt
13425gate so that interrupts are masked while the handler runs. The gate
13426should be at privilege level 0 (the most privileged level). The
13427@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13428help from @code{exceptionHandler}.
13429
13430@item void flush_i_cache()
4644b6e3 13431@findex flush_i_cache
d4f3574e 13432On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13433instruction cache, if any, on your target machine. If there is no
13434instruction cache, this subroutine may be a no-op.
13435
13436On target machines that have instruction caches, @value{GDBN} requires this
13437function to make certain that the state of your program is stable.
13438@end table
13439
13440@noindent
13441You must also make sure this library routine is available:
13442
13443@table @code
13444@item void *memset(void *, int, int)
4644b6e3 13445@findex memset
104c1213
JM
13446This is the standard library function @code{memset} that sets an area of
13447memory to a known value. If you have one of the free versions of
13448@code{libc.a}, @code{memset} can be found there; otherwise, you must
13449either obtain it from your hardware manufacturer, or write your own.
13450@end table
13451
13452If you do not use the GNU C compiler, you may need other standard
13453library subroutines as well; this varies from one stub to another,
13454but in general the stubs are likely to use any of the common library
e22ea452 13455subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13456
13457
6d2ebf8b 13458@node Debug Session
79a6e687 13459@subsection Putting it All Together
104c1213
JM
13460
13461@cindex remote serial debugging summary
13462In summary, when your program is ready to debug, you must follow these
13463steps.
13464
13465@enumerate
13466@item
6d2ebf8b 13467Make sure you have defined the supporting low-level routines
79a6e687 13468(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13469@display
13470@code{getDebugChar}, @code{putDebugChar},
13471@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13472@end display
13473
13474@item
13475Insert these lines near the top of your program:
13476
474c8240 13477@smallexample
104c1213
JM
13478set_debug_traps();
13479breakpoint();
474c8240 13480@end smallexample
104c1213
JM
13481
13482@item
13483For the 680x0 stub only, you need to provide a variable called
13484@code{exceptionHook}. Normally you just use:
13485
474c8240 13486@smallexample
104c1213 13487void (*exceptionHook)() = 0;
474c8240 13488@end smallexample
104c1213 13489
d4f3574e 13490@noindent
104c1213 13491but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13492function in your program, that function is called when
104c1213
JM
13493@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13494error). The function indicated by @code{exceptionHook} is called with
13495one parameter: an @code{int} which is the exception number.
13496
13497@item
13498Compile and link together: your program, the @value{GDBN} debugging stub for
13499your target architecture, and the supporting subroutines.
13500
13501@item
13502Make sure you have a serial connection between your target machine and
13503the @value{GDBN} host, and identify the serial port on the host.
13504
13505@item
13506@c The "remote" target now provides a `load' command, so we should
13507@c document that. FIXME.
13508Download your program to your target machine (or get it there by
13509whatever means the manufacturer provides), and start it.
13510
13511@item
07f31aa6 13512Start @value{GDBN} on the host, and connect to the target
79a6e687 13513(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13514
104c1213
JM
13515@end enumerate
13516
8e04817f
AC
13517@node Configurations
13518@chapter Configuration-Specific Information
104c1213 13519
8e04817f
AC
13520While nearly all @value{GDBN} commands are available for all native and
13521cross versions of the debugger, there are some exceptions. This chapter
13522describes things that are only available in certain configurations.
104c1213 13523
8e04817f
AC
13524There are three major categories of configurations: native
13525configurations, where the host and target are the same, embedded
13526operating system configurations, which are usually the same for several
13527different processor architectures, and bare embedded processors, which
13528are quite different from each other.
104c1213 13529
8e04817f
AC
13530@menu
13531* Native::
13532* Embedded OS::
13533* Embedded Processors::
13534* Architectures::
13535@end menu
104c1213 13536
8e04817f
AC
13537@node Native
13538@section Native
104c1213 13539
8e04817f
AC
13540This section describes details specific to particular native
13541configurations.
6cf7e474 13542
8e04817f
AC
13543@menu
13544* HP-UX:: HP-UX
7561d450 13545* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13546* SVR4 Process Information:: SVR4 process information
13547* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13548* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13549* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13550* Neutrino:: Features specific to QNX Neutrino
8e04817f 13551@end menu
6cf7e474 13552
8e04817f
AC
13553@node HP-UX
13554@subsection HP-UX
104c1213 13555
8e04817f
AC
13556On HP-UX systems, if you refer to a function or variable name that
13557begins with a dollar sign, @value{GDBN} searches for a user or system
13558name first, before it searches for a convenience variable.
104c1213 13559
9c16f35a 13560
7561d450
MK
13561@node BSD libkvm Interface
13562@subsection BSD libkvm Interface
13563
13564@cindex libkvm
13565@cindex kernel memory image
13566@cindex kernel crash dump
13567
13568BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13569interface that provides a uniform interface for accessing kernel virtual
13570memory images, including live systems and crash dumps. @value{GDBN}
13571uses this interface to allow you to debug live kernels and kernel crash
13572dumps on many native BSD configurations. This is implemented as a
13573special @code{kvm} debugging target. For debugging a live system, load
13574the currently running kernel into @value{GDBN} and connect to the
13575@code{kvm} target:
13576
13577@smallexample
13578(@value{GDBP}) @b{target kvm}
13579@end smallexample
13580
13581For debugging crash dumps, provide the file name of the crash dump as an
13582argument:
13583
13584@smallexample
13585(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13586@end smallexample
13587
13588Once connected to the @code{kvm} target, the following commands are
13589available:
13590
13591@table @code
13592@kindex kvm
13593@item kvm pcb
721c2651 13594Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13595
13596@item kvm proc
13597Set current context from proc address. This command isn't available on
13598modern FreeBSD systems.
13599@end table
13600
8e04817f 13601@node SVR4 Process Information
79a6e687 13602@subsection SVR4 Process Information
60bf7e09
EZ
13603@cindex /proc
13604@cindex examine process image
13605@cindex process info via @file{/proc}
104c1213 13606
60bf7e09
EZ
13607Many versions of SVR4 and compatible systems provide a facility called
13608@samp{/proc} that can be used to examine the image of a running
13609process using file-system subroutines. If @value{GDBN} is configured
13610for an operating system with this facility, the command @code{info
13611proc} is available to report information about the process running
13612your program, or about any process running on your system. @code{info
13613proc} works only on SVR4 systems that include the @code{procfs} code.
13614This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13615Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13616
8e04817f
AC
13617@table @code
13618@kindex info proc
60bf7e09 13619@cindex process ID
8e04817f 13620@item info proc
60bf7e09
EZ
13621@itemx info proc @var{process-id}
13622Summarize available information about any running process. If a
13623process ID is specified by @var{process-id}, display information about
13624that process; otherwise display information about the program being
13625debugged. The summary includes the debugged process ID, the command
13626line used to invoke it, its current working directory, and its
13627executable file's absolute file name.
13628
13629On some systems, @var{process-id} can be of the form
13630@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13631within a process. If the optional @var{pid} part is missing, it means
13632a thread from the process being debugged (the leading @samp{/} still
13633needs to be present, or else @value{GDBN} will interpret the number as
13634a process ID rather than a thread ID).
6cf7e474 13635
8e04817f 13636@item info proc mappings
60bf7e09
EZ
13637@cindex memory address space mappings
13638Report the memory address space ranges accessible in the program, with
13639information on whether the process has read, write, or execute access
13640rights to each range. On @sc{gnu}/Linux systems, each memory range
13641includes the object file which is mapped to that range, instead of the
13642memory access rights to that range.
13643
13644@item info proc stat
13645@itemx info proc status
13646@cindex process detailed status information
13647These subcommands are specific to @sc{gnu}/Linux systems. They show
13648the process-related information, including the user ID and group ID;
13649how many threads are there in the process; its virtual memory usage;
13650the signals that are pending, blocked, and ignored; its TTY; its
13651consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13652value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13653(type @kbd{man 5 proc} from your shell prompt).
13654
13655@item info proc all
13656Show all the information about the process described under all of the
13657above @code{info proc} subcommands.
13658
8e04817f
AC
13659@ignore
13660@comment These sub-options of 'info proc' were not included when
13661@comment procfs.c was re-written. Keep their descriptions around
13662@comment against the day when someone finds the time to put them back in.
13663@kindex info proc times
13664@item info proc times
13665Starting time, user CPU time, and system CPU time for your program and
13666its children.
6cf7e474 13667
8e04817f
AC
13668@kindex info proc id
13669@item info proc id
13670Report on the process IDs related to your program: its own process ID,
13671the ID of its parent, the process group ID, and the session ID.
8e04817f 13672@end ignore
721c2651
EZ
13673
13674@item set procfs-trace
13675@kindex set procfs-trace
13676@cindex @code{procfs} API calls
13677This command enables and disables tracing of @code{procfs} API calls.
13678
13679@item show procfs-trace
13680@kindex show procfs-trace
13681Show the current state of @code{procfs} API call tracing.
13682
13683@item set procfs-file @var{file}
13684@kindex set procfs-file
13685Tell @value{GDBN} to write @code{procfs} API trace to the named
13686@var{file}. @value{GDBN} appends the trace info to the previous
13687contents of the file. The default is to display the trace on the
13688standard output.
13689
13690@item show procfs-file
13691@kindex show procfs-file
13692Show the file to which @code{procfs} API trace is written.
13693
13694@item proc-trace-entry
13695@itemx proc-trace-exit
13696@itemx proc-untrace-entry
13697@itemx proc-untrace-exit
13698@kindex proc-trace-entry
13699@kindex proc-trace-exit
13700@kindex proc-untrace-entry
13701@kindex proc-untrace-exit
13702These commands enable and disable tracing of entries into and exits
13703from the @code{syscall} interface.
13704
13705@item info pidlist
13706@kindex info pidlist
13707@cindex process list, QNX Neutrino
13708For QNX Neutrino only, this command displays the list of all the
13709processes and all the threads within each process.
13710
13711@item info meminfo
13712@kindex info meminfo
13713@cindex mapinfo list, QNX Neutrino
13714For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13715@end table
104c1213 13716
8e04817f
AC
13717@node DJGPP Native
13718@subsection Features for Debugging @sc{djgpp} Programs
13719@cindex @sc{djgpp} debugging
13720@cindex native @sc{djgpp} debugging
13721@cindex MS-DOS-specific commands
104c1213 13722
514c4d71
EZ
13723@cindex DPMI
13724@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13725MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13726that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13727top of real-mode DOS systems and their emulations.
104c1213 13728
8e04817f
AC
13729@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13730defines a few commands specific to the @sc{djgpp} port. This
13731subsection describes those commands.
104c1213 13732
8e04817f
AC
13733@table @code
13734@kindex info dos
13735@item info dos
13736This is a prefix of @sc{djgpp}-specific commands which print
13737information about the target system and important OS structures.
f1251bdd 13738
8e04817f
AC
13739@kindex sysinfo
13740@cindex MS-DOS system info
13741@cindex free memory information (MS-DOS)
13742@item info dos sysinfo
13743This command displays assorted information about the underlying
13744platform: the CPU type and features, the OS version and flavor, the
13745DPMI version, and the available conventional and DPMI memory.
104c1213 13746
8e04817f
AC
13747@cindex GDT
13748@cindex LDT
13749@cindex IDT
13750@cindex segment descriptor tables
13751@cindex descriptor tables display
13752@item info dos gdt
13753@itemx info dos ldt
13754@itemx info dos idt
13755These 3 commands display entries from, respectively, Global, Local,
13756and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13757tables are data structures which store a descriptor for each segment
13758that is currently in use. The segment's selector is an index into a
13759descriptor table; the table entry for that index holds the
13760descriptor's base address and limit, and its attributes and access
13761rights.
104c1213 13762
8e04817f
AC
13763A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13764segment (used for both data and the stack), and a DOS segment (which
13765allows access to DOS/BIOS data structures and absolute addresses in
13766conventional memory). However, the DPMI host will usually define
13767additional segments in order to support the DPMI environment.
d4f3574e 13768
8e04817f
AC
13769@cindex garbled pointers
13770These commands allow to display entries from the descriptor tables.
13771Without an argument, all entries from the specified table are
13772displayed. An argument, which should be an integer expression, means
13773display a single entry whose index is given by the argument. For
13774example, here's a convenient way to display information about the
13775debugged program's data segment:
104c1213 13776
8e04817f
AC
13777@smallexample
13778@exdent @code{(@value{GDBP}) info dos ldt $ds}
13779@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13780@end smallexample
104c1213 13781
8e04817f
AC
13782@noindent
13783This comes in handy when you want to see whether a pointer is outside
13784the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13785
8e04817f
AC
13786@cindex page tables display (MS-DOS)
13787@item info dos pde
13788@itemx info dos pte
13789These two commands display entries from, respectively, the Page
13790Directory and the Page Tables. Page Directories and Page Tables are
13791data structures which control how virtual memory addresses are mapped
13792into physical addresses. A Page Table includes an entry for every
13793page of memory that is mapped into the program's address space; there
13794may be several Page Tables, each one holding up to 4096 entries. A
13795Page Directory has up to 4096 entries, one each for every Page Table
13796that is currently in use.
104c1213 13797
8e04817f
AC
13798Without an argument, @kbd{info dos pde} displays the entire Page
13799Directory, and @kbd{info dos pte} displays all the entries in all of
13800the Page Tables. An argument, an integer expression, given to the
13801@kbd{info dos pde} command means display only that entry from the Page
13802Directory table. An argument given to the @kbd{info dos pte} command
13803means display entries from a single Page Table, the one pointed to by
13804the specified entry in the Page Directory.
104c1213 13805
8e04817f
AC
13806@cindex direct memory access (DMA) on MS-DOS
13807These commands are useful when your program uses @dfn{DMA} (Direct
13808Memory Access), which needs physical addresses to program the DMA
13809controller.
104c1213 13810
8e04817f 13811These commands are supported only with some DPMI servers.
104c1213 13812
8e04817f
AC
13813@cindex physical address from linear address
13814@item info dos address-pte @var{addr}
13815This command displays the Page Table entry for a specified linear
514c4d71
EZ
13816address. The argument @var{addr} is a linear address which should
13817already have the appropriate segment's base address added to it,
13818because this command accepts addresses which may belong to @emph{any}
13819segment. For example, here's how to display the Page Table entry for
13820the page where a variable @code{i} is stored:
104c1213 13821
b383017d 13822@smallexample
8e04817f
AC
13823@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13824@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13825@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13826@end smallexample
104c1213 13827
8e04817f
AC
13828@noindent
13829This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13830whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13831attributes of that page.
104c1213 13832
8e04817f
AC
13833Note that you must cast the addresses of variables to a @code{char *},
13834since otherwise the value of @code{__djgpp_base_address}, the base
13835address of all variables and functions in a @sc{djgpp} program, will
13836be added using the rules of C pointer arithmetics: if @code{i} is
13837declared an @code{int}, @value{GDBN} will add 4 times the value of
13838@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13839
8e04817f
AC
13840Here's another example, it displays the Page Table entry for the
13841transfer buffer:
104c1213 13842
8e04817f
AC
13843@smallexample
13844@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13845@exdent @code{Page Table entry for address 0x29110:}
13846@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13847@end smallexample
104c1213 13848
8e04817f
AC
13849@noindent
13850(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
138513rd member of the @code{_go32_info_block} structure.) The output
13852clearly shows that this DPMI server maps the addresses in conventional
13853memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13854linear (@code{0x29110}) addresses are identical.
104c1213 13855
8e04817f
AC
13856This command is supported only with some DPMI servers.
13857@end table
104c1213 13858
c45da7e6 13859@cindex DOS serial data link, remote debugging
a8f24a35
EZ
13860In addition to native debugging, the DJGPP port supports remote
13861debugging via a serial data link. The following commands are specific
13862to remote serial debugging in the DJGPP port of @value{GDBN}.
13863
13864@table @code
13865@kindex set com1base
13866@kindex set com1irq
13867@kindex set com2base
13868@kindex set com2irq
13869@kindex set com3base
13870@kindex set com3irq
13871@kindex set com4base
13872@kindex set com4irq
13873@item set com1base @var{addr}
13874This command sets the base I/O port address of the @file{COM1} serial
13875port.
13876
13877@item set com1irq @var{irq}
13878This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13879for the @file{COM1} serial port.
13880
13881There are similar commands @samp{set com2base}, @samp{set com3irq},
13882etc.@: for setting the port address and the @code{IRQ} lines for the
13883other 3 COM ports.
13884
13885@kindex show com1base
13886@kindex show com1irq
13887@kindex show com2base
13888@kindex show com2irq
13889@kindex show com3base
13890@kindex show com3irq
13891@kindex show com4base
13892@kindex show com4irq
13893The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13894display the current settings of the base address and the @code{IRQ}
13895lines used by the COM ports.
c45da7e6
EZ
13896
13897@item info serial
13898@kindex info serial
13899@cindex DOS serial port status
13900This command prints the status of the 4 DOS serial ports. For each
13901port, it prints whether it's active or not, its I/O base address and
13902IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13903counts of various errors encountered so far.
a8f24a35
EZ
13904@end table
13905
13906
78c47bea 13907@node Cygwin Native
79a6e687 13908@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
13909@cindex MS Windows debugging
13910@cindex native Cygwin debugging
13911@cindex Cygwin-specific commands
13912
be448670 13913@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
13914DLLs with and without symbolic debugging information. There are various
13915additional Cygwin-specific commands, described in this section.
13916Working with DLLs that have no debugging symbols is described in
13917@ref{Non-debug DLL Symbols}.
78c47bea
PM
13918
13919@table @code
13920@kindex info w32
13921@item info w32
db2e3e2e 13922This is a prefix of MS Windows-specific commands which print
78c47bea
PM
13923information about the target system and important OS structures.
13924
13925@item info w32 selector
13926This command displays information returned by
13927the Win32 API @code{GetThreadSelectorEntry} function.
13928It takes an optional argument that is evaluated to
13929a long value to give the information about this given selector.
13930Without argument, this command displays information
d3e8051b 13931about the six segment registers.
78c47bea
PM
13932
13933@kindex info dll
13934@item info dll
db2e3e2e 13935This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
13936
13937@kindex dll-symbols
13938@item dll-symbols
13939This command loads symbols from a dll similarly to
13940add-sym command but without the need to specify a base address.
13941
be90c084 13942@kindex set cygwin-exceptions
e16b02ee
EZ
13943@cindex debugging the Cygwin DLL
13944@cindex Cygwin DLL, debugging
be90c084 13945@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
13946If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13947happen inside the Cygwin DLL. If @var{mode} is @code{off},
13948@value{GDBN} will delay recognition of exceptions, and may ignore some
13949exceptions which seem to be caused by internal Cygwin DLL
13950``bookkeeping''. This option is meant primarily for debugging the
13951Cygwin DLL itself; the default value is @code{off} to avoid annoying
13952@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
13953
13954@kindex show cygwin-exceptions
13955@item show cygwin-exceptions
e16b02ee
EZ
13956Displays whether @value{GDBN} will break on exceptions that happen
13957inside the Cygwin DLL itself.
be90c084 13958
b383017d 13959@kindex set new-console
78c47bea 13960@item set new-console @var{mode}
b383017d 13961If @var{mode} is @code{on} the debuggee will
78c47bea
PM
13962be started in a new console on next start.
13963If @var{mode} is @code{off}i, the debuggee will
13964be started in the same console as the debugger.
13965
13966@kindex show new-console
13967@item show new-console
13968Displays whether a new console is used
13969when the debuggee is started.
13970
13971@kindex set new-group
13972@item set new-group @var{mode}
13973This boolean value controls whether the debuggee should
13974start a new group or stay in the same group as the debugger.
13975This affects the way the Windows OS handles
c8aa23ab 13976@samp{Ctrl-C}.
78c47bea
PM
13977
13978@kindex show new-group
13979@item show new-group
13980Displays current value of new-group boolean.
13981
13982@kindex set debugevents
13983@item set debugevents
219eec71
EZ
13984This boolean value adds debug output concerning kernel events related
13985to the debuggee seen by the debugger. This includes events that
13986signal thread and process creation and exit, DLL loading and
13987unloading, console interrupts, and debugging messages produced by the
13988Windows @code{OutputDebugString} API call.
78c47bea
PM
13989
13990@kindex set debugexec
13991@item set debugexec
b383017d 13992This boolean value adds debug output concerning execute events
219eec71 13993(such as resume thread) seen by the debugger.
78c47bea
PM
13994
13995@kindex set debugexceptions
13996@item set debugexceptions
219eec71
EZ
13997This boolean value adds debug output concerning exceptions in the
13998debuggee seen by the debugger.
78c47bea
PM
13999
14000@kindex set debugmemory
14001@item set debugmemory
219eec71
EZ
14002This boolean value adds debug output concerning debuggee memory reads
14003and writes by the debugger.
78c47bea
PM
14004
14005@kindex set shell
14006@item set shell
14007This boolean values specifies whether the debuggee is called
14008via a shell or directly (default value is on).
14009
14010@kindex show shell
14011@item show shell
14012Displays if the debuggee will be started with a shell.
14013
14014@end table
14015
be448670 14016@menu
79a6e687 14017* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14018@end menu
14019
79a6e687
BW
14020@node Non-debug DLL Symbols
14021@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14022@cindex DLLs with no debugging symbols
14023@cindex Minimal symbols and DLLs
14024
14025Very often on windows, some of the DLLs that your program relies on do
14026not include symbolic debugging information (for example,
db2e3e2e 14027@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14028symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14029information contained in the DLL's export table. This section
be448670
CF
14030describes working with such symbols, known internally to @value{GDBN} as
14031``minimal symbols''.
14032
14033Note that before the debugged program has started execution, no DLLs
db2e3e2e 14034will have been loaded. The easiest way around this problem is simply to
be448670 14035start the program --- either by setting a breakpoint or letting the
db2e3e2e 14036program run once to completion. It is also possible to force
be448670 14037@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14038see the shared library information in @ref{Files}, or the
db2e3e2e 14039@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14040explicitly loading symbols from a DLL with no debugging information will
14041cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14042which may adversely affect symbol lookup performance.
14043
79a6e687 14044@subsubsection DLL Name Prefixes
be448670
CF
14045
14046In keeping with the naming conventions used by the Microsoft debugging
14047tools, DLL export symbols are made available with a prefix based on the
14048DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14049also entered into the symbol table, so @code{CreateFileA} is often
14050sufficient. In some cases there will be name clashes within a program
14051(particularly if the executable itself includes full debugging symbols)
14052necessitating the use of the fully qualified name when referring to the
14053contents of the DLL. Use single-quotes around the name to avoid the
14054exclamation mark (``!'') being interpreted as a language operator.
14055
14056Note that the internal name of the DLL may be all upper-case, even
14057though the file name of the DLL is lower-case, or vice-versa. Since
14058symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14059some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14060@code{info variables} commands or even @code{maint print msymbols}
14061(@pxref{Symbols}). Here's an example:
be448670
CF
14062
14063@smallexample
f7dc1244 14064(@value{GDBP}) info function CreateFileA
be448670
CF
14065All functions matching regular expression "CreateFileA":
14066
14067Non-debugging symbols:
140680x77e885f4 CreateFileA
140690x77e885f4 KERNEL32!CreateFileA
14070@end smallexample
14071
14072@smallexample
f7dc1244 14073(@value{GDBP}) info function !
be448670
CF
14074All functions matching regular expression "!":
14075
14076Non-debugging symbols:
140770x6100114c cygwin1!__assert
140780x61004034 cygwin1!_dll_crt0@@0
140790x61004240 cygwin1!dll_crt0(per_process *)
14080[etc...]
14081@end smallexample
14082
79a6e687 14083@subsubsection Working with Minimal Symbols
be448670
CF
14084
14085Symbols extracted from a DLL's export table do not contain very much
14086type information. All that @value{GDBN} can do is guess whether a symbol
14087refers to a function or variable depending on the linker section that
14088contains the symbol. Also note that the actual contents of the memory
14089contained in a DLL are not available unless the program is running. This
14090means that you cannot examine the contents of a variable or disassemble
14091a function within a DLL without a running program.
14092
14093Variables are generally treated as pointers and dereferenced
14094automatically. For this reason, it is often necessary to prefix a
14095variable name with the address-of operator (``&'') and provide explicit
14096type information in the command. Here's an example of the type of
14097problem:
14098
14099@smallexample
f7dc1244 14100(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14101$1 = 268572168
14102@end smallexample
14103
14104@smallexample
f7dc1244 14105(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
141060x10021610: "\230y\""
14107@end smallexample
14108
14109And two possible solutions:
14110
14111@smallexample
f7dc1244 14112(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14113$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14114@end smallexample
14115
14116@smallexample
f7dc1244 14117(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 141180x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14119(@value{GDBP}) x/x 0x10021608
be448670 141200x10021608: 0x0022fd98
f7dc1244 14121(@value{GDBP}) x/s 0x0022fd98
be448670
CF
141220x22fd98: "/cygdrive/c/mydirectory/myprogram"
14123@end smallexample
14124
14125Setting a break point within a DLL is possible even before the program
14126starts execution. However, under these circumstances, @value{GDBN} can't
14127examine the initial instructions of the function in order to skip the
14128function's frame set-up code. You can work around this by using ``*&''
14129to set the breakpoint at a raw memory address:
14130
14131@smallexample
f7dc1244 14132(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14133Breakpoint 1 at 0x1e04eff0
14134@end smallexample
14135
14136The author of these extensions is not entirely convinced that setting a
14137break point within a shared DLL like @file{kernel32.dll} is completely
14138safe.
14139
14d6dd68 14140@node Hurd Native
79a6e687 14141@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14142@cindex @sc{gnu} Hurd debugging
14143
14144This subsection describes @value{GDBN} commands specific to the
14145@sc{gnu} Hurd native debugging.
14146
14147@table @code
14148@item set signals
14149@itemx set sigs
14150@kindex set signals@r{, Hurd command}
14151@kindex set sigs@r{, Hurd command}
14152This command toggles the state of inferior signal interception by
14153@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14154affected by this command. @code{sigs} is a shorthand alias for
14155@code{signals}.
14156
14157@item show signals
14158@itemx show sigs
14159@kindex show signals@r{, Hurd command}
14160@kindex show sigs@r{, Hurd command}
14161Show the current state of intercepting inferior's signals.
14162
14163@item set signal-thread
14164@itemx set sigthread
14165@kindex set signal-thread
14166@kindex set sigthread
14167This command tells @value{GDBN} which thread is the @code{libc} signal
14168thread. That thread is run when a signal is delivered to a running
14169process. @code{set sigthread} is the shorthand alias of @code{set
14170signal-thread}.
14171
14172@item show signal-thread
14173@itemx show sigthread
14174@kindex show signal-thread
14175@kindex show sigthread
14176These two commands show which thread will run when the inferior is
14177delivered a signal.
14178
14179@item set stopped
14180@kindex set stopped@r{, Hurd command}
14181This commands tells @value{GDBN} that the inferior process is stopped,
14182as with the @code{SIGSTOP} signal. The stopped process can be
14183continued by delivering a signal to it.
14184
14185@item show stopped
14186@kindex show stopped@r{, Hurd command}
14187This command shows whether @value{GDBN} thinks the debuggee is
14188stopped.
14189
14190@item set exceptions
14191@kindex set exceptions@r{, Hurd command}
14192Use this command to turn off trapping of exceptions in the inferior.
14193When exception trapping is off, neither breakpoints nor
14194single-stepping will work. To restore the default, set exception
14195trapping on.
14196
14197@item show exceptions
14198@kindex show exceptions@r{, Hurd command}
14199Show the current state of trapping exceptions in the inferior.
14200
14201@item set task pause
14202@kindex set task@r{, Hurd commands}
14203@cindex task attributes (@sc{gnu} Hurd)
14204@cindex pause current task (@sc{gnu} Hurd)
14205This command toggles task suspension when @value{GDBN} has control.
14206Setting it to on takes effect immediately, and the task is suspended
14207whenever @value{GDBN} gets control. Setting it to off will take
14208effect the next time the inferior is continued. If this option is set
14209to off, you can use @code{set thread default pause on} or @code{set
14210thread pause on} (see below) to pause individual threads.
14211
14212@item show task pause
14213@kindex show task@r{, Hurd commands}
14214Show the current state of task suspension.
14215
14216@item set task detach-suspend-count
14217@cindex task suspend count
14218@cindex detach from task, @sc{gnu} Hurd
14219This command sets the suspend count the task will be left with when
14220@value{GDBN} detaches from it.
14221
14222@item show task detach-suspend-count
14223Show the suspend count the task will be left with when detaching.
14224
14225@item set task exception-port
14226@itemx set task excp
14227@cindex task exception port, @sc{gnu} Hurd
14228This command sets the task exception port to which @value{GDBN} will
14229forward exceptions. The argument should be the value of the @dfn{send
14230rights} of the task. @code{set task excp} is a shorthand alias.
14231
14232@item set noninvasive
14233@cindex noninvasive task options
14234This command switches @value{GDBN} to a mode that is the least
14235invasive as far as interfering with the inferior is concerned. This
14236is the same as using @code{set task pause}, @code{set exceptions}, and
14237@code{set signals} to values opposite to the defaults.
14238
14239@item info send-rights
14240@itemx info receive-rights
14241@itemx info port-rights
14242@itemx info port-sets
14243@itemx info dead-names
14244@itemx info ports
14245@itemx info psets
14246@cindex send rights, @sc{gnu} Hurd
14247@cindex receive rights, @sc{gnu} Hurd
14248@cindex port rights, @sc{gnu} Hurd
14249@cindex port sets, @sc{gnu} Hurd
14250@cindex dead names, @sc{gnu} Hurd
14251These commands display information about, respectively, send rights,
14252receive rights, port rights, port sets, and dead names of a task.
14253There are also shorthand aliases: @code{info ports} for @code{info
14254port-rights} and @code{info psets} for @code{info port-sets}.
14255
14256@item set thread pause
14257@kindex set thread@r{, Hurd command}
14258@cindex thread properties, @sc{gnu} Hurd
14259@cindex pause current thread (@sc{gnu} Hurd)
14260This command toggles current thread suspension when @value{GDBN} has
14261control. Setting it to on takes effect immediately, and the current
14262thread is suspended whenever @value{GDBN} gets control. Setting it to
14263off will take effect the next time the inferior is continued.
14264Normally, this command has no effect, since when @value{GDBN} has
14265control, the whole task is suspended. However, if you used @code{set
14266task pause off} (see above), this command comes in handy to suspend
14267only the current thread.
14268
14269@item show thread pause
14270@kindex show thread@r{, Hurd command}
14271This command shows the state of current thread suspension.
14272
14273@item set thread run
d3e8051b 14274This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14275
14276@item show thread run
14277Show whether the current thread is allowed to run.
14278
14279@item set thread detach-suspend-count
14280@cindex thread suspend count, @sc{gnu} Hurd
14281@cindex detach from thread, @sc{gnu} Hurd
14282This command sets the suspend count @value{GDBN} will leave on a
14283thread when detaching. This number is relative to the suspend count
14284found by @value{GDBN} when it notices the thread; use @code{set thread
14285takeover-suspend-count} to force it to an absolute value.
14286
14287@item show thread detach-suspend-count
14288Show the suspend count @value{GDBN} will leave on the thread when
14289detaching.
14290
14291@item set thread exception-port
14292@itemx set thread excp
14293Set the thread exception port to which to forward exceptions. This
14294overrides the port set by @code{set task exception-port} (see above).
14295@code{set thread excp} is the shorthand alias.
14296
14297@item set thread takeover-suspend-count
14298Normally, @value{GDBN}'s thread suspend counts are relative to the
14299value @value{GDBN} finds when it notices each thread. This command
14300changes the suspend counts to be absolute instead.
14301
14302@item set thread default
14303@itemx show thread default
14304@cindex thread default settings, @sc{gnu} Hurd
14305Each of the above @code{set thread} commands has a @code{set thread
14306default} counterpart (e.g., @code{set thread default pause}, @code{set
14307thread default exception-port}, etc.). The @code{thread default}
14308variety of commands sets the default thread properties for all
14309threads; you can then change the properties of individual threads with
14310the non-default commands.
14311@end table
14312
14313
a64548ea
EZ
14314@node Neutrino
14315@subsection QNX Neutrino
14316@cindex QNX Neutrino
14317
14318@value{GDBN} provides the following commands specific to the QNX
14319Neutrino target:
14320
14321@table @code
14322@item set debug nto-debug
14323@kindex set debug nto-debug
14324When set to on, enables debugging messages specific to the QNX
14325Neutrino support.
14326
14327@item show debug nto-debug
14328@kindex show debug nto-debug
14329Show the current state of QNX Neutrino messages.
14330@end table
14331
14332
8e04817f
AC
14333@node Embedded OS
14334@section Embedded Operating Systems
104c1213 14335
8e04817f
AC
14336This section describes configurations involving the debugging of
14337embedded operating systems that are available for several different
14338architectures.
d4f3574e 14339
8e04817f
AC
14340@menu
14341* VxWorks:: Using @value{GDBN} with VxWorks
14342@end menu
104c1213 14343
8e04817f
AC
14344@value{GDBN} includes the ability to debug programs running on
14345various real-time operating systems.
104c1213 14346
8e04817f
AC
14347@node VxWorks
14348@subsection Using @value{GDBN} with VxWorks
104c1213 14349
8e04817f 14350@cindex VxWorks
104c1213 14351
8e04817f 14352@table @code
104c1213 14353
8e04817f
AC
14354@kindex target vxworks
14355@item target vxworks @var{machinename}
14356A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14357is the target system's machine name or IP address.
104c1213 14358
8e04817f 14359@end table
104c1213 14360
8e04817f
AC
14361On VxWorks, @code{load} links @var{filename} dynamically on the
14362current target system as well as adding its symbols in @value{GDBN}.
104c1213 14363
8e04817f
AC
14364@value{GDBN} enables developers to spawn and debug tasks running on networked
14365VxWorks targets from a Unix host. Already-running tasks spawned from
14366the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14367both the Unix host and on the VxWorks target. The program
14368@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14369installed with the name @code{vxgdb}, to distinguish it from a
14370@value{GDBN} for debugging programs on the host itself.)
104c1213 14371
8e04817f
AC
14372@table @code
14373@item VxWorks-timeout @var{args}
14374@kindex vxworks-timeout
14375All VxWorks-based targets now support the option @code{vxworks-timeout}.
14376This option is set by the user, and @var{args} represents the number of
14377seconds @value{GDBN} waits for responses to rpc's. You might use this if
14378your VxWorks target is a slow software simulator or is on the far side
14379of a thin network line.
14380@end table
104c1213 14381
8e04817f
AC
14382The following information on connecting to VxWorks was current when
14383this manual was produced; newer releases of VxWorks may use revised
14384procedures.
104c1213 14385
4644b6e3 14386@findex INCLUDE_RDB
8e04817f
AC
14387To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14388to include the remote debugging interface routines in the VxWorks
14389library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14390VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14391kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14392source debugging task @code{tRdbTask} when VxWorks is booted. For more
14393information on configuring and remaking VxWorks, see the manufacturer's
14394manual.
14395@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14396
8e04817f
AC
14397Once you have included @file{rdb.a} in your VxWorks system image and set
14398your Unix execution search path to find @value{GDBN}, you are ready to
14399run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14400@code{vxgdb}, depending on your installation).
104c1213 14401
8e04817f 14402@value{GDBN} comes up showing the prompt:
104c1213 14403
474c8240 14404@smallexample
8e04817f 14405(vxgdb)
474c8240 14406@end smallexample
104c1213 14407
8e04817f
AC
14408@menu
14409* VxWorks Connection:: Connecting to VxWorks
14410* VxWorks Download:: VxWorks download
14411* VxWorks Attach:: Running tasks
14412@end menu
104c1213 14413
8e04817f
AC
14414@node VxWorks Connection
14415@subsubsection Connecting to VxWorks
104c1213 14416
8e04817f
AC
14417The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14418network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14419
474c8240 14420@smallexample
8e04817f 14421(vxgdb) target vxworks tt
474c8240 14422@end smallexample
104c1213 14423
8e04817f
AC
14424@need 750
14425@value{GDBN} displays messages like these:
104c1213 14426
8e04817f
AC
14427@smallexample
14428Attaching remote machine across net...
14429Connected to tt.
14430@end smallexample
104c1213 14431
8e04817f
AC
14432@need 1000
14433@value{GDBN} then attempts to read the symbol tables of any object modules
14434loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14435these files by searching the directories listed in the command search
79a6e687 14436path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14437to find an object file, it displays a message such as:
5d161b24 14438
474c8240 14439@smallexample
8e04817f 14440prog.o: No such file or directory.
474c8240 14441@end smallexample
104c1213 14442
8e04817f
AC
14443When this happens, add the appropriate directory to the search path with
14444the @value{GDBN} command @code{path}, and execute the @code{target}
14445command again.
104c1213 14446
8e04817f 14447@node VxWorks Download
79a6e687 14448@subsubsection VxWorks Download
104c1213 14449
8e04817f
AC
14450@cindex download to VxWorks
14451If you have connected to the VxWorks target and you want to debug an
14452object that has not yet been loaded, you can use the @value{GDBN}
14453@code{load} command to download a file from Unix to VxWorks
14454incrementally. The object file given as an argument to the @code{load}
14455command is actually opened twice: first by the VxWorks target in order
14456to download the code, then by @value{GDBN} in order to read the symbol
14457table. This can lead to problems if the current working directories on
14458the two systems differ. If both systems have NFS mounted the same
14459filesystems, you can avoid these problems by using absolute paths.
14460Otherwise, it is simplest to set the working directory on both systems
14461to the directory in which the object file resides, and then to reference
14462the file by its name, without any path. For instance, a program
14463@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14464and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14465program, type this on VxWorks:
104c1213 14466
474c8240 14467@smallexample
8e04817f 14468-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14469@end smallexample
104c1213 14470
8e04817f
AC
14471@noindent
14472Then, in @value{GDBN}, type:
104c1213 14473
474c8240 14474@smallexample
8e04817f
AC
14475(vxgdb) cd @var{hostpath}/vw/demo/rdb
14476(vxgdb) load prog.o
474c8240 14477@end smallexample
104c1213 14478
8e04817f 14479@value{GDBN} displays a response similar to this:
104c1213 14480
8e04817f
AC
14481@smallexample
14482Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14483@end smallexample
104c1213 14484
8e04817f
AC
14485You can also use the @code{load} command to reload an object module
14486after editing and recompiling the corresponding source file. Note that
14487this makes @value{GDBN} delete all currently-defined breakpoints,
14488auto-displays, and convenience variables, and to clear the value
14489history. (This is necessary in order to preserve the integrity of
14490debugger's data structures that reference the target system's symbol
14491table.)
104c1213 14492
8e04817f 14493@node VxWorks Attach
79a6e687 14494@subsubsection Running Tasks
104c1213
JM
14495
14496@cindex running VxWorks tasks
14497You can also attach to an existing task using the @code{attach} command as
14498follows:
14499
474c8240 14500@smallexample
104c1213 14501(vxgdb) attach @var{task}
474c8240 14502@end smallexample
104c1213
JM
14503
14504@noindent
14505where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14506or suspended when you attach to it. Running tasks are suspended at
14507the time of attachment.
14508
6d2ebf8b 14509@node Embedded Processors
104c1213
JM
14510@section Embedded Processors
14511
14512This section goes into details specific to particular embedded
14513configurations.
14514
c45da7e6
EZ
14515@cindex send command to simulator
14516Whenever a specific embedded processor has a simulator, @value{GDBN}
14517allows to send an arbitrary command to the simulator.
14518
14519@table @code
14520@item sim @var{command}
14521@kindex sim@r{, a command}
14522Send an arbitrary @var{command} string to the simulator. Consult the
14523documentation for the specific simulator in use for information about
14524acceptable commands.
14525@end table
14526
7d86b5d5 14527
104c1213 14528@menu
c45da7e6 14529* ARM:: ARM RDI
172c2a43 14530* M32R/D:: Renesas M32R/D
104c1213 14531* M68K:: Motorola M68K
104c1213 14532* MIPS Embedded:: MIPS Embedded
a37295f9 14533* OpenRISC 1000:: OpenRisc 1000
104c1213 14534* PA:: HP PA Embedded
0869d01b 14535* PowerPC:: PowerPC
104c1213
JM
14536* Sparclet:: Tsqware Sparclet
14537* Sparclite:: Fujitsu Sparclite
104c1213 14538* Z8000:: Zilog Z8000
a64548ea
EZ
14539* AVR:: Atmel AVR
14540* CRIS:: CRIS
14541* Super-H:: Renesas Super-H
104c1213
JM
14542@end menu
14543
6d2ebf8b 14544@node ARM
104c1213 14545@subsection ARM
c45da7e6 14546@cindex ARM RDI
104c1213
JM
14547
14548@table @code
8e04817f
AC
14549@kindex target rdi
14550@item target rdi @var{dev}
14551ARM Angel monitor, via RDI library interface to ADP protocol. You may
14552use this target to communicate with both boards running the Angel
14553monitor, or with the EmbeddedICE JTAG debug device.
14554
14555@kindex target rdp
14556@item target rdp @var{dev}
14557ARM Demon monitor.
14558
14559@end table
14560
e2f4edfd
EZ
14561@value{GDBN} provides the following ARM-specific commands:
14562
14563@table @code
14564@item set arm disassembler
14565@kindex set arm
14566This commands selects from a list of disassembly styles. The
14567@code{"std"} style is the standard style.
14568
14569@item show arm disassembler
14570@kindex show arm
14571Show the current disassembly style.
14572
14573@item set arm apcs32
14574@cindex ARM 32-bit mode
14575This command toggles ARM operation mode between 32-bit and 26-bit.
14576
14577@item show arm apcs32
14578Display the current usage of the ARM 32-bit mode.
14579
14580@item set arm fpu @var{fputype}
14581This command sets the ARM floating-point unit (FPU) type. The
14582argument @var{fputype} can be one of these:
14583
14584@table @code
14585@item auto
14586Determine the FPU type by querying the OS ABI.
14587@item softfpa
14588Software FPU, with mixed-endian doubles on little-endian ARM
14589processors.
14590@item fpa
14591GCC-compiled FPA co-processor.
14592@item softvfp
14593Software FPU with pure-endian doubles.
14594@item vfp
14595VFP co-processor.
14596@end table
14597
14598@item show arm fpu
14599Show the current type of the FPU.
14600
14601@item set arm abi
14602This command forces @value{GDBN} to use the specified ABI.
14603
14604@item show arm abi
14605Show the currently used ABI.
14606
14607@item set debug arm
14608Toggle whether to display ARM-specific debugging messages from the ARM
14609target support subsystem.
14610
14611@item show debug arm
14612Show whether ARM-specific debugging messages are enabled.
14613@end table
14614
c45da7e6
EZ
14615The following commands are available when an ARM target is debugged
14616using the RDI interface:
14617
14618@table @code
14619@item rdilogfile @r{[}@var{file}@r{]}
14620@kindex rdilogfile
14621@cindex ADP (Angel Debugger Protocol) logging
14622Set the filename for the ADP (Angel Debugger Protocol) packet log.
14623With an argument, sets the log file to the specified @var{file}. With
14624no argument, show the current log file name. The default log file is
14625@file{rdi.log}.
14626
14627@item rdilogenable @r{[}@var{arg}@r{]}
14628@kindex rdilogenable
14629Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14630enables logging, with an argument 0 or @code{"no"} disables it. With
14631no arguments displays the current setting. When logging is enabled,
14632ADP packets exchanged between @value{GDBN} and the RDI target device
14633are logged to a file.
14634
14635@item set rdiromatzero
14636@kindex set rdiromatzero
14637@cindex ROM at zero address, RDI
14638Tell @value{GDBN} whether the target has ROM at address 0. If on,
14639vector catching is disabled, so that zero address can be used. If off
14640(the default), vector catching is enabled. For this command to take
14641effect, it needs to be invoked prior to the @code{target rdi} command.
14642
14643@item show rdiromatzero
14644@kindex show rdiromatzero
14645Show the current setting of ROM at zero address.
14646
14647@item set rdiheartbeat
14648@kindex set rdiheartbeat
14649@cindex RDI heartbeat
14650Enable or disable RDI heartbeat packets. It is not recommended to
14651turn on this option, since it confuses ARM and EPI JTAG interface, as
14652well as the Angel monitor.
14653
14654@item show rdiheartbeat
14655@kindex show rdiheartbeat
14656Show the setting of RDI heartbeat packets.
14657@end table
14658
e2f4edfd 14659
8e04817f 14660@node M32R/D
ba04e063 14661@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14662
14663@table @code
8e04817f
AC
14664@kindex target m32r
14665@item target m32r @var{dev}
172c2a43 14666Renesas M32R/D ROM monitor.
8e04817f 14667
fb3e19c0
KI
14668@kindex target m32rsdi
14669@item target m32rsdi @var{dev}
14670Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14671@end table
14672
14673The following @value{GDBN} commands are specific to the M32R monitor:
14674
14675@table @code
14676@item set download-path @var{path}
14677@kindex set download-path
14678@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14679Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14680
14681@item show download-path
14682@kindex show download-path
14683Show the default path for downloadable @sc{srec} files.
fb3e19c0 14684
721c2651
EZ
14685@item set board-address @var{addr}
14686@kindex set board-address
14687@cindex M32-EVA target board address
14688Set the IP address for the M32R-EVA target board.
14689
14690@item show board-address
14691@kindex show board-address
14692Show the current IP address of the target board.
14693
14694@item set server-address @var{addr}
14695@kindex set server-address
14696@cindex download server address (M32R)
14697Set the IP address for the download server, which is the @value{GDBN}'s
14698host machine.
14699
14700@item show server-address
14701@kindex show server-address
14702Display the IP address of the download server.
14703
14704@item upload @r{[}@var{file}@r{]}
14705@kindex upload@r{, M32R}
14706Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14707upload capability. If no @var{file} argument is given, the current
14708executable file is uploaded.
14709
14710@item tload @r{[}@var{file}@r{]}
14711@kindex tload@r{, M32R}
14712Test the @code{upload} command.
8e04817f
AC
14713@end table
14714
ba04e063
EZ
14715The following commands are available for M32R/SDI:
14716
14717@table @code
14718@item sdireset
14719@kindex sdireset
14720@cindex reset SDI connection, M32R
14721This command resets the SDI connection.
14722
14723@item sdistatus
14724@kindex sdistatus
14725This command shows the SDI connection status.
14726
14727@item debug_chaos
14728@kindex debug_chaos
14729@cindex M32R/Chaos debugging
14730Instructs the remote that M32R/Chaos debugging is to be used.
14731
14732@item use_debug_dma
14733@kindex use_debug_dma
14734Instructs the remote to use the DEBUG_DMA method of accessing memory.
14735
14736@item use_mon_code
14737@kindex use_mon_code
14738Instructs the remote to use the MON_CODE method of accessing memory.
14739
14740@item use_ib_break
14741@kindex use_ib_break
14742Instructs the remote to set breakpoints by IB break.
14743
14744@item use_dbt_break
14745@kindex use_dbt_break
14746Instructs the remote to set breakpoints by DBT.
14747@end table
14748
8e04817f
AC
14749@node M68K
14750@subsection M68k
14751
7ce59000
DJ
14752The Motorola m68k configuration includes ColdFire support, and a
14753target command for the following ROM monitor.
8e04817f
AC
14754
14755@table @code
14756
8e04817f
AC
14757@kindex target dbug
14758@item target dbug @var{dev}
14759dBUG ROM monitor for Motorola ColdFire.
14760
8e04817f
AC
14761@end table
14762
8e04817f
AC
14763@node MIPS Embedded
14764@subsection MIPS Embedded
14765
14766@cindex MIPS boards
14767@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14768MIPS board attached to a serial line. This is available when
14769you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14770
8e04817f
AC
14771@need 1000
14772Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14773
8e04817f
AC
14774@table @code
14775@item target mips @var{port}
14776@kindex target mips @var{port}
14777To run a program on the board, start up @code{@value{GDBP}} with the
14778name of your program as the argument. To connect to the board, use the
14779command @samp{target mips @var{port}}, where @var{port} is the name of
14780the serial port connected to the board. If the program has not already
14781been downloaded to the board, you may use the @code{load} command to
14782download it. You can then use all the usual @value{GDBN} commands.
104c1213 14783
8e04817f
AC
14784For example, this sequence connects to the target board through a serial
14785port, and loads and runs a program called @var{prog} through the
14786debugger:
104c1213 14787
474c8240 14788@smallexample
8e04817f
AC
14789host$ @value{GDBP} @var{prog}
14790@value{GDBN} is free software and @dots{}
14791(@value{GDBP}) target mips /dev/ttyb
14792(@value{GDBP}) load @var{prog}
14793(@value{GDBP}) run
474c8240 14794@end smallexample
104c1213 14795
8e04817f
AC
14796@item target mips @var{hostname}:@var{portnumber}
14797On some @value{GDBN} host configurations, you can specify a TCP
14798connection (for instance, to a serial line managed by a terminal
14799concentrator) instead of a serial port, using the syntax
14800@samp{@var{hostname}:@var{portnumber}}.
104c1213 14801
8e04817f
AC
14802@item target pmon @var{port}
14803@kindex target pmon @var{port}
14804PMON ROM monitor.
104c1213 14805
8e04817f
AC
14806@item target ddb @var{port}
14807@kindex target ddb @var{port}
14808NEC's DDB variant of PMON for Vr4300.
104c1213 14809
8e04817f
AC
14810@item target lsi @var{port}
14811@kindex target lsi @var{port}
14812LSI variant of PMON.
104c1213 14813
8e04817f
AC
14814@kindex target r3900
14815@item target r3900 @var{dev}
14816Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14817
8e04817f
AC
14818@kindex target array
14819@item target array @var{dev}
14820Array Tech LSI33K RAID controller board.
104c1213 14821
8e04817f 14822@end table
104c1213 14823
104c1213 14824
8e04817f
AC
14825@noindent
14826@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14827
8e04817f 14828@table @code
8e04817f
AC
14829@item set mipsfpu double
14830@itemx set mipsfpu single
14831@itemx set mipsfpu none
a64548ea 14832@itemx set mipsfpu auto
8e04817f
AC
14833@itemx show mipsfpu
14834@kindex set mipsfpu
14835@kindex show mipsfpu
14836@cindex MIPS remote floating point
14837@cindex floating point, MIPS remote
14838If your target board does not support the MIPS floating point
14839coprocessor, you should use the command @samp{set mipsfpu none} (if you
14840need this, you may wish to put the command in your @value{GDBN} init
14841file). This tells @value{GDBN} how to find the return value of
14842functions which return floating point values. It also allows
14843@value{GDBN} to avoid saving the floating point registers when calling
14844functions on the board. If you are using a floating point coprocessor
14845with only single precision floating point support, as on the @sc{r4650}
14846processor, use the command @samp{set mipsfpu single}. The default
14847double precision floating point coprocessor may be selected using
14848@samp{set mipsfpu double}.
104c1213 14849
8e04817f
AC
14850In previous versions the only choices were double precision or no
14851floating point, so @samp{set mipsfpu on} will select double precision
14852and @samp{set mipsfpu off} will select no floating point.
104c1213 14853
8e04817f
AC
14854As usual, you can inquire about the @code{mipsfpu} variable with
14855@samp{show mipsfpu}.
104c1213 14856
8e04817f
AC
14857@item set timeout @var{seconds}
14858@itemx set retransmit-timeout @var{seconds}
14859@itemx show timeout
14860@itemx show retransmit-timeout
14861@cindex @code{timeout}, MIPS protocol
14862@cindex @code{retransmit-timeout}, MIPS protocol
14863@kindex set timeout
14864@kindex show timeout
14865@kindex set retransmit-timeout
14866@kindex show retransmit-timeout
14867You can control the timeout used while waiting for a packet, in the MIPS
14868remote protocol, with the @code{set timeout @var{seconds}} command. The
14869default is 5 seconds. Similarly, you can control the timeout used while
14870waiting for an acknowledgement of a packet with the @code{set
14871retransmit-timeout @var{seconds}} command. The default is 3 seconds.
14872You can inspect both values with @code{show timeout} and @code{show
14873retransmit-timeout}. (These commands are @emph{only} available when
14874@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 14875
8e04817f
AC
14876The timeout set by @code{set timeout} does not apply when @value{GDBN}
14877is waiting for your program to stop. In that case, @value{GDBN} waits
14878forever because it has no way of knowing how long the program is going
14879to run before stopping.
ba04e063
EZ
14880
14881@item set syn-garbage-limit @var{num}
14882@kindex set syn-garbage-limit@r{, MIPS remote}
14883@cindex synchronize with remote MIPS target
14884Limit the maximum number of characters @value{GDBN} should ignore when
14885it tries to synchronize with the remote target. The default is 10
14886characters. Setting the limit to -1 means there's no limit.
14887
14888@item show syn-garbage-limit
14889@kindex show syn-garbage-limit@r{, MIPS remote}
14890Show the current limit on the number of characters to ignore when
14891trying to synchronize with the remote system.
14892
14893@item set monitor-prompt @var{prompt}
14894@kindex set monitor-prompt@r{, MIPS remote}
14895@cindex remote monitor prompt
14896Tell @value{GDBN} to expect the specified @var{prompt} string from the
14897remote monitor. The default depends on the target:
14898@table @asis
14899@item pmon target
14900@samp{PMON}
14901@item ddb target
14902@samp{NEC010}
14903@item lsi target
14904@samp{PMON>}
14905@end table
14906
14907@item show monitor-prompt
14908@kindex show monitor-prompt@r{, MIPS remote}
14909Show the current strings @value{GDBN} expects as the prompt from the
14910remote monitor.
14911
14912@item set monitor-warnings
14913@kindex set monitor-warnings@r{, MIPS remote}
14914Enable or disable monitor warnings about hardware breakpoints. This
14915has effect only for the @code{lsi} target. When on, @value{GDBN} will
14916display warning messages whose codes are returned by the @code{lsi}
14917PMON monitor for breakpoint commands.
14918
14919@item show monitor-warnings
14920@kindex show monitor-warnings@r{, MIPS remote}
14921Show the current setting of printing monitor warnings.
14922
14923@item pmon @var{command}
14924@kindex pmon@r{, MIPS remote}
14925@cindex send PMON command
14926This command allows sending an arbitrary @var{command} string to the
14927monitor. The monitor must be in debug mode for this to work.
8e04817f 14928@end table
104c1213 14929
a37295f9
MM
14930@node OpenRISC 1000
14931@subsection OpenRISC 1000
14932@cindex OpenRISC 1000
14933
14934@cindex or1k boards
14935See OR1k Architecture document (@uref{www.opencores.org}) for more information
14936about platform and commands.
14937
14938@table @code
14939
14940@kindex target jtag
14941@item target jtag jtag://@var{host}:@var{port}
14942
14943Connects to remote JTAG server.
14944JTAG remote server can be either an or1ksim or JTAG server,
14945connected via parallel port to the board.
14946
14947Example: @code{target jtag jtag://localhost:9999}
14948
14949@kindex or1ksim
14950@item or1ksim @var{command}
14951If connected to @code{or1ksim} OpenRISC 1000 Architectural
14952Simulator, proprietary commands can be executed.
14953
14954@kindex info or1k spr
14955@item info or1k spr
14956Displays spr groups.
14957
14958@item info or1k spr @var{group}
14959@itemx info or1k spr @var{groupno}
14960Displays register names in selected group.
14961
14962@item info or1k spr @var{group} @var{register}
14963@itemx info or1k spr @var{register}
14964@itemx info or1k spr @var{groupno} @var{registerno}
14965@itemx info or1k spr @var{registerno}
14966Shows information about specified spr register.
14967
14968@kindex spr
14969@item spr @var{group} @var{register} @var{value}
14970@itemx spr @var{register @var{value}}
14971@itemx spr @var{groupno} @var{registerno @var{value}}
14972@itemx spr @var{registerno @var{value}}
14973Writes @var{value} to specified spr register.
14974@end table
14975
14976Some implementations of OpenRISC 1000 Architecture also have hardware trace.
14977It is very similar to @value{GDBN} trace, except it does not interfere with normal
14978program execution and is thus much faster. Hardware breakpoints/watchpoint
14979triggers can be set using:
14980@table @code
14981@item $LEA/$LDATA
14982Load effective address/data
14983@item $SEA/$SDATA
14984Store effective address/data
14985@item $AEA/$ADATA
14986Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
14987@item $FETCH
14988Fetch data
14989@end table
14990
14991When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
14992@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
14993
14994@code{htrace} commands:
14995@cindex OpenRISC 1000 htrace
14996@table @code
14997@kindex hwatch
14998@item hwatch @var{conditional}
d3e8051b 14999Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15000or Data. For example:
15001
15002@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15003
15004@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15005
4644b6e3 15006@kindex htrace
a37295f9
MM
15007@item htrace info
15008Display information about current HW trace configuration.
15009
a37295f9
MM
15010@item htrace trigger @var{conditional}
15011Set starting criteria for HW trace.
15012
a37295f9
MM
15013@item htrace qualifier @var{conditional}
15014Set acquisition qualifier for HW trace.
15015
a37295f9
MM
15016@item htrace stop @var{conditional}
15017Set HW trace stopping criteria.
15018
f153cc92 15019@item htrace record [@var{data}]*
a37295f9
MM
15020Selects the data to be recorded, when qualifier is met and HW trace was
15021triggered.
15022
a37295f9 15023@item htrace enable
a37295f9
MM
15024@itemx htrace disable
15025Enables/disables the HW trace.
15026
f153cc92 15027@item htrace rewind [@var{filename}]
a37295f9
MM
15028Clears currently recorded trace data.
15029
15030If filename is specified, new trace file is made and any newly collected data
15031will be written there.
15032
f153cc92 15033@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15034Prints trace buffer, using current record configuration.
15035
a37295f9
MM
15036@item htrace mode continuous
15037Set continuous trace mode.
15038
a37295f9
MM
15039@item htrace mode suspend
15040Set suspend trace mode.
15041
15042@end table
15043
8e04817f
AC
15044@node PowerPC
15045@subsection PowerPC
104c1213 15046
55eddb0f
DJ
15047@value{GDBN} provides the following PowerPC-specific commands:
15048
104c1213 15049@table @code
55eddb0f
DJ
15050@kindex set powerpc
15051@item set powerpc soft-float
15052@itemx show powerpc soft-float
15053Force @value{GDBN} to use (or not use) a software floating point calling
15054convention. By default, @value{GDBN} selects the calling convention based
15055on the selected architecture and the provided executable file.
15056
15057@item set powerpc vector-abi
15058@itemx show powerpc vector-abi
15059Force @value{GDBN} to use the specified calling convention for vector
15060arguments and return values. The valid options are @samp{auto};
15061@samp{generic}, to avoid vector registers even if they are present;
15062@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15063registers. By default, @value{GDBN} selects the calling convention
15064based on the selected architecture and the provided executable file.
15065
8e04817f
AC
15066@kindex target dink32
15067@item target dink32 @var{dev}
15068DINK32 ROM monitor.
104c1213 15069
8e04817f
AC
15070@kindex target ppcbug
15071@item target ppcbug @var{dev}
15072@kindex target ppcbug1
15073@item target ppcbug1 @var{dev}
15074PPCBUG ROM monitor for PowerPC.
104c1213 15075
8e04817f
AC
15076@kindex target sds
15077@item target sds @var{dev}
15078SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15079@end table
8e04817f 15080
c45da7e6 15081@cindex SDS protocol
d52fb0e9 15082The following commands specific to the SDS protocol are supported
55eddb0f 15083by @value{GDBN}:
c45da7e6
EZ
15084
15085@table @code
15086@item set sdstimeout @var{nsec}
15087@kindex set sdstimeout
15088Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15089default is 2 seconds.
15090
15091@item show sdstimeout
15092@kindex show sdstimeout
15093Show the current value of the SDS timeout.
15094
15095@item sds @var{command}
15096@kindex sds@r{, a command}
15097Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15098@end table
15099
c45da7e6 15100
8e04817f
AC
15101@node PA
15102@subsection HP PA Embedded
104c1213
JM
15103
15104@table @code
15105
8e04817f
AC
15106@kindex target op50n
15107@item target op50n @var{dev}
15108OP50N monitor, running on an OKI HPPA board.
15109
15110@kindex target w89k
15111@item target w89k @var{dev}
15112W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15113
15114@end table
15115
8e04817f
AC
15116@node Sparclet
15117@subsection Tsqware Sparclet
104c1213 15118
8e04817f
AC
15119@cindex Sparclet
15120
15121@value{GDBN} enables developers to debug tasks running on
15122Sparclet targets from a Unix host.
15123@value{GDBN} uses code that runs on
15124both the Unix host and on the Sparclet target. The program
15125@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15126
8e04817f
AC
15127@table @code
15128@item remotetimeout @var{args}
15129@kindex remotetimeout
15130@value{GDBN} supports the option @code{remotetimeout}.
15131This option is set by the user, and @var{args} represents the number of
15132seconds @value{GDBN} waits for responses.
104c1213
JM
15133@end table
15134
8e04817f
AC
15135@cindex compiling, on Sparclet
15136When compiling for debugging, include the options @samp{-g} to get debug
15137information and @samp{-Ttext} to relocate the program to where you wish to
15138load it on the target. You may also want to add the options @samp{-n} or
15139@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15140
474c8240 15141@smallexample
8e04817f 15142sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15143@end smallexample
104c1213 15144
8e04817f 15145You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15146
474c8240 15147@smallexample
8e04817f 15148sparclet-aout-objdump --headers --syms prog
474c8240 15149@end smallexample
104c1213 15150
8e04817f
AC
15151@cindex running, on Sparclet
15152Once you have set
15153your Unix execution search path to find @value{GDBN}, you are ready to
15154run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15155(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15156
8e04817f
AC
15157@value{GDBN} comes up showing the prompt:
15158
474c8240 15159@smallexample
8e04817f 15160(gdbslet)
474c8240 15161@end smallexample
104c1213
JM
15162
15163@menu
8e04817f
AC
15164* Sparclet File:: Setting the file to debug
15165* Sparclet Connection:: Connecting to Sparclet
15166* Sparclet Download:: Sparclet download
15167* Sparclet Execution:: Running and debugging
104c1213
JM
15168@end menu
15169
8e04817f 15170@node Sparclet File
79a6e687 15171@subsubsection Setting File to Debug
104c1213 15172
8e04817f 15173The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15174
474c8240 15175@smallexample
8e04817f 15176(gdbslet) file prog
474c8240 15177@end smallexample
104c1213 15178
8e04817f
AC
15179@need 1000
15180@value{GDBN} then attempts to read the symbol table of @file{prog}.
15181@value{GDBN} locates
15182the file by searching the directories listed in the command search
15183path.
12c27660 15184If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15185files will be searched as well.
15186@value{GDBN} locates
15187the source files by searching the directories listed in the directory search
79a6e687 15188path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15189If it fails
15190to find a file, it displays a message such as:
104c1213 15191
474c8240 15192@smallexample
8e04817f 15193prog: No such file or directory.
474c8240 15194@end smallexample
104c1213 15195
8e04817f
AC
15196When this happens, add the appropriate directories to the search paths with
15197the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15198@code{target} command again.
104c1213 15199
8e04817f
AC
15200@node Sparclet Connection
15201@subsubsection Connecting to Sparclet
104c1213 15202
8e04817f
AC
15203The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15204To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15205
474c8240 15206@smallexample
8e04817f
AC
15207(gdbslet) target sparclet /dev/ttya
15208Remote target sparclet connected to /dev/ttya
15209main () at ../prog.c:3
474c8240 15210@end smallexample
104c1213 15211
8e04817f
AC
15212@need 750
15213@value{GDBN} displays messages like these:
104c1213 15214
474c8240 15215@smallexample
8e04817f 15216Connected to ttya.
474c8240 15217@end smallexample
104c1213 15218
8e04817f 15219@node Sparclet Download
79a6e687 15220@subsubsection Sparclet Download
104c1213 15221
8e04817f
AC
15222@cindex download to Sparclet
15223Once connected to the Sparclet target,
15224you can use the @value{GDBN}
15225@code{load} command to download the file from the host to the target.
15226The file name and load offset should be given as arguments to the @code{load}
15227command.
15228Since the file format is aout, the program must be loaded to the starting
15229address. You can use @code{objdump} to find out what this value is. The load
15230offset is an offset which is added to the VMA (virtual memory address)
15231of each of the file's sections.
15232For instance, if the program
15233@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15234and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15235
474c8240 15236@smallexample
8e04817f
AC
15237(gdbslet) load prog 0x12010000
15238Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15239@end smallexample
104c1213 15240
8e04817f
AC
15241If the code is loaded at a different address then what the program was linked
15242to, you may need to use the @code{section} and @code{add-symbol-file} commands
15243to tell @value{GDBN} where to map the symbol table.
15244
15245@node Sparclet Execution
79a6e687 15246@subsubsection Running and Debugging
8e04817f
AC
15247
15248@cindex running and debugging Sparclet programs
15249You can now begin debugging the task using @value{GDBN}'s execution control
15250commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15251manual for the list of commands.
15252
474c8240 15253@smallexample
8e04817f
AC
15254(gdbslet) b main
15255Breakpoint 1 at 0x12010000: file prog.c, line 3.
15256(gdbslet) run
15257Starting program: prog
15258Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
152593 char *symarg = 0;
15260(gdbslet) step
152614 char *execarg = "hello!";
15262(gdbslet)
474c8240 15263@end smallexample
8e04817f
AC
15264
15265@node Sparclite
15266@subsection Fujitsu Sparclite
104c1213
JM
15267
15268@table @code
15269
8e04817f
AC
15270@kindex target sparclite
15271@item target sparclite @var{dev}
15272Fujitsu sparclite boards, used only for the purpose of loading.
15273You must use an additional command to debug the program.
15274For example: target remote @var{dev} using @value{GDBN} standard
15275remote protocol.
104c1213
JM
15276
15277@end table
15278
8e04817f
AC
15279@node Z8000
15280@subsection Zilog Z8000
104c1213 15281
8e04817f
AC
15282@cindex Z8000
15283@cindex simulator, Z8000
15284@cindex Zilog Z8000 simulator
104c1213 15285
8e04817f
AC
15286When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15287a Z8000 simulator.
15288
15289For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15290unsegmented variant of the Z8000 architecture) or the Z8001 (the
15291segmented variant). The simulator recognizes which architecture is
15292appropriate by inspecting the object code.
104c1213 15293
8e04817f
AC
15294@table @code
15295@item target sim @var{args}
15296@kindex sim
15297@kindex target sim@r{, with Z8000}
15298Debug programs on a simulated CPU. If the simulator supports setup
15299options, specify them via @var{args}.
104c1213
JM
15300@end table
15301
8e04817f
AC
15302@noindent
15303After specifying this target, you can debug programs for the simulated
15304CPU in the same style as programs for your host computer; use the
15305@code{file} command to load a new program image, the @code{run} command
15306to run your program, and so on.
15307
15308As well as making available all the usual machine registers
15309(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15310additional items of information as specially named registers:
104c1213
JM
15311
15312@table @code
15313
8e04817f
AC
15314@item cycles
15315Counts clock-ticks in the simulator.
104c1213 15316
8e04817f
AC
15317@item insts
15318Counts instructions run in the simulator.
104c1213 15319
8e04817f
AC
15320@item time
15321Execution time in 60ths of a second.
104c1213 15322
8e04817f 15323@end table
104c1213 15324
8e04817f
AC
15325You can refer to these values in @value{GDBN} expressions with the usual
15326conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15327conditional breakpoint that suspends only after at least 5000
15328simulated clock ticks.
104c1213 15329
a64548ea
EZ
15330@node AVR
15331@subsection Atmel AVR
15332@cindex AVR
15333
15334When configured for debugging the Atmel AVR, @value{GDBN} supports the
15335following AVR-specific commands:
15336
15337@table @code
15338@item info io_registers
15339@kindex info io_registers@r{, AVR}
15340@cindex I/O registers (Atmel AVR)
15341This command displays information about the AVR I/O registers. For
15342each register, @value{GDBN} prints its number and value.
15343@end table
15344
15345@node CRIS
15346@subsection CRIS
15347@cindex CRIS
15348
15349When configured for debugging CRIS, @value{GDBN} provides the
15350following CRIS-specific commands:
15351
15352@table @code
15353@item set cris-version @var{ver}
15354@cindex CRIS version
e22e55c9
OF
15355Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15356The CRIS version affects register names and sizes. This command is useful in
15357case autodetection of the CRIS version fails.
a64548ea
EZ
15358
15359@item show cris-version
15360Show the current CRIS version.
15361
15362@item set cris-dwarf2-cfi
15363@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15364Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15365Change to @samp{off} when using @code{gcc-cris} whose version is below
15366@code{R59}.
a64548ea
EZ
15367
15368@item show cris-dwarf2-cfi
15369Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15370
15371@item set cris-mode @var{mode}
15372@cindex CRIS mode
15373Set the current CRIS mode to @var{mode}. It should only be changed when
15374debugging in guru mode, in which case it should be set to
15375@samp{guru} (the default is @samp{normal}).
15376
15377@item show cris-mode
15378Show the current CRIS mode.
a64548ea
EZ
15379@end table
15380
15381@node Super-H
15382@subsection Renesas Super-H
15383@cindex Super-H
15384
15385For the Renesas Super-H processor, @value{GDBN} provides these
15386commands:
15387
15388@table @code
15389@item regs
15390@kindex regs@r{, Super-H}
15391Show the values of all Super-H registers.
15392@end table
15393
15394
8e04817f
AC
15395@node Architectures
15396@section Architectures
104c1213 15397
8e04817f
AC
15398This section describes characteristics of architectures that affect
15399all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15400
8e04817f 15401@menu
9c16f35a 15402* i386::
8e04817f
AC
15403* A29K::
15404* Alpha::
15405* MIPS::
a64548ea 15406* HPPA:: HP PA architecture
23d964e7 15407* SPU:: Cell Broadband Engine SPU architecture
8e04817f 15408@end menu
104c1213 15409
9c16f35a 15410@node i386
db2e3e2e 15411@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15412
15413@table @code
15414@item set struct-convention @var{mode}
15415@kindex set struct-convention
15416@cindex struct return convention
15417@cindex struct/union returned in registers
15418Set the convention used by the inferior to return @code{struct}s and
15419@code{union}s from functions to @var{mode}. Possible values of
15420@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15421default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15422are returned on the stack, while @code{"reg"} means that a
15423@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15424be returned in a register.
15425
15426@item show struct-convention
15427@kindex show struct-convention
15428Show the current setting of the convention to return @code{struct}s
15429from functions.
15430@end table
15431
8e04817f
AC
15432@node A29K
15433@subsection A29K
104c1213
JM
15434
15435@table @code
104c1213 15436
8e04817f
AC
15437@kindex set rstack_high_address
15438@cindex AMD 29K register stack
15439@cindex register stack, AMD29K
15440@item set rstack_high_address @var{address}
15441On AMD 29000 family processors, registers are saved in a separate
15442@dfn{register stack}. There is no way for @value{GDBN} to determine the
15443extent of this stack. Normally, @value{GDBN} just assumes that the
15444stack is ``large enough''. This may result in @value{GDBN} referencing
15445memory locations that do not exist. If necessary, you can get around
15446this problem by specifying the ending address of the register stack with
15447the @code{set rstack_high_address} command. The argument should be an
15448address, which you probably want to precede with @samp{0x} to specify in
15449hexadecimal.
104c1213 15450
8e04817f
AC
15451@kindex show rstack_high_address
15452@item show rstack_high_address
15453Display the current limit of the register stack, on AMD 29000 family
15454processors.
104c1213 15455
8e04817f 15456@end table
104c1213 15457
8e04817f
AC
15458@node Alpha
15459@subsection Alpha
104c1213 15460
8e04817f 15461See the following section.
104c1213 15462
8e04817f
AC
15463@node MIPS
15464@subsection MIPS
104c1213 15465
8e04817f
AC
15466@cindex stack on Alpha
15467@cindex stack on MIPS
15468@cindex Alpha stack
15469@cindex MIPS stack
15470Alpha- and MIPS-based computers use an unusual stack frame, which
15471sometimes requires @value{GDBN} to search backward in the object code to
15472find the beginning of a function.
104c1213 15473
8e04817f
AC
15474@cindex response time, MIPS debugging
15475To improve response time (especially for embedded applications, where
15476@value{GDBN} may be restricted to a slow serial line for this search)
15477you may want to limit the size of this search, using one of these
15478commands:
104c1213 15479
8e04817f
AC
15480@table @code
15481@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15482@item set heuristic-fence-post @var{limit}
15483Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15484search for the beginning of a function. A value of @var{0} (the
15485default) means there is no limit. However, except for @var{0}, the
15486larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15487and therefore the longer it takes to run. You should only need to use
15488this command when debugging a stripped executable.
104c1213 15489
8e04817f
AC
15490@item show heuristic-fence-post
15491Display the current limit.
15492@end table
104c1213
JM
15493
15494@noindent
8e04817f
AC
15495These commands are available @emph{only} when @value{GDBN} is configured
15496for debugging programs on Alpha or MIPS processors.
104c1213 15497
a64548ea
EZ
15498Several MIPS-specific commands are available when debugging MIPS
15499programs:
15500
15501@table @code
a64548ea
EZ
15502@item set mips abi @var{arg}
15503@kindex set mips abi
15504@cindex set ABI for MIPS
15505Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15506values of @var{arg} are:
15507
15508@table @samp
15509@item auto
15510The default ABI associated with the current binary (this is the
15511default).
15512@item o32
15513@item o64
15514@item n32
15515@item n64
15516@item eabi32
15517@item eabi64
15518@item auto
15519@end table
15520
15521@item show mips abi
15522@kindex show mips abi
15523Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15524
15525@item set mipsfpu
15526@itemx show mipsfpu
15527@xref{MIPS Embedded, set mipsfpu}.
15528
15529@item set mips mask-address @var{arg}
15530@kindex set mips mask-address
15531@cindex MIPS addresses, masking
15532This command determines whether the most-significant 32 bits of 64-bit
15533MIPS addresses are masked off. The argument @var{arg} can be
15534@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15535setting, which lets @value{GDBN} determine the correct value.
15536
15537@item show mips mask-address
15538@kindex show mips mask-address
15539Show whether the upper 32 bits of MIPS addresses are masked off or
15540not.
15541
15542@item set remote-mips64-transfers-32bit-regs
15543@kindex set remote-mips64-transfers-32bit-regs
15544This command controls compatibility with 64-bit MIPS targets that
15545transfer data in 32-bit quantities. If you have an old MIPS 64 target
15546that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15547and 64 bits for other registers, set this option to @samp{on}.
15548
15549@item show remote-mips64-transfers-32bit-regs
15550@kindex show remote-mips64-transfers-32bit-regs
15551Show the current setting of compatibility with older MIPS 64 targets.
15552
15553@item set debug mips
15554@kindex set debug mips
15555This command turns on and off debugging messages for the MIPS-specific
15556target code in @value{GDBN}.
15557
15558@item show debug mips
15559@kindex show debug mips
15560Show the current setting of MIPS debugging messages.
15561@end table
15562
15563
15564@node HPPA
15565@subsection HPPA
15566@cindex HPPA support
15567
d3e8051b 15568When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15569following special commands:
15570
15571@table @code
15572@item set debug hppa
15573@kindex set debug hppa
db2e3e2e 15574This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15575messages are to be displayed.
15576
15577@item show debug hppa
15578Show whether HPPA debugging messages are displayed.
15579
15580@item maint print unwind @var{address}
15581@kindex maint print unwind@r{, HPPA}
15582This command displays the contents of the unwind table entry at the
15583given @var{address}.
15584
15585@end table
15586
104c1213 15587
23d964e7
UW
15588@node SPU
15589@subsection Cell Broadband Engine SPU architecture
15590@cindex Cell Broadband Engine
15591@cindex SPU
15592
15593When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15594it provides the following special commands:
15595
15596@table @code
15597@item info spu event
15598@kindex info spu
15599Display SPU event facility status. Shows current event mask
15600and pending event status.
15601
15602@item info spu signal
15603Display SPU signal notification facility status. Shows pending
15604signal-control word and signal notification mode of both signal
15605notification channels.
15606
15607@item info spu mailbox
15608Display SPU mailbox facility status. Shows all pending entries,
15609in order of processing, in each of the SPU Write Outbound,
15610SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15611
15612@item info spu dma
15613Display MFC DMA status. Shows all pending commands in the MFC
15614DMA queue. For each entry, opcode, tag, class IDs, effective
15615and local store addresses and transfer size are shown.
15616
15617@item info spu proxydma
15618Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15619Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15620and local store addresses and transfer size are shown.
15621
15622@end table
15623
15624
8e04817f
AC
15625@node Controlling GDB
15626@chapter Controlling @value{GDBN}
15627
15628You can alter the way @value{GDBN} interacts with you by using the
15629@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15630data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15631described here.
15632
15633@menu
15634* Prompt:: Prompt
15635* Editing:: Command editing
d620b259 15636* Command History:: Command history
8e04817f
AC
15637* Screen Size:: Screen size
15638* Numbers:: Numbers
1e698235 15639* ABI:: Configuring the current ABI
8e04817f
AC
15640* Messages/Warnings:: Optional warnings and messages
15641* Debugging Output:: Optional messages about internal happenings
15642@end menu
15643
15644@node Prompt
15645@section Prompt
104c1213 15646
8e04817f 15647@cindex prompt
104c1213 15648
8e04817f
AC
15649@value{GDBN} indicates its readiness to read a command by printing a string
15650called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15651can change the prompt string with the @code{set prompt} command. For
15652instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15653the prompt in one of the @value{GDBN} sessions so that you can always tell
15654which one you are talking to.
104c1213 15655
8e04817f
AC
15656@emph{Note:} @code{set prompt} does not add a space for you after the
15657prompt you set. This allows you to set a prompt which ends in a space
15658or a prompt that does not.
104c1213 15659
8e04817f
AC
15660@table @code
15661@kindex set prompt
15662@item set prompt @var{newprompt}
15663Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15664
8e04817f
AC
15665@kindex show prompt
15666@item show prompt
15667Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15668@end table
15669
8e04817f 15670@node Editing
79a6e687 15671@section Command Editing
8e04817f
AC
15672@cindex readline
15673@cindex command line editing
104c1213 15674
703663ab 15675@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15676@sc{gnu} library provides consistent behavior for programs which provide a
15677command line interface to the user. Advantages are @sc{gnu} Emacs-style
15678or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15679substitution, and a storage and recall of command history across
15680debugging sessions.
104c1213 15681
8e04817f
AC
15682You may control the behavior of command line editing in @value{GDBN} with the
15683command @code{set}.
104c1213 15684
8e04817f
AC
15685@table @code
15686@kindex set editing
15687@cindex editing
15688@item set editing
15689@itemx set editing on
15690Enable command line editing (enabled by default).
104c1213 15691
8e04817f
AC
15692@item set editing off
15693Disable command line editing.
104c1213 15694
8e04817f
AC
15695@kindex show editing
15696@item show editing
15697Show whether command line editing is enabled.
104c1213
JM
15698@end table
15699
703663ab
EZ
15700@xref{Command Line Editing}, for more details about the Readline
15701interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15702encouraged to read that chapter.
15703
d620b259 15704@node Command History
79a6e687 15705@section Command History
703663ab 15706@cindex command history
8e04817f
AC
15707
15708@value{GDBN} can keep track of the commands you type during your
15709debugging sessions, so that you can be certain of precisely what
15710happened. Use these commands to manage the @value{GDBN} command
15711history facility.
104c1213 15712
703663ab
EZ
15713@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15714package, to provide the history facility. @xref{Using History
15715Interactively}, for the detailed description of the History library.
15716
d620b259 15717To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15718the state which is seen by users, prefix it with @samp{server }
15719(@pxref{Server Prefix}). This
d620b259
NR
15720means that this command will not affect the command history, nor will it
15721affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15722pressed on a line by itself.
15723
15724@cindex @code{server}, command prefix
15725The server prefix does not affect the recording of values into the value
15726history; to print a value without recording it into the value history,
15727use the @code{output} command instead of the @code{print} command.
15728
703663ab
EZ
15729Here is the description of @value{GDBN} commands related to command
15730history.
15731
104c1213 15732@table @code
8e04817f
AC
15733@cindex history substitution
15734@cindex history file
15735@kindex set history filename
4644b6e3 15736@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15737@item set history filename @var{fname}
15738Set the name of the @value{GDBN} command history file to @var{fname}.
15739This is the file where @value{GDBN} reads an initial command history
15740list, and where it writes the command history from this session when it
15741exits. You can access this list through history expansion or through
15742the history command editing characters listed below. This file defaults
15743to the value of the environment variable @code{GDBHISTFILE}, or to
15744@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15745is not set.
104c1213 15746
9c16f35a
EZ
15747@cindex save command history
15748@kindex set history save
8e04817f
AC
15749@item set history save
15750@itemx set history save on
15751Record command history in a file, whose name may be specified with the
15752@code{set history filename} command. By default, this option is disabled.
104c1213 15753
8e04817f
AC
15754@item set history save off
15755Stop recording command history in a file.
104c1213 15756
8e04817f 15757@cindex history size
9c16f35a 15758@kindex set history size
6fc08d32 15759@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15760@item set history size @var{size}
15761Set the number of commands which @value{GDBN} keeps in its history list.
15762This defaults to the value of the environment variable
15763@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15764@end table
15765
8e04817f 15766History expansion assigns special meaning to the character @kbd{!}.
703663ab 15767@xref{Event Designators}, for more details.
8e04817f 15768
703663ab 15769@cindex history expansion, turn on/off
8e04817f
AC
15770Since @kbd{!} is also the logical not operator in C, history expansion
15771is off by default. If you decide to enable history expansion with the
15772@code{set history expansion on} command, you may sometimes need to
15773follow @kbd{!} (when it is used as logical not, in an expression) with
15774a space or a tab to prevent it from being expanded. The readline
15775history facilities do not attempt substitution on the strings
15776@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15777
15778The commands to control history expansion are:
104c1213
JM
15779
15780@table @code
8e04817f
AC
15781@item set history expansion on
15782@itemx set history expansion
703663ab 15783@kindex set history expansion
8e04817f 15784Enable history expansion. History expansion is off by default.
104c1213 15785
8e04817f
AC
15786@item set history expansion off
15787Disable history expansion.
104c1213 15788
8e04817f
AC
15789@c @group
15790@kindex show history
15791@item show history
15792@itemx show history filename
15793@itemx show history save
15794@itemx show history size
15795@itemx show history expansion
15796These commands display the state of the @value{GDBN} history parameters.
15797@code{show history} by itself displays all four states.
15798@c @end group
15799@end table
15800
15801@table @code
9c16f35a
EZ
15802@kindex show commands
15803@cindex show last commands
15804@cindex display command history
8e04817f
AC
15805@item show commands
15806Display the last ten commands in the command history.
104c1213 15807
8e04817f
AC
15808@item show commands @var{n}
15809Print ten commands centered on command number @var{n}.
15810
15811@item show commands +
15812Print ten commands just after the commands last printed.
104c1213
JM
15813@end table
15814
8e04817f 15815@node Screen Size
79a6e687 15816@section Screen Size
8e04817f
AC
15817@cindex size of screen
15818@cindex pauses in output
104c1213 15819
8e04817f
AC
15820Certain commands to @value{GDBN} may produce large amounts of
15821information output to the screen. To help you read all of it,
15822@value{GDBN} pauses and asks you for input at the end of each page of
15823output. Type @key{RET} when you want to continue the output, or @kbd{q}
15824to discard the remaining output. Also, the screen width setting
15825determines when to wrap lines of output. Depending on what is being
15826printed, @value{GDBN} tries to break the line at a readable place,
15827rather than simply letting it overflow onto the following line.
15828
15829Normally @value{GDBN} knows the size of the screen from the terminal
15830driver software. For example, on Unix @value{GDBN} uses the termcap data base
15831together with the value of the @code{TERM} environment variable and the
15832@code{stty rows} and @code{stty cols} settings. If this is not correct,
15833you can override it with the @code{set height} and @code{set
15834width} commands:
15835
15836@table @code
15837@kindex set height
15838@kindex set width
15839@kindex show width
15840@kindex show height
15841@item set height @var{lpp}
15842@itemx show height
15843@itemx set width @var{cpl}
15844@itemx show width
15845These @code{set} commands specify a screen height of @var{lpp} lines and
15846a screen width of @var{cpl} characters. The associated @code{show}
15847commands display the current settings.
104c1213 15848
8e04817f
AC
15849If you specify a height of zero lines, @value{GDBN} does not pause during
15850output no matter how long the output is. This is useful if output is to a
15851file or to an editor buffer.
104c1213 15852
8e04817f
AC
15853Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15854from wrapping its output.
9c16f35a
EZ
15855
15856@item set pagination on
15857@itemx set pagination off
15858@kindex set pagination
15859Turn the output pagination on or off; the default is on. Turning
15860pagination off is the alternative to @code{set height 0}.
15861
15862@item show pagination
15863@kindex show pagination
15864Show the current pagination mode.
104c1213
JM
15865@end table
15866
8e04817f
AC
15867@node Numbers
15868@section Numbers
15869@cindex number representation
15870@cindex entering numbers
104c1213 15871
8e04817f
AC
15872You can always enter numbers in octal, decimal, or hexadecimal in
15873@value{GDBN} by the usual conventions: octal numbers begin with
15874@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
15875begin with @samp{0x}. Numbers that neither begin with @samp{0} or
15876@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1587710; likewise, the default display for numbers---when no particular
15878format is specified---is base 10. You can change the default base for
15879both input and output with the commands described below.
104c1213 15880
8e04817f
AC
15881@table @code
15882@kindex set input-radix
15883@item set input-radix @var{base}
15884Set the default base for numeric input. Supported choices
15885for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15886specified either unambiguously or using the current input radix; for
8e04817f 15887example, any of
104c1213 15888
8e04817f 15889@smallexample
9c16f35a
EZ
15890set input-radix 012
15891set input-radix 10.
15892set input-radix 0xa
8e04817f 15893@end smallexample
104c1213 15894
8e04817f 15895@noindent
9c16f35a 15896sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
15897leaves the input radix unchanged, no matter what it was, since
15898@samp{10}, being without any leading or trailing signs of its base, is
15899interpreted in the current radix. Thus, if the current radix is 16,
15900@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15901change the radix.
104c1213 15902
8e04817f
AC
15903@kindex set output-radix
15904@item set output-radix @var{base}
15905Set the default base for numeric display. Supported choices
15906for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15907specified either unambiguously or using the current input radix.
104c1213 15908
8e04817f
AC
15909@kindex show input-radix
15910@item show input-radix
15911Display the current default base for numeric input.
104c1213 15912
8e04817f
AC
15913@kindex show output-radix
15914@item show output-radix
15915Display the current default base for numeric display.
9c16f35a
EZ
15916
15917@item set radix @r{[}@var{base}@r{]}
15918@itemx show radix
15919@kindex set radix
15920@kindex show radix
15921These commands set and show the default base for both input and output
15922of numbers. @code{set radix} sets the radix of input and output to
15923the same base; without an argument, it resets the radix back to its
15924default value of 10.
15925
8e04817f 15926@end table
104c1213 15927
1e698235 15928@node ABI
79a6e687 15929@section Configuring the Current ABI
1e698235
DJ
15930
15931@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15932application automatically. However, sometimes you need to override its
15933conclusions. Use these commands to manage @value{GDBN}'s view of the
15934current ABI.
15935
98b45e30
DJ
15936@cindex OS ABI
15937@kindex set osabi
b4e9345d 15938@kindex show osabi
98b45e30
DJ
15939
15940One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 15941system targets, either via remote debugging or native emulation.
98b45e30
DJ
15942@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15943but you can override its conclusion using the @code{set osabi} command.
15944One example where this is useful is in debugging of binaries which use
15945an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15946not have the same identifying marks that the standard C library for your
15947platform provides.
15948
15949@table @code
15950@item show osabi
15951Show the OS ABI currently in use.
15952
15953@item set osabi
15954With no argument, show the list of registered available OS ABI's.
15955
15956@item set osabi @var{abi}
15957Set the current OS ABI to @var{abi}.
15958@end table
15959
1e698235 15960@cindex float promotion
1e698235
DJ
15961
15962Generally, the way that an argument of type @code{float} is passed to a
15963function depends on whether the function is prototyped. For a prototyped
15964(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
15965according to the architecture's convention for @code{float}. For unprototyped
15966(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
15967@code{double} and then passed.
15968
15969Unfortunately, some forms of debug information do not reliably indicate whether
15970a function is prototyped. If @value{GDBN} calls a function that is not marked
15971as prototyped, it consults @kbd{set coerce-float-to-double}.
15972
15973@table @code
a8f24a35 15974@kindex set coerce-float-to-double
1e698235
DJ
15975@item set coerce-float-to-double
15976@itemx set coerce-float-to-double on
15977Arguments of type @code{float} will be promoted to @code{double} when passed
15978to an unprototyped function. This is the default setting.
15979
15980@item set coerce-float-to-double off
15981Arguments of type @code{float} will be passed directly to unprototyped
15982functions.
9c16f35a
EZ
15983
15984@kindex show coerce-float-to-double
15985@item show coerce-float-to-double
15986Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
15987@end table
15988
f1212245
DJ
15989@kindex set cp-abi
15990@kindex show cp-abi
15991@value{GDBN} needs to know the ABI used for your program's C@t{++}
15992objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
15993used to build your application. @value{GDBN} only fully supports
15994programs with a single C@t{++} ABI; if your program contains code using
15995multiple C@t{++} ABI's or if @value{GDBN} can not identify your
15996program's ABI correctly, you can tell @value{GDBN} which ABI to use.
15997Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
15998before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
15999``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16000use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16001``auto''.
16002
16003@table @code
16004@item show cp-abi
16005Show the C@t{++} ABI currently in use.
16006
16007@item set cp-abi
16008With no argument, show the list of supported C@t{++} ABI's.
16009
16010@item set cp-abi @var{abi}
16011@itemx set cp-abi auto
16012Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16013@end table
16014
8e04817f 16015@node Messages/Warnings
79a6e687 16016@section Optional Warnings and Messages
104c1213 16017
9c16f35a
EZ
16018@cindex verbose operation
16019@cindex optional warnings
8e04817f
AC
16020By default, @value{GDBN} is silent about its inner workings. If you are
16021running on a slow machine, you may want to use the @code{set verbose}
16022command. This makes @value{GDBN} tell you when it does a lengthy
16023internal operation, so you will not think it has crashed.
104c1213 16024
8e04817f
AC
16025Currently, the messages controlled by @code{set verbose} are those
16026which announce that the symbol table for a source file is being read;
79a6e687 16027see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16028
8e04817f
AC
16029@table @code
16030@kindex set verbose
16031@item set verbose on
16032Enables @value{GDBN} output of certain informational messages.
104c1213 16033
8e04817f
AC
16034@item set verbose off
16035Disables @value{GDBN} output of certain informational messages.
104c1213 16036
8e04817f
AC
16037@kindex show verbose
16038@item show verbose
16039Displays whether @code{set verbose} is on or off.
16040@end table
104c1213 16041
8e04817f
AC
16042By default, if @value{GDBN} encounters bugs in the symbol table of an
16043object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16044find this information useful (@pxref{Symbol Errors, ,Errors Reading
16045Symbol Files}).
104c1213 16046
8e04817f 16047@table @code
104c1213 16048
8e04817f
AC
16049@kindex set complaints
16050@item set complaints @var{limit}
16051Permits @value{GDBN} to output @var{limit} complaints about each type of
16052unusual symbols before becoming silent about the problem. Set
16053@var{limit} to zero to suppress all complaints; set it to a large number
16054to prevent complaints from being suppressed.
104c1213 16055
8e04817f
AC
16056@kindex show complaints
16057@item show complaints
16058Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16059
8e04817f 16060@end table
104c1213 16061
8e04817f
AC
16062By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16063lot of stupid questions to confirm certain commands. For example, if
16064you try to run a program which is already running:
104c1213 16065
474c8240 16066@smallexample
8e04817f
AC
16067(@value{GDBP}) run
16068The program being debugged has been started already.
16069Start it from the beginning? (y or n)
474c8240 16070@end smallexample
104c1213 16071
8e04817f
AC
16072If you are willing to unflinchingly face the consequences of your own
16073commands, you can disable this ``feature'':
104c1213 16074
8e04817f 16075@table @code
104c1213 16076
8e04817f
AC
16077@kindex set confirm
16078@cindex flinching
16079@cindex confirmation
16080@cindex stupid questions
16081@item set confirm off
16082Disables confirmation requests.
104c1213 16083
8e04817f
AC
16084@item set confirm on
16085Enables confirmation requests (the default).
104c1213 16086
8e04817f
AC
16087@kindex show confirm
16088@item show confirm
16089Displays state of confirmation requests.
16090
16091@end table
104c1213 16092
16026cd7
AS
16093@cindex command tracing
16094If you need to debug user-defined commands or sourced files you may find it
16095useful to enable @dfn{command tracing}. In this mode each command will be
16096printed as it is executed, prefixed with one or more @samp{+} symbols, the
16097quantity denoting the call depth of each command.
16098
16099@table @code
16100@kindex set trace-commands
16101@cindex command scripts, debugging
16102@item set trace-commands on
16103Enable command tracing.
16104@item set trace-commands off
16105Disable command tracing.
16106@item show trace-commands
16107Display the current state of command tracing.
16108@end table
16109
8e04817f 16110@node Debugging Output
79a6e687 16111@section Optional Messages about Internal Happenings
4644b6e3
EZ
16112@cindex optional debugging messages
16113
da316a69
EZ
16114@value{GDBN} has commands that enable optional debugging messages from
16115various @value{GDBN} subsystems; normally these commands are of
16116interest to @value{GDBN} maintainers, or when reporting a bug. This
16117section documents those commands.
16118
104c1213 16119@table @code
a8f24a35
EZ
16120@kindex set exec-done-display
16121@item set exec-done-display
16122Turns on or off the notification of asynchronous commands'
16123completion. When on, @value{GDBN} will print a message when an
16124asynchronous command finishes its execution. The default is off.
16125@kindex show exec-done-display
16126@item show exec-done-display
16127Displays the current setting of asynchronous command completion
16128notification.
4644b6e3
EZ
16129@kindex set debug
16130@cindex gdbarch debugging info
a8f24a35 16131@cindex architecture debugging info
8e04817f 16132@item set debug arch
a8f24a35 16133Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16134@kindex show debug
8e04817f
AC
16135@item show debug arch
16136Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16137@item set debug aix-thread
16138@cindex AIX threads
16139Display debugging messages about inner workings of the AIX thread
16140module.
16141@item show debug aix-thread
16142Show the current state of AIX thread debugging info display.
8e04817f 16143@item set debug event
4644b6e3 16144@cindex event debugging info
a8f24a35 16145Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16146default is off.
8e04817f
AC
16147@item show debug event
16148Displays the current state of displaying @value{GDBN} event debugging
16149info.
8e04817f 16150@item set debug expression
4644b6e3 16151@cindex expression debugging info
721c2651
EZ
16152Turns on or off display of debugging info about @value{GDBN}
16153expression parsing. The default is off.
8e04817f 16154@item show debug expression
721c2651
EZ
16155Displays the current state of displaying debugging info about
16156@value{GDBN} expression parsing.
7453dc06 16157@item set debug frame
4644b6e3 16158@cindex frame debugging info
7453dc06
AC
16159Turns on or off display of @value{GDBN} frame debugging info. The
16160default is off.
7453dc06
AC
16161@item show debug frame
16162Displays the current state of displaying @value{GDBN} frame debugging
16163info.
30e91e0b
RC
16164@item set debug infrun
16165@cindex inferior debugging info
16166Turns on or off display of @value{GDBN} debugging info for running the inferior.
16167The default is off. @file{infrun.c} contains GDB's runtime state machine used
16168for implementing operations such as single-stepping the inferior.
16169@item show debug infrun
16170Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16171@item set debug lin-lwp
16172@cindex @sc{gnu}/Linux LWP debug messages
16173@cindex Linux lightweight processes
721c2651 16174Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16175@item show debug lin-lwp
16176Show the current state of Linux LWP debugging messages.
2b4855ab 16177@item set debug observer
4644b6e3 16178@cindex observer debugging info
2b4855ab
AC
16179Turns on or off display of @value{GDBN} observer debugging. This
16180includes info such as the notification of observable events.
2b4855ab
AC
16181@item show debug observer
16182Displays the current state of observer debugging.
8e04817f 16183@item set debug overload
4644b6e3 16184@cindex C@t{++} overload debugging info
8e04817f 16185Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16186info. This includes info such as ranking of functions, etc. The default
8e04817f 16187is off.
8e04817f
AC
16188@item show debug overload
16189Displays the current state of displaying @value{GDBN} C@t{++} overload
16190debugging info.
8e04817f
AC
16191@cindex packets, reporting on stdout
16192@cindex serial connections, debugging
605a56cb
DJ
16193@cindex debug remote protocol
16194@cindex remote protocol debugging
16195@cindex display remote packets
8e04817f
AC
16196@item set debug remote
16197Turns on or off display of reports on all packets sent back and forth across
16198the serial line to the remote machine. The info is printed on the
16199@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16200@item show debug remote
16201Displays the state of display of remote packets.
8e04817f
AC
16202@item set debug serial
16203Turns on or off display of @value{GDBN} serial debugging info. The
16204default is off.
8e04817f
AC
16205@item show debug serial
16206Displays the current state of displaying @value{GDBN} serial debugging
16207info.
c45da7e6
EZ
16208@item set debug solib-frv
16209@cindex FR-V shared-library debugging
16210Turns on or off debugging messages for FR-V shared-library code.
16211@item show debug solib-frv
16212Display the current state of FR-V shared-library code debugging
16213messages.
8e04817f 16214@item set debug target
4644b6e3 16215@cindex target debugging info
8e04817f
AC
16216Turns on or off display of @value{GDBN} target debugging info. This info
16217includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16218default is 0. Set it to 1 to track events, and to 2 to also track the
16219value of large memory transfers. Changes to this flag do not take effect
16220until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16221@item show debug target
16222Displays the current state of displaying @value{GDBN} target debugging
16223info.
c45da7e6 16224@item set debugvarobj
4644b6e3 16225@cindex variable object debugging info
8e04817f
AC
16226Turns on or off display of @value{GDBN} variable object debugging
16227info. The default is off.
c45da7e6 16228@item show debugvarobj
8e04817f
AC
16229Displays the current state of displaying @value{GDBN} variable object
16230debugging info.
e776119f
DJ
16231@item set debug xml
16232@cindex XML parser debugging
16233Turns on or off debugging messages for built-in XML parsers.
16234@item show debug xml
16235Displays the current state of XML debugging messages.
8e04817f 16236@end table
104c1213 16237
8e04817f
AC
16238@node Sequences
16239@chapter Canned Sequences of Commands
104c1213 16240
8e04817f 16241Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16242Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16243commands for execution as a unit: user-defined commands and command
16244files.
104c1213 16245
8e04817f 16246@menu
fcc73fe3
EZ
16247* Define:: How to define your own commands
16248* Hooks:: Hooks for user-defined commands
16249* Command Files:: How to write scripts of commands to be stored in a file
16250* Output:: Commands for controlled output
8e04817f 16251@end menu
104c1213 16252
8e04817f 16253@node Define
79a6e687 16254@section User-defined Commands
104c1213 16255
8e04817f 16256@cindex user-defined command
fcc73fe3 16257@cindex arguments, to user-defined commands
8e04817f
AC
16258A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16259which you assign a new name as a command. This is done with the
16260@code{define} command. User commands may accept up to 10 arguments
16261separated by whitespace. Arguments are accessed within the user command
c03c782f 16262via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16263
8e04817f
AC
16264@smallexample
16265define adder
16266 print $arg0 + $arg1 + $arg2
c03c782f 16267end
8e04817f 16268@end smallexample
104c1213
JM
16269
16270@noindent
8e04817f 16271To execute the command use:
104c1213 16272
8e04817f
AC
16273@smallexample
16274adder 1 2 3
16275@end smallexample
104c1213 16276
8e04817f
AC
16277@noindent
16278This defines the command @code{adder}, which prints the sum of
16279its three arguments. Note the arguments are text substitutions, so they may
16280reference variables, use complex expressions, or even perform inferior
16281functions calls.
104c1213 16282
fcc73fe3
EZ
16283@cindex argument count in user-defined commands
16284@cindex how many arguments (user-defined commands)
c03c782f
AS
16285In addition, @code{$argc} may be used to find out how many arguments have
16286been passed. This expands to a number in the range 0@dots{}10.
16287
16288@smallexample
16289define adder
16290 if $argc == 2
16291 print $arg0 + $arg1
16292 end
16293 if $argc == 3
16294 print $arg0 + $arg1 + $arg2
16295 end
16296end
16297@end smallexample
16298
104c1213 16299@table @code
104c1213 16300
8e04817f
AC
16301@kindex define
16302@item define @var{commandname}
16303Define a command named @var{commandname}. If there is already a command
16304by that name, you are asked to confirm that you want to redefine it.
104c1213 16305
8e04817f
AC
16306The definition of the command is made up of other @value{GDBN} command lines,
16307which are given following the @code{define} command. The end of these
16308commands is marked by a line containing @code{end}.
104c1213 16309
8e04817f 16310@kindex document
ca91424e 16311@kindex end@r{ (user-defined commands)}
8e04817f
AC
16312@item document @var{commandname}
16313Document the user-defined command @var{commandname}, so that it can be
16314accessed by @code{help}. The command @var{commandname} must already be
16315defined. This command reads lines of documentation just as @code{define}
16316reads the lines of the command definition, ending with @code{end}.
16317After the @code{document} command is finished, @code{help} on command
16318@var{commandname} displays the documentation you have written.
104c1213 16319
8e04817f
AC
16320You may use the @code{document} command again to change the
16321documentation of a command. Redefining the command with @code{define}
16322does not change the documentation.
104c1213 16323
c45da7e6
EZ
16324@kindex dont-repeat
16325@cindex don't repeat command
16326@item dont-repeat
16327Used inside a user-defined command, this tells @value{GDBN} that this
16328command should not be repeated when the user hits @key{RET}
16329(@pxref{Command Syntax, repeat last command}).
16330
8e04817f
AC
16331@kindex help user-defined
16332@item help user-defined
16333List all user-defined commands, with the first line of the documentation
16334(if any) for each.
104c1213 16335
8e04817f
AC
16336@kindex show user
16337@item show user
16338@itemx show user @var{commandname}
16339Display the @value{GDBN} commands used to define @var{commandname} (but
16340not its documentation). If no @var{commandname} is given, display the
16341definitions for all user-defined commands.
104c1213 16342
fcc73fe3 16343@cindex infinite recursion in user-defined commands
20f01a46
DH
16344@kindex show max-user-call-depth
16345@kindex set max-user-call-depth
16346@item show max-user-call-depth
5ca0cb28
DH
16347@itemx set max-user-call-depth
16348The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16349levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16350infinite recursion and aborts the command.
104c1213
JM
16351@end table
16352
fcc73fe3
EZ
16353In addition to the above commands, user-defined commands frequently
16354use control flow commands, described in @ref{Command Files}.
16355
8e04817f
AC
16356When user-defined commands are executed, the
16357commands of the definition are not printed. An error in any command
16358stops execution of the user-defined command.
104c1213 16359
8e04817f
AC
16360If used interactively, commands that would ask for confirmation proceed
16361without asking when used inside a user-defined command. Many @value{GDBN}
16362commands that normally print messages to say what they are doing omit the
16363messages when used in a user-defined command.
104c1213 16364
8e04817f 16365@node Hooks
79a6e687 16366@section User-defined Command Hooks
8e04817f
AC
16367@cindex command hooks
16368@cindex hooks, for commands
16369@cindex hooks, pre-command
104c1213 16370
8e04817f 16371@kindex hook
8e04817f
AC
16372You may define @dfn{hooks}, which are a special kind of user-defined
16373command. Whenever you run the command @samp{foo}, if the user-defined
16374command @samp{hook-foo} exists, it is executed (with no arguments)
16375before that command.
104c1213 16376
8e04817f
AC
16377@cindex hooks, post-command
16378@kindex hookpost
8e04817f
AC
16379A hook may also be defined which is run after the command you executed.
16380Whenever you run the command @samp{foo}, if the user-defined command
16381@samp{hookpost-foo} exists, it is executed (with no arguments) after
16382that command. Post-execution hooks may exist simultaneously with
16383pre-execution hooks, for the same command.
104c1213 16384
8e04817f 16385It is valid for a hook to call the command which it hooks. If this
9f1c6395 16386occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16387
8e04817f
AC
16388@c It would be nice if hookpost could be passed a parameter indicating
16389@c if the command it hooks executed properly or not. FIXME!
104c1213 16390
8e04817f
AC
16391@kindex stop@r{, a pseudo-command}
16392In addition, a pseudo-command, @samp{stop} exists. Defining
16393(@samp{hook-stop}) makes the associated commands execute every time
16394execution stops in your program: before breakpoint commands are run,
16395displays are printed, or the stack frame is printed.
104c1213 16396
8e04817f
AC
16397For example, to ignore @code{SIGALRM} signals while
16398single-stepping, but treat them normally during normal execution,
16399you could define:
104c1213 16400
474c8240 16401@smallexample
8e04817f
AC
16402define hook-stop
16403handle SIGALRM nopass
16404end
104c1213 16405
8e04817f
AC
16406define hook-run
16407handle SIGALRM pass
16408end
104c1213 16409
8e04817f 16410define hook-continue
d3e8051b 16411handle SIGALRM pass
8e04817f 16412end
474c8240 16413@end smallexample
104c1213 16414
d3e8051b 16415As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16416command, and to add extra text to the beginning and end of the message,
8e04817f 16417you could define:
104c1213 16418
474c8240 16419@smallexample
8e04817f
AC
16420define hook-echo
16421echo <<<---
16422end
104c1213 16423
8e04817f
AC
16424define hookpost-echo
16425echo --->>>\n
16426end
104c1213 16427
8e04817f
AC
16428(@value{GDBP}) echo Hello World
16429<<<---Hello World--->>>
16430(@value{GDBP})
104c1213 16431
474c8240 16432@end smallexample
104c1213 16433
8e04817f
AC
16434You can define a hook for any single-word command in @value{GDBN}, but
16435not for command aliases; you should define a hook for the basic command
c1468174 16436name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16437@c FIXME! So how does Joe User discover whether a command is an alias
16438@c or not?
16439If an error occurs during the execution of your hook, execution of
16440@value{GDBN} commands stops and @value{GDBN} issues a prompt
16441(before the command that you actually typed had a chance to run).
104c1213 16442
8e04817f
AC
16443If you try to define a hook which does not match any known command, you
16444get a warning from the @code{define} command.
c906108c 16445
8e04817f 16446@node Command Files
79a6e687 16447@section Command Files
c906108c 16448
8e04817f 16449@cindex command files
fcc73fe3 16450@cindex scripting commands
6fc08d32
EZ
16451A command file for @value{GDBN} is a text file made of lines that are
16452@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16453also be included. An empty line in a command file does nothing; it
16454does not mean to repeat the last command, as it would from the
16455terminal.
c906108c 16456
6fc08d32
EZ
16457You can request the execution of a command file with the @code{source}
16458command:
c906108c 16459
8e04817f
AC
16460@table @code
16461@kindex source
ca91424e 16462@cindex execute commands from a file
16026cd7 16463@item source [@code{-v}] @var{filename}
8e04817f 16464Execute the command file @var{filename}.
c906108c
SS
16465@end table
16466
fcc73fe3
EZ
16467The lines in a command file are generally executed sequentially,
16468unless the order of execution is changed by one of the
16469@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16470printed as they are executed. An error in any command terminates
16471execution of the command file and control is returned to the console.
c906108c 16472
4b505b12
AS
16473@value{GDBN} searches for @var{filename} in the current directory and then
16474on the search path (specified with the @samp{directory} command).
16475
16026cd7
AS
16476If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16477each command as it is executed. The option must be given before
16478@var{filename}, and is interpreted as part of the filename anywhere else.
16479
8e04817f
AC
16480Commands that would ask for confirmation if used interactively proceed
16481without asking when used in a command file. Many @value{GDBN} commands that
16482normally print messages to say what they are doing omit the messages
16483when called from command files.
c906108c 16484
8e04817f
AC
16485@value{GDBN} also accepts command input from standard input. In this
16486mode, normal output goes to standard output and error output goes to
16487standard error. Errors in a command file supplied on standard input do
6fc08d32 16488not terminate execution of the command file---execution continues with
8e04817f 16489the next command.
c906108c 16490
474c8240 16491@smallexample
8e04817f 16492gdb < cmds > log 2>&1
474c8240 16493@end smallexample
c906108c 16494
8e04817f
AC
16495(The syntax above will vary depending on the shell used.) This example
16496will execute commands from the file @file{cmds}. All output and errors
16497would be directed to @file{log}.
c906108c 16498
fcc73fe3
EZ
16499Since commands stored on command files tend to be more general than
16500commands typed interactively, they frequently need to deal with
16501complicated situations, such as different or unexpected values of
16502variables and symbols, changes in how the program being debugged is
16503built, etc. @value{GDBN} provides a set of flow-control commands to
16504deal with these complexities. Using these commands, you can write
16505complex scripts that loop over data structures, execute commands
16506conditionally, etc.
16507
16508@table @code
16509@kindex if
16510@kindex else
16511@item if
16512@itemx else
16513This command allows to include in your script conditionally executed
16514commands. The @code{if} command takes a single argument, which is an
16515expression to evaluate. It is followed by a series of commands that
16516are executed only if the expression is true (its value is nonzero).
16517There can then optionally be an @code{else} line, followed by a series
16518of commands that are only executed if the expression was false. The
16519end of the list is marked by a line containing @code{end}.
16520
16521@kindex while
16522@item while
16523This command allows to write loops. Its syntax is similar to
16524@code{if}: the command takes a single argument, which is an expression
16525to evaluate, and must be followed by the commands to execute, one per
16526line, terminated by an @code{end}. These commands are called the
16527@dfn{body} of the loop. The commands in the body of @code{while} are
16528executed repeatedly as long as the expression evaluates to true.
16529
16530@kindex loop_break
16531@item loop_break
16532This command exits the @code{while} loop in whose body it is included.
16533Execution of the script continues after that @code{while}s @code{end}
16534line.
16535
16536@kindex loop_continue
16537@item loop_continue
16538This command skips the execution of the rest of the body of commands
16539in the @code{while} loop in whose body it is included. Execution
16540branches to the beginning of the @code{while} loop, where it evaluates
16541the controlling expression.
ca91424e
EZ
16542
16543@kindex end@r{ (if/else/while commands)}
16544@item end
16545Terminate the block of commands that are the body of @code{if},
16546@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16547@end table
16548
16549
8e04817f 16550@node Output
79a6e687 16551@section Commands for Controlled Output
c906108c 16552
8e04817f
AC
16553During the execution of a command file or a user-defined command, normal
16554@value{GDBN} output is suppressed; the only output that appears is what is
16555explicitly printed by the commands in the definition. This section
16556describes three commands useful for generating exactly the output you
16557want.
c906108c
SS
16558
16559@table @code
8e04817f
AC
16560@kindex echo
16561@item echo @var{text}
16562@c I do not consider backslash-space a standard C escape sequence
16563@c because it is not in ANSI.
16564Print @var{text}. Nonprinting characters can be included in
16565@var{text} using C escape sequences, such as @samp{\n} to print a
16566newline. @strong{No newline is printed unless you specify one.}
16567In addition to the standard C escape sequences, a backslash followed
16568by a space stands for a space. This is useful for displaying a
16569string with spaces at the beginning or the end, since leading and
16570trailing spaces are otherwise trimmed from all arguments.
16571To print @samp{@w{ }and foo =@w{ }}, use the command
16572@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16573
8e04817f
AC
16574A backslash at the end of @var{text} can be used, as in C, to continue
16575the command onto subsequent lines. For example,
c906108c 16576
474c8240 16577@smallexample
8e04817f
AC
16578echo This is some text\n\
16579which is continued\n\
16580onto several lines.\n
474c8240 16581@end smallexample
c906108c 16582
8e04817f 16583produces the same output as
c906108c 16584
474c8240 16585@smallexample
8e04817f
AC
16586echo This is some text\n
16587echo which is continued\n
16588echo onto several lines.\n
474c8240 16589@end smallexample
c906108c 16590
8e04817f
AC
16591@kindex output
16592@item output @var{expression}
16593Print the value of @var{expression} and nothing but that value: no
16594newlines, no @samp{$@var{nn} = }. The value is not entered in the
16595value history either. @xref{Expressions, ,Expressions}, for more information
16596on expressions.
c906108c 16597
8e04817f
AC
16598@item output/@var{fmt} @var{expression}
16599Print the value of @var{expression} in format @var{fmt}. You can use
16600the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16601Formats}, for more information.
c906108c 16602
8e04817f 16603@kindex printf
82160952
EZ
16604@item printf @var{template}, @var{expressions}@dots{}
16605Print the values of one or more @var{expressions} under the control of
16606the string @var{template}. To print several values, make
16607@var{expressions} be a comma-separated list of individual expressions,
16608which may be either numbers or pointers. Their values are printed as
16609specified by @var{template}, exactly as a C program would do by
16610executing the code below:
c906108c 16611
474c8240 16612@smallexample
82160952 16613printf (@var{template}, @var{expressions}@dots{});
474c8240 16614@end smallexample
c906108c 16615
82160952
EZ
16616As in @code{C} @code{printf}, ordinary characters in @var{template}
16617are printed verbatim, while @dfn{conversion specification} introduced
16618by the @samp{%} character cause subsequent @var{expressions} to be
16619evaluated, their values converted and formatted according to type and
16620style information encoded in the conversion specifications, and then
16621printed.
16622
8e04817f 16623For example, you can print two values in hex like this:
c906108c 16624
8e04817f
AC
16625@smallexample
16626printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16627@end smallexample
c906108c 16628
82160952
EZ
16629@code{printf} supports all the standard @code{C} conversion
16630specifications, including the flags and modifiers between the @samp{%}
16631character and the conversion letter, with the following exceptions:
16632
16633@itemize @bullet
16634@item
16635The argument-ordering modifiers, such as @samp{2$}, are not supported.
16636
16637@item
16638The modifier @samp{*} is not supported for specifying precision or
16639width.
16640
16641@item
16642The @samp{'} flag (for separation of digits into groups according to
16643@code{LC_NUMERIC'}) is not supported.
16644
16645@item
16646The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16647supported.
16648
16649@item
16650The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16651
16652@item
16653The conversion letters @samp{a} and @samp{A} are not supported.
16654@end itemize
16655
16656@noindent
16657Note that the @samp{ll} type modifier is supported only if the
16658underlying @code{C} implementation used to build @value{GDBN} supports
16659the @code{long long int} type, and the @samp{L} type modifier is
16660supported only if @code{long double} type is available.
16661
16662As in @code{C}, @code{printf} supports simple backslash-escape
16663sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16664@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16665single character. Octal and hexadecimal escape sequences are not
16666supported.
1a619819
LM
16667
16668Additionally, @code{printf} supports conversion specifications for DFP
16669(@dfn{Decimal Floating Point}) types using the following conversion
16670letters:
16671
16672@itemize @bullet
16673@item
16674@samp{H} for printing @code{Decimal32} types.
16675
16676@item
16677@samp{D} for printing @code{Decimal64} types.
16678
16679@item
16680@samp{DD} for printing @code{Decimal128} types.
16681@end itemize
16682
16683If the underlying @code{C} implementation used to build @value{GDBN} has
16684support for the three conversion letters for DFP types, other modifiers
3b784c4f 16685such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16686
16687In case there is no such @code{C} support, no additional modifiers will be
16688available and the value will be printed in the standard way.
16689
16690Here's an example of printing DFP types using the above conversion letters:
16691@smallexample
16692printf "D32: %H - D64: %D - D128: %DD\n",1.2345df,1.2E10dd,1.2E1dl
16693@end smallexample
16694
c906108c
SS
16695@end table
16696
21c294e6
AC
16697@node Interpreters
16698@chapter Command Interpreters
16699@cindex command interpreters
16700
16701@value{GDBN} supports multiple command interpreters, and some command
16702infrastructure to allow users or user interface writers to switch
16703between interpreters or run commands in other interpreters.
16704
16705@value{GDBN} currently supports two command interpreters, the console
16706interpreter (sometimes called the command-line interpreter or @sc{cli})
16707and the machine interface interpreter (or @sc{gdb/mi}). This manual
16708describes both of these interfaces in great detail.
16709
16710By default, @value{GDBN} will start with the console interpreter.
16711However, the user may choose to start @value{GDBN} with another
16712interpreter by specifying the @option{-i} or @option{--interpreter}
16713startup options. Defined interpreters include:
16714
16715@table @code
16716@item console
16717@cindex console interpreter
16718The traditional console or command-line interpreter. This is the most often
16719used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16720@value{GDBN} will use this interpreter.
16721
16722@item mi
16723@cindex mi interpreter
16724The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16725by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16726or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16727Interface}.
16728
16729@item mi2
16730@cindex mi2 interpreter
16731The current @sc{gdb/mi} interface.
16732
16733@item mi1
16734@cindex mi1 interpreter
16735The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16736
16737@end table
16738
16739@cindex invoke another interpreter
16740The interpreter being used by @value{GDBN} may not be dynamically
16741switched at runtime. Although possible, this could lead to a very
16742precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16743enters the command "interpreter-set console" in a console view,
16744@value{GDBN} would switch to using the console interpreter, rendering
16745the IDE inoperable!
16746
16747@kindex interpreter-exec
16748Although you may only choose a single interpreter at startup, you may execute
16749commands in any interpreter from the current interpreter using the appropriate
16750command. If you are running the console interpreter, simply use the
16751@code{interpreter-exec} command:
16752
16753@smallexample
16754interpreter-exec mi "-data-list-register-names"
16755@end smallexample
16756
16757@sc{gdb/mi} has a similar command, although it is only available in versions of
16758@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16759
8e04817f
AC
16760@node TUI
16761@chapter @value{GDBN} Text User Interface
16762@cindex TUI
d0d5df6f 16763@cindex Text User Interface
c906108c 16764
8e04817f
AC
16765@menu
16766* TUI Overview:: TUI overview
16767* TUI Keys:: TUI key bindings
7cf36c78 16768* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16769* TUI Commands:: TUI-specific commands
8e04817f
AC
16770* TUI Configuration:: TUI configuration variables
16771@end menu
c906108c 16772
46ba6afa 16773The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16774interface which uses the @code{curses} library to show the source
16775file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16776commands in separate text windows. The TUI mode is supported only
16777on platforms where a suitable version of the @code{curses} library
16778is available.
d0d5df6f 16779
46ba6afa
BW
16780@pindex @value{GDBTUI}
16781The TUI mode is enabled by default when you invoke @value{GDBN} as
16782either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16783You can also switch in and out of TUI mode while @value{GDBN} runs by
16784using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16785@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16786
8e04817f 16787@node TUI Overview
79a6e687 16788@section TUI Overview
c906108c 16789
46ba6afa 16790In TUI mode, @value{GDBN} can display several text windows:
c906108c 16791
8e04817f
AC
16792@table @emph
16793@item command
16794This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16795prompt and the @value{GDBN} output. The @value{GDBN} input is still
16796managed using readline.
c906108c 16797
8e04817f
AC
16798@item source
16799The source window shows the source file of the program. The current
46ba6afa 16800line and active breakpoints are displayed in this window.
c906108c 16801
8e04817f
AC
16802@item assembly
16803The assembly window shows the disassembly output of the program.
c906108c 16804
8e04817f 16805@item register
46ba6afa
BW
16806This window shows the processor registers. Registers are highlighted
16807when their values change.
c906108c
SS
16808@end table
16809
269c21fe 16810The source and assembly windows show the current program position
46ba6afa
BW
16811by highlighting the current line and marking it with a @samp{>} marker.
16812Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16813indicates the breakpoint type:
16814
16815@table @code
16816@item B
16817Breakpoint which was hit at least once.
16818
16819@item b
16820Breakpoint which was never hit.
16821
16822@item H
16823Hardware breakpoint which was hit at least once.
16824
16825@item h
16826Hardware breakpoint which was never hit.
269c21fe
SC
16827@end table
16828
16829The second marker indicates whether the breakpoint is enabled or not:
16830
16831@table @code
16832@item +
16833Breakpoint is enabled.
16834
16835@item -
16836Breakpoint is disabled.
269c21fe
SC
16837@end table
16838
46ba6afa
BW
16839The source, assembly and register windows are updated when the current
16840thread changes, when the frame changes, or when the program counter
16841changes.
16842
16843These windows are not all visible at the same time. The command
16844window is always visible. The others can be arranged in several
16845layouts:
c906108c 16846
8e04817f
AC
16847@itemize @bullet
16848@item
46ba6afa 16849source only,
2df3850c 16850
8e04817f 16851@item
46ba6afa 16852assembly only,
8e04817f
AC
16853
16854@item
46ba6afa 16855source and assembly,
8e04817f
AC
16856
16857@item
46ba6afa 16858source and registers, or
c906108c 16859
8e04817f 16860@item
46ba6afa 16861assembly and registers.
8e04817f 16862@end itemize
c906108c 16863
46ba6afa 16864A status line above the command window shows the following information:
b7bb15bc
SC
16865
16866@table @emph
16867@item target
46ba6afa 16868Indicates the current @value{GDBN} target.
b7bb15bc
SC
16869(@pxref{Targets, ,Specifying a Debugging Target}).
16870
16871@item process
46ba6afa 16872Gives the current process or thread number.
b7bb15bc
SC
16873When no process is being debugged, this field is set to @code{No process}.
16874
16875@item function
16876Gives the current function name for the selected frame.
16877The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 16878When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
16879the string @code{??} is displayed.
16880
16881@item line
16882Indicates the current line number for the selected frame.
46ba6afa 16883When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
16884
16885@item pc
16886Indicates the current program counter address.
b7bb15bc
SC
16887@end table
16888
8e04817f
AC
16889@node TUI Keys
16890@section TUI Key Bindings
16891@cindex TUI key bindings
c906108c 16892
8e04817f 16893The TUI installs several key bindings in the readline keymaps
46ba6afa 16894(@pxref{Command Line Editing}). The following key bindings
8e04817f 16895are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 16896
8e04817f
AC
16897@table @kbd
16898@kindex C-x C-a
16899@item C-x C-a
16900@kindex C-x a
16901@itemx C-x a
16902@kindex C-x A
16903@itemx C-x A
46ba6afa
BW
16904Enter or leave the TUI mode. When leaving the TUI mode,
16905the curses window management stops and @value{GDBN} operates using
16906its standard mode, writing on the terminal directly. When reentering
16907the TUI mode, control is given back to the curses windows.
8e04817f 16908The screen is then refreshed.
c906108c 16909
8e04817f
AC
16910@kindex C-x 1
16911@item C-x 1
16912Use a TUI layout with only one window. The layout will
16913either be @samp{source} or @samp{assembly}. When the TUI mode
16914is not active, it will switch to the TUI mode.
2df3850c 16915
8e04817f 16916Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 16917
8e04817f
AC
16918@kindex C-x 2
16919@item C-x 2
16920Use a TUI layout with at least two windows. When the current
46ba6afa 16921layout already has two windows, the next layout with two windows is used.
8e04817f
AC
16922When a new layout is chosen, one window will always be common to the
16923previous layout and the new one.
c906108c 16924
8e04817f 16925Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 16926
72ffddc9
SC
16927@kindex C-x o
16928@item C-x o
16929Change the active window. The TUI associates several key bindings
46ba6afa 16930(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
16931gives the focus to the next TUI window.
16932
16933Think of it as the Emacs @kbd{C-x o} binding.
16934
7cf36c78
SC
16935@kindex C-x s
16936@item C-x s
46ba6afa
BW
16937Switch in and out of the TUI SingleKey mode that binds single
16938keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
16939@end table
16940
46ba6afa 16941The following key bindings only work in the TUI mode:
5d161b24 16942
46ba6afa 16943@table @asis
8e04817f 16944@kindex PgUp
46ba6afa 16945@item @key{PgUp}
8e04817f 16946Scroll the active window one page up.
c906108c 16947
8e04817f 16948@kindex PgDn
46ba6afa 16949@item @key{PgDn}
8e04817f 16950Scroll the active window one page down.
c906108c 16951
8e04817f 16952@kindex Up
46ba6afa 16953@item @key{Up}
8e04817f 16954Scroll the active window one line up.
c906108c 16955
8e04817f 16956@kindex Down
46ba6afa 16957@item @key{Down}
8e04817f 16958Scroll the active window one line down.
c906108c 16959
8e04817f 16960@kindex Left
46ba6afa 16961@item @key{Left}
8e04817f 16962Scroll the active window one column left.
c906108c 16963
8e04817f 16964@kindex Right
46ba6afa 16965@item @key{Right}
8e04817f 16966Scroll the active window one column right.
c906108c 16967
8e04817f 16968@kindex C-L
46ba6afa 16969@item @kbd{C-L}
8e04817f 16970Refresh the screen.
8e04817f 16971@end table
c906108c 16972
46ba6afa
BW
16973Because the arrow keys scroll the active window in the TUI mode, they
16974are not available for their normal use by readline unless the command
16975window has the focus. When another window is active, you must use
16976other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
16977and @kbd{C-f} to control the command window.
8e04817f 16978
7cf36c78
SC
16979@node TUI Single Key Mode
16980@section TUI Single Key Mode
16981@cindex TUI single key mode
16982
46ba6afa
BW
16983The TUI also provides a @dfn{SingleKey} mode, which binds several
16984frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
16985switch into this mode, where the following key bindings are used:
7cf36c78
SC
16986
16987@table @kbd
16988@kindex c @r{(SingleKey TUI key)}
16989@item c
16990continue
16991
16992@kindex d @r{(SingleKey TUI key)}
16993@item d
16994down
16995
16996@kindex f @r{(SingleKey TUI key)}
16997@item f
16998finish
16999
17000@kindex n @r{(SingleKey TUI key)}
17001@item n
17002next
17003
17004@kindex q @r{(SingleKey TUI key)}
17005@item q
46ba6afa 17006exit the SingleKey mode.
7cf36c78
SC
17007
17008@kindex r @r{(SingleKey TUI key)}
17009@item r
17010run
17011
17012@kindex s @r{(SingleKey TUI key)}
17013@item s
17014step
17015
17016@kindex u @r{(SingleKey TUI key)}
17017@item u
17018up
17019
17020@kindex v @r{(SingleKey TUI key)}
17021@item v
17022info locals
17023
17024@kindex w @r{(SingleKey TUI key)}
17025@item w
17026where
7cf36c78
SC
17027@end table
17028
17029Other keys temporarily switch to the @value{GDBN} command prompt.
17030The key that was pressed is inserted in the editing buffer so that
17031it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17032with the TUI SingleKey mode. Once the command is entered the TUI
17033SingleKey mode is restored. The only way to permanently leave
7f9087cb 17034this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17035
17036
8e04817f 17037@node TUI Commands
db2e3e2e 17038@section TUI-specific Commands
8e04817f
AC
17039@cindex TUI commands
17040
17041The TUI has specific commands to control the text windows.
46ba6afa
BW
17042These commands are always available, even when @value{GDBN} is not in
17043the TUI mode. When @value{GDBN} is in the standard mode, most
17044of these commands will automatically switch to the TUI mode.
c906108c
SS
17045
17046@table @code
3d757584
SC
17047@item info win
17048@kindex info win
17049List and give the size of all displayed windows.
17050
8e04817f 17051@item layout next
4644b6e3 17052@kindex layout
8e04817f 17053Display the next layout.
2df3850c 17054
8e04817f 17055@item layout prev
8e04817f 17056Display the previous layout.
c906108c 17057
8e04817f 17058@item layout src
8e04817f 17059Display the source window only.
c906108c 17060
8e04817f 17061@item layout asm
8e04817f 17062Display the assembly window only.
c906108c 17063
8e04817f 17064@item layout split
8e04817f 17065Display the source and assembly window.
c906108c 17066
8e04817f 17067@item layout regs
8e04817f
AC
17068Display the register window together with the source or assembly window.
17069
46ba6afa 17070@item focus next
8e04817f 17071@kindex focus
46ba6afa
BW
17072Make the next window active for scrolling.
17073
17074@item focus prev
17075Make the previous window active for scrolling.
17076
17077@item focus src
17078Make the source window active for scrolling.
17079
17080@item focus asm
17081Make the assembly window active for scrolling.
17082
17083@item focus regs
17084Make the register window active for scrolling.
17085
17086@item focus cmd
17087Make the command window active for scrolling.
c906108c 17088
8e04817f
AC
17089@item refresh
17090@kindex refresh
7f9087cb 17091Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17092
6a1b180d
SC
17093@item tui reg float
17094@kindex tui reg
17095Show the floating point registers in the register window.
17096
17097@item tui reg general
17098Show the general registers in the register window.
17099
17100@item tui reg next
17101Show the next register group. The list of register groups as well as
17102their order is target specific. The predefined register groups are the
17103following: @code{general}, @code{float}, @code{system}, @code{vector},
17104@code{all}, @code{save}, @code{restore}.
17105
17106@item tui reg system
17107Show the system registers in the register window.
17108
8e04817f
AC
17109@item update
17110@kindex update
17111Update the source window and the current execution point.
c906108c 17112
8e04817f
AC
17113@item winheight @var{name} +@var{count}
17114@itemx winheight @var{name} -@var{count}
17115@kindex winheight
17116Change the height of the window @var{name} by @var{count}
17117lines. Positive counts increase the height, while negative counts
17118decrease it.
2df3850c 17119
46ba6afa
BW
17120@item tabset @var{nchars}
17121@kindex tabset
c45da7e6 17122Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17123@end table
17124
8e04817f 17125@node TUI Configuration
79a6e687 17126@section TUI Configuration Variables
8e04817f 17127@cindex TUI configuration variables
c906108c 17128
46ba6afa 17129Several configuration variables control the appearance of TUI windows.
c906108c 17130
8e04817f
AC
17131@table @code
17132@item set tui border-kind @var{kind}
17133@kindex set tui border-kind
17134Select the border appearance for the source, assembly and register windows.
17135The possible values are the following:
17136@table @code
17137@item space
17138Use a space character to draw the border.
c906108c 17139
8e04817f 17140@item ascii
46ba6afa 17141Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17142
8e04817f
AC
17143@item acs
17144Use the Alternate Character Set to draw the border. The border is
17145drawn using character line graphics if the terminal supports them.
8e04817f 17146@end table
c78b4128 17147
8e04817f
AC
17148@item set tui border-mode @var{mode}
17149@kindex set tui border-mode
46ba6afa
BW
17150@itemx set tui active-border-mode @var{mode}
17151@kindex set tui active-border-mode
17152Select the display attributes for the borders of the inactive windows
17153or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17154@table @code
17155@item normal
17156Use normal attributes to display the border.
c906108c 17157
8e04817f
AC
17158@item standout
17159Use standout mode.
c906108c 17160
8e04817f
AC
17161@item reverse
17162Use reverse video mode.
c906108c 17163
8e04817f
AC
17164@item half
17165Use half bright mode.
c906108c 17166
8e04817f
AC
17167@item half-standout
17168Use half bright and standout mode.
c906108c 17169
8e04817f
AC
17170@item bold
17171Use extra bright or bold mode.
c78b4128 17172
8e04817f
AC
17173@item bold-standout
17174Use extra bright or bold and standout mode.
8e04817f 17175@end table
8e04817f 17176@end table
c78b4128 17177
8e04817f
AC
17178@node Emacs
17179@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17180
8e04817f
AC
17181@cindex Emacs
17182@cindex @sc{gnu} Emacs
17183A special interface allows you to use @sc{gnu} Emacs to view (and
17184edit) the source files for the program you are debugging with
17185@value{GDBN}.
c906108c 17186
8e04817f
AC
17187To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17188executable file you want to debug as an argument. This command starts
17189@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17190created Emacs buffer.
17191@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17192
5e252a2e 17193Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17194things:
c906108c 17195
8e04817f
AC
17196@itemize @bullet
17197@item
5e252a2e
NR
17198All ``terminal'' input and output goes through an Emacs buffer, called
17199the GUD buffer.
c906108c 17200
8e04817f
AC
17201This applies both to @value{GDBN} commands and their output, and to the input
17202and output done by the program you are debugging.
bf0184be 17203
8e04817f
AC
17204This is useful because it means that you can copy the text of previous
17205commands and input them again; you can even use parts of the output
17206in this way.
bf0184be 17207
8e04817f
AC
17208All the facilities of Emacs' Shell mode are available for interacting
17209with your program. In particular, you can send signals the usual
17210way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17211stop.
bf0184be
ND
17212
17213@item
8e04817f 17214@value{GDBN} displays source code through Emacs.
bf0184be 17215
8e04817f
AC
17216Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17217source file for that frame and puts an arrow (@samp{=>}) at the
17218left margin of the current line. Emacs uses a separate buffer for
17219source display, and splits the screen to show both your @value{GDBN} session
17220and the source.
bf0184be 17221
8e04817f
AC
17222Explicit @value{GDBN} @code{list} or search commands still produce output as
17223usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17224@end itemize
17225
17226We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17227a graphical mode, enabled by default, which provides further buffers
17228that can control the execution and describe the state of your program.
17229@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17230
64fabec2
AC
17231If you specify an absolute file name when prompted for the @kbd{M-x
17232gdb} argument, then Emacs sets your current working directory to where
17233your program resides. If you only specify the file name, then Emacs
17234sets your current working directory to to the directory associated
17235with the previous buffer. In this case, @value{GDBN} may find your
17236program by searching your environment's @code{PATH} variable, but on
17237some operating systems it might not find the source. So, although the
17238@value{GDBN} input and output session proceeds normally, the auxiliary
17239buffer does not display the current source and line of execution.
17240
17241The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17242line of the GUD buffer and this serves as a default for the commands
17243that specify files for @value{GDBN} to operate on. @xref{Files,
17244,Commands to Specify Files}.
64fabec2
AC
17245
17246By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17247need to call @value{GDBN} by a different name (for example, if you
17248keep several configurations around, with different names) you can
17249customize the Emacs variable @code{gud-gdb-command-name} to run the
17250one you want.
8e04817f 17251
5e252a2e 17252In the GUD buffer, you can use these special Emacs commands in
8e04817f 17253addition to the standard Shell mode commands:
c906108c 17254
8e04817f
AC
17255@table @kbd
17256@item C-h m
5e252a2e 17257Describe the features of Emacs' GUD Mode.
c906108c 17258
64fabec2 17259@item C-c C-s
8e04817f
AC
17260Execute to another source line, like the @value{GDBN} @code{step} command; also
17261update the display window to show the current file and location.
c906108c 17262
64fabec2 17263@item C-c C-n
8e04817f
AC
17264Execute to next source line in this function, skipping all function
17265calls, like the @value{GDBN} @code{next} command. Then update the display window
17266to show the current file and location.
c906108c 17267
64fabec2 17268@item C-c C-i
8e04817f
AC
17269Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17270display window accordingly.
c906108c 17271
8e04817f
AC
17272@item C-c C-f
17273Execute until exit from the selected stack frame, like the @value{GDBN}
17274@code{finish} command.
c906108c 17275
64fabec2 17276@item C-c C-r
8e04817f
AC
17277Continue execution of your program, like the @value{GDBN} @code{continue}
17278command.
b433d00b 17279
64fabec2 17280@item C-c <
8e04817f
AC
17281Go up the number of frames indicated by the numeric argument
17282(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17283like the @value{GDBN} @code{up} command.
b433d00b 17284
64fabec2 17285@item C-c >
8e04817f
AC
17286Go down the number of frames indicated by the numeric argument, like the
17287@value{GDBN} @code{down} command.
8e04817f 17288@end table
c906108c 17289
7f9087cb 17290In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17291tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17292
5e252a2e
NR
17293In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17294separate frame which shows a backtrace when the GUD buffer is current.
17295Move point to any frame in the stack and type @key{RET} to make it
17296become the current frame and display the associated source in the
17297source buffer. Alternatively, click @kbd{Mouse-2} to make the
17298selected frame become the current one. In graphical mode, the
17299speedbar displays watch expressions.
64fabec2 17300
8e04817f
AC
17301If you accidentally delete the source-display buffer, an easy way to get
17302it back is to type the command @code{f} in the @value{GDBN} buffer, to
17303request a frame display; when you run under Emacs, this recreates
17304the source buffer if necessary to show you the context of the current
17305frame.
c906108c 17306
8e04817f
AC
17307The source files displayed in Emacs are in ordinary Emacs buffers
17308which are visiting the source files in the usual way. You can edit
17309the files with these buffers if you wish; but keep in mind that @value{GDBN}
17310communicates with Emacs in terms of line numbers. If you add or
17311delete lines from the text, the line numbers that @value{GDBN} knows cease
17312to correspond properly with the code.
b383017d 17313
5e252a2e
NR
17314A more detailed description of Emacs' interaction with @value{GDBN} is
17315given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17316Emacs Manual}).
c906108c 17317
8e04817f
AC
17318@c The following dropped because Epoch is nonstandard. Reactivate
17319@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17320@ignore
17321@kindex Emacs Epoch environment
17322@kindex Epoch
17323@kindex inspect
c906108c 17324
8e04817f
AC
17325Version 18 of @sc{gnu} Emacs has a built-in window system
17326called the @code{epoch}
17327environment. Users of this environment can use a new command,
17328@code{inspect} which performs identically to @code{print} except that
17329each value is printed in its own window.
17330@end ignore
c906108c 17331
922fbb7b
AC
17332
17333@node GDB/MI
17334@chapter The @sc{gdb/mi} Interface
17335
17336@unnumberedsec Function and Purpose
17337
17338@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17339@sc{gdb/mi} is a line based machine oriented text interface to
17340@value{GDBN} and is activated by specifying using the
17341@option{--interpreter} command line option (@pxref{Mode Options}). It
17342is specifically intended to support the development of systems which
17343use the debugger as just one small component of a larger system.
922fbb7b
AC
17344
17345This chapter is a specification of the @sc{gdb/mi} interface. It is written
17346in the form of a reference manual.
17347
17348Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17349features described below are incomplete and subject to change
17350(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17351
17352@unnumberedsec Notation and Terminology
17353
17354@cindex notational conventions, for @sc{gdb/mi}
17355This chapter uses the following notation:
17356
17357@itemize @bullet
17358@item
17359@code{|} separates two alternatives.
17360
17361@item
17362@code{[ @var{something} ]} indicates that @var{something} is optional:
17363it may or may not be given.
17364
17365@item
17366@code{( @var{group} )*} means that @var{group} inside the parentheses
17367may repeat zero or more times.
17368
17369@item
17370@code{( @var{group} )+} means that @var{group} inside the parentheses
17371may repeat one or more times.
17372
17373@item
17374@code{"@var{string}"} means a literal @var{string}.
17375@end itemize
17376
17377@ignore
17378@heading Dependencies
17379@end ignore
17380
922fbb7b
AC
17381@menu
17382* GDB/MI Command Syntax::
17383* GDB/MI Compatibility with CLI::
af6eff6f 17384* GDB/MI Development and Front Ends::
922fbb7b 17385* GDB/MI Output Records::
ef21caaf 17386* GDB/MI Simple Examples::
922fbb7b 17387* GDB/MI Command Description Format::
ef21caaf 17388* GDB/MI Breakpoint Commands::
a2c02241
NR
17389* GDB/MI Program Context::
17390* GDB/MI Thread Commands::
17391* GDB/MI Program Execution::
17392* GDB/MI Stack Manipulation::
17393* GDB/MI Variable Objects::
922fbb7b 17394* GDB/MI Data Manipulation::
a2c02241
NR
17395* GDB/MI Tracepoint Commands::
17396* GDB/MI Symbol Query::
351ff01a 17397* GDB/MI File Commands::
922fbb7b
AC
17398@ignore
17399* GDB/MI Kod Commands::
17400* GDB/MI Memory Overlay Commands::
17401* GDB/MI Signal Handling Commands::
17402@end ignore
922fbb7b 17403* GDB/MI Target Manipulation::
a6b151f1 17404* GDB/MI File Transfer Commands::
ef21caaf 17405* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17406@end menu
17407
17408@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17409@node GDB/MI Command Syntax
17410@section @sc{gdb/mi} Command Syntax
17411
17412@menu
17413* GDB/MI Input Syntax::
17414* GDB/MI Output Syntax::
922fbb7b
AC
17415@end menu
17416
17417@node GDB/MI Input Syntax
17418@subsection @sc{gdb/mi} Input Syntax
17419
17420@cindex input syntax for @sc{gdb/mi}
17421@cindex @sc{gdb/mi}, input syntax
17422@table @code
17423@item @var{command} @expansion{}
17424@code{@var{cli-command} | @var{mi-command}}
17425
17426@item @var{cli-command} @expansion{}
17427@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17428@var{cli-command} is any existing @value{GDBN} CLI command.
17429
17430@item @var{mi-command} @expansion{}
17431@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17432@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17433
17434@item @var{token} @expansion{}
17435"any sequence of digits"
17436
17437@item @var{option} @expansion{}
17438@code{"-" @var{parameter} [ " " @var{parameter} ]}
17439
17440@item @var{parameter} @expansion{}
17441@code{@var{non-blank-sequence} | @var{c-string}}
17442
17443@item @var{operation} @expansion{}
17444@emph{any of the operations described in this chapter}
17445
17446@item @var{non-blank-sequence} @expansion{}
17447@emph{anything, provided it doesn't contain special characters such as
17448"-", @var{nl}, """ and of course " "}
17449
17450@item @var{c-string} @expansion{}
17451@code{""" @var{seven-bit-iso-c-string-content} """}
17452
17453@item @var{nl} @expansion{}
17454@code{CR | CR-LF}
17455@end table
17456
17457@noindent
17458Notes:
17459
17460@itemize @bullet
17461@item
17462The CLI commands are still handled by the @sc{mi} interpreter; their
17463output is described below.
17464
17465@item
17466The @code{@var{token}}, when present, is passed back when the command
17467finishes.
17468
17469@item
17470Some @sc{mi} commands accept optional arguments as part of the parameter
17471list. Each option is identified by a leading @samp{-} (dash) and may be
17472followed by an optional argument parameter. Options occur first in the
17473parameter list and can be delimited from normal parameters using
17474@samp{--} (this is useful when some parameters begin with a dash).
17475@end itemize
17476
17477Pragmatics:
17478
17479@itemize @bullet
17480@item
17481We want easy access to the existing CLI syntax (for debugging).
17482
17483@item
17484We want it to be easy to spot a @sc{mi} operation.
17485@end itemize
17486
17487@node GDB/MI Output Syntax
17488@subsection @sc{gdb/mi} Output Syntax
17489
17490@cindex output syntax of @sc{gdb/mi}
17491@cindex @sc{gdb/mi}, output syntax
17492The output from @sc{gdb/mi} consists of zero or more out-of-band records
17493followed, optionally, by a single result record. This result record
17494is for the most recent command. The sequence of output records is
594fe323 17495terminated by @samp{(gdb)}.
922fbb7b
AC
17496
17497If an input command was prefixed with a @code{@var{token}} then the
17498corresponding output for that command will also be prefixed by that same
17499@var{token}.
17500
17501@table @code
17502@item @var{output} @expansion{}
594fe323 17503@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17504
17505@item @var{result-record} @expansion{}
17506@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17507
17508@item @var{out-of-band-record} @expansion{}
17509@code{@var{async-record} | @var{stream-record}}
17510
17511@item @var{async-record} @expansion{}
17512@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17513
17514@item @var{exec-async-output} @expansion{}
17515@code{[ @var{token} ] "*" @var{async-output}}
17516
17517@item @var{status-async-output} @expansion{}
17518@code{[ @var{token} ] "+" @var{async-output}}
17519
17520@item @var{notify-async-output} @expansion{}
17521@code{[ @var{token} ] "=" @var{async-output}}
17522
17523@item @var{async-output} @expansion{}
17524@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17525
17526@item @var{result-class} @expansion{}
17527@code{"done" | "running" | "connected" | "error" | "exit"}
17528
17529@item @var{async-class} @expansion{}
17530@code{"stopped" | @var{others}} (where @var{others} will be added
17531depending on the needs---this is still in development).
17532
17533@item @var{result} @expansion{}
17534@code{ @var{variable} "=" @var{value}}
17535
17536@item @var{variable} @expansion{}
17537@code{ @var{string} }
17538
17539@item @var{value} @expansion{}
17540@code{ @var{const} | @var{tuple} | @var{list} }
17541
17542@item @var{const} @expansion{}
17543@code{@var{c-string}}
17544
17545@item @var{tuple} @expansion{}
17546@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17547
17548@item @var{list} @expansion{}
17549@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17550@var{result} ( "," @var{result} )* "]" }
17551
17552@item @var{stream-record} @expansion{}
17553@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17554
17555@item @var{console-stream-output} @expansion{}
17556@code{"~" @var{c-string}}
17557
17558@item @var{target-stream-output} @expansion{}
17559@code{"@@" @var{c-string}}
17560
17561@item @var{log-stream-output} @expansion{}
17562@code{"&" @var{c-string}}
17563
17564@item @var{nl} @expansion{}
17565@code{CR | CR-LF}
17566
17567@item @var{token} @expansion{}
17568@emph{any sequence of digits}.
17569@end table
17570
17571@noindent
17572Notes:
17573
17574@itemize @bullet
17575@item
17576All output sequences end in a single line containing a period.
17577
17578@item
17579The @code{@var{token}} is from the corresponding request. If an execution
17580command is interrupted by the @samp{-exec-interrupt} command, the
17581@var{token} associated with the @samp{*stopped} message is the one of the
17582original execution command, not the one of the interrupt command.
17583
17584@item
17585@cindex status output in @sc{gdb/mi}
17586@var{status-async-output} contains on-going status information about the
17587progress of a slow operation. It can be discarded. All status output is
17588prefixed by @samp{+}.
17589
17590@item
17591@cindex async output in @sc{gdb/mi}
17592@var{exec-async-output} contains asynchronous state change on the target
17593(stopped, started, disappeared). All async output is prefixed by
17594@samp{*}.
17595
17596@item
17597@cindex notify output in @sc{gdb/mi}
17598@var{notify-async-output} contains supplementary information that the
17599client should handle (e.g., a new breakpoint information). All notify
17600output is prefixed by @samp{=}.
17601
17602@item
17603@cindex console output in @sc{gdb/mi}
17604@var{console-stream-output} is output that should be displayed as is in the
17605console. It is the textual response to a CLI command. All the console
17606output is prefixed by @samp{~}.
17607
17608@item
17609@cindex target output in @sc{gdb/mi}
17610@var{target-stream-output} is the output produced by the target program.
17611All the target output is prefixed by @samp{@@}.
17612
17613@item
17614@cindex log output in @sc{gdb/mi}
17615@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17616instance messages that should be displayed as part of an error log. All
17617the log output is prefixed by @samp{&}.
17618
17619@item
17620@cindex list output in @sc{gdb/mi}
17621New @sc{gdb/mi} commands should only output @var{lists} containing
17622@var{values}.
17623
17624
17625@end itemize
17626
17627@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17628details about the various output records.
17629
922fbb7b
AC
17630@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17631@node GDB/MI Compatibility with CLI
17632@section @sc{gdb/mi} Compatibility with CLI
17633
17634@cindex compatibility, @sc{gdb/mi} and CLI
17635@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17636
a2c02241
NR
17637For the developers convenience CLI commands can be entered directly,
17638but there may be some unexpected behaviour. For example, commands
17639that query the user will behave as if the user replied yes, breakpoint
17640command lists are not executed and some CLI commands, such as
17641@code{if}, @code{when} and @code{define}, prompt for further input with
17642@samp{>}, which is not valid MI output.
ef21caaf
NR
17643
17644This feature may be removed at some stage in the future and it is
a2c02241
NR
17645recommended that front ends use the @code{-interpreter-exec} command
17646(@pxref{-interpreter-exec}).
922fbb7b 17647
af6eff6f
NR
17648@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17649@node GDB/MI Development and Front Ends
17650@section @sc{gdb/mi} Development and Front Ends
17651@cindex @sc{gdb/mi} development
17652
17653The application which takes the MI output and presents the state of the
17654program being debugged to the user is called a @dfn{front end}.
17655
17656Although @sc{gdb/mi} is still incomplete, it is currently being used
17657by a variety of front ends to @value{GDBN}. This makes it difficult
17658to introduce new functionality without breaking existing usage. This
17659section tries to minimize the problems by describing how the protocol
17660might change.
17661
17662Some changes in MI need not break a carefully designed front end, and
17663for these the MI version will remain unchanged. The following is a
17664list of changes that may occur within one level, so front ends should
17665parse MI output in a way that can handle them:
17666
17667@itemize @bullet
17668@item
17669New MI commands may be added.
17670
17671@item
17672New fields may be added to the output of any MI command.
17673
36ece8b3
NR
17674@item
17675The range of values for fields with specified values, e.g.,
9f708cb2 17676@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17677
af6eff6f
NR
17678@c The format of field's content e.g type prefix, may change so parse it
17679@c at your own risk. Yes, in general?
17680
17681@c The order of fields may change? Shouldn't really matter but it might
17682@c resolve inconsistencies.
17683@end itemize
17684
17685If the changes are likely to break front ends, the MI version level
17686will be increased by one. This will allow the front end to parse the
17687output according to the MI version. Apart from mi0, new versions of
17688@value{GDBN} will not support old versions of MI and it will be the
17689responsibility of the front end to work with the new one.
17690
17691@c Starting with mi3, add a new command -mi-version that prints the MI
17692@c version?
17693
17694The best way to avoid unexpected changes in MI that might break your front
17695end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17696follow development on @email{gdb@@sourceware.org} and
17697@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17698@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17699Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17700called Debugger Machine Interface (DMI) that will become a standard
17701for all debuggers, not just @value{GDBN}.
17702@cindex mailing lists
17703
922fbb7b
AC
17704@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17705@node GDB/MI Output Records
17706@section @sc{gdb/mi} Output Records
17707
17708@menu
17709* GDB/MI Result Records::
17710* GDB/MI Stream Records::
17711* GDB/MI Out-of-band Records::
17712@end menu
17713
17714@node GDB/MI Result Records
17715@subsection @sc{gdb/mi} Result Records
17716
17717@cindex result records in @sc{gdb/mi}
17718@cindex @sc{gdb/mi}, result records
17719In addition to a number of out-of-band notifications, the response to a
17720@sc{gdb/mi} command includes one of the following result indications:
17721
17722@table @code
17723@findex ^done
17724@item "^done" [ "," @var{results} ]
17725The synchronous operation was successful, @code{@var{results}} are the return
17726values.
17727
17728@item "^running"
17729@findex ^running
17730@c Is this one correct? Should it be an out-of-band notification?
17731The asynchronous operation was successfully started. The target is
17732running.
17733
ef21caaf
NR
17734@item "^connected"
17735@findex ^connected
3f94c067 17736@value{GDBN} has connected to a remote target.
ef21caaf 17737
922fbb7b
AC
17738@item "^error" "," @var{c-string}
17739@findex ^error
17740The operation failed. The @code{@var{c-string}} contains the corresponding
17741error message.
ef21caaf
NR
17742
17743@item "^exit"
17744@findex ^exit
3f94c067 17745@value{GDBN} has terminated.
ef21caaf 17746
922fbb7b
AC
17747@end table
17748
17749@node GDB/MI Stream Records
17750@subsection @sc{gdb/mi} Stream Records
17751
17752@cindex @sc{gdb/mi}, stream records
17753@cindex stream records in @sc{gdb/mi}
17754@value{GDBN} internally maintains a number of output streams: the console, the
17755target, and the log. The output intended for each of these streams is
17756funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17757
17758Each stream record begins with a unique @dfn{prefix character} which
17759identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17760Syntax}). In addition to the prefix, each stream record contains a
17761@code{@var{string-output}}. This is either raw text (with an implicit new
17762line) or a quoted C string (which does not contain an implicit newline).
17763
17764@table @code
17765@item "~" @var{string-output}
17766The console output stream contains text that should be displayed in the
17767CLI console window. It contains the textual responses to CLI commands.
17768
17769@item "@@" @var{string-output}
17770The target output stream contains any textual output from the running
ef21caaf
NR
17771target. This is only present when GDB's event loop is truly
17772asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17773
17774@item "&" @var{string-output}
17775The log stream contains debugging messages being produced by @value{GDBN}'s
17776internals.
17777@end table
17778
17779@node GDB/MI Out-of-band Records
17780@subsection @sc{gdb/mi} Out-of-band Records
17781
17782@cindex out-of-band records in @sc{gdb/mi}
17783@cindex @sc{gdb/mi}, out-of-band records
17784@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17785additional changes that have occurred. Those changes can either be a
17786consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17787target activity (e.g., target stopped).
17788
17789The following is a preliminary list of possible out-of-band records.
034dad6f 17790In particular, the @var{exec-async-output} records.
922fbb7b
AC
17791
17792@table @code
034dad6f
BR
17793@item *stopped,reason="@var{reason}"
17794@end table
17795
17796@var{reason} can be one of the following:
17797
17798@table @code
17799@item breakpoint-hit
17800A breakpoint was reached.
17801@item watchpoint-trigger
17802A watchpoint was triggered.
17803@item read-watchpoint-trigger
17804A read watchpoint was triggered.
17805@item access-watchpoint-trigger
17806An access watchpoint was triggered.
17807@item function-finished
17808An -exec-finish or similar CLI command was accomplished.
17809@item location-reached
17810An -exec-until or similar CLI command was accomplished.
17811@item watchpoint-scope
17812A watchpoint has gone out of scope.
17813@item end-stepping-range
17814An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17815similar CLI command was accomplished.
17816@item exited-signalled
17817The inferior exited because of a signal.
17818@item exited
17819The inferior exited.
17820@item exited-normally
17821The inferior exited normally.
17822@item signal-received
17823A signal was received by the inferior.
922fbb7b
AC
17824@end table
17825
17826
ef21caaf
NR
17827@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17828@node GDB/MI Simple Examples
17829@section Simple Examples of @sc{gdb/mi} Interaction
17830@cindex @sc{gdb/mi}, simple examples
17831
17832This subsection presents several simple examples of interaction using
17833the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
17834following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17835the output received from @sc{gdb/mi}.
17836
d3e8051b 17837Note the line breaks shown in the examples are here only for
ef21caaf
NR
17838readability, they don't appear in the real output.
17839
79a6e687 17840@subheading Setting a Breakpoint
ef21caaf
NR
17841
17842Setting a breakpoint generates synchronous output which contains detailed
17843information of the breakpoint.
17844
17845@smallexample
17846-> -break-insert main
17847<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17848 enabled="y",addr="0x08048564",func="main",file="myprog.c",
17849 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17850<- (gdb)
17851@end smallexample
17852
17853@subheading Program Execution
17854
17855Program execution generates asynchronous records and MI gives the
17856reason that execution stopped.
17857
17858@smallexample
17859-> -exec-run
17860<- ^running
17861<- (gdb)
17862<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17863 frame=@{addr="0x08048564",func="main",
17864 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17865 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17866<- (gdb)
17867-> -exec-continue
17868<- ^running
17869<- (gdb)
17870<- *stopped,reason="exited-normally"
17871<- (gdb)
17872@end smallexample
17873
3f94c067 17874@subheading Quitting @value{GDBN}
ef21caaf 17875
3f94c067 17876Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
17877
17878@smallexample
17879-> (gdb)
17880<- -gdb-exit
17881<- ^exit
17882@end smallexample
17883
a2c02241 17884@subheading A Bad Command
ef21caaf
NR
17885
17886Here's what happens if you pass a non-existent command:
17887
17888@smallexample
17889-> -rubbish
17890<- ^error,msg="Undefined MI command: rubbish"
594fe323 17891<- (gdb)
ef21caaf
NR
17892@end smallexample
17893
17894
922fbb7b
AC
17895@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17896@node GDB/MI Command Description Format
17897@section @sc{gdb/mi} Command Description Format
17898
17899The remaining sections describe blocks of commands. Each block of
17900commands is laid out in a fashion similar to this section.
17901
922fbb7b
AC
17902@subheading Motivation
17903
17904The motivation for this collection of commands.
17905
17906@subheading Introduction
17907
17908A brief introduction to this collection of commands as a whole.
17909
17910@subheading Commands
17911
17912For each command in the block, the following is described:
17913
17914@subsubheading Synopsis
17915
17916@smallexample
17917 -command @var{args}@dots{}
17918@end smallexample
17919
922fbb7b
AC
17920@subsubheading Result
17921
265eeb58 17922@subsubheading @value{GDBN} Command
922fbb7b 17923
265eeb58 17924The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
17925
17926@subsubheading Example
17927
ef21caaf
NR
17928Example(s) formatted for readability. Some of the described commands have
17929not been implemented yet and these are labeled N.A.@: (not available).
17930
17931
922fbb7b 17932@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
17933@node GDB/MI Breakpoint Commands
17934@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
17935
17936@cindex breakpoint commands for @sc{gdb/mi}
17937@cindex @sc{gdb/mi}, breakpoint commands
17938This section documents @sc{gdb/mi} commands for manipulating
17939breakpoints.
17940
17941@subheading The @code{-break-after} Command
17942@findex -break-after
17943
17944@subsubheading Synopsis
17945
17946@smallexample
17947 -break-after @var{number} @var{count}
17948@end smallexample
17949
17950The breakpoint number @var{number} is not in effect until it has been
17951hit @var{count} times. To see how this is reflected in the output of
17952the @samp{-break-list} command, see the description of the
17953@samp{-break-list} command below.
17954
17955@subsubheading @value{GDBN} Command
17956
17957The corresponding @value{GDBN} command is @samp{ignore}.
17958
17959@subsubheading Example
17960
17961@smallexample
594fe323 17962(gdb)
922fbb7b 17963-break-insert main
948d5102
NR
17964^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
17965fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 17966(gdb)
922fbb7b
AC
17967-break-after 1 3
17968~
17969^done
594fe323 17970(gdb)
922fbb7b
AC
17971-break-list
17972^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17973hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17974@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17975@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17976@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17977@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17978@{width="40",alignment="2",col_name="what",colhdr="What"@}],
17979body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
17980addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17981line="5",times="0",ignore="3"@}]@}
594fe323 17982(gdb)
922fbb7b
AC
17983@end smallexample
17984
17985@ignore
17986@subheading The @code{-break-catch} Command
17987@findex -break-catch
17988
17989@subheading The @code{-break-commands} Command
17990@findex -break-commands
17991@end ignore
17992
17993
17994@subheading The @code{-break-condition} Command
17995@findex -break-condition
17996
17997@subsubheading Synopsis
17998
17999@smallexample
18000 -break-condition @var{number} @var{expr}
18001@end smallexample
18002
18003Breakpoint @var{number} will stop the program only if the condition in
18004@var{expr} is true. The condition becomes part of the
18005@samp{-break-list} output (see the description of the @samp{-break-list}
18006command below).
18007
18008@subsubheading @value{GDBN} Command
18009
18010The corresponding @value{GDBN} command is @samp{condition}.
18011
18012@subsubheading Example
18013
18014@smallexample
594fe323 18015(gdb)
922fbb7b
AC
18016-break-condition 1 1
18017^done
594fe323 18018(gdb)
922fbb7b
AC
18019-break-list
18020^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18021hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18022@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18023@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18024@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18025@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18026@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18027body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18028addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18029line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18030(gdb)
922fbb7b
AC
18031@end smallexample
18032
18033@subheading The @code{-break-delete} Command
18034@findex -break-delete
18035
18036@subsubheading Synopsis
18037
18038@smallexample
18039 -break-delete ( @var{breakpoint} )+
18040@end smallexample
18041
18042Delete the breakpoint(s) whose number(s) are specified in the argument
18043list. This is obviously reflected in the breakpoint list.
18044
79a6e687 18045@subsubheading @value{GDBN} Command
922fbb7b
AC
18046
18047The corresponding @value{GDBN} command is @samp{delete}.
18048
18049@subsubheading Example
18050
18051@smallexample
594fe323 18052(gdb)
922fbb7b
AC
18053-break-delete 1
18054^done
594fe323 18055(gdb)
922fbb7b
AC
18056-break-list
18057^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18058hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18059@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18060@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18061@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18062@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18063@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18064body=[]@}
594fe323 18065(gdb)
922fbb7b
AC
18066@end smallexample
18067
18068@subheading The @code{-break-disable} Command
18069@findex -break-disable
18070
18071@subsubheading Synopsis
18072
18073@smallexample
18074 -break-disable ( @var{breakpoint} )+
18075@end smallexample
18076
18077Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18078break list is now set to @samp{n} for the named @var{breakpoint}(s).
18079
18080@subsubheading @value{GDBN} Command
18081
18082The corresponding @value{GDBN} command is @samp{disable}.
18083
18084@subsubheading Example
18085
18086@smallexample
594fe323 18087(gdb)
922fbb7b
AC
18088-break-disable 2
18089^done
594fe323 18090(gdb)
922fbb7b
AC
18091-break-list
18092^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18093hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18094@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18095@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18096@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18097@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18098@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18099body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18100addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18101line="5",times="0"@}]@}
594fe323 18102(gdb)
922fbb7b
AC
18103@end smallexample
18104
18105@subheading The @code{-break-enable} Command
18106@findex -break-enable
18107
18108@subsubheading Synopsis
18109
18110@smallexample
18111 -break-enable ( @var{breakpoint} )+
18112@end smallexample
18113
18114Enable (previously disabled) @var{breakpoint}(s).
18115
18116@subsubheading @value{GDBN} Command
18117
18118The corresponding @value{GDBN} command is @samp{enable}.
18119
18120@subsubheading Example
18121
18122@smallexample
594fe323 18123(gdb)
922fbb7b
AC
18124-break-enable 2
18125^done
594fe323 18126(gdb)
922fbb7b
AC
18127-break-list
18128^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18129hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18130@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18131@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18132@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18133@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18134@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18135body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18136addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18137line="5",times="0"@}]@}
594fe323 18138(gdb)
922fbb7b
AC
18139@end smallexample
18140
18141@subheading The @code{-break-info} Command
18142@findex -break-info
18143
18144@subsubheading Synopsis
18145
18146@smallexample
18147 -break-info @var{breakpoint}
18148@end smallexample
18149
18150@c REDUNDANT???
18151Get information about a single breakpoint.
18152
79a6e687 18153@subsubheading @value{GDBN} Command
922fbb7b
AC
18154
18155The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18156
18157@subsubheading Example
18158N.A.
18159
18160@subheading The @code{-break-insert} Command
18161@findex -break-insert
18162
18163@subsubheading Synopsis
18164
18165@smallexample
afe8ab22 18166 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18167 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18168 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18169@end smallexample
18170
18171@noindent
afe8ab22 18172If specified, @var{location}, can be one of:
922fbb7b
AC
18173
18174@itemize @bullet
18175@item function
18176@c @item +offset
18177@c @item -offset
18178@c @item linenum
18179@item filename:linenum
18180@item filename:function
18181@item *address
18182@end itemize
18183
18184The possible optional parameters of this command are:
18185
18186@table @samp
18187@item -t
948d5102 18188Insert a temporary breakpoint.
922fbb7b
AC
18189@item -h
18190Insert a hardware breakpoint.
18191@item -c @var{condition}
18192Make the breakpoint conditional on @var{condition}.
18193@item -i @var{ignore-count}
18194Initialize the @var{ignore-count}.
afe8ab22
VP
18195@item -f
18196If @var{location} cannot be parsed (for example if it
18197refers to unknown files or functions), create a pending
18198breakpoint. Without this flag, @value{GDBN} will report
18199an error, and won't create a breakpoint, if @var{location}
18200cannot be parsed.
922fbb7b
AC
18201@end table
18202
18203@subsubheading Result
18204
18205The result is in the form:
18206
18207@smallexample
948d5102
NR
18208^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18209enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18210fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18211times="@var{times}"@}
922fbb7b
AC
18212@end smallexample
18213
18214@noindent
948d5102
NR
18215where @var{number} is the @value{GDBN} number for this breakpoint,
18216@var{funcname} is the name of the function where the breakpoint was
18217inserted, @var{filename} is the name of the source file which contains
18218this function, @var{lineno} is the source line number within that file
18219and @var{times} the number of times that the breakpoint has been hit
18220(always 0 for -break-insert but may be greater for -break-info or -break-list
18221which use the same output).
922fbb7b
AC
18222
18223Note: this format is open to change.
18224@c An out-of-band breakpoint instead of part of the result?
18225
18226@subsubheading @value{GDBN} Command
18227
18228The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18229@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18230
18231@subsubheading Example
18232
18233@smallexample
594fe323 18234(gdb)
922fbb7b 18235-break-insert main
948d5102
NR
18236^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18237fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18238(gdb)
922fbb7b 18239-break-insert -t foo
948d5102
NR
18240^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18241fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18242(gdb)
922fbb7b
AC
18243-break-list
18244^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18245hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18246@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18247@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18248@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18249@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18250@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18251body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18252addr="0x0001072c", func="main",file="recursive2.c",
18253fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18254bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18255addr="0x00010774",func="foo",file="recursive2.c",
18256fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18257(gdb)
922fbb7b
AC
18258-break-insert -r foo.*
18259~int foo(int, int);
948d5102
NR
18260^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18261"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18262(gdb)
922fbb7b
AC
18263@end smallexample
18264
18265@subheading The @code{-break-list} Command
18266@findex -break-list
18267
18268@subsubheading Synopsis
18269
18270@smallexample
18271 -break-list
18272@end smallexample
18273
18274Displays the list of inserted breakpoints, showing the following fields:
18275
18276@table @samp
18277@item Number
18278number of the breakpoint
18279@item Type
18280type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18281@item Disposition
18282should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18283or @samp{nokeep}
18284@item Enabled
18285is the breakpoint enabled or no: @samp{y} or @samp{n}
18286@item Address
18287memory location at which the breakpoint is set
18288@item What
18289logical location of the breakpoint, expressed by function name, file
18290name, line number
18291@item Times
18292number of times the breakpoint has been hit
18293@end table
18294
18295If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18296@code{body} field is an empty list.
18297
18298@subsubheading @value{GDBN} Command
18299
18300The corresponding @value{GDBN} command is @samp{info break}.
18301
18302@subsubheading Example
18303
18304@smallexample
594fe323 18305(gdb)
922fbb7b
AC
18306-break-list
18307^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18308hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18309@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18310@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18311@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18312@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18313@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18314body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18315addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18316bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18317addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18318line="13",times="0"@}]@}
594fe323 18319(gdb)
922fbb7b
AC
18320@end smallexample
18321
18322Here's an example of the result when there are no breakpoints:
18323
18324@smallexample
594fe323 18325(gdb)
922fbb7b
AC
18326-break-list
18327^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18328hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18329@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18330@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18331@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18332@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18333@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18334body=[]@}
594fe323 18335(gdb)
922fbb7b
AC
18336@end smallexample
18337
18338@subheading The @code{-break-watch} Command
18339@findex -break-watch
18340
18341@subsubheading Synopsis
18342
18343@smallexample
18344 -break-watch [ -a | -r ]
18345@end smallexample
18346
18347Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18348@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18349read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18350option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18351trigger only when the memory location is accessed for reading. Without
18352either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18353i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18354@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18355
18356Note that @samp{-break-list} will report a single list of watchpoints and
18357breakpoints inserted.
18358
18359@subsubheading @value{GDBN} Command
18360
18361The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18362@samp{rwatch}.
18363
18364@subsubheading Example
18365
18366Setting a watchpoint on a variable in the @code{main} function:
18367
18368@smallexample
594fe323 18369(gdb)
922fbb7b
AC
18370-break-watch x
18371^done,wpt=@{number="2",exp="x"@}
594fe323 18372(gdb)
922fbb7b
AC
18373-exec-continue
18374^running
0869d01b
NR
18375(gdb)
18376*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18377value=@{old="-268439212",new="55"@},
76ff342d 18378frame=@{func="main",args=[],file="recursive2.c",
948d5102 18379fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18380(gdb)
922fbb7b
AC
18381@end smallexample
18382
18383Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18384the program execution twice: first for the variable changing value, then
18385for the watchpoint going out of scope.
18386
18387@smallexample
594fe323 18388(gdb)
922fbb7b
AC
18389-break-watch C
18390^done,wpt=@{number="5",exp="C"@}
594fe323 18391(gdb)
922fbb7b
AC
18392-exec-continue
18393^running
0869d01b
NR
18394(gdb)
18395*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18396wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18397frame=@{func="callee4",args=[],
76ff342d
DJ
18398file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18399fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18400(gdb)
922fbb7b
AC
18401-exec-continue
18402^running
0869d01b
NR
18403(gdb)
18404*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18405frame=@{func="callee3",args=[@{name="strarg",
18406value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18407file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18408fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18409(gdb)
922fbb7b
AC
18410@end smallexample
18411
18412Listing breakpoints and watchpoints, at different points in the program
18413execution. Note that once the watchpoint goes out of scope, it is
18414deleted.
18415
18416@smallexample
594fe323 18417(gdb)
922fbb7b
AC
18418-break-watch C
18419^done,wpt=@{number="2",exp="C"@}
594fe323 18420(gdb)
922fbb7b
AC
18421-break-list
18422^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18423hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18424@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18425@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18426@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18427@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18428@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18429body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18430addr="0x00010734",func="callee4",
948d5102
NR
18431file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18432fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18433bkpt=@{number="2",type="watchpoint",disp="keep",
18434enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18435(gdb)
922fbb7b
AC
18436-exec-continue
18437^running
0869d01b
NR
18438(gdb)
18439*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18440value=@{old="-276895068",new="3"@},
18441frame=@{func="callee4",args=[],
76ff342d
DJ
18442file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18443fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18444(gdb)
922fbb7b
AC
18445-break-list
18446^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18447hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18448@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18449@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18450@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18451@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18452@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18453body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18454addr="0x00010734",func="callee4",
948d5102
NR
18455file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18456fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18457bkpt=@{number="2",type="watchpoint",disp="keep",
18458enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18459(gdb)
922fbb7b
AC
18460-exec-continue
18461^running
18462^done,reason="watchpoint-scope",wpnum="2",
18463frame=@{func="callee3",args=[@{name="strarg",
18464value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18465file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18466fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18467(gdb)
922fbb7b
AC
18468-break-list
18469^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18470hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18471@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18472@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18473@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18474@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18475@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18476body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18477addr="0x00010734",func="callee4",
948d5102
NR
18478file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18479fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18480times="1"@}]@}
594fe323 18481(gdb)
922fbb7b
AC
18482@end smallexample
18483
18484@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18485@node GDB/MI Program Context
18486@section @sc{gdb/mi} Program Context
922fbb7b 18487
a2c02241
NR
18488@subheading The @code{-exec-arguments} Command
18489@findex -exec-arguments
922fbb7b 18490
922fbb7b
AC
18491
18492@subsubheading Synopsis
18493
18494@smallexample
a2c02241 18495 -exec-arguments @var{args}
922fbb7b
AC
18496@end smallexample
18497
a2c02241
NR
18498Set the inferior program arguments, to be used in the next
18499@samp{-exec-run}.
922fbb7b 18500
a2c02241 18501@subsubheading @value{GDBN} Command
922fbb7b 18502
a2c02241 18503The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18504
a2c02241 18505@subsubheading Example
922fbb7b 18506
a2c02241
NR
18507@c FIXME!
18508Don't have one around.
922fbb7b 18509
a2c02241
NR
18510
18511@subheading The @code{-exec-show-arguments} Command
18512@findex -exec-show-arguments
18513
18514@subsubheading Synopsis
18515
18516@smallexample
18517 -exec-show-arguments
18518@end smallexample
18519
18520Print the arguments of the program.
922fbb7b
AC
18521
18522@subsubheading @value{GDBN} Command
18523
a2c02241 18524The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18525
18526@subsubheading Example
a2c02241 18527N.A.
922fbb7b 18528
922fbb7b 18529
a2c02241
NR
18530@subheading The @code{-environment-cd} Command
18531@findex -environment-cd
922fbb7b 18532
a2c02241 18533@subsubheading Synopsis
922fbb7b
AC
18534
18535@smallexample
a2c02241 18536 -environment-cd @var{pathdir}
922fbb7b
AC
18537@end smallexample
18538
a2c02241 18539Set @value{GDBN}'s working directory.
922fbb7b 18540
a2c02241 18541@subsubheading @value{GDBN} Command
922fbb7b 18542
a2c02241
NR
18543The corresponding @value{GDBN} command is @samp{cd}.
18544
18545@subsubheading Example
922fbb7b
AC
18546
18547@smallexample
594fe323 18548(gdb)
a2c02241
NR
18549-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18550^done
594fe323 18551(gdb)
922fbb7b
AC
18552@end smallexample
18553
18554
a2c02241
NR
18555@subheading The @code{-environment-directory} Command
18556@findex -environment-directory
922fbb7b
AC
18557
18558@subsubheading Synopsis
18559
18560@smallexample
a2c02241 18561 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18562@end smallexample
18563
a2c02241
NR
18564Add directories @var{pathdir} to beginning of search path for source files.
18565If the @samp{-r} option is used, the search path is reset to the default
18566search path. If directories @var{pathdir} are supplied in addition to the
18567@samp{-r} option, the search path is first reset and then addition
18568occurs as normal.
18569Multiple directories may be specified, separated by blanks. Specifying
18570multiple directories in a single command
18571results in the directories added to the beginning of the
18572search path in the same order they were presented in the command.
18573If blanks are needed as
18574part of a directory name, double-quotes should be used around
18575the name. In the command output, the path will show up separated
d3e8051b 18576by the system directory-separator character. The directory-separator
a2c02241
NR
18577character must not be used
18578in any directory name.
18579If no directories are specified, the current search path is displayed.
922fbb7b
AC
18580
18581@subsubheading @value{GDBN} Command
18582
a2c02241 18583The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18584
18585@subsubheading Example
18586
922fbb7b 18587@smallexample
594fe323 18588(gdb)
a2c02241
NR
18589-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18590^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18591(gdb)
a2c02241
NR
18592-environment-directory ""
18593^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18594(gdb)
a2c02241
NR
18595-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18596^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18597(gdb)
a2c02241
NR
18598-environment-directory -r
18599^done,source-path="$cdir:$cwd"
594fe323 18600(gdb)
922fbb7b
AC
18601@end smallexample
18602
18603
a2c02241
NR
18604@subheading The @code{-environment-path} Command
18605@findex -environment-path
922fbb7b
AC
18606
18607@subsubheading Synopsis
18608
18609@smallexample
a2c02241 18610 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18611@end smallexample
18612
a2c02241
NR
18613Add directories @var{pathdir} to beginning of search path for object files.
18614If the @samp{-r} option is used, the search path is reset to the original
18615search path that existed at gdb start-up. If directories @var{pathdir} are
18616supplied in addition to the
18617@samp{-r} option, the search path is first reset and then addition
18618occurs as normal.
18619Multiple directories may be specified, separated by blanks. Specifying
18620multiple directories in a single command
18621results in the directories added to the beginning of the
18622search path in the same order they were presented in the command.
18623If blanks are needed as
18624part of a directory name, double-quotes should be used around
18625the name. In the command output, the path will show up separated
d3e8051b 18626by the system directory-separator character. The directory-separator
a2c02241
NR
18627character must not be used
18628in any directory name.
18629If no directories are specified, the current path is displayed.
18630
922fbb7b
AC
18631
18632@subsubheading @value{GDBN} Command
18633
a2c02241 18634The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18635
18636@subsubheading Example
18637
922fbb7b 18638@smallexample
594fe323 18639(gdb)
a2c02241
NR
18640-environment-path
18641^done,path="/usr/bin"
594fe323 18642(gdb)
a2c02241
NR
18643-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18644^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18645(gdb)
a2c02241
NR
18646-environment-path -r /usr/local/bin
18647^done,path="/usr/local/bin:/usr/bin"
594fe323 18648(gdb)
922fbb7b
AC
18649@end smallexample
18650
18651
a2c02241
NR
18652@subheading The @code{-environment-pwd} Command
18653@findex -environment-pwd
922fbb7b
AC
18654
18655@subsubheading Synopsis
18656
18657@smallexample
a2c02241 18658 -environment-pwd
922fbb7b
AC
18659@end smallexample
18660
a2c02241 18661Show the current working directory.
922fbb7b 18662
79a6e687 18663@subsubheading @value{GDBN} Command
922fbb7b 18664
a2c02241 18665The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18666
18667@subsubheading Example
18668
922fbb7b 18669@smallexample
594fe323 18670(gdb)
a2c02241
NR
18671-environment-pwd
18672^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18673(gdb)
922fbb7b
AC
18674@end smallexample
18675
a2c02241
NR
18676@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18677@node GDB/MI Thread Commands
18678@section @sc{gdb/mi} Thread Commands
18679
18680
18681@subheading The @code{-thread-info} Command
18682@findex -thread-info
922fbb7b
AC
18683
18684@subsubheading Synopsis
18685
18686@smallexample
a2c02241 18687 -thread-info
922fbb7b
AC
18688@end smallexample
18689
79a6e687 18690@subsubheading @value{GDBN} Command
922fbb7b 18691
a2c02241 18692No equivalent.
922fbb7b
AC
18693
18694@subsubheading Example
a2c02241 18695N.A.
922fbb7b
AC
18696
18697
a2c02241
NR
18698@subheading The @code{-thread-list-all-threads} Command
18699@findex -thread-list-all-threads
922fbb7b
AC
18700
18701@subsubheading Synopsis
18702
18703@smallexample
a2c02241 18704 -thread-list-all-threads
922fbb7b
AC
18705@end smallexample
18706
a2c02241 18707@subsubheading @value{GDBN} Command
922fbb7b 18708
a2c02241 18709The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18710
a2c02241
NR
18711@subsubheading Example
18712N.A.
922fbb7b 18713
922fbb7b 18714
a2c02241
NR
18715@subheading The @code{-thread-list-ids} Command
18716@findex -thread-list-ids
922fbb7b 18717
a2c02241 18718@subsubheading Synopsis
922fbb7b 18719
a2c02241
NR
18720@smallexample
18721 -thread-list-ids
18722@end smallexample
922fbb7b 18723
a2c02241
NR
18724Produces a list of the currently known @value{GDBN} thread ids. At the
18725end of the list it also prints the total number of such threads.
922fbb7b
AC
18726
18727@subsubheading @value{GDBN} Command
18728
a2c02241 18729Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18730
18731@subsubheading Example
18732
a2c02241 18733No threads present, besides the main process:
922fbb7b
AC
18734
18735@smallexample
594fe323 18736(gdb)
a2c02241
NR
18737-thread-list-ids
18738^done,thread-ids=@{@},number-of-threads="0"
594fe323 18739(gdb)
922fbb7b
AC
18740@end smallexample
18741
922fbb7b 18742
a2c02241 18743Several threads:
922fbb7b
AC
18744
18745@smallexample
594fe323 18746(gdb)
a2c02241
NR
18747-thread-list-ids
18748^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18749number-of-threads="3"
594fe323 18750(gdb)
922fbb7b
AC
18751@end smallexample
18752
a2c02241
NR
18753
18754@subheading The @code{-thread-select} Command
18755@findex -thread-select
922fbb7b
AC
18756
18757@subsubheading Synopsis
18758
18759@smallexample
a2c02241 18760 -thread-select @var{threadnum}
922fbb7b
AC
18761@end smallexample
18762
a2c02241
NR
18763Make @var{threadnum} the current thread. It prints the number of the new
18764current thread, and the topmost frame for that thread.
922fbb7b
AC
18765
18766@subsubheading @value{GDBN} Command
18767
a2c02241 18768The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18769
18770@subsubheading Example
922fbb7b
AC
18771
18772@smallexample
594fe323 18773(gdb)
a2c02241
NR
18774-exec-next
18775^running
594fe323 18776(gdb)
a2c02241
NR
18777*stopped,reason="end-stepping-range",thread-id="2",line="187",
18778file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18779(gdb)
a2c02241
NR
18780-thread-list-ids
18781^done,
18782thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18783number-of-threads="3"
594fe323 18784(gdb)
a2c02241
NR
18785-thread-select 3
18786^done,new-thread-id="3",
18787frame=@{level="0",func="vprintf",
18788args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18789@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18790(gdb)
922fbb7b
AC
18791@end smallexample
18792
a2c02241
NR
18793@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18794@node GDB/MI Program Execution
18795@section @sc{gdb/mi} Program Execution
922fbb7b 18796
ef21caaf 18797These are the asynchronous commands which generate the out-of-band
3f94c067 18798record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18799asynchronously with remote targets and this interaction is mimicked in
18800other cases.
922fbb7b 18801
922fbb7b
AC
18802@subheading The @code{-exec-continue} Command
18803@findex -exec-continue
18804
18805@subsubheading Synopsis
18806
18807@smallexample
18808 -exec-continue
18809@end smallexample
18810
ef21caaf
NR
18811Resumes the execution of the inferior program until a breakpoint is
18812encountered, or until the inferior exits.
922fbb7b
AC
18813
18814@subsubheading @value{GDBN} Command
18815
18816The corresponding @value{GDBN} corresponding is @samp{continue}.
18817
18818@subsubheading Example
18819
18820@smallexample
18821-exec-continue
18822^running
594fe323 18823(gdb)
922fbb7b
AC
18824@@Hello world
18825*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18826file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18827(gdb)
922fbb7b
AC
18828@end smallexample
18829
18830
18831@subheading The @code{-exec-finish} Command
18832@findex -exec-finish
18833
18834@subsubheading Synopsis
18835
18836@smallexample
18837 -exec-finish
18838@end smallexample
18839
ef21caaf
NR
18840Resumes the execution of the inferior program until the current
18841function is exited. Displays the results returned by the function.
922fbb7b
AC
18842
18843@subsubheading @value{GDBN} Command
18844
18845The corresponding @value{GDBN} command is @samp{finish}.
18846
18847@subsubheading Example
18848
18849Function returning @code{void}.
18850
18851@smallexample
18852-exec-finish
18853^running
594fe323 18854(gdb)
922fbb7b
AC
18855@@hello from foo
18856*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 18857file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 18858(gdb)
922fbb7b
AC
18859@end smallexample
18860
18861Function returning other than @code{void}. The name of the internal
18862@value{GDBN} variable storing the result is printed, together with the
18863value itself.
18864
18865@smallexample
18866-exec-finish
18867^running
594fe323 18868(gdb)
922fbb7b
AC
18869*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18870args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 18871file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 18872gdb-result-var="$1",return-value="0"
594fe323 18873(gdb)
922fbb7b
AC
18874@end smallexample
18875
18876
18877@subheading The @code{-exec-interrupt} Command
18878@findex -exec-interrupt
18879
18880@subsubheading Synopsis
18881
18882@smallexample
18883 -exec-interrupt
18884@end smallexample
18885
ef21caaf
NR
18886Interrupts the background execution of the target. Note how the token
18887associated with the stop message is the one for the execution command
18888that has been interrupted. The token for the interrupt itself only
18889appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
18890interrupt a non-running program, an error message will be printed.
18891
18892@subsubheading @value{GDBN} Command
18893
18894The corresponding @value{GDBN} command is @samp{interrupt}.
18895
18896@subsubheading Example
18897
18898@smallexample
594fe323 18899(gdb)
922fbb7b
AC
18900111-exec-continue
18901111^running
18902
594fe323 18903(gdb)
922fbb7b
AC
18904222-exec-interrupt
18905222^done
594fe323 18906(gdb)
922fbb7b 18907111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 18908frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 18909fullname="/home/foo/bar/try.c",line="13"@}
594fe323 18910(gdb)
922fbb7b 18911
594fe323 18912(gdb)
922fbb7b
AC
18913-exec-interrupt
18914^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 18915(gdb)
922fbb7b
AC
18916@end smallexample
18917
18918
18919@subheading The @code{-exec-next} Command
18920@findex -exec-next
18921
18922@subsubheading Synopsis
18923
18924@smallexample
18925 -exec-next
18926@end smallexample
18927
ef21caaf
NR
18928Resumes execution of the inferior program, stopping when the beginning
18929of the next source line is reached.
922fbb7b
AC
18930
18931@subsubheading @value{GDBN} Command
18932
18933The corresponding @value{GDBN} command is @samp{next}.
18934
18935@subsubheading Example
18936
18937@smallexample
18938-exec-next
18939^running
594fe323 18940(gdb)
922fbb7b 18941*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 18942(gdb)
922fbb7b
AC
18943@end smallexample
18944
18945
18946@subheading The @code{-exec-next-instruction} Command
18947@findex -exec-next-instruction
18948
18949@subsubheading Synopsis
18950
18951@smallexample
18952 -exec-next-instruction
18953@end smallexample
18954
ef21caaf
NR
18955Executes one machine instruction. If the instruction is a function
18956call, continues until the function returns. If the program stops at an
18957instruction in the middle of a source line, the address will be
18958printed as well.
922fbb7b
AC
18959
18960@subsubheading @value{GDBN} Command
18961
18962The corresponding @value{GDBN} command is @samp{nexti}.
18963
18964@subsubheading Example
18965
18966@smallexample
594fe323 18967(gdb)
922fbb7b
AC
18968-exec-next-instruction
18969^running
18970
594fe323 18971(gdb)
922fbb7b
AC
18972*stopped,reason="end-stepping-range",
18973addr="0x000100d4",line="5",file="hello.c"
594fe323 18974(gdb)
922fbb7b
AC
18975@end smallexample
18976
18977
18978@subheading The @code{-exec-return} Command
18979@findex -exec-return
18980
18981@subsubheading Synopsis
18982
18983@smallexample
18984 -exec-return
18985@end smallexample
18986
18987Makes current function return immediately. Doesn't execute the inferior.
18988Displays the new current frame.
18989
18990@subsubheading @value{GDBN} Command
18991
18992The corresponding @value{GDBN} command is @samp{return}.
18993
18994@subsubheading Example
18995
18996@smallexample
594fe323 18997(gdb)
922fbb7b
AC
18998200-break-insert callee4
18999200^done,bkpt=@{number="1",addr="0x00010734",
19000file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19001(gdb)
922fbb7b
AC
19002000-exec-run
19003000^running
594fe323 19004(gdb)
922fbb7b
AC
19005000*stopped,reason="breakpoint-hit",bkptno="1",
19006frame=@{func="callee4",args=[],
76ff342d
DJ
19007file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19008fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19009(gdb)
922fbb7b
AC
19010205-break-delete
19011205^done
594fe323 19012(gdb)
922fbb7b
AC
19013111-exec-return
19014111^done,frame=@{level="0",func="callee3",
19015args=[@{name="strarg",
19016value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19017file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19018fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19019(gdb)
922fbb7b
AC
19020@end smallexample
19021
19022
19023@subheading The @code{-exec-run} Command
19024@findex -exec-run
19025
19026@subsubheading Synopsis
19027
19028@smallexample
19029 -exec-run
19030@end smallexample
19031
ef21caaf
NR
19032Starts execution of the inferior from the beginning. The inferior
19033executes until either a breakpoint is encountered or the program
19034exits. In the latter case the output will include an exit code, if
19035the program has exited exceptionally.
922fbb7b
AC
19036
19037@subsubheading @value{GDBN} Command
19038
19039The corresponding @value{GDBN} command is @samp{run}.
19040
ef21caaf 19041@subsubheading Examples
922fbb7b
AC
19042
19043@smallexample
594fe323 19044(gdb)
922fbb7b
AC
19045-break-insert main
19046^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19047(gdb)
922fbb7b
AC
19048-exec-run
19049^running
594fe323 19050(gdb)
922fbb7b 19051*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19052frame=@{func="main",args=[],file="recursive2.c",
948d5102 19053fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19054(gdb)
922fbb7b
AC
19055@end smallexample
19056
ef21caaf
NR
19057@noindent
19058Program exited normally:
19059
19060@smallexample
594fe323 19061(gdb)
ef21caaf
NR
19062-exec-run
19063^running
594fe323 19064(gdb)
ef21caaf
NR
19065x = 55
19066*stopped,reason="exited-normally"
594fe323 19067(gdb)
ef21caaf
NR
19068@end smallexample
19069
19070@noindent
19071Program exited exceptionally:
19072
19073@smallexample
594fe323 19074(gdb)
ef21caaf
NR
19075-exec-run
19076^running
594fe323 19077(gdb)
ef21caaf
NR
19078x = 55
19079*stopped,reason="exited",exit-code="01"
594fe323 19080(gdb)
ef21caaf
NR
19081@end smallexample
19082
19083Another way the program can terminate is if it receives a signal such as
19084@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19085
19086@smallexample
594fe323 19087(gdb)
ef21caaf
NR
19088*stopped,reason="exited-signalled",signal-name="SIGINT",
19089signal-meaning="Interrupt"
19090@end smallexample
19091
922fbb7b 19092
a2c02241
NR
19093@c @subheading -exec-signal
19094
19095
19096@subheading The @code{-exec-step} Command
19097@findex -exec-step
922fbb7b
AC
19098
19099@subsubheading Synopsis
19100
19101@smallexample
a2c02241 19102 -exec-step
922fbb7b
AC
19103@end smallexample
19104
a2c02241
NR
19105Resumes execution of the inferior program, stopping when the beginning
19106of the next source line is reached, if the next source line is not a
19107function call. If it is, stop at the first instruction of the called
19108function.
922fbb7b
AC
19109
19110@subsubheading @value{GDBN} Command
19111
a2c02241 19112The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19113
19114@subsubheading Example
19115
19116Stepping into a function:
19117
19118@smallexample
19119-exec-step
19120^running
594fe323 19121(gdb)
922fbb7b
AC
19122*stopped,reason="end-stepping-range",
19123frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19124@{name="b",value="0"@}],file="recursive2.c",
948d5102 19125fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19126(gdb)
922fbb7b
AC
19127@end smallexample
19128
19129Regular stepping:
19130
19131@smallexample
19132-exec-step
19133^running
594fe323 19134(gdb)
922fbb7b 19135*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19136(gdb)
922fbb7b
AC
19137@end smallexample
19138
19139
19140@subheading The @code{-exec-step-instruction} Command
19141@findex -exec-step-instruction
19142
19143@subsubheading Synopsis
19144
19145@smallexample
19146 -exec-step-instruction
19147@end smallexample
19148
ef21caaf
NR
19149Resumes the inferior which executes one machine instruction. The
19150output, once @value{GDBN} has stopped, will vary depending on whether
19151we have stopped in the middle of a source line or not. In the former
19152case, the address at which the program stopped will be printed as
922fbb7b
AC
19153well.
19154
19155@subsubheading @value{GDBN} Command
19156
19157The corresponding @value{GDBN} command is @samp{stepi}.
19158
19159@subsubheading Example
19160
19161@smallexample
594fe323 19162(gdb)
922fbb7b
AC
19163-exec-step-instruction
19164^running
19165
594fe323 19166(gdb)
922fbb7b 19167*stopped,reason="end-stepping-range",
76ff342d 19168frame=@{func="foo",args=[],file="try.c",
948d5102 19169fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19170(gdb)
922fbb7b
AC
19171-exec-step-instruction
19172^running
19173
594fe323 19174(gdb)
922fbb7b 19175*stopped,reason="end-stepping-range",
76ff342d 19176frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19177fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19178(gdb)
922fbb7b
AC
19179@end smallexample
19180
19181
19182@subheading The @code{-exec-until} Command
19183@findex -exec-until
19184
19185@subsubheading Synopsis
19186
19187@smallexample
19188 -exec-until [ @var{location} ]
19189@end smallexample
19190
ef21caaf
NR
19191Executes the inferior until the @var{location} specified in the
19192argument is reached. If there is no argument, the inferior executes
19193until a source line greater than the current one is reached. The
19194reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19195
19196@subsubheading @value{GDBN} Command
19197
19198The corresponding @value{GDBN} command is @samp{until}.
19199
19200@subsubheading Example
19201
19202@smallexample
594fe323 19203(gdb)
922fbb7b
AC
19204-exec-until recursive2.c:6
19205^running
594fe323 19206(gdb)
922fbb7b
AC
19207x = 55
19208*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19209file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19210(gdb)
922fbb7b
AC
19211@end smallexample
19212
19213@ignore
19214@subheading -file-clear
19215Is this going away????
19216@end ignore
19217
351ff01a 19218@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19219@node GDB/MI Stack Manipulation
19220@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19221
922fbb7b 19222
a2c02241
NR
19223@subheading The @code{-stack-info-frame} Command
19224@findex -stack-info-frame
922fbb7b
AC
19225
19226@subsubheading Synopsis
19227
19228@smallexample
a2c02241 19229 -stack-info-frame
922fbb7b
AC
19230@end smallexample
19231
a2c02241 19232Get info on the selected frame.
922fbb7b
AC
19233
19234@subsubheading @value{GDBN} Command
19235
a2c02241
NR
19236The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19237(without arguments).
922fbb7b
AC
19238
19239@subsubheading Example
19240
19241@smallexample
594fe323 19242(gdb)
a2c02241
NR
19243-stack-info-frame
19244^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19245file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19246fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19247(gdb)
922fbb7b
AC
19248@end smallexample
19249
a2c02241
NR
19250@subheading The @code{-stack-info-depth} Command
19251@findex -stack-info-depth
922fbb7b
AC
19252
19253@subsubheading Synopsis
19254
19255@smallexample
a2c02241 19256 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19257@end smallexample
19258
a2c02241
NR
19259Return the depth of the stack. If the integer argument @var{max-depth}
19260is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19261
19262@subsubheading @value{GDBN} Command
19263
a2c02241 19264There's no equivalent @value{GDBN} command.
922fbb7b
AC
19265
19266@subsubheading Example
19267
a2c02241
NR
19268For a stack with frame levels 0 through 11:
19269
922fbb7b 19270@smallexample
594fe323 19271(gdb)
a2c02241
NR
19272-stack-info-depth
19273^done,depth="12"
594fe323 19274(gdb)
a2c02241
NR
19275-stack-info-depth 4
19276^done,depth="4"
594fe323 19277(gdb)
a2c02241
NR
19278-stack-info-depth 12
19279^done,depth="12"
594fe323 19280(gdb)
a2c02241
NR
19281-stack-info-depth 11
19282^done,depth="11"
594fe323 19283(gdb)
a2c02241
NR
19284-stack-info-depth 13
19285^done,depth="12"
594fe323 19286(gdb)
922fbb7b
AC
19287@end smallexample
19288
a2c02241
NR
19289@subheading The @code{-stack-list-arguments} Command
19290@findex -stack-list-arguments
922fbb7b
AC
19291
19292@subsubheading Synopsis
19293
19294@smallexample
a2c02241
NR
19295 -stack-list-arguments @var{show-values}
19296 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19297@end smallexample
19298
a2c02241
NR
19299Display a list of the arguments for the frames between @var{low-frame}
19300and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19301@var{high-frame} are not provided, list the arguments for the whole
19302call stack. If the two arguments are equal, show the single frame
19303at the corresponding level. It is an error if @var{low-frame} is
19304larger than the actual number of frames. On the other hand,
19305@var{high-frame} may be larger than the actual number of frames, in
19306which case only existing frames will be returned.
a2c02241
NR
19307
19308The @var{show-values} argument must have a value of 0 or 1. A value of
193090 means that only the names of the arguments are listed, a value of 1
19310means that both names and values of the arguments are printed.
922fbb7b
AC
19311
19312@subsubheading @value{GDBN} Command
19313
a2c02241
NR
19314@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19315@samp{gdb_get_args} command which partially overlaps with the
19316functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19317
19318@subsubheading Example
922fbb7b 19319
a2c02241 19320@smallexample
594fe323 19321(gdb)
a2c02241
NR
19322-stack-list-frames
19323^done,
19324stack=[
19325frame=@{level="0",addr="0x00010734",func="callee4",
19326file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19327fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19328frame=@{level="1",addr="0x0001076c",func="callee3",
19329file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19330fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19331frame=@{level="2",addr="0x0001078c",func="callee2",
19332file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19333fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19334frame=@{level="3",addr="0x000107b4",func="callee1",
19335file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19336fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19337frame=@{level="4",addr="0x000107e0",func="main",
19338file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19339fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19340(gdb)
a2c02241
NR
19341-stack-list-arguments 0
19342^done,
19343stack-args=[
19344frame=@{level="0",args=[]@},
19345frame=@{level="1",args=[name="strarg"]@},
19346frame=@{level="2",args=[name="intarg",name="strarg"]@},
19347frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19348frame=@{level="4",args=[]@}]
594fe323 19349(gdb)
a2c02241
NR
19350-stack-list-arguments 1
19351^done,
19352stack-args=[
19353frame=@{level="0",args=[]@},
19354frame=@{level="1",
19355 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19356frame=@{level="2",args=[
19357@{name="intarg",value="2"@},
19358@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19359@{frame=@{level="3",args=[
19360@{name="intarg",value="2"@},
19361@{name="strarg",value="0x11940 \"A string argument.\""@},
19362@{name="fltarg",value="3.5"@}]@},
19363frame=@{level="4",args=[]@}]
594fe323 19364(gdb)
a2c02241
NR
19365-stack-list-arguments 0 2 2
19366^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19367(gdb)
a2c02241
NR
19368-stack-list-arguments 1 2 2
19369^done,stack-args=[frame=@{level="2",
19370args=[@{name="intarg",value="2"@},
19371@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19372(gdb)
a2c02241
NR
19373@end smallexample
19374
19375@c @subheading -stack-list-exception-handlers
922fbb7b 19376
a2c02241
NR
19377
19378@subheading The @code{-stack-list-frames} Command
19379@findex -stack-list-frames
1abaf70c
BR
19380
19381@subsubheading Synopsis
19382
19383@smallexample
a2c02241 19384 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19385@end smallexample
19386
a2c02241
NR
19387List the frames currently on the stack. For each frame it displays the
19388following info:
19389
19390@table @samp
19391@item @var{level}
d3e8051b 19392The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19393@item @var{addr}
19394The @code{$pc} value for that frame.
19395@item @var{func}
19396Function name.
19397@item @var{file}
19398File name of the source file where the function lives.
19399@item @var{line}
19400Line number corresponding to the @code{$pc}.
19401@end table
19402
19403If invoked without arguments, this command prints a backtrace for the
19404whole stack. If given two integer arguments, it shows the frames whose
19405levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19406are equal, it shows the single frame at the corresponding level. It is
19407an error if @var{low-frame} is larger than the actual number of
a5451f4e 19408frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19409actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19410
19411@subsubheading @value{GDBN} Command
19412
a2c02241 19413The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19414
19415@subsubheading Example
19416
a2c02241
NR
19417Full stack backtrace:
19418
1abaf70c 19419@smallexample
594fe323 19420(gdb)
a2c02241
NR
19421-stack-list-frames
19422^done,stack=
19423[frame=@{level="0",addr="0x0001076c",func="foo",
19424 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19425frame=@{level="1",addr="0x000107a4",func="foo",
19426 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19427frame=@{level="2",addr="0x000107a4",func="foo",
19428 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19429frame=@{level="3",addr="0x000107a4",func="foo",
19430 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19431frame=@{level="4",addr="0x000107a4",func="foo",
19432 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19433frame=@{level="5",addr="0x000107a4",func="foo",
19434 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19435frame=@{level="6",addr="0x000107a4",func="foo",
19436 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19437frame=@{level="7",addr="0x000107a4",func="foo",
19438 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19439frame=@{level="8",addr="0x000107a4",func="foo",
19440 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19441frame=@{level="9",addr="0x000107a4",func="foo",
19442 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19443frame=@{level="10",addr="0x000107a4",func="foo",
19444 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19445frame=@{level="11",addr="0x00010738",func="main",
19446 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19447(gdb)
1abaf70c
BR
19448@end smallexample
19449
a2c02241 19450Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19451
a2c02241 19452@smallexample
594fe323 19453(gdb)
a2c02241
NR
19454-stack-list-frames 3 5
19455^done,stack=
19456[frame=@{level="3",addr="0x000107a4",func="foo",
19457 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19458frame=@{level="4",addr="0x000107a4",func="foo",
19459 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19460frame=@{level="5",addr="0x000107a4",func="foo",
19461 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19462(gdb)
a2c02241 19463@end smallexample
922fbb7b 19464
a2c02241 19465Show a single frame:
922fbb7b
AC
19466
19467@smallexample
594fe323 19468(gdb)
a2c02241
NR
19469-stack-list-frames 3 3
19470^done,stack=
19471[frame=@{level="3",addr="0x000107a4",func="foo",
19472 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19473(gdb)
922fbb7b
AC
19474@end smallexample
19475
922fbb7b 19476
a2c02241
NR
19477@subheading The @code{-stack-list-locals} Command
19478@findex -stack-list-locals
57c22c6c 19479
a2c02241 19480@subsubheading Synopsis
922fbb7b
AC
19481
19482@smallexample
a2c02241 19483 -stack-list-locals @var{print-values}
922fbb7b
AC
19484@end smallexample
19485
a2c02241
NR
19486Display the local variable names for the selected frame. If
19487@var{print-values} is 0 or @code{--no-values}, print only the names of
19488the variables; if it is 1 or @code{--all-values}, print also their
19489values; and if it is 2 or @code{--simple-values}, print the name,
19490type and value for simple data types and the name and type for arrays,
19491structures and unions. In this last case, a frontend can immediately
19492display the value of simple data types and create variable objects for
d3e8051b 19493other data types when the user wishes to explore their values in
a2c02241 19494more detail.
922fbb7b
AC
19495
19496@subsubheading @value{GDBN} Command
19497
a2c02241 19498@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19499
19500@subsubheading Example
922fbb7b
AC
19501
19502@smallexample
594fe323 19503(gdb)
a2c02241
NR
19504-stack-list-locals 0
19505^done,locals=[name="A",name="B",name="C"]
594fe323 19506(gdb)
a2c02241
NR
19507-stack-list-locals --all-values
19508^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19509 @{name="C",value="@{1, 2, 3@}"@}]
19510-stack-list-locals --simple-values
19511^done,locals=[@{name="A",type="int",value="1"@},
19512 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19513(gdb)
922fbb7b
AC
19514@end smallexample
19515
922fbb7b 19516
a2c02241
NR
19517@subheading The @code{-stack-select-frame} Command
19518@findex -stack-select-frame
922fbb7b
AC
19519
19520@subsubheading Synopsis
19521
19522@smallexample
a2c02241 19523 -stack-select-frame @var{framenum}
922fbb7b
AC
19524@end smallexample
19525
a2c02241
NR
19526Change the selected frame. Select a different frame @var{framenum} on
19527the stack.
922fbb7b
AC
19528
19529@subsubheading @value{GDBN} Command
19530
a2c02241
NR
19531The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19532@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19533
19534@subsubheading Example
19535
19536@smallexample
594fe323 19537(gdb)
a2c02241 19538-stack-select-frame 2
922fbb7b 19539^done
594fe323 19540(gdb)
922fbb7b
AC
19541@end smallexample
19542
19543@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19544@node GDB/MI Variable Objects
19545@section @sc{gdb/mi} Variable Objects
922fbb7b 19546
a1b5960f 19547@ignore
922fbb7b 19548
a2c02241 19549@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19550
a2c02241
NR
19551For the implementation of a variable debugger window (locals, watched
19552expressions, etc.), we are proposing the adaptation of the existing code
19553used by @code{Insight}.
922fbb7b 19554
a2c02241 19555The two main reasons for that are:
922fbb7b 19556
a2c02241
NR
19557@enumerate 1
19558@item
19559It has been proven in practice (it is already on its second generation).
922fbb7b 19560
a2c02241
NR
19561@item
19562It will shorten development time (needless to say how important it is
19563now).
19564@end enumerate
922fbb7b 19565
a2c02241
NR
19566The original interface was designed to be used by Tcl code, so it was
19567slightly changed so it could be used through @sc{gdb/mi}. This section
19568describes the @sc{gdb/mi} operations that will be available and gives some
19569hints about their use.
922fbb7b 19570
a2c02241
NR
19571@emph{Note}: In addition to the set of operations described here, we
19572expect the @sc{gui} implementation of a variable window to require, at
19573least, the following operations:
922fbb7b 19574
a2c02241
NR
19575@itemize @bullet
19576@item @code{-gdb-show} @code{output-radix}
19577@item @code{-stack-list-arguments}
19578@item @code{-stack-list-locals}
19579@item @code{-stack-select-frame}
19580@end itemize
922fbb7b 19581
a1b5960f
VP
19582@end ignore
19583
c8b2f53c 19584@subheading Introduction to Variable Objects
922fbb7b 19585
a2c02241 19586@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19587
19588Variable objects are "object-oriented" MI interface for examining and
19589changing values of expressions. Unlike some other MI interfaces that
19590work with expressions, variable objects are specifically designed for
19591simple and efficient presentation in the frontend. A variable object
19592is identified by string name. When a variable object is created, the
19593frontend specifies the expression for that variable object. The
19594expression can be a simple variable, or it can be an arbitrary complex
19595expression, and can even involve CPU registers. After creating a
19596variable object, the frontend can invoke other variable object
19597operations---for example to obtain or change the value of a variable
19598object, or to change display format.
19599
19600Variable objects have hierarchical tree structure. Any variable object
19601that corresponds to a composite type, such as structure in C, has
19602a number of child variable objects, for example corresponding to each
19603element of a structure. A child variable object can itself have
19604children, recursively. Recursion ends when we reach
25d5ea92
VP
19605leaf variable objects, which always have built-in types. Child variable
19606objects are created only by explicit request, so if a frontend
19607is not interested in the children of a particular variable object, no
19608child will be created.
c8b2f53c
VP
19609
19610For a leaf variable object it is possible to obtain its value as a
19611string, or set the value from a string. String value can be also
19612obtained for a non-leaf variable object, but it's generally a string
19613that only indicates the type of the object, and does not list its
19614contents. Assignment to a non-leaf variable object is not allowed.
19615
19616A frontend does not need to read the values of all variable objects each time
19617the program stops. Instead, MI provides an update command that lists all
19618variable objects whose values has changed since the last update
19619operation. This considerably reduces the amount of data that must
25d5ea92
VP
19620be transferred to the frontend. As noted above, children variable
19621objects are created on demand, and only leaf variable objects have a
19622real value. As result, gdb will read target memory only for leaf
19623variables that frontend has created.
19624
19625The automatic update is not always desirable. For example, a frontend
19626might want to keep a value of some expression for future reference,
19627and never update it. For another example, fetching memory is
19628relatively slow for embedded targets, so a frontend might want
19629to disable automatic update for the variables that are either not
19630visible on the screen, or ``closed''. This is possible using so
19631called ``frozen variable objects''. Such variable objects are never
19632implicitly updated.
922fbb7b 19633
a2c02241
NR
19634The following is the complete set of @sc{gdb/mi} operations defined to
19635access this functionality:
922fbb7b 19636
a2c02241
NR
19637@multitable @columnfractions .4 .6
19638@item @strong{Operation}
19639@tab @strong{Description}
922fbb7b 19640
a2c02241
NR
19641@item @code{-var-create}
19642@tab create a variable object
19643@item @code{-var-delete}
22d8a470 19644@tab delete the variable object and/or its children
a2c02241
NR
19645@item @code{-var-set-format}
19646@tab set the display format of this variable
19647@item @code{-var-show-format}
19648@tab show the display format of this variable
19649@item @code{-var-info-num-children}
19650@tab tells how many children this object has
19651@item @code{-var-list-children}
19652@tab return a list of the object's children
19653@item @code{-var-info-type}
19654@tab show the type of this variable object
19655@item @code{-var-info-expression}
02142340
VP
19656@tab print parent-relative expression that this variable object represents
19657@item @code{-var-info-path-expression}
19658@tab print full expression that this variable object represents
a2c02241
NR
19659@item @code{-var-show-attributes}
19660@tab is this variable editable? does it exist here?
19661@item @code{-var-evaluate-expression}
19662@tab get the value of this variable
19663@item @code{-var-assign}
19664@tab set the value of this variable
19665@item @code{-var-update}
19666@tab update the variable and its children
25d5ea92
VP
19667@item @code{-var-set-frozen}
19668@tab set frozeness attribute
a2c02241 19669@end multitable
922fbb7b 19670
a2c02241
NR
19671In the next subsection we describe each operation in detail and suggest
19672how it can be used.
922fbb7b 19673
a2c02241 19674@subheading Description And Use of Operations on Variable Objects
922fbb7b 19675
a2c02241
NR
19676@subheading The @code{-var-create} Command
19677@findex -var-create
ef21caaf 19678
a2c02241 19679@subsubheading Synopsis
ef21caaf 19680
a2c02241
NR
19681@smallexample
19682 -var-create @{@var{name} | "-"@}
19683 @{@var{frame-addr} | "*"@} @var{expression}
19684@end smallexample
19685
19686This operation creates a variable object, which allows the monitoring of
19687a variable, the result of an expression, a memory cell or a CPU
19688register.
ef21caaf 19689
a2c02241
NR
19690The @var{name} parameter is the string by which the object can be
19691referenced. It must be unique. If @samp{-} is specified, the varobj
19692system will generate a string ``varNNNNNN'' automatically. It will be
19693unique provided that one does not specify @var{name} on that format.
19694The command fails if a duplicate name is found.
ef21caaf 19695
a2c02241
NR
19696The frame under which the expression should be evaluated can be
19697specified by @var{frame-addr}. A @samp{*} indicates that the current
19698frame should be used.
922fbb7b 19699
a2c02241
NR
19700@var{expression} is any expression valid on the current language set (must not
19701begin with a @samp{*}), or one of the following:
922fbb7b 19702
a2c02241
NR
19703@itemize @bullet
19704@item
19705@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19706
a2c02241
NR
19707@item
19708@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19709
a2c02241
NR
19710@item
19711@samp{$@var{regname}} --- a CPU register name
19712@end itemize
922fbb7b 19713
a2c02241 19714@subsubheading Result
922fbb7b 19715
a2c02241
NR
19716This operation returns the name, number of children and the type of the
19717object created. Type is returned as a string as the ones generated by
19718the @value{GDBN} CLI:
922fbb7b
AC
19719
19720@smallexample
a2c02241 19721 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19722@end smallexample
19723
a2c02241
NR
19724
19725@subheading The @code{-var-delete} Command
19726@findex -var-delete
922fbb7b
AC
19727
19728@subsubheading Synopsis
19729
19730@smallexample
22d8a470 19731 -var-delete [ -c ] @var{name}
922fbb7b
AC
19732@end smallexample
19733
a2c02241 19734Deletes a previously created variable object and all of its children.
22d8a470 19735With the @samp{-c} option, just deletes the children.
922fbb7b 19736
a2c02241 19737Returns an error if the object @var{name} is not found.
922fbb7b 19738
922fbb7b 19739
a2c02241
NR
19740@subheading The @code{-var-set-format} Command
19741@findex -var-set-format
922fbb7b 19742
a2c02241 19743@subsubheading Synopsis
922fbb7b
AC
19744
19745@smallexample
a2c02241 19746 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19747@end smallexample
19748
a2c02241
NR
19749Sets the output format for the value of the object @var{name} to be
19750@var{format-spec}.
19751
19752The syntax for the @var{format-spec} is as follows:
19753
19754@smallexample
19755 @var{format-spec} @expansion{}
19756 @{binary | decimal | hexadecimal | octal | natural@}
19757@end smallexample
19758
c8b2f53c
VP
19759The natural format is the default format choosen automatically
19760based on the variable type (like decimal for an @code{int}, hex
19761for pointers, etc.).
19762
19763For a variable with children, the format is set only on the
19764variable itself, and the children are not affected.
a2c02241
NR
19765
19766@subheading The @code{-var-show-format} Command
19767@findex -var-show-format
922fbb7b
AC
19768
19769@subsubheading Synopsis
19770
19771@smallexample
a2c02241 19772 -var-show-format @var{name}
922fbb7b
AC
19773@end smallexample
19774
a2c02241 19775Returns the format used to display the value of the object @var{name}.
922fbb7b 19776
a2c02241
NR
19777@smallexample
19778 @var{format} @expansion{}
19779 @var{format-spec}
19780@end smallexample
922fbb7b 19781
922fbb7b 19782
a2c02241
NR
19783@subheading The @code{-var-info-num-children} Command
19784@findex -var-info-num-children
19785
19786@subsubheading Synopsis
19787
19788@smallexample
19789 -var-info-num-children @var{name}
19790@end smallexample
19791
19792Returns the number of children of a variable object @var{name}:
19793
19794@smallexample
19795 numchild=@var{n}
19796@end smallexample
19797
19798
19799@subheading The @code{-var-list-children} Command
19800@findex -var-list-children
19801
19802@subsubheading Synopsis
19803
19804@smallexample
19805 -var-list-children [@var{print-values}] @var{name}
19806@end smallexample
19807@anchor{-var-list-children}
19808
19809Return a list of the children of the specified variable object and
19810create variable objects for them, if they do not already exist. With
19811a single argument or if @var{print-values} has a value for of 0 or
19812@code{--no-values}, print only the names of the variables; if
19813@var{print-values} is 1 or @code{--all-values}, also print their
19814values; and if it is 2 or @code{--simple-values} print the name and
19815value for simple data types and just the name for arrays, structures
19816and unions.
922fbb7b
AC
19817
19818@subsubheading Example
19819
19820@smallexample
594fe323 19821(gdb)
a2c02241
NR
19822 -var-list-children n
19823 ^done,numchild=@var{n},children=[@{name=@var{name},
19824 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19825(gdb)
a2c02241
NR
19826 -var-list-children --all-values n
19827 ^done,numchild=@var{n},children=[@{name=@var{name},
19828 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19829@end smallexample
19830
922fbb7b 19831
a2c02241
NR
19832@subheading The @code{-var-info-type} Command
19833@findex -var-info-type
922fbb7b 19834
a2c02241
NR
19835@subsubheading Synopsis
19836
19837@smallexample
19838 -var-info-type @var{name}
19839@end smallexample
19840
19841Returns the type of the specified variable @var{name}. The type is
19842returned as a string in the same format as it is output by the
19843@value{GDBN} CLI:
19844
19845@smallexample
19846 type=@var{typename}
19847@end smallexample
19848
19849
19850@subheading The @code{-var-info-expression} Command
19851@findex -var-info-expression
922fbb7b
AC
19852
19853@subsubheading Synopsis
19854
19855@smallexample
a2c02241 19856 -var-info-expression @var{name}
922fbb7b
AC
19857@end smallexample
19858
02142340
VP
19859Returns a string that is suitable for presenting this
19860variable object in user interface. The string is generally
19861not valid expression in the current language, and cannot be evaluated.
19862
19863For example, if @code{a} is an array, and variable object
19864@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 19865
a2c02241 19866@smallexample
02142340
VP
19867(gdb) -var-info-expression A.1
19868^done,lang="C",exp="1"
a2c02241 19869@end smallexample
922fbb7b 19870
a2c02241 19871@noindent
02142340
VP
19872Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19873
19874Note that the output of the @code{-var-list-children} command also
19875includes those expressions, so the @code{-var-info-expression} command
19876is of limited use.
19877
19878@subheading The @code{-var-info-path-expression} Command
19879@findex -var-info-path-expression
19880
19881@subsubheading Synopsis
19882
19883@smallexample
19884 -var-info-path-expression @var{name}
19885@end smallexample
19886
19887Returns an expression that can be evaluated in the current
19888context and will yield the same value that a variable object has.
19889Compare this with the @code{-var-info-expression} command, which
19890result can be used only for UI presentation. Typical use of
19891the @code{-var-info-path-expression} command is creating a
19892watchpoint from a variable object.
19893
19894For example, suppose @code{C} is a C@t{++} class, derived from class
19895@code{Base}, and that the @code{Base} class has a member called
19896@code{m_size}. Assume a variable @code{c} is has the type of
19897@code{C} and a variable object @code{C} was created for variable
19898@code{c}. Then, we'll get this output:
19899@smallexample
19900(gdb) -var-info-path-expression C.Base.public.m_size
19901^done,path_expr=((Base)c).m_size)
19902@end smallexample
922fbb7b 19903
a2c02241
NR
19904@subheading The @code{-var-show-attributes} Command
19905@findex -var-show-attributes
922fbb7b 19906
a2c02241 19907@subsubheading Synopsis
922fbb7b 19908
a2c02241
NR
19909@smallexample
19910 -var-show-attributes @var{name}
19911@end smallexample
922fbb7b 19912
a2c02241 19913List attributes of the specified variable object @var{name}:
922fbb7b
AC
19914
19915@smallexample
a2c02241 19916 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
19917@end smallexample
19918
a2c02241
NR
19919@noindent
19920where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19921
19922@subheading The @code{-var-evaluate-expression} Command
19923@findex -var-evaluate-expression
19924
19925@subsubheading Synopsis
19926
19927@smallexample
19928 -var-evaluate-expression @var{name}
19929@end smallexample
19930
19931Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
19932object and returns its value as a string. The format of the
19933string can be changed using the @code{-var-set-format} command.
a2c02241
NR
19934
19935@smallexample
19936 value=@var{value}
19937@end smallexample
19938
19939Note that one must invoke @code{-var-list-children} for a variable
19940before the value of a child variable can be evaluated.
19941
19942@subheading The @code{-var-assign} Command
19943@findex -var-assign
19944
19945@subsubheading Synopsis
19946
19947@smallexample
19948 -var-assign @var{name} @var{expression}
19949@end smallexample
19950
19951Assigns the value of @var{expression} to the variable object specified
19952by @var{name}. The object must be @samp{editable}. If the variable's
19953value is altered by the assign, the variable will show up in any
19954subsequent @code{-var-update} list.
19955
19956@subsubheading Example
922fbb7b
AC
19957
19958@smallexample
594fe323 19959(gdb)
a2c02241
NR
19960-var-assign var1 3
19961^done,value="3"
594fe323 19962(gdb)
a2c02241
NR
19963-var-update *
19964^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 19965(gdb)
922fbb7b
AC
19966@end smallexample
19967
a2c02241
NR
19968@subheading The @code{-var-update} Command
19969@findex -var-update
19970
19971@subsubheading Synopsis
19972
19973@smallexample
19974 -var-update [@var{print-values}] @{@var{name} | "*"@}
19975@end smallexample
19976
c8b2f53c
VP
19977Reevaluate the expressions corresponding to the variable object
19978@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
19979list of variable objects whose values have changed; @var{name} must
19980be a root variable object. Here, ``changed'' means that the result of
19981@code{-var-evaluate-expression} before and after the
19982@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
19983object names, all existing variable objects are updated, except
19984for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
19985@var{print-values} determines whether both names and values, or just
19986names are printed. The possible values of this options are the same
19987as for @code{-var-list-children} (@pxref{-var-list-children}). It is
19988recommended to use the @samp{--all-values} option, to reduce the
19989number of MI commands needed on each program stop.
c8b2f53c 19990
a2c02241
NR
19991
19992@subsubheading Example
922fbb7b
AC
19993
19994@smallexample
594fe323 19995(gdb)
a2c02241
NR
19996-var-assign var1 3
19997^done,value="3"
594fe323 19998(gdb)
a2c02241
NR
19999-var-update --all-values var1
20000^done,changelist=[@{name="var1",value="3",in_scope="true",
20001type_changed="false"@}]
594fe323 20002(gdb)
922fbb7b
AC
20003@end smallexample
20004
9f708cb2 20005@anchor{-var-update}
36ece8b3
NR
20006The field in_scope may take three values:
20007
20008@table @code
20009@item "true"
20010The variable object's current value is valid.
20011
20012@item "false"
20013The variable object does not currently hold a valid value but it may
20014hold one in the future if its associated expression comes back into
20015scope.
20016
20017@item "invalid"
20018The variable object no longer holds a valid value.
20019This can occur when the executable file being debugged has changed,
20020either through recompilation or by using the @value{GDBN} @code{file}
20021command. The front end should normally choose to delete these variable
20022objects.
20023@end table
20024
20025In the future new values may be added to this list so the front should
20026be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20027
25d5ea92
VP
20028@subheading The @code{-var-set-frozen} Command
20029@findex -var-set-frozen
9f708cb2 20030@anchor{-var-set-frozen}
25d5ea92
VP
20031
20032@subsubheading Synopsis
20033
20034@smallexample
9f708cb2 20035 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20036@end smallexample
20037
9f708cb2 20038Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20039@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20040frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20041frozen, then neither itself, nor any of its children, are
9f708cb2 20042implicitly updated by @code{-var-update} of
25d5ea92
VP
20043a parent variable or by @code{-var-update *}. Only
20044@code{-var-update} of the variable itself will update its value and
20045values of its children. After a variable object is unfrozen, it is
20046implicitly updated by all subsequent @code{-var-update} operations.
20047Unfreezing a variable does not update it, only subsequent
20048@code{-var-update} does.
20049
20050@subsubheading Example
20051
20052@smallexample
20053(gdb)
20054-var-set-frozen V 1
20055^done
20056(gdb)
20057@end smallexample
20058
20059
a2c02241
NR
20060@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20061@node GDB/MI Data Manipulation
20062@section @sc{gdb/mi} Data Manipulation
922fbb7b 20063
a2c02241
NR
20064@cindex data manipulation, in @sc{gdb/mi}
20065@cindex @sc{gdb/mi}, data manipulation
20066This section describes the @sc{gdb/mi} commands that manipulate data:
20067examine memory and registers, evaluate expressions, etc.
20068
20069@c REMOVED FROM THE INTERFACE.
20070@c @subheading -data-assign
20071@c Change the value of a program variable. Plenty of side effects.
79a6e687 20072@c @subsubheading GDB Command
a2c02241
NR
20073@c set variable
20074@c @subsubheading Example
20075@c N.A.
20076
20077@subheading The @code{-data-disassemble} Command
20078@findex -data-disassemble
922fbb7b
AC
20079
20080@subsubheading Synopsis
20081
20082@smallexample
a2c02241
NR
20083 -data-disassemble
20084 [ -s @var{start-addr} -e @var{end-addr} ]
20085 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20086 -- @var{mode}
922fbb7b
AC
20087@end smallexample
20088
a2c02241
NR
20089@noindent
20090Where:
20091
20092@table @samp
20093@item @var{start-addr}
20094is the beginning address (or @code{$pc})
20095@item @var{end-addr}
20096is the end address
20097@item @var{filename}
20098is the name of the file to disassemble
20099@item @var{linenum}
20100is the line number to disassemble around
20101@item @var{lines}
d3e8051b 20102is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20103the whole function will be disassembled, in case no @var{end-addr} is
20104specified. If @var{end-addr} is specified as a non-zero value, and
20105@var{lines} is lower than the number of disassembly lines between
20106@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20107displayed; if @var{lines} is higher than the number of lines between
20108@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20109are displayed.
20110@item @var{mode}
20111is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20112disassembly).
20113@end table
20114
20115@subsubheading Result
20116
20117The output for each instruction is composed of four fields:
20118
20119@itemize @bullet
20120@item Address
20121@item Func-name
20122@item Offset
20123@item Instruction
20124@end itemize
20125
20126Note that whatever included in the instruction field, is not manipulated
d3e8051b 20127directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20128
20129@subsubheading @value{GDBN} Command
20130
a2c02241 20131There's no direct mapping from this command to the CLI.
922fbb7b
AC
20132
20133@subsubheading Example
20134
a2c02241
NR
20135Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20136
922fbb7b 20137@smallexample
594fe323 20138(gdb)
a2c02241
NR
20139-data-disassemble -s $pc -e "$pc + 20" -- 0
20140^done,
20141asm_insns=[
20142@{address="0x000107c0",func-name="main",offset="4",
20143inst="mov 2, %o0"@},
20144@{address="0x000107c4",func-name="main",offset="8",
20145inst="sethi %hi(0x11800), %o2"@},
20146@{address="0x000107c8",func-name="main",offset="12",
20147inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20148@{address="0x000107cc",func-name="main",offset="16",
20149inst="sethi %hi(0x11800), %o2"@},
20150@{address="0x000107d0",func-name="main",offset="20",
20151inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20152(gdb)
a2c02241
NR
20153@end smallexample
20154
20155Disassemble the whole @code{main} function. Line 32 is part of
20156@code{main}.
20157
20158@smallexample
20159-data-disassemble -f basics.c -l 32 -- 0
20160^done,asm_insns=[
20161@{address="0x000107bc",func-name="main",offset="0",
20162inst="save %sp, -112, %sp"@},
20163@{address="0x000107c0",func-name="main",offset="4",
20164inst="mov 2, %o0"@},
20165@{address="0x000107c4",func-name="main",offset="8",
20166inst="sethi %hi(0x11800), %o2"@},
20167[@dots{}]
20168@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20169@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20170(gdb)
922fbb7b
AC
20171@end smallexample
20172
a2c02241 20173Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20174
a2c02241 20175@smallexample
594fe323 20176(gdb)
a2c02241
NR
20177-data-disassemble -f basics.c -l 32 -n 3 -- 0
20178^done,asm_insns=[
20179@{address="0x000107bc",func-name="main",offset="0",
20180inst="save %sp, -112, %sp"@},
20181@{address="0x000107c0",func-name="main",offset="4",
20182inst="mov 2, %o0"@},
20183@{address="0x000107c4",func-name="main",offset="8",
20184inst="sethi %hi(0x11800), %o2"@}]
594fe323 20185(gdb)
a2c02241
NR
20186@end smallexample
20187
20188Disassemble 3 instructions from the start of @code{main} in mixed mode:
20189
20190@smallexample
594fe323 20191(gdb)
a2c02241
NR
20192-data-disassemble -f basics.c -l 32 -n 3 -- 1
20193^done,asm_insns=[
20194src_and_asm_line=@{line="31",
20195file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20196 testsuite/gdb.mi/basics.c",line_asm_insn=[
20197@{address="0x000107bc",func-name="main",offset="0",
20198inst="save %sp, -112, %sp"@}]@},
20199src_and_asm_line=@{line="32",
20200file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20201 testsuite/gdb.mi/basics.c",line_asm_insn=[
20202@{address="0x000107c0",func-name="main",offset="4",
20203inst="mov 2, %o0"@},
20204@{address="0x000107c4",func-name="main",offset="8",
20205inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20206(gdb)
a2c02241
NR
20207@end smallexample
20208
20209
20210@subheading The @code{-data-evaluate-expression} Command
20211@findex -data-evaluate-expression
922fbb7b
AC
20212
20213@subsubheading Synopsis
20214
20215@smallexample
a2c02241 20216 -data-evaluate-expression @var{expr}
922fbb7b
AC
20217@end smallexample
20218
a2c02241
NR
20219Evaluate @var{expr} as an expression. The expression could contain an
20220inferior function call. The function call will execute synchronously.
20221If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20222
20223@subsubheading @value{GDBN} Command
20224
a2c02241
NR
20225The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20226@samp{call}. In @code{gdbtk} only, there's a corresponding
20227@samp{gdb_eval} command.
922fbb7b
AC
20228
20229@subsubheading Example
20230
a2c02241
NR
20231In the following example, the numbers that precede the commands are the
20232@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20233Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20234output.
20235
922fbb7b 20236@smallexample
a2c02241
NR
20237211-data-evaluate-expression A
20238211^done,value="1"
594fe323 20239(gdb)
a2c02241
NR
20240311-data-evaluate-expression &A
20241311^done,value="0xefffeb7c"
594fe323 20242(gdb)
a2c02241
NR
20243411-data-evaluate-expression A+3
20244411^done,value="4"
594fe323 20245(gdb)
a2c02241
NR
20246511-data-evaluate-expression "A + 3"
20247511^done,value="4"
594fe323 20248(gdb)
a2c02241 20249@end smallexample
922fbb7b
AC
20250
20251
a2c02241
NR
20252@subheading The @code{-data-list-changed-registers} Command
20253@findex -data-list-changed-registers
922fbb7b
AC
20254
20255@subsubheading Synopsis
20256
20257@smallexample
a2c02241 20258 -data-list-changed-registers
922fbb7b
AC
20259@end smallexample
20260
a2c02241 20261Display a list of the registers that have changed.
922fbb7b
AC
20262
20263@subsubheading @value{GDBN} Command
20264
a2c02241
NR
20265@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20266has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20267
20268@subsubheading Example
922fbb7b 20269
a2c02241 20270On a PPC MBX board:
922fbb7b
AC
20271
20272@smallexample
594fe323 20273(gdb)
a2c02241
NR
20274-exec-continue
20275^running
922fbb7b 20276
594fe323 20277(gdb)
a2c02241
NR
20278*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20279args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20280(gdb)
a2c02241
NR
20281-data-list-changed-registers
20282^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20283"10","11","13","14","15","16","17","18","19","20","21","22","23",
20284"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20285(gdb)
a2c02241 20286@end smallexample
922fbb7b
AC
20287
20288
a2c02241
NR
20289@subheading The @code{-data-list-register-names} Command
20290@findex -data-list-register-names
922fbb7b
AC
20291
20292@subsubheading Synopsis
20293
20294@smallexample
a2c02241 20295 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20296@end smallexample
20297
a2c02241
NR
20298Show a list of register names for the current target. If no arguments
20299are given, it shows a list of the names of all the registers. If
20300integer numbers are given as arguments, it will print a list of the
20301names of the registers corresponding to the arguments. To ensure
20302consistency between a register name and its number, the output list may
20303include empty register names.
922fbb7b
AC
20304
20305@subsubheading @value{GDBN} Command
20306
a2c02241
NR
20307@value{GDBN} does not have a command which corresponds to
20308@samp{-data-list-register-names}. In @code{gdbtk} there is a
20309corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20310
20311@subsubheading Example
922fbb7b 20312
a2c02241
NR
20313For the PPC MBX board:
20314@smallexample
594fe323 20315(gdb)
a2c02241
NR
20316-data-list-register-names
20317^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20318"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20319"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20320"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20321"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20322"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20323"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20324(gdb)
a2c02241
NR
20325-data-list-register-names 1 2 3
20326^done,register-names=["r1","r2","r3"]
594fe323 20327(gdb)
a2c02241 20328@end smallexample
922fbb7b 20329
a2c02241
NR
20330@subheading The @code{-data-list-register-values} Command
20331@findex -data-list-register-values
922fbb7b
AC
20332
20333@subsubheading Synopsis
20334
20335@smallexample
a2c02241 20336 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20337@end smallexample
20338
a2c02241
NR
20339Display the registers' contents. @var{fmt} is the format according to
20340which the registers' contents are to be returned, followed by an optional
20341list of numbers specifying the registers to display. A missing list of
20342numbers indicates that the contents of all the registers must be returned.
20343
20344Allowed formats for @var{fmt} are:
20345
20346@table @code
20347@item x
20348Hexadecimal
20349@item o
20350Octal
20351@item t
20352Binary
20353@item d
20354Decimal
20355@item r
20356Raw
20357@item N
20358Natural
20359@end table
922fbb7b
AC
20360
20361@subsubheading @value{GDBN} Command
20362
a2c02241
NR
20363The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20364all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20365
20366@subsubheading Example
922fbb7b 20367
a2c02241
NR
20368For a PPC MBX board (note: line breaks are for readability only, they
20369don't appear in the actual output):
20370
20371@smallexample
594fe323 20372(gdb)
a2c02241
NR
20373-data-list-register-values r 64 65
20374^done,register-values=[@{number="64",value="0xfe00a300"@},
20375@{number="65",value="0x00029002"@}]
594fe323 20376(gdb)
a2c02241
NR
20377-data-list-register-values x
20378^done,register-values=[@{number="0",value="0xfe0043c8"@},
20379@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20380@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20381@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20382@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20383@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20384@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20385@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20386@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20387@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20388@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20389@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20390@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20391@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20392@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20393@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20394@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20395@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20396@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20397@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20398@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20399@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20400@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20401@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20402@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20403@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20404@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20405@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20406@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20407@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20408@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20409@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20410@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20411@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20412@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20413@{number="69",value="0x20002b03"@}]
594fe323 20414(gdb)
a2c02241 20415@end smallexample
922fbb7b 20416
a2c02241
NR
20417
20418@subheading The @code{-data-read-memory} Command
20419@findex -data-read-memory
922fbb7b
AC
20420
20421@subsubheading Synopsis
20422
20423@smallexample
a2c02241
NR
20424 -data-read-memory [ -o @var{byte-offset} ]
20425 @var{address} @var{word-format} @var{word-size}
20426 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20427@end smallexample
20428
a2c02241
NR
20429@noindent
20430where:
922fbb7b 20431
a2c02241
NR
20432@table @samp
20433@item @var{address}
20434An expression specifying the address of the first memory word to be
20435read. Complex expressions containing embedded white space should be
20436quoted using the C convention.
922fbb7b 20437
a2c02241
NR
20438@item @var{word-format}
20439The format to be used to print the memory words. The notation is the
20440same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20441,Output Formats}).
922fbb7b 20442
a2c02241
NR
20443@item @var{word-size}
20444The size of each memory word in bytes.
922fbb7b 20445
a2c02241
NR
20446@item @var{nr-rows}
20447The number of rows in the output table.
922fbb7b 20448
a2c02241
NR
20449@item @var{nr-cols}
20450The number of columns in the output table.
922fbb7b 20451
a2c02241
NR
20452@item @var{aschar}
20453If present, indicates that each row should include an @sc{ascii} dump. The
20454value of @var{aschar} is used as a padding character when a byte is not a
20455member of the printable @sc{ascii} character set (printable @sc{ascii}
20456characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20457
a2c02241
NR
20458@item @var{byte-offset}
20459An offset to add to the @var{address} before fetching memory.
20460@end table
922fbb7b 20461
a2c02241
NR
20462This command displays memory contents as a table of @var{nr-rows} by
20463@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20464@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20465(returned as @samp{total-bytes}). Should less than the requested number
20466of bytes be returned by the target, the missing words are identified
20467using @samp{N/A}. The number of bytes read from the target is returned
20468in @samp{nr-bytes} and the starting address used to read memory in
20469@samp{addr}.
20470
20471The address of the next/previous row or page is available in
20472@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20473@samp{prev-page}.
922fbb7b
AC
20474
20475@subsubheading @value{GDBN} Command
20476
a2c02241
NR
20477The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20478@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20479
20480@subsubheading Example
32e7087d 20481
a2c02241
NR
20482Read six bytes of memory starting at @code{bytes+6} but then offset by
20483@code{-6} bytes. Format as three rows of two columns. One byte per
20484word. Display each word in hex.
32e7087d
JB
20485
20486@smallexample
594fe323 20487(gdb)
a2c02241
NR
204889-data-read-memory -o -6 -- bytes+6 x 1 3 2
204899^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20490next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20491prev-page="0x0000138a",memory=[
20492@{addr="0x00001390",data=["0x00","0x01"]@},
20493@{addr="0x00001392",data=["0x02","0x03"]@},
20494@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20495(gdb)
32e7087d
JB
20496@end smallexample
20497
a2c02241
NR
20498Read two bytes of memory starting at address @code{shorts + 64} and
20499display as a single word formatted in decimal.
32e7087d 20500
32e7087d 20501@smallexample
594fe323 20502(gdb)
a2c02241
NR
205035-data-read-memory shorts+64 d 2 1 1
205045^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20505next-row="0x00001512",prev-row="0x0000150e",
20506next-page="0x00001512",prev-page="0x0000150e",memory=[
20507@{addr="0x00001510",data=["128"]@}]
594fe323 20508(gdb)
32e7087d
JB
20509@end smallexample
20510
a2c02241
NR
20511Read thirty two bytes of memory starting at @code{bytes+16} and format
20512as eight rows of four columns. Include a string encoding with @samp{x}
20513used as the non-printable character.
922fbb7b
AC
20514
20515@smallexample
594fe323 20516(gdb)
a2c02241
NR
205174-data-read-memory bytes+16 x 1 8 4 x
205184^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20519next-row="0x000013c0",prev-row="0x0000139c",
20520next-page="0x000013c0",prev-page="0x00001380",memory=[
20521@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20522@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20523@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20524@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20525@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20526@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20527@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20528@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20529(gdb)
922fbb7b
AC
20530@end smallexample
20531
a2c02241
NR
20532@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20533@node GDB/MI Tracepoint Commands
20534@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20535
a2c02241 20536The tracepoint commands are not yet implemented.
922fbb7b 20537
a2c02241 20538@c @subheading -trace-actions
922fbb7b 20539
a2c02241 20540@c @subheading -trace-delete
922fbb7b 20541
a2c02241 20542@c @subheading -trace-disable
922fbb7b 20543
a2c02241 20544@c @subheading -trace-dump
922fbb7b 20545
a2c02241 20546@c @subheading -trace-enable
922fbb7b 20547
a2c02241 20548@c @subheading -trace-exists
922fbb7b 20549
a2c02241 20550@c @subheading -trace-find
922fbb7b 20551
a2c02241 20552@c @subheading -trace-frame-number
922fbb7b 20553
a2c02241 20554@c @subheading -trace-info
922fbb7b 20555
a2c02241 20556@c @subheading -trace-insert
922fbb7b 20557
a2c02241 20558@c @subheading -trace-list
922fbb7b 20559
a2c02241 20560@c @subheading -trace-pass-count
922fbb7b 20561
a2c02241 20562@c @subheading -trace-save
922fbb7b 20563
a2c02241 20564@c @subheading -trace-start
922fbb7b 20565
a2c02241 20566@c @subheading -trace-stop
922fbb7b 20567
922fbb7b 20568
a2c02241
NR
20569@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20570@node GDB/MI Symbol Query
20571@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20572
20573
a2c02241
NR
20574@subheading The @code{-symbol-info-address} Command
20575@findex -symbol-info-address
922fbb7b
AC
20576
20577@subsubheading Synopsis
20578
20579@smallexample
a2c02241 20580 -symbol-info-address @var{symbol}
922fbb7b
AC
20581@end smallexample
20582
a2c02241 20583Describe where @var{symbol} is stored.
922fbb7b
AC
20584
20585@subsubheading @value{GDBN} Command
20586
a2c02241 20587The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20588
20589@subsubheading Example
20590N.A.
20591
20592
a2c02241
NR
20593@subheading The @code{-symbol-info-file} Command
20594@findex -symbol-info-file
922fbb7b
AC
20595
20596@subsubheading Synopsis
20597
20598@smallexample
a2c02241 20599 -symbol-info-file
922fbb7b
AC
20600@end smallexample
20601
a2c02241 20602Show the file for the symbol.
922fbb7b 20603
a2c02241 20604@subsubheading @value{GDBN} Command
922fbb7b 20605
a2c02241
NR
20606There's no equivalent @value{GDBN} command. @code{gdbtk} has
20607@samp{gdb_find_file}.
922fbb7b
AC
20608
20609@subsubheading Example
20610N.A.
20611
20612
a2c02241
NR
20613@subheading The @code{-symbol-info-function} Command
20614@findex -symbol-info-function
922fbb7b
AC
20615
20616@subsubheading Synopsis
20617
20618@smallexample
a2c02241 20619 -symbol-info-function
922fbb7b
AC
20620@end smallexample
20621
a2c02241 20622Show which function the symbol lives in.
922fbb7b
AC
20623
20624@subsubheading @value{GDBN} Command
20625
a2c02241 20626@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20627
20628@subsubheading Example
20629N.A.
20630
20631
a2c02241
NR
20632@subheading The @code{-symbol-info-line} Command
20633@findex -symbol-info-line
922fbb7b
AC
20634
20635@subsubheading Synopsis
20636
20637@smallexample
a2c02241 20638 -symbol-info-line
922fbb7b
AC
20639@end smallexample
20640
a2c02241 20641Show the core addresses of the code for a source line.
922fbb7b 20642
a2c02241 20643@subsubheading @value{GDBN} Command
922fbb7b 20644
a2c02241
NR
20645The corresponding @value{GDBN} command is @samp{info line}.
20646@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20647
20648@subsubheading Example
a2c02241 20649N.A.
922fbb7b
AC
20650
20651
a2c02241
NR
20652@subheading The @code{-symbol-info-symbol} Command
20653@findex -symbol-info-symbol
07f31aa6
DJ
20654
20655@subsubheading Synopsis
20656
a2c02241
NR
20657@smallexample
20658 -symbol-info-symbol @var{addr}
20659@end smallexample
07f31aa6 20660
a2c02241 20661Describe what symbol is at location @var{addr}.
07f31aa6 20662
a2c02241 20663@subsubheading @value{GDBN} Command
07f31aa6 20664
a2c02241 20665The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20666
20667@subsubheading Example
a2c02241 20668N.A.
07f31aa6
DJ
20669
20670
a2c02241
NR
20671@subheading The @code{-symbol-list-functions} Command
20672@findex -symbol-list-functions
922fbb7b
AC
20673
20674@subsubheading Synopsis
20675
20676@smallexample
a2c02241 20677 -symbol-list-functions
922fbb7b
AC
20678@end smallexample
20679
a2c02241 20680List the functions in the executable.
922fbb7b
AC
20681
20682@subsubheading @value{GDBN} Command
20683
a2c02241
NR
20684@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20685@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20686
20687@subsubheading Example
a2c02241 20688N.A.
922fbb7b
AC
20689
20690
a2c02241
NR
20691@subheading The @code{-symbol-list-lines} Command
20692@findex -symbol-list-lines
922fbb7b
AC
20693
20694@subsubheading Synopsis
20695
20696@smallexample
a2c02241 20697 -symbol-list-lines @var{filename}
922fbb7b
AC
20698@end smallexample
20699
a2c02241
NR
20700Print the list of lines that contain code and their associated program
20701addresses for the given source filename. The entries are sorted in
20702ascending PC order.
922fbb7b
AC
20703
20704@subsubheading @value{GDBN} Command
20705
a2c02241 20706There is no corresponding @value{GDBN} command.
922fbb7b
AC
20707
20708@subsubheading Example
a2c02241 20709@smallexample
594fe323 20710(gdb)
a2c02241
NR
20711-symbol-list-lines basics.c
20712^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20713(gdb)
a2c02241 20714@end smallexample
922fbb7b
AC
20715
20716
a2c02241
NR
20717@subheading The @code{-symbol-list-types} Command
20718@findex -symbol-list-types
922fbb7b
AC
20719
20720@subsubheading Synopsis
20721
20722@smallexample
a2c02241 20723 -symbol-list-types
922fbb7b
AC
20724@end smallexample
20725
a2c02241 20726List all the type names.
922fbb7b
AC
20727
20728@subsubheading @value{GDBN} Command
20729
a2c02241
NR
20730The corresponding commands are @samp{info types} in @value{GDBN},
20731@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20732
20733@subsubheading Example
20734N.A.
20735
20736
a2c02241
NR
20737@subheading The @code{-symbol-list-variables} Command
20738@findex -symbol-list-variables
922fbb7b
AC
20739
20740@subsubheading Synopsis
20741
20742@smallexample
a2c02241 20743 -symbol-list-variables
922fbb7b
AC
20744@end smallexample
20745
a2c02241 20746List all the global and static variable names.
922fbb7b
AC
20747
20748@subsubheading @value{GDBN} Command
20749
a2c02241 20750@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20751
20752@subsubheading Example
20753N.A.
20754
20755
a2c02241
NR
20756@subheading The @code{-symbol-locate} Command
20757@findex -symbol-locate
922fbb7b
AC
20758
20759@subsubheading Synopsis
20760
20761@smallexample
a2c02241 20762 -symbol-locate
922fbb7b
AC
20763@end smallexample
20764
922fbb7b
AC
20765@subsubheading @value{GDBN} Command
20766
a2c02241 20767@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20768
20769@subsubheading Example
20770N.A.
20771
20772
a2c02241
NR
20773@subheading The @code{-symbol-type} Command
20774@findex -symbol-type
922fbb7b
AC
20775
20776@subsubheading Synopsis
20777
20778@smallexample
a2c02241 20779 -symbol-type @var{variable}
922fbb7b
AC
20780@end smallexample
20781
a2c02241 20782Show type of @var{variable}.
922fbb7b 20783
a2c02241 20784@subsubheading @value{GDBN} Command
922fbb7b 20785
a2c02241
NR
20786The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20787@samp{gdb_obj_variable}.
20788
20789@subsubheading Example
20790N.A.
20791
20792
20793@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20794@node GDB/MI File Commands
20795@section @sc{gdb/mi} File Commands
20796
20797This section describes the GDB/MI commands to specify executable file names
20798and to read in and obtain symbol table information.
20799
20800@subheading The @code{-file-exec-and-symbols} Command
20801@findex -file-exec-and-symbols
20802
20803@subsubheading Synopsis
922fbb7b
AC
20804
20805@smallexample
a2c02241 20806 -file-exec-and-symbols @var{file}
922fbb7b
AC
20807@end smallexample
20808
a2c02241
NR
20809Specify the executable file to be debugged. This file is the one from
20810which the symbol table is also read. If no file is specified, the
20811command clears the executable and symbol information. If breakpoints
20812are set when using this command with no arguments, @value{GDBN} will produce
20813error messages. Otherwise, no output is produced, except a completion
20814notification.
20815
922fbb7b
AC
20816@subsubheading @value{GDBN} Command
20817
a2c02241 20818The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20819
20820@subsubheading Example
20821
20822@smallexample
594fe323 20823(gdb)
a2c02241
NR
20824-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20825^done
594fe323 20826(gdb)
922fbb7b
AC
20827@end smallexample
20828
922fbb7b 20829
a2c02241
NR
20830@subheading The @code{-file-exec-file} Command
20831@findex -file-exec-file
922fbb7b
AC
20832
20833@subsubheading Synopsis
20834
20835@smallexample
a2c02241 20836 -file-exec-file @var{file}
922fbb7b
AC
20837@end smallexample
20838
a2c02241
NR
20839Specify the executable file to be debugged. Unlike
20840@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20841from this file. If used without argument, @value{GDBN} clears the information
20842about the executable file. No output is produced, except a completion
20843notification.
922fbb7b 20844
a2c02241
NR
20845@subsubheading @value{GDBN} Command
20846
20847The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
20848
20849@subsubheading Example
a2c02241
NR
20850
20851@smallexample
594fe323 20852(gdb)
a2c02241
NR
20853-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20854^done
594fe323 20855(gdb)
a2c02241 20856@end smallexample
922fbb7b
AC
20857
20858
a2c02241
NR
20859@subheading The @code{-file-list-exec-sections} Command
20860@findex -file-list-exec-sections
922fbb7b
AC
20861
20862@subsubheading Synopsis
20863
20864@smallexample
a2c02241 20865 -file-list-exec-sections
922fbb7b
AC
20866@end smallexample
20867
a2c02241
NR
20868List the sections of the current executable file.
20869
922fbb7b
AC
20870@subsubheading @value{GDBN} Command
20871
a2c02241
NR
20872The @value{GDBN} command @samp{info file} shows, among the rest, the same
20873information as this command. @code{gdbtk} has a corresponding command
20874@samp{gdb_load_info}.
922fbb7b
AC
20875
20876@subsubheading Example
20877N.A.
20878
20879
a2c02241
NR
20880@subheading The @code{-file-list-exec-source-file} Command
20881@findex -file-list-exec-source-file
922fbb7b
AC
20882
20883@subsubheading Synopsis
20884
20885@smallexample
a2c02241 20886 -file-list-exec-source-file
922fbb7b
AC
20887@end smallexample
20888
a2c02241
NR
20889List the line number, the current source file, and the absolute path
20890to the current source file for the current executable.
922fbb7b
AC
20891
20892@subsubheading @value{GDBN} Command
20893
a2c02241 20894The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
20895
20896@subsubheading Example
20897
922fbb7b 20898@smallexample
594fe323 20899(gdb)
a2c02241
NR
20900123-file-list-exec-source-file
20901123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
594fe323 20902(gdb)
922fbb7b
AC
20903@end smallexample
20904
20905
a2c02241
NR
20906@subheading The @code{-file-list-exec-source-files} Command
20907@findex -file-list-exec-source-files
922fbb7b
AC
20908
20909@subsubheading Synopsis
20910
20911@smallexample
a2c02241 20912 -file-list-exec-source-files
922fbb7b
AC
20913@end smallexample
20914
a2c02241
NR
20915List the source files for the current executable.
20916
3f94c067
BW
20917It will always output the filename, but only when @value{GDBN} can find
20918the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
20919
20920@subsubheading @value{GDBN} Command
20921
a2c02241
NR
20922The @value{GDBN} equivalent is @samp{info sources}.
20923@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
20924
20925@subsubheading Example
922fbb7b 20926@smallexample
594fe323 20927(gdb)
a2c02241
NR
20928-file-list-exec-source-files
20929^done,files=[
20930@{file=foo.c,fullname=/home/foo.c@},
20931@{file=/home/bar.c,fullname=/home/bar.c@},
20932@{file=gdb_could_not_find_fullpath.c@}]
594fe323 20933(gdb)
922fbb7b
AC
20934@end smallexample
20935
a2c02241
NR
20936@subheading The @code{-file-list-shared-libraries} Command
20937@findex -file-list-shared-libraries
922fbb7b 20938
a2c02241 20939@subsubheading Synopsis
922fbb7b 20940
a2c02241
NR
20941@smallexample
20942 -file-list-shared-libraries
20943@end smallexample
922fbb7b 20944
a2c02241 20945List the shared libraries in the program.
922fbb7b 20946
a2c02241 20947@subsubheading @value{GDBN} Command
922fbb7b 20948
a2c02241 20949The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 20950
a2c02241
NR
20951@subsubheading Example
20952N.A.
922fbb7b
AC
20953
20954
a2c02241
NR
20955@subheading The @code{-file-list-symbol-files} Command
20956@findex -file-list-symbol-files
922fbb7b 20957
a2c02241 20958@subsubheading Synopsis
922fbb7b 20959
a2c02241
NR
20960@smallexample
20961 -file-list-symbol-files
20962@end smallexample
922fbb7b 20963
a2c02241 20964List symbol files.
922fbb7b 20965
a2c02241 20966@subsubheading @value{GDBN} Command
922fbb7b 20967
a2c02241 20968The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 20969
a2c02241
NR
20970@subsubheading Example
20971N.A.
922fbb7b 20972
922fbb7b 20973
a2c02241
NR
20974@subheading The @code{-file-symbol-file} Command
20975@findex -file-symbol-file
922fbb7b 20976
a2c02241 20977@subsubheading Synopsis
922fbb7b 20978
a2c02241
NR
20979@smallexample
20980 -file-symbol-file @var{file}
20981@end smallexample
922fbb7b 20982
a2c02241
NR
20983Read symbol table info from the specified @var{file} argument. When
20984used without arguments, clears @value{GDBN}'s symbol table info. No output is
20985produced, except for a completion notification.
922fbb7b 20986
a2c02241 20987@subsubheading @value{GDBN} Command
922fbb7b 20988
a2c02241 20989The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 20990
a2c02241 20991@subsubheading Example
922fbb7b 20992
a2c02241 20993@smallexample
594fe323 20994(gdb)
a2c02241
NR
20995-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20996^done
594fe323 20997(gdb)
a2c02241 20998@end smallexample
922fbb7b 20999
a2c02241 21000@ignore
a2c02241
NR
21001@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21002@node GDB/MI Memory Overlay Commands
21003@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21004
a2c02241 21005The memory overlay commands are not implemented.
922fbb7b 21006
a2c02241 21007@c @subheading -overlay-auto
922fbb7b 21008
a2c02241 21009@c @subheading -overlay-list-mapping-state
922fbb7b 21010
a2c02241 21011@c @subheading -overlay-list-overlays
922fbb7b 21012
a2c02241 21013@c @subheading -overlay-map
922fbb7b 21014
a2c02241 21015@c @subheading -overlay-off
922fbb7b 21016
a2c02241 21017@c @subheading -overlay-on
922fbb7b 21018
a2c02241 21019@c @subheading -overlay-unmap
922fbb7b 21020
a2c02241
NR
21021@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21022@node GDB/MI Signal Handling Commands
21023@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21024
a2c02241 21025Signal handling commands are not implemented.
922fbb7b 21026
a2c02241 21027@c @subheading -signal-handle
922fbb7b 21028
a2c02241 21029@c @subheading -signal-list-handle-actions
922fbb7b 21030
a2c02241
NR
21031@c @subheading -signal-list-signal-types
21032@end ignore
922fbb7b 21033
922fbb7b 21034
a2c02241
NR
21035@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21036@node GDB/MI Target Manipulation
21037@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21038
21039
a2c02241
NR
21040@subheading The @code{-target-attach} Command
21041@findex -target-attach
922fbb7b
AC
21042
21043@subsubheading Synopsis
21044
21045@smallexample
a2c02241 21046 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21047@end smallexample
21048
a2c02241 21049Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21050
79a6e687 21051@subsubheading @value{GDBN} Command
922fbb7b 21052
a2c02241 21053The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21054
a2c02241
NR
21055@subsubheading Example
21056N.A.
922fbb7b 21057
a2c02241
NR
21058
21059@subheading The @code{-target-compare-sections} Command
21060@findex -target-compare-sections
922fbb7b
AC
21061
21062@subsubheading Synopsis
21063
21064@smallexample
a2c02241 21065 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21066@end smallexample
21067
a2c02241
NR
21068Compare data of section @var{section} on target to the exec file.
21069Without the argument, all sections are compared.
922fbb7b 21070
a2c02241 21071@subsubheading @value{GDBN} Command
922fbb7b 21072
a2c02241 21073The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21074
a2c02241
NR
21075@subsubheading Example
21076N.A.
21077
21078
21079@subheading The @code{-target-detach} Command
21080@findex -target-detach
922fbb7b
AC
21081
21082@subsubheading Synopsis
21083
21084@smallexample
a2c02241 21085 -target-detach
922fbb7b
AC
21086@end smallexample
21087
a2c02241
NR
21088Detach from the remote target which normally resumes its execution.
21089There's no output.
21090
79a6e687 21091@subsubheading @value{GDBN} Command
a2c02241
NR
21092
21093The corresponding @value{GDBN} command is @samp{detach}.
21094
21095@subsubheading Example
922fbb7b
AC
21096
21097@smallexample
594fe323 21098(gdb)
a2c02241
NR
21099-target-detach
21100^done
594fe323 21101(gdb)
922fbb7b
AC
21102@end smallexample
21103
21104
a2c02241
NR
21105@subheading The @code{-target-disconnect} Command
21106@findex -target-disconnect
922fbb7b
AC
21107
21108@subsubheading Synopsis
21109
123dc839 21110@smallexample
a2c02241 21111 -target-disconnect
123dc839 21112@end smallexample
922fbb7b 21113
a2c02241
NR
21114Disconnect from the remote target. There's no output and the target is
21115generally not resumed.
21116
79a6e687 21117@subsubheading @value{GDBN} Command
a2c02241
NR
21118
21119The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21120
21121@subsubheading Example
922fbb7b
AC
21122
21123@smallexample
594fe323 21124(gdb)
a2c02241
NR
21125-target-disconnect
21126^done
594fe323 21127(gdb)
922fbb7b
AC
21128@end smallexample
21129
21130
a2c02241
NR
21131@subheading The @code{-target-download} Command
21132@findex -target-download
922fbb7b
AC
21133
21134@subsubheading Synopsis
21135
21136@smallexample
a2c02241 21137 -target-download
922fbb7b
AC
21138@end smallexample
21139
a2c02241
NR
21140Loads the executable onto the remote target.
21141It prints out an update message every half second, which includes the fields:
21142
21143@table @samp
21144@item section
21145The name of the section.
21146@item section-sent
21147The size of what has been sent so far for that section.
21148@item section-size
21149The size of the section.
21150@item total-sent
21151The total size of what was sent so far (the current and the previous sections).
21152@item total-size
21153The size of the overall executable to download.
21154@end table
21155
21156@noindent
21157Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21158@sc{gdb/mi} Output Syntax}).
21159
21160In addition, it prints the name and size of the sections, as they are
21161downloaded. These messages include the following fields:
21162
21163@table @samp
21164@item section
21165The name of the section.
21166@item section-size
21167The size of the section.
21168@item total-size
21169The size of the overall executable to download.
21170@end table
21171
21172@noindent
21173At the end, a summary is printed.
21174
21175@subsubheading @value{GDBN} Command
21176
21177The corresponding @value{GDBN} command is @samp{load}.
21178
21179@subsubheading Example
21180
21181Note: each status message appears on a single line. Here the messages
21182have been broken down so that they can fit onto a page.
922fbb7b
AC
21183
21184@smallexample
594fe323 21185(gdb)
a2c02241
NR
21186-target-download
21187+download,@{section=".text",section-size="6668",total-size="9880"@}
21188+download,@{section=".text",section-sent="512",section-size="6668",
21189total-sent="512",total-size="9880"@}
21190+download,@{section=".text",section-sent="1024",section-size="6668",
21191total-sent="1024",total-size="9880"@}
21192+download,@{section=".text",section-sent="1536",section-size="6668",
21193total-sent="1536",total-size="9880"@}
21194+download,@{section=".text",section-sent="2048",section-size="6668",
21195total-sent="2048",total-size="9880"@}
21196+download,@{section=".text",section-sent="2560",section-size="6668",
21197total-sent="2560",total-size="9880"@}
21198+download,@{section=".text",section-sent="3072",section-size="6668",
21199total-sent="3072",total-size="9880"@}
21200+download,@{section=".text",section-sent="3584",section-size="6668",
21201total-sent="3584",total-size="9880"@}
21202+download,@{section=".text",section-sent="4096",section-size="6668",
21203total-sent="4096",total-size="9880"@}
21204+download,@{section=".text",section-sent="4608",section-size="6668",
21205total-sent="4608",total-size="9880"@}
21206+download,@{section=".text",section-sent="5120",section-size="6668",
21207total-sent="5120",total-size="9880"@}
21208+download,@{section=".text",section-sent="5632",section-size="6668",
21209total-sent="5632",total-size="9880"@}
21210+download,@{section=".text",section-sent="6144",section-size="6668",
21211total-sent="6144",total-size="9880"@}
21212+download,@{section=".text",section-sent="6656",section-size="6668",
21213total-sent="6656",total-size="9880"@}
21214+download,@{section=".init",section-size="28",total-size="9880"@}
21215+download,@{section=".fini",section-size="28",total-size="9880"@}
21216+download,@{section=".data",section-size="3156",total-size="9880"@}
21217+download,@{section=".data",section-sent="512",section-size="3156",
21218total-sent="7236",total-size="9880"@}
21219+download,@{section=".data",section-sent="1024",section-size="3156",
21220total-sent="7748",total-size="9880"@}
21221+download,@{section=".data",section-sent="1536",section-size="3156",
21222total-sent="8260",total-size="9880"@}
21223+download,@{section=".data",section-sent="2048",section-size="3156",
21224total-sent="8772",total-size="9880"@}
21225+download,@{section=".data",section-sent="2560",section-size="3156",
21226total-sent="9284",total-size="9880"@}
21227+download,@{section=".data",section-sent="3072",section-size="3156",
21228total-sent="9796",total-size="9880"@}
21229^done,address="0x10004",load-size="9880",transfer-rate="6586",
21230write-rate="429"
594fe323 21231(gdb)
922fbb7b
AC
21232@end smallexample
21233
21234
a2c02241
NR
21235@subheading The @code{-target-exec-status} Command
21236@findex -target-exec-status
922fbb7b
AC
21237
21238@subsubheading Synopsis
21239
21240@smallexample
a2c02241 21241 -target-exec-status
922fbb7b
AC
21242@end smallexample
21243
a2c02241
NR
21244Provide information on the state of the target (whether it is running or
21245not, for instance).
922fbb7b 21246
a2c02241 21247@subsubheading @value{GDBN} Command
922fbb7b 21248
a2c02241
NR
21249There's no equivalent @value{GDBN} command.
21250
21251@subsubheading Example
21252N.A.
922fbb7b 21253
a2c02241
NR
21254
21255@subheading The @code{-target-list-available-targets} Command
21256@findex -target-list-available-targets
922fbb7b
AC
21257
21258@subsubheading Synopsis
21259
21260@smallexample
a2c02241 21261 -target-list-available-targets
922fbb7b
AC
21262@end smallexample
21263
a2c02241 21264List the possible targets to connect to.
922fbb7b 21265
a2c02241 21266@subsubheading @value{GDBN} Command
922fbb7b 21267
a2c02241 21268The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21269
a2c02241
NR
21270@subsubheading Example
21271N.A.
21272
21273
21274@subheading The @code{-target-list-current-targets} Command
21275@findex -target-list-current-targets
922fbb7b
AC
21276
21277@subsubheading Synopsis
21278
21279@smallexample
a2c02241 21280 -target-list-current-targets
922fbb7b
AC
21281@end smallexample
21282
a2c02241 21283Describe the current target.
922fbb7b 21284
a2c02241 21285@subsubheading @value{GDBN} Command
922fbb7b 21286
a2c02241
NR
21287The corresponding information is printed by @samp{info file} (among
21288other things).
922fbb7b 21289
a2c02241
NR
21290@subsubheading Example
21291N.A.
21292
21293
21294@subheading The @code{-target-list-parameters} Command
21295@findex -target-list-parameters
922fbb7b
AC
21296
21297@subsubheading Synopsis
21298
21299@smallexample
a2c02241 21300 -target-list-parameters
922fbb7b
AC
21301@end smallexample
21302
a2c02241
NR
21303@c ????
21304
21305@subsubheading @value{GDBN} Command
21306
21307No equivalent.
922fbb7b
AC
21308
21309@subsubheading Example
a2c02241
NR
21310N.A.
21311
21312
21313@subheading The @code{-target-select} Command
21314@findex -target-select
21315
21316@subsubheading Synopsis
922fbb7b
AC
21317
21318@smallexample
a2c02241 21319 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21320@end smallexample
21321
a2c02241 21322Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21323
a2c02241
NR
21324@table @samp
21325@item @var{type}
21326The type of target, for instance @samp{async}, @samp{remote}, etc.
21327@item @var{parameters}
21328Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21329Commands for Managing Targets}, for more details.
a2c02241
NR
21330@end table
21331
21332The output is a connection notification, followed by the address at
21333which the target program is, in the following form:
922fbb7b
AC
21334
21335@smallexample
a2c02241
NR
21336^connected,addr="@var{address}",func="@var{function name}",
21337 args=[@var{arg list}]
922fbb7b
AC
21338@end smallexample
21339
a2c02241
NR
21340@subsubheading @value{GDBN} Command
21341
21342The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21343
21344@subsubheading Example
922fbb7b 21345
265eeb58 21346@smallexample
594fe323 21347(gdb)
a2c02241
NR
21348-target-select async /dev/ttya
21349^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21350(gdb)
265eeb58 21351@end smallexample
ef21caaf 21352
a6b151f1
DJ
21353@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21354@node GDB/MI File Transfer Commands
21355@section @sc{gdb/mi} File Transfer Commands
21356
21357
21358@subheading The @code{-target-file-put} Command
21359@findex -target-file-put
21360
21361@subsubheading Synopsis
21362
21363@smallexample
21364 -target-file-put @var{hostfile} @var{targetfile}
21365@end smallexample
21366
21367Copy file @var{hostfile} from the host system (the machine running
21368@value{GDBN}) to @var{targetfile} on the target system.
21369
21370@subsubheading @value{GDBN} Command
21371
21372The corresponding @value{GDBN} command is @samp{remote put}.
21373
21374@subsubheading Example
21375
21376@smallexample
21377(gdb)
21378-target-file-put localfile remotefile
21379^done
21380(gdb)
21381@end smallexample
21382
21383
21384@subheading The @code{-target-file-put} Command
21385@findex -target-file-get
21386
21387@subsubheading Synopsis
21388
21389@smallexample
21390 -target-file-get @var{targetfile} @var{hostfile}
21391@end smallexample
21392
21393Copy file @var{targetfile} from the target system to @var{hostfile}
21394on the host system.
21395
21396@subsubheading @value{GDBN} Command
21397
21398The corresponding @value{GDBN} command is @samp{remote get}.
21399
21400@subsubheading Example
21401
21402@smallexample
21403(gdb)
21404-target-file-get remotefile localfile
21405^done
21406(gdb)
21407@end smallexample
21408
21409
21410@subheading The @code{-target-file-delete} Command
21411@findex -target-file-delete
21412
21413@subsubheading Synopsis
21414
21415@smallexample
21416 -target-file-delete @var{targetfile}
21417@end smallexample
21418
21419Delete @var{targetfile} from the target system.
21420
21421@subsubheading @value{GDBN} Command
21422
21423The corresponding @value{GDBN} command is @samp{remote delete}.
21424
21425@subsubheading Example
21426
21427@smallexample
21428(gdb)
21429-target-file-delete remotefile
21430^done
21431(gdb)
21432@end smallexample
21433
21434
ef21caaf
NR
21435@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21436@node GDB/MI Miscellaneous Commands
21437@section Miscellaneous @sc{gdb/mi} Commands
21438
21439@c @subheading -gdb-complete
21440
21441@subheading The @code{-gdb-exit} Command
21442@findex -gdb-exit
21443
21444@subsubheading Synopsis
21445
21446@smallexample
21447 -gdb-exit
21448@end smallexample
21449
21450Exit @value{GDBN} immediately.
21451
21452@subsubheading @value{GDBN} Command
21453
21454Approximately corresponds to @samp{quit}.
21455
21456@subsubheading Example
21457
21458@smallexample
594fe323 21459(gdb)
ef21caaf
NR
21460-gdb-exit
21461^exit
21462@end smallexample
21463
a2c02241
NR
21464
21465@subheading The @code{-exec-abort} Command
21466@findex -exec-abort
21467
21468@subsubheading Synopsis
21469
21470@smallexample
21471 -exec-abort
21472@end smallexample
21473
21474Kill the inferior running program.
21475
21476@subsubheading @value{GDBN} Command
21477
21478The corresponding @value{GDBN} command is @samp{kill}.
21479
21480@subsubheading Example
21481N.A.
21482
21483
ef21caaf
NR
21484@subheading The @code{-gdb-set} Command
21485@findex -gdb-set
21486
21487@subsubheading Synopsis
21488
21489@smallexample
21490 -gdb-set
21491@end smallexample
21492
21493Set an internal @value{GDBN} variable.
21494@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21495
21496@subsubheading @value{GDBN} Command
21497
21498The corresponding @value{GDBN} command is @samp{set}.
21499
21500@subsubheading Example
21501
21502@smallexample
594fe323 21503(gdb)
ef21caaf
NR
21504-gdb-set $foo=3
21505^done
594fe323 21506(gdb)
ef21caaf
NR
21507@end smallexample
21508
21509
21510@subheading The @code{-gdb-show} Command
21511@findex -gdb-show
21512
21513@subsubheading Synopsis
21514
21515@smallexample
21516 -gdb-show
21517@end smallexample
21518
21519Show the current value of a @value{GDBN} variable.
21520
79a6e687 21521@subsubheading @value{GDBN} Command
ef21caaf
NR
21522
21523The corresponding @value{GDBN} command is @samp{show}.
21524
21525@subsubheading Example
21526
21527@smallexample
594fe323 21528(gdb)
ef21caaf
NR
21529-gdb-show annotate
21530^done,value="0"
594fe323 21531(gdb)
ef21caaf
NR
21532@end smallexample
21533
21534@c @subheading -gdb-source
21535
21536
21537@subheading The @code{-gdb-version} Command
21538@findex -gdb-version
21539
21540@subsubheading Synopsis
21541
21542@smallexample
21543 -gdb-version
21544@end smallexample
21545
21546Show version information for @value{GDBN}. Used mostly in testing.
21547
21548@subsubheading @value{GDBN} Command
21549
21550The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21551default shows this information when you start an interactive session.
21552
21553@subsubheading Example
21554
21555@c This example modifies the actual output from GDB to avoid overfull
21556@c box in TeX.
21557@smallexample
594fe323 21558(gdb)
ef21caaf
NR
21559-gdb-version
21560~GNU gdb 5.2.1
21561~Copyright 2000 Free Software Foundation, Inc.
21562~GDB is free software, covered by the GNU General Public License, and
21563~you are welcome to change it and/or distribute copies of it under
21564~ certain conditions.
21565~Type "show copying" to see the conditions.
21566~There is absolutely no warranty for GDB. Type "show warranty" for
21567~ details.
21568~This GDB was configured as
21569 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21570^done
594fe323 21571(gdb)
ef21caaf
NR
21572@end smallexample
21573
084344da
VP
21574@subheading The @code{-list-features} Command
21575@findex -list-features
21576
21577Returns a list of particular features of the MI protocol that
21578this version of gdb implements. A feature can be a command,
21579or a new field in an output of some command, or even an
21580important bugfix. While a frontend can sometimes detect presence
21581of a feature at runtime, it is easier to perform detection at debugger
21582startup.
21583
21584The command returns a list of strings, with each string naming an
21585available feature. Each returned string is just a name, it does not
21586have any internal structure. The list of possible feature names
21587is given below.
21588
21589Example output:
21590
21591@smallexample
21592(gdb) -list-features
21593^done,result=["feature1","feature2"]
21594@end smallexample
21595
21596The current list of features is:
21597
21598@itemize @minus
21599@item
21600@samp{frozen-varobjs}---indicates presence of the
21601@code{-var-set-frozen} command, as well as possible presense of the
21602@code{frozen} field in the output of @code{-varobj-create}.
21603@end itemize
21604
ef21caaf
NR
21605@subheading The @code{-interpreter-exec} Command
21606@findex -interpreter-exec
21607
21608@subheading Synopsis
21609
21610@smallexample
21611-interpreter-exec @var{interpreter} @var{command}
21612@end smallexample
a2c02241 21613@anchor{-interpreter-exec}
ef21caaf
NR
21614
21615Execute the specified @var{command} in the given @var{interpreter}.
21616
21617@subheading @value{GDBN} Command
21618
21619The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21620
21621@subheading Example
21622
21623@smallexample
594fe323 21624(gdb)
ef21caaf
NR
21625-interpreter-exec console "break main"
21626&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21627&"During symbol reading, bad structure-type format.\n"
21628~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21629^done
594fe323 21630(gdb)
ef21caaf
NR
21631@end smallexample
21632
21633@subheading The @code{-inferior-tty-set} Command
21634@findex -inferior-tty-set
21635
21636@subheading Synopsis
21637
21638@smallexample
21639-inferior-tty-set /dev/pts/1
21640@end smallexample
21641
21642Set terminal for future runs of the program being debugged.
21643
21644@subheading @value{GDBN} Command
21645
21646The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21647
21648@subheading Example
21649
21650@smallexample
594fe323 21651(gdb)
ef21caaf
NR
21652-inferior-tty-set /dev/pts/1
21653^done
594fe323 21654(gdb)
ef21caaf
NR
21655@end smallexample
21656
21657@subheading The @code{-inferior-tty-show} Command
21658@findex -inferior-tty-show
21659
21660@subheading Synopsis
21661
21662@smallexample
21663-inferior-tty-show
21664@end smallexample
21665
21666Show terminal for future runs of program being debugged.
21667
21668@subheading @value{GDBN} Command
21669
21670The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21671
21672@subheading Example
21673
21674@smallexample
594fe323 21675(gdb)
ef21caaf
NR
21676-inferior-tty-set /dev/pts/1
21677^done
594fe323 21678(gdb)
ef21caaf
NR
21679-inferior-tty-show
21680^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21681(gdb)
ef21caaf 21682@end smallexample
922fbb7b 21683
a4eefcd8
NR
21684@subheading The @code{-enable-timings} Command
21685@findex -enable-timings
21686
21687@subheading Synopsis
21688
21689@smallexample
21690-enable-timings [yes | no]
21691@end smallexample
21692
21693Toggle the printing of the wallclock, user and system times for an MI
21694command as a field in its output. This command is to help frontend
21695developers optimize the performance of their code. No argument is
21696equivalent to @samp{yes}.
21697
21698@subheading @value{GDBN} Command
21699
21700No equivalent.
21701
21702@subheading Example
21703
21704@smallexample
21705(gdb)
21706-enable-timings
21707^done
21708(gdb)
21709-break-insert main
21710^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21711addr="0x080484ed",func="main",file="myprog.c",
21712fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21713time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21714(gdb)
21715-enable-timings no
21716^done
21717(gdb)
21718-exec-run
21719^running
21720(gdb)
21721*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21722frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21723@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21724fullname="/home/nickrob/myprog.c",line="73"@}
21725(gdb)
21726@end smallexample
21727
922fbb7b
AC
21728@node Annotations
21729@chapter @value{GDBN} Annotations
21730
086432e2
AC
21731This chapter describes annotations in @value{GDBN}. Annotations were
21732designed to interface @value{GDBN} to graphical user interfaces or other
21733similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21734relatively high level.
21735
d3e8051b 21736The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21737(@pxref{GDB/MI}).
21738
922fbb7b
AC
21739@ignore
21740This is Edition @value{EDITION}, @value{DATE}.
21741@end ignore
21742
21743@menu
21744* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21745* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21746* Prompting:: Annotations marking @value{GDBN}'s need for input.
21747* Errors:: Annotations for error messages.
922fbb7b
AC
21748* Invalidation:: Some annotations describe things now invalid.
21749* Annotations for Running::
21750 Whether the program is running, how it stopped, etc.
21751* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21752@end menu
21753
21754@node Annotations Overview
21755@section What is an Annotation?
21756@cindex annotations
21757
922fbb7b
AC
21758Annotations start with a newline character, two @samp{control-z}
21759characters, and the name of the annotation. If there is no additional
21760information associated with this annotation, the name of the annotation
21761is followed immediately by a newline. If there is additional
21762information, the name of the annotation is followed by a space, the
21763additional information, and a newline. The additional information
21764cannot contain newline characters.
21765
21766Any output not beginning with a newline and two @samp{control-z}
21767characters denotes literal output from @value{GDBN}. Currently there is
21768no need for @value{GDBN} to output a newline followed by two
21769@samp{control-z} characters, but if there was such a need, the
21770annotations could be extended with an @samp{escape} annotation which
21771means those three characters as output.
21772
086432e2
AC
21773The annotation @var{level}, which is specified using the
21774@option{--annotate} command line option (@pxref{Mode Options}), controls
21775how much information @value{GDBN} prints together with its prompt,
21776values of expressions, source lines, and other types of output. Level 0
d3e8051b 21777is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21778subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21779for programs that control @value{GDBN}, and level 2 annotations have
21780been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21781Interface, annotate, GDB's Obsolete Annotations}).
21782
21783@table @code
21784@kindex set annotate
21785@item set annotate @var{level}
e09f16f9 21786The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21787annotations to the specified @var{level}.
9c16f35a
EZ
21788
21789@item show annotate
21790@kindex show annotate
21791Show the current annotation level.
09d4efe1
EZ
21792@end table
21793
21794This chapter describes level 3 annotations.
086432e2 21795
922fbb7b
AC
21796A simple example of starting up @value{GDBN} with annotations is:
21797
21798@smallexample
086432e2
AC
21799$ @kbd{gdb --annotate=3}
21800GNU gdb 6.0
21801Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21802GDB is free software, covered by the GNU General Public License,
21803and you are welcome to change it and/or distribute copies of it
21804under certain conditions.
21805Type "show copying" to see the conditions.
21806There is absolutely no warranty for GDB. Type "show warranty"
21807for details.
086432e2 21808This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21809
21810^Z^Zpre-prompt
f7dc1244 21811(@value{GDBP})
922fbb7b 21812^Z^Zprompt
086432e2 21813@kbd{quit}
922fbb7b
AC
21814
21815^Z^Zpost-prompt
b383017d 21816$
922fbb7b
AC
21817@end smallexample
21818
21819Here @samp{quit} is input to @value{GDBN}; the rest is output from
21820@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21821denotes a @samp{control-z} character) are annotations; the rest is
21822output from @value{GDBN}.
21823
9e6c4bd5
NR
21824@node Server Prefix
21825@section The Server Prefix
21826@cindex server prefix
21827
21828If you prefix a command with @samp{server } then it will not affect
21829the command history, nor will it affect @value{GDBN}'s notion of which
21830command to repeat if @key{RET} is pressed on a line by itself. This
21831means that commands can be run behind a user's back by a front-end in
21832a transparent manner.
21833
21834The server prefix does not affect the recording of values into the value
21835history; to print a value without recording it into the value history,
21836use the @code{output} command instead of the @code{print} command.
21837
922fbb7b
AC
21838@node Prompting
21839@section Annotation for @value{GDBN} Input
21840
21841@cindex annotations for prompts
21842When @value{GDBN} prompts for input, it annotates this fact so it is possible
21843to know when to send output, when the output from a given command is
21844over, etc.
21845
21846Different kinds of input each have a different @dfn{input type}. Each
21847input type has three annotations: a @code{pre-} annotation, which
21848denotes the beginning of any prompt which is being output, a plain
21849annotation, which denotes the end of the prompt, and then a @code{post-}
21850annotation which denotes the end of any echo which may (or may not) be
21851associated with the input. For example, the @code{prompt} input type
21852features the following annotations:
21853
21854@smallexample
21855^Z^Zpre-prompt
21856^Z^Zprompt
21857^Z^Zpost-prompt
21858@end smallexample
21859
21860The input types are
21861
21862@table @code
e5ac9b53
EZ
21863@findex pre-prompt annotation
21864@findex prompt annotation
21865@findex post-prompt annotation
922fbb7b
AC
21866@item prompt
21867When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21868
e5ac9b53
EZ
21869@findex pre-commands annotation
21870@findex commands annotation
21871@findex post-commands annotation
922fbb7b
AC
21872@item commands
21873When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21874command. The annotations are repeated for each command which is input.
21875
e5ac9b53
EZ
21876@findex pre-overload-choice annotation
21877@findex overload-choice annotation
21878@findex post-overload-choice annotation
922fbb7b
AC
21879@item overload-choice
21880When @value{GDBN} wants the user to select between various overloaded functions.
21881
e5ac9b53
EZ
21882@findex pre-query annotation
21883@findex query annotation
21884@findex post-query annotation
922fbb7b
AC
21885@item query
21886When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21887
e5ac9b53
EZ
21888@findex pre-prompt-for-continue annotation
21889@findex prompt-for-continue annotation
21890@findex post-prompt-for-continue annotation
922fbb7b
AC
21891@item prompt-for-continue
21892When @value{GDBN} is asking the user to press return to continue. Note: Don't
21893expect this to work well; instead use @code{set height 0} to disable
21894prompting. This is because the counting of lines is buggy in the
21895presence of annotations.
21896@end table
21897
21898@node Errors
21899@section Errors
21900@cindex annotations for errors, warnings and interrupts
21901
e5ac9b53 21902@findex quit annotation
922fbb7b
AC
21903@smallexample
21904^Z^Zquit
21905@end smallexample
21906
21907This annotation occurs right before @value{GDBN} responds to an interrupt.
21908
e5ac9b53 21909@findex error annotation
922fbb7b
AC
21910@smallexample
21911^Z^Zerror
21912@end smallexample
21913
21914This annotation occurs right before @value{GDBN} responds to an error.
21915
21916Quit and error annotations indicate that any annotations which @value{GDBN} was
21917in the middle of may end abruptly. For example, if a
21918@code{value-history-begin} annotation is followed by a @code{error}, one
21919cannot expect to receive the matching @code{value-history-end}. One
21920cannot expect not to receive it either, however; an error annotation
21921does not necessarily mean that @value{GDBN} is immediately returning all the way
21922to the top level.
21923
e5ac9b53 21924@findex error-begin annotation
922fbb7b
AC
21925A quit or error annotation may be preceded by
21926
21927@smallexample
21928^Z^Zerror-begin
21929@end smallexample
21930
21931Any output between that and the quit or error annotation is the error
21932message.
21933
21934Warning messages are not yet annotated.
21935@c If we want to change that, need to fix warning(), type_error(),
21936@c range_error(), and possibly other places.
21937
922fbb7b
AC
21938@node Invalidation
21939@section Invalidation Notices
21940
21941@cindex annotations for invalidation messages
21942The following annotations say that certain pieces of state may have
21943changed.
21944
21945@table @code
e5ac9b53 21946@findex frames-invalid annotation
922fbb7b
AC
21947@item ^Z^Zframes-invalid
21948
21949The frames (for example, output from the @code{backtrace} command) may
21950have changed.
21951
e5ac9b53 21952@findex breakpoints-invalid annotation
922fbb7b
AC
21953@item ^Z^Zbreakpoints-invalid
21954
21955The breakpoints may have changed. For example, the user just added or
21956deleted a breakpoint.
21957@end table
21958
21959@node Annotations for Running
21960@section Running the Program
21961@cindex annotations for running programs
21962
e5ac9b53
EZ
21963@findex starting annotation
21964@findex stopping annotation
922fbb7b 21965When the program starts executing due to a @value{GDBN} command such as
b383017d 21966@code{step} or @code{continue},
922fbb7b
AC
21967
21968@smallexample
21969^Z^Zstarting
21970@end smallexample
21971
b383017d 21972is output. When the program stops,
922fbb7b
AC
21973
21974@smallexample
21975^Z^Zstopped
21976@end smallexample
21977
21978is output. Before the @code{stopped} annotation, a variety of
21979annotations describe how the program stopped.
21980
21981@table @code
e5ac9b53 21982@findex exited annotation
922fbb7b
AC
21983@item ^Z^Zexited @var{exit-status}
21984The program exited, and @var{exit-status} is the exit status (zero for
21985successful exit, otherwise nonzero).
21986
e5ac9b53
EZ
21987@findex signalled annotation
21988@findex signal-name annotation
21989@findex signal-name-end annotation
21990@findex signal-string annotation
21991@findex signal-string-end annotation
922fbb7b
AC
21992@item ^Z^Zsignalled
21993The program exited with a signal. After the @code{^Z^Zsignalled}, the
21994annotation continues:
21995
21996@smallexample
21997@var{intro-text}
21998^Z^Zsignal-name
21999@var{name}
22000^Z^Zsignal-name-end
22001@var{middle-text}
22002^Z^Zsignal-string
22003@var{string}
22004^Z^Zsignal-string-end
22005@var{end-text}
22006@end smallexample
22007
22008@noindent
22009where @var{name} is the name of the signal, such as @code{SIGILL} or
22010@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22011as @code{Illegal Instruction} or @code{Segmentation fault}.
22012@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22013user's benefit and have no particular format.
22014
e5ac9b53 22015@findex signal annotation
922fbb7b
AC
22016@item ^Z^Zsignal
22017The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22018just saying that the program received the signal, not that it was
22019terminated with it.
22020
e5ac9b53 22021@findex breakpoint annotation
922fbb7b
AC
22022@item ^Z^Zbreakpoint @var{number}
22023The program hit breakpoint number @var{number}.
22024
e5ac9b53 22025@findex watchpoint annotation
922fbb7b
AC
22026@item ^Z^Zwatchpoint @var{number}
22027The program hit watchpoint number @var{number}.
22028@end table
22029
22030@node Source Annotations
22031@section Displaying Source
22032@cindex annotations for source display
22033
e5ac9b53 22034@findex source annotation
922fbb7b
AC
22035The following annotation is used instead of displaying source code:
22036
22037@smallexample
22038^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22039@end smallexample
22040
22041where @var{filename} is an absolute file name indicating which source
22042file, @var{line} is the line number within that file (where 1 is the
22043first line in the file), @var{character} is the character position
22044within the file (where 0 is the first character in the file) (for most
22045debug formats this will necessarily point to the beginning of a line),
22046@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22047line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22048@var{addr} is the address in the target program associated with the
22049source which is being displayed. @var{addr} is in the form @samp{0x}
22050followed by one or more lowercase hex digits (note that this does not
22051depend on the language).
22052
8e04817f
AC
22053@node GDB Bugs
22054@chapter Reporting Bugs in @value{GDBN}
22055@cindex bugs in @value{GDBN}
22056@cindex reporting bugs in @value{GDBN}
c906108c 22057
8e04817f 22058Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22059
8e04817f
AC
22060Reporting a bug may help you by bringing a solution to your problem, or it
22061may not. But in any case the principal function of a bug report is to help
22062the entire community by making the next version of @value{GDBN} work better. Bug
22063reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22064
8e04817f
AC
22065In order for a bug report to serve its purpose, you must include the
22066information that enables us to fix the bug.
c4555f82
SC
22067
22068@menu
8e04817f
AC
22069* Bug Criteria:: Have you found a bug?
22070* Bug Reporting:: How to report bugs
c4555f82
SC
22071@end menu
22072
8e04817f 22073@node Bug Criteria
79a6e687 22074@section Have You Found a Bug?
8e04817f 22075@cindex bug criteria
c4555f82 22076
8e04817f 22077If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22078
22079@itemize @bullet
8e04817f
AC
22080@cindex fatal signal
22081@cindex debugger crash
22082@cindex crash of debugger
c4555f82 22083@item
8e04817f
AC
22084If the debugger gets a fatal signal, for any input whatever, that is a
22085@value{GDBN} bug. Reliable debuggers never crash.
22086
22087@cindex error on valid input
22088@item
22089If @value{GDBN} produces an error message for valid input, that is a
22090bug. (Note that if you're cross debugging, the problem may also be
22091somewhere in the connection to the target.)
c4555f82 22092
8e04817f 22093@cindex invalid input
c4555f82 22094@item
8e04817f
AC
22095If @value{GDBN} does not produce an error message for invalid input,
22096that is a bug. However, you should note that your idea of
22097``invalid input'' might be our idea of ``an extension'' or ``support
22098for traditional practice''.
22099
22100@item
22101If you are an experienced user of debugging tools, your suggestions
22102for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22103@end itemize
22104
8e04817f 22105@node Bug Reporting
79a6e687 22106@section How to Report Bugs
8e04817f
AC
22107@cindex bug reports
22108@cindex @value{GDBN} bugs, reporting
22109
22110A number of companies and individuals offer support for @sc{gnu} products.
22111If you obtained @value{GDBN} from a support organization, we recommend you
22112contact that organization first.
22113
22114You can find contact information for many support companies and
22115individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22116distribution.
22117@c should add a web page ref...
22118
129188f6 22119In any event, we also recommend that you submit bug reports for
d3e8051b 22120@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22121@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22122page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22123be used.
8e04817f
AC
22124
22125@strong{Do not send bug reports to @samp{info-gdb}, or to
22126@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22127not want to receive bug reports. Those that do have arranged to receive
22128@samp{bug-gdb}.
22129
22130The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22131serves as a repeater. The mailing list and the newsgroup carry exactly
22132the same messages. Often people think of posting bug reports to the
22133newsgroup instead of mailing them. This appears to work, but it has one
22134problem which can be crucial: a newsgroup posting often lacks a mail
22135path back to the sender. Thus, if we need to ask for more information,
22136we may be unable to reach you. For this reason, it is better to send
22137bug reports to the mailing list.
c4555f82 22138
8e04817f
AC
22139The fundamental principle of reporting bugs usefully is this:
22140@strong{report all the facts}. If you are not sure whether to state a
22141fact or leave it out, state it!
c4555f82 22142
8e04817f
AC
22143Often people omit facts because they think they know what causes the
22144problem and assume that some details do not matter. Thus, you might
22145assume that the name of the variable you use in an example does not matter.
22146Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22147stray memory reference which happens to fetch from the location where that
22148name is stored in memory; perhaps, if the name were different, the contents
22149of that location would fool the debugger into doing the right thing despite
22150the bug. Play it safe and give a specific, complete example. That is the
22151easiest thing for you to do, and the most helpful.
c4555f82 22152
8e04817f
AC
22153Keep in mind that the purpose of a bug report is to enable us to fix the
22154bug. It may be that the bug has been reported previously, but neither
22155you nor we can know that unless your bug report is complete and
22156self-contained.
c4555f82 22157
8e04817f
AC
22158Sometimes people give a few sketchy facts and ask, ``Does this ring a
22159bell?'' Those bug reports are useless, and we urge everyone to
22160@emph{refuse to respond to them} except to chide the sender to report
22161bugs properly.
22162
22163To enable us to fix the bug, you should include all these things:
c4555f82
SC
22164
22165@itemize @bullet
22166@item
8e04817f
AC
22167The version of @value{GDBN}. @value{GDBN} announces it if you start
22168with no arguments; you can also print it at any time using @code{show
22169version}.
c4555f82 22170
8e04817f
AC
22171Without this, we will not know whether there is any point in looking for
22172the bug in the current version of @value{GDBN}.
c4555f82
SC
22173
22174@item
8e04817f
AC
22175The type of machine you are using, and the operating system name and
22176version number.
c4555f82
SC
22177
22178@item
c1468174 22179What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22180``@value{GCC}--2.8.1''.
c4555f82
SC
22181
22182@item
8e04817f 22183What compiler (and its version) was used to compile the program you are
c1468174 22184debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22185C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22186to get this information; for other compilers, see the documentation for
22187those compilers.
c4555f82 22188
8e04817f
AC
22189@item
22190The command arguments you gave the compiler to compile your example and
22191observe the bug. For example, did you use @samp{-O}? To guarantee
22192you will not omit something important, list them all. A copy of the
22193Makefile (or the output from make) is sufficient.
c4555f82 22194
8e04817f
AC
22195If we were to try to guess the arguments, we would probably guess wrong
22196and then we might not encounter the bug.
c4555f82 22197
8e04817f
AC
22198@item
22199A complete input script, and all necessary source files, that will
22200reproduce the bug.
c4555f82 22201
8e04817f
AC
22202@item
22203A description of what behavior you observe that you believe is
22204incorrect. For example, ``It gets a fatal signal.''
c4555f82 22205
8e04817f
AC
22206Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22207will certainly notice it. But if the bug is incorrect output, we might
22208not notice unless it is glaringly wrong. You might as well not give us
22209a chance to make a mistake.
c4555f82 22210
8e04817f
AC
22211Even if the problem you experience is a fatal signal, you should still
22212say so explicitly. Suppose something strange is going on, such as, your
22213copy of @value{GDBN} is out of synch, or you have encountered a bug in
22214the C library on your system. (This has happened!) Your copy might
22215crash and ours would not. If you told us to expect a crash, then when
22216ours fails to crash, we would know that the bug was not happening for
22217us. If you had not told us to expect a crash, then we would not be able
22218to draw any conclusion from our observations.
c4555f82 22219
e0c07bf0
MC
22220@pindex script
22221@cindex recording a session script
22222To collect all this information, you can use a session recording program
22223such as @command{script}, which is available on many Unix systems.
22224Just run your @value{GDBN} session inside @command{script} and then
22225include the @file{typescript} file with your bug report.
22226
22227Another way to record a @value{GDBN} session is to run @value{GDBN}
22228inside Emacs and then save the entire buffer to a file.
22229
8e04817f
AC
22230@item
22231If you wish to suggest changes to the @value{GDBN} source, send us context
22232diffs. If you even discuss something in the @value{GDBN} source, refer to
22233it by context, not by line number.
c4555f82 22234
8e04817f
AC
22235The line numbers in our development sources will not match those in your
22236sources. Your line numbers would convey no useful information to us.
c4555f82 22237
8e04817f 22238@end itemize
c4555f82 22239
8e04817f 22240Here are some things that are not necessary:
c4555f82 22241
8e04817f
AC
22242@itemize @bullet
22243@item
22244A description of the envelope of the bug.
c4555f82 22245
8e04817f
AC
22246Often people who encounter a bug spend a lot of time investigating
22247which changes to the input file will make the bug go away and which
22248changes will not affect it.
c4555f82 22249
8e04817f
AC
22250This is often time consuming and not very useful, because the way we
22251will find the bug is by running a single example under the debugger
22252with breakpoints, not by pure deduction from a series of examples.
22253We recommend that you save your time for something else.
c4555f82 22254
8e04817f
AC
22255Of course, if you can find a simpler example to report @emph{instead}
22256of the original one, that is a convenience for us. Errors in the
22257output will be easier to spot, running under the debugger will take
22258less time, and so on.
c4555f82 22259
8e04817f
AC
22260However, simplification is not vital; if you do not want to do this,
22261report the bug anyway and send us the entire test case you used.
c4555f82 22262
8e04817f
AC
22263@item
22264A patch for the bug.
c4555f82 22265
8e04817f
AC
22266A patch for the bug does help us if it is a good one. But do not omit
22267the necessary information, such as the test case, on the assumption that
22268a patch is all we need. We might see problems with your patch and decide
22269to fix the problem another way, or we might not understand it at all.
c4555f82 22270
8e04817f
AC
22271Sometimes with a program as complicated as @value{GDBN} it is very hard to
22272construct an example that will make the program follow a certain path
22273through the code. If you do not send us the example, we will not be able
22274to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22275
8e04817f
AC
22276And if we cannot understand what bug you are trying to fix, or why your
22277patch should be an improvement, we will not install it. A test case will
22278help us to understand.
c4555f82 22279
8e04817f
AC
22280@item
22281A guess about what the bug is or what it depends on.
c4555f82 22282
8e04817f
AC
22283Such guesses are usually wrong. Even we cannot guess right about such
22284things without first using the debugger to find the facts.
22285@end itemize
c4555f82 22286
8e04817f
AC
22287@c The readline documentation is distributed with the readline code
22288@c and consists of the two following files:
22289@c rluser.texinfo
22290@c inc-hist.texinfo
22291@c Use -I with makeinfo to point to the appropriate directory,
22292@c environment var TEXINPUTS with TeX.
5bdf8622 22293@include rluser.texi
8e04817f 22294@include inc-hist.texinfo
c4555f82 22295
c4555f82 22296
8e04817f
AC
22297@node Formatting Documentation
22298@appendix Formatting Documentation
c4555f82 22299
8e04817f
AC
22300@cindex @value{GDBN} reference card
22301@cindex reference card
22302The @value{GDBN} 4 release includes an already-formatted reference card, ready
22303for printing with PostScript or Ghostscript, in the @file{gdb}
22304subdirectory of the main source directory@footnote{In
22305@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22306release.}. If you can use PostScript or Ghostscript with your printer,
22307you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22308
8e04817f
AC
22309The release also includes the source for the reference card. You
22310can format it, using @TeX{}, by typing:
c4555f82 22311
474c8240 22312@smallexample
8e04817f 22313make refcard.dvi
474c8240 22314@end smallexample
c4555f82 22315
8e04817f
AC
22316The @value{GDBN} reference card is designed to print in @dfn{landscape}
22317mode on US ``letter'' size paper;
22318that is, on a sheet 11 inches wide by 8.5 inches
22319high. You will need to specify this form of printing as an option to
22320your @sc{dvi} output program.
c4555f82 22321
8e04817f 22322@cindex documentation
c4555f82 22323
8e04817f
AC
22324All the documentation for @value{GDBN} comes as part of the machine-readable
22325distribution. The documentation is written in Texinfo format, which is
22326a documentation system that uses a single source file to produce both
22327on-line information and a printed manual. You can use one of the Info
22328formatting commands to create the on-line version of the documentation
22329and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22330
8e04817f
AC
22331@value{GDBN} includes an already formatted copy of the on-line Info
22332version of this manual in the @file{gdb} subdirectory. The main Info
22333file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22334subordinate files matching @samp{gdb.info*} in the same directory. If
22335necessary, you can print out these files, or read them with any editor;
22336but they are easier to read using the @code{info} subsystem in @sc{gnu}
22337Emacs or the standalone @code{info} program, available as part of the
22338@sc{gnu} Texinfo distribution.
c4555f82 22339
8e04817f
AC
22340If you want to format these Info files yourself, you need one of the
22341Info formatting programs, such as @code{texinfo-format-buffer} or
22342@code{makeinfo}.
c4555f82 22343
8e04817f
AC
22344If you have @code{makeinfo} installed, and are in the top level
22345@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22346version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22347
474c8240 22348@smallexample
8e04817f
AC
22349cd gdb
22350make gdb.info
474c8240 22351@end smallexample
c4555f82 22352
8e04817f
AC
22353If you want to typeset and print copies of this manual, you need @TeX{},
22354a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22355Texinfo definitions file.
c4555f82 22356
8e04817f
AC
22357@TeX{} is a typesetting program; it does not print files directly, but
22358produces output files called @sc{dvi} files. To print a typeset
22359document, you need a program to print @sc{dvi} files. If your system
22360has @TeX{} installed, chances are it has such a program. The precise
22361command to use depends on your system; @kbd{lpr -d} is common; another
22362(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22363require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22364
8e04817f
AC
22365@TeX{} also requires a macro definitions file called
22366@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22367written in Texinfo format. On its own, @TeX{} cannot either read or
22368typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22369and is located in the @file{gdb-@var{version-number}/texinfo}
22370directory.
c4555f82 22371
8e04817f 22372If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22373typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22374subdirectory of the main source directory (for example, to
22375@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22376
474c8240 22377@smallexample
8e04817f 22378make gdb.dvi
474c8240 22379@end smallexample
c4555f82 22380
8e04817f 22381Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22382
8e04817f
AC
22383@node Installing GDB
22384@appendix Installing @value{GDBN}
8e04817f 22385@cindex installation
c4555f82 22386
7fa2210b
DJ
22387@menu
22388* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22389* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22390* Separate Objdir:: Compiling @value{GDBN} in another directory
22391* Config Names:: Specifying names for hosts and targets
22392* Configure Options:: Summary of options for configure
22393@end menu
22394
22395@node Requirements
79a6e687 22396@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22397@cindex building @value{GDBN}, requirements for
22398
22399Building @value{GDBN} requires various tools and packages to be available.
22400Other packages will be used only if they are found.
22401
79a6e687 22402@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22403@table @asis
22404@item ISO C90 compiler
22405@value{GDBN} is written in ISO C90. It should be buildable with any
22406working C90 compiler, e.g.@: GCC.
22407
22408@end table
22409
79a6e687 22410@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22411@table @asis
22412@item Expat
123dc839 22413@anchor{Expat}
7fa2210b
DJ
22414@value{GDBN} can use the Expat XML parsing library. This library may be
22415included with your operating system distribution; if it is not, you
22416can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22417The @file{configure} script will search for this library in several
7fa2210b
DJ
22418standard locations; if it is installed in an unusual path, you can
22419use the @option{--with-libexpat-prefix} option to specify its location.
22420
9cceb671
DJ
22421Expat is used for:
22422
22423@itemize @bullet
22424@item
22425Remote protocol memory maps (@pxref{Memory Map Format})
22426@item
22427Target descriptions (@pxref{Target Descriptions})
22428@item
22429Remote shared library lists (@pxref{Library List Format})
22430@item
22431MS-Windows shared libraries (@pxref{Shared Libraries})
22432@end itemize
7fa2210b
DJ
22433
22434@end table
22435
22436@node Running Configure
db2e3e2e 22437@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22438@cindex configuring @value{GDBN}
db2e3e2e 22439@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22440of preparing @value{GDBN} for installation; you can then use @code{make} to
22441build the @code{gdb} program.
22442@iftex
22443@c irrelevant in info file; it's as current as the code it lives with.
22444@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22445look at the @file{README} file in the sources; we may have improved the
22446installation procedures since publishing this manual.}
22447@end iftex
c4555f82 22448
8e04817f
AC
22449The @value{GDBN} distribution includes all the source code you need for
22450@value{GDBN} in a single directory, whose name is usually composed by
22451appending the version number to @samp{gdb}.
c4555f82 22452
8e04817f
AC
22453For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22454@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22455
8e04817f
AC
22456@table @code
22457@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22458script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22459
8e04817f
AC
22460@item gdb-@value{GDBVN}/gdb
22461the source specific to @value{GDBN} itself
c4555f82 22462
8e04817f
AC
22463@item gdb-@value{GDBVN}/bfd
22464source for the Binary File Descriptor library
c906108c 22465
8e04817f
AC
22466@item gdb-@value{GDBVN}/include
22467@sc{gnu} include files
c906108c 22468
8e04817f
AC
22469@item gdb-@value{GDBVN}/libiberty
22470source for the @samp{-liberty} free software library
c906108c 22471
8e04817f
AC
22472@item gdb-@value{GDBVN}/opcodes
22473source for the library of opcode tables and disassemblers
c906108c 22474
8e04817f
AC
22475@item gdb-@value{GDBVN}/readline
22476source for the @sc{gnu} command-line interface
c906108c 22477
8e04817f
AC
22478@item gdb-@value{GDBVN}/glob
22479source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22480
8e04817f
AC
22481@item gdb-@value{GDBVN}/mmalloc
22482source for the @sc{gnu} memory-mapped malloc package
22483@end table
c906108c 22484
db2e3e2e 22485The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22486from the @file{gdb-@var{version-number}} source directory, which in
22487this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22488
8e04817f 22489First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22490if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22491identifier for the platform on which @value{GDBN} will run as an
22492argument.
c906108c 22493
8e04817f 22494For example:
c906108c 22495
474c8240 22496@smallexample
8e04817f
AC
22497cd gdb-@value{GDBVN}
22498./configure @var{host}
22499make
474c8240 22500@end smallexample
c906108c 22501
8e04817f
AC
22502@noindent
22503where @var{host} is an identifier such as @samp{sun4} or
22504@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22505(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22506correct value by examining your system.)
c906108c 22507
8e04817f
AC
22508Running @samp{configure @var{host}} and then running @code{make} builds the
22509@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22510libraries, then @code{gdb} itself. The configured source files, and the
22511binaries, are left in the corresponding source directories.
c906108c 22512
8e04817f 22513@need 750
db2e3e2e 22514@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22515system does not recognize this automatically when you run a different
22516shell, you may need to run @code{sh} on it explicitly:
c906108c 22517
474c8240 22518@smallexample
8e04817f 22519sh configure @var{host}
474c8240 22520@end smallexample
c906108c 22521
db2e3e2e 22522If you run @file{configure} from a directory that contains source
8e04817f 22523directories for multiple libraries or programs, such as the
db2e3e2e
BW
22524@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22525@file{configure}
8e04817f
AC
22526creates configuration files for every directory level underneath (unless
22527you tell it not to, with the @samp{--norecursion} option).
22528
db2e3e2e 22529You should run the @file{configure} script from the top directory in the
94e91d6d 22530source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22531@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22532that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22533if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22534of the @file{gdb-@var{version-number}} directory, you will omit the
22535configuration of @file{bfd}, @file{readline}, and other sibling
22536directories of the @file{gdb} subdirectory. This leads to build errors
22537about missing include files such as @file{bfd/bfd.h}.
c906108c 22538
8e04817f
AC
22539You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22540However, you should make sure that the shell on your path (named by
22541the @samp{SHELL} environment variable) is publicly readable. Remember
22542that @value{GDBN} uses the shell to start your program---some systems refuse to
22543let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22544
8e04817f 22545@node Separate Objdir
79a6e687 22546@section Compiling @value{GDBN} in Another Directory
c906108c 22547
8e04817f
AC
22548If you want to run @value{GDBN} versions for several host or target machines,
22549you need a different @code{gdb} compiled for each combination of
db2e3e2e 22550host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22551allowing you to generate each configuration in a separate subdirectory,
22552rather than in the source directory. If your @code{make} program
22553handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22554@code{make} in each of these directories builds the @code{gdb}
22555program specified there.
c906108c 22556
db2e3e2e 22557To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22558with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22559(You also need to specify a path to find @file{configure}
22560itself from your working directory. If the path to @file{configure}
8e04817f
AC
22561would be the same as the argument to @samp{--srcdir}, you can leave out
22562the @samp{--srcdir} option; it is assumed.)
c906108c 22563
8e04817f
AC
22564For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22565separate directory for a Sun 4 like this:
c906108c 22566
474c8240 22567@smallexample
8e04817f
AC
22568@group
22569cd gdb-@value{GDBVN}
22570mkdir ../gdb-sun4
22571cd ../gdb-sun4
22572../gdb-@value{GDBVN}/configure sun4
22573make
22574@end group
474c8240 22575@end smallexample
c906108c 22576
db2e3e2e 22577When @file{configure} builds a configuration using a remote source
8e04817f
AC
22578directory, it creates a tree for the binaries with the same structure
22579(and using the same names) as the tree under the source directory. In
22580the example, you'd find the Sun 4 library @file{libiberty.a} in the
22581directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22582@file{gdb-sun4/gdb}.
c906108c 22583
94e91d6d
MC
22584Make sure that your path to the @file{configure} script has just one
22585instance of @file{gdb} in it. If your path to @file{configure} looks
22586like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22587one subdirectory of @value{GDBN}, not the whole package. This leads to
22588build errors about missing include files such as @file{bfd/bfd.h}.
22589
8e04817f
AC
22590One popular reason to build several @value{GDBN} configurations in separate
22591directories is to configure @value{GDBN} for cross-compiling (where
22592@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22593programs that run on another machine---the @dfn{target}).
22594You specify a cross-debugging target by
db2e3e2e 22595giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22596
8e04817f
AC
22597When you run @code{make} to build a program or library, you must run
22598it in a configured directory---whatever directory you were in when you
db2e3e2e 22599called @file{configure} (or one of its subdirectories).
c906108c 22600
db2e3e2e 22601The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22602directory also runs recursively. If you type @code{make} in a source
22603directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22604directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22605will build all the required libraries, and then build GDB.
c906108c 22606
8e04817f
AC
22607When you have multiple hosts or targets configured in separate
22608directories, you can run @code{make} on them in parallel (for example,
22609if they are NFS-mounted on each of the hosts); they will not interfere
22610with each other.
c906108c 22611
8e04817f 22612@node Config Names
79a6e687 22613@section Specifying Names for Hosts and Targets
c906108c 22614
db2e3e2e 22615The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22616script are based on a three-part naming scheme, but some short predefined
22617aliases are also supported. The full naming scheme encodes three pieces
22618of information in the following pattern:
c906108c 22619
474c8240 22620@smallexample
8e04817f 22621@var{architecture}-@var{vendor}-@var{os}
474c8240 22622@end smallexample
c906108c 22623
8e04817f
AC
22624For example, you can use the alias @code{sun4} as a @var{host} argument,
22625or as the value for @var{target} in a @code{--target=@var{target}}
22626option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22627
db2e3e2e 22628The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22629any query facility to list all supported host and target names or
db2e3e2e 22630aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22631@code{config.sub} to map abbreviations to full names; you can read the
22632script, if you wish, or you can use it to test your guesses on
22633abbreviations---for example:
c906108c 22634
8e04817f
AC
22635@smallexample
22636% sh config.sub i386-linux
22637i386-pc-linux-gnu
22638% sh config.sub alpha-linux
22639alpha-unknown-linux-gnu
22640% sh config.sub hp9k700
22641hppa1.1-hp-hpux
22642% sh config.sub sun4
22643sparc-sun-sunos4.1.1
22644% sh config.sub sun3
22645m68k-sun-sunos4.1.1
22646% sh config.sub i986v
22647Invalid configuration `i986v': machine `i986v' not recognized
22648@end smallexample
c906108c 22649
8e04817f
AC
22650@noindent
22651@code{config.sub} is also distributed in the @value{GDBN} source
22652directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22653
8e04817f 22654@node Configure Options
db2e3e2e 22655@section @file{configure} Options
c906108c 22656
db2e3e2e
BW
22657Here is a summary of the @file{configure} options and arguments that
22658are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22659several other options not listed here. @inforef{What Configure
db2e3e2e 22660Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22661
474c8240 22662@smallexample
8e04817f
AC
22663configure @r{[}--help@r{]}
22664 @r{[}--prefix=@var{dir}@r{]}
22665 @r{[}--exec-prefix=@var{dir}@r{]}
22666 @r{[}--srcdir=@var{dirname}@r{]}
22667 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22668 @r{[}--target=@var{target}@r{]}
22669 @var{host}
474c8240 22670@end smallexample
c906108c 22671
8e04817f
AC
22672@noindent
22673You may introduce options with a single @samp{-} rather than
22674@samp{--} if you prefer; but you may abbreviate option names if you use
22675@samp{--}.
c906108c 22676
8e04817f
AC
22677@table @code
22678@item --help
db2e3e2e 22679Display a quick summary of how to invoke @file{configure}.
c906108c 22680
8e04817f
AC
22681@item --prefix=@var{dir}
22682Configure the source to install programs and files under directory
22683@file{@var{dir}}.
c906108c 22684
8e04817f
AC
22685@item --exec-prefix=@var{dir}
22686Configure the source to install programs under directory
22687@file{@var{dir}}.
c906108c 22688
8e04817f
AC
22689@c avoid splitting the warning from the explanation:
22690@need 2000
22691@item --srcdir=@var{dirname}
22692@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22693@code{make} that implements the @code{VPATH} feature.}@*
22694Use this option to make configurations in directories separate from the
22695@value{GDBN} source directories. Among other things, you can use this to
22696build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22697directories. @file{configure} writes configuration-specific files in
8e04817f 22698the current directory, but arranges for them to use the source in the
db2e3e2e 22699directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22700the working directory in parallel to the source directories below
22701@var{dirname}.
c906108c 22702
8e04817f 22703@item --norecursion
db2e3e2e 22704Configure only the directory level where @file{configure} is executed; do not
8e04817f 22705propagate configuration to subdirectories.
c906108c 22706
8e04817f
AC
22707@item --target=@var{target}
22708Configure @value{GDBN} for cross-debugging programs running on the specified
22709@var{target}. Without this option, @value{GDBN} is configured to debug
22710programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22711
8e04817f 22712There is no convenient way to generate a list of all available targets.
c906108c 22713
8e04817f
AC
22714@item @var{host} @dots{}
22715Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22716
8e04817f
AC
22717There is no convenient way to generate a list of all available hosts.
22718@end table
c906108c 22719
8e04817f
AC
22720There are many other options available as well, but they are generally
22721needed for special purposes only.
c906108c 22722
8e04817f
AC
22723@node Maintenance Commands
22724@appendix Maintenance Commands
22725@cindex maintenance commands
22726@cindex internal commands
c906108c 22727
8e04817f 22728In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22729includes a number of commands intended for @value{GDBN} developers,
22730that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22731provided here for reference. (For commands that turn on debugging
22732messages, see @ref{Debugging Output}.)
c906108c 22733
8e04817f 22734@table @code
09d4efe1
EZ
22735@kindex maint agent
22736@item maint agent @var{expression}
22737Translate the given @var{expression} into remote agent bytecodes.
22738This command is useful for debugging the Agent Expression mechanism
22739(@pxref{Agent Expressions}).
22740
8e04817f
AC
22741@kindex maint info breakpoints
22742@item @anchor{maint info breakpoints}maint info breakpoints
22743Using the same format as @samp{info breakpoints}, display both the
22744breakpoints you've set explicitly, and those @value{GDBN} is using for
22745internal purposes. Internal breakpoints are shown with negative
22746breakpoint numbers. The type column identifies what kind of breakpoint
22747is shown:
c906108c 22748
8e04817f
AC
22749@table @code
22750@item breakpoint
22751Normal, explicitly set breakpoint.
c906108c 22752
8e04817f
AC
22753@item watchpoint
22754Normal, explicitly set watchpoint.
c906108c 22755
8e04817f
AC
22756@item longjmp
22757Internal breakpoint, used to handle correctly stepping through
22758@code{longjmp} calls.
c906108c 22759
8e04817f
AC
22760@item longjmp resume
22761Internal breakpoint at the target of a @code{longjmp}.
c906108c 22762
8e04817f
AC
22763@item until
22764Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22765
8e04817f
AC
22766@item finish
22767Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22768
8e04817f
AC
22769@item shlib events
22770Shared library events.
c906108c 22771
8e04817f 22772@end table
c906108c 22773
09d4efe1
EZ
22774@kindex maint check-symtabs
22775@item maint check-symtabs
22776Check the consistency of psymtabs and symtabs.
22777
22778@kindex maint cplus first_component
22779@item maint cplus first_component @var{name}
22780Print the first C@t{++} class/namespace component of @var{name}.
22781
22782@kindex maint cplus namespace
22783@item maint cplus namespace
22784Print the list of possible C@t{++} namespaces.
22785
22786@kindex maint demangle
22787@item maint demangle @var{name}
d3e8051b 22788Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22789
22790@kindex maint deprecate
22791@kindex maint undeprecate
22792@cindex deprecated commands
22793@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22794@itemx maint undeprecate @var{command}
22795Deprecate or undeprecate the named @var{command}. Deprecated commands
22796cause @value{GDBN} to issue a warning when you use them. The optional
22797argument @var{replacement} says which newer command should be used in
22798favor of the deprecated one; if it is given, @value{GDBN} will mention
22799the replacement as part of the warning.
22800
22801@kindex maint dump-me
22802@item maint dump-me
721c2651 22803@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22804Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22805This is supported only on systems which support aborting a program
22806with the @code{SIGQUIT} signal.
09d4efe1 22807
8d30a00d
AC
22808@kindex maint internal-error
22809@kindex maint internal-warning
09d4efe1
EZ
22810@item maint internal-error @r{[}@var{message-text}@r{]}
22811@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22812Cause @value{GDBN} to call the internal function @code{internal_error}
22813or @code{internal_warning} and hence behave as though an internal error
22814or internal warning has been detected. In addition to reporting the
22815internal problem, these functions give the user the opportunity to
22816either quit @value{GDBN} or create a core file of the current
22817@value{GDBN} session.
22818
09d4efe1
EZ
22819These commands take an optional parameter @var{message-text} that is
22820used as the text of the error or warning message.
22821
d3e8051b 22822Here's an example of using @code{internal-error}:
09d4efe1 22823
8d30a00d 22824@smallexample
f7dc1244 22825(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22826@dots{}/maint.c:121: internal-error: testing, 1, 2
22827A problem internal to GDB has been detected. Further
22828debugging may prove unreliable.
22829Quit this debugging session? (y or n) @kbd{n}
22830Create a core file? (y or n) @kbd{n}
f7dc1244 22831(@value{GDBP})
8d30a00d
AC
22832@end smallexample
22833
09d4efe1
EZ
22834@kindex maint packet
22835@item maint packet @var{text}
22836If @value{GDBN} is talking to an inferior via the serial protocol,
22837then this command sends the string @var{text} to the inferior, and
22838displays the response packet. @value{GDBN} supplies the initial
22839@samp{$} character, the terminating @samp{#} character, and the
22840checksum.
22841
22842@kindex maint print architecture
22843@item maint print architecture @r{[}@var{file}@r{]}
22844Print the entire architecture configuration. The optional argument
22845@var{file} names the file where the output goes.
8d30a00d 22846
81adfced
DJ
22847@kindex maint print c-tdesc
22848@item maint print c-tdesc
22849Print the current target description (@pxref{Target Descriptions}) as
22850a C source file. The created source file can be used in @value{GDBN}
22851when an XML parser is not available to parse the description.
22852
00905d52
AC
22853@kindex maint print dummy-frames
22854@item maint print dummy-frames
00905d52
AC
22855Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22856
22857@smallexample
f7dc1244 22858(@value{GDBP}) @kbd{b add}
00905d52 22859@dots{}
f7dc1244 22860(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
22861Breakpoint 2, add (a=2, b=3) at @dots{}
2286258 return (a + b);
22863The program being debugged stopped while in a function called from GDB.
22864@dots{}
f7dc1244 22865(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
228660x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22867 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22868 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 22869(@value{GDBP})
00905d52
AC
22870@end smallexample
22871
22872Takes an optional file parameter.
22873
0680b120
AC
22874@kindex maint print registers
22875@kindex maint print raw-registers
22876@kindex maint print cooked-registers
617073a9 22877@kindex maint print register-groups
09d4efe1
EZ
22878@item maint print registers @r{[}@var{file}@r{]}
22879@itemx maint print raw-registers @r{[}@var{file}@r{]}
22880@itemx maint print cooked-registers @r{[}@var{file}@r{]}
22881@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
22882Print @value{GDBN}'s internal register data structures.
22883
617073a9
AC
22884The command @code{maint print raw-registers} includes the contents of
22885the raw register cache; the command @code{maint print cooked-registers}
22886includes the (cooked) value of all registers; and the command
22887@code{maint print register-groups} includes the groups that each
22888register is a member of. @xref{Registers,, Registers, gdbint,
22889@value{GDBN} Internals}.
0680b120 22890
09d4efe1
EZ
22891These commands take an optional parameter, a file name to which to
22892write the information.
0680b120 22893
617073a9 22894@kindex maint print reggroups
09d4efe1
EZ
22895@item maint print reggroups @r{[}@var{file}@r{]}
22896Print @value{GDBN}'s internal register group data structures. The
22897optional argument @var{file} tells to what file to write the
22898information.
617073a9 22899
09d4efe1 22900The register groups info looks like this:
617073a9
AC
22901
22902@smallexample
f7dc1244 22903(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
22904 Group Type
22905 general user
22906 float user
22907 all user
22908 vector user
22909 system user
22910 save internal
22911 restore internal
617073a9
AC
22912@end smallexample
22913
09d4efe1
EZ
22914@kindex flushregs
22915@item flushregs
22916This command forces @value{GDBN} to flush its internal register cache.
22917
22918@kindex maint print objfiles
22919@cindex info for known object files
22920@item maint print objfiles
22921Print a dump of all known object files. For each object file, this
22922command prints its name, address in memory, and all of its psymtabs
22923and symtabs.
22924
22925@kindex maint print statistics
22926@cindex bcache statistics
22927@item maint print statistics
22928This command prints, for each object file in the program, various data
22929about that object file followed by the byte cache (@dfn{bcache})
22930statistics for the object file. The objfile data includes the number
d3e8051b 22931of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
22932defined by the objfile, the number of as yet unexpanded psym tables,
22933the number of line tables and string tables, and the amount of memory
22934used by the various tables. The bcache statistics include the counts,
22935sizes, and counts of duplicates of all and unique objects, max,
22936average, and median entry size, total memory used and its overhead and
22937savings, and various measures of the hash table size and chain
22938lengths.
22939
c7ba131e
JB
22940@kindex maint print target-stack
22941@cindex target stack description
22942@item maint print target-stack
22943A @dfn{target} is an interface between the debugger and a particular
22944kind of file or process. Targets can be stacked in @dfn{strata},
22945so that more than one target can potentially respond to a request.
22946In particular, memory accesses will walk down the stack of targets
22947until they find a target that is interested in handling that particular
22948address.
22949
22950This command prints a short description of each layer that was pushed on
22951the @dfn{target stack}, starting from the top layer down to the bottom one.
22952
09d4efe1
EZ
22953@kindex maint print type
22954@cindex type chain of a data type
22955@item maint print type @var{expr}
22956Print the type chain for a type specified by @var{expr}. The argument
22957can be either a type name or a symbol. If it is a symbol, the type of
22958that symbol is described. The type chain produced by this command is
22959a recursive definition of the data type as stored in @value{GDBN}'s
22960data structures, including its flags and contained types.
22961
22962@kindex maint set dwarf2 max-cache-age
22963@kindex maint show dwarf2 max-cache-age
22964@item maint set dwarf2 max-cache-age
22965@itemx maint show dwarf2 max-cache-age
22966Control the DWARF 2 compilation unit cache.
22967
22968@cindex DWARF 2 compilation units cache
22969In object files with inter-compilation-unit references, such as those
22970produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
22971reader needs to frequently refer to previously read compilation units.
22972This setting controls how long a compilation unit will remain in the
22973cache if it is not referenced. A higher limit means that cached
22974compilation units will be stored in memory longer, and more total
22975memory will be used. Setting it to zero disables caching, which will
22976slow down @value{GDBN} startup, but reduce memory consumption.
22977
e7ba9c65
DJ
22978@kindex maint set profile
22979@kindex maint show profile
22980@cindex profiling GDB
22981@item maint set profile
22982@itemx maint show profile
22983Control profiling of @value{GDBN}.
22984
22985Profiling will be disabled until you use the @samp{maint set profile}
22986command to enable it. When you enable profiling, the system will begin
22987collecting timing and execution count data; when you disable profiling or
22988exit @value{GDBN}, the results will be written to a log file. Remember that
22989if you use profiling, @value{GDBN} will overwrite the profiling log file
22990(often called @file{gmon.out}). If you have a record of important profiling
22991data in a @file{gmon.out} file, be sure to move it to a safe location.
22992
22993Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 22994compiled with the @samp{-pg} compiler option.
e7ba9c65 22995
09d4efe1
EZ
22996@kindex maint show-debug-regs
22997@cindex x86 hardware debug registers
22998@item maint show-debug-regs
22999Control whether to show variables that mirror the x86 hardware debug
23000registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23001enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23002removes a hardware breakpoint or watchpoint, and when the inferior
23003triggers a hardware-assisted breakpoint or watchpoint.
23004
23005@kindex maint space
23006@cindex memory used by commands
23007@item maint space
23008Control whether to display memory usage for each command. If set to a
23009nonzero value, @value{GDBN} will display how much memory each command
23010took, following the command's own output. This can also be requested
23011by invoking @value{GDBN} with the @option{--statistics} command-line
23012switch (@pxref{Mode Options}).
23013
23014@kindex maint time
23015@cindex time of command execution
23016@item maint time
23017Control whether to display the execution time for each command. If
23018set to a nonzero value, @value{GDBN} will display how much time it
23019took to execute each command, following the command's own output.
23020This can also be requested by invoking @value{GDBN} with the
23021@option{--statistics} command-line switch (@pxref{Mode Options}).
23022
23023@kindex maint translate-address
23024@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23025Find the symbol stored at the location specified by the address
23026@var{addr} and an optional section name @var{section}. If found,
23027@value{GDBN} prints the name of the closest symbol and an offset from
23028the symbol's location to the specified address. This is similar to
23029the @code{info address} command (@pxref{Symbols}), except that this
23030command also allows to find symbols in other sections.
ae038cb0 23031
8e04817f 23032@end table
c906108c 23033
9c16f35a
EZ
23034The following command is useful for non-interactive invocations of
23035@value{GDBN}, such as in the test suite.
23036
23037@table @code
23038@item set watchdog @var{nsec}
23039@kindex set watchdog
23040@cindex watchdog timer
23041@cindex timeout for commands
23042Set the maximum number of seconds @value{GDBN} will wait for the
23043target operation to finish. If this time expires, @value{GDBN}
23044reports and error and the command is aborted.
23045
23046@item show watchdog
23047Show the current setting of the target wait timeout.
23048@end table
c906108c 23049
e0ce93ac 23050@node Remote Protocol
8e04817f 23051@appendix @value{GDBN} Remote Serial Protocol
c906108c 23052
ee2d5c50
AC
23053@menu
23054* Overview::
23055* Packets::
23056* Stop Reply Packets::
23057* General Query Packets::
23058* Register Packet Format::
9d29849a 23059* Tracepoint Packets::
a6b151f1 23060* Host I/O Packets::
9a6253be 23061* Interrupts::
ee2d5c50 23062* Examples::
79a6e687 23063* File-I/O Remote Protocol Extension::
cfa9d6d9 23064* Library List Format::
79a6e687 23065* Memory Map Format::
ee2d5c50
AC
23066@end menu
23067
23068@node Overview
23069@section Overview
23070
8e04817f
AC
23071There may be occasions when you need to know something about the
23072protocol---for example, if there is only one serial port to your target
23073machine, you might want your program to do something special if it
23074recognizes a packet meant for @value{GDBN}.
c906108c 23075
d2c6833e 23076In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23077transmitted and received data, respectively.
c906108c 23078
8e04817f
AC
23079@cindex protocol, @value{GDBN} remote serial
23080@cindex serial protocol, @value{GDBN} remote
23081@cindex remote serial protocol
23082All @value{GDBN} commands and responses (other than acknowledgments) are
23083sent as a @var{packet}. A @var{packet} is introduced with the character
23084@samp{$}, the actual @var{packet-data}, and the terminating character
23085@samp{#} followed by a two-digit @var{checksum}:
c906108c 23086
474c8240 23087@smallexample
8e04817f 23088@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23089@end smallexample
8e04817f 23090@noindent
c906108c 23091
8e04817f
AC
23092@cindex checksum, for @value{GDBN} remote
23093@noindent
23094The two-digit @var{checksum} is computed as the modulo 256 sum of all
23095characters between the leading @samp{$} and the trailing @samp{#} (an
23096eight bit unsigned checksum).
c906108c 23097
8e04817f
AC
23098Implementors should note that prior to @value{GDBN} 5.0 the protocol
23099specification also included an optional two-digit @var{sequence-id}:
c906108c 23100
474c8240 23101@smallexample
8e04817f 23102@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23103@end smallexample
c906108c 23104
8e04817f
AC
23105@cindex sequence-id, for @value{GDBN} remote
23106@noindent
23107That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23108has never output @var{sequence-id}s. Stubs that handle packets added
23109since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23110
8e04817f
AC
23111@cindex acknowledgment, for @value{GDBN} remote
23112When either the host or the target machine receives a packet, the first
23113response expected is an acknowledgment: either @samp{+} (to indicate
23114the package was received correctly) or @samp{-} (to request
23115retransmission):
c906108c 23116
474c8240 23117@smallexample
d2c6833e
AC
23118-> @code{$}@var{packet-data}@code{#}@var{checksum}
23119<- @code{+}
474c8240 23120@end smallexample
8e04817f 23121@noindent
53a5351d 23122
8e04817f
AC
23123The host (@value{GDBN}) sends @var{command}s, and the target (the
23124debugging stub incorporated in your program) sends a @var{response}. In
23125the case of step and continue @var{command}s, the response is only sent
23126when the operation has completed (the target has again stopped).
c906108c 23127
8e04817f
AC
23128@var{packet-data} consists of a sequence of characters with the
23129exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23130exceptions).
c906108c 23131
ee2d5c50 23132@cindex remote protocol, field separator
0876f84a 23133Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23134@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23135@sc{hex} with leading zeros suppressed.
c906108c 23136
8e04817f
AC
23137Implementors should note that prior to @value{GDBN} 5.0, the character
23138@samp{:} could not appear as the third character in a packet (as it
23139would potentially conflict with the @var{sequence-id}).
c906108c 23140
0876f84a
DJ
23141@cindex remote protocol, binary data
23142@anchor{Binary Data}
23143Binary data in most packets is encoded either as two hexadecimal
23144digits per byte of binary data. This allowed the traditional remote
23145protocol to work over connections which were only seven-bit clean.
23146Some packets designed more recently assume an eight-bit clean
23147connection, and use a more efficient encoding to send and receive
23148binary data.
23149
23150The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23151as an escape character. Any escaped byte is transmitted as the escape
23152character followed by the original character XORed with @code{0x20}.
23153For example, the byte @code{0x7d} would be transmitted as the two
23154bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23155@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23156@samp{@}}) must always be escaped. Responses sent by the stub
23157must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23158is not interpreted as the start of a run-length encoded sequence
23159(described next).
23160
1d3811f6
DJ
23161Response @var{data} can be run-length encoded to save space.
23162Run-length encoding replaces runs of identical characters with one
23163instance of the repeated character, followed by a @samp{*} and a
23164repeat count. The repeat count is itself sent encoded, to avoid
23165binary characters in @var{data}: a value of @var{n} is sent as
23166@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23167produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23168code 32) for a repeat count of 3. (This is because run-length
23169encoding starts to win for counts 3 or more.) Thus, for example,
23170@samp{0* } is a run-length encoding of ``0000'': the space character
23171after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
231723}} more times.
23173
23174The printable characters @samp{#} and @samp{$} or with a numeric value
23175greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23176seven repeats (@samp{$}) can be expanded using a repeat count of only
23177five (@samp{"}). For example, @samp{00000000} can be encoded as
23178@samp{0*"00}.
c906108c 23179
8e04817f
AC
23180The error response returned for some packets includes a two character
23181error number. That number is not well defined.
c906108c 23182
f8da2bff 23183@cindex empty response, for unsupported packets
8e04817f
AC
23184For any @var{command} not supported by the stub, an empty response
23185(@samp{$#00}) should be returned. That way it is possible to extend the
23186protocol. A newer @value{GDBN} can tell if a packet is supported based
23187on that response.
c906108c 23188
b383017d
RM
23189A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23190@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23191optional.
c906108c 23192
ee2d5c50
AC
23193@node Packets
23194@section Packets
23195
23196The following table provides a complete list of all currently defined
23197@var{command}s and their corresponding response @var{data}.
79a6e687 23198@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23199I/O extension of the remote protocol.
ee2d5c50 23200
b8ff78ce
JB
23201Each packet's description has a template showing the packet's overall
23202syntax, followed by an explanation of the packet's meaning. We
23203include spaces in some of the templates for clarity; these are not
23204part of the packet's syntax. No @value{GDBN} packet uses spaces to
23205separate its components. For example, a template like @samp{foo
23206@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23207bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23208@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23209@samp{foo} and the @var{bar}, or between the @var{bar} and the
23210@var{baz}.
23211
8ffe2530
JB
23212Note that all packet forms beginning with an upper- or lower-case
23213letter, other than those described here, are reserved for future use.
23214
b8ff78ce 23215Here are the packet descriptions.
ee2d5c50 23216
b8ff78ce 23217@table @samp
ee2d5c50 23218
b8ff78ce
JB
23219@item !
23220@cindex @samp{!} packet
8e04817f
AC
23221Enable extended mode. In extended mode, the remote server is made
23222persistent. The @samp{R} packet is used to restart the program being
23223debugged.
ee2d5c50
AC
23224
23225Reply:
23226@table @samp
23227@item OK
8e04817f 23228The remote target both supports and has enabled extended mode.
ee2d5c50 23229@end table
c906108c 23230
b8ff78ce
JB
23231@item ?
23232@cindex @samp{?} packet
ee2d5c50
AC
23233Indicate the reason the target halted. The reply is the same as for
23234step and continue.
c906108c 23235
ee2d5c50
AC
23236Reply:
23237@xref{Stop Reply Packets}, for the reply specifications.
23238
b8ff78ce
JB
23239@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23240@cindex @samp{A} packet
23241Initialized @code{argv[]} array passed into program. @var{arglen}
23242specifies the number of bytes in the hex encoded byte stream
23243@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23244
23245Reply:
23246@table @samp
23247@item OK
b8ff78ce
JB
23248The arguments were set.
23249@item E @var{NN}
23250An error occurred.
ee2d5c50
AC
23251@end table
23252
b8ff78ce
JB
23253@item b @var{baud}
23254@cindex @samp{b} packet
23255(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23256Change the serial line speed to @var{baud}.
23257
23258JTC: @emph{When does the transport layer state change? When it's
23259received, or after the ACK is transmitted. In either case, there are
23260problems if the command or the acknowledgment packet is dropped.}
23261
23262Stan: @emph{If people really wanted to add something like this, and get
23263it working for the first time, they ought to modify ser-unix.c to send
23264some kind of out-of-band message to a specially-setup stub and have the
23265switch happen "in between" packets, so that from remote protocol's point
23266of view, nothing actually happened.}
23267
b8ff78ce
JB
23268@item B @var{addr},@var{mode}
23269@cindex @samp{B} packet
8e04817f 23270Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23271breakpoint at @var{addr}.
23272
b8ff78ce 23273Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23274(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23275
4f553f88 23276@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23277@cindex @samp{c} packet
23278Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23279resume at current address.
c906108c 23280
ee2d5c50
AC
23281Reply:
23282@xref{Stop Reply Packets}, for the reply specifications.
23283
4f553f88 23284@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23285@cindex @samp{C} packet
8e04817f 23286Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23287@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23288
ee2d5c50
AC
23289Reply:
23290@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23291
b8ff78ce
JB
23292@item d
23293@cindex @samp{d} packet
ee2d5c50
AC
23294Toggle debug flag.
23295
b8ff78ce
JB
23296Don't use this packet; instead, define a general set packet
23297(@pxref{General Query Packets}).
ee2d5c50 23298
b8ff78ce
JB
23299@item D
23300@cindex @samp{D} packet
ee2d5c50 23301Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23302before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23303
23304Reply:
23305@table @samp
10fac096
NW
23306@item OK
23307for success
b8ff78ce 23308@item E @var{NN}
10fac096 23309for an error
ee2d5c50 23310@end table
c906108c 23311
b8ff78ce
JB
23312@item F @var{RC},@var{EE},@var{CF};@var{XX}
23313@cindex @samp{F} packet
23314A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23315This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23316Remote Protocol Extension}, for the specification.
ee2d5c50 23317
b8ff78ce 23318@item g
ee2d5c50 23319@anchor{read registers packet}
b8ff78ce 23320@cindex @samp{g} packet
ee2d5c50
AC
23321Read general registers.
23322
23323Reply:
23324@table @samp
23325@item @var{XX@dots{}}
8e04817f
AC
23326Each byte of register data is described by two hex digits. The bytes
23327with the register are transmitted in target byte order. The size of
b8ff78ce 23328each register and their position within the @samp{g} packet are
4a9bb1df
UW
23329determined by the @value{GDBN} internal gdbarch functions
23330@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23331specification of several standard @samp{g} packets is specified below.
23332@item E @var{NN}
ee2d5c50
AC
23333for an error.
23334@end table
c906108c 23335
b8ff78ce
JB
23336@item G @var{XX@dots{}}
23337@cindex @samp{G} packet
23338Write general registers. @xref{read registers packet}, for a
23339description of the @var{XX@dots{}} data.
ee2d5c50
AC
23340
23341Reply:
23342@table @samp
23343@item OK
23344for success
b8ff78ce 23345@item E @var{NN}
ee2d5c50
AC
23346for an error
23347@end table
23348
b8ff78ce
JB
23349@item H @var{c} @var{t}
23350@cindex @samp{H} packet
8e04817f 23351Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23352@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23353should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23354operations. The thread designator @var{t} may be @samp{-1}, meaning all
23355the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23356
23357Reply:
23358@table @samp
23359@item OK
23360for success
b8ff78ce 23361@item E @var{NN}
ee2d5c50
AC
23362for an error
23363@end table
c906108c 23364
8e04817f
AC
23365@c FIXME: JTC:
23366@c 'H': How restrictive (or permissive) is the thread model. If a
23367@c thread is selected and stopped, are other threads allowed
23368@c to continue to execute? As I mentioned above, I think the
23369@c semantics of each command when a thread is selected must be
23370@c described. For example:
23371@c
23372@c 'g': If the stub supports threads and a specific thread is
23373@c selected, returns the register block from that thread;
23374@c otherwise returns current registers.
23375@c
23376@c 'G' If the stub supports threads and a specific thread is
23377@c selected, sets the registers of the register block of
23378@c that thread; otherwise sets current registers.
c906108c 23379
b8ff78ce 23380@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23381@anchor{cycle step packet}
b8ff78ce
JB
23382@cindex @samp{i} packet
23383Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23384present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23385step starting at that address.
c906108c 23386
b8ff78ce
JB
23387@item I
23388@cindex @samp{I} packet
23389Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23390step packet}.
ee2d5c50 23391
b8ff78ce
JB
23392@item k
23393@cindex @samp{k} packet
23394Kill request.
c906108c 23395
ac282366 23396FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23397thread context has been selected (i.e.@: does 'k' kill only that
23398thread?)}.
c906108c 23399
b8ff78ce
JB
23400@item m @var{addr},@var{length}
23401@cindex @samp{m} packet
8e04817f 23402Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23403Note that @var{addr} may not be aligned to any particular boundary.
23404
23405The stub need not use any particular size or alignment when gathering
23406data from memory for the response; even if @var{addr} is word-aligned
23407and @var{length} is a multiple of the word size, the stub is free to
23408use byte accesses, or not. For this reason, this packet may not be
23409suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23410@cindex alignment of remote memory accesses
23411@cindex size of remote memory accesses
23412@cindex memory, alignment and size of remote accesses
c906108c 23413
ee2d5c50
AC
23414Reply:
23415@table @samp
23416@item @var{XX@dots{}}
599b237a 23417Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23418number. The reply may contain fewer bytes than requested if the
23419server was able to read only part of the region of memory.
23420@item E @var{NN}
ee2d5c50
AC
23421@var{NN} is errno
23422@end table
23423
b8ff78ce
JB
23424@item M @var{addr},@var{length}:@var{XX@dots{}}
23425@cindex @samp{M} packet
8e04817f 23426Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23427@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23428hexadecimal number.
ee2d5c50
AC
23429
23430Reply:
23431@table @samp
23432@item OK
23433for success
b8ff78ce 23434@item E @var{NN}
8e04817f
AC
23435for an error (this includes the case where only part of the data was
23436written).
ee2d5c50 23437@end table
c906108c 23438
b8ff78ce
JB
23439@item p @var{n}
23440@cindex @samp{p} packet
23441Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23442@xref{read registers packet}, for a description of how the returned
23443register value is encoded.
ee2d5c50
AC
23444
23445Reply:
23446@table @samp
2e868123
AC
23447@item @var{XX@dots{}}
23448the register's value
b8ff78ce 23449@item E @var{NN}
2e868123
AC
23450for an error
23451@item
23452Indicating an unrecognized @var{query}.
ee2d5c50
AC
23453@end table
23454
b8ff78ce 23455@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23456@anchor{write register packet}
b8ff78ce
JB
23457@cindex @samp{P} packet
23458Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23459number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23460digits for each byte in the register (target byte order).
c906108c 23461
ee2d5c50
AC
23462Reply:
23463@table @samp
23464@item OK
23465for success
b8ff78ce 23466@item E @var{NN}
ee2d5c50
AC
23467for an error
23468@end table
23469
5f3bebba
JB
23470@item q @var{name} @var{params}@dots{}
23471@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23472@cindex @samp{q} packet
b8ff78ce 23473@cindex @samp{Q} packet
5f3bebba
JB
23474General query (@samp{q}) and set (@samp{Q}). These packets are
23475described fully in @ref{General Query Packets}.
c906108c 23476
b8ff78ce
JB
23477@item r
23478@cindex @samp{r} packet
8e04817f 23479Reset the entire system.
c906108c 23480
b8ff78ce 23481Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23482
b8ff78ce
JB
23483@item R @var{XX}
23484@cindex @samp{R} packet
8e04817f
AC
23485Restart the program being debugged. @var{XX}, while needed, is ignored.
23486This packet is only available in extended mode.
ee2d5c50 23487
8e04817f 23488The @samp{R} packet has no reply.
ee2d5c50 23489
4f553f88 23490@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23491@cindex @samp{s} packet
23492Single step. @var{addr} is the address at which to resume. If
23493@var{addr} is omitted, resume at same address.
c906108c 23494
ee2d5c50
AC
23495Reply:
23496@xref{Stop Reply Packets}, for the reply specifications.
23497
4f553f88 23498@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23499@anchor{step with signal packet}
b8ff78ce
JB
23500@cindex @samp{S} packet
23501Step with signal. This is analogous to the @samp{C} packet, but
23502requests a single-step, rather than a normal resumption of execution.
c906108c 23503
ee2d5c50
AC
23504Reply:
23505@xref{Stop Reply Packets}, for the reply specifications.
23506
b8ff78ce
JB
23507@item t @var{addr}:@var{PP},@var{MM}
23508@cindex @samp{t} packet
8e04817f 23509Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23510@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23511@var{addr} must be at least 3 digits.
c906108c 23512
b8ff78ce
JB
23513@item T @var{XX}
23514@cindex @samp{T} packet
ee2d5c50 23515Find out if the thread XX is alive.
c906108c 23516
ee2d5c50
AC
23517Reply:
23518@table @samp
23519@item OK
23520thread is still alive
b8ff78ce 23521@item E @var{NN}
ee2d5c50
AC
23522thread is dead
23523@end table
23524
b8ff78ce
JB
23525@item v
23526Packets starting with @samp{v} are identified by a multi-letter name,
23527up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23528
b8ff78ce
JB
23529@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23530@cindex @samp{vCont} packet
23531Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23532If an action is specified with no @var{tid}, then it is applied to any
23533threads that don't have a specific action specified; if no default action is
23534specified then other threads should remain stopped. Specifying multiple
23535default actions is an error; specifying no actions is also an error.
23536Thread IDs are specified in hexadecimal. Currently supported actions are:
23537
b8ff78ce 23538@table @samp
86d30acc
DJ
23539@item c
23540Continue.
b8ff78ce 23541@item C @var{sig}
86d30acc
DJ
23542Continue with signal @var{sig}. @var{sig} should be two hex digits.
23543@item s
23544Step.
b8ff78ce 23545@item S @var{sig}
86d30acc
DJ
23546Step with signal @var{sig}. @var{sig} should be two hex digits.
23547@end table
23548
23549The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23550not supported in @samp{vCont}.
86d30acc
DJ
23551
23552Reply:
23553@xref{Stop Reply Packets}, for the reply specifications.
23554
b8ff78ce
JB
23555@item vCont?
23556@cindex @samp{vCont?} packet
d3e8051b 23557Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23558
23559Reply:
23560@table @samp
b8ff78ce
JB
23561@item vCont@r{[};@var{action}@dots{}@r{]}
23562The @samp{vCont} packet is supported. Each @var{action} is a supported
23563command in the @samp{vCont} packet.
86d30acc 23564@item
b8ff78ce 23565The @samp{vCont} packet is not supported.
86d30acc 23566@end table
ee2d5c50 23567
a6b151f1
DJ
23568@item vFile:@var{operation}:@var{parameter}@dots{}
23569@cindex @samp{vFile} packet
23570Perform a file operation on the target system. For details,
23571see @ref{Host I/O Packets}.
23572
68437a39
DJ
23573@item vFlashErase:@var{addr},@var{length}
23574@cindex @samp{vFlashErase} packet
23575Direct the stub to erase @var{length} bytes of flash starting at
23576@var{addr}. The region may enclose any number of flash blocks, but
23577its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23578flash block size appearing in the memory map (@pxref{Memory Map
23579Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23580together, and sends a @samp{vFlashDone} request after each group; the
23581stub is allowed to delay erase operation until the @samp{vFlashDone}
23582packet is received.
23583
23584Reply:
23585@table @samp
23586@item OK
23587for success
23588@item E @var{NN}
23589for an error
23590@end table
23591
23592@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23593@cindex @samp{vFlashWrite} packet
23594Direct the stub to write data to flash address @var{addr}. The data
23595is passed in binary form using the same encoding as for the @samp{X}
23596packet (@pxref{Binary Data}). The memory ranges specified by
23597@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23598not overlap, and must appear in order of increasing addresses
23599(although @samp{vFlashErase} packets for higher addresses may already
23600have been received; the ordering is guaranteed only between
23601@samp{vFlashWrite} packets). If a packet writes to an address that was
23602neither erased by a preceding @samp{vFlashErase} packet nor by some other
23603target-specific method, the results are unpredictable.
23604
23605
23606Reply:
23607@table @samp
23608@item OK
23609for success
23610@item E.memtype
23611for vFlashWrite addressing non-flash memory
23612@item E @var{NN}
23613for an error
23614@end table
23615
23616@item vFlashDone
23617@cindex @samp{vFlashDone} packet
23618Indicate to the stub that flash programming operation is finished.
23619The stub is permitted to delay or batch the effects of a group of
23620@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23621@samp{vFlashDone} packet is received. The contents of the affected
23622regions of flash memory are unpredictable until the @samp{vFlashDone}
23623request is completed.
23624
b8ff78ce 23625@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23626@anchor{X packet}
b8ff78ce
JB
23627@cindex @samp{X} packet
23628Write data to memory, where the data is transmitted in binary.
23629@var{addr} is address, @var{length} is number of bytes,
0876f84a 23630@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23631
ee2d5c50
AC
23632Reply:
23633@table @samp
23634@item OK
23635for success
b8ff78ce 23636@item E @var{NN}
ee2d5c50
AC
23637for an error
23638@end table
23639
b8ff78ce
JB
23640@item z @var{type},@var{addr},@var{length}
23641@itemx Z @var{type},@var{addr},@var{length}
2f870471 23642@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23643@cindex @samp{z} packet
23644@cindex @samp{Z} packets
23645Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23646watchpoint starting at address @var{address} and covering the next
23647@var{length} bytes.
ee2d5c50 23648
2f870471
AC
23649Each breakpoint and watchpoint packet @var{type} is documented
23650separately.
23651
512217c7
AC
23652@emph{Implementation notes: A remote target shall return an empty string
23653for an unrecognized breakpoint or watchpoint packet @var{type}. A
23654remote target shall support either both or neither of a given
b8ff78ce 23655@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23656avoid potential problems with duplicate packets, the operations should
23657be implemented in an idempotent way.}
23658
b8ff78ce
JB
23659@item z0,@var{addr},@var{length}
23660@itemx Z0,@var{addr},@var{length}
23661@cindex @samp{z0} packet
23662@cindex @samp{Z0} packet
23663Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23664@var{addr} of size @var{length}.
2f870471
AC
23665
23666A memory breakpoint is implemented by replacing the instruction at
23667@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23668@var{length} is used by targets that indicates the size of the
2f870471
AC
23669breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23670@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23671
2f870471
AC
23672@emph{Implementation note: It is possible for a target to copy or move
23673code that contains memory breakpoints (e.g., when implementing
23674overlays). The behavior of this packet, in the presence of such a
23675target, is not defined.}
c906108c 23676
ee2d5c50
AC
23677Reply:
23678@table @samp
2f870471
AC
23679@item OK
23680success
23681@item
23682not supported
b8ff78ce 23683@item E @var{NN}
ee2d5c50 23684for an error
2f870471
AC
23685@end table
23686
b8ff78ce
JB
23687@item z1,@var{addr},@var{length}
23688@itemx Z1,@var{addr},@var{length}
23689@cindex @samp{z1} packet
23690@cindex @samp{Z1} packet
23691Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23692address @var{addr} of size @var{length}.
2f870471
AC
23693
23694A hardware breakpoint is implemented using a mechanism that is not
23695dependant on being able to modify the target's memory.
23696
23697@emph{Implementation note: A hardware breakpoint is not affected by code
23698movement.}
23699
23700Reply:
23701@table @samp
ee2d5c50 23702@item OK
2f870471
AC
23703success
23704@item
23705not supported
b8ff78ce 23706@item E @var{NN}
2f870471
AC
23707for an error
23708@end table
23709
b8ff78ce
JB
23710@item z2,@var{addr},@var{length}
23711@itemx Z2,@var{addr},@var{length}
23712@cindex @samp{z2} packet
23713@cindex @samp{Z2} packet
23714Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23715
23716Reply:
23717@table @samp
23718@item OK
23719success
23720@item
23721not supported
b8ff78ce 23722@item E @var{NN}
2f870471
AC
23723for an error
23724@end table
23725
b8ff78ce
JB
23726@item z3,@var{addr},@var{length}
23727@itemx Z3,@var{addr},@var{length}
23728@cindex @samp{z3} packet
23729@cindex @samp{Z3} packet
23730Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23731
23732Reply:
23733@table @samp
23734@item OK
23735success
23736@item
23737not supported
b8ff78ce 23738@item E @var{NN}
2f870471
AC
23739for an error
23740@end table
23741
b8ff78ce
JB
23742@item z4,@var{addr},@var{length}
23743@itemx Z4,@var{addr},@var{length}
23744@cindex @samp{z4} packet
23745@cindex @samp{Z4} packet
23746Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23747
23748Reply:
23749@table @samp
23750@item OK
23751success
23752@item
23753not supported
b8ff78ce 23754@item E @var{NN}
2f870471 23755for an error
ee2d5c50
AC
23756@end table
23757
23758@end table
c906108c 23759
ee2d5c50
AC
23760@node Stop Reply Packets
23761@section Stop Reply Packets
23762@cindex stop reply packets
c906108c 23763
8e04817f
AC
23764The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23765receive any of the below as a reply. In the case of the @samp{C},
23766@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23767when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23768number} is defined by the header @file{include/gdb/signals.h} in the
23769@value{GDBN} source code.
c906108c 23770
b8ff78ce
JB
23771As in the description of request packets, we include spaces in the
23772reply templates for clarity; these are not part of the reply packet's
23773syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23774components.
c906108c 23775
b8ff78ce 23776@table @samp
ee2d5c50 23777
b8ff78ce 23778@item S @var{AA}
599b237a 23779The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23780number). This is equivalent to a @samp{T} response with no
23781@var{n}:@var{r} pairs.
c906108c 23782
b8ff78ce
JB
23783@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23784@cindex @samp{T} packet reply
599b237a 23785The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23786number). This is equivalent to an @samp{S} response, except that the
23787@samp{@var{n}:@var{r}} pairs can carry values of important registers
23788and other information directly in the stop reply packet, reducing
23789round-trip latency. Single-step and breakpoint traps are reported
23790this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23791
23792@itemize @bullet
b8ff78ce 23793@item
599b237a 23794If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
23795corresponding @var{r} gives that register's value. @var{r} is a
23796series of bytes in target byte order, with each byte given by a
23797two-digit hex number.
cfa9d6d9 23798
b8ff78ce
JB
23799@item
23800If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23801hex.
cfa9d6d9 23802
b8ff78ce 23803@item
cfa9d6d9
DJ
23804If @var{n} is a recognized @dfn{stop reason}, it describes a more
23805specific event that stopped the target. The currently defined stop
23806reasons are listed below. @var{aa} should be @samp{05}, the trap
23807signal. At most one stop reason should be present.
23808
b8ff78ce
JB
23809@item
23810Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23811and go on to the next; this allows us to extend the protocol in the
23812future.
cfa9d6d9
DJ
23813@end itemize
23814
23815The currently defined stop reasons are:
23816
23817@table @samp
23818@item watch
23819@itemx rwatch
23820@itemx awatch
23821The packet indicates a watchpoint hit, and @var{r} is the data address, in
23822hex.
23823
23824@cindex shared library events, remote reply
23825@item library
23826The packet indicates that the loaded libraries have changed.
23827@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23828list of loaded libraries. @var{r} is ignored.
23829@end table
ee2d5c50 23830
b8ff78ce 23831@item W @var{AA}
8e04817f 23832The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
23833applicable to certain targets.
23834
b8ff78ce 23835@item X @var{AA}
8e04817f 23836The process terminated with signal @var{AA}.
c906108c 23837
b8ff78ce
JB
23838@item O @var{XX}@dots{}
23839@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23840written as the program's console output. This can happen at any time
23841while the program is running and the debugger should continue to wait
23842for @samp{W}, @samp{T}, etc.
0ce1b118 23843
b8ff78ce 23844@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
23845@var{call-id} is the identifier which says which host system call should
23846be called. This is just the name of the function. Translation into the
23847correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 23848@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
23849system calls.
23850
b8ff78ce
JB
23851@samp{@var{parameter}@dots{}} is a list of parameters as defined for
23852this very system call.
0ce1b118 23853
b8ff78ce
JB
23854The target replies with this packet when it expects @value{GDBN} to
23855call a host system call on behalf of the target. @value{GDBN} replies
23856with an appropriate @samp{F} packet and keeps up waiting for the next
23857reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
23858or @samp{s} action is expected to be continued. @xref{File-I/O Remote
23859Protocol Extension}, for more details.
0ce1b118 23860
ee2d5c50
AC
23861@end table
23862
23863@node General Query Packets
23864@section General Query Packets
9c16f35a 23865@cindex remote query requests
c906108c 23866
5f3bebba
JB
23867Packets starting with @samp{q} are @dfn{general query packets};
23868packets starting with @samp{Q} are @dfn{general set packets}. General
23869query and set packets are a semi-unified form for retrieving and
23870sending information to and from the stub.
23871
23872The initial letter of a query or set packet is followed by a name
23873indicating what sort of thing the packet applies to. For example,
23874@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23875definitions with the stub. These packet names follow some
23876conventions:
23877
23878@itemize @bullet
23879@item
23880The name must not contain commas, colons or semicolons.
23881@item
23882Most @value{GDBN} query and set packets have a leading upper case
23883letter.
23884@item
23885The names of custom vendor packets should use a company prefix, in
23886lower case, followed by a period. For example, packets designed at
23887the Acme Corporation might begin with @samp{qacme.foo} (for querying
23888foos) or @samp{Qacme.bar} (for setting bars).
23889@end itemize
23890
aa56d27a
JB
23891The name of a query or set packet should be separated from any
23892parameters by a @samp{:}; the parameters themselves should be
23893separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
23894full packet name, and check for a separator or the end of the packet,
23895in case two packet names share a common prefix. New packets should not begin
23896with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23897packets predate these conventions, and have arguments without any terminator
23898for the packet name; we suspect they are in widespread use in places that
23899are difficult to upgrade. The @samp{qC} packet has no arguments, but some
23900existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23901packet.}.
c906108c 23902
b8ff78ce
JB
23903Like the descriptions of the other packets, each description here
23904has a template showing the packet's overall syntax, followed by an
23905explanation of the packet's meaning. We include spaces in some of the
23906templates for clarity; these are not part of the packet's syntax. No
23907@value{GDBN} packet uses spaces to separate its components.
23908
5f3bebba
JB
23909Here are the currently defined query and set packets:
23910
b8ff78ce 23911@table @samp
c906108c 23912
b8ff78ce 23913@item qC
9c16f35a 23914@cindex current thread, remote request
b8ff78ce 23915@cindex @samp{qC} packet
ee2d5c50
AC
23916Return the current thread id.
23917
23918Reply:
23919@table @samp
b8ff78ce 23920@item QC @var{pid}
599b237a 23921Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 23922@item @r{(anything else)}
ee2d5c50
AC
23923Any other reply implies the old pid.
23924@end table
23925
b8ff78ce 23926@item qCRC:@var{addr},@var{length}
ff2587ec 23927@cindex CRC of memory block, remote request
b8ff78ce
JB
23928@cindex @samp{qCRC} packet
23929Compute the CRC checksum of a block of memory.
ff2587ec
WZ
23930Reply:
23931@table @samp
b8ff78ce 23932@item E @var{NN}
ff2587ec 23933An error (such as memory fault)
b8ff78ce
JB
23934@item C @var{crc32}
23935The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
23936@end table
23937
b8ff78ce
JB
23938@item qfThreadInfo
23939@itemx qsThreadInfo
9c16f35a 23940@cindex list active threads, remote request
b8ff78ce
JB
23941@cindex @samp{qfThreadInfo} packet
23942@cindex @samp{qsThreadInfo} packet
23943Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
23944may be too many active threads to fit into one reply packet, this query
23945works iteratively: it may require more than one query/reply sequence to
23946obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
23947be the @samp{qfThreadInfo} query; subsequent queries in the
23948sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 23949
b8ff78ce 23950NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
23951
23952Reply:
23953@table @samp
b8ff78ce 23954@item m @var{id}
ee2d5c50 23955A single thread id
b8ff78ce 23956@item m @var{id},@var{id}@dots{}
ee2d5c50 23957a comma-separated list of thread ids
b8ff78ce
JB
23958@item l
23959(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
23960@end table
23961
23962In response to each query, the target will reply with a list of one or
e1aac25b
JB
23963more thread ids, in big-endian unsigned hex, separated by commas.
23964@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
23965ids (using the @samp{qs} form of the query), until the target responds
23966with @samp{l} (lower-case el, for @dfn{last}).
c906108c 23967
b8ff78ce 23968@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 23969@cindex get thread-local storage address, remote request
b8ff78ce 23970@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
23971Fetch the address associated with thread local storage specified
23972by @var{thread-id}, @var{offset}, and @var{lm}.
23973
23974@var{thread-id} is the (big endian, hex encoded) thread id associated with the
23975thread for which to fetch the TLS address.
23976
23977@var{offset} is the (big endian, hex encoded) offset associated with the
23978thread local variable. (This offset is obtained from the debug
23979information associated with the variable.)
23980
db2e3e2e 23981@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
23982the load module associated with the thread local storage. For example,
23983a @sc{gnu}/Linux system will pass the link map address of the shared
23984object associated with the thread local storage under consideration.
23985Other operating environments may choose to represent the load module
23986differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
23987
23988Reply:
b8ff78ce
JB
23989@table @samp
23990@item @var{XX}@dots{}
ff2587ec
WZ
23991Hex encoded (big endian) bytes representing the address of the thread
23992local storage requested.
23993
b8ff78ce
JB
23994@item E @var{nn}
23995An error occurred. @var{nn} are hex digits.
ff2587ec 23996
b8ff78ce
JB
23997@item
23998An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
23999@end table
24000
b8ff78ce 24001@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24002Obtain thread information from RTOS. Where: @var{startflag} (one hex
24003digit) is one to indicate the first query and zero to indicate a
24004subsequent query; @var{threadcount} (two hex digits) is the maximum
24005number of threads the response packet can contain; and @var{nextthread}
24006(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24007returned in the response as @var{argthread}.
ee2d5c50 24008
b8ff78ce 24009Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24010
24011Reply:
24012@table @samp
b8ff78ce 24013@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24014Where: @var{count} (two hex digits) is the number of threads being
24015returned; @var{done} (one hex digit) is zero to indicate more threads
24016and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24017digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24018is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24019digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24020@end table
c906108c 24021
b8ff78ce 24022@item qOffsets
9c16f35a 24023@cindex section offsets, remote request
b8ff78ce 24024@cindex @samp{qOffsets} packet
31d99776
DJ
24025Get section offsets that the target used when relocating the downloaded
24026image.
c906108c 24027
ee2d5c50
AC
24028Reply:
24029@table @samp
31d99776
DJ
24030@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24031Relocate the @code{Text} section by @var{xxx} from its original address.
24032Relocate the @code{Data} section by @var{yyy} from its original address.
24033If the object file format provides segment information (e.g.@: @sc{elf}
24034@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24035segments by the supplied offsets.
24036
24037@emph{Note: while a @code{Bss} offset may be included in the response,
24038@value{GDBN} ignores this and instead applies the @code{Data} offset
24039to the @code{Bss} section.}
24040
24041@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24042Relocate the first segment of the object file, which conventionally
24043contains program code, to a starting address of @var{xxx}. If
24044@samp{DataSeg} is specified, relocate the second segment, which
24045conventionally contains modifiable data, to a starting address of
24046@var{yyy}. @value{GDBN} will report an error if the object file
24047does not contain segment information, or does not contain at least
24048as many segments as mentioned in the reply. Extra segments are
24049kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24050@end table
24051
b8ff78ce 24052@item qP @var{mode} @var{threadid}
9c16f35a 24053@cindex thread information, remote request
b8ff78ce 24054@cindex @samp{qP} packet
8e04817f
AC
24055Returns information on @var{threadid}. Where: @var{mode} is a hex
24056encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24057
aa56d27a
JB
24058Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24059(see below).
24060
b8ff78ce 24061Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24062
89be2091
DJ
24063@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24064@cindex pass signals to inferior, remote request
24065@cindex @samp{QPassSignals} packet
23181151 24066@anchor{QPassSignals}
89be2091
DJ
24067Each listed @var{signal} should be passed directly to the inferior process.
24068Signals are numbered identically to continue packets and stop replies
24069(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24070strictly greater than the previous item. These signals do not need to stop
24071the inferior, or be reported to @value{GDBN}. All other signals should be
24072reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24073combine; any earlier @samp{QPassSignals} list is completely replaced by the
24074new list. This packet improves performance when using @samp{handle
24075@var{signal} nostop noprint pass}.
24076
24077Reply:
24078@table @samp
24079@item OK
24080The request succeeded.
24081
24082@item E @var{nn}
24083An error occurred. @var{nn} are hex digits.
24084
24085@item
24086An empty reply indicates that @samp{QPassSignals} is not supported by
24087the stub.
24088@end table
24089
24090Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24091command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24092This packet is not probed by default; the remote stub must request it,
24093by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24094
b8ff78ce 24095@item qRcmd,@var{command}
ff2587ec 24096@cindex execute remote command, remote request
b8ff78ce 24097@cindex @samp{qRcmd} packet
ff2587ec 24098@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24099execution. Invalid commands should be reported using the output
24100string. Before the final result packet, the target may also respond
24101with a number of intermediate @samp{O@var{output}} console output
24102packets. @emph{Implementors should note that providing access to a
24103stubs's interpreter may have security implications}.
fa93a9d8 24104
ff2587ec
WZ
24105Reply:
24106@table @samp
24107@item OK
24108A command response with no output.
24109@item @var{OUTPUT}
24110A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24111@item E @var{NN}
ff2587ec 24112Indicate a badly formed request.
b8ff78ce
JB
24113@item
24114An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24115@end table
fa93a9d8 24116
aa56d27a
JB
24117(Note that the @code{qRcmd} packet's name is separated from the
24118command by a @samp{,}, not a @samp{:}, contrary to the naming
24119conventions above. Please don't use this packet as a model for new
24120packets.)
24121
be2a5f71
DJ
24122@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24123@cindex supported packets, remote query
24124@cindex features of the remote protocol
24125@cindex @samp{qSupported} packet
0876f84a 24126@anchor{qSupported}
be2a5f71
DJ
24127Tell the remote stub about features supported by @value{GDBN}, and
24128query the stub for features it supports. This packet allows
24129@value{GDBN} and the remote stub to take advantage of each others'
24130features. @samp{qSupported} also consolidates multiple feature probes
24131at startup, to improve @value{GDBN} performance---a single larger
24132packet performs better than multiple smaller probe packets on
24133high-latency links. Some features may enable behavior which must not
24134be on by default, e.g.@: because it would confuse older clients or
24135stubs. Other features may describe packets which could be
24136automatically probed for, but are not. These features must be
24137reported before @value{GDBN} will use them. This ``default
24138unsupported'' behavior is not appropriate for all packets, but it
24139helps to keep the initial connection time under control with new
24140versions of @value{GDBN} which support increasing numbers of packets.
24141
24142Reply:
24143@table @samp
24144@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24145The stub supports or does not support each returned @var{stubfeature},
24146depending on the form of each @var{stubfeature} (see below for the
24147possible forms).
24148@item
24149An empty reply indicates that @samp{qSupported} is not recognized,
24150or that no features needed to be reported to @value{GDBN}.
24151@end table
24152
24153The allowed forms for each feature (either a @var{gdbfeature} in the
24154@samp{qSupported} packet, or a @var{stubfeature} in the response)
24155are:
24156
24157@table @samp
24158@item @var{name}=@var{value}
24159The remote protocol feature @var{name} is supported, and associated
24160with the specified @var{value}. The format of @var{value} depends
24161on the feature, but it must not include a semicolon.
24162@item @var{name}+
24163The remote protocol feature @var{name} is supported, and does not
24164need an associated value.
24165@item @var{name}-
24166The remote protocol feature @var{name} is not supported.
24167@item @var{name}?
24168The remote protocol feature @var{name} may be supported, and
24169@value{GDBN} should auto-detect support in some other way when it is
24170needed. This form will not be used for @var{gdbfeature} notifications,
24171but may be used for @var{stubfeature} responses.
24172@end table
24173
24174Whenever the stub receives a @samp{qSupported} request, the
24175supplied set of @value{GDBN} features should override any previous
24176request. This allows @value{GDBN} to put the stub in a known
24177state, even if the stub had previously been communicating with
24178a different version of @value{GDBN}.
24179
24180No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24181are defined yet. Stubs should ignore any unknown values for
24182@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24183packet supports receiving packets of unlimited length (earlier
24184versions of @value{GDBN} may reject overly long responses). Values
24185for @var{gdbfeature} may be defined in the future to let the stub take
24186advantage of new features in @value{GDBN}, e.g.@: incompatible
24187improvements in the remote protocol---support for unlimited length
24188responses would be a @var{gdbfeature} example, if it were not implied by
24189the @samp{qSupported} query. The stub's reply should be independent
24190of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24191describes all the features it supports, and then the stub replies with
24192all the features it supports.
24193
24194Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24195responses, as long as each response uses one of the standard forms.
24196
24197Some features are flags. A stub which supports a flag feature
24198should respond with a @samp{+} form response. Other features
24199require values, and the stub should respond with an @samp{=}
24200form response.
24201
24202Each feature has a default value, which @value{GDBN} will use if
24203@samp{qSupported} is not available or if the feature is not mentioned
24204in the @samp{qSupported} response. The default values are fixed; a
24205stub is free to omit any feature responses that match the defaults.
24206
24207Not all features can be probed, but for those which can, the probing
24208mechanism is useful: in some cases, a stub's internal
24209architecture may not allow the protocol layer to know some information
24210about the underlying target in advance. This is especially common in
24211stubs which may be configured for multiple targets.
24212
24213These are the currently defined stub features and their properties:
24214
cfa9d6d9 24215@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24216@c NOTE: The first row should be @headitem, but we do not yet require
24217@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24218@item Feature Name
be2a5f71
DJ
24219@tab Value Required
24220@tab Default
24221@tab Probe Allowed
24222
24223@item @samp{PacketSize}
24224@tab Yes
24225@tab @samp{-}
24226@tab No
24227
0876f84a
DJ
24228@item @samp{qXfer:auxv:read}
24229@tab No
24230@tab @samp{-}
24231@tab Yes
24232
23181151
DJ
24233@item @samp{qXfer:features:read}
24234@tab No
24235@tab @samp{-}
24236@tab Yes
24237
cfa9d6d9
DJ
24238@item @samp{qXfer:libraries:read}
24239@tab No
24240@tab @samp{-}
24241@tab Yes
24242
68437a39
DJ
24243@item @samp{qXfer:memory-map:read}
24244@tab No
24245@tab @samp{-}
24246@tab Yes
24247
0e7f50da
UW
24248@item @samp{qXfer:spu:read}
24249@tab No
24250@tab @samp{-}
24251@tab Yes
24252
24253@item @samp{qXfer:spu:write}
24254@tab No
24255@tab @samp{-}
24256@tab Yes
24257
89be2091
DJ
24258@item @samp{QPassSignals}
24259@tab No
24260@tab @samp{-}
24261@tab Yes
24262
be2a5f71
DJ
24263@end multitable
24264
24265These are the currently defined stub features, in more detail:
24266
24267@table @samp
24268@cindex packet size, remote protocol
24269@item PacketSize=@var{bytes}
24270The remote stub can accept packets up to at least @var{bytes} in
24271length. @value{GDBN} will send packets up to this size for bulk
24272transfers, and will never send larger packets. This is a limit on the
24273data characters in the packet, including the frame and checksum.
24274There is no trailing NUL byte in a remote protocol packet; if the stub
24275stores packets in a NUL-terminated format, it should allow an extra
24276byte in its buffer for the NUL. If this stub feature is not supported,
24277@value{GDBN} guesses based on the size of the @samp{g} packet response.
24278
0876f84a
DJ
24279@item qXfer:auxv:read
24280The remote stub understands the @samp{qXfer:auxv:read} packet
24281(@pxref{qXfer auxiliary vector read}).
24282
23181151
DJ
24283@item qXfer:features:read
24284The remote stub understands the @samp{qXfer:features:read} packet
24285(@pxref{qXfer target description read}).
24286
cfa9d6d9
DJ
24287@item qXfer:libraries:read
24288The remote stub understands the @samp{qXfer:libraries:read} packet
24289(@pxref{qXfer library list read}).
24290
23181151
DJ
24291@item qXfer:memory-map:read
24292The remote stub understands the @samp{qXfer:memory-map:read} packet
24293(@pxref{qXfer memory map read}).
24294
0e7f50da
UW
24295@item qXfer:spu:read
24296The remote stub understands the @samp{qXfer:spu:read} packet
24297(@pxref{qXfer spu read}).
24298
24299@item qXfer:spu:write
24300The remote stub understands the @samp{qXfer:spu:write} packet
24301(@pxref{qXfer spu write}).
24302
23181151
DJ
24303@item QPassSignals
24304The remote stub understands the @samp{QPassSignals} packet
24305(@pxref{QPassSignals}).
24306
be2a5f71
DJ
24307@end table
24308
b8ff78ce 24309@item qSymbol::
ff2587ec 24310@cindex symbol lookup, remote request
b8ff78ce 24311@cindex @samp{qSymbol} packet
ff2587ec
WZ
24312Notify the target that @value{GDBN} is prepared to serve symbol lookup
24313requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24314
24315Reply:
ff2587ec 24316@table @samp
b8ff78ce 24317@item OK
ff2587ec 24318The target does not need to look up any (more) symbols.
b8ff78ce 24319@item qSymbol:@var{sym_name}
ff2587ec
WZ
24320The target requests the value of symbol @var{sym_name} (hex encoded).
24321@value{GDBN} may provide the value by using the
b8ff78ce
JB
24322@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24323below.
ff2587ec 24324@end table
83761cbd 24325
b8ff78ce 24326@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24327Set the value of @var{sym_name} to @var{sym_value}.
24328
24329@var{sym_name} (hex encoded) is the name of a symbol whose value the
24330target has previously requested.
24331
24332@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24333@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24334will be empty.
24335
24336Reply:
24337@table @samp
b8ff78ce 24338@item OK
ff2587ec 24339The target does not need to look up any (more) symbols.
b8ff78ce 24340@item qSymbol:@var{sym_name}
ff2587ec
WZ
24341The target requests the value of a new symbol @var{sym_name} (hex
24342encoded). @value{GDBN} will continue to supply the values of symbols
24343(if available), until the target ceases to request them.
fa93a9d8 24344@end table
0abb7bc7 24345
9d29849a
JB
24346@item QTDP
24347@itemx QTFrame
24348@xref{Tracepoint Packets}.
24349
b8ff78ce 24350@item qThreadExtraInfo,@var{id}
ff2587ec 24351@cindex thread attributes info, remote request
b8ff78ce
JB
24352@cindex @samp{qThreadExtraInfo} packet
24353Obtain a printable string description of a thread's attributes from
24354the target OS. @var{id} is a thread-id in big-endian hex. This
24355string may contain anything that the target OS thinks is interesting
24356for @value{GDBN} to tell the user about the thread. The string is
24357displayed in @value{GDBN}'s @code{info threads} display. Some
24358examples of possible thread extra info strings are @samp{Runnable}, or
24359@samp{Blocked on Mutex}.
ff2587ec
WZ
24360
24361Reply:
24362@table @samp
b8ff78ce
JB
24363@item @var{XX}@dots{}
24364Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24365comprising the printable string containing the extra information about
24366the thread's attributes.
ff2587ec 24367@end table
814e32d7 24368
aa56d27a
JB
24369(Note that the @code{qThreadExtraInfo} packet's name is separated from
24370the command by a @samp{,}, not a @samp{:}, contrary to the naming
24371conventions above. Please don't use this packet as a model for new
24372packets.)
24373
9d29849a
JB
24374@item QTStart
24375@itemx QTStop
24376@itemx QTinit
24377@itemx QTro
24378@itemx qTStatus
24379@xref{Tracepoint Packets}.
24380
0876f84a
DJ
24381@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24382@cindex read special object, remote request
24383@cindex @samp{qXfer} packet
68437a39 24384@anchor{qXfer read}
0876f84a
DJ
24385Read uninterpreted bytes from the target's special data area
24386identified by the keyword @var{object}. Request @var{length} bytes
24387starting at @var{offset} bytes into the data. The content and
0e7f50da 24388encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24389additional details about what data to access.
24390
24391Here are the specific requests of this form defined so far. All
24392@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24393formats, listed below.
24394
24395@table @samp
24396@item qXfer:auxv:read::@var{offset},@var{length}
24397@anchor{qXfer auxiliary vector read}
24398Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24399auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24400
24401This packet is not probed by default; the remote stub must request it,
89be2091 24402by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24403
23181151
DJ
24404@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24405@anchor{qXfer target description read}
24406Access the @dfn{target description}. @xref{Target Descriptions}. The
24407annex specifies which XML document to access. The main description is
24408always loaded from the @samp{target.xml} annex.
24409
24410This packet is not probed by default; the remote stub must request it,
24411by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24412
cfa9d6d9
DJ
24413@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24414@anchor{qXfer library list read}
24415Access the target's list of loaded libraries. @xref{Library List Format}.
24416The annex part of the generic @samp{qXfer} packet must be empty
24417(@pxref{qXfer read}).
24418
24419Targets which maintain a list of libraries in the program's memory do
24420not need to implement this packet; it is designed for platforms where
24421the operating system manages the list of loaded libraries.
24422
24423This packet is not probed by default; the remote stub must request it,
24424by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24425
68437a39
DJ
24426@item qXfer:memory-map:read::@var{offset},@var{length}
24427@anchor{qXfer memory map read}
79a6e687 24428Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24429annex part of the generic @samp{qXfer} packet must be empty
24430(@pxref{qXfer read}).
24431
0e7f50da
UW
24432This packet is not probed by default; the remote stub must request it,
24433by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24434
24435@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24436@anchor{qXfer spu read}
24437Read contents of an @code{spufs} file on the target system. The
24438annex specifies which file to read; it must be of the form
24439@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24440in the target process, and @var{name} identifes the @code{spufs} file
24441in that context to be accessed.
24442
68437a39
DJ
24443This packet is not probed by default; the remote stub must request it,
24444by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24445@end table
24446
0876f84a
DJ
24447Reply:
24448@table @samp
24449@item m @var{data}
24450Data @var{data} (@pxref{Binary Data}) has been read from the
24451target. There may be more data at a higher address (although
24452it is permitted to return @samp{m} even for the last valid
24453block of data, as long as at least one byte of data was read).
24454@var{data} may have fewer bytes than the @var{length} in the
24455request.
24456
24457@item l @var{data}
24458Data @var{data} (@pxref{Binary Data}) has been read from the target.
24459There is no more data to be read. @var{data} may have fewer bytes
24460than the @var{length} in the request.
24461
24462@item l
24463The @var{offset} in the request is at the end of the data.
24464There is no more data to be read.
24465
24466@item E00
24467The request was malformed, or @var{annex} was invalid.
24468
24469@item E @var{nn}
24470The offset was invalid, or there was an error encountered reading the data.
24471@var{nn} is a hex-encoded @code{errno} value.
24472
24473@item
24474An empty reply indicates the @var{object} string was not recognized by
24475the stub, or that the object does not support reading.
24476@end table
24477
24478@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24479@cindex write data into object, remote request
24480Write uninterpreted bytes into the target's special data area
24481identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24482into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24483(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24484is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24485to access.
24486
0e7f50da
UW
24487Here are the specific requests of this form defined so far. All
24488@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24489formats, listed below.
24490
24491@table @samp
24492@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24493@anchor{qXfer spu write}
24494Write @var{data} to an @code{spufs} file on the target system. The
24495annex specifies which file to write; it must be of the form
24496@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24497in the target process, and @var{name} identifes the @code{spufs} file
24498in that context to be accessed.
24499
24500This packet is not probed by default; the remote stub must request it,
24501by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24502@end table
0876f84a
DJ
24503
24504Reply:
24505@table @samp
24506@item @var{nn}
24507@var{nn} (hex encoded) is the number of bytes written.
24508This may be fewer bytes than supplied in the request.
24509
24510@item E00
24511The request was malformed, or @var{annex} was invalid.
24512
24513@item E @var{nn}
24514The offset was invalid, or there was an error encountered writing the data.
24515@var{nn} is a hex-encoded @code{errno} value.
24516
24517@item
24518An empty reply indicates the @var{object} string was not
24519recognized by the stub, or that the object does not support writing.
24520@end table
24521
24522@item qXfer:@var{object}:@var{operation}:@dots{}
24523Requests of this form may be added in the future. When a stub does
24524not recognize the @var{object} keyword, or its support for
24525@var{object} does not recognize the @var{operation} keyword, the stub
24526must respond with an empty packet.
24527
ee2d5c50
AC
24528@end table
24529
24530@node Register Packet Format
24531@section Register Packet Format
eb12ee30 24532
b8ff78ce 24533The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24534In the below, some thirty-two bit registers are transferred as
24535sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24536to fill the space allocated. Register bytes are transferred in target
24537byte order. The two nibbles within a register byte are transferred
ee2d5c50 24538most-significant - least-significant.
eb12ee30 24539
ee2d5c50 24540@table @r
eb12ee30 24541
8e04817f 24542@item MIPS32
ee2d5c50 24543
599b237a 24544All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2454532 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24546registers; fsr; fir; fp.
eb12ee30 24547
8e04817f 24548@item MIPS64
ee2d5c50 24549
599b237a 24550All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24551thirty-two bit registers such as @code{sr}). The ordering is the same
24552as @code{MIPS32}.
eb12ee30 24553
ee2d5c50
AC
24554@end table
24555
9d29849a
JB
24556@node Tracepoint Packets
24557@section Tracepoint Packets
24558@cindex tracepoint packets
24559@cindex packets, tracepoint
24560
24561Here we describe the packets @value{GDBN} uses to implement
24562tracepoints (@pxref{Tracepoints}).
24563
24564@table @samp
24565
24566@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24567Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24568is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24569the tracepoint is disabled. @var{step} is the tracepoint's step
24570count, and @var{pass} is its pass count. If the trailing @samp{-} is
24571present, further @samp{QTDP} packets will follow to specify this
24572tracepoint's actions.
24573
24574Replies:
24575@table @samp
24576@item OK
24577The packet was understood and carried out.
24578@item
24579The packet was not recognized.
24580@end table
24581
24582@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24583Define actions to be taken when a tracepoint is hit. @var{n} and
24584@var{addr} must be the same as in the initial @samp{QTDP} packet for
24585this tracepoint. This packet may only be sent immediately after
24586another @samp{QTDP} packet that ended with a @samp{-}. If the
24587trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24588specifying more actions for this tracepoint.
24589
24590In the series of action packets for a given tracepoint, at most one
24591can have an @samp{S} before its first @var{action}. If such a packet
24592is sent, it and the following packets define ``while-stepping''
24593actions. Any prior packets define ordinary actions --- that is, those
24594taken when the tracepoint is first hit. If no action packet has an
24595@samp{S}, then all the packets in the series specify ordinary
24596tracepoint actions.
24597
24598The @samp{@var{action}@dots{}} portion of the packet is a series of
24599actions, concatenated without separators. Each action has one of the
24600following forms:
24601
24602@table @samp
24603
24604@item R @var{mask}
24605Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24606a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24607@var{i} should be collected. (The least significant bit is numbered
24608zero.) Note that @var{mask} may be any number of digits long; it may
24609not fit in a 32-bit word.
24610
24611@item M @var{basereg},@var{offset},@var{len}
24612Collect @var{len} bytes of memory starting at the address in register
24613number @var{basereg}, plus @var{offset}. If @var{basereg} is
24614@samp{-1}, then the range has a fixed address: @var{offset} is the
24615address of the lowest byte to collect. The @var{basereg},
599b237a 24616@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24617values (the @samp{-1} value for @var{basereg} is a special case).
24618
24619@item X @var{len},@var{expr}
24620Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24621it directs. @var{expr} is an agent expression, as described in
24622@ref{Agent Expressions}. Each byte of the expression is encoded as a
24623two-digit hex number in the packet; @var{len} is the number of bytes
24624in the expression (and thus one-half the number of hex digits in the
24625packet).
24626
24627@end table
24628
24629Any number of actions may be packed together in a single @samp{QTDP}
24630packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24631length (400 bytes, for many stubs). There may be only one @samp{R}
24632action per tracepoint, and it must precede any @samp{M} or @samp{X}
24633actions. Any registers referred to by @samp{M} and @samp{X} actions
24634must be collected by a preceding @samp{R} action. (The
24635``while-stepping'' actions are treated as if they were attached to a
24636separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24637
24638Replies:
24639@table @samp
24640@item OK
24641The packet was understood and carried out.
24642@item
24643The packet was not recognized.
24644@end table
24645
24646@item QTFrame:@var{n}
24647Select the @var{n}'th tracepoint frame from the buffer, and use the
24648register and memory contents recorded there to answer subsequent
24649request packets from @value{GDBN}.
24650
24651A successful reply from the stub indicates that the stub has found the
24652requested frame. The response is a series of parts, concatenated
24653without separators, describing the frame we selected. Each part has
24654one of the following forms:
24655
24656@table @samp
24657@item F @var{f}
24658The selected frame is number @var{n} in the trace frame buffer;
599b237a 24659@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24660was no frame matching the criteria in the request packet.
24661
24662@item T @var{t}
24663The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24664@var{t} is a hexadecimal number.
9d29849a
JB
24665
24666@end table
24667
24668@item QTFrame:pc:@var{addr}
24669Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24670currently selected frame whose PC is @var{addr};
599b237a 24671@var{addr} is a hexadecimal number.
9d29849a
JB
24672
24673@item QTFrame:tdp:@var{t}
24674Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24675currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24676is a hexadecimal number.
9d29849a
JB
24677
24678@item QTFrame:range:@var{start}:@var{end}
24679Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24680currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24681and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24682numbers.
24683
24684@item QTFrame:outside:@var{start}:@var{end}
24685Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24686frame @emph{outside} the given range of addresses.
24687
24688@item QTStart
24689Begin the tracepoint experiment. Begin collecting data from tracepoint
24690hits in the trace frame buffer.
24691
24692@item QTStop
24693End the tracepoint experiment. Stop collecting trace frames.
24694
24695@item QTinit
24696Clear the table of tracepoints, and empty the trace frame buffer.
24697
24698@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24699Establish the given ranges of memory as ``transparent''. The stub
24700will answer requests for these ranges from memory's current contents,
24701if they were not collected as part of the tracepoint hit.
24702
24703@value{GDBN} uses this to mark read-only regions of memory, like those
24704containing program code. Since these areas never change, they should
24705still have the same contents they did when the tracepoint was hit, so
24706there's no reason for the stub to refuse to provide their contents.
24707
24708@item qTStatus
24709Ask the stub if there is a trace experiment running right now.
24710
24711Replies:
24712@table @samp
24713@item T0
24714There is no trace experiment running.
24715@item T1
24716There is a trace experiment running.
24717@end table
24718
24719@end table
24720
24721
a6b151f1
DJ
24722@node Host I/O Packets
24723@section Host I/O Packets
24724@cindex Host I/O, remote protocol
24725@cindex file transfer, remote protocol
24726
24727The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24728operations on the far side of a remote link. For example, Host I/O is
24729used to upload and download files to a remote target with its own
24730filesystem. Host I/O uses the same constant values and data structure
24731layout as the target-initiated File-I/O protocol. However, the
24732Host I/O packets are structured differently. The target-initiated
24733protocol relies on target memory to store parameters and buffers.
24734Host I/O requests are initiated by @value{GDBN}, and the
24735target's memory is not involved. @xref{File-I/O Remote Protocol
24736Extension}, for more details on the target-initiated protocol.
24737
24738The Host I/O request packets all encode a single operation along with
24739its arguments. They have this format:
24740
24741@table @samp
24742
24743@item vFile:@var{operation}: @var{parameter}@dots{}
24744@var{operation} is the name of the particular request; the target
24745should compare the entire packet name up to the second colon when checking
24746for a supported operation. The format of @var{parameter} depends on
24747the operation. Numbers are always passed in hexadecimal. Negative
24748numbers have an explicit minus sign (i.e.@: two's complement is not
24749used). Strings (e.g.@: filenames) are encoded as a series of
24750hexadecimal bytes. The last argument to a system call may be a
24751buffer of escaped binary data (@pxref{Binary Data}).
24752
24753@end table
24754
24755The valid responses to Host I/O packets are:
24756
24757@table @samp
24758
24759@item F @var{result} [, @var{errno}] [; @var{attachment}]
24760@var{result} is the integer value returned by this operation, usually
24761non-negative for success and -1 for errors. If an error has occured,
24762@var{errno} will be included in the result. @var{errno} will have a
24763value defined by the File-I/O protocol (@pxref{Errno Values}). For
24764operations which return data, @var{attachment} supplies the data as a
24765binary buffer. Binary buffers in response packets are escaped in the
24766normal way (@pxref{Binary Data}). See the individual packet
24767documentation for the interpretation of @var{result} and
24768@var{attachment}.
24769
24770@item
24771An empty response indicates that this operation is not recognized.
24772
24773@end table
24774
24775These are the supported Host I/O operations:
24776
24777@table @samp
24778@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24779Open a file at @var{pathname} and return a file descriptor for it, or
24780return -1 if an error occurs. @var{pathname} is a string,
24781@var{flags} is an integer indicating a mask of open flags
24782(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24783of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24784@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24785
24786@item vFile:close: @var{fd}
24787Close the open file corresponding to @var{fd} and return 0, or
24788-1 if an error occurs.
24789
24790@item vFile:pread: @var{fd}, @var{count}, @var{offset}
24791Read data from the open file corresponding to @var{fd}. Up to
24792@var{count} bytes will be read from the file, starting at @var{offset}
24793relative to the start of the file. The target may read fewer bytes;
24794common reasons include packet size limits and an end-of-file
24795condition. The number of bytes read is returned. Zero should only be
24796returned for a successful read at the end of the file, or if
24797@var{count} was zero.
24798
24799The data read should be returned as a binary attachment on success.
24800If zero bytes were read, the response should include an empty binary
24801attachment (i.e.@: a trailing semicolon). The return value is the
24802number of target bytes read; the binary attachment may be longer if
24803some characters were escaped.
24804
24805@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
24806Write @var{data} (a binary buffer) to the open file corresponding
24807to @var{fd}. Start the write at @var{offset} from the start of the
24808file. Unlike many @code{write} system calls, there is no
24809separate @var{count} argument; the length of @var{data} in the
24810packet is used. @samp{vFile:write} returns the number of bytes written,
24811which may be shorter than the length of @var{data}, or -1 if an
24812error occurred.
24813
24814@item vFile:unlink: @var{pathname}
24815Delete the file at @var{pathname} on the target. Return 0,
24816or -1 if an error occurs. @var{pathname} is a string.
24817
24818@end table
24819
9a6253be
KB
24820@node Interrupts
24821@section Interrupts
24822@cindex interrupts (remote protocol)
24823
24824When a program on the remote target is running, @value{GDBN} may
24825attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24826control of which is specified via @value{GDBN}'s @samp{remotebreak}
24827setting (@pxref{set remotebreak}).
24828
24829The precise meaning of @code{BREAK} is defined by the transport
24830mechanism and may, in fact, be undefined. @value{GDBN} does
24831not currently define a @code{BREAK} mechanism for any of the network
24832interfaces.
24833
24834@samp{Ctrl-C}, on the other hand, is defined and implemented for all
24835transport mechanisms. It is represented by sending the single byte
24836@code{0x03} without any of the usual packet overhead described in
24837the Overview section (@pxref{Overview}). When a @code{0x03} byte is
24838transmitted as part of a packet, it is considered to be packet data
24839and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 24840(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
24841@code{0x03} as part of its packet.
24842
24843Stubs are not required to recognize these interrupt mechanisms and the
24844precise meaning associated with receipt of the interrupt is
24845implementation defined. If the stub is successful at interrupting the
24846running program, it is expected that it will send one of the Stop
24847Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24848of successfully stopping the program. Interrupts received while the
24849program is stopped will be discarded.
24850
ee2d5c50
AC
24851@node Examples
24852@section Examples
eb12ee30 24853
8e04817f
AC
24854Example sequence of a target being re-started. Notice how the restart
24855does not get any direct output:
eb12ee30 24856
474c8240 24857@smallexample
d2c6833e
AC
24858-> @code{R00}
24859<- @code{+}
8e04817f 24860@emph{target restarts}
d2c6833e 24861-> @code{?}
8e04817f 24862<- @code{+}
d2c6833e
AC
24863<- @code{T001:1234123412341234}
24864-> @code{+}
474c8240 24865@end smallexample
eb12ee30 24866
8e04817f 24867Example sequence of a target being stepped by a single instruction:
eb12ee30 24868
474c8240 24869@smallexample
d2c6833e 24870-> @code{G1445@dots{}}
8e04817f 24871<- @code{+}
d2c6833e
AC
24872-> @code{s}
24873<- @code{+}
24874@emph{time passes}
24875<- @code{T001:1234123412341234}
8e04817f 24876-> @code{+}
d2c6833e 24877-> @code{g}
8e04817f 24878<- @code{+}
d2c6833e
AC
24879<- @code{1455@dots{}}
24880-> @code{+}
474c8240 24881@end smallexample
eb12ee30 24882
79a6e687
BW
24883@node File-I/O Remote Protocol Extension
24884@section File-I/O Remote Protocol Extension
0ce1b118
CV
24885@cindex File-I/O remote protocol extension
24886
24887@menu
24888* File-I/O Overview::
79a6e687
BW
24889* Protocol Basics::
24890* The F Request Packet::
24891* The F Reply Packet::
24892* The Ctrl-C Message::
0ce1b118 24893* Console I/O::
79a6e687 24894* List of Supported Calls::
db2e3e2e 24895* Protocol-specific Representation of Datatypes::
0ce1b118
CV
24896* Constants::
24897* File-I/O Examples::
24898@end menu
24899
24900@node File-I/O Overview
24901@subsection File-I/O Overview
24902@cindex file-i/o overview
24903
9c16f35a 24904The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 24905target to use the host's file system and console I/O to perform various
0ce1b118 24906system calls. System calls on the target system are translated into a
fc320d37
SL
24907remote protocol packet to the host system, which then performs the needed
24908actions and returns a response packet to the target system.
0ce1b118
CV
24909This simulates file system operations even on targets that lack file systems.
24910
fc320d37
SL
24911The protocol is defined to be independent of both the host and target systems.
24912It uses its own internal representation of datatypes and values. Both
0ce1b118 24913@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
24914translating the system-dependent value representations into the internal
24915protocol representations when data is transmitted.
0ce1b118 24916
fc320d37
SL
24917The communication is synchronous. A system call is possible only when
24918@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
24919or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 24920the target is stopped to allow deterministic access to the target's
fc320d37
SL
24921memory. Therefore File-I/O is not interruptible by target signals. On
24922the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 24923(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
24924
24925The target's request to perform a host system call does not finish
24926the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
24927after finishing the system call, the target returns to continuing the
24928previous activity (continue, step). No additional continue or step
24929request from @value{GDBN} is required.
24930
24931@smallexample
f7dc1244 24932(@value{GDBP}) continue
0ce1b118
CV
24933 <- target requests 'system call X'
24934 target is stopped, @value{GDBN} executes system call
3f94c067
BW
24935 -> @value{GDBN} returns result
24936 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
24937 <- target hits breakpoint and sends a Txx packet
24938@end smallexample
24939
fc320d37
SL
24940The protocol only supports I/O on the console and to regular files on
24941the host file system. Character or block special devices, pipes,
24942named pipes, sockets or any other communication method on the host
0ce1b118
CV
24943system are not supported by this protocol.
24944
79a6e687
BW
24945@node Protocol Basics
24946@subsection Protocol Basics
0ce1b118
CV
24947@cindex protocol basics, file-i/o
24948
fc320d37
SL
24949The File-I/O protocol uses the @code{F} packet as the request as well
24950as reply packet. Since a File-I/O system call can only occur when
24951@value{GDBN} is waiting for a response from the continuing or stepping target,
24952the File-I/O request is a reply that @value{GDBN} has to expect as a result
24953of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
24954This @code{F} packet contains all information needed to allow @value{GDBN}
24955to call the appropriate host system call:
24956
24957@itemize @bullet
b383017d 24958@item
0ce1b118
CV
24959A unique identifier for the requested system call.
24960
24961@item
24962All parameters to the system call. Pointers are given as addresses
24963in the target memory address space. Pointers to strings are given as
b383017d 24964pointer/length pair. Numerical values are given as they are.
db2e3e2e 24965Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
24966
24967@end itemize
24968
fc320d37 24969At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
24970
24971@itemize @bullet
b383017d 24972@item
fc320d37
SL
24973If the parameters include pointer values to data needed as input to a
24974system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
24975standard @code{m} packet request. This additional communication has to be
24976expected by the target implementation and is handled as any other @code{m}
24977packet.
24978
24979@item
24980@value{GDBN} translates all value from protocol representation to host
24981representation as needed. Datatypes are coerced into the host types.
24982
24983@item
fc320d37 24984@value{GDBN} calls the system call.
0ce1b118
CV
24985
24986@item
24987It then coerces datatypes back to protocol representation.
24988
24989@item
fc320d37
SL
24990If the system call is expected to return data in buffer space specified
24991by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
24992target using a @code{M} or @code{X} packet. This packet has to be expected
24993by the target implementation and is handled as any other @code{M} or @code{X}
24994packet.
24995
24996@end itemize
24997
24998Eventually @value{GDBN} replies with another @code{F} packet which contains all
24999necessary information for the target to continue. This at least contains
25000
25001@itemize @bullet
25002@item
25003Return value.
25004
25005@item
25006@code{errno}, if has been changed by the system call.
25007
25008@item
25009``Ctrl-C'' flag.
25010
25011@end itemize
25012
25013After having done the needed type and value coercion, the target continues
25014the latest continue or step action.
25015
79a6e687
BW
25016@node The F Request Packet
25017@subsection The @code{F} Request Packet
0ce1b118
CV
25018@cindex file-i/o request packet
25019@cindex @code{F} request packet
25020
25021The @code{F} request packet has the following format:
25022
25023@table @samp
fc320d37 25024@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25025
25026@var{call-id} is the identifier to indicate the host system call to be called.
25027This is just the name of the function.
25028
fc320d37
SL
25029@var{parameter@dots{}} are the parameters to the system call.
25030Parameters are hexadecimal integer values, either the actual values in case
25031of scalar datatypes, pointers to target buffer space in case of compound
25032datatypes and unspecified memory areas, or pointer/length pairs in case
25033of string parameters. These are appended to the @var{call-id} as a
25034comma-delimited list. All values are transmitted in ASCII
25035string representation, pointer/length pairs separated by a slash.
0ce1b118 25036
b383017d 25037@end table
0ce1b118 25038
fc320d37 25039
0ce1b118 25040
79a6e687
BW
25041@node The F Reply Packet
25042@subsection The @code{F} Reply Packet
0ce1b118
CV
25043@cindex file-i/o reply packet
25044@cindex @code{F} reply packet
25045
25046The @code{F} reply packet has the following format:
25047
25048@table @samp
25049
d3bdde98 25050@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25051
25052@var{retcode} is the return code of the system call as hexadecimal value.
25053
db2e3e2e
BW
25054@var{errno} is the @code{errno} set by the call, in protocol-specific
25055representation.
0ce1b118
CV
25056This parameter can be omitted if the call was successful.
25057
fc320d37
SL
25058@var{Ctrl-C flag} is only sent if the user requested a break. In this
25059case, @var{errno} must be sent as well, even if the call was successful.
25060The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25061
25062@smallexample
25063F0,0,C
25064@end smallexample
25065
25066@noindent
fc320d37 25067or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25068
25069@smallexample
25070F-1,4,C
25071@end smallexample
25072
25073@noindent
db2e3e2e 25074assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25075
25076@end table
25077
0ce1b118 25078
79a6e687
BW
25079@node The Ctrl-C Message
25080@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25081@cindex ctrl-c message, in file-i/o protocol
25082
c8aa23ab 25083If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25084reply packet (@pxref{The F Reply Packet}),
fc320d37 25085the target should behave as if it had
0ce1b118 25086gotten a break message. The meaning for the target is ``system call
fc320d37 25087interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25088(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25089packet.
fc320d37
SL
25090
25091It's important for the target to know in which
25092state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25093
25094@itemize @bullet
25095@item
25096The system call hasn't been performed on the host yet.
25097
25098@item
25099The system call on the host has been finished.
25100
25101@end itemize
25102
25103These two states can be distinguished by the target by the value of the
25104returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25105call hasn't been performed. This is equivalent to the @code{EINTR} handling
25106on POSIX systems. In any other case, the target may presume that the
fc320d37 25107system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25108as if the break message arrived right after the system call.
25109
fc320d37 25110@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25111yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25112@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25113before the user requests a break, the full action must be finished by
25114@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25115The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25116or the full action has been completed.
25117
25118@node Console I/O
25119@subsection Console I/O
25120@cindex console i/o as part of file-i/o
25121
d3e8051b 25122By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25123descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25124on the @value{GDBN} console is handled as any other file output operation
25125(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25126by @value{GDBN} so that after the target read request from file descriptor
251270 all following typing is buffered until either one of the following
25128conditions is met:
25129
25130@itemize @bullet
25131@item
c8aa23ab 25132The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25133@code{read}
25134system call is treated as finished.
25135
25136@item
7f9087cb 25137The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25138newline.
0ce1b118
CV
25139
25140@item
c8aa23ab
EZ
25141The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25142character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25143
25144@end itemize
25145
fc320d37
SL
25146If the user has typed more characters than fit in the buffer given to
25147the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25148either another @code{read(0, @dots{})} is requested by the target, or debugging
25149is stopped at the user's request.
0ce1b118 25150
0ce1b118 25151
79a6e687
BW
25152@node List of Supported Calls
25153@subsection List of Supported Calls
0ce1b118
CV
25154@cindex list of supported file-i/o calls
25155
25156@menu
25157* open::
25158* close::
25159* read::
25160* write::
25161* lseek::
25162* rename::
25163* unlink::
25164* stat/fstat::
25165* gettimeofday::
25166* isatty::
25167* system::
25168@end menu
25169
25170@node open
25171@unnumberedsubsubsec open
25172@cindex open, file-i/o system call
25173
fc320d37
SL
25174@table @asis
25175@item Synopsis:
0ce1b118 25176@smallexample
0ce1b118
CV
25177int open(const char *pathname, int flags);
25178int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25179@end smallexample
25180
fc320d37
SL
25181@item Request:
25182@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25183
0ce1b118 25184@noindent
fc320d37 25185@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25186
25187@table @code
b383017d 25188@item O_CREAT
0ce1b118
CV
25189If the file does not exist it will be created. The host
25190rules apply as far as file ownership and time stamps
25191are concerned.
25192
b383017d 25193@item O_EXCL
fc320d37 25194When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25195an error and open() fails.
25196
b383017d 25197@item O_TRUNC
0ce1b118 25198If the file already exists and the open mode allows
fc320d37
SL
25199writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25200truncated to zero length.
0ce1b118 25201
b383017d 25202@item O_APPEND
0ce1b118
CV
25203The file is opened in append mode.
25204
b383017d 25205@item O_RDONLY
0ce1b118
CV
25206The file is opened for reading only.
25207
b383017d 25208@item O_WRONLY
0ce1b118
CV
25209The file is opened for writing only.
25210
b383017d 25211@item O_RDWR
0ce1b118 25212The file is opened for reading and writing.
fc320d37 25213@end table
0ce1b118
CV
25214
25215@noindent
fc320d37 25216Other bits are silently ignored.
0ce1b118 25217
0ce1b118
CV
25218
25219@noindent
fc320d37 25220@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25221
25222@table @code
b383017d 25223@item S_IRUSR
0ce1b118
CV
25224User has read permission.
25225
b383017d 25226@item S_IWUSR
0ce1b118
CV
25227User has write permission.
25228
b383017d 25229@item S_IRGRP
0ce1b118
CV
25230Group has read permission.
25231
b383017d 25232@item S_IWGRP
0ce1b118
CV
25233Group has write permission.
25234
b383017d 25235@item S_IROTH
0ce1b118
CV
25236Others have read permission.
25237
b383017d 25238@item S_IWOTH
0ce1b118 25239Others have write permission.
fc320d37 25240@end table
0ce1b118
CV
25241
25242@noindent
fc320d37 25243Other bits are silently ignored.
0ce1b118 25244
0ce1b118 25245
fc320d37
SL
25246@item Return value:
25247@code{open} returns the new file descriptor or -1 if an error
25248occurred.
0ce1b118 25249
fc320d37 25250@item Errors:
0ce1b118
CV
25251
25252@table @code
b383017d 25253@item EEXIST
fc320d37 25254@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25255
b383017d 25256@item EISDIR
fc320d37 25257@var{pathname} refers to a directory.
0ce1b118 25258
b383017d 25259@item EACCES
0ce1b118
CV
25260The requested access is not allowed.
25261
25262@item ENAMETOOLONG
fc320d37 25263@var{pathname} was too long.
0ce1b118 25264
b383017d 25265@item ENOENT
fc320d37 25266A directory component in @var{pathname} does not exist.
0ce1b118 25267
b383017d 25268@item ENODEV
fc320d37 25269@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25270
b383017d 25271@item EROFS
fc320d37 25272@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25273write access was requested.
25274
b383017d 25275@item EFAULT
fc320d37 25276@var{pathname} is an invalid pointer value.
0ce1b118 25277
b383017d 25278@item ENOSPC
0ce1b118
CV
25279No space on device to create the file.
25280
b383017d 25281@item EMFILE
0ce1b118
CV
25282The process already has the maximum number of files open.
25283
b383017d 25284@item ENFILE
0ce1b118
CV
25285The limit on the total number of files open on the system
25286has been reached.
25287
b383017d 25288@item EINTR
0ce1b118
CV
25289The call was interrupted by the user.
25290@end table
25291
fc320d37
SL
25292@end table
25293
0ce1b118
CV
25294@node close
25295@unnumberedsubsubsec close
25296@cindex close, file-i/o system call
25297
fc320d37
SL
25298@table @asis
25299@item Synopsis:
0ce1b118 25300@smallexample
0ce1b118 25301int close(int fd);
fc320d37 25302@end smallexample
0ce1b118 25303
fc320d37
SL
25304@item Request:
25305@samp{Fclose,@var{fd}}
0ce1b118 25306
fc320d37
SL
25307@item Return value:
25308@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25309
fc320d37 25310@item Errors:
0ce1b118
CV
25311
25312@table @code
b383017d 25313@item EBADF
fc320d37 25314@var{fd} isn't a valid open file descriptor.
0ce1b118 25315
b383017d 25316@item EINTR
0ce1b118
CV
25317The call was interrupted by the user.
25318@end table
25319
fc320d37
SL
25320@end table
25321
0ce1b118
CV
25322@node read
25323@unnumberedsubsubsec read
25324@cindex read, file-i/o system call
25325
fc320d37
SL
25326@table @asis
25327@item Synopsis:
0ce1b118 25328@smallexample
0ce1b118 25329int read(int fd, void *buf, unsigned int count);
fc320d37 25330@end smallexample
0ce1b118 25331
fc320d37
SL
25332@item Request:
25333@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25334
fc320d37 25335@item Return value:
0ce1b118
CV
25336On success, the number of bytes read is returned.
25337Zero indicates end of file. If count is zero, read
b383017d 25338returns zero as well. On error, -1 is returned.
0ce1b118 25339
fc320d37 25340@item Errors:
0ce1b118
CV
25341
25342@table @code
b383017d 25343@item EBADF
fc320d37 25344@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25345reading.
25346
b383017d 25347@item EFAULT
fc320d37 25348@var{bufptr} is an invalid pointer value.
0ce1b118 25349
b383017d 25350@item EINTR
0ce1b118
CV
25351The call was interrupted by the user.
25352@end table
25353
fc320d37
SL
25354@end table
25355
0ce1b118
CV
25356@node write
25357@unnumberedsubsubsec write
25358@cindex write, file-i/o system call
25359
fc320d37
SL
25360@table @asis
25361@item Synopsis:
0ce1b118 25362@smallexample
0ce1b118 25363int write(int fd, const void *buf, unsigned int count);
fc320d37 25364@end smallexample
0ce1b118 25365
fc320d37
SL
25366@item Request:
25367@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25368
fc320d37 25369@item Return value:
0ce1b118
CV
25370On success, the number of bytes written are returned.
25371Zero indicates nothing was written. On error, -1
25372is returned.
25373
fc320d37 25374@item Errors:
0ce1b118
CV
25375
25376@table @code
b383017d 25377@item EBADF
fc320d37 25378@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25379writing.
25380
b383017d 25381@item EFAULT
fc320d37 25382@var{bufptr} is an invalid pointer value.
0ce1b118 25383
b383017d 25384@item EFBIG
0ce1b118 25385An attempt was made to write a file that exceeds the
db2e3e2e 25386host-specific maximum file size allowed.
0ce1b118 25387
b383017d 25388@item ENOSPC
0ce1b118
CV
25389No space on device to write the data.
25390
b383017d 25391@item EINTR
0ce1b118
CV
25392The call was interrupted by the user.
25393@end table
25394
fc320d37
SL
25395@end table
25396
0ce1b118
CV
25397@node lseek
25398@unnumberedsubsubsec lseek
25399@cindex lseek, file-i/o system call
25400
fc320d37
SL
25401@table @asis
25402@item Synopsis:
0ce1b118 25403@smallexample
0ce1b118 25404long lseek (int fd, long offset, int flag);
0ce1b118
CV
25405@end smallexample
25406
fc320d37
SL
25407@item Request:
25408@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25409
25410@var{flag} is one of:
0ce1b118
CV
25411
25412@table @code
b383017d 25413@item SEEK_SET
fc320d37 25414The offset is set to @var{offset} bytes.
0ce1b118 25415
b383017d 25416@item SEEK_CUR
fc320d37 25417The offset is set to its current location plus @var{offset}
0ce1b118
CV
25418bytes.
25419
b383017d 25420@item SEEK_END
fc320d37 25421The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25422bytes.
25423@end table
25424
fc320d37 25425@item Return value:
0ce1b118
CV
25426On success, the resulting unsigned offset in bytes from
25427the beginning of the file is returned. Otherwise, a
25428value of -1 is returned.
25429
fc320d37 25430@item Errors:
0ce1b118
CV
25431
25432@table @code
b383017d 25433@item EBADF
fc320d37 25434@var{fd} is not a valid open file descriptor.
0ce1b118 25435
b383017d 25436@item ESPIPE
fc320d37 25437@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25438
b383017d 25439@item EINVAL
fc320d37 25440@var{flag} is not a proper value.
0ce1b118 25441
b383017d 25442@item EINTR
0ce1b118
CV
25443The call was interrupted by the user.
25444@end table
25445
fc320d37
SL
25446@end table
25447
0ce1b118
CV
25448@node rename
25449@unnumberedsubsubsec rename
25450@cindex rename, file-i/o system call
25451
fc320d37
SL
25452@table @asis
25453@item Synopsis:
0ce1b118 25454@smallexample
0ce1b118 25455int rename(const char *oldpath, const char *newpath);
fc320d37 25456@end smallexample
0ce1b118 25457
fc320d37
SL
25458@item Request:
25459@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25460
fc320d37 25461@item Return value:
0ce1b118
CV
25462On success, zero is returned. On error, -1 is returned.
25463
fc320d37 25464@item Errors:
0ce1b118
CV
25465
25466@table @code
b383017d 25467@item EISDIR
fc320d37 25468@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25469directory.
25470
b383017d 25471@item EEXIST
fc320d37 25472@var{newpath} is a non-empty directory.
0ce1b118 25473
b383017d 25474@item EBUSY
fc320d37 25475@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25476process.
25477
b383017d 25478@item EINVAL
0ce1b118
CV
25479An attempt was made to make a directory a subdirectory
25480of itself.
25481
b383017d 25482@item ENOTDIR
fc320d37
SL
25483A component used as a directory in @var{oldpath} or new
25484path is not a directory. Or @var{oldpath} is a directory
25485and @var{newpath} exists but is not a directory.
0ce1b118 25486
b383017d 25487@item EFAULT
fc320d37 25488@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25489
b383017d 25490@item EACCES
0ce1b118
CV
25491No access to the file or the path of the file.
25492
25493@item ENAMETOOLONG
b383017d 25494
fc320d37 25495@var{oldpath} or @var{newpath} was too long.
0ce1b118 25496
b383017d 25497@item ENOENT
fc320d37 25498A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25499
b383017d 25500@item EROFS
0ce1b118
CV
25501The file is on a read-only filesystem.
25502
b383017d 25503@item ENOSPC
0ce1b118
CV
25504The device containing the file has no room for the new
25505directory entry.
25506
b383017d 25507@item EINTR
0ce1b118
CV
25508The call was interrupted by the user.
25509@end table
25510
fc320d37
SL
25511@end table
25512
0ce1b118
CV
25513@node unlink
25514@unnumberedsubsubsec unlink
25515@cindex unlink, file-i/o system call
25516
fc320d37
SL
25517@table @asis
25518@item Synopsis:
0ce1b118 25519@smallexample
0ce1b118 25520int unlink(const char *pathname);
fc320d37 25521@end smallexample
0ce1b118 25522
fc320d37
SL
25523@item Request:
25524@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25525
fc320d37 25526@item Return value:
0ce1b118
CV
25527On success, zero is returned. On error, -1 is returned.
25528
fc320d37 25529@item Errors:
0ce1b118
CV
25530
25531@table @code
b383017d 25532@item EACCES
0ce1b118
CV
25533No access to the file or the path of the file.
25534
b383017d 25535@item EPERM
0ce1b118
CV
25536The system does not allow unlinking of directories.
25537
b383017d 25538@item EBUSY
fc320d37 25539The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25540being used by another process.
25541
b383017d 25542@item EFAULT
fc320d37 25543@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25544
25545@item ENAMETOOLONG
fc320d37 25546@var{pathname} was too long.
0ce1b118 25547
b383017d 25548@item ENOENT
fc320d37 25549A directory component in @var{pathname} does not exist.
0ce1b118 25550
b383017d 25551@item ENOTDIR
0ce1b118
CV
25552A component of the path is not a directory.
25553
b383017d 25554@item EROFS
0ce1b118
CV
25555The file is on a read-only filesystem.
25556
b383017d 25557@item EINTR
0ce1b118
CV
25558The call was interrupted by the user.
25559@end table
25560
fc320d37
SL
25561@end table
25562
0ce1b118
CV
25563@node stat/fstat
25564@unnumberedsubsubsec stat/fstat
25565@cindex fstat, file-i/o system call
25566@cindex stat, file-i/o system call
25567
fc320d37
SL
25568@table @asis
25569@item Synopsis:
0ce1b118 25570@smallexample
0ce1b118
CV
25571int stat(const char *pathname, struct stat *buf);
25572int fstat(int fd, struct stat *buf);
fc320d37 25573@end smallexample
0ce1b118 25574
fc320d37
SL
25575@item Request:
25576@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25577@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25578
fc320d37 25579@item Return value:
0ce1b118
CV
25580On success, zero is returned. On error, -1 is returned.
25581
fc320d37 25582@item Errors:
0ce1b118
CV
25583
25584@table @code
b383017d 25585@item EBADF
fc320d37 25586@var{fd} is not a valid open file.
0ce1b118 25587
b383017d 25588@item ENOENT
fc320d37 25589A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25590path is an empty string.
25591
b383017d 25592@item ENOTDIR
0ce1b118
CV
25593A component of the path is not a directory.
25594
b383017d 25595@item EFAULT
fc320d37 25596@var{pathnameptr} is an invalid pointer value.
0ce1b118 25597
b383017d 25598@item EACCES
0ce1b118
CV
25599No access to the file or the path of the file.
25600
25601@item ENAMETOOLONG
fc320d37 25602@var{pathname} was too long.
0ce1b118 25603
b383017d 25604@item EINTR
0ce1b118
CV
25605The call was interrupted by the user.
25606@end table
25607
fc320d37
SL
25608@end table
25609
0ce1b118
CV
25610@node gettimeofday
25611@unnumberedsubsubsec gettimeofday
25612@cindex gettimeofday, file-i/o system call
25613
fc320d37
SL
25614@table @asis
25615@item Synopsis:
0ce1b118 25616@smallexample
0ce1b118 25617int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25618@end smallexample
0ce1b118 25619
fc320d37
SL
25620@item Request:
25621@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25622
fc320d37 25623@item Return value:
0ce1b118
CV
25624On success, 0 is returned, -1 otherwise.
25625
fc320d37 25626@item Errors:
0ce1b118
CV
25627
25628@table @code
b383017d 25629@item EINVAL
fc320d37 25630@var{tz} is a non-NULL pointer.
0ce1b118 25631
b383017d 25632@item EFAULT
fc320d37
SL
25633@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25634@end table
25635
0ce1b118
CV
25636@end table
25637
25638@node isatty
25639@unnumberedsubsubsec isatty
25640@cindex isatty, file-i/o system call
25641
fc320d37
SL
25642@table @asis
25643@item Synopsis:
0ce1b118 25644@smallexample
0ce1b118 25645int isatty(int fd);
fc320d37 25646@end smallexample
0ce1b118 25647
fc320d37
SL
25648@item Request:
25649@samp{Fisatty,@var{fd}}
0ce1b118 25650
fc320d37
SL
25651@item Return value:
25652Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25653
fc320d37 25654@item Errors:
0ce1b118
CV
25655
25656@table @code
b383017d 25657@item EINTR
0ce1b118
CV
25658The call was interrupted by the user.
25659@end table
25660
fc320d37
SL
25661@end table
25662
25663Note that the @code{isatty} call is treated as a special case: it returns
256641 to the target if the file descriptor is attached
25665to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25666would require implementing @code{ioctl} and would be more complex than
25667needed.
25668
25669
0ce1b118
CV
25670@node system
25671@unnumberedsubsubsec system
25672@cindex system, file-i/o system call
25673
fc320d37
SL
25674@table @asis
25675@item Synopsis:
0ce1b118 25676@smallexample
0ce1b118 25677int system(const char *command);
fc320d37 25678@end smallexample
0ce1b118 25679
fc320d37
SL
25680@item Request:
25681@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25682
fc320d37 25683@item Return value:
5600ea19
NS
25684If @var{len} is zero, the return value indicates whether a shell is
25685available. A zero return value indicates a shell is not available.
25686For non-zero @var{len}, the value returned is -1 on error and the
25687return status of the command otherwise. Only the exit status of the
25688command is returned, which is extracted from the host's @code{system}
25689return value by calling @code{WEXITSTATUS(retval)}. In case
25690@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25691
fc320d37 25692@item Errors:
0ce1b118
CV
25693
25694@table @code
b383017d 25695@item EINTR
0ce1b118
CV
25696The call was interrupted by the user.
25697@end table
25698
fc320d37
SL
25699@end table
25700
25701@value{GDBN} takes over the full task of calling the necessary host calls
25702to perform the @code{system} call. The return value of @code{system} on
25703the host is simplified before it's returned
25704to the target. Any termination signal information from the child process
25705is discarded, and the return value consists
25706entirely of the exit status of the called command.
25707
25708Due to security concerns, the @code{system} call is by default refused
25709by @value{GDBN}. The user has to allow this call explicitly with the
25710@code{set remote system-call-allowed 1} command.
25711
25712@table @code
25713@item set remote system-call-allowed
25714@kindex set remote system-call-allowed
25715Control whether to allow the @code{system} calls in the File I/O
25716protocol for the remote target. The default is zero (disabled).
25717
25718@item show remote system-call-allowed
25719@kindex show remote system-call-allowed
25720Show whether the @code{system} calls are allowed in the File I/O
25721protocol.
25722@end table
25723
db2e3e2e
BW
25724@node Protocol-specific Representation of Datatypes
25725@subsection Protocol-specific Representation of Datatypes
25726@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25727
25728@menu
79a6e687
BW
25729* Integral Datatypes::
25730* Pointer Values::
25731* Memory Transfer::
0ce1b118
CV
25732* struct stat::
25733* struct timeval::
25734@end menu
25735
79a6e687
BW
25736@node Integral Datatypes
25737@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25738@cindex integral datatypes, in file-i/o protocol
25739
fc320d37
SL
25740The integral datatypes used in the system calls are @code{int},
25741@code{unsigned int}, @code{long}, @code{unsigned long},
25742@code{mode_t}, and @code{time_t}.
0ce1b118 25743
fc320d37 25744@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25745implemented as 32 bit values in this protocol.
25746
fc320d37 25747@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25748
0ce1b118
CV
25749@xref{Limits}, for corresponding MIN and MAX values (similar to those
25750in @file{limits.h}) to allow range checking on host and target.
25751
25752@code{time_t} datatypes are defined as seconds since the Epoch.
25753
25754All integral datatypes transferred as part of a memory read or write of a
25755structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25756byte order.
25757
79a6e687
BW
25758@node Pointer Values
25759@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25760@cindex pointer values, in file-i/o protocol
25761
25762Pointers to target data are transmitted as they are. An exception
25763is made for pointers to buffers for which the length isn't
25764transmitted as part of the function call, namely strings. Strings
25765are transmitted as a pointer/length pair, both as hex values, e.g.@:
25766
25767@smallexample
25768@code{1aaf/12}
25769@end smallexample
25770
25771@noindent
25772which is a pointer to data of length 18 bytes at position 0x1aaf.
25773The length is defined as the full string length in bytes, including
fc320d37
SL
25774the trailing null byte. For example, the string @code{"hello world"}
25775at address 0x123456 is transmitted as
0ce1b118
CV
25776
25777@smallexample
fc320d37 25778@code{123456/d}
0ce1b118
CV
25779@end smallexample
25780
79a6e687
BW
25781@node Memory Transfer
25782@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25783@cindex memory transfer, in file-i/o protocol
25784
25785Structured data which is transferred using a memory read or write (for
db2e3e2e 25786example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25787with all scalar multibyte datatypes being big endian. Translation to
25788this representation needs to be done both by the target before the @code{F}
25789packet is sent, and by @value{GDBN} before
25790it transfers memory to the target. Transferred pointers to structured
25791data should point to the already-coerced data at any time.
0ce1b118 25792
0ce1b118
CV
25793
25794@node struct stat
25795@unnumberedsubsubsec struct stat
25796@cindex struct stat, in file-i/o protocol
25797
fc320d37
SL
25798The buffer of type @code{struct stat} used by the target and @value{GDBN}
25799is defined as follows:
0ce1b118
CV
25800
25801@smallexample
25802struct stat @{
25803 unsigned int st_dev; /* device */
25804 unsigned int st_ino; /* inode */
25805 mode_t st_mode; /* protection */
25806 unsigned int st_nlink; /* number of hard links */
25807 unsigned int st_uid; /* user ID of owner */
25808 unsigned int st_gid; /* group ID of owner */
25809 unsigned int st_rdev; /* device type (if inode device) */
25810 unsigned long st_size; /* total size, in bytes */
25811 unsigned long st_blksize; /* blocksize for filesystem I/O */
25812 unsigned long st_blocks; /* number of blocks allocated */
25813 time_t st_atime; /* time of last access */
25814 time_t st_mtime; /* time of last modification */
25815 time_t st_ctime; /* time of last change */
25816@};
25817@end smallexample
25818
fc320d37 25819The integral datatypes conform to the definitions given in the
79a6e687 25820appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25821structure is of size 64 bytes.
25822
25823The values of several fields have a restricted meaning and/or
25824range of values.
25825
fc320d37 25826@table @code
0ce1b118 25827
fc320d37
SL
25828@item st_dev
25829A value of 0 represents a file, 1 the console.
0ce1b118 25830
fc320d37
SL
25831@item st_ino
25832No valid meaning for the target. Transmitted unchanged.
0ce1b118 25833
fc320d37
SL
25834@item st_mode
25835Valid mode bits are described in @ref{Constants}. Any other
25836bits have currently no meaning for the target.
0ce1b118 25837
fc320d37
SL
25838@item st_uid
25839@itemx st_gid
25840@itemx st_rdev
25841No valid meaning for the target. Transmitted unchanged.
0ce1b118 25842
fc320d37
SL
25843@item st_atime
25844@itemx st_mtime
25845@itemx st_ctime
25846These values have a host and file system dependent
25847accuracy. Especially on Windows hosts, the file system may not
25848support exact timing values.
25849@end table
0ce1b118 25850
fc320d37
SL
25851The target gets a @code{struct stat} of the above representation and is
25852responsible for coercing it to the target representation before
0ce1b118
CV
25853continuing.
25854
fc320d37
SL
25855Note that due to size differences between the host, target, and protocol
25856representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
25857get truncated on the target.
25858
25859@node struct timeval
25860@unnumberedsubsubsec struct timeval
25861@cindex struct timeval, in file-i/o protocol
25862
fc320d37 25863The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
25864is defined as follows:
25865
25866@smallexample
b383017d 25867struct timeval @{
0ce1b118
CV
25868 time_t tv_sec; /* second */
25869 long tv_usec; /* microsecond */
25870@};
25871@end smallexample
25872
fc320d37 25873The integral datatypes conform to the definitions given in the
79a6e687 25874appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25875structure is of size 8 bytes.
25876
25877@node Constants
25878@subsection Constants
25879@cindex constants, in file-i/o protocol
25880
25881The following values are used for the constants inside of the
fc320d37 25882protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
25883values before and after the call as needed.
25884
25885@menu
79a6e687
BW
25886* Open Flags::
25887* mode_t Values::
25888* Errno Values::
25889* Lseek Flags::
0ce1b118
CV
25890* Limits::
25891@end menu
25892
79a6e687
BW
25893@node Open Flags
25894@unnumberedsubsubsec Open Flags
0ce1b118
CV
25895@cindex open flags, in file-i/o protocol
25896
25897All values are given in hexadecimal representation.
25898
25899@smallexample
25900 O_RDONLY 0x0
25901 O_WRONLY 0x1
25902 O_RDWR 0x2
25903 O_APPEND 0x8
25904 O_CREAT 0x200
25905 O_TRUNC 0x400
25906 O_EXCL 0x800
25907@end smallexample
25908
79a6e687
BW
25909@node mode_t Values
25910@unnumberedsubsubsec mode_t Values
0ce1b118
CV
25911@cindex mode_t values, in file-i/o protocol
25912
25913All values are given in octal representation.
25914
25915@smallexample
25916 S_IFREG 0100000
25917 S_IFDIR 040000
25918 S_IRUSR 0400
25919 S_IWUSR 0200
25920 S_IXUSR 0100
25921 S_IRGRP 040
25922 S_IWGRP 020
25923 S_IXGRP 010
25924 S_IROTH 04
25925 S_IWOTH 02
25926 S_IXOTH 01
25927@end smallexample
25928
79a6e687
BW
25929@node Errno Values
25930@unnumberedsubsubsec Errno Values
0ce1b118
CV
25931@cindex errno values, in file-i/o protocol
25932
25933All values are given in decimal representation.
25934
25935@smallexample
25936 EPERM 1
25937 ENOENT 2
25938 EINTR 4
25939 EBADF 9
25940 EACCES 13
25941 EFAULT 14
25942 EBUSY 16
25943 EEXIST 17
25944 ENODEV 19
25945 ENOTDIR 20
25946 EISDIR 21
25947 EINVAL 22
25948 ENFILE 23
25949 EMFILE 24
25950 EFBIG 27
25951 ENOSPC 28
25952 ESPIPE 29
25953 EROFS 30
25954 ENAMETOOLONG 91
25955 EUNKNOWN 9999
25956@end smallexample
25957
fc320d37 25958 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
25959 any error value not in the list of supported error numbers.
25960
79a6e687
BW
25961@node Lseek Flags
25962@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
25963@cindex lseek flags, in file-i/o protocol
25964
25965@smallexample
25966 SEEK_SET 0
25967 SEEK_CUR 1
25968 SEEK_END 2
25969@end smallexample
25970
25971@node Limits
25972@unnumberedsubsubsec Limits
25973@cindex limits, in file-i/o protocol
25974
25975All values are given in decimal representation.
25976
25977@smallexample
25978 INT_MIN -2147483648
25979 INT_MAX 2147483647
25980 UINT_MAX 4294967295
25981 LONG_MIN -9223372036854775808
25982 LONG_MAX 9223372036854775807
25983 ULONG_MAX 18446744073709551615
25984@end smallexample
25985
25986@node File-I/O Examples
25987@subsection File-I/O Examples
25988@cindex file-i/o examples
25989
25990Example sequence of a write call, file descriptor 3, buffer is at target
25991address 0x1234, 6 bytes should be written:
25992
25993@smallexample
25994<- @code{Fwrite,3,1234,6}
25995@emph{request memory read from target}
25996-> @code{m1234,6}
25997<- XXXXXX
25998@emph{return "6 bytes written"}
25999-> @code{F6}
26000@end smallexample
26001
26002Example sequence of a read call, file descriptor 3, buffer is at target
26003address 0x1234, 6 bytes should be read:
26004
26005@smallexample
26006<- @code{Fread,3,1234,6}
26007@emph{request memory write to target}
26008-> @code{X1234,6:XXXXXX}
26009@emph{return "6 bytes read"}
26010-> @code{F6}
26011@end smallexample
26012
26013Example sequence of a read call, call fails on the host due to invalid
fc320d37 26014file descriptor (@code{EBADF}):
0ce1b118
CV
26015
26016@smallexample
26017<- @code{Fread,3,1234,6}
26018-> @code{F-1,9}
26019@end smallexample
26020
c8aa23ab 26021Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26022host is called:
26023
26024@smallexample
26025<- @code{Fread,3,1234,6}
26026-> @code{F-1,4,C}
26027<- @code{T02}
26028@end smallexample
26029
c8aa23ab 26030Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26031host is called:
26032
26033@smallexample
26034<- @code{Fread,3,1234,6}
26035-> @code{X1234,6:XXXXXX}
26036<- @code{T02}
26037@end smallexample
26038
cfa9d6d9
DJ
26039@node Library List Format
26040@section Library List Format
26041@cindex library list format, remote protocol
26042
26043On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26044same process as your application to manage libraries. In this case,
26045@value{GDBN} can use the loader's symbol table and normal memory
26046operations to maintain a list of shared libraries. On other
26047platforms, the operating system manages loaded libraries.
26048@value{GDBN} can not retrieve the list of currently loaded libraries
26049through memory operations, so it uses the @samp{qXfer:libraries:read}
26050packet (@pxref{qXfer library list read}) instead. The remote stub
26051queries the target's operating system and reports which libraries
26052are loaded.
26053
26054The @samp{qXfer:libraries:read} packet returns an XML document which
26055lists loaded libraries and their offsets. Each library has an
26056associated name and one or more segment base addresses, which report
26057where the library was loaded in memory. The segment bases are start
26058addresses, not relocation offsets; they do not depend on the library's
26059link-time base addresses.
26060
9cceb671
DJ
26061@value{GDBN} must be linked with the Expat library to support XML
26062library lists. @xref{Expat}.
26063
cfa9d6d9
DJ
26064A simple memory map, with one loaded library relocated by a single
26065offset, looks like this:
26066
26067@smallexample
26068<library-list>
26069 <library name="/lib/libc.so.6">
26070 <segment address="0x10000000"/>
26071 </library>
26072</library-list>
26073@end smallexample
26074
26075The format of a library list is described by this DTD:
26076
26077@smallexample
26078<!-- library-list: Root element with versioning -->
26079<!ELEMENT library-list (library)*>
26080<!ATTLIST library-list version CDATA #FIXED "1.0">
26081<!ELEMENT library (segment)*>
26082<!ATTLIST library name CDATA #REQUIRED>
26083<!ELEMENT segment EMPTY>
26084<!ATTLIST segment address CDATA #REQUIRED>
26085@end smallexample
26086
79a6e687
BW
26087@node Memory Map Format
26088@section Memory Map Format
68437a39
DJ
26089@cindex memory map format
26090
26091To be able to write into flash memory, @value{GDBN} needs to obtain a
26092memory map from the target. This section describes the format of the
26093memory map.
26094
26095The memory map is obtained using the @samp{qXfer:memory-map:read}
26096(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26097lists memory regions.
26098
26099@value{GDBN} must be linked with the Expat library to support XML
26100memory maps. @xref{Expat}.
26101
26102The top-level structure of the document is shown below:
68437a39
DJ
26103
26104@smallexample
26105<?xml version="1.0"?>
26106<!DOCTYPE memory-map
26107 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26108 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26109<memory-map>
26110 region...
26111</memory-map>
26112@end smallexample
26113
26114Each region can be either:
26115
26116@itemize
26117
26118@item
26119A region of RAM starting at @var{addr} and extending for @var{length}
26120bytes from there:
26121
26122@smallexample
26123<memory type="ram" start="@var{addr}" length="@var{length}"/>
26124@end smallexample
26125
26126
26127@item
26128A region of read-only memory:
26129
26130@smallexample
26131<memory type="rom" start="@var{addr}" length="@var{length}"/>
26132@end smallexample
26133
26134
26135@item
26136A region of flash memory, with erasure blocks @var{blocksize}
26137bytes in length:
26138
26139@smallexample
26140<memory type="flash" start="@var{addr}" length="@var{length}">
26141 <property name="blocksize">@var{blocksize}</property>
26142</memory>
26143@end smallexample
26144
26145@end itemize
26146
26147Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26148by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26149packets to write to addresses in such ranges.
26150
26151The formal DTD for memory map format is given below:
26152
26153@smallexample
26154<!-- ................................................... -->
26155<!-- Memory Map XML DTD ................................ -->
26156<!-- File: memory-map.dtd .............................. -->
26157<!-- .................................... .............. -->
26158<!-- memory-map.dtd -->
26159<!-- memory-map: Root element with versioning -->
26160<!ELEMENT memory-map (memory | property)>
26161<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26162<!ELEMENT memory (property)>
26163<!-- memory: Specifies a memory region,
26164 and its type, or device. -->
26165<!ATTLIST memory type CDATA #REQUIRED
26166 start CDATA #REQUIRED
26167 length CDATA #REQUIRED
26168 device CDATA #IMPLIED>
26169<!-- property: Generic attribute tag -->
26170<!ELEMENT property (#PCDATA | property)*>
26171<!ATTLIST property name CDATA #REQUIRED>
26172@end smallexample
26173
f418dd93
DJ
26174@include agentexpr.texi
26175
23181151
DJ
26176@node Target Descriptions
26177@appendix Target Descriptions
26178@cindex target descriptions
26179
26180@strong{Warning:} target descriptions are still under active development,
26181and the contents and format may change between @value{GDBN} releases.
26182The format is expected to stabilize in the future.
26183
26184One of the challenges of using @value{GDBN} to debug embedded systems
26185is that there are so many minor variants of each processor
26186architecture in use. It is common practice for vendors to start with
26187a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26188and then make changes to adapt it to a particular market niche. Some
26189architectures have hundreds of variants, available from dozens of
26190vendors. This leads to a number of problems:
26191
26192@itemize @bullet
26193@item
26194With so many different customized processors, it is difficult for
26195the @value{GDBN} maintainers to keep up with the changes.
26196@item
26197Since individual variants may have short lifetimes or limited
26198audiences, it may not be worthwhile to carry information about every
26199variant in the @value{GDBN} source tree.
26200@item
26201When @value{GDBN} does support the architecture of the embedded system
26202at hand, the task of finding the correct architecture name to give the
26203@command{set architecture} command can be error-prone.
26204@end itemize
26205
26206To address these problems, the @value{GDBN} remote protocol allows a
26207target system to not only identify itself to @value{GDBN}, but to
26208actually describe its own features. This lets @value{GDBN} support
26209processor variants it has never seen before --- to the extent that the
26210descriptions are accurate, and that @value{GDBN} understands them.
26211
9cceb671
DJ
26212@value{GDBN} must be linked with the Expat library to support XML
26213target descriptions. @xref{Expat}.
123dc839 26214
23181151
DJ
26215@menu
26216* Retrieving Descriptions:: How descriptions are fetched from a target.
26217* Target Description Format:: The contents of a target description.
123dc839
DJ
26218* Predefined Target Types:: Standard types available for target
26219 descriptions.
26220* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26221@end menu
26222
26223@node Retrieving Descriptions
26224@section Retrieving Descriptions
26225
26226Target descriptions can be read from the target automatically, or
26227specified by the user manually. The default behavior is to read the
26228description from the target. @value{GDBN} retrieves it via the remote
26229protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26230qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26231@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26232XML document, of the form described in @ref{Target Description
26233Format}.
26234
26235Alternatively, you can specify a file to read for the target description.
26236If a file is set, the target will not be queried. The commands to
26237specify a file are:
26238
26239@table @code
26240@cindex set tdesc filename
26241@item set tdesc filename @var{path}
26242Read the target description from @var{path}.
26243
26244@cindex unset tdesc filename
26245@item unset tdesc filename
26246Do not read the XML target description from a file. @value{GDBN}
26247will use the description supplied by the current target.
26248
26249@cindex show tdesc filename
26250@item show tdesc filename
26251Show the filename to read for a target description, if any.
26252@end table
26253
26254
26255@node Target Description Format
26256@section Target Description Format
26257@cindex target descriptions, XML format
26258
26259A target description annex is an @uref{http://www.w3.org/XML/, XML}
26260document which complies with the Document Type Definition provided in
26261the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26262means you can use generally available tools like @command{xmllint} to
26263check that your feature descriptions are well-formed and valid.
26264However, to help people unfamiliar with XML write descriptions for
26265their targets, we also describe the grammar here.
26266
123dc839
DJ
26267Target descriptions can identify the architecture of the remote target
26268and (for some architectures) provide information about custom register
26269sets. @value{GDBN} can use this information to autoconfigure for your
26270target, or to warn you if you connect to an unsupported target.
23181151
DJ
26271
26272Here is a simple target description:
26273
123dc839 26274@smallexample
1780a0ed 26275<target version="1.0">
23181151
DJ
26276 <architecture>i386:x86-64</architecture>
26277</target>
123dc839 26278@end smallexample
23181151
DJ
26279
26280@noindent
26281This minimal description only says that the target uses
26282the x86-64 architecture.
26283
123dc839
DJ
26284A target description has the following overall form, with [ ] marking
26285optional elements and @dots{} marking repeatable elements. The elements
26286are explained further below.
23181151 26287
123dc839 26288@smallexample
23181151
DJ
26289<?xml version="1.0"?>
26290<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26291<target version="1.0">
123dc839
DJ
26292 @r{[}@var{architecture}@r{]}
26293 @r{[}@var{feature}@dots{}@r{]}
23181151 26294</target>
123dc839 26295@end smallexample
23181151
DJ
26296
26297@noindent
26298The description is generally insensitive to whitespace and line
26299breaks, under the usual common-sense rules. The XML version
26300declaration and document type declaration can generally be omitted
26301(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26302useful for XML validation tools. The @samp{version} attribute for
26303@samp{<target>} may also be omitted, but we recommend
26304including it; if future versions of @value{GDBN} use an incompatible
26305revision of @file{gdb-target.dtd}, they will detect and report
26306the version mismatch.
23181151 26307
108546a0
DJ
26308@subsection Inclusion
26309@cindex target descriptions, inclusion
26310@cindex XInclude
26311@ifnotinfo
26312@cindex <xi:include>
26313@end ifnotinfo
26314
26315It can sometimes be valuable to split a target description up into
26316several different annexes, either for organizational purposes, or to
26317share files between different possible target descriptions. You can
26318divide a description into multiple files by replacing any element of
26319the target description with an inclusion directive of the form:
26320
123dc839 26321@smallexample
108546a0 26322<xi:include href="@var{document}"/>
123dc839 26323@end smallexample
108546a0
DJ
26324
26325@noindent
26326When @value{GDBN} encounters an element of this form, it will retrieve
26327the named XML @var{document}, and replace the inclusion directive with
26328the contents of that document. If the current description was read
26329using @samp{qXfer}, then so will be the included document;
26330@var{document} will be interpreted as the name of an annex. If the
26331current description was read from a file, @value{GDBN} will look for
26332@var{document} as a file in the same directory where it found the
26333original description.
26334
123dc839
DJ
26335@subsection Architecture
26336@cindex <architecture>
26337
26338An @samp{<architecture>} element has this form:
26339
26340@smallexample
26341 <architecture>@var{arch}</architecture>
26342@end smallexample
26343
26344@var{arch} is an architecture name from the same selection
26345accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26346Debugging Target}).
26347
26348@subsection Features
26349@cindex <feature>
26350
26351Each @samp{<feature>} describes some logical portion of the target
26352system. Features are currently used to describe available CPU
26353registers and the types of their contents. A @samp{<feature>} element
26354has this form:
26355
26356@smallexample
26357<feature name="@var{name}">
26358 @r{[}@var{type}@dots{}@r{]}
26359 @var{reg}@dots{}
26360</feature>
26361@end smallexample
26362
26363@noindent
26364Each feature's name should be unique within the description. The name
26365of a feature does not matter unless @value{GDBN} has some special
26366knowledge of the contents of that feature; if it does, the feature
26367should have its standard name. @xref{Standard Target Features}.
26368
26369@subsection Types
26370
26371Any register's value is a collection of bits which @value{GDBN} must
26372interpret. The default interpretation is a two's complement integer,
26373but other types can be requested by name in the register description.
26374Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26375Target Types}), and the description can define additional composite types.
26376
26377Each type element must have an @samp{id} attribute, which gives
26378a unique (within the containing @samp{<feature>}) name to the type.
26379Types must be defined before they are used.
26380
26381@cindex <vector>
26382Some targets offer vector registers, which can be treated as arrays
26383of scalar elements. These types are written as @samp{<vector>} elements,
26384specifying the array element type, @var{type}, and the number of elements,
26385@var{count}:
26386
26387@smallexample
26388<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26389@end smallexample
26390
26391@cindex <union>
26392If a register's value is usefully viewed in multiple ways, define it
26393with a union type containing the useful representations. The
26394@samp{<union>} element contains one or more @samp{<field>} elements,
26395each of which has a @var{name} and a @var{type}:
26396
26397@smallexample
26398<union id="@var{id}">
26399 <field name="@var{name}" type="@var{type}"/>
26400 @dots{}
26401</union>
26402@end smallexample
26403
26404@subsection Registers
26405@cindex <reg>
26406
26407Each register is represented as an element with this form:
26408
26409@smallexample
26410<reg name="@var{name}"
26411 bitsize="@var{size}"
26412 @r{[}regnum="@var{num}"@r{]}
26413 @r{[}save-restore="@var{save-restore}"@r{]}
26414 @r{[}type="@var{type}"@r{]}
26415 @r{[}group="@var{group}"@r{]}/>
26416@end smallexample
26417
26418@noindent
26419The components are as follows:
26420
26421@table @var
26422
26423@item name
26424The register's name; it must be unique within the target description.
26425
26426@item bitsize
26427The register's size, in bits.
26428
26429@item regnum
26430The register's number. If omitted, a register's number is one greater
26431than that of the previous register (either in the current feature or in
26432a preceeding feature); the first register in the target description
26433defaults to zero. This register number is used to read or write
26434the register; e.g.@: it is used in the remote @code{p} and @code{P}
26435packets, and registers appear in the @code{g} and @code{G} packets
26436in order of increasing register number.
26437
26438@item save-restore
26439Whether the register should be preserved across inferior function
26440calls; this must be either @code{yes} or @code{no}. The default is
26441@code{yes}, which is appropriate for most registers except for
26442some system control registers; this is not related to the target's
26443ABI.
26444
26445@item type
26446The type of the register. @var{type} may be a predefined type, a type
26447defined in the current feature, or one of the special types @code{int}
26448and @code{float}. @code{int} is an integer type of the correct size
26449for @var{bitsize}, and @code{float} is a floating point type (in the
26450architecture's normal floating point format) of the correct size for
26451@var{bitsize}. The default is @code{int}.
26452
26453@item group
26454The register group to which this register belongs. @var{group} must
26455be either @code{general}, @code{float}, or @code{vector}. If no
26456@var{group} is specified, @value{GDBN} will not display the register
26457in @code{info registers}.
26458
26459@end table
26460
26461@node Predefined Target Types
26462@section Predefined Target Types
26463@cindex target descriptions, predefined types
26464
26465Type definitions in the self-description can build up composite types
26466from basic building blocks, but can not define fundamental types. Instead,
26467standard identifiers are provided by @value{GDBN} for the fundamental
26468types. The currently supported types are:
26469
26470@table @code
26471
26472@item int8
26473@itemx int16
26474@itemx int32
26475@itemx int64
7cc46491 26476@itemx int128
123dc839
DJ
26477Signed integer types holding the specified number of bits.
26478
26479@item uint8
26480@itemx uint16
26481@itemx uint32
26482@itemx uint64
7cc46491 26483@itemx uint128
123dc839
DJ
26484Unsigned integer types holding the specified number of bits.
26485
26486@item code_ptr
26487@itemx data_ptr
26488Pointers to unspecified code and data. The program counter and
26489any dedicated return address register may be marked as code
26490pointers; printing a code pointer converts it into a symbolic
26491address. The stack pointer and any dedicated address registers
26492may be marked as data pointers.
26493
6e3bbd1a
PB
26494@item ieee_single
26495Single precision IEEE floating point.
26496
26497@item ieee_double
26498Double precision IEEE floating point.
26499
123dc839
DJ
26500@item arm_fpa_ext
26501The 12-byte extended precision format used by ARM FPA registers.
26502
26503@end table
26504
26505@node Standard Target Features
26506@section Standard Target Features
26507@cindex target descriptions, standard features
26508
26509A target description must contain either no registers or all the
26510target's registers. If the description contains no registers, then
26511@value{GDBN} will assume a default register layout, selected based on
26512the architecture. If the description contains any registers, the
26513default layout will not be used; the standard registers must be
26514described in the target description, in such a way that @value{GDBN}
26515can recognize them.
26516
26517This is accomplished by giving specific names to feature elements
26518which contain standard registers. @value{GDBN} will look for features
26519with those names and verify that they contain the expected registers;
26520if any known feature is missing required registers, or if any required
26521feature is missing, @value{GDBN} will reject the target
26522description. You can add additional registers to any of the
26523standard features --- @value{GDBN} will display them just as if
26524they were added to an unrecognized feature.
26525
26526This section lists the known features and their expected contents.
26527Sample XML documents for these features are included in the
26528@value{GDBN} source tree, in the directory @file{gdb/features}.
26529
26530Names recognized by @value{GDBN} should include the name of the
26531company or organization which selected the name, and the overall
26532architecture to which the feature applies; so e.g.@: the feature
26533containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26534
ff6f572f
DJ
26535The names of registers are not case sensitive for the purpose
26536of recognizing standard features, but @value{GDBN} will only display
26537registers using the capitalization used in the description.
26538
e9c17194
VP
26539@menu
26540* ARM Features::
26541* M68K Features::
26542@end menu
26543
26544
26545@node ARM Features
123dc839
DJ
26546@subsection ARM Features
26547@cindex target descriptions, ARM features
26548
26549The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26550It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26551@samp{lr}, @samp{pc}, and @samp{cpsr}.
26552
26553The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26554should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26555
ff6f572f
DJ
26556The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26557it should contain at least registers @samp{wR0} through @samp{wR15} and
26558@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26559@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26560
f8b73d13
DJ
26561@subsection MIPS Features
26562@cindex target descriptions, MIPS features
26563
26564The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26565It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26566@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26567on the target.
26568
26569The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26570contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26571registers. They may be 32-bit or 64-bit depending on the target.
26572
26573The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26574it may be optional in a future version of @value{GDBN}. It should
26575contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26576@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26577
822b6570
DJ
26578The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26579contain a single register, @samp{restart}, which is used by the
26580Linux kernel to control restartable syscalls.
26581
e9c17194
VP
26582@node M68K Features
26583@subsection M68K Features
26584@cindex target descriptions, M68K features
26585
26586@table @code
26587@item @samp{org.gnu.gdb.m68k.core}
26588@itemx @samp{org.gnu.gdb.coldfire.core}
26589@itemx @samp{org.gnu.gdb.fido.core}
26590One of those features must be always present.
26591The feature that is present determines which flavor of m86k is
26592used. The feature that is present should contain registers
26593@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26594@samp{sp}, @samp{ps} and @samp{pc}.
26595
26596@item @samp{org.gnu.gdb.coldfire.fp}
26597This feature is optional. If present, it should contain registers
26598@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26599@samp{fpiaddr}.
26600@end table
26601
7cc46491
DJ
26602@subsection PowerPC Features
26603@cindex target descriptions, PowerPC features
26604
26605The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26606targets. It should contain registers @samp{r0} through @samp{r31},
26607@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26608@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26609
26610The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26611contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26612
26613The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26614contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26615and @samp{vrsave}.
26616
26617The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26618contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26619@samp{spefscr}. SPE targets should provide 32-bit registers in
26620@samp{org.gnu.gdb.power.core} and provide the upper halves in
26621@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26622these to present registers @samp{ev0} through @samp{ev31} to the
26623user.
26624
aab4e0ec 26625@include gpl.texi
eb12ee30 26626
2154891a 26627@raisesections
6826cf00 26628@include fdl.texi
2154891a 26629@lowersections
6826cf00 26630
6d2ebf8b 26631@node Index
c906108c
SS
26632@unnumbered Index
26633
26634@printindex cp
26635
26636@tex
26637% I think something like @colophon should be in texinfo. In the
26638% meantime:
26639\long\def\colophon{\hbox to0pt{}\vfill
26640\centerline{The body of this manual is set in}
26641\centerline{\fontname\tenrm,}
26642\centerline{with headings in {\bf\fontname\tenbf}}
26643\centerline{and examples in {\tt\fontname\tentt}.}
26644\centerline{{\it\fontname\tenit\/},}
26645\centerline{{\bf\fontname\tenbf}, and}
26646\centerline{{\sl\fontname\tensl\/}}
26647\centerline{are used for emphasis.}\vfill}
26648\page\colophon
26649% Blame: doc@cygnus.com, 1991.
26650@end tex
26651
c906108c 26652@bye