]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
* top.c (quit_confirm): Warn that we will kill the program.
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
c906108c 2880* Breakpoint Menus:: Breakpoint menus
d4f3574e 2881* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2882* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2883@end menu
2884
6d2ebf8b 2885@node Set Breaks
79a6e687 2886@subsection Setting Breakpoints
c906108c 2887
5d161b24 2888@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2889@c consider in particular declaration with/without initialization.
2890@c
2891@c FIXME 2 is there stuff on this already? break at fun start, already init?
2892
2893@kindex break
41afff9a
EZ
2894@kindex b @r{(@code{break})}
2895@vindex $bpnum@r{, convenience variable}
c906108c
SS
2896@cindex latest breakpoint
2897Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2898@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2899number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2900Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2901convenience variables.
2902
c906108c 2903@table @code
2a25a5ba
EZ
2904@item break @var{location}
2905Set a breakpoint at the given @var{location}, which can specify a
2906function name, a line number, or an address of an instruction.
2907(@xref{Specify Location}, for a list of all the possible ways to
2908specify a @var{location}.) The breakpoint will stop your program just
2909before it executes any of the code in the specified @var{location}.
2910
c906108c 2911When using source languages that permit overloading of symbols, such as
2a25a5ba 2912C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2913@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
fcda367b 3075It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3076in your program. Examples of this situation are:
3077
3078@itemize @bullet
3079
3080@item
3081For a C@t{++} constructor, the @value{NGCC} compiler generates several
3082instances of the function body, used in different cases.
3083
3084@item
3085For a C@t{++} template function, a given line in the function can
3086correspond to any number of instantiations.
3087
3088@item
3089For an inlined function, a given source line can correspond to
3090several places where that function is inlined.
3091
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
3095the relevant locations.
3096
3b784c4f
EZ
3097A breakpoint with multiple locations is displayed in the breakpoint
3098table using several rows---one header row, followed by one row for
3099each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3100address column. The rows for individual locations contain the actual
3101addresses for locations, and show the functions to which those
3102locations belong. The number column for a location is of the form
fe6fbf8b
VP
3103@var{breakpoint-number}.@var{location-number}.
3104
3105For example:
3b784c4f 3106
fe6fbf8b
VP
3107@smallexample
3108Num Type Disp Enb Address What
31091 breakpoint keep y <MULTIPLE>
3110 stop only if i==1
3111 breakpoint already hit 1 time
31121.1 y 0x080486a2 in void foo<int>() at t.cc:8
31131.2 y 0x080486ca in void foo<double>() at t.cc:8
3114@end smallexample
3115
3116Each location can be individually enabled or disabled by passing
3117@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3118@code{enable} and @code{disable} commands. Note that you cannot
3119delete the individual locations from the list, you can only delete the
16bfc218 3120entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3121the @kbd{delete @var{num}} command, where @var{num} is the number of
3122the parent breakpoint, 1 in the above example). Disabling or enabling
3123the parent breakpoint (@pxref{Disabling}) affects all of the locations
3124that belong to that breakpoint.
fe6fbf8b 3125
2650777c 3126@cindex pending breakpoints
fe6fbf8b 3127It's quite common to have a breakpoint inside a shared library.
3b784c4f 3128Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3129and possibly repeatedly, as the program is executed. To support
3130this use case, @value{GDBN} updates breakpoint locations whenever
3131any shared library is loaded or unloaded. Typically, you would
fcda367b 3132set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3133debugging session, when the library is not loaded, and when the
3134symbols from the library are not available. When you try to set
3135breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3136a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3137is not yet resolved.
3138
3139After the program is run, whenever a new shared library is loaded,
3140@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3141shared library contains the symbol or line referred to by some
3142pending breakpoint, that breakpoint is resolved and becomes an
3143ordinary breakpoint. When a library is unloaded, all breakpoints
3144that refer to its symbols or source lines become pending again.
3145
3146This logic works for breakpoints with multiple locations, too. For
3147example, if you have a breakpoint in a C@t{++} template function, and
3148a newly loaded shared library has an instantiation of that template,
3149a new location is added to the list of locations for the breakpoint.
3150
3151Except for having unresolved address, pending breakpoints do not
3152differ from regular breakpoints. You can set conditions or commands,
3153enable and disable them and perform other breakpoint operations.
3154
3155@value{GDBN} provides some additional commands for controlling what
3156happens when the @samp{break} command cannot resolve breakpoint
3157address specification to an address:
dd79a6cf
JJ
3158
3159@kindex set breakpoint pending
3160@kindex show breakpoint pending
3161@table @code
3162@item set breakpoint pending auto
3163This is the default behavior. When @value{GDBN} cannot find the breakpoint
3164location, it queries you whether a pending breakpoint should be created.
3165
3166@item set breakpoint pending on
3167This indicates that an unrecognized breakpoint location should automatically
3168result in a pending breakpoint being created.
3169
3170@item set breakpoint pending off
3171This indicates that pending breakpoints are not to be created. Any
3172unrecognized breakpoint location results in an error. This setting does
3173not affect any pending breakpoints previously created.
3174
3175@item show breakpoint pending
3176Show the current behavior setting for creating pending breakpoints.
3177@end table
2650777c 3178
fe6fbf8b
VP
3179The settings above only affect the @code{break} command and its
3180variants. Once breakpoint is set, it will be automatically updated
3181as shared libraries are loaded and unloaded.
2650777c 3182
765dc015
VP
3183@cindex automatic hardware breakpoints
3184For some targets, @value{GDBN} can automatically decide if hardware or
3185software breakpoints should be used, depending on whether the
3186breakpoint address is read-only or read-write. This applies to
3187breakpoints set with the @code{break} command as well as to internal
3188breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3189breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3190breakpoints.
3191
3192You can control this automatic behaviour with the following commands::
3193
3194@kindex set breakpoint auto-hw
3195@kindex show breakpoint auto-hw
3196@table @code
3197@item set breakpoint auto-hw on
3198This is the default behavior. When @value{GDBN} sets a breakpoint, it
3199will try to use the target memory map to decide if software or hardware
3200breakpoint must be used.
3201
3202@item set breakpoint auto-hw off
3203This indicates @value{GDBN} should not automatically select breakpoint
3204type. If the target provides a memory map, @value{GDBN} will warn when
3205trying to set software breakpoint at a read-only address.
3206@end table
3207
3208
c906108c
SS
3209@cindex negative breakpoint numbers
3210@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3211@value{GDBN} itself sometimes sets breakpoints in your program for
3212special purposes, such as proper handling of @code{longjmp} (in C
3213programs). These internal breakpoints are assigned negative numbers,
3214starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3215You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3216@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3217
3218
6d2ebf8b 3219@node Set Watchpoints
79a6e687 3220@subsection Setting Watchpoints
c906108c
SS
3221
3222@cindex setting watchpoints
c906108c
SS
3223You can use a watchpoint to stop execution whenever the value of an
3224expression changes, without having to predict a particular place where
fd60e0df
EZ
3225this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3226The expression may be as simple as the value of a single variable, or
3227as complex as many variables combined by operators. Examples include:
3228
3229@itemize @bullet
3230@item
3231A reference to the value of a single variable.
3232
3233@item
3234An address cast to an appropriate data type. For example,
3235@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3236address (assuming an @code{int} occupies 4 bytes).
3237
3238@item
3239An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3240expression can use any operators valid in the program's native
3241language (@pxref{Languages}).
3242@end itemize
c906108c 3243
fa4727a6
DJ
3244You can set a watchpoint on an expression even if the expression can
3245not be evaluated yet. For instance, you can set a watchpoint on
3246@samp{*global_ptr} before @samp{global_ptr} is initialized.
3247@value{GDBN} will stop when your program sets @samp{global_ptr} and
3248the expression produces a valid value. If the expression becomes
3249valid in some other way than changing a variable (e.g.@: if the memory
3250pointed to by @samp{*global_ptr} becomes readable as the result of a
3251@code{malloc} call), @value{GDBN} may not stop until the next time
3252the expression changes.
3253
82f2d802
EZ
3254@cindex software watchpoints
3255@cindex hardware watchpoints
c906108c 3256Depending on your system, watchpoints may be implemented in software or
2df3850c 3257hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3258program and testing the variable's value each time, which is hundreds of
3259times slower than normal execution. (But this may still be worth it, to
3260catch errors where you have no clue what part of your program is the
3261culprit.)
3262
37e4754d 3263On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3264x86-based targets, @value{GDBN} includes support for hardware
3265watchpoints, which do not slow down the running of your program.
c906108c
SS
3266
3267@table @code
3268@kindex watch
d8b2a693 3269@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3270Set a watchpoint for an expression. @value{GDBN} will break when the
3271expression @var{expr} is written into by the program and its value
3272changes. The simplest (and the most popular) use of this command is
3273to watch the value of a single variable:
3274
3275@smallexample
3276(@value{GDBP}) watch foo
3277@end smallexample
c906108c 3278
d8b2a693
JB
3279If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3280clause, @value{GDBN} breaks only when the thread identified by
3281@var{threadnum} changes the value of @var{expr}. If any other threads
3282change the value of @var{expr}, @value{GDBN} will not break. Note
3283that watchpoints restricted to a single thread in this way only work
3284with Hardware Watchpoints.
3285
c906108c 3286@kindex rwatch
d8b2a693 3287@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3288Set a watchpoint that will break when the value of @var{expr} is read
3289by the program.
c906108c
SS
3290
3291@kindex awatch
d8b2a693 3292@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3293Set a watchpoint that will break when @var{expr} is either read from
3294or written into by the program.
c906108c 3295
45ac1734 3296@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3297@item info watchpoints
3298This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3299it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3300@end table
3301
3302@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3303watchpoints execute very quickly, and the debugger reports a change in
3304value at the exact instruction where the change occurs. If @value{GDBN}
3305cannot set a hardware watchpoint, it sets a software watchpoint, which
3306executes more slowly and reports the change in value at the next
82f2d802
EZ
3307@emph{statement}, not the instruction, after the change occurs.
3308
82f2d802
EZ
3309@cindex use only software watchpoints
3310You can force @value{GDBN} to use only software watchpoints with the
3311@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3312zero, @value{GDBN} will never try to use hardware watchpoints, even if
3313the underlying system supports them. (Note that hardware-assisted
3314watchpoints that were set @emph{before} setting
3315@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3316mechanism of watching expression values.)
c906108c 3317
9c16f35a
EZ
3318@table @code
3319@item set can-use-hw-watchpoints
3320@kindex set can-use-hw-watchpoints
3321Set whether or not to use hardware watchpoints.
3322
3323@item show can-use-hw-watchpoints
3324@kindex show can-use-hw-watchpoints
3325Show the current mode of using hardware watchpoints.
3326@end table
3327
3328For remote targets, you can restrict the number of hardware
3329watchpoints @value{GDBN} will use, see @ref{set remote
3330hardware-breakpoint-limit}.
3331
c906108c
SS
3332When you issue the @code{watch} command, @value{GDBN} reports
3333
474c8240 3334@smallexample
c906108c 3335Hardware watchpoint @var{num}: @var{expr}
474c8240 3336@end smallexample
c906108c
SS
3337
3338@noindent
3339if it was able to set a hardware watchpoint.
3340
7be570e7
JM
3341Currently, the @code{awatch} and @code{rwatch} commands can only set
3342hardware watchpoints, because accesses to data that don't change the
3343value of the watched expression cannot be detected without examining
3344every instruction as it is being executed, and @value{GDBN} does not do
3345that currently. If @value{GDBN} finds that it is unable to set a
3346hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3347will print a message like this:
3348
3349@smallexample
3350Expression cannot be implemented with read/access watchpoint.
3351@end smallexample
3352
3353Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3354data type of the watched expression is wider than what a hardware
3355watchpoint on the target machine can handle. For example, some systems
3356can only watch regions that are up to 4 bytes wide; on such systems you
3357cannot set hardware watchpoints for an expression that yields a
3358double-precision floating-point number (which is typically 8 bytes
3359wide). As a work-around, it might be possible to break the large region
3360into a series of smaller ones and watch them with separate watchpoints.
3361
3362If you set too many hardware watchpoints, @value{GDBN} might be unable
3363to insert all of them when you resume the execution of your program.
3364Since the precise number of active watchpoints is unknown until such
3365time as the program is about to be resumed, @value{GDBN} might not be
3366able to warn you about this when you set the watchpoints, and the
3367warning will be printed only when the program is resumed:
3368
3369@smallexample
3370Hardware watchpoint @var{num}: Could not insert watchpoint
3371@end smallexample
3372
3373@noindent
3374If this happens, delete or disable some of the watchpoints.
3375
fd60e0df
EZ
3376Watching complex expressions that reference many variables can also
3377exhaust the resources available for hardware-assisted watchpoints.
3378That's because @value{GDBN} needs to watch every variable in the
3379expression with separately allocated resources.
3380
c906108c 3381If you call a function interactively using @code{print} or @code{call},
2df3850c 3382any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3383kind of breakpoint or the call completes.
3384
7be570e7
JM
3385@value{GDBN} automatically deletes watchpoints that watch local
3386(automatic) variables, or expressions that involve such variables, when
3387they go out of scope, that is, when the execution leaves the block in
3388which these variables were defined. In particular, when the program
3389being debugged terminates, @emph{all} local variables go out of scope,
3390and so only watchpoints that watch global variables remain set. If you
3391rerun the program, you will need to set all such watchpoints again. One
3392way of doing that would be to set a code breakpoint at the entry to the
3393@code{main} function and when it breaks, set all the watchpoints.
3394
c906108c
SS
3395@cindex watchpoints and threads
3396@cindex threads and watchpoints
d983da9c
DJ
3397In multi-threaded programs, watchpoints will detect changes to the
3398watched expression from every thread.
3399
3400@quotation
3401@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3402have only limited usefulness. If @value{GDBN} creates a software
3403watchpoint, it can only watch the value of an expression @emph{in a
3404single thread}. If you are confident that the expression can only
3405change due to the current thread's activity (and if you are also
3406confident that no other thread can become current), then you can use
3407software watchpoints as usual. However, @value{GDBN} may not notice
3408when a non-current thread's activity changes the expression. (Hardware
3409watchpoints, in contrast, watch an expression in all threads.)
c906108c 3410@end quotation
c906108c 3411
501eef12
AC
3412@xref{set remote hardware-watchpoint-limit}.
3413
6d2ebf8b 3414@node Set Catchpoints
79a6e687 3415@subsection Setting Catchpoints
d4f3574e 3416@cindex catchpoints, setting
c906108c
SS
3417@cindex exception handlers
3418@cindex event handling
3419
3420You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3421kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3422shared library. Use the @code{catch} command to set a catchpoint.
3423
3424@table @code
3425@kindex catch
3426@item catch @var{event}
3427Stop when @var{event} occurs. @var{event} can be any of the following:
3428@table @code
3429@item throw
4644b6e3 3430@cindex stop on C@t{++} exceptions
b37052ae 3431The throwing of a C@t{++} exception.
c906108c
SS
3432
3433@item catch
b37052ae 3434The catching of a C@t{++} exception.
c906108c 3435
8936fcda
JB
3436@item exception
3437@cindex Ada exception catching
3438@cindex catch Ada exceptions
3439An Ada exception being raised. If an exception name is specified
3440at the end of the command (eg @code{catch exception Program_Error}),
3441the debugger will stop only when this specific exception is raised.
3442Otherwise, the debugger stops execution when any Ada exception is raised.
3443
3444@item exception unhandled
3445An exception that was raised but is not handled by the program.
3446
3447@item assert
3448A failed Ada assertion.
3449
c906108c 3450@item exec
4644b6e3 3451@cindex break on fork/exec
5ee187d7
DJ
3452A call to @code{exec}. This is currently only available for HP-UX
3453and @sc{gnu}/Linux.
c906108c
SS
3454
3455@item fork
5ee187d7
DJ
3456A call to @code{fork}. This is currently only available for HP-UX
3457and @sc{gnu}/Linux.
c906108c
SS
3458
3459@item vfork
5ee187d7
DJ
3460A call to @code{vfork}. This is currently only available for HP-UX
3461and @sc{gnu}/Linux.
c906108c
SS
3462
3463@item load
3464@itemx load @var{libname}
4644b6e3 3465@cindex break on load/unload of shared library
c906108c
SS
3466The dynamic loading of any shared library, or the loading of the library
3467@var{libname}. This is currently only available for HP-UX.
3468
3469@item unload
3470@itemx unload @var{libname}
c906108c
SS
3471The unloading of any dynamically loaded shared library, or the unloading
3472of the library @var{libname}. This is currently only available for HP-UX.
3473@end table
3474
3475@item tcatch @var{event}
3476Set a catchpoint that is enabled only for one stop. The catchpoint is
3477automatically deleted after the first time the event is caught.
3478
3479@end table
3480
3481Use the @code{info break} command to list the current catchpoints.
3482
b37052ae 3483There are currently some limitations to C@t{++} exception handling
c906108c
SS
3484(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3485
3486@itemize @bullet
3487@item
3488If you call a function interactively, @value{GDBN} normally returns
3489control to you when the function has finished executing. If the call
3490raises an exception, however, the call may bypass the mechanism that
3491returns control to you and cause your program either to abort or to
3492simply continue running until it hits a breakpoint, catches a signal
3493that @value{GDBN} is listening for, or exits. This is the case even if
3494you set a catchpoint for the exception; catchpoints on exceptions are
3495disabled within interactive calls.
3496
3497@item
3498You cannot raise an exception interactively.
3499
3500@item
3501You cannot install an exception handler interactively.
3502@end itemize
3503
3504@cindex raise exceptions
3505Sometimes @code{catch} is not the best way to debug exception handling:
3506if you need to know exactly where an exception is raised, it is better to
3507stop @emph{before} the exception handler is called, since that way you
3508can see the stack before any unwinding takes place. If you set a
3509breakpoint in an exception handler instead, it may not be easy to find
3510out where the exception was raised.
3511
3512To stop just before an exception handler is called, you need some
b37052ae 3513knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3514raised by calling a library function named @code{__raise_exception}
3515which has the following ANSI C interface:
3516
474c8240 3517@smallexample
c906108c 3518 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3519 @var{id} is the exception identifier. */
3520 void __raise_exception (void **addr, void *id);
474c8240 3521@end smallexample
c906108c
SS
3522
3523@noindent
3524To make the debugger catch all exceptions before any stack
3525unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3526(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3527
79a6e687 3528With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3529that depends on the value of @var{id}, you can stop your program when
3530a specific exception is raised. You can use multiple conditional
3531breakpoints to stop your program when any of a number of exceptions are
3532raised.
3533
3534
6d2ebf8b 3535@node Delete Breaks
79a6e687 3536@subsection Deleting Breakpoints
c906108c
SS
3537
3538@cindex clearing breakpoints, watchpoints, catchpoints
3539@cindex deleting breakpoints, watchpoints, catchpoints
3540It is often necessary to eliminate a breakpoint, watchpoint, or
3541catchpoint once it has done its job and you no longer want your program
3542to stop there. This is called @dfn{deleting} the breakpoint. A
3543breakpoint that has been deleted no longer exists; it is forgotten.
3544
3545With the @code{clear} command you can delete breakpoints according to
3546where they are in your program. With the @code{delete} command you can
3547delete individual breakpoints, watchpoints, or catchpoints by specifying
3548their breakpoint numbers.
3549
3550It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3551automatically ignores breakpoints on the first instruction to be executed
3552when you continue execution without changing the execution address.
3553
3554@table @code
3555@kindex clear
3556@item clear
3557Delete any breakpoints at the next instruction to be executed in the
79a6e687 3558selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3559the innermost frame is selected, this is a good way to delete a
3560breakpoint where your program just stopped.
3561
2a25a5ba
EZ
3562@item clear @var{location}
3563Delete any breakpoints set at the specified @var{location}.
3564@xref{Specify Location}, for the various forms of @var{location}; the
3565most useful ones are listed below:
3566
3567@table @code
c906108c
SS
3568@item clear @var{function}
3569@itemx clear @var{filename}:@var{function}
09d4efe1 3570Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3571
3572@item clear @var{linenum}
3573@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3574Delete any breakpoints set at or within the code of the specified
3575@var{linenum} of the specified @var{filename}.
2a25a5ba 3576@end table
c906108c
SS
3577
3578@cindex delete breakpoints
3579@kindex delete
41afff9a 3580@kindex d @r{(@code{delete})}
c5394b80
JM
3581@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3582Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3583ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3584breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3585confirm off}). You can abbreviate this command as @code{d}.
3586@end table
3587
6d2ebf8b 3588@node Disabling
79a6e687 3589@subsection Disabling Breakpoints
c906108c 3590
4644b6e3 3591@cindex enable/disable a breakpoint
c906108c
SS
3592Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3593prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3594it had been deleted, but remembers the information on the breakpoint so
3595that you can @dfn{enable} it again later.
3596
3597You disable and enable breakpoints, watchpoints, and catchpoints with
3598the @code{enable} and @code{disable} commands, optionally specifying one
3599or more breakpoint numbers as arguments. Use @code{info break} or
3600@code{info watch} to print a list of breakpoints, watchpoints, and
3601catchpoints if you do not know which numbers to use.
3602
3b784c4f
EZ
3603Disabling and enabling a breakpoint that has multiple locations
3604affects all of its locations.
3605
c906108c
SS
3606A breakpoint, watchpoint, or catchpoint can have any of four different
3607states of enablement:
3608
3609@itemize @bullet
3610@item
3611Enabled. The breakpoint stops your program. A breakpoint set
3612with the @code{break} command starts out in this state.
3613@item
3614Disabled. The breakpoint has no effect on your program.
3615@item
3616Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3617disabled.
c906108c
SS
3618@item
3619Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3620immediately after it does so it is deleted permanently. A breakpoint
3621set with the @code{tbreak} command starts out in this state.
c906108c
SS
3622@end itemize
3623
3624You can use the following commands to enable or disable breakpoints,
3625watchpoints, and catchpoints:
3626
3627@table @code
c906108c 3628@kindex disable
41afff9a 3629@kindex dis @r{(@code{disable})}
c5394b80 3630@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3631Disable the specified breakpoints---or all breakpoints, if none are
3632listed. A disabled breakpoint has no effect but is not forgotten. All
3633options such as ignore-counts, conditions and commands are remembered in
3634case the breakpoint is enabled again later. You may abbreviate
3635@code{disable} as @code{dis}.
3636
c906108c 3637@kindex enable
c5394b80 3638@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3639Enable the specified breakpoints (or all defined breakpoints). They
3640become effective once again in stopping your program.
3641
c5394b80 3642@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3643Enable the specified breakpoints temporarily. @value{GDBN} disables any
3644of these breakpoints immediately after stopping your program.
3645
c5394b80 3646@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3647Enable the specified breakpoints to work once, then die. @value{GDBN}
3648deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3649Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3650@end table
3651
d4f3574e
SS
3652@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3653@c confusing: tbreak is also initially enabled.
c906108c 3654Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3655,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3656subsequently, they become disabled or enabled only when you use one of
3657the commands above. (The command @code{until} can set and delete a
3658breakpoint of its own, but it does not change the state of your other
3659breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3660Stepping}.)
c906108c 3661
6d2ebf8b 3662@node Conditions
79a6e687 3663@subsection Break Conditions
c906108c
SS
3664@cindex conditional breakpoints
3665@cindex breakpoint conditions
3666
3667@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3668@c in particular for a watchpoint?
c906108c
SS
3669The simplest sort of breakpoint breaks every time your program reaches a
3670specified place. You can also specify a @dfn{condition} for a
3671breakpoint. A condition is just a Boolean expression in your
3672programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3673a condition evaluates the expression each time your program reaches it,
3674and your program stops only if the condition is @emph{true}.
3675
3676This is the converse of using assertions for program validation; in that
3677situation, you want to stop when the assertion is violated---that is,
3678when the condition is false. In C, if you want to test an assertion expressed
3679by the condition @var{assert}, you should set the condition
3680@samp{! @var{assert}} on the appropriate breakpoint.
3681
3682Conditions are also accepted for watchpoints; you may not need them,
3683since a watchpoint is inspecting the value of an expression anyhow---but
3684it might be simpler, say, to just set a watchpoint on a variable name,
3685and specify a condition that tests whether the new value is an interesting
3686one.
3687
3688Break conditions can have side effects, and may even call functions in
3689your program. This can be useful, for example, to activate functions
3690that log program progress, or to use your own print functions to
3691format special data structures. The effects are completely predictable
3692unless there is another enabled breakpoint at the same address. (In
3693that case, @value{GDBN} might see the other breakpoint first and stop your
3694program without checking the condition of this one.) Note that
d4f3574e
SS
3695breakpoint commands are usually more convenient and flexible than break
3696conditions for the
c906108c 3697purpose of performing side effects when a breakpoint is reached
79a6e687 3698(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3699
3700Break conditions can be specified when a breakpoint is set, by using
3701@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3702Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3703with the @code{condition} command.
53a5351d 3704
c906108c
SS
3705You can also use the @code{if} keyword with the @code{watch} command.
3706The @code{catch} command does not recognize the @code{if} keyword;
3707@code{condition} is the only way to impose a further condition on a
3708catchpoint.
c906108c
SS
3709
3710@table @code
3711@kindex condition
3712@item condition @var{bnum} @var{expression}
3713Specify @var{expression} as the break condition for breakpoint,
3714watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3715breakpoint @var{bnum} stops your program only if the value of
3716@var{expression} is true (nonzero, in C). When you use
3717@code{condition}, @value{GDBN} checks @var{expression} immediately for
3718syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3719referents in the context of your breakpoint. If @var{expression} uses
3720symbols not referenced in the context of the breakpoint, @value{GDBN}
3721prints an error message:
3722
474c8240 3723@smallexample
d4f3574e 3724No symbol "foo" in current context.
474c8240 3725@end smallexample
d4f3574e
SS
3726
3727@noindent
c906108c
SS
3728@value{GDBN} does
3729not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3730command (or a command that sets a breakpoint with a condition, like
3731@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3732
3733@item condition @var{bnum}
3734Remove the condition from breakpoint number @var{bnum}. It becomes
3735an ordinary unconditional breakpoint.
3736@end table
3737
3738@cindex ignore count (of breakpoint)
3739A special case of a breakpoint condition is to stop only when the
3740breakpoint has been reached a certain number of times. This is so
3741useful that there is a special way to do it, using the @dfn{ignore
3742count} of the breakpoint. Every breakpoint has an ignore count, which
3743is an integer. Most of the time, the ignore count is zero, and
3744therefore has no effect. But if your program reaches a breakpoint whose
3745ignore count is positive, then instead of stopping, it just decrements
3746the ignore count by one and continues. As a result, if the ignore count
3747value is @var{n}, the breakpoint does not stop the next @var{n} times
3748your program reaches it.
3749
3750@table @code
3751@kindex ignore
3752@item ignore @var{bnum} @var{count}
3753Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3754The next @var{count} times the breakpoint is reached, your program's
3755execution does not stop; other than to decrement the ignore count, @value{GDBN}
3756takes no action.
3757
3758To make the breakpoint stop the next time it is reached, specify
3759a count of zero.
3760
3761When you use @code{continue} to resume execution of your program from a
3762breakpoint, you can specify an ignore count directly as an argument to
3763@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3764Stepping,,Continuing and Stepping}.
c906108c
SS
3765
3766If a breakpoint has a positive ignore count and a condition, the
3767condition is not checked. Once the ignore count reaches zero,
3768@value{GDBN} resumes checking the condition.
3769
3770You could achieve the effect of the ignore count with a condition such
3771as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3772is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3773Variables}.
c906108c
SS
3774@end table
3775
3776Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3777
3778
6d2ebf8b 3779@node Break Commands
79a6e687 3780@subsection Breakpoint Command Lists
c906108c
SS
3781
3782@cindex breakpoint commands
3783You can give any breakpoint (or watchpoint or catchpoint) a series of
3784commands to execute when your program stops due to that breakpoint. For
3785example, you might want to print the values of certain expressions, or
3786enable other breakpoints.
3787
3788@table @code
3789@kindex commands
ca91424e 3790@kindex end@r{ (breakpoint commands)}
c906108c
SS
3791@item commands @r{[}@var{bnum}@r{]}
3792@itemx @dots{} @var{command-list} @dots{}
3793@itemx end
3794Specify a list of commands for breakpoint number @var{bnum}. The commands
3795themselves appear on the following lines. Type a line containing just
3796@code{end} to terminate the commands.
3797
3798To remove all commands from a breakpoint, type @code{commands} and
3799follow it immediately with @code{end}; that is, give no commands.
3800
3801With no @var{bnum} argument, @code{commands} refers to the last
3802breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3803recently encountered).
3804@end table
3805
3806Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3807disabled within a @var{command-list}.
3808
3809You can use breakpoint commands to start your program up again. Simply
3810use the @code{continue} command, or @code{step}, or any other command
3811that resumes execution.
3812
3813Any other commands in the command list, after a command that resumes
3814execution, are ignored. This is because any time you resume execution
3815(even with a simple @code{next} or @code{step}), you may encounter
3816another breakpoint---which could have its own command list, leading to
3817ambiguities about which list to execute.
3818
3819@kindex silent
3820If the first command you specify in a command list is @code{silent}, the
3821usual message about stopping at a breakpoint is not printed. This may
3822be desirable for breakpoints that are to print a specific message and
3823then continue. If none of the remaining commands print anything, you
3824see no sign that the breakpoint was reached. @code{silent} is
3825meaningful only at the beginning of a breakpoint command list.
3826
3827The commands @code{echo}, @code{output}, and @code{printf} allow you to
3828print precisely controlled output, and are often useful in silent
79a6e687 3829breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3830
3831For example, here is how you could use breakpoint commands to print the
3832value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3833
474c8240 3834@smallexample
c906108c
SS
3835break foo if x>0
3836commands
3837silent
3838printf "x is %d\n",x
3839cont
3840end
474c8240 3841@end smallexample
c906108c
SS
3842
3843One application for breakpoint commands is to compensate for one bug so
3844you can test for another. Put a breakpoint just after the erroneous line
3845of code, give it a condition to detect the case in which something
3846erroneous has been done, and give it commands to assign correct values
3847to any variables that need them. End with the @code{continue} command
3848so that your program does not stop, and start with the @code{silent}
3849command so that no output is produced. Here is an example:
3850
474c8240 3851@smallexample
c906108c
SS
3852break 403
3853commands
3854silent
3855set x = y + 4
3856cont
3857end
474c8240 3858@end smallexample
c906108c 3859
6d2ebf8b 3860@node Breakpoint Menus
79a6e687 3861@subsection Breakpoint Menus
c906108c
SS
3862@cindex overloading
3863@cindex symbol overloading
3864
b383017d 3865Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3866single function name
c906108c
SS
3867to be defined several times, for application in different contexts.
3868This is called @dfn{overloading}. When a function name is overloaded,
3869@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3870a breakpoint. You can use explicit signature of the function, as in
3871@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3872particular version of the function you want. Otherwise, @value{GDBN} offers
3873you a menu of numbered choices for different possible breakpoints, and
3874waits for your selection with the prompt @samp{>}. The first two
3875options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3876sets a breakpoint at each definition of @var{function}, and typing
3877@kbd{0} aborts the @code{break} command without setting any new
3878breakpoints.
3879
3880For example, the following session excerpt shows an attempt to set a
3881breakpoint at the overloaded symbol @code{String::after}.
3882We choose three particular definitions of that function name:
3883
3884@c FIXME! This is likely to change to show arg type lists, at least
3885@smallexample
3886@group
3887(@value{GDBP}) b String::after
3888[0] cancel
3889[1] all
3890[2] file:String.cc; line number:867
3891[3] file:String.cc; line number:860
3892[4] file:String.cc; line number:875
3893[5] file:String.cc; line number:853
3894[6] file:String.cc; line number:846
3895[7] file:String.cc; line number:735
3896> 2 4 6
3897Breakpoint 1 at 0xb26c: file String.cc, line 867.
3898Breakpoint 2 at 0xb344: file String.cc, line 875.
3899Breakpoint 3 at 0xafcc: file String.cc, line 846.
3900Multiple breakpoints were set.
3901Use the "delete" command to delete unwanted
3902 breakpoints.
3903(@value{GDBP})
3904@end group
3905@end smallexample
c906108c
SS
3906
3907@c @ifclear BARETARGET
6d2ebf8b 3908@node Error in Breakpoints
d4f3574e 3909@subsection ``Cannot insert breakpoints''
c906108c
SS
3910@c
3911@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3912@c
d4f3574e
SS
3913Under some operating systems, breakpoints cannot be used in a program if
3914any other process is running that program. In this situation,
5d161b24 3915attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3916@value{GDBN} to print an error message:
3917
474c8240 3918@smallexample
d4f3574e
SS
3919Cannot insert breakpoints.
3920The same program may be running in another process.
474c8240 3921@end smallexample
d4f3574e
SS
3922
3923When this happens, you have three ways to proceed:
3924
3925@enumerate
3926@item
3927Remove or disable the breakpoints, then continue.
3928
3929@item
5d161b24 3930Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3931name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3932that @value{GDBN} should run your program under that name.
d4f3574e
SS
3933Then start your program again.
3934
3935@item
3936Relink your program so that the text segment is nonsharable, using the
3937linker option @samp{-N}. The operating system limitation may not apply
3938to nonsharable executables.
3939@end enumerate
c906108c
SS
3940@c @end ifclear
3941
d4f3574e
SS
3942A similar message can be printed if you request too many active
3943hardware-assisted breakpoints and watchpoints:
3944
3945@c FIXME: the precise wording of this message may change; the relevant
3946@c source change is not committed yet (Sep 3, 1999).
3947@smallexample
3948Stopped; cannot insert breakpoints.
3949You may have requested too many hardware breakpoints and watchpoints.
3950@end smallexample
3951
3952@noindent
3953This message is printed when you attempt to resume the program, since
3954only then @value{GDBN} knows exactly how many hardware breakpoints and
3955watchpoints it needs to insert.
3956
3957When this message is printed, you need to disable or remove some of the
3958hardware-assisted breakpoints and watchpoints, and then continue.
3959
79a6e687 3960@node Breakpoint-related Warnings
1485d690
KB
3961@subsection ``Breakpoint address adjusted...''
3962@cindex breakpoint address adjusted
3963
3964Some processor architectures place constraints on the addresses at
3965which breakpoints may be placed. For architectures thus constrained,
3966@value{GDBN} will attempt to adjust the breakpoint's address to comply
3967with the constraints dictated by the architecture.
3968
3969One example of such an architecture is the Fujitsu FR-V. The FR-V is
3970a VLIW architecture in which a number of RISC-like instructions may be
3971bundled together for parallel execution. The FR-V architecture
3972constrains the location of a breakpoint instruction within such a
3973bundle to the instruction with the lowest address. @value{GDBN}
3974honors this constraint by adjusting a breakpoint's address to the
3975first in the bundle.
3976
3977It is not uncommon for optimized code to have bundles which contain
3978instructions from different source statements, thus it may happen that
3979a breakpoint's address will be adjusted from one source statement to
3980another. Since this adjustment may significantly alter @value{GDBN}'s
3981breakpoint related behavior from what the user expects, a warning is
3982printed when the breakpoint is first set and also when the breakpoint
3983is hit.
3984
3985A warning like the one below is printed when setting a breakpoint
3986that's been subject to address adjustment:
3987
3988@smallexample
3989warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3990@end smallexample
3991
3992Such warnings are printed both for user settable and @value{GDBN}'s
3993internal breakpoints. If you see one of these warnings, you should
3994verify that a breakpoint set at the adjusted address will have the
3995desired affect. If not, the breakpoint in question may be removed and
b383017d 3996other breakpoints may be set which will have the desired behavior.
1485d690
KB
3997E.g., it may be sufficient to place the breakpoint at a later
3998instruction. A conditional breakpoint may also be useful in some
3999cases to prevent the breakpoint from triggering too often.
4000
4001@value{GDBN} will also issue a warning when stopping at one of these
4002adjusted breakpoints:
4003
4004@smallexample
4005warning: Breakpoint 1 address previously adjusted from 0x00010414
4006to 0x00010410.
4007@end smallexample
4008
4009When this warning is encountered, it may be too late to take remedial
4010action except in cases where the breakpoint is hit earlier or more
4011frequently than expected.
d4f3574e 4012
6d2ebf8b 4013@node Continuing and Stepping
79a6e687 4014@section Continuing and Stepping
c906108c
SS
4015
4016@cindex stepping
4017@cindex continuing
4018@cindex resuming execution
4019@dfn{Continuing} means resuming program execution until your program
4020completes normally. In contrast, @dfn{stepping} means executing just
4021one more ``step'' of your program, where ``step'' may mean either one
4022line of source code, or one machine instruction (depending on what
7a292a7a
SS
4023particular command you use). Either when continuing or when stepping,
4024your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4025it stops due to a signal, you may want to use @code{handle}, or use
4026@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4027
4028@table @code
4029@kindex continue
41afff9a
EZ
4030@kindex c @r{(@code{continue})}
4031@kindex fg @r{(resume foreground execution)}
c906108c
SS
4032@item continue @r{[}@var{ignore-count}@r{]}
4033@itemx c @r{[}@var{ignore-count}@r{]}
4034@itemx fg @r{[}@var{ignore-count}@r{]}
4035Resume program execution, at the address where your program last stopped;
4036any breakpoints set at that address are bypassed. The optional argument
4037@var{ignore-count} allows you to specify a further number of times to
4038ignore a breakpoint at this location; its effect is like that of
79a6e687 4039@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4040
4041The argument @var{ignore-count} is meaningful only when your program
4042stopped due to a breakpoint. At other times, the argument to
4043@code{continue} is ignored.
4044
d4f3574e
SS
4045The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4046debugged program is deemed to be the foreground program) are provided
4047purely for convenience, and have exactly the same behavior as
4048@code{continue}.
c906108c
SS
4049@end table
4050
4051To resume execution at a different place, you can use @code{return}
79a6e687 4052(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4053calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4054Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4055
4056A typical technique for using stepping is to set a breakpoint
79a6e687 4057(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4058beginning of the function or the section of your program where a problem
4059is believed to lie, run your program until it stops at that breakpoint,
4060and then step through the suspect area, examining the variables that are
4061interesting, until you see the problem happen.
4062
4063@table @code
4064@kindex step
41afff9a 4065@kindex s @r{(@code{step})}
c906108c
SS
4066@item step
4067Continue running your program until control reaches a different source
4068line, then stop it and return control to @value{GDBN}. This command is
4069abbreviated @code{s}.
4070
4071@quotation
4072@c "without debugging information" is imprecise; actually "without line
4073@c numbers in the debugging information". (gcc -g1 has debugging info but
4074@c not line numbers). But it seems complex to try to make that
4075@c distinction here.
4076@emph{Warning:} If you use the @code{step} command while control is
4077within a function that was compiled without debugging information,
4078execution proceeds until control reaches a function that does have
4079debugging information. Likewise, it will not step into a function which
4080is compiled without debugging information. To step through functions
4081without debugging information, use the @code{stepi} command, described
4082below.
4083@end quotation
4084
4a92d011
EZ
4085The @code{step} command only stops at the first instruction of a source
4086line. This prevents the multiple stops that could otherwise occur in
4087@code{switch} statements, @code{for} loops, etc. @code{step} continues
4088to stop if a function that has debugging information is called within
4089the line. In other words, @code{step} @emph{steps inside} any functions
4090called within the line.
c906108c 4091
d4f3574e
SS
4092Also, the @code{step} command only enters a function if there is line
4093number information for the function. Otherwise it acts like the
5d161b24 4094@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4095on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4096was any debugging information about the routine.
c906108c
SS
4097
4098@item step @var{count}
4099Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4100breakpoint is reached, or a signal not related to stepping occurs before
4101@var{count} steps, stepping stops right away.
c906108c
SS
4102
4103@kindex next
41afff9a 4104@kindex n @r{(@code{next})}
c906108c
SS
4105@item next @r{[}@var{count}@r{]}
4106Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4107This is similar to @code{step}, but function calls that appear within
4108the line of code are executed without stopping. Execution stops when
4109control reaches a different line of code at the original stack level
4110that was executing when you gave the @code{next} command. This command
4111is abbreviated @code{n}.
c906108c
SS
4112
4113An argument @var{count} is a repeat count, as for @code{step}.
4114
4115
4116@c FIX ME!! Do we delete this, or is there a way it fits in with
4117@c the following paragraph? --- Vctoria
4118@c
4119@c @code{next} within a function that lacks debugging information acts like
4120@c @code{step}, but any function calls appearing within the code of the
4121@c function are executed without stopping.
4122
d4f3574e
SS
4123The @code{next} command only stops at the first instruction of a
4124source line. This prevents multiple stops that could otherwise occur in
4a92d011 4125@code{switch} statements, @code{for} loops, etc.
c906108c 4126
b90a5f51
CF
4127@kindex set step-mode
4128@item set step-mode
4129@cindex functions without line info, and stepping
4130@cindex stepping into functions with no line info
4131@itemx set step-mode on
4a92d011 4132The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4133stop at the first instruction of a function which contains no debug line
4134information rather than stepping over it.
4135
4a92d011
EZ
4136This is useful in cases where you may be interested in inspecting the
4137machine instructions of a function which has no symbolic info and do not
4138want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4139
4140@item set step-mode off
4a92d011 4141Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4142debug information. This is the default.
4143
9c16f35a
EZ
4144@item show step-mode
4145Show whether @value{GDBN} will stop in or step over functions without
4146source line debug information.
4147
c906108c
SS
4148@kindex finish
4149@item finish
4150Continue running until just after function in the selected stack frame
4151returns. Print the returned value (if any).
4152
4153Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4154,Returning from a Function}).
c906108c
SS
4155
4156@kindex until
41afff9a 4157@kindex u @r{(@code{until})}
09d4efe1 4158@cindex run until specified location
c906108c
SS
4159@item until
4160@itemx u
4161Continue running until a source line past the current line, in the
4162current stack frame, is reached. This command is used to avoid single
4163stepping through a loop more than once. It is like the @code{next}
4164command, except that when @code{until} encounters a jump, it
4165automatically continues execution until the program counter is greater
4166than the address of the jump.
4167
4168This means that when you reach the end of a loop after single stepping
4169though it, @code{until} makes your program continue execution until it
4170exits the loop. In contrast, a @code{next} command at the end of a loop
4171simply steps back to the beginning of the loop, which forces you to step
4172through the next iteration.
4173
4174@code{until} always stops your program if it attempts to exit the current
4175stack frame.
4176
4177@code{until} may produce somewhat counterintuitive results if the order
4178of machine code does not match the order of the source lines. For
4179example, in the following excerpt from a debugging session, the @code{f}
4180(@code{frame}) command shows that execution is stopped at line
4181@code{206}; yet when we use @code{until}, we get to line @code{195}:
4182
474c8240 4183@smallexample
c906108c
SS
4184(@value{GDBP}) f
4185#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4186206 expand_input();
4187(@value{GDBP}) until
4188195 for ( ; argc > 0; NEXTARG) @{
474c8240 4189@end smallexample
c906108c
SS
4190
4191This happened because, for execution efficiency, the compiler had
4192generated code for the loop closure test at the end, rather than the
4193start, of the loop---even though the test in a C @code{for}-loop is
4194written before the body of the loop. The @code{until} command appeared
4195to step back to the beginning of the loop when it advanced to this
4196expression; however, it has not really gone to an earlier
4197statement---not in terms of the actual machine code.
4198
4199@code{until} with no argument works by means of single
4200instruction stepping, and hence is slower than @code{until} with an
4201argument.
4202
4203@item until @var{location}
4204@itemx u @var{location}
4205Continue running your program until either the specified location is
4206reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4207the forms described in @ref{Specify Location}.
4208This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4209hence is quicker than @code{until} without an argument. The specified
4210location is actually reached only if it is in the current frame. This
4211implies that @code{until} can be used to skip over recursive function
4212invocations. For instance in the code below, if the current location is
4213line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4214line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4215invocations have returned.
4216
4217@smallexample
421894 int factorial (int value)
421995 @{
422096 if (value > 1) @{
422197 value *= factorial (value - 1);
422298 @}
422399 return (value);
4224100 @}
4225@end smallexample
4226
4227
4228@kindex advance @var{location}
4229@itemx advance @var{location}
09d4efe1 4230Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4231required, which should be of one of the forms described in
4232@ref{Specify Location}.
4233Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4234frame. This command is similar to @code{until}, but @code{advance} will
4235not skip over recursive function calls, and the target location doesn't
4236have to be in the same frame as the current one.
4237
c906108c
SS
4238
4239@kindex stepi
41afff9a 4240@kindex si @r{(@code{stepi})}
c906108c 4241@item stepi
96a2c332 4242@itemx stepi @var{arg}
c906108c
SS
4243@itemx si
4244Execute one machine instruction, then stop and return to the debugger.
4245
4246It is often useful to do @samp{display/i $pc} when stepping by machine
4247instructions. This makes @value{GDBN} automatically display the next
4248instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4249Display,, Automatic Display}.
c906108c
SS
4250
4251An argument is a repeat count, as in @code{step}.
4252
4253@need 750
4254@kindex nexti
41afff9a 4255@kindex ni @r{(@code{nexti})}
c906108c 4256@item nexti
96a2c332 4257@itemx nexti @var{arg}
c906108c
SS
4258@itemx ni
4259Execute one machine instruction, but if it is a function call,
4260proceed until the function returns.
4261
4262An argument is a repeat count, as in @code{next}.
4263@end table
4264
6d2ebf8b 4265@node Signals
c906108c
SS
4266@section Signals
4267@cindex signals
4268
4269A signal is an asynchronous event that can happen in a program. The
4270operating system defines the possible kinds of signals, and gives each
4271kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4272signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4273@code{SIGSEGV} is the signal a program gets from referencing a place in
4274memory far away from all the areas in use; @code{SIGALRM} occurs when
4275the alarm clock timer goes off (which happens only if your program has
4276requested an alarm).
4277
4278@cindex fatal signals
4279Some signals, including @code{SIGALRM}, are a normal part of the
4280functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4281errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4282program has not specified in advance some other way to handle the signal.
4283@code{SIGINT} does not indicate an error in your program, but it is normally
4284fatal so it can carry out the purpose of the interrupt: to kill the program.
4285
4286@value{GDBN} has the ability to detect any occurrence of a signal in your
4287program. You can tell @value{GDBN} in advance what to do for each kind of
4288signal.
4289
4290@cindex handling signals
24f93129
EZ
4291Normally, @value{GDBN} is set up to let the non-erroneous signals like
4292@code{SIGALRM} be silently passed to your program
4293(so as not to interfere with their role in the program's functioning)
c906108c
SS
4294but to stop your program immediately whenever an error signal happens.
4295You can change these settings with the @code{handle} command.
4296
4297@table @code
4298@kindex info signals
09d4efe1 4299@kindex info handle
c906108c 4300@item info signals
96a2c332 4301@itemx info handle
c906108c
SS
4302Print a table of all the kinds of signals and how @value{GDBN} has been told to
4303handle each one. You can use this to see the signal numbers of all
4304the defined types of signals.
4305
45ac1734
EZ
4306@item info signals @var{sig}
4307Similar, but print information only about the specified signal number.
4308
d4f3574e 4309@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4310
4311@kindex handle
45ac1734 4312@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4313Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4314can be the number of a signal or its name (with or without the
24f93129 4315@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4316@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4317known signals. Optional arguments @var{keywords}, described below,
4318say what change to make.
c906108c
SS
4319@end table
4320
4321@c @group
4322The keywords allowed by the @code{handle} command can be abbreviated.
4323Their full names are:
4324
4325@table @code
4326@item nostop
4327@value{GDBN} should not stop your program when this signal happens. It may
4328still print a message telling you that the signal has come in.
4329
4330@item stop
4331@value{GDBN} should stop your program when this signal happens. This implies
4332the @code{print} keyword as well.
4333
4334@item print
4335@value{GDBN} should print a message when this signal happens.
4336
4337@item noprint
4338@value{GDBN} should not mention the occurrence of the signal at all. This
4339implies the @code{nostop} keyword as well.
4340
4341@item pass
5ece1a18 4342@itemx noignore
c906108c
SS
4343@value{GDBN} should allow your program to see this signal; your program
4344can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4345and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4346
4347@item nopass
5ece1a18 4348@itemx ignore
c906108c 4349@value{GDBN} should not allow your program to see this signal.
5ece1a18 4350@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4351@end table
4352@c @end group
4353
d4f3574e
SS
4354When a signal stops your program, the signal is not visible to the
4355program until you
c906108c
SS
4356continue. Your program sees the signal then, if @code{pass} is in
4357effect for the signal in question @emph{at that time}. In other words,
4358after @value{GDBN} reports a signal, you can use the @code{handle}
4359command with @code{pass} or @code{nopass} to control whether your
4360program sees that signal when you continue.
4361
24f93129
EZ
4362The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4363non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4364@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4365erroneous signals.
4366
c906108c
SS
4367You can also use the @code{signal} command to prevent your program from
4368seeing a signal, or cause it to see a signal it normally would not see,
4369or to give it any signal at any time. For example, if your program stopped
4370due to some sort of memory reference error, you might store correct
4371values into the erroneous variables and continue, hoping to see more
4372execution; but your program would probably terminate immediately as
4373a result of the fatal signal once it saw the signal. To prevent this,
4374you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4375Program a Signal}.
c906108c 4376
6d2ebf8b 4377@node Thread Stops
79a6e687 4378@section Stopping and Starting Multi-thread Programs
c906108c
SS
4379
4380When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4381Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4382breakpoints on all threads, or on a particular thread.
4383
4384@table @code
4385@cindex breakpoints and threads
4386@cindex thread breakpoints
4387@kindex break @dots{} thread @var{threadno}
4388@item break @var{linespec} thread @var{threadno}
4389@itemx break @var{linespec} thread @var{threadno} if @dots{}
4390@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4391writing them (@pxref{Specify Location}), but the effect is always to
4392specify some source line.
c906108c
SS
4393
4394Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4395to specify that you only want @value{GDBN} to stop the program when a
4396particular thread reaches this breakpoint. @var{threadno} is one of the
4397numeric thread identifiers assigned by @value{GDBN}, shown in the first
4398column of the @samp{info threads} display.
4399
4400If you do not specify @samp{thread @var{threadno}} when you set a
4401breakpoint, the breakpoint applies to @emph{all} threads of your
4402program.
4403
4404You can use the @code{thread} qualifier on conditional breakpoints as
4405well; in this case, place @samp{thread @var{threadno}} before the
4406breakpoint condition, like this:
4407
4408@smallexample
2df3850c 4409(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4410@end smallexample
4411
4412@end table
4413
4414@cindex stopped threads
4415@cindex threads, stopped
4416Whenever your program stops under @value{GDBN} for any reason,
4417@emph{all} threads of execution stop, not just the current thread. This
4418allows you to examine the overall state of the program, including
4419switching between threads, without worrying that things may change
4420underfoot.
4421
36d86913
MC
4422@cindex thread breakpoints and system calls
4423@cindex system calls and thread breakpoints
4424@cindex premature return from system calls
4425There is an unfortunate side effect. If one thread stops for a
4426breakpoint, or for some other reason, and another thread is blocked in a
4427system call, then the system call may return prematurely. This is a
4428consequence of the interaction between multiple threads and the signals
4429that @value{GDBN} uses to implement breakpoints and other events that
4430stop execution.
4431
4432To handle this problem, your program should check the return value of
4433each system call and react appropriately. This is good programming
4434style anyways.
4435
4436For example, do not write code like this:
4437
4438@smallexample
4439 sleep (10);
4440@end smallexample
4441
4442The call to @code{sleep} will return early if a different thread stops
4443at a breakpoint or for some other reason.
4444
4445Instead, write this:
4446
4447@smallexample
4448 int unslept = 10;
4449 while (unslept > 0)
4450 unslept = sleep (unslept);
4451@end smallexample
4452
4453A system call is allowed to return early, so the system is still
4454conforming to its specification. But @value{GDBN} does cause your
4455multi-threaded program to behave differently than it would without
4456@value{GDBN}.
4457
4458Also, @value{GDBN} uses internal breakpoints in the thread library to
4459monitor certain events such as thread creation and thread destruction.
4460When such an event happens, a system call in another thread may return
4461prematurely, even though your program does not appear to stop.
4462
c906108c
SS
4463@cindex continuing threads
4464@cindex threads, continuing
4465Conversely, whenever you restart the program, @emph{all} threads start
4466executing. @emph{This is true even when single-stepping} with commands
5d161b24 4467like @code{step} or @code{next}.
c906108c
SS
4468
4469In particular, @value{GDBN} cannot single-step all threads in lockstep.
4470Since thread scheduling is up to your debugging target's operating
4471system (not controlled by @value{GDBN}), other threads may
4472execute more than one statement while the current thread completes a
4473single step. Moreover, in general other threads stop in the middle of a
4474statement, rather than at a clean statement boundary, when the program
4475stops.
4476
4477You might even find your program stopped in another thread after
4478continuing or even single-stepping. This happens whenever some other
4479thread runs into a breakpoint, a signal, or an exception before the
4480first thread completes whatever you requested.
4481
4482On some OSes, you can lock the OS scheduler and thus allow only a single
4483thread to run.
4484
4485@table @code
4486@item set scheduler-locking @var{mode}
9c16f35a
EZ
4487@cindex scheduler locking mode
4488@cindex lock scheduler
c906108c
SS
4489Set the scheduler locking mode. If it is @code{off}, then there is no
4490locking and any thread may run at any time. If @code{on}, then only the
4491current thread may run when the inferior is resumed. The @code{step}
4492mode optimizes for single-stepping. It stops other threads from
4493``seizing the prompt'' by preempting the current thread while you are
4494stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4495when you step. They are more likely to run when you @samp{next} over a
c906108c 4496function call, and they are completely free to run when you use commands
d4f3574e 4497like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4498thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4499@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4500
4501@item show scheduler-locking
4502Display the current scheduler locking mode.
4503@end table
4504
c906108c 4505
6d2ebf8b 4506@node Stack
c906108c
SS
4507@chapter Examining the Stack
4508
4509When your program has stopped, the first thing you need to know is where it
4510stopped and how it got there.
4511
4512@cindex call stack
5d161b24
DB
4513Each time your program performs a function call, information about the call
4514is generated.
4515That information includes the location of the call in your program,
4516the arguments of the call,
c906108c 4517and the local variables of the function being called.
5d161b24 4518The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4519The stack frames are allocated in a region of memory called the @dfn{call
4520stack}.
4521
4522When your program stops, the @value{GDBN} commands for examining the
4523stack allow you to see all of this information.
4524
4525@cindex selected frame
4526One of the stack frames is @dfn{selected} by @value{GDBN} and many
4527@value{GDBN} commands refer implicitly to the selected frame. In
4528particular, whenever you ask @value{GDBN} for the value of a variable in
4529your program, the value is found in the selected frame. There are
4530special @value{GDBN} commands to select whichever frame you are
79a6e687 4531interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4532
4533When your program stops, @value{GDBN} automatically selects the
5d161b24 4534currently executing frame and describes it briefly, similar to the
79a6e687 4535@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4536
4537@menu
4538* Frames:: Stack frames
4539* Backtrace:: Backtraces
4540* Selection:: Selecting a frame
4541* Frame Info:: Information on a frame
c906108c
SS
4542
4543@end menu
4544
6d2ebf8b 4545@node Frames
79a6e687 4546@section Stack Frames
c906108c 4547
d4f3574e 4548@cindex frame, definition
c906108c
SS
4549@cindex stack frame
4550The call stack is divided up into contiguous pieces called @dfn{stack
4551frames}, or @dfn{frames} for short; each frame is the data associated
4552with one call to one function. The frame contains the arguments given
4553to the function, the function's local variables, and the address at
4554which the function is executing.
4555
4556@cindex initial frame
4557@cindex outermost frame
4558@cindex innermost frame
4559When your program is started, the stack has only one frame, that of the
4560function @code{main}. This is called the @dfn{initial} frame or the
4561@dfn{outermost} frame. Each time a function is called, a new frame is
4562made. Each time a function returns, the frame for that function invocation
4563is eliminated. If a function is recursive, there can be many frames for
4564the same function. The frame for the function in which execution is
4565actually occurring is called the @dfn{innermost} frame. This is the most
4566recently created of all the stack frames that still exist.
4567
4568@cindex frame pointer
4569Inside your program, stack frames are identified by their addresses. A
4570stack frame consists of many bytes, each of which has its own address; each
4571kind of computer has a convention for choosing one byte whose
4572address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4573in a register called the @dfn{frame pointer register}
4574(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4575
4576@cindex frame number
4577@value{GDBN} assigns numbers to all existing stack frames, starting with
4578zero for the innermost frame, one for the frame that called it,
4579and so on upward. These numbers do not really exist in your program;
4580they are assigned by @value{GDBN} to give you a way of designating stack
4581frames in @value{GDBN} commands.
4582
6d2ebf8b
SS
4583@c The -fomit-frame-pointer below perennially causes hbox overflow
4584@c underflow problems.
c906108c
SS
4585@cindex frameless execution
4586Some compilers provide a way to compile functions so that they operate
e22ea452 4587without stack frames. (For example, the @value{NGCC} option
474c8240 4588@smallexample
6d2ebf8b 4589@samp{-fomit-frame-pointer}
474c8240 4590@end smallexample
6d2ebf8b 4591generates functions without a frame.)
c906108c
SS
4592This is occasionally done with heavily used library functions to save
4593the frame setup time. @value{GDBN} has limited facilities for dealing
4594with these function invocations. If the innermost function invocation
4595has no stack frame, @value{GDBN} nevertheless regards it as though
4596it had a separate frame, which is numbered zero as usual, allowing
4597correct tracing of the function call chain. However, @value{GDBN} has
4598no provision for frameless functions elsewhere in the stack.
4599
4600@table @code
d4f3574e 4601@kindex frame@r{, command}
41afff9a 4602@cindex current stack frame
c906108c 4603@item frame @var{args}
5d161b24 4604The @code{frame} command allows you to move from one stack frame to another,
c906108c 4605and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4606address of the frame or the stack frame number. Without an argument,
4607@code{frame} prints the current stack frame.
c906108c
SS
4608
4609@kindex select-frame
41afff9a 4610@cindex selecting frame silently
c906108c
SS
4611@item select-frame
4612The @code{select-frame} command allows you to move from one stack frame
4613to another without printing the frame. This is the silent version of
4614@code{frame}.
4615@end table
4616
6d2ebf8b 4617@node Backtrace
c906108c
SS
4618@section Backtraces
4619
09d4efe1
EZ
4620@cindex traceback
4621@cindex call stack traces
c906108c
SS
4622A backtrace is a summary of how your program got where it is. It shows one
4623line per frame, for many frames, starting with the currently executing
4624frame (frame zero), followed by its caller (frame one), and on up the
4625stack.
4626
4627@table @code
4628@kindex backtrace
41afff9a 4629@kindex bt @r{(@code{backtrace})}
c906108c
SS
4630@item backtrace
4631@itemx bt
4632Print a backtrace of the entire stack: one line per frame for all
4633frames in the stack.
4634
4635You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4636character, normally @kbd{Ctrl-c}.
c906108c
SS
4637
4638@item backtrace @var{n}
4639@itemx bt @var{n}
4640Similar, but print only the innermost @var{n} frames.
4641
4642@item backtrace -@var{n}
4643@itemx bt -@var{n}
4644Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4645
4646@item backtrace full
0f061b69 4647@itemx bt full
dd74f6ae
NR
4648@itemx bt full @var{n}
4649@itemx bt full -@var{n}
e7109c7e 4650Print the values of the local variables also. @var{n} specifies the
286ba84d 4651number of frames to print, as described above.
c906108c
SS
4652@end table
4653
4654@kindex where
4655@kindex info stack
c906108c
SS
4656The names @code{where} and @code{info stack} (abbreviated @code{info s})
4657are additional aliases for @code{backtrace}.
4658
839c27b7
EZ
4659@cindex multiple threads, backtrace
4660In a multi-threaded program, @value{GDBN} by default shows the
4661backtrace only for the current thread. To display the backtrace for
4662several or all of the threads, use the command @code{thread apply}
4663(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4664apply all backtrace}, @value{GDBN} will display the backtrace for all
4665the threads; this is handy when you debug a core dump of a
4666multi-threaded program.
4667
c906108c
SS
4668Each line in the backtrace shows the frame number and the function name.
4669The program counter value is also shown---unless you use @code{set
4670print address off}. The backtrace also shows the source file name and
4671line number, as well as the arguments to the function. The program
4672counter value is omitted if it is at the beginning of the code for that
4673line number.
4674
4675Here is an example of a backtrace. It was made with the command
4676@samp{bt 3}, so it shows the innermost three frames.
4677
4678@smallexample
4679@group
5d161b24 4680#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4681 at builtin.c:993
4682#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4683#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4684 at macro.c:71
4685(More stack frames follow...)
4686@end group
4687@end smallexample
4688
4689@noindent
4690The display for frame zero does not begin with a program counter
4691value, indicating that your program has stopped at the beginning of the
4692code for line @code{993} of @code{builtin.c}.
4693
18999be5
EZ
4694@cindex value optimized out, in backtrace
4695@cindex function call arguments, optimized out
4696If your program was compiled with optimizations, some compilers will
4697optimize away arguments passed to functions if those arguments are
4698never used after the call. Such optimizations generate code that
4699passes arguments through registers, but doesn't store those arguments
4700in the stack frame. @value{GDBN} has no way of displaying such
4701arguments in stack frames other than the innermost one. Here's what
4702such a backtrace might look like:
4703
4704@smallexample
4705@group
4706#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4707 at builtin.c:993
4708#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4709#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4710 at macro.c:71
4711(More stack frames follow...)
4712@end group
4713@end smallexample
4714
4715@noindent
4716The values of arguments that were not saved in their stack frames are
4717shown as @samp{<value optimized out>}.
4718
4719If you need to display the values of such optimized-out arguments,
4720either deduce that from other variables whose values depend on the one
4721you are interested in, or recompile without optimizations.
4722
a8f24a35
EZ
4723@cindex backtrace beyond @code{main} function
4724@cindex program entry point
4725@cindex startup code, and backtrace
25d29d70
AC
4726Most programs have a standard user entry point---a place where system
4727libraries and startup code transition into user code. For C this is
d416eeec
EZ
4728@code{main}@footnote{
4729Note that embedded programs (the so-called ``free-standing''
4730environment) are not required to have a @code{main} function as the
4731entry point. They could even have multiple entry points.}.
4732When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4733it will terminate the backtrace, to avoid tracing into highly
4734system-specific (and generally uninteresting) code.
4735
4736If you need to examine the startup code, or limit the number of levels
4737in a backtrace, you can change this behavior:
95f90d25
DJ
4738
4739@table @code
25d29d70
AC
4740@item set backtrace past-main
4741@itemx set backtrace past-main on
4644b6e3 4742@kindex set backtrace
25d29d70
AC
4743Backtraces will continue past the user entry point.
4744
4745@item set backtrace past-main off
95f90d25
DJ
4746Backtraces will stop when they encounter the user entry point. This is the
4747default.
4748
25d29d70 4749@item show backtrace past-main
4644b6e3 4750@kindex show backtrace
25d29d70
AC
4751Display the current user entry point backtrace policy.
4752
2315ffec
RC
4753@item set backtrace past-entry
4754@itemx set backtrace past-entry on
a8f24a35 4755Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4756This entry point is encoded by the linker when the application is built,
4757and is likely before the user entry point @code{main} (or equivalent) is called.
4758
4759@item set backtrace past-entry off
d3e8051b 4760Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4761application. This is the default.
4762
4763@item show backtrace past-entry
4764Display the current internal entry point backtrace policy.
4765
25d29d70
AC
4766@item set backtrace limit @var{n}
4767@itemx set backtrace limit 0
4768@cindex backtrace limit
4769Limit the backtrace to @var{n} levels. A value of zero means
4770unlimited.
95f90d25 4771
25d29d70
AC
4772@item show backtrace limit
4773Display the current limit on backtrace levels.
95f90d25
DJ
4774@end table
4775
6d2ebf8b 4776@node Selection
79a6e687 4777@section Selecting a Frame
c906108c
SS
4778
4779Most commands for examining the stack and other data in your program work on
4780whichever stack frame is selected at the moment. Here are the commands for
4781selecting a stack frame; all of them finish by printing a brief description
4782of the stack frame just selected.
4783
4784@table @code
d4f3574e 4785@kindex frame@r{, selecting}
41afff9a 4786@kindex f @r{(@code{frame})}
c906108c
SS
4787@item frame @var{n}
4788@itemx f @var{n}
4789Select frame number @var{n}. Recall that frame zero is the innermost
4790(currently executing) frame, frame one is the frame that called the
4791innermost one, and so on. The highest-numbered frame is the one for
4792@code{main}.
4793
4794@item frame @var{addr}
4795@itemx f @var{addr}
4796Select the frame at address @var{addr}. This is useful mainly if the
4797chaining of stack frames has been damaged by a bug, making it
4798impossible for @value{GDBN} to assign numbers properly to all frames. In
4799addition, this can be useful when your program has multiple stacks and
4800switches between them.
4801
c906108c
SS
4802On the SPARC architecture, @code{frame} needs two addresses to
4803select an arbitrary frame: a frame pointer and a stack pointer.
4804
4805On the MIPS and Alpha architecture, it needs two addresses: a stack
4806pointer and a program counter.
4807
4808On the 29k architecture, it needs three addresses: a register stack
4809pointer, a program counter, and a memory stack pointer.
c906108c
SS
4810
4811@kindex up
4812@item up @var{n}
4813Move @var{n} frames up the stack. For positive numbers @var{n}, this
4814advances toward the outermost frame, to higher frame numbers, to frames
4815that have existed longer. @var{n} defaults to one.
4816
4817@kindex down
41afff9a 4818@kindex do @r{(@code{down})}
c906108c
SS
4819@item down @var{n}
4820Move @var{n} frames down the stack. For positive numbers @var{n}, this
4821advances toward the innermost frame, to lower frame numbers, to frames
4822that were created more recently. @var{n} defaults to one. You may
4823abbreviate @code{down} as @code{do}.
4824@end table
4825
4826All of these commands end by printing two lines of output describing the
4827frame. The first line shows the frame number, the function name, the
4828arguments, and the source file and line number of execution in that
5d161b24 4829frame. The second line shows the text of that source line.
c906108c
SS
4830
4831@need 1000
4832For example:
4833
4834@smallexample
4835@group
4836(@value{GDBP}) up
4837#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4838 at env.c:10
483910 read_input_file (argv[i]);
4840@end group
4841@end smallexample
4842
4843After such a printout, the @code{list} command with no arguments
4844prints ten lines centered on the point of execution in the frame.
87885426
FN
4845You can also edit the program at the point of execution with your favorite
4846editing program by typing @code{edit}.
79a6e687 4847@xref{List, ,Printing Source Lines},
87885426 4848for details.
c906108c
SS
4849
4850@table @code
4851@kindex down-silently
4852@kindex up-silently
4853@item up-silently @var{n}
4854@itemx down-silently @var{n}
4855These two commands are variants of @code{up} and @code{down},
4856respectively; they differ in that they do their work silently, without
4857causing display of the new frame. They are intended primarily for use
4858in @value{GDBN} command scripts, where the output might be unnecessary and
4859distracting.
4860@end table
4861
6d2ebf8b 4862@node Frame Info
79a6e687 4863@section Information About a Frame
c906108c
SS
4864
4865There are several other commands to print information about the selected
4866stack frame.
4867
4868@table @code
4869@item frame
4870@itemx f
4871When used without any argument, this command does not change which
4872frame is selected, but prints a brief description of the currently
4873selected stack frame. It can be abbreviated @code{f}. With an
4874argument, this command is used to select a stack frame.
79a6e687 4875@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4876
4877@kindex info frame
41afff9a 4878@kindex info f @r{(@code{info frame})}
c906108c
SS
4879@item info frame
4880@itemx info f
4881This command prints a verbose description of the selected stack frame,
4882including:
4883
4884@itemize @bullet
5d161b24
DB
4885@item
4886the address of the frame
c906108c
SS
4887@item
4888the address of the next frame down (called by this frame)
4889@item
4890the address of the next frame up (caller of this frame)
4891@item
4892the language in which the source code corresponding to this frame is written
4893@item
4894the address of the frame's arguments
4895@item
d4f3574e
SS
4896the address of the frame's local variables
4897@item
c906108c
SS
4898the program counter saved in it (the address of execution in the caller frame)
4899@item
4900which registers were saved in the frame
4901@end itemize
4902
4903@noindent The verbose description is useful when
4904something has gone wrong that has made the stack format fail to fit
4905the usual conventions.
4906
4907@item info frame @var{addr}
4908@itemx info f @var{addr}
4909Print a verbose description of the frame at address @var{addr}, without
4910selecting that frame. The selected frame remains unchanged by this
4911command. This requires the same kind of address (more than one for some
4912architectures) that you specify in the @code{frame} command.
79a6e687 4913@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4914
4915@kindex info args
4916@item info args
4917Print the arguments of the selected frame, each on a separate line.
4918
4919@item info locals
4920@kindex info locals
4921Print the local variables of the selected frame, each on a separate
4922line. These are all variables (declared either static or automatic)
4923accessible at the point of execution of the selected frame.
4924
c906108c 4925@kindex info catch
d4f3574e
SS
4926@cindex catch exceptions, list active handlers
4927@cindex exception handlers, how to list
c906108c
SS
4928@item info catch
4929Print a list of all the exception handlers that are active in the
4930current stack frame at the current point of execution. To see other
4931exception handlers, visit the associated frame (using the @code{up},
4932@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4933@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4934
c906108c
SS
4935@end table
4936
c906108c 4937
6d2ebf8b 4938@node Source
c906108c
SS
4939@chapter Examining Source Files
4940
4941@value{GDBN} can print parts of your program's source, since the debugging
4942information recorded in the program tells @value{GDBN} what source files were
4943used to build it. When your program stops, @value{GDBN} spontaneously prints
4944the line where it stopped. Likewise, when you select a stack frame
79a6e687 4945(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4946execution in that frame has stopped. You can print other portions of
4947source files by explicit command.
4948
7a292a7a 4949If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4950prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4951@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4952
4953@menu
4954* List:: Printing source lines
2a25a5ba 4955* Specify Location:: How to specify code locations
87885426 4956* Edit:: Editing source files
c906108c 4957* Search:: Searching source files
c906108c
SS
4958* Source Path:: Specifying source directories
4959* Machine Code:: Source and machine code
4960@end menu
4961
6d2ebf8b 4962@node List
79a6e687 4963@section Printing Source Lines
c906108c
SS
4964
4965@kindex list
41afff9a 4966@kindex l @r{(@code{list})}
c906108c 4967To print lines from a source file, use the @code{list} command
5d161b24 4968(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4969There are several ways to specify what part of the file you want to
4970print; see @ref{Specify Location}, for the full list.
c906108c
SS
4971
4972Here are the forms of the @code{list} command most commonly used:
4973
4974@table @code
4975@item list @var{linenum}
4976Print lines centered around line number @var{linenum} in the
4977current source file.
4978
4979@item list @var{function}
4980Print lines centered around the beginning of function
4981@var{function}.
4982
4983@item list
4984Print more lines. If the last lines printed were printed with a
4985@code{list} command, this prints lines following the last lines
4986printed; however, if the last line printed was a solitary line printed
4987as part of displaying a stack frame (@pxref{Stack, ,Examining the
4988Stack}), this prints lines centered around that line.
4989
4990@item list -
4991Print lines just before the lines last printed.
4992@end table
4993
9c16f35a 4994@cindex @code{list}, how many lines to display
c906108c
SS
4995By default, @value{GDBN} prints ten source lines with any of these forms of
4996the @code{list} command. You can change this using @code{set listsize}:
4997
4998@table @code
4999@kindex set listsize
5000@item set listsize @var{count}
5001Make the @code{list} command display @var{count} source lines (unless
5002the @code{list} argument explicitly specifies some other number).
5003
5004@kindex show listsize
5005@item show listsize
5006Display the number of lines that @code{list} prints.
5007@end table
5008
5009Repeating a @code{list} command with @key{RET} discards the argument,
5010so it is equivalent to typing just @code{list}. This is more useful
5011than listing the same lines again. An exception is made for an
5012argument of @samp{-}; that argument is preserved in repetition so that
5013each repetition moves up in the source file.
5014
c906108c
SS
5015In general, the @code{list} command expects you to supply zero, one or two
5016@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
5017of writing them (@pxref{Specify Location}), but the effect is always
5018to specify some source line.
5019
c906108c
SS
5020Here is a complete description of the possible arguments for @code{list}:
5021
5022@table @code
5023@item list @var{linespec}
5024Print lines centered around the line specified by @var{linespec}.
5025
5026@item list @var{first},@var{last}
5027Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5028linespecs. When a @code{list} command has two linespecs, and the
5029source file of the second linespec is omitted, this refers to
5030the same source file as the first linespec.
c906108c
SS
5031
5032@item list ,@var{last}
5033Print lines ending with @var{last}.
5034
5035@item list @var{first},
5036Print lines starting with @var{first}.
5037
5038@item list +
5039Print lines just after the lines last printed.
5040
5041@item list -
5042Print lines just before the lines last printed.
5043
5044@item list
5045As described in the preceding table.
5046@end table
5047
2a25a5ba
EZ
5048@node Specify Location
5049@section Specifying a Location
5050@cindex specifying location
5051@cindex linespec
c906108c 5052
2a25a5ba
EZ
5053Several @value{GDBN} commands accept arguments that specify a location
5054of your program's code. Since @value{GDBN} is a source-level
5055debugger, a location usually specifies some line in the source code;
5056for that reason, locations are also known as @dfn{linespecs}.
c906108c 5057
2a25a5ba
EZ
5058Here are all the different ways of specifying a code location that
5059@value{GDBN} understands:
c906108c 5060
2a25a5ba
EZ
5061@table @code
5062@item @var{linenum}
5063Specifies the line number @var{linenum} of the current source file.
c906108c 5064
2a25a5ba
EZ
5065@item -@var{offset}
5066@itemx +@var{offset}
5067Specifies the line @var{offset} lines before or after the @dfn{current
5068line}. For the @code{list} command, the current line is the last one
5069printed; for the breakpoint commands, this is the line at which
5070execution stopped in the currently selected @dfn{stack frame}
5071(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5072used as the second of the two linespecs in a @code{list} command,
5073this specifies the line @var{offset} lines up or down from the first
5074linespec.
5075
5076@item @var{filename}:@var{linenum}
5077Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5078
5079@item @var{function}
5080Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5081For example, in C, this is the line with the open brace.
c906108c
SS
5082
5083@item @var{filename}:@var{function}
2a25a5ba
EZ
5084Specifies the line that begins the body of the function @var{function}
5085in the file @var{filename}. You only need the file name with a
5086function name to avoid ambiguity when there are identically named
5087functions in different source files.
c906108c
SS
5088
5089@item *@var{address}
2a25a5ba
EZ
5090Specifies the program address @var{address}. For line-oriented
5091commands, such as @code{list} and @code{edit}, this specifies a source
5092line that contains @var{address}. For @code{break} and other
5093breakpoint oriented commands, this can be used to set breakpoints in
5094parts of your program which do not have debugging information or
5095source files.
5096
5097Here @var{address} may be any expression valid in the current working
5098language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5099address. In addition, as a convenience, @value{GDBN} extends the
5100semantics of expressions used in locations to cover the situations
5101that frequently happen during debugging. Here are the various forms
5102of @var{address}:
2a25a5ba
EZ
5103
5104@table @code
5105@item @var{expression}
5106Any expression valid in the current working language.
5107
5108@item @var{funcaddr}
5109An address of a function or procedure derived from its name. In C,
5110C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5111simply the function's name @var{function} (and actually a special case
5112of a valid expression). In Pascal and Modula-2, this is
5113@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5114(although the Pascal form also works).
5115
5116This form specifies the address of the function's first instruction,
5117before the stack frame and arguments have been set up.
5118
5119@item '@var{filename}'::@var{funcaddr}
5120Like @var{funcaddr} above, but also specifies the name of the source
5121file explicitly. This is useful if the name of the function does not
5122specify the function unambiguously, e.g., if there are several
5123functions with identical names in different source files.
c906108c
SS
5124@end table
5125
2a25a5ba
EZ
5126@end table
5127
5128
87885426 5129@node Edit
79a6e687 5130@section Editing Source Files
87885426
FN
5131@cindex editing source files
5132
5133@kindex edit
5134@kindex e @r{(@code{edit})}
5135To edit the lines in a source file, use the @code{edit} command.
5136The editing program of your choice
5137is invoked with the current line set to
5138the active line in the program.
5139Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5140want to print if you want to see other parts of the program:
87885426
FN
5141
5142@table @code
2a25a5ba
EZ
5143@item edit @var{location}
5144Edit the source file specified by @code{location}. Editing starts at
5145that @var{location}, e.g., at the specified source line of the
5146specified file. @xref{Specify Location}, for all the possible forms
5147of the @var{location} argument; here are the forms of the @code{edit}
5148command most commonly used:
87885426 5149
2a25a5ba 5150@table @code
87885426
FN
5151@item edit @var{number}
5152Edit the current source file with @var{number} as the active line number.
5153
5154@item edit @var{function}
5155Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5156@end table
87885426 5157
87885426
FN
5158@end table
5159
79a6e687 5160@subsection Choosing your Editor
87885426
FN
5161You can customize @value{GDBN} to use any editor you want
5162@footnote{
5163The only restriction is that your editor (say @code{ex}), recognizes the
5164following command-line syntax:
10998722 5165@smallexample
87885426 5166ex +@var{number} file
10998722 5167@end smallexample
15387254
EZ
5168The optional numeric value +@var{number} specifies the number of the line in
5169the file where to start editing.}.
5170By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5171by setting the environment variable @code{EDITOR} before using
5172@value{GDBN}. For example, to configure @value{GDBN} to use the
5173@code{vi} editor, you could use these commands with the @code{sh} shell:
5174@smallexample
87885426
FN
5175EDITOR=/usr/bin/vi
5176export EDITOR
15387254 5177gdb @dots{}
10998722 5178@end smallexample
87885426 5179or in the @code{csh} shell,
10998722 5180@smallexample
87885426 5181setenv EDITOR /usr/bin/vi
15387254 5182gdb @dots{}
10998722 5183@end smallexample
87885426 5184
6d2ebf8b 5185@node Search
79a6e687 5186@section Searching Source Files
15387254 5187@cindex searching source files
c906108c
SS
5188
5189There are two commands for searching through the current source file for a
5190regular expression.
5191
5192@table @code
5193@kindex search
5194@kindex forward-search
5195@item forward-search @var{regexp}
5196@itemx search @var{regexp}
5197The command @samp{forward-search @var{regexp}} checks each line,
5198starting with the one following the last line listed, for a match for
5d161b24 5199@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5200synonym @samp{search @var{regexp}} or abbreviate the command name as
5201@code{fo}.
5202
09d4efe1 5203@kindex reverse-search
c906108c
SS
5204@item reverse-search @var{regexp}
5205The command @samp{reverse-search @var{regexp}} checks each line, starting
5206with the one before the last line listed and going backward, for a match
5207for @var{regexp}. It lists the line that is found. You can abbreviate
5208this command as @code{rev}.
5209@end table
c906108c 5210
6d2ebf8b 5211@node Source Path
79a6e687 5212@section Specifying Source Directories
c906108c
SS
5213
5214@cindex source path
5215@cindex directories for source files
5216Executable programs sometimes do not record the directories of the source
5217files from which they were compiled, just the names. Even when they do,
5218the directories could be moved between the compilation and your debugging
5219session. @value{GDBN} has a list of directories to search for source files;
5220this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5221it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5222in the list, until it finds a file with the desired name.
5223
5224For example, suppose an executable references the file
5225@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5226@file{/mnt/cross}. The file is first looked up literally; if this
5227fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5228fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5229message is printed. @value{GDBN} does not look up the parts of the
5230source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5231Likewise, the subdirectories of the source path are not searched: if
5232the source path is @file{/mnt/cross}, and the binary refers to
5233@file{foo.c}, @value{GDBN} would not find it under
5234@file{/mnt/cross/usr/src/foo-1.0/lib}.
5235
5236Plain file names, relative file names with leading directories, file
5237names containing dots, etc.@: are all treated as described above; for
5238instance, if the source path is @file{/mnt/cross}, and the source file
5239is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5240@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5241that---@file{/mnt/cross/foo.c}.
5242
5243Note that the executable search path is @emph{not} used to locate the
cd852561 5244source files.
c906108c
SS
5245
5246Whenever you reset or rearrange the source path, @value{GDBN} clears out
5247any information it has cached about where source files are found and where
5248each line is in the file.
5249
5250@kindex directory
5251@kindex dir
d4f3574e
SS
5252When you start @value{GDBN}, its source path includes only @samp{cdir}
5253and @samp{cwd}, in that order.
c906108c
SS
5254To add other directories, use the @code{directory} command.
5255
4b505b12
AS
5256The search path is used to find both program source files and @value{GDBN}
5257script files (read using the @samp{-command} option and @samp{source} command).
5258
30daae6c
JB
5259In addition to the source path, @value{GDBN} provides a set of commands
5260that manage a list of source path substitution rules. A @dfn{substitution
5261rule} specifies how to rewrite source directories stored in the program's
5262debug information in case the sources were moved to a different
5263directory between compilation and debugging. A rule is made of
5264two strings, the first specifying what needs to be rewritten in
5265the path, and the second specifying how it should be rewritten.
5266In @ref{set substitute-path}, we name these two parts @var{from} and
5267@var{to} respectively. @value{GDBN} does a simple string replacement
5268of @var{from} with @var{to} at the start of the directory part of the
5269source file name, and uses that result instead of the original file
5270name to look up the sources.
5271
5272Using the previous example, suppose the @file{foo-1.0} tree has been
5273moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5274@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5275@file{/mnt/cross}. The first lookup will then be
5276@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5277of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5278substitution rule, use the @code{set substitute-path} command
5279(@pxref{set substitute-path}).
5280
5281To avoid unexpected substitution results, a rule is applied only if the
5282@var{from} part of the directory name ends at a directory separator.
5283For instance, a rule substituting @file{/usr/source} into
5284@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5285not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5286is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5287not be applied to @file{/root/usr/source/baz.c} either.
5288
5289In many cases, you can achieve the same result using the @code{directory}
5290command. However, @code{set substitute-path} can be more efficient in
5291the case where the sources are organized in a complex tree with multiple
5292subdirectories. With the @code{directory} command, you need to add each
5293subdirectory of your project. If you moved the entire tree while
5294preserving its internal organization, then @code{set substitute-path}
5295allows you to direct the debugger to all the sources with one single
5296command.
5297
5298@code{set substitute-path} is also more than just a shortcut command.
5299The source path is only used if the file at the original location no
5300longer exists. On the other hand, @code{set substitute-path} modifies
5301the debugger behavior to look at the rewritten location instead. So, if
5302for any reason a source file that is not relevant to your executable is
5303located at the original location, a substitution rule is the only
3f94c067 5304method available to point @value{GDBN} at the new location.
30daae6c 5305
c906108c
SS
5306@table @code
5307@item directory @var{dirname} @dots{}
5308@item dir @var{dirname} @dots{}
5309Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5310directory names may be given to this command, separated by @samp{:}
5311(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5312part of absolute file names) or
c906108c
SS
5313whitespace. You may specify a directory that is already in the source
5314path; this moves it forward, so @value{GDBN} searches it sooner.
5315
5316@kindex cdir
5317@kindex cwd
41afff9a 5318@vindex $cdir@r{, convenience variable}
d3e8051b 5319@vindex $cwd@r{, convenience variable}
c906108c
SS
5320@cindex compilation directory
5321@cindex current directory
5322@cindex working directory
5323@cindex directory, current
5324@cindex directory, compilation
5325You can use the string @samp{$cdir} to refer to the compilation
5326directory (if one is recorded), and @samp{$cwd} to refer to the current
5327working directory. @samp{$cwd} is not the same as @samp{.}---the former
5328tracks the current working directory as it changes during your @value{GDBN}
5329session, while the latter is immediately expanded to the current
5330directory at the time you add an entry to the source path.
5331
5332@item directory
cd852561 5333Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5334
5335@c RET-repeat for @code{directory} is explicitly disabled, but since
5336@c repeating it would be a no-op we do not say that. (thanks to RMS)
5337
5338@item show directories
5339@kindex show directories
5340Print the source path: show which directories it contains.
30daae6c
JB
5341
5342@anchor{set substitute-path}
5343@item set substitute-path @var{from} @var{to}
5344@kindex set substitute-path
5345Define a source path substitution rule, and add it at the end of the
5346current list of existing substitution rules. If a rule with the same
5347@var{from} was already defined, then the old rule is also deleted.
5348
5349For example, if the file @file{/foo/bar/baz.c} was moved to
5350@file{/mnt/cross/baz.c}, then the command
5351
5352@smallexample
5353(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5354@end smallexample
5355
5356@noindent
5357will tell @value{GDBN} to replace @samp{/usr/src} with
5358@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5359@file{baz.c} even though it was moved.
5360
5361In the case when more than one substitution rule have been defined,
5362the rules are evaluated one by one in the order where they have been
5363defined. The first one matching, if any, is selected to perform
5364the substitution.
5365
5366For instance, if we had entered the following commands:
5367
5368@smallexample
5369(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5370(@value{GDBP}) set substitute-path /usr/src /mnt/src
5371@end smallexample
5372
5373@noindent
5374@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5375@file{/mnt/include/defs.h} by using the first rule. However, it would
5376use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5377@file{/mnt/src/lib/foo.c}.
5378
5379
5380@item unset substitute-path [path]
5381@kindex unset substitute-path
5382If a path is specified, search the current list of substitution rules
5383for a rule that would rewrite that path. Delete that rule if found.
5384A warning is emitted by the debugger if no rule could be found.
5385
5386If no path is specified, then all substitution rules are deleted.
5387
5388@item show substitute-path [path]
5389@kindex show substitute-path
5390If a path is specified, then print the source path substitution rule
5391which would rewrite that path, if any.
5392
5393If no path is specified, then print all existing source path substitution
5394rules.
5395
c906108c
SS
5396@end table
5397
5398If your source path is cluttered with directories that are no longer of
5399interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5400versions of source. You can correct the situation as follows:
5401
5402@enumerate
5403@item
cd852561 5404Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5405
5406@item
5407Use @code{directory} with suitable arguments to reinstall the
5408directories you want in the source path. You can add all the
5409directories in one command.
5410@end enumerate
5411
6d2ebf8b 5412@node Machine Code
79a6e687 5413@section Source and Machine Code
15387254 5414@cindex source line and its code address
c906108c
SS
5415
5416You can use the command @code{info line} to map source lines to program
5417addresses (and vice versa), and the command @code{disassemble} to display
5418a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5419mode, the @code{info line} command causes the arrow to point to the
5d161b24 5420line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5421well as hex.
5422
5423@table @code
5424@kindex info line
5425@item info line @var{linespec}
5426Print the starting and ending addresses of the compiled code for
5427source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5428the ways documented in @ref{Specify Location}.
c906108c
SS
5429@end table
5430
5431For example, we can use @code{info line} to discover the location of
5432the object code for the first line of function
5433@code{m4_changequote}:
5434
d4f3574e
SS
5435@c FIXME: I think this example should also show the addresses in
5436@c symbolic form, as they usually would be displayed.
c906108c 5437@smallexample
96a2c332 5438(@value{GDBP}) info line m4_changequote
c906108c
SS
5439Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5440@end smallexample
5441
5442@noindent
15387254 5443@cindex code address and its source line
c906108c
SS
5444We can also inquire (using @code{*@var{addr}} as the form for
5445@var{linespec}) what source line covers a particular address:
5446@smallexample
5447(@value{GDBP}) info line *0x63ff
5448Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5449@end smallexample
5450
5451@cindex @code{$_} and @code{info line}
15387254 5452@cindex @code{x} command, default address
41afff9a 5453@kindex x@r{(examine), and} info line
c906108c
SS
5454After @code{info line}, the default address for the @code{x} command
5455is changed to the starting address of the line, so that @samp{x/i} is
5456sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5457,Examining Memory}). Also, this address is saved as the value of the
c906108c 5458convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5459Variables}).
c906108c
SS
5460
5461@table @code
5462@kindex disassemble
5463@cindex assembly instructions
5464@cindex instructions, assembly
5465@cindex machine instructions
5466@cindex listing machine instructions
5467@item disassemble
5468This specialized command dumps a range of memory as machine
5469instructions. The default memory range is the function surrounding the
5470program counter of the selected frame. A single argument to this
5471command is a program counter value; @value{GDBN} dumps the function
5472surrounding this value. Two arguments specify a range of addresses
5473(first inclusive, second exclusive) to dump.
5474@end table
5475
c906108c
SS
5476The following example shows the disassembly of a range of addresses of
5477HP PA-RISC 2.0 code:
5478
5479@smallexample
5480(@value{GDBP}) disas 0x32c4 0x32e4
5481Dump of assembler code from 0x32c4 to 0x32e4:
54820x32c4 <main+204>: addil 0,dp
54830x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54840x32cc <main+212>: ldil 0x3000,r31
54850x32d0 <main+216>: ble 0x3f8(sr4,r31)
54860x32d4 <main+220>: ldo 0(r31),rp
54870x32d8 <main+224>: addil -0x800,dp
54880x32dc <main+228>: ldo 0x588(r1),r26
54890x32e0 <main+232>: ldil 0x3000,r31
5490End of assembler dump.
5491@end smallexample
c906108c
SS
5492
5493Some architectures have more than one commonly-used set of instruction
5494mnemonics or other syntax.
5495
76d17f34
EZ
5496For programs that were dynamically linked and use shared libraries,
5497instructions that call functions or branch to locations in the shared
5498libraries might show a seemingly bogus location---it's actually a
5499location of the relocation table. On some architectures, @value{GDBN}
5500might be able to resolve these to actual function names.
5501
c906108c 5502@table @code
d4f3574e 5503@kindex set disassembly-flavor
d4f3574e
SS
5504@cindex Intel disassembly flavor
5505@cindex AT&T disassembly flavor
5506@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5507Select the instruction set to use when disassembling the
5508program via the @code{disassemble} or @code{x/i} commands.
5509
5510Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5511can set @var{instruction-set} to either @code{intel} or @code{att}.
5512The default is @code{att}, the AT&T flavor used by default by Unix
5513assemblers for x86-based targets.
9c16f35a
EZ
5514
5515@kindex show disassembly-flavor
5516@item show disassembly-flavor
5517Show the current setting of the disassembly flavor.
c906108c
SS
5518@end table
5519
5520
6d2ebf8b 5521@node Data
c906108c
SS
5522@chapter Examining Data
5523
5524@cindex printing data
5525@cindex examining data
5526@kindex print
5527@kindex inspect
5528@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5529@c document because it is nonstandard... Under Epoch it displays in a
5530@c different window or something like that.
5531The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5532command (abbreviated @code{p}), or its synonym @code{inspect}. It
5533evaluates and prints the value of an expression of the language your
5534program is written in (@pxref{Languages, ,Using @value{GDBN} with
5535Different Languages}).
c906108c
SS
5536
5537@table @code
d4f3574e
SS
5538@item print @var{expr}
5539@itemx print /@var{f} @var{expr}
5540@var{expr} is an expression (in the source language). By default the
5541value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5542you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5543@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5544Formats}.
c906108c
SS
5545
5546@item print
5547@itemx print /@var{f}
15387254 5548@cindex reprint the last value
d4f3574e 5549If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5550@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5551conveniently inspect the same value in an alternative format.
5552@end table
5553
5554A more low-level way of examining data is with the @code{x} command.
5555It examines data in memory at a specified address and prints it in a
79a6e687 5556specified format. @xref{Memory, ,Examining Memory}.
c906108c 5557
7a292a7a 5558If you are interested in information about types, or about how the
d4f3574e
SS
5559fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5560command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5561Table}.
c906108c
SS
5562
5563@menu
5564* Expressions:: Expressions
5565* Variables:: Program variables
5566* Arrays:: Artificial arrays
5567* Output Formats:: Output formats
5568* Memory:: Examining memory
5569* Auto Display:: Automatic display
5570* Print Settings:: Print settings
5571* Value History:: Value history
5572* Convenience Vars:: Convenience variables
5573* Registers:: Registers
c906108c 5574* Floating Point Hardware:: Floating point hardware
53c69bd7 5575* Vector Unit:: Vector Unit
721c2651 5576* OS Information:: Auxiliary data provided by operating system
29e57380 5577* Memory Region Attributes:: Memory region attributes
16d9dec6 5578* Dump/Restore Files:: Copy between memory and a file
384ee23f 5579* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5580* Character Sets:: Debugging programs that use a different
5581 character set than GDB does
09d4efe1 5582* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5583@end menu
5584
6d2ebf8b 5585@node Expressions
c906108c
SS
5586@section Expressions
5587
5588@cindex expressions
5589@code{print} and many other @value{GDBN} commands accept an expression and
5590compute its value. Any kind of constant, variable or operator defined
5591by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5592@value{GDBN}. This includes conditional expressions, function calls,
5593casts, and string constants. It also includes preprocessor macros, if
5594you compiled your program to include this information; see
5595@ref{Compilation}.
c906108c 5596
15387254 5597@cindex arrays in expressions
d4f3574e
SS
5598@value{GDBN} supports array constants in expressions input by
5599the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5600you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5601memory that is @code{malloc}ed in the target program.
c906108c 5602
c906108c
SS
5603Because C is so widespread, most of the expressions shown in examples in
5604this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5605Languages}, for information on how to use expressions in other
5606languages.
5607
5608In this section, we discuss operators that you can use in @value{GDBN}
5609expressions regardless of your programming language.
5610
15387254 5611@cindex casts, in expressions
c906108c
SS
5612Casts are supported in all languages, not just in C, because it is so
5613useful to cast a number into a pointer in order to examine a structure
5614at that address in memory.
5615@c FIXME: casts supported---Mod2 true?
c906108c
SS
5616
5617@value{GDBN} supports these operators, in addition to those common
5618to programming languages:
5619
5620@table @code
5621@item @@
5622@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5623@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5624
5625@item ::
5626@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5627function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5628
5629@cindex @{@var{type}@}
5630@cindex type casting memory
5631@cindex memory, viewing as typed object
5632@cindex casts, to view memory
5633@item @{@var{type}@} @var{addr}
5634Refers to an object of type @var{type} stored at address @var{addr} in
5635memory. @var{addr} may be any expression whose value is an integer or
5636pointer (but parentheses are required around binary operators, just as in
5637a cast). This construct is allowed regardless of what kind of data is
5638normally supposed to reside at @var{addr}.
5639@end table
5640
6d2ebf8b 5641@node Variables
79a6e687 5642@section Program Variables
c906108c
SS
5643
5644The most common kind of expression to use is the name of a variable
5645in your program.
5646
5647Variables in expressions are understood in the selected stack frame
79a6e687 5648(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5649
5650@itemize @bullet
5651@item
5652global (or file-static)
5653@end itemize
5654
5d161b24 5655@noindent or
c906108c
SS
5656
5657@itemize @bullet
5658@item
5659visible according to the scope rules of the
5660programming language from the point of execution in that frame
5d161b24 5661@end itemize
c906108c
SS
5662
5663@noindent This means that in the function
5664
474c8240 5665@smallexample
c906108c
SS
5666foo (a)
5667 int a;
5668@{
5669 bar (a);
5670 @{
5671 int b = test ();
5672 bar (b);
5673 @}
5674@}
474c8240 5675@end smallexample
c906108c
SS
5676
5677@noindent
5678you can examine and use the variable @code{a} whenever your program is
5679executing within the function @code{foo}, but you can only use or
5680examine the variable @code{b} while your program is executing inside
5681the block where @code{b} is declared.
5682
5683@cindex variable name conflict
5684There is an exception: you can refer to a variable or function whose
5685scope is a single source file even if the current execution point is not
5686in this file. But it is possible to have more than one such variable or
5687function with the same name (in different source files). If that
5688happens, referring to that name has unpredictable effects. If you wish,
5689you can specify a static variable in a particular function or file,
15387254 5690using the colon-colon (@code{::}) notation:
c906108c 5691
d4f3574e 5692@cindex colon-colon, context for variables/functions
12c27660 5693@ifnotinfo
c906108c 5694@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5695@cindex @code{::}, context for variables/functions
12c27660 5696@end ifnotinfo
474c8240 5697@smallexample
c906108c
SS
5698@var{file}::@var{variable}
5699@var{function}::@var{variable}
474c8240 5700@end smallexample
c906108c
SS
5701
5702@noindent
5703Here @var{file} or @var{function} is the name of the context for the
5704static @var{variable}. In the case of file names, you can use quotes to
5705make sure @value{GDBN} parses the file name as a single word---for example,
5706to print a global value of @code{x} defined in @file{f2.c}:
5707
474c8240 5708@smallexample
c906108c 5709(@value{GDBP}) p 'f2.c'::x
474c8240 5710@end smallexample
c906108c 5711
b37052ae 5712@cindex C@t{++} scope resolution
c906108c 5713This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5714use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5715scope resolution operator in @value{GDBN} expressions.
5716@c FIXME: Um, so what happens in one of those rare cases where it's in
5717@c conflict?? --mew
c906108c
SS
5718
5719@cindex wrong values
5720@cindex variable values, wrong
15387254
EZ
5721@cindex function entry/exit, wrong values of variables
5722@cindex optimized code, wrong values of variables
c906108c
SS
5723@quotation
5724@emph{Warning:} Occasionally, a local variable may appear to have the
5725wrong value at certain points in a function---just after entry to a new
5726scope, and just before exit.
5727@end quotation
5728You may see this problem when you are stepping by machine instructions.
5729This is because, on most machines, it takes more than one instruction to
5730set up a stack frame (including local variable definitions); if you are
5731stepping by machine instructions, variables may appear to have the wrong
5732values until the stack frame is completely built. On exit, it usually
5733also takes more than one machine instruction to destroy a stack frame;
5734after you begin stepping through that group of instructions, local
5735variable definitions may be gone.
5736
5737This may also happen when the compiler does significant optimizations.
5738To be sure of always seeing accurate values, turn off all optimization
5739when compiling.
5740
d4f3574e
SS
5741@cindex ``No symbol "foo" in current context''
5742Another possible effect of compiler optimizations is to optimize
5743unused variables out of existence, or assign variables to registers (as
5744opposed to memory addresses). Depending on the support for such cases
5745offered by the debug info format used by the compiler, @value{GDBN}
5746might not be able to display values for such local variables. If that
5747happens, @value{GDBN} will print a message like this:
5748
474c8240 5749@smallexample
d4f3574e 5750No symbol "foo" in current context.
474c8240 5751@end smallexample
d4f3574e
SS
5752
5753To solve such problems, either recompile without optimizations, or use a
5754different debug info format, if the compiler supports several such
15387254 5755formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5756usually supports the @option{-gstabs+} option. @option{-gstabs+}
5757produces debug info in a format that is superior to formats such as
5758COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5759an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5760for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5761Compiler Collection (GCC)}.
79a6e687 5762@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5763that are best suited to C@t{++} programs.
d4f3574e 5764
ab1adacd
EZ
5765If you ask to print an object whose contents are unknown to
5766@value{GDBN}, e.g., because its data type is not completely specified
5767by the debug information, @value{GDBN} will say @samp{<incomplete
5768type>}. @xref{Symbols, incomplete type}, for more about this.
5769
3a60f64e
JK
5770Strings are identified as arrays of @code{char} values without specified
5771signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5772printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5773@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5774defines literal string type @code{"char"} as @code{char} without a sign.
5775For program code
5776
5777@smallexample
5778char var0[] = "A";
5779signed char var1[] = "A";
5780@end smallexample
5781
5782You get during debugging
5783@smallexample
5784(gdb) print var0
5785$1 = "A"
5786(gdb) print var1
5787$2 = @{65 'A', 0 '\0'@}
5788@end smallexample
5789
6d2ebf8b 5790@node Arrays
79a6e687 5791@section Artificial Arrays
c906108c
SS
5792
5793@cindex artificial array
15387254 5794@cindex arrays
41afff9a 5795@kindex @@@r{, referencing memory as an array}
c906108c
SS
5796It is often useful to print out several successive objects of the
5797same type in memory; a section of an array, or an array of
5798dynamically determined size for which only a pointer exists in the
5799program.
5800
5801You can do this by referring to a contiguous span of memory as an
5802@dfn{artificial array}, using the binary operator @samp{@@}. The left
5803operand of @samp{@@} should be the first element of the desired array
5804and be an individual object. The right operand should be the desired length
5805of the array. The result is an array value whose elements are all of
5806the type of the left argument. The first element is actually the left
5807argument; the second element comes from bytes of memory immediately
5808following those that hold the first element, and so on. Here is an
5809example. If a program says
5810
474c8240 5811@smallexample
c906108c 5812int *array = (int *) malloc (len * sizeof (int));
474c8240 5813@end smallexample
c906108c
SS
5814
5815@noindent
5816you can print the contents of @code{array} with
5817
474c8240 5818@smallexample
c906108c 5819p *array@@len
474c8240 5820@end smallexample
c906108c
SS
5821
5822The left operand of @samp{@@} must reside in memory. Array values made
5823with @samp{@@} in this way behave just like other arrays in terms of
5824subscripting, and are coerced to pointers when used in expressions.
5825Artificial arrays most often appear in expressions via the value history
79a6e687 5826(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5827
5828Another way to create an artificial array is to use a cast.
5829This re-interprets a value as if it were an array.
5830The value need not be in memory:
474c8240 5831@smallexample
c906108c
SS
5832(@value{GDBP}) p/x (short[2])0x12345678
5833$1 = @{0x1234, 0x5678@}
474c8240 5834@end smallexample
c906108c
SS
5835
5836As a convenience, if you leave the array length out (as in
c3f6f71d 5837@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5838the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5839@smallexample
c906108c
SS
5840(@value{GDBP}) p/x (short[])0x12345678
5841$2 = @{0x1234, 0x5678@}
474c8240 5842@end smallexample
c906108c
SS
5843
5844Sometimes the artificial array mechanism is not quite enough; in
5845moderately complex data structures, the elements of interest may not
5846actually be adjacent---for example, if you are interested in the values
5847of pointers in an array. One useful work-around in this situation is
5848to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5849Variables}) as a counter in an expression that prints the first
c906108c
SS
5850interesting value, and then repeat that expression via @key{RET}. For
5851instance, suppose you have an array @code{dtab} of pointers to
5852structures, and you are interested in the values of a field @code{fv}
5853in each structure. Here is an example of what you might type:
5854
474c8240 5855@smallexample
c906108c
SS
5856set $i = 0
5857p dtab[$i++]->fv
5858@key{RET}
5859@key{RET}
5860@dots{}
474c8240 5861@end smallexample
c906108c 5862
6d2ebf8b 5863@node Output Formats
79a6e687 5864@section Output Formats
c906108c
SS
5865
5866@cindex formatted output
5867@cindex output formats
5868By default, @value{GDBN} prints a value according to its data type. Sometimes
5869this is not what you want. For example, you might want to print a number
5870in hex, or a pointer in decimal. Or you might want to view data in memory
5871at a certain address as a character string or as an instruction. To do
5872these things, specify an @dfn{output format} when you print a value.
5873
5874The simplest use of output formats is to say how to print a value
5875already computed. This is done by starting the arguments of the
5876@code{print} command with a slash and a format letter. The format
5877letters supported are:
5878
5879@table @code
5880@item x
5881Regard the bits of the value as an integer, and print the integer in
5882hexadecimal.
5883
5884@item d
5885Print as integer in signed decimal.
5886
5887@item u
5888Print as integer in unsigned decimal.
5889
5890@item o
5891Print as integer in octal.
5892
5893@item t
5894Print as integer in binary. The letter @samp{t} stands for ``two''.
5895@footnote{@samp{b} cannot be used because these format letters are also
5896used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5897see @ref{Memory,,Examining Memory}.}
c906108c
SS
5898
5899@item a
5900@cindex unknown address, locating
3d67e040 5901@cindex locate address
c906108c
SS
5902Print as an address, both absolute in hexadecimal and as an offset from
5903the nearest preceding symbol. You can use this format used to discover
5904where (in what function) an unknown address is located:
5905
474c8240 5906@smallexample
c906108c
SS
5907(@value{GDBP}) p/a 0x54320
5908$3 = 0x54320 <_initialize_vx+396>
474c8240 5909@end smallexample
c906108c 5910
3d67e040
EZ
5911@noindent
5912The command @code{info symbol 0x54320} yields similar results.
5913@xref{Symbols, info symbol}.
5914
c906108c 5915@item c
51274035
EZ
5916Regard as an integer and print it as a character constant. This
5917prints both the numerical value and its character representation. The
5918character representation is replaced with the octal escape @samp{\nnn}
5919for characters outside the 7-bit @sc{ascii} range.
c906108c 5920
ea37ba09
DJ
5921Without this format, @value{GDBN} displays @code{char},
5922@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5923constants. Single-byte members of vectors are displayed as integer
5924data.
5925
c906108c
SS
5926@item f
5927Regard the bits of the value as a floating point number and print
5928using typical floating point syntax.
ea37ba09
DJ
5929
5930@item s
5931@cindex printing strings
5932@cindex printing byte arrays
5933Regard as a string, if possible. With this format, pointers to single-byte
5934data are displayed as null-terminated strings and arrays of single-byte data
5935are displayed as fixed-length strings. Other values are displayed in their
5936natural types.
5937
5938Without this format, @value{GDBN} displays pointers to and arrays of
5939@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5940strings. Single-byte members of a vector are displayed as an integer
5941array.
c906108c
SS
5942@end table
5943
5944For example, to print the program counter in hex (@pxref{Registers}), type
5945
474c8240 5946@smallexample
c906108c 5947p/x $pc
474c8240 5948@end smallexample
c906108c
SS
5949
5950@noindent
5951Note that no space is required before the slash; this is because command
5952names in @value{GDBN} cannot contain a slash.
5953
5954To reprint the last value in the value history with a different format,
5955you can use the @code{print} command with just a format and no
5956expression. For example, @samp{p/x} reprints the last value in hex.
5957
6d2ebf8b 5958@node Memory
79a6e687 5959@section Examining Memory
c906108c
SS
5960
5961You can use the command @code{x} (for ``examine'') to examine memory in
5962any of several formats, independently of your program's data types.
5963
5964@cindex examining memory
5965@table @code
41afff9a 5966@kindex x @r{(examine memory)}
c906108c
SS
5967@item x/@var{nfu} @var{addr}
5968@itemx x @var{addr}
5969@itemx x
5970Use the @code{x} command to examine memory.
5971@end table
5972
5973@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5974much memory to display and how to format it; @var{addr} is an
5975expression giving the address where you want to start displaying memory.
5976If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5977Several commands set convenient defaults for @var{addr}.
5978
5979@table @r
5980@item @var{n}, the repeat count
5981The repeat count is a decimal integer; the default is 1. It specifies
5982how much memory (counting by units @var{u}) to display.
5983@c This really is **decimal**; unaffected by 'set radix' as of GDB
5984@c 4.1.2.
5985
5986@item @var{f}, the display format
51274035
EZ
5987The display format is one of the formats used by @code{print}
5988(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5989@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5990The default is @samp{x} (hexadecimal) initially. The default changes
5991each time you use either @code{x} or @code{print}.
c906108c
SS
5992
5993@item @var{u}, the unit size
5994The unit size is any of
5995
5996@table @code
5997@item b
5998Bytes.
5999@item h
6000Halfwords (two bytes).
6001@item w
6002Words (four bytes). This is the initial default.
6003@item g
6004Giant words (eight bytes).
6005@end table
6006
6007Each time you specify a unit size with @code{x}, that size becomes the
6008default unit the next time you use @code{x}. (For the @samp{s} and
6009@samp{i} formats, the unit size is ignored and is normally not written.)
6010
6011@item @var{addr}, starting display address
6012@var{addr} is the address where you want @value{GDBN} to begin displaying
6013memory. The expression need not have a pointer value (though it may);
6014it is always interpreted as an integer address of a byte of memory.
6015@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6016@var{addr} is usually just after the last address examined---but several
6017other commands also set the default address: @code{info breakpoints} (to
6018the address of the last breakpoint listed), @code{info line} (to the
6019starting address of a line), and @code{print} (if you use it to display
6020a value from memory).
6021@end table
6022
6023For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6024(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6025starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6026words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6027@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6028
6029Since the letters indicating unit sizes are all distinct from the
6030letters specifying output formats, you do not have to remember whether
6031unit size or format comes first; either order works. The output
6032specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6033(However, the count @var{n} must come first; @samp{wx4} does not work.)
6034
6035Even though the unit size @var{u} is ignored for the formats @samp{s}
6036and @samp{i}, you might still want to use a count @var{n}; for example,
6037@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6038including any operands. For convenience, especially when used with
6039the @code{display} command, the @samp{i} format also prints branch delay
6040slot instructions, if any, beyond the count specified, which immediately
6041follow the last instruction that is within the count. The command
6042@code{disassemble} gives an alternative way of inspecting machine
6043instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6044
6045All the defaults for the arguments to @code{x} are designed to make it
6046easy to continue scanning memory with minimal specifications each time
6047you use @code{x}. For example, after you have inspected three machine
6048instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6049with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6050the repeat count @var{n} is used again; the other arguments default as
6051for successive uses of @code{x}.
6052
6053@cindex @code{$_}, @code{$__}, and value history
6054The addresses and contents printed by the @code{x} command are not saved
6055in the value history because there is often too much of them and they
6056would get in the way. Instead, @value{GDBN} makes these values available for
6057subsequent use in expressions as values of the convenience variables
6058@code{$_} and @code{$__}. After an @code{x} command, the last address
6059examined is available for use in expressions in the convenience variable
6060@code{$_}. The contents of that address, as examined, are available in
6061the convenience variable @code{$__}.
6062
6063If the @code{x} command has a repeat count, the address and contents saved
6064are from the last memory unit printed; this is not the same as the last
6065address printed if several units were printed on the last line of output.
6066
09d4efe1
EZ
6067@cindex remote memory comparison
6068@cindex verify remote memory image
6069When you are debugging a program running on a remote target machine
ea35711c 6070(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6071remote machine's memory against the executable file you downloaded to
6072the target. The @code{compare-sections} command is provided for such
6073situations.
6074
6075@table @code
6076@kindex compare-sections
6077@item compare-sections @r{[}@var{section-name}@r{]}
6078Compare the data of a loadable section @var{section-name} in the
6079executable file of the program being debugged with the same section in
6080the remote machine's memory, and report any mismatches. With no
6081arguments, compares all loadable sections. This command's
6082availability depends on the target's support for the @code{"qCRC"}
6083remote request.
6084@end table
6085
6d2ebf8b 6086@node Auto Display
79a6e687 6087@section Automatic Display
c906108c
SS
6088@cindex automatic display
6089@cindex display of expressions
6090
6091If you find that you want to print the value of an expression frequently
6092(to see how it changes), you might want to add it to the @dfn{automatic
6093display list} so that @value{GDBN} prints its value each time your program stops.
6094Each expression added to the list is given a number to identify it;
6095to remove an expression from the list, you specify that number.
6096The automatic display looks like this:
6097
474c8240 6098@smallexample
c906108c
SS
60992: foo = 38
61003: bar[5] = (struct hack *) 0x3804
474c8240 6101@end smallexample
c906108c
SS
6102
6103@noindent
6104This display shows item numbers, expressions and their current values. As with
6105displays you request manually using @code{x} or @code{print}, you can
6106specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6107whether to use @code{print} or @code{x} depending your format
6108specification---it uses @code{x} if you specify either the @samp{i}
6109or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6110
6111@table @code
6112@kindex display
d4f3574e
SS
6113@item display @var{expr}
6114Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6115each time your program stops. @xref{Expressions, ,Expressions}.
6116
6117@code{display} does not repeat if you press @key{RET} again after using it.
6118
d4f3574e 6119@item display/@var{fmt} @var{expr}
c906108c 6120For @var{fmt} specifying only a display format and not a size or
d4f3574e 6121count, add the expression @var{expr} to the auto-display list but
c906108c 6122arrange to display it each time in the specified format @var{fmt}.
79a6e687 6123@xref{Output Formats,,Output Formats}.
c906108c
SS
6124
6125@item display/@var{fmt} @var{addr}
6126For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6127number of units, add the expression @var{addr} as a memory address to
6128be examined each time your program stops. Examining means in effect
79a6e687 6129doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6130@end table
6131
6132For example, @samp{display/i $pc} can be helpful, to see the machine
6133instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6134is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6135
6136@table @code
6137@kindex delete display
6138@kindex undisplay
6139@item undisplay @var{dnums}@dots{}
6140@itemx delete display @var{dnums}@dots{}
6141Remove item numbers @var{dnums} from the list of expressions to display.
6142
6143@code{undisplay} does not repeat if you press @key{RET} after using it.
6144(Otherwise you would just get the error @samp{No display number @dots{}}.)
6145
6146@kindex disable display
6147@item disable display @var{dnums}@dots{}
6148Disable the display of item numbers @var{dnums}. A disabled display
6149item is not printed automatically, but is not forgotten. It may be
6150enabled again later.
6151
6152@kindex enable display
6153@item enable display @var{dnums}@dots{}
6154Enable display of item numbers @var{dnums}. It becomes effective once
6155again in auto display of its expression, until you specify otherwise.
6156
6157@item display
6158Display the current values of the expressions on the list, just as is
6159done when your program stops.
6160
6161@kindex info display
6162@item info display
6163Print the list of expressions previously set up to display
6164automatically, each one with its item number, but without showing the
6165values. This includes disabled expressions, which are marked as such.
6166It also includes expressions which would not be displayed right now
6167because they refer to automatic variables not currently available.
6168@end table
6169
15387254 6170@cindex display disabled out of scope
c906108c
SS
6171If a display expression refers to local variables, then it does not make
6172sense outside the lexical context for which it was set up. Such an
6173expression is disabled when execution enters a context where one of its
6174variables is not defined. For example, if you give the command
6175@code{display last_char} while inside a function with an argument
6176@code{last_char}, @value{GDBN} displays this argument while your program
6177continues to stop inside that function. When it stops elsewhere---where
6178there is no variable @code{last_char}---the display is disabled
6179automatically. The next time your program stops where @code{last_char}
6180is meaningful, you can enable the display expression once again.
6181
6d2ebf8b 6182@node Print Settings
79a6e687 6183@section Print Settings
c906108c
SS
6184
6185@cindex format options
6186@cindex print settings
6187@value{GDBN} provides the following ways to control how arrays, structures,
6188and symbols are printed.
6189
6190@noindent
6191These settings are useful for debugging programs in any language:
6192
6193@table @code
4644b6e3 6194@kindex set print
c906108c
SS
6195@item set print address
6196@itemx set print address on
4644b6e3 6197@cindex print/don't print memory addresses
c906108c
SS
6198@value{GDBN} prints memory addresses showing the location of stack
6199traces, structure values, pointer values, breakpoints, and so forth,
6200even when it also displays the contents of those addresses. The default
6201is @code{on}. For example, this is what a stack frame display looks like with
6202@code{set print address on}:
6203
6204@smallexample
6205@group
6206(@value{GDBP}) f
6207#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6208 at input.c:530
6209530 if (lquote != def_lquote)
6210@end group
6211@end smallexample
6212
6213@item set print address off
6214Do not print addresses when displaying their contents. For example,
6215this is the same stack frame displayed with @code{set print address off}:
6216
6217@smallexample
6218@group
6219(@value{GDBP}) set print addr off
6220(@value{GDBP}) f
6221#0 set_quotes (lq="<<", rq=">>") at input.c:530
6222530 if (lquote != def_lquote)
6223@end group
6224@end smallexample
6225
6226You can use @samp{set print address off} to eliminate all machine
6227dependent displays from the @value{GDBN} interface. For example, with
6228@code{print address off}, you should get the same text for backtraces on
6229all machines---whether or not they involve pointer arguments.
6230
4644b6e3 6231@kindex show print
c906108c
SS
6232@item show print address
6233Show whether or not addresses are to be printed.
6234@end table
6235
6236When @value{GDBN} prints a symbolic address, it normally prints the
6237closest earlier symbol plus an offset. If that symbol does not uniquely
6238identify the address (for example, it is a name whose scope is a single
6239source file), you may need to clarify. One way to do this is with
6240@code{info line}, for example @samp{info line *0x4537}. Alternately,
6241you can set @value{GDBN} to print the source file and line number when
6242it prints a symbolic address:
6243
6244@table @code
c906108c 6245@item set print symbol-filename on
9c16f35a
EZ
6246@cindex source file and line of a symbol
6247@cindex symbol, source file and line
c906108c
SS
6248Tell @value{GDBN} to print the source file name and line number of a
6249symbol in the symbolic form of an address.
6250
6251@item set print symbol-filename off
6252Do not print source file name and line number of a symbol. This is the
6253default.
6254
c906108c
SS
6255@item show print symbol-filename
6256Show whether or not @value{GDBN} will print the source file name and
6257line number of a symbol in the symbolic form of an address.
6258@end table
6259
6260Another situation where it is helpful to show symbol filenames and line
6261numbers is when disassembling code; @value{GDBN} shows you the line
6262number and source file that corresponds to each instruction.
6263
6264Also, you may wish to see the symbolic form only if the address being
6265printed is reasonably close to the closest earlier symbol:
6266
6267@table @code
c906108c 6268@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6269@cindex maximum value for offset of closest symbol
c906108c
SS
6270Tell @value{GDBN} to only display the symbolic form of an address if the
6271offset between the closest earlier symbol and the address is less than
5d161b24 6272@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6273to always print the symbolic form of an address if any symbol precedes it.
6274
c906108c
SS
6275@item show print max-symbolic-offset
6276Ask how large the maximum offset is that @value{GDBN} prints in a
6277symbolic address.
6278@end table
6279
6280@cindex wild pointer, interpreting
6281@cindex pointer, finding referent
6282If you have a pointer and you are not sure where it points, try
6283@samp{set print symbol-filename on}. Then you can determine the name
6284and source file location of the variable where it points, using
6285@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6286For example, here @value{GDBN} shows that a variable @code{ptt} points
6287at another variable @code{t}, defined in @file{hi2.c}:
6288
474c8240 6289@smallexample
c906108c
SS
6290(@value{GDBP}) set print symbol-filename on
6291(@value{GDBP}) p/a ptt
6292$4 = 0xe008 <t in hi2.c>
474c8240 6293@end smallexample
c906108c
SS
6294
6295@quotation
6296@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6297does not show the symbol name and filename of the referent, even with
6298the appropriate @code{set print} options turned on.
6299@end quotation
6300
6301Other settings control how different kinds of objects are printed:
6302
6303@table @code
c906108c
SS
6304@item set print array
6305@itemx set print array on
4644b6e3 6306@cindex pretty print arrays
c906108c
SS
6307Pretty print arrays. This format is more convenient to read,
6308but uses more space. The default is off.
6309
6310@item set print array off
6311Return to compressed format for arrays.
6312
c906108c
SS
6313@item show print array
6314Show whether compressed or pretty format is selected for displaying
6315arrays.
6316
3c9c013a
JB
6317@cindex print array indexes
6318@item set print array-indexes
6319@itemx set print array-indexes on
6320Print the index of each element when displaying arrays. May be more
6321convenient to locate a given element in the array or quickly find the
6322index of a given element in that printed array. The default is off.
6323
6324@item set print array-indexes off
6325Stop printing element indexes when displaying arrays.
6326
6327@item show print array-indexes
6328Show whether the index of each element is printed when displaying
6329arrays.
6330
c906108c 6331@item set print elements @var{number-of-elements}
4644b6e3 6332@cindex number of array elements to print
9c16f35a 6333@cindex limit on number of printed array elements
c906108c
SS
6334Set a limit on how many elements of an array @value{GDBN} will print.
6335If @value{GDBN} is printing a large array, it stops printing after it has
6336printed the number of elements set by the @code{set print elements} command.
6337This limit also applies to the display of strings.
d4f3574e 6338When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6339Setting @var{number-of-elements} to zero means that the printing is unlimited.
6340
c906108c
SS
6341@item show print elements
6342Display the number of elements of a large array that @value{GDBN} will print.
6343If the number is 0, then the printing is unlimited.
6344
b4740add
JB
6345@item set print frame-arguments @var{value}
6346@cindex printing frame argument values
6347@cindex print all frame argument values
6348@cindex print frame argument values for scalars only
6349@cindex do not print frame argument values
6350This command allows to control how the values of arguments are printed
6351when the debugger prints a frame (@pxref{Frames}). The possible
6352values are:
6353
6354@table @code
6355@item all
6356The values of all arguments are printed. This is the default.
6357
6358@item scalars
6359Print the value of an argument only if it is a scalar. The value of more
6360complex arguments such as arrays, structures, unions, etc, is replaced
6361by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6362
6363@smallexample
6364#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6365 at frame-args.c:23
6366@end smallexample
6367
6368@item none
6369None of the argument values are printed. Instead, the value of each argument
6370is replaced by @code{@dots{}}. In this case, the example above now becomes:
6371
6372@smallexample
6373#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6374 at frame-args.c:23
6375@end smallexample
6376@end table
6377
6378By default, all argument values are always printed. But this command
6379can be useful in several cases. For instance, it can be used to reduce
6380the amount of information printed in each frame, making the backtrace
6381more readable. Also, this command can be used to improve performance
6382when displaying Ada frames, because the computation of large arguments
6383can sometimes be CPU-intensive, especiallly in large applications.
6384Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6385avoids this computation, thus speeding up the display of each Ada frame.
6386
6387@item show print frame-arguments
6388Show how the value of arguments should be displayed when printing a frame.
6389
9c16f35a
EZ
6390@item set print repeats
6391@cindex repeated array elements
6392Set the threshold for suppressing display of repeated array
d3e8051b 6393elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6394array exceeds the threshold, @value{GDBN} prints the string
6395@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6396identical repetitions, instead of displaying the identical elements
6397themselves. Setting the threshold to zero will cause all elements to
6398be individually printed. The default threshold is 10.
6399
6400@item show print repeats
6401Display the current threshold for printing repeated identical
6402elements.
6403
c906108c 6404@item set print null-stop
4644b6e3 6405@cindex @sc{null} elements in arrays
c906108c 6406Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6407@sc{null} is encountered. This is useful when large arrays actually
c906108c 6408contain only short strings.
d4f3574e 6409The default is off.
c906108c 6410
9c16f35a
EZ
6411@item show print null-stop
6412Show whether @value{GDBN} stops printing an array on the first
6413@sc{null} character.
6414
c906108c 6415@item set print pretty on
9c16f35a
EZ
6416@cindex print structures in indented form
6417@cindex indentation in structure display
5d161b24 6418Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6419per line, like this:
6420
6421@smallexample
6422@group
6423$1 = @{
6424 next = 0x0,
6425 flags = @{
6426 sweet = 1,
6427 sour = 1
6428 @},
6429 meat = 0x54 "Pork"
6430@}
6431@end group
6432@end smallexample
6433
6434@item set print pretty off
6435Cause @value{GDBN} to print structures in a compact format, like this:
6436
6437@smallexample
6438@group
6439$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6440meat = 0x54 "Pork"@}
6441@end group
6442@end smallexample
6443
6444@noindent
6445This is the default format.
6446
c906108c
SS
6447@item show print pretty
6448Show which format @value{GDBN} is using to print structures.
6449
c906108c 6450@item set print sevenbit-strings on
4644b6e3
EZ
6451@cindex eight-bit characters in strings
6452@cindex octal escapes in strings
c906108c
SS
6453Print using only seven-bit characters; if this option is set,
6454@value{GDBN} displays any eight-bit characters (in strings or
6455character values) using the notation @code{\}@var{nnn}. This setting is
6456best if you are working in English (@sc{ascii}) and you use the
6457high-order bit of characters as a marker or ``meta'' bit.
6458
6459@item set print sevenbit-strings off
6460Print full eight-bit characters. This allows the use of more
6461international character sets, and is the default.
6462
c906108c
SS
6463@item show print sevenbit-strings
6464Show whether or not @value{GDBN} is printing only seven-bit characters.
6465
c906108c 6466@item set print union on
4644b6e3 6467@cindex unions in structures, printing
9c16f35a
EZ
6468Tell @value{GDBN} to print unions which are contained in structures
6469and other unions. This is the default setting.
c906108c
SS
6470
6471@item set print union off
9c16f35a
EZ
6472Tell @value{GDBN} not to print unions which are contained in
6473structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6474instead.
c906108c 6475
c906108c
SS
6476@item show print union
6477Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6478structures and other unions.
c906108c
SS
6479
6480For example, given the declarations
6481
6482@smallexample
6483typedef enum @{Tree, Bug@} Species;
6484typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6485typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6486 Bug_forms;
6487
6488struct thing @{
6489 Species it;
6490 union @{
6491 Tree_forms tree;
6492 Bug_forms bug;
6493 @} form;
6494@};
6495
6496struct thing foo = @{Tree, @{Acorn@}@};
6497@end smallexample
6498
6499@noindent
6500with @code{set print union on} in effect @samp{p foo} would print
6501
6502@smallexample
6503$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6504@end smallexample
6505
6506@noindent
6507and with @code{set print union off} in effect it would print
6508
6509@smallexample
6510$1 = @{it = Tree, form = @{...@}@}
6511@end smallexample
9c16f35a
EZ
6512
6513@noindent
6514@code{set print union} affects programs written in C-like languages
6515and in Pascal.
c906108c
SS
6516@end table
6517
c906108c
SS
6518@need 1000
6519@noindent
b37052ae 6520These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6521
6522@table @code
4644b6e3 6523@cindex demangling C@t{++} names
c906108c
SS
6524@item set print demangle
6525@itemx set print demangle on
b37052ae 6526Print C@t{++} names in their source form rather than in the encoded
c906108c 6527(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6528linkage. The default is on.
c906108c 6529
c906108c 6530@item show print demangle
b37052ae 6531Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6532
c906108c
SS
6533@item set print asm-demangle
6534@itemx set print asm-demangle on
b37052ae 6535Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6536in assembler code printouts such as instruction disassemblies.
6537The default is off.
6538
c906108c 6539@item show print asm-demangle
b37052ae 6540Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6541or demangled form.
6542
b37052ae
EZ
6543@cindex C@t{++} symbol decoding style
6544@cindex symbol decoding style, C@t{++}
a8f24a35 6545@kindex set demangle-style
c906108c
SS
6546@item set demangle-style @var{style}
6547Choose among several encoding schemes used by different compilers to
b37052ae 6548represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6549
6550@table @code
6551@item auto
6552Allow @value{GDBN} to choose a decoding style by inspecting your program.
6553
6554@item gnu
b37052ae 6555Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6556This is the default.
c906108c
SS
6557
6558@item hp
b37052ae 6559Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6560
6561@item lucid
b37052ae 6562Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6563
6564@item arm
b37052ae 6565Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6566@strong{Warning:} this setting alone is not sufficient to allow
6567debugging @code{cfront}-generated executables. @value{GDBN} would
6568require further enhancement to permit that.
6569
6570@end table
6571If you omit @var{style}, you will see a list of possible formats.
6572
c906108c 6573@item show demangle-style
b37052ae 6574Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6575
c906108c
SS
6576@item set print object
6577@itemx set print object on
4644b6e3 6578@cindex derived type of an object, printing
9c16f35a 6579@cindex display derived types
c906108c
SS
6580When displaying a pointer to an object, identify the @emph{actual}
6581(derived) type of the object rather than the @emph{declared} type, using
6582the virtual function table.
6583
6584@item set print object off
6585Display only the declared type of objects, without reference to the
6586virtual function table. This is the default setting.
6587
c906108c
SS
6588@item show print object
6589Show whether actual, or declared, object types are displayed.
6590
c906108c
SS
6591@item set print static-members
6592@itemx set print static-members on
4644b6e3 6593@cindex static members of C@t{++} objects
b37052ae 6594Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6595
6596@item set print static-members off
b37052ae 6597Do not print static members when displaying a C@t{++} object.
c906108c 6598
c906108c 6599@item show print static-members
9c16f35a
EZ
6600Show whether C@t{++} static members are printed or not.
6601
6602@item set print pascal_static-members
6603@itemx set print pascal_static-members on
d3e8051b
EZ
6604@cindex static members of Pascal objects
6605@cindex Pascal objects, static members display
9c16f35a
EZ
6606Print static members when displaying a Pascal object. The default is on.
6607
6608@item set print pascal_static-members off
6609Do not print static members when displaying a Pascal object.
6610
6611@item show print pascal_static-members
6612Show whether Pascal static members are printed or not.
c906108c
SS
6613
6614@c These don't work with HP ANSI C++ yet.
c906108c
SS
6615@item set print vtbl
6616@itemx set print vtbl on
4644b6e3 6617@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6618@cindex virtual functions (C@t{++}) display
6619@cindex VTBL display
b37052ae 6620Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6621(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6622ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6623
6624@item set print vtbl off
b37052ae 6625Do not pretty print C@t{++} virtual function tables.
c906108c 6626
c906108c 6627@item show print vtbl
b37052ae 6628Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6629@end table
c906108c 6630
6d2ebf8b 6631@node Value History
79a6e687 6632@section Value History
c906108c
SS
6633
6634@cindex value history
9c16f35a 6635@cindex history of values printed by @value{GDBN}
5d161b24
DB
6636Values printed by the @code{print} command are saved in the @value{GDBN}
6637@dfn{value history}. This allows you to refer to them in other expressions.
6638Values are kept until the symbol table is re-read or discarded
6639(for example with the @code{file} or @code{symbol-file} commands).
6640When the symbol table changes, the value history is discarded,
6641since the values may contain pointers back to the types defined in the
c906108c
SS
6642symbol table.
6643
6644@cindex @code{$}
6645@cindex @code{$$}
6646@cindex history number
6647The values printed are given @dfn{history numbers} by which you can
6648refer to them. These are successive integers starting with one.
6649@code{print} shows you the history number assigned to a value by
6650printing @samp{$@var{num} = } before the value; here @var{num} is the
6651history number.
6652
6653To refer to any previous value, use @samp{$} followed by the value's
6654history number. The way @code{print} labels its output is designed to
6655remind you of this. Just @code{$} refers to the most recent value in
6656the history, and @code{$$} refers to the value before that.
6657@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6658is the value just prior to @code{$$}, @code{$$1} is equivalent to
6659@code{$$}, and @code{$$0} is equivalent to @code{$}.
6660
6661For example, suppose you have just printed a pointer to a structure and
6662want to see the contents of the structure. It suffices to type
6663
474c8240 6664@smallexample
c906108c 6665p *$
474c8240 6666@end smallexample
c906108c
SS
6667
6668If you have a chain of structures where the component @code{next} points
6669to the next one, you can print the contents of the next one with this:
6670
474c8240 6671@smallexample
c906108c 6672p *$.next
474c8240 6673@end smallexample
c906108c
SS
6674
6675@noindent
6676You can print successive links in the chain by repeating this
6677command---which you can do by just typing @key{RET}.
6678
6679Note that the history records values, not expressions. If the value of
6680@code{x} is 4 and you type these commands:
6681
474c8240 6682@smallexample
c906108c
SS
6683print x
6684set x=5
474c8240 6685@end smallexample
c906108c
SS
6686
6687@noindent
6688then the value recorded in the value history by the @code{print} command
6689remains 4 even though the value of @code{x} has changed.
6690
6691@table @code
6692@kindex show values
6693@item show values
6694Print the last ten values in the value history, with their item numbers.
6695This is like @samp{p@ $$9} repeated ten times, except that @code{show
6696values} does not change the history.
6697
6698@item show values @var{n}
6699Print ten history values centered on history item number @var{n}.
6700
6701@item show values +
6702Print ten history values just after the values last printed. If no more
6703values are available, @code{show values +} produces no display.
6704@end table
6705
6706Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6707same effect as @samp{show values +}.
6708
6d2ebf8b 6709@node Convenience Vars
79a6e687 6710@section Convenience Variables
c906108c
SS
6711
6712@cindex convenience variables
9c16f35a 6713@cindex user-defined variables
c906108c
SS
6714@value{GDBN} provides @dfn{convenience variables} that you can use within
6715@value{GDBN} to hold on to a value and refer to it later. These variables
6716exist entirely within @value{GDBN}; they are not part of your program, and
6717setting a convenience variable has no direct effect on further execution
6718of your program. That is why you can use them freely.
6719
6720Convenience variables are prefixed with @samp{$}. Any name preceded by
6721@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6722the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6723(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6724by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6725
6726You can save a value in a convenience variable with an assignment
6727expression, just as you would set a variable in your program.
6728For example:
6729
474c8240 6730@smallexample
c906108c 6731set $foo = *object_ptr
474c8240 6732@end smallexample
c906108c
SS
6733
6734@noindent
6735would save in @code{$foo} the value contained in the object pointed to by
6736@code{object_ptr}.
6737
6738Using a convenience variable for the first time creates it, but its
6739value is @code{void} until you assign a new value. You can alter the
6740value with another assignment at any time.
6741
6742Convenience variables have no fixed types. You can assign a convenience
6743variable any type of value, including structures and arrays, even if
6744that variable already has a value of a different type. The convenience
6745variable, when used as an expression, has the type of its current value.
6746
6747@table @code
6748@kindex show convenience
9c16f35a 6749@cindex show all user variables
c906108c
SS
6750@item show convenience
6751Print a list of convenience variables used so far, and their values.
d4f3574e 6752Abbreviated @code{show conv}.
53e5f3cf
AS
6753
6754@kindex init-if-undefined
6755@cindex convenience variables, initializing
6756@item init-if-undefined $@var{variable} = @var{expression}
6757Set a convenience variable if it has not already been set. This is useful
6758for user-defined commands that keep some state. It is similar, in concept,
6759to using local static variables with initializers in C (except that
6760convenience variables are global). It can also be used to allow users to
6761override default values used in a command script.
6762
6763If the variable is already defined then the expression is not evaluated so
6764any side-effects do not occur.
c906108c
SS
6765@end table
6766
6767One of the ways to use a convenience variable is as a counter to be
6768incremented or a pointer to be advanced. For example, to print
6769a field from successive elements of an array of structures:
6770
474c8240 6771@smallexample
c906108c
SS
6772set $i = 0
6773print bar[$i++]->contents
474c8240 6774@end smallexample
c906108c 6775
d4f3574e
SS
6776@noindent
6777Repeat that command by typing @key{RET}.
c906108c
SS
6778
6779Some convenience variables are created automatically by @value{GDBN} and given
6780values likely to be useful.
6781
6782@table @code
41afff9a 6783@vindex $_@r{, convenience variable}
c906108c
SS
6784@item $_
6785The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6786the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6787commands which provide a default address for @code{x} to examine also
6788set @code{$_} to that address; these commands include @code{info line}
6789and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6790except when set by the @code{x} command, in which case it is a pointer
6791to the type of @code{$__}.
6792
41afff9a 6793@vindex $__@r{, convenience variable}
c906108c
SS
6794@item $__
6795The variable @code{$__} is automatically set by the @code{x} command
6796to the value found in the last address examined. Its type is chosen
6797to match the format in which the data was printed.
6798
6799@item $_exitcode
41afff9a 6800@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6801The variable @code{$_exitcode} is automatically set to the exit code when
6802the program being debugged terminates.
6803@end table
6804
53a5351d
JM
6805On HP-UX systems, if you refer to a function or variable name that
6806begins with a dollar sign, @value{GDBN} searches for a user or system
6807name first, before it searches for a convenience variable.
c906108c 6808
6d2ebf8b 6809@node Registers
c906108c
SS
6810@section Registers
6811
6812@cindex registers
6813You can refer to machine register contents, in expressions, as variables
6814with names starting with @samp{$}. The names of registers are different
6815for each machine; use @code{info registers} to see the names used on
6816your machine.
6817
6818@table @code
6819@kindex info registers
6820@item info registers
6821Print the names and values of all registers except floating-point
c85508ee 6822and vector registers (in the selected stack frame).
c906108c
SS
6823
6824@kindex info all-registers
6825@cindex floating point registers
6826@item info all-registers
6827Print the names and values of all registers, including floating-point
c85508ee 6828and vector registers (in the selected stack frame).
c906108c
SS
6829
6830@item info registers @var{regname} @dots{}
6831Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6832As discussed in detail below, register values are normally relative to
6833the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6834the machine you are using, with or without the initial @samp{$}.
6835@end table
6836
e09f16f9
EZ
6837@cindex stack pointer register
6838@cindex program counter register
6839@cindex process status register
6840@cindex frame pointer register
6841@cindex standard registers
c906108c
SS
6842@value{GDBN} has four ``standard'' register names that are available (in
6843expressions) on most machines---whenever they do not conflict with an
6844architecture's canonical mnemonics for registers. The register names
6845@code{$pc} and @code{$sp} are used for the program counter register and
6846the stack pointer. @code{$fp} is used for a register that contains a
6847pointer to the current stack frame, and @code{$ps} is used for a
6848register that contains the processor status. For example,
6849you could print the program counter in hex with
6850
474c8240 6851@smallexample
c906108c 6852p/x $pc
474c8240 6853@end smallexample
c906108c
SS
6854
6855@noindent
6856or print the instruction to be executed next with
6857
474c8240 6858@smallexample
c906108c 6859x/i $pc
474c8240 6860@end smallexample
c906108c
SS
6861
6862@noindent
6863or add four to the stack pointer@footnote{This is a way of removing
6864one word from the stack, on machines where stacks grow downward in
6865memory (most machines, nowadays). This assumes that the innermost
6866stack frame is selected; setting @code{$sp} is not allowed when other
6867stack frames are selected. To pop entire frames off the stack,
6868regardless of machine architecture, use @code{return};
79a6e687 6869see @ref{Returning, ,Returning from a Function}.} with
c906108c 6870
474c8240 6871@smallexample
c906108c 6872set $sp += 4
474c8240 6873@end smallexample
c906108c
SS
6874
6875Whenever possible, these four standard register names are available on
6876your machine even though the machine has different canonical mnemonics,
6877so long as there is no conflict. The @code{info registers} command
6878shows the canonical names. For example, on the SPARC, @code{info
6879registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6880can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6881is an alias for the @sc{eflags} register.
c906108c
SS
6882
6883@value{GDBN} always considers the contents of an ordinary register as an
6884integer when the register is examined in this way. Some machines have
6885special registers which can hold nothing but floating point; these
6886registers are considered to have floating point values. There is no way
6887to refer to the contents of an ordinary register as floating point value
6888(although you can @emph{print} it as a floating point value with
6889@samp{print/f $@var{regname}}).
6890
6891Some registers have distinct ``raw'' and ``virtual'' data formats. This
6892means that the data format in which the register contents are saved by
6893the operating system is not the same one that your program normally
6894sees. For example, the registers of the 68881 floating point
6895coprocessor are always saved in ``extended'' (raw) format, but all C
6896programs expect to work with ``double'' (virtual) format. In such
5d161b24 6897cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6898that makes sense for your program), but the @code{info registers} command
6899prints the data in both formats.
6900
36b80e65
EZ
6901@cindex SSE registers (x86)
6902@cindex MMX registers (x86)
6903Some machines have special registers whose contents can be interpreted
6904in several different ways. For example, modern x86-based machines
6905have SSE and MMX registers that can hold several values packed
6906together in several different formats. @value{GDBN} refers to such
6907registers in @code{struct} notation:
6908
6909@smallexample
6910(@value{GDBP}) print $xmm1
6911$1 = @{
6912 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6913 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6914 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6915 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6916 v4_int32 = @{0, 20657912, 11, 13@},
6917 v2_int64 = @{88725056443645952, 55834574859@},
6918 uint128 = 0x0000000d0000000b013b36f800000000
6919@}
6920@end smallexample
6921
6922@noindent
6923To set values of such registers, you need to tell @value{GDBN} which
6924view of the register you wish to change, as if you were assigning
6925value to a @code{struct} member:
6926
6927@smallexample
6928 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6929@end smallexample
6930
c906108c 6931Normally, register values are relative to the selected stack frame
79a6e687 6932(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6933value that the register would contain if all stack frames farther in
6934were exited and their saved registers restored. In order to see the
6935true contents of hardware registers, you must select the innermost
6936frame (with @samp{frame 0}).
6937
6938However, @value{GDBN} must deduce where registers are saved, from the machine
6939code generated by your compiler. If some registers are not saved, or if
6940@value{GDBN} is unable to locate the saved registers, the selected stack
6941frame makes no difference.
6942
6d2ebf8b 6943@node Floating Point Hardware
79a6e687 6944@section Floating Point Hardware
c906108c
SS
6945@cindex floating point
6946
6947Depending on the configuration, @value{GDBN} may be able to give
6948you more information about the status of the floating point hardware.
6949
6950@table @code
6951@kindex info float
6952@item info float
6953Display hardware-dependent information about the floating
6954point unit. The exact contents and layout vary depending on the
6955floating point chip. Currently, @samp{info float} is supported on
6956the ARM and x86 machines.
6957@end table
c906108c 6958
e76f1f2e
AC
6959@node Vector Unit
6960@section Vector Unit
6961@cindex vector unit
6962
6963Depending on the configuration, @value{GDBN} may be able to give you
6964more information about the status of the vector unit.
6965
6966@table @code
6967@kindex info vector
6968@item info vector
6969Display information about the vector unit. The exact contents and
6970layout vary depending on the hardware.
6971@end table
6972
721c2651 6973@node OS Information
79a6e687 6974@section Operating System Auxiliary Information
721c2651
EZ
6975@cindex OS information
6976
6977@value{GDBN} provides interfaces to useful OS facilities that can help
6978you debug your program.
6979
6980@cindex @code{ptrace} system call
6981@cindex @code{struct user} contents
6982When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6983machines), it interfaces with the inferior via the @code{ptrace}
6984system call. The operating system creates a special sata structure,
6985called @code{struct user}, for this interface. You can use the
6986command @code{info udot} to display the contents of this data
6987structure.
6988
6989@table @code
6990@item info udot
6991@kindex info udot
6992Display the contents of the @code{struct user} maintained by the OS
6993kernel for the program being debugged. @value{GDBN} displays the
6994contents of @code{struct user} as a list of hex numbers, similar to
6995the @code{examine} command.
6996@end table
6997
b383017d
RM
6998@cindex auxiliary vector
6999@cindex vector, auxiliary
b383017d
RM
7000Some operating systems supply an @dfn{auxiliary vector} to programs at
7001startup. This is akin to the arguments and environment that you
7002specify for a program, but contains a system-dependent variety of
7003binary values that tell system libraries important details about the
7004hardware, operating system, and process. Each value's purpose is
7005identified by an integer tag; the meanings are well-known but system-specific.
7006Depending on the configuration and operating system facilities,
9c16f35a
EZ
7007@value{GDBN} may be able to show you this information. For remote
7008targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7009support of the @samp{qXfer:auxv:read} packet, see
7010@ref{qXfer auxiliary vector read}.
b383017d
RM
7011
7012@table @code
7013@kindex info auxv
7014@item info auxv
7015Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7016live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7017numerically, and also shows names and text descriptions for recognized
7018tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7019pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7020most appropriate form for a recognized tag, and in hexadecimal for
7021an unrecognized tag.
7022@end table
7023
721c2651 7024
29e57380 7025@node Memory Region Attributes
79a6e687 7026@section Memory Region Attributes
29e57380
C
7027@cindex memory region attributes
7028
b383017d 7029@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7030required by regions of your target's memory. @value{GDBN} uses
7031attributes to determine whether to allow certain types of memory
7032accesses; whether to use specific width accesses; and whether to cache
7033target memory. By default the description of memory regions is
7034fetched from the target (if the current target supports this), but the
7035user can override the fetched regions.
29e57380
C
7036
7037Defined memory regions can be individually enabled and disabled. When a
7038memory region is disabled, @value{GDBN} uses the default attributes when
7039accessing memory in that region. Similarly, if no memory regions have
7040been defined, @value{GDBN} uses the default attributes when accessing
7041all memory.
7042
b383017d 7043When a memory region is defined, it is given a number to identify it;
29e57380
C
7044to enable, disable, or remove a memory region, you specify that number.
7045
7046@table @code
7047@kindex mem
bfac230e 7048@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7049Define a memory region bounded by @var{lower} and @var{upper} with
7050attributes @var{attributes}@dots{}, and add it to the list of regions
7051monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7052case: it is treated as the target's maximum memory address.
bfac230e 7053(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7054
fd79ecee
DJ
7055@item mem auto
7056Discard any user changes to the memory regions and use target-supplied
7057regions, if available, or no regions if the target does not support.
7058
29e57380
C
7059@kindex delete mem
7060@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7061Remove memory regions @var{nums}@dots{} from the list of regions
7062monitored by @value{GDBN}.
29e57380
C
7063
7064@kindex disable mem
7065@item disable mem @var{nums}@dots{}
09d4efe1 7066Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7067A disabled memory region is not forgotten.
29e57380
C
7068It may be enabled again later.
7069
7070@kindex enable mem
7071@item enable mem @var{nums}@dots{}
09d4efe1 7072Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7073
7074@kindex info mem
7075@item info mem
7076Print a table of all defined memory regions, with the following columns
09d4efe1 7077for each region:
29e57380
C
7078
7079@table @emph
7080@item Memory Region Number
7081@item Enabled or Disabled.
b383017d 7082Enabled memory regions are marked with @samp{y}.
29e57380
C
7083Disabled memory regions are marked with @samp{n}.
7084
7085@item Lo Address
7086The address defining the inclusive lower bound of the memory region.
7087
7088@item Hi Address
7089The address defining the exclusive upper bound of the memory region.
7090
7091@item Attributes
7092The list of attributes set for this memory region.
7093@end table
7094@end table
7095
7096
7097@subsection Attributes
7098
b383017d 7099@subsubsection Memory Access Mode
29e57380
C
7100The access mode attributes set whether @value{GDBN} may make read or
7101write accesses to a memory region.
7102
7103While these attributes prevent @value{GDBN} from performing invalid
7104memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7105etc.@: from accessing memory.
29e57380
C
7106
7107@table @code
7108@item ro
7109Memory is read only.
7110@item wo
7111Memory is write only.
7112@item rw
6ca652b0 7113Memory is read/write. This is the default.
29e57380
C
7114@end table
7115
7116@subsubsection Memory Access Size
d3e8051b 7117The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7118accesses in the memory region. Often memory mapped device registers
7119require specific sized accesses. If no access size attribute is
7120specified, @value{GDBN} may use accesses of any size.
7121
7122@table @code
7123@item 8
7124Use 8 bit memory accesses.
7125@item 16
7126Use 16 bit memory accesses.
7127@item 32
7128Use 32 bit memory accesses.
7129@item 64
7130Use 64 bit memory accesses.
7131@end table
7132
7133@c @subsubsection Hardware/Software Breakpoints
7134@c The hardware/software breakpoint attributes set whether @value{GDBN}
7135@c will use hardware or software breakpoints for the internal breakpoints
7136@c used by the step, next, finish, until, etc. commands.
7137@c
7138@c @table @code
7139@c @item hwbreak
b383017d 7140@c Always use hardware breakpoints
29e57380
C
7141@c @item swbreak (default)
7142@c @end table
7143
7144@subsubsection Data Cache
7145The data cache attributes set whether @value{GDBN} will cache target
7146memory. While this generally improves performance by reducing debug
7147protocol overhead, it can lead to incorrect results because @value{GDBN}
7148does not know about volatile variables or memory mapped device
7149registers.
7150
7151@table @code
7152@item cache
b383017d 7153Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7154@item nocache
7155Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7156@end table
7157
4b5752d0
VP
7158@subsection Memory Access Checking
7159@value{GDBN} can be instructed to refuse accesses to memory that is
7160not explicitly described. This can be useful if accessing such
7161regions has undesired effects for a specific target, or to provide
7162better error checking. The following commands control this behaviour.
7163
7164@table @code
7165@kindex set mem inaccessible-by-default
7166@item set mem inaccessible-by-default [on|off]
7167If @code{on} is specified, make @value{GDBN} treat memory not
7168explicitly described by the memory ranges as non-existent and refuse accesses
7169to such memory. The checks are only performed if there's at least one
7170memory range defined. If @code{off} is specified, make @value{GDBN}
7171treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7172The default value is @code{on}.
4b5752d0
VP
7173@kindex show mem inaccessible-by-default
7174@item show mem inaccessible-by-default
7175Show the current handling of accesses to unknown memory.
7176@end table
7177
7178
29e57380 7179@c @subsubsection Memory Write Verification
b383017d 7180@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7181@c will re-reads data after each write to verify the write was successful.
7182@c
7183@c @table @code
7184@c @item verify
7185@c @item noverify (default)
7186@c @end table
7187
16d9dec6 7188@node Dump/Restore Files
79a6e687 7189@section Copy Between Memory and a File
16d9dec6
MS
7190@cindex dump/restore files
7191@cindex append data to a file
7192@cindex dump data to a file
7193@cindex restore data from a file
16d9dec6 7194
df5215a6
JB
7195You can use the commands @code{dump}, @code{append}, and
7196@code{restore} to copy data between target memory and a file. The
7197@code{dump} and @code{append} commands write data to a file, and the
7198@code{restore} command reads data from a file back into the inferior's
7199memory. Files may be in binary, Motorola S-record, Intel hex, or
7200Tektronix Hex format; however, @value{GDBN} can only append to binary
7201files.
7202
7203@table @code
7204
7205@kindex dump
7206@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7207@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7208Dump the contents of memory from @var{start_addr} to @var{end_addr},
7209or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7210
df5215a6 7211The @var{format} parameter may be any one of:
16d9dec6 7212@table @code
df5215a6
JB
7213@item binary
7214Raw binary form.
7215@item ihex
7216Intel hex format.
7217@item srec
7218Motorola S-record format.
7219@item tekhex
7220Tektronix Hex format.
7221@end table
7222
7223@value{GDBN} uses the same definitions of these formats as the
7224@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7225@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7226form.
7227
7228@kindex append
7229@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7230@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7231Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7232or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7233(@value{GDBN} can only append data to files in raw binary form.)
7234
7235@kindex restore
7236@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7237Restore the contents of file @var{filename} into memory. The
7238@code{restore} command can automatically recognize any known @sc{bfd}
7239file format, except for raw binary. To restore a raw binary file you
7240must specify the optional keyword @code{binary} after the filename.
16d9dec6 7241
b383017d 7242If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7243contained in the file. Binary files always start at address zero, so
7244they will be restored at address @var{bias}. Other bfd files have
7245a built-in location; they will be restored at offset @var{bias}
7246from that location.
7247
7248If @var{start} and/or @var{end} are non-zero, then only data between
7249file offset @var{start} and file offset @var{end} will be restored.
b383017d 7250These offsets are relative to the addresses in the file, before
16d9dec6
MS
7251the @var{bias} argument is applied.
7252
7253@end table
7254
384ee23f
EZ
7255@node Core File Generation
7256@section How to Produce a Core File from Your Program
7257@cindex dump core from inferior
7258
7259A @dfn{core file} or @dfn{core dump} is a file that records the memory
7260image of a running process and its process status (register values
7261etc.). Its primary use is post-mortem debugging of a program that
7262crashed while it ran outside a debugger. A program that crashes
7263automatically produces a core file, unless this feature is disabled by
7264the user. @xref{Files}, for information on invoking @value{GDBN} in
7265the post-mortem debugging mode.
7266
7267Occasionally, you may wish to produce a core file of the program you
7268are debugging in order to preserve a snapshot of its state.
7269@value{GDBN} has a special command for that.
7270
7271@table @code
7272@kindex gcore
7273@kindex generate-core-file
7274@item generate-core-file [@var{file}]
7275@itemx gcore [@var{file}]
7276Produce a core dump of the inferior process. The optional argument
7277@var{file} specifies the file name where to put the core dump. If not
7278specified, the file name defaults to @file{core.@var{pid}}, where
7279@var{pid} is the inferior process ID.
7280
7281Note that this command is implemented only for some systems (as of
7282this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7283@end table
7284
a0eb71c5
KB
7285@node Character Sets
7286@section Character Sets
7287@cindex character sets
7288@cindex charset
7289@cindex translating between character sets
7290@cindex host character set
7291@cindex target character set
7292
7293If the program you are debugging uses a different character set to
7294represent characters and strings than the one @value{GDBN} uses itself,
7295@value{GDBN} can automatically translate between the character sets for
7296you. The character set @value{GDBN} uses we call the @dfn{host
7297character set}; the one the inferior program uses we call the
7298@dfn{target character set}.
7299
7300For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7301uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7302remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7303running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7304then the host character set is Latin-1, and the target character set is
7305@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7306target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7307@sc{ebcdic} and Latin 1 as you print character or string values, or use
7308character and string literals in expressions.
7309
7310@value{GDBN} has no way to automatically recognize which character set
7311the inferior program uses; you must tell it, using the @code{set
7312target-charset} command, described below.
7313
7314Here are the commands for controlling @value{GDBN}'s character set
7315support:
7316
7317@table @code
7318@item set target-charset @var{charset}
7319@kindex set target-charset
7320Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7321character set names @value{GDBN} recognizes below, but if you type
7322@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7323list the target character sets it supports.
a0eb71c5
KB
7324@end table
7325
7326@table @code
7327@item set host-charset @var{charset}
7328@kindex set host-charset
7329Set the current host character set to @var{charset}.
7330
7331By default, @value{GDBN} uses a host character set appropriate to the
7332system it is running on; you can override that default using the
7333@code{set host-charset} command.
7334
7335@value{GDBN} can only use certain character sets as its host character
7336set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7337indicate which can be host character sets, but if you type
7338@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7339list the host character sets it supports.
a0eb71c5
KB
7340
7341@item set charset @var{charset}
7342@kindex set charset
e33d66ec
EZ
7343Set the current host and target character sets to @var{charset}. As
7344above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7345@value{GDBN} will list the name of the character sets that can be used
7346for both host and target.
7347
a0eb71c5
KB
7348
7349@item show charset
a0eb71c5 7350@kindex show charset
b383017d 7351Show the names of the current host and target charsets.
e33d66ec
EZ
7352
7353@itemx show host-charset
a0eb71c5 7354@kindex show host-charset
b383017d 7355Show the name of the current host charset.
e33d66ec
EZ
7356
7357@itemx show target-charset
a0eb71c5 7358@kindex show target-charset
b383017d 7359Show the name of the current target charset.
a0eb71c5
KB
7360
7361@end table
7362
7363@value{GDBN} currently includes support for the following character
7364sets:
7365
7366@table @code
7367
7368@item ASCII
7369@cindex ASCII character set
7370Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7371character set.
7372
7373@item ISO-8859-1
7374@cindex ISO 8859-1 character set
7375@cindex ISO Latin 1 character set
e33d66ec 7376The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7377characters needed for French, German, and Spanish. @value{GDBN} can use
7378this as its host character set.
7379
7380@item EBCDIC-US
7381@itemx IBM1047
7382@cindex EBCDIC character set
7383@cindex IBM1047 character set
7384Variants of the @sc{ebcdic} character set, used on some of IBM's
7385mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7386@value{GDBN} cannot use these as its host character set.
7387
7388@end table
7389
7390Note that these are all single-byte character sets. More work inside
3f94c067 7391@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7392encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7393
7394Here is an example of @value{GDBN}'s character set support in action.
7395Assume that the following source code has been placed in the file
7396@file{charset-test.c}:
7397
7398@smallexample
7399#include <stdio.h>
7400
7401char ascii_hello[]
7402 = @{72, 101, 108, 108, 111, 44, 32, 119,
7403 111, 114, 108, 100, 33, 10, 0@};
7404char ibm1047_hello[]
7405 = @{200, 133, 147, 147, 150, 107, 64, 166,
7406 150, 153, 147, 132, 90, 37, 0@};
7407
7408main ()
7409@{
7410 printf ("Hello, world!\n");
7411@}
10998722 7412@end smallexample
a0eb71c5
KB
7413
7414In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7415containing the string @samp{Hello, world!} followed by a newline,
7416encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7417
7418We compile the program, and invoke the debugger on it:
7419
7420@smallexample
7421$ gcc -g charset-test.c -o charset-test
7422$ gdb -nw charset-test
7423GNU gdb 2001-12-19-cvs
7424Copyright 2001 Free Software Foundation, Inc.
7425@dots{}
f7dc1244 7426(@value{GDBP})
10998722 7427@end smallexample
a0eb71c5
KB
7428
7429We can use the @code{show charset} command to see what character sets
7430@value{GDBN} is currently using to interpret and display characters and
7431strings:
7432
7433@smallexample
f7dc1244 7434(@value{GDBP}) show charset
e33d66ec 7435The current host and target character set is `ISO-8859-1'.
f7dc1244 7436(@value{GDBP})
10998722 7437@end smallexample
a0eb71c5
KB
7438
7439For the sake of printing this manual, let's use @sc{ascii} as our
7440initial character set:
7441@smallexample
f7dc1244
EZ
7442(@value{GDBP}) set charset ASCII
7443(@value{GDBP}) show charset
e33d66ec 7444The current host and target character set is `ASCII'.
f7dc1244 7445(@value{GDBP})
10998722 7446@end smallexample
a0eb71c5
KB
7447
7448Let's assume that @sc{ascii} is indeed the correct character set for our
7449host system --- in other words, let's assume that if @value{GDBN} prints
7450characters using the @sc{ascii} character set, our terminal will display
7451them properly. Since our current target character set is also
7452@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7453
7454@smallexample
f7dc1244 7455(@value{GDBP}) print ascii_hello
a0eb71c5 7456$1 = 0x401698 "Hello, world!\n"
f7dc1244 7457(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7458$2 = 72 'H'
f7dc1244 7459(@value{GDBP})
10998722 7460@end smallexample
a0eb71c5
KB
7461
7462@value{GDBN} uses the target character set for character and string
7463literals you use in expressions:
7464
7465@smallexample
f7dc1244 7466(@value{GDBP}) print '+'
a0eb71c5 7467$3 = 43 '+'
f7dc1244 7468(@value{GDBP})
10998722 7469@end smallexample
a0eb71c5
KB
7470
7471The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7472character.
7473
7474@value{GDBN} relies on the user to tell it which character set the
7475target program uses. If we print @code{ibm1047_hello} while our target
7476character set is still @sc{ascii}, we get jibberish:
7477
7478@smallexample
f7dc1244 7479(@value{GDBP}) print ibm1047_hello
a0eb71c5 7480$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7481(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7482$5 = 200 '\310'
f7dc1244 7483(@value{GDBP})
10998722 7484@end smallexample
a0eb71c5 7485
e33d66ec 7486If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7487@value{GDBN} tells us the character sets it supports:
7488
7489@smallexample
f7dc1244 7490(@value{GDBP}) set target-charset
b383017d 7491ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7492(@value{GDBP}) set target-charset
10998722 7493@end smallexample
a0eb71c5
KB
7494
7495We can select @sc{ibm1047} as our target character set, and examine the
7496program's strings again. Now the @sc{ascii} string is wrong, but
7497@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7498target character set, @sc{ibm1047}, to the host character set,
7499@sc{ascii}, and they display correctly:
7500
7501@smallexample
f7dc1244
EZ
7502(@value{GDBP}) set target-charset IBM1047
7503(@value{GDBP}) show charset
e33d66ec
EZ
7504The current host character set is `ASCII'.
7505The current target character set is `IBM1047'.
f7dc1244 7506(@value{GDBP}) print ascii_hello
a0eb71c5 7507$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7508(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7509$7 = 72 '\110'
f7dc1244 7510(@value{GDBP}) print ibm1047_hello
a0eb71c5 7511$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7512(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7513$9 = 200 'H'
f7dc1244 7514(@value{GDBP})
10998722 7515@end smallexample
a0eb71c5
KB
7516
7517As above, @value{GDBN} uses the target character set for character and
7518string literals you use in expressions:
7519
7520@smallexample
f7dc1244 7521(@value{GDBP}) print '+'
a0eb71c5 7522$10 = 78 '+'
f7dc1244 7523(@value{GDBP})
10998722 7524@end smallexample
a0eb71c5 7525
e33d66ec 7526The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7527character.
7528
09d4efe1
EZ
7529@node Caching Remote Data
7530@section Caching Data of Remote Targets
7531@cindex caching data of remote targets
7532
7533@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7534remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7535performance, because it reduces the overhead of the remote protocol by
7536bundling memory reads and writes into large chunks. Unfortunately,
7537@value{GDBN} does not currently know anything about volatile
7538registers, and thus data caching will produce incorrect results when
7539volatile registers are in use.
7540
7541@table @code
7542@kindex set remotecache
7543@item set remotecache on
7544@itemx set remotecache off
7545Set caching state for remote targets. When @code{ON}, use data
7546caching. By default, this option is @code{OFF}.
7547
7548@kindex show remotecache
7549@item show remotecache
7550Show the current state of data caching for remote targets.
7551
7552@kindex info dcache
7553@item info dcache
7554Print the information about the data cache performance. The
7555information displayed includes: the dcache width and depth; and for
7556each cache line, how many times it was referenced, and its data and
7557state (dirty, bad, ok, etc.). This command is useful for debugging
7558the data cache operation.
7559@end table
7560
a0eb71c5 7561
e2e0bcd1
JB
7562@node Macros
7563@chapter C Preprocessor Macros
7564
49efadf5 7565Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7566``preprocessor macros'' which expand into strings of tokens.
7567@value{GDBN} can evaluate expressions containing macro invocations, show
7568the result of macro expansion, and show a macro's definition, including
7569where it was defined.
7570
7571You may need to compile your program specially to provide @value{GDBN}
7572with information about preprocessor macros. Most compilers do not
7573include macros in their debugging information, even when you compile
7574with the @option{-g} flag. @xref{Compilation}.
7575
7576A program may define a macro at one point, remove that definition later,
7577and then provide a different definition after that. Thus, at different
7578points in the program, a macro may have different definitions, or have
7579no definition at all. If there is a current stack frame, @value{GDBN}
7580uses the macros in scope at that frame's source code line. Otherwise,
7581@value{GDBN} uses the macros in scope at the current listing location;
7582see @ref{List}.
7583
7584At the moment, @value{GDBN} does not support the @code{##}
7585token-splicing operator, the @code{#} stringification operator, or
7586variable-arity macros.
7587
7588Whenever @value{GDBN} evaluates an expression, it always expands any
7589macro invocations present in the expression. @value{GDBN} also provides
7590the following commands for working with macros explicitly.
7591
7592@table @code
7593
7594@kindex macro expand
7595@cindex macro expansion, showing the results of preprocessor
7596@cindex preprocessor macro expansion, showing the results of
7597@cindex expanding preprocessor macros
7598@item macro expand @var{expression}
7599@itemx macro exp @var{expression}
7600Show the results of expanding all preprocessor macro invocations in
7601@var{expression}. Since @value{GDBN} simply expands macros, but does
7602not parse the result, @var{expression} need not be a valid expression;
7603it can be any string of tokens.
7604
09d4efe1 7605@kindex macro exp1
e2e0bcd1
JB
7606@item macro expand-once @var{expression}
7607@itemx macro exp1 @var{expression}
4644b6e3 7608@cindex expand macro once
e2e0bcd1
JB
7609@i{(This command is not yet implemented.)} Show the results of
7610expanding those preprocessor macro invocations that appear explicitly in
7611@var{expression}. Macro invocations appearing in that expansion are
7612left unchanged. This command allows you to see the effect of a
7613particular macro more clearly, without being confused by further
7614expansions. Since @value{GDBN} simply expands macros, but does not
7615parse the result, @var{expression} need not be a valid expression; it
7616can be any string of tokens.
7617
475b0867 7618@kindex info macro
e2e0bcd1
JB
7619@cindex macro definition, showing
7620@cindex definition, showing a macro's
475b0867 7621@item info macro @var{macro}
e2e0bcd1
JB
7622Show the definition of the macro named @var{macro}, and describe the
7623source location where that definition was established.
7624
7625@kindex macro define
7626@cindex user-defined macros
7627@cindex defining macros interactively
7628@cindex macros, user-defined
7629@item macro define @var{macro} @var{replacement-list}
7630@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7631@i{(This command is not yet implemented.)} Introduce a definition for a
7632preprocessor macro named @var{macro}, invocations of which are replaced
7633by the tokens given in @var{replacement-list}. The first form of this
7634command defines an ``object-like'' macro, which takes no arguments; the
7635second form defines a ``function-like'' macro, which takes the arguments
7636given in @var{arglist}.
7637
7638A definition introduced by this command is in scope in every expression
7639evaluated in @value{GDBN}, until it is removed with the @command{macro
7640undef} command, described below. The definition overrides all
7641definitions for @var{macro} present in the program being debugged, as
7642well as any previous user-supplied definition.
7643
7644@kindex macro undef
7645@item macro undef @var{macro}
7646@i{(This command is not yet implemented.)} Remove any user-supplied
7647definition for the macro named @var{macro}. This command only affects
7648definitions provided with the @command{macro define} command, described
7649above; it cannot remove definitions present in the program being
7650debugged.
7651
09d4efe1
EZ
7652@kindex macro list
7653@item macro list
7654@i{(This command is not yet implemented.)} List all the macros
7655defined using the @code{macro define} command.
e2e0bcd1
JB
7656@end table
7657
7658@cindex macros, example of debugging with
7659Here is a transcript showing the above commands in action. First, we
7660show our source files:
7661
7662@smallexample
7663$ cat sample.c
7664#include <stdio.h>
7665#include "sample.h"
7666
7667#define M 42
7668#define ADD(x) (M + x)
7669
7670main ()
7671@{
7672#define N 28
7673 printf ("Hello, world!\n");
7674#undef N
7675 printf ("We're so creative.\n");
7676#define N 1729
7677 printf ("Goodbye, world!\n");
7678@}
7679$ cat sample.h
7680#define Q <
7681$
7682@end smallexample
7683
7684Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7685We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7686compiler includes information about preprocessor macros in the debugging
7687information.
7688
7689@smallexample
7690$ gcc -gdwarf-2 -g3 sample.c -o sample
7691$
7692@end smallexample
7693
7694Now, we start @value{GDBN} on our sample program:
7695
7696@smallexample
7697$ gdb -nw sample
7698GNU gdb 2002-05-06-cvs
7699Copyright 2002 Free Software Foundation, Inc.
7700GDB is free software, @dots{}
f7dc1244 7701(@value{GDBP})
e2e0bcd1
JB
7702@end smallexample
7703
7704We can expand macros and examine their definitions, even when the
7705program is not running. @value{GDBN} uses the current listing position
7706to decide which macro definitions are in scope:
7707
7708@smallexample
f7dc1244 7709(@value{GDBP}) list main
e2e0bcd1
JB
77103
77114 #define M 42
77125 #define ADD(x) (M + x)
77136
77147 main ()
77158 @{
77169 #define N 28
771710 printf ("Hello, world!\n");
771811 #undef N
771912 printf ("We're so creative.\n");
f7dc1244 7720(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7721Defined at /home/jimb/gdb/macros/play/sample.c:5
7722#define ADD(x) (M + x)
f7dc1244 7723(@value{GDBP}) info macro Q
e2e0bcd1
JB
7724Defined at /home/jimb/gdb/macros/play/sample.h:1
7725 included at /home/jimb/gdb/macros/play/sample.c:2
7726#define Q <
f7dc1244 7727(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7728expands to: (42 + 1)
f7dc1244 7729(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7730expands to: once (M + 1)
f7dc1244 7731(@value{GDBP})
e2e0bcd1
JB
7732@end smallexample
7733
7734In the example above, note that @command{macro expand-once} expands only
7735the macro invocation explicit in the original text --- the invocation of
7736@code{ADD} --- but does not expand the invocation of the macro @code{M},
7737which was introduced by @code{ADD}.
7738
3f94c067
BW
7739Once the program is running, @value{GDBN} uses the macro definitions in
7740force at the source line of the current stack frame:
e2e0bcd1
JB
7741
7742@smallexample
f7dc1244 7743(@value{GDBP}) break main
e2e0bcd1 7744Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7745(@value{GDBP}) run
b383017d 7746Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7747
7748Breakpoint 1, main () at sample.c:10
774910 printf ("Hello, world!\n");
f7dc1244 7750(@value{GDBP})
e2e0bcd1
JB
7751@end smallexample
7752
7753At line 10, the definition of the macro @code{N} at line 9 is in force:
7754
7755@smallexample
f7dc1244 7756(@value{GDBP}) info macro N
e2e0bcd1
JB
7757Defined at /home/jimb/gdb/macros/play/sample.c:9
7758#define N 28
f7dc1244 7759(@value{GDBP}) macro expand N Q M
e2e0bcd1 7760expands to: 28 < 42
f7dc1244 7761(@value{GDBP}) print N Q M
e2e0bcd1 7762$1 = 1
f7dc1244 7763(@value{GDBP})
e2e0bcd1
JB
7764@end smallexample
7765
7766As we step over directives that remove @code{N}'s definition, and then
7767give it a new definition, @value{GDBN} finds the definition (or lack
7768thereof) in force at each point:
7769
7770@smallexample
f7dc1244 7771(@value{GDBP}) next
e2e0bcd1
JB
7772Hello, world!
777312 printf ("We're so creative.\n");
f7dc1244 7774(@value{GDBP}) info macro N
e2e0bcd1
JB
7775The symbol `N' has no definition as a C/C++ preprocessor macro
7776at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7777(@value{GDBP}) next
e2e0bcd1
JB
7778We're so creative.
777914 printf ("Goodbye, world!\n");
f7dc1244 7780(@value{GDBP}) info macro N
e2e0bcd1
JB
7781Defined at /home/jimb/gdb/macros/play/sample.c:13
7782#define N 1729
f7dc1244 7783(@value{GDBP}) macro expand N Q M
e2e0bcd1 7784expands to: 1729 < 42
f7dc1244 7785(@value{GDBP}) print N Q M
e2e0bcd1 7786$2 = 0
f7dc1244 7787(@value{GDBP})
e2e0bcd1
JB
7788@end smallexample
7789
7790
b37052ae
EZ
7791@node Tracepoints
7792@chapter Tracepoints
7793@c This chapter is based on the documentation written by Michael
7794@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7795
7796@cindex tracepoints
7797In some applications, it is not feasible for the debugger to interrupt
7798the program's execution long enough for the developer to learn
7799anything helpful about its behavior. If the program's correctness
7800depends on its real-time behavior, delays introduced by a debugger
7801might cause the program to change its behavior drastically, or perhaps
7802fail, even when the code itself is correct. It is useful to be able
7803to observe the program's behavior without interrupting it.
7804
7805Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7806specify locations in the program, called @dfn{tracepoints}, and
7807arbitrary expressions to evaluate when those tracepoints are reached.
7808Later, using the @code{tfind} command, you can examine the values
7809those expressions had when the program hit the tracepoints. The
7810expressions may also denote objects in memory---structures or arrays,
7811for example---whose values @value{GDBN} should record; while visiting
7812a particular tracepoint, you may inspect those objects as if they were
7813in memory at that moment. However, because @value{GDBN} records these
7814values without interacting with you, it can do so quickly and
7815unobtrusively, hopefully not disturbing the program's behavior.
7816
7817The tracepoint facility is currently available only for remote
9d29849a
JB
7818targets. @xref{Targets}. In addition, your remote target must know
7819how to collect trace data. This functionality is implemented in the
7820remote stub; however, none of the stubs distributed with @value{GDBN}
7821support tracepoints as of this writing. The format of the remote
7822packets used to implement tracepoints are described in @ref{Tracepoint
7823Packets}.
b37052ae
EZ
7824
7825This chapter describes the tracepoint commands and features.
7826
7827@menu
b383017d
RM
7828* Set Tracepoints::
7829* Analyze Collected Data::
7830* Tracepoint Variables::
b37052ae
EZ
7831@end menu
7832
7833@node Set Tracepoints
7834@section Commands to Set Tracepoints
7835
7836Before running such a @dfn{trace experiment}, an arbitrary number of
7837tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7838tracepoint has a number assigned to it by @value{GDBN}. Like with
7839breakpoints, tracepoint numbers are successive integers starting from
7840one. Many of the commands associated with tracepoints take the
7841tracepoint number as their argument, to identify which tracepoint to
7842work on.
7843
7844For each tracepoint, you can specify, in advance, some arbitrary set
7845of data that you want the target to collect in the trace buffer when
7846it hits that tracepoint. The collected data can include registers,
7847local variables, or global data. Later, you can use @value{GDBN}
7848commands to examine the values these data had at the time the
7849tracepoint was hit.
7850
7851This section describes commands to set tracepoints and associated
7852conditions and actions.
7853
7854@menu
b383017d
RM
7855* Create and Delete Tracepoints::
7856* Enable and Disable Tracepoints::
7857* Tracepoint Passcounts::
7858* Tracepoint Actions::
7859* Listing Tracepoints::
79a6e687 7860* Starting and Stopping Trace Experiments::
b37052ae
EZ
7861@end menu
7862
7863@node Create and Delete Tracepoints
7864@subsection Create and Delete Tracepoints
7865
7866@table @code
7867@cindex set tracepoint
7868@kindex trace
7869@item trace
7870The @code{trace} command is very similar to the @code{break} command.
7871Its argument can be a source line, a function name, or an address in
7872the target program. @xref{Set Breaks}. The @code{trace} command
7873defines a tracepoint, which is a point in the target program where the
7874debugger will briefly stop, collect some data, and then allow the
7875program to continue. Setting a tracepoint or changing its commands
7876doesn't take effect until the next @code{tstart} command; thus, you
7877cannot change the tracepoint attributes once a trace experiment is
7878running.
7879
7880Here are some examples of using the @code{trace} command:
7881
7882@smallexample
7883(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7884
7885(@value{GDBP}) @b{trace +2} // 2 lines forward
7886
7887(@value{GDBP}) @b{trace my_function} // first source line of function
7888
7889(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7890
7891(@value{GDBP}) @b{trace *0x2117c4} // an address
7892@end smallexample
7893
7894@noindent
7895You can abbreviate @code{trace} as @code{tr}.
7896
7897@vindex $tpnum
7898@cindex last tracepoint number
7899@cindex recent tracepoint number
7900@cindex tracepoint number
7901The convenience variable @code{$tpnum} records the tracepoint number
7902of the most recently set tracepoint.
7903
7904@kindex delete tracepoint
7905@cindex tracepoint deletion
7906@item delete tracepoint @r{[}@var{num}@r{]}
7907Permanently delete one or more tracepoints. With no argument, the
7908default is to delete all tracepoints.
7909
7910Examples:
7911
7912@smallexample
7913(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7914
7915(@value{GDBP}) @b{delete trace} // remove all tracepoints
7916@end smallexample
7917
7918@noindent
7919You can abbreviate this command as @code{del tr}.
7920@end table
7921
7922@node Enable and Disable Tracepoints
7923@subsection Enable and Disable Tracepoints
7924
7925@table @code
7926@kindex disable tracepoint
7927@item disable tracepoint @r{[}@var{num}@r{]}
7928Disable tracepoint @var{num}, or all tracepoints if no argument
7929@var{num} is given. A disabled tracepoint will have no effect during
7930the next trace experiment, but it is not forgotten. You can re-enable
7931a disabled tracepoint using the @code{enable tracepoint} command.
7932
7933@kindex enable tracepoint
7934@item enable tracepoint @r{[}@var{num}@r{]}
7935Enable tracepoint @var{num}, or all tracepoints. The enabled
7936tracepoints will become effective the next time a trace experiment is
7937run.
7938@end table
7939
7940@node Tracepoint Passcounts
7941@subsection Tracepoint Passcounts
7942
7943@table @code
7944@kindex passcount
7945@cindex tracepoint pass count
7946@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7947Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7948automatically stop a trace experiment. If a tracepoint's passcount is
7949@var{n}, then the trace experiment will be automatically stopped on
7950the @var{n}'th time that tracepoint is hit. If the tracepoint number
7951@var{num} is not specified, the @code{passcount} command sets the
7952passcount of the most recently defined tracepoint. If no passcount is
7953given, the trace experiment will run until stopped explicitly by the
7954user.
7955
7956Examples:
7957
7958@smallexample
b383017d 7959(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7960@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7961
7962(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7963@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7964(@value{GDBP}) @b{trace foo}
7965(@value{GDBP}) @b{pass 3}
7966(@value{GDBP}) @b{trace bar}
7967(@value{GDBP}) @b{pass 2}
7968(@value{GDBP}) @b{trace baz}
7969(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7970@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7971@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7972@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7973@end smallexample
7974@end table
7975
7976@node Tracepoint Actions
7977@subsection Tracepoint Action Lists
7978
7979@table @code
7980@kindex actions
7981@cindex tracepoint actions
7982@item actions @r{[}@var{num}@r{]}
7983This command will prompt for a list of actions to be taken when the
7984tracepoint is hit. If the tracepoint number @var{num} is not
7985specified, this command sets the actions for the one that was most
7986recently defined (so that you can define a tracepoint and then say
7987@code{actions} without bothering about its number). You specify the
7988actions themselves on the following lines, one action at a time, and
7989terminate the actions list with a line containing just @code{end}. So
7990far, the only defined actions are @code{collect} and
7991@code{while-stepping}.
7992
7993@cindex remove actions from a tracepoint
7994To remove all actions from a tracepoint, type @samp{actions @var{num}}
7995and follow it immediately with @samp{end}.
7996
7997@smallexample
7998(@value{GDBP}) @b{collect @var{data}} // collect some data
7999
6826cf00 8000(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8001
6826cf00 8002(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8003@end smallexample
8004
8005In the following example, the action list begins with @code{collect}
8006commands indicating the things to be collected when the tracepoint is
8007hit. Then, in order to single-step and collect additional data
8008following the tracepoint, a @code{while-stepping} command is used,
8009followed by the list of things to be collected while stepping. The
8010@code{while-stepping} command is terminated by its own separate
8011@code{end} command. Lastly, the action list is terminated by an
8012@code{end} command.
8013
8014@smallexample
8015(@value{GDBP}) @b{trace foo}
8016(@value{GDBP}) @b{actions}
8017Enter actions for tracepoint 1, one per line:
8018> collect bar,baz
8019> collect $regs
8020> while-stepping 12
8021 > collect $fp, $sp
8022 > end
8023end
8024@end smallexample
8025
8026@kindex collect @r{(tracepoints)}
8027@item collect @var{expr1}, @var{expr2}, @dots{}
8028Collect values of the given expressions when the tracepoint is hit.
8029This command accepts a comma-separated list of any valid expressions.
8030In addition to global, static, or local variables, the following
8031special arguments are supported:
8032
8033@table @code
8034@item $regs
8035collect all registers
8036
8037@item $args
8038collect all function arguments
8039
8040@item $locals
8041collect all local variables.
8042@end table
8043
8044You can give several consecutive @code{collect} commands, each one
8045with a single argument, or one @code{collect} command with several
8046arguments separated by commas: the effect is the same.
8047
f5c37c66
EZ
8048The command @code{info scope} (@pxref{Symbols, info scope}) is
8049particularly useful for figuring out what data to collect.
8050
b37052ae
EZ
8051@kindex while-stepping @r{(tracepoints)}
8052@item while-stepping @var{n}
8053Perform @var{n} single-step traces after the tracepoint, collecting
8054new data at each step. The @code{while-stepping} command is
8055followed by the list of what to collect while stepping (followed by
8056its own @code{end} command):
8057
8058@smallexample
8059> while-stepping 12
8060 > collect $regs, myglobal
8061 > end
8062>
8063@end smallexample
8064
8065@noindent
8066You may abbreviate @code{while-stepping} as @code{ws} or
8067@code{stepping}.
8068@end table
8069
8070@node Listing Tracepoints
8071@subsection Listing Tracepoints
8072
8073@table @code
8074@kindex info tracepoints
09d4efe1 8075@kindex info tp
b37052ae
EZ
8076@cindex information about tracepoints
8077@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8078Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8079a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8080defined so far. For each tracepoint, the following information is
8081shown:
8082
8083@itemize @bullet
8084@item
8085its number
8086@item
8087whether it is enabled or disabled
8088@item
8089its address
8090@item
8091its passcount as given by the @code{passcount @var{n}} command
8092@item
8093its step count as given by the @code{while-stepping @var{n}} command
8094@item
8095where in the source files is the tracepoint set
8096@item
8097its action list as given by the @code{actions} command
8098@end itemize
8099
8100@smallexample
8101(@value{GDBP}) @b{info trace}
8102Num Enb Address PassC StepC What
81031 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81042 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81053 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8106(@value{GDBP})
8107@end smallexample
8108
8109@noindent
8110This command can be abbreviated @code{info tp}.
8111@end table
8112
79a6e687
BW
8113@node Starting and Stopping Trace Experiments
8114@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8115
8116@table @code
8117@kindex tstart
8118@cindex start a new trace experiment
8119@cindex collected data discarded
8120@item tstart
8121This command takes no arguments. It starts the trace experiment, and
8122begins collecting data. This has the side effect of discarding all
8123the data collected in the trace buffer during the previous trace
8124experiment.
8125
8126@kindex tstop
8127@cindex stop a running trace experiment
8128@item tstop
8129This command takes no arguments. It ends the trace experiment, and
8130stops collecting data.
8131
68c71a2e 8132@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8133automatically if any tracepoint's passcount is reached
8134(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8135
8136@kindex tstatus
8137@cindex status of trace data collection
8138@cindex trace experiment, status of
8139@item tstatus
8140This command displays the status of the current trace data
8141collection.
8142@end table
8143
8144Here is an example of the commands we described so far:
8145
8146@smallexample
8147(@value{GDBP}) @b{trace gdb_c_test}
8148(@value{GDBP}) @b{actions}
8149Enter actions for tracepoint #1, one per line.
8150> collect $regs,$locals,$args
8151> while-stepping 11
8152 > collect $regs
8153 > end
8154> end
8155(@value{GDBP}) @b{tstart}
8156 [time passes @dots{}]
8157(@value{GDBP}) @b{tstop}
8158@end smallexample
8159
8160
8161@node Analyze Collected Data
79a6e687 8162@section Using the Collected Data
b37052ae
EZ
8163
8164After the tracepoint experiment ends, you use @value{GDBN} commands
8165for examining the trace data. The basic idea is that each tracepoint
8166collects a trace @dfn{snapshot} every time it is hit and another
8167snapshot every time it single-steps. All these snapshots are
8168consecutively numbered from zero and go into a buffer, and you can
8169examine them later. The way you examine them is to @dfn{focus} on a
8170specific trace snapshot. When the remote stub is focused on a trace
8171snapshot, it will respond to all @value{GDBN} requests for memory and
8172registers by reading from the buffer which belongs to that snapshot,
8173rather than from @emph{real} memory or registers of the program being
8174debugged. This means that @strong{all} @value{GDBN} commands
8175(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8176behave as if we were currently debugging the program state as it was
8177when the tracepoint occurred. Any requests for data that are not in
8178the buffer will fail.
8179
8180@menu
8181* tfind:: How to select a trace snapshot
8182* tdump:: How to display all data for a snapshot
8183* save-tracepoints:: How to save tracepoints for a future run
8184@end menu
8185
8186@node tfind
8187@subsection @code{tfind @var{n}}
8188
8189@kindex tfind
8190@cindex select trace snapshot
8191@cindex find trace snapshot
8192The basic command for selecting a trace snapshot from the buffer is
8193@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8194counting from zero. If no argument @var{n} is given, the next
8195snapshot is selected.
8196
8197Here are the various forms of using the @code{tfind} command.
8198
8199@table @code
8200@item tfind start
8201Find the first snapshot in the buffer. This is a synonym for
8202@code{tfind 0} (since 0 is the number of the first snapshot).
8203
8204@item tfind none
8205Stop debugging trace snapshots, resume @emph{live} debugging.
8206
8207@item tfind end
8208Same as @samp{tfind none}.
8209
8210@item tfind
8211No argument means find the next trace snapshot.
8212
8213@item tfind -
8214Find the previous trace snapshot before the current one. This permits
8215retracing earlier steps.
8216
8217@item tfind tracepoint @var{num}
8218Find the next snapshot associated with tracepoint @var{num}. Search
8219proceeds forward from the last examined trace snapshot. If no
8220argument @var{num} is given, it means find the next snapshot collected
8221for the same tracepoint as the current snapshot.
8222
8223@item tfind pc @var{addr}
8224Find the next snapshot associated with the value @var{addr} of the
8225program counter. Search proceeds forward from the last examined trace
8226snapshot. If no argument @var{addr} is given, it means find the next
8227snapshot with the same value of PC as the current snapshot.
8228
8229@item tfind outside @var{addr1}, @var{addr2}
8230Find the next snapshot whose PC is outside the given range of
8231addresses.
8232
8233@item tfind range @var{addr1}, @var{addr2}
8234Find the next snapshot whose PC is between @var{addr1} and
8235@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8236
8237@item tfind line @r{[}@var{file}:@r{]}@var{n}
8238Find the next snapshot associated with the source line @var{n}. If
8239the optional argument @var{file} is given, refer to line @var{n} in
8240that source file. Search proceeds forward from the last examined
8241trace snapshot. If no argument @var{n} is given, it means find the
8242next line other than the one currently being examined; thus saying
8243@code{tfind line} repeatedly can appear to have the same effect as
8244stepping from line to line in a @emph{live} debugging session.
8245@end table
8246
8247The default arguments for the @code{tfind} commands are specifically
8248designed to make it easy to scan through the trace buffer. For
8249instance, @code{tfind} with no argument selects the next trace
8250snapshot, and @code{tfind -} with no argument selects the previous
8251trace snapshot. So, by giving one @code{tfind} command, and then
8252simply hitting @key{RET} repeatedly you can examine all the trace
8253snapshots in order. Or, by saying @code{tfind -} and then hitting
8254@key{RET} repeatedly you can examine the snapshots in reverse order.
8255The @code{tfind line} command with no argument selects the snapshot
8256for the next source line executed. The @code{tfind pc} command with
8257no argument selects the next snapshot with the same program counter
8258(PC) as the current frame. The @code{tfind tracepoint} command with
8259no argument selects the next trace snapshot collected by the same
8260tracepoint as the current one.
8261
8262In addition to letting you scan through the trace buffer manually,
8263these commands make it easy to construct @value{GDBN} scripts that
8264scan through the trace buffer and print out whatever collected data
8265you are interested in. Thus, if we want to examine the PC, FP, and SP
8266registers from each trace frame in the buffer, we can say this:
8267
8268@smallexample
8269(@value{GDBP}) @b{tfind start}
8270(@value{GDBP}) @b{while ($trace_frame != -1)}
8271> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8272 $trace_frame, $pc, $sp, $fp
8273> tfind
8274> end
8275
8276Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8277Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8278Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8279Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8280Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8281Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8282Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8283Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8284Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8285Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8286Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8287@end smallexample
8288
8289Or, if we want to examine the variable @code{X} at each source line in
8290the buffer:
8291
8292@smallexample
8293(@value{GDBP}) @b{tfind start}
8294(@value{GDBP}) @b{while ($trace_frame != -1)}
8295> printf "Frame %d, X == %d\n", $trace_frame, X
8296> tfind line
8297> end
8298
8299Frame 0, X = 1
8300Frame 7, X = 2
8301Frame 13, X = 255
8302@end smallexample
8303
8304@node tdump
8305@subsection @code{tdump}
8306@kindex tdump
8307@cindex dump all data collected at tracepoint
8308@cindex tracepoint data, display
8309
8310This command takes no arguments. It prints all the data collected at
8311the current trace snapshot.
8312
8313@smallexample
8314(@value{GDBP}) @b{trace 444}
8315(@value{GDBP}) @b{actions}
8316Enter actions for tracepoint #2, one per line:
8317> collect $regs, $locals, $args, gdb_long_test
8318> end
8319
8320(@value{GDBP}) @b{tstart}
8321
8322(@value{GDBP}) @b{tfind line 444}
8323#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8324at gdb_test.c:444
8325444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8326
8327(@value{GDBP}) @b{tdump}
8328Data collected at tracepoint 2, trace frame 1:
8329d0 0xc4aa0085 -995491707
8330d1 0x18 24
8331d2 0x80 128
8332d3 0x33 51
8333d4 0x71aea3d 119204413
8334d5 0x22 34
8335d6 0xe0 224
8336d7 0x380035 3670069
8337a0 0x19e24a 1696330
8338a1 0x3000668 50333288
8339a2 0x100 256
8340a3 0x322000 3284992
8341a4 0x3000698 50333336
8342a5 0x1ad3cc 1758156
8343fp 0x30bf3c 0x30bf3c
8344sp 0x30bf34 0x30bf34
8345ps 0x0 0
8346pc 0x20b2c8 0x20b2c8
8347fpcontrol 0x0 0
8348fpstatus 0x0 0
8349fpiaddr 0x0 0
8350p = 0x20e5b4 "gdb-test"
8351p1 = (void *) 0x11
8352p2 = (void *) 0x22
8353p3 = (void *) 0x33
8354p4 = (void *) 0x44
8355p5 = (void *) 0x55
8356p6 = (void *) 0x66
8357gdb_long_test = 17 '\021'
8358
8359(@value{GDBP})
8360@end smallexample
8361
8362@node save-tracepoints
8363@subsection @code{save-tracepoints @var{filename}}
8364@kindex save-tracepoints
8365@cindex save tracepoints for future sessions
8366
8367This command saves all current tracepoint definitions together with
8368their actions and passcounts, into a file @file{@var{filename}}
8369suitable for use in a later debugging session. To read the saved
8370tracepoint definitions, use the @code{source} command (@pxref{Command
8371Files}).
8372
8373@node Tracepoint Variables
8374@section Convenience Variables for Tracepoints
8375@cindex tracepoint variables
8376@cindex convenience variables for tracepoints
8377
8378@table @code
8379@vindex $trace_frame
8380@item (int) $trace_frame
8381The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8382snapshot is selected.
8383
8384@vindex $tracepoint
8385@item (int) $tracepoint
8386The tracepoint for the current trace snapshot.
8387
8388@vindex $trace_line
8389@item (int) $trace_line
8390The line number for the current trace snapshot.
8391
8392@vindex $trace_file
8393@item (char []) $trace_file
8394The source file for the current trace snapshot.
8395
8396@vindex $trace_func
8397@item (char []) $trace_func
8398The name of the function containing @code{$tracepoint}.
8399@end table
8400
8401Note: @code{$trace_file} is not suitable for use in @code{printf},
8402use @code{output} instead.
8403
8404Here's a simple example of using these convenience variables for
8405stepping through all the trace snapshots and printing some of their
8406data.
8407
8408@smallexample
8409(@value{GDBP}) @b{tfind start}
8410
8411(@value{GDBP}) @b{while $trace_frame != -1}
8412> output $trace_file
8413> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8414> tfind
8415> end
8416@end smallexample
8417
df0cd8c5
JB
8418@node Overlays
8419@chapter Debugging Programs That Use Overlays
8420@cindex overlays
8421
8422If your program is too large to fit completely in your target system's
8423memory, you can sometimes use @dfn{overlays} to work around this
8424problem. @value{GDBN} provides some support for debugging programs that
8425use overlays.
8426
8427@menu
8428* How Overlays Work:: A general explanation of overlays.
8429* Overlay Commands:: Managing overlays in @value{GDBN}.
8430* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8431 mapped by asking the inferior.
8432* Overlay Sample Program:: A sample program using overlays.
8433@end menu
8434
8435@node How Overlays Work
8436@section How Overlays Work
8437@cindex mapped overlays
8438@cindex unmapped overlays
8439@cindex load address, overlay's
8440@cindex mapped address
8441@cindex overlay area
8442
8443Suppose you have a computer whose instruction address space is only 64
8444kilobytes long, but which has much more memory which can be accessed by
8445other means: special instructions, segment registers, or memory
8446management hardware, for example. Suppose further that you want to
8447adapt a program which is larger than 64 kilobytes to run on this system.
8448
8449One solution is to identify modules of your program which are relatively
8450independent, and need not call each other directly; call these modules
8451@dfn{overlays}. Separate the overlays from the main program, and place
8452their machine code in the larger memory. Place your main program in
8453instruction memory, but leave at least enough space there to hold the
8454largest overlay as well.
8455
8456Now, to call a function located in an overlay, you must first copy that
8457overlay's machine code from the large memory into the space set aside
8458for it in the instruction memory, and then jump to its entry point
8459there.
8460
c928edc0
AC
8461@c NB: In the below the mapped area's size is greater or equal to the
8462@c size of all overlays. This is intentional to remind the developer
8463@c that overlays don't necessarily need to be the same size.
8464
474c8240 8465@smallexample
df0cd8c5 8466@group
c928edc0
AC
8467 Data Instruction Larger
8468Address Space Address Space Address Space
8469+-----------+ +-----------+ +-----------+
8470| | | | | |
8471+-----------+ +-----------+ +-----------+<-- overlay 1
8472| program | | main | .----| overlay 1 | load address
8473| variables | | program | | +-----------+
8474| and heap | | | | | |
8475+-----------+ | | | +-----------+<-- overlay 2
8476| | +-----------+ | | | load address
8477+-----------+ | | | .-| overlay 2 |
8478 | | | | | |
8479 mapped --->+-----------+ | | +-----------+
8480 address | | | | | |
8481 | overlay | <-' | | |
8482 | area | <---' +-----------+<-- overlay 3
8483 | | <---. | | load address
8484 +-----------+ `--| overlay 3 |
8485 | | | |
8486 +-----------+ | |
8487 +-----------+
8488 | |
8489 +-----------+
8490
8491 @anchor{A code overlay}A code overlay
df0cd8c5 8492@end group
474c8240 8493@end smallexample
df0cd8c5 8494
c928edc0
AC
8495The diagram (@pxref{A code overlay}) shows a system with separate data
8496and instruction address spaces. To map an overlay, the program copies
8497its code from the larger address space to the instruction address space.
8498Since the overlays shown here all use the same mapped address, only one
8499may be mapped at a time. For a system with a single address space for
8500data and instructions, the diagram would be similar, except that the
8501program variables and heap would share an address space with the main
8502program and the overlay area.
df0cd8c5
JB
8503
8504An overlay loaded into instruction memory and ready for use is called a
8505@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8506instruction memory. An overlay not present (or only partially present)
8507in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8508is its address in the larger memory. The mapped address is also called
8509the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8510called the @dfn{load memory address}, or @dfn{LMA}.
8511
8512Unfortunately, overlays are not a completely transparent way to adapt a
8513program to limited instruction memory. They introduce a new set of
8514global constraints you must keep in mind as you design your program:
8515
8516@itemize @bullet
8517
8518@item
8519Before calling or returning to a function in an overlay, your program
8520must make sure that overlay is actually mapped. Otherwise, the call or
8521return will transfer control to the right address, but in the wrong
8522overlay, and your program will probably crash.
8523
8524@item
8525If the process of mapping an overlay is expensive on your system, you
8526will need to choose your overlays carefully to minimize their effect on
8527your program's performance.
8528
8529@item
8530The executable file you load onto your system must contain each
8531overlay's instructions, appearing at the overlay's load address, not its
8532mapped address. However, each overlay's instructions must be relocated
8533and its symbols defined as if the overlay were at its mapped address.
8534You can use GNU linker scripts to specify different load and relocation
8535addresses for pieces of your program; see @ref{Overlay Description,,,
8536ld.info, Using ld: the GNU linker}.
8537
8538@item
8539The procedure for loading executable files onto your system must be able
8540to load their contents into the larger address space as well as the
8541instruction and data spaces.
8542
8543@end itemize
8544
8545The overlay system described above is rather simple, and could be
8546improved in many ways:
8547
8548@itemize @bullet
8549
8550@item
8551If your system has suitable bank switch registers or memory management
8552hardware, you could use those facilities to make an overlay's load area
8553contents simply appear at their mapped address in instruction space.
8554This would probably be faster than copying the overlay to its mapped
8555area in the usual way.
8556
8557@item
8558If your overlays are small enough, you could set aside more than one
8559overlay area, and have more than one overlay mapped at a time.
8560
8561@item
8562You can use overlays to manage data, as well as instructions. In
8563general, data overlays are even less transparent to your design than
8564code overlays: whereas code overlays only require care when you call or
8565return to functions, data overlays require care every time you access
8566the data. Also, if you change the contents of a data overlay, you
8567must copy its contents back out to its load address before you can copy a
8568different data overlay into the same mapped area.
8569
8570@end itemize
8571
8572
8573@node Overlay Commands
8574@section Overlay Commands
8575
8576To use @value{GDBN}'s overlay support, each overlay in your program must
8577correspond to a separate section of the executable file. The section's
8578virtual memory address and load memory address must be the overlay's
8579mapped and load addresses. Identifying overlays with sections allows
8580@value{GDBN} to determine the appropriate address of a function or
8581variable, depending on whether the overlay is mapped or not.
8582
8583@value{GDBN}'s overlay commands all start with the word @code{overlay};
8584you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8585
8586@table @code
8587@item overlay off
4644b6e3 8588@kindex overlay
df0cd8c5
JB
8589Disable @value{GDBN}'s overlay support. When overlay support is
8590disabled, @value{GDBN} assumes that all functions and variables are
8591always present at their mapped addresses. By default, @value{GDBN}'s
8592overlay support is disabled.
8593
8594@item overlay manual
df0cd8c5
JB
8595@cindex manual overlay debugging
8596Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8597relies on you to tell it which overlays are mapped, and which are not,
8598using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8599commands described below.
8600
8601@item overlay map-overlay @var{overlay}
8602@itemx overlay map @var{overlay}
df0cd8c5
JB
8603@cindex map an overlay
8604Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8605be the name of the object file section containing the overlay. When an
8606overlay is mapped, @value{GDBN} assumes it can find the overlay's
8607functions and variables at their mapped addresses. @value{GDBN} assumes
8608that any other overlays whose mapped ranges overlap that of
8609@var{overlay} are now unmapped.
8610
8611@item overlay unmap-overlay @var{overlay}
8612@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8613@cindex unmap an overlay
8614Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8615must be the name of the object file section containing the overlay.
8616When an overlay is unmapped, @value{GDBN} assumes it can find the
8617overlay's functions and variables at their load addresses.
8618
8619@item overlay auto
df0cd8c5
JB
8620Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8621consults a data structure the overlay manager maintains in the inferior
8622to see which overlays are mapped. For details, see @ref{Automatic
8623Overlay Debugging}.
8624
8625@item overlay load-target
8626@itemx overlay load
df0cd8c5
JB
8627@cindex reloading the overlay table
8628Re-read the overlay table from the inferior. Normally, @value{GDBN}
8629re-reads the table @value{GDBN} automatically each time the inferior
8630stops, so this command should only be necessary if you have changed the
8631overlay mapping yourself using @value{GDBN}. This command is only
8632useful when using automatic overlay debugging.
8633
8634@item overlay list-overlays
8635@itemx overlay list
8636@cindex listing mapped overlays
8637Display a list of the overlays currently mapped, along with their mapped
8638addresses, load addresses, and sizes.
8639
8640@end table
8641
8642Normally, when @value{GDBN} prints a code address, it includes the name
8643of the function the address falls in:
8644
474c8240 8645@smallexample
f7dc1244 8646(@value{GDBP}) print main
df0cd8c5 8647$3 = @{int ()@} 0x11a0 <main>
474c8240 8648@end smallexample
df0cd8c5
JB
8649@noindent
8650When overlay debugging is enabled, @value{GDBN} recognizes code in
8651unmapped overlays, and prints the names of unmapped functions with
8652asterisks around them. For example, if @code{foo} is a function in an
8653unmapped overlay, @value{GDBN} prints it this way:
8654
474c8240 8655@smallexample
f7dc1244 8656(@value{GDBP}) overlay list
df0cd8c5 8657No sections are mapped.
f7dc1244 8658(@value{GDBP}) print foo
df0cd8c5 8659$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8660@end smallexample
df0cd8c5
JB
8661@noindent
8662When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8663name normally:
8664
474c8240 8665@smallexample
f7dc1244 8666(@value{GDBP}) overlay list
b383017d 8667Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8668 mapped at 0x1016 - 0x104a
f7dc1244 8669(@value{GDBP}) print foo
df0cd8c5 8670$6 = @{int (int)@} 0x1016 <foo>
474c8240 8671@end smallexample
df0cd8c5
JB
8672
8673When overlay debugging is enabled, @value{GDBN} can find the correct
8674address for functions and variables in an overlay, whether or not the
8675overlay is mapped. This allows most @value{GDBN} commands, like
8676@code{break} and @code{disassemble}, to work normally, even on unmapped
8677code. However, @value{GDBN}'s breakpoint support has some limitations:
8678
8679@itemize @bullet
8680@item
8681@cindex breakpoints in overlays
8682@cindex overlays, setting breakpoints in
8683You can set breakpoints in functions in unmapped overlays, as long as
8684@value{GDBN} can write to the overlay at its load address.
8685@item
8686@value{GDBN} can not set hardware or simulator-based breakpoints in
8687unmapped overlays. However, if you set a breakpoint at the end of your
8688overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8689you are using manual overlay management), @value{GDBN} will re-set its
8690breakpoints properly.
8691@end itemize
8692
8693
8694@node Automatic Overlay Debugging
8695@section Automatic Overlay Debugging
8696@cindex automatic overlay debugging
8697
8698@value{GDBN} can automatically track which overlays are mapped and which
8699are not, given some simple co-operation from the overlay manager in the
8700inferior. If you enable automatic overlay debugging with the
8701@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8702looks in the inferior's memory for certain variables describing the
8703current state of the overlays.
8704
8705Here are the variables your overlay manager must define to support
8706@value{GDBN}'s automatic overlay debugging:
8707
8708@table @asis
8709
8710@item @code{_ovly_table}:
8711This variable must be an array of the following structures:
8712
474c8240 8713@smallexample
df0cd8c5
JB
8714struct
8715@{
8716 /* The overlay's mapped address. */
8717 unsigned long vma;
8718
8719 /* The size of the overlay, in bytes. */
8720 unsigned long size;
8721
8722 /* The overlay's load address. */
8723 unsigned long lma;
8724
8725 /* Non-zero if the overlay is currently mapped;
8726 zero otherwise. */
8727 unsigned long mapped;
8728@}
474c8240 8729@end smallexample
df0cd8c5
JB
8730
8731@item @code{_novlys}:
8732This variable must be a four-byte signed integer, holding the total
8733number of elements in @code{_ovly_table}.
8734
8735@end table
8736
8737To decide whether a particular overlay is mapped or not, @value{GDBN}
8738looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8739@code{lma} members equal the VMA and LMA of the overlay's section in the
8740executable file. When @value{GDBN} finds a matching entry, it consults
8741the entry's @code{mapped} member to determine whether the overlay is
8742currently mapped.
8743
81d46470 8744In addition, your overlay manager may define a function called
def71bfa 8745@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8746will silently set a breakpoint there. If the overlay manager then
8747calls this function whenever it has changed the overlay table, this
8748will enable @value{GDBN} to accurately keep track of which overlays
8749are in program memory, and update any breakpoints that may be set
b383017d 8750in overlays. This will allow breakpoints to work even if the
81d46470
MS
8751overlays are kept in ROM or other non-writable memory while they
8752are not being executed.
df0cd8c5
JB
8753
8754@node Overlay Sample Program
8755@section Overlay Sample Program
8756@cindex overlay example program
8757
8758When linking a program which uses overlays, you must place the overlays
8759at their load addresses, while relocating them to run at their mapped
8760addresses. To do this, you must write a linker script (@pxref{Overlay
8761Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8762since linker scripts are specific to a particular host system, target
8763architecture, and target memory layout, this manual cannot provide
8764portable sample code demonstrating @value{GDBN}'s overlay support.
8765
8766However, the @value{GDBN} source distribution does contain an overlaid
8767program, with linker scripts for a few systems, as part of its test
8768suite. The program consists of the following files from
8769@file{gdb/testsuite/gdb.base}:
8770
8771@table @file
8772@item overlays.c
8773The main program file.
8774@item ovlymgr.c
8775A simple overlay manager, used by @file{overlays.c}.
8776@item foo.c
8777@itemx bar.c
8778@itemx baz.c
8779@itemx grbx.c
8780Overlay modules, loaded and used by @file{overlays.c}.
8781@item d10v.ld
8782@itemx m32r.ld
8783Linker scripts for linking the test program on the @code{d10v-elf}
8784and @code{m32r-elf} targets.
8785@end table
8786
8787You can build the test program using the @code{d10v-elf} GCC
8788cross-compiler like this:
8789
474c8240 8790@smallexample
df0cd8c5
JB
8791$ d10v-elf-gcc -g -c overlays.c
8792$ d10v-elf-gcc -g -c ovlymgr.c
8793$ d10v-elf-gcc -g -c foo.c
8794$ d10v-elf-gcc -g -c bar.c
8795$ d10v-elf-gcc -g -c baz.c
8796$ d10v-elf-gcc -g -c grbx.c
8797$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8798 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8799@end smallexample
df0cd8c5
JB
8800
8801The build process is identical for any other architecture, except that
8802you must substitute the appropriate compiler and linker script for the
8803target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8804
8805
6d2ebf8b 8806@node Languages
c906108c
SS
8807@chapter Using @value{GDBN} with Different Languages
8808@cindex languages
8809
c906108c
SS
8810Although programming languages generally have common aspects, they are
8811rarely expressed in the same manner. For instance, in ANSI C,
8812dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8813Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8814represented (and displayed) differently. Hex numbers in C appear as
c906108c 8815@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8816
8817@cindex working language
8818Language-specific information is built into @value{GDBN} for some languages,
8819allowing you to express operations like the above in your program's
8820native language, and allowing @value{GDBN} to output values in a manner
8821consistent with the syntax of your program's native language. The
8822language you use to build expressions is called the @dfn{working
8823language}.
8824
8825@menu
8826* Setting:: Switching between source languages
8827* Show:: Displaying the language
c906108c 8828* Checks:: Type and range checks
79a6e687
BW
8829* Supported Languages:: Supported languages
8830* Unsupported Languages:: Unsupported languages
c906108c
SS
8831@end menu
8832
6d2ebf8b 8833@node Setting
79a6e687 8834@section Switching Between Source Languages
c906108c
SS
8835
8836There are two ways to control the working language---either have @value{GDBN}
8837set it automatically, or select it manually yourself. You can use the
8838@code{set language} command for either purpose. On startup, @value{GDBN}
8839defaults to setting the language automatically. The working language is
8840used to determine how expressions you type are interpreted, how values
8841are printed, etc.
8842
8843In addition to the working language, every source file that
8844@value{GDBN} knows about has its own working language. For some object
8845file formats, the compiler might indicate which language a particular
8846source file is in. However, most of the time @value{GDBN} infers the
8847language from the name of the file. The language of a source file
b37052ae 8848controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8849show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8850set the language of a source file from within @value{GDBN}, but you can
8851set the language associated with a filename extension. @xref{Show, ,
79a6e687 8852Displaying the Language}.
c906108c
SS
8853
8854This is most commonly a problem when you use a program, such
5d161b24 8855as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8856another language. In that case, make the
8857program use @code{#line} directives in its C output; that way
8858@value{GDBN} will know the correct language of the source code of the original
8859program, and will display that source code, not the generated C code.
8860
8861@menu
8862* Filenames:: Filename extensions and languages.
8863* Manually:: Setting the working language manually
8864* Automatically:: Having @value{GDBN} infer the source language
8865@end menu
8866
6d2ebf8b 8867@node Filenames
79a6e687 8868@subsection List of Filename Extensions and Languages
c906108c
SS
8869
8870If a source file name ends in one of the following extensions, then
8871@value{GDBN} infers that its language is the one indicated.
8872
8873@table @file
e07c999f
PH
8874@item .ada
8875@itemx .ads
8876@itemx .adb
8877@itemx .a
8878Ada source file.
c906108c
SS
8879
8880@item .c
8881C source file
8882
8883@item .C
8884@itemx .cc
8885@itemx .cp
8886@itemx .cpp
8887@itemx .cxx
8888@itemx .c++
b37052ae 8889C@t{++} source file
c906108c 8890
b37303ee
AF
8891@item .m
8892Objective-C source file
8893
c906108c
SS
8894@item .f
8895@itemx .F
8896Fortran source file
8897
c906108c
SS
8898@item .mod
8899Modula-2 source file
c906108c
SS
8900
8901@item .s
8902@itemx .S
8903Assembler source file. This actually behaves almost like C, but
8904@value{GDBN} does not skip over function prologues when stepping.
8905@end table
8906
8907In addition, you may set the language associated with a filename
79a6e687 8908extension. @xref{Show, , Displaying the Language}.
c906108c 8909
6d2ebf8b 8910@node Manually
79a6e687 8911@subsection Setting the Working Language
c906108c
SS
8912
8913If you allow @value{GDBN} to set the language automatically,
8914expressions are interpreted the same way in your debugging session and
8915your program.
8916
8917@kindex set language
8918If you wish, you may set the language manually. To do this, issue the
8919command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8920a language, such as
c906108c 8921@code{c} or @code{modula-2}.
c906108c
SS
8922For a list of the supported languages, type @samp{set language}.
8923
c906108c
SS
8924Setting the language manually prevents @value{GDBN} from updating the working
8925language automatically. This can lead to confusion if you try
8926to debug a program when the working language is not the same as the
8927source language, when an expression is acceptable to both
8928languages---but means different things. For instance, if the current
8929source file were written in C, and @value{GDBN} was parsing Modula-2, a
8930command such as:
8931
474c8240 8932@smallexample
c906108c 8933print a = b + c
474c8240 8934@end smallexample
c906108c
SS
8935
8936@noindent
8937might not have the effect you intended. In C, this means to add
8938@code{b} and @code{c} and place the result in @code{a}. The result
8939printed would be the value of @code{a}. In Modula-2, this means to compare
8940@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8941
6d2ebf8b 8942@node Automatically
79a6e687 8943@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8944
8945To have @value{GDBN} set the working language automatically, use
8946@samp{set language local} or @samp{set language auto}. @value{GDBN}
8947then infers the working language. That is, when your program stops in a
8948frame (usually by encountering a breakpoint), @value{GDBN} sets the
8949working language to the language recorded for the function in that
8950frame. If the language for a frame is unknown (that is, if the function
8951or block corresponding to the frame was defined in a source file that
8952does not have a recognized extension), the current working language is
8953not changed, and @value{GDBN} issues a warning.
8954
8955This may not seem necessary for most programs, which are written
8956entirely in one source language. However, program modules and libraries
8957written in one source language can be used by a main program written in
8958a different source language. Using @samp{set language auto} in this
8959case frees you from having to set the working language manually.
8960
6d2ebf8b 8961@node Show
79a6e687 8962@section Displaying the Language
c906108c
SS
8963
8964The following commands help you find out which language is the
8965working language, and also what language source files were written in.
8966
c906108c
SS
8967@table @code
8968@item show language
9c16f35a 8969@kindex show language
c906108c
SS
8970Display the current working language. This is the
8971language you can use with commands such as @code{print} to
8972build and compute expressions that may involve variables in your program.
8973
8974@item info frame
4644b6e3 8975@kindex info frame@r{, show the source language}
5d161b24 8976Display the source language for this frame. This language becomes the
c906108c 8977working language if you use an identifier from this frame.
79a6e687 8978@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8979information listed here.
8980
8981@item info source
4644b6e3 8982@kindex info source@r{, show the source language}
c906108c 8983Display the source language of this source file.
5d161b24 8984@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8985information listed here.
8986@end table
8987
8988In unusual circumstances, you may have source files with extensions
8989not in the standard list. You can then set the extension associated
8990with a language explicitly:
8991
c906108c 8992@table @code
09d4efe1 8993@item set extension-language @var{ext} @var{language}
9c16f35a 8994@kindex set extension-language
09d4efe1
EZ
8995Tell @value{GDBN} that source files with extension @var{ext} are to be
8996assumed as written in the source language @var{language}.
c906108c
SS
8997
8998@item info extensions
9c16f35a 8999@kindex info extensions
c906108c
SS
9000List all the filename extensions and the associated languages.
9001@end table
9002
6d2ebf8b 9003@node Checks
79a6e687 9004@section Type and Range Checking
c906108c
SS
9005
9006@quotation
9007@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9008checking are included, but they do not yet have any effect. This
9009section documents the intended facilities.
9010@end quotation
9011@c FIXME remove warning when type/range code added
9012
9013Some languages are designed to guard you against making seemingly common
9014errors through a series of compile- and run-time checks. These include
9015checking the type of arguments to functions and operators, and making
9016sure mathematical overflows are caught at run time. Checks such as
9017these help to ensure a program's correctness once it has been compiled
9018by eliminating type mismatches, and providing active checks for range
9019errors when your program is running.
9020
9021@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9022Although @value{GDBN} does not check the statements in your program,
9023it can check expressions entered directly into @value{GDBN} for
9024evaluation via the @code{print} command, for example. As with the
9025working language, @value{GDBN} can also decide whether or not to check
9026automatically based on your program's source language.
79a6e687 9027@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9028settings of supported languages.
c906108c
SS
9029
9030@menu
9031* Type Checking:: An overview of type checking
9032* Range Checking:: An overview of range checking
9033@end menu
9034
9035@cindex type checking
9036@cindex checks, type
6d2ebf8b 9037@node Type Checking
79a6e687 9038@subsection An Overview of Type Checking
c906108c
SS
9039
9040Some languages, such as Modula-2, are strongly typed, meaning that the
9041arguments to operators and functions have to be of the correct type,
9042otherwise an error occurs. These checks prevent type mismatch
9043errors from ever causing any run-time problems. For example,
9044
9045@smallexample
90461 + 2 @result{} 3
9047@exdent but
9048@error{} 1 + 2.3
9049@end smallexample
9050
9051The second example fails because the @code{CARDINAL} 1 is not
9052type-compatible with the @code{REAL} 2.3.
9053
5d161b24
DB
9054For the expressions you use in @value{GDBN} commands, you can tell the
9055@value{GDBN} type checker to skip checking;
9056to treat any mismatches as errors and abandon the expression;
9057or to only issue warnings when type mismatches occur,
c906108c
SS
9058but evaluate the expression anyway. When you choose the last of
9059these, @value{GDBN} evaluates expressions like the second example above, but
9060also issues a warning.
9061
5d161b24
DB
9062Even if you turn type checking off, there may be other reasons
9063related to type that prevent @value{GDBN} from evaluating an expression.
9064For instance, @value{GDBN} does not know how to add an @code{int} and
9065a @code{struct foo}. These particular type errors have nothing to do
9066with the language in use, and usually arise from expressions, such as
c906108c
SS
9067the one described above, which make little sense to evaluate anyway.
9068
9069Each language defines to what degree it is strict about type. For
9070instance, both Modula-2 and C require the arguments to arithmetical
9071operators to be numbers. In C, enumerated types and pointers can be
9072represented as numbers, so that they are valid arguments to mathematical
79a6e687 9073operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9074details on specific languages.
9075
9076@value{GDBN} provides some additional commands for controlling the type checker:
9077
c906108c
SS
9078@kindex set check type
9079@kindex show check type
9080@table @code
9081@item set check type auto
9082Set type checking on or off based on the current working language.
79a6e687 9083@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9084each language.
9085
9086@item set check type on
9087@itemx set check type off
9088Set type checking on or off, overriding the default setting for the
9089current working language. Issue a warning if the setting does not
9090match the language default. If any type mismatches occur in
d4f3574e 9091evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9092message and aborts evaluation of the expression.
9093
9094@item set check type warn
9095Cause the type checker to issue warnings, but to always attempt to
9096evaluate the expression. Evaluating the expression may still
9097be impossible for other reasons. For example, @value{GDBN} cannot add
9098numbers and structures.
9099
9100@item show type
5d161b24 9101Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9102is setting it automatically.
9103@end table
9104
9105@cindex range checking
9106@cindex checks, range
6d2ebf8b 9107@node Range Checking
79a6e687 9108@subsection An Overview of Range Checking
c906108c
SS
9109
9110In some languages (such as Modula-2), it is an error to exceed the
9111bounds of a type; this is enforced with run-time checks. Such range
9112checking is meant to ensure program correctness by making sure
9113computations do not overflow, or indices on an array element access do
9114not exceed the bounds of the array.
9115
9116For expressions you use in @value{GDBN} commands, you can tell
9117@value{GDBN} to treat range errors in one of three ways: ignore them,
9118always treat them as errors and abandon the expression, or issue
9119warnings but evaluate the expression anyway.
9120
9121A range error can result from numerical overflow, from exceeding an
9122array index bound, or when you type a constant that is not a member
9123of any type. Some languages, however, do not treat overflows as an
9124error. In many implementations of C, mathematical overflow causes the
9125result to ``wrap around'' to lower values---for example, if @var{m} is
9126the largest integer value, and @var{s} is the smallest, then
9127
474c8240 9128@smallexample
c906108c 9129@var{m} + 1 @result{} @var{s}
474c8240 9130@end smallexample
c906108c
SS
9131
9132This, too, is specific to individual languages, and in some cases
79a6e687
BW
9133specific to individual compilers or machines. @xref{Supported Languages, ,
9134Supported Languages}, for further details on specific languages.
c906108c
SS
9135
9136@value{GDBN} provides some additional commands for controlling the range checker:
9137
c906108c
SS
9138@kindex set check range
9139@kindex show check range
9140@table @code
9141@item set check range auto
9142Set range checking on or off based on the current working language.
79a6e687 9143@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9144each language.
9145
9146@item set check range on
9147@itemx set check range off
9148Set range checking on or off, overriding the default setting for the
9149current working language. A warning is issued if the setting does not
c3f6f71d
JM
9150match the language default. If a range error occurs and range checking is on,
9151then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9152
9153@item set check range warn
9154Output messages when the @value{GDBN} range checker detects a range error,
9155but attempt to evaluate the expression anyway. Evaluating the
9156expression may still be impossible for other reasons, such as accessing
9157memory that the process does not own (a typical example from many Unix
9158systems).
9159
9160@item show range
9161Show the current setting of the range checker, and whether or not it is
9162being set automatically by @value{GDBN}.
9163@end table
c906108c 9164
79a6e687
BW
9165@node Supported Languages
9166@section Supported Languages
c906108c 9167
9c16f35a
EZ
9168@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9169assembly, Modula-2, and Ada.
cce74817 9170@c This is false ...
c906108c
SS
9171Some @value{GDBN} features may be used in expressions regardless of the
9172language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9173and the @samp{@{type@}addr} construct (@pxref{Expressions,
9174,Expressions}) can be used with the constructs of any supported
9175language.
9176
9177The following sections detail to what degree each source language is
9178supported by @value{GDBN}. These sections are not meant to be language
9179tutorials or references, but serve only as a reference guide to what the
9180@value{GDBN} expression parser accepts, and what input and output
9181formats should look like for different languages. There are many good
9182books written on each of these languages; please look to these for a
9183language reference or tutorial.
9184
c906108c 9185@menu
b37303ee 9186* C:: C and C@t{++}
b383017d 9187* Objective-C:: Objective-C
09d4efe1 9188* Fortran:: Fortran
9c16f35a 9189* Pascal:: Pascal
b37303ee 9190* Modula-2:: Modula-2
e07c999f 9191* Ada:: Ada
c906108c
SS
9192@end menu
9193
6d2ebf8b 9194@node C
b37052ae 9195@subsection C and C@t{++}
7a292a7a 9196
b37052ae
EZ
9197@cindex C and C@t{++}
9198@cindex expressions in C or C@t{++}
c906108c 9199
b37052ae 9200Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9201to both languages. Whenever this is the case, we discuss those languages
9202together.
9203
41afff9a
EZ
9204@cindex C@t{++}
9205@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9206@cindex @sc{gnu} C@t{++}
9207The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9208compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9209effectively, you must compile your C@t{++} programs with a supported
9210C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9211compiler (@code{aCC}).
9212
0179ffac
DC
9213For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9214format; if it doesn't work on your system, try the stabs+ debugging
9215format. You can select those formats explicitly with the @code{g++}
9216command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9217@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9218gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9219
c906108c 9220@menu
b37052ae
EZ
9221* C Operators:: C and C@t{++} operators
9222* C Constants:: C and C@t{++} constants
79a6e687 9223* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9224* C Defaults:: Default settings for C and C@t{++}
9225* C Checks:: C and C@t{++} type and range checks
c906108c 9226* Debugging C:: @value{GDBN} and C
79a6e687 9227* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9228* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9229@end menu
c906108c 9230
6d2ebf8b 9231@node C Operators
79a6e687 9232@subsubsection C and C@t{++} Operators
7a292a7a 9233
b37052ae 9234@cindex C and C@t{++} operators
c906108c
SS
9235
9236Operators must be defined on values of specific types. For instance,
9237@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9238often defined on groups of types.
c906108c 9239
b37052ae 9240For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9241
9242@itemize @bullet
53a5351d 9243
c906108c 9244@item
c906108c 9245@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9246specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9247
9248@item
d4f3574e
SS
9249@emph{Floating-point types} include @code{float}, @code{double}, and
9250@code{long double} (if supported by the target platform).
c906108c
SS
9251
9252@item
53a5351d 9253@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9254
9255@item
9256@emph{Scalar types} include all of the above.
53a5351d 9257
c906108c
SS
9258@end itemize
9259
9260@noindent
9261The following operators are supported. They are listed here
9262in order of increasing precedence:
9263
9264@table @code
9265@item ,
9266The comma or sequencing operator. Expressions in a comma-separated list
9267are evaluated from left to right, with the result of the entire
9268expression being the last expression evaluated.
9269
9270@item =
9271Assignment. The value of an assignment expression is the value
9272assigned. Defined on scalar types.
9273
9274@item @var{op}=
9275Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9276and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9277@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9278@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9279@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9280
9281@item ?:
9282The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9283of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9284integral type.
9285
9286@item ||
9287Logical @sc{or}. Defined on integral types.
9288
9289@item &&
9290Logical @sc{and}. Defined on integral types.
9291
9292@item |
9293Bitwise @sc{or}. Defined on integral types.
9294
9295@item ^
9296Bitwise exclusive-@sc{or}. Defined on integral types.
9297
9298@item &
9299Bitwise @sc{and}. Defined on integral types.
9300
9301@item ==@r{, }!=
9302Equality and inequality. Defined on scalar types. The value of these
9303expressions is 0 for false and non-zero for true.
9304
9305@item <@r{, }>@r{, }<=@r{, }>=
9306Less than, greater than, less than or equal, greater than or equal.
9307Defined on scalar types. The value of these expressions is 0 for false
9308and non-zero for true.
9309
9310@item <<@r{, }>>
9311left shift, and right shift. Defined on integral types.
9312
9313@item @@
9314The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9315
9316@item +@r{, }-
9317Addition and subtraction. Defined on integral types, floating-point types and
9318pointer types.
9319
9320@item *@r{, }/@r{, }%
9321Multiplication, division, and modulus. Multiplication and division are
9322defined on integral and floating-point types. Modulus is defined on
9323integral types.
9324
9325@item ++@r{, }--
9326Increment and decrement. When appearing before a variable, the
9327operation is performed before the variable is used in an expression;
9328when appearing after it, the variable's value is used before the
9329operation takes place.
9330
9331@item *
9332Pointer dereferencing. Defined on pointer types. Same precedence as
9333@code{++}.
9334
9335@item &
9336Address operator. Defined on variables. Same precedence as @code{++}.
9337
b37052ae
EZ
9338For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9339allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9340to examine the address
b37052ae 9341where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9342stored.
c906108c
SS
9343
9344@item -
9345Negative. Defined on integral and floating-point types. Same
9346precedence as @code{++}.
9347
9348@item !
9349Logical negation. Defined on integral types. Same precedence as
9350@code{++}.
9351
9352@item ~
9353Bitwise complement operator. Defined on integral types. Same precedence as
9354@code{++}.
9355
9356
9357@item .@r{, }->
9358Structure member, and pointer-to-structure member. For convenience,
9359@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9360pointer based on the stored type information.
9361Defined on @code{struct} and @code{union} data.
9362
c906108c
SS
9363@item .*@r{, }->*
9364Dereferences of pointers to members.
c906108c
SS
9365
9366@item []
9367Array indexing. @code{@var{a}[@var{i}]} is defined as
9368@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9369
9370@item ()
9371Function parameter list. Same precedence as @code{->}.
9372
c906108c 9373@item ::
b37052ae 9374C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9375and @code{class} types.
c906108c
SS
9376
9377@item ::
7a292a7a
SS
9378Doubled colons also represent the @value{GDBN} scope operator
9379(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9380above.
c906108c
SS
9381@end table
9382
c906108c
SS
9383If an operator is redefined in the user code, @value{GDBN} usually
9384attempts to invoke the redefined version instead of using the operator's
9385predefined meaning.
c906108c 9386
6d2ebf8b 9387@node C Constants
79a6e687 9388@subsubsection C and C@t{++} Constants
c906108c 9389
b37052ae 9390@cindex C and C@t{++} constants
c906108c 9391
b37052ae 9392@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9393following ways:
c906108c
SS
9394
9395@itemize @bullet
9396@item
9397Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9398specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9399by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9400@samp{l}, specifying that the constant should be treated as a
9401@code{long} value.
9402
9403@item
9404Floating point constants are a sequence of digits, followed by a decimal
9405point, followed by a sequence of digits, and optionally followed by an
9406exponent. An exponent is of the form:
9407@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9408sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9409A floating-point constant may also end with a letter @samp{f} or
9410@samp{F}, specifying that the constant should be treated as being of
9411the @code{float} (as opposed to the default @code{double}) type; or with
9412a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9413constant.
c906108c
SS
9414
9415@item
9416Enumerated constants consist of enumerated identifiers, or their
9417integral equivalents.
9418
9419@item
9420Character constants are a single character surrounded by single quotes
9421(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9422(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9423be represented by a letter or by @dfn{escape sequences}, which are of
9424the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9425of the character's ordinal value; or of the form @samp{\@var{x}}, where
9426@samp{@var{x}} is a predefined special character---for example,
9427@samp{\n} for newline.
9428
9429@item
96a2c332
SS
9430String constants are a sequence of character constants surrounded by
9431double quotes (@code{"}). Any valid character constant (as described
9432above) may appear. Double quotes within the string must be preceded by
9433a backslash, so for instance @samp{"a\"b'c"} is a string of five
9434characters.
c906108c
SS
9435
9436@item
9437Pointer constants are an integral value. You can also write pointers
9438to constants using the C operator @samp{&}.
9439
9440@item
9441Array constants are comma-separated lists surrounded by braces @samp{@{}
9442and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9443integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9444and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9445@end itemize
9446
79a6e687
BW
9447@node C Plus Plus Expressions
9448@subsubsection C@t{++} Expressions
b37052ae
EZ
9449
9450@cindex expressions in C@t{++}
9451@value{GDBN} expression handling can interpret most C@t{++} expressions.
9452
0179ffac
DC
9453@cindex debugging C@t{++} programs
9454@cindex C@t{++} compilers
9455@cindex debug formats and C@t{++}
9456@cindex @value{NGCC} and C@t{++}
c906108c 9457@quotation
b37052ae 9458@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9459proper compiler and the proper debug format. Currently, @value{GDBN}
9460works best when debugging C@t{++} code that is compiled with
9461@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9462@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9463stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9464stabs+ as their default debug format, so you usually don't need to
9465specify a debug format explicitly. Other compilers and/or debug formats
9466are likely to work badly or not at all when using @value{GDBN} to debug
9467C@t{++} code.
c906108c 9468@end quotation
c906108c
SS
9469
9470@enumerate
9471
9472@cindex member functions
9473@item
9474Member function calls are allowed; you can use expressions like
9475
474c8240 9476@smallexample
c906108c 9477count = aml->GetOriginal(x, y)
474c8240 9478@end smallexample
c906108c 9479
41afff9a 9480@vindex this@r{, inside C@t{++} member functions}
b37052ae 9481@cindex namespace in C@t{++}
c906108c
SS
9482@item
9483While a member function is active (in the selected stack frame), your
9484expressions have the same namespace available as the member function;
9485that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9486pointer @code{this} following the same rules as C@t{++}.
c906108c 9487
c906108c 9488@cindex call overloaded functions
d4f3574e 9489@cindex overloaded functions, calling
b37052ae 9490@cindex type conversions in C@t{++}
c906108c
SS
9491@item
9492You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9493call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9494perform overload resolution involving user-defined type conversions,
9495calls to constructors, or instantiations of templates that do not exist
9496in the program. It also cannot handle ellipsis argument lists or
9497default arguments.
9498
9499It does perform integral conversions and promotions, floating-point
9500promotions, arithmetic conversions, pointer conversions, conversions of
9501class objects to base classes, and standard conversions such as those of
9502functions or arrays to pointers; it requires an exact match on the
9503number of function arguments.
9504
9505Overload resolution is always performed, unless you have specified
79a6e687
BW
9506@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9507,@value{GDBN} Features for C@t{++}}.
c906108c 9508
d4f3574e 9509You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9510explicit function signature to call an overloaded function, as in
9511@smallexample
9512p 'foo(char,int)'('x', 13)
9513@end smallexample
d4f3574e 9514
c906108c 9515The @value{GDBN} command-completion facility can simplify this;
79a6e687 9516see @ref{Completion, ,Command Completion}.
c906108c 9517
c906108c
SS
9518@cindex reference declarations
9519@item
b37052ae
EZ
9520@value{GDBN} understands variables declared as C@t{++} references; you can use
9521them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9522dereferenced.
9523
9524In the parameter list shown when @value{GDBN} displays a frame, the values of
9525reference variables are not displayed (unlike other variables); this
9526avoids clutter, since references are often used for large structures.
9527The @emph{address} of a reference variable is always shown, unless
9528you have specified @samp{set print address off}.
9529
9530@item
b37052ae 9531@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9532expressions can use it just as expressions in your program do. Since
9533one scope may be defined in another, you can use @code{::} repeatedly if
9534necessary, for example in an expression like
9535@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9536resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9537debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9538@end enumerate
9539
b37052ae 9540In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9541calling virtual functions correctly, printing out virtual bases of
9542objects, calling functions in a base subobject, casting objects, and
9543invoking user-defined operators.
c906108c 9544
6d2ebf8b 9545@node C Defaults
79a6e687 9546@subsubsection C and C@t{++} Defaults
7a292a7a 9547
b37052ae 9548@cindex C and C@t{++} defaults
c906108c 9549
c906108c
SS
9550If you allow @value{GDBN} to set type and range checking automatically, they
9551both default to @code{off} whenever the working language changes to
b37052ae 9552C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9553selects the working language.
c906108c
SS
9554
9555If you allow @value{GDBN} to set the language automatically, it
9556recognizes source files whose names end with @file{.c}, @file{.C}, or
9557@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9558these files, it sets the working language to C or C@t{++}.
79a6e687 9559@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9560for further details.
9561
c906108c
SS
9562@c Type checking is (a) primarily motivated by Modula-2, and (b)
9563@c unimplemented. If (b) changes, it might make sense to let this node
9564@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9565
6d2ebf8b 9566@node C Checks
79a6e687 9567@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9568
b37052ae 9569@cindex C and C@t{++} checks
c906108c 9570
b37052ae 9571By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9572is not used. However, if you turn type checking on, @value{GDBN}
9573considers two variables type equivalent if:
9574
9575@itemize @bullet
9576@item
9577The two variables are structured and have the same structure, union, or
9578enumerated tag.
9579
9580@item
9581The two variables have the same type name, or types that have been
9582declared equivalent through @code{typedef}.
9583
9584@ignore
9585@c leaving this out because neither J Gilmore nor R Pesch understand it.
9586@c FIXME--beers?
9587@item
9588The two @code{struct}, @code{union}, or @code{enum} variables are
9589declared in the same declaration. (Note: this may not be true for all C
9590compilers.)
9591@end ignore
9592@end itemize
9593
9594Range checking, if turned on, is done on mathematical operations. Array
9595indices are not checked, since they are often used to index a pointer
9596that is not itself an array.
c906108c 9597
6d2ebf8b 9598@node Debugging C
c906108c 9599@subsubsection @value{GDBN} and C
c906108c
SS
9600
9601The @code{set print union} and @code{show print union} commands apply to
9602the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9603inside a @code{struct} or @code{class} is also printed. Otherwise, it
9604appears as @samp{@{...@}}.
c906108c
SS
9605
9606The @code{@@} operator aids in the debugging of dynamic arrays, formed
9607with pointers and a memory allocation function. @xref{Expressions,
9608,Expressions}.
9609
79a6e687
BW
9610@node Debugging C Plus Plus
9611@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9612
b37052ae 9613@cindex commands for C@t{++}
7a292a7a 9614
b37052ae
EZ
9615Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9616designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9617
9618@table @code
9619@cindex break in overloaded functions
9620@item @r{breakpoint menus}
9621When you want a breakpoint in a function whose name is overloaded,
9622@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9623you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9624
b37052ae 9625@cindex overloading in C@t{++}
c906108c
SS
9626@item rbreak @var{regex}
9627Setting breakpoints using regular expressions is helpful for setting
9628breakpoints on overloaded functions that are not members of any special
9629classes.
79a6e687 9630@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9631
b37052ae 9632@cindex C@t{++} exception handling
c906108c
SS
9633@item catch throw
9634@itemx catch catch
b37052ae 9635Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9636Catchpoints, , Setting Catchpoints}.
c906108c
SS
9637
9638@cindex inheritance
9639@item ptype @var{typename}
9640Print inheritance relationships as well as other information for type
9641@var{typename}.
9642@xref{Symbols, ,Examining the Symbol Table}.
9643
b37052ae 9644@cindex C@t{++} symbol display
c906108c
SS
9645@item set print demangle
9646@itemx show print demangle
9647@itemx set print asm-demangle
9648@itemx show print asm-demangle
b37052ae
EZ
9649Control whether C@t{++} symbols display in their source form, both when
9650displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9651@xref{Print Settings, ,Print Settings}.
c906108c
SS
9652
9653@item set print object
9654@itemx show print object
9655Choose whether to print derived (actual) or declared types of objects.
79a6e687 9656@xref{Print Settings, ,Print Settings}.
c906108c
SS
9657
9658@item set print vtbl
9659@itemx show print vtbl
9660Control the format for printing virtual function tables.
79a6e687 9661@xref{Print Settings, ,Print Settings}.
c906108c 9662(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9663ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9664
9665@kindex set overload-resolution
d4f3574e 9666@cindex overloaded functions, overload resolution
c906108c 9667@item set overload-resolution on
b37052ae 9668Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9669is on. For overloaded functions, @value{GDBN} evaluates the arguments
9670and searches for a function whose signature matches the argument types,
79a6e687
BW
9671using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9672Expressions, ,C@t{++} Expressions}, for details).
9673If it cannot find a match, it emits a message.
c906108c
SS
9674
9675@item set overload-resolution off
b37052ae 9676Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9677overloaded functions that are not class member functions, @value{GDBN}
9678chooses the first function of the specified name that it finds in the
9679symbol table, whether or not its arguments are of the correct type. For
9680overloaded functions that are class member functions, @value{GDBN}
9681searches for a function whose signature @emph{exactly} matches the
9682argument types.
c906108c 9683
9c16f35a
EZ
9684@kindex show overload-resolution
9685@item show overload-resolution
9686Show the current setting of overload resolution.
9687
c906108c
SS
9688@item @r{Overloaded symbol names}
9689You can specify a particular definition of an overloaded symbol, using
b37052ae 9690the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9691@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9692also use the @value{GDBN} command-line word completion facilities to list the
9693available choices, or to finish the type list for you.
79a6e687 9694@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9695@end table
c906108c 9696
febe4383
TJB
9697@node Decimal Floating Point
9698@subsubsection Decimal Floating Point format
9699@cindex decimal floating point format
9700
9701@value{GDBN} can examine, set and perform computations with numbers in
9702decimal floating point format, which in the C language correspond to the
9703@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9704specified by the extension to support decimal floating-point arithmetic.
9705
9706There are two encodings in use, depending on the architecture: BID (Binary
9707Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9708PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9709target.
9710
9711Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9712to manipulate decimal floating point numbers, it is not possible to convert
9713(using a cast, for example) integers wider than 32-bit to decimal float.
9714
9715In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9716point computations, error checking in decimal float operations ignores
9717underflow, overflow and divide by zero exceptions.
9718
4acd40f3
TJB
9719In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9720to inspect @code{_Decimal128} values stored in floating point registers. See
9721@ref{PowerPC,,PowerPC} for more details.
9722
b37303ee
AF
9723@node Objective-C
9724@subsection Objective-C
9725
9726@cindex Objective-C
9727This section provides information about some commands and command
721c2651
EZ
9728options that are useful for debugging Objective-C code. See also
9729@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9730few more commands specific to Objective-C support.
b37303ee
AF
9731
9732@menu
b383017d
RM
9733* Method Names in Commands::
9734* The Print Command with Objective-C::
b37303ee
AF
9735@end menu
9736
c8f4133a 9737@node Method Names in Commands
b37303ee
AF
9738@subsubsection Method Names in Commands
9739
9740The following commands have been extended to accept Objective-C method
9741names as line specifications:
9742
9743@kindex clear@r{, and Objective-C}
9744@kindex break@r{, and Objective-C}
9745@kindex info line@r{, and Objective-C}
9746@kindex jump@r{, and Objective-C}
9747@kindex list@r{, and Objective-C}
9748@itemize
9749@item @code{clear}
9750@item @code{break}
9751@item @code{info line}
9752@item @code{jump}
9753@item @code{list}
9754@end itemize
9755
9756A fully qualified Objective-C method name is specified as
9757
9758@smallexample
9759-[@var{Class} @var{methodName}]
9760@end smallexample
9761
c552b3bb
JM
9762where the minus sign is used to indicate an instance method and a
9763plus sign (not shown) is used to indicate a class method. The class
9764name @var{Class} and method name @var{methodName} are enclosed in
9765brackets, similar to the way messages are specified in Objective-C
9766source code. For example, to set a breakpoint at the @code{create}
9767instance method of class @code{Fruit} in the program currently being
9768debugged, enter:
b37303ee
AF
9769
9770@smallexample
9771break -[Fruit create]
9772@end smallexample
9773
9774To list ten program lines around the @code{initialize} class method,
9775enter:
9776
9777@smallexample
9778list +[NSText initialize]
9779@end smallexample
9780
c552b3bb
JM
9781In the current version of @value{GDBN}, the plus or minus sign is
9782required. In future versions of @value{GDBN}, the plus or minus
9783sign will be optional, but you can use it to narrow the search. It
9784is also possible to specify just a method name:
b37303ee
AF
9785
9786@smallexample
9787break create
9788@end smallexample
9789
9790You must specify the complete method name, including any colons. If
9791your program's source files contain more than one @code{create} method,
9792you'll be presented with a numbered list of classes that implement that
9793method. Indicate your choice by number, or type @samp{0} to exit if
9794none apply.
9795
9796As another example, to clear a breakpoint established at the
9797@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9798
9799@smallexample
9800clear -[NSWindow makeKeyAndOrderFront:]
9801@end smallexample
9802
9803@node The Print Command with Objective-C
9804@subsubsection The Print Command With Objective-C
721c2651 9805@cindex Objective-C, print objects
c552b3bb
JM
9806@kindex print-object
9807@kindex po @r{(@code{print-object})}
b37303ee 9808
c552b3bb 9809The print command has also been extended to accept methods. For example:
b37303ee
AF
9810
9811@smallexample
c552b3bb 9812print -[@var{object} hash]
b37303ee
AF
9813@end smallexample
9814
9815@cindex print an Objective-C object description
c552b3bb
JM
9816@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9817@noindent
9818will tell @value{GDBN} to send the @code{hash} message to @var{object}
9819and print the result. Also, an additional command has been added,
9820@code{print-object} or @code{po} for short, which is meant to print
9821the description of an object. However, this command may only work
9822with certain Objective-C libraries that have a particular hook
9823function, @code{_NSPrintForDebugger}, defined.
b37303ee 9824
09d4efe1
EZ
9825@node Fortran
9826@subsection Fortran
9827@cindex Fortran-specific support in @value{GDBN}
9828
814e32d7
WZ
9829@value{GDBN} can be used to debug programs written in Fortran, but it
9830currently supports only the features of Fortran 77 language.
9831
9832@cindex trailing underscore, in Fortran symbols
9833Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9834among them) append an underscore to the names of variables and
9835functions. When you debug programs compiled by those compilers, you
9836will need to refer to variables and functions with a trailing
9837underscore.
9838
9839@menu
9840* Fortran Operators:: Fortran operators and expressions
9841* Fortran Defaults:: Default settings for Fortran
79a6e687 9842* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9843@end menu
9844
9845@node Fortran Operators
79a6e687 9846@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9847
9848@cindex Fortran operators and expressions
9849
9850Operators must be defined on values of specific types. For instance,
9851@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9852arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9853
9854@table @code
9855@item **
9856The exponentiation operator. It raises the first operand to the power
9857of the second one.
9858
9859@item :
9860The range operator. Normally used in the form of array(low:high) to
9861represent a section of array.
9862@end table
9863
9864@node Fortran Defaults
9865@subsubsection Fortran Defaults
9866
9867@cindex Fortran Defaults
9868
9869Fortran symbols are usually case-insensitive, so @value{GDBN} by
9870default uses case-insensitive matches for Fortran symbols. You can
9871change that with the @samp{set case-insensitive} command, see
9872@ref{Symbols}, for the details.
9873
79a6e687
BW
9874@node Special Fortran Commands
9875@subsubsection Special Fortran Commands
814e32d7
WZ
9876
9877@cindex Special Fortran commands
9878
db2e3e2e
BW
9879@value{GDBN} has some commands to support Fortran-specific features,
9880such as displaying common blocks.
814e32d7 9881
09d4efe1
EZ
9882@table @code
9883@cindex @code{COMMON} blocks, Fortran
9884@kindex info common
9885@item info common @r{[}@var{common-name}@r{]}
9886This command prints the values contained in the Fortran @code{COMMON}
9887block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9888all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9889printed.
9890@end table
9891
9c16f35a
EZ
9892@node Pascal
9893@subsection Pascal
9894
9895@cindex Pascal support in @value{GDBN}, limitations
9896Debugging Pascal programs which use sets, subranges, file variables, or
9897nested functions does not currently work. @value{GDBN} does not support
9898entering expressions, printing values, or similar features using Pascal
9899syntax.
9900
9901The Pascal-specific command @code{set print pascal_static-members}
9902controls whether static members of Pascal objects are displayed.
9903@xref{Print Settings, pascal_static-members}.
9904
09d4efe1 9905@node Modula-2
c906108c 9906@subsection Modula-2
7a292a7a 9907
d4f3574e 9908@cindex Modula-2, @value{GDBN} support
c906108c
SS
9909
9910The extensions made to @value{GDBN} to support Modula-2 only support
9911output from the @sc{gnu} Modula-2 compiler (which is currently being
9912developed). Other Modula-2 compilers are not currently supported, and
9913attempting to debug executables produced by them is most likely
9914to give an error as @value{GDBN} reads in the executable's symbol
9915table.
9916
9917@cindex expressions in Modula-2
9918@menu
9919* M2 Operators:: Built-in operators
9920* Built-In Func/Proc:: Built-in functions and procedures
9921* M2 Constants:: Modula-2 constants
72019c9c 9922* M2 Types:: Modula-2 types
c906108c
SS
9923* M2 Defaults:: Default settings for Modula-2
9924* Deviations:: Deviations from standard Modula-2
9925* M2 Checks:: Modula-2 type and range checks
9926* M2 Scope:: The scope operators @code{::} and @code{.}
9927* GDB/M2:: @value{GDBN} and Modula-2
9928@end menu
9929
6d2ebf8b 9930@node M2 Operators
c906108c
SS
9931@subsubsection Operators
9932@cindex Modula-2 operators
9933
9934Operators must be defined on values of specific types. For instance,
9935@code{+} is defined on numbers, but not on structures. Operators are
9936often defined on groups of types. For the purposes of Modula-2, the
9937following definitions hold:
9938
9939@itemize @bullet
9940
9941@item
9942@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9943their subranges.
9944
9945@item
9946@emph{Character types} consist of @code{CHAR} and its subranges.
9947
9948@item
9949@emph{Floating-point types} consist of @code{REAL}.
9950
9951@item
9952@emph{Pointer types} consist of anything declared as @code{POINTER TO
9953@var{type}}.
9954
9955@item
9956@emph{Scalar types} consist of all of the above.
9957
9958@item
9959@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9960
9961@item
9962@emph{Boolean types} consist of @code{BOOLEAN}.
9963@end itemize
9964
9965@noindent
9966The following operators are supported, and appear in order of
9967increasing precedence:
9968
9969@table @code
9970@item ,
9971Function argument or array index separator.
9972
9973@item :=
9974Assignment. The value of @var{var} @code{:=} @var{value} is
9975@var{value}.
9976
9977@item <@r{, }>
9978Less than, greater than on integral, floating-point, or enumerated
9979types.
9980
9981@item <=@r{, }>=
96a2c332 9982Less than or equal to, greater than or equal to
c906108c
SS
9983on integral, floating-point and enumerated types, or set inclusion on
9984set types. Same precedence as @code{<}.
9985
9986@item =@r{, }<>@r{, }#
9987Equality and two ways of expressing inequality, valid on scalar types.
9988Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9989available for inequality, since @code{#} conflicts with the script
9990comment character.
9991
9992@item IN
9993Set membership. Defined on set types and the types of their members.
9994Same precedence as @code{<}.
9995
9996@item OR
9997Boolean disjunction. Defined on boolean types.
9998
9999@item AND@r{, }&
d4f3574e 10000Boolean conjunction. Defined on boolean types.
c906108c
SS
10001
10002@item @@
10003The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10004
10005@item +@r{, }-
10006Addition and subtraction on integral and floating-point types, or union
10007and difference on set types.
10008
10009@item *
10010Multiplication on integral and floating-point types, or set intersection
10011on set types.
10012
10013@item /
10014Division on floating-point types, or symmetric set difference on set
10015types. Same precedence as @code{*}.
10016
10017@item DIV@r{, }MOD
10018Integer division and remainder. Defined on integral types. Same
10019precedence as @code{*}.
10020
10021@item -
10022Negative. Defined on @code{INTEGER} and @code{REAL} data.
10023
10024@item ^
10025Pointer dereferencing. Defined on pointer types.
10026
10027@item NOT
10028Boolean negation. Defined on boolean types. Same precedence as
10029@code{^}.
10030
10031@item .
10032@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10033precedence as @code{^}.
10034
10035@item []
10036Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10037
10038@item ()
10039Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10040as @code{^}.
10041
10042@item ::@r{, }.
10043@value{GDBN} and Modula-2 scope operators.
10044@end table
10045
10046@quotation
72019c9c 10047@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10048treats the use of the operator @code{IN}, or the use of operators
10049@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10050@code{<=}, and @code{>=} on sets as an error.
10051@end quotation
10052
cb51c4e0 10053
6d2ebf8b 10054@node Built-In Func/Proc
79a6e687 10055@subsubsection Built-in Functions and Procedures
cb51c4e0 10056@cindex Modula-2 built-ins
c906108c
SS
10057
10058Modula-2 also makes available several built-in procedures and functions.
10059In describing these, the following metavariables are used:
10060
10061@table @var
10062
10063@item a
10064represents an @code{ARRAY} variable.
10065
10066@item c
10067represents a @code{CHAR} constant or variable.
10068
10069@item i
10070represents a variable or constant of integral type.
10071
10072@item m
10073represents an identifier that belongs to a set. Generally used in the
10074same function with the metavariable @var{s}. The type of @var{s} should
10075be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10076
10077@item n
10078represents a variable or constant of integral or floating-point type.
10079
10080@item r
10081represents a variable or constant of floating-point type.
10082
10083@item t
10084represents a type.
10085
10086@item v
10087represents a variable.
10088
10089@item x
10090represents a variable or constant of one of many types. See the
10091explanation of the function for details.
10092@end table
10093
10094All Modula-2 built-in procedures also return a result, described below.
10095
10096@table @code
10097@item ABS(@var{n})
10098Returns the absolute value of @var{n}.
10099
10100@item CAP(@var{c})
10101If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10102equivalent, otherwise it returns its argument.
c906108c
SS
10103
10104@item CHR(@var{i})
10105Returns the character whose ordinal value is @var{i}.
10106
10107@item DEC(@var{v})
c3f6f71d 10108Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10109
10110@item DEC(@var{v},@var{i})
10111Decrements the value in the variable @var{v} by @var{i}. Returns the
10112new value.
10113
10114@item EXCL(@var{m},@var{s})
10115Removes the element @var{m} from the set @var{s}. Returns the new
10116set.
10117
10118@item FLOAT(@var{i})
10119Returns the floating point equivalent of the integer @var{i}.
10120
10121@item HIGH(@var{a})
10122Returns the index of the last member of @var{a}.
10123
10124@item INC(@var{v})
c3f6f71d 10125Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10126
10127@item INC(@var{v},@var{i})
10128Increments the value in the variable @var{v} by @var{i}. Returns the
10129new value.
10130
10131@item INCL(@var{m},@var{s})
10132Adds the element @var{m} to the set @var{s} if it is not already
10133there. Returns the new set.
10134
10135@item MAX(@var{t})
10136Returns the maximum value of the type @var{t}.
10137
10138@item MIN(@var{t})
10139Returns the minimum value of the type @var{t}.
10140
10141@item ODD(@var{i})
10142Returns boolean TRUE if @var{i} is an odd number.
10143
10144@item ORD(@var{x})
10145Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10146value of a character is its @sc{ascii} value (on machines supporting the
10147@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10148integral, character and enumerated types.
10149
10150@item SIZE(@var{x})
10151Returns the size of its argument. @var{x} can be a variable or a type.
10152
10153@item TRUNC(@var{r})
10154Returns the integral part of @var{r}.
10155
844781a1
GM
10156@item TSIZE(@var{x})
10157Returns the size of its argument. @var{x} can be a variable or a type.
10158
c906108c
SS
10159@item VAL(@var{t},@var{i})
10160Returns the member of the type @var{t} whose ordinal value is @var{i}.
10161@end table
10162
10163@quotation
10164@emph{Warning:} Sets and their operations are not yet supported, so
10165@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10166an error.
10167@end quotation
10168
10169@cindex Modula-2 constants
6d2ebf8b 10170@node M2 Constants
c906108c
SS
10171@subsubsection Constants
10172
10173@value{GDBN} allows you to express the constants of Modula-2 in the following
10174ways:
10175
10176@itemize @bullet
10177
10178@item
10179Integer constants are simply a sequence of digits. When used in an
10180expression, a constant is interpreted to be type-compatible with the
10181rest of the expression. Hexadecimal integers are specified by a
10182trailing @samp{H}, and octal integers by a trailing @samp{B}.
10183
10184@item
10185Floating point constants appear as a sequence of digits, followed by a
10186decimal point and another sequence of digits. An optional exponent can
10187then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10188@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10189digits of the floating point constant must be valid decimal (base 10)
10190digits.
10191
10192@item
10193Character constants consist of a single character enclosed by a pair of
10194like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10195also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10196followed by a @samp{C}.
10197
10198@item
10199String constants consist of a sequence of characters enclosed by a
10200pair of like quotes, either single (@code{'}) or double (@code{"}).
10201Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10202Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10203sequences.
10204
10205@item
10206Enumerated constants consist of an enumerated identifier.
10207
10208@item
10209Boolean constants consist of the identifiers @code{TRUE} and
10210@code{FALSE}.
10211
10212@item
10213Pointer constants consist of integral values only.
10214
10215@item
10216Set constants are not yet supported.
10217@end itemize
10218
72019c9c
GM
10219@node M2 Types
10220@subsubsection Modula-2 Types
10221@cindex Modula-2 types
10222
10223Currently @value{GDBN} can print the following data types in Modula-2
10224syntax: array types, record types, set types, pointer types, procedure
10225types, enumerated types, subrange types and base types. You can also
10226print the contents of variables declared using these type.
10227This section gives a number of simple source code examples together with
10228sample @value{GDBN} sessions.
10229
10230The first example contains the following section of code:
10231
10232@smallexample
10233VAR
10234 s: SET OF CHAR ;
10235 r: [20..40] ;
10236@end smallexample
10237
10238@noindent
10239and you can request @value{GDBN} to interrogate the type and value of
10240@code{r} and @code{s}.
10241
10242@smallexample
10243(@value{GDBP}) print s
10244@{'A'..'C', 'Z'@}
10245(@value{GDBP}) ptype s
10246SET OF CHAR
10247(@value{GDBP}) print r
1024821
10249(@value{GDBP}) ptype r
10250[20..40]
10251@end smallexample
10252
10253@noindent
10254Likewise if your source code declares @code{s} as:
10255
10256@smallexample
10257VAR
10258 s: SET ['A'..'Z'] ;
10259@end smallexample
10260
10261@noindent
10262then you may query the type of @code{s} by:
10263
10264@smallexample
10265(@value{GDBP}) ptype s
10266type = SET ['A'..'Z']
10267@end smallexample
10268
10269@noindent
10270Note that at present you cannot interactively manipulate set
10271expressions using the debugger.
10272
10273The following example shows how you might declare an array in Modula-2
10274and how you can interact with @value{GDBN} to print its type and contents:
10275
10276@smallexample
10277VAR
10278 s: ARRAY [-10..10] OF CHAR ;
10279@end smallexample
10280
10281@smallexample
10282(@value{GDBP}) ptype s
10283ARRAY [-10..10] OF CHAR
10284@end smallexample
10285
10286Note that the array handling is not yet complete and although the type
10287is printed correctly, expression handling still assumes that all
10288arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10289above.
72019c9c
GM
10290
10291Here are some more type related Modula-2 examples:
10292
10293@smallexample
10294TYPE
10295 colour = (blue, red, yellow, green) ;
10296 t = [blue..yellow] ;
10297VAR
10298 s: t ;
10299BEGIN
10300 s := blue ;
10301@end smallexample
10302
10303@noindent
10304The @value{GDBN} interaction shows how you can query the data type
10305and value of a variable.
10306
10307@smallexample
10308(@value{GDBP}) print s
10309$1 = blue
10310(@value{GDBP}) ptype t
10311type = [blue..yellow]
10312@end smallexample
10313
10314@noindent
10315In this example a Modula-2 array is declared and its contents
10316displayed. Observe that the contents are written in the same way as
10317their @code{C} counterparts.
10318
10319@smallexample
10320VAR
10321 s: ARRAY [1..5] OF CARDINAL ;
10322BEGIN
10323 s[1] := 1 ;
10324@end smallexample
10325
10326@smallexample
10327(@value{GDBP}) print s
10328$1 = @{1, 0, 0, 0, 0@}
10329(@value{GDBP}) ptype s
10330type = ARRAY [1..5] OF CARDINAL
10331@end smallexample
10332
10333The Modula-2 language interface to @value{GDBN} also understands
10334pointer types as shown in this example:
10335
10336@smallexample
10337VAR
10338 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10339BEGIN
10340 NEW(s) ;
10341 s^[1] := 1 ;
10342@end smallexample
10343
10344@noindent
10345and you can request that @value{GDBN} describes the type of @code{s}.
10346
10347@smallexample
10348(@value{GDBP}) ptype s
10349type = POINTER TO ARRAY [1..5] OF CARDINAL
10350@end smallexample
10351
10352@value{GDBN} handles compound types as we can see in this example.
10353Here we combine array types, record types, pointer types and subrange
10354types:
10355
10356@smallexample
10357TYPE
10358 foo = RECORD
10359 f1: CARDINAL ;
10360 f2: CHAR ;
10361 f3: myarray ;
10362 END ;
10363
10364 myarray = ARRAY myrange OF CARDINAL ;
10365 myrange = [-2..2] ;
10366VAR
10367 s: POINTER TO ARRAY myrange OF foo ;
10368@end smallexample
10369
10370@noindent
10371and you can ask @value{GDBN} to describe the type of @code{s} as shown
10372below.
10373
10374@smallexample
10375(@value{GDBP}) ptype s
10376type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10377 f1 : CARDINAL;
10378 f2 : CHAR;
10379 f3 : ARRAY [-2..2] OF CARDINAL;
10380END
10381@end smallexample
10382
6d2ebf8b 10383@node M2 Defaults
79a6e687 10384@subsubsection Modula-2 Defaults
c906108c
SS
10385@cindex Modula-2 defaults
10386
10387If type and range checking are set automatically by @value{GDBN}, they
10388both default to @code{on} whenever the working language changes to
d4f3574e 10389Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10390selected the working language.
10391
10392If you allow @value{GDBN} to set the language automatically, then entering
10393code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10394working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10395Infer the Source Language}, for further details.
c906108c 10396
6d2ebf8b 10397@node Deviations
79a6e687 10398@subsubsection Deviations from Standard Modula-2
c906108c
SS
10399@cindex Modula-2, deviations from
10400
10401A few changes have been made to make Modula-2 programs easier to debug.
10402This is done primarily via loosening its type strictness:
10403
10404@itemize @bullet
10405@item
10406Unlike in standard Modula-2, pointer constants can be formed by
10407integers. This allows you to modify pointer variables during
10408debugging. (In standard Modula-2, the actual address contained in a
10409pointer variable is hidden from you; it can only be modified
10410through direct assignment to another pointer variable or expression that
10411returned a pointer.)
10412
10413@item
10414C escape sequences can be used in strings and characters to represent
10415non-printable characters. @value{GDBN} prints out strings with these
10416escape sequences embedded. Single non-printable characters are
10417printed using the @samp{CHR(@var{nnn})} format.
10418
10419@item
10420The assignment operator (@code{:=}) returns the value of its right-hand
10421argument.
10422
10423@item
10424All built-in procedures both modify @emph{and} return their argument.
10425@end itemize
10426
6d2ebf8b 10427@node M2 Checks
79a6e687 10428@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10429@cindex Modula-2 checks
10430
10431@quotation
10432@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10433range checking.
10434@end quotation
10435@c FIXME remove warning when type/range checks added
10436
10437@value{GDBN} considers two Modula-2 variables type equivalent if:
10438
10439@itemize @bullet
10440@item
10441They are of types that have been declared equivalent via a @code{TYPE
10442@var{t1} = @var{t2}} statement
10443
10444@item
10445They have been declared on the same line. (Note: This is true of the
10446@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10447@end itemize
10448
10449As long as type checking is enabled, any attempt to combine variables
10450whose types are not equivalent is an error.
10451
10452Range checking is done on all mathematical operations, assignment, array
10453index bounds, and all built-in functions and procedures.
10454
6d2ebf8b 10455@node M2 Scope
79a6e687 10456@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10457@cindex scope
41afff9a 10458@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10459@cindex colon, doubled as scope operator
10460@ifinfo
41afff9a 10461@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10462@c Info cannot handle :: but TeX can.
10463@end ifinfo
10464@iftex
41afff9a 10465@vindex ::@r{, in Modula-2}
c906108c
SS
10466@end iftex
10467
10468There are a few subtle differences between the Modula-2 scope operator
10469(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10470similar syntax:
10471
474c8240 10472@smallexample
c906108c
SS
10473
10474@var{module} . @var{id}
10475@var{scope} :: @var{id}
474c8240 10476@end smallexample
c906108c
SS
10477
10478@noindent
10479where @var{scope} is the name of a module or a procedure,
10480@var{module} the name of a module, and @var{id} is any declared
10481identifier within your program, except another module.
10482
10483Using the @code{::} operator makes @value{GDBN} search the scope
10484specified by @var{scope} for the identifier @var{id}. If it is not
10485found in the specified scope, then @value{GDBN} searches all scopes
10486enclosing the one specified by @var{scope}.
10487
10488Using the @code{.} operator makes @value{GDBN} search the current scope for
10489the identifier specified by @var{id} that was imported from the
10490definition module specified by @var{module}. With this operator, it is
10491an error if the identifier @var{id} was not imported from definition
10492module @var{module}, or if @var{id} is not an identifier in
10493@var{module}.
10494
6d2ebf8b 10495@node GDB/M2
c906108c
SS
10496@subsubsection @value{GDBN} and Modula-2
10497
10498Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10499Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10500specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10501@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10502apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10503analogue in Modula-2.
10504
10505The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10506with any language, is not useful with Modula-2. Its
c906108c 10507intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10508created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10509address can be specified by an integral constant, the construct
d4f3574e 10510@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10511
10512@cindex @code{#} in Modula-2
10513In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10514interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10515
e07c999f
PH
10516@node Ada
10517@subsection Ada
10518@cindex Ada
10519
10520The extensions made to @value{GDBN} for Ada only support
10521output from the @sc{gnu} Ada (GNAT) compiler.
10522Other Ada compilers are not currently supported, and
10523attempting to debug executables produced by them is most likely
10524to be difficult.
10525
10526
10527@cindex expressions in Ada
10528@menu
10529* Ada Mode Intro:: General remarks on the Ada syntax
10530 and semantics supported by Ada mode
10531 in @value{GDBN}.
10532* Omissions from Ada:: Restrictions on the Ada expression syntax.
10533* Additions to Ada:: Extensions of the Ada expression syntax.
10534* Stopping Before Main Program:: Debugging the program during elaboration.
10535* Ada Glitches:: Known peculiarities of Ada mode.
10536@end menu
10537
10538@node Ada Mode Intro
10539@subsubsection Introduction
10540@cindex Ada mode, general
10541
10542The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10543syntax, with some extensions.
10544The philosophy behind the design of this subset is
10545
10546@itemize @bullet
10547@item
10548That @value{GDBN} should provide basic literals and access to operations for
10549arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10550leaving more sophisticated computations to subprograms written into the
10551program (which therefore may be called from @value{GDBN}).
10552
10553@item
10554That type safety and strict adherence to Ada language restrictions
10555are not particularly important to the @value{GDBN} user.
10556
10557@item
10558That brevity is important to the @value{GDBN} user.
10559@end itemize
10560
10561Thus, for brevity, the debugger acts as if there were
10562implicit @code{with} and @code{use} clauses in effect for all user-written
10563packages, making it unnecessary to fully qualify most names with
10564their packages, regardless of context. Where this causes ambiguity,
10565@value{GDBN} asks the user's intent.
10566
10567The debugger will start in Ada mode if it detects an Ada main program.
10568As for other languages, it will enter Ada mode when stopped in a program that
10569was translated from an Ada source file.
10570
10571While in Ada mode, you may use `@t{--}' for comments. This is useful
10572mostly for documenting command files. The standard @value{GDBN} comment
10573(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10574middle (to allow based literals).
10575
10576The debugger supports limited overloading. Given a subprogram call in which
10577the function symbol has multiple definitions, it will use the number of
10578actual parameters and some information about their types to attempt to narrow
10579the set of definitions. It also makes very limited use of context, preferring
10580procedures to functions in the context of the @code{call} command, and
10581functions to procedures elsewhere.
10582
10583@node Omissions from Ada
10584@subsubsection Omissions from Ada
10585@cindex Ada, omissions from
10586
10587Here are the notable omissions from the subset:
10588
10589@itemize @bullet
10590@item
10591Only a subset of the attributes are supported:
10592
10593@itemize @minus
10594@item
10595@t{'First}, @t{'Last}, and @t{'Length}
10596 on array objects (not on types and subtypes).
10597
10598@item
10599@t{'Min} and @t{'Max}.
10600
10601@item
10602@t{'Pos} and @t{'Val}.
10603
10604@item
10605@t{'Tag}.
10606
10607@item
10608@t{'Range} on array objects (not subtypes), but only as the right
10609operand of the membership (@code{in}) operator.
10610
10611@item
10612@t{'Access}, @t{'Unchecked_Access}, and
10613@t{'Unrestricted_Access} (a GNAT extension).
10614
10615@item
10616@t{'Address}.
10617@end itemize
10618
10619@item
10620The names in
10621@code{Characters.Latin_1} are not available and
10622concatenation is not implemented. Thus, escape characters in strings are
10623not currently available.
10624
10625@item
10626Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10627equality of representations. They will generally work correctly
10628for strings and arrays whose elements have integer or enumeration types.
10629They may not work correctly for arrays whose element
10630types have user-defined equality, for arrays of real values
10631(in particular, IEEE-conformant floating point, because of negative
10632zeroes and NaNs), and for arrays whose elements contain unused bits with
10633indeterminate values.
10634
10635@item
10636The other component-by-component array operations (@code{and}, @code{or},
10637@code{xor}, @code{not}, and relational tests other than equality)
10638are not implemented.
10639
10640@item
860701dc
PH
10641@cindex array aggregates (Ada)
10642@cindex record aggregates (Ada)
10643@cindex aggregates (Ada)
10644There is limited support for array and record aggregates. They are
10645permitted only on the right sides of assignments, as in these examples:
10646
10647@smallexample
10648set An_Array := (1, 2, 3, 4, 5, 6)
10649set An_Array := (1, others => 0)
10650set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10651set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10652set A_Record := (1, "Peter", True);
10653set A_Record := (Name => "Peter", Id => 1, Alive => True)
10654@end smallexample
10655
10656Changing a
10657discriminant's value by assigning an aggregate has an
10658undefined effect if that discriminant is used within the record.
10659However, you can first modify discriminants by directly assigning to
10660them (which normally would not be allowed in Ada), and then performing an
10661aggregate assignment. For example, given a variable @code{A_Rec}
10662declared to have a type such as:
10663
10664@smallexample
10665type Rec (Len : Small_Integer := 0) is record
10666 Id : Integer;
10667 Vals : IntArray (1 .. Len);
10668end record;
10669@end smallexample
10670
10671you can assign a value with a different size of @code{Vals} with two
10672assignments:
10673
10674@smallexample
10675set A_Rec.Len := 4
10676set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10677@end smallexample
10678
10679As this example also illustrates, @value{GDBN} is very loose about the usual
10680rules concerning aggregates. You may leave out some of the
10681components of an array or record aggregate (such as the @code{Len}
10682component in the assignment to @code{A_Rec} above); they will retain their
10683original values upon assignment. You may freely use dynamic values as
10684indices in component associations. You may even use overlapping or
10685redundant component associations, although which component values are
10686assigned in such cases is not defined.
e07c999f
PH
10687
10688@item
10689Calls to dispatching subprograms are not implemented.
10690
10691@item
10692The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10693than that of real Ada. It makes only limited use of the context in
10694which a subexpression appears to resolve its meaning, and it is much
10695looser in its rules for allowing type matches. As a result, some
10696function calls will be ambiguous, and the user will be asked to choose
10697the proper resolution.
e07c999f
PH
10698
10699@item
10700The @code{new} operator is not implemented.
10701
10702@item
10703Entry calls are not implemented.
10704
10705@item
10706Aside from printing, arithmetic operations on the native VAX floating-point
10707formats are not supported.
10708
10709@item
10710It is not possible to slice a packed array.
10711@end itemize
10712
10713@node Additions to Ada
10714@subsubsection Additions to Ada
10715@cindex Ada, deviations from
10716
10717As it does for other languages, @value{GDBN} makes certain generic
10718extensions to Ada (@pxref{Expressions}):
10719
10720@itemize @bullet
10721@item
ae21e955
BW
10722If the expression @var{E} is a variable residing in memory (typically
10723a local variable or array element) and @var{N} is a positive integer,
10724then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10725@var{N}-1 adjacent variables following it in memory as an array. In
10726Ada, this operator is generally not necessary, since its prime use is
10727in displaying parts of an array, and slicing will usually do this in
10728Ada. However, there are occasional uses when debugging programs in
10729which certain debugging information has been optimized away.
e07c999f
PH
10730
10731@item
ae21e955
BW
10732@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10733appears in function or file @var{B}.'' When @var{B} is a file name,
10734you must typically surround it in single quotes.
e07c999f
PH
10735
10736@item
10737The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10738@var{type} that appears at address @var{addr}.''
10739
10740@item
10741A name starting with @samp{$} is a convenience variable
10742(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10743@end itemize
10744
ae21e955
BW
10745In addition, @value{GDBN} provides a few other shortcuts and outright
10746additions specific to Ada:
e07c999f
PH
10747
10748@itemize @bullet
10749@item
10750The assignment statement is allowed as an expression, returning
10751its right-hand operand as its value. Thus, you may enter
10752
10753@smallexample
10754set x := y + 3
10755print A(tmp := y + 1)
10756@end smallexample
10757
10758@item
10759The semicolon is allowed as an ``operator,'' returning as its value
10760the value of its right-hand operand.
10761This allows, for example,
10762complex conditional breaks:
10763
10764@smallexample
10765break f
10766condition 1 (report(i); k += 1; A(k) > 100)
10767@end smallexample
10768
10769@item
10770Rather than use catenation and symbolic character names to introduce special
10771characters into strings, one may instead use a special bracket notation,
10772which is also used to print strings. A sequence of characters of the form
10773@samp{["@var{XX}"]} within a string or character literal denotes the
10774(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10775sequence of characters @samp{["""]} also denotes a single quotation mark
10776in strings. For example,
10777@smallexample
10778 "One line.["0a"]Next line.["0a"]"
10779@end smallexample
10780@noindent
ae21e955
BW
10781contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10782after each period.
e07c999f
PH
10783
10784@item
10785The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10786@t{'Max} is optional (and is ignored in any case). For example, it is valid
10787to write
10788
10789@smallexample
10790print 'max(x, y)
10791@end smallexample
10792
10793@item
10794When printing arrays, @value{GDBN} uses positional notation when the
10795array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10796For example, a one-dimensional array of three integers with a lower bound
10797of 3 might print as
e07c999f
PH
10798
10799@smallexample
10800(3 => 10, 17, 1)
10801@end smallexample
10802
10803@noindent
10804That is, in contrast to valid Ada, only the first component has a @code{=>}
10805clause.
10806
10807@item
10808You may abbreviate attributes in expressions with any unique,
10809multi-character subsequence of
10810their names (an exact match gets preference).
10811For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10812in place of @t{a'length}.
10813
10814@item
10815@cindex quoting Ada internal identifiers
10816Since Ada is case-insensitive, the debugger normally maps identifiers you type
10817to lower case. The GNAT compiler uses upper-case characters for
10818some of its internal identifiers, which are normally of no interest to users.
10819For the rare occasions when you actually have to look at them,
10820enclose them in angle brackets to avoid the lower-case mapping.
10821For example,
10822@smallexample
10823@value{GDBP} print <JMPBUF_SAVE>[0]
10824@end smallexample
10825
10826@item
10827Printing an object of class-wide type or dereferencing an
10828access-to-class-wide value will display all the components of the object's
10829specific type (as indicated by its run-time tag). Likewise, component
10830selection on such a value will operate on the specific type of the
10831object.
10832
10833@end itemize
10834
10835@node Stopping Before Main Program
10836@subsubsection Stopping at the Very Beginning
10837
10838@cindex breakpointing Ada elaboration code
10839It is sometimes necessary to debug the program during elaboration, and
10840before reaching the main procedure.
10841As defined in the Ada Reference
10842Manual, the elaboration code is invoked from a procedure called
10843@code{adainit}. To run your program up to the beginning of
10844elaboration, simply use the following two commands:
10845@code{tbreak adainit} and @code{run}.
10846
10847@node Ada Glitches
10848@subsubsection Known Peculiarities of Ada Mode
10849@cindex Ada, problems
10850
10851Besides the omissions listed previously (@pxref{Omissions from Ada}),
10852we know of several problems with and limitations of Ada mode in
10853@value{GDBN},
10854some of which will be fixed with planned future releases of the debugger
10855and the GNU Ada compiler.
10856
10857@itemize @bullet
10858@item
10859Currently, the debugger
10860has insufficient information to determine whether certain pointers represent
10861pointers to objects or the objects themselves.
10862Thus, the user may have to tack an extra @code{.all} after an expression
10863to get it printed properly.
10864
10865@item
10866Static constants that the compiler chooses not to materialize as objects in
10867storage are invisible to the debugger.
10868
10869@item
10870Named parameter associations in function argument lists are ignored (the
10871argument lists are treated as positional).
10872
10873@item
10874Many useful library packages are currently invisible to the debugger.
10875
10876@item
10877Fixed-point arithmetic, conversions, input, and output is carried out using
10878floating-point arithmetic, and may give results that only approximate those on
10879the host machine.
10880
10881@item
10882The type of the @t{'Address} attribute may not be @code{System.Address}.
10883
10884@item
10885The GNAT compiler never generates the prefix @code{Standard} for any of
10886the standard symbols defined by the Ada language. @value{GDBN} knows about
10887this: it will strip the prefix from names when you use it, and will never
10888look for a name you have so qualified among local symbols, nor match against
10889symbols in other packages or subprograms. If you have
10890defined entities anywhere in your program other than parameters and
10891local variables whose simple names match names in @code{Standard},
10892GNAT's lack of qualification here can cause confusion. When this happens,
10893you can usually resolve the confusion
10894by qualifying the problematic names with package
10895@code{Standard} explicitly.
10896@end itemize
10897
79a6e687
BW
10898@node Unsupported Languages
10899@section Unsupported Languages
4e562065
JB
10900
10901@cindex unsupported languages
10902@cindex minimal language
10903In addition to the other fully-supported programming languages,
10904@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10905It does not represent a real programming language, but provides a set
10906of capabilities close to what the C or assembly languages provide.
10907This should allow most simple operations to be performed while debugging
10908an application that uses a language currently not supported by @value{GDBN}.
10909
10910If the language is set to @code{auto}, @value{GDBN} will automatically
10911select this language if the current frame corresponds to an unsupported
10912language.
10913
6d2ebf8b 10914@node Symbols
c906108c
SS
10915@chapter Examining the Symbol Table
10916
d4f3574e 10917The commands described in this chapter allow you to inquire about the
c906108c
SS
10918symbols (names of variables, functions and types) defined in your
10919program. This information is inherent in the text of your program and
10920does not change as your program executes. @value{GDBN} finds it in your
10921program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10922(@pxref{File Options, ,Choosing Files}), or by one of the
10923file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10924
10925@cindex symbol names
10926@cindex names of symbols
10927@cindex quoting names
10928Occasionally, you may need to refer to symbols that contain unusual
10929characters, which @value{GDBN} ordinarily treats as word delimiters. The
10930most frequent case is in referring to static variables in other
79a6e687 10931source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10932are recorded in object files as debugging symbols, but @value{GDBN} would
10933ordinarily parse a typical file name, like @file{foo.c}, as the three words
10934@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10935@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10936
474c8240 10937@smallexample
c906108c 10938p 'foo.c'::x
474c8240 10939@end smallexample
c906108c
SS
10940
10941@noindent
10942looks up the value of @code{x} in the scope of the file @file{foo.c}.
10943
10944@table @code
a8f24a35
EZ
10945@cindex case-insensitive symbol names
10946@cindex case sensitivity in symbol names
10947@kindex set case-sensitive
10948@item set case-sensitive on
10949@itemx set case-sensitive off
10950@itemx set case-sensitive auto
10951Normally, when @value{GDBN} looks up symbols, it matches their names
10952with case sensitivity determined by the current source language.
10953Occasionally, you may wish to control that. The command @code{set
10954case-sensitive} lets you do that by specifying @code{on} for
10955case-sensitive matches or @code{off} for case-insensitive ones. If
10956you specify @code{auto}, case sensitivity is reset to the default
10957suitable for the source language. The default is case-sensitive
10958matches for all languages except for Fortran, for which the default is
10959case-insensitive matches.
10960
9c16f35a
EZ
10961@kindex show case-sensitive
10962@item show case-sensitive
a8f24a35
EZ
10963This command shows the current setting of case sensitivity for symbols
10964lookups.
10965
c906108c 10966@kindex info address
b37052ae 10967@cindex address of a symbol
c906108c
SS
10968@item info address @var{symbol}
10969Describe where the data for @var{symbol} is stored. For a register
10970variable, this says which register it is kept in. For a non-register
10971local variable, this prints the stack-frame offset at which the variable
10972is always stored.
10973
10974Note the contrast with @samp{print &@var{symbol}}, which does not work
10975at all for a register variable, and for a stack local variable prints
10976the exact address of the current instantiation of the variable.
10977
3d67e040 10978@kindex info symbol
b37052ae 10979@cindex symbol from address
9c16f35a 10980@cindex closest symbol and offset for an address
3d67e040
EZ
10981@item info symbol @var{addr}
10982Print the name of a symbol which is stored at the address @var{addr}.
10983If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10984nearest symbol and an offset from it:
10985
474c8240 10986@smallexample
3d67e040
EZ
10987(@value{GDBP}) info symbol 0x54320
10988_initialize_vx + 396 in section .text
474c8240 10989@end smallexample
3d67e040
EZ
10990
10991@noindent
10992This is the opposite of the @code{info address} command. You can use
10993it to find out the name of a variable or a function given its address.
10994
c906108c 10995@kindex whatis
62f3a2ba
FF
10996@item whatis [@var{arg}]
10997Print the data type of @var{arg}, which can be either an expression or
10998a data type. With no argument, print the data type of @code{$}, the
10999last value in the value history. If @var{arg} is an expression, it is
11000not actually evaluated, and any side-effecting operations (such as
11001assignments or function calls) inside it do not take place. If
11002@var{arg} is a type name, it may be the name of a type or typedef, or
11003for C code it may have the form @samp{class @var{class-name}},
11004@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11005@samp{enum @var{enum-tag}}.
c906108c
SS
11006@xref{Expressions, ,Expressions}.
11007
c906108c 11008@kindex ptype
62f3a2ba
FF
11009@item ptype [@var{arg}]
11010@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11011detailed description of the type, instead of just the name of the type.
11012@xref{Expressions, ,Expressions}.
c906108c
SS
11013
11014For example, for this variable declaration:
11015
474c8240 11016@smallexample
c906108c 11017struct complex @{double real; double imag;@} v;
474c8240 11018@end smallexample
c906108c
SS
11019
11020@noindent
11021the two commands give this output:
11022
474c8240 11023@smallexample
c906108c
SS
11024@group
11025(@value{GDBP}) whatis v
11026type = struct complex
11027(@value{GDBP}) ptype v
11028type = struct complex @{
11029 double real;
11030 double imag;
11031@}
11032@end group
474c8240 11033@end smallexample
c906108c
SS
11034
11035@noindent
11036As with @code{whatis}, using @code{ptype} without an argument refers to
11037the type of @code{$}, the last value in the value history.
11038
ab1adacd
EZ
11039@cindex incomplete type
11040Sometimes, programs use opaque data types or incomplete specifications
11041of complex data structure. If the debug information included in the
11042program does not allow @value{GDBN} to display a full declaration of
11043the data type, it will say @samp{<incomplete type>}. For example,
11044given these declarations:
11045
11046@smallexample
11047 struct foo;
11048 struct foo *fooptr;
11049@end smallexample
11050
11051@noindent
11052but no definition for @code{struct foo} itself, @value{GDBN} will say:
11053
11054@smallexample
ddb50cd7 11055 (@value{GDBP}) ptype foo
ab1adacd
EZ
11056 $1 = <incomplete type>
11057@end smallexample
11058
11059@noindent
11060``Incomplete type'' is C terminology for data types that are not
11061completely specified.
11062
c906108c
SS
11063@kindex info types
11064@item info types @var{regexp}
11065@itemx info types
09d4efe1
EZ
11066Print a brief description of all types whose names match the regular
11067expression @var{regexp} (or all types in your program, if you supply
11068no argument). Each complete typename is matched as though it were a
11069complete line; thus, @samp{i type value} gives information on all
11070types in your program whose names include the string @code{value}, but
11071@samp{i type ^value$} gives information only on types whose complete
11072name is @code{value}.
c906108c
SS
11073
11074This command differs from @code{ptype} in two ways: first, like
11075@code{whatis}, it does not print a detailed description; second, it
11076lists all source files where a type is defined.
11077
b37052ae
EZ
11078@kindex info scope
11079@cindex local variables
09d4efe1 11080@item info scope @var{location}
b37052ae 11081List all the variables local to a particular scope. This command
09d4efe1
EZ
11082accepts a @var{location} argument---a function name, a source line, or
11083an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11084to the scope defined by that location. (@xref{Specify Location}, for
11085details about supported forms of @var{location}.) For example:
b37052ae
EZ
11086
11087@smallexample
11088(@value{GDBP}) @b{info scope command_line_handler}
11089Scope for command_line_handler:
11090Symbol rl is an argument at stack/frame offset 8, length 4.
11091Symbol linebuffer is in static storage at address 0x150a18, length 4.
11092Symbol linelength is in static storage at address 0x150a1c, length 4.
11093Symbol p is a local variable in register $esi, length 4.
11094Symbol p1 is a local variable in register $ebx, length 4.
11095Symbol nline is a local variable in register $edx, length 4.
11096Symbol repeat is a local variable at frame offset -8, length 4.
11097@end smallexample
11098
f5c37c66
EZ
11099@noindent
11100This command is especially useful for determining what data to collect
11101during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11102collect}.
11103
c906108c
SS
11104@kindex info source
11105@item info source
919d772c
JB
11106Show information about the current source file---that is, the source file for
11107the function containing the current point of execution:
11108@itemize @bullet
11109@item
11110the name of the source file, and the directory containing it,
11111@item
11112the directory it was compiled in,
11113@item
11114its length, in lines,
11115@item
11116which programming language it is written in,
11117@item
11118whether the executable includes debugging information for that file, and
11119if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11120@item
11121whether the debugging information includes information about
11122preprocessor macros.
11123@end itemize
11124
c906108c
SS
11125
11126@kindex info sources
11127@item info sources
11128Print the names of all source files in your program for which there is
11129debugging information, organized into two lists: files whose symbols
11130have already been read, and files whose symbols will be read when needed.
11131
11132@kindex info functions
11133@item info functions
11134Print the names and data types of all defined functions.
11135
11136@item info functions @var{regexp}
11137Print the names and data types of all defined functions
11138whose names contain a match for regular expression @var{regexp}.
11139Thus, @samp{info fun step} finds all functions whose names
11140include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11141start with @code{step}. If a function name contains characters
c1468174 11142that conflict with the regular expression language (e.g.@:
1c5dfdad 11143@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11144
11145@kindex info variables
11146@item info variables
11147Print the names and data types of all variables that are declared
6ca652b0 11148outside of functions (i.e.@: excluding local variables).
c906108c
SS
11149
11150@item info variables @var{regexp}
11151Print the names and data types of all variables (except for local
11152variables) whose names contain a match for regular expression
11153@var{regexp}.
11154
b37303ee 11155@kindex info classes
721c2651 11156@cindex Objective-C, classes and selectors
b37303ee
AF
11157@item info classes
11158@itemx info classes @var{regexp}
11159Display all Objective-C classes in your program, or
11160(with the @var{regexp} argument) all those matching a particular regular
11161expression.
11162
11163@kindex info selectors
11164@item info selectors
11165@itemx info selectors @var{regexp}
11166Display all Objective-C selectors in your program, or
11167(with the @var{regexp} argument) all those matching a particular regular
11168expression.
11169
c906108c
SS
11170@ignore
11171This was never implemented.
11172@kindex info methods
11173@item info methods
11174@itemx info methods @var{regexp}
11175The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11176methods within C@t{++} program, or (with the @var{regexp} argument) a
11177specific set of methods found in the various C@t{++} classes. Many
11178C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11179from the @code{ptype} command can be overwhelming and hard to use. The
11180@code{info-methods} command filters the methods, printing only those
11181which match the regular-expression @var{regexp}.
11182@end ignore
11183
c906108c
SS
11184@cindex reloading symbols
11185Some systems allow individual object files that make up your program to
7a292a7a
SS
11186be replaced without stopping and restarting your program. For example,
11187in VxWorks you can simply recompile a defective object file and keep on
11188running. If you are running on one of these systems, you can allow
11189@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11190
11191@table @code
11192@kindex set symbol-reloading
11193@item set symbol-reloading on
11194Replace symbol definitions for the corresponding source file when an
11195object file with a particular name is seen again.
11196
11197@item set symbol-reloading off
6d2ebf8b
SS
11198Do not replace symbol definitions when encountering object files of the
11199same name more than once. This is the default state; if you are not
11200running on a system that permits automatic relinking of modules, you
11201should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11202may discard symbols when linking large programs, that may contain
11203several modules (from different directories or libraries) with the same
11204name.
c906108c
SS
11205
11206@kindex show symbol-reloading
11207@item show symbol-reloading
11208Show the current @code{on} or @code{off} setting.
11209@end table
c906108c 11210
9c16f35a 11211@cindex opaque data types
c906108c
SS
11212@kindex set opaque-type-resolution
11213@item set opaque-type-resolution on
11214Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11215declared as a pointer to a @code{struct}, @code{class}, or
11216@code{union}---for example, @code{struct MyType *}---that is used in one
11217source file although the full declaration of @code{struct MyType} is in
11218another source file. The default is on.
11219
11220A change in the setting of this subcommand will not take effect until
11221the next time symbols for a file are loaded.
11222
11223@item set opaque-type-resolution off
11224Tell @value{GDBN} not to resolve opaque types. In this case, the type
11225is printed as follows:
11226@smallexample
11227@{<no data fields>@}
11228@end smallexample
11229
11230@kindex show opaque-type-resolution
11231@item show opaque-type-resolution
11232Show whether opaque types are resolved or not.
c906108c
SS
11233
11234@kindex maint print symbols
11235@cindex symbol dump
11236@kindex maint print psymbols
11237@cindex partial symbol dump
11238@item maint print symbols @var{filename}
11239@itemx maint print psymbols @var{filename}
11240@itemx maint print msymbols @var{filename}
11241Write a dump of debugging symbol data into the file @var{filename}.
11242These commands are used to debug the @value{GDBN} symbol-reading code. Only
11243symbols with debugging data are included. If you use @samp{maint print
11244symbols}, @value{GDBN} includes all the symbols for which it has already
11245collected full details: that is, @var{filename} reflects symbols for
11246only those files whose symbols @value{GDBN} has read. You can use the
11247command @code{info sources} to find out which files these are. If you
11248use @samp{maint print psymbols} instead, the dump shows information about
11249symbols that @value{GDBN} only knows partially---that is, symbols defined in
11250files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11251@samp{maint print msymbols} dumps just the minimal symbol information
11252required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11253@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11254@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11255
5e7b2f39
JB
11256@kindex maint info symtabs
11257@kindex maint info psymtabs
44ea7b70
JB
11258@cindex listing @value{GDBN}'s internal symbol tables
11259@cindex symbol tables, listing @value{GDBN}'s internal
11260@cindex full symbol tables, listing @value{GDBN}'s internal
11261@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11262@item maint info symtabs @r{[} @var{regexp} @r{]}
11263@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11264
11265List the @code{struct symtab} or @code{struct partial_symtab}
11266structures whose names match @var{regexp}. If @var{regexp} is not
11267given, list them all. The output includes expressions which you can
11268copy into a @value{GDBN} debugging this one to examine a particular
11269structure in more detail. For example:
11270
11271@smallexample
5e7b2f39 11272(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11273@{ objfile /home/gnu/build/gdb/gdb
11274 ((struct objfile *) 0x82e69d0)
b383017d 11275 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11276 ((struct partial_symtab *) 0x8474b10)
11277 readin no
11278 fullname (null)
11279 text addresses 0x814d3c8 -- 0x8158074
11280 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11281 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11282 dependencies (none)
11283 @}
11284@}
5e7b2f39 11285(@value{GDBP}) maint info symtabs
44ea7b70
JB
11286(@value{GDBP})
11287@end smallexample
11288@noindent
11289We see that there is one partial symbol table whose filename contains
11290the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11291and we see that @value{GDBN} has not read in any symtabs yet at all.
11292If we set a breakpoint on a function, that will cause @value{GDBN} to
11293read the symtab for the compilation unit containing that function:
11294
11295@smallexample
11296(@value{GDBP}) break dwarf2_psymtab_to_symtab
11297Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11298line 1574.
5e7b2f39 11299(@value{GDBP}) maint info symtabs
b383017d 11300@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11301 ((struct objfile *) 0x82e69d0)
b383017d 11302 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11303 ((struct symtab *) 0x86c1f38)
11304 dirname (null)
11305 fullname (null)
11306 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11307 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11308 debugformat DWARF 2
11309 @}
11310@}
b383017d 11311(@value{GDBP})
44ea7b70 11312@end smallexample
c906108c
SS
11313@end table
11314
44ea7b70 11315
6d2ebf8b 11316@node Altering
c906108c
SS
11317@chapter Altering Execution
11318
11319Once you think you have found an error in your program, you might want to
11320find out for certain whether correcting the apparent error would lead to
11321correct results in the rest of the run. You can find the answer by
11322experiment, using the @value{GDBN} features for altering execution of the
11323program.
11324
11325For example, you can store new values into variables or memory
7a292a7a
SS
11326locations, give your program a signal, restart it at a different
11327address, or even return prematurely from a function.
c906108c
SS
11328
11329@menu
11330* Assignment:: Assignment to variables
11331* Jumping:: Continuing at a different address
c906108c 11332* Signaling:: Giving your program a signal
c906108c
SS
11333* Returning:: Returning from a function
11334* Calling:: Calling your program's functions
11335* Patching:: Patching your program
11336@end menu
11337
6d2ebf8b 11338@node Assignment
79a6e687 11339@section Assignment to Variables
c906108c
SS
11340
11341@cindex assignment
11342@cindex setting variables
11343To alter the value of a variable, evaluate an assignment expression.
11344@xref{Expressions, ,Expressions}. For example,
11345
474c8240 11346@smallexample
c906108c 11347print x=4
474c8240 11348@end smallexample
c906108c
SS
11349
11350@noindent
11351stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11352value of the assignment expression (which is 4).
c906108c
SS
11353@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11354information on operators in supported languages.
c906108c
SS
11355
11356@kindex set variable
11357@cindex variables, setting
11358If you are not interested in seeing the value of the assignment, use the
11359@code{set} command instead of the @code{print} command. @code{set} is
11360really the same as @code{print} except that the expression's value is
11361not printed and is not put in the value history (@pxref{Value History,
79a6e687 11362,Value History}). The expression is evaluated only for its effects.
c906108c 11363
c906108c
SS
11364If the beginning of the argument string of the @code{set} command
11365appears identical to a @code{set} subcommand, use the @code{set
11366variable} command instead of just @code{set}. This command is identical
11367to @code{set} except for its lack of subcommands. For example, if your
11368program has a variable @code{width}, you get an error if you try to set
11369a new value with just @samp{set width=13}, because @value{GDBN} has the
11370command @code{set width}:
11371
474c8240 11372@smallexample
c906108c
SS
11373(@value{GDBP}) whatis width
11374type = double
11375(@value{GDBP}) p width
11376$4 = 13
11377(@value{GDBP}) set width=47
11378Invalid syntax in expression.
474c8240 11379@end smallexample
c906108c
SS
11380
11381@noindent
11382The invalid expression, of course, is @samp{=47}. In
11383order to actually set the program's variable @code{width}, use
11384
474c8240 11385@smallexample
c906108c 11386(@value{GDBP}) set var width=47
474c8240 11387@end smallexample
53a5351d 11388
c906108c
SS
11389Because the @code{set} command has many subcommands that can conflict
11390with the names of program variables, it is a good idea to use the
11391@code{set variable} command instead of just @code{set}. For example, if
11392your program has a variable @code{g}, you run into problems if you try
11393to set a new value with just @samp{set g=4}, because @value{GDBN} has
11394the command @code{set gnutarget}, abbreviated @code{set g}:
11395
474c8240 11396@smallexample
c906108c
SS
11397@group
11398(@value{GDBP}) whatis g
11399type = double
11400(@value{GDBP}) p g
11401$1 = 1
11402(@value{GDBP}) set g=4
2df3850c 11403(@value{GDBP}) p g
c906108c
SS
11404$2 = 1
11405(@value{GDBP}) r
11406The program being debugged has been started already.
11407Start it from the beginning? (y or n) y
11408Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11409"/home/smith/cc_progs/a.out": can't open to read symbols:
11410 Invalid bfd target.
c906108c
SS
11411(@value{GDBP}) show g
11412The current BFD target is "=4".
11413@end group
474c8240 11414@end smallexample
c906108c
SS
11415
11416@noindent
11417The program variable @code{g} did not change, and you silently set the
11418@code{gnutarget} to an invalid value. In order to set the variable
11419@code{g}, use
11420
474c8240 11421@smallexample
c906108c 11422(@value{GDBP}) set var g=4
474c8240 11423@end smallexample
c906108c
SS
11424
11425@value{GDBN} allows more implicit conversions in assignments than C; you can
11426freely store an integer value into a pointer variable or vice versa,
11427and you can convert any structure to any other structure that is the
11428same length or shorter.
11429@comment FIXME: how do structs align/pad in these conversions?
11430@comment /doc@cygnus.com 18dec1990
11431
11432To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11433construct to generate a value of specified type at a specified address
11434(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11435to memory location @code{0x83040} as an integer (which implies a certain size
11436and representation in memory), and
11437
474c8240 11438@smallexample
c906108c 11439set @{int@}0x83040 = 4
474c8240 11440@end smallexample
c906108c
SS
11441
11442@noindent
11443stores the value 4 into that memory location.
11444
6d2ebf8b 11445@node Jumping
79a6e687 11446@section Continuing at a Different Address
c906108c
SS
11447
11448Ordinarily, when you continue your program, you do so at the place where
11449it stopped, with the @code{continue} command. You can instead continue at
11450an address of your own choosing, with the following commands:
11451
11452@table @code
11453@kindex jump
11454@item jump @var{linespec}
2a25a5ba
EZ
11455@itemx jump @var{location}
11456Resume execution at line @var{linespec} or at address given by
11457@var{location}. Execution stops again immediately if there is a
11458breakpoint there. @xref{Specify Location}, for a description of the
11459different forms of @var{linespec} and @var{location}. It is common
11460practice to use the @code{tbreak} command in conjunction with
11461@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11462
11463The @code{jump} command does not change the current stack frame, or
11464the stack pointer, or the contents of any memory location or any
11465register other than the program counter. If line @var{linespec} is in
11466a different function from the one currently executing, the results may
11467be bizarre if the two functions expect different patterns of arguments or
11468of local variables. For this reason, the @code{jump} command requests
11469confirmation if the specified line is not in the function currently
11470executing. However, even bizarre results are predictable if you are
11471well acquainted with the machine-language code of your program.
c906108c
SS
11472@end table
11473
c906108c 11474@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11475On many systems, you can get much the same effect as the @code{jump}
11476command by storing a new value into the register @code{$pc}. The
11477difference is that this does not start your program running; it only
11478changes the address of where it @emph{will} run when you continue. For
11479example,
c906108c 11480
474c8240 11481@smallexample
c906108c 11482set $pc = 0x485
474c8240 11483@end smallexample
c906108c
SS
11484
11485@noindent
11486makes the next @code{continue} command or stepping command execute at
11487address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11488@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11489
11490The most common occasion to use the @code{jump} command is to back
11491up---perhaps with more breakpoints set---over a portion of a program
11492that has already executed, in order to examine its execution in more
11493detail.
11494
c906108c 11495@c @group
6d2ebf8b 11496@node Signaling
79a6e687 11497@section Giving your Program a Signal
9c16f35a 11498@cindex deliver a signal to a program
c906108c
SS
11499
11500@table @code
11501@kindex signal
11502@item signal @var{signal}
11503Resume execution where your program stopped, but immediately give it the
11504signal @var{signal}. @var{signal} can be the name or the number of a
11505signal. For example, on many systems @code{signal 2} and @code{signal
11506SIGINT} are both ways of sending an interrupt signal.
11507
11508Alternatively, if @var{signal} is zero, continue execution without
11509giving a signal. This is useful when your program stopped on account of
11510a signal and would ordinary see the signal when resumed with the
11511@code{continue} command; @samp{signal 0} causes it to resume without a
11512signal.
11513
11514@code{signal} does not repeat when you press @key{RET} a second time
11515after executing the command.
11516@end table
11517@c @end group
11518
11519Invoking the @code{signal} command is not the same as invoking the
11520@code{kill} utility from the shell. Sending a signal with @code{kill}
11521causes @value{GDBN} to decide what to do with the signal depending on
11522the signal handling tables (@pxref{Signals}). The @code{signal} command
11523passes the signal directly to your program.
11524
c906108c 11525
6d2ebf8b 11526@node Returning
79a6e687 11527@section Returning from a Function
c906108c
SS
11528
11529@table @code
11530@cindex returning from a function
11531@kindex return
11532@item return
11533@itemx return @var{expression}
11534You can cancel execution of a function call with the @code{return}
11535command. If you give an
11536@var{expression} argument, its value is used as the function's return
11537value.
11538@end table
11539
11540When you use @code{return}, @value{GDBN} discards the selected stack frame
11541(and all frames within it). You can think of this as making the
11542discarded frame return prematurely. If you wish to specify a value to
11543be returned, give that value as the argument to @code{return}.
11544
11545This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11546Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11547innermost remaining frame. That frame becomes selected. The
11548specified value is stored in the registers used for returning values
11549of functions.
11550
11551The @code{return} command does not resume execution; it leaves the
11552program stopped in the state that would exist if the function had just
11553returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11554and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11555selected stack frame returns naturally.
11556
6d2ebf8b 11557@node Calling
79a6e687 11558@section Calling Program Functions
c906108c 11559
f8568604 11560@table @code
c906108c 11561@cindex calling functions
f8568604
EZ
11562@cindex inferior functions, calling
11563@item print @var{expr}
d3e8051b 11564Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11565@var{expr} may include calls to functions in the program being
11566debugged.
11567
c906108c 11568@kindex call
c906108c
SS
11569@item call @var{expr}
11570Evaluate the expression @var{expr} without displaying @code{void}
11571returned values.
c906108c
SS
11572
11573You can use this variant of the @code{print} command if you want to
f8568604
EZ
11574execute a function from your program that does not return anything
11575(a.k.a.@: @dfn{a void function}), but without cluttering the output
11576with @code{void} returned values that @value{GDBN} will otherwise
11577print. If the result is not void, it is printed and saved in the
11578value history.
11579@end table
11580
9c16f35a
EZ
11581It is possible for the function you call via the @code{print} or
11582@code{call} command to generate a signal (e.g., if there's a bug in
11583the function, or if you passed it incorrect arguments). What happens
11584in that case is controlled by the @code{set unwindonsignal} command.
11585
11586@table @code
11587@item set unwindonsignal
11588@kindex set unwindonsignal
11589@cindex unwind stack in called functions
11590@cindex call dummy stack unwinding
11591Set unwinding of the stack if a signal is received while in a function
11592that @value{GDBN} called in the program being debugged. If set to on,
11593@value{GDBN} unwinds the stack it created for the call and restores
11594the context to what it was before the call. If set to off (the
11595default), @value{GDBN} stops in the frame where the signal was
11596received.
11597
11598@item show unwindonsignal
11599@kindex show unwindonsignal
11600Show the current setting of stack unwinding in the functions called by
11601@value{GDBN}.
11602@end table
11603
f8568604
EZ
11604@cindex weak alias functions
11605Sometimes, a function you wish to call is actually a @dfn{weak alias}
11606for another function. In such case, @value{GDBN} might not pick up
11607the type information, including the types of the function arguments,
11608which causes @value{GDBN} to call the inferior function incorrectly.
11609As a result, the called function will function erroneously and may
11610even crash. A solution to that is to use the name of the aliased
11611function instead.
c906108c 11612
6d2ebf8b 11613@node Patching
79a6e687 11614@section Patching Programs
7a292a7a 11615
c906108c
SS
11616@cindex patching binaries
11617@cindex writing into executables
c906108c 11618@cindex writing into corefiles
c906108c 11619
7a292a7a
SS
11620By default, @value{GDBN} opens the file containing your program's
11621executable code (or the corefile) read-only. This prevents accidental
11622alterations to machine code; but it also prevents you from intentionally
11623patching your program's binary.
c906108c
SS
11624
11625If you'd like to be able to patch the binary, you can specify that
11626explicitly with the @code{set write} command. For example, you might
11627want to turn on internal debugging flags, or even to make emergency
11628repairs.
11629
11630@table @code
11631@kindex set write
11632@item set write on
11633@itemx set write off
7a292a7a
SS
11634If you specify @samp{set write on}, @value{GDBN} opens executable and
11635core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11636off} (the default), @value{GDBN} opens them read-only.
11637
11638If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11639@code{exec-file} or @code{core-file} command) after changing @code{set
11640write}, for your new setting to take effect.
c906108c
SS
11641
11642@item show write
11643@kindex show write
7a292a7a
SS
11644Display whether executable files and core files are opened for writing
11645as well as reading.
c906108c
SS
11646@end table
11647
6d2ebf8b 11648@node GDB Files
c906108c
SS
11649@chapter @value{GDBN} Files
11650
7a292a7a
SS
11651@value{GDBN} needs to know the file name of the program to be debugged,
11652both in order to read its symbol table and in order to start your
11653program. To debug a core dump of a previous run, you must also tell
11654@value{GDBN} the name of the core dump file.
c906108c
SS
11655
11656@menu
11657* Files:: Commands to specify files
5b5d99cf 11658* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11659* Symbol Errors:: Errors reading symbol files
11660@end menu
11661
6d2ebf8b 11662@node Files
79a6e687 11663@section Commands to Specify Files
c906108c 11664
7a292a7a 11665@cindex symbol table
c906108c 11666@cindex core dump file
7a292a7a
SS
11667
11668You may want to specify executable and core dump file names. The usual
11669way to do this is at start-up time, using the arguments to
11670@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11671Out of @value{GDBN}}).
c906108c
SS
11672
11673Occasionally it is necessary to change to a different file during a
397ca115
EZ
11674@value{GDBN} session. Or you may run @value{GDBN} and forget to
11675specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11676via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11677Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11678new files are useful.
c906108c
SS
11679
11680@table @code
11681@cindex executable file
11682@kindex file
11683@item file @var{filename}
11684Use @var{filename} as the program to be debugged. It is read for its
11685symbols and for the contents of pure memory. It is also the program
11686executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11687directory and the file is not found in the @value{GDBN} working directory,
11688@value{GDBN} uses the environment variable @code{PATH} as a list of
11689directories to search, just as the shell does when looking for a program
11690to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11691and your program, using the @code{path} command.
11692
fc8be69e
EZ
11693@cindex unlinked object files
11694@cindex patching object files
11695You can load unlinked object @file{.o} files into @value{GDBN} using
11696the @code{file} command. You will not be able to ``run'' an object
11697file, but you can disassemble functions and inspect variables. Also,
11698if the underlying BFD functionality supports it, you could use
11699@kbd{gdb -write} to patch object files using this technique. Note
11700that @value{GDBN} can neither interpret nor modify relocations in this
11701case, so branches and some initialized variables will appear to go to
11702the wrong place. But this feature is still handy from time to time.
11703
c906108c
SS
11704@item file
11705@code{file} with no argument makes @value{GDBN} discard any information it
11706has on both executable file and the symbol table.
11707
11708@kindex exec-file
11709@item exec-file @r{[} @var{filename} @r{]}
11710Specify that the program to be run (but not the symbol table) is found
11711in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11712if necessary to locate your program. Omitting @var{filename} means to
11713discard information on the executable file.
11714
11715@kindex symbol-file
11716@item symbol-file @r{[} @var{filename} @r{]}
11717Read symbol table information from file @var{filename}. @code{PATH} is
11718searched when necessary. Use the @code{file} command to get both symbol
11719table and program to run from the same file.
11720
11721@code{symbol-file} with no argument clears out @value{GDBN} information on your
11722program's symbol table.
11723
ae5a43e0
DJ
11724The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11725some breakpoints and auto-display expressions. This is because they may
11726contain pointers to the internal data recording symbols and data types,
11727which are part of the old symbol table data being discarded inside
11728@value{GDBN}.
c906108c
SS
11729
11730@code{symbol-file} does not repeat if you press @key{RET} again after
11731executing it once.
11732
11733When @value{GDBN} is configured for a particular environment, it
11734understands debugging information in whatever format is the standard
11735generated for that environment; you may use either a @sc{gnu} compiler, or
11736other compilers that adhere to the local conventions.
c906108c 11737Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11738using @code{@value{NGCC}} you can generate debugging information for
c906108c 11739optimized code.
c906108c
SS
11740
11741For most kinds of object files, with the exception of old SVR3 systems
11742using COFF, the @code{symbol-file} command does not normally read the
11743symbol table in full right away. Instead, it scans the symbol table
11744quickly to find which source files and which symbols are present. The
11745details are read later, one source file at a time, as they are needed.
11746
11747The purpose of this two-stage reading strategy is to make @value{GDBN}
11748start up faster. For the most part, it is invisible except for
11749occasional pauses while the symbol table details for a particular source
11750file are being read. (The @code{set verbose} command can turn these
11751pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11752Warnings and Messages}.)
c906108c 11753
c906108c
SS
11754We have not implemented the two-stage strategy for COFF yet. When the
11755symbol table is stored in COFF format, @code{symbol-file} reads the
11756symbol table data in full right away. Note that ``stabs-in-COFF''
11757still does the two-stage strategy, since the debug info is actually
11758in stabs format.
11759
11760@kindex readnow
11761@cindex reading symbols immediately
11762@cindex symbols, reading immediately
a94ab193
EZ
11763@item symbol-file @var{filename} @r{[} -readnow @r{]}
11764@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11765You can override the @value{GDBN} two-stage strategy for reading symbol
11766tables by using the @samp{-readnow} option with any of the commands that
11767load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11768entire symbol table available.
c906108c 11769
c906108c
SS
11770@c FIXME: for now no mention of directories, since this seems to be in
11771@c flux. 13mar1992 status is that in theory GDB would look either in
11772@c current dir or in same dir as myprog; but issues like competing
11773@c GDB's, or clutter in system dirs, mean that in practice right now
11774@c only current dir is used. FFish says maybe a special GDB hierarchy
11775@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11776@c files.
11777
c906108c 11778@kindex core-file
09d4efe1 11779@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11780@itemx core
c906108c
SS
11781Specify the whereabouts of a core dump file to be used as the ``contents
11782of memory''. Traditionally, core files contain only some parts of the
11783address space of the process that generated them; @value{GDBN} can access the
11784executable file itself for other parts.
11785
11786@code{core-file} with no argument specifies that no core file is
11787to be used.
11788
11789Note that the core file is ignored when your program is actually running
7a292a7a
SS
11790under @value{GDBN}. So, if you have been running your program and you
11791wish to debug a core file instead, you must kill the subprocess in which
11792the program is running. To do this, use the @code{kill} command
79a6e687 11793(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11794
c906108c
SS
11795@kindex add-symbol-file
11796@cindex dynamic linking
11797@item add-symbol-file @var{filename} @var{address}
a94ab193 11798@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11799@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11800The @code{add-symbol-file} command reads additional symbol table
11801information from the file @var{filename}. You would use this command
11802when @var{filename} has been dynamically loaded (by some other means)
11803into the program that is running. @var{address} should be the memory
11804address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11805this out for itself. You can additionally specify an arbitrary number
11806of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11807section name and base address for that section. You can specify any
11808@var{address} as an expression.
c906108c
SS
11809
11810The symbol table of the file @var{filename} is added to the symbol table
11811originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11812@code{add-symbol-file} command any number of times; the new symbol data
11813thus read keeps adding to the old. To discard all old symbol data
11814instead, use the @code{symbol-file} command without any arguments.
c906108c 11815
17d9d558
JB
11816@cindex relocatable object files, reading symbols from
11817@cindex object files, relocatable, reading symbols from
11818@cindex reading symbols from relocatable object files
11819@cindex symbols, reading from relocatable object files
11820@cindex @file{.o} files, reading symbols from
11821Although @var{filename} is typically a shared library file, an
11822executable file, or some other object file which has been fully
11823relocated for loading into a process, you can also load symbolic
11824information from relocatable @file{.o} files, as long as:
11825
11826@itemize @bullet
11827@item
11828the file's symbolic information refers only to linker symbols defined in
11829that file, not to symbols defined by other object files,
11830@item
11831every section the file's symbolic information refers to has actually
11832been loaded into the inferior, as it appears in the file, and
11833@item
11834you can determine the address at which every section was loaded, and
11835provide these to the @code{add-symbol-file} command.
11836@end itemize
11837
11838@noindent
11839Some embedded operating systems, like Sun Chorus and VxWorks, can load
11840relocatable files into an already running program; such systems
11841typically make the requirements above easy to meet. However, it's
11842important to recognize that many native systems use complex link
49efadf5 11843procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11844assembly, for example) that make the requirements difficult to meet. In
11845general, one cannot assume that using @code{add-symbol-file} to read a
11846relocatable object file's symbolic information will have the same effect
11847as linking the relocatable object file into the program in the normal
11848way.
11849
c906108c
SS
11850@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11851
c45da7e6
EZ
11852@kindex add-symbol-file-from-memory
11853@cindex @code{syscall DSO}
11854@cindex load symbols from memory
11855@item add-symbol-file-from-memory @var{address}
11856Load symbols from the given @var{address} in a dynamically loaded
11857object file whose image is mapped directly into the inferior's memory.
11858For example, the Linux kernel maps a @code{syscall DSO} into each
11859process's address space; this DSO provides kernel-specific code for
11860some system calls. The argument can be any expression whose
11861evaluation yields the address of the file's shared object file header.
11862For this command to work, you must have used @code{symbol-file} or
11863@code{exec-file} commands in advance.
11864
09d4efe1
EZ
11865@kindex add-shared-symbol-files
11866@kindex assf
11867@item add-shared-symbol-files @var{library-file}
11868@itemx assf @var{library-file}
11869The @code{add-shared-symbol-files} command can currently be used only
11870in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11871alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11872@value{GDBN} automatically looks for shared libraries, however if
11873@value{GDBN} does not find yours, you can invoke
11874@code{add-shared-symbol-files}. It takes one argument: the shared
11875library's file name. @code{assf} is a shorthand alias for
11876@code{add-shared-symbol-files}.
c906108c 11877
c906108c 11878@kindex section
09d4efe1
EZ
11879@item section @var{section} @var{addr}
11880The @code{section} command changes the base address of the named
11881@var{section} of the exec file to @var{addr}. This can be used if the
11882exec file does not contain section addresses, (such as in the
11883@code{a.out} format), or when the addresses specified in the file
11884itself are wrong. Each section must be changed separately. The
11885@code{info files} command, described below, lists all the sections and
11886their addresses.
c906108c
SS
11887
11888@kindex info files
11889@kindex info target
11890@item info files
11891@itemx info target
7a292a7a
SS
11892@code{info files} and @code{info target} are synonymous; both print the
11893current target (@pxref{Targets, ,Specifying a Debugging Target}),
11894including the names of the executable and core dump files currently in
11895use by @value{GDBN}, and the files from which symbols were loaded. The
11896command @code{help target} lists all possible targets rather than
11897current ones.
11898
fe95c787
MS
11899@kindex maint info sections
11900@item maint info sections
11901Another command that can give you extra information about program sections
11902is @code{maint info sections}. In addition to the section information
11903displayed by @code{info files}, this command displays the flags and file
11904offset of each section in the executable and core dump files. In addition,
11905@code{maint info sections} provides the following command options (which
11906may be arbitrarily combined):
11907
11908@table @code
11909@item ALLOBJ
11910Display sections for all loaded object files, including shared libraries.
11911@item @var{sections}
6600abed 11912Display info only for named @var{sections}.
fe95c787
MS
11913@item @var{section-flags}
11914Display info only for sections for which @var{section-flags} are true.
11915The section flags that @value{GDBN} currently knows about are:
11916@table @code
11917@item ALLOC
11918Section will have space allocated in the process when loaded.
11919Set for all sections except those containing debug information.
11920@item LOAD
11921Section will be loaded from the file into the child process memory.
11922Set for pre-initialized code and data, clear for @code{.bss} sections.
11923@item RELOC
11924Section needs to be relocated before loading.
11925@item READONLY
11926Section cannot be modified by the child process.
11927@item CODE
11928Section contains executable code only.
6600abed 11929@item DATA
fe95c787
MS
11930Section contains data only (no executable code).
11931@item ROM
11932Section will reside in ROM.
11933@item CONSTRUCTOR
11934Section contains data for constructor/destructor lists.
11935@item HAS_CONTENTS
11936Section is not empty.
11937@item NEVER_LOAD
11938An instruction to the linker to not output the section.
11939@item COFF_SHARED_LIBRARY
11940A notification to the linker that the section contains
11941COFF shared library information.
11942@item IS_COMMON
11943Section contains common symbols.
11944@end table
11945@end table
6763aef9 11946@kindex set trust-readonly-sections
9c16f35a 11947@cindex read-only sections
6763aef9
MS
11948@item set trust-readonly-sections on
11949Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11950really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11951In that case, @value{GDBN} can fetch values from these sections
11952out of the object file, rather than from the target program.
11953For some targets (notably embedded ones), this can be a significant
11954enhancement to debugging performance.
11955
11956The default is off.
11957
11958@item set trust-readonly-sections off
15110bc3 11959Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11960the contents of the section might change while the program is running,
11961and must therefore be fetched from the target when needed.
9c16f35a
EZ
11962
11963@item show trust-readonly-sections
11964Show the current setting of trusting readonly sections.
c906108c
SS
11965@end table
11966
11967All file-specifying commands allow both absolute and relative file names
11968as arguments. @value{GDBN} always converts the file name to an absolute file
11969name and remembers it that way.
11970
c906108c 11971@cindex shared libraries
9cceb671
DJ
11972@anchor{Shared Libraries}
11973@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11974and IBM RS/6000 AIX shared libraries.
53a5351d 11975
9cceb671
DJ
11976On MS-Windows @value{GDBN} must be linked with the Expat library to support
11977shared libraries. @xref{Expat}.
11978
c906108c
SS
11979@value{GDBN} automatically loads symbol definitions from shared libraries
11980when you use the @code{run} command, or when you examine a core file.
11981(Before you issue the @code{run} command, @value{GDBN} does not understand
11982references to a function in a shared library, however---unless you are
11983debugging a core file).
53a5351d
JM
11984
11985On HP-UX, if the program loads a library explicitly, @value{GDBN}
11986automatically loads the symbols at the time of the @code{shl_load} call.
11987
c906108c
SS
11988@c FIXME: some @value{GDBN} release may permit some refs to undef
11989@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11990@c FIXME...lib; check this from time to time when updating manual
11991
b7209cb4
FF
11992There are times, however, when you may wish to not automatically load
11993symbol definitions from shared libraries, such as when they are
11994particularly large or there are many of them.
11995
11996To control the automatic loading of shared library symbols, use the
11997commands:
11998
11999@table @code
12000@kindex set auto-solib-add
12001@item set auto-solib-add @var{mode}
12002If @var{mode} is @code{on}, symbols from all shared object libraries
12003will be loaded automatically when the inferior begins execution, you
12004attach to an independently started inferior, or when the dynamic linker
12005informs @value{GDBN} that a new library has been loaded. If @var{mode}
12006is @code{off}, symbols must be loaded manually, using the
12007@code{sharedlibrary} command. The default value is @code{on}.
12008
dcaf7c2c
EZ
12009@cindex memory used for symbol tables
12010If your program uses lots of shared libraries with debug info that
12011takes large amounts of memory, you can decrease the @value{GDBN}
12012memory footprint by preventing it from automatically loading the
12013symbols from shared libraries. To that end, type @kbd{set
12014auto-solib-add off} before running the inferior, then load each
12015library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12016@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12017the libraries whose symbols you want to be loaded.
12018
b7209cb4
FF
12019@kindex show auto-solib-add
12020@item show auto-solib-add
12021Display the current autoloading mode.
12022@end table
12023
c45da7e6 12024@cindex load shared library
b7209cb4
FF
12025To explicitly load shared library symbols, use the @code{sharedlibrary}
12026command:
12027
c906108c
SS
12028@table @code
12029@kindex info sharedlibrary
12030@kindex info share
12031@item info share
12032@itemx info sharedlibrary
12033Print the names of the shared libraries which are currently loaded.
12034
12035@kindex sharedlibrary
12036@kindex share
12037@item sharedlibrary @var{regex}
12038@itemx share @var{regex}
c906108c
SS
12039Load shared object library symbols for files matching a
12040Unix regular expression.
12041As with files loaded automatically, it only loads shared libraries
12042required by your program for a core file or after typing @code{run}. If
12043@var{regex} is omitted all shared libraries required by your program are
12044loaded.
c45da7e6
EZ
12045
12046@item nosharedlibrary
12047@kindex nosharedlibrary
12048@cindex unload symbols from shared libraries
12049Unload all shared object library symbols. This discards all symbols
12050that have been loaded from all shared libraries. Symbols from shared
12051libraries that were loaded by explicit user requests are not
12052discarded.
c906108c
SS
12053@end table
12054
721c2651
EZ
12055Sometimes you may wish that @value{GDBN} stops and gives you control
12056when any of shared library events happen. Use the @code{set
12057stop-on-solib-events} command for this:
12058
12059@table @code
12060@item set stop-on-solib-events
12061@kindex set stop-on-solib-events
12062This command controls whether @value{GDBN} should give you control
12063when the dynamic linker notifies it about some shared library event.
12064The most common event of interest is loading or unloading of a new
12065shared library.
12066
12067@item show stop-on-solib-events
12068@kindex show stop-on-solib-events
12069Show whether @value{GDBN} stops and gives you control when shared
12070library events happen.
12071@end table
12072
f5ebfba0
DJ
12073Shared libraries are also supported in many cross or remote debugging
12074configurations. A copy of the target's libraries need to be present on the
12075host system; they need to be the same as the target libraries, although the
12076copies on the target can be stripped as long as the copies on the host are
12077not.
12078
59b7b46f
EZ
12079@cindex where to look for shared libraries
12080For remote debugging, you need to tell @value{GDBN} where the target
12081libraries are, so that it can load the correct copies---otherwise, it
12082may try to load the host's libraries. @value{GDBN} has two variables
12083to specify the search directories for target libraries.
f5ebfba0
DJ
12084
12085@table @code
59b7b46f 12086@cindex prefix for shared library file names
f822c95b 12087@cindex system root, alternate
f5ebfba0 12088@kindex set solib-absolute-prefix
f822c95b
DJ
12089@kindex set sysroot
12090@item set sysroot @var{path}
12091Use @var{path} as the system root for the program being debugged. Any
12092absolute shared library paths will be prefixed with @var{path}; many
12093runtime loaders store the absolute paths to the shared library in the
12094target program's memory. If you use @code{set sysroot} to find shared
12095libraries, they need to be laid out in the same way that they are on
12096the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12097under @var{path}.
12098
12099The @code{set solib-absolute-prefix} command is an alias for @code{set
12100sysroot}.
12101
12102@cindex default system root
59b7b46f 12103@cindex @samp{--with-sysroot}
f822c95b
DJ
12104You can set the default system root by using the configure-time
12105@samp{--with-sysroot} option. If the system root is inside
12106@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12107@samp{--exec-prefix}), then the default system root will be updated
12108automatically if the installed @value{GDBN} is moved to a new
12109location.
12110
12111@kindex show sysroot
12112@item show sysroot
f5ebfba0
DJ
12113Display the current shared library prefix.
12114
12115@kindex set solib-search-path
12116@item set solib-search-path @var{path}
f822c95b
DJ
12117If this variable is set, @var{path} is a colon-separated list of
12118directories to search for shared libraries. @samp{solib-search-path}
12119is used after @samp{sysroot} fails to locate the library, or if the
12120path to the library is relative instead of absolute. If you want to
12121use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12122@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12123finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12124it to a nonexistent directory may interfere with automatic loading
f822c95b 12125of shared library symbols.
f5ebfba0
DJ
12126
12127@kindex show solib-search-path
12128@item show solib-search-path
12129Display the current shared library search path.
12130@end table
12131
5b5d99cf
JB
12132
12133@node Separate Debug Files
12134@section Debugging Information in Separate Files
12135@cindex separate debugging information files
12136@cindex debugging information in separate files
12137@cindex @file{.debug} subdirectories
12138@cindex debugging information directory, global
12139@cindex global debugging information directory
c7e83d54
EZ
12140@cindex build ID, and separate debugging files
12141@cindex @file{.build-id} directory
5b5d99cf
JB
12142
12143@value{GDBN} allows you to put a program's debugging information in a
12144file separate from the executable itself, in a way that allows
12145@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12146Since debugging information can be very large---sometimes larger
12147than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12148information for their executables in separate files, which users can
12149install only when they need to debug a problem.
12150
c7e83d54
EZ
12151@value{GDBN} supports two ways of specifying the separate debug info
12152file:
5b5d99cf
JB
12153
12154@itemize @bullet
12155@item
c7e83d54
EZ
12156The executable contains a @dfn{debug link} that specifies the name of
12157the separate debug info file. The separate debug file's name is
12158usually @file{@var{executable}.debug}, where @var{executable} is the
12159name of the corresponding executable file without leading directories
12160(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12161debug link specifies a CRC32 checksum for the debug file, which
12162@value{GDBN} uses to validate that the executable and the debug file
12163came from the same build.
12164
12165@item
7e27a47a 12166The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12167also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12168only on some operating systems, notably those which use the ELF format
12169for binary files and the @sc{gnu} Binutils.) For more details about
12170this feature, see the description of the @option{--build-id}
12171command-line option in @ref{Options, , Command Line Options, ld.info,
12172The GNU Linker}. The debug info file's name is not specified
12173explicitly by the build ID, but can be computed from the build ID, see
12174below.
d3750b24
JK
12175@end itemize
12176
c7e83d54
EZ
12177Depending on the way the debug info file is specified, @value{GDBN}
12178uses two different methods of looking for the debug file:
d3750b24
JK
12179
12180@itemize @bullet
12181@item
c7e83d54
EZ
12182For the ``debug link'' method, @value{GDBN} looks up the named file in
12183the directory of the executable file, then in a subdirectory of that
12184directory named @file{.debug}, and finally under the global debug
12185directory, in a subdirectory whose name is identical to the leading
12186directories of the executable's absolute file name.
12187
12188@item
83f83d7f 12189For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12190@file{.build-id} subdirectory of the global debug directory for a file
12191named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12192first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12193are the rest of the bit string. (Real build ID strings are 32 or more
12194hex characters, not 10.)
c7e83d54
EZ
12195@end itemize
12196
12197So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12198@file{/usr/bin/ls}, which has a debug link that specifies the
12199file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12200@code{abcdef1234}. If the global debug directory is
12201@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12202debug information files, in the indicated order:
12203
12204@itemize @minus
12205@item
12206@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12207@item
c7e83d54 12208@file{/usr/bin/ls.debug}
5b5d99cf 12209@item
c7e83d54 12210@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12211@item
c7e83d54 12212@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12213@end itemize
5b5d99cf
JB
12214
12215You can set the global debugging info directory's name, and view the
12216name @value{GDBN} is currently using.
12217
12218@table @code
12219
12220@kindex set debug-file-directory
12221@item set debug-file-directory @var{directory}
12222Set the directory which @value{GDBN} searches for separate debugging
12223information files to @var{directory}.
12224
12225@kindex show debug-file-directory
12226@item show debug-file-directory
12227Show the directory @value{GDBN} searches for separate debugging
12228information files.
12229
12230@end table
12231
12232@cindex @code{.gnu_debuglink} sections
c7e83d54 12233@cindex debug link sections
5b5d99cf
JB
12234A debug link is a special section of the executable file named
12235@code{.gnu_debuglink}. The section must contain:
12236
12237@itemize
12238@item
12239A filename, with any leading directory components removed, followed by
12240a zero byte,
12241@item
12242zero to three bytes of padding, as needed to reach the next four-byte
12243boundary within the section, and
12244@item
12245a four-byte CRC checksum, stored in the same endianness used for the
12246executable file itself. The checksum is computed on the debugging
12247information file's full contents by the function given below, passing
12248zero as the @var{crc} argument.
12249@end itemize
12250
12251Any executable file format can carry a debug link, as long as it can
12252contain a section named @code{.gnu_debuglink} with the contents
12253described above.
12254
d3750b24 12255@cindex @code{.note.gnu.build-id} sections
c7e83d54 12256@cindex build ID sections
7e27a47a
EZ
12257The build ID is a special section in the executable file (and in other
12258ELF binary files that @value{GDBN} may consider). This section is
12259often named @code{.note.gnu.build-id}, but that name is not mandatory.
12260It contains unique identification for the built files---the ID remains
12261the same across multiple builds of the same build tree. The default
12262algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12263content for the build ID string. The same section with an identical
12264value is present in the original built binary with symbols, in its
12265stripped variant, and in the separate debugging information file.
d3750b24 12266
5b5d99cf
JB
12267The debugging information file itself should be an ordinary
12268executable, containing a full set of linker symbols, sections, and
12269debugging information. The sections of the debugging information file
c7e83d54
EZ
12270should have the same names, addresses, and sizes as the original file,
12271but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12272in an ordinary executable.
12273
7e27a47a 12274The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12275@samp{objcopy} utility that can produce
12276the separated executable / debugging information file pairs using the
12277following commands:
12278
12279@smallexample
12280@kbd{objcopy --only-keep-debug foo foo.debug}
12281@kbd{strip -g foo}
c7e83d54
EZ
12282@end smallexample
12283
12284@noindent
12285These commands remove the debugging
83f83d7f
JK
12286information from the executable file @file{foo} and place it in the file
12287@file{foo.debug}. You can use the first, second or both methods to link the
12288two files:
12289
12290@itemize @bullet
12291@item
12292The debug link method needs the following additional command to also leave
12293behind a debug link in @file{foo}:
12294
12295@smallexample
12296@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12297@end smallexample
12298
12299Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12300a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12301foo.debug} has the same functionality as the two @code{objcopy} commands and
12302the @code{ln -s} command above, together.
12303
12304@item
12305Build ID gets embedded into the main executable using @code{ld --build-id} or
12306the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12307compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12308utilities (Binutils) package since version 2.18.
83f83d7f
JK
12309@end itemize
12310
12311@noindent
d3750b24 12312
c7e83d54
EZ
12313Since there are many different ways to compute CRC's for the debug
12314link (different polynomials, reversals, byte ordering, etc.), the
12315simplest way to describe the CRC used in @code{.gnu_debuglink}
12316sections is to give the complete code for a function that computes it:
5b5d99cf 12317
4644b6e3 12318@kindex gnu_debuglink_crc32
5b5d99cf
JB
12319@smallexample
12320unsigned long
12321gnu_debuglink_crc32 (unsigned long crc,
12322 unsigned char *buf, size_t len)
12323@{
12324 static const unsigned long crc32_table[256] =
12325 @{
12326 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12327 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12328 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12329 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12330 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12331 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12332 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12333 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12334 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12335 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12336 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12337 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12338 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12339 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12340 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12341 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12342 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12343 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12344 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12345 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12346 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12347 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12348 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12349 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12350 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12351 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12352 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12353 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12354 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12355 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12356 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12357 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12358 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12359 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12360 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12361 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12362 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12363 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12364 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12365 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12366 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12367 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12368 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12369 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12370 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12371 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12372 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12373 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12374 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12375 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12376 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12377 0x2d02ef8d
12378 @};
12379 unsigned char *end;
12380
12381 crc = ~crc & 0xffffffff;
12382 for (end = buf + len; buf < end; ++buf)
12383 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12384 return ~crc & 0xffffffff;
5b5d99cf
JB
12385@}
12386@end smallexample
12387
c7e83d54
EZ
12388@noindent
12389This computation does not apply to the ``build ID'' method.
12390
5b5d99cf 12391
6d2ebf8b 12392@node Symbol Errors
79a6e687 12393@section Errors Reading Symbol Files
c906108c
SS
12394
12395While reading a symbol file, @value{GDBN} occasionally encounters problems,
12396such as symbol types it does not recognize, or known bugs in compiler
12397output. By default, @value{GDBN} does not notify you of such problems, since
12398they are relatively common and primarily of interest to people
12399debugging compilers. If you are interested in seeing information
12400about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12401only one message about each such type of problem, no matter how many
12402times the problem occurs; or you can ask @value{GDBN} to print more messages,
12403to see how many times the problems occur, with the @code{set
79a6e687
BW
12404complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12405Messages}).
c906108c
SS
12406
12407The messages currently printed, and their meanings, include:
12408
12409@table @code
12410@item inner block not inside outer block in @var{symbol}
12411
12412The symbol information shows where symbol scopes begin and end
12413(such as at the start of a function or a block of statements). This
12414error indicates that an inner scope block is not fully contained
12415in its outer scope blocks.
12416
12417@value{GDBN} circumvents the problem by treating the inner block as if it had
12418the same scope as the outer block. In the error message, @var{symbol}
12419may be shown as ``@code{(don't know)}'' if the outer block is not a
12420function.
12421
12422@item block at @var{address} out of order
12423
12424The symbol information for symbol scope blocks should occur in
12425order of increasing addresses. This error indicates that it does not
12426do so.
12427
12428@value{GDBN} does not circumvent this problem, and has trouble
12429locating symbols in the source file whose symbols it is reading. (You
12430can often determine what source file is affected by specifying
79a6e687
BW
12431@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12432Messages}.)
c906108c
SS
12433
12434@item bad block start address patched
12435
12436The symbol information for a symbol scope block has a start address
12437smaller than the address of the preceding source line. This is known
12438to occur in the SunOS 4.1.1 (and earlier) C compiler.
12439
12440@value{GDBN} circumvents the problem by treating the symbol scope block as
12441starting on the previous source line.
12442
12443@item bad string table offset in symbol @var{n}
12444
12445@cindex foo
12446Symbol number @var{n} contains a pointer into the string table which is
12447larger than the size of the string table.
12448
12449@value{GDBN} circumvents the problem by considering the symbol to have the
12450name @code{foo}, which may cause other problems if many symbols end up
12451with this name.
12452
12453@item unknown symbol type @code{0x@var{nn}}
12454
7a292a7a
SS
12455The symbol information contains new data types that @value{GDBN} does
12456not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12457uncomprehended information, in hexadecimal.
c906108c 12458
7a292a7a
SS
12459@value{GDBN} circumvents the error by ignoring this symbol information.
12460This usually allows you to debug your program, though certain symbols
c906108c 12461are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12462debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12463on @code{complain}, then go up to the function @code{read_dbx_symtab}
12464and examine @code{*bufp} to see the symbol.
c906108c
SS
12465
12466@item stub type has NULL name
c906108c 12467
7a292a7a 12468@value{GDBN} could not find the full definition for a struct or class.
c906108c 12469
7a292a7a 12470@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12471The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12472information that recent versions of the compiler should have output for
12473it.
c906108c
SS
12474
12475@item info mismatch between compiler and debugger
12476
12477@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12478
c906108c
SS
12479@end table
12480
6d2ebf8b 12481@node Targets
c906108c 12482@chapter Specifying a Debugging Target
7a292a7a 12483
c906108c 12484@cindex debugging target
c906108c 12485A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12486
12487Often, @value{GDBN} runs in the same host environment as your program;
12488in that case, the debugging target is specified as a side effect when
12489you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12490flexibility---for example, running @value{GDBN} on a physically separate
12491host, or controlling a standalone system over a serial port or a
53a5351d
JM
12492realtime system over a TCP/IP connection---you can use the @code{target}
12493command to specify one of the target types configured for @value{GDBN}
79a6e687 12494(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12495
a8f24a35
EZ
12496@cindex target architecture
12497It is possible to build @value{GDBN} for several different @dfn{target
12498architectures}. When @value{GDBN} is built like that, you can choose
12499one of the available architectures with the @kbd{set architecture}
12500command.
12501
12502@table @code
12503@kindex set architecture
12504@kindex show architecture
12505@item set architecture @var{arch}
12506This command sets the current target architecture to @var{arch}. The
12507value of @var{arch} can be @code{"auto"}, in addition to one of the
12508supported architectures.
12509
12510@item show architecture
12511Show the current target architecture.
9c16f35a
EZ
12512
12513@item set processor
12514@itemx processor
12515@kindex set processor
12516@kindex show processor
12517These are alias commands for, respectively, @code{set architecture}
12518and @code{show architecture}.
a8f24a35
EZ
12519@end table
12520
c906108c
SS
12521@menu
12522* Active Targets:: Active targets
12523* Target Commands:: Commands for managing targets
c906108c 12524* Byte Order:: Choosing target byte order
c906108c
SS
12525@end menu
12526
6d2ebf8b 12527@node Active Targets
79a6e687 12528@section Active Targets
7a292a7a 12529
c906108c
SS
12530@cindex stacking targets
12531@cindex active targets
12532@cindex multiple targets
12533
c906108c 12534There are three classes of targets: processes, core files, and
7a292a7a
SS
12535executable files. @value{GDBN} can work concurrently on up to three
12536active targets, one in each class. This allows you to (for example)
12537start a process and inspect its activity without abandoning your work on
12538a core file.
c906108c
SS
12539
12540For example, if you execute @samp{gdb a.out}, then the executable file
12541@code{a.out} is the only active target. If you designate a core file as
12542well---presumably from a prior run that crashed and coredumped---then
12543@value{GDBN} has two active targets and uses them in tandem, looking
12544first in the corefile target, then in the executable file, to satisfy
12545requests for memory addresses. (Typically, these two classes of target
12546are complementary, since core files contain only a program's
12547read-write memory---variables and so on---plus machine status, while
12548executable files contain only the program text and initialized data.)
c906108c
SS
12549
12550When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12551target as well. When a process target is active, all @value{GDBN}
12552commands requesting memory addresses refer to that target; addresses in
12553an active core file or executable file target are obscured while the
12554process target is active.
c906108c 12555
7a292a7a 12556Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12557core file or executable target (@pxref{Files, ,Commands to Specify
12558Files}). To specify as a target a process that is already running, use
12559the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12560Process}).
c906108c 12561
6d2ebf8b 12562@node Target Commands
79a6e687 12563@section Commands for Managing Targets
c906108c
SS
12564
12565@table @code
12566@item target @var{type} @var{parameters}
7a292a7a
SS
12567Connects the @value{GDBN} host environment to a target machine or
12568process. A target is typically a protocol for talking to debugging
12569facilities. You use the argument @var{type} to specify the type or
12570protocol of the target machine.
c906108c
SS
12571
12572Further @var{parameters} are interpreted by the target protocol, but
12573typically include things like device names or host names to connect
12574with, process numbers, and baud rates.
c906108c
SS
12575
12576The @code{target} command does not repeat if you press @key{RET} again
12577after executing the command.
12578
12579@kindex help target
12580@item help target
12581Displays the names of all targets available. To display targets
12582currently selected, use either @code{info target} or @code{info files}
79a6e687 12583(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12584
12585@item help target @var{name}
12586Describe a particular target, including any parameters necessary to
12587select it.
12588
12589@kindex set gnutarget
12590@item set gnutarget @var{args}
5d161b24 12591@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12592knows whether it is reading an @dfn{executable},
5d161b24
DB
12593a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12594with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12595with @code{gnutarget} the @code{target} refers to a program, not a machine.
12596
d4f3574e 12597@quotation
c906108c
SS
12598@emph{Warning:} To specify a file format with @code{set gnutarget},
12599you must know the actual BFD name.
d4f3574e 12600@end quotation
c906108c 12601
d4f3574e 12602@noindent
79a6e687 12603@xref{Files, , Commands to Specify Files}.
c906108c 12604
5d161b24 12605@kindex show gnutarget
c906108c
SS
12606@item show gnutarget
12607Use the @code{show gnutarget} command to display what file format
12608@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12609@value{GDBN} will determine the file format for each file automatically,
12610and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12611@end table
12612
4644b6e3 12613@cindex common targets
c906108c
SS
12614Here are some common targets (available, or not, depending on the GDB
12615configuration):
c906108c
SS
12616
12617@table @code
4644b6e3 12618@kindex target
c906108c 12619@item target exec @var{program}
4644b6e3 12620@cindex executable file target
c906108c
SS
12621An executable file. @samp{target exec @var{program}} is the same as
12622@samp{exec-file @var{program}}.
12623
c906108c 12624@item target core @var{filename}
4644b6e3 12625@cindex core dump file target
c906108c
SS
12626A core dump file. @samp{target core @var{filename}} is the same as
12627@samp{core-file @var{filename}}.
c906108c 12628
1a10341b 12629@item target remote @var{medium}
4644b6e3 12630@cindex remote target
1a10341b
JB
12631A remote system connected to @value{GDBN} via a serial line or network
12632connection. This command tells @value{GDBN} to use its own remote
12633protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12634
12635For example, if you have a board connected to @file{/dev/ttya} on the
12636machine running @value{GDBN}, you could say:
12637
12638@smallexample
12639target remote /dev/ttya
12640@end smallexample
12641
12642@code{target remote} supports the @code{load} command. This is only
12643useful if you have some other way of getting the stub to the target
12644system, and you can put it somewhere in memory where it won't get
12645clobbered by the download.
c906108c 12646
c906108c 12647@item target sim
4644b6e3 12648@cindex built-in simulator target
2df3850c 12649Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12650In general,
474c8240 12651@smallexample
104c1213
JM
12652 target sim
12653 load
12654 run
474c8240 12655@end smallexample
d4f3574e 12656@noindent
104c1213 12657works; however, you cannot assume that a specific memory map, device
d4f3574e 12658drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12659provide these. For info about any processor-specific simulator details,
12660see the appropriate section in @ref{Embedded Processors, ,Embedded
12661Processors}.
12662
c906108c
SS
12663@end table
12664
104c1213 12665Some configurations may include these targets as well:
c906108c
SS
12666
12667@table @code
12668
c906108c 12669@item target nrom @var{dev}
4644b6e3 12670@cindex NetROM ROM emulator target
c906108c
SS
12671NetROM ROM emulator. This target only supports downloading.
12672
c906108c
SS
12673@end table
12674
5d161b24 12675Different targets are available on different configurations of @value{GDBN};
c906108c 12676your configuration may have more or fewer targets.
c906108c 12677
721c2651
EZ
12678Many remote targets require you to download the executable's code once
12679you've successfully established a connection. You may wish to control
3d00d119
DJ
12680various aspects of this process.
12681
12682@table @code
721c2651
EZ
12683
12684@item set hash
12685@kindex set hash@r{, for remote monitors}
12686@cindex hash mark while downloading
12687This command controls whether a hash mark @samp{#} is displayed while
12688downloading a file to the remote monitor. If on, a hash mark is
12689displayed after each S-record is successfully downloaded to the
12690monitor.
12691
12692@item show hash
12693@kindex show hash@r{, for remote monitors}
12694Show the current status of displaying the hash mark.
12695
12696@item set debug monitor
12697@kindex set debug monitor
12698@cindex display remote monitor communications
12699Enable or disable display of communications messages between
12700@value{GDBN} and the remote monitor.
12701
12702@item show debug monitor
12703@kindex show debug monitor
12704Show the current status of displaying communications between
12705@value{GDBN} and the remote monitor.
a8f24a35 12706@end table
c906108c
SS
12707
12708@table @code
12709
12710@kindex load @var{filename}
12711@item load @var{filename}
8edfe269 12712@anchor{load}
c906108c
SS
12713Depending on what remote debugging facilities are configured into
12714@value{GDBN}, the @code{load} command may be available. Where it exists, it
12715is meant to make @var{filename} (an executable) available for debugging
12716on the remote system---by downloading, or dynamic linking, for example.
12717@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12718the @code{add-symbol-file} command.
12719
12720If your @value{GDBN} does not have a @code{load} command, attempting to
12721execute it gets the error message ``@code{You can't do that when your
12722target is @dots{}}''
c906108c
SS
12723
12724The file is loaded at whatever address is specified in the executable.
12725For some object file formats, you can specify the load address when you
12726link the program; for other formats, like a.out, the object file format
12727specifies a fixed address.
12728@c FIXME! This would be a good place for an xref to the GNU linker doc.
12729
68437a39
DJ
12730Depending on the remote side capabilities, @value{GDBN} may be able to
12731load programs into flash memory.
12732
c906108c
SS
12733@code{load} does not repeat if you press @key{RET} again after using it.
12734@end table
12735
6d2ebf8b 12736@node Byte Order
79a6e687 12737@section Choosing Target Byte Order
7a292a7a 12738
c906108c
SS
12739@cindex choosing target byte order
12740@cindex target byte order
c906108c 12741
172c2a43 12742Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12743offer the ability to run either big-endian or little-endian byte
12744orders. Usually the executable or symbol will include a bit to
12745designate the endian-ness, and you will not need to worry about
12746which to use. However, you may still find it useful to adjust
d4f3574e 12747@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12748
12749@table @code
4644b6e3 12750@kindex set endian
c906108c
SS
12751@item set endian big
12752Instruct @value{GDBN} to assume the target is big-endian.
12753
c906108c
SS
12754@item set endian little
12755Instruct @value{GDBN} to assume the target is little-endian.
12756
c906108c
SS
12757@item set endian auto
12758Instruct @value{GDBN} to use the byte order associated with the
12759executable.
12760
12761@item show endian
12762Display @value{GDBN}'s current idea of the target byte order.
12763
12764@end table
12765
12766Note that these commands merely adjust interpretation of symbolic
12767data on the host, and that they have absolutely no effect on the
12768target system.
12769
ea35711c
DJ
12770
12771@node Remote Debugging
12772@chapter Debugging Remote Programs
c906108c
SS
12773@cindex remote debugging
12774
12775If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12776@value{GDBN} in the usual way, it is often useful to use remote debugging.
12777For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12778or on a small system which does not have a general purpose operating system
12779powerful enough to run a full-featured debugger.
12780
12781Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12782to make this work with particular debugging targets. In addition,
5d161b24 12783@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12784but not specific to any particular target system) which you can use if you
12785write the remote stubs---the code that runs on the remote system to
12786communicate with @value{GDBN}.
12787
12788Other remote targets may be available in your
12789configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12790
6b2f586d 12791@menu
07f31aa6 12792* Connecting:: Connecting to a remote target
a6b151f1 12793* File Transfer:: Sending files to a remote system
6b2f586d 12794* Server:: Using the gdbserver program
79a6e687
BW
12795* Remote Configuration:: Remote configuration
12796* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12797@end menu
12798
07f31aa6 12799@node Connecting
79a6e687 12800@section Connecting to a Remote Target
07f31aa6
DJ
12801
12802On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12803your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12804Start up @value{GDBN} as usual, using the name of the local copy of your
12805program as the first argument.
12806
86941c27
JB
12807@cindex @code{target remote}
12808@value{GDBN} can communicate with the target over a serial line, or
12809over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12810each case, @value{GDBN} uses the same protocol for debugging your
12811program; only the medium carrying the debugging packets varies. The
12812@code{target remote} command establishes a connection to the target.
12813Its arguments indicate which medium to use:
12814
12815@table @code
12816
12817@item target remote @var{serial-device}
07f31aa6 12818@cindex serial line, @code{target remote}
86941c27
JB
12819Use @var{serial-device} to communicate with the target. For example,
12820to use a serial line connected to the device named @file{/dev/ttyb}:
12821
12822@smallexample
12823target remote /dev/ttyb
12824@end smallexample
12825
07f31aa6
DJ
12826If you're using a serial line, you may want to give @value{GDBN} the
12827@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12828(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12829@code{target} command.
07f31aa6 12830
86941c27
JB
12831@item target remote @code{@var{host}:@var{port}}
12832@itemx target remote @code{tcp:@var{host}:@var{port}}
12833@cindex @acronym{TCP} port, @code{target remote}
12834Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12835The @var{host} may be either a host name or a numeric @acronym{IP}
12836address; @var{port} must be a decimal number. The @var{host} could be
12837the target machine itself, if it is directly connected to the net, or
12838it might be a terminal server which in turn has a serial line to the
12839target.
07f31aa6 12840
86941c27
JB
12841For example, to connect to port 2828 on a terminal server named
12842@code{manyfarms}:
07f31aa6
DJ
12843
12844@smallexample
12845target remote manyfarms:2828
12846@end smallexample
12847
86941c27
JB
12848If your remote target is actually running on the same machine as your
12849debugger session (e.g.@: a simulator for your target running on the
12850same host), you can omit the hostname. For example, to connect to
12851port 1234 on your local machine:
07f31aa6
DJ
12852
12853@smallexample
12854target remote :1234
12855@end smallexample
12856@noindent
12857
12858Note that the colon is still required here.
12859
86941c27
JB
12860@item target remote @code{udp:@var{host}:@var{port}}
12861@cindex @acronym{UDP} port, @code{target remote}
12862Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12863connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12864
12865@smallexample
12866target remote udp:manyfarms:2828
12867@end smallexample
12868
86941c27
JB
12869When using a @acronym{UDP} connection for remote debugging, you should
12870keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12871can silently drop packets on busy or unreliable networks, which will
12872cause havoc with your debugging session.
12873
66b8c7f6
JB
12874@item target remote | @var{command}
12875@cindex pipe, @code{target remote} to
12876Run @var{command} in the background and communicate with it using a
12877pipe. The @var{command} is a shell command, to be parsed and expanded
12878by the system's command shell, @code{/bin/sh}; it should expect remote
12879protocol packets on its standard input, and send replies on its
12880standard output. You could use this to run a stand-alone simulator
12881that speaks the remote debugging protocol, to make net connections
12882using programs like @code{ssh}, or for other similar tricks.
12883
12884If @var{command} closes its standard output (perhaps by exiting),
12885@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12886program has already exited, this will have no effect.)
12887
86941c27 12888@end table
07f31aa6 12889
86941c27 12890Once the connection has been established, you can use all the usual
8edfe269
DJ
12891commands to examine and change data. The remote program is already
12892running; you can use @kbd{step} and @kbd{continue}, and you do not
12893need to use @kbd{run}.
07f31aa6
DJ
12894
12895@cindex interrupting remote programs
12896@cindex remote programs, interrupting
12897Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12898interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12899program. This may or may not succeed, depending in part on the hardware
12900and the serial drivers the remote system uses. If you type the
12901interrupt character once again, @value{GDBN} displays this prompt:
12902
12903@smallexample
12904Interrupted while waiting for the program.
12905Give up (and stop debugging it)? (y or n)
12906@end smallexample
12907
12908If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12909(If you decide you want to try again later, you can use @samp{target
12910remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12911goes back to waiting.
12912
12913@table @code
12914@kindex detach (remote)
12915@item detach
12916When you have finished debugging the remote program, you can use the
12917@code{detach} command to release it from @value{GDBN} control.
12918Detaching from the target normally resumes its execution, but the results
12919will depend on your particular remote stub. After the @code{detach}
12920command, @value{GDBN} is free to connect to another target.
12921
12922@kindex disconnect
12923@item disconnect
12924The @code{disconnect} command behaves like @code{detach}, except that
12925the target is generally not resumed. It will wait for @value{GDBN}
12926(this instance or another one) to connect and continue debugging. After
12927the @code{disconnect} command, @value{GDBN} is again free to connect to
12928another target.
09d4efe1
EZ
12929
12930@cindex send command to remote monitor
fad38dfa
EZ
12931@cindex extend @value{GDBN} for remote targets
12932@cindex add new commands for external monitor
09d4efe1
EZ
12933@kindex monitor
12934@item monitor @var{cmd}
fad38dfa
EZ
12935This command allows you to send arbitrary commands directly to the
12936remote monitor. Since @value{GDBN} doesn't care about the commands it
12937sends like this, this command is the way to extend @value{GDBN}---you
12938can add new commands that only the external monitor will understand
12939and implement.
07f31aa6
DJ
12940@end table
12941
a6b151f1
DJ
12942@node File Transfer
12943@section Sending files to a remote system
12944@cindex remote target, file transfer
12945@cindex file transfer
12946@cindex sending files to remote systems
12947
12948Some remote targets offer the ability to transfer files over the same
12949connection used to communicate with @value{GDBN}. This is convenient
12950for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12951running @code{gdbserver} over a network interface. For other targets,
12952e.g.@: embedded devices with only a single serial port, this may be
12953the only way to upload or download files.
12954
12955Not all remote targets support these commands.
12956
12957@table @code
12958@kindex remote put
12959@item remote put @var{hostfile} @var{targetfile}
12960Copy file @var{hostfile} from the host system (the machine running
12961@value{GDBN}) to @var{targetfile} on the target system.
12962
12963@kindex remote get
12964@item remote get @var{targetfile} @var{hostfile}
12965Copy file @var{targetfile} from the target system to @var{hostfile}
12966on the host system.
12967
12968@kindex remote delete
12969@item remote delete @var{targetfile}
12970Delete @var{targetfile} from the target system.
12971
12972@end table
12973
6f05cf9f 12974@node Server
79a6e687 12975@section Using the @code{gdbserver} Program
6f05cf9f
AC
12976
12977@kindex gdbserver
12978@cindex remote connection without stubs
12979@code{gdbserver} is a control program for Unix-like systems, which
12980allows you to connect your program with a remote @value{GDBN} via
12981@code{target remote}---but without linking in the usual debugging stub.
12982
12983@code{gdbserver} is not a complete replacement for the debugging stubs,
12984because it requires essentially the same operating-system facilities
12985that @value{GDBN} itself does. In fact, a system that can run
12986@code{gdbserver} to connect to a remote @value{GDBN} could also run
12987@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12988because it is a much smaller program than @value{GDBN} itself. It is
12989also easier to port than all of @value{GDBN}, so you may be able to get
12990started more quickly on a new system by using @code{gdbserver}.
12991Finally, if you develop code for real-time systems, you may find that
12992the tradeoffs involved in real-time operation make it more convenient to
12993do as much development work as possible on another system, for example
12994by cross-compiling. You can use @code{gdbserver} to make a similar
12995choice for debugging.
12996
12997@value{GDBN} and @code{gdbserver} communicate via either a serial line
12998or a TCP connection, using the standard @value{GDBN} remote serial
12999protocol.
13000
2d717e4f
DJ
13001@quotation
13002@emph{Warning:} @code{gdbserver} does not have any built-in security.
13003Do not run @code{gdbserver} connected to any public network; a
13004@value{GDBN} connection to @code{gdbserver} provides access to the
13005target system with the same privileges as the user running
13006@code{gdbserver}.
13007@end quotation
13008
13009@subsection Running @code{gdbserver}
13010@cindex arguments, to @code{gdbserver}
13011
13012Run @code{gdbserver} on the target system. You need a copy of the
13013program you want to debug, including any libraries it requires.
6f05cf9f
AC
13014@code{gdbserver} does not need your program's symbol table, so you can
13015strip the program if necessary to save space. @value{GDBN} on the host
13016system does all the symbol handling.
13017
13018To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13019the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13020syntax is:
13021
13022@smallexample
13023target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13024@end smallexample
13025
13026@var{comm} is either a device name (to use a serial line) or a TCP
13027hostname and portnumber. For example, to debug Emacs with the argument
13028@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13029@file{/dev/com1}:
13030
13031@smallexample
13032target> gdbserver /dev/com1 emacs foo.txt
13033@end smallexample
13034
13035@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13036with it.
13037
13038To use a TCP connection instead of a serial line:
13039
13040@smallexample
13041target> gdbserver host:2345 emacs foo.txt
13042@end smallexample
13043
13044The only difference from the previous example is the first argument,
13045specifying that you are communicating with the host @value{GDBN} via
13046TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13047expect a TCP connection from machine @samp{host} to local TCP port 2345.
13048(Currently, the @samp{host} part is ignored.) You can choose any number
13049you want for the port number as long as it does not conflict with any
13050TCP ports already in use on the target system (for example, @code{23} is
13051reserved for @code{telnet}).@footnote{If you choose a port number that
13052conflicts with another service, @code{gdbserver} prints an error message
13053and exits.} You must use the same port number with the host @value{GDBN}
13054@code{target remote} command.
13055
2d717e4f
DJ
13056@subsubsection Attaching to a Running Program
13057
56460a61
DJ
13058On some targets, @code{gdbserver} can also attach to running programs.
13059This is accomplished via the @code{--attach} argument. The syntax is:
13060
13061@smallexample
2d717e4f 13062target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13063@end smallexample
13064
13065@var{pid} is the process ID of a currently running process. It isn't necessary
13066to point @code{gdbserver} at a binary for the running process.
13067
b1fe9455
DJ
13068@pindex pidof
13069@cindex attach to a program by name
13070You can debug processes by name instead of process ID if your target has the
13071@code{pidof} utility:
13072
13073@smallexample
2d717e4f 13074target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13075@end smallexample
13076
f822c95b 13077In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13078has multiple threads, most versions of @code{pidof} support the
13079@code{-s} option to only return the first process ID.
13080
2d717e4f
DJ
13081@subsubsection Multi-Process Mode for @code{gdbserver}
13082@cindex gdbserver, multiple processes
13083@cindex multiple processes with gdbserver
13084
13085When you connect to @code{gdbserver} using @code{target remote},
13086@code{gdbserver} debugs the specified program only once. When the
13087program exits, or you detach from it, @value{GDBN} closes the connection
13088and @code{gdbserver} exits.
13089
6e6c6f50 13090If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13091enters multi-process mode. When the debugged program exits, or you
13092detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13093though no program is running. The @code{run} and @code{attach}
13094commands instruct @code{gdbserver} to run or attach to a new program.
13095The @code{run} command uses @code{set remote exec-file} (@pxref{set
13096remote exec-file}) to select the program to run. Command line
13097arguments are supported, except for wildcard expansion and I/O
13098redirection (@pxref{Arguments}).
13099
13100To start @code{gdbserver} without supplying an initial command to run
13101or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13102Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13103the program you want to debug.
13104
13105@code{gdbserver} does not automatically exit in multi-process mode.
13106You can terminate it by using @code{monitor exit}
13107(@pxref{Monitor Commands for gdbserver}).
13108
13109@subsubsection Other Command-Line Arguments for @code{gdbserver}
13110
13111You can include @option{--debug} on the @code{gdbserver} command line.
13112@code{gdbserver} will display extra status information about the debugging
13113process. This option is intended for @code{gdbserver} development and
13114for bug reports to the developers.
13115
ccd213ac
DJ
13116The @option{--wrapper} option specifies a wrapper to launch programs
13117for debugging. The option should be followed by the name of the
13118wrapper, then any command-line arguments to pass to the wrapper, then
13119@kbd{--} indicating the end of the wrapper arguments.
13120
13121@code{gdbserver} runs the specified wrapper program with a combined
13122command line including the wrapper arguments, then the name of the
13123program to debug, then any arguments to the program. The wrapper
13124runs until it executes your program, and then @value{GDBN} gains control.
13125
13126You can use any program that eventually calls @code{execve} with
13127its arguments as a wrapper. Several standard Unix utilities do
13128this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13129with @code{exec "$@@"} will also work.
13130
13131For example, you can use @code{env} to pass an environment variable to
13132the debugged program, without setting the variable in @code{gdbserver}'s
13133environment:
13134
13135@smallexample
13136$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13137@end smallexample
13138
2d717e4f
DJ
13139@subsection Connecting to @code{gdbserver}
13140
13141Run @value{GDBN} on the host system.
13142
13143First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13144your application using the @code{file} command before you connect. Use
13145@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13146was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13147
13148The symbol file and target libraries must exactly match the executable
13149and libraries on the target, with one exception: the files on the host
13150system should not be stripped, even if the files on the target system
13151are. Mismatched or missing files will lead to confusing results
13152during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13153files may also prevent @code{gdbserver} from debugging multi-threaded
13154programs.
13155
79a6e687 13156Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13157For TCP connections, you must start up @code{gdbserver} prior to using
13158the @code{target remote} command. Otherwise you may get an error whose
13159text depends on the host system, but which usually looks something like
2d717e4f 13160@samp{Connection refused}. Don't use the @code{load}
397ca115 13161command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13162already on the target.
07f31aa6 13163
79a6e687 13164@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13165@cindex monitor commands, for @code{gdbserver}
2d717e4f 13166@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13167
13168During a @value{GDBN} session using @code{gdbserver}, you can use the
13169@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13170Here are the available commands.
c74d0ad8
DJ
13171
13172@table @code
13173@item monitor help
13174List the available monitor commands.
13175
13176@item monitor set debug 0
13177@itemx monitor set debug 1
13178Disable or enable general debugging messages.
13179
13180@item monitor set remote-debug 0
13181@itemx monitor set remote-debug 1
13182Disable or enable specific debugging messages associated with the remote
13183protocol (@pxref{Remote Protocol}).
13184
2d717e4f
DJ
13185@item monitor exit
13186Tell gdbserver to exit immediately. This command should be followed by
13187@code{disconnect} to close the debugging session. @code{gdbserver} will
13188detach from any attached processes and kill any processes it created.
13189Use @code{monitor exit} to terminate @code{gdbserver} at the end
13190of a multi-process mode debug session.
13191
c74d0ad8
DJ
13192@end table
13193
79a6e687
BW
13194@node Remote Configuration
13195@section Remote Configuration
501eef12 13196
9c16f35a
EZ
13197@kindex set remote
13198@kindex show remote
13199This section documents the configuration options available when
13200debugging remote programs. For the options related to the File I/O
fc320d37 13201extensions of the remote protocol, see @ref{system,
9c16f35a 13202system-call-allowed}.
501eef12
AC
13203
13204@table @code
9c16f35a 13205@item set remoteaddresssize @var{bits}
d3e8051b 13206@cindex address size for remote targets
9c16f35a
EZ
13207@cindex bits in remote address
13208Set the maximum size of address in a memory packet to the specified
13209number of bits. @value{GDBN} will mask off the address bits above
13210that number, when it passes addresses to the remote target. The
13211default value is the number of bits in the target's address.
13212
13213@item show remoteaddresssize
13214Show the current value of remote address size in bits.
13215
13216@item set remotebaud @var{n}
13217@cindex baud rate for remote targets
13218Set the baud rate for the remote serial I/O to @var{n} baud. The
13219value is used to set the speed of the serial port used for debugging
13220remote targets.
13221
13222@item show remotebaud
13223Show the current speed of the remote connection.
13224
13225@item set remotebreak
13226@cindex interrupt remote programs
13227@cindex BREAK signal instead of Ctrl-C
9a6253be 13228@anchor{set remotebreak}
9c16f35a 13229If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13230when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13231on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13232character instead. The default is off, since most remote systems
13233expect to see @samp{Ctrl-C} as the interrupt signal.
13234
13235@item show remotebreak
13236Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13237interrupt the remote program.
13238
23776285
MR
13239@item set remoteflow on
13240@itemx set remoteflow off
13241@kindex set remoteflow
13242Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13243on the serial port used to communicate to the remote target.
13244
13245@item show remoteflow
13246@kindex show remoteflow
13247Show the current setting of hardware flow control.
13248
9c16f35a
EZ
13249@item set remotelogbase @var{base}
13250Set the base (a.k.a.@: radix) of logging serial protocol
13251communications to @var{base}. Supported values of @var{base} are:
13252@code{ascii}, @code{octal}, and @code{hex}. The default is
13253@code{ascii}.
13254
13255@item show remotelogbase
13256Show the current setting of the radix for logging remote serial
13257protocol.
13258
13259@item set remotelogfile @var{file}
13260@cindex record serial communications on file
13261Record remote serial communications on the named @var{file}. The
13262default is not to record at all.
13263
13264@item show remotelogfile.
13265Show the current setting of the file name on which to record the
13266serial communications.
13267
13268@item set remotetimeout @var{num}
13269@cindex timeout for serial communications
13270@cindex remote timeout
13271Set the timeout limit to wait for the remote target to respond to
13272@var{num} seconds. The default is 2 seconds.
13273
13274@item show remotetimeout
13275Show the current number of seconds to wait for the remote target
13276responses.
13277
13278@cindex limit hardware breakpoints and watchpoints
13279@cindex remote target, limit break- and watchpoints
501eef12
AC
13280@anchor{set remote hardware-watchpoint-limit}
13281@anchor{set remote hardware-breakpoint-limit}
13282@item set remote hardware-watchpoint-limit @var{limit}
13283@itemx set remote hardware-breakpoint-limit @var{limit}
13284Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13285watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13286
13287@item set remote exec-file @var{filename}
13288@itemx show remote exec-file
13289@anchor{set remote exec-file}
13290@cindex executable file, for remote target
13291Select the file used for @code{run} with @code{target
13292extended-remote}. This should be set to a filename valid on the
13293target system. If it is not set, the target will use a default
13294filename (e.g.@: the last program run).
501eef12
AC
13295@end table
13296
427c3a89
DJ
13297@cindex remote packets, enabling and disabling
13298The @value{GDBN} remote protocol autodetects the packets supported by
13299your debugging stub. If you need to override the autodetection, you
13300can use these commands to enable or disable individual packets. Each
13301packet can be set to @samp{on} (the remote target supports this
13302packet), @samp{off} (the remote target does not support this packet),
13303or @samp{auto} (detect remote target support for this packet). They
13304all default to @samp{auto}. For more information about each packet,
13305see @ref{Remote Protocol}.
13306
13307During normal use, you should not have to use any of these commands.
13308If you do, that may be a bug in your remote debugging stub, or a bug
13309in @value{GDBN}. You may want to report the problem to the
13310@value{GDBN} developers.
13311
cfa9d6d9
DJ
13312For each packet @var{name}, the command to enable or disable the
13313packet is @code{set remote @var{name}-packet}. The available settings
13314are:
427c3a89 13315
cfa9d6d9 13316@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13317@item Command Name
13318@tab Remote Packet
13319@tab Related Features
13320
cfa9d6d9 13321@item @code{fetch-register}
427c3a89
DJ
13322@tab @code{p}
13323@tab @code{info registers}
13324
cfa9d6d9 13325@item @code{set-register}
427c3a89
DJ
13326@tab @code{P}
13327@tab @code{set}
13328
cfa9d6d9 13329@item @code{binary-download}
427c3a89
DJ
13330@tab @code{X}
13331@tab @code{load}, @code{set}
13332
cfa9d6d9 13333@item @code{read-aux-vector}
427c3a89
DJ
13334@tab @code{qXfer:auxv:read}
13335@tab @code{info auxv}
13336
cfa9d6d9 13337@item @code{symbol-lookup}
427c3a89
DJ
13338@tab @code{qSymbol}
13339@tab Detecting multiple threads
13340
2d717e4f
DJ
13341@item @code{attach}
13342@tab @code{vAttach}
13343@tab @code{attach}
13344
cfa9d6d9 13345@item @code{verbose-resume}
427c3a89
DJ
13346@tab @code{vCont}
13347@tab Stepping or resuming multiple threads
13348
2d717e4f
DJ
13349@item @code{run}
13350@tab @code{vRun}
13351@tab @code{run}
13352
cfa9d6d9 13353@item @code{software-breakpoint}
427c3a89
DJ
13354@tab @code{Z0}
13355@tab @code{break}
13356
cfa9d6d9 13357@item @code{hardware-breakpoint}
427c3a89
DJ
13358@tab @code{Z1}
13359@tab @code{hbreak}
13360
cfa9d6d9 13361@item @code{write-watchpoint}
427c3a89
DJ
13362@tab @code{Z2}
13363@tab @code{watch}
13364
cfa9d6d9 13365@item @code{read-watchpoint}
427c3a89
DJ
13366@tab @code{Z3}
13367@tab @code{rwatch}
13368
cfa9d6d9 13369@item @code{access-watchpoint}
427c3a89
DJ
13370@tab @code{Z4}
13371@tab @code{awatch}
13372
cfa9d6d9
DJ
13373@item @code{target-features}
13374@tab @code{qXfer:features:read}
13375@tab @code{set architecture}
13376
13377@item @code{library-info}
13378@tab @code{qXfer:libraries:read}
13379@tab @code{info sharedlibrary}
13380
13381@item @code{memory-map}
13382@tab @code{qXfer:memory-map:read}
13383@tab @code{info mem}
13384
13385@item @code{read-spu-object}
13386@tab @code{qXfer:spu:read}
13387@tab @code{info spu}
13388
13389@item @code{write-spu-object}
13390@tab @code{qXfer:spu:write}
13391@tab @code{info spu}
13392
13393@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13394@tab @code{qGetTLSAddr}
13395@tab Displaying @code{__thread} variables
13396
13397@item @code{supported-packets}
13398@tab @code{qSupported}
13399@tab Remote communications parameters
13400
cfa9d6d9 13401@item @code{pass-signals}
89be2091
DJ
13402@tab @code{QPassSignals}
13403@tab @code{handle @var{signal}}
13404
a6b151f1
DJ
13405@item @code{hostio-close-packet}
13406@tab @code{vFile:close}
13407@tab @code{remote get}, @code{remote put}
13408
13409@item @code{hostio-open-packet}
13410@tab @code{vFile:open}
13411@tab @code{remote get}, @code{remote put}
13412
13413@item @code{hostio-pread-packet}
13414@tab @code{vFile:pread}
13415@tab @code{remote get}, @code{remote put}
13416
13417@item @code{hostio-pwrite-packet}
13418@tab @code{vFile:pwrite}
13419@tab @code{remote get}, @code{remote put}
13420
13421@item @code{hostio-unlink-packet}
13422@tab @code{vFile:unlink}
13423@tab @code{remote delete}
427c3a89
DJ
13424@end multitable
13425
79a6e687
BW
13426@node Remote Stub
13427@section Implementing a Remote Stub
7a292a7a 13428
8e04817f
AC
13429@cindex debugging stub, example
13430@cindex remote stub, example
13431@cindex stub example, remote debugging
13432The stub files provided with @value{GDBN} implement the target side of the
13433communication protocol, and the @value{GDBN} side is implemented in the
13434@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13435these subroutines to communicate, and ignore the details. (If you're
13436implementing your own stub file, you can still ignore the details: start
13437with one of the existing stub files. @file{sparc-stub.c} is the best
13438organized, and therefore the easiest to read.)
13439
104c1213
JM
13440@cindex remote serial debugging, overview
13441To debug a program running on another machine (the debugging
13442@dfn{target} machine), you must first arrange for all the usual
13443prerequisites for the program to run by itself. For example, for a C
13444program, you need:
c906108c 13445
104c1213
JM
13446@enumerate
13447@item
13448A startup routine to set up the C runtime environment; these usually
13449have a name like @file{crt0}. The startup routine may be supplied by
13450your hardware supplier, or you may have to write your own.
96baa820 13451
5d161b24 13452@item
d4f3574e 13453A C subroutine library to support your program's
104c1213 13454subroutine calls, notably managing input and output.
96baa820 13455
104c1213
JM
13456@item
13457A way of getting your program to the other machine---for example, a
13458download program. These are often supplied by the hardware
13459manufacturer, but you may have to write your own from hardware
13460documentation.
13461@end enumerate
96baa820 13462
104c1213
JM
13463The next step is to arrange for your program to use a serial port to
13464communicate with the machine where @value{GDBN} is running (the @dfn{host}
13465machine). In general terms, the scheme looks like this:
96baa820 13466
104c1213
JM
13467@table @emph
13468@item On the host,
13469@value{GDBN} already understands how to use this protocol; when everything
13470else is set up, you can simply use the @samp{target remote} command
13471(@pxref{Targets,,Specifying a Debugging Target}).
13472
13473@item On the target,
13474you must link with your program a few special-purpose subroutines that
13475implement the @value{GDBN} remote serial protocol. The file containing these
13476subroutines is called a @dfn{debugging stub}.
13477
13478On certain remote targets, you can use an auxiliary program
13479@code{gdbserver} instead of linking a stub into your program.
79a6e687 13480@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13481@end table
96baa820 13482
104c1213
JM
13483The debugging stub is specific to the architecture of the remote
13484machine; for example, use @file{sparc-stub.c} to debug programs on
13485@sc{sparc} boards.
96baa820 13486
104c1213
JM
13487@cindex remote serial stub list
13488These working remote stubs are distributed with @value{GDBN}:
96baa820 13489
104c1213
JM
13490@table @code
13491
13492@item i386-stub.c
41afff9a 13493@cindex @file{i386-stub.c}
104c1213
JM
13494@cindex Intel
13495@cindex i386
13496For Intel 386 and compatible architectures.
13497
13498@item m68k-stub.c
41afff9a 13499@cindex @file{m68k-stub.c}
104c1213
JM
13500@cindex Motorola 680x0
13501@cindex m680x0
13502For Motorola 680x0 architectures.
13503
13504@item sh-stub.c
41afff9a 13505@cindex @file{sh-stub.c}
172c2a43 13506@cindex Renesas
104c1213 13507@cindex SH
172c2a43 13508For Renesas SH architectures.
104c1213
JM
13509
13510@item sparc-stub.c
41afff9a 13511@cindex @file{sparc-stub.c}
104c1213
JM
13512@cindex Sparc
13513For @sc{sparc} architectures.
13514
13515@item sparcl-stub.c
41afff9a 13516@cindex @file{sparcl-stub.c}
104c1213
JM
13517@cindex Fujitsu
13518@cindex SparcLite
13519For Fujitsu @sc{sparclite} architectures.
13520
13521@end table
13522
13523The @file{README} file in the @value{GDBN} distribution may list other
13524recently added stubs.
13525
13526@menu
13527* Stub Contents:: What the stub can do for you
13528* Bootstrapping:: What you must do for the stub
13529* Debug Session:: Putting it all together
104c1213
JM
13530@end menu
13531
6d2ebf8b 13532@node Stub Contents
79a6e687 13533@subsection What the Stub Can Do for You
104c1213
JM
13534
13535@cindex remote serial stub
13536The debugging stub for your architecture supplies these three
13537subroutines:
13538
13539@table @code
13540@item set_debug_traps
4644b6e3 13541@findex set_debug_traps
104c1213
JM
13542@cindex remote serial stub, initialization
13543This routine arranges for @code{handle_exception} to run when your
13544program stops. You must call this subroutine explicitly near the
13545beginning of your program.
13546
13547@item handle_exception
4644b6e3 13548@findex handle_exception
104c1213
JM
13549@cindex remote serial stub, main routine
13550This is the central workhorse, but your program never calls it
13551explicitly---the setup code arranges for @code{handle_exception} to
13552run when a trap is triggered.
13553
13554@code{handle_exception} takes control when your program stops during
13555execution (for example, on a breakpoint), and mediates communications
13556with @value{GDBN} on the host machine. This is where the communications
13557protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13558representative on the target machine. It begins by sending summary
104c1213
JM
13559information on the state of your program, then continues to execute,
13560retrieving and transmitting any information @value{GDBN} needs, until you
13561execute a @value{GDBN} command that makes your program resume; at that point,
13562@code{handle_exception} returns control to your own code on the target
5d161b24 13563machine.
104c1213
JM
13564
13565@item breakpoint
13566@cindex @code{breakpoint} subroutine, remote
13567Use this auxiliary subroutine to make your program contain a
13568breakpoint. Depending on the particular situation, this may be the only
13569way for @value{GDBN} to get control. For instance, if your target
13570machine has some sort of interrupt button, you won't need to call this;
13571pressing the interrupt button transfers control to
13572@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13573simply receiving characters on the serial port may also trigger a trap;
13574again, in that situation, you don't need to call @code{breakpoint} from
13575your own program---simply running @samp{target remote} from the host
5d161b24 13576@value{GDBN} session gets control.
104c1213
JM
13577
13578Call @code{breakpoint} if none of these is true, or if you simply want
13579to make certain your program stops at a predetermined point for the
13580start of your debugging session.
13581@end table
13582
6d2ebf8b 13583@node Bootstrapping
79a6e687 13584@subsection What You Must Do for the Stub
104c1213
JM
13585
13586@cindex remote stub, support routines
13587The debugging stubs that come with @value{GDBN} are set up for a particular
13588chip architecture, but they have no information about the rest of your
13589debugging target machine.
13590
13591First of all you need to tell the stub how to communicate with the
13592serial port.
13593
13594@table @code
13595@item int getDebugChar()
4644b6e3 13596@findex getDebugChar
104c1213
JM
13597Write this subroutine to read a single character from the serial port.
13598It may be identical to @code{getchar} for your target system; a
13599different name is used to allow you to distinguish the two if you wish.
13600
13601@item void putDebugChar(int)
4644b6e3 13602@findex putDebugChar
104c1213 13603Write this subroutine to write a single character to the serial port.
5d161b24 13604It may be identical to @code{putchar} for your target system; a
104c1213
JM
13605different name is used to allow you to distinguish the two if you wish.
13606@end table
13607
13608@cindex control C, and remote debugging
13609@cindex interrupting remote targets
13610If you want @value{GDBN} to be able to stop your program while it is
13611running, you need to use an interrupt-driven serial driver, and arrange
13612for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13613character). That is the character which @value{GDBN} uses to tell the
13614remote system to stop.
13615
13616Getting the debugging target to return the proper status to @value{GDBN}
13617probably requires changes to the standard stub; one quick and dirty way
13618is to just execute a breakpoint instruction (the ``dirty'' part is that
13619@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13620
13621Other routines you need to supply are:
13622
13623@table @code
13624@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13625@findex exceptionHandler
104c1213
JM
13626Write this function to install @var{exception_address} in the exception
13627handling tables. You need to do this because the stub does not have any
13628way of knowing what the exception handling tables on your target system
13629are like (for example, the processor's table might be in @sc{rom},
13630containing entries which point to a table in @sc{ram}).
13631@var{exception_number} is the exception number which should be changed;
13632its meaning is architecture-dependent (for example, different numbers
13633might represent divide by zero, misaligned access, etc). When this
13634exception occurs, control should be transferred directly to
13635@var{exception_address}, and the processor state (stack, registers,
13636and so on) should be just as it is when a processor exception occurs. So if
13637you want to use a jump instruction to reach @var{exception_address}, it
13638should be a simple jump, not a jump to subroutine.
13639
13640For the 386, @var{exception_address} should be installed as an interrupt
13641gate so that interrupts are masked while the handler runs. The gate
13642should be at privilege level 0 (the most privileged level). The
13643@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13644help from @code{exceptionHandler}.
13645
13646@item void flush_i_cache()
4644b6e3 13647@findex flush_i_cache
d4f3574e 13648On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13649instruction cache, if any, on your target machine. If there is no
13650instruction cache, this subroutine may be a no-op.
13651
13652On target machines that have instruction caches, @value{GDBN} requires this
13653function to make certain that the state of your program is stable.
13654@end table
13655
13656@noindent
13657You must also make sure this library routine is available:
13658
13659@table @code
13660@item void *memset(void *, int, int)
4644b6e3 13661@findex memset
104c1213
JM
13662This is the standard library function @code{memset} that sets an area of
13663memory to a known value. If you have one of the free versions of
13664@code{libc.a}, @code{memset} can be found there; otherwise, you must
13665either obtain it from your hardware manufacturer, or write your own.
13666@end table
13667
13668If you do not use the GNU C compiler, you may need other standard
13669library subroutines as well; this varies from one stub to another,
13670but in general the stubs are likely to use any of the common library
e22ea452 13671subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13672
13673
6d2ebf8b 13674@node Debug Session
79a6e687 13675@subsection Putting it All Together
104c1213
JM
13676
13677@cindex remote serial debugging summary
13678In summary, when your program is ready to debug, you must follow these
13679steps.
13680
13681@enumerate
13682@item
6d2ebf8b 13683Make sure you have defined the supporting low-level routines
79a6e687 13684(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13685@display
13686@code{getDebugChar}, @code{putDebugChar},
13687@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13688@end display
13689
13690@item
13691Insert these lines near the top of your program:
13692
474c8240 13693@smallexample
104c1213
JM
13694set_debug_traps();
13695breakpoint();
474c8240 13696@end smallexample
104c1213
JM
13697
13698@item
13699For the 680x0 stub only, you need to provide a variable called
13700@code{exceptionHook}. Normally you just use:
13701
474c8240 13702@smallexample
104c1213 13703void (*exceptionHook)() = 0;
474c8240 13704@end smallexample
104c1213 13705
d4f3574e 13706@noindent
104c1213 13707but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13708function in your program, that function is called when
104c1213
JM
13709@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13710error). The function indicated by @code{exceptionHook} is called with
13711one parameter: an @code{int} which is the exception number.
13712
13713@item
13714Compile and link together: your program, the @value{GDBN} debugging stub for
13715your target architecture, and the supporting subroutines.
13716
13717@item
13718Make sure you have a serial connection between your target machine and
13719the @value{GDBN} host, and identify the serial port on the host.
13720
13721@item
13722@c The "remote" target now provides a `load' command, so we should
13723@c document that. FIXME.
13724Download your program to your target machine (or get it there by
13725whatever means the manufacturer provides), and start it.
13726
13727@item
07f31aa6 13728Start @value{GDBN} on the host, and connect to the target
79a6e687 13729(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13730
104c1213
JM
13731@end enumerate
13732
8e04817f
AC
13733@node Configurations
13734@chapter Configuration-Specific Information
104c1213 13735
8e04817f
AC
13736While nearly all @value{GDBN} commands are available for all native and
13737cross versions of the debugger, there are some exceptions. This chapter
13738describes things that are only available in certain configurations.
104c1213 13739
8e04817f
AC
13740There are three major categories of configurations: native
13741configurations, where the host and target are the same, embedded
13742operating system configurations, which are usually the same for several
13743different processor architectures, and bare embedded processors, which
13744are quite different from each other.
104c1213 13745
8e04817f
AC
13746@menu
13747* Native::
13748* Embedded OS::
13749* Embedded Processors::
13750* Architectures::
13751@end menu
104c1213 13752
8e04817f
AC
13753@node Native
13754@section Native
104c1213 13755
8e04817f
AC
13756This section describes details specific to particular native
13757configurations.
6cf7e474 13758
8e04817f
AC
13759@menu
13760* HP-UX:: HP-UX
7561d450 13761* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13762* SVR4 Process Information:: SVR4 process information
13763* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13764* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13765* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13766* Neutrino:: Features specific to QNX Neutrino
8e04817f 13767@end menu
6cf7e474 13768
8e04817f
AC
13769@node HP-UX
13770@subsection HP-UX
104c1213 13771
8e04817f
AC
13772On HP-UX systems, if you refer to a function or variable name that
13773begins with a dollar sign, @value{GDBN} searches for a user or system
13774name first, before it searches for a convenience variable.
104c1213 13775
9c16f35a 13776
7561d450
MK
13777@node BSD libkvm Interface
13778@subsection BSD libkvm Interface
13779
13780@cindex libkvm
13781@cindex kernel memory image
13782@cindex kernel crash dump
13783
13784BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13785interface that provides a uniform interface for accessing kernel virtual
13786memory images, including live systems and crash dumps. @value{GDBN}
13787uses this interface to allow you to debug live kernels and kernel crash
13788dumps on many native BSD configurations. This is implemented as a
13789special @code{kvm} debugging target. For debugging a live system, load
13790the currently running kernel into @value{GDBN} and connect to the
13791@code{kvm} target:
13792
13793@smallexample
13794(@value{GDBP}) @b{target kvm}
13795@end smallexample
13796
13797For debugging crash dumps, provide the file name of the crash dump as an
13798argument:
13799
13800@smallexample
13801(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13802@end smallexample
13803
13804Once connected to the @code{kvm} target, the following commands are
13805available:
13806
13807@table @code
13808@kindex kvm
13809@item kvm pcb
721c2651 13810Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13811
13812@item kvm proc
13813Set current context from proc address. This command isn't available on
13814modern FreeBSD systems.
13815@end table
13816
8e04817f 13817@node SVR4 Process Information
79a6e687 13818@subsection SVR4 Process Information
60bf7e09
EZ
13819@cindex /proc
13820@cindex examine process image
13821@cindex process info via @file{/proc}
104c1213 13822
60bf7e09
EZ
13823Many versions of SVR4 and compatible systems provide a facility called
13824@samp{/proc} that can be used to examine the image of a running
13825process using file-system subroutines. If @value{GDBN} is configured
13826for an operating system with this facility, the command @code{info
13827proc} is available to report information about the process running
13828your program, or about any process running on your system. @code{info
13829proc} works only on SVR4 systems that include the @code{procfs} code.
13830This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13831Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13832
8e04817f
AC
13833@table @code
13834@kindex info proc
60bf7e09 13835@cindex process ID
8e04817f 13836@item info proc
60bf7e09
EZ
13837@itemx info proc @var{process-id}
13838Summarize available information about any running process. If a
13839process ID is specified by @var{process-id}, display information about
13840that process; otherwise display information about the program being
13841debugged. The summary includes the debugged process ID, the command
13842line used to invoke it, its current working directory, and its
13843executable file's absolute file name.
13844
13845On some systems, @var{process-id} can be of the form
13846@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13847within a process. If the optional @var{pid} part is missing, it means
13848a thread from the process being debugged (the leading @samp{/} still
13849needs to be present, or else @value{GDBN} will interpret the number as
13850a process ID rather than a thread ID).
6cf7e474 13851
8e04817f 13852@item info proc mappings
60bf7e09
EZ
13853@cindex memory address space mappings
13854Report the memory address space ranges accessible in the program, with
13855information on whether the process has read, write, or execute access
13856rights to each range. On @sc{gnu}/Linux systems, each memory range
13857includes the object file which is mapped to that range, instead of the
13858memory access rights to that range.
13859
13860@item info proc stat
13861@itemx info proc status
13862@cindex process detailed status information
13863These subcommands are specific to @sc{gnu}/Linux systems. They show
13864the process-related information, including the user ID and group ID;
13865how many threads are there in the process; its virtual memory usage;
13866the signals that are pending, blocked, and ignored; its TTY; its
13867consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13868value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13869(type @kbd{man 5 proc} from your shell prompt).
13870
13871@item info proc all
13872Show all the information about the process described under all of the
13873above @code{info proc} subcommands.
13874
8e04817f
AC
13875@ignore
13876@comment These sub-options of 'info proc' were not included when
13877@comment procfs.c was re-written. Keep their descriptions around
13878@comment against the day when someone finds the time to put them back in.
13879@kindex info proc times
13880@item info proc times
13881Starting time, user CPU time, and system CPU time for your program and
13882its children.
6cf7e474 13883
8e04817f
AC
13884@kindex info proc id
13885@item info proc id
13886Report on the process IDs related to your program: its own process ID,
13887the ID of its parent, the process group ID, and the session ID.
8e04817f 13888@end ignore
721c2651
EZ
13889
13890@item set procfs-trace
13891@kindex set procfs-trace
13892@cindex @code{procfs} API calls
13893This command enables and disables tracing of @code{procfs} API calls.
13894
13895@item show procfs-trace
13896@kindex show procfs-trace
13897Show the current state of @code{procfs} API call tracing.
13898
13899@item set procfs-file @var{file}
13900@kindex set procfs-file
13901Tell @value{GDBN} to write @code{procfs} API trace to the named
13902@var{file}. @value{GDBN} appends the trace info to the previous
13903contents of the file. The default is to display the trace on the
13904standard output.
13905
13906@item show procfs-file
13907@kindex show procfs-file
13908Show the file to which @code{procfs} API trace is written.
13909
13910@item proc-trace-entry
13911@itemx proc-trace-exit
13912@itemx proc-untrace-entry
13913@itemx proc-untrace-exit
13914@kindex proc-trace-entry
13915@kindex proc-trace-exit
13916@kindex proc-untrace-entry
13917@kindex proc-untrace-exit
13918These commands enable and disable tracing of entries into and exits
13919from the @code{syscall} interface.
13920
13921@item info pidlist
13922@kindex info pidlist
13923@cindex process list, QNX Neutrino
13924For QNX Neutrino only, this command displays the list of all the
13925processes and all the threads within each process.
13926
13927@item info meminfo
13928@kindex info meminfo
13929@cindex mapinfo list, QNX Neutrino
13930For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13931@end table
104c1213 13932
8e04817f
AC
13933@node DJGPP Native
13934@subsection Features for Debugging @sc{djgpp} Programs
13935@cindex @sc{djgpp} debugging
13936@cindex native @sc{djgpp} debugging
13937@cindex MS-DOS-specific commands
104c1213 13938
514c4d71
EZ
13939@cindex DPMI
13940@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13941MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13942that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13943top of real-mode DOS systems and their emulations.
104c1213 13944
8e04817f
AC
13945@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13946defines a few commands specific to the @sc{djgpp} port. This
13947subsection describes those commands.
104c1213 13948
8e04817f
AC
13949@table @code
13950@kindex info dos
13951@item info dos
13952This is a prefix of @sc{djgpp}-specific commands which print
13953information about the target system and important OS structures.
f1251bdd 13954
8e04817f
AC
13955@kindex sysinfo
13956@cindex MS-DOS system info
13957@cindex free memory information (MS-DOS)
13958@item info dos sysinfo
13959This command displays assorted information about the underlying
13960platform: the CPU type and features, the OS version and flavor, the
13961DPMI version, and the available conventional and DPMI memory.
104c1213 13962
8e04817f
AC
13963@cindex GDT
13964@cindex LDT
13965@cindex IDT
13966@cindex segment descriptor tables
13967@cindex descriptor tables display
13968@item info dos gdt
13969@itemx info dos ldt
13970@itemx info dos idt
13971These 3 commands display entries from, respectively, Global, Local,
13972and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13973tables are data structures which store a descriptor for each segment
13974that is currently in use. The segment's selector is an index into a
13975descriptor table; the table entry for that index holds the
13976descriptor's base address and limit, and its attributes and access
13977rights.
104c1213 13978
8e04817f
AC
13979A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13980segment (used for both data and the stack), and a DOS segment (which
13981allows access to DOS/BIOS data structures and absolute addresses in
13982conventional memory). However, the DPMI host will usually define
13983additional segments in order to support the DPMI environment.
d4f3574e 13984
8e04817f
AC
13985@cindex garbled pointers
13986These commands allow to display entries from the descriptor tables.
13987Without an argument, all entries from the specified table are
13988displayed. An argument, which should be an integer expression, means
13989display a single entry whose index is given by the argument. For
13990example, here's a convenient way to display information about the
13991debugged program's data segment:
104c1213 13992
8e04817f
AC
13993@smallexample
13994@exdent @code{(@value{GDBP}) info dos ldt $ds}
13995@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13996@end smallexample
104c1213 13997
8e04817f
AC
13998@noindent
13999This comes in handy when you want to see whether a pointer is outside
14000the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14001
8e04817f
AC
14002@cindex page tables display (MS-DOS)
14003@item info dos pde
14004@itemx info dos pte
14005These two commands display entries from, respectively, the Page
14006Directory and the Page Tables. Page Directories and Page Tables are
14007data structures which control how virtual memory addresses are mapped
14008into physical addresses. A Page Table includes an entry for every
14009page of memory that is mapped into the program's address space; there
14010may be several Page Tables, each one holding up to 4096 entries. A
14011Page Directory has up to 4096 entries, one each for every Page Table
14012that is currently in use.
104c1213 14013
8e04817f
AC
14014Without an argument, @kbd{info dos pde} displays the entire Page
14015Directory, and @kbd{info dos pte} displays all the entries in all of
14016the Page Tables. An argument, an integer expression, given to the
14017@kbd{info dos pde} command means display only that entry from the Page
14018Directory table. An argument given to the @kbd{info dos pte} command
14019means display entries from a single Page Table, the one pointed to by
14020the specified entry in the Page Directory.
104c1213 14021
8e04817f
AC
14022@cindex direct memory access (DMA) on MS-DOS
14023These commands are useful when your program uses @dfn{DMA} (Direct
14024Memory Access), which needs physical addresses to program the DMA
14025controller.
104c1213 14026
8e04817f 14027These commands are supported only with some DPMI servers.
104c1213 14028
8e04817f
AC
14029@cindex physical address from linear address
14030@item info dos address-pte @var{addr}
14031This command displays the Page Table entry for a specified linear
514c4d71
EZ
14032address. The argument @var{addr} is a linear address which should
14033already have the appropriate segment's base address added to it,
14034because this command accepts addresses which may belong to @emph{any}
14035segment. For example, here's how to display the Page Table entry for
14036the page where a variable @code{i} is stored:
104c1213 14037
b383017d 14038@smallexample
8e04817f
AC
14039@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14040@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14041@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14042@end smallexample
104c1213 14043
8e04817f
AC
14044@noindent
14045This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14046whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14047attributes of that page.
104c1213 14048
8e04817f
AC
14049Note that you must cast the addresses of variables to a @code{char *},
14050since otherwise the value of @code{__djgpp_base_address}, the base
14051address of all variables and functions in a @sc{djgpp} program, will
14052be added using the rules of C pointer arithmetics: if @code{i} is
14053declared an @code{int}, @value{GDBN} will add 4 times the value of
14054@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14055
8e04817f
AC
14056Here's another example, it displays the Page Table entry for the
14057transfer buffer:
104c1213 14058
8e04817f
AC
14059@smallexample
14060@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14061@exdent @code{Page Table entry for address 0x29110:}
14062@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14063@end smallexample
104c1213 14064
8e04817f
AC
14065@noindent
14066(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
140673rd member of the @code{_go32_info_block} structure.) The output
14068clearly shows that this DPMI server maps the addresses in conventional
14069memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14070linear (@code{0x29110}) addresses are identical.
104c1213 14071
8e04817f
AC
14072This command is supported only with some DPMI servers.
14073@end table
104c1213 14074
c45da7e6 14075@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14076In addition to native debugging, the DJGPP port supports remote
14077debugging via a serial data link. The following commands are specific
14078to remote serial debugging in the DJGPP port of @value{GDBN}.
14079
14080@table @code
14081@kindex set com1base
14082@kindex set com1irq
14083@kindex set com2base
14084@kindex set com2irq
14085@kindex set com3base
14086@kindex set com3irq
14087@kindex set com4base
14088@kindex set com4irq
14089@item set com1base @var{addr}
14090This command sets the base I/O port address of the @file{COM1} serial
14091port.
14092
14093@item set com1irq @var{irq}
14094This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14095for the @file{COM1} serial port.
14096
14097There are similar commands @samp{set com2base}, @samp{set com3irq},
14098etc.@: for setting the port address and the @code{IRQ} lines for the
14099other 3 COM ports.
14100
14101@kindex show com1base
14102@kindex show com1irq
14103@kindex show com2base
14104@kindex show com2irq
14105@kindex show com3base
14106@kindex show com3irq
14107@kindex show com4base
14108@kindex show com4irq
14109The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14110display the current settings of the base address and the @code{IRQ}
14111lines used by the COM ports.
c45da7e6
EZ
14112
14113@item info serial
14114@kindex info serial
14115@cindex DOS serial port status
14116This command prints the status of the 4 DOS serial ports. For each
14117port, it prints whether it's active or not, its I/O base address and
14118IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14119counts of various errors encountered so far.
a8f24a35
EZ
14120@end table
14121
14122
78c47bea 14123@node Cygwin Native
79a6e687 14124@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14125@cindex MS Windows debugging
14126@cindex native Cygwin debugging
14127@cindex Cygwin-specific commands
14128
be448670 14129@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14130DLLs with and without symbolic debugging information. There are various
14131additional Cygwin-specific commands, described in this section.
14132Working with DLLs that have no debugging symbols is described in
14133@ref{Non-debug DLL Symbols}.
78c47bea
PM
14134
14135@table @code
14136@kindex info w32
14137@item info w32
db2e3e2e 14138This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14139information about the target system and important OS structures.
14140
14141@item info w32 selector
14142This command displays information returned by
14143the Win32 API @code{GetThreadSelectorEntry} function.
14144It takes an optional argument that is evaluated to
14145a long value to give the information about this given selector.
14146Without argument, this command displays information
d3e8051b 14147about the six segment registers.
78c47bea
PM
14148
14149@kindex info dll
14150@item info dll
db2e3e2e 14151This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14152
14153@kindex dll-symbols
14154@item dll-symbols
14155This command loads symbols from a dll similarly to
14156add-sym command but without the need to specify a base address.
14157
be90c084 14158@kindex set cygwin-exceptions
e16b02ee
EZ
14159@cindex debugging the Cygwin DLL
14160@cindex Cygwin DLL, debugging
be90c084 14161@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14162If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14163happen inside the Cygwin DLL. If @var{mode} is @code{off},
14164@value{GDBN} will delay recognition of exceptions, and may ignore some
14165exceptions which seem to be caused by internal Cygwin DLL
14166``bookkeeping''. This option is meant primarily for debugging the
14167Cygwin DLL itself; the default value is @code{off} to avoid annoying
14168@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14169
14170@kindex show cygwin-exceptions
14171@item show cygwin-exceptions
e16b02ee
EZ
14172Displays whether @value{GDBN} will break on exceptions that happen
14173inside the Cygwin DLL itself.
be90c084 14174
b383017d 14175@kindex set new-console
78c47bea 14176@item set new-console @var{mode}
b383017d 14177If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14178be started in a new console on next start.
14179If @var{mode} is @code{off}i, the debuggee will
14180be started in the same console as the debugger.
14181
14182@kindex show new-console
14183@item show new-console
14184Displays whether a new console is used
14185when the debuggee is started.
14186
14187@kindex set new-group
14188@item set new-group @var{mode}
14189This boolean value controls whether the debuggee should
14190start a new group or stay in the same group as the debugger.
14191This affects the way the Windows OS handles
c8aa23ab 14192@samp{Ctrl-C}.
78c47bea
PM
14193
14194@kindex show new-group
14195@item show new-group
14196Displays current value of new-group boolean.
14197
14198@kindex set debugevents
14199@item set debugevents
219eec71
EZ
14200This boolean value adds debug output concerning kernel events related
14201to the debuggee seen by the debugger. This includes events that
14202signal thread and process creation and exit, DLL loading and
14203unloading, console interrupts, and debugging messages produced by the
14204Windows @code{OutputDebugString} API call.
78c47bea
PM
14205
14206@kindex set debugexec
14207@item set debugexec
b383017d 14208This boolean value adds debug output concerning execute events
219eec71 14209(such as resume thread) seen by the debugger.
78c47bea
PM
14210
14211@kindex set debugexceptions
14212@item set debugexceptions
219eec71
EZ
14213This boolean value adds debug output concerning exceptions in the
14214debuggee seen by the debugger.
78c47bea
PM
14215
14216@kindex set debugmemory
14217@item set debugmemory
219eec71
EZ
14218This boolean value adds debug output concerning debuggee memory reads
14219and writes by the debugger.
78c47bea
PM
14220
14221@kindex set shell
14222@item set shell
14223This boolean values specifies whether the debuggee is called
14224via a shell or directly (default value is on).
14225
14226@kindex show shell
14227@item show shell
14228Displays if the debuggee will be started with a shell.
14229
14230@end table
14231
be448670 14232@menu
79a6e687 14233* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14234@end menu
14235
79a6e687
BW
14236@node Non-debug DLL Symbols
14237@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14238@cindex DLLs with no debugging symbols
14239@cindex Minimal symbols and DLLs
14240
14241Very often on windows, some of the DLLs that your program relies on do
14242not include symbolic debugging information (for example,
db2e3e2e 14243@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14244symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14245information contained in the DLL's export table. This section
be448670
CF
14246describes working with such symbols, known internally to @value{GDBN} as
14247``minimal symbols''.
14248
14249Note that before the debugged program has started execution, no DLLs
db2e3e2e 14250will have been loaded. The easiest way around this problem is simply to
be448670 14251start the program --- either by setting a breakpoint or letting the
db2e3e2e 14252program run once to completion. It is also possible to force
be448670 14253@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14254see the shared library information in @ref{Files}, or the
db2e3e2e 14255@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14256explicitly loading symbols from a DLL with no debugging information will
14257cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14258which may adversely affect symbol lookup performance.
14259
79a6e687 14260@subsubsection DLL Name Prefixes
be448670
CF
14261
14262In keeping with the naming conventions used by the Microsoft debugging
14263tools, DLL export symbols are made available with a prefix based on the
14264DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14265also entered into the symbol table, so @code{CreateFileA} is often
14266sufficient. In some cases there will be name clashes within a program
14267(particularly if the executable itself includes full debugging symbols)
14268necessitating the use of the fully qualified name when referring to the
14269contents of the DLL. Use single-quotes around the name to avoid the
14270exclamation mark (``!'') being interpreted as a language operator.
14271
14272Note that the internal name of the DLL may be all upper-case, even
14273though the file name of the DLL is lower-case, or vice-versa. Since
14274symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14275some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14276@code{info variables} commands or even @code{maint print msymbols}
14277(@pxref{Symbols}). Here's an example:
be448670
CF
14278
14279@smallexample
f7dc1244 14280(@value{GDBP}) info function CreateFileA
be448670
CF
14281All functions matching regular expression "CreateFileA":
14282
14283Non-debugging symbols:
142840x77e885f4 CreateFileA
142850x77e885f4 KERNEL32!CreateFileA
14286@end smallexample
14287
14288@smallexample
f7dc1244 14289(@value{GDBP}) info function !
be448670
CF
14290All functions matching regular expression "!":
14291
14292Non-debugging symbols:
142930x6100114c cygwin1!__assert
142940x61004034 cygwin1!_dll_crt0@@0
142950x61004240 cygwin1!dll_crt0(per_process *)
14296[etc...]
14297@end smallexample
14298
79a6e687 14299@subsubsection Working with Minimal Symbols
be448670
CF
14300
14301Symbols extracted from a DLL's export table do not contain very much
14302type information. All that @value{GDBN} can do is guess whether a symbol
14303refers to a function or variable depending on the linker section that
14304contains the symbol. Also note that the actual contents of the memory
14305contained in a DLL are not available unless the program is running. This
14306means that you cannot examine the contents of a variable or disassemble
14307a function within a DLL without a running program.
14308
14309Variables are generally treated as pointers and dereferenced
14310automatically. For this reason, it is often necessary to prefix a
14311variable name with the address-of operator (``&'') and provide explicit
14312type information in the command. Here's an example of the type of
14313problem:
14314
14315@smallexample
f7dc1244 14316(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14317$1 = 268572168
14318@end smallexample
14319
14320@smallexample
f7dc1244 14321(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143220x10021610: "\230y\""
14323@end smallexample
14324
14325And two possible solutions:
14326
14327@smallexample
f7dc1244 14328(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14329$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14330@end smallexample
14331
14332@smallexample
f7dc1244 14333(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 143340x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14335(@value{GDBP}) x/x 0x10021608
be448670 143360x10021608: 0x0022fd98
f7dc1244 14337(@value{GDBP}) x/s 0x0022fd98
be448670
CF
143380x22fd98: "/cygdrive/c/mydirectory/myprogram"
14339@end smallexample
14340
14341Setting a break point within a DLL is possible even before the program
14342starts execution. However, under these circumstances, @value{GDBN} can't
14343examine the initial instructions of the function in order to skip the
14344function's frame set-up code. You can work around this by using ``*&''
14345to set the breakpoint at a raw memory address:
14346
14347@smallexample
f7dc1244 14348(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14349Breakpoint 1 at 0x1e04eff0
14350@end smallexample
14351
14352The author of these extensions is not entirely convinced that setting a
14353break point within a shared DLL like @file{kernel32.dll} is completely
14354safe.
14355
14d6dd68 14356@node Hurd Native
79a6e687 14357@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14358@cindex @sc{gnu} Hurd debugging
14359
14360This subsection describes @value{GDBN} commands specific to the
14361@sc{gnu} Hurd native debugging.
14362
14363@table @code
14364@item set signals
14365@itemx set sigs
14366@kindex set signals@r{, Hurd command}
14367@kindex set sigs@r{, Hurd command}
14368This command toggles the state of inferior signal interception by
14369@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14370affected by this command. @code{sigs} is a shorthand alias for
14371@code{signals}.
14372
14373@item show signals
14374@itemx show sigs
14375@kindex show signals@r{, Hurd command}
14376@kindex show sigs@r{, Hurd command}
14377Show the current state of intercepting inferior's signals.
14378
14379@item set signal-thread
14380@itemx set sigthread
14381@kindex set signal-thread
14382@kindex set sigthread
14383This command tells @value{GDBN} which thread is the @code{libc} signal
14384thread. That thread is run when a signal is delivered to a running
14385process. @code{set sigthread} is the shorthand alias of @code{set
14386signal-thread}.
14387
14388@item show signal-thread
14389@itemx show sigthread
14390@kindex show signal-thread
14391@kindex show sigthread
14392These two commands show which thread will run when the inferior is
14393delivered a signal.
14394
14395@item set stopped
14396@kindex set stopped@r{, Hurd command}
14397This commands tells @value{GDBN} that the inferior process is stopped,
14398as with the @code{SIGSTOP} signal. The stopped process can be
14399continued by delivering a signal to it.
14400
14401@item show stopped
14402@kindex show stopped@r{, Hurd command}
14403This command shows whether @value{GDBN} thinks the debuggee is
14404stopped.
14405
14406@item set exceptions
14407@kindex set exceptions@r{, Hurd command}
14408Use this command to turn off trapping of exceptions in the inferior.
14409When exception trapping is off, neither breakpoints nor
14410single-stepping will work. To restore the default, set exception
14411trapping on.
14412
14413@item show exceptions
14414@kindex show exceptions@r{, Hurd command}
14415Show the current state of trapping exceptions in the inferior.
14416
14417@item set task pause
14418@kindex set task@r{, Hurd commands}
14419@cindex task attributes (@sc{gnu} Hurd)
14420@cindex pause current task (@sc{gnu} Hurd)
14421This command toggles task suspension when @value{GDBN} has control.
14422Setting it to on takes effect immediately, and the task is suspended
14423whenever @value{GDBN} gets control. Setting it to off will take
14424effect the next time the inferior is continued. If this option is set
14425to off, you can use @code{set thread default pause on} or @code{set
14426thread pause on} (see below) to pause individual threads.
14427
14428@item show task pause
14429@kindex show task@r{, Hurd commands}
14430Show the current state of task suspension.
14431
14432@item set task detach-suspend-count
14433@cindex task suspend count
14434@cindex detach from task, @sc{gnu} Hurd
14435This command sets the suspend count the task will be left with when
14436@value{GDBN} detaches from it.
14437
14438@item show task detach-suspend-count
14439Show the suspend count the task will be left with when detaching.
14440
14441@item set task exception-port
14442@itemx set task excp
14443@cindex task exception port, @sc{gnu} Hurd
14444This command sets the task exception port to which @value{GDBN} will
14445forward exceptions. The argument should be the value of the @dfn{send
14446rights} of the task. @code{set task excp} is a shorthand alias.
14447
14448@item set noninvasive
14449@cindex noninvasive task options
14450This command switches @value{GDBN} to a mode that is the least
14451invasive as far as interfering with the inferior is concerned. This
14452is the same as using @code{set task pause}, @code{set exceptions}, and
14453@code{set signals} to values opposite to the defaults.
14454
14455@item info send-rights
14456@itemx info receive-rights
14457@itemx info port-rights
14458@itemx info port-sets
14459@itemx info dead-names
14460@itemx info ports
14461@itemx info psets
14462@cindex send rights, @sc{gnu} Hurd
14463@cindex receive rights, @sc{gnu} Hurd
14464@cindex port rights, @sc{gnu} Hurd
14465@cindex port sets, @sc{gnu} Hurd
14466@cindex dead names, @sc{gnu} Hurd
14467These commands display information about, respectively, send rights,
14468receive rights, port rights, port sets, and dead names of a task.
14469There are also shorthand aliases: @code{info ports} for @code{info
14470port-rights} and @code{info psets} for @code{info port-sets}.
14471
14472@item set thread pause
14473@kindex set thread@r{, Hurd command}
14474@cindex thread properties, @sc{gnu} Hurd
14475@cindex pause current thread (@sc{gnu} Hurd)
14476This command toggles current thread suspension when @value{GDBN} has
14477control. Setting it to on takes effect immediately, and the current
14478thread is suspended whenever @value{GDBN} gets control. Setting it to
14479off will take effect the next time the inferior is continued.
14480Normally, this command has no effect, since when @value{GDBN} has
14481control, the whole task is suspended. However, if you used @code{set
14482task pause off} (see above), this command comes in handy to suspend
14483only the current thread.
14484
14485@item show thread pause
14486@kindex show thread@r{, Hurd command}
14487This command shows the state of current thread suspension.
14488
14489@item set thread run
d3e8051b 14490This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14491
14492@item show thread run
14493Show whether the current thread is allowed to run.
14494
14495@item set thread detach-suspend-count
14496@cindex thread suspend count, @sc{gnu} Hurd
14497@cindex detach from thread, @sc{gnu} Hurd
14498This command sets the suspend count @value{GDBN} will leave on a
14499thread when detaching. This number is relative to the suspend count
14500found by @value{GDBN} when it notices the thread; use @code{set thread
14501takeover-suspend-count} to force it to an absolute value.
14502
14503@item show thread detach-suspend-count
14504Show the suspend count @value{GDBN} will leave on the thread when
14505detaching.
14506
14507@item set thread exception-port
14508@itemx set thread excp
14509Set the thread exception port to which to forward exceptions. This
14510overrides the port set by @code{set task exception-port} (see above).
14511@code{set thread excp} is the shorthand alias.
14512
14513@item set thread takeover-suspend-count
14514Normally, @value{GDBN}'s thread suspend counts are relative to the
14515value @value{GDBN} finds when it notices each thread. This command
14516changes the suspend counts to be absolute instead.
14517
14518@item set thread default
14519@itemx show thread default
14520@cindex thread default settings, @sc{gnu} Hurd
14521Each of the above @code{set thread} commands has a @code{set thread
14522default} counterpart (e.g., @code{set thread default pause}, @code{set
14523thread default exception-port}, etc.). The @code{thread default}
14524variety of commands sets the default thread properties for all
14525threads; you can then change the properties of individual threads with
14526the non-default commands.
14527@end table
14528
14529
a64548ea
EZ
14530@node Neutrino
14531@subsection QNX Neutrino
14532@cindex QNX Neutrino
14533
14534@value{GDBN} provides the following commands specific to the QNX
14535Neutrino target:
14536
14537@table @code
14538@item set debug nto-debug
14539@kindex set debug nto-debug
14540When set to on, enables debugging messages specific to the QNX
14541Neutrino support.
14542
14543@item show debug nto-debug
14544@kindex show debug nto-debug
14545Show the current state of QNX Neutrino messages.
14546@end table
14547
14548
8e04817f
AC
14549@node Embedded OS
14550@section Embedded Operating Systems
104c1213 14551
8e04817f
AC
14552This section describes configurations involving the debugging of
14553embedded operating systems that are available for several different
14554architectures.
d4f3574e 14555
8e04817f
AC
14556@menu
14557* VxWorks:: Using @value{GDBN} with VxWorks
14558@end menu
104c1213 14559
8e04817f
AC
14560@value{GDBN} includes the ability to debug programs running on
14561various real-time operating systems.
104c1213 14562
8e04817f
AC
14563@node VxWorks
14564@subsection Using @value{GDBN} with VxWorks
104c1213 14565
8e04817f 14566@cindex VxWorks
104c1213 14567
8e04817f 14568@table @code
104c1213 14569
8e04817f
AC
14570@kindex target vxworks
14571@item target vxworks @var{machinename}
14572A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14573is the target system's machine name or IP address.
104c1213 14574
8e04817f 14575@end table
104c1213 14576
8e04817f
AC
14577On VxWorks, @code{load} links @var{filename} dynamically on the
14578current target system as well as adding its symbols in @value{GDBN}.
104c1213 14579
8e04817f
AC
14580@value{GDBN} enables developers to spawn and debug tasks running on networked
14581VxWorks targets from a Unix host. Already-running tasks spawned from
14582the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14583both the Unix host and on the VxWorks target. The program
14584@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14585installed with the name @code{vxgdb}, to distinguish it from a
14586@value{GDBN} for debugging programs on the host itself.)
104c1213 14587
8e04817f
AC
14588@table @code
14589@item VxWorks-timeout @var{args}
14590@kindex vxworks-timeout
14591All VxWorks-based targets now support the option @code{vxworks-timeout}.
14592This option is set by the user, and @var{args} represents the number of
14593seconds @value{GDBN} waits for responses to rpc's. You might use this if
14594your VxWorks target is a slow software simulator or is on the far side
14595of a thin network line.
14596@end table
104c1213 14597
8e04817f
AC
14598The following information on connecting to VxWorks was current when
14599this manual was produced; newer releases of VxWorks may use revised
14600procedures.
104c1213 14601
4644b6e3 14602@findex INCLUDE_RDB
8e04817f
AC
14603To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14604to include the remote debugging interface routines in the VxWorks
14605library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14606VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14607kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14608source debugging task @code{tRdbTask} when VxWorks is booted. For more
14609information on configuring and remaking VxWorks, see the manufacturer's
14610manual.
14611@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14612
8e04817f
AC
14613Once you have included @file{rdb.a} in your VxWorks system image and set
14614your Unix execution search path to find @value{GDBN}, you are ready to
14615run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14616@code{vxgdb}, depending on your installation).
104c1213 14617
8e04817f 14618@value{GDBN} comes up showing the prompt:
104c1213 14619
474c8240 14620@smallexample
8e04817f 14621(vxgdb)
474c8240 14622@end smallexample
104c1213 14623
8e04817f
AC
14624@menu
14625* VxWorks Connection:: Connecting to VxWorks
14626* VxWorks Download:: VxWorks download
14627* VxWorks Attach:: Running tasks
14628@end menu
104c1213 14629
8e04817f
AC
14630@node VxWorks Connection
14631@subsubsection Connecting to VxWorks
104c1213 14632
8e04817f
AC
14633The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14634network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14635
474c8240 14636@smallexample
8e04817f 14637(vxgdb) target vxworks tt
474c8240 14638@end smallexample
104c1213 14639
8e04817f
AC
14640@need 750
14641@value{GDBN} displays messages like these:
104c1213 14642
8e04817f
AC
14643@smallexample
14644Attaching remote machine across net...
14645Connected to tt.
14646@end smallexample
104c1213 14647
8e04817f
AC
14648@need 1000
14649@value{GDBN} then attempts to read the symbol tables of any object modules
14650loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14651these files by searching the directories listed in the command search
79a6e687 14652path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14653to find an object file, it displays a message such as:
5d161b24 14654
474c8240 14655@smallexample
8e04817f 14656prog.o: No such file or directory.
474c8240 14657@end smallexample
104c1213 14658
8e04817f
AC
14659When this happens, add the appropriate directory to the search path with
14660the @value{GDBN} command @code{path}, and execute the @code{target}
14661command again.
104c1213 14662
8e04817f 14663@node VxWorks Download
79a6e687 14664@subsubsection VxWorks Download
104c1213 14665
8e04817f
AC
14666@cindex download to VxWorks
14667If you have connected to the VxWorks target and you want to debug an
14668object that has not yet been loaded, you can use the @value{GDBN}
14669@code{load} command to download a file from Unix to VxWorks
14670incrementally. The object file given as an argument to the @code{load}
14671command is actually opened twice: first by the VxWorks target in order
14672to download the code, then by @value{GDBN} in order to read the symbol
14673table. This can lead to problems if the current working directories on
14674the two systems differ. If both systems have NFS mounted the same
14675filesystems, you can avoid these problems by using absolute paths.
14676Otherwise, it is simplest to set the working directory on both systems
14677to the directory in which the object file resides, and then to reference
14678the file by its name, without any path. For instance, a program
14679@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14680and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14681program, type this on VxWorks:
104c1213 14682
474c8240 14683@smallexample
8e04817f 14684-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14685@end smallexample
104c1213 14686
8e04817f
AC
14687@noindent
14688Then, in @value{GDBN}, type:
104c1213 14689
474c8240 14690@smallexample
8e04817f
AC
14691(vxgdb) cd @var{hostpath}/vw/demo/rdb
14692(vxgdb) load prog.o
474c8240 14693@end smallexample
104c1213 14694
8e04817f 14695@value{GDBN} displays a response similar to this:
104c1213 14696
8e04817f
AC
14697@smallexample
14698Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14699@end smallexample
104c1213 14700
8e04817f
AC
14701You can also use the @code{load} command to reload an object module
14702after editing and recompiling the corresponding source file. Note that
14703this makes @value{GDBN} delete all currently-defined breakpoints,
14704auto-displays, and convenience variables, and to clear the value
14705history. (This is necessary in order to preserve the integrity of
14706debugger's data structures that reference the target system's symbol
14707table.)
104c1213 14708
8e04817f 14709@node VxWorks Attach
79a6e687 14710@subsubsection Running Tasks
104c1213
JM
14711
14712@cindex running VxWorks tasks
14713You can also attach to an existing task using the @code{attach} command as
14714follows:
14715
474c8240 14716@smallexample
104c1213 14717(vxgdb) attach @var{task}
474c8240 14718@end smallexample
104c1213
JM
14719
14720@noindent
14721where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14722or suspended when you attach to it. Running tasks are suspended at
14723the time of attachment.
14724
6d2ebf8b 14725@node Embedded Processors
104c1213
JM
14726@section Embedded Processors
14727
14728This section goes into details specific to particular embedded
14729configurations.
14730
c45da7e6
EZ
14731@cindex send command to simulator
14732Whenever a specific embedded processor has a simulator, @value{GDBN}
14733allows to send an arbitrary command to the simulator.
14734
14735@table @code
14736@item sim @var{command}
14737@kindex sim@r{, a command}
14738Send an arbitrary @var{command} string to the simulator. Consult the
14739documentation for the specific simulator in use for information about
14740acceptable commands.
14741@end table
14742
7d86b5d5 14743
104c1213 14744@menu
c45da7e6 14745* ARM:: ARM RDI
172c2a43 14746* M32R/D:: Renesas M32R/D
104c1213 14747* M68K:: Motorola M68K
104c1213 14748* MIPS Embedded:: MIPS Embedded
a37295f9 14749* OpenRISC 1000:: OpenRisc 1000
104c1213 14750* PA:: HP PA Embedded
4acd40f3 14751* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14752* Sparclet:: Tsqware Sparclet
14753* Sparclite:: Fujitsu Sparclite
104c1213 14754* Z8000:: Zilog Z8000
a64548ea
EZ
14755* AVR:: Atmel AVR
14756* CRIS:: CRIS
14757* Super-H:: Renesas Super-H
104c1213
JM
14758@end menu
14759
6d2ebf8b 14760@node ARM
104c1213 14761@subsection ARM
c45da7e6 14762@cindex ARM RDI
104c1213
JM
14763
14764@table @code
8e04817f
AC
14765@kindex target rdi
14766@item target rdi @var{dev}
14767ARM Angel monitor, via RDI library interface to ADP protocol. You may
14768use this target to communicate with both boards running the Angel
14769monitor, or with the EmbeddedICE JTAG debug device.
14770
14771@kindex target rdp
14772@item target rdp @var{dev}
14773ARM Demon monitor.
14774
14775@end table
14776
e2f4edfd
EZ
14777@value{GDBN} provides the following ARM-specific commands:
14778
14779@table @code
14780@item set arm disassembler
14781@kindex set arm
14782This commands selects from a list of disassembly styles. The
14783@code{"std"} style is the standard style.
14784
14785@item show arm disassembler
14786@kindex show arm
14787Show the current disassembly style.
14788
14789@item set arm apcs32
14790@cindex ARM 32-bit mode
14791This command toggles ARM operation mode between 32-bit and 26-bit.
14792
14793@item show arm apcs32
14794Display the current usage of the ARM 32-bit mode.
14795
14796@item set arm fpu @var{fputype}
14797This command sets the ARM floating-point unit (FPU) type. The
14798argument @var{fputype} can be one of these:
14799
14800@table @code
14801@item auto
14802Determine the FPU type by querying the OS ABI.
14803@item softfpa
14804Software FPU, with mixed-endian doubles on little-endian ARM
14805processors.
14806@item fpa
14807GCC-compiled FPA co-processor.
14808@item softvfp
14809Software FPU with pure-endian doubles.
14810@item vfp
14811VFP co-processor.
14812@end table
14813
14814@item show arm fpu
14815Show the current type of the FPU.
14816
14817@item set arm abi
14818This command forces @value{GDBN} to use the specified ABI.
14819
14820@item show arm abi
14821Show the currently used ABI.
14822
14823@item set debug arm
14824Toggle whether to display ARM-specific debugging messages from the ARM
14825target support subsystem.
14826
14827@item show debug arm
14828Show whether ARM-specific debugging messages are enabled.
14829@end table
14830
c45da7e6
EZ
14831The following commands are available when an ARM target is debugged
14832using the RDI interface:
14833
14834@table @code
14835@item rdilogfile @r{[}@var{file}@r{]}
14836@kindex rdilogfile
14837@cindex ADP (Angel Debugger Protocol) logging
14838Set the filename for the ADP (Angel Debugger Protocol) packet log.
14839With an argument, sets the log file to the specified @var{file}. With
14840no argument, show the current log file name. The default log file is
14841@file{rdi.log}.
14842
14843@item rdilogenable @r{[}@var{arg}@r{]}
14844@kindex rdilogenable
14845Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14846enables logging, with an argument 0 or @code{"no"} disables it. With
14847no arguments displays the current setting. When logging is enabled,
14848ADP packets exchanged between @value{GDBN} and the RDI target device
14849are logged to a file.
14850
14851@item set rdiromatzero
14852@kindex set rdiromatzero
14853@cindex ROM at zero address, RDI
14854Tell @value{GDBN} whether the target has ROM at address 0. If on,
14855vector catching is disabled, so that zero address can be used. If off
14856(the default), vector catching is enabled. For this command to take
14857effect, it needs to be invoked prior to the @code{target rdi} command.
14858
14859@item show rdiromatzero
14860@kindex show rdiromatzero
14861Show the current setting of ROM at zero address.
14862
14863@item set rdiheartbeat
14864@kindex set rdiheartbeat
14865@cindex RDI heartbeat
14866Enable or disable RDI heartbeat packets. It is not recommended to
14867turn on this option, since it confuses ARM and EPI JTAG interface, as
14868well as the Angel monitor.
14869
14870@item show rdiheartbeat
14871@kindex show rdiheartbeat
14872Show the setting of RDI heartbeat packets.
14873@end table
14874
e2f4edfd 14875
8e04817f 14876@node M32R/D
ba04e063 14877@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14878
14879@table @code
8e04817f
AC
14880@kindex target m32r
14881@item target m32r @var{dev}
172c2a43 14882Renesas M32R/D ROM monitor.
8e04817f 14883
fb3e19c0
KI
14884@kindex target m32rsdi
14885@item target m32rsdi @var{dev}
14886Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14887@end table
14888
14889The following @value{GDBN} commands are specific to the M32R monitor:
14890
14891@table @code
14892@item set download-path @var{path}
14893@kindex set download-path
14894@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14895Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14896
14897@item show download-path
14898@kindex show download-path
14899Show the default path for downloadable @sc{srec} files.
fb3e19c0 14900
721c2651
EZ
14901@item set board-address @var{addr}
14902@kindex set board-address
14903@cindex M32-EVA target board address
14904Set the IP address for the M32R-EVA target board.
14905
14906@item show board-address
14907@kindex show board-address
14908Show the current IP address of the target board.
14909
14910@item set server-address @var{addr}
14911@kindex set server-address
14912@cindex download server address (M32R)
14913Set the IP address for the download server, which is the @value{GDBN}'s
14914host machine.
14915
14916@item show server-address
14917@kindex show server-address
14918Display the IP address of the download server.
14919
14920@item upload @r{[}@var{file}@r{]}
14921@kindex upload@r{, M32R}
14922Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14923upload capability. If no @var{file} argument is given, the current
14924executable file is uploaded.
14925
14926@item tload @r{[}@var{file}@r{]}
14927@kindex tload@r{, M32R}
14928Test the @code{upload} command.
8e04817f
AC
14929@end table
14930
ba04e063
EZ
14931The following commands are available for M32R/SDI:
14932
14933@table @code
14934@item sdireset
14935@kindex sdireset
14936@cindex reset SDI connection, M32R
14937This command resets the SDI connection.
14938
14939@item sdistatus
14940@kindex sdistatus
14941This command shows the SDI connection status.
14942
14943@item debug_chaos
14944@kindex debug_chaos
14945@cindex M32R/Chaos debugging
14946Instructs the remote that M32R/Chaos debugging is to be used.
14947
14948@item use_debug_dma
14949@kindex use_debug_dma
14950Instructs the remote to use the DEBUG_DMA method of accessing memory.
14951
14952@item use_mon_code
14953@kindex use_mon_code
14954Instructs the remote to use the MON_CODE method of accessing memory.
14955
14956@item use_ib_break
14957@kindex use_ib_break
14958Instructs the remote to set breakpoints by IB break.
14959
14960@item use_dbt_break
14961@kindex use_dbt_break
14962Instructs the remote to set breakpoints by DBT.
14963@end table
14964
8e04817f
AC
14965@node M68K
14966@subsection M68k
14967
7ce59000
DJ
14968The Motorola m68k configuration includes ColdFire support, and a
14969target command for the following ROM monitor.
8e04817f
AC
14970
14971@table @code
14972
8e04817f
AC
14973@kindex target dbug
14974@item target dbug @var{dev}
14975dBUG ROM monitor for Motorola ColdFire.
14976
8e04817f
AC
14977@end table
14978
8e04817f
AC
14979@node MIPS Embedded
14980@subsection MIPS Embedded
14981
14982@cindex MIPS boards
14983@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14984MIPS board attached to a serial line. This is available when
14985you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14986
8e04817f
AC
14987@need 1000
14988Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14989
8e04817f
AC
14990@table @code
14991@item target mips @var{port}
14992@kindex target mips @var{port}
14993To run a program on the board, start up @code{@value{GDBP}} with the
14994name of your program as the argument. To connect to the board, use the
14995command @samp{target mips @var{port}}, where @var{port} is the name of
14996the serial port connected to the board. If the program has not already
14997been downloaded to the board, you may use the @code{load} command to
14998download it. You can then use all the usual @value{GDBN} commands.
104c1213 14999
8e04817f
AC
15000For example, this sequence connects to the target board through a serial
15001port, and loads and runs a program called @var{prog} through the
15002debugger:
104c1213 15003
474c8240 15004@smallexample
8e04817f
AC
15005host$ @value{GDBP} @var{prog}
15006@value{GDBN} is free software and @dots{}
15007(@value{GDBP}) target mips /dev/ttyb
15008(@value{GDBP}) load @var{prog}
15009(@value{GDBP}) run
474c8240 15010@end smallexample
104c1213 15011
8e04817f
AC
15012@item target mips @var{hostname}:@var{portnumber}
15013On some @value{GDBN} host configurations, you can specify a TCP
15014connection (for instance, to a serial line managed by a terminal
15015concentrator) instead of a serial port, using the syntax
15016@samp{@var{hostname}:@var{portnumber}}.
104c1213 15017
8e04817f
AC
15018@item target pmon @var{port}
15019@kindex target pmon @var{port}
15020PMON ROM monitor.
104c1213 15021
8e04817f
AC
15022@item target ddb @var{port}
15023@kindex target ddb @var{port}
15024NEC's DDB variant of PMON for Vr4300.
104c1213 15025
8e04817f
AC
15026@item target lsi @var{port}
15027@kindex target lsi @var{port}
15028LSI variant of PMON.
104c1213 15029
8e04817f
AC
15030@kindex target r3900
15031@item target r3900 @var{dev}
15032Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15033
8e04817f
AC
15034@kindex target array
15035@item target array @var{dev}
15036Array Tech LSI33K RAID controller board.
104c1213 15037
8e04817f 15038@end table
104c1213 15039
104c1213 15040
8e04817f
AC
15041@noindent
15042@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15043
8e04817f 15044@table @code
8e04817f
AC
15045@item set mipsfpu double
15046@itemx set mipsfpu single
15047@itemx set mipsfpu none
a64548ea 15048@itemx set mipsfpu auto
8e04817f
AC
15049@itemx show mipsfpu
15050@kindex set mipsfpu
15051@kindex show mipsfpu
15052@cindex MIPS remote floating point
15053@cindex floating point, MIPS remote
15054If your target board does not support the MIPS floating point
15055coprocessor, you should use the command @samp{set mipsfpu none} (if you
15056need this, you may wish to put the command in your @value{GDBN} init
15057file). This tells @value{GDBN} how to find the return value of
15058functions which return floating point values. It also allows
15059@value{GDBN} to avoid saving the floating point registers when calling
15060functions on the board. If you are using a floating point coprocessor
15061with only single precision floating point support, as on the @sc{r4650}
15062processor, use the command @samp{set mipsfpu single}. The default
15063double precision floating point coprocessor may be selected using
15064@samp{set mipsfpu double}.
104c1213 15065
8e04817f
AC
15066In previous versions the only choices were double precision or no
15067floating point, so @samp{set mipsfpu on} will select double precision
15068and @samp{set mipsfpu off} will select no floating point.
104c1213 15069
8e04817f
AC
15070As usual, you can inquire about the @code{mipsfpu} variable with
15071@samp{show mipsfpu}.
104c1213 15072
8e04817f
AC
15073@item set timeout @var{seconds}
15074@itemx set retransmit-timeout @var{seconds}
15075@itemx show timeout
15076@itemx show retransmit-timeout
15077@cindex @code{timeout}, MIPS protocol
15078@cindex @code{retransmit-timeout}, MIPS protocol
15079@kindex set timeout
15080@kindex show timeout
15081@kindex set retransmit-timeout
15082@kindex show retransmit-timeout
15083You can control the timeout used while waiting for a packet, in the MIPS
15084remote protocol, with the @code{set timeout @var{seconds}} command. The
15085default is 5 seconds. Similarly, you can control the timeout used while
15086waiting for an acknowledgement of a packet with the @code{set
15087retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15088You can inspect both values with @code{show timeout} and @code{show
15089retransmit-timeout}. (These commands are @emph{only} available when
15090@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15091
8e04817f
AC
15092The timeout set by @code{set timeout} does not apply when @value{GDBN}
15093is waiting for your program to stop. In that case, @value{GDBN} waits
15094forever because it has no way of knowing how long the program is going
15095to run before stopping.
ba04e063
EZ
15096
15097@item set syn-garbage-limit @var{num}
15098@kindex set syn-garbage-limit@r{, MIPS remote}
15099@cindex synchronize with remote MIPS target
15100Limit the maximum number of characters @value{GDBN} should ignore when
15101it tries to synchronize with the remote target. The default is 10
15102characters. Setting the limit to -1 means there's no limit.
15103
15104@item show syn-garbage-limit
15105@kindex show syn-garbage-limit@r{, MIPS remote}
15106Show the current limit on the number of characters to ignore when
15107trying to synchronize with the remote system.
15108
15109@item set monitor-prompt @var{prompt}
15110@kindex set monitor-prompt@r{, MIPS remote}
15111@cindex remote monitor prompt
15112Tell @value{GDBN} to expect the specified @var{prompt} string from the
15113remote monitor. The default depends on the target:
15114@table @asis
15115@item pmon target
15116@samp{PMON}
15117@item ddb target
15118@samp{NEC010}
15119@item lsi target
15120@samp{PMON>}
15121@end table
15122
15123@item show monitor-prompt
15124@kindex show monitor-prompt@r{, MIPS remote}
15125Show the current strings @value{GDBN} expects as the prompt from the
15126remote monitor.
15127
15128@item set monitor-warnings
15129@kindex set monitor-warnings@r{, MIPS remote}
15130Enable or disable monitor warnings about hardware breakpoints. This
15131has effect only for the @code{lsi} target. When on, @value{GDBN} will
15132display warning messages whose codes are returned by the @code{lsi}
15133PMON monitor for breakpoint commands.
15134
15135@item show monitor-warnings
15136@kindex show monitor-warnings@r{, MIPS remote}
15137Show the current setting of printing monitor warnings.
15138
15139@item pmon @var{command}
15140@kindex pmon@r{, MIPS remote}
15141@cindex send PMON command
15142This command allows sending an arbitrary @var{command} string to the
15143monitor. The monitor must be in debug mode for this to work.
8e04817f 15144@end table
104c1213 15145
a37295f9
MM
15146@node OpenRISC 1000
15147@subsection OpenRISC 1000
15148@cindex OpenRISC 1000
15149
15150@cindex or1k boards
15151See OR1k Architecture document (@uref{www.opencores.org}) for more information
15152about platform and commands.
15153
15154@table @code
15155
15156@kindex target jtag
15157@item target jtag jtag://@var{host}:@var{port}
15158
15159Connects to remote JTAG server.
15160JTAG remote server can be either an or1ksim or JTAG server,
15161connected via parallel port to the board.
15162
15163Example: @code{target jtag jtag://localhost:9999}
15164
15165@kindex or1ksim
15166@item or1ksim @var{command}
15167If connected to @code{or1ksim} OpenRISC 1000 Architectural
15168Simulator, proprietary commands can be executed.
15169
15170@kindex info or1k spr
15171@item info or1k spr
15172Displays spr groups.
15173
15174@item info or1k spr @var{group}
15175@itemx info or1k spr @var{groupno}
15176Displays register names in selected group.
15177
15178@item info or1k spr @var{group} @var{register}
15179@itemx info or1k spr @var{register}
15180@itemx info or1k spr @var{groupno} @var{registerno}
15181@itemx info or1k spr @var{registerno}
15182Shows information about specified spr register.
15183
15184@kindex spr
15185@item spr @var{group} @var{register} @var{value}
15186@itemx spr @var{register @var{value}}
15187@itemx spr @var{groupno} @var{registerno @var{value}}
15188@itemx spr @var{registerno @var{value}}
15189Writes @var{value} to specified spr register.
15190@end table
15191
15192Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15193It is very similar to @value{GDBN} trace, except it does not interfere with normal
15194program execution and is thus much faster. Hardware breakpoints/watchpoint
15195triggers can be set using:
15196@table @code
15197@item $LEA/$LDATA
15198Load effective address/data
15199@item $SEA/$SDATA
15200Store effective address/data
15201@item $AEA/$ADATA
15202Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15203@item $FETCH
15204Fetch data
15205@end table
15206
15207When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15208@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15209
15210@code{htrace} commands:
15211@cindex OpenRISC 1000 htrace
15212@table @code
15213@kindex hwatch
15214@item hwatch @var{conditional}
d3e8051b 15215Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15216or Data. For example:
15217
15218@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15219
15220@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15221
4644b6e3 15222@kindex htrace
a37295f9
MM
15223@item htrace info
15224Display information about current HW trace configuration.
15225
a37295f9
MM
15226@item htrace trigger @var{conditional}
15227Set starting criteria for HW trace.
15228
a37295f9
MM
15229@item htrace qualifier @var{conditional}
15230Set acquisition qualifier for HW trace.
15231
a37295f9
MM
15232@item htrace stop @var{conditional}
15233Set HW trace stopping criteria.
15234
f153cc92 15235@item htrace record [@var{data}]*
a37295f9
MM
15236Selects the data to be recorded, when qualifier is met and HW trace was
15237triggered.
15238
a37295f9 15239@item htrace enable
a37295f9
MM
15240@itemx htrace disable
15241Enables/disables the HW trace.
15242
f153cc92 15243@item htrace rewind [@var{filename}]
a37295f9
MM
15244Clears currently recorded trace data.
15245
15246If filename is specified, new trace file is made and any newly collected data
15247will be written there.
15248
f153cc92 15249@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15250Prints trace buffer, using current record configuration.
15251
a37295f9
MM
15252@item htrace mode continuous
15253Set continuous trace mode.
15254
a37295f9
MM
15255@item htrace mode suspend
15256Set suspend trace mode.
15257
15258@end table
15259
4acd40f3
TJB
15260@node PowerPC Embedded
15261@subsection PowerPC Embedded
104c1213 15262
55eddb0f
DJ
15263@value{GDBN} provides the following PowerPC-specific commands:
15264
104c1213 15265@table @code
55eddb0f
DJ
15266@kindex set powerpc
15267@item set powerpc soft-float
15268@itemx show powerpc soft-float
15269Force @value{GDBN} to use (or not use) a software floating point calling
15270convention. By default, @value{GDBN} selects the calling convention based
15271on the selected architecture and the provided executable file.
15272
15273@item set powerpc vector-abi
15274@itemx show powerpc vector-abi
15275Force @value{GDBN} to use the specified calling convention for vector
15276arguments and return values. The valid options are @samp{auto};
15277@samp{generic}, to avoid vector registers even if they are present;
15278@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15279registers. By default, @value{GDBN} selects the calling convention
15280based on the selected architecture and the provided executable file.
15281
8e04817f
AC
15282@kindex target dink32
15283@item target dink32 @var{dev}
15284DINK32 ROM monitor.
104c1213 15285
8e04817f
AC
15286@kindex target ppcbug
15287@item target ppcbug @var{dev}
15288@kindex target ppcbug1
15289@item target ppcbug1 @var{dev}
15290PPCBUG ROM monitor for PowerPC.
104c1213 15291
8e04817f
AC
15292@kindex target sds
15293@item target sds @var{dev}
15294SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15295@end table
8e04817f 15296
c45da7e6 15297@cindex SDS protocol
d52fb0e9 15298The following commands specific to the SDS protocol are supported
55eddb0f 15299by @value{GDBN}:
c45da7e6
EZ
15300
15301@table @code
15302@item set sdstimeout @var{nsec}
15303@kindex set sdstimeout
15304Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15305default is 2 seconds.
15306
15307@item show sdstimeout
15308@kindex show sdstimeout
15309Show the current value of the SDS timeout.
15310
15311@item sds @var{command}
15312@kindex sds@r{, a command}
15313Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15314@end table
15315
c45da7e6 15316
8e04817f
AC
15317@node PA
15318@subsection HP PA Embedded
104c1213
JM
15319
15320@table @code
15321
8e04817f
AC
15322@kindex target op50n
15323@item target op50n @var{dev}
15324OP50N monitor, running on an OKI HPPA board.
15325
15326@kindex target w89k
15327@item target w89k @var{dev}
15328W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15329
15330@end table
15331
8e04817f
AC
15332@node Sparclet
15333@subsection Tsqware Sparclet
104c1213 15334
8e04817f
AC
15335@cindex Sparclet
15336
15337@value{GDBN} enables developers to debug tasks running on
15338Sparclet targets from a Unix host.
15339@value{GDBN} uses code that runs on
15340both the Unix host and on the Sparclet target. The program
15341@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15342
8e04817f
AC
15343@table @code
15344@item remotetimeout @var{args}
15345@kindex remotetimeout
15346@value{GDBN} supports the option @code{remotetimeout}.
15347This option is set by the user, and @var{args} represents the number of
15348seconds @value{GDBN} waits for responses.
104c1213
JM
15349@end table
15350
8e04817f
AC
15351@cindex compiling, on Sparclet
15352When compiling for debugging, include the options @samp{-g} to get debug
15353information and @samp{-Ttext} to relocate the program to where you wish to
15354load it on the target. You may also want to add the options @samp{-n} or
15355@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15356
474c8240 15357@smallexample
8e04817f 15358sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15359@end smallexample
104c1213 15360
8e04817f 15361You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15362
474c8240 15363@smallexample
8e04817f 15364sparclet-aout-objdump --headers --syms prog
474c8240 15365@end smallexample
104c1213 15366
8e04817f
AC
15367@cindex running, on Sparclet
15368Once you have set
15369your Unix execution search path to find @value{GDBN}, you are ready to
15370run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15371(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15372
8e04817f
AC
15373@value{GDBN} comes up showing the prompt:
15374
474c8240 15375@smallexample
8e04817f 15376(gdbslet)
474c8240 15377@end smallexample
104c1213
JM
15378
15379@menu
8e04817f
AC
15380* Sparclet File:: Setting the file to debug
15381* Sparclet Connection:: Connecting to Sparclet
15382* Sparclet Download:: Sparclet download
15383* Sparclet Execution:: Running and debugging
104c1213
JM
15384@end menu
15385
8e04817f 15386@node Sparclet File
79a6e687 15387@subsubsection Setting File to Debug
104c1213 15388
8e04817f 15389The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15390
474c8240 15391@smallexample
8e04817f 15392(gdbslet) file prog
474c8240 15393@end smallexample
104c1213 15394
8e04817f
AC
15395@need 1000
15396@value{GDBN} then attempts to read the symbol table of @file{prog}.
15397@value{GDBN} locates
15398the file by searching the directories listed in the command search
15399path.
12c27660 15400If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15401files will be searched as well.
15402@value{GDBN} locates
15403the source files by searching the directories listed in the directory search
79a6e687 15404path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15405If it fails
15406to find a file, it displays a message such as:
104c1213 15407
474c8240 15408@smallexample
8e04817f 15409prog: No such file or directory.
474c8240 15410@end smallexample
104c1213 15411
8e04817f
AC
15412When this happens, add the appropriate directories to the search paths with
15413the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15414@code{target} command again.
104c1213 15415
8e04817f
AC
15416@node Sparclet Connection
15417@subsubsection Connecting to Sparclet
104c1213 15418
8e04817f
AC
15419The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15420To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15421
474c8240 15422@smallexample
8e04817f
AC
15423(gdbslet) target sparclet /dev/ttya
15424Remote target sparclet connected to /dev/ttya
15425main () at ../prog.c:3
474c8240 15426@end smallexample
104c1213 15427
8e04817f
AC
15428@need 750
15429@value{GDBN} displays messages like these:
104c1213 15430
474c8240 15431@smallexample
8e04817f 15432Connected to ttya.
474c8240 15433@end smallexample
104c1213 15434
8e04817f 15435@node Sparclet Download
79a6e687 15436@subsubsection Sparclet Download
104c1213 15437
8e04817f
AC
15438@cindex download to Sparclet
15439Once connected to the Sparclet target,
15440you can use the @value{GDBN}
15441@code{load} command to download the file from the host to the target.
15442The file name and load offset should be given as arguments to the @code{load}
15443command.
15444Since the file format is aout, the program must be loaded to the starting
15445address. You can use @code{objdump} to find out what this value is. The load
15446offset is an offset which is added to the VMA (virtual memory address)
15447of each of the file's sections.
15448For instance, if the program
15449@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15450and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15451
474c8240 15452@smallexample
8e04817f
AC
15453(gdbslet) load prog 0x12010000
15454Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15455@end smallexample
104c1213 15456
8e04817f
AC
15457If the code is loaded at a different address then what the program was linked
15458to, you may need to use the @code{section} and @code{add-symbol-file} commands
15459to tell @value{GDBN} where to map the symbol table.
15460
15461@node Sparclet Execution
79a6e687 15462@subsubsection Running and Debugging
8e04817f
AC
15463
15464@cindex running and debugging Sparclet programs
15465You can now begin debugging the task using @value{GDBN}'s execution control
15466commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15467manual for the list of commands.
15468
474c8240 15469@smallexample
8e04817f
AC
15470(gdbslet) b main
15471Breakpoint 1 at 0x12010000: file prog.c, line 3.
15472(gdbslet) run
15473Starting program: prog
15474Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154753 char *symarg = 0;
15476(gdbslet) step
154774 char *execarg = "hello!";
15478(gdbslet)
474c8240 15479@end smallexample
8e04817f
AC
15480
15481@node Sparclite
15482@subsection Fujitsu Sparclite
104c1213
JM
15483
15484@table @code
15485
8e04817f
AC
15486@kindex target sparclite
15487@item target sparclite @var{dev}
15488Fujitsu sparclite boards, used only for the purpose of loading.
15489You must use an additional command to debug the program.
15490For example: target remote @var{dev} using @value{GDBN} standard
15491remote protocol.
104c1213
JM
15492
15493@end table
15494
8e04817f
AC
15495@node Z8000
15496@subsection Zilog Z8000
104c1213 15497
8e04817f
AC
15498@cindex Z8000
15499@cindex simulator, Z8000
15500@cindex Zilog Z8000 simulator
104c1213 15501
8e04817f
AC
15502When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15503a Z8000 simulator.
15504
15505For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15506unsegmented variant of the Z8000 architecture) or the Z8001 (the
15507segmented variant). The simulator recognizes which architecture is
15508appropriate by inspecting the object code.
104c1213 15509
8e04817f
AC
15510@table @code
15511@item target sim @var{args}
15512@kindex sim
15513@kindex target sim@r{, with Z8000}
15514Debug programs on a simulated CPU. If the simulator supports setup
15515options, specify them via @var{args}.
104c1213
JM
15516@end table
15517
8e04817f
AC
15518@noindent
15519After specifying this target, you can debug programs for the simulated
15520CPU in the same style as programs for your host computer; use the
15521@code{file} command to load a new program image, the @code{run} command
15522to run your program, and so on.
15523
15524As well as making available all the usual machine registers
15525(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15526additional items of information as specially named registers:
104c1213
JM
15527
15528@table @code
15529
8e04817f
AC
15530@item cycles
15531Counts clock-ticks in the simulator.
104c1213 15532
8e04817f
AC
15533@item insts
15534Counts instructions run in the simulator.
104c1213 15535
8e04817f
AC
15536@item time
15537Execution time in 60ths of a second.
104c1213 15538
8e04817f 15539@end table
104c1213 15540
8e04817f
AC
15541You can refer to these values in @value{GDBN} expressions with the usual
15542conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15543conditional breakpoint that suspends only after at least 5000
15544simulated clock ticks.
104c1213 15545
a64548ea
EZ
15546@node AVR
15547@subsection Atmel AVR
15548@cindex AVR
15549
15550When configured for debugging the Atmel AVR, @value{GDBN} supports the
15551following AVR-specific commands:
15552
15553@table @code
15554@item info io_registers
15555@kindex info io_registers@r{, AVR}
15556@cindex I/O registers (Atmel AVR)
15557This command displays information about the AVR I/O registers. For
15558each register, @value{GDBN} prints its number and value.
15559@end table
15560
15561@node CRIS
15562@subsection CRIS
15563@cindex CRIS
15564
15565When configured for debugging CRIS, @value{GDBN} provides the
15566following CRIS-specific commands:
15567
15568@table @code
15569@item set cris-version @var{ver}
15570@cindex CRIS version
e22e55c9
OF
15571Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15572The CRIS version affects register names and sizes. This command is useful in
15573case autodetection of the CRIS version fails.
a64548ea
EZ
15574
15575@item show cris-version
15576Show the current CRIS version.
15577
15578@item set cris-dwarf2-cfi
15579@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15580Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15581Change to @samp{off} when using @code{gcc-cris} whose version is below
15582@code{R59}.
a64548ea
EZ
15583
15584@item show cris-dwarf2-cfi
15585Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15586
15587@item set cris-mode @var{mode}
15588@cindex CRIS mode
15589Set the current CRIS mode to @var{mode}. It should only be changed when
15590debugging in guru mode, in which case it should be set to
15591@samp{guru} (the default is @samp{normal}).
15592
15593@item show cris-mode
15594Show the current CRIS mode.
a64548ea
EZ
15595@end table
15596
15597@node Super-H
15598@subsection Renesas Super-H
15599@cindex Super-H
15600
15601For the Renesas Super-H processor, @value{GDBN} provides these
15602commands:
15603
15604@table @code
15605@item regs
15606@kindex regs@r{, Super-H}
15607Show the values of all Super-H registers.
15608@end table
15609
15610
8e04817f
AC
15611@node Architectures
15612@section Architectures
104c1213 15613
8e04817f
AC
15614This section describes characteristics of architectures that affect
15615all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15616
8e04817f 15617@menu
9c16f35a 15618* i386::
8e04817f
AC
15619* A29K::
15620* Alpha::
15621* MIPS::
a64548ea 15622* HPPA:: HP PA architecture
23d964e7 15623* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15624* PowerPC::
8e04817f 15625@end menu
104c1213 15626
9c16f35a 15627@node i386
db2e3e2e 15628@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15629
15630@table @code
15631@item set struct-convention @var{mode}
15632@kindex set struct-convention
15633@cindex struct return convention
15634@cindex struct/union returned in registers
15635Set the convention used by the inferior to return @code{struct}s and
15636@code{union}s from functions to @var{mode}. Possible values of
15637@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15638default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15639are returned on the stack, while @code{"reg"} means that a
15640@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15641be returned in a register.
15642
15643@item show struct-convention
15644@kindex show struct-convention
15645Show the current setting of the convention to return @code{struct}s
15646from functions.
15647@end table
15648
8e04817f
AC
15649@node A29K
15650@subsection A29K
104c1213
JM
15651
15652@table @code
104c1213 15653
8e04817f
AC
15654@kindex set rstack_high_address
15655@cindex AMD 29K register stack
15656@cindex register stack, AMD29K
15657@item set rstack_high_address @var{address}
15658On AMD 29000 family processors, registers are saved in a separate
15659@dfn{register stack}. There is no way for @value{GDBN} to determine the
15660extent of this stack. Normally, @value{GDBN} just assumes that the
15661stack is ``large enough''. This may result in @value{GDBN} referencing
15662memory locations that do not exist. If necessary, you can get around
15663this problem by specifying the ending address of the register stack with
15664the @code{set rstack_high_address} command. The argument should be an
15665address, which you probably want to precede with @samp{0x} to specify in
15666hexadecimal.
104c1213 15667
8e04817f
AC
15668@kindex show rstack_high_address
15669@item show rstack_high_address
15670Display the current limit of the register stack, on AMD 29000 family
15671processors.
104c1213 15672
8e04817f 15673@end table
104c1213 15674
8e04817f
AC
15675@node Alpha
15676@subsection Alpha
104c1213 15677
8e04817f 15678See the following section.
104c1213 15679
8e04817f
AC
15680@node MIPS
15681@subsection MIPS
104c1213 15682
8e04817f
AC
15683@cindex stack on Alpha
15684@cindex stack on MIPS
15685@cindex Alpha stack
15686@cindex MIPS stack
15687Alpha- and MIPS-based computers use an unusual stack frame, which
15688sometimes requires @value{GDBN} to search backward in the object code to
15689find the beginning of a function.
104c1213 15690
8e04817f
AC
15691@cindex response time, MIPS debugging
15692To improve response time (especially for embedded applications, where
15693@value{GDBN} may be restricted to a slow serial line for this search)
15694you may want to limit the size of this search, using one of these
15695commands:
104c1213 15696
8e04817f
AC
15697@table @code
15698@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15699@item set heuristic-fence-post @var{limit}
15700Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15701search for the beginning of a function. A value of @var{0} (the
15702default) means there is no limit. However, except for @var{0}, the
15703larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15704and therefore the longer it takes to run. You should only need to use
15705this command when debugging a stripped executable.
104c1213 15706
8e04817f
AC
15707@item show heuristic-fence-post
15708Display the current limit.
15709@end table
104c1213
JM
15710
15711@noindent
8e04817f
AC
15712These commands are available @emph{only} when @value{GDBN} is configured
15713for debugging programs on Alpha or MIPS processors.
104c1213 15714
a64548ea
EZ
15715Several MIPS-specific commands are available when debugging MIPS
15716programs:
15717
15718@table @code
a64548ea
EZ
15719@item set mips abi @var{arg}
15720@kindex set mips abi
15721@cindex set ABI for MIPS
15722Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15723values of @var{arg} are:
15724
15725@table @samp
15726@item auto
15727The default ABI associated with the current binary (this is the
15728default).
15729@item o32
15730@item o64
15731@item n32
15732@item n64
15733@item eabi32
15734@item eabi64
15735@item auto
15736@end table
15737
15738@item show mips abi
15739@kindex show mips abi
15740Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15741
15742@item set mipsfpu
15743@itemx show mipsfpu
15744@xref{MIPS Embedded, set mipsfpu}.
15745
15746@item set mips mask-address @var{arg}
15747@kindex set mips mask-address
15748@cindex MIPS addresses, masking
15749This command determines whether the most-significant 32 bits of 64-bit
15750MIPS addresses are masked off. The argument @var{arg} can be
15751@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15752setting, which lets @value{GDBN} determine the correct value.
15753
15754@item show mips mask-address
15755@kindex show mips mask-address
15756Show whether the upper 32 bits of MIPS addresses are masked off or
15757not.
15758
15759@item set remote-mips64-transfers-32bit-regs
15760@kindex set remote-mips64-transfers-32bit-regs
15761This command controls compatibility with 64-bit MIPS targets that
15762transfer data in 32-bit quantities. If you have an old MIPS 64 target
15763that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15764and 64 bits for other registers, set this option to @samp{on}.
15765
15766@item show remote-mips64-transfers-32bit-regs
15767@kindex show remote-mips64-transfers-32bit-regs
15768Show the current setting of compatibility with older MIPS 64 targets.
15769
15770@item set debug mips
15771@kindex set debug mips
15772This command turns on and off debugging messages for the MIPS-specific
15773target code in @value{GDBN}.
15774
15775@item show debug mips
15776@kindex show debug mips
15777Show the current setting of MIPS debugging messages.
15778@end table
15779
15780
15781@node HPPA
15782@subsection HPPA
15783@cindex HPPA support
15784
d3e8051b 15785When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15786following special commands:
15787
15788@table @code
15789@item set debug hppa
15790@kindex set debug hppa
db2e3e2e 15791This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15792messages are to be displayed.
15793
15794@item show debug hppa
15795Show whether HPPA debugging messages are displayed.
15796
15797@item maint print unwind @var{address}
15798@kindex maint print unwind@r{, HPPA}
15799This command displays the contents of the unwind table entry at the
15800given @var{address}.
15801
15802@end table
15803
104c1213 15804
23d964e7
UW
15805@node SPU
15806@subsection Cell Broadband Engine SPU architecture
15807@cindex Cell Broadband Engine
15808@cindex SPU
15809
15810When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15811it provides the following special commands:
15812
15813@table @code
15814@item info spu event
15815@kindex info spu
15816Display SPU event facility status. Shows current event mask
15817and pending event status.
15818
15819@item info spu signal
15820Display SPU signal notification facility status. Shows pending
15821signal-control word and signal notification mode of both signal
15822notification channels.
15823
15824@item info spu mailbox
15825Display SPU mailbox facility status. Shows all pending entries,
15826in order of processing, in each of the SPU Write Outbound,
15827SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15828
15829@item info spu dma
15830Display MFC DMA status. Shows all pending commands in the MFC
15831DMA queue. For each entry, opcode, tag, class IDs, effective
15832and local store addresses and transfer size are shown.
15833
15834@item info spu proxydma
15835Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15836Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15837and local store addresses and transfer size are shown.
15838
15839@end table
15840
4acd40f3
TJB
15841@node PowerPC
15842@subsection PowerPC
15843@cindex PowerPC architecture
15844
15845When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15846pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15847numbers stored in the floating point registers. These values must be stored
15848in two consecutive registers, always starting at an even register like
15849@code{f0} or @code{f2}.
15850
15851The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15852by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15853@code{f2} and @code{f3} for @code{$dl1} and so on.
15854
23d964e7 15855
8e04817f
AC
15856@node Controlling GDB
15857@chapter Controlling @value{GDBN}
15858
15859You can alter the way @value{GDBN} interacts with you by using the
15860@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15861data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15862described here.
15863
15864@menu
15865* Prompt:: Prompt
15866* Editing:: Command editing
d620b259 15867* Command History:: Command history
8e04817f
AC
15868* Screen Size:: Screen size
15869* Numbers:: Numbers
1e698235 15870* ABI:: Configuring the current ABI
8e04817f
AC
15871* Messages/Warnings:: Optional warnings and messages
15872* Debugging Output:: Optional messages about internal happenings
15873@end menu
15874
15875@node Prompt
15876@section Prompt
104c1213 15877
8e04817f 15878@cindex prompt
104c1213 15879
8e04817f
AC
15880@value{GDBN} indicates its readiness to read a command by printing a string
15881called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15882can change the prompt string with the @code{set prompt} command. For
15883instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15884the prompt in one of the @value{GDBN} sessions so that you can always tell
15885which one you are talking to.
104c1213 15886
8e04817f
AC
15887@emph{Note:} @code{set prompt} does not add a space for you after the
15888prompt you set. This allows you to set a prompt which ends in a space
15889or a prompt that does not.
104c1213 15890
8e04817f
AC
15891@table @code
15892@kindex set prompt
15893@item set prompt @var{newprompt}
15894Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15895
8e04817f
AC
15896@kindex show prompt
15897@item show prompt
15898Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15899@end table
15900
8e04817f 15901@node Editing
79a6e687 15902@section Command Editing
8e04817f
AC
15903@cindex readline
15904@cindex command line editing
104c1213 15905
703663ab 15906@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15907@sc{gnu} library provides consistent behavior for programs which provide a
15908command line interface to the user. Advantages are @sc{gnu} Emacs-style
15909or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15910substitution, and a storage and recall of command history across
15911debugging sessions.
104c1213 15912
8e04817f
AC
15913You may control the behavior of command line editing in @value{GDBN} with the
15914command @code{set}.
104c1213 15915
8e04817f
AC
15916@table @code
15917@kindex set editing
15918@cindex editing
15919@item set editing
15920@itemx set editing on
15921Enable command line editing (enabled by default).
104c1213 15922
8e04817f
AC
15923@item set editing off
15924Disable command line editing.
104c1213 15925
8e04817f
AC
15926@kindex show editing
15927@item show editing
15928Show whether command line editing is enabled.
104c1213
JM
15929@end table
15930
703663ab
EZ
15931@xref{Command Line Editing}, for more details about the Readline
15932interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15933encouraged to read that chapter.
15934
d620b259 15935@node Command History
79a6e687 15936@section Command History
703663ab 15937@cindex command history
8e04817f
AC
15938
15939@value{GDBN} can keep track of the commands you type during your
15940debugging sessions, so that you can be certain of precisely what
15941happened. Use these commands to manage the @value{GDBN} command
15942history facility.
104c1213 15943
703663ab
EZ
15944@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15945package, to provide the history facility. @xref{Using History
15946Interactively}, for the detailed description of the History library.
15947
d620b259 15948To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15949the state which is seen by users, prefix it with @samp{server }
15950(@pxref{Server Prefix}). This
d620b259
NR
15951means that this command will not affect the command history, nor will it
15952affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15953pressed on a line by itself.
15954
15955@cindex @code{server}, command prefix
15956The server prefix does not affect the recording of values into the value
15957history; to print a value without recording it into the value history,
15958use the @code{output} command instead of the @code{print} command.
15959
703663ab
EZ
15960Here is the description of @value{GDBN} commands related to command
15961history.
15962
104c1213 15963@table @code
8e04817f
AC
15964@cindex history substitution
15965@cindex history file
15966@kindex set history filename
4644b6e3 15967@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15968@item set history filename @var{fname}
15969Set the name of the @value{GDBN} command history file to @var{fname}.
15970This is the file where @value{GDBN} reads an initial command history
15971list, and where it writes the command history from this session when it
15972exits. You can access this list through history expansion or through
15973the history command editing characters listed below. This file defaults
15974to the value of the environment variable @code{GDBHISTFILE}, or to
15975@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15976is not set.
104c1213 15977
9c16f35a
EZ
15978@cindex save command history
15979@kindex set history save
8e04817f
AC
15980@item set history save
15981@itemx set history save on
15982Record command history in a file, whose name may be specified with the
15983@code{set history filename} command. By default, this option is disabled.
104c1213 15984
8e04817f
AC
15985@item set history save off
15986Stop recording command history in a file.
104c1213 15987
8e04817f 15988@cindex history size
9c16f35a 15989@kindex set history size
6fc08d32 15990@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15991@item set history size @var{size}
15992Set the number of commands which @value{GDBN} keeps in its history list.
15993This defaults to the value of the environment variable
15994@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15995@end table
15996
8e04817f 15997History expansion assigns special meaning to the character @kbd{!}.
703663ab 15998@xref{Event Designators}, for more details.
8e04817f 15999
703663ab 16000@cindex history expansion, turn on/off
8e04817f
AC
16001Since @kbd{!} is also the logical not operator in C, history expansion
16002is off by default. If you decide to enable history expansion with the
16003@code{set history expansion on} command, you may sometimes need to
16004follow @kbd{!} (when it is used as logical not, in an expression) with
16005a space or a tab to prevent it from being expanded. The readline
16006history facilities do not attempt substitution on the strings
16007@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16008
16009The commands to control history expansion are:
104c1213
JM
16010
16011@table @code
8e04817f
AC
16012@item set history expansion on
16013@itemx set history expansion
703663ab 16014@kindex set history expansion
8e04817f 16015Enable history expansion. History expansion is off by default.
104c1213 16016
8e04817f
AC
16017@item set history expansion off
16018Disable history expansion.
104c1213 16019
8e04817f
AC
16020@c @group
16021@kindex show history
16022@item show history
16023@itemx show history filename
16024@itemx show history save
16025@itemx show history size
16026@itemx show history expansion
16027These commands display the state of the @value{GDBN} history parameters.
16028@code{show history} by itself displays all four states.
16029@c @end group
16030@end table
16031
16032@table @code
9c16f35a
EZ
16033@kindex show commands
16034@cindex show last commands
16035@cindex display command history
8e04817f
AC
16036@item show commands
16037Display the last ten commands in the command history.
104c1213 16038
8e04817f
AC
16039@item show commands @var{n}
16040Print ten commands centered on command number @var{n}.
16041
16042@item show commands +
16043Print ten commands just after the commands last printed.
104c1213
JM
16044@end table
16045
8e04817f 16046@node Screen Size
79a6e687 16047@section Screen Size
8e04817f
AC
16048@cindex size of screen
16049@cindex pauses in output
104c1213 16050
8e04817f
AC
16051Certain commands to @value{GDBN} may produce large amounts of
16052information output to the screen. To help you read all of it,
16053@value{GDBN} pauses and asks you for input at the end of each page of
16054output. Type @key{RET} when you want to continue the output, or @kbd{q}
16055to discard the remaining output. Also, the screen width setting
16056determines when to wrap lines of output. Depending on what is being
16057printed, @value{GDBN} tries to break the line at a readable place,
16058rather than simply letting it overflow onto the following line.
16059
16060Normally @value{GDBN} knows the size of the screen from the terminal
16061driver software. For example, on Unix @value{GDBN} uses the termcap data base
16062together with the value of the @code{TERM} environment variable and the
16063@code{stty rows} and @code{stty cols} settings. If this is not correct,
16064you can override it with the @code{set height} and @code{set
16065width} commands:
16066
16067@table @code
16068@kindex set height
16069@kindex set width
16070@kindex show width
16071@kindex show height
16072@item set height @var{lpp}
16073@itemx show height
16074@itemx set width @var{cpl}
16075@itemx show width
16076These @code{set} commands specify a screen height of @var{lpp} lines and
16077a screen width of @var{cpl} characters. The associated @code{show}
16078commands display the current settings.
104c1213 16079
8e04817f
AC
16080If you specify a height of zero lines, @value{GDBN} does not pause during
16081output no matter how long the output is. This is useful if output is to a
16082file or to an editor buffer.
104c1213 16083
8e04817f
AC
16084Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16085from wrapping its output.
9c16f35a
EZ
16086
16087@item set pagination on
16088@itemx set pagination off
16089@kindex set pagination
16090Turn the output pagination on or off; the default is on. Turning
16091pagination off is the alternative to @code{set height 0}.
16092
16093@item show pagination
16094@kindex show pagination
16095Show the current pagination mode.
104c1213
JM
16096@end table
16097
8e04817f
AC
16098@node Numbers
16099@section Numbers
16100@cindex number representation
16101@cindex entering numbers
104c1213 16102
8e04817f
AC
16103You can always enter numbers in octal, decimal, or hexadecimal in
16104@value{GDBN} by the usual conventions: octal numbers begin with
16105@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16106begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16107@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1610810; likewise, the default display for numbers---when no particular
16109format is specified---is base 10. You can change the default base for
16110both input and output with the commands described below.
104c1213 16111
8e04817f
AC
16112@table @code
16113@kindex set input-radix
16114@item set input-radix @var{base}
16115Set the default base for numeric input. Supported choices
16116for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16117specified either unambiguously or using the current input radix; for
8e04817f 16118example, any of
104c1213 16119
8e04817f 16120@smallexample
9c16f35a
EZ
16121set input-radix 012
16122set input-radix 10.
16123set input-radix 0xa
8e04817f 16124@end smallexample
104c1213 16125
8e04817f 16126@noindent
9c16f35a 16127sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16128leaves the input radix unchanged, no matter what it was, since
16129@samp{10}, being without any leading or trailing signs of its base, is
16130interpreted in the current radix. Thus, if the current radix is 16,
16131@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16132change the radix.
104c1213 16133
8e04817f
AC
16134@kindex set output-radix
16135@item set output-radix @var{base}
16136Set the default base for numeric display. Supported choices
16137for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16138specified either unambiguously or using the current input radix.
104c1213 16139
8e04817f
AC
16140@kindex show input-radix
16141@item show input-radix
16142Display the current default base for numeric input.
104c1213 16143
8e04817f
AC
16144@kindex show output-radix
16145@item show output-radix
16146Display the current default base for numeric display.
9c16f35a
EZ
16147
16148@item set radix @r{[}@var{base}@r{]}
16149@itemx show radix
16150@kindex set radix
16151@kindex show radix
16152These commands set and show the default base for both input and output
16153of numbers. @code{set radix} sets the radix of input and output to
16154the same base; without an argument, it resets the radix back to its
16155default value of 10.
16156
8e04817f 16157@end table
104c1213 16158
1e698235 16159@node ABI
79a6e687 16160@section Configuring the Current ABI
1e698235
DJ
16161
16162@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16163application automatically. However, sometimes you need to override its
16164conclusions. Use these commands to manage @value{GDBN}'s view of the
16165current ABI.
16166
98b45e30
DJ
16167@cindex OS ABI
16168@kindex set osabi
b4e9345d 16169@kindex show osabi
98b45e30
DJ
16170
16171One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16172system targets, either via remote debugging or native emulation.
98b45e30
DJ
16173@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16174but you can override its conclusion using the @code{set osabi} command.
16175One example where this is useful is in debugging of binaries which use
16176an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16177not have the same identifying marks that the standard C library for your
16178platform provides.
16179
16180@table @code
16181@item show osabi
16182Show the OS ABI currently in use.
16183
16184@item set osabi
16185With no argument, show the list of registered available OS ABI's.
16186
16187@item set osabi @var{abi}
16188Set the current OS ABI to @var{abi}.
16189@end table
16190
1e698235 16191@cindex float promotion
1e698235
DJ
16192
16193Generally, the way that an argument of type @code{float} is passed to a
16194function depends on whether the function is prototyped. For a prototyped
16195(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16196according to the architecture's convention for @code{float}. For unprototyped
16197(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16198@code{double} and then passed.
16199
16200Unfortunately, some forms of debug information do not reliably indicate whether
16201a function is prototyped. If @value{GDBN} calls a function that is not marked
16202as prototyped, it consults @kbd{set coerce-float-to-double}.
16203
16204@table @code
a8f24a35 16205@kindex set coerce-float-to-double
1e698235
DJ
16206@item set coerce-float-to-double
16207@itemx set coerce-float-to-double on
16208Arguments of type @code{float} will be promoted to @code{double} when passed
16209to an unprototyped function. This is the default setting.
16210
16211@item set coerce-float-to-double off
16212Arguments of type @code{float} will be passed directly to unprototyped
16213functions.
9c16f35a
EZ
16214
16215@kindex show coerce-float-to-double
16216@item show coerce-float-to-double
16217Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16218@end table
16219
f1212245
DJ
16220@kindex set cp-abi
16221@kindex show cp-abi
16222@value{GDBN} needs to know the ABI used for your program's C@t{++}
16223objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16224used to build your application. @value{GDBN} only fully supports
16225programs with a single C@t{++} ABI; if your program contains code using
16226multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16227program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16228Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16229before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16230``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16231use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16232``auto''.
16233
16234@table @code
16235@item show cp-abi
16236Show the C@t{++} ABI currently in use.
16237
16238@item set cp-abi
16239With no argument, show the list of supported C@t{++} ABI's.
16240
16241@item set cp-abi @var{abi}
16242@itemx set cp-abi auto
16243Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16244@end table
16245
8e04817f 16246@node Messages/Warnings
79a6e687 16247@section Optional Warnings and Messages
104c1213 16248
9c16f35a
EZ
16249@cindex verbose operation
16250@cindex optional warnings
8e04817f
AC
16251By default, @value{GDBN} is silent about its inner workings. If you are
16252running on a slow machine, you may want to use the @code{set verbose}
16253command. This makes @value{GDBN} tell you when it does a lengthy
16254internal operation, so you will not think it has crashed.
104c1213 16255
8e04817f
AC
16256Currently, the messages controlled by @code{set verbose} are those
16257which announce that the symbol table for a source file is being read;
79a6e687 16258see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16259
8e04817f
AC
16260@table @code
16261@kindex set verbose
16262@item set verbose on
16263Enables @value{GDBN} output of certain informational messages.
104c1213 16264
8e04817f
AC
16265@item set verbose off
16266Disables @value{GDBN} output of certain informational messages.
104c1213 16267
8e04817f
AC
16268@kindex show verbose
16269@item show verbose
16270Displays whether @code{set verbose} is on or off.
16271@end table
104c1213 16272
8e04817f
AC
16273By default, if @value{GDBN} encounters bugs in the symbol table of an
16274object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16275find this information useful (@pxref{Symbol Errors, ,Errors Reading
16276Symbol Files}).
104c1213 16277
8e04817f 16278@table @code
104c1213 16279
8e04817f
AC
16280@kindex set complaints
16281@item set complaints @var{limit}
16282Permits @value{GDBN} to output @var{limit} complaints about each type of
16283unusual symbols before becoming silent about the problem. Set
16284@var{limit} to zero to suppress all complaints; set it to a large number
16285to prevent complaints from being suppressed.
104c1213 16286
8e04817f
AC
16287@kindex show complaints
16288@item show complaints
16289Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16290
8e04817f 16291@end table
104c1213 16292
8e04817f
AC
16293By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16294lot of stupid questions to confirm certain commands. For example, if
16295you try to run a program which is already running:
104c1213 16296
474c8240 16297@smallexample
8e04817f
AC
16298(@value{GDBP}) run
16299The program being debugged has been started already.
16300Start it from the beginning? (y or n)
474c8240 16301@end smallexample
104c1213 16302
8e04817f
AC
16303If you are willing to unflinchingly face the consequences of your own
16304commands, you can disable this ``feature'':
104c1213 16305
8e04817f 16306@table @code
104c1213 16307
8e04817f
AC
16308@kindex set confirm
16309@cindex flinching
16310@cindex confirmation
16311@cindex stupid questions
16312@item set confirm off
16313Disables confirmation requests.
104c1213 16314
8e04817f
AC
16315@item set confirm on
16316Enables confirmation requests (the default).
104c1213 16317
8e04817f
AC
16318@kindex show confirm
16319@item show confirm
16320Displays state of confirmation requests.
16321
16322@end table
104c1213 16323
16026cd7
AS
16324@cindex command tracing
16325If you need to debug user-defined commands or sourced files you may find it
16326useful to enable @dfn{command tracing}. In this mode each command will be
16327printed as it is executed, prefixed with one or more @samp{+} symbols, the
16328quantity denoting the call depth of each command.
16329
16330@table @code
16331@kindex set trace-commands
16332@cindex command scripts, debugging
16333@item set trace-commands on
16334Enable command tracing.
16335@item set trace-commands off
16336Disable command tracing.
16337@item show trace-commands
16338Display the current state of command tracing.
16339@end table
16340
8e04817f 16341@node Debugging Output
79a6e687 16342@section Optional Messages about Internal Happenings
4644b6e3
EZ
16343@cindex optional debugging messages
16344
da316a69
EZ
16345@value{GDBN} has commands that enable optional debugging messages from
16346various @value{GDBN} subsystems; normally these commands are of
16347interest to @value{GDBN} maintainers, or when reporting a bug. This
16348section documents those commands.
16349
104c1213 16350@table @code
a8f24a35
EZ
16351@kindex set exec-done-display
16352@item set exec-done-display
16353Turns on or off the notification of asynchronous commands'
16354completion. When on, @value{GDBN} will print a message when an
16355asynchronous command finishes its execution. The default is off.
16356@kindex show exec-done-display
16357@item show exec-done-display
16358Displays the current setting of asynchronous command completion
16359notification.
4644b6e3
EZ
16360@kindex set debug
16361@cindex gdbarch debugging info
a8f24a35 16362@cindex architecture debugging info
8e04817f 16363@item set debug arch
a8f24a35 16364Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16365@kindex show debug
8e04817f
AC
16366@item show debug arch
16367Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16368@item set debug aix-thread
16369@cindex AIX threads
16370Display debugging messages about inner workings of the AIX thread
16371module.
16372@item show debug aix-thread
16373Show the current state of AIX thread debugging info display.
8e04817f 16374@item set debug event
4644b6e3 16375@cindex event debugging info
a8f24a35 16376Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16377default is off.
8e04817f
AC
16378@item show debug event
16379Displays the current state of displaying @value{GDBN} event debugging
16380info.
8e04817f 16381@item set debug expression
4644b6e3 16382@cindex expression debugging info
721c2651
EZ
16383Turns on or off display of debugging info about @value{GDBN}
16384expression parsing. The default is off.
8e04817f 16385@item show debug expression
721c2651
EZ
16386Displays the current state of displaying debugging info about
16387@value{GDBN} expression parsing.
7453dc06 16388@item set debug frame
4644b6e3 16389@cindex frame debugging info
7453dc06
AC
16390Turns on or off display of @value{GDBN} frame debugging info. The
16391default is off.
7453dc06
AC
16392@item show debug frame
16393Displays the current state of displaying @value{GDBN} frame debugging
16394info.
30e91e0b
RC
16395@item set debug infrun
16396@cindex inferior debugging info
16397Turns on or off display of @value{GDBN} debugging info for running the inferior.
16398The default is off. @file{infrun.c} contains GDB's runtime state machine used
16399for implementing operations such as single-stepping the inferior.
16400@item show debug infrun
16401Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16402@item set debug lin-lwp
16403@cindex @sc{gnu}/Linux LWP debug messages
16404@cindex Linux lightweight processes
721c2651 16405Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16406@item show debug lin-lwp
16407Show the current state of Linux LWP debugging messages.
2b4855ab 16408@item set debug observer
4644b6e3 16409@cindex observer debugging info
2b4855ab
AC
16410Turns on or off display of @value{GDBN} observer debugging. This
16411includes info such as the notification of observable events.
2b4855ab
AC
16412@item show debug observer
16413Displays the current state of observer debugging.
8e04817f 16414@item set debug overload
4644b6e3 16415@cindex C@t{++} overload debugging info
8e04817f 16416Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16417info. This includes info such as ranking of functions, etc. The default
8e04817f 16418is off.
8e04817f
AC
16419@item show debug overload
16420Displays the current state of displaying @value{GDBN} C@t{++} overload
16421debugging info.
8e04817f
AC
16422@cindex packets, reporting on stdout
16423@cindex serial connections, debugging
605a56cb
DJ
16424@cindex debug remote protocol
16425@cindex remote protocol debugging
16426@cindex display remote packets
8e04817f
AC
16427@item set debug remote
16428Turns on or off display of reports on all packets sent back and forth across
16429the serial line to the remote machine. The info is printed on the
16430@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16431@item show debug remote
16432Displays the state of display of remote packets.
8e04817f
AC
16433@item set debug serial
16434Turns on or off display of @value{GDBN} serial debugging info. The
16435default is off.
8e04817f
AC
16436@item show debug serial
16437Displays the current state of displaying @value{GDBN} serial debugging
16438info.
c45da7e6
EZ
16439@item set debug solib-frv
16440@cindex FR-V shared-library debugging
16441Turns on or off debugging messages for FR-V shared-library code.
16442@item show debug solib-frv
16443Display the current state of FR-V shared-library code debugging
16444messages.
8e04817f 16445@item set debug target
4644b6e3 16446@cindex target debugging info
8e04817f
AC
16447Turns on or off display of @value{GDBN} target debugging info. This info
16448includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16449default is 0. Set it to 1 to track events, and to 2 to also track the
16450value of large memory transfers. Changes to this flag do not take effect
16451until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16452@item show debug target
16453Displays the current state of displaying @value{GDBN} target debugging
16454info.
75feb17d
DJ
16455@item set debug timestamp
16456@cindex timestampping debugging info
16457Turns on or off display of timestamps with @value{GDBN} debugging info.
16458When enabled, seconds and microseconds are displayed before each debugging
16459message.
16460@item show debug timestamp
16461Displays the current state of displaying timestamps with @value{GDBN}
16462debugging info.
c45da7e6 16463@item set debugvarobj
4644b6e3 16464@cindex variable object debugging info
8e04817f
AC
16465Turns on or off display of @value{GDBN} variable object debugging
16466info. The default is off.
c45da7e6 16467@item show debugvarobj
8e04817f
AC
16468Displays the current state of displaying @value{GDBN} variable object
16469debugging info.
e776119f
DJ
16470@item set debug xml
16471@cindex XML parser debugging
16472Turns on or off debugging messages for built-in XML parsers.
16473@item show debug xml
16474Displays the current state of XML debugging messages.
8e04817f 16475@end table
104c1213 16476
8e04817f
AC
16477@node Sequences
16478@chapter Canned Sequences of Commands
104c1213 16479
8e04817f 16480Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16481Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16482commands for execution as a unit: user-defined commands and command
16483files.
104c1213 16484
8e04817f 16485@menu
fcc73fe3
EZ
16486* Define:: How to define your own commands
16487* Hooks:: Hooks for user-defined commands
16488* Command Files:: How to write scripts of commands to be stored in a file
16489* Output:: Commands for controlled output
8e04817f 16490@end menu
104c1213 16491
8e04817f 16492@node Define
79a6e687 16493@section User-defined Commands
104c1213 16494
8e04817f 16495@cindex user-defined command
fcc73fe3 16496@cindex arguments, to user-defined commands
8e04817f
AC
16497A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16498which you assign a new name as a command. This is done with the
16499@code{define} command. User commands may accept up to 10 arguments
16500separated by whitespace. Arguments are accessed within the user command
c03c782f 16501via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16502
8e04817f
AC
16503@smallexample
16504define adder
16505 print $arg0 + $arg1 + $arg2
c03c782f 16506end
8e04817f 16507@end smallexample
104c1213
JM
16508
16509@noindent
8e04817f 16510To execute the command use:
104c1213 16511
8e04817f
AC
16512@smallexample
16513adder 1 2 3
16514@end smallexample
104c1213 16515
8e04817f
AC
16516@noindent
16517This defines the command @code{adder}, which prints the sum of
16518its three arguments. Note the arguments are text substitutions, so they may
16519reference variables, use complex expressions, or even perform inferior
16520functions calls.
104c1213 16521
fcc73fe3
EZ
16522@cindex argument count in user-defined commands
16523@cindex how many arguments (user-defined commands)
c03c782f
AS
16524In addition, @code{$argc} may be used to find out how many arguments have
16525been passed. This expands to a number in the range 0@dots{}10.
16526
16527@smallexample
16528define adder
16529 if $argc == 2
16530 print $arg0 + $arg1
16531 end
16532 if $argc == 3
16533 print $arg0 + $arg1 + $arg2
16534 end
16535end
16536@end smallexample
16537
104c1213 16538@table @code
104c1213 16539
8e04817f
AC
16540@kindex define
16541@item define @var{commandname}
16542Define a command named @var{commandname}. If there is already a command
16543by that name, you are asked to confirm that you want to redefine it.
104c1213 16544
8e04817f
AC
16545The definition of the command is made up of other @value{GDBN} command lines,
16546which are given following the @code{define} command. The end of these
16547commands is marked by a line containing @code{end}.
104c1213 16548
8e04817f 16549@kindex document
ca91424e 16550@kindex end@r{ (user-defined commands)}
8e04817f
AC
16551@item document @var{commandname}
16552Document the user-defined command @var{commandname}, so that it can be
16553accessed by @code{help}. The command @var{commandname} must already be
16554defined. This command reads lines of documentation just as @code{define}
16555reads the lines of the command definition, ending with @code{end}.
16556After the @code{document} command is finished, @code{help} on command
16557@var{commandname} displays the documentation you have written.
104c1213 16558
8e04817f
AC
16559You may use the @code{document} command again to change the
16560documentation of a command. Redefining the command with @code{define}
16561does not change the documentation.
104c1213 16562
c45da7e6
EZ
16563@kindex dont-repeat
16564@cindex don't repeat command
16565@item dont-repeat
16566Used inside a user-defined command, this tells @value{GDBN} that this
16567command should not be repeated when the user hits @key{RET}
16568(@pxref{Command Syntax, repeat last command}).
16569
8e04817f
AC
16570@kindex help user-defined
16571@item help user-defined
16572List all user-defined commands, with the first line of the documentation
16573(if any) for each.
104c1213 16574
8e04817f
AC
16575@kindex show user
16576@item show user
16577@itemx show user @var{commandname}
16578Display the @value{GDBN} commands used to define @var{commandname} (but
16579not its documentation). If no @var{commandname} is given, display the
16580definitions for all user-defined commands.
104c1213 16581
fcc73fe3 16582@cindex infinite recursion in user-defined commands
20f01a46
DH
16583@kindex show max-user-call-depth
16584@kindex set max-user-call-depth
16585@item show max-user-call-depth
5ca0cb28
DH
16586@itemx set max-user-call-depth
16587The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16588levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16589infinite recursion and aborts the command.
104c1213
JM
16590@end table
16591
fcc73fe3
EZ
16592In addition to the above commands, user-defined commands frequently
16593use control flow commands, described in @ref{Command Files}.
16594
8e04817f
AC
16595When user-defined commands are executed, the
16596commands of the definition are not printed. An error in any command
16597stops execution of the user-defined command.
104c1213 16598
8e04817f
AC
16599If used interactively, commands that would ask for confirmation proceed
16600without asking when used inside a user-defined command. Many @value{GDBN}
16601commands that normally print messages to say what they are doing omit the
16602messages when used in a user-defined command.
104c1213 16603
8e04817f 16604@node Hooks
79a6e687 16605@section User-defined Command Hooks
8e04817f
AC
16606@cindex command hooks
16607@cindex hooks, for commands
16608@cindex hooks, pre-command
104c1213 16609
8e04817f 16610@kindex hook
8e04817f
AC
16611You may define @dfn{hooks}, which are a special kind of user-defined
16612command. Whenever you run the command @samp{foo}, if the user-defined
16613command @samp{hook-foo} exists, it is executed (with no arguments)
16614before that command.
104c1213 16615
8e04817f
AC
16616@cindex hooks, post-command
16617@kindex hookpost
8e04817f
AC
16618A hook may also be defined which is run after the command you executed.
16619Whenever you run the command @samp{foo}, if the user-defined command
16620@samp{hookpost-foo} exists, it is executed (with no arguments) after
16621that command. Post-execution hooks may exist simultaneously with
16622pre-execution hooks, for the same command.
104c1213 16623
8e04817f 16624It is valid for a hook to call the command which it hooks. If this
9f1c6395 16625occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16626
8e04817f
AC
16627@c It would be nice if hookpost could be passed a parameter indicating
16628@c if the command it hooks executed properly or not. FIXME!
104c1213 16629
8e04817f
AC
16630@kindex stop@r{, a pseudo-command}
16631In addition, a pseudo-command, @samp{stop} exists. Defining
16632(@samp{hook-stop}) makes the associated commands execute every time
16633execution stops in your program: before breakpoint commands are run,
16634displays are printed, or the stack frame is printed.
104c1213 16635
8e04817f
AC
16636For example, to ignore @code{SIGALRM} signals while
16637single-stepping, but treat them normally during normal execution,
16638you could define:
104c1213 16639
474c8240 16640@smallexample
8e04817f
AC
16641define hook-stop
16642handle SIGALRM nopass
16643end
104c1213 16644
8e04817f
AC
16645define hook-run
16646handle SIGALRM pass
16647end
104c1213 16648
8e04817f 16649define hook-continue
d3e8051b 16650handle SIGALRM pass
8e04817f 16651end
474c8240 16652@end smallexample
104c1213 16653
d3e8051b 16654As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16655command, and to add extra text to the beginning and end of the message,
8e04817f 16656you could define:
104c1213 16657
474c8240 16658@smallexample
8e04817f
AC
16659define hook-echo
16660echo <<<---
16661end
104c1213 16662
8e04817f
AC
16663define hookpost-echo
16664echo --->>>\n
16665end
104c1213 16666
8e04817f
AC
16667(@value{GDBP}) echo Hello World
16668<<<---Hello World--->>>
16669(@value{GDBP})
104c1213 16670
474c8240 16671@end smallexample
104c1213 16672
8e04817f
AC
16673You can define a hook for any single-word command in @value{GDBN}, but
16674not for command aliases; you should define a hook for the basic command
c1468174 16675name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16676@c FIXME! So how does Joe User discover whether a command is an alias
16677@c or not?
16678If an error occurs during the execution of your hook, execution of
16679@value{GDBN} commands stops and @value{GDBN} issues a prompt
16680(before the command that you actually typed had a chance to run).
104c1213 16681
8e04817f
AC
16682If you try to define a hook which does not match any known command, you
16683get a warning from the @code{define} command.
c906108c 16684
8e04817f 16685@node Command Files
79a6e687 16686@section Command Files
c906108c 16687
8e04817f 16688@cindex command files
fcc73fe3 16689@cindex scripting commands
6fc08d32
EZ
16690A command file for @value{GDBN} is a text file made of lines that are
16691@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16692also be included. An empty line in a command file does nothing; it
16693does not mean to repeat the last command, as it would from the
16694terminal.
c906108c 16695
6fc08d32
EZ
16696You can request the execution of a command file with the @code{source}
16697command:
c906108c 16698
8e04817f
AC
16699@table @code
16700@kindex source
ca91424e 16701@cindex execute commands from a file
16026cd7 16702@item source [@code{-v}] @var{filename}
8e04817f 16703Execute the command file @var{filename}.
c906108c
SS
16704@end table
16705
fcc73fe3
EZ
16706The lines in a command file are generally executed sequentially,
16707unless the order of execution is changed by one of the
16708@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16709printed as they are executed. An error in any command terminates
16710execution of the command file and control is returned to the console.
c906108c 16711
4b505b12
AS
16712@value{GDBN} searches for @var{filename} in the current directory and then
16713on the search path (specified with the @samp{directory} command).
16714
16026cd7
AS
16715If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16716each command as it is executed. The option must be given before
16717@var{filename}, and is interpreted as part of the filename anywhere else.
16718
8e04817f
AC
16719Commands that would ask for confirmation if used interactively proceed
16720without asking when used in a command file. Many @value{GDBN} commands that
16721normally print messages to say what they are doing omit the messages
16722when called from command files.
c906108c 16723
8e04817f
AC
16724@value{GDBN} also accepts command input from standard input. In this
16725mode, normal output goes to standard output and error output goes to
16726standard error. Errors in a command file supplied on standard input do
6fc08d32 16727not terminate execution of the command file---execution continues with
8e04817f 16728the next command.
c906108c 16729
474c8240 16730@smallexample
8e04817f 16731gdb < cmds > log 2>&1
474c8240 16732@end smallexample
c906108c 16733
8e04817f
AC
16734(The syntax above will vary depending on the shell used.) This example
16735will execute commands from the file @file{cmds}. All output and errors
16736would be directed to @file{log}.
c906108c 16737
fcc73fe3
EZ
16738Since commands stored on command files tend to be more general than
16739commands typed interactively, they frequently need to deal with
16740complicated situations, such as different or unexpected values of
16741variables and symbols, changes in how the program being debugged is
16742built, etc. @value{GDBN} provides a set of flow-control commands to
16743deal with these complexities. Using these commands, you can write
16744complex scripts that loop over data structures, execute commands
16745conditionally, etc.
16746
16747@table @code
16748@kindex if
16749@kindex else
16750@item if
16751@itemx else
16752This command allows to include in your script conditionally executed
16753commands. The @code{if} command takes a single argument, which is an
16754expression to evaluate. It is followed by a series of commands that
16755are executed only if the expression is true (its value is nonzero).
16756There can then optionally be an @code{else} line, followed by a series
16757of commands that are only executed if the expression was false. The
16758end of the list is marked by a line containing @code{end}.
16759
16760@kindex while
16761@item while
16762This command allows to write loops. Its syntax is similar to
16763@code{if}: the command takes a single argument, which is an expression
16764to evaluate, and must be followed by the commands to execute, one per
16765line, terminated by an @code{end}. These commands are called the
16766@dfn{body} of the loop. The commands in the body of @code{while} are
16767executed repeatedly as long as the expression evaluates to true.
16768
16769@kindex loop_break
16770@item loop_break
16771This command exits the @code{while} loop in whose body it is included.
16772Execution of the script continues after that @code{while}s @code{end}
16773line.
16774
16775@kindex loop_continue
16776@item loop_continue
16777This command skips the execution of the rest of the body of commands
16778in the @code{while} loop in whose body it is included. Execution
16779branches to the beginning of the @code{while} loop, where it evaluates
16780the controlling expression.
ca91424e
EZ
16781
16782@kindex end@r{ (if/else/while commands)}
16783@item end
16784Terminate the block of commands that are the body of @code{if},
16785@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16786@end table
16787
16788
8e04817f 16789@node Output
79a6e687 16790@section Commands for Controlled Output
c906108c 16791
8e04817f
AC
16792During the execution of a command file or a user-defined command, normal
16793@value{GDBN} output is suppressed; the only output that appears is what is
16794explicitly printed by the commands in the definition. This section
16795describes three commands useful for generating exactly the output you
16796want.
c906108c
SS
16797
16798@table @code
8e04817f
AC
16799@kindex echo
16800@item echo @var{text}
16801@c I do not consider backslash-space a standard C escape sequence
16802@c because it is not in ANSI.
16803Print @var{text}. Nonprinting characters can be included in
16804@var{text} using C escape sequences, such as @samp{\n} to print a
16805newline. @strong{No newline is printed unless you specify one.}
16806In addition to the standard C escape sequences, a backslash followed
16807by a space stands for a space. This is useful for displaying a
16808string with spaces at the beginning or the end, since leading and
16809trailing spaces are otherwise trimmed from all arguments.
16810To print @samp{@w{ }and foo =@w{ }}, use the command
16811@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16812
8e04817f
AC
16813A backslash at the end of @var{text} can be used, as in C, to continue
16814the command onto subsequent lines. For example,
c906108c 16815
474c8240 16816@smallexample
8e04817f
AC
16817echo This is some text\n\
16818which is continued\n\
16819onto several lines.\n
474c8240 16820@end smallexample
c906108c 16821
8e04817f 16822produces the same output as
c906108c 16823
474c8240 16824@smallexample
8e04817f
AC
16825echo This is some text\n
16826echo which is continued\n
16827echo onto several lines.\n
474c8240 16828@end smallexample
c906108c 16829
8e04817f
AC
16830@kindex output
16831@item output @var{expression}
16832Print the value of @var{expression} and nothing but that value: no
16833newlines, no @samp{$@var{nn} = }. The value is not entered in the
16834value history either. @xref{Expressions, ,Expressions}, for more information
16835on expressions.
c906108c 16836
8e04817f
AC
16837@item output/@var{fmt} @var{expression}
16838Print the value of @var{expression} in format @var{fmt}. You can use
16839the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16840Formats}, for more information.
c906108c 16841
8e04817f 16842@kindex printf
82160952
EZ
16843@item printf @var{template}, @var{expressions}@dots{}
16844Print the values of one or more @var{expressions} under the control of
16845the string @var{template}. To print several values, make
16846@var{expressions} be a comma-separated list of individual expressions,
16847which may be either numbers or pointers. Their values are printed as
16848specified by @var{template}, exactly as a C program would do by
16849executing the code below:
c906108c 16850
474c8240 16851@smallexample
82160952 16852printf (@var{template}, @var{expressions}@dots{});
474c8240 16853@end smallexample
c906108c 16854
82160952
EZ
16855As in @code{C} @code{printf}, ordinary characters in @var{template}
16856are printed verbatim, while @dfn{conversion specification} introduced
16857by the @samp{%} character cause subsequent @var{expressions} to be
16858evaluated, their values converted and formatted according to type and
16859style information encoded in the conversion specifications, and then
16860printed.
16861
8e04817f 16862For example, you can print two values in hex like this:
c906108c 16863
8e04817f
AC
16864@smallexample
16865printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16866@end smallexample
c906108c 16867
82160952
EZ
16868@code{printf} supports all the standard @code{C} conversion
16869specifications, including the flags and modifiers between the @samp{%}
16870character and the conversion letter, with the following exceptions:
16871
16872@itemize @bullet
16873@item
16874The argument-ordering modifiers, such as @samp{2$}, are not supported.
16875
16876@item
16877The modifier @samp{*} is not supported for specifying precision or
16878width.
16879
16880@item
16881The @samp{'} flag (for separation of digits into groups according to
16882@code{LC_NUMERIC'}) is not supported.
16883
16884@item
16885The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16886supported.
16887
16888@item
16889The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16890
16891@item
16892The conversion letters @samp{a} and @samp{A} are not supported.
16893@end itemize
16894
16895@noindent
16896Note that the @samp{ll} type modifier is supported only if the
16897underlying @code{C} implementation used to build @value{GDBN} supports
16898the @code{long long int} type, and the @samp{L} type modifier is
16899supported only if @code{long double} type is available.
16900
16901As in @code{C}, @code{printf} supports simple backslash-escape
16902sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16903@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16904single character. Octal and hexadecimal escape sequences are not
16905supported.
1a619819
LM
16906
16907Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16908(@dfn{Decimal Floating Point}) types using the following length modifiers
16909together with a floating point specifier.
1a619819
LM
16910letters:
16911
16912@itemize @bullet
16913@item
16914@samp{H} for printing @code{Decimal32} types.
16915
16916@item
16917@samp{D} for printing @code{Decimal64} types.
16918
16919@item
16920@samp{DD} for printing @code{Decimal128} types.
16921@end itemize
16922
16923If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16924support for the three length modifiers for DFP types, other modifiers
3b784c4f 16925such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16926
16927In case there is no such @code{C} support, no additional modifiers will be
16928available and the value will be printed in the standard way.
16929
16930Here's an example of printing DFP types using the above conversion letters:
16931@smallexample
0aea4bf3 16932printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16933@end smallexample
16934
c906108c
SS
16935@end table
16936
21c294e6
AC
16937@node Interpreters
16938@chapter Command Interpreters
16939@cindex command interpreters
16940
16941@value{GDBN} supports multiple command interpreters, and some command
16942infrastructure to allow users or user interface writers to switch
16943between interpreters or run commands in other interpreters.
16944
16945@value{GDBN} currently supports two command interpreters, the console
16946interpreter (sometimes called the command-line interpreter or @sc{cli})
16947and the machine interface interpreter (or @sc{gdb/mi}). This manual
16948describes both of these interfaces in great detail.
16949
16950By default, @value{GDBN} will start with the console interpreter.
16951However, the user may choose to start @value{GDBN} with another
16952interpreter by specifying the @option{-i} or @option{--interpreter}
16953startup options. Defined interpreters include:
16954
16955@table @code
16956@item console
16957@cindex console interpreter
16958The traditional console or command-line interpreter. This is the most often
16959used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16960@value{GDBN} will use this interpreter.
16961
16962@item mi
16963@cindex mi interpreter
16964The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16965by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16966or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16967Interface}.
16968
16969@item mi2
16970@cindex mi2 interpreter
16971The current @sc{gdb/mi} interface.
16972
16973@item mi1
16974@cindex mi1 interpreter
16975The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16976
16977@end table
16978
16979@cindex invoke another interpreter
16980The interpreter being used by @value{GDBN} may not be dynamically
16981switched at runtime. Although possible, this could lead to a very
16982precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16983enters the command "interpreter-set console" in a console view,
16984@value{GDBN} would switch to using the console interpreter, rendering
16985the IDE inoperable!
16986
16987@kindex interpreter-exec
16988Although you may only choose a single interpreter at startup, you may execute
16989commands in any interpreter from the current interpreter using the appropriate
16990command. If you are running the console interpreter, simply use the
16991@code{interpreter-exec} command:
16992
16993@smallexample
16994interpreter-exec mi "-data-list-register-names"
16995@end smallexample
16996
16997@sc{gdb/mi} has a similar command, although it is only available in versions of
16998@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16999
8e04817f
AC
17000@node TUI
17001@chapter @value{GDBN} Text User Interface
17002@cindex TUI
d0d5df6f 17003@cindex Text User Interface
c906108c 17004
8e04817f
AC
17005@menu
17006* TUI Overview:: TUI overview
17007* TUI Keys:: TUI key bindings
7cf36c78 17008* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17009* TUI Commands:: TUI-specific commands
8e04817f
AC
17010* TUI Configuration:: TUI configuration variables
17011@end menu
c906108c 17012
46ba6afa 17013The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17014interface which uses the @code{curses} library to show the source
17015file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17016commands in separate text windows. The TUI mode is supported only
17017on platforms where a suitable version of the @code{curses} library
17018is available.
d0d5df6f 17019
46ba6afa
BW
17020@pindex @value{GDBTUI}
17021The TUI mode is enabled by default when you invoke @value{GDBN} as
17022either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17023You can also switch in and out of TUI mode while @value{GDBN} runs by
17024using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17025@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17026
8e04817f 17027@node TUI Overview
79a6e687 17028@section TUI Overview
c906108c 17029
46ba6afa 17030In TUI mode, @value{GDBN} can display several text windows:
c906108c 17031
8e04817f
AC
17032@table @emph
17033@item command
17034This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17035prompt and the @value{GDBN} output. The @value{GDBN} input is still
17036managed using readline.
c906108c 17037
8e04817f
AC
17038@item source
17039The source window shows the source file of the program. The current
46ba6afa 17040line and active breakpoints are displayed in this window.
c906108c 17041
8e04817f
AC
17042@item assembly
17043The assembly window shows the disassembly output of the program.
c906108c 17044
8e04817f 17045@item register
46ba6afa
BW
17046This window shows the processor registers. Registers are highlighted
17047when their values change.
c906108c
SS
17048@end table
17049
269c21fe 17050The source and assembly windows show the current program position
46ba6afa
BW
17051by highlighting the current line and marking it with a @samp{>} marker.
17052Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17053indicates the breakpoint type:
17054
17055@table @code
17056@item B
17057Breakpoint which was hit at least once.
17058
17059@item b
17060Breakpoint which was never hit.
17061
17062@item H
17063Hardware breakpoint which was hit at least once.
17064
17065@item h
17066Hardware breakpoint which was never hit.
269c21fe
SC
17067@end table
17068
17069The second marker indicates whether the breakpoint is enabled or not:
17070
17071@table @code
17072@item +
17073Breakpoint is enabled.
17074
17075@item -
17076Breakpoint is disabled.
269c21fe
SC
17077@end table
17078
46ba6afa
BW
17079The source, assembly and register windows are updated when the current
17080thread changes, when the frame changes, or when the program counter
17081changes.
17082
17083These windows are not all visible at the same time. The command
17084window is always visible. The others can be arranged in several
17085layouts:
c906108c 17086
8e04817f
AC
17087@itemize @bullet
17088@item
46ba6afa 17089source only,
2df3850c 17090
8e04817f 17091@item
46ba6afa 17092assembly only,
8e04817f
AC
17093
17094@item
46ba6afa 17095source and assembly,
8e04817f
AC
17096
17097@item
46ba6afa 17098source and registers, or
c906108c 17099
8e04817f 17100@item
46ba6afa 17101assembly and registers.
8e04817f 17102@end itemize
c906108c 17103
46ba6afa 17104A status line above the command window shows the following information:
b7bb15bc
SC
17105
17106@table @emph
17107@item target
46ba6afa 17108Indicates the current @value{GDBN} target.
b7bb15bc
SC
17109(@pxref{Targets, ,Specifying a Debugging Target}).
17110
17111@item process
46ba6afa 17112Gives the current process or thread number.
b7bb15bc
SC
17113When no process is being debugged, this field is set to @code{No process}.
17114
17115@item function
17116Gives the current function name for the selected frame.
17117The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17118When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17119the string @code{??} is displayed.
17120
17121@item line
17122Indicates the current line number for the selected frame.
46ba6afa 17123When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17124
17125@item pc
17126Indicates the current program counter address.
b7bb15bc
SC
17127@end table
17128
8e04817f
AC
17129@node TUI Keys
17130@section TUI Key Bindings
17131@cindex TUI key bindings
c906108c 17132
8e04817f 17133The TUI installs several key bindings in the readline keymaps
46ba6afa 17134(@pxref{Command Line Editing}). The following key bindings
8e04817f 17135are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17136
8e04817f
AC
17137@table @kbd
17138@kindex C-x C-a
17139@item C-x C-a
17140@kindex C-x a
17141@itemx C-x a
17142@kindex C-x A
17143@itemx C-x A
46ba6afa
BW
17144Enter or leave the TUI mode. When leaving the TUI mode,
17145the curses window management stops and @value{GDBN} operates using
17146its standard mode, writing on the terminal directly. When reentering
17147the TUI mode, control is given back to the curses windows.
8e04817f 17148The screen is then refreshed.
c906108c 17149
8e04817f
AC
17150@kindex C-x 1
17151@item C-x 1
17152Use a TUI layout with only one window. The layout will
17153either be @samp{source} or @samp{assembly}. When the TUI mode
17154is not active, it will switch to the TUI mode.
2df3850c 17155
8e04817f 17156Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17157
8e04817f
AC
17158@kindex C-x 2
17159@item C-x 2
17160Use a TUI layout with at least two windows. When the current
46ba6afa 17161layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17162When a new layout is chosen, one window will always be common to the
17163previous layout and the new one.
c906108c 17164
8e04817f 17165Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17166
72ffddc9
SC
17167@kindex C-x o
17168@item C-x o
17169Change the active window. The TUI associates several key bindings
46ba6afa 17170(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17171gives the focus to the next TUI window.
17172
17173Think of it as the Emacs @kbd{C-x o} binding.
17174
7cf36c78
SC
17175@kindex C-x s
17176@item C-x s
46ba6afa
BW
17177Switch in and out of the TUI SingleKey mode that binds single
17178keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17179@end table
17180
46ba6afa 17181The following key bindings only work in the TUI mode:
5d161b24 17182
46ba6afa 17183@table @asis
8e04817f 17184@kindex PgUp
46ba6afa 17185@item @key{PgUp}
8e04817f 17186Scroll the active window one page up.
c906108c 17187
8e04817f 17188@kindex PgDn
46ba6afa 17189@item @key{PgDn}
8e04817f 17190Scroll the active window one page down.
c906108c 17191
8e04817f 17192@kindex Up
46ba6afa 17193@item @key{Up}
8e04817f 17194Scroll the active window one line up.
c906108c 17195
8e04817f 17196@kindex Down
46ba6afa 17197@item @key{Down}
8e04817f 17198Scroll the active window one line down.
c906108c 17199
8e04817f 17200@kindex Left
46ba6afa 17201@item @key{Left}
8e04817f 17202Scroll the active window one column left.
c906108c 17203
8e04817f 17204@kindex Right
46ba6afa 17205@item @key{Right}
8e04817f 17206Scroll the active window one column right.
c906108c 17207
8e04817f 17208@kindex C-L
46ba6afa 17209@item @kbd{C-L}
8e04817f 17210Refresh the screen.
8e04817f 17211@end table
c906108c 17212
46ba6afa
BW
17213Because the arrow keys scroll the active window in the TUI mode, they
17214are not available for their normal use by readline unless the command
17215window has the focus. When another window is active, you must use
17216other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17217and @kbd{C-f} to control the command window.
8e04817f 17218
7cf36c78
SC
17219@node TUI Single Key Mode
17220@section TUI Single Key Mode
17221@cindex TUI single key mode
17222
46ba6afa
BW
17223The TUI also provides a @dfn{SingleKey} mode, which binds several
17224frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17225switch into this mode, where the following key bindings are used:
7cf36c78
SC
17226
17227@table @kbd
17228@kindex c @r{(SingleKey TUI key)}
17229@item c
17230continue
17231
17232@kindex d @r{(SingleKey TUI key)}
17233@item d
17234down
17235
17236@kindex f @r{(SingleKey TUI key)}
17237@item f
17238finish
17239
17240@kindex n @r{(SingleKey TUI key)}
17241@item n
17242next
17243
17244@kindex q @r{(SingleKey TUI key)}
17245@item q
46ba6afa 17246exit the SingleKey mode.
7cf36c78
SC
17247
17248@kindex r @r{(SingleKey TUI key)}
17249@item r
17250run
17251
17252@kindex s @r{(SingleKey TUI key)}
17253@item s
17254step
17255
17256@kindex u @r{(SingleKey TUI key)}
17257@item u
17258up
17259
17260@kindex v @r{(SingleKey TUI key)}
17261@item v
17262info locals
17263
17264@kindex w @r{(SingleKey TUI key)}
17265@item w
17266where
7cf36c78
SC
17267@end table
17268
17269Other keys temporarily switch to the @value{GDBN} command prompt.
17270The key that was pressed is inserted in the editing buffer so that
17271it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17272with the TUI SingleKey mode. Once the command is entered the TUI
17273SingleKey mode is restored. The only way to permanently leave
7f9087cb 17274this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17275
17276
8e04817f 17277@node TUI Commands
db2e3e2e 17278@section TUI-specific Commands
8e04817f
AC
17279@cindex TUI commands
17280
17281The TUI has specific commands to control the text windows.
46ba6afa
BW
17282These commands are always available, even when @value{GDBN} is not in
17283the TUI mode. When @value{GDBN} is in the standard mode, most
17284of these commands will automatically switch to the TUI mode.
c906108c
SS
17285
17286@table @code
3d757584
SC
17287@item info win
17288@kindex info win
17289List and give the size of all displayed windows.
17290
8e04817f 17291@item layout next
4644b6e3 17292@kindex layout
8e04817f 17293Display the next layout.
2df3850c 17294
8e04817f 17295@item layout prev
8e04817f 17296Display the previous layout.
c906108c 17297
8e04817f 17298@item layout src
8e04817f 17299Display the source window only.
c906108c 17300
8e04817f 17301@item layout asm
8e04817f 17302Display the assembly window only.
c906108c 17303
8e04817f 17304@item layout split
8e04817f 17305Display the source and assembly window.
c906108c 17306
8e04817f 17307@item layout regs
8e04817f
AC
17308Display the register window together with the source or assembly window.
17309
46ba6afa 17310@item focus next
8e04817f 17311@kindex focus
46ba6afa
BW
17312Make the next window active for scrolling.
17313
17314@item focus prev
17315Make the previous window active for scrolling.
17316
17317@item focus src
17318Make the source window active for scrolling.
17319
17320@item focus asm
17321Make the assembly window active for scrolling.
17322
17323@item focus regs
17324Make the register window active for scrolling.
17325
17326@item focus cmd
17327Make the command window active for scrolling.
c906108c 17328
8e04817f
AC
17329@item refresh
17330@kindex refresh
7f9087cb 17331Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17332
6a1b180d
SC
17333@item tui reg float
17334@kindex tui reg
17335Show the floating point registers in the register window.
17336
17337@item tui reg general
17338Show the general registers in the register window.
17339
17340@item tui reg next
17341Show the next register group. The list of register groups as well as
17342their order is target specific. The predefined register groups are the
17343following: @code{general}, @code{float}, @code{system}, @code{vector},
17344@code{all}, @code{save}, @code{restore}.
17345
17346@item tui reg system
17347Show the system registers in the register window.
17348
8e04817f
AC
17349@item update
17350@kindex update
17351Update the source window and the current execution point.
c906108c 17352
8e04817f
AC
17353@item winheight @var{name} +@var{count}
17354@itemx winheight @var{name} -@var{count}
17355@kindex winheight
17356Change the height of the window @var{name} by @var{count}
17357lines. Positive counts increase the height, while negative counts
17358decrease it.
2df3850c 17359
46ba6afa
BW
17360@item tabset @var{nchars}
17361@kindex tabset
c45da7e6 17362Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17363@end table
17364
8e04817f 17365@node TUI Configuration
79a6e687 17366@section TUI Configuration Variables
8e04817f 17367@cindex TUI configuration variables
c906108c 17368
46ba6afa 17369Several configuration variables control the appearance of TUI windows.
c906108c 17370
8e04817f
AC
17371@table @code
17372@item set tui border-kind @var{kind}
17373@kindex set tui border-kind
17374Select the border appearance for the source, assembly and register windows.
17375The possible values are the following:
17376@table @code
17377@item space
17378Use a space character to draw the border.
c906108c 17379
8e04817f 17380@item ascii
46ba6afa 17381Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17382
8e04817f
AC
17383@item acs
17384Use the Alternate Character Set to draw the border. The border is
17385drawn using character line graphics if the terminal supports them.
8e04817f 17386@end table
c78b4128 17387
8e04817f
AC
17388@item set tui border-mode @var{mode}
17389@kindex set tui border-mode
46ba6afa
BW
17390@itemx set tui active-border-mode @var{mode}
17391@kindex set tui active-border-mode
17392Select the display attributes for the borders of the inactive windows
17393or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17394@table @code
17395@item normal
17396Use normal attributes to display the border.
c906108c 17397
8e04817f
AC
17398@item standout
17399Use standout mode.
c906108c 17400
8e04817f
AC
17401@item reverse
17402Use reverse video mode.
c906108c 17403
8e04817f
AC
17404@item half
17405Use half bright mode.
c906108c 17406
8e04817f
AC
17407@item half-standout
17408Use half bright and standout mode.
c906108c 17409
8e04817f
AC
17410@item bold
17411Use extra bright or bold mode.
c78b4128 17412
8e04817f
AC
17413@item bold-standout
17414Use extra bright or bold and standout mode.
8e04817f 17415@end table
8e04817f 17416@end table
c78b4128 17417
8e04817f
AC
17418@node Emacs
17419@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17420
8e04817f
AC
17421@cindex Emacs
17422@cindex @sc{gnu} Emacs
17423A special interface allows you to use @sc{gnu} Emacs to view (and
17424edit) the source files for the program you are debugging with
17425@value{GDBN}.
c906108c 17426
8e04817f
AC
17427To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17428executable file you want to debug as an argument. This command starts
17429@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17430created Emacs buffer.
17431@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17432
5e252a2e 17433Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17434things:
c906108c 17435
8e04817f
AC
17436@itemize @bullet
17437@item
5e252a2e
NR
17438All ``terminal'' input and output goes through an Emacs buffer, called
17439the GUD buffer.
c906108c 17440
8e04817f
AC
17441This applies both to @value{GDBN} commands and their output, and to the input
17442and output done by the program you are debugging.
bf0184be 17443
8e04817f
AC
17444This is useful because it means that you can copy the text of previous
17445commands and input them again; you can even use parts of the output
17446in this way.
bf0184be 17447
8e04817f
AC
17448All the facilities of Emacs' Shell mode are available for interacting
17449with your program. In particular, you can send signals the usual
17450way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17451stop.
bf0184be
ND
17452
17453@item
8e04817f 17454@value{GDBN} displays source code through Emacs.
bf0184be 17455
8e04817f
AC
17456Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17457source file for that frame and puts an arrow (@samp{=>}) at the
17458left margin of the current line. Emacs uses a separate buffer for
17459source display, and splits the screen to show both your @value{GDBN} session
17460and the source.
bf0184be 17461
8e04817f
AC
17462Explicit @value{GDBN} @code{list} or search commands still produce output as
17463usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17464@end itemize
17465
17466We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17467a graphical mode, enabled by default, which provides further buffers
17468that can control the execution and describe the state of your program.
17469@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17470
64fabec2
AC
17471If you specify an absolute file name when prompted for the @kbd{M-x
17472gdb} argument, then Emacs sets your current working directory to where
17473your program resides. If you only specify the file name, then Emacs
17474sets your current working directory to to the directory associated
17475with the previous buffer. In this case, @value{GDBN} may find your
17476program by searching your environment's @code{PATH} variable, but on
17477some operating systems it might not find the source. So, although the
17478@value{GDBN} input and output session proceeds normally, the auxiliary
17479buffer does not display the current source and line of execution.
17480
17481The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17482line of the GUD buffer and this serves as a default for the commands
17483that specify files for @value{GDBN} to operate on. @xref{Files,
17484,Commands to Specify Files}.
64fabec2
AC
17485
17486By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17487need to call @value{GDBN} by a different name (for example, if you
17488keep several configurations around, with different names) you can
17489customize the Emacs variable @code{gud-gdb-command-name} to run the
17490one you want.
8e04817f 17491
5e252a2e 17492In the GUD buffer, you can use these special Emacs commands in
8e04817f 17493addition to the standard Shell mode commands:
c906108c 17494
8e04817f
AC
17495@table @kbd
17496@item C-h m
5e252a2e 17497Describe the features of Emacs' GUD Mode.
c906108c 17498
64fabec2 17499@item C-c C-s
8e04817f
AC
17500Execute to another source line, like the @value{GDBN} @code{step} command; also
17501update the display window to show the current file and location.
c906108c 17502
64fabec2 17503@item C-c C-n
8e04817f
AC
17504Execute to next source line in this function, skipping all function
17505calls, like the @value{GDBN} @code{next} command. Then update the display window
17506to show the current file and location.
c906108c 17507
64fabec2 17508@item C-c C-i
8e04817f
AC
17509Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17510display window accordingly.
c906108c 17511
8e04817f
AC
17512@item C-c C-f
17513Execute until exit from the selected stack frame, like the @value{GDBN}
17514@code{finish} command.
c906108c 17515
64fabec2 17516@item C-c C-r
8e04817f
AC
17517Continue execution of your program, like the @value{GDBN} @code{continue}
17518command.
b433d00b 17519
64fabec2 17520@item C-c <
8e04817f
AC
17521Go up the number of frames indicated by the numeric argument
17522(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17523like the @value{GDBN} @code{up} command.
b433d00b 17524
64fabec2 17525@item C-c >
8e04817f
AC
17526Go down the number of frames indicated by the numeric argument, like the
17527@value{GDBN} @code{down} command.
8e04817f 17528@end table
c906108c 17529
7f9087cb 17530In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17531tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17532
5e252a2e
NR
17533In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17534separate frame which shows a backtrace when the GUD buffer is current.
17535Move point to any frame in the stack and type @key{RET} to make it
17536become the current frame and display the associated source in the
17537source buffer. Alternatively, click @kbd{Mouse-2} to make the
17538selected frame become the current one. In graphical mode, the
17539speedbar displays watch expressions.
64fabec2 17540
8e04817f
AC
17541If you accidentally delete the source-display buffer, an easy way to get
17542it back is to type the command @code{f} in the @value{GDBN} buffer, to
17543request a frame display; when you run under Emacs, this recreates
17544the source buffer if necessary to show you the context of the current
17545frame.
c906108c 17546
8e04817f
AC
17547The source files displayed in Emacs are in ordinary Emacs buffers
17548which are visiting the source files in the usual way. You can edit
17549the files with these buffers if you wish; but keep in mind that @value{GDBN}
17550communicates with Emacs in terms of line numbers. If you add or
17551delete lines from the text, the line numbers that @value{GDBN} knows cease
17552to correspond properly with the code.
b383017d 17553
5e252a2e
NR
17554A more detailed description of Emacs' interaction with @value{GDBN} is
17555given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17556Emacs Manual}).
c906108c 17557
8e04817f
AC
17558@c The following dropped because Epoch is nonstandard. Reactivate
17559@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17560@ignore
17561@kindex Emacs Epoch environment
17562@kindex Epoch
17563@kindex inspect
c906108c 17564
8e04817f
AC
17565Version 18 of @sc{gnu} Emacs has a built-in window system
17566called the @code{epoch}
17567environment. Users of this environment can use a new command,
17568@code{inspect} which performs identically to @code{print} except that
17569each value is printed in its own window.
17570@end ignore
c906108c 17571
922fbb7b
AC
17572
17573@node GDB/MI
17574@chapter The @sc{gdb/mi} Interface
17575
17576@unnumberedsec Function and Purpose
17577
17578@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17579@sc{gdb/mi} is a line based machine oriented text interface to
17580@value{GDBN} and is activated by specifying using the
17581@option{--interpreter} command line option (@pxref{Mode Options}). It
17582is specifically intended to support the development of systems which
17583use the debugger as just one small component of a larger system.
922fbb7b
AC
17584
17585This chapter is a specification of the @sc{gdb/mi} interface. It is written
17586in the form of a reference manual.
17587
17588Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17589features described below are incomplete and subject to change
17590(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17591
17592@unnumberedsec Notation and Terminology
17593
17594@cindex notational conventions, for @sc{gdb/mi}
17595This chapter uses the following notation:
17596
17597@itemize @bullet
17598@item
17599@code{|} separates two alternatives.
17600
17601@item
17602@code{[ @var{something} ]} indicates that @var{something} is optional:
17603it may or may not be given.
17604
17605@item
17606@code{( @var{group} )*} means that @var{group} inside the parentheses
17607may repeat zero or more times.
17608
17609@item
17610@code{( @var{group} )+} means that @var{group} inside the parentheses
17611may repeat one or more times.
17612
17613@item
17614@code{"@var{string}"} means a literal @var{string}.
17615@end itemize
17616
17617@ignore
17618@heading Dependencies
17619@end ignore
17620
922fbb7b
AC
17621@menu
17622* GDB/MI Command Syntax::
17623* GDB/MI Compatibility with CLI::
af6eff6f 17624* GDB/MI Development and Front Ends::
922fbb7b 17625* GDB/MI Output Records::
ef21caaf 17626* GDB/MI Simple Examples::
922fbb7b 17627* GDB/MI Command Description Format::
ef21caaf 17628* GDB/MI Breakpoint Commands::
a2c02241
NR
17629* GDB/MI Program Context::
17630* GDB/MI Thread Commands::
17631* GDB/MI Program Execution::
17632* GDB/MI Stack Manipulation::
17633* GDB/MI Variable Objects::
922fbb7b 17634* GDB/MI Data Manipulation::
a2c02241
NR
17635* GDB/MI Tracepoint Commands::
17636* GDB/MI Symbol Query::
351ff01a 17637* GDB/MI File Commands::
922fbb7b
AC
17638@ignore
17639* GDB/MI Kod Commands::
17640* GDB/MI Memory Overlay Commands::
17641* GDB/MI Signal Handling Commands::
17642@end ignore
922fbb7b 17643* GDB/MI Target Manipulation::
a6b151f1 17644* GDB/MI File Transfer Commands::
ef21caaf 17645* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17646@end menu
17647
17648@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17649@node GDB/MI Command Syntax
17650@section @sc{gdb/mi} Command Syntax
17651
17652@menu
17653* GDB/MI Input Syntax::
17654* GDB/MI Output Syntax::
922fbb7b
AC
17655@end menu
17656
17657@node GDB/MI Input Syntax
17658@subsection @sc{gdb/mi} Input Syntax
17659
17660@cindex input syntax for @sc{gdb/mi}
17661@cindex @sc{gdb/mi}, input syntax
17662@table @code
17663@item @var{command} @expansion{}
17664@code{@var{cli-command} | @var{mi-command}}
17665
17666@item @var{cli-command} @expansion{}
17667@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17668@var{cli-command} is any existing @value{GDBN} CLI command.
17669
17670@item @var{mi-command} @expansion{}
17671@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17672@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17673
17674@item @var{token} @expansion{}
17675"any sequence of digits"
17676
17677@item @var{option} @expansion{}
17678@code{"-" @var{parameter} [ " " @var{parameter} ]}
17679
17680@item @var{parameter} @expansion{}
17681@code{@var{non-blank-sequence} | @var{c-string}}
17682
17683@item @var{operation} @expansion{}
17684@emph{any of the operations described in this chapter}
17685
17686@item @var{non-blank-sequence} @expansion{}
17687@emph{anything, provided it doesn't contain special characters such as
17688"-", @var{nl}, """ and of course " "}
17689
17690@item @var{c-string} @expansion{}
17691@code{""" @var{seven-bit-iso-c-string-content} """}
17692
17693@item @var{nl} @expansion{}
17694@code{CR | CR-LF}
17695@end table
17696
17697@noindent
17698Notes:
17699
17700@itemize @bullet
17701@item
17702The CLI commands are still handled by the @sc{mi} interpreter; their
17703output is described below.
17704
17705@item
17706The @code{@var{token}}, when present, is passed back when the command
17707finishes.
17708
17709@item
17710Some @sc{mi} commands accept optional arguments as part of the parameter
17711list. Each option is identified by a leading @samp{-} (dash) and may be
17712followed by an optional argument parameter. Options occur first in the
17713parameter list and can be delimited from normal parameters using
17714@samp{--} (this is useful when some parameters begin with a dash).
17715@end itemize
17716
17717Pragmatics:
17718
17719@itemize @bullet
17720@item
17721We want easy access to the existing CLI syntax (for debugging).
17722
17723@item
17724We want it to be easy to spot a @sc{mi} operation.
17725@end itemize
17726
17727@node GDB/MI Output Syntax
17728@subsection @sc{gdb/mi} Output Syntax
17729
17730@cindex output syntax of @sc{gdb/mi}
17731@cindex @sc{gdb/mi}, output syntax
17732The output from @sc{gdb/mi} consists of zero or more out-of-band records
17733followed, optionally, by a single result record. This result record
17734is for the most recent command. The sequence of output records is
594fe323 17735terminated by @samp{(gdb)}.
922fbb7b
AC
17736
17737If an input command was prefixed with a @code{@var{token}} then the
17738corresponding output for that command will also be prefixed by that same
17739@var{token}.
17740
17741@table @code
17742@item @var{output} @expansion{}
594fe323 17743@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17744
17745@item @var{result-record} @expansion{}
17746@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17747
17748@item @var{out-of-band-record} @expansion{}
17749@code{@var{async-record} | @var{stream-record}}
17750
17751@item @var{async-record} @expansion{}
17752@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17753
17754@item @var{exec-async-output} @expansion{}
17755@code{[ @var{token} ] "*" @var{async-output}}
17756
17757@item @var{status-async-output} @expansion{}
17758@code{[ @var{token} ] "+" @var{async-output}}
17759
17760@item @var{notify-async-output} @expansion{}
17761@code{[ @var{token} ] "=" @var{async-output}}
17762
17763@item @var{async-output} @expansion{}
17764@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17765
17766@item @var{result-class} @expansion{}
17767@code{"done" | "running" | "connected" | "error" | "exit"}
17768
17769@item @var{async-class} @expansion{}
17770@code{"stopped" | @var{others}} (where @var{others} will be added
17771depending on the needs---this is still in development).
17772
17773@item @var{result} @expansion{}
17774@code{ @var{variable} "=" @var{value}}
17775
17776@item @var{variable} @expansion{}
17777@code{ @var{string} }
17778
17779@item @var{value} @expansion{}
17780@code{ @var{const} | @var{tuple} | @var{list} }
17781
17782@item @var{const} @expansion{}
17783@code{@var{c-string}}
17784
17785@item @var{tuple} @expansion{}
17786@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17787
17788@item @var{list} @expansion{}
17789@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17790@var{result} ( "," @var{result} )* "]" }
17791
17792@item @var{stream-record} @expansion{}
17793@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17794
17795@item @var{console-stream-output} @expansion{}
17796@code{"~" @var{c-string}}
17797
17798@item @var{target-stream-output} @expansion{}
17799@code{"@@" @var{c-string}}
17800
17801@item @var{log-stream-output} @expansion{}
17802@code{"&" @var{c-string}}
17803
17804@item @var{nl} @expansion{}
17805@code{CR | CR-LF}
17806
17807@item @var{token} @expansion{}
17808@emph{any sequence of digits}.
17809@end table
17810
17811@noindent
17812Notes:
17813
17814@itemize @bullet
17815@item
17816All output sequences end in a single line containing a period.
17817
17818@item
17819The @code{@var{token}} is from the corresponding request. If an execution
17820command is interrupted by the @samp{-exec-interrupt} command, the
17821@var{token} associated with the @samp{*stopped} message is the one of the
17822original execution command, not the one of the interrupt command.
17823
17824@item
17825@cindex status output in @sc{gdb/mi}
17826@var{status-async-output} contains on-going status information about the
17827progress of a slow operation. It can be discarded. All status output is
17828prefixed by @samp{+}.
17829
17830@item
17831@cindex async output in @sc{gdb/mi}
17832@var{exec-async-output} contains asynchronous state change on the target
17833(stopped, started, disappeared). All async output is prefixed by
17834@samp{*}.
17835
17836@item
17837@cindex notify output in @sc{gdb/mi}
17838@var{notify-async-output} contains supplementary information that the
17839client should handle (e.g., a new breakpoint information). All notify
17840output is prefixed by @samp{=}.
17841
17842@item
17843@cindex console output in @sc{gdb/mi}
17844@var{console-stream-output} is output that should be displayed as is in the
17845console. It is the textual response to a CLI command. All the console
17846output is prefixed by @samp{~}.
17847
17848@item
17849@cindex target output in @sc{gdb/mi}
17850@var{target-stream-output} is the output produced by the target program.
17851All the target output is prefixed by @samp{@@}.
17852
17853@item
17854@cindex log output in @sc{gdb/mi}
17855@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17856instance messages that should be displayed as part of an error log. All
17857the log output is prefixed by @samp{&}.
17858
17859@item
17860@cindex list output in @sc{gdb/mi}
17861New @sc{gdb/mi} commands should only output @var{lists} containing
17862@var{values}.
17863
17864
17865@end itemize
17866
17867@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17868details about the various output records.
17869
922fbb7b
AC
17870@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17871@node GDB/MI Compatibility with CLI
17872@section @sc{gdb/mi} Compatibility with CLI
17873
17874@cindex compatibility, @sc{gdb/mi} and CLI
17875@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17876
a2c02241
NR
17877For the developers convenience CLI commands can be entered directly,
17878but there may be some unexpected behaviour. For example, commands
17879that query the user will behave as if the user replied yes, breakpoint
17880command lists are not executed and some CLI commands, such as
17881@code{if}, @code{when} and @code{define}, prompt for further input with
17882@samp{>}, which is not valid MI output.
ef21caaf
NR
17883
17884This feature may be removed at some stage in the future and it is
a2c02241
NR
17885recommended that front ends use the @code{-interpreter-exec} command
17886(@pxref{-interpreter-exec}).
922fbb7b 17887
af6eff6f
NR
17888@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17889@node GDB/MI Development and Front Ends
17890@section @sc{gdb/mi} Development and Front Ends
17891@cindex @sc{gdb/mi} development
17892
17893The application which takes the MI output and presents the state of the
17894program being debugged to the user is called a @dfn{front end}.
17895
17896Although @sc{gdb/mi} is still incomplete, it is currently being used
17897by a variety of front ends to @value{GDBN}. This makes it difficult
17898to introduce new functionality without breaking existing usage. This
17899section tries to minimize the problems by describing how the protocol
17900might change.
17901
17902Some changes in MI need not break a carefully designed front end, and
17903for these the MI version will remain unchanged. The following is a
17904list of changes that may occur within one level, so front ends should
17905parse MI output in a way that can handle them:
17906
17907@itemize @bullet
17908@item
17909New MI commands may be added.
17910
17911@item
17912New fields may be added to the output of any MI command.
17913
36ece8b3
NR
17914@item
17915The range of values for fields with specified values, e.g.,
9f708cb2 17916@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17917
af6eff6f
NR
17918@c The format of field's content e.g type prefix, may change so parse it
17919@c at your own risk. Yes, in general?
17920
17921@c The order of fields may change? Shouldn't really matter but it might
17922@c resolve inconsistencies.
17923@end itemize
17924
17925If the changes are likely to break front ends, the MI version level
17926will be increased by one. This will allow the front end to parse the
17927output according to the MI version. Apart from mi0, new versions of
17928@value{GDBN} will not support old versions of MI and it will be the
17929responsibility of the front end to work with the new one.
17930
17931@c Starting with mi3, add a new command -mi-version that prints the MI
17932@c version?
17933
17934The best way to avoid unexpected changes in MI that might break your front
17935end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17936follow development on @email{gdb@@sourceware.org} and
17937@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17938@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17939Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17940called Debugger Machine Interface (DMI) that will become a standard
17941for all debuggers, not just @value{GDBN}.
17942@cindex mailing lists
17943
922fbb7b
AC
17944@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17945@node GDB/MI Output Records
17946@section @sc{gdb/mi} Output Records
17947
17948@menu
17949* GDB/MI Result Records::
17950* GDB/MI Stream Records::
17951* GDB/MI Out-of-band Records::
17952@end menu
17953
17954@node GDB/MI Result Records
17955@subsection @sc{gdb/mi} Result Records
17956
17957@cindex result records in @sc{gdb/mi}
17958@cindex @sc{gdb/mi}, result records
17959In addition to a number of out-of-band notifications, the response to a
17960@sc{gdb/mi} command includes one of the following result indications:
17961
17962@table @code
17963@findex ^done
17964@item "^done" [ "," @var{results} ]
17965The synchronous operation was successful, @code{@var{results}} are the return
17966values.
17967
17968@item "^running"
17969@findex ^running
17970@c Is this one correct? Should it be an out-of-band notification?
17971The asynchronous operation was successfully started. The target is
17972running.
17973
ef21caaf
NR
17974@item "^connected"
17975@findex ^connected
3f94c067 17976@value{GDBN} has connected to a remote target.
ef21caaf 17977
922fbb7b
AC
17978@item "^error" "," @var{c-string}
17979@findex ^error
17980The operation failed. The @code{@var{c-string}} contains the corresponding
17981error message.
ef21caaf
NR
17982
17983@item "^exit"
17984@findex ^exit
3f94c067 17985@value{GDBN} has terminated.
ef21caaf 17986
922fbb7b
AC
17987@end table
17988
17989@node GDB/MI Stream Records
17990@subsection @sc{gdb/mi} Stream Records
17991
17992@cindex @sc{gdb/mi}, stream records
17993@cindex stream records in @sc{gdb/mi}
17994@value{GDBN} internally maintains a number of output streams: the console, the
17995target, and the log. The output intended for each of these streams is
17996funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17997
17998Each stream record begins with a unique @dfn{prefix character} which
17999identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18000Syntax}). In addition to the prefix, each stream record contains a
18001@code{@var{string-output}}. This is either raw text (with an implicit new
18002line) or a quoted C string (which does not contain an implicit newline).
18003
18004@table @code
18005@item "~" @var{string-output}
18006The console output stream contains text that should be displayed in the
18007CLI console window. It contains the textual responses to CLI commands.
18008
18009@item "@@" @var{string-output}
18010The target output stream contains any textual output from the running
ef21caaf
NR
18011target. This is only present when GDB's event loop is truly
18012asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18013
18014@item "&" @var{string-output}
18015The log stream contains debugging messages being produced by @value{GDBN}'s
18016internals.
18017@end table
18018
18019@node GDB/MI Out-of-band Records
18020@subsection @sc{gdb/mi} Out-of-band Records
18021
18022@cindex out-of-band records in @sc{gdb/mi}
18023@cindex @sc{gdb/mi}, out-of-band records
18024@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18025additional changes that have occurred. Those changes can either be a
18026consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18027target activity (e.g., target stopped).
18028
18029The following is a preliminary list of possible out-of-band records.
034dad6f 18030In particular, the @var{exec-async-output} records.
922fbb7b
AC
18031
18032@table @code
034dad6f
BR
18033@item *stopped,reason="@var{reason}"
18034@end table
18035
18036@var{reason} can be one of the following:
18037
18038@table @code
18039@item breakpoint-hit
18040A breakpoint was reached.
18041@item watchpoint-trigger
18042A watchpoint was triggered.
18043@item read-watchpoint-trigger
18044A read watchpoint was triggered.
18045@item access-watchpoint-trigger
18046An access watchpoint was triggered.
18047@item function-finished
18048An -exec-finish or similar CLI command was accomplished.
18049@item location-reached
18050An -exec-until or similar CLI command was accomplished.
18051@item watchpoint-scope
18052A watchpoint has gone out of scope.
18053@item end-stepping-range
18054An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18055similar CLI command was accomplished.
18056@item exited-signalled
18057The inferior exited because of a signal.
18058@item exited
18059The inferior exited.
18060@item exited-normally
18061The inferior exited normally.
18062@item signal-received
18063A signal was received by the inferior.
922fbb7b
AC
18064@end table
18065
18066
ef21caaf
NR
18067@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18068@node GDB/MI Simple Examples
18069@section Simple Examples of @sc{gdb/mi} Interaction
18070@cindex @sc{gdb/mi}, simple examples
18071
18072This subsection presents several simple examples of interaction using
18073the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18074following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18075the output received from @sc{gdb/mi}.
18076
d3e8051b 18077Note the line breaks shown in the examples are here only for
ef21caaf
NR
18078readability, they don't appear in the real output.
18079
79a6e687 18080@subheading Setting a Breakpoint
ef21caaf
NR
18081
18082Setting a breakpoint generates synchronous output which contains detailed
18083information of the breakpoint.
18084
18085@smallexample
18086-> -break-insert main
18087<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18088 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18089 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18090<- (gdb)
18091@end smallexample
18092
18093@subheading Program Execution
18094
18095Program execution generates asynchronous records and MI gives the
18096reason that execution stopped.
18097
18098@smallexample
18099-> -exec-run
18100<- ^running
18101<- (gdb)
18102<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18103 frame=@{addr="0x08048564",func="main",
18104 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18105 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18106<- (gdb)
18107-> -exec-continue
18108<- ^running
18109<- (gdb)
18110<- *stopped,reason="exited-normally"
18111<- (gdb)
18112@end smallexample
18113
3f94c067 18114@subheading Quitting @value{GDBN}
ef21caaf 18115
3f94c067 18116Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18117
18118@smallexample
18119-> (gdb)
18120<- -gdb-exit
18121<- ^exit
18122@end smallexample
18123
a2c02241 18124@subheading A Bad Command
ef21caaf
NR
18125
18126Here's what happens if you pass a non-existent command:
18127
18128@smallexample
18129-> -rubbish
18130<- ^error,msg="Undefined MI command: rubbish"
594fe323 18131<- (gdb)
ef21caaf
NR
18132@end smallexample
18133
18134
922fbb7b
AC
18135@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18136@node GDB/MI Command Description Format
18137@section @sc{gdb/mi} Command Description Format
18138
18139The remaining sections describe blocks of commands. Each block of
18140commands is laid out in a fashion similar to this section.
18141
922fbb7b
AC
18142@subheading Motivation
18143
18144The motivation for this collection of commands.
18145
18146@subheading Introduction
18147
18148A brief introduction to this collection of commands as a whole.
18149
18150@subheading Commands
18151
18152For each command in the block, the following is described:
18153
18154@subsubheading Synopsis
18155
18156@smallexample
18157 -command @var{args}@dots{}
18158@end smallexample
18159
922fbb7b
AC
18160@subsubheading Result
18161
265eeb58 18162@subsubheading @value{GDBN} Command
922fbb7b 18163
265eeb58 18164The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18165
18166@subsubheading Example
18167
ef21caaf
NR
18168Example(s) formatted for readability. Some of the described commands have
18169not been implemented yet and these are labeled N.A.@: (not available).
18170
18171
922fbb7b 18172@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18173@node GDB/MI Breakpoint Commands
18174@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18175
18176@cindex breakpoint commands for @sc{gdb/mi}
18177@cindex @sc{gdb/mi}, breakpoint commands
18178This section documents @sc{gdb/mi} commands for manipulating
18179breakpoints.
18180
18181@subheading The @code{-break-after} Command
18182@findex -break-after
18183
18184@subsubheading Synopsis
18185
18186@smallexample
18187 -break-after @var{number} @var{count}
18188@end smallexample
18189
18190The breakpoint number @var{number} is not in effect until it has been
18191hit @var{count} times. To see how this is reflected in the output of
18192the @samp{-break-list} command, see the description of the
18193@samp{-break-list} command below.
18194
18195@subsubheading @value{GDBN} Command
18196
18197The corresponding @value{GDBN} command is @samp{ignore}.
18198
18199@subsubheading Example
18200
18201@smallexample
594fe323 18202(gdb)
922fbb7b 18203-break-insert main
948d5102
NR
18204^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18205fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18206(gdb)
922fbb7b
AC
18207-break-after 1 3
18208~
18209^done
594fe323 18210(gdb)
922fbb7b
AC
18211-break-list
18212^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18213hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18214@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18215@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18216@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18217@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18218@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18219body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18220addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18221line="5",times="0",ignore="3"@}]@}
594fe323 18222(gdb)
922fbb7b
AC
18223@end smallexample
18224
18225@ignore
18226@subheading The @code{-break-catch} Command
18227@findex -break-catch
18228
18229@subheading The @code{-break-commands} Command
18230@findex -break-commands
18231@end ignore
18232
18233
18234@subheading The @code{-break-condition} Command
18235@findex -break-condition
18236
18237@subsubheading Synopsis
18238
18239@smallexample
18240 -break-condition @var{number} @var{expr}
18241@end smallexample
18242
18243Breakpoint @var{number} will stop the program only if the condition in
18244@var{expr} is true. The condition becomes part of the
18245@samp{-break-list} output (see the description of the @samp{-break-list}
18246command below).
18247
18248@subsubheading @value{GDBN} Command
18249
18250The corresponding @value{GDBN} command is @samp{condition}.
18251
18252@subsubheading Example
18253
18254@smallexample
594fe323 18255(gdb)
922fbb7b
AC
18256-break-condition 1 1
18257^done
594fe323 18258(gdb)
922fbb7b
AC
18259-break-list
18260^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18261hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18262@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18263@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18264@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18265@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18266@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18267body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18268addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18269line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18270(gdb)
922fbb7b
AC
18271@end smallexample
18272
18273@subheading The @code{-break-delete} Command
18274@findex -break-delete
18275
18276@subsubheading Synopsis
18277
18278@smallexample
18279 -break-delete ( @var{breakpoint} )+
18280@end smallexample
18281
18282Delete the breakpoint(s) whose number(s) are specified in the argument
18283list. This is obviously reflected in the breakpoint list.
18284
79a6e687 18285@subsubheading @value{GDBN} Command
922fbb7b
AC
18286
18287The corresponding @value{GDBN} command is @samp{delete}.
18288
18289@subsubheading Example
18290
18291@smallexample
594fe323 18292(gdb)
922fbb7b
AC
18293-break-delete 1
18294^done
594fe323 18295(gdb)
922fbb7b
AC
18296-break-list
18297^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18298hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18299@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18300@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18301@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18302@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18303@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18304body=[]@}
594fe323 18305(gdb)
922fbb7b
AC
18306@end smallexample
18307
18308@subheading The @code{-break-disable} Command
18309@findex -break-disable
18310
18311@subsubheading Synopsis
18312
18313@smallexample
18314 -break-disable ( @var{breakpoint} )+
18315@end smallexample
18316
18317Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18318break list is now set to @samp{n} for the named @var{breakpoint}(s).
18319
18320@subsubheading @value{GDBN} Command
18321
18322The corresponding @value{GDBN} command is @samp{disable}.
18323
18324@subsubheading Example
18325
18326@smallexample
594fe323 18327(gdb)
922fbb7b
AC
18328-break-disable 2
18329^done
594fe323 18330(gdb)
922fbb7b
AC
18331-break-list
18332^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18333hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18334@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18335@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18336@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18337@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18338@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18339body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18340addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18341line="5",times="0"@}]@}
594fe323 18342(gdb)
922fbb7b
AC
18343@end smallexample
18344
18345@subheading The @code{-break-enable} Command
18346@findex -break-enable
18347
18348@subsubheading Synopsis
18349
18350@smallexample
18351 -break-enable ( @var{breakpoint} )+
18352@end smallexample
18353
18354Enable (previously disabled) @var{breakpoint}(s).
18355
18356@subsubheading @value{GDBN} Command
18357
18358The corresponding @value{GDBN} command is @samp{enable}.
18359
18360@subsubheading Example
18361
18362@smallexample
594fe323 18363(gdb)
922fbb7b
AC
18364-break-enable 2
18365^done
594fe323 18366(gdb)
922fbb7b
AC
18367-break-list
18368^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18369hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18370@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18371@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18372@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18373@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18374@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18375body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18376addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18377line="5",times="0"@}]@}
594fe323 18378(gdb)
922fbb7b
AC
18379@end smallexample
18380
18381@subheading The @code{-break-info} Command
18382@findex -break-info
18383
18384@subsubheading Synopsis
18385
18386@smallexample
18387 -break-info @var{breakpoint}
18388@end smallexample
18389
18390@c REDUNDANT???
18391Get information about a single breakpoint.
18392
79a6e687 18393@subsubheading @value{GDBN} Command
922fbb7b
AC
18394
18395The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18396
18397@subsubheading Example
18398N.A.
18399
18400@subheading The @code{-break-insert} Command
18401@findex -break-insert
18402
18403@subsubheading Synopsis
18404
18405@smallexample
afe8ab22 18406 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18407 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18408 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18409@end smallexample
18410
18411@noindent
afe8ab22 18412If specified, @var{location}, can be one of:
922fbb7b
AC
18413
18414@itemize @bullet
18415@item function
18416@c @item +offset
18417@c @item -offset
18418@c @item linenum
18419@item filename:linenum
18420@item filename:function
18421@item *address
18422@end itemize
18423
18424The possible optional parameters of this command are:
18425
18426@table @samp
18427@item -t
948d5102 18428Insert a temporary breakpoint.
922fbb7b
AC
18429@item -h
18430Insert a hardware breakpoint.
18431@item -c @var{condition}
18432Make the breakpoint conditional on @var{condition}.
18433@item -i @var{ignore-count}
18434Initialize the @var{ignore-count}.
afe8ab22
VP
18435@item -f
18436If @var{location} cannot be parsed (for example if it
18437refers to unknown files or functions), create a pending
18438breakpoint. Without this flag, @value{GDBN} will report
18439an error, and won't create a breakpoint, if @var{location}
18440cannot be parsed.
922fbb7b
AC
18441@end table
18442
18443@subsubheading Result
18444
18445The result is in the form:
18446
18447@smallexample
948d5102
NR
18448^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18449enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18450fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18451times="@var{times}"@}
922fbb7b
AC
18452@end smallexample
18453
18454@noindent
948d5102
NR
18455where @var{number} is the @value{GDBN} number for this breakpoint,
18456@var{funcname} is the name of the function where the breakpoint was
18457inserted, @var{filename} is the name of the source file which contains
18458this function, @var{lineno} is the source line number within that file
18459and @var{times} the number of times that the breakpoint has been hit
18460(always 0 for -break-insert but may be greater for -break-info or -break-list
18461which use the same output).
922fbb7b
AC
18462
18463Note: this format is open to change.
18464@c An out-of-band breakpoint instead of part of the result?
18465
18466@subsubheading @value{GDBN} Command
18467
18468The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18469@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18470
18471@subsubheading Example
18472
18473@smallexample
594fe323 18474(gdb)
922fbb7b 18475-break-insert main
948d5102
NR
18476^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18477fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18478(gdb)
922fbb7b 18479-break-insert -t foo
948d5102
NR
18480^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18481fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18482(gdb)
922fbb7b
AC
18483-break-list
18484^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18485hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18486@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18487@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18488@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18489@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18490@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18491body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18492addr="0x0001072c", func="main",file="recursive2.c",
18493fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18494bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18495addr="0x00010774",func="foo",file="recursive2.c",
18496fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18497(gdb)
922fbb7b
AC
18498-break-insert -r foo.*
18499~int foo(int, int);
948d5102
NR
18500^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18501"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18502(gdb)
922fbb7b
AC
18503@end smallexample
18504
18505@subheading The @code{-break-list} Command
18506@findex -break-list
18507
18508@subsubheading Synopsis
18509
18510@smallexample
18511 -break-list
18512@end smallexample
18513
18514Displays the list of inserted breakpoints, showing the following fields:
18515
18516@table @samp
18517@item Number
18518number of the breakpoint
18519@item Type
18520type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18521@item Disposition
18522should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18523or @samp{nokeep}
18524@item Enabled
18525is the breakpoint enabled or no: @samp{y} or @samp{n}
18526@item Address
18527memory location at which the breakpoint is set
18528@item What
18529logical location of the breakpoint, expressed by function name, file
18530name, line number
18531@item Times
18532number of times the breakpoint has been hit
18533@end table
18534
18535If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18536@code{body} field is an empty list.
18537
18538@subsubheading @value{GDBN} Command
18539
18540The corresponding @value{GDBN} command is @samp{info break}.
18541
18542@subsubheading Example
18543
18544@smallexample
594fe323 18545(gdb)
922fbb7b
AC
18546-break-list
18547^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18548hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18549@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18550@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18551@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18552@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18553@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18554body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18555addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18556bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18557addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18558line="13",times="0"@}]@}
594fe323 18559(gdb)
922fbb7b
AC
18560@end smallexample
18561
18562Here's an example of the result when there are no breakpoints:
18563
18564@smallexample
594fe323 18565(gdb)
922fbb7b
AC
18566-break-list
18567^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18568hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18569@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18570@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18571@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18572@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18573@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18574body=[]@}
594fe323 18575(gdb)
922fbb7b
AC
18576@end smallexample
18577
18578@subheading The @code{-break-watch} Command
18579@findex -break-watch
18580
18581@subsubheading Synopsis
18582
18583@smallexample
18584 -break-watch [ -a | -r ]
18585@end smallexample
18586
18587Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18588@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18589read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18590option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18591trigger only when the memory location is accessed for reading. Without
18592either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18593i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18594@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18595
18596Note that @samp{-break-list} will report a single list of watchpoints and
18597breakpoints inserted.
18598
18599@subsubheading @value{GDBN} Command
18600
18601The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18602@samp{rwatch}.
18603
18604@subsubheading Example
18605
18606Setting a watchpoint on a variable in the @code{main} function:
18607
18608@smallexample
594fe323 18609(gdb)
922fbb7b
AC
18610-break-watch x
18611^done,wpt=@{number="2",exp="x"@}
594fe323 18612(gdb)
922fbb7b
AC
18613-exec-continue
18614^running
0869d01b
NR
18615(gdb)
18616*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18617value=@{old="-268439212",new="55"@},
76ff342d 18618frame=@{func="main",args=[],file="recursive2.c",
948d5102 18619fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18620(gdb)
922fbb7b
AC
18621@end smallexample
18622
18623Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18624the program execution twice: first for the variable changing value, then
18625for the watchpoint going out of scope.
18626
18627@smallexample
594fe323 18628(gdb)
922fbb7b
AC
18629-break-watch C
18630^done,wpt=@{number="5",exp="C"@}
594fe323 18631(gdb)
922fbb7b
AC
18632-exec-continue
18633^running
0869d01b
NR
18634(gdb)
18635*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18636wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18637frame=@{func="callee4",args=[],
76ff342d
DJ
18638file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18639fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18640(gdb)
922fbb7b
AC
18641-exec-continue
18642^running
0869d01b
NR
18643(gdb)
18644*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18645frame=@{func="callee3",args=[@{name="strarg",
18646value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18647file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18648fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18649(gdb)
922fbb7b
AC
18650@end smallexample
18651
18652Listing breakpoints and watchpoints, at different points in the program
18653execution. Note that once the watchpoint goes out of scope, it is
18654deleted.
18655
18656@smallexample
594fe323 18657(gdb)
922fbb7b
AC
18658-break-watch C
18659^done,wpt=@{number="2",exp="C"@}
594fe323 18660(gdb)
922fbb7b
AC
18661-break-list
18662^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18663hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18664@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18665@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18666@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18667@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18668@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18669body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18670addr="0x00010734",func="callee4",
948d5102
NR
18671file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18672fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18673bkpt=@{number="2",type="watchpoint",disp="keep",
18674enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18675(gdb)
922fbb7b
AC
18676-exec-continue
18677^running
0869d01b
NR
18678(gdb)
18679*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18680value=@{old="-276895068",new="3"@},
18681frame=@{func="callee4",args=[],
76ff342d
DJ
18682file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18683fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18684(gdb)
922fbb7b
AC
18685-break-list
18686^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18687hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18688@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18689@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18690@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18691@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18692@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18693body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18694addr="0x00010734",func="callee4",
948d5102
NR
18695file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18696fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18697bkpt=@{number="2",type="watchpoint",disp="keep",
18698enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18699(gdb)
922fbb7b
AC
18700-exec-continue
18701^running
18702^done,reason="watchpoint-scope",wpnum="2",
18703frame=@{func="callee3",args=[@{name="strarg",
18704value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18705file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18706fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18707(gdb)
922fbb7b
AC
18708-break-list
18709^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18710hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18711@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18712@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18713@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18714@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18715@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18716body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18717addr="0x00010734",func="callee4",
948d5102
NR
18718file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18719fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18720times="1"@}]@}
594fe323 18721(gdb)
922fbb7b
AC
18722@end smallexample
18723
18724@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18725@node GDB/MI Program Context
18726@section @sc{gdb/mi} Program Context
922fbb7b 18727
a2c02241
NR
18728@subheading The @code{-exec-arguments} Command
18729@findex -exec-arguments
922fbb7b 18730
922fbb7b
AC
18731
18732@subsubheading Synopsis
18733
18734@smallexample
a2c02241 18735 -exec-arguments @var{args}
922fbb7b
AC
18736@end smallexample
18737
a2c02241
NR
18738Set the inferior program arguments, to be used in the next
18739@samp{-exec-run}.
922fbb7b 18740
a2c02241 18741@subsubheading @value{GDBN} Command
922fbb7b 18742
a2c02241 18743The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18744
a2c02241 18745@subsubheading Example
922fbb7b 18746
a2c02241
NR
18747@c FIXME!
18748Don't have one around.
922fbb7b 18749
a2c02241
NR
18750
18751@subheading The @code{-exec-show-arguments} Command
18752@findex -exec-show-arguments
18753
18754@subsubheading Synopsis
18755
18756@smallexample
18757 -exec-show-arguments
18758@end smallexample
18759
18760Print the arguments of the program.
922fbb7b
AC
18761
18762@subsubheading @value{GDBN} Command
18763
a2c02241 18764The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18765
18766@subsubheading Example
a2c02241 18767N.A.
922fbb7b 18768
922fbb7b 18769
a2c02241
NR
18770@subheading The @code{-environment-cd} Command
18771@findex -environment-cd
922fbb7b 18772
a2c02241 18773@subsubheading Synopsis
922fbb7b
AC
18774
18775@smallexample
a2c02241 18776 -environment-cd @var{pathdir}
922fbb7b
AC
18777@end smallexample
18778
a2c02241 18779Set @value{GDBN}'s working directory.
922fbb7b 18780
a2c02241 18781@subsubheading @value{GDBN} Command
922fbb7b 18782
a2c02241
NR
18783The corresponding @value{GDBN} command is @samp{cd}.
18784
18785@subsubheading Example
922fbb7b
AC
18786
18787@smallexample
594fe323 18788(gdb)
a2c02241
NR
18789-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18790^done
594fe323 18791(gdb)
922fbb7b
AC
18792@end smallexample
18793
18794
a2c02241
NR
18795@subheading The @code{-environment-directory} Command
18796@findex -environment-directory
922fbb7b
AC
18797
18798@subsubheading Synopsis
18799
18800@smallexample
a2c02241 18801 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18802@end smallexample
18803
a2c02241
NR
18804Add directories @var{pathdir} to beginning of search path for source files.
18805If the @samp{-r} option is used, the search path is reset to the default
18806search path. If directories @var{pathdir} are supplied in addition to the
18807@samp{-r} option, the search path is first reset and then addition
18808occurs as normal.
18809Multiple directories may be specified, separated by blanks. Specifying
18810multiple directories in a single command
18811results in the directories added to the beginning of the
18812search path in the same order they were presented in the command.
18813If blanks are needed as
18814part of a directory name, double-quotes should be used around
18815the name. In the command output, the path will show up separated
d3e8051b 18816by the system directory-separator character. The directory-separator
a2c02241
NR
18817character must not be used
18818in any directory name.
18819If no directories are specified, the current search path is displayed.
922fbb7b
AC
18820
18821@subsubheading @value{GDBN} Command
18822
a2c02241 18823The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18824
18825@subsubheading Example
18826
922fbb7b 18827@smallexample
594fe323 18828(gdb)
a2c02241
NR
18829-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18830^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18831(gdb)
a2c02241
NR
18832-environment-directory ""
18833^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18834(gdb)
a2c02241
NR
18835-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18836^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18837(gdb)
a2c02241
NR
18838-environment-directory -r
18839^done,source-path="$cdir:$cwd"
594fe323 18840(gdb)
922fbb7b
AC
18841@end smallexample
18842
18843
a2c02241
NR
18844@subheading The @code{-environment-path} Command
18845@findex -environment-path
922fbb7b
AC
18846
18847@subsubheading Synopsis
18848
18849@smallexample
a2c02241 18850 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18851@end smallexample
18852
a2c02241
NR
18853Add directories @var{pathdir} to beginning of search path for object files.
18854If the @samp{-r} option is used, the search path is reset to the original
18855search path that existed at gdb start-up. If directories @var{pathdir} are
18856supplied in addition to the
18857@samp{-r} option, the search path is first reset and then addition
18858occurs as normal.
18859Multiple directories may be specified, separated by blanks. Specifying
18860multiple directories in a single command
18861results in the directories added to the beginning of the
18862search path in the same order they were presented in the command.
18863If blanks are needed as
18864part of a directory name, double-quotes should be used around
18865the name. In the command output, the path will show up separated
d3e8051b 18866by the system directory-separator character. The directory-separator
a2c02241
NR
18867character must not be used
18868in any directory name.
18869If no directories are specified, the current path is displayed.
18870
922fbb7b
AC
18871
18872@subsubheading @value{GDBN} Command
18873
a2c02241 18874The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18875
18876@subsubheading Example
18877
922fbb7b 18878@smallexample
594fe323 18879(gdb)
a2c02241
NR
18880-environment-path
18881^done,path="/usr/bin"
594fe323 18882(gdb)
a2c02241
NR
18883-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18884^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18885(gdb)
a2c02241
NR
18886-environment-path -r /usr/local/bin
18887^done,path="/usr/local/bin:/usr/bin"
594fe323 18888(gdb)
922fbb7b
AC
18889@end smallexample
18890
18891
a2c02241
NR
18892@subheading The @code{-environment-pwd} Command
18893@findex -environment-pwd
922fbb7b
AC
18894
18895@subsubheading Synopsis
18896
18897@smallexample
a2c02241 18898 -environment-pwd
922fbb7b
AC
18899@end smallexample
18900
a2c02241 18901Show the current working directory.
922fbb7b 18902
79a6e687 18903@subsubheading @value{GDBN} Command
922fbb7b 18904
a2c02241 18905The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18906
18907@subsubheading Example
18908
922fbb7b 18909@smallexample
594fe323 18910(gdb)
a2c02241
NR
18911-environment-pwd
18912^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18913(gdb)
922fbb7b
AC
18914@end smallexample
18915
a2c02241
NR
18916@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18917@node GDB/MI Thread Commands
18918@section @sc{gdb/mi} Thread Commands
18919
18920
18921@subheading The @code{-thread-info} Command
18922@findex -thread-info
922fbb7b
AC
18923
18924@subsubheading Synopsis
18925
18926@smallexample
8e8901c5 18927 -thread-info [ @var{thread-id} ]
922fbb7b
AC
18928@end smallexample
18929
8e8901c5
VP
18930Reports information about either a specific thread, if
18931the @var{thread-id} parameter is present, or about all
18932threads. When printing information about all threads,
18933also reports the current thread.
18934
79a6e687 18935@subsubheading @value{GDBN} Command
922fbb7b 18936
8e8901c5
VP
18937The @samp{info thread} command prints the same information
18938about all threads.
922fbb7b
AC
18939
18940@subsubheading Example
922fbb7b
AC
18941
18942@smallexample
8e8901c5
VP
18943-thread-info
18944^done,threads=[
18945@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
18946 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
18947@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
18948 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
18949 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
18950current-thread-id="1"
18951(gdb)
922fbb7b
AC
18952@end smallexample
18953
a2c02241
NR
18954@subheading The @code{-thread-list-ids} Command
18955@findex -thread-list-ids
922fbb7b 18956
a2c02241 18957@subsubheading Synopsis
922fbb7b 18958
a2c02241
NR
18959@smallexample
18960 -thread-list-ids
18961@end smallexample
922fbb7b 18962
a2c02241
NR
18963Produces a list of the currently known @value{GDBN} thread ids. At the
18964end of the list it also prints the total number of such threads.
922fbb7b
AC
18965
18966@subsubheading @value{GDBN} Command
18967
a2c02241 18968Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18969
18970@subsubheading Example
18971
a2c02241 18972No threads present, besides the main process:
922fbb7b
AC
18973
18974@smallexample
594fe323 18975(gdb)
a2c02241
NR
18976-thread-list-ids
18977^done,thread-ids=@{@},number-of-threads="0"
594fe323 18978(gdb)
922fbb7b
AC
18979@end smallexample
18980
922fbb7b 18981
a2c02241 18982Several threads:
922fbb7b
AC
18983
18984@smallexample
594fe323 18985(gdb)
a2c02241
NR
18986-thread-list-ids
18987^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18988number-of-threads="3"
594fe323 18989(gdb)
922fbb7b
AC
18990@end smallexample
18991
a2c02241
NR
18992
18993@subheading The @code{-thread-select} Command
18994@findex -thread-select
922fbb7b
AC
18995
18996@subsubheading Synopsis
18997
18998@smallexample
a2c02241 18999 -thread-select @var{threadnum}
922fbb7b
AC
19000@end smallexample
19001
a2c02241
NR
19002Make @var{threadnum} the current thread. It prints the number of the new
19003current thread, and the topmost frame for that thread.
922fbb7b
AC
19004
19005@subsubheading @value{GDBN} Command
19006
a2c02241 19007The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19008
19009@subsubheading Example
922fbb7b
AC
19010
19011@smallexample
594fe323 19012(gdb)
a2c02241
NR
19013-exec-next
19014^running
594fe323 19015(gdb)
a2c02241
NR
19016*stopped,reason="end-stepping-range",thread-id="2",line="187",
19017file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19018(gdb)
a2c02241
NR
19019-thread-list-ids
19020^done,
19021thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19022number-of-threads="3"
594fe323 19023(gdb)
a2c02241
NR
19024-thread-select 3
19025^done,new-thread-id="3",
19026frame=@{level="0",func="vprintf",
19027args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19028@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19029(gdb)
922fbb7b
AC
19030@end smallexample
19031
a2c02241
NR
19032@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19033@node GDB/MI Program Execution
19034@section @sc{gdb/mi} Program Execution
922fbb7b 19035
ef21caaf 19036These are the asynchronous commands which generate the out-of-band
3f94c067 19037record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19038asynchronously with remote targets and this interaction is mimicked in
19039other cases.
922fbb7b 19040
922fbb7b
AC
19041@subheading The @code{-exec-continue} Command
19042@findex -exec-continue
19043
19044@subsubheading Synopsis
19045
19046@smallexample
19047 -exec-continue
19048@end smallexample
19049
ef21caaf
NR
19050Resumes the execution of the inferior program until a breakpoint is
19051encountered, or until the inferior exits.
922fbb7b
AC
19052
19053@subsubheading @value{GDBN} Command
19054
19055The corresponding @value{GDBN} corresponding is @samp{continue}.
19056
19057@subsubheading Example
19058
19059@smallexample
19060-exec-continue
19061^running
594fe323 19062(gdb)
922fbb7b
AC
19063@@Hello world
19064*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 19065file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 19066(gdb)
922fbb7b
AC
19067@end smallexample
19068
19069
19070@subheading The @code{-exec-finish} Command
19071@findex -exec-finish
19072
19073@subsubheading Synopsis
19074
19075@smallexample
19076 -exec-finish
19077@end smallexample
19078
ef21caaf
NR
19079Resumes the execution of the inferior program until the current
19080function is exited. Displays the results returned by the function.
922fbb7b
AC
19081
19082@subsubheading @value{GDBN} Command
19083
19084The corresponding @value{GDBN} command is @samp{finish}.
19085
19086@subsubheading Example
19087
19088Function returning @code{void}.
19089
19090@smallexample
19091-exec-finish
19092^running
594fe323 19093(gdb)
922fbb7b
AC
19094@@hello from foo
19095*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19096file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19097(gdb)
922fbb7b
AC
19098@end smallexample
19099
19100Function returning other than @code{void}. The name of the internal
19101@value{GDBN} variable storing the result is printed, together with the
19102value itself.
19103
19104@smallexample
19105-exec-finish
19106^running
594fe323 19107(gdb)
922fbb7b
AC
19108*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19109args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19110file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19111gdb-result-var="$1",return-value="0"
594fe323 19112(gdb)
922fbb7b
AC
19113@end smallexample
19114
19115
19116@subheading The @code{-exec-interrupt} Command
19117@findex -exec-interrupt
19118
19119@subsubheading Synopsis
19120
19121@smallexample
19122 -exec-interrupt
19123@end smallexample
19124
ef21caaf
NR
19125Interrupts the background execution of the target. Note how the token
19126associated with the stop message is the one for the execution command
19127that has been interrupted. The token for the interrupt itself only
19128appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19129interrupt a non-running program, an error message will be printed.
19130
19131@subsubheading @value{GDBN} Command
19132
19133The corresponding @value{GDBN} command is @samp{interrupt}.
19134
19135@subsubheading Example
19136
19137@smallexample
594fe323 19138(gdb)
922fbb7b
AC
19139111-exec-continue
19140111^running
19141
594fe323 19142(gdb)
922fbb7b
AC
19143222-exec-interrupt
19144222^done
594fe323 19145(gdb)
922fbb7b 19146111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19147frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19148fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19149(gdb)
922fbb7b 19150
594fe323 19151(gdb)
922fbb7b
AC
19152-exec-interrupt
19153^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19154(gdb)
922fbb7b
AC
19155@end smallexample
19156
19157
19158@subheading The @code{-exec-next} Command
19159@findex -exec-next
19160
19161@subsubheading Synopsis
19162
19163@smallexample
19164 -exec-next
19165@end smallexample
19166
ef21caaf
NR
19167Resumes execution of the inferior program, stopping when the beginning
19168of the next source line is reached.
922fbb7b
AC
19169
19170@subsubheading @value{GDBN} Command
19171
19172The corresponding @value{GDBN} command is @samp{next}.
19173
19174@subsubheading Example
19175
19176@smallexample
19177-exec-next
19178^running
594fe323 19179(gdb)
922fbb7b 19180*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19181(gdb)
922fbb7b
AC
19182@end smallexample
19183
19184
19185@subheading The @code{-exec-next-instruction} Command
19186@findex -exec-next-instruction
19187
19188@subsubheading Synopsis
19189
19190@smallexample
19191 -exec-next-instruction
19192@end smallexample
19193
ef21caaf
NR
19194Executes one machine instruction. If the instruction is a function
19195call, continues until the function returns. If the program stops at an
19196instruction in the middle of a source line, the address will be
19197printed as well.
922fbb7b
AC
19198
19199@subsubheading @value{GDBN} Command
19200
19201The corresponding @value{GDBN} command is @samp{nexti}.
19202
19203@subsubheading Example
19204
19205@smallexample
594fe323 19206(gdb)
922fbb7b
AC
19207-exec-next-instruction
19208^running
19209
594fe323 19210(gdb)
922fbb7b
AC
19211*stopped,reason="end-stepping-range",
19212addr="0x000100d4",line="5",file="hello.c"
594fe323 19213(gdb)
922fbb7b
AC
19214@end smallexample
19215
19216
19217@subheading The @code{-exec-return} Command
19218@findex -exec-return
19219
19220@subsubheading Synopsis
19221
19222@smallexample
19223 -exec-return
19224@end smallexample
19225
19226Makes current function return immediately. Doesn't execute the inferior.
19227Displays the new current frame.
19228
19229@subsubheading @value{GDBN} Command
19230
19231The corresponding @value{GDBN} command is @samp{return}.
19232
19233@subsubheading Example
19234
19235@smallexample
594fe323 19236(gdb)
922fbb7b
AC
19237200-break-insert callee4
19238200^done,bkpt=@{number="1",addr="0x00010734",
19239file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19240(gdb)
922fbb7b
AC
19241000-exec-run
19242000^running
594fe323 19243(gdb)
922fbb7b
AC
19244000*stopped,reason="breakpoint-hit",bkptno="1",
19245frame=@{func="callee4",args=[],
76ff342d
DJ
19246file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19247fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19248(gdb)
922fbb7b
AC
19249205-break-delete
19250205^done
594fe323 19251(gdb)
922fbb7b
AC
19252111-exec-return
19253111^done,frame=@{level="0",func="callee3",
19254args=[@{name="strarg",
19255value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19256file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19257fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19258(gdb)
922fbb7b
AC
19259@end smallexample
19260
19261
19262@subheading The @code{-exec-run} Command
19263@findex -exec-run
19264
19265@subsubheading Synopsis
19266
19267@smallexample
19268 -exec-run
19269@end smallexample
19270
ef21caaf
NR
19271Starts execution of the inferior from the beginning. The inferior
19272executes until either a breakpoint is encountered or the program
19273exits. In the latter case the output will include an exit code, if
19274the program has exited exceptionally.
922fbb7b
AC
19275
19276@subsubheading @value{GDBN} Command
19277
19278The corresponding @value{GDBN} command is @samp{run}.
19279
ef21caaf 19280@subsubheading Examples
922fbb7b
AC
19281
19282@smallexample
594fe323 19283(gdb)
922fbb7b
AC
19284-break-insert main
19285^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19286(gdb)
922fbb7b
AC
19287-exec-run
19288^running
594fe323 19289(gdb)
922fbb7b 19290*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19291frame=@{func="main",args=[],file="recursive2.c",
948d5102 19292fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19293(gdb)
922fbb7b
AC
19294@end smallexample
19295
ef21caaf
NR
19296@noindent
19297Program exited normally:
19298
19299@smallexample
594fe323 19300(gdb)
ef21caaf
NR
19301-exec-run
19302^running
594fe323 19303(gdb)
ef21caaf
NR
19304x = 55
19305*stopped,reason="exited-normally"
594fe323 19306(gdb)
ef21caaf
NR
19307@end smallexample
19308
19309@noindent
19310Program exited exceptionally:
19311
19312@smallexample
594fe323 19313(gdb)
ef21caaf
NR
19314-exec-run
19315^running
594fe323 19316(gdb)
ef21caaf
NR
19317x = 55
19318*stopped,reason="exited",exit-code="01"
594fe323 19319(gdb)
ef21caaf
NR
19320@end smallexample
19321
19322Another way the program can terminate is if it receives a signal such as
19323@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19324
19325@smallexample
594fe323 19326(gdb)
ef21caaf
NR
19327*stopped,reason="exited-signalled",signal-name="SIGINT",
19328signal-meaning="Interrupt"
19329@end smallexample
19330
922fbb7b 19331
a2c02241
NR
19332@c @subheading -exec-signal
19333
19334
19335@subheading The @code{-exec-step} Command
19336@findex -exec-step
922fbb7b
AC
19337
19338@subsubheading Synopsis
19339
19340@smallexample
a2c02241 19341 -exec-step
922fbb7b
AC
19342@end smallexample
19343
a2c02241
NR
19344Resumes execution of the inferior program, stopping when the beginning
19345of the next source line is reached, if the next source line is not a
19346function call. If it is, stop at the first instruction of the called
19347function.
922fbb7b
AC
19348
19349@subsubheading @value{GDBN} Command
19350
a2c02241 19351The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19352
19353@subsubheading Example
19354
19355Stepping into a function:
19356
19357@smallexample
19358-exec-step
19359^running
594fe323 19360(gdb)
922fbb7b
AC
19361*stopped,reason="end-stepping-range",
19362frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19363@{name="b",value="0"@}],file="recursive2.c",
948d5102 19364fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19365(gdb)
922fbb7b
AC
19366@end smallexample
19367
19368Regular stepping:
19369
19370@smallexample
19371-exec-step
19372^running
594fe323 19373(gdb)
922fbb7b 19374*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19375(gdb)
922fbb7b
AC
19376@end smallexample
19377
19378
19379@subheading The @code{-exec-step-instruction} Command
19380@findex -exec-step-instruction
19381
19382@subsubheading Synopsis
19383
19384@smallexample
19385 -exec-step-instruction
19386@end smallexample
19387
ef21caaf
NR
19388Resumes the inferior which executes one machine instruction. The
19389output, once @value{GDBN} has stopped, will vary depending on whether
19390we have stopped in the middle of a source line or not. In the former
19391case, the address at which the program stopped will be printed as
922fbb7b
AC
19392well.
19393
19394@subsubheading @value{GDBN} Command
19395
19396The corresponding @value{GDBN} command is @samp{stepi}.
19397
19398@subsubheading Example
19399
19400@smallexample
594fe323 19401(gdb)
922fbb7b
AC
19402-exec-step-instruction
19403^running
19404
594fe323 19405(gdb)
922fbb7b 19406*stopped,reason="end-stepping-range",
76ff342d 19407frame=@{func="foo",args=[],file="try.c",
948d5102 19408fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19409(gdb)
922fbb7b
AC
19410-exec-step-instruction
19411^running
19412
594fe323 19413(gdb)
922fbb7b 19414*stopped,reason="end-stepping-range",
76ff342d 19415frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19416fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19417(gdb)
922fbb7b
AC
19418@end smallexample
19419
19420
19421@subheading The @code{-exec-until} Command
19422@findex -exec-until
19423
19424@subsubheading Synopsis
19425
19426@smallexample
19427 -exec-until [ @var{location} ]
19428@end smallexample
19429
ef21caaf
NR
19430Executes the inferior until the @var{location} specified in the
19431argument is reached. If there is no argument, the inferior executes
19432until a source line greater than the current one is reached. The
19433reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19434
19435@subsubheading @value{GDBN} Command
19436
19437The corresponding @value{GDBN} command is @samp{until}.
19438
19439@subsubheading Example
19440
19441@smallexample
594fe323 19442(gdb)
922fbb7b
AC
19443-exec-until recursive2.c:6
19444^running
594fe323 19445(gdb)
922fbb7b
AC
19446x = 55
19447*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19448file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19449(gdb)
922fbb7b
AC
19450@end smallexample
19451
19452@ignore
19453@subheading -file-clear
19454Is this going away????
19455@end ignore
19456
351ff01a 19457@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19458@node GDB/MI Stack Manipulation
19459@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19460
922fbb7b 19461
a2c02241
NR
19462@subheading The @code{-stack-info-frame} Command
19463@findex -stack-info-frame
922fbb7b
AC
19464
19465@subsubheading Synopsis
19466
19467@smallexample
a2c02241 19468 -stack-info-frame
922fbb7b
AC
19469@end smallexample
19470
a2c02241 19471Get info on the selected frame.
922fbb7b
AC
19472
19473@subsubheading @value{GDBN} Command
19474
a2c02241
NR
19475The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19476(without arguments).
922fbb7b
AC
19477
19478@subsubheading Example
19479
19480@smallexample
594fe323 19481(gdb)
a2c02241
NR
19482-stack-info-frame
19483^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19484file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19485fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19486(gdb)
922fbb7b
AC
19487@end smallexample
19488
a2c02241
NR
19489@subheading The @code{-stack-info-depth} Command
19490@findex -stack-info-depth
922fbb7b
AC
19491
19492@subsubheading Synopsis
19493
19494@smallexample
a2c02241 19495 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19496@end smallexample
19497
a2c02241
NR
19498Return the depth of the stack. If the integer argument @var{max-depth}
19499is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19500
19501@subsubheading @value{GDBN} Command
19502
a2c02241 19503There's no equivalent @value{GDBN} command.
922fbb7b
AC
19504
19505@subsubheading Example
19506
a2c02241
NR
19507For a stack with frame levels 0 through 11:
19508
922fbb7b 19509@smallexample
594fe323 19510(gdb)
a2c02241
NR
19511-stack-info-depth
19512^done,depth="12"
594fe323 19513(gdb)
a2c02241
NR
19514-stack-info-depth 4
19515^done,depth="4"
594fe323 19516(gdb)
a2c02241
NR
19517-stack-info-depth 12
19518^done,depth="12"
594fe323 19519(gdb)
a2c02241
NR
19520-stack-info-depth 11
19521^done,depth="11"
594fe323 19522(gdb)
a2c02241
NR
19523-stack-info-depth 13
19524^done,depth="12"
594fe323 19525(gdb)
922fbb7b
AC
19526@end smallexample
19527
a2c02241
NR
19528@subheading The @code{-stack-list-arguments} Command
19529@findex -stack-list-arguments
922fbb7b
AC
19530
19531@subsubheading Synopsis
19532
19533@smallexample
a2c02241
NR
19534 -stack-list-arguments @var{show-values}
19535 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19536@end smallexample
19537
a2c02241
NR
19538Display a list of the arguments for the frames between @var{low-frame}
19539and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19540@var{high-frame} are not provided, list the arguments for the whole
19541call stack. If the two arguments are equal, show the single frame
19542at the corresponding level. It is an error if @var{low-frame} is
19543larger than the actual number of frames. On the other hand,
19544@var{high-frame} may be larger than the actual number of frames, in
19545which case only existing frames will be returned.
a2c02241
NR
19546
19547The @var{show-values} argument must have a value of 0 or 1. A value of
195480 means that only the names of the arguments are listed, a value of 1
19549means that both names and values of the arguments are printed.
922fbb7b
AC
19550
19551@subsubheading @value{GDBN} Command
19552
a2c02241
NR
19553@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19554@samp{gdb_get_args} command which partially overlaps with the
19555functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19556
19557@subsubheading Example
922fbb7b 19558
a2c02241 19559@smallexample
594fe323 19560(gdb)
a2c02241
NR
19561-stack-list-frames
19562^done,
19563stack=[
19564frame=@{level="0",addr="0x00010734",func="callee4",
19565file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19566fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19567frame=@{level="1",addr="0x0001076c",func="callee3",
19568file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19569fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19570frame=@{level="2",addr="0x0001078c",func="callee2",
19571file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19572fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19573frame=@{level="3",addr="0x000107b4",func="callee1",
19574file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19575fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19576frame=@{level="4",addr="0x000107e0",func="main",
19577file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19578fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19579(gdb)
a2c02241
NR
19580-stack-list-arguments 0
19581^done,
19582stack-args=[
19583frame=@{level="0",args=[]@},
19584frame=@{level="1",args=[name="strarg"]@},
19585frame=@{level="2",args=[name="intarg",name="strarg"]@},
19586frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19587frame=@{level="4",args=[]@}]
594fe323 19588(gdb)
a2c02241
NR
19589-stack-list-arguments 1
19590^done,
19591stack-args=[
19592frame=@{level="0",args=[]@},
19593frame=@{level="1",
19594 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19595frame=@{level="2",args=[
19596@{name="intarg",value="2"@},
19597@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19598@{frame=@{level="3",args=[
19599@{name="intarg",value="2"@},
19600@{name="strarg",value="0x11940 \"A string argument.\""@},
19601@{name="fltarg",value="3.5"@}]@},
19602frame=@{level="4",args=[]@}]
594fe323 19603(gdb)
a2c02241
NR
19604-stack-list-arguments 0 2 2
19605^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19606(gdb)
a2c02241
NR
19607-stack-list-arguments 1 2 2
19608^done,stack-args=[frame=@{level="2",
19609args=[@{name="intarg",value="2"@},
19610@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19611(gdb)
a2c02241
NR
19612@end smallexample
19613
19614@c @subheading -stack-list-exception-handlers
922fbb7b 19615
a2c02241
NR
19616
19617@subheading The @code{-stack-list-frames} Command
19618@findex -stack-list-frames
1abaf70c
BR
19619
19620@subsubheading Synopsis
19621
19622@smallexample
a2c02241 19623 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19624@end smallexample
19625
a2c02241
NR
19626List the frames currently on the stack. For each frame it displays the
19627following info:
19628
19629@table @samp
19630@item @var{level}
d3e8051b 19631The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19632@item @var{addr}
19633The @code{$pc} value for that frame.
19634@item @var{func}
19635Function name.
19636@item @var{file}
19637File name of the source file where the function lives.
19638@item @var{line}
19639Line number corresponding to the @code{$pc}.
19640@end table
19641
19642If invoked without arguments, this command prints a backtrace for the
19643whole stack. If given two integer arguments, it shows the frames whose
19644levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19645are equal, it shows the single frame at the corresponding level. It is
19646an error if @var{low-frame} is larger than the actual number of
a5451f4e 19647frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19648actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19649
19650@subsubheading @value{GDBN} Command
19651
a2c02241 19652The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19653
19654@subsubheading Example
19655
a2c02241
NR
19656Full stack backtrace:
19657
1abaf70c 19658@smallexample
594fe323 19659(gdb)
a2c02241
NR
19660-stack-list-frames
19661^done,stack=
19662[frame=@{level="0",addr="0x0001076c",func="foo",
19663 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19664frame=@{level="1",addr="0x000107a4",func="foo",
19665 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19666frame=@{level="2",addr="0x000107a4",func="foo",
19667 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19668frame=@{level="3",addr="0x000107a4",func="foo",
19669 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19670frame=@{level="4",addr="0x000107a4",func="foo",
19671 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19672frame=@{level="5",addr="0x000107a4",func="foo",
19673 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19674frame=@{level="6",addr="0x000107a4",func="foo",
19675 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19676frame=@{level="7",addr="0x000107a4",func="foo",
19677 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19678frame=@{level="8",addr="0x000107a4",func="foo",
19679 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19680frame=@{level="9",addr="0x000107a4",func="foo",
19681 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19682frame=@{level="10",addr="0x000107a4",func="foo",
19683 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19684frame=@{level="11",addr="0x00010738",func="main",
19685 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19686(gdb)
1abaf70c
BR
19687@end smallexample
19688
a2c02241 19689Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19690
a2c02241 19691@smallexample
594fe323 19692(gdb)
a2c02241
NR
19693-stack-list-frames 3 5
19694^done,stack=
19695[frame=@{level="3",addr="0x000107a4",func="foo",
19696 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19697frame=@{level="4",addr="0x000107a4",func="foo",
19698 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19699frame=@{level="5",addr="0x000107a4",func="foo",
19700 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19701(gdb)
a2c02241 19702@end smallexample
922fbb7b 19703
a2c02241 19704Show a single frame:
922fbb7b
AC
19705
19706@smallexample
594fe323 19707(gdb)
a2c02241
NR
19708-stack-list-frames 3 3
19709^done,stack=
19710[frame=@{level="3",addr="0x000107a4",func="foo",
19711 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19712(gdb)
922fbb7b
AC
19713@end smallexample
19714
922fbb7b 19715
a2c02241
NR
19716@subheading The @code{-stack-list-locals} Command
19717@findex -stack-list-locals
57c22c6c 19718
a2c02241 19719@subsubheading Synopsis
922fbb7b
AC
19720
19721@smallexample
a2c02241 19722 -stack-list-locals @var{print-values}
922fbb7b
AC
19723@end smallexample
19724
a2c02241
NR
19725Display the local variable names for the selected frame. If
19726@var{print-values} is 0 or @code{--no-values}, print only the names of
19727the variables; if it is 1 or @code{--all-values}, print also their
19728values; and if it is 2 or @code{--simple-values}, print the name,
19729type and value for simple data types and the name and type for arrays,
19730structures and unions. In this last case, a frontend can immediately
19731display the value of simple data types and create variable objects for
d3e8051b 19732other data types when the user wishes to explore their values in
a2c02241 19733more detail.
922fbb7b
AC
19734
19735@subsubheading @value{GDBN} Command
19736
a2c02241 19737@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19738
19739@subsubheading Example
922fbb7b
AC
19740
19741@smallexample
594fe323 19742(gdb)
a2c02241
NR
19743-stack-list-locals 0
19744^done,locals=[name="A",name="B",name="C"]
594fe323 19745(gdb)
a2c02241
NR
19746-stack-list-locals --all-values
19747^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19748 @{name="C",value="@{1, 2, 3@}"@}]
19749-stack-list-locals --simple-values
19750^done,locals=[@{name="A",type="int",value="1"@},
19751 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19752(gdb)
922fbb7b
AC
19753@end smallexample
19754
922fbb7b 19755
a2c02241
NR
19756@subheading The @code{-stack-select-frame} Command
19757@findex -stack-select-frame
922fbb7b
AC
19758
19759@subsubheading Synopsis
19760
19761@smallexample
a2c02241 19762 -stack-select-frame @var{framenum}
922fbb7b
AC
19763@end smallexample
19764
a2c02241
NR
19765Change the selected frame. Select a different frame @var{framenum} on
19766the stack.
922fbb7b
AC
19767
19768@subsubheading @value{GDBN} Command
19769
a2c02241
NR
19770The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19771@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19772
19773@subsubheading Example
19774
19775@smallexample
594fe323 19776(gdb)
a2c02241 19777-stack-select-frame 2
922fbb7b 19778^done
594fe323 19779(gdb)
922fbb7b
AC
19780@end smallexample
19781
19782@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19783@node GDB/MI Variable Objects
19784@section @sc{gdb/mi} Variable Objects
922fbb7b 19785
a1b5960f 19786@ignore
922fbb7b 19787
a2c02241 19788@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19789
a2c02241
NR
19790For the implementation of a variable debugger window (locals, watched
19791expressions, etc.), we are proposing the adaptation of the existing code
19792used by @code{Insight}.
922fbb7b 19793
a2c02241 19794The two main reasons for that are:
922fbb7b 19795
a2c02241
NR
19796@enumerate 1
19797@item
19798It has been proven in practice (it is already on its second generation).
922fbb7b 19799
a2c02241
NR
19800@item
19801It will shorten development time (needless to say how important it is
19802now).
19803@end enumerate
922fbb7b 19804
a2c02241
NR
19805The original interface was designed to be used by Tcl code, so it was
19806slightly changed so it could be used through @sc{gdb/mi}. This section
19807describes the @sc{gdb/mi} operations that will be available and gives some
19808hints about their use.
922fbb7b 19809
a2c02241
NR
19810@emph{Note}: In addition to the set of operations described here, we
19811expect the @sc{gui} implementation of a variable window to require, at
19812least, the following operations:
922fbb7b 19813
a2c02241
NR
19814@itemize @bullet
19815@item @code{-gdb-show} @code{output-radix}
19816@item @code{-stack-list-arguments}
19817@item @code{-stack-list-locals}
19818@item @code{-stack-select-frame}
19819@end itemize
922fbb7b 19820
a1b5960f
VP
19821@end ignore
19822
c8b2f53c 19823@subheading Introduction to Variable Objects
922fbb7b 19824
a2c02241 19825@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19826
19827Variable objects are "object-oriented" MI interface for examining and
19828changing values of expressions. Unlike some other MI interfaces that
19829work with expressions, variable objects are specifically designed for
19830simple and efficient presentation in the frontend. A variable object
19831is identified by string name. When a variable object is created, the
19832frontend specifies the expression for that variable object. The
19833expression can be a simple variable, or it can be an arbitrary complex
19834expression, and can even involve CPU registers. After creating a
19835variable object, the frontend can invoke other variable object
19836operations---for example to obtain or change the value of a variable
19837object, or to change display format.
19838
19839Variable objects have hierarchical tree structure. Any variable object
19840that corresponds to a composite type, such as structure in C, has
19841a number of child variable objects, for example corresponding to each
19842element of a structure. A child variable object can itself have
19843children, recursively. Recursion ends when we reach
25d5ea92
VP
19844leaf variable objects, which always have built-in types. Child variable
19845objects are created only by explicit request, so if a frontend
19846is not interested in the children of a particular variable object, no
19847child will be created.
c8b2f53c
VP
19848
19849For a leaf variable object it is possible to obtain its value as a
19850string, or set the value from a string. String value can be also
19851obtained for a non-leaf variable object, but it's generally a string
19852that only indicates the type of the object, and does not list its
19853contents. Assignment to a non-leaf variable object is not allowed.
19854
19855A frontend does not need to read the values of all variable objects each time
19856the program stops. Instead, MI provides an update command that lists all
19857variable objects whose values has changed since the last update
19858operation. This considerably reduces the amount of data that must
25d5ea92
VP
19859be transferred to the frontend. As noted above, children variable
19860objects are created on demand, and only leaf variable objects have a
19861real value. As result, gdb will read target memory only for leaf
19862variables that frontend has created.
19863
19864The automatic update is not always desirable. For example, a frontend
19865might want to keep a value of some expression for future reference,
19866and never update it. For another example, fetching memory is
19867relatively slow for embedded targets, so a frontend might want
19868to disable automatic update for the variables that are either not
19869visible on the screen, or ``closed''. This is possible using so
19870called ``frozen variable objects''. Such variable objects are never
19871implicitly updated.
922fbb7b 19872
a2c02241
NR
19873The following is the complete set of @sc{gdb/mi} operations defined to
19874access this functionality:
922fbb7b 19875
a2c02241
NR
19876@multitable @columnfractions .4 .6
19877@item @strong{Operation}
19878@tab @strong{Description}
922fbb7b 19879
a2c02241
NR
19880@item @code{-var-create}
19881@tab create a variable object
19882@item @code{-var-delete}
22d8a470 19883@tab delete the variable object and/or its children
a2c02241
NR
19884@item @code{-var-set-format}
19885@tab set the display format of this variable
19886@item @code{-var-show-format}
19887@tab show the display format of this variable
19888@item @code{-var-info-num-children}
19889@tab tells how many children this object has
19890@item @code{-var-list-children}
19891@tab return a list of the object's children
19892@item @code{-var-info-type}
19893@tab show the type of this variable object
19894@item @code{-var-info-expression}
02142340
VP
19895@tab print parent-relative expression that this variable object represents
19896@item @code{-var-info-path-expression}
19897@tab print full expression that this variable object represents
a2c02241
NR
19898@item @code{-var-show-attributes}
19899@tab is this variable editable? does it exist here?
19900@item @code{-var-evaluate-expression}
19901@tab get the value of this variable
19902@item @code{-var-assign}
19903@tab set the value of this variable
19904@item @code{-var-update}
19905@tab update the variable and its children
25d5ea92
VP
19906@item @code{-var-set-frozen}
19907@tab set frozeness attribute
a2c02241 19908@end multitable
922fbb7b 19909
a2c02241
NR
19910In the next subsection we describe each operation in detail and suggest
19911how it can be used.
922fbb7b 19912
a2c02241 19913@subheading Description And Use of Operations on Variable Objects
922fbb7b 19914
a2c02241
NR
19915@subheading The @code{-var-create} Command
19916@findex -var-create
ef21caaf 19917
a2c02241 19918@subsubheading Synopsis
ef21caaf 19919
a2c02241
NR
19920@smallexample
19921 -var-create @{@var{name} | "-"@}
19922 @{@var{frame-addr} | "*"@} @var{expression}
19923@end smallexample
19924
19925This operation creates a variable object, which allows the monitoring of
19926a variable, the result of an expression, a memory cell or a CPU
19927register.
ef21caaf 19928
a2c02241
NR
19929The @var{name} parameter is the string by which the object can be
19930referenced. It must be unique. If @samp{-} is specified, the varobj
19931system will generate a string ``varNNNNNN'' automatically. It will be
19932unique provided that one does not specify @var{name} on that format.
19933The command fails if a duplicate name is found.
ef21caaf 19934
a2c02241
NR
19935The frame under which the expression should be evaluated can be
19936specified by @var{frame-addr}. A @samp{*} indicates that the current
19937frame should be used.
922fbb7b 19938
a2c02241
NR
19939@var{expression} is any expression valid on the current language set (must not
19940begin with a @samp{*}), or one of the following:
922fbb7b 19941
a2c02241
NR
19942@itemize @bullet
19943@item
19944@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19945
a2c02241
NR
19946@item
19947@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19948
a2c02241
NR
19949@item
19950@samp{$@var{regname}} --- a CPU register name
19951@end itemize
922fbb7b 19952
a2c02241 19953@subsubheading Result
922fbb7b 19954
a2c02241
NR
19955This operation returns the name, number of children and the type of the
19956object created. Type is returned as a string as the ones generated by
19957the @value{GDBN} CLI:
922fbb7b
AC
19958
19959@smallexample
a2c02241 19960 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19961@end smallexample
19962
a2c02241
NR
19963
19964@subheading The @code{-var-delete} Command
19965@findex -var-delete
922fbb7b
AC
19966
19967@subsubheading Synopsis
19968
19969@smallexample
22d8a470 19970 -var-delete [ -c ] @var{name}
922fbb7b
AC
19971@end smallexample
19972
a2c02241 19973Deletes a previously created variable object and all of its children.
22d8a470 19974With the @samp{-c} option, just deletes the children.
922fbb7b 19975
a2c02241 19976Returns an error if the object @var{name} is not found.
922fbb7b 19977
922fbb7b 19978
a2c02241
NR
19979@subheading The @code{-var-set-format} Command
19980@findex -var-set-format
922fbb7b 19981
a2c02241 19982@subsubheading Synopsis
922fbb7b
AC
19983
19984@smallexample
a2c02241 19985 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19986@end smallexample
19987
a2c02241
NR
19988Sets the output format for the value of the object @var{name} to be
19989@var{format-spec}.
19990
19991The syntax for the @var{format-spec} is as follows:
19992
19993@smallexample
19994 @var{format-spec} @expansion{}
19995 @{binary | decimal | hexadecimal | octal | natural@}
19996@end smallexample
19997
c8b2f53c
VP
19998The natural format is the default format choosen automatically
19999based on the variable type (like decimal for an @code{int}, hex
20000for pointers, etc.).
20001
20002For a variable with children, the format is set only on the
20003variable itself, and the children are not affected.
a2c02241
NR
20004
20005@subheading The @code{-var-show-format} Command
20006@findex -var-show-format
922fbb7b
AC
20007
20008@subsubheading Synopsis
20009
20010@smallexample
a2c02241 20011 -var-show-format @var{name}
922fbb7b
AC
20012@end smallexample
20013
a2c02241 20014Returns the format used to display the value of the object @var{name}.
922fbb7b 20015
a2c02241
NR
20016@smallexample
20017 @var{format} @expansion{}
20018 @var{format-spec}
20019@end smallexample
922fbb7b 20020
922fbb7b 20021
a2c02241
NR
20022@subheading The @code{-var-info-num-children} Command
20023@findex -var-info-num-children
20024
20025@subsubheading Synopsis
20026
20027@smallexample
20028 -var-info-num-children @var{name}
20029@end smallexample
20030
20031Returns the number of children of a variable object @var{name}:
20032
20033@smallexample
20034 numchild=@var{n}
20035@end smallexample
20036
20037
20038@subheading The @code{-var-list-children} Command
20039@findex -var-list-children
20040
20041@subsubheading Synopsis
20042
20043@smallexample
20044 -var-list-children [@var{print-values}] @var{name}
20045@end smallexample
20046@anchor{-var-list-children}
20047
20048Return a list of the children of the specified variable object and
20049create variable objects for them, if they do not already exist. With
20050a single argument or if @var{print-values} has a value for of 0 or
20051@code{--no-values}, print only the names of the variables; if
20052@var{print-values} is 1 or @code{--all-values}, also print their
20053values; and if it is 2 or @code{--simple-values} print the name and
20054value for simple data types and just the name for arrays, structures
20055and unions.
922fbb7b
AC
20056
20057@subsubheading Example
20058
20059@smallexample
594fe323 20060(gdb)
a2c02241
NR
20061 -var-list-children n
20062 ^done,numchild=@var{n},children=[@{name=@var{name},
20063 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20064(gdb)
a2c02241
NR
20065 -var-list-children --all-values n
20066 ^done,numchild=@var{n},children=[@{name=@var{name},
20067 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20068@end smallexample
20069
922fbb7b 20070
a2c02241
NR
20071@subheading The @code{-var-info-type} Command
20072@findex -var-info-type
922fbb7b 20073
a2c02241
NR
20074@subsubheading Synopsis
20075
20076@smallexample
20077 -var-info-type @var{name}
20078@end smallexample
20079
20080Returns the type of the specified variable @var{name}. The type is
20081returned as a string in the same format as it is output by the
20082@value{GDBN} CLI:
20083
20084@smallexample
20085 type=@var{typename}
20086@end smallexample
20087
20088
20089@subheading The @code{-var-info-expression} Command
20090@findex -var-info-expression
922fbb7b
AC
20091
20092@subsubheading Synopsis
20093
20094@smallexample
a2c02241 20095 -var-info-expression @var{name}
922fbb7b
AC
20096@end smallexample
20097
02142340
VP
20098Returns a string that is suitable for presenting this
20099variable object in user interface. The string is generally
20100not valid expression in the current language, and cannot be evaluated.
20101
20102For example, if @code{a} is an array, and variable object
20103@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20104
a2c02241 20105@smallexample
02142340
VP
20106(gdb) -var-info-expression A.1
20107^done,lang="C",exp="1"
a2c02241 20108@end smallexample
922fbb7b 20109
a2c02241 20110@noindent
02142340
VP
20111Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20112
20113Note that the output of the @code{-var-list-children} command also
20114includes those expressions, so the @code{-var-info-expression} command
20115is of limited use.
20116
20117@subheading The @code{-var-info-path-expression} Command
20118@findex -var-info-path-expression
20119
20120@subsubheading Synopsis
20121
20122@smallexample
20123 -var-info-path-expression @var{name}
20124@end smallexample
20125
20126Returns an expression that can be evaluated in the current
20127context and will yield the same value that a variable object has.
20128Compare this with the @code{-var-info-expression} command, which
20129result can be used only for UI presentation. Typical use of
20130the @code{-var-info-path-expression} command is creating a
20131watchpoint from a variable object.
20132
20133For example, suppose @code{C} is a C@t{++} class, derived from class
20134@code{Base}, and that the @code{Base} class has a member called
20135@code{m_size}. Assume a variable @code{c} is has the type of
20136@code{C} and a variable object @code{C} was created for variable
20137@code{c}. Then, we'll get this output:
20138@smallexample
20139(gdb) -var-info-path-expression C.Base.public.m_size
20140^done,path_expr=((Base)c).m_size)
20141@end smallexample
922fbb7b 20142
a2c02241
NR
20143@subheading The @code{-var-show-attributes} Command
20144@findex -var-show-attributes
922fbb7b 20145
a2c02241 20146@subsubheading Synopsis
922fbb7b 20147
a2c02241
NR
20148@smallexample
20149 -var-show-attributes @var{name}
20150@end smallexample
922fbb7b 20151
a2c02241 20152List attributes of the specified variable object @var{name}:
922fbb7b
AC
20153
20154@smallexample
a2c02241 20155 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20156@end smallexample
20157
a2c02241
NR
20158@noindent
20159where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20160
20161@subheading The @code{-var-evaluate-expression} Command
20162@findex -var-evaluate-expression
20163
20164@subsubheading Synopsis
20165
20166@smallexample
20167 -var-evaluate-expression @var{name}
20168@end smallexample
20169
20170Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20171object and returns its value as a string. The format of the
20172string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20173
20174@smallexample
20175 value=@var{value}
20176@end smallexample
20177
20178Note that one must invoke @code{-var-list-children} for a variable
20179before the value of a child variable can be evaluated.
20180
20181@subheading The @code{-var-assign} Command
20182@findex -var-assign
20183
20184@subsubheading Synopsis
20185
20186@smallexample
20187 -var-assign @var{name} @var{expression}
20188@end smallexample
20189
20190Assigns the value of @var{expression} to the variable object specified
20191by @var{name}. The object must be @samp{editable}. If the variable's
20192value is altered by the assign, the variable will show up in any
20193subsequent @code{-var-update} list.
20194
20195@subsubheading Example
922fbb7b
AC
20196
20197@smallexample
594fe323 20198(gdb)
a2c02241
NR
20199-var-assign var1 3
20200^done,value="3"
594fe323 20201(gdb)
a2c02241
NR
20202-var-update *
20203^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20204(gdb)
922fbb7b
AC
20205@end smallexample
20206
a2c02241
NR
20207@subheading The @code{-var-update} Command
20208@findex -var-update
20209
20210@subsubheading Synopsis
20211
20212@smallexample
20213 -var-update [@var{print-values}] @{@var{name} | "*"@}
20214@end smallexample
20215
c8b2f53c
VP
20216Reevaluate the expressions corresponding to the variable object
20217@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20218list of variable objects whose values have changed; @var{name} must
20219be a root variable object. Here, ``changed'' means that the result of
20220@code{-var-evaluate-expression} before and after the
20221@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20222object names, all existing variable objects are updated, except
20223for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20224@var{print-values} determines whether both names and values, or just
20225names are printed. The possible values of this options are the same
20226as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20227recommended to use the @samp{--all-values} option, to reduce the
20228number of MI commands needed on each program stop.
c8b2f53c 20229
a2c02241
NR
20230
20231@subsubheading Example
922fbb7b
AC
20232
20233@smallexample
594fe323 20234(gdb)
a2c02241
NR
20235-var-assign var1 3
20236^done,value="3"
594fe323 20237(gdb)
a2c02241
NR
20238-var-update --all-values var1
20239^done,changelist=[@{name="var1",value="3",in_scope="true",
20240type_changed="false"@}]
594fe323 20241(gdb)
922fbb7b
AC
20242@end smallexample
20243
9f708cb2 20244@anchor{-var-update}
36ece8b3
NR
20245The field in_scope may take three values:
20246
20247@table @code
20248@item "true"
20249The variable object's current value is valid.
20250
20251@item "false"
20252The variable object does not currently hold a valid value but it may
20253hold one in the future if its associated expression comes back into
20254scope.
20255
20256@item "invalid"
20257The variable object no longer holds a valid value.
20258This can occur when the executable file being debugged has changed,
20259either through recompilation or by using the @value{GDBN} @code{file}
20260command. The front end should normally choose to delete these variable
20261objects.
20262@end table
20263
20264In the future new values may be added to this list so the front should
20265be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20266
25d5ea92
VP
20267@subheading The @code{-var-set-frozen} Command
20268@findex -var-set-frozen
9f708cb2 20269@anchor{-var-set-frozen}
25d5ea92
VP
20270
20271@subsubheading Synopsis
20272
20273@smallexample
9f708cb2 20274 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20275@end smallexample
20276
9f708cb2 20277Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20278@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20279frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20280frozen, then neither itself, nor any of its children, are
9f708cb2 20281implicitly updated by @code{-var-update} of
25d5ea92
VP
20282a parent variable or by @code{-var-update *}. Only
20283@code{-var-update} of the variable itself will update its value and
20284values of its children. After a variable object is unfrozen, it is
20285implicitly updated by all subsequent @code{-var-update} operations.
20286Unfreezing a variable does not update it, only subsequent
20287@code{-var-update} does.
20288
20289@subsubheading Example
20290
20291@smallexample
20292(gdb)
20293-var-set-frozen V 1
20294^done
20295(gdb)
20296@end smallexample
20297
20298
a2c02241
NR
20299@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20300@node GDB/MI Data Manipulation
20301@section @sc{gdb/mi} Data Manipulation
922fbb7b 20302
a2c02241
NR
20303@cindex data manipulation, in @sc{gdb/mi}
20304@cindex @sc{gdb/mi}, data manipulation
20305This section describes the @sc{gdb/mi} commands that manipulate data:
20306examine memory and registers, evaluate expressions, etc.
20307
20308@c REMOVED FROM THE INTERFACE.
20309@c @subheading -data-assign
20310@c Change the value of a program variable. Plenty of side effects.
79a6e687 20311@c @subsubheading GDB Command
a2c02241
NR
20312@c set variable
20313@c @subsubheading Example
20314@c N.A.
20315
20316@subheading The @code{-data-disassemble} Command
20317@findex -data-disassemble
922fbb7b
AC
20318
20319@subsubheading Synopsis
20320
20321@smallexample
a2c02241
NR
20322 -data-disassemble
20323 [ -s @var{start-addr} -e @var{end-addr} ]
20324 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20325 -- @var{mode}
922fbb7b
AC
20326@end smallexample
20327
a2c02241
NR
20328@noindent
20329Where:
20330
20331@table @samp
20332@item @var{start-addr}
20333is the beginning address (or @code{$pc})
20334@item @var{end-addr}
20335is the end address
20336@item @var{filename}
20337is the name of the file to disassemble
20338@item @var{linenum}
20339is the line number to disassemble around
20340@item @var{lines}
d3e8051b 20341is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20342the whole function will be disassembled, in case no @var{end-addr} is
20343specified. If @var{end-addr} is specified as a non-zero value, and
20344@var{lines} is lower than the number of disassembly lines between
20345@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20346displayed; if @var{lines} is higher than the number of lines between
20347@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20348are displayed.
20349@item @var{mode}
20350is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20351disassembly).
20352@end table
20353
20354@subsubheading Result
20355
20356The output for each instruction is composed of four fields:
20357
20358@itemize @bullet
20359@item Address
20360@item Func-name
20361@item Offset
20362@item Instruction
20363@end itemize
20364
20365Note that whatever included in the instruction field, is not manipulated
d3e8051b 20366directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20367
20368@subsubheading @value{GDBN} Command
20369
a2c02241 20370There's no direct mapping from this command to the CLI.
922fbb7b
AC
20371
20372@subsubheading Example
20373
a2c02241
NR
20374Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20375
922fbb7b 20376@smallexample
594fe323 20377(gdb)
a2c02241
NR
20378-data-disassemble -s $pc -e "$pc + 20" -- 0
20379^done,
20380asm_insns=[
20381@{address="0x000107c0",func-name="main",offset="4",
20382inst="mov 2, %o0"@},
20383@{address="0x000107c4",func-name="main",offset="8",
20384inst="sethi %hi(0x11800), %o2"@},
20385@{address="0x000107c8",func-name="main",offset="12",
20386inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20387@{address="0x000107cc",func-name="main",offset="16",
20388inst="sethi %hi(0x11800), %o2"@},
20389@{address="0x000107d0",func-name="main",offset="20",
20390inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20391(gdb)
a2c02241
NR
20392@end smallexample
20393
20394Disassemble the whole @code{main} function. Line 32 is part of
20395@code{main}.
20396
20397@smallexample
20398-data-disassemble -f basics.c -l 32 -- 0
20399^done,asm_insns=[
20400@{address="0x000107bc",func-name="main",offset="0",
20401inst="save %sp, -112, %sp"@},
20402@{address="0x000107c0",func-name="main",offset="4",
20403inst="mov 2, %o0"@},
20404@{address="0x000107c4",func-name="main",offset="8",
20405inst="sethi %hi(0x11800), %o2"@},
20406[@dots{}]
20407@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20408@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20409(gdb)
922fbb7b
AC
20410@end smallexample
20411
a2c02241 20412Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20413
a2c02241 20414@smallexample
594fe323 20415(gdb)
a2c02241
NR
20416-data-disassemble -f basics.c -l 32 -n 3 -- 0
20417^done,asm_insns=[
20418@{address="0x000107bc",func-name="main",offset="0",
20419inst="save %sp, -112, %sp"@},
20420@{address="0x000107c0",func-name="main",offset="4",
20421inst="mov 2, %o0"@},
20422@{address="0x000107c4",func-name="main",offset="8",
20423inst="sethi %hi(0x11800), %o2"@}]
594fe323 20424(gdb)
a2c02241
NR
20425@end smallexample
20426
20427Disassemble 3 instructions from the start of @code{main} in mixed mode:
20428
20429@smallexample
594fe323 20430(gdb)
a2c02241
NR
20431-data-disassemble -f basics.c -l 32 -n 3 -- 1
20432^done,asm_insns=[
20433src_and_asm_line=@{line="31",
20434file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20435 testsuite/gdb.mi/basics.c",line_asm_insn=[
20436@{address="0x000107bc",func-name="main",offset="0",
20437inst="save %sp, -112, %sp"@}]@},
20438src_and_asm_line=@{line="32",
20439file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20440 testsuite/gdb.mi/basics.c",line_asm_insn=[
20441@{address="0x000107c0",func-name="main",offset="4",
20442inst="mov 2, %o0"@},
20443@{address="0x000107c4",func-name="main",offset="8",
20444inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20445(gdb)
a2c02241
NR
20446@end smallexample
20447
20448
20449@subheading The @code{-data-evaluate-expression} Command
20450@findex -data-evaluate-expression
922fbb7b
AC
20451
20452@subsubheading Synopsis
20453
20454@smallexample
a2c02241 20455 -data-evaluate-expression @var{expr}
922fbb7b
AC
20456@end smallexample
20457
a2c02241
NR
20458Evaluate @var{expr} as an expression. The expression could contain an
20459inferior function call. The function call will execute synchronously.
20460If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20461
20462@subsubheading @value{GDBN} Command
20463
a2c02241
NR
20464The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20465@samp{call}. In @code{gdbtk} only, there's a corresponding
20466@samp{gdb_eval} command.
922fbb7b
AC
20467
20468@subsubheading Example
20469
a2c02241
NR
20470In the following example, the numbers that precede the commands are the
20471@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20472Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20473output.
20474
922fbb7b 20475@smallexample
a2c02241
NR
20476211-data-evaluate-expression A
20477211^done,value="1"
594fe323 20478(gdb)
a2c02241
NR
20479311-data-evaluate-expression &A
20480311^done,value="0xefffeb7c"
594fe323 20481(gdb)
a2c02241
NR
20482411-data-evaluate-expression A+3
20483411^done,value="4"
594fe323 20484(gdb)
a2c02241
NR
20485511-data-evaluate-expression "A + 3"
20486511^done,value="4"
594fe323 20487(gdb)
a2c02241 20488@end smallexample
922fbb7b
AC
20489
20490
a2c02241
NR
20491@subheading The @code{-data-list-changed-registers} Command
20492@findex -data-list-changed-registers
922fbb7b
AC
20493
20494@subsubheading Synopsis
20495
20496@smallexample
a2c02241 20497 -data-list-changed-registers
922fbb7b
AC
20498@end smallexample
20499
a2c02241 20500Display a list of the registers that have changed.
922fbb7b
AC
20501
20502@subsubheading @value{GDBN} Command
20503
a2c02241
NR
20504@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20505has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20506
20507@subsubheading Example
922fbb7b 20508
a2c02241 20509On a PPC MBX board:
922fbb7b
AC
20510
20511@smallexample
594fe323 20512(gdb)
a2c02241
NR
20513-exec-continue
20514^running
922fbb7b 20515
594fe323 20516(gdb)
a2c02241
NR
20517*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20518args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20519(gdb)
a2c02241
NR
20520-data-list-changed-registers
20521^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20522"10","11","13","14","15","16","17","18","19","20","21","22","23",
20523"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20524(gdb)
a2c02241 20525@end smallexample
922fbb7b
AC
20526
20527
a2c02241
NR
20528@subheading The @code{-data-list-register-names} Command
20529@findex -data-list-register-names
922fbb7b
AC
20530
20531@subsubheading Synopsis
20532
20533@smallexample
a2c02241 20534 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20535@end smallexample
20536
a2c02241
NR
20537Show a list of register names for the current target. If no arguments
20538are given, it shows a list of the names of all the registers. If
20539integer numbers are given as arguments, it will print a list of the
20540names of the registers corresponding to the arguments. To ensure
20541consistency between a register name and its number, the output list may
20542include empty register names.
922fbb7b
AC
20543
20544@subsubheading @value{GDBN} Command
20545
a2c02241
NR
20546@value{GDBN} does not have a command which corresponds to
20547@samp{-data-list-register-names}. In @code{gdbtk} there is a
20548corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20549
20550@subsubheading Example
922fbb7b 20551
a2c02241
NR
20552For the PPC MBX board:
20553@smallexample
594fe323 20554(gdb)
a2c02241
NR
20555-data-list-register-names
20556^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20557"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20558"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20559"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20560"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20561"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20562"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20563(gdb)
a2c02241
NR
20564-data-list-register-names 1 2 3
20565^done,register-names=["r1","r2","r3"]
594fe323 20566(gdb)
a2c02241 20567@end smallexample
922fbb7b 20568
a2c02241
NR
20569@subheading The @code{-data-list-register-values} Command
20570@findex -data-list-register-values
922fbb7b
AC
20571
20572@subsubheading Synopsis
20573
20574@smallexample
a2c02241 20575 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20576@end smallexample
20577
a2c02241
NR
20578Display the registers' contents. @var{fmt} is the format according to
20579which the registers' contents are to be returned, followed by an optional
20580list of numbers specifying the registers to display. A missing list of
20581numbers indicates that the contents of all the registers must be returned.
20582
20583Allowed formats for @var{fmt} are:
20584
20585@table @code
20586@item x
20587Hexadecimal
20588@item o
20589Octal
20590@item t
20591Binary
20592@item d
20593Decimal
20594@item r
20595Raw
20596@item N
20597Natural
20598@end table
922fbb7b
AC
20599
20600@subsubheading @value{GDBN} Command
20601
a2c02241
NR
20602The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20603all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20604
20605@subsubheading Example
922fbb7b 20606
a2c02241
NR
20607For a PPC MBX board (note: line breaks are for readability only, they
20608don't appear in the actual output):
20609
20610@smallexample
594fe323 20611(gdb)
a2c02241
NR
20612-data-list-register-values r 64 65
20613^done,register-values=[@{number="64",value="0xfe00a300"@},
20614@{number="65",value="0x00029002"@}]
594fe323 20615(gdb)
a2c02241
NR
20616-data-list-register-values x
20617^done,register-values=[@{number="0",value="0xfe0043c8"@},
20618@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20619@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20620@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20621@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20622@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20623@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20624@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20625@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20626@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20627@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20628@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20629@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20630@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20631@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20632@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20633@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20634@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20635@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20636@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20637@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20638@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20639@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20640@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20641@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20642@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20643@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20644@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20645@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20646@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20647@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20648@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20649@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20650@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20651@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20652@{number="69",value="0x20002b03"@}]
594fe323 20653(gdb)
a2c02241 20654@end smallexample
922fbb7b 20655
a2c02241
NR
20656
20657@subheading The @code{-data-read-memory} Command
20658@findex -data-read-memory
922fbb7b
AC
20659
20660@subsubheading Synopsis
20661
20662@smallexample
a2c02241
NR
20663 -data-read-memory [ -o @var{byte-offset} ]
20664 @var{address} @var{word-format} @var{word-size}
20665 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20666@end smallexample
20667
a2c02241
NR
20668@noindent
20669where:
922fbb7b 20670
a2c02241
NR
20671@table @samp
20672@item @var{address}
20673An expression specifying the address of the first memory word to be
20674read. Complex expressions containing embedded white space should be
20675quoted using the C convention.
922fbb7b 20676
a2c02241
NR
20677@item @var{word-format}
20678The format to be used to print the memory words. The notation is the
20679same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20680,Output Formats}).
922fbb7b 20681
a2c02241
NR
20682@item @var{word-size}
20683The size of each memory word in bytes.
922fbb7b 20684
a2c02241
NR
20685@item @var{nr-rows}
20686The number of rows in the output table.
922fbb7b 20687
a2c02241
NR
20688@item @var{nr-cols}
20689The number of columns in the output table.
922fbb7b 20690
a2c02241
NR
20691@item @var{aschar}
20692If present, indicates that each row should include an @sc{ascii} dump. The
20693value of @var{aschar} is used as a padding character when a byte is not a
20694member of the printable @sc{ascii} character set (printable @sc{ascii}
20695characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20696
a2c02241
NR
20697@item @var{byte-offset}
20698An offset to add to the @var{address} before fetching memory.
20699@end table
922fbb7b 20700
a2c02241
NR
20701This command displays memory contents as a table of @var{nr-rows} by
20702@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20703@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20704(returned as @samp{total-bytes}). Should less than the requested number
20705of bytes be returned by the target, the missing words are identified
20706using @samp{N/A}. The number of bytes read from the target is returned
20707in @samp{nr-bytes} and the starting address used to read memory in
20708@samp{addr}.
20709
20710The address of the next/previous row or page is available in
20711@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20712@samp{prev-page}.
922fbb7b
AC
20713
20714@subsubheading @value{GDBN} Command
20715
a2c02241
NR
20716The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20717@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20718
20719@subsubheading Example
32e7087d 20720
a2c02241
NR
20721Read six bytes of memory starting at @code{bytes+6} but then offset by
20722@code{-6} bytes. Format as three rows of two columns. One byte per
20723word. Display each word in hex.
32e7087d
JB
20724
20725@smallexample
594fe323 20726(gdb)
a2c02241
NR
207279-data-read-memory -o -6 -- bytes+6 x 1 3 2
207289^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20729next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20730prev-page="0x0000138a",memory=[
20731@{addr="0x00001390",data=["0x00","0x01"]@},
20732@{addr="0x00001392",data=["0x02","0x03"]@},
20733@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20734(gdb)
32e7087d
JB
20735@end smallexample
20736
a2c02241
NR
20737Read two bytes of memory starting at address @code{shorts + 64} and
20738display as a single word formatted in decimal.
32e7087d 20739
32e7087d 20740@smallexample
594fe323 20741(gdb)
a2c02241
NR
207425-data-read-memory shorts+64 d 2 1 1
207435^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20744next-row="0x00001512",prev-row="0x0000150e",
20745next-page="0x00001512",prev-page="0x0000150e",memory=[
20746@{addr="0x00001510",data=["128"]@}]
594fe323 20747(gdb)
32e7087d
JB
20748@end smallexample
20749
a2c02241
NR
20750Read thirty two bytes of memory starting at @code{bytes+16} and format
20751as eight rows of four columns. Include a string encoding with @samp{x}
20752used as the non-printable character.
922fbb7b
AC
20753
20754@smallexample
594fe323 20755(gdb)
a2c02241
NR
207564-data-read-memory bytes+16 x 1 8 4 x
207574^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20758next-row="0x000013c0",prev-row="0x0000139c",
20759next-page="0x000013c0",prev-page="0x00001380",memory=[
20760@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20761@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20762@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20763@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20764@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20765@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20766@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20767@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20768(gdb)
922fbb7b
AC
20769@end smallexample
20770
a2c02241
NR
20771@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20772@node GDB/MI Tracepoint Commands
20773@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20774
a2c02241 20775The tracepoint commands are not yet implemented.
922fbb7b 20776
a2c02241 20777@c @subheading -trace-actions
922fbb7b 20778
a2c02241 20779@c @subheading -trace-delete
922fbb7b 20780
a2c02241 20781@c @subheading -trace-disable
922fbb7b 20782
a2c02241 20783@c @subheading -trace-dump
922fbb7b 20784
a2c02241 20785@c @subheading -trace-enable
922fbb7b 20786
a2c02241 20787@c @subheading -trace-exists
922fbb7b 20788
a2c02241 20789@c @subheading -trace-find
922fbb7b 20790
a2c02241 20791@c @subheading -trace-frame-number
922fbb7b 20792
a2c02241 20793@c @subheading -trace-info
922fbb7b 20794
a2c02241 20795@c @subheading -trace-insert
922fbb7b 20796
a2c02241 20797@c @subheading -trace-list
922fbb7b 20798
a2c02241 20799@c @subheading -trace-pass-count
922fbb7b 20800
a2c02241 20801@c @subheading -trace-save
922fbb7b 20802
a2c02241 20803@c @subheading -trace-start
922fbb7b 20804
a2c02241 20805@c @subheading -trace-stop
922fbb7b 20806
922fbb7b 20807
a2c02241
NR
20808@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20809@node GDB/MI Symbol Query
20810@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20811
20812
a2c02241
NR
20813@subheading The @code{-symbol-info-address} Command
20814@findex -symbol-info-address
922fbb7b
AC
20815
20816@subsubheading Synopsis
20817
20818@smallexample
a2c02241 20819 -symbol-info-address @var{symbol}
922fbb7b
AC
20820@end smallexample
20821
a2c02241 20822Describe where @var{symbol} is stored.
922fbb7b
AC
20823
20824@subsubheading @value{GDBN} Command
20825
a2c02241 20826The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20827
20828@subsubheading Example
20829N.A.
20830
20831
a2c02241
NR
20832@subheading The @code{-symbol-info-file} Command
20833@findex -symbol-info-file
922fbb7b
AC
20834
20835@subsubheading Synopsis
20836
20837@smallexample
a2c02241 20838 -symbol-info-file
922fbb7b
AC
20839@end smallexample
20840
a2c02241 20841Show the file for the symbol.
922fbb7b 20842
a2c02241 20843@subsubheading @value{GDBN} Command
922fbb7b 20844
a2c02241
NR
20845There's no equivalent @value{GDBN} command. @code{gdbtk} has
20846@samp{gdb_find_file}.
922fbb7b
AC
20847
20848@subsubheading Example
20849N.A.
20850
20851
a2c02241
NR
20852@subheading The @code{-symbol-info-function} Command
20853@findex -symbol-info-function
922fbb7b
AC
20854
20855@subsubheading Synopsis
20856
20857@smallexample
a2c02241 20858 -symbol-info-function
922fbb7b
AC
20859@end smallexample
20860
a2c02241 20861Show which function the symbol lives in.
922fbb7b
AC
20862
20863@subsubheading @value{GDBN} Command
20864
a2c02241 20865@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20866
20867@subsubheading Example
20868N.A.
20869
20870
a2c02241
NR
20871@subheading The @code{-symbol-info-line} Command
20872@findex -symbol-info-line
922fbb7b
AC
20873
20874@subsubheading Synopsis
20875
20876@smallexample
a2c02241 20877 -symbol-info-line
922fbb7b
AC
20878@end smallexample
20879
a2c02241 20880Show the core addresses of the code for a source line.
922fbb7b 20881
a2c02241 20882@subsubheading @value{GDBN} Command
922fbb7b 20883
a2c02241
NR
20884The corresponding @value{GDBN} command is @samp{info line}.
20885@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20886
20887@subsubheading Example
a2c02241 20888N.A.
922fbb7b
AC
20889
20890
a2c02241
NR
20891@subheading The @code{-symbol-info-symbol} Command
20892@findex -symbol-info-symbol
07f31aa6
DJ
20893
20894@subsubheading Synopsis
20895
a2c02241
NR
20896@smallexample
20897 -symbol-info-symbol @var{addr}
20898@end smallexample
07f31aa6 20899
a2c02241 20900Describe what symbol is at location @var{addr}.
07f31aa6 20901
a2c02241 20902@subsubheading @value{GDBN} Command
07f31aa6 20903
a2c02241 20904The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20905
20906@subsubheading Example
a2c02241 20907N.A.
07f31aa6
DJ
20908
20909
a2c02241
NR
20910@subheading The @code{-symbol-list-functions} Command
20911@findex -symbol-list-functions
922fbb7b
AC
20912
20913@subsubheading Synopsis
20914
20915@smallexample
a2c02241 20916 -symbol-list-functions
922fbb7b
AC
20917@end smallexample
20918
a2c02241 20919List the functions in the executable.
922fbb7b
AC
20920
20921@subsubheading @value{GDBN} Command
20922
a2c02241
NR
20923@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20924@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20925
20926@subsubheading Example
a2c02241 20927N.A.
922fbb7b
AC
20928
20929
a2c02241
NR
20930@subheading The @code{-symbol-list-lines} Command
20931@findex -symbol-list-lines
922fbb7b
AC
20932
20933@subsubheading Synopsis
20934
20935@smallexample
a2c02241 20936 -symbol-list-lines @var{filename}
922fbb7b
AC
20937@end smallexample
20938
a2c02241
NR
20939Print the list of lines that contain code and their associated program
20940addresses for the given source filename. The entries are sorted in
20941ascending PC order.
922fbb7b
AC
20942
20943@subsubheading @value{GDBN} Command
20944
a2c02241 20945There is no corresponding @value{GDBN} command.
922fbb7b
AC
20946
20947@subsubheading Example
a2c02241 20948@smallexample
594fe323 20949(gdb)
a2c02241
NR
20950-symbol-list-lines basics.c
20951^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20952(gdb)
a2c02241 20953@end smallexample
922fbb7b
AC
20954
20955
a2c02241
NR
20956@subheading The @code{-symbol-list-types} Command
20957@findex -symbol-list-types
922fbb7b
AC
20958
20959@subsubheading Synopsis
20960
20961@smallexample
a2c02241 20962 -symbol-list-types
922fbb7b
AC
20963@end smallexample
20964
a2c02241 20965List all the type names.
922fbb7b
AC
20966
20967@subsubheading @value{GDBN} Command
20968
a2c02241
NR
20969The corresponding commands are @samp{info types} in @value{GDBN},
20970@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20971
20972@subsubheading Example
20973N.A.
20974
20975
a2c02241
NR
20976@subheading The @code{-symbol-list-variables} Command
20977@findex -symbol-list-variables
922fbb7b
AC
20978
20979@subsubheading Synopsis
20980
20981@smallexample
a2c02241 20982 -symbol-list-variables
922fbb7b
AC
20983@end smallexample
20984
a2c02241 20985List all the global and static variable names.
922fbb7b
AC
20986
20987@subsubheading @value{GDBN} Command
20988
a2c02241 20989@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20990
20991@subsubheading Example
20992N.A.
20993
20994
a2c02241
NR
20995@subheading The @code{-symbol-locate} Command
20996@findex -symbol-locate
922fbb7b
AC
20997
20998@subsubheading Synopsis
20999
21000@smallexample
a2c02241 21001 -symbol-locate
922fbb7b
AC
21002@end smallexample
21003
922fbb7b
AC
21004@subsubheading @value{GDBN} Command
21005
a2c02241 21006@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21007
21008@subsubheading Example
21009N.A.
21010
21011
a2c02241
NR
21012@subheading The @code{-symbol-type} Command
21013@findex -symbol-type
922fbb7b
AC
21014
21015@subsubheading Synopsis
21016
21017@smallexample
a2c02241 21018 -symbol-type @var{variable}
922fbb7b
AC
21019@end smallexample
21020
a2c02241 21021Show type of @var{variable}.
922fbb7b 21022
a2c02241 21023@subsubheading @value{GDBN} Command
922fbb7b 21024
a2c02241
NR
21025The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21026@samp{gdb_obj_variable}.
21027
21028@subsubheading Example
21029N.A.
21030
21031
21032@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21033@node GDB/MI File Commands
21034@section @sc{gdb/mi} File Commands
21035
21036This section describes the GDB/MI commands to specify executable file names
21037and to read in and obtain symbol table information.
21038
21039@subheading The @code{-file-exec-and-symbols} Command
21040@findex -file-exec-and-symbols
21041
21042@subsubheading Synopsis
922fbb7b
AC
21043
21044@smallexample
a2c02241 21045 -file-exec-and-symbols @var{file}
922fbb7b
AC
21046@end smallexample
21047
a2c02241
NR
21048Specify the executable file to be debugged. This file is the one from
21049which the symbol table is also read. If no file is specified, the
21050command clears the executable and symbol information. If breakpoints
21051are set when using this command with no arguments, @value{GDBN} will produce
21052error messages. Otherwise, no output is produced, except a completion
21053notification.
21054
922fbb7b
AC
21055@subsubheading @value{GDBN} Command
21056
a2c02241 21057The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21058
21059@subsubheading Example
21060
21061@smallexample
594fe323 21062(gdb)
a2c02241
NR
21063-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21064^done
594fe323 21065(gdb)
922fbb7b
AC
21066@end smallexample
21067
922fbb7b 21068
a2c02241
NR
21069@subheading The @code{-file-exec-file} Command
21070@findex -file-exec-file
922fbb7b
AC
21071
21072@subsubheading Synopsis
21073
21074@smallexample
a2c02241 21075 -file-exec-file @var{file}
922fbb7b
AC
21076@end smallexample
21077
a2c02241
NR
21078Specify the executable file to be debugged. Unlike
21079@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21080from this file. If used without argument, @value{GDBN} clears the information
21081about the executable file. No output is produced, except a completion
21082notification.
922fbb7b 21083
a2c02241
NR
21084@subsubheading @value{GDBN} Command
21085
21086The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21087
21088@subsubheading Example
a2c02241
NR
21089
21090@smallexample
594fe323 21091(gdb)
a2c02241
NR
21092-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21093^done
594fe323 21094(gdb)
a2c02241 21095@end smallexample
922fbb7b
AC
21096
21097
a2c02241
NR
21098@subheading The @code{-file-list-exec-sections} Command
21099@findex -file-list-exec-sections
922fbb7b
AC
21100
21101@subsubheading Synopsis
21102
21103@smallexample
a2c02241 21104 -file-list-exec-sections
922fbb7b
AC
21105@end smallexample
21106
a2c02241
NR
21107List the sections of the current executable file.
21108
922fbb7b
AC
21109@subsubheading @value{GDBN} Command
21110
a2c02241
NR
21111The @value{GDBN} command @samp{info file} shows, among the rest, the same
21112information as this command. @code{gdbtk} has a corresponding command
21113@samp{gdb_load_info}.
922fbb7b
AC
21114
21115@subsubheading Example
21116N.A.
21117
21118
a2c02241
NR
21119@subheading The @code{-file-list-exec-source-file} Command
21120@findex -file-list-exec-source-file
922fbb7b
AC
21121
21122@subsubheading Synopsis
21123
21124@smallexample
a2c02241 21125 -file-list-exec-source-file
922fbb7b
AC
21126@end smallexample
21127
a2c02241 21128List the line number, the current source file, and the absolute path
44288b44
NR
21129to the current source file for the current executable. The macro
21130information field has a value of @samp{1} or @samp{0} depending on
21131whether or not the file includes preprocessor macro information.
922fbb7b
AC
21132
21133@subsubheading @value{GDBN} Command
21134
a2c02241 21135The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21136
21137@subsubheading Example
21138
922fbb7b 21139@smallexample
594fe323 21140(gdb)
a2c02241 21141123-file-list-exec-source-file
44288b44 21142123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21143(gdb)
922fbb7b
AC
21144@end smallexample
21145
21146
a2c02241
NR
21147@subheading The @code{-file-list-exec-source-files} Command
21148@findex -file-list-exec-source-files
922fbb7b
AC
21149
21150@subsubheading Synopsis
21151
21152@smallexample
a2c02241 21153 -file-list-exec-source-files
922fbb7b
AC
21154@end smallexample
21155
a2c02241
NR
21156List the source files for the current executable.
21157
3f94c067
BW
21158It will always output the filename, but only when @value{GDBN} can find
21159the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21160
21161@subsubheading @value{GDBN} Command
21162
a2c02241
NR
21163The @value{GDBN} equivalent is @samp{info sources}.
21164@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21165
21166@subsubheading Example
922fbb7b 21167@smallexample
594fe323 21168(gdb)
a2c02241
NR
21169-file-list-exec-source-files
21170^done,files=[
21171@{file=foo.c,fullname=/home/foo.c@},
21172@{file=/home/bar.c,fullname=/home/bar.c@},
21173@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21174(gdb)
922fbb7b
AC
21175@end smallexample
21176
a2c02241
NR
21177@subheading The @code{-file-list-shared-libraries} Command
21178@findex -file-list-shared-libraries
922fbb7b 21179
a2c02241 21180@subsubheading Synopsis
922fbb7b 21181
a2c02241
NR
21182@smallexample
21183 -file-list-shared-libraries
21184@end smallexample
922fbb7b 21185
a2c02241 21186List the shared libraries in the program.
922fbb7b 21187
a2c02241 21188@subsubheading @value{GDBN} Command
922fbb7b 21189
a2c02241 21190The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21191
a2c02241
NR
21192@subsubheading Example
21193N.A.
922fbb7b
AC
21194
21195
a2c02241
NR
21196@subheading The @code{-file-list-symbol-files} Command
21197@findex -file-list-symbol-files
922fbb7b 21198
a2c02241 21199@subsubheading Synopsis
922fbb7b 21200
a2c02241
NR
21201@smallexample
21202 -file-list-symbol-files
21203@end smallexample
922fbb7b 21204
a2c02241 21205List symbol files.
922fbb7b 21206
a2c02241 21207@subsubheading @value{GDBN} Command
922fbb7b 21208
a2c02241 21209The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21210
a2c02241
NR
21211@subsubheading Example
21212N.A.
922fbb7b 21213
922fbb7b 21214
a2c02241
NR
21215@subheading The @code{-file-symbol-file} Command
21216@findex -file-symbol-file
922fbb7b 21217
a2c02241 21218@subsubheading Synopsis
922fbb7b 21219
a2c02241
NR
21220@smallexample
21221 -file-symbol-file @var{file}
21222@end smallexample
922fbb7b 21223
a2c02241
NR
21224Read symbol table info from the specified @var{file} argument. When
21225used without arguments, clears @value{GDBN}'s symbol table info. No output is
21226produced, except for a completion notification.
922fbb7b 21227
a2c02241 21228@subsubheading @value{GDBN} Command
922fbb7b 21229
a2c02241 21230The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21231
a2c02241 21232@subsubheading Example
922fbb7b 21233
a2c02241 21234@smallexample
594fe323 21235(gdb)
a2c02241
NR
21236-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21237^done
594fe323 21238(gdb)
a2c02241 21239@end smallexample
922fbb7b 21240
a2c02241 21241@ignore
a2c02241
NR
21242@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21243@node GDB/MI Memory Overlay Commands
21244@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21245
a2c02241 21246The memory overlay commands are not implemented.
922fbb7b 21247
a2c02241 21248@c @subheading -overlay-auto
922fbb7b 21249
a2c02241 21250@c @subheading -overlay-list-mapping-state
922fbb7b 21251
a2c02241 21252@c @subheading -overlay-list-overlays
922fbb7b 21253
a2c02241 21254@c @subheading -overlay-map
922fbb7b 21255
a2c02241 21256@c @subheading -overlay-off
922fbb7b 21257
a2c02241 21258@c @subheading -overlay-on
922fbb7b 21259
a2c02241 21260@c @subheading -overlay-unmap
922fbb7b 21261
a2c02241
NR
21262@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21263@node GDB/MI Signal Handling Commands
21264@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21265
a2c02241 21266Signal handling commands are not implemented.
922fbb7b 21267
a2c02241 21268@c @subheading -signal-handle
922fbb7b 21269
a2c02241 21270@c @subheading -signal-list-handle-actions
922fbb7b 21271
a2c02241
NR
21272@c @subheading -signal-list-signal-types
21273@end ignore
922fbb7b 21274
922fbb7b 21275
a2c02241
NR
21276@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21277@node GDB/MI Target Manipulation
21278@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21279
21280
a2c02241
NR
21281@subheading The @code{-target-attach} Command
21282@findex -target-attach
922fbb7b
AC
21283
21284@subsubheading Synopsis
21285
21286@smallexample
a2c02241 21287 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21288@end smallexample
21289
a2c02241 21290Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21291
79a6e687 21292@subsubheading @value{GDBN} Command
922fbb7b 21293
a2c02241 21294The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21295
a2c02241
NR
21296@subsubheading Example
21297N.A.
922fbb7b 21298
a2c02241
NR
21299
21300@subheading The @code{-target-compare-sections} Command
21301@findex -target-compare-sections
922fbb7b
AC
21302
21303@subsubheading Synopsis
21304
21305@smallexample
a2c02241 21306 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21307@end smallexample
21308
a2c02241
NR
21309Compare data of section @var{section} on target to the exec file.
21310Without the argument, all sections are compared.
922fbb7b 21311
a2c02241 21312@subsubheading @value{GDBN} Command
922fbb7b 21313
a2c02241 21314The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21315
a2c02241
NR
21316@subsubheading Example
21317N.A.
21318
21319
21320@subheading The @code{-target-detach} Command
21321@findex -target-detach
922fbb7b
AC
21322
21323@subsubheading Synopsis
21324
21325@smallexample
a2c02241 21326 -target-detach
922fbb7b
AC
21327@end smallexample
21328
a2c02241
NR
21329Detach from the remote target which normally resumes its execution.
21330There's no output.
21331
79a6e687 21332@subsubheading @value{GDBN} Command
a2c02241
NR
21333
21334The corresponding @value{GDBN} command is @samp{detach}.
21335
21336@subsubheading Example
922fbb7b
AC
21337
21338@smallexample
594fe323 21339(gdb)
a2c02241
NR
21340-target-detach
21341^done
594fe323 21342(gdb)
922fbb7b
AC
21343@end smallexample
21344
21345
a2c02241
NR
21346@subheading The @code{-target-disconnect} Command
21347@findex -target-disconnect
922fbb7b
AC
21348
21349@subsubheading Synopsis
21350
123dc839 21351@smallexample
a2c02241 21352 -target-disconnect
123dc839 21353@end smallexample
922fbb7b 21354
a2c02241
NR
21355Disconnect from the remote target. There's no output and the target is
21356generally not resumed.
21357
79a6e687 21358@subsubheading @value{GDBN} Command
a2c02241
NR
21359
21360The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21361
21362@subsubheading Example
922fbb7b
AC
21363
21364@smallexample
594fe323 21365(gdb)
a2c02241
NR
21366-target-disconnect
21367^done
594fe323 21368(gdb)
922fbb7b
AC
21369@end smallexample
21370
21371
a2c02241
NR
21372@subheading The @code{-target-download} Command
21373@findex -target-download
922fbb7b
AC
21374
21375@subsubheading Synopsis
21376
21377@smallexample
a2c02241 21378 -target-download
922fbb7b
AC
21379@end smallexample
21380
a2c02241
NR
21381Loads the executable onto the remote target.
21382It prints out an update message every half second, which includes the fields:
21383
21384@table @samp
21385@item section
21386The name of the section.
21387@item section-sent
21388The size of what has been sent so far for that section.
21389@item section-size
21390The size of the section.
21391@item total-sent
21392The total size of what was sent so far (the current and the previous sections).
21393@item total-size
21394The size of the overall executable to download.
21395@end table
21396
21397@noindent
21398Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21399@sc{gdb/mi} Output Syntax}).
21400
21401In addition, it prints the name and size of the sections, as they are
21402downloaded. These messages include the following fields:
21403
21404@table @samp
21405@item section
21406The name of the section.
21407@item section-size
21408The size of the section.
21409@item total-size
21410The size of the overall executable to download.
21411@end table
21412
21413@noindent
21414At the end, a summary is printed.
21415
21416@subsubheading @value{GDBN} Command
21417
21418The corresponding @value{GDBN} command is @samp{load}.
21419
21420@subsubheading Example
21421
21422Note: each status message appears on a single line. Here the messages
21423have been broken down so that they can fit onto a page.
922fbb7b
AC
21424
21425@smallexample
594fe323 21426(gdb)
a2c02241
NR
21427-target-download
21428+download,@{section=".text",section-size="6668",total-size="9880"@}
21429+download,@{section=".text",section-sent="512",section-size="6668",
21430total-sent="512",total-size="9880"@}
21431+download,@{section=".text",section-sent="1024",section-size="6668",
21432total-sent="1024",total-size="9880"@}
21433+download,@{section=".text",section-sent="1536",section-size="6668",
21434total-sent="1536",total-size="9880"@}
21435+download,@{section=".text",section-sent="2048",section-size="6668",
21436total-sent="2048",total-size="9880"@}
21437+download,@{section=".text",section-sent="2560",section-size="6668",
21438total-sent="2560",total-size="9880"@}
21439+download,@{section=".text",section-sent="3072",section-size="6668",
21440total-sent="3072",total-size="9880"@}
21441+download,@{section=".text",section-sent="3584",section-size="6668",
21442total-sent="3584",total-size="9880"@}
21443+download,@{section=".text",section-sent="4096",section-size="6668",
21444total-sent="4096",total-size="9880"@}
21445+download,@{section=".text",section-sent="4608",section-size="6668",
21446total-sent="4608",total-size="9880"@}
21447+download,@{section=".text",section-sent="5120",section-size="6668",
21448total-sent="5120",total-size="9880"@}
21449+download,@{section=".text",section-sent="5632",section-size="6668",
21450total-sent="5632",total-size="9880"@}
21451+download,@{section=".text",section-sent="6144",section-size="6668",
21452total-sent="6144",total-size="9880"@}
21453+download,@{section=".text",section-sent="6656",section-size="6668",
21454total-sent="6656",total-size="9880"@}
21455+download,@{section=".init",section-size="28",total-size="9880"@}
21456+download,@{section=".fini",section-size="28",total-size="9880"@}
21457+download,@{section=".data",section-size="3156",total-size="9880"@}
21458+download,@{section=".data",section-sent="512",section-size="3156",
21459total-sent="7236",total-size="9880"@}
21460+download,@{section=".data",section-sent="1024",section-size="3156",
21461total-sent="7748",total-size="9880"@}
21462+download,@{section=".data",section-sent="1536",section-size="3156",
21463total-sent="8260",total-size="9880"@}
21464+download,@{section=".data",section-sent="2048",section-size="3156",
21465total-sent="8772",total-size="9880"@}
21466+download,@{section=".data",section-sent="2560",section-size="3156",
21467total-sent="9284",total-size="9880"@}
21468+download,@{section=".data",section-sent="3072",section-size="3156",
21469total-sent="9796",total-size="9880"@}
21470^done,address="0x10004",load-size="9880",transfer-rate="6586",
21471write-rate="429"
594fe323 21472(gdb)
922fbb7b
AC
21473@end smallexample
21474
21475
a2c02241
NR
21476@subheading The @code{-target-exec-status} Command
21477@findex -target-exec-status
922fbb7b
AC
21478
21479@subsubheading Synopsis
21480
21481@smallexample
a2c02241 21482 -target-exec-status
922fbb7b
AC
21483@end smallexample
21484
a2c02241
NR
21485Provide information on the state of the target (whether it is running or
21486not, for instance).
922fbb7b 21487
a2c02241 21488@subsubheading @value{GDBN} Command
922fbb7b 21489
a2c02241
NR
21490There's no equivalent @value{GDBN} command.
21491
21492@subsubheading Example
21493N.A.
922fbb7b 21494
a2c02241
NR
21495
21496@subheading The @code{-target-list-available-targets} Command
21497@findex -target-list-available-targets
922fbb7b
AC
21498
21499@subsubheading Synopsis
21500
21501@smallexample
a2c02241 21502 -target-list-available-targets
922fbb7b
AC
21503@end smallexample
21504
a2c02241 21505List the possible targets to connect to.
922fbb7b 21506
a2c02241 21507@subsubheading @value{GDBN} Command
922fbb7b 21508
a2c02241 21509The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21510
a2c02241
NR
21511@subsubheading Example
21512N.A.
21513
21514
21515@subheading The @code{-target-list-current-targets} Command
21516@findex -target-list-current-targets
922fbb7b
AC
21517
21518@subsubheading Synopsis
21519
21520@smallexample
a2c02241 21521 -target-list-current-targets
922fbb7b
AC
21522@end smallexample
21523
a2c02241 21524Describe the current target.
922fbb7b 21525
a2c02241 21526@subsubheading @value{GDBN} Command
922fbb7b 21527
a2c02241
NR
21528The corresponding information is printed by @samp{info file} (among
21529other things).
922fbb7b 21530
a2c02241
NR
21531@subsubheading Example
21532N.A.
21533
21534
21535@subheading The @code{-target-list-parameters} Command
21536@findex -target-list-parameters
922fbb7b
AC
21537
21538@subsubheading Synopsis
21539
21540@smallexample
a2c02241 21541 -target-list-parameters
922fbb7b
AC
21542@end smallexample
21543
a2c02241
NR
21544@c ????
21545
21546@subsubheading @value{GDBN} Command
21547
21548No equivalent.
922fbb7b
AC
21549
21550@subsubheading Example
a2c02241
NR
21551N.A.
21552
21553
21554@subheading The @code{-target-select} Command
21555@findex -target-select
21556
21557@subsubheading Synopsis
922fbb7b
AC
21558
21559@smallexample
a2c02241 21560 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21561@end smallexample
21562
a2c02241 21563Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21564
a2c02241
NR
21565@table @samp
21566@item @var{type}
21567The type of target, for instance @samp{async}, @samp{remote}, etc.
21568@item @var{parameters}
21569Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21570Commands for Managing Targets}, for more details.
a2c02241
NR
21571@end table
21572
21573The output is a connection notification, followed by the address at
21574which the target program is, in the following form:
922fbb7b
AC
21575
21576@smallexample
a2c02241
NR
21577^connected,addr="@var{address}",func="@var{function name}",
21578 args=[@var{arg list}]
922fbb7b
AC
21579@end smallexample
21580
a2c02241
NR
21581@subsubheading @value{GDBN} Command
21582
21583The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21584
21585@subsubheading Example
922fbb7b 21586
265eeb58 21587@smallexample
594fe323 21588(gdb)
a2c02241
NR
21589-target-select async /dev/ttya
21590^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21591(gdb)
265eeb58 21592@end smallexample
ef21caaf 21593
a6b151f1
DJ
21594@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21595@node GDB/MI File Transfer Commands
21596@section @sc{gdb/mi} File Transfer Commands
21597
21598
21599@subheading The @code{-target-file-put} Command
21600@findex -target-file-put
21601
21602@subsubheading Synopsis
21603
21604@smallexample
21605 -target-file-put @var{hostfile} @var{targetfile}
21606@end smallexample
21607
21608Copy file @var{hostfile} from the host system (the machine running
21609@value{GDBN}) to @var{targetfile} on the target system.
21610
21611@subsubheading @value{GDBN} Command
21612
21613The corresponding @value{GDBN} command is @samp{remote put}.
21614
21615@subsubheading Example
21616
21617@smallexample
21618(gdb)
21619-target-file-put localfile remotefile
21620^done
21621(gdb)
21622@end smallexample
21623
21624
21625@subheading The @code{-target-file-put} Command
21626@findex -target-file-get
21627
21628@subsubheading Synopsis
21629
21630@smallexample
21631 -target-file-get @var{targetfile} @var{hostfile}
21632@end smallexample
21633
21634Copy file @var{targetfile} from the target system to @var{hostfile}
21635on the host system.
21636
21637@subsubheading @value{GDBN} Command
21638
21639The corresponding @value{GDBN} command is @samp{remote get}.
21640
21641@subsubheading Example
21642
21643@smallexample
21644(gdb)
21645-target-file-get remotefile localfile
21646^done
21647(gdb)
21648@end smallexample
21649
21650
21651@subheading The @code{-target-file-delete} Command
21652@findex -target-file-delete
21653
21654@subsubheading Synopsis
21655
21656@smallexample
21657 -target-file-delete @var{targetfile}
21658@end smallexample
21659
21660Delete @var{targetfile} from the target system.
21661
21662@subsubheading @value{GDBN} Command
21663
21664The corresponding @value{GDBN} command is @samp{remote delete}.
21665
21666@subsubheading Example
21667
21668@smallexample
21669(gdb)
21670-target-file-delete remotefile
21671^done
21672(gdb)
21673@end smallexample
21674
21675
ef21caaf
NR
21676@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21677@node GDB/MI Miscellaneous Commands
21678@section Miscellaneous @sc{gdb/mi} Commands
21679
21680@c @subheading -gdb-complete
21681
21682@subheading The @code{-gdb-exit} Command
21683@findex -gdb-exit
21684
21685@subsubheading Synopsis
21686
21687@smallexample
21688 -gdb-exit
21689@end smallexample
21690
21691Exit @value{GDBN} immediately.
21692
21693@subsubheading @value{GDBN} Command
21694
21695Approximately corresponds to @samp{quit}.
21696
21697@subsubheading Example
21698
21699@smallexample
594fe323 21700(gdb)
ef21caaf
NR
21701-gdb-exit
21702^exit
21703@end smallexample
21704
a2c02241
NR
21705
21706@subheading The @code{-exec-abort} Command
21707@findex -exec-abort
21708
21709@subsubheading Synopsis
21710
21711@smallexample
21712 -exec-abort
21713@end smallexample
21714
21715Kill the inferior running program.
21716
21717@subsubheading @value{GDBN} Command
21718
21719The corresponding @value{GDBN} command is @samp{kill}.
21720
21721@subsubheading Example
21722N.A.
21723
21724
ef21caaf
NR
21725@subheading The @code{-gdb-set} Command
21726@findex -gdb-set
21727
21728@subsubheading Synopsis
21729
21730@smallexample
21731 -gdb-set
21732@end smallexample
21733
21734Set an internal @value{GDBN} variable.
21735@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21736
21737@subsubheading @value{GDBN} Command
21738
21739The corresponding @value{GDBN} command is @samp{set}.
21740
21741@subsubheading Example
21742
21743@smallexample
594fe323 21744(gdb)
ef21caaf
NR
21745-gdb-set $foo=3
21746^done
594fe323 21747(gdb)
ef21caaf
NR
21748@end smallexample
21749
21750
21751@subheading The @code{-gdb-show} Command
21752@findex -gdb-show
21753
21754@subsubheading Synopsis
21755
21756@smallexample
21757 -gdb-show
21758@end smallexample
21759
21760Show the current value of a @value{GDBN} variable.
21761
79a6e687 21762@subsubheading @value{GDBN} Command
ef21caaf
NR
21763
21764The corresponding @value{GDBN} command is @samp{show}.
21765
21766@subsubheading Example
21767
21768@smallexample
594fe323 21769(gdb)
ef21caaf
NR
21770-gdb-show annotate
21771^done,value="0"
594fe323 21772(gdb)
ef21caaf
NR
21773@end smallexample
21774
21775@c @subheading -gdb-source
21776
21777
21778@subheading The @code{-gdb-version} Command
21779@findex -gdb-version
21780
21781@subsubheading Synopsis
21782
21783@smallexample
21784 -gdb-version
21785@end smallexample
21786
21787Show version information for @value{GDBN}. Used mostly in testing.
21788
21789@subsubheading @value{GDBN} Command
21790
21791The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21792default shows this information when you start an interactive session.
21793
21794@subsubheading Example
21795
21796@c This example modifies the actual output from GDB to avoid overfull
21797@c box in TeX.
21798@smallexample
594fe323 21799(gdb)
ef21caaf
NR
21800-gdb-version
21801~GNU gdb 5.2.1
21802~Copyright 2000 Free Software Foundation, Inc.
21803~GDB is free software, covered by the GNU General Public License, and
21804~you are welcome to change it and/or distribute copies of it under
21805~ certain conditions.
21806~Type "show copying" to see the conditions.
21807~There is absolutely no warranty for GDB. Type "show warranty" for
21808~ details.
21809~This GDB was configured as
21810 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21811^done
594fe323 21812(gdb)
ef21caaf
NR
21813@end smallexample
21814
084344da
VP
21815@subheading The @code{-list-features} Command
21816@findex -list-features
21817
21818Returns a list of particular features of the MI protocol that
21819this version of gdb implements. A feature can be a command,
21820or a new field in an output of some command, or even an
21821important bugfix. While a frontend can sometimes detect presence
21822of a feature at runtime, it is easier to perform detection at debugger
21823startup.
21824
21825The command returns a list of strings, with each string naming an
21826available feature. Each returned string is just a name, it does not
21827have any internal structure. The list of possible feature names
21828is given below.
21829
21830Example output:
21831
21832@smallexample
21833(gdb) -list-features
21834^done,result=["feature1","feature2"]
21835@end smallexample
21836
21837The current list of features is:
21838
21839@itemize @minus
21840@item
21841@samp{frozen-varobjs}---indicates presence of the
21842@code{-var-set-frozen} command, as well as possible presense of the
21843@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21844@item
21845@samp{pending-breakpoints}---indicates presence of the @code{-f}
21846option to the @code{-break-insert} command.
8e8901c5
VP
21847@item
21848@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21849
084344da
VP
21850@end itemize
21851
ef21caaf
NR
21852@subheading The @code{-interpreter-exec} Command
21853@findex -interpreter-exec
21854
21855@subheading Synopsis
21856
21857@smallexample
21858-interpreter-exec @var{interpreter} @var{command}
21859@end smallexample
a2c02241 21860@anchor{-interpreter-exec}
ef21caaf
NR
21861
21862Execute the specified @var{command} in the given @var{interpreter}.
21863
21864@subheading @value{GDBN} Command
21865
21866The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21867
21868@subheading Example
21869
21870@smallexample
594fe323 21871(gdb)
ef21caaf
NR
21872-interpreter-exec console "break main"
21873&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21874&"During symbol reading, bad structure-type format.\n"
21875~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21876^done
594fe323 21877(gdb)
ef21caaf
NR
21878@end smallexample
21879
21880@subheading The @code{-inferior-tty-set} Command
21881@findex -inferior-tty-set
21882
21883@subheading Synopsis
21884
21885@smallexample
21886-inferior-tty-set /dev/pts/1
21887@end smallexample
21888
21889Set terminal for future runs of the program being debugged.
21890
21891@subheading @value{GDBN} Command
21892
21893The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21894
21895@subheading Example
21896
21897@smallexample
594fe323 21898(gdb)
ef21caaf
NR
21899-inferior-tty-set /dev/pts/1
21900^done
594fe323 21901(gdb)
ef21caaf
NR
21902@end smallexample
21903
21904@subheading The @code{-inferior-tty-show} Command
21905@findex -inferior-tty-show
21906
21907@subheading Synopsis
21908
21909@smallexample
21910-inferior-tty-show
21911@end smallexample
21912
21913Show terminal for future runs of program being debugged.
21914
21915@subheading @value{GDBN} Command
21916
21917The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21918
21919@subheading Example
21920
21921@smallexample
594fe323 21922(gdb)
ef21caaf
NR
21923-inferior-tty-set /dev/pts/1
21924^done
594fe323 21925(gdb)
ef21caaf
NR
21926-inferior-tty-show
21927^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21928(gdb)
ef21caaf 21929@end smallexample
922fbb7b 21930
a4eefcd8
NR
21931@subheading The @code{-enable-timings} Command
21932@findex -enable-timings
21933
21934@subheading Synopsis
21935
21936@smallexample
21937-enable-timings [yes | no]
21938@end smallexample
21939
21940Toggle the printing of the wallclock, user and system times for an MI
21941command as a field in its output. This command is to help frontend
21942developers optimize the performance of their code. No argument is
21943equivalent to @samp{yes}.
21944
21945@subheading @value{GDBN} Command
21946
21947No equivalent.
21948
21949@subheading Example
21950
21951@smallexample
21952(gdb)
21953-enable-timings
21954^done
21955(gdb)
21956-break-insert main
21957^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21958addr="0x080484ed",func="main",file="myprog.c",
21959fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21960time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21961(gdb)
21962-enable-timings no
21963^done
21964(gdb)
21965-exec-run
21966^running
21967(gdb)
21968*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21969frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21970@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21971fullname="/home/nickrob/myprog.c",line="73"@}
21972(gdb)
21973@end smallexample
21974
922fbb7b
AC
21975@node Annotations
21976@chapter @value{GDBN} Annotations
21977
086432e2
AC
21978This chapter describes annotations in @value{GDBN}. Annotations were
21979designed to interface @value{GDBN} to graphical user interfaces or other
21980similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21981relatively high level.
21982
d3e8051b 21983The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21984(@pxref{GDB/MI}).
21985
922fbb7b
AC
21986@ignore
21987This is Edition @value{EDITION}, @value{DATE}.
21988@end ignore
21989
21990@menu
21991* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21992* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21993* Prompting:: Annotations marking @value{GDBN}'s need for input.
21994* Errors:: Annotations for error messages.
922fbb7b
AC
21995* Invalidation:: Some annotations describe things now invalid.
21996* Annotations for Running::
21997 Whether the program is running, how it stopped, etc.
21998* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21999@end menu
22000
22001@node Annotations Overview
22002@section What is an Annotation?
22003@cindex annotations
22004
922fbb7b
AC
22005Annotations start with a newline character, two @samp{control-z}
22006characters, and the name of the annotation. If there is no additional
22007information associated with this annotation, the name of the annotation
22008is followed immediately by a newline. If there is additional
22009information, the name of the annotation is followed by a space, the
22010additional information, and a newline. The additional information
22011cannot contain newline characters.
22012
22013Any output not beginning with a newline and two @samp{control-z}
22014characters denotes literal output from @value{GDBN}. Currently there is
22015no need for @value{GDBN} to output a newline followed by two
22016@samp{control-z} characters, but if there was such a need, the
22017annotations could be extended with an @samp{escape} annotation which
22018means those three characters as output.
22019
086432e2
AC
22020The annotation @var{level}, which is specified using the
22021@option{--annotate} command line option (@pxref{Mode Options}), controls
22022how much information @value{GDBN} prints together with its prompt,
22023values of expressions, source lines, and other types of output. Level 0
d3e8051b 22024is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22025subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22026for programs that control @value{GDBN}, and level 2 annotations have
22027been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22028Interface, annotate, GDB's Obsolete Annotations}).
22029
22030@table @code
22031@kindex set annotate
22032@item set annotate @var{level}
e09f16f9 22033The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22034annotations to the specified @var{level}.
9c16f35a
EZ
22035
22036@item show annotate
22037@kindex show annotate
22038Show the current annotation level.
09d4efe1
EZ
22039@end table
22040
22041This chapter describes level 3 annotations.
086432e2 22042
922fbb7b
AC
22043A simple example of starting up @value{GDBN} with annotations is:
22044
22045@smallexample
086432e2
AC
22046$ @kbd{gdb --annotate=3}
22047GNU gdb 6.0
22048Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22049GDB is free software, covered by the GNU General Public License,
22050and you are welcome to change it and/or distribute copies of it
22051under certain conditions.
22052Type "show copying" to see the conditions.
22053There is absolutely no warranty for GDB. Type "show warranty"
22054for details.
086432e2 22055This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22056
22057^Z^Zpre-prompt
f7dc1244 22058(@value{GDBP})
922fbb7b 22059^Z^Zprompt
086432e2 22060@kbd{quit}
922fbb7b
AC
22061
22062^Z^Zpost-prompt
b383017d 22063$
922fbb7b
AC
22064@end smallexample
22065
22066Here @samp{quit} is input to @value{GDBN}; the rest is output from
22067@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22068denotes a @samp{control-z} character) are annotations; the rest is
22069output from @value{GDBN}.
22070
9e6c4bd5
NR
22071@node Server Prefix
22072@section The Server Prefix
22073@cindex server prefix
22074
22075If you prefix a command with @samp{server } then it will not affect
22076the command history, nor will it affect @value{GDBN}'s notion of which
22077command to repeat if @key{RET} is pressed on a line by itself. This
22078means that commands can be run behind a user's back by a front-end in
22079a transparent manner.
22080
22081The server prefix does not affect the recording of values into the value
22082history; to print a value without recording it into the value history,
22083use the @code{output} command instead of the @code{print} command.
22084
922fbb7b
AC
22085@node Prompting
22086@section Annotation for @value{GDBN} Input
22087
22088@cindex annotations for prompts
22089When @value{GDBN} prompts for input, it annotates this fact so it is possible
22090to know when to send output, when the output from a given command is
22091over, etc.
22092
22093Different kinds of input each have a different @dfn{input type}. Each
22094input type has three annotations: a @code{pre-} annotation, which
22095denotes the beginning of any prompt which is being output, a plain
22096annotation, which denotes the end of the prompt, and then a @code{post-}
22097annotation which denotes the end of any echo which may (or may not) be
22098associated with the input. For example, the @code{prompt} input type
22099features the following annotations:
22100
22101@smallexample
22102^Z^Zpre-prompt
22103^Z^Zprompt
22104^Z^Zpost-prompt
22105@end smallexample
22106
22107The input types are
22108
22109@table @code
e5ac9b53
EZ
22110@findex pre-prompt annotation
22111@findex prompt annotation
22112@findex post-prompt annotation
922fbb7b
AC
22113@item prompt
22114When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22115
e5ac9b53
EZ
22116@findex pre-commands annotation
22117@findex commands annotation
22118@findex post-commands annotation
922fbb7b
AC
22119@item commands
22120When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22121command. The annotations are repeated for each command which is input.
22122
e5ac9b53
EZ
22123@findex pre-overload-choice annotation
22124@findex overload-choice annotation
22125@findex post-overload-choice annotation
922fbb7b
AC
22126@item overload-choice
22127When @value{GDBN} wants the user to select between various overloaded functions.
22128
e5ac9b53
EZ
22129@findex pre-query annotation
22130@findex query annotation
22131@findex post-query annotation
922fbb7b
AC
22132@item query
22133When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22134
e5ac9b53
EZ
22135@findex pre-prompt-for-continue annotation
22136@findex prompt-for-continue annotation
22137@findex post-prompt-for-continue annotation
922fbb7b
AC
22138@item prompt-for-continue
22139When @value{GDBN} is asking the user to press return to continue. Note: Don't
22140expect this to work well; instead use @code{set height 0} to disable
22141prompting. This is because the counting of lines is buggy in the
22142presence of annotations.
22143@end table
22144
22145@node Errors
22146@section Errors
22147@cindex annotations for errors, warnings and interrupts
22148
e5ac9b53 22149@findex quit annotation
922fbb7b
AC
22150@smallexample
22151^Z^Zquit
22152@end smallexample
22153
22154This annotation occurs right before @value{GDBN} responds to an interrupt.
22155
e5ac9b53 22156@findex error annotation
922fbb7b
AC
22157@smallexample
22158^Z^Zerror
22159@end smallexample
22160
22161This annotation occurs right before @value{GDBN} responds to an error.
22162
22163Quit and error annotations indicate that any annotations which @value{GDBN} was
22164in the middle of may end abruptly. For example, if a
22165@code{value-history-begin} annotation is followed by a @code{error}, one
22166cannot expect to receive the matching @code{value-history-end}. One
22167cannot expect not to receive it either, however; an error annotation
22168does not necessarily mean that @value{GDBN} is immediately returning all the way
22169to the top level.
22170
e5ac9b53 22171@findex error-begin annotation
922fbb7b
AC
22172A quit or error annotation may be preceded by
22173
22174@smallexample
22175^Z^Zerror-begin
22176@end smallexample
22177
22178Any output between that and the quit or error annotation is the error
22179message.
22180
22181Warning messages are not yet annotated.
22182@c If we want to change that, need to fix warning(), type_error(),
22183@c range_error(), and possibly other places.
22184
922fbb7b
AC
22185@node Invalidation
22186@section Invalidation Notices
22187
22188@cindex annotations for invalidation messages
22189The following annotations say that certain pieces of state may have
22190changed.
22191
22192@table @code
e5ac9b53 22193@findex frames-invalid annotation
922fbb7b
AC
22194@item ^Z^Zframes-invalid
22195
22196The frames (for example, output from the @code{backtrace} command) may
22197have changed.
22198
e5ac9b53 22199@findex breakpoints-invalid annotation
922fbb7b
AC
22200@item ^Z^Zbreakpoints-invalid
22201
22202The breakpoints may have changed. For example, the user just added or
22203deleted a breakpoint.
22204@end table
22205
22206@node Annotations for Running
22207@section Running the Program
22208@cindex annotations for running programs
22209
e5ac9b53
EZ
22210@findex starting annotation
22211@findex stopping annotation
922fbb7b 22212When the program starts executing due to a @value{GDBN} command such as
b383017d 22213@code{step} or @code{continue},
922fbb7b
AC
22214
22215@smallexample
22216^Z^Zstarting
22217@end smallexample
22218
b383017d 22219is output. When the program stops,
922fbb7b
AC
22220
22221@smallexample
22222^Z^Zstopped
22223@end smallexample
22224
22225is output. Before the @code{stopped} annotation, a variety of
22226annotations describe how the program stopped.
22227
22228@table @code
e5ac9b53 22229@findex exited annotation
922fbb7b
AC
22230@item ^Z^Zexited @var{exit-status}
22231The program exited, and @var{exit-status} is the exit status (zero for
22232successful exit, otherwise nonzero).
22233
e5ac9b53
EZ
22234@findex signalled annotation
22235@findex signal-name annotation
22236@findex signal-name-end annotation
22237@findex signal-string annotation
22238@findex signal-string-end annotation
922fbb7b
AC
22239@item ^Z^Zsignalled
22240The program exited with a signal. After the @code{^Z^Zsignalled}, the
22241annotation continues:
22242
22243@smallexample
22244@var{intro-text}
22245^Z^Zsignal-name
22246@var{name}
22247^Z^Zsignal-name-end
22248@var{middle-text}
22249^Z^Zsignal-string
22250@var{string}
22251^Z^Zsignal-string-end
22252@var{end-text}
22253@end smallexample
22254
22255@noindent
22256where @var{name} is the name of the signal, such as @code{SIGILL} or
22257@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22258as @code{Illegal Instruction} or @code{Segmentation fault}.
22259@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22260user's benefit and have no particular format.
22261
e5ac9b53 22262@findex signal annotation
922fbb7b
AC
22263@item ^Z^Zsignal
22264The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22265just saying that the program received the signal, not that it was
22266terminated with it.
22267
e5ac9b53 22268@findex breakpoint annotation
922fbb7b
AC
22269@item ^Z^Zbreakpoint @var{number}
22270The program hit breakpoint number @var{number}.
22271
e5ac9b53 22272@findex watchpoint annotation
922fbb7b
AC
22273@item ^Z^Zwatchpoint @var{number}
22274The program hit watchpoint number @var{number}.
22275@end table
22276
22277@node Source Annotations
22278@section Displaying Source
22279@cindex annotations for source display
22280
e5ac9b53 22281@findex source annotation
922fbb7b
AC
22282The following annotation is used instead of displaying source code:
22283
22284@smallexample
22285^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22286@end smallexample
22287
22288where @var{filename} is an absolute file name indicating which source
22289file, @var{line} is the line number within that file (where 1 is the
22290first line in the file), @var{character} is the character position
22291within the file (where 0 is the first character in the file) (for most
22292debug formats this will necessarily point to the beginning of a line),
22293@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22294line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22295@var{addr} is the address in the target program associated with the
22296source which is being displayed. @var{addr} is in the form @samp{0x}
22297followed by one or more lowercase hex digits (note that this does not
22298depend on the language).
22299
8e04817f
AC
22300@node GDB Bugs
22301@chapter Reporting Bugs in @value{GDBN}
22302@cindex bugs in @value{GDBN}
22303@cindex reporting bugs in @value{GDBN}
c906108c 22304
8e04817f 22305Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22306
8e04817f
AC
22307Reporting a bug may help you by bringing a solution to your problem, or it
22308may not. But in any case the principal function of a bug report is to help
22309the entire community by making the next version of @value{GDBN} work better. Bug
22310reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22311
8e04817f
AC
22312In order for a bug report to serve its purpose, you must include the
22313information that enables us to fix the bug.
c4555f82
SC
22314
22315@menu
8e04817f
AC
22316* Bug Criteria:: Have you found a bug?
22317* Bug Reporting:: How to report bugs
c4555f82
SC
22318@end menu
22319
8e04817f 22320@node Bug Criteria
79a6e687 22321@section Have You Found a Bug?
8e04817f 22322@cindex bug criteria
c4555f82 22323
8e04817f 22324If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22325
22326@itemize @bullet
8e04817f
AC
22327@cindex fatal signal
22328@cindex debugger crash
22329@cindex crash of debugger
c4555f82 22330@item
8e04817f
AC
22331If the debugger gets a fatal signal, for any input whatever, that is a
22332@value{GDBN} bug. Reliable debuggers never crash.
22333
22334@cindex error on valid input
22335@item
22336If @value{GDBN} produces an error message for valid input, that is a
22337bug. (Note that if you're cross debugging, the problem may also be
22338somewhere in the connection to the target.)
c4555f82 22339
8e04817f 22340@cindex invalid input
c4555f82 22341@item
8e04817f
AC
22342If @value{GDBN} does not produce an error message for invalid input,
22343that is a bug. However, you should note that your idea of
22344``invalid input'' might be our idea of ``an extension'' or ``support
22345for traditional practice''.
22346
22347@item
22348If you are an experienced user of debugging tools, your suggestions
22349for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22350@end itemize
22351
8e04817f 22352@node Bug Reporting
79a6e687 22353@section How to Report Bugs
8e04817f
AC
22354@cindex bug reports
22355@cindex @value{GDBN} bugs, reporting
22356
22357A number of companies and individuals offer support for @sc{gnu} products.
22358If you obtained @value{GDBN} from a support organization, we recommend you
22359contact that organization first.
22360
22361You can find contact information for many support companies and
22362individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22363distribution.
22364@c should add a web page ref...
22365
129188f6 22366In any event, we also recommend that you submit bug reports for
d3e8051b 22367@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22368@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22369page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22370be used.
8e04817f
AC
22371
22372@strong{Do not send bug reports to @samp{info-gdb}, or to
22373@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22374not want to receive bug reports. Those that do have arranged to receive
22375@samp{bug-gdb}.
22376
22377The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22378serves as a repeater. The mailing list and the newsgroup carry exactly
22379the same messages. Often people think of posting bug reports to the
22380newsgroup instead of mailing them. This appears to work, but it has one
22381problem which can be crucial: a newsgroup posting often lacks a mail
22382path back to the sender. Thus, if we need to ask for more information,
22383we may be unable to reach you. For this reason, it is better to send
22384bug reports to the mailing list.
c4555f82 22385
8e04817f
AC
22386The fundamental principle of reporting bugs usefully is this:
22387@strong{report all the facts}. If you are not sure whether to state a
22388fact or leave it out, state it!
c4555f82 22389
8e04817f
AC
22390Often people omit facts because they think they know what causes the
22391problem and assume that some details do not matter. Thus, you might
22392assume that the name of the variable you use in an example does not matter.
22393Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22394stray memory reference which happens to fetch from the location where that
22395name is stored in memory; perhaps, if the name were different, the contents
22396of that location would fool the debugger into doing the right thing despite
22397the bug. Play it safe and give a specific, complete example. That is the
22398easiest thing for you to do, and the most helpful.
c4555f82 22399
8e04817f
AC
22400Keep in mind that the purpose of a bug report is to enable us to fix the
22401bug. It may be that the bug has been reported previously, but neither
22402you nor we can know that unless your bug report is complete and
22403self-contained.
c4555f82 22404
8e04817f
AC
22405Sometimes people give a few sketchy facts and ask, ``Does this ring a
22406bell?'' Those bug reports are useless, and we urge everyone to
22407@emph{refuse to respond to them} except to chide the sender to report
22408bugs properly.
22409
22410To enable us to fix the bug, you should include all these things:
c4555f82
SC
22411
22412@itemize @bullet
22413@item
8e04817f
AC
22414The version of @value{GDBN}. @value{GDBN} announces it if you start
22415with no arguments; you can also print it at any time using @code{show
22416version}.
c4555f82 22417
8e04817f
AC
22418Without this, we will not know whether there is any point in looking for
22419the bug in the current version of @value{GDBN}.
c4555f82
SC
22420
22421@item
8e04817f
AC
22422The type of machine you are using, and the operating system name and
22423version number.
c4555f82
SC
22424
22425@item
c1468174 22426What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22427``@value{GCC}--2.8.1''.
c4555f82
SC
22428
22429@item
8e04817f 22430What compiler (and its version) was used to compile the program you are
c1468174 22431debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22432C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22433to get this information; for other compilers, see the documentation for
22434those compilers.
c4555f82 22435
8e04817f
AC
22436@item
22437The command arguments you gave the compiler to compile your example and
22438observe the bug. For example, did you use @samp{-O}? To guarantee
22439you will not omit something important, list them all. A copy of the
22440Makefile (or the output from make) is sufficient.
c4555f82 22441
8e04817f
AC
22442If we were to try to guess the arguments, we would probably guess wrong
22443and then we might not encounter the bug.
c4555f82 22444
8e04817f
AC
22445@item
22446A complete input script, and all necessary source files, that will
22447reproduce the bug.
c4555f82 22448
8e04817f
AC
22449@item
22450A description of what behavior you observe that you believe is
22451incorrect. For example, ``It gets a fatal signal.''
c4555f82 22452
8e04817f
AC
22453Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22454will certainly notice it. But if the bug is incorrect output, we might
22455not notice unless it is glaringly wrong. You might as well not give us
22456a chance to make a mistake.
c4555f82 22457
8e04817f
AC
22458Even if the problem you experience is a fatal signal, you should still
22459say so explicitly. Suppose something strange is going on, such as, your
22460copy of @value{GDBN} is out of synch, or you have encountered a bug in
22461the C library on your system. (This has happened!) Your copy might
22462crash and ours would not. If you told us to expect a crash, then when
22463ours fails to crash, we would know that the bug was not happening for
22464us. If you had not told us to expect a crash, then we would not be able
22465to draw any conclusion from our observations.
c4555f82 22466
e0c07bf0
MC
22467@pindex script
22468@cindex recording a session script
22469To collect all this information, you can use a session recording program
22470such as @command{script}, which is available on many Unix systems.
22471Just run your @value{GDBN} session inside @command{script} and then
22472include the @file{typescript} file with your bug report.
22473
22474Another way to record a @value{GDBN} session is to run @value{GDBN}
22475inside Emacs and then save the entire buffer to a file.
22476
8e04817f
AC
22477@item
22478If you wish to suggest changes to the @value{GDBN} source, send us context
22479diffs. If you even discuss something in the @value{GDBN} source, refer to
22480it by context, not by line number.
c4555f82 22481
8e04817f
AC
22482The line numbers in our development sources will not match those in your
22483sources. Your line numbers would convey no useful information to us.
c4555f82 22484
8e04817f 22485@end itemize
c4555f82 22486
8e04817f 22487Here are some things that are not necessary:
c4555f82 22488
8e04817f
AC
22489@itemize @bullet
22490@item
22491A description of the envelope of the bug.
c4555f82 22492
8e04817f
AC
22493Often people who encounter a bug spend a lot of time investigating
22494which changes to the input file will make the bug go away and which
22495changes will not affect it.
c4555f82 22496
8e04817f
AC
22497This is often time consuming and not very useful, because the way we
22498will find the bug is by running a single example under the debugger
22499with breakpoints, not by pure deduction from a series of examples.
22500We recommend that you save your time for something else.
c4555f82 22501
8e04817f
AC
22502Of course, if you can find a simpler example to report @emph{instead}
22503of the original one, that is a convenience for us. Errors in the
22504output will be easier to spot, running under the debugger will take
22505less time, and so on.
c4555f82 22506
8e04817f
AC
22507However, simplification is not vital; if you do not want to do this,
22508report the bug anyway and send us the entire test case you used.
c4555f82 22509
8e04817f
AC
22510@item
22511A patch for the bug.
c4555f82 22512
8e04817f
AC
22513A patch for the bug does help us if it is a good one. But do not omit
22514the necessary information, such as the test case, on the assumption that
22515a patch is all we need. We might see problems with your patch and decide
22516to fix the problem another way, or we might not understand it at all.
c4555f82 22517
8e04817f
AC
22518Sometimes with a program as complicated as @value{GDBN} it is very hard to
22519construct an example that will make the program follow a certain path
22520through the code. If you do not send us the example, we will not be able
22521to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22522
8e04817f
AC
22523And if we cannot understand what bug you are trying to fix, or why your
22524patch should be an improvement, we will not install it. A test case will
22525help us to understand.
c4555f82 22526
8e04817f
AC
22527@item
22528A guess about what the bug is or what it depends on.
c4555f82 22529
8e04817f
AC
22530Such guesses are usually wrong. Even we cannot guess right about such
22531things without first using the debugger to find the facts.
22532@end itemize
c4555f82 22533
8e04817f
AC
22534@c The readline documentation is distributed with the readline code
22535@c and consists of the two following files:
22536@c rluser.texinfo
22537@c inc-hist.texinfo
22538@c Use -I with makeinfo to point to the appropriate directory,
22539@c environment var TEXINPUTS with TeX.
5bdf8622 22540@include rluser.texi
8e04817f 22541@include inc-hist.texinfo
c4555f82 22542
c4555f82 22543
8e04817f
AC
22544@node Formatting Documentation
22545@appendix Formatting Documentation
c4555f82 22546
8e04817f
AC
22547@cindex @value{GDBN} reference card
22548@cindex reference card
22549The @value{GDBN} 4 release includes an already-formatted reference card, ready
22550for printing with PostScript or Ghostscript, in the @file{gdb}
22551subdirectory of the main source directory@footnote{In
22552@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22553release.}. If you can use PostScript or Ghostscript with your printer,
22554you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22555
8e04817f
AC
22556The release also includes the source for the reference card. You
22557can format it, using @TeX{}, by typing:
c4555f82 22558
474c8240 22559@smallexample
8e04817f 22560make refcard.dvi
474c8240 22561@end smallexample
c4555f82 22562
8e04817f
AC
22563The @value{GDBN} reference card is designed to print in @dfn{landscape}
22564mode on US ``letter'' size paper;
22565that is, on a sheet 11 inches wide by 8.5 inches
22566high. You will need to specify this form of printing as an option to
22567your @sc{dvi} output program.
c4555f82 22568
8e04817f 22569@cindex documentation
c4555f82 22570
8e04817f
AC
22571All the documentation for @value{GDBN} comes as part of the machine-readable
22572distribution. The documentation is written in Texinfo format, which is
22573a documentation system that uses a single source file to produce both
22574on-line information and a printed manual. You can use one of the Info
22575formatting commands to create the on-line version of the documentation
22576and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22577
8e04817f
AC
22578@value{GDBN} includes an already formatted copy of the on-line Info
22579version of this manual in the @file{gdb} subdirectory. The main Info
22580file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22581subordinate files matching @samp{gdb.info*} in the same directory. If
22582necessary, you can print out these files, or read them with any editor;
22583but they are easier to read using the @code{info} subsystem in @sc{gnu}
22584Emacs or the standalone @code{info} program, available as part of the
22585@sc{gnu} Texinfo distribution.
c4555f82 22586
8e04817f
AC
22587If you want to format these Info files yourself, you need one of the
22588Info formatting programs, such as @code{texinfo-format-buffer} or
22589@code{makeinfo}.
c4555f82 22590
8e04817f
AC
22591If you have @code{makeinfo} installed, and are in the top level
22592@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22593version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22594
474c8240 22595@smallexample
8e04817f
AC
22596cd gdb
22597make gdb.info
474c8240 22598@end smallexample
c4555f82 22599
8e04817f
AC
22600If you want to typeset and print copies of this manual, you need @TeX{},
22601a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22602Texinfo definitions file.
c4555f82 22603
8e04817f
AC
22604@TeX{} is a typesetting program; it does not print files directly, but
22605produces output files called @sc{dvi} files. To print a typeset
22606document, you need a program to print @sc{dvi} files. If your system
22607has @TeX{} installed, chances are it has such a program. The precise
22608command to use depends on your system; @kbd{lpr -d} is common; another
22609(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22610require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22611
8e04817f
AC
22612@TeX{} also requires a macro definitions file called
22613@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22614written in Texinfo format. On its own, @TeX{} cannot either read or
22615typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22616and is located in the @file{gdb-@var{version-number}/texinfo}
22617directory.
c4555f82 22618
8e04817f 22619If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22620typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22621subdirectory of the main source directory (for example, to
22622@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22623
474c8240 22624@smallexample
8e04817f 22625make gdb.dvi
474c8240 22626@end smallexample
c4555f82 22627
8e04817f 22628Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22629
8e04817f
AC
22630@node Installing GDB
22631@appendix Installing @value{GDBN}
8e04817f 22632@cindex installation
c4555f82 22633
7fa2210b
DJ
22634@menu
22635* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22636* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22637* Separate Objdir:: Compiling @value{GDBN} in another directory
22638* Config Names:: Specifying names for hosts and targets
22639* Configure Options:: Summary of options for configure
22640@end menu
22641
22642@node Requirements
79a6e687 22643@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22644@cindex building @value{GDBN}, requirements for
22645
22646Building @value{GDBN} requires various tools and packages to be available.
22647Other packages will be used only if they are found.
22648
79a6e687 22649@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22650@table @asis
22651@item ISO C90 compiler
22652@value{GDBN} is written in ISO C90. It should be buildable with any
22653working C90 compiler, e.g.@: GCC.
22654
22655@end table
22656
79a6e687 22657@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22658@table @asis
22659@item Expat
123dc839 22660@anchor{Expat}
7fa2210b
DJ
22661@value{GDBN} can use the Expat XML parsing library. This library may be
22662included with your operating system distribution; if it is not, you
22663can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22664The @file{configure} script will search for this library in several
7fa2210b
DJ
22665standard locations; if it is installed in an unusual path, you can
22666use the @option{--with-libexpat-prefix} option to specify its location.
22667
9cceb671
DJ
22668Expat is used for:
22669
22670@itemize @bullet
22671@item
22672Remote protocol memory maps (@pxref{Memory Map Format})
22673@item
22674Target descriptions (@pxref{Target Descriptions})
22675@item
22676Remote shared library lists (@pxref{Library List Format})
22677@item
22678MS-Windows shared libraries (@pxref{Shared Libraries})
22679@end itemize
7fa2210b
DJ
22680
22681@end table
22682
22683@node Running Configure
db2e3e2e 22684@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22685@cindex configuring @value{GDBN}
db2e3e2e 22686@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22687of preparing @value{GDBN} for installation; you can then use @code{make} to
22688build the @code{gdb} program.
22689@iftex
22690@c irrelevant in info file; it's as current as the code it lives with.
22691@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22692look at the @file{README} file in the sources; we may have improved the
22693installation procedures since publishing this manual.}
22694@end iftex
c4555f82 22695
8e04817f
AC
22696The @value{GDBN} distribution includes all the source code you need for
22697@value{GDBN} in a single directory, whose name is usually composed by
22698appending the version number to @samp{gdb}.
c4555f82 22699
8e04817f
AC
22700For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22701@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22702
8e04817f
AC
22703@table @code
22704@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22705script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22706
8e04817f
AC
22707@item gdb-@value{GDBVN}/gdb
22708the source specific to @value{GDBN} itself
c4555f82 22709
8e04817f
AC
22710@item gdb-@value{GDBVN}/bfd
22711source for the Binary File Descriptor library
c906108c 22712
8e04817f
AC
22713@item gdb-@value{GDBVN}/include
22714@sc{gnu} include files
c906108c 22715
8e04817f
AC
22716@item gdb-@value{GDBVN}/libiberty
22717source for the @samp{-liberty} free software library
c906108c 22718
8e04817f
AC
22719@item gdb-@value{GDBVN}/opcodes
22720source for the library of opcode tables and disassemblers
c906108c 22721
8e04817f
AC
22722@item gdb-@value{GDBVN}/readline
22723source for the @sc{gnu} command-line interface
c906108c 22724
8e04817f
AC
22725@item gdb-@value{GDBVN}/glob
22726source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22727
8e04817f
AC
22728@item gdb-@value{GDBVN}/mmalloc
22729source for the @sc{gnu} memory-mapped malloc package
22730@end table
c906108c 22731
db2e3e2e 22732The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22733from the @file{gdb-@var{version-number}} source directory, which in
22734this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22735
8e04817f 22736First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22737if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22738identifier for the platform on which @value{GDBN} will run as an
22739argument.
c906108c 22740
8e04817f 22741For example:
c906108c 22742
474c8240 22743@smallexample
8e04817f
AC
22744cd gdb-@value{GDBVN}
22745./configure @var{host}
22746make
474c8240 22747@end smallexample
c906108c 22748
8e04817f
AC
22749@noindent
22750where @var{host} is an identifier such as @samp{sun4} or
22751@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22752(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22753correct value by examining your system.)
c906108c 22754
8e04817f
AC
22755Running @samp{configure @var{host}} and then running @code{make} builds the
22756@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22757libraries, then @code{gdb} itself. The configured source files, and the
22758binaries, are left in the corresponding source directories.
c906108c 22759
8e04817f 22760@need 750
db2e3e2e 22761@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22762system does not recognize this automatically when you run a different
22763shell, you may need to run @code{sh} on it explicitly:
c906108c 22764
474c8240 22765@smallexample
8e04817f 22766sh configure @var{host}
474c8240 22767@end smallexample
c906108c 22768
db2e3e2e 22769If you run @file{configure} from a directory that contains source
8e04817f 22770directories for multiple libraries or programs, such as the
db2e3e2e
BW
22771@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22772@file{configure}
8e04817f
AC
22773creates configuration files for every directory level underneath (unless
22774you tell it not to, with the @samp{--norecursion} option).
22775
db2e3e2e 22776You should run the @file{configure} script from the top directory in the
94e91d6d 22777source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22778@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22779that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22780if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22781of the @file{gdb-@var{version-number}} directory, you will omit the
22782configuration of @file{bfd}, @file{readline}, and other sibling
22783directories of the @file{gdb} subdirectory. This leads to build errors
22784about missing include files such as @file{bfd/bfd.h}.
c906108c 22785
8e04817f
AC
22786You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22787However, you should make sure that the shell on your path (named by
22788the @samp{SHELL} environment variable) is publicly readable. Remember
22789that @value{GDBN} uses the shell to start your program---some systems refuse to
22790let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22791
8e04817f 22792@node Separate Objdir
79a6e687 22793@section Compiling @value{GDBN} in Another Directory
c906108c 22794
8e04817f
AC
22795If you want to run @value{GDBN} versions for several host or target machines,
22796you need a different @code{gdb} compiled for each combination of
db2e3e2e 22797host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22798allowing you to generate each configuration in a separate subdirectory,
22799rather than in the source directory. If your @code{make} program
22800handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22801@code{make} in each of these directories builds the @code{gdb}
22802program specified there.
c906108c 22803
db2e3e2e 22804To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22805with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22806(You also need to specify a path to find @file{configure}
22807itself from your working directory. If the path to @file{configure}
8e04817f
AC
22808would be the same as the argument to @samp{--srcdir}, you can leave out
22809the @samp{--srcdir} option; it is assumed.)
c906108c 22810
8e04817f
AC
22811For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22812separate directory for a Sun 4 like this:
c906108c 22813
474c8240 22814@smallexample
8e04817f
AC
22815@group
22816cd gdb-@value{GDBVN}
22817mkdir ../gdb-sun4
22818cd ../gdb-sun4
22819../gdb-@value{GDBVN}/configure sun4
22820make
22821@end group
474c8240 22822@end smallexample
c906108c 22823
db2e3e2e 22824When @file{configure} builds a configuration using a remote source
8e04817f
AC
22825directory, it creates a tree for the binaries with the same structure
22826(and using the same names) as the tree under the source directory. In
22827the example, you'd find the Sun 4 library @file{libiberty.a} in the
22828directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22829@file{gdb-sun4/gdb}.
c906108c 22830
94e91d6d
MC
22831Make sure that your path to the @file{configure} script has just one
22832instance of @file{gdb} in it. If your path to @file{configure} looks
22833like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22834one subdirectory of @value{GDBN}, not the whole package. This leads to
22835build errors about missing include files such as @file{bfd/bfd.h}.
22836
8e04817f
AC
22837One popular reason to build several @value{GDBN} configurations in separate
22838directories is to configure @value{GDBN} for cross-compiling (where
22839@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22840programs that run on another machine---the @dfn{target}).
22841You specify a cross-debugging target by
db2e3e2e 22842giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22843
8e04817f
AC
22844When you run @code{make} to build a program or library, you must run
22845it in a configured directory---whatever directory you were in when you
db2e3e2e 22846called @file{configure} (or one of its subdirectories).
c906108c 22847
db2e3e2e 22848The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22849directory also runs recursively. If you type @code{make} in a source
22850directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22851directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22852will build all the required libraries, and then build GDB.
c906108c 22853
8e04817f
AC
22854When you have multiple hosts or targets configured in separate
22855directories, you can run @code{make} on them in parallel (for example,
22856if they are NFS-mounted on each of the hosts); they will not interfere
22857with each other.
c906108c 22858
8e04817f 22859@node Config Names
79a6e687 22860@section Specifying Names for Hosts and Targets
c906108c 22861
db2e3e2e 22862The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22863script are based on a three-part naming scheme, but some short predefined
22864aliases are also supported. The full naming scheme encodes three pieces
22865of information in the following pattern:
c906108c 22866
474c8240 22867@smallexample
8e04817f 22868@var{architecture}-@var{vendor}-@var{os}
474c8240 22869@end smallexample
c906108c 22870
8e04817f
AC
22871For example, you can use the alias @code{sun4} as a @var{host} argument,
22872or as the value for @var{target} in a @code{--target=@var{target}}
22873option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22874
db2e3e2e 22875The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22876any query facility to list all supported host and target names or
db2e3e2e 22877aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22878@code{config.sub} to map abbreviations to full names; you can read the
22879script, if you wish, or you can use it to test your guesses on
22880abbreviations---for example:
c906108c 22881
8e04817f
AC
22882@smallexample
22883% sh config.sub i386-linux
22884i386-pc-linux-gnu
22885% sh config.sub alpha-linux
22886alpha-unknown-linux-gnu
22887% sh config.sub hp9k700
22888hppa1.1-hp-hpux
22889% sh config.sub sun4
22890sparc-sun-sunos4.1.1
22891% sh config.sub sun3
22892m68k-sun-sunos4.1.1
22893% sh config.sub i986v
22894Invalid configuration `i986v': machine `i986v' not recognized
22895@end smallexample
c906108c 22896
8e04817f
AC
22897@noindent
22898@code{config.sub} is also distributed in the @value{GDBN} source
22899directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22900
8e04817f 22901@node Configure Options
db2e3e2e 22902@section @file{configure} Options
c906108c 22903
db2e3e2e
BW
22904Here is a summary of the @file{configure} options and arguments that
22905are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22906several other options not listed here. @inforef{What Configure
db2e3e2e 22907Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22908
474c8240 22909@smallexample
8e04817f
AC
22910configure @r{[}--help@r{]}
22911 @r{[}--prefix=@var{dir}@r{]}
22912 @r{[}--exec-prefix=@var{dir}@r{]}
22913 @r{[}--srcdir=@var{dirname}@r{]}
22914 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22915 @r{[}--target=@var{target}@r{]}
22916 @var{host}
474c8240 22917@end smallexample
c906108c 22918
8e04817f
AC
22919@noindent
22920You may introduce options with a single @samp{-} rather than
22921@samp{--} if you prefer; but you may abbreviate option names if you use
22922@samp{--}.
c906108c 22923
8e04817f
AC
22924@table @code
22925@item --help
db2e3e2e 22926Display a quick summary of how to invoke @file{configure}.
c906108c 22927
8e04817f
AC
22928@item --prefix=@var{dir}
22929Configure the source to install programs and files under directory
22930@file{@var{dir}}.
c906108c 22931
8e04817f
AC
22932@item --exec-prefix=@var{dir}
22933Configure the source to install programs under directory
22934@file{@var{dir}}.
c906108c 22935
8e04817f
AC
22936@c avoid splitting the warning from the explanation:
22937@need 2000
22938@item --srcdir=@var{dirname}
22939@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22940@code{make} that implements the @code{VPATH} feature.}@*
22941Use this option to make configurations in directories separate from the
22942@value{GDBN} source directories. Among other things, you can use this to
22943build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22944directories. @file{configure} writes configuration-specific files in
8e04817f 22945the current directory, but arranges for them to use the source in the
db2e3e2e 22946directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22947the working directory in parallel to the source directories below
22948@var{dirname}.
c906108c 22949
8e04817f 22950@item --norecursion
db2e3e2e 22951Configure only the directory level where @file{configure} is executed; do not
8e04817f 22952propagate configuration to subdirectories.
c906108c 22953
8e04817f
AC
22954@item --target=@var{target}
22955Configure @value{GDBN} for cross-debugging programs running on the specified
22956@var{target}. Without this option, @value{GDBN} is configured to debug
22957programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22958
8e04817f 22959There is no convenient way to generate a list of all available targets.
c906108c 22960
8e04817f
AC
22961@item @var{host} @dots{}
22962Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22963
8e04817f
AC
22964There is no convenient way to generate a list of all available hosts.
22965@end table
c906108c 22966
8e04817f
AC
22967There are many other options available as well, but they are generally
22968needed for special purposes only.
c906108c 22969
8e04817f
AC
22970@node Maintenance Commands
22971@appendix Maintenance Commands
22972@cindex maintenance commands
22973@cindex internal commands
c906108c 22974
8e04817f 22975In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22976includes a number of commands intended for @value{GDBN} developers,
22977that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22978provided here for reference. (For commands that turn on debugging
22979messages, see @ref{Debugging Output}.)
c906108c 22980
8e04817f 22981@table @code
09d4efe1
EZ
22982@kindex maint agent
22983@item maint agent @var{expression}
22984Translate the given @var{expression} into remote agent bytecodes.
22985This command is useful for debugging the Agent Expression mechanism
22986(@pxref{Agent Expressions}).
22987
8e04817f
AC
22988@kindex maint info breakpoints
22989@item @anchor{maint info breakpoints}maint info breakpoints
22990Using the same format as @samp{info breakpoints}, display both the
22991breakpoints you've set explicitly, and those @value{GDBN} is using for
22992internal purposes. Internal breakpoints are shown with negative
22993breakpoint numbers. The type column identifies what kind of breakpoint
22994is shown:
c906108c 22995
8e04817f
AC
22996@table @code
22997@item breakpoint
22998Normal, explicitly set breakpoint.
c906108c 22999
8e04817f
AC
23000@item watchpoint
23001Normal, explicitly set watchpoint.
c906108c 23002
8e04817f
AC
23003@item longjmp
23004Internal breakpoint, used to handle correctly stepping through
23005@code{longjmp} calls.
c906108c 23006
8e04817f
AC
23007@item longjmp resume
23008Internal breakpoint at the target of a @code{longjmp}.
c906108c 23009
8e04817f
AC
23010@item until
23011Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23012
8e04817f
AC
23013@item finish
23014Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23015
8e04817f
AC
23016@item shlib events
23017Shared library events.
c906108c 23018
8e04817f 23019@end table
c906108c 23020
09d4efe1
EZ
23021@kindex maint check-symtabs
23022@item maint check-symtabs
23023Check the consistency of psymtabs and symtabs.
23024
23025@kindex maint cplus first_component
23026@item maint cplus first_component @var{name}
23027Print the first C@t{++} class/namespace component of @var{name}.
23028
23029@kindex maint cplus namespace
23030@item maint cplus namespace
23031Print the list of possible C@t{++} namespaces.
23032
23033@kindex maint demangle
23034@item maint demangle @var{name}
d3e8051b 23035Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23036
23037@kindex maint deprecate
23038@kindex maint undeprecate
23039@cindex deprecated commands
23040@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23041@itemx maint undeprecate @var{command}
23042Deprecate or undeprecate the named @var{command}. Deprecated commands
23043cause @value{GDBN} to issue a warning when you use them. The optional
23044argument @var{replacement} says which newer command should be used in
23045favor of the deprecated one; if it is given, @value{GDBN} will mention
23046the replacement as part of the warning.
23047
23048@kindex maint dump-me
23049@item maint dump-me
721c2651 23050@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23051Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23052This is supported only on systems which support aborting a program
23053with the @code{SIGQUIT} signal.
09d4efe1 23054
8d30a00d
AC
23055@kindex maint internal-error
23056@kindex maint internal-warning
09d4efe1
EZ
23057@item maint internal-error @r{[}@var{message-text}@r{]}
23058@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23059Cause @value{GDBN} to call the internal function @code{internal_error}
23060or @code{internal_warning} and hence behave as though an internal error
23061or internal warning has been detected. In addition to reporting the
23062internal problem, these functions give the user the opportunity to
23063either quit @value{GDBN} or create a core file of the current
23064@value{GDBN} session.
23065
09d4efe1
EZ
23066These commands take an optional parameter @var{message-text} that is
23067used as the text of the error or warning message.
23068
d3e8051b 23069Here's an example of using @code{internal-error}:
09d4efe1 23070
8d30a00d 23071@smallexample
f7dc1244 23072(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23073@dots{}/maint.c:121: internal-error: testing, 1, 2
23074A problem internal to GDB has been detected. Further
23075debugging may prove unreliable.
23076Quit this debugging session? (y or n) @kbd{n}
23077Create a core file? (y or n) @kbd{n}
f7dc1244 23078(@value{GDBP})
8d30a00d
AC
23079@end smallexample
23080
09d4efe1
EZ
23081@kindex maint packet
23082@item maint packet @var{text}
23083If @value{GDBN} is talking to an inferior via the serial protocol,
23084then this command sends the string @var{text} to the inferior, and
23085displays the response packet. @value{GDBN} supplies the initial
23086@samp{$} character, the terminating @samp{#} character, and the
23087checksum.
23088
23089@kindex maint print architecture
23090@item maint print architecture @r{[}@var{file}@r{]}
23091Print the entire architecture configuration. The optional argument
23092@var{file} names the file where the output goes.
8d30a00d 23093
81adfced
DJ
23094@kindex maint print c-tdesc
23095@item maint print c-tdesc
23096Print the current target description (@pxref{Target Descriptions}) as
23097a C source file. The created source file can be used in @value{GDBN}
23098when an XML parser is not available to parse the description.
23099
00905d52
AC
23100@kindex maint print dummy-frames
23101@item maint print dummy-frames
00905d52
AC
23102Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23103
23104@smallexample
f7dc1244 23105(@value{GDBP}) @kbd{b add}
00905d52 23106@dots{}
f7dc1244 23107(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23108Breakpoint 2, add (a=2, b=3) at @dots{}
2310958 return (a + b);
23110The program being debugged stopped while in a function called from GDB.
23111@dots{}
f7dc1244 23112(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
231130x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23114 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23115 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23116(@value{GDBP})
00905d52
AC
23117@end smallexample
23118
23119Takes an optional file parameter.
23120
0680b120
AC
23121@kindex maint print registers
23122@kindex maint print raw-registers
23123@kindex maint print cooked-registers
617073a9 23124@kindex maint print register-groups
09d4efe1
EZ
23125@item maint print registers @r{[}@var{file}@r{]}
23126@itemx maint print raw-registers @r{[}@var{file}@r{]}
23127@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23128@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23129Print @value{GDBN}'s internal register data structures.
23130
617073a9
AC
23131The command @code{maint print raw-registers} includes the contents of
23132the raw register cache; the command @code{maint print cooked-registers}
23133includes the (cooked) value of all registers; and the command
23134@code{maint print register-groups} includes the groups that each
23135register is a member of. @xref{Registers,, Registers, gdbint,
23136@value{GDBN} Internals}.
0680b120 23137
09d4efe1
EZ
23138These commands take an optional parameter, a file name to which to
23139write the information.
0680b120 23140
617073a9 23141@kindex maint print reggroups
09d4efe1
EZ
23142@item maint print reggroups @r{[}@var{file}@r{]}
23143Print @value{GDBN}'s internal register group data structures. The
23144optional argument @var{file} tells to what file to write the
23145information.
617073a9 23146
09d4efe1 23147The register groups info looks like this:
617073a9
AC
23148
23149@smallexample
f7dc1244 23150(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23151 Group Type
23152 general user
23153 float user
23154 all user
23155 vector user
23156 system user
23157 save internal
23158 restore internal
617073a9
AC
23159@end smallexample
23160
09d4efe1
EZ
23161@kindex flushregs
23162@item flushregs
23163This command forces @value{GDBN} to flush its internal register cache.
23164
23165@kindex maint print objfiles
23166@cindex info for known object files
23167@item maint print objfiles
23168Print a dump of all known object files. For each object file, this
23169command prints its name, address in memory, and all of its psymtabs
23170and symtabs.
23171
23172@kindex maint print statistics
23173@cindex bcache statistics
23174@item maint print statistics
23175This command prints, for each object file in the program, various data
23176about that object file followed by the byte cache (@dfn{bcache})
23177statistics for the object file. The objfile data includes the number
d3e8051b 23178of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23179defined by the objfile, the number of as yet unexpanded psym tables,
23180the number of line tables and string tables, and the amount of memory
23181used by the various tables. The bcache statistics include the counts,
23182sizes, and counts of duplicates of all and unique objects, max,
23183average, and median entry size, total memory used and its overhead and
23184savings, and various measures of the hash table size and chain
23185lengths.
23186
c7ba131e
JB
23187@kindex maint print target-stack
23188@cindex target stack description
23189@item maint print target-stack
23190A @dfn{target} is an interface between the debugger and a particular
23191kind of file or process. Targets can be stacked in @dfn{strata},
23192so that more than one target can potentially respond to a request.
23193In particular, memory accesses will walk down the stack of targets
23194until they find a target that is interested in handling that particular
23195address.
23196
23197This command prints a short description of each layer that was pushed on
23198the @dfn{target stack}, starting from the top layer down to the bottom one.
23199
09d4efe1
EZ
23200@kindex maint print type
23201@cindex type chain of a data type
23202@item maint print type @var{expr}
23203Print the type chain for a type specified by @var{expr}. The argument
23204can be either a type name or a symbol. If it is a symbol, the type of
23205that symbol is described. The type chain produced by this command is
23206a recursive definition of the data type as stored in @value{GDBN}'s
23207data structures, including its flags and contained types.
23208
23209@kindex maint set dwarf2 max-cache-age
23210@kindex maint show dwarf2 max-cache-age
23211@item maint set dwarf2 max-cache-age
23212@itemx maint show dwarf2 max-cache-age
23213Control the DWARF 2 compilation unit cache.
23214
23215@cindex DWARF 2 compilation units cache
23216In object files with inter-compilation-unit references, such as those
23217produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23218reader needs to frequently refer to previously read compilation units.
23219This setting controls how long a compilation unit will remain in the
23220cache if it is not referenced. A higher limit means that cached
23221compilation units will be stored in memory longer, and more total
23222memory will be used. Setting it to zero disables caching, which will
23223slow down @value{GDBN} startup, but reduce memory consumption.
23224
e7ba9c65
DJ
23225@kindex maint set profile
23226@kindex maint show profile
23227@cindex profiling GDB
23228@item maint set profile
23229@itemx maint show profile
23230Control profiling of @value{GDBN}.
23231
23232Profiling will be disabled until you use the @samp{maint set profile}
23233command to enable it. When you enable profiling, the system will begin
23234collecting timing and execution count data; when you disable profiling or
23235exit @value{GDBN}, the results will be written to a log file. Remember that
23236if you use profiling, @value{GDBN} will overwrite the profiling log file
23237(often called @file{gmon.out}). If you have a record of important profiling
23238data in a @file{gmon.out} file, be sure to move it to a safe location.
23239
23240Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23241compiled with the @samp{-pg} compiler option.
e7ba9c65 23242
09d4efe1
EZ
23243@kindex maint show-debug-regs
23244@cindex x86 hardware debug registers
23245@item maint show-debug-regs
23246Control whether to show variables that mirror the x86 hardware debug
23247registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23248enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23249removes a hardware breakpoint or watchpoint, and when the inferior
23250triggers a hardware-assisted breakpoint or watchpoint.
23251
23252@kindex maint space
23253@cindex memory used by commands
23254@item maint space
23255Control whether to display memory usage for each command. If set to a
23256nonzero value, @value{GDBN} will display how much memory each command
23257took, following the command's own output. This can also be requested
23258by invoking @value{GDBN} with the @option{--statistics} command-line
23259switch (@pxref{Mode Options}).
23260
23261@kindex maint time
23262@cindex time of command execution
23263@item maint time
23264Control whether to display the execution time for each command. If
23265set to a nonzero value, @value{GDBN} will display how much time it
23266took to execute each command, following the command's own output.
23267This can also be requested by invoking @value{GDBN} with the
23268@option{--statistics} command-line switch (@pxref{Mode Options}).
23269
23270@kindex maint translate-address
23271@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23272Find the symbol stored at the location specified by the address
23273@var{addr} and an optional section name @var{section}. If found,
23274@value{GDBN} prints the name of the closest symbol and an offset from
23275the symbol's location to the specified address. This is similar to
23276the @code{info address} command (@pxref{Symbols}), except that this
23277command also allows to find symbols in other sections.
ae038cb0 23278
8e04817f 23279@end table
c906108c 23280
9c16f35a
EZ
23281The following command is useful for non-interactive invocations of
23282@value{GDBN}, such as in the test suite.
23283
23284@table @code
23285@item set watchdog @var{nsec}
23286@kindex set watchdog
23287@cindex watchdog timer
23288@cindex timeout for commands
23289Set the maximum number of seconds @value{GDBN} will wait for the
23290target operation to finish. If this time expires, @value{GDBN}
23291reports and error and the command is aborted.
23292
23293@item show watchdog
23294Show the current setting of the target wait timeout.
23295@end table
c906108c 23296
e0ce93ac 23297@node Remote Protocol
8e04817f 23298@appendix @value{GDBN} Remote Serial Protocol
c906108c 23299
ee2d5c50
AC
23300@menu
23301* Overview::
23302* Packets::
23303* Stop Reply Packets::
23304* General Query Packets::
23305* Register Packet Format::
9d29849a 23306* Tracepoint Packets::
a6b151f1 23307* Host I/O Packets::
9a6253be 23308* Interrupts::
ee2d5c50 23309* Examples::
79a6e687 23310* File-I/O Remote Protocol Extension::
cfa9d6d9 23311* Library List Format::
79a6e687 23312* Memory Map Format::
ee2d5c50
AC
23313@end menu
23314
23315@node Overview
23316@section Overview
23317
8e04817f
AC
23318There may be occasions when you need to know something about the
23319protocol---for example, if there is only one serial port to your target
23320machine, you might want your program to do something special if it
23321recognizes a packet meant for @value{GDBN}.
c906108c 23322
d2c6833e 23323In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23324transmitted and received data, respectively.
c906108c 23325
8e04817f
AC
23326@cindex protocol, @value{GDBN} remote serial
23327@cindex serial protocol, @value{GDBN} remote
23328@cindex remote serial protocol
23329All @value{GDBN} commands and responses (other than acknowledgments) are
23330sent as a @var{packet}. A @var{packet} is introduced with the character
23331@samp{$}, the actual @var{packet-data}, and the terminating character
23332@samp{#} followed by a two-digit @var{checksum}:
c906108c 23333
474c8240 23334@smallexample
8e04817f 23335@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23336@end smallexample
8e04817f 23337@noindent
c906108c 23338
8e04817f
AC
23339@cindex checksum, for @value{GDBN} remote
23340@noindent
23341The two-digit @var{checksum} is computed as the modulo 256 sum of all
23342characters between the leading @samp{$} and the trailing @samp{#} (an
23343eight bit unsigned checksum).
c906108c 23344
8e04817f
AC
23345Implementors should note that prior to @value{GDBN} 5.0 the protocol
23346specification also included an optional two-digit @var{sequence-id}:
c906108c 23347
474c8240 23348@smallexample
8e04817f 23349@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23350@end smallexample
c906108c 23351
8e04817f
AC
23352@cindex sequence-id, for @value{GDBN} remote
23353@noindent
23354That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23355has never output @var{sequence-id}s. Stubs that handle packets added
23356since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23357
8e04817f
AC
23358@cindex acknowledgment, for @value{GDBN} remote
23359When either the host or the target machine receives a packet, the first
23360response expected is an acknowledgment: either @samp{+} (to indicate
23361the package was received correctly) or @samp{-} (to request
23362retransmission):
c906108c 23363
474c8240 23364@smallexample
d2c6833e
AC
23365-> @code{$}@var{packet-data}@code{#}@var{checksum}
23366<- @code{+}
474c8240 23367@end smallexample
8e04817f 23368@noindent
53a5351d 23369
8e04817f
AC
23370The host (@value{GDBN}) sends @var{command}s, and the target (the
23371debugging stub incorporated in your program) sends a @var{response}. In
23372the case of step and continue @var{command}s, the response is only sent
23373when the operation has completed (the target has again stopped).
c906108c 23374
8e04817f
AC
23375@var{packet-data} consists of a sequence of characters with the
23376exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23377exceptions).
c906108c 23378
ee2d5c50 23379@cindex remote protocol, field separator
0876f84a 23380Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23381@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23382@sc{hex} with leading zeros suppressed.
c906108c 23383
8e04817f
AC
23384Implementors should note that prior to @value{GDBN} 5.0, the character
23385@samp{:} could not appear as the third character in a packet (as it
23386would potentially conflict with the @var{sequence-id}).
c906108c 23387
0876f84a
DJ
23388@cindex remote protocol, binary data
23389@anchor{Binary Data}
23390Binary data in most packets is encoded either as two hexadecimal
23391digits per byte of binary data. This allowed the traditional remote
23392protocol to work over connections which were only seven-bit clean.
23393Some packets designed more recently assume an eight-bit clean
23394connection, and use a more efficient encoding to send and receive
23395binary data.
23396
23397The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23398as an escape character. Any escaped byte is transmitted as the escape
23399character followed by the original character XORed with @code{0x20}.
23400For example, the byte @code{0x7d} would be transmitted as the two
23401bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23402@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23403@samp{@}}) must always be escaped. Responses sent by the stub
23404must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23405is not interpreted as the start of a run-length encoded sequence
23406(described next).
23407
1d3811f6
DJ
23408Response @var{data} can be run-length encoded to save space.
23409Run-length encoding replaces runs of identical characters with one
23410instance of the repeated character, followed by a @samp{*} and a
23411repeat count. The repeat count is itself sent encoded, to avoid
23412binary characters in @var{data}: a value of @var{n} is sent as
23413@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23414produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23415code 32) for a repeat count of 3. (This is because run-length
23416encoding starts to win for counts 3 or more.) Thus, for example,
23417@samp{0* } is a run-length encoding of ``0000'': the space character
23418after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
234193}} more times.
23420
23421The printable characters @samp{#} and @samp{$} or with a numeric value
23422greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23423seven repeats (@samp{$}) can be expanded using a repeat count of only
23424five (@samp{"}). For example, @samp{00000000} can be encoded as
23425@samp{0*"00}.
c906108c 23426
8e04817f
AC
23427The error response returned for some packets includes a two character
23428error number. That number is not well defined.
c906108c 23429
f8da2bff 23430@cindex empty response, for unsupported packets
8e04817f
AC
23431For any @var{command} not supported by the stub, an empty response
23432(@samp{$#00}) should be returned. That way it is possible to extend the
23433protocol. A newer @value{GDBN} can tell if a packet is supported based
23434on that response.
c906108c 23435
b383017d
RM
23436A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23437@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23438optional.
c906108c 23439
ee2d5c50
AC
23440@node Packets
23441@section Packets
23442
23443The following table provides a complete list of all currently defined
23444@var{command}s and their corresponding response @var{data}.
79a6e687 23445@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23446I/O extension of the remote protocol.
ee2d5c50 23447
b8ff78ce
JB
23448Each packet's description has a template showing the packet's overall
23449syntax, followed by an explanation of the packet's meaning. We
23450include spaces in some of the templates for clarity; these are not
23451part of the packet's syntax. No @value{GDBN} packet uses spaces to
23452separate its components. For example, a template like @samp{foo
23453@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23454bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23455@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23456@samp{foo} and the @var{bar}, or between the @var{bar} and the
23457@var{baz}.
23458
8ffe2530
JB
23459Note that all packet forms beginning with an upper- or lower-case
23460letter, other than those described here, are reserved for future use.
23461
b8ff78ce 23462Here are the packet descriptions.
ee2d5c50 23463
b8ff78ce 23464@table @samp
ee2d5c50 23465
b8ff78ce
JB
23466@item !
23467@cindex @samp{!} packet
2d717e4f 23468@anchor{extended mode}
8e04817f
AC
23469Enable extended mode. In extended mode, the remote server is made
23470persistent. The @samp{R} packet is used to restart the program being
23471debugged.
ee2d5c50
AC
23472
23473Reply:
23474@table @samp
23475@item OK
8e04817f 23476The remote target both supports and has enabled extended mode.
ee2d5c50 23477@end table
c906108c 23478
b8ff78ce
JB
23479@item ?
23480@cindex @samp{?} packet
ee2d5c50
AC
23481Indicate the reason the target halted. The reply is the same as for
23482step and continue.
c906108c 23483
ee2d5c50
AC
23484Reply:
23485@xref{Stop Reply Packets}, for the reply specifications.
23486
b8ff78ce
JB
23487@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23488@cindex @samp{A} packet
23489Initialized @code{argv[]} array passed into program. @var{arglen}
23490specifies the number of bytes in the hex encoded byte stream
23491@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23492
23493Reply:
23494@table @samp
23495@item OK
b8ff78ce
JB
23496The arguments were set.
23497@item E @var{NN}
23498An error occurred.
ee2d5c50
AC
23499@end table
23500
b8ff78ce
JB
23501@item b @var{baud}
23502@cindex @samp{b} packet
23503(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23504Change the serial line speed to @var{baud}.
23505
23506JTC: @emph{When does the transport layer state change? When it's
23507received, or after the ACK is transmitted. In either case, there are
23508problems if the command or the acknowledgment packet is dropped.}
23509
23510Stan: @emph{If people really wanted to add something like this, and get
23511it working for the first time, they ought to modify ser-unix.c to send
23512some kind of out-of-band message to a specially-setup stub and have the
23513switch happen "in between" packets, so that from remote protocol's point
23514of view, nothing actually happened.}
23515
b8ff78ce
JB
23516@item B @var{addr},@var{mode}
23517@cindex @samp{B} packet
8e04817f 23518Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23519breakpoint at @var{addr}.
23520
b8ff78ce 23521Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23522(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23523
4f553f88 23524@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23525@cindex @samp{c} packet
23526Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23527resume at current address.
c906108c 23528
ee2d5c50
AC
23529Reply:
23530@xref{Stop Reply Packets}, for the reply specifications.
23531
4f553f88 23532@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23533@cindex @samp{C} packet
8e04817f 23534Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23535@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23536
ee2d5c50
AC
23537Reply:
23538@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23539
b8ff78ce
JB
23540@item d
23541@cindex @samp{d} packet
ee2d5c50
AC
23542Toggle debug flag.
23543
b8ff78ce
JB
23544Don't use this packet; instead, define a general set packet
23545(@pxref{General Query Packets}).
ee2d5c50 23546
b8ff78ce
JB
23547@item D
23548@cindex @samp{D} packet
ee2d5c50 23549Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23550before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23551
23552Reply:
23553@table @samp
10fac096
NW
23554@item OK
23555for success
b8ff78ce 23556@item E @var{NN}
10fac096 23557for an error
ee2d5c50 23558@end table
c906108c 23559
b8ff78ce
JB
23560@item F @var{RC},@var{EE},@var{CF};@var{XX}
23561@cindex @samp{F} packet
23562A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23563This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23564Remote Protocol Extension}, for the specification.
ee2d5c50 23565
b8ff78ce 23566@item g
ee2d5c50 23567@anchor{read registers packet}
b8ff78ce 23568@cindex @samp{g} packet
ee2d5c50
AC
23569Read general registers.
23570
23571Reply:
23572@table @samp
23573@item @var{XX@dots{}}
8e04817f
AC
23574Each byte of register data is described by two hex digits. The bytes
23575with the register are transmitted in target byte order. The size of
b8ff78ce 23576each register and their position within the @samp{g} packet are
4a9bb1df
UW
23577determined by the @value{GDBN} internal gdbarch functions
23578@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23579specification of several standard @samp{g} packets is specified below.
23580@item E @var{NN}
ee2d5c50
AC
23581for an error.
23582@end table
c906108c 23583
b8ff78ce
JB
23584@item G @var{XX@dots{}}
23585@cindex @samp{G} packet
23586Write general registers. @xref{read registers packet}, for a
23587description of the @var{XX@dots{}} data.
ee2d5c50
AC
23588
23589Reply:
23590@table @samp
23591@item OK
23592for success
b8ff78ce 23593@item E @var{NN}
ee2d5c50
AC
23594for an error
23595@end table
23596
b8ff78ce
JB
23597@item H @var{c} @var{t}
23598@cindex @samp{H} packet
8e04817f 23599Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23600@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23601should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23602operations. The thread designator @var{t} may be @samp{-1}, meaning all
23603the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23604
23605Reply:
23606@table @samp
23607@item OK
23608for success
b8ff78ce 23609@item E @var{NN}
ee2d5c50
AC
23610for an error
23611@end table
c906108c 23612
8e04817f
AC
23613@c FIXME: JTC:
23614@c 'H': How restrictive (or permissive) is the thread model. If a
23615@c thread is selected and stopped, are other threads allowed
23616@c to continue to execute? As I mentioned above, I think the
23617@c semantics of each command when a thread is selected must be
23618@c described. For example:
23619@c
23620@c 'g': If the stub supports threads and a specific thread is
23621@c selected, returns the register block from that thread;
23622@c otherwise returns current registers.
23623@c
23624@c 'G' If the stub supports threads and a specific thread is
23625@c selected, sets the registers of the register block of
23626@c that thread; otherwise sets current registers.
c906108c 23627
b8ff78ce 23628@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23629@anchor{cycle step packet}
b8ff78ce
JB
23630@cindex @samp{i} packet
23631Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23632present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23633step starting at that address.
c906108c 23634
b8ff78ce
JB
23635@item I
23636@cindex @samp{I} packet
23637Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23638step packet}.
ee2d5c50 23639
b8ff78ce
JB
23640@item k
23641@cindex @samp{k} packet
23642Kill request.
c906108c 23643
ac282366 23644FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23645thread context has been selected (i.e.@: does 'k' kill only that
23646thread?)}.
c906108c 23647
b8ff78ce
JB
23648@item m @var{addr},@var{length}
23649@cindex @samp{m} packet
8e04817f 23650Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23651Note that @var{addr} may not be aligned to any particular boundary.
23652
23653The stub need not use any particular size or alignment when gathering
23654data from memory for the response; even if @var{addr} is word-aligned
23655and @var{length} is a multiple of the word size, the stub is free to
23656use byte accesses, or not. For this reason, this packet may not be
23657suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23658@cindex alignment of remote memory accesses
23659@cindex size of remote memory accesses
23660@cindex memory, alignment and size of remote accesses
c906108c 23661
ee2d5c50
AC
23662Reply:
23663@table @samp
23664@item @var{XX@dots{}}
599b237a 23665Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23666number. The reply may contain fewer bytes than requested if the
23667server was able to read only part of the region of memory.
23668@item E @var{NN}
ee2d5c50
AC
23669@var{NN} is errno
23670@end table
23671
b8ff78ce
JB
23672@item M @var{addr},@var{length}:@var{XX@dots{}}
23673@cindex @samp{M} packet
8e04817f 23674Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23675@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23676hexadecimal number.
ee2d5c50
AC
23677
23678Reply:
23679@table @samp
23680@item OK
23681for success
b8ff78ce 23682@item E @var{NN}
8e04817f
AC
23683for an error (this includes the case where only part of the data was
23684written).
ee2d5c50 23685@end table
c906108c 23686
b8ff78ce
JB
23687@item p @var{n}
23688@cindex @samp{p} packet
23689Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23690@xref{read registers packet}, for a description of how the returned
23691register value is encoded.
ee2d5c50
AC
23692
23693Reply:
23694@table @samp
2e868123
AC
23695@item @var{XX@dots{}}
23696the register's value
b8ff78ce 23697@item E @var{NN}
2e868123
AC
23698for an error
23699@item
23700Indicating an unrecognized @var{query}.
ee2d5c50
AC
23701@end table
23702
b8ff78ce 23703@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23704@anchor{write register packet}
b8ff78ce
JB
23705@cindex @samp{P} packet
23706Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23707number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23708digits for each byte in the register (target byte order).
c906108c 23709
ee2d5c50
AC
23710Reply:
23711@table @samp
23712@item OK
23713for success
b8ff78ce 23714@item E @var{NN}
ee2d5c50
AC
23715for an error
23716@end table
23717
5f3bebba
JB
23718@item q @var{name} @var{params}@dots{}
23719@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23720@cindex @samp{q} packet
b8ff78ce 23721@cindex @samp{Q} packet
5f3bebba
JB
23722General query (@samp{q}) and set (@samp{Q}). These packets are
23723described fully in @ref{General Query Packets}.
c906108c 23724
b8ff78ce
JB
23725@item r
23726@cindex @samp{r} packet
8e04817f 23727Reset the entire system.
c906108c 23728
b8ff78ce 23729Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23730
b8ff78ce
JB
23731@item R @var{XX}
23732@cindex @samp{R} packet
8e04817f 23733Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23734This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23735
8e04817f 23736The @samp{R} packet has no reply.
ee2d5c50 23737
4f553f88 23738@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23739@cindex @samp{s} packet
23740Single step. @var{addr} is the address at which to resume. If
23741@var{addr} is omitted, resume at same address.
c906108c 23742
ee2d5c50
AC
23743Reply:
23744@xref{Stop Reply Packets}, for the reply specifications.
23745
4f553f88 23746@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23747@anchor{step with signal packet}
b8ff78ce
JB
23748@cindex @samp{S} packet
23749Step with signal. This is analogous to the @samp{C} packet, but
23750requests a single-step, rather than a normal resumption of execution.
c906108c 23751
ee2d5c50
AC
23752Reply:
23753@xref{Stop Reply Packets}, for the reply specifications.
23754
b8ff78ce
JB
23755@item t @var{addr}:@var{PP},@var{MM}
23756@cindex @samp{t} packet
8e04817f 23757Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23758@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23759@var{addr} must be at least 3 digits.
c906108c 23760
b8ff78ce
JB
23761@item T @var{XX}
23762@cindex @samp{T} packet
ee2d5c50 23763Find out if the thread XX is alive.
c906108c 23764
ee2d5c50
AC
23765Reply:
23766@table @samp
23767@item OK
23768thread is still alive
b8ff78ce 23769@item E @var{NN}
ee2d5c50
AC
23770thread is dead
23771@end table
23772
b8ff78ce
JB
23773@item v
23774Packets starting with @samp{v} are identified by a multi-letter name,
23775up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23776
2d717e4f
DJ
23777@item vAttach;@var{pid}
23778@cindex @samp{vAttach} packet
23779Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23780hexadecimal integer identifying the process. If the stub is currently
23781controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23782
23783This packet is only available in extended mode (@pxref{extended mode}).
23784
23785Reply:
23786@table @samp
23787@item E @var{nn}
23788for an error
23789@item @r{Any stop packet}
23790for success (@pxref{Stop Reply Packets})
23791@end table
23792
b8ff78ce
JB
23793@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23794@cindex @samp{vCont} packet
23795Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23796If an action is specified with no @var{tid}, then it is applied to any
23797threads that don't have a specific action specified; if no default action is
23798specified then other threads should remain stopped. Specifying multiple
23799default actions is an error; specifying no actions is also an error.
23800Thread IDs are specified in hexadecimal. Currently supported actions are:
23801
b8ff78ce 23802@table @samp
86d30acc
DJ
23803@item c
23804Continue.
b8ff78ce 23805@item C @var{sig}
86d30acc
DJ
23806Continue with signal @var{sig}. @var{sig} should be two hex digits.
23807@item s
23808Step.
b8ff78ce 23809@item S @var{sig}
86d30acc
DJ
23810Step with signal @var{sig}. @var{sig} should be two hex digits.
23811@end table
23812
23813The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23814not supported in @samp{vCont}.
86d30acc
DJ
23815
23816Reply:
23817@xref{Stop Reply Packets}, for the reply specifications.
23818
b8ff78ce
JB
23819@item vCont?
23820@cindex @samp{vCont?} packet
d3e8051b 23821Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23822
23823Reply:
23824@table @samp
b8ff78ce
JB
23825@item vCont@r{[};@var{action}@dots{}@r{]}
23826The @samp{vCont} packet is supported. Each @var{action} is a supported
23827command in the @samp{vCont} packet.
86d30acc 23828@item
b8ff78ce 23829The @samp{vCont} packet is not supported.
86d30acc 23830@end table
ee2d5c50 23831
a6b151f1
DJ
23832@item vFile:@var{operation}:@var{parameter}@dots{}
23833@cindex @samp{vFile} packet
23834Perform a file operation on the target system. For details,
23835see @ref{Host I/O Packets}.
23836
68437a39
DJ
23837@item vFlashErase:@var{addr},@var{length}
23838@cindex @samp{vFlashErase} packet
23839Direct the stub to erase @var{length} bytes of flash starting at
23840@var{addr}. The region may enclose any number of flash blocks, but
23841its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23842flash block size appearing in the memory map (@pxref{Memory Map
23843Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23844together, and sends a @samp{vFlashDone} request after each group; the
23845stub is allowed to delay erase operation until the @samp{vFlashDone}
23846packet is received.
23847
23848Reply:
23849@table @samp
23850@item OK
23851for success
23852@item E @var{NN}
23853for an error
23854@end table
23855
23856@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23857@cindex @samp{vFlashWrite} packet
23858Direct the stub to write data to flash address @var{addr}. The data
23859is passed in binary form using the same encoding as for the @samp{X}
23860packet (@pxref{Binary Data}). The memory ranges specified by
23861@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23862not overlap, and must appear in order of increasing addresses
23863(although @samp{vFlashErase} packets for higher addresses may already
23864have been received; the ordering is guaranteed only between
23865@samp{vFlashWrite} packets). If a packet writes to an address that was
23866neither erased by a preceding @samp{vFlashErase} packet nor by some other
23867target-specific method, the results are unpredictable.
23868
23869
23870Reply:
23871@table @samp
23872@item OK
23873for success
23874@item E.memtype
23875for vFlashWrite addressing non-flash memory
23876@item E @var{NN}
23877for an error
23878@end table
23879
23880@item vFlashDone
23881@cindex @samp{vFlashDone} packet
23882Indicate to the stub that flash programming operation is finished.
23883The stub is permitted to delay or batch the effects of a group of
23884@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23885@samp{vFlashDone} packet is received. The contents of the affected
23886regions of flash memory are unpredictable until the @samp{vFlashDone}
23887request is completed.
23888
2d717e4f
DJ
23889@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23890@cindex @samp{vRun} packet
23891Run the program @var{filename}, passing it each @var{argument} on its
23892command line. The file and arguments are hex-encoded strings. If
23893@var{filename} is an empty string, the stub may use a default program
23894(e.g.@: the last program run). The program is created in the stopped
1fddbabb 23895state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
23896
23897This packet is only available in extended mode (@pxref{extended mode}).
23898
23899Reply:
23900@table @samp
23901@item E @var{nn}
23902for an error
23903@item @r{Any stop packet}
23904for success (@pxref{Stop Reply Packets})
23905@end table
23906
b8ff78ce 23907@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23908@anchor{X packet}
b8ff78ce
JB
23909@cindex @samp{X} packet
23910Write data to memory, where the data is transmitted in binary.
23911@var{addr} is address, @var{length} is number of bytes,
0876f84a 23912@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23913
ee2d5c50
AC
23914Reply:
23915@table @samp
23916@item OK
23917for success
b8ff78ce 23918@item E @var{NN}
ee2d5c50
AC
23919for an error
23920@end table
23921
b8ff78ce
JB
23922@item z @var{type},@var{addr},@var{length}
23923@itemx Z @var{type},@var{addr},@var{length}
2f870471 23924@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23925@cindex @samp{z} packet
23926@cindex @samp{Z} packets
23927Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23928watchpoint starting at address @var{address} and covering the next
23929@var{length} bytes.
ee2d5c50 23930
2f870471
AC
23931Each breakpoint and watchpoint packet @var{type} is documented
23932separately.
23933
512217c7
AC
23934@emph{Implementation notes: A remote target shall return an empty string
23935for an unrecognized breakpoint or watchpoint packet @var{type}. A
23936remote target shall support either both or neither of a given
b8ff78ce 23937@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23938avoid potential problems with duplicate packets, the operations should
23939be implemented in an idempotent way.}
23940
b8ff78ce
JB
23941@item z0,@var{addr},@var{length}
23942@itemx Z0,@var{addr},@var{length}
23943@cindex @samp{z0} packet
23944@cindex @samp{Z0} packet
23945Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23946@var{addr} of size @var{length}.
2f870471
AC
23947
23948A memory breakpoint is implemented by replacing the instruction at
23949@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23950@var{length} is used by targets that indicates the size of the
2f870471
AC
23951breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23952@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23953
2f870471
AC
23954@emph{Implementation note: It is possible for a target to copy or move
23955code that contains memory breakpoints (e.g., when implementing
23956overlays). The behavior of this packet, in the presence of such a
23957target, is not defined.}
c906108c 23958
ee2d5c50
AC
23959Reply:
23960@table @samp
2f870471
AC
23961@item OK
23962success
23963@item
23964not supported
b8ff78ce 23965@item E @var{NN}
ee2d5c50 23966for an error
2f870471
AC
23967@end table
23968
b8ff78ce
JB
23969@item z1,@var{addr},@var{length}
23970@itemx Z1,@var{addr},@var{length}
23971@cindex @samp{z1} packet
23972@cindex @samp{Z1} packet
23973Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23974address @var{addr} of size @var{length}.
2f870471
AC
23975
23976A hardware breakpoint is implemented using a mechanism that is not
23977dependant on being able to modify the target's memory.
23978
23979@emph{Implementation note: A hardware breakpoint is not affected by code
23980movement.}
23981
23982Reply:
23983@table @samp
ee2d5c50 23984@item OK
2f870471
AC
23985success
23986@item
23987not supported
b8ff78ce 23988@item E @var{NN}
2f870471
AC
23989for an error
23990@end table
23991
b8ff78ce
JB
23992@item z2,@var{addr},@var{length}
23993@itemx Z2,@var{addr},@var{length}
23994@cindex @samp{z2} packet
23995@cindex @samp{Z2} packet
23996Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23997
23998Reply:
23999@table @samp
24000@item OK
24001success
24002@item
24003not supported
b8ff78ce 24004@item E @var{NN}
2f870471
AC
24005for an error
24006@end table
24007
b8ff78ce
JB
24008@item z3,@var{addr},@var{length}
24009@itemx Z3,@var{addr},@var{length}
24010@cindex @samp{z3} packet
24011@cindex @samp{Z3} packet
24012Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24013
24014Reply:
24015@table @samp
24016@item OK
24017success
24018@item
24019not supported
b8ff78ce 24020@item E @var{NN}
2f870471
AC
24021for an error
24022@end table
24023
b8ff78ce
JB
24024@item z4,@var{addr},@var{length}
24025@itemx Z4,@var{addr},@var{length}
24026@cindex @samp{z4} packet
24027@cindex @samp{Z4} packet
24028Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24029
24030Reply:
24031@table @samp
24032@item OK
24033success
24034@item
24035not supported
b8ff78ce 24036@item E @var{NN}
2f870471 24037for an error
ee2d5c50
AC
24038@end table
24039
24040@end table
c906108c 24041
ee2d5c50
AC
24042@node Stop Reply Packets
24043@section Stop Reply Packets
24044@cindex stop reply packets
c906108c 24045
8e04817f
AC
24046The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24047receive any of the below as a reply. In the case of the @samp{C},
24048@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24049when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24050number} is defined by the header @file{include/gdb/signals.h} in the
24051@value{GDBN} source code.
c906108c 24052
b8ff78ce
JB
24053As in the description of request packets, we include spaces in the
24054reply templates for clarity; these are not part of the reply packet's
24055syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24056components.
c906108c 24057
b8ff78ce 24058@table @samp
ee2d5c50 24059
b8ff78ce 24060@item S @var{AA}
599b237a 24061The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24062number). This is equivalent to a @samp{T} response with no
24063@var{n}:@var{r} pairs.
c906108c 24064
b8ff78ce
JB
24065@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24066@cindex @samp{T} packet reply
599b237a 24067The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24068number). This is equivalent to an @samp{S} response, except that the
24069@samp{@var{n}:@var{r}} pairs can carry values of important registers
24070and other information directly in the stop reply packet, reducing
24071round-trip latency. Single-step and breakpoint traps are reported
24072this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24073
24074@itemize @bullet
b8ff78ce 24075@item
599b237a 24076If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24077corresponding @var{r} gives that register's value. @var{r} is a
24078series of bytes in target byte order, with each byte given by a
24079two-digit hex number.
cfa9d6d9 24080
b8ff78ce
JB
24081@item
24082If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24083hex.
cfa9d6d9 24084
b8ff78ce 24085@item
cfa9d6d9
DJ
24086If @var{n} is a recognized @dfn{stop reason}, it describes a more
24087specific event that stopped the target. The currently defined stop
24088reasons are listed below. @var{aa} should be @samp{05}, the trap
24089signal. At most one stop reason should be present.
24090
b8ff78ce
JB
24091@item
24092Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24093and go on to the next; this allows us to extend the protocol in the
24094future.
cfa9d6d9
DJ
24095@end itemize
24096
24097The currently defined stop reasons are:
24098
24099@table @samp
24100@item watch
24101@itemx rwatch
24102@itemx awatch
24103The packet indicates a watchpoint hit, and @var{r} is the data address, in
24104hex.
24105
24106@cindex shared library events, remote reply
24107@item library
24108The packet indicates that the loaded libraries have changed.
24109@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24110list of loaded libraries. @var{r} is ignored.
24111@end table
ee2d5c50 24112
b8ff78ce 24113@item W @var{AA}
8e04817f 24114The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24115applicable to certain targets.
24116
b8ff78ce 24117@item X @var{AA}
8e04817f 24118The process terminated with signal @var{AA}.
c906108c 24119
b8ff78ce
JB
24120@item O @var{XX}@dots{}
24121@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24122written as the program's console output. This can happen at any time
24123while the program is running and the debugger should continue to wait
24124for @samp{W}, @samp{T}, etc.
0ce1b118 24125
b8ff78ce 24126@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24127@var{call-id} is the identifier which says which host system call should
24128be called. This is just the name of the function. Translation into the
24129correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24130@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24131system calls.
24132
b8ff78ce
JB
24133@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24134this very system call.
0ce1b118 24135
b8ff78ce
JB
24136The target replies with this packet when it expects @value{GDBN} to
24137call a host system call on behalf of the target. @value{GDBN} replies
24138with an appropriate @samp{F} packet and keeps up waiting for the next
24139reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24140or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24141Protocol Extension}, for more details.
0ce1b118 24142
ee2d5c50
AC
24143@end table
24144
24145@node General Query Packets
24146@section General Query Packets
9c16f35a 24147@cindex remote query requests
c906108c 24148
5f3bebba
JB
24149Packets starting with @samp{q} are @dfn{general query packets};
24150packets starting with @samp{Q} are @dfn{general set packets}. General
24151query and set packets are a semi-unified form for retrieving and
24152sending information to and from the stub.
24153
24154The initial letter of a query or set packet is followed by a name
24155indicating what sort of thing the packet applies to. For example,
24156@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24157definitions with the stub. These packet names follow some
24158conventions:
24159
24160@itemize @bullet
24161@item
24162The name must not contain commas, colons or semicolons.
24163@item
24164Most @value{GDBN} query and set packets have a leading upper case
24165letter.
24166@item
24167The names of custom vendor packets should use a company prefix, in
24168lower case, followed by a period. For example, packets designed at
24169the Acme Corporation might begin with @samp{qacme.foo} (for querying
24170foos) or @samp{Qacme.bar} (for setting bars).
24171@end itemize
24172
aa56d27a
JB
24173The name of a query or set packet should be separated from any
24174parameters by a @samp{:}; the parameters themselves should be
24175separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24176full packet name, and check for a separator or the end of the packet,
24177in case two packet names share a common prefix. New packets should not begin
24178with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24179packets predate these conventions, and have arguments without any terminator
24180for the packet name; we suspect they are in widespread use in places that
24181are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24182existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24183packet.}.
c906108c 24184
b8ff78ce
JB
24185Like the descriptions of the other packets, each description here
24186has a template showing the packet's overall syntax, followed by an
24187explanation of the packet's meaning. We include spaces in some of the
24188templates for clarity; these are not part of the packet's syntax. No
24189@value{GDBN} packet uses spaces to separate its components.
24190
5f3bebba
JB
24191Here are the currently defined query and set packets:
24192
b8ff78ce 24193@table @samp
c906108c 24194
b8ff78ce 24195@item qC
9c16f35a 24196@cindex current thread, remote request
b8ff78ce 24197@cindex @samp{qC} packet
ee2d5c50
AC
24198Return the current thread id.
24199
24200Reply:
24201@table @samp
b8ff78ce 24202@item QC @var{pid}
599b237a 24203Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24204@item @r{(anything else)}
ee2d5c50
AC
24205Any other reply implies the old pid.
24206@end table
24207
b8ff78ce 24208@item qCRC:@var{addr},@var{length}
ff2587ec 24209@cindex CRC of memory block, remote request
b8ff78ce
JB
24210@cindex @samp{qCRC} packet
24211Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24212Reply:
24213@table @samp
b8ff78ce 24214@item E @var{NN}
ff2587ec 24215An error (such as memory fault)
b8ff78ce
JB
24216@item C @var{crc32}
24217The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24218@end table
24219
b8ff78ce
JB
24220@item qfThreadInfo
24221@itemx qsThreadInfo
9c16f35a 24222@cindex list active threads, remote request
b8ff78ce
JB
24223@cindex @samp{qfThreadInfo} packet
24224@cindex @samp{qsThreadInfo} packet
24225Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24226may be too many active threads to fit into one reply packet, this query
24227works iteratively: it may require more than one query/reply sequence to
24228obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24229be the @samp{qfThreadInfo} query; subsequent queries in the
24230sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24231
b8ff78ce 24232NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24233
24234Reply:
24235@table @samp
b8ff78ce 24236@item m @var{id}
ee2d5c50 24237A single thread id
b8ff78ce 24238@item m @var{id},@var{id}@dots{}
ee2d5c50 24239a comma-separated list of thread ids
b8ff78ce
JB
24240@item l
24241(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24242@end table
24243
24244In response to each query, the target will reply with a list of one or
e1aac25b
JB
24245more thread ids, in big-endian unsigned hex, separated by commas.
24246@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24247ids (using the @samp{qs} form of the query), until the target responds
24248with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24249
b8ff78ce 24250@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24251@cindex get thread-local storage address, remote request
b8ff78ce 24252@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24253Fetch the address associated with thread local storage specified
24254by @var{thread-id}, @var{offset}, and @var{lm}.
24255
24256@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24257thread for which to fetch the TLS address.
24258
24259@var{offset} is the (big endian, hex encoded) offset associated with the
24260thread local variable. (This offset is obtained from the debug
24261information associated with the variable.)
24262
db2e3e2e 24263@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24264the load module associated with the thread local storage. For example,
24265a @sc{gnu}/Linux system will pass the link map address of the shared
24266object associated with the thread local storage under consideration.
24267Other operating environments may choose to represent the load module
24268differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24269
24270Reply:
b8ff78ce
JB
24271@table @samp
24272@item @var{XX}@dots{}
ff2587ec
WZ
24273Hex encoded (big endian) bytes representing the address of the thread
24274local storage requested.
24275
b8ff78ce
JB
24276@item E @var{nn}
24277An error occurred. @var{nn} are hex digits.
ff2587ec 24278
b8ff78ce
JB
24279@item
24280An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24281@end table
24282
b8ff78ce 24283@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24284Obtain thread information from RTOS. Where: @var{startflag} (one hex
24285digit) is one to indicate the first query and zero to indicate a
24286subsequent query; @var{threadcount} (two hex digits) is the maximum
24287number of threads the response packet can contain; and @var{nextthread}
24288(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24289returned in the response as @var{argthread}.
ee2d5c50 24290
b8ff78ce 24291Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24292
24293Reply:
24294@table @samp
b8ff78ce 24295@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24296Where: @var{count} (two hex digits) is the number of threads being
24297returned; @var{done} (one hex digit) is zero to indicate more threads
24298and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24299digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24300is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24301digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24302@end table
c906108c 24303
b8ff78ce 24304@item qOffsets
9c16f35a 24305@cindex section offsets, remote request
b8ff78ce 24306@cindex @samp{qOffsets} packet
31d99776
DJ
24307Get section offsets that the target used when relocating the downloaded
24308image.
c906108c 24309
ee2d5c50
AC
24310Reply:
24311@table @samp
31d99776
DJ
24312@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24313Relocate the @code{Text} section by @var{xxx} from its original address.
24314Relocate the @code{Data} section by @var{yyy} from its original address.
24315If the object file format provides segment information (e.g.@: @sc{elf}
24316@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24317segments by the supplied offsets.
24318
24319@emph{Note: while a @code{Bss} offset may be included in the response,
24320@value{GDBN} ignores this and instead applies the @code{Data} offset
24321to the @code{Bss} section.}
24322
24323@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24324Relocate the first segment of the object file, which conventionally
24325contains program code, to a starting address of @var{xxx}. If
24326@samp{DataSeg} is specified, relocate the second segment, which
24327conventionally contains modifiable data, to a starting address of
24328@var{yyy}. @value{GDBN} will report an error if the object file
24329does not contain segment information, or does not contain at least
24330as many segments as mentioned in the reply. Extra segments are
24331kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24332@end table
24333
b8ff78ce 24334@item qP @var{mode} @var{threadid}
9c16f35a 24335@cindex thread information, remote request
b8ff78ce 24336@cindex @samp{qP} packet
8e04817f
AC
24337Returns information on @var{threadid}. Where: @var{mode} is a hex
24338encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24339
aa56d27a
JB
24340Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24341(see below).
24342
b8ff78ce 24343Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24344
89be2091
DJ
24345@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24346@cindex pass signals to inferior, remote request
24347@cindex @samp{QPassSignals} packet
23181151 24348@anchor{QPassSignals}
89be2091
DJ
24349Each listed @var{signal} should be passed directly to the inferior process.
24350Signals are numbered identically to continue packets and stop replies
24351(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24352strictly greater than the previous item. These signals do not need to stop
24353the inferior, or be reported to @value{GDBN}. All other signals should be
24354reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24355combine; any earlier @samp{QPassSignals} list is completely replaced by the
24356new list. This packet improves performance when using @samp{handle
24357@var{signal} nostop noprint pass}.
24358
24359Reply:
24360@table @samp
24361@item OK
24362The request succeeded.
24363
24364@item E @var{nn}
24365An error occurred. @var{nn} are hex digits.
24366
24367@item
24368An empty reply indicates that @samp{QPassSignals} is not supported by
24369the stub.
24370@end table
24371
24372Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24373command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24374This packet is not probed by default; the remote stub must request it,
24375by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24376
b8ff78ce 24377@item qRcmd,@var{command}
ff2587ec 24378@cindex execute remote command, remote request
b8ff78ce 24379@cindex @samp{qRcmd} packet
ff2587ec 24380@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24381execution. Invalid commands should be reported using the output
24382string. Before the final result packet, the target may also respond
24383with a number of intermediate @samp{O@var{output}} console output
24384packets. @emph{Implementors should note that providing access to a
24385stubs's interpreter may have security implications}.
fa93a9d8 24386
ff2587ec
WZ
24387Reply:
24388@table @samp
24389@item OK
24390A command response with no output.
24391@item @var{OUTPUT}
24392A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24393@item E @var{NN}
ff2587ec 24394Indicate a badly formed request.
b8ff78ce
JB
24395@item
24396An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24397@end table
fa93a9d8 24398
aa56d27a
JB
24399(Note that the @code{qRcmd} packet's name is separated from the
24400command by a @samp{,}, not a @samp{:}, contrary to the naming
24401conventions above. Please don't use this packet as a model for new
24402packets.)
24403
be2a5f71
DJ
24404@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24405@cindex supported packets, remote query
24406@cindex features of the remote protocol
24407@cindex @samp{qSupported} packet
0876f84a 24408@anchor{qSupported}
be2a5f71
DJ
24409Tell the remote stub about features supported by @value{GDBN}, and
24410query the stub for features it supports. This packet allows
24411@value{GDBN} and the remote stub to take advantage of each others'
24412features. @samp{qSupported} also consolidates multiple feature probes
24413at startup, to improve @value{GDBN} performance---a single larger
24414packet performs better than multiple smaller probe packets on
24415high-latency links. Some features may enable behavior which must not
24416be on by default, e.g.@: because it would confuse older clients or
24417stubs. Other features may describe packets which could be
24418automatically probed for, but are not. These features must be
24419reported before @value{GDBN} will use them. This ``default
24420unsupported'' behavior is not appropriate for all packets, but it
24421helps to keep the initial connection time under control with new
24422versions of @value{GDBN} which support increasing numbers of packets.
24423
24424Reply:
24425@table @samp
24426@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24427The stub supports or does not support each returned @var{stubfeature},
24428depending on the form of each @var{stubfeature} (see below for the
24429possible forms).
24430@item
24431An empty reply indicates that @samp{qSupported} is not recognized,
24432or that no features needed to be reported to @value{GDBN}.
24433@end table
24434
24435The allowed forms for each feature (either a @var{gdbfeature} in the
24436@samp{qSupported} packet, or a @var{stubfeature} in the response)
24437are:
24438
24439@table @samp
24440@item @var{name}=@var{value}
24441The remote protocol feature @var{name} is supported, and associated
24442with the specified @var{value}. The format of @var{value} depends
24443on the feature, but it must not include a semicolon.
24444@item @var{name}+
24445The remote protocol feature @var{name} is supported, and does not
24446need an associated value.
24447@item @var{name}-
24448The remote protocol feature @var{name} is not supported.
24449@item @var{name}?
24450The remote protocol feature @var{name} may be supported, and
24451@value{GDBN} should auto-detect support in some other way when it is
24452needed. This form will not be used for @var{gdbfeature} notifications,
24453but may be used for @var{stubfeature} responses.
24454@end table
24455
24456Whenever the stub receives a @samp{qSupported} request, the
24457supplied set of @value{GDBN} features should override any previous
24458request. This allows @value{GDBN} to put the stub in a known
24459state, even if the stub had previously been communicating with
24460a different version of @value{GDBN}.
24461
24462No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24463are defined yet. Stubs should ignore any unknown values for
24464@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24465packet supports receiving packets of unlimited length (earlier
24466versions of @value{GDBN} may reject overly long responses). Values
24467for @var{gdbfeature} may be defined in the future to let the stub take
24468advantage of new features in @value{GDBN}, e.g.@: incompatible
24469improvements in the remote protocol---support for unlimited length
24470responses would be a @var{gdbfeature} example, if it were not implied by
24471the @samp{qSupported} query. The stub's reply should be independent
24472of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24473describes all the features it supports, and then the stub replies with
24474all the features it supports.
24475
24476Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24477responses, as long as each response uses one of the standard forms.
24478
24479Some features are flags. A stub which supports a flag feature
24480should respond with a @samp{+} form response. Other features
24481require values, and the stub should respond with an @samp{=}
24482form response.
24483
24484Each feature has a default value, which @value{GDBN} will use if
24485@samp{qSupported} is not available or if the feature is not mentioned
24486in the @samp{qSupported} response. The default values are fixed; a
24487stub is free to omit any feature responses that match the defaults.
24488
24489Not all features can be probed, but for those which can, the probing
24490mechanism is useful: in some cases, a stub's internal
24491architecture may not allow the protocol layer to know some information
24492about the underlying target in advance. This is especially common in
24493stubs which may be configured for multiple targets.
24494
24495These are the currently defined stub features and their properties:
24496
cfa9d6d9 24497@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24498@c NOTE: The first row should be @headitem, but we do not yet require
24499@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24500@item Feature Name
be2a5f71
DJ
24501@tab Value Required
24502@tab Default
24503@tab Probe Allowed
24504
24505@item @samp{PacketSize}
24506@tab Yes
24507@tab @samp{-}
24508@tab No
24509
0876f84a
DJ
24510@item @samp{qXfer:auxv:read}
24511@tab No
24512@tab @samp{-}
24513@tab Yes
24514
23181151
DJ
24515@item @samp{qXfer:features:read}
24516@tab No
24517@tab @samp{-}
24518@tab Yes
24519
cfa9d6d9
DJ
24520@item @samp{qXfer:libraries:read}
24521@tab No
24522@tab @samp{-}
24523@tab Yes
24524
68437a39
DJ
24525@item @samp{qXfer:memory-map:read}
24526@tab No
24527@tab @samp{-}
24528@tab Yes
24529
0e7f50da
UW
24530@item @samp{qXfer:spu:read}
24531@tab No
24532@tab @samp{-}
24533@tab Yes
24534
24535@item @samp{qXfer:spu:write}
24536@tab No
24537@tab @samp{-}
24538@tab Yes
24539
89be2091
DJ
24540@item @samp{QPassSignals}
24541@tab No
24542@tab @samp{-}
24543@tab Yes
24544
be2a5f71
DJ
24545@end multitable
24546
24547These are the currently defined stub features, in more detail:
24548
24549@table @samp
24550@cindex packet size, remote protocol
24551@item PacketSize=@var{bytes}
24552The remote stub can accept packets up to at least @var{bytes} in
24553length. @value{GDBN} will send packets up to this size for bulk
24554transfers, and will never send larger packets. This is a limit on the
24555data characters in the packet, including the frame and checksum.
24556There is no trailing NUL byte in a remote protocol packet; if the stub
24557stores packets in a NUL-terminated format, it should allow an extra
24558byte in its buffer for the NUL. If this stub feature is not supported,
24559@value{GDBN} guesses based on the size of the @samp{g} packet response.
24560
0876f84a
DJ
24561@item qXfer:auxv:read
24562The remote stub understands the @samp{qXfer:auxv:read} packet
24563(@pxref{qXfer auxiliary vector read}).
24564
23181151
DJ
24565@item qXfer:features:read
24566The remote stub understands the @samp{qXfer:features:read} packet
24567(@pxref{qXfer target description read}).
24568
cfa9d6d9
DJ
24569@item qXfer:libraries:read
24570The remote stub understands the @samp{qXfer:libraries:read} packet
24571(@pxref{qXfer library list read}).
24572
23181151
DJ
24573@item qXfer:memory-map:read
24574The remote stub understands the @samp{qXfer:memory-map:read} packet
24575(@pxref{qXfer memory map read}).
24576
0e7f50da
UW
24577@item qXfer:spu:read
24578The remote stub understands the @samp{qXfer:spu:read} packet
24579(@pxref{qXfer spu read}).
24580
24581@item qXfer:spu:write
24582The remote stub understands the @samp{qXfer:spu:write} packet
24583(@pxref{qXfer spu write}).
24584
23181151
DJ
24585@item QPassSignals
24586The remote stub understands the @samp{QPassSignals} packet
24587(@pxref{QPassSignals}).
24588
be2a5f71
DJ
24589@end table
24590
b8ff78ce 24591@item qSymbol::
ff2587ec 24592@cindex symbol lookup, remote request
b8ff78ce 24593@cindex @samp{qSymbol} packet
ff2587ec
WZ
24594Notify the target that @value{GDBN} is prepared to serve symbol lookup
24595requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24596
24597Reply:
ff2587ec 24598@table @samp
b8ff78ce 24599@item OK
ff2587ec 24600The target does not need to look up any (more) symbols.
b8ff78ce 24601@item qSymbol:@var{sym_name}
ff2587ec
WZ
24602The target requests the value of symbol @var{sym_name} (hex encoded).
24603@value{GDBN} may provide the value by using the
b8ff78ce
JB
24604@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24605below.
ff2587ec 24606@end table
83761cbd 24607
b8ff78ce 24608@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24609Set the value of @var{sym_name} to @var{sym_value}.
24610
24611@var{sym_name} (hex encoded) is the name of a symbol whose value the
24612target has previously requested.
24613
24614@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24615@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24616will be empty.
24617
24618Reply:
24619@table @samp
b8ff78ce 24620@item OK
ff2587ec 24621The target does not need to look up any (more) symbols.
b8ff78ce 24622@item qSymbol:@var{sym_name}
ff2587ec
WZ
24623The target requests the value of a new symbol @var{sym_name} (hex
24624encoded). @value{GDBN} will continue to supply the values of symbols
24625(if available), until the target ceases to request them.
fa93a9d8 24626@end table
0abb7bc7 24627
9d29849a
JB
24628@item QTDP
24629@itemx QTFrame
24630@xref{Tracepoint Packets}.
24631
b8ff78ce 24632@item qThreadExtraInfo,@var{id}
ff2587ec 24633@cindex thread attributes info, remote request
b8ff78ce
JB
24634@cindex @samp{qThreadExtraInfo} packet
24635Obtain a printable string description of a thread's attributes from
24636the target OS. @var{id} is a thread-id in big-endian hex. This
24637string may contain anything that the target OS thinks is interesting
24638for @value{GDBN} to tell the user about the thread. The string is
24639displayed in @value{GDBN}'s @code{info threads} display. Some
24640examples of possible thread extra info strings are @samp{Runnable}, or
24641@samp{Blocked on Mutex}.
ff2587ec
WZ
24642
24643Reply:
24644@table @samp
b8ff78ce
JB
24645@item @var{XX}@dots{}
24646Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24647comprising the printable string containing the extra information about
24648the thread's attributes.
ff2587ec 24649@end table
814e32d7 24650
aa56d27a
JB
24651(Note that the @code{qThreadExtraInfo} packet's name is separated from
24652the command by a @samp{,}, not a @samp{:}, contrary to the naming
24653conventions above. Please don't use this packet as a model for new
24654packets.)
24655
9d29849a
JB
24656@item QTStart
24657@itemx QTStop
24658@itemx QTinit
24659@itemx QTro
24660@itemx qTStatus
24661@xref{Tracepoint Packets}.
24662
0876f84a
DJ
24663@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24664@cindex read special object, remote request
24665@cindex @samp{qXfer} packet
68437a39 24666@anchor{qXfer read}
0876f84a
DJ
24667Read uninterpreted bytes from the target's special data area
24668identified by the keyword @var{object}. Request @var{length} bytes
24669starting at @var{offset} bytes into the data. The content and
0e7f50da 24670encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24671additional details about what data to access.
24672
24673Here are the specific requests of this form defined so far. All
24674@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24675formats, listed below.
24676
24677@table @samp
24678@item qXfer:auxv:read::@var{offset},@var{length}
24679@anchor{qXfer auxiliary vector read}
24680Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24681auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24682
24683This packet is not probed by default; the remote stub must request it,
89be2091 24684by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24685
23181151
DJ
24686@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24687@anchor{qXfer target description read}
24688Access the @dfn{target description}. @xref{Target Descriptions}. The
24689annex specifies which XML document to access. The main description is
24690always loaded from the @samp{target.xml} annex.
24691
24692This packet is not probed by default; the remote stub must request it,
24693by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24694
cfa9d6d9
DJ
24695@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24696@anchor{qXfer library list read}
24697Access the target's list of loaded libraries. @xref{Library List Format}.
24698The annex part of the generic @samp{qXfer} packet must be empty
24699(@pxref{qXfer read}).
24700
24701Targets which maintain a list of libraries in the program's memory do
24702not need to implement this packet; it is designed for platforms where
24703the operating system manages the list of loaded libraries.
24704
24705This packet is not probed by default; the remote stub must request it,
24706by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24707
68437a39
DJ
24708@item qXfer:memory-map:read::@var{offset},@var{length}
24709@anchor{qXfer memory map read}
79a6e687 24710Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24711annex part of the generic @samp{qXfer} packet must be empty
24712(@pxref{qXfer read}).
24713
0e7f50da
UW
24714This packet is not probed by default; the remote stub must request it,
24715by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24716
24717@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24718@anchor{qXfer spu read}
24719Read contents of an @code{spufs} file on the target system. The
24720annex specifies which file to read; it must be of the form
24721@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24722in the target process, and @var{name} identifes the @code{spufs} file
24723in that context to be accessed.
24724
68437a39
DJ
24725This packet is not probed by default; the remote stub must request it,
24726by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24727@end table
24728
0876f84a
DJ
24729Reply:
24730@table @samp
24731@item m @var{data}
24732Data @var{data} (@pxref{Binary Data}) has been read from the
24733target. There may be more data at a higher address (although
24734it is permitted to return @samp{m} even for the last valid
24735block of data, as long as at least one byte of data was read).
24736@var{data} may have fewer bytes than the @var{length} in the
24737request.
24738
24739@item l @var{data}
24740Data @var{data} (@pxref{Binary Data}) has been read from the target.
24741There is no more data to be read. @var{data} may have fewer bytes
24742than the @var{length} in the request.
24743
24744@item l
24745The @var{offset} in the request is at the end of the data.
24746There is no more data to be read.
24747
24748@item E00
24749The request was malformed, or @var{annex} was invalid.
24750
24751@item E @var{nn}
24752The offset was invalid, or there was an error encountered reading the data.
24753@var{nn} is a hex-encoded @code{errno} value.
24754
24755@item
24756An empty reply indicates the @var{object} string was not recognized by
24757the stub, or that the object does not support reading.
24758@end table
24759
24760@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24761@cindex write data into object, remote request
24762Write uninterpreted bytes into the target's special data area
24763identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24764into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24765(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24766is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24767to access.
24768
0e7f50da
UW
24769Here are the specific requests of this form defined so far. All
24770@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24771formats, listed below.
24772
24773@table @samp
24774@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24775@anchor{qXfer spu write}
24776Write @var{data} to an @code{spufs} file on the target system. The
24777annex specifies which file to write; it must be of the form
24778@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24779in the target process, and @var{name} identifes the @code{spufs} file
24780in that context to be accessed.
24781
24782This packet is not probed by default; the remote stub must request it,
24783by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24784@end table
0876f84a
DJ
24785
24786Reply:
24787@table @samp
24788@item @var{nn}
24789@var{nn} (hex encoded) is the number of bytes written.
24790This may be fewer bytes than supplied in the request.
24791
24792@item E00
24793The request was malformed, or @var{annex} was invalid.
24794
24795@item E @var{nn}
24796The offset was invalid, or there was an error encountered writing the data.
24797@var{nn} is a hex-encoded @code{errno} value.
24798
24799@item
24800An empty reply indicates the @var{object} string was not
24801recognized by the stub, or that the object does not support writing.
24802@end table
24803
24804@item qXfer:@var{object}:@var{operation}:@dots{}
24805Requests of this form may be added in the future. When a stub does
24806not recognize the @var{object} keyword, or its support for
24807@var{object} does not recognize the @var{operation} keyword, the stub
24808must respond with an empty packet.
24809
ee2d5c50
AC
24810@end table
24811
24812@node Register Packet Format
24813@section Register Packet Format
eb12ee30 24814
b8ff78ce 24815The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24816In the below, some thirty-two bit registers are transferred as
24817sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24818to fill the space allocated. Register bytes are transferred in target
24819byte order. The two nibbles within a register byte are transferred
ee2d5c50 24820most-significant - least-significant.
eb12ee30 24821
ee2d5c50 24822@table @r
eb12ee30 24823
8e04817f 24824@item MIPS32
ee2d5c50 24825
599b237a 24826All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2482732 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24828registers; fsr; fir; fp.
eb12ee30 24829
8e04817f 24830@item MIPS64
ee2d5c50 24831
599b237a 24832All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24833thirty-two bit registers such as @code{sr}). The ordering is the same
24834as @code{MIPS32}.
eb12ee30 24835
ee2d5c50
AC
24836@end table
24837
9d29849a
JB
24838@node Tracepoint Packets
24839@section Tracepoint Packets
24840@cindex tracepoint packets
24841@cindex packets, tracepoint
24842
24843Here we describe the packets @value{GDBN} uses to implement
24844tracepoints (@pxref{Tracepoints}).
24845
24846@table @samp
24847
24848@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24849Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24850is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24851the tracepoint is disabled. @var{step} is the tracepoint's step
24852count, and @var{pass} is its pass count. If the trailing @samp{-} is
24853present, further @samp{QTDP} packets will follow to specify this
24854tracepoint's actions.
24855
24856Replies:
24857@table @samp
24858@item OK
24859The packet was understood and carried out.
24860@item
24861The packet was not recognized.
24862@end table
24863
24864@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24865Define actions to be taken when a tracepoint is hit. @var{n} and
24866@var{addr} must be the same as in the initial @samp{QTDP} packet for
24867this tracepoint. This packet may only be sent immediately after
24868another @samp{QTDP} packet that ended with a @samp{-}. If the
24869trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24870specifying more actions for this tracepoint.
24871
24872In the series of action packets for a given tracepoint, at most one
24873can have an @samp{S} before its first @var{action}. If such a packet
24874is sent, it and the following packets define ``while-stepping''
24875actions. Any prior packets define ordinary actions --- that is, those
24876taken when the tracepoint is first hit. If no action packet has an
24877@samp{S}, then all the packets in the series specify ordinary
24878tracepoint actions.
24879
24880The @samp{@var{action}@dots{}} portion of the packet is a series of
24881actions, concatenated without separators. Each action has one of the
24882following forms:
24883
24884@table @samp
24885
24886@item R @var{mask}
24887Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24888a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24889@var{i} should be collected. (The least significant bit is numbered
24890zero.) Note that @var{mask} may be any number of digits long; it may
24891not fit in a 32-bit word.
24892
24893@item M @var{basereg},@var{offset},@var{len}
24894Collect @var{len} bytes of memory starting at the address in register
24895number @var{basereg}, plus @var{offset}. If @var{basereg} is
24896@samp{-1}, then the range has a fixed address: @var{offset} is the
24897address of the lowest byte to collect. The @var{basereg},
599b237a 24898@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24899values (the @samp{-1} value for @var{basereg} is a special case).
24900
24901@item X @var{len},@var{expr}
24902Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24903it directs. @var{expr} is an agent expression, as described in
24904@ref{Agent Expressions}. Each byte of the expression is encoded as a
24905two-digit hex number in the packet; @var{len} is the number of bytes
24906in the expression (and thus one-half the number of hex digits in the
24907packet).
24908
24909@end table
24910
24911Any number of actions may be packed together in a single @samp{QTDP}
24912packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24913length (400 bytes, for many stubs). There may be only one @samp{R}
24914action per tracepoint, and it must precede any @samp{M} or @samp{X}
24915actions. Any registers referred to by @samp{M} and @samp{X} actions
24916must be collected by a preceding @samp{R} action. (The
24917``while-stepping'' actions are treated as if they were attached to a
24918separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24919
24920Replies:
24921@table @samp
24922@item OK
24923The packet was understood and carried out.
24924@item
24925The packet was not recognized.
24926@end table
24927
24928@item QTFrame:@var{n}
24929Select the @var{n}'th tracepoint frame from the buffer, and use the
24930register and memory contents recorded there to answer subsequent
24931request packets from @value{GDBN}.
24932
24933A successful reply from the stub indicates that the stub has found the
24934requested frame. The response is a series of parts, concatenated
24935without separators, describing the frame we selected. Each part has
24936one of the following forms:
24937
24938@table @samp
24939@item F @var{f}
24940The selected frame is number @var{n} in the trace frame buffer;
599b237a 24941@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24942was no frame matching the criteria in the request packet.
24943
24944@item T @var{t}
24945The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24946@var{t} is a hexadecimal number.
9d29849a
JB
24947
24948@end table
24949
24950@item QTFrame:pc:@var{addr}
24951Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24952currently selected frame whose PC is @var{addr};
599b237a 24953@var{addr} is a hexadecimal number.
9d29849a
JB
24954
24955@item QTFrame:tdp:@var{t}
24956Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24957currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24958is a hexadecimal number.
9d29849a
JB
24959
24960@item QTFrame:range:@var{start}:@var{end}
24961Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24962currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24963and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24964numbers.
24965
24966@item QTFrame:outside:@var{start}:@var{end}
24967Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24968frame @emph{outside} the given range of addresses.
24969
24970@item QTStart
24971Begin the tracepoint experiment. Begin collecting data from tracepoint
24972hits in the trace frame buffer.
24973
24974@item QTStop
24975End the tracepoint experiment. Stop collecting trace frames.
24976
24977@item QTinit
24978Clear the table of tracepoints, and empty the trace frame buffer.
24979
24980@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24981Establish the given ranges of memory as ``transparent''. The stub
24982will answer requests for these ranges from memory's current contents,
24983if they were not collected as part of the tracepoint hit.
24984
24985@value{GDBN} uses this to mark read-only regions of memory, like those
24986containing program code. Since these areas never change, they should
24987still have the same contents they did when the tracepoint was hit, so
24988there's no reason for the stub to refuse to provide their contents.
24989
24990@item qTStatus
24991Ask the stub if there is a trace experiment running right now.
24992
24993Replies:
24994@table @samp
24995@item T0
24996There is no trace experiment running.
24997@item T1
24998There is a trace experiment running.
24999@end table
25000
25001@end table
25002
25003
a6b151f1
DJ
25004@node Host I/O Packets
25005@section Host I/O Packets
25006@cindex Host I/O, remote protocol
25007@cindex file transfer, remote protocol
25008
25009The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25010operations on the far side of a remote link. For example, Host I/O is
25011used to upload and download files to a remote target with its own
25012filesystem. Host I/O uses the same constant values and data structure
25013layout as the target-initiated File-I/O protocol. However, the
25014Host I/O packets are structured differently. The target-initiated
25015protocol relies on target memory to store parameters and buffers.
25016Host I/O requests are initiated by @value{GDBN}, and the
25017target's memory is not involved. @xref{File-I/O Remote Protocol
25018Extension}, for more details on the target-initiated protocol.
25019
25020The Host I/O request packets all encode a single operation along with
25021its arguments. They have this format:
25022
25023@table @samp
25024
25025@item vFile:@var{operation}: @var{parameter}@dots{}
25026@var{operation} is the name of the particular request; the target
25027should compare the entire packet name up to the second colon when checking
25028for a supported operation. The format of @var{parameter} depends on
25029the operation. Numbers are always passed in hexadecimal. Negative
25030numbers have an explicit minus sign (i.e.@: two's complement is not
25031used). Strings (e.g.@: filenames) are encoded as a series of
25032hexadecimal bytes. The last argument to a system call may be a
25033buffer of escaped binary data (@pxref{Binary Data}).
25034
25035@end table
25036
25037The valid responses to Host I/O packets are:
25038
25039@table @samp
25040
25041@item F @var{result} [, @var{errno}] [; @var{attachment}]
25042@var{result} is the integer value returned by this operation, usually
25043non-negative for success and -1 for errors. If an error has occured,
25044@var{errno} will be included in the result. @var{errno} will have a
25045value defined by the File-I/O protocol (@pxref{Errno Values}). For
25046operations which return data, @var{attachment} supplies the data as a
25047binary buffer. Binary buffers in response packets are escaped in the
25048normal way (@pxref{Binary Data}). See the individual packet
25049documentation for the interpretation of @var{result} and
25050@var{attachment}.
25051
25052@item
25053An empty response indicates that this operation is not recognized.
25054
25055@end table
25056
25057These are the supported Host I/O operations:
25058
25059@table @samp
25060@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25061Open a file at @var{pathname} and return a file descriptor for it, or
25062return -1 if an error occurs. @var{pathname} is a string,
25063@var{flags} is an integer indicating a mask of open flags
25064(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25065of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25066@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25067
25068@item vFile:close: @var{fd}
25069Close the open file corresponding to @var{fd} and return 0, or
25070-1 if an error occurs.
25071
25072@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25073Read data from the open file corresponding to @var{fd}. Up to
25074@var{count} bytes will be read from the file, starting at @var{offset}
25075relative to the start of the file. The target may read fewer bytes;
25076common reasons include packet size limits and an end-of-file
25077condition. The number of bytes read is returned. Zero should only be
25078returned for a successful read at the end of the file, or if
25079@var{count} was zero.
25080
25081The data read should be returned as a binary attachment on success.
25082If zero bytes were read, the response should include an empty binary
25083attachment (i.e.@: a trailing semicolon). The return value is the
25084number of target bytes read; the binary attachment may be longer if
25085some characters were escaped.
25086
25087@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25088Write @var{data} (a binary buffer) to the open file corresponding
25089to @var{fd}. Start the write at @var{offset} from the start of the
25090file. Unlike many @code{write} system calls, there is no
25091separate @var{count} argument; the length of @var{data} in the
25092packet is used. @samp{vFile:write} returns the number of bytes written,
25093which may be shorter than the length of @var{data}, or -1 if an
25094error occurred.
25095
25096@item vFile:unlink: @var{pathname}
25097Delete the file at @var{pathname} on the target. Return 0,
25098or -1 if an error occurs. @var{pathname} is a string.
25099
25100@end table
25101
9a6253be
KB
25102@node Interrupts
25103@section Interrupts
25104@cindex interrupts (remote protocol)
25105
25106When a program on the remote target is running, @value{GDBN} may
25107attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25108control of which is specified via @value{GDBN}'s @samp{remotebreak}
25109setting (@pxref{set remotebreak}).
25110
25111The precise meaning of @code{BREAK} is defined by the transport
25112mechanism and may, in fact, be undefined. @value{GDBN} does
25113not currently define a @code{BREAK} mechanism for any of the network
25114interfaces.
25115
25116@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25117transport mechanisms. It is represented by sending the single byte
25118@code{0x03} without any of the usual packet overhead described in
25119the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25120transmitted as part of a packet, it is considered to be packet data
25121and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25122(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25123@code{0x03} as part of its packet.
25124
25125Stubs are not required to recognize these interrupt mechanisms and the
25126precise meaning associated with receipt of the interrupt is
25127implementation defined. If the stub is successful at interrupting the
25128running program, it is expected that it will send one of the Stop
25129Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25130of successfully stopping the program. Interrupts received while the
25131program is stopped will be discarded.
25132
ee2d5c50
AC
25133@node Examples
25134@section Examples
eb12ee30 25135
8e04817f
AC
25136Example sequence of a target being re-started. Notice how the restart
25137does not get any direct output:
eb12ee30 25138
474c8240 25139@smallexample
d2c6833e
AC
25140-> @code{R00}
25141<- @code{+}
8e04817f 25142@emph{target restarts}
d2c6833e 25143-> @code{?}
8e04817f 25144<- @code{+}
d2c6833e
AC
25145<- @code{T001:1234123412341234}
25146-> @code{+}
474c8240 25147@end smallexample
eb12ee30 25148
8e04817f 25149Example sequence of a target being stepped by a single instruction:
eb12ee30 25150
474c8240 25151@smallexample
d2c6833e 25152-> @code{G1445@dots{}}
8e04817f 25153<- @code{+}
d2c6833e
AC
25154-> @code{s}
25155<- @code{+}
25156@emph{time passes}
25157<- @code{T001:1234123412341234}
8e04817f 25158-> @code{+}
d2c6833e 25159-> @code{g}
8e04817f 25160<- @code{+}
d2c6833e
AC
25161<- @code{1455@dots{}}
25162-> @code{+}
474c8240 25163@end smallexample
eb12ee30 25164
79a6e687
BW
25165@node File-I/O Remote Protocol Extension
25166@section File-I/O Remote Protocol Extension
0ce1b118
CV
25167@cindex File-I/O remote protocol extension
25168
25169@menu
25170* File-I/O Overview::
79a6e687
BW
25171* Protocol Basics::
25172* The F Request Packet::
25173* The F Reply Packet::
25174* The Ctrl-C Message::
0ce1b118 25175* Console I/O::
79a6e687 25176* List of Supported Calls::
db2e3e2e 25177* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25178* Constants::
25179* File-I/O Examples::
25180@end menu
25181
25182@node File-I/O Overview
25183@subsection File-I/O Overview
25184@cindex file-i/o overview
25185
9c16f35a 25186The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25187target to use the host's file system and console I/O to perform various
0ce1b118 25188system calls. System calls on the target system are translated into a
fc320d37
SL
25189remote protocol packet to the host system, which then performs the needed
25190actions and returns a response packet to the target system.
0ce1b118
CV
25191This simulates file system operations even on targets that lack file systems.
25192
fc320d37
SL
25193The protocol is defined to be independent of both the host and target systems.
25194It uses its own internal representation of datatypes and values. Both
0ce1b118 25195@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25196translating the system-dependent value representations into the internal
25197protocol representations when data is transmitted.
0ce1b118 25198
fc320d37
SL
25199The communication is synchronous. A system call is possible only when
25200@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25201or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25202the target is stopped to allow deterministic access to the target's
fc320d37
SL
25203memory. Therefore File-I/O is not interruptible by target signals. On
25204the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25205(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25206
25207The target's request to perform a host system call does not finish
25208the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25209after finishing the system call, the target returns to continuing the
25210previous activity (continue, step). No additional continue or step
25211request from @value{GDBN} is required.
25212
25213@smallexample
f7dc1244 25214(@value{GDBP}) continue
0ce1b118
CV
25215 <- target requests 'system call X'
25216 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25217 -> @value{GDBN} returns result
25218 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25219 <- target hits breakpoint and sends a Txx packet
25220@end smallexample
25221
fc320d37
SL
25222The protocol only supports I/O on the console and to regular files on
25223the host file system. Character or block special devices, pipes,
25224named pipes, sockets or any other communication method on the host
0ce1b118
CV
25225system are not supported by this protocol.
25226
79a6e687
BW
25227@node Protocol Basics
25228@subsection Protocol Basics
0ce1b118
CV
25229@cindex protocol basics, file-i/o
25230
fc320d37
SL
25231The File-I/O protocol uses the @code{F} packet as the request as well
25232as reply packet. Since a File-I/O system call can only occur when
25233@value{GDBN} is waiting for a response from the continuing or stepping target,
25234the File-I/O request is a reply that @value{GDBN} has to expect as a result
25235of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25236This @code{F} packet contains all information needed to allow @value{GDBN}
25237to call the appropriate host system call:
25238
25239@itemize @bullet
b383017d 25240@item
0ce1b118
CV
25241A unique identifier for the requested system call.
25242
25243@item
25244All parameters to the system call. Pointers are given as addresses
25245in the target memory address space. Pointers to strings are given as
b383017d 25246pointer/length pair. Numerical values are given as they are.
db2e3e2e 25247Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25248
25249@end itemize
25250
fc320d37 25251At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25252
25253@itemize @bullet
b383017d 25254@item
fc320d37
SL
25255If the parameters include pointer values to data needed as input to a
25256system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25257standard @code{m} packet request. This additional communication has to be
25258expected by the target implementation and is handled as any other @code{m}
25259packet.
25260
25261@item
25262@value{GDBN} translates all value from protocol representation to host
25263representation as needed. Datatypes are coerced into the host types.
25264
25265@item
fc320d37 25266@value{GDBN} calls the system call.
0ce1b118
CV
25267
25268@item
25269It then coerces datatypes back to protocol representation.
25270
25271@item
fc320d37
SL
25272If the system call is expected to return data in buffer space specified
25273by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25274target using a @code{M} or @code{X} packet. This packet has to be expected
25275by the target implementation and is handled as any other @code{M} or @code{X}
25276packet.
25277
25278@end itemize
25279
25280Eventually @value{GDBN} replies with another @code{F} packet which contains all
25281necessary information for the target to continue. This at least contains
25282
25283@itemize @bullet
25284@item
25285Return value.
25286
25287@item
25288@code{errno}, if has been changed by the system call.
25289
25290@item
25291``Ctrl-C'' flag.
25292
25293@end itemize
25294
25295After having done the needed type and value coercion, the target continues
25296the latest continue or step action.
25297
79a6e687
BW
25298@node The F Request Packet
25299@subsection The @code{F} Request Packet
0ce1b118
CV
25300@cindex file-i/o request packet
25301@cindex @code{F} request packet
25302
25303The @code{F} request packet has the following format:
25304
25305@table @samp
fc320d37 25306@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25307
25308@var{call-id} is the identifier to indicate the host system call to be called.
25309This is just the name of the function.
25310
fc320d37
SL
25311@var{parameter@dots{}} are the parameters to the system call.
25312Parameters are hexadecimal integer values, either the actual values in case
25313of scalar datatypes, pointers to target buffer space in case of compound
25314datatypes and unspecified memory areas, or pointer/length pairs in case
25315of string parameters. These are appended to the @var{call-id} as a
25316comma-delimited list. All values are transmitted in ASCII
25317string representation, pointer/length pairs separated by a slash.
0ce1b118 25318
b383017d 25319@end table
0ce1b118 25320
fc320d37 25321
0ce1b118 25322
79a6e687
BW
25323@node The F Reply Packet
25324@subsection The @code{F} Reply Packet
0ce1b118
CV
25325@cindex file-i/o reply packet
25326@cindex @code{F} reply packet
25327
25328The @code{F} reply packet has the following format:
25329
25330@table @samp
25331
d3bdde98 25332@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25333
25334@var{retcode} is the return code of the system call as hexadecimal value.
25335
db2e3e2e
BW
25336@var{errno} is the @code{errno} set by the call, in protocol-specific
25337representation.
0ce1b118
CV
25338This parameter can be omitted if the call was successful.
25339
fc320d37
SL
25340@var{Ctrl-C flag} is only sent if the user requested a break. In this
25341case, @var{errno} must be sent as well, even if the call was successful.
25342The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25343
25344@smallexample
25345F0,0,C
25346@end smallexample
25347
25348@noindent
fc320d37 25349or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25350
25351@smallexample
25352F-1,4,C
25353@end smallexample
25354
25355@noindent
db2e3e2e 25356assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25357
25358@end table
25359
0ce1b118 25360
79a6e687
BW
25361@node The Ctrl-C Message
25362@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25363@cindex ctrl-c message, in file-i/o protocol
25364
c8aa23ab 25365If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25366reply packet (@pxref{The F Reply Packet}),
fc320d37 25367the target should behave as if it had
0ce1b118 25368gotten a break message. The meaning for the target is ``system call
fc320d37 25369interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25370(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25371packet.
fc320d37
SL
25372
25373It's important for the target to know in which
25374state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25375
25376@itemize @bullet
25377@item
25378The system call hasn't been performed on the host yet.
25379
25380@item
25381The system call on the host has been finished.
25382
25383@end itemize
25384
25385These two states can be distinguished by the target by the value of the
25386returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25387call hasn't been performed. This is equivalent to the @code{EINTR} handling
25388on POSIX systems. In any other case, the target may presume that the
fc320d37 25389system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25390as if the break message arrived right after the system call.
25391
fc320d37 25392@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25393yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25394@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25395before the user requests a break, the full action must be finished by
25396@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25397The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25398or the full action has been completed.
25399
25400@node Console I/O
25401@subsection Console I/O
25402@cindex console i/o as part of file-i/o
25403
d3e8051b 25404By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25405descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25406on the @value{GDBN} console is handled as any other file output operation
25407(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25408by @value{GDBN} so that after the target read request from file descriptor
254090 all following typing is buffered until either one of the following
25410conditions is met:
25411
25412@itemize @bullet
25413@item
c8aa23ab 25414The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25415@code{read}
25416system call is treated as finished.
25417
25418@item
7f9087cb 25419The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25420newline.
0ce1b118
CV
25421
25422@item
c8aa23ab
EZ
25423The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25424character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25425
25426@end itemize
25427
fc320d37
SL
25428If the user has typed more characters than fit in the buffer given to
25429the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25430either another @code{read(0, @dots{})} is requested by the target, or debugging
25431is stopped at the user's request.
0ce1b118 25432
0ce1b118 25433
79a6e687
BW
25434@node List of Supported Calls
25435@subsection List of Supported Calls
0ce1b118
CV
25436@cindex list of supported file-i/o calls
25437
25438@menu
25439* open::
25440* close::
25441* read::
25442* write::
25443* lseek::
25444* rename::
25445* unlink::
25446* stat/fstat::
25447* gettimeofday::
25448* isatty::
25449* system::
25450@end menu
25451
25452@node open
25453@unnumberedsubsubsec open
25454@cindex open, file-i/o system call
25455
fc320d37
SL
25456@table @asis
25457@item Synopsis:
0ce1b118 25458@smallexample
0ce1b118
CV
25459int open(const char *pathname, int flags);
25460int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25461@end smallexample
25462
fc320d37
SL
25463@item Request:
25464@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25465
0ce1b118 25466@noindent
fc320d37 25467@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25468
25469@table @code
b383017d 25470@item O_CREAT
0ce1b118
CV
25471If the file does not exist it will be created. The host
25472rules apply as far as file ownership and time stamps
25473are concerned.
25474
b383017d 25475@item O_EXCL
fc320d37 25476When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25477an error and open() fails.
25478
b383017d 25479@item O_TRUNC
0ce1b118 25480If the file already exists and the open mode allows
fc320d37
SL
25481writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25482truncated to zero length.
0ce1b118 25483
b383017d 25484@item O_APPEND
0ce1b118
CV
25485The file is opened in append mode.
25486
b383017d 25487@item O_RDONLY
0ce1b118
CV
25488The file is opened for reading only.
25489
b383017d 25490@item O_WRONLY
0ce1b118
CV
25491The file is opened for writing only.
25492
b383017d 25493@item O_RDWR
0ce1b118 25494The file is opened for reading and writing.
fc320d37 25495@end table
0ce1b118
CV
25496
25497@noindent
fc320d37 25498Other bits are silently ignored.
0ce1b118 25499
0ce1b118
CV
25500
25501@noindent
fc320d37 25502@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25503
25504@table @code
b383017d 25505@item S_IRUSR
0ce1b118
CV
25506User has read permission.
25507
b383017d 25508@item S_IWUSR
0ce1b118
CV
25509User has write permission.
25510
b383017d 25511@item S_IRGRP
0ce1b118
CV
25512Group has read permission.
25513
b383017d 25514@item S_IWGRP
0ce1b118
CV
25515Group has write permission.
25516
b383017d 25517@item S_IROTH
0ce1b118
CV
25518Others have read permission.
25519
b383017d 25520@item S_IWOTH
0ce1b118 25521Others have write permission.
fc320d37 25522@end table
0ce1b118
CV
25523
25524@noindent
fc320d37 25525Other bits are silently ignored.
0ce1b118 25526
0ce1b118 25527
fc320d37
SL
25528@item Return value:
25529@code{open} returns the new file descriptor or -1 if an error
25530occurred.
0ce1b118 25531
fc320d37 25532@item Errors:
0ce1b118
CV
25533
25534@table @code
b383017d 25535@item EEXIST
fc320d37 25536@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25537
b383017d 25538@item EISDIR
fc320d37 25539@var{pathname} refers to a directory.
0ce1b118 25540
b383017d 25541@item EACCES
0ce1b118
CV
25542The requested access is not allowed.
25543
25544@item ENAMETOOLONG
fc320d37 25545@var{pathname} was too long.
0ce1b118 25546
b383017d 25547@item ENOENT
fc320d37 25548A directory component in @var{pathname} does not exist.
0ce1b118 25549
b383017d 25550@item ENODEV
fc320d37 25551@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25552
b383017d 25553@item EROFS
fc320d37 25554@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25555write access was requested.
25556
b383017d 25557@item EFAULT
fc320d37 25558@var{pathname} is an invalid pointer value.
0ce1b118 25559
b383017d 25560@item ENOSPC
0ce1b118
CV
25561No space on device to create the file.
25562
b383017d 25563@item EMFILE
0ce1b118
CV
25564The process already has the maximum number of files open.
25565
b383017d 25566@item ENFILE
0ce1b118
CV
25567The limit on the total number of files open on the system
25568has been reached.
25569
b383017d 25570@item EINTR
0ce1b118
CV
25571The call was interrupted by the user.
25572@end table
25573
fc320d37
SL
25574@end table
25575
0ce1b118
CV
25576@node close
25577@unnumberedsubsubsec close
25578@cindex close, file-i/o system call
25579
fc320d37
SL
25580@table @asis
25581@item Synopsis:
0ce1b118 25582@smallexample
0ce1b118 25583int close(int fd);
fc320d37 25584@end smallexample
0ce1b118 25585
fc320d37
SL
25586@item Request:
25587@samp{Fclose,@var{fd}}
0ce1b118 25588
fc320d37
SL
25589@item Return value:
25590@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25591
fc320d37 25592@item Errors:
0ce1b118
CV
25593
25594@table @code
b383017d 25595@item EBADF
fc320d37 25596@var{fd} isn't a valid open file descriptor.
0ce1b118 25597
b383017d 25598@item EINTR
0ce1b118
CV
25599The call was interrupted by the user.
25600@end table
25601
fc320d37
SL
25602@end table
25603
0ce1b118
CV
25604@node read
25605@unnumberedsubsubsec read
25606@cindex read, file-i/o system call
25607
fc320d37
SL
25608@table @asis
25609@item Synopsis:
0ce1b118 25610@smallexample
0ce1b118 25611int read(int fd, void *buf, unsigned int count);
fc320d37 25612@end smallexample
0ce1b118 25613
fc320d37
SL
25614@item Request:
25615@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25616
fc320d37 25617@item Return value:
0ce1b118
CV
25618On success, the number of bytes read is returned.
25619Zero indicates end of file. If count is zero, read
b383017d 25620returns zero as well. On error, -1 is returned.
0ce1b118 25621
fc320d37 25622@item Errors:
0ce1b118
CV
25623
25624@table @code
b383017d 25625@item EBADF
fc320d37 25626@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25627reading.
25628
b383017d 25629@item EFAULT
fc320d37 25630@var{bufptr} is an invalid pointer value.
0ce1b118 25631
b383017d 25632@item EINTR
0ce1b118
CV
25633The call was interrupted by the user.
25634@end table
25635
fc320d37
SL
25636@end table
25637
0ce1b118
CV
25638@node write
25639@unnumberedsubsubsec write
25640@cindex write, file-i/o system call
25641
fc320d37
SL
25642@table @asis
25643@item Synopsis:
0ce1b118 25644@smallexample
0ce1b118 25645int write(int fd, const void *buf, unsigned int count);
fc320d37 25646@end smallexample
0ce1b118 25647
fc320d37
SL
25648@item Request:
25649@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25650
fc320d37 25651@item Return value:
0ce1b118
CV
25652On success, the number of bytes written are returned.
25653Zero indicates nothing was written. On error, -1
25654is returned.
25655
fc320d37 25656@item Errors:
0ce1b118
CV
25657
25658@table @code
b383017d 25659@item EBADF
fc320d37 25660@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25661writing.
25662
b383017d 25663@item EFAULT
fc320d37 25664@var{bufptr} is an invalid pointer value.
0ce1b118 25665
b383017d 25666@item EFBIG
0ce1b118 25667An attempt was made to write a file that exceeds the
db2e3e2e 25668host-specific maximum file size allowed.
0ce1b118 25669
b383017d 25670@item ENOSPC
0ce1b118
CV
25671No space on device to write the data.
25672
b383017d 25673@item EINTR
0ce1b118
CV
25674The call was interrupted by the user.
25675@end table
25676
fc320d37
SL
25677@end table
25678
0ce1b118
CV
25679@node lseek
25680@unnumberedsubsubsec lseek
25681@cindex lseek, file-i/o system call
25682
fc320d37
SL
25683@table @asis
25684@item Synopsis:
0ce1b118 25685@smallexample
0ce1b118 25686long lseek (int fd, long offset, int flag);
0ce1b118
CV
25687@end smallexample
25688
fc320d37
SL
25689@item Request:
25690@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25691
25692@var{flag} is one of:
0ce1b118
CV
25693
25694@table @code
b383017d 25695@item SEEK_SET
fc320d37 25696The offset is set to @var{offset} bytes.
0ce1b118 25697
b383017d 25698@item SEEK_CUR
fc320d37 25699The offset is set to its current location plus @var{offset}
0ce1b118
CV
25700bytes.
25701
b383017d 25702@item SEEK_END
fc320d37 25703The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25704bytes.
25705@end table
25706
fc320d37 25707@item Return value:
0ce1b118
CV
25708On success, the resulting unsigned offset in bytes from
25709the beginning of the file is returned. Otherwise, a
25710value of -1 is returned.
25711
fc320d37 25712@item Errors:
0ce1b118
CV
25713
25714@table @code
b383017d 25715@item EBADF
fc320d37 25716@var{fd} is not a valid open file descriptor.
0ce1b118 25717
b383017d 25718@item ESPIPE
fc320d37 25719@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25720
b383017d 25721@item EINVAL
fc320d37 25722@var{flag} is not a proper value.
0ce1b118 25723
b383017d 25724@item EINTR
0ce1b118
CV
25725The call was interrupted by the user.
25726@end table
25727
fc320d37
SL
25728@end table
25729
0ce1b118
CV
25730@node rename
25731@unnumberedsubsubsec rename
25732@cindex rename, file-i/o system call
25733
fc320d37
SL
25734@table @asis
25735@item Synopsis:
0ce1b118 25736@smallexample
0ce1b118 25737int rename(const char *oldpath, const char *newpath);
fc320d37 25738@end smallexample
0ce1b118 25739
fc320d37
SL
25740@item Request:
25741@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25742
fc320d37 25743@item Return value:
0ce1b118
CV
25744On success, zero is returned. On error, -1 is returned.
25745
fc320d37 25746@item Errors:
0ce1b118
CV
25747
25748@table @code
b383017d 25749@item EISDIR
fc320d37 25750@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25751directory.
25752
b383017d 25753@item EEXIST
fc320d37 25754@var{newpath} is a non-empty directory.
0ce1b118 25755
b383017d 25756@item EBUSY
fc320d37 25757@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25758process.
25759
b383017d 25760@item EINVAL
0ce1b118
CV
25761An attempt was made to make a directory a subdirectory
25762of itself.
25763
b383017d 25764@item ENOTDIR
fc320d37
SL
25765A component used as a directory in @var{oldpath} or new
25766path is not a directory. Or @var{oldpath} is a directory
25767and @var{newpath} exists but is not a directory.
0ce1b118 25768
b383017d 25769@item EFAULT
fc320d37 25770@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25771
b383017d 25772@item EACCES
0ce1b118
CV
25773No access to the file or the path of the file.
25774
25775@item ENAMETOOLONG
b383017d 25776
fc320d37 25777@var{oldpath} or @var{newpath} was too long.
0ce1b118 25778
b383017d 25779@item ENOENT
fc320d37 25780A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25781
b383017d 25782@item EROFS
0ce1b118
CV
25783The file is on a read-only filesystem.
25784
b383017d 25785@item ENOSPC
0ce1b118
CV
25786The device containing the file has no room for the new
25787directory entry.
25788
b383017d 25789@item EINTR
0ce1b118
CV
25790The call was interrupted by the user.
25791@end table
25792
fc320d37
SL
25793@end table
25794
0ce1b118
CV
25795@node unlink
25796@unnumberedsubsubsec unlink
25797@cindex unlink, file-i/o system call
25798
fc320d37
SL
25799@table @asis
25800@item Synopsis:
0ce1b118 25801@smallexample
0ce1b118 25802int unlink(const char *pathname);
fc320d37 25803@end smallexample
0ce1b118 25804
fc320d37
SL
25805@item Request:
25806@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25807
fc320d37 25808@item Return value:
0ce1b118
CV
25809On success, zero is returned. On error, -1 is returned.
25810
fc320d37 25811@item Errors:
0ce1b118
CV
25812
25813@table @code
b383017d 25814@item EACCES
0ce1b118
CV
25815No access to the file or the path of the file.
25816
b383017d 25817@item EPERM
0ce1b118
CV
25818The system does not allow unlinking of directories.
25819
b383017d 25820@item EBUSY
fc320d37 25821The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25822being used by another process.
25823
b383017d 25824@item EFAULT
fc320d37 25825@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25826
25827@item ENAMETOOLONG
fc320d37 25828@var{pathname} was too long.
0ce1b118 25829
b383017d 25830@item ENOENT
fc320d37 25831A directory component in @var{pathname} does not exist.
0ce1b118 25832
b383017d 25833@item ENOTDIR
0ce1b118
CV
25834A component of the path is not a directory.
25835
b383017d 25836@item EROFS
0ce1b118
CV
25837The file is on a read-only filesystem.
25838
b383017d 25839@item EINTR
0ce1b118
CV
25840The call was interrupted by the user.
25841@end table
25842
fc320d37
SL
25843@end table
25844
0ce1b118
CV
25845@node stat/fstat
25846@unnumberedsubsubsec stat/fstat
25847@cindex fstat, file-i/o system call
25848@cindex stat, file-i/o system call
25849
fc320d37
SL
25850@table @asis
25851@item Synopsis:
0ce1b118 25852@smallexample
0ce1b118
CV
25853int stat(const char *pathname, struct stat *buf);
25854int fstat(int fd, struct stat *buf);
fc320d37 25855@end smallexample
0ce1b118 25856
fc320d37
SL
25857@item Request:
25858@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25859@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25860
fc320d37 25861@item Return value:
0ce1b118
CV
25862On success, zero is returned. On error, -1 is returned.
25863
fc320d37 25864@item Errors:
0ce1b118
CV
25865
25866@table @code
b383017d 25867@item EBADF
fc320d37 25868@var{fd} is not a valid open file.
0ce1b118 25869
b383017d 25870@item ENOENT
fc320d37 25871A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25872path is an empty string.
25873
b383017d 25874@item ENOTDIR
0ce1b118
CV
25875A component of the path is not a directory.
25876
b383017d 25877@item EFAULT
fc320d37 25878@var{pathnameptr} is an invalid pointer value.
0ce1b118 25879
b383017d 25880@item EACCES
0ce1b118
CV
25881No access to the file or the path of the file.
25882
25883@item ENAMETOOLONG
fc320d37 25884@var{pathname} was too long.
0ce1b118 25885
b383017d 25886@item EINTR
0ce1b118
CV
25887The call was interrupted by the user.
25888@end table
25889
fc320d37
SL
25890@end table
25891
0ce1b118
CV
25892@node gettimeofday
25893@unnumberedsubsubsec gettimeofday
25894@cindex gettimeofday, file-i/o system call
25895
fc320d37
SL
25896@table @asis
25897@item Synopsis:
0ce1b118 25898@smallexample
0ce1b118 25899int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25900@end smallexample
0ce1b118 25901
fc320d37
SL
25902@item Request:
25903@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25904
fc320d37 25905@item Return value:
0ce1b118
CV
25906On success, 0 is returned, -1 otherwise.
25907
fc320d37 25908@item Errors:
0ce1b118
CV
25909
25910@table @code
b383017d 25911@item EINVAL
fc320d37 25912@var{tz} is a non-NULL pointer.
0ce1b118 25913
b383017d 25914@item EFAULT
fc320d37
SL
25915@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25916@end table
25917
0ce1b118
CV
25918@end table
25919
25920@node isatty
25921@unnumberedsubsubsec isatty
25922@cindex isatty, file-i/o system call
25923
fc320d37
SL
25924@table @asis
25925@item Synopsis:
0ce1b118 25926@smallexample
0ce1b118 25927int isatty(int fd);
fc320d37 25928@end smallexample
0ce1b118 25929
fc320d37
SL
25930@item Request:
25931@samp{Fisatty,@var{fd}}
0ce1b118 25932
fc320d37
SL
25933@item Return value:
25934Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25935
fc320d37 25936@item Errors:
0ce1b118
CV
25937
25938@table @code
b383017d 25939@item EINTR
0ce1b118
CV
25940The call was interrupted by the user.
25941@end table
25942
fc320d37
SL
25943@end table
25944
25945Note that the @code{isatty} call is treated as a special case: it returns
259461 to the target if the file descriptor is attached
25947to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25948would require implementing @code{ioctl} and would be more complex than
25949needed.
25950
25951
0ce1b118
CV
25952@node system
25953@unnumberedsubsubsec system
25954@cindex system, file-i/o system call
25955
fc320d37
SL
25956@table @asis
25957@item Synopsis:
0ce1b118 25958@smallexample
0ce1b118 25959int system(const char *command);
fc320d37 25960@end smallexample
0ce1b118 25961
fc320d37
SL
25962@item Request:
25963@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25964
fc320d37 25965@item Return value:
5600ea19
NS
25966If @var{len} is zero, the return value indicates whether a shell is
25967available. A zero return value indicates a shell is not available.
25968For non-zero @var{len}, the value returned is -1 on error and the
25969return status of the command otherwise. Only the exit status of the
25970command is returned, which is extracted from the host's @code{system}
25971return value by calling @code{WEXITSTATUS(retval)}. In case
25972@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25973
fc320d37 25974@item Errors:
0ce1b118
CV
25975
25976@table @code
b383017d 25977@item EINTR
0ce1b118
CV
25978The call was interrupted by the user.
25979@end table
25980
fc320d37
SL
25981@end table
25982
25983@value{GDBN} takes over the full task of calling the necessary host calls
25984to perform the @code{system} call. The return value of @code{system} on
25985the host is simplified before it's returned
25986to the target. Any termination signal information from the child process
25987is discarded, and the return value consists
25988entirely of the exit status of the called command.
25989
25990Due to security concerns, the @code{system} call is by default refused
25991by @value{GDBN}. The user has to allow this call explicitly with the
25992@code{set remote system-call-allowed 1} command.
25993
25994@table @code
25995@item set remote system-call-allowed
25996@kindex set remote system-call-allowed
25997Control whether to allow the @code{system} calls in the File I/O
25998protocol for the remote target. The default is zero (disabled).
25999
26000@item show remote system-call-allowed
26001@kindex show remote system-call-allowed
26002Show whether the @code{system} calls are allowed in the File I/O
26003protocol.
26004@end table
26005
db2e3e2e
BW
26006@node Protocol-specific Representation of Datatypes
26007@subsection Protocol-specific Representation of Datatypes
26008@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26009
26010@menu
79a6e687
BW
26011* Integral Datatypes::
26012* Pointer Values::
26013* Memory Transfer::
0ce1b118
CV
26014* struct stat::
26015* struct timeval::
26016@end menu
26017
79a6e687
BW
26018@node Integral Datatypes
26019@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26020@cindex integral datatypes, in file-i/o protocol
26021
fc320d37
SL
26022The integral datatypes used in the system calls are @code{int},
26023@code{unsigned int}, @code{long}, @code{unsigned long},
26024@code{mode_t}, and @code{time_t}.
0ce1b118 26025
fc320d37 26026@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26027implemented as 32 bit values in this protocol.
26028
fc320d37 26029@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26030
0ce1b118
CV
26031@xref{Limits}, for corresponding MIN and MAX values (similar to those
26032in @file{limits.h}) to allow range checking on host and target.
26033
26034@code{time_t} datatypes are defined as seconds since the Epoch.
26035
26036All integral datatypes transferred as part of a memory read or write of a
26037structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26038byte order.
26039
79a6e687
BW
26040@node Pointer Values
26041@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26042@cindex pointer values, in file-i/o protocol
26043
26044Pointers to target data are transmitted as they are. An exception
26045is made for pointers to buffers for which the length isn't
26046transmitted as part of the function call, namely strings. Strings
26047are transmitted as a pointer/length pair, both as hex values, e.g.@:
26048
26049@smallexample
26050@code{1aaf/12}
26051@end smallexample
26052
26053@noindent
26054which is a pointer to data of length 18 bytes at position 0x1aaf.
26055The length is defined as the full string length in bytes, including
fc320d37
SL
26056the trailing null byte. For example, the string @code{"hello world"}
26057at address 0x123456 is transmitted as
0ce1b118
CV
26058
26059@smallexample
fc320d37 26060@code{123456/d}
0ce1b118
CV
26061@end smallexample
26062
79a6e687
BW
26063@node Memory Transfer
26064@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26065@cindex memory transfer, in file-i/o protocol
26066
26067Structured data which is transferred using a memory read or write (for
db2e3e2e 26068example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26069with all scalar multibyte datatypes being big endian. Translation to
26070this representation needs to be done both by the target before the @code{F}
26071packet is sent, and by @value{GDBN} before
26072it transfers memory to the target. Transferred pointers to structured
26073data should point to the already-coerced data at any time.
0ce1b118 26074
0ce1b118
CV
26075
26076@node struct stat
26077@unnumberedsubsubsec struct stat
26078@cindex struct stat, in file-i/o protocol
26079
fc320d37
SL
26080The buffer of type @code{struct stat} used by the target and @value{GDBN}
26081is defined as follows:
0ce1b118
CV
26082
26083@smallexample
26084struct stat @{
26085 unsigned int st_dev; /* device */
26086 unsigned int st_ino; /* inode */
26087 mode_t st_mode; /* protection */
26088 unsigned int st_nlink; /* number of hard links */
26089 unsigned int st_uid; /* user ID of owner */
26090 unsigned int st_gid; /* group ID of owner */
26091 unsigned int st_rdev; /* device type (if inode device) */
26092 unsigned long st_size; /* total size, in bytes */
26093 unsigned long st_blksize; /* blocksize for filesystem I/O */
26094 unsigned long st_blocks; /* number of blocks allocated */
26095 time_t st_atime; /* time of last access */
26096 time_t st_mtime; /* time of last modification */
26097 time_t st_ctime; /* time of last change */
26098@};
26099@end smallexample
26100
fc320d37 26101The integral datatypes conform to the definitions given in the
79a6e687 26102appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26103structure is of size 64 bytes.
26104
26105The values of several fields have a restricted meaning and/or
26106range of values.
26107
fc320d37 26108@table @code
0ce1b118 26109
fc320d37
SL
26110@item st_dev
26111A value of 0 represents a file, 1 the console.
0ce1b118 26112
fc320d37
SL
26113@item st_ino
26114No valid meaning for the target. Transmitted unchanged.
0ce1b118 26115
fc320d37
SL
26116@item st_mode
26117Valid mode bits are described in @ref{Constants}. Any other
26118bits have currently no meaning for the target.
0ce1b118 26119
fc320d37
SL
26120@item st_uid
26121@itemx st_gid
26122@itemx st_rdev
26123No valid meaning for the target. Transmitted unchanged.
0ce1b118 26124
fc320d37
SL
26125@item st_atime
26126@itemx st_mtime
26127@itemx st_ctime
26128These values have a host and file system dependent
26129accuracy. Especially on Windows hosts, the file system may not
26130support exact timing values.
26131@end table
0ce1b118 26132
fc320d37
SL
26133The target gets a @code{struct stat} of the above representation and is
26134responsible for coercing it to the target representation before
0ce1b118
CV
26135continuing.
26136
fc320d37
SL
26137Note that due to size differences between the host, target, and protocol
26138representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26139get truncated on the target.
26140
26141@node struct timeval
26142@unnumberedsubsubsec struct timeval
26143@cindex struct timeval, in file-i/o protocol
26144
fc320d37 26145The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26146is defined as follows:
26147
26148@smallexample
b383017d 26149struct timeval @{
0ce1b118
CV
26150 time_t tv_sec; /* second */
26151 long tv_usec; /* microsecond */
26152@};
26153@end smallexample
26154
fc320d37 26155The integral datatypes conform to the definitions given in the
79a6e687 26156appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26157structure is of size 8 bytes.
26158
26159@node Constants
26160@subsection Constants
26161@cindex constants, in file-i/o protocol
26162
26163The following values are used for the constants inside of the
fc320d37 26164protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26165values before and after the call as needed.
26166
26167@menu
79a6e687
BW
26168* Open Flags::
26169* mode_t Values::
26170* Errno Values::
26171* Lseek Flags::
0ce1b118
CV
26172* Limits::
26173@end menu
26174
79a6e687
BW
26175@node Open Flags
26176@unnumberedsubsubsec Open Flags
0ce1b118
CV
26177@cindex open flags, in file-i/o protocol
26178
26179All values are given in hexadecimal representation.
26180
26181@smallexample
26182 O_RDONLY 0x0
26183 O_WRONLY 0x1
26184 O_RDWR 0x2
26185 O_APPEND 0x8
26186 O_CREAT 0x200
26187 O_TRUNC 0x400
26188 O_EXCL 0x800
26189@end smallexample
26190
79a6e687
BW
26191@node mode_t Values
26192@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26193@cindex mode_t values, in file-i/o protocol
26194
26195All values are given in octal representation.
26196
26197@smallexample
26198 S_IFREG 0100000
26199 S_IFDIR 040000
26200 S_IRUSR 0400
26201 S_IWUSR 0200
26202 S_IXUSR 0100
26203 S_IRGRP 040
26204 S_IWGRP 020
26205 S_IXGRP 010
26206 S_IROTH 04
26207 S_IWOTH 02
26208 S_IXOTH 01
26209@end smallexample
26210
79a6e687
BW
26211@node Errno Values
26212@unnumberedsubsubsec Errno Values
0ce1b118
CV
26213@cindex errno values, in file-i/o protocol
26214
26215All values are given in decimal representation.
26216
26217@smallexample
26218 EPERM 1
26219 ENOENT 2
26220 EINTR 4
26221 EBADF 9
26222 EACCES 13
26223 EFAULT 14
26224 EBUSY 16
26225 EEXIST 17
26226 ENODEV 19
26227 ENOTDIR 20
26228 EISDIR 21
26229 EINVAL 22
26230 ENFILE 23
26231 EMFILE 24
26232 EFBIG 27
26233 ENOSPC 28
26234 ESPIPE 29
26235 EROFS 30
26236 ENAMETOOLONG 91
26237 EUNKNOWN 9999
26238@end smallexample
26239
fc320d37 26240 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26241 any error value not in the list of supported error numbers.
26242
79a6e687
BW
26243@node Lseek Flags
26244@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26245@cindex lseek flags, in file-i/o protocol
26246
26247@smallexample
26248 SEEK_SET 0
26249 SEEK_CUR 1
26250 SEEK_END 2
26251@end smallexample
26252
26253@node Limits
26254@unnumberedsubsubsec Limits
26255@cindex limits, in file-i/o protocol
26256
26257All values are given in decimal representation.
26258
26259@smallexample
26260 INT_MIN -2147483648
26261 INT_MAX 2147483647
26262 UINT_MAX 4294967295
26263 LONG_MIN -9223372036854775808
26264 LONG_MAX 9223372036854775807
26265 ULONG_MAX 18446744073709551615
26266@end smallexample
26267
26268@node File-I/O Examples
26269@subsection File-I/O Examples
26270@cindex file-i/o examples
26271
26272Example sequence of a write call, file descriptor 3, buffer is at target
26273address 0x1234, 6 bytes should be written:
26274
26275@smallexample
26276<- @code{Fwrite,3,1234,6}
26277@emph{request memory read from target}
26278-> @code{m1234,6}
26279<- XXXXXX
26280@emph{return "6 bytes written"}
26281-> @code{F6}
26282@end smallexample
26283
26284Example sequence of a read call, file descriptor 3, buffer is at target
26285address 0x1234, 6 bytes should be read:
26286
26287@smallexample
26288<- @code{Fread,3,1234,6}
26289@emph{request memory write to target}
26290-> @code{X1234,6:XXXXXX}
26291@emph{return "6 bytes read"}
26292-> @code{F6}
26293@end smallexample
26294
26295Example sequence of a read call, call fails on the host due to invalid
fc320d37 26296file descriptor (@code{EBADF}):
0ce1b118
CV
26297
26298@smallexample
26299<- @code{Fread,3,1234,6}
26300-> @code{F-1,9}
26301@end smallexample
26302
c8aa23ab 26303Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26304host is called:
26305
26306@smallexample
26307<- @code{Fread,3,1234,6}
26308-> @code{F-1,4,C}
26309<- @code{T02}
26310@end smallexample
26311
c8aa23ab 26312Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26313host is called:
26314
26315@smallexample
26316<- @code{Fread,3,1234,6}
26317-> @code{X1234,6:XXXXXX}
26318<- @code{T02}
26319@end smallexample
26320
cfa9d6d9
DJ
26321@node Library List Format
26322@section Library List Format
26323@cindex library list format, remote protocol
26324
26325On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26326same process as your application to manage libraries. In this case,
26327@value{GDBN} can use the loader's symbol table and normal memory
26328operations to maintain a list of shared libraries. On other
26329platforms, the operating system manages loaded libraries.
26330@value{GDBN} can not retrieve the list of currently loaded libraries
26331through memory operations, so it uses the @samp{qXfer:libraries:read}
26332packet (@pxref{qXfer library list read}) instead. The remote stub
26333queries the target's operating system and reports which libraries
26334are loaded.
26335
26336The @samp{qXfer:libraries:read} packet returns an XML document which
26337lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26338associated name and one or more segment or section base addresses,
26339which report where the library was loaded in memory.
26340
26341For the common case of libraries that are fully linked binaries, the
26342library should have a list of segments. If the target supports
26343dynamic linking of a relocatable object file, its library XML element
26344should instead include a list of allocated sections. The segment or
26345section bases are start addresses, not relocation offsets; they do not
26346depend on the library's link-time base addresses.
cfa9d6d9 26347
9cceb671
DJ
26348@value{GDBN} must be linked with the Expat library to support XML
26349library lists. @xref{Expat}.
26350
cfa9d6d9
DJ
26351A simple memory map, with one loaded library relocated by a single
26352offset, looks like this:
26353
26354@smallexample
26355<library-list>
26356 <library name="/lib/libc.so.6">
26357 <segment address="0x10000000"/>
26358 </library>
26359</library-list>
26360@end smallexample
26361
1fddbabb
PA
26362Another simple memory map, with one loaded library with three
26363allocated sections (.text, .data, .bss), looks like this:
26364
26365@smallexample
26366<library-list>
26367 <library name="sharedlib.o">
26368 <section address="0x10000000"/>
26369 <section address="0x20000000"/>
26370 <section address="0x30000000"/>
26371 </library>
26372</library-list>
26373@end smallexample
26374
cfa9d6d9
DJ
26375The format of a library list is described by this DTD:
26376
26377@smallexample
26378<!-- library-list: Root element with versioning -->
26379<!ELEMENT library-list (library)*>
26380<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26381<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26382<!ATTLIST library name CDATA #REQUIRED>
26383<!ELEMENT segment EMPTY>
26384<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26385<!ELEMENT section EMPTY>
26386<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26387@end smallexample
26388
1fddbabb
PA
26389In addition, segments and section descriptors cannot be mixed within a
26390single library element, and you must supply at least one segment or
26391section for each library.
26392
79a6e687
BW
26393@node Memory Map Format
26394@section Memory Map Format
68437a39
DJ
26395@cindex memory map format
26396
26397To be able to write into flash memory, @value{GDBN} needs to obtain a
26398memory map from the target. This section describes the format of the
26399memory map.
26400
26401The memory map is obtained using the @samp{qXfer:memory-map:read}
26402(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26403lists memory regions.
26404
26405@value{GDBN} must be linked with the Expat library to support XML
26406memory maps. @xref{Expat}.
26407
26408The top-level structure of the document is shown below:
68437a39
DJ
26409
26410@smallexample
26411<?xml version="1.0"?>
26412<!DOCTYPE memory-map
26413 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26414 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26415<memory-map>
26416 region...
26417</memory-map>
26418@end smallexample
26419
26420Each region can be either:
26421
26422@itemize
26423
26424@item
26425A region of RAM starting at @var{addr} and extending for @var{length}
26426bytes from there:
26427
26428@smallexample
26429<memory type="ram" start="@var{addr}" length="@var{length}"/>
26430@end smallexample
26431
26432
26433@item
26434A region of read-only memory:
26435
26436@smallexample
26437<memory type="rom" start="@var{addr}" length="@var{length}"/>
26438@end smallexample
26439
26440
26441@item
26442A region of flash memory, with erasure blocks @var{blocksize}
26443bytes in length:
26444
26445@smallexample
26446<memory type="flash" start="@var{addr}" length="@var{length}">
26447 <property name="blocksize">@var{blocksize}</property>
26448</memory>
26449@end smallexample
26450
26451@end itemize
26452
26453Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26454by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26455packets to write to addresses in such ranges.
26456
26457The formal DTD for memory map format is given below:
26458
26459@smallexample
26460<!-- ................................................... -->
26461<!-- Memory Map XML DTD ................................ -->
26462<!-- File: memory-map.dtd .............................. -->
26463<!-- .................................... .............. -->
26464<!-- memory-map.dtd -->
26465<!-- memory-map: Root element with versioning -->
26466<!ELEMENT memory-map (memory | property)>
26467<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26468<!ELEMENT memory (property)>
26469<!-- memory: Specifies a memory region,
26470 and its type, or device. -->
26471<!ATTLIST memory type CDATA #REQUIRED
26472 start CDATA #REQUIRED
26473 length CDATA #REQUIRED
26474 device CDATA #IMPLIED>
26475<!-- property: Generic attribute tag -->
26476<!ELEMENT property (#PCDATA | property)*>
26477<!ATTLIST property name CDATA #REQUIRED>
26478@end smallexample
26479
f418dd93
DJ
26480@include agentexpr.texi
26481
23181151
DJ
26482@node Target Descriptions
26483@appendix Target Descriptions
26484@cindex target descriptions
26485
26486@strong{Warning:} target descriptions are still under active development,
26487and the contents and format may change between @value{GDBN} releases.
26488The format is expected to stabilize in the future.
26489
26490One of the challenges of using @value{GDBN} to debug embedded systems
26491is that there are so many minor variants of each processor
26492architecture in use. It is common practice for vendors to start with
26493a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26494and then make changes to adapt it to a particular market niche. Some
26495architectures have hundreds of variants, available from dozens of
26496vendors. This leads to a number of problems:
26497
26498@itemize @bullet
26499@item
26500With so many different customized processors, it is difficult for
26501the @value{GDBN} maintainers to keep up with the changes.
26502@item
26503Since individual variants may have short lifetimes or limited
26504audiences, it may not be worthwhile to carry information about every
26505variant in the @value{GDBN} source tree.
26506@item
26507When @value{GDBN} does support the architecture of the embedded system
26508at hand, the task of finding the correct architecture name to give the
26509@command{set architecture} command can be error-prone.
26510@end itemize
26511
26512To address these problems, the @value{GDBN} remote protocol allows a
26513target system to not only identify itself to @value{GDBN}, but to
26514actually describe its own features. This lets @value{GDBN} support
26515processor variants it has never seen before --- to the extent that the
26516descriptions are accurate, and that @value{GDBN} understands them.
26517
9cceb671
DJ
26518@value{GDBN} must be linked with the Expat library to support XML
26519target descriptions. @xref{Expat}.
123dc839 26520
23181151
DJ
26521@menu
26522* Retrieving Descriptions:: How descriptions are fetched from a target.
26523* Target Description Format:: The contents of a target description.
123dc839
DJ
26524* Predefined Target Types:: Standard types available for target
26525 descriptions.
26526* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26527@end menu
26528
26529@node Retrieving Descriptions
26530@section Retrieving Descriptions
26531
26532Target descriptions can be read from the target automatically, or
26533specified by the user manually. The default behavior is to read the
26534description from the target. @value{GDBN} retrieves it via the remote
26535protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26536qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26537@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26538XML document, of the form described in @ref{Target Description
26539Format}.
26540
26541Alternatively, you can specify a file to read for the target description.
26542If a file is set, the target will not be queried. The commands to
26543specify a file are:
26544
26545@table @code
26546@cindex set tdesc filename
26547@item set tdesc filename @var{path}
26548Read the target description from @var{path}.
26549
26550@cindex unset tdesc filename
26551@item unset tdesc filename
26552Do not read the XML target description from a file. @value{GDBN}
26553will use the description supplied by the current target.
26554
26555@cindex show tdesc filename
26556@item show tdesc filename
26557Show the filename to read for a target description, if any.
26558@end table
26559
26560
26561@node Target Description Format
26562@section Target Description Format
26563@cindex target descriptions, XML format
26564
26565A target description annex is an @uref{http://www.w3.org/XML/, XML}
26566document which complies with the Document Type Definition provided in
26567the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26568means you can use generally available tools like @command{xmllint} to
26569check that your feature descriptions are well-formed and valid.
26570However, to help people unfamiliar with XML write descriptions for
26571their targets, we also describe the grammar here.
26572
123dc839
DJ
26573Target descriptions can identify the architecture of the remote target
26574and (for some architectures) provide information about custom register
26575sets. @value{GDBN} can use this information to autoconfigure for your
26576target, or to warn you if you connect to an unsupported target.
23181151
DJ
26577
26578Here is a simple target description:
26579
123dc839 26580@smallexample
1780a0ed 26581<target version="1.0">
23181151
DJ
26582 <architecture>i386:x86-64</architecture>
26583</target>
123dc839 26584@end smallexample
23181151
DJ
26585
26586@noindent
26587This minimal description only says that the target uses
26588the x86-64 architecture.
26589
123dc839
DJ
26590A target description has the following overall form, with [ ] marking
26591optional elements and @dots{} marking repeatable elements. The elements
26592are explained further below.
23181151 26593
123dc839 26594@smallexample
23181151
DJ
26595<?xml version="1.0"?>
26596<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26597<target version="1.0">
123dc839
DJ
26598 @r{[}@var{architecture}@r{]}
26599 @r{[}@var{feature}@dots{}@r{]}
23181151 26600</target>
123dc839 26601@end smallexample
23181151
DJ
26602
26603@noindent
26604The description is generally insensitive to whitespace and line
26605breaks, under the usual common-sense rules. The XML version
26606declaration and document type declaration can generally be omitted
26607(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26608useful for XML validation tools. The @samp{version} attribute for
26609@samp{<target>} may also be omitted, but we recommend
26610including it; if future versions of @value{GDBN} use an incompatible
26611revision of @file{gdb-target.dtd}, they will detect and report
26612the version mismatch.
23181151 26613
108546a0
DJ
26614@subsection Inclusion
26615@cindex target descriptions, inclusion
26616@cindex XInclude
26617@ifnotinfo
26618@cindex <xi:include>
26619@end ifnotinfo
26620
26621It can sometimes be valuable to split a target description up into
26622several different annexes, either for organizational purposes, or to
26623share files between different possible target descriptions. You can
26624divide a description into multiple files by replacing any element of
26625the target description with an inclusion directive of the form:
26626
123dc839 26627@smallexample
108546a0 26628<xi:include href="@var{document}"/>
123dc839 26629@end smallexample
108546a0
DJ
26630
26631@noindent
26632When @value{GDBN} encounters an element of this form, it will retrieve
26633the named XML @var{document}, and replace the inclusion directive with
26634the contents of that document. If the current description was read
26635using @samp{qXfer}, then so will be the included document;
26636@var{document} will be interpreted as the name of an annex. If the
26637current description was read from a file, @value{GDBN} will look for
26638@var{document} as a file in the same directory where it found the
26639original description.
26640
123dc839
DJ
26641@subsection Architecture
26642@cindex <architecture>
26643
26644An @samp{<architecture>} element has this form:
26645
26646@smallexample
26647 <architecture>@var{arch}</architecture>
26648@end smallexample
26649
26650@var{arch} is an architecture name from the same selection
26651accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26652Debugging Target}).
26653
26654@subsection Features
26655@cindex <feature>
26656
26657Each @samp{<feature>} describes some logical portion of the target
26658system. Features are currently used to describe available CPU
26659registers and the types of their contents. A @samp{<feature>} element
26660has this form:
26661
26662@smallexample
26663<feature name="@var{name}">
26664 @r{[}@var{type}@dots{}@r{]}
26665 @var{reg}@dots{}
26666</feature>
26667@end smallexample
26668
26669@noindent
26670Each feature's name should be unique within the description. The name
26671of a feature does not matter unless @value{GDBN} has some special
26672knowledge of the contents of that feature; if it does, the feature
26673should have its standard name. @xref{Standard Target Features}.
26674
26675@subsection Types
26676
26677Any register's value is a collection of bits which @value{GDBN} must
26678interpret. The default interpretation is a two's complement integer,
26679but other types can be requested by name in the register description.
26680Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26681Target Types}), and the description can define additional composite types.
26682
26683Each type element must have an @samp{id} attribute, which gives
26684a unique (within the containing @samp{<feature>}) name to the type.
26685Types must be defined before they are used.
26686
26687@cindex <vector>
26688Some targets offer vector registers, which can be treated as arrays
26689of scalar elements. These types are written as @samp{<vector>} elements,
26690specifying the array element type, @var{type}, and the number of elements,
26691@var{count}:
26692
26693@smallexample
26694<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26695@end smallexample
26696
26697@cindex <union>
26698If a register's value is usefully viewed in multiple ways, define it
26699with a union type containing the useful representations. The
26700@samp{<union>} element contains one or more @samp{<field>} elements,
26701each of which has a @var{name} and a @var{type}:
26702
26703@smallexample
26704<union id="@var{id}">
26705 <field name="@var{name}" type="@var{type}"/>
26706 @dots{}
26707</union>
26708@end smallexample
26709
26710@subsection Registers
26711@cindex <reg>
26712
26713Each register is represented as an element with this form:
26714
26715@smallexample
26716<reg name="@var{name}"
26717 bitsize="@var{size}"
26718 @r{[}regnum="@var{num}"@r{]}
26719 @r{[}save-restore="@var{save-restore}"@r{]}
26720 @r{[}type="@var{type}"@r{]}
26721 @r{[}group="@var{group}"@r{]}/>
26722@end smallexample
26723
26724@noindent
26725The components are as follows:
26726
26727@table @var
26728
26729@item name
26730The register's name; it must be unique within the target description.
26731
26732@item bitsize
26733The register's size, in bits.
26734
26735@item regnum
26736The register's number. If omitted, a register's number is one greater
26737than that of the previous register (either in the current feature or in
26738a preceeding feature); the first register in the target description
26739defaults to zero. This register number is used to read or write
26740the register; e.g.@: it is used in the remote @code{p} and @code{P}
26741packets, and registers appear in the @code{g} and @code{G} packets
26742in order of increasing register number.
26743
26744@item save-restore
26745Whether the register should be preserved across inferior function
26746calls; this must be either @code{yes} or @code{no}. The default is
26747@code{yes}, which is appropriate for most registers except for
26748some system control registers; this is not related to the target's
26749ABI.
26750
26751@item type
26752The type of the register. @var{type} may be a predefined type, a type
26753defined in the current feature, or one of the special types @code{int}
26754and @code{float}. @code{int} is an integer type of the correct size
26755for @var{bitsize}, and @code{float} is a floating point type (in the
26756architecture's normal floating point format) of the correct size for
26757@var{bitsize}. The default is @code{int}.
26758
26759@item group
26760The register group to which this register belongs. @var{group} must
26761be either @code{general}, @code{float}, or @code{vector}. If no
26762@var{group} is specified, @value{GDBN} will not display the register
26763in @code{info registers}.
26764
26765@end table
26766
26767@node Predefined Target Types
26768@section Predefined Target Types
26769@cindex target descriptions, predefined types
26770
26771Type definitions in the self-description can build up composite types
26772from basic building blocks, but can not define fundamental types. Instead,
26773standard identifiers are provided by @value{GDBN} for the fundamental
26774types. The currently supported types are:
26775
26776@table @code
26777
26778@item int8
26779@itemx int16
26780@itemx int32
26781@itemx int64
7cc46491 26782@itemx int128
123dc839
DJ
26783Signed integer types holding the specified number of bits.
26784
26785@item uint8
26786@itemx uint16
26787@itemx uint32
26788@itemx uint64
7cc46491 26789@itemx uint128
123dc839
DJ
26790Unsigned integer types holding the specified number of bits.
26791
26792@item code_ptr
26793@itemx data_ptr
26794Pointers to unspecified code and data. The program counter and
26795any dedicated return address register may be marked as code
26796pointers; printing a code pointer converts it into a symbolic
26797address. The stack pointer and any dedicated address registers
26798may be marked as data pointers.
26799
6e3bbd1a
PB
26800@item ieee_single
26801Single precision IEEE floating point.
26802
26803@item ieee_double
26804Double precision IEEE floating point.
26805
123dc839
DJ
26806@item arm_fpa_ext
26807The 12-byte extended precision format used by ARM FPA registers.
26808
26809@end table
26810
26811@node Standard Target Features
26812@section Standard Target Features
26813@cindex target descriptions, standard features
26814
26815A target description must contain either no registers or all the
26816target's registers. If the description contains no registers, then
26817@value{GDBN} will assume a default register layout, selected based on
26818the architecture. If the description contains any registers, the
26819default layout will not be used; the standard registers must be
26820described in the target description, in such a way that @value{GDBN}
26821can recognize them.
26822
26823This is accomplished by giving specific names to feature elements
26824which contain standard registers. @value{GDBN} will look for features
26825with those names and verify that they contain the expected registers;
26826if any known feature is missing required registers, or if any required
26827feature is missing, @value{GDBN} will reject the target
26828description. You can add additional registers to any of the
26829standard features --- @value{GDBN} will display them just as if
26830they were added to an unrecognized feature.
26831
26832This section lists the known features and their expected contents.
26833Sample XML documents for these features are included in the
26834@value{GDBN} source tree, in the directory @file{gdb/features}.
26835
26836Names recognized by @value{GDBN} should include the name of the
26837company or organization which selected the name, and the overall
26838architecture to which the feature applies; so e.g.@: the feature
26839containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26840
ff6f572f
DJ
26841The names of registers are not case sensitive for the purpose
26842of recognizing standard features, but @value{GDBN} will only display
26843registers using the capitalization used in the description.
26844
e9c17194
VP
26845@menu
26846* ARM Features::
26847* M68K Features::
26848@end menu
26849
26850
26851@node ARM Features
123dc839
DJ
26852@subsection ARM Features
26853@cindex target descriptions, ARM features
26854
26855The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26856It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26857@samp{lr}, @samp{pc}, and @samp{cpsr}.
26858
26859The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26860should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26861
ff6f572f
DJ
26862The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26863it should contain at least registers @samp{wR0} through @samp{wR15} and
26864@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26865@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26866
f8b73d13
DJ
26867@subsection MIPS Features
26868@cindex target descriptions, MIPS features
26869
26870The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26871It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26872@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26873on the target.
26874
26875The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26876contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26877registers. They may be 32-bit or 64-bit depending on the target.
26878
26879The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26880it may be optional in a future version of @value{GDBN}. It should
26881contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26882@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26883
822b6570
DJ
26884The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26885contain a single register, @samp{restart}, which is used by the
26886Linux kernel to control restartable syscalls.
26887
e9c17194
VP
26888@node M68K Features
26889@subsection M68K Features
26890@cindex target descriptions, M68K features
26891
26892@table @code
26893@item @samp{org.gnu.gdb.m68k.core}
26894@itemx @samp{org.gnu.gdb.coldfire.core}
26895@itemx @samp{org.gnu.gdb.fido.core}
26896One of those features must be always present.
26897The feature that is present determines which flavor of m86k is
26898used. The feature that is present should contain registers
26899@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26900@samp{sp}, @samp{ps} and @samp{pc}.
26901
26902@item @samp{org.gnu.gdb.coldfire.fp}
26903This feature is optional. If present, it should contain registers
26904@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26905@samp{fpiaddr}.
26906@end table
26907
7cc46491
DJ
26908@subsection PowerPC Features
26909@cindex target descriptions, PowerPC features
26910
26911The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26912targets. It should contain registers @samp{r0} through @samp{r31},
26913@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26914@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26915
26916The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26917contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26918
26919The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26920contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26921and @samp{vrsave}.
26922
26923The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26924contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26925@samp{spefscr}. SPE targets should provide 32-bit registers in
26926@samp{org.gnu.gdb.power.core} and provide the upper halves in
26927@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26928these to present registers @samp{ev0} through @samp{ev31} to the
26929user.
26930
aab4e0ec 26931@include gpl.texi
eb12ee30 26932
2154891a 26933@raisesections
6826cf00 26934@include fdl.texi
2154891a 26935@lowersections
6826cf00 26936
6d2ebf8b 26937@node Index
c906108c
SS
26938@unnumbered Index
26939
26940@printindex cp
26941
26942@tex
26943% I think something like @colophon should be in texinfo. In the
26944% meantime:
26945\long\def\colophon{\hbox to0pt{}\vfill
26946\centerline{The body of this manual is set in}
26947\centerline{\fontname\tenrm,}
26948\centerline{with headings in {\bf\fontname\tenbf}}
26949\centerline{and examples in {\tt\fontname\tentt}.}
26950\centerline{{\it\fontname\tenit\/},}
26951\centerline{{\bf\fontname\tenbf}, and}
26952\centerline{{\sl\fontname\tensl\/}}
26953\centerline{are used for emphasis.}\vfill}
26954\page\colophon
26955% Blame: doc@cygnus.com, 1991.
26956@end tex
26957
c906108c 26958@bye