]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gdb/doc/gdb.texinfo
* gdb.base/ending-run.exp: Use the first line of code inside
[thirdparty/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
1821that process run your program. (In environments without processes,
1822@code{run} jumps to the start of your program.)
1823
1824The execution of a program is affected by certain information it
1825receives from its superior. @value{GDBN} provides ways to specify this
1826information, which you must do @emph{before} starting your program. (You
1827can change it after starting your program, but such changes only affect
1828your program the next time you start it.) This information may be
1829divided into four categories:
1830
1831@table @asis
1832@item The @emph{arguments.}
1833Specify the arguments to give your program as the arguments of the
1834@code{run} command. If a shell is available on your target, the shell
1835is used to pass the arguments, so that you may use normal conventions
1836(such as wildcard expansion or variable substitution) in describing
1837the arguments.
1838In Unix systems, you can control which shell is used with the
1839@code{SHELL} environment variable.
79a6e687 1840@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1841
1842@item The @emph{environment.}
1843Your program normally inherits its environment from @value{GDBN}, but you can
1844use the @value{GDBN} commands @code{set environment} and @code{unset
1845environment} to change parts of the environment that affect
79a6e687 1846your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1847
1848@item The @emph{working directory.}
1849Your program inherits its working directory from @value{GDBN}. You can set
1850the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1851@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1852
1853@item The @emph{standard input and output.}
1854Your program normally uses the same device for standard input and
1855standard output as @value{GDBN} is using. You can redirect input and output
1856in the @code{run} command line, or you can use the @code{tty} command to
1857set a different device for your program.
79a6e687 1858@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1859
1860@cindex pipes
1861@emph{Warning:} While input and output redirection work, you cannot use
1862pipes to pass the output of the program you are debugging to another
1863program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1864wrong program.
1865@end table
c906108c
SS
1866
1867When you issue the @code{run} command, your program begins to execute
79a6e687 1868immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1869of how to arrange for your program to stop. Once your program has
1870stopped, you may call functions in your program, using the @code{print}
1871or @code{call} commands. @xref{Data, ,Examining Data}.
1872
1873If the modification time of your symbol file has changed since the last
1874time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1875table, and reads it again. When it does this, @value{GDBN} tries to retain
1876your current breakpoints.
1877
4e8b0763
JB
1878@table @code
1879@kindex start
1880@item start
1881@cindex run to main procedure
1882The name of the main procedure can vary from language to language.
1883With C or C@t{++}, the main procedure name is always @code{main}, but
1884other languages such as Ada do not require a specific name for their
1885main procedure. The debugger provides a convenient way to start the
1886execution of the program and to stop at the beginning of the main
1887procedure, depending on the language used.
1888
1889The @samp{start} command does the equivalent of setting a temporary
1890breakpoint at the beginning of the main procedure and then invoking
1891the @samp{run} command.
1892
f018e82f
EZ
1893@cindex elaboration phase
1894Some programs contain an @dfn{elaboration} phase where some startup code is
1895executed before the main procedure is called. This depends on the
1896languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1897constructors for static and global objects are executed before
1898@code{main} is called. It is therefore possible that the debugger stops
1899before reaching the main procedure. However, the temporary breakpoint
1900will remain to halt execution.
1901
1902Specify the arguments to give to your program as arguments to the
1903@samp{start} command. These arguments will be given verbatim to the
1904underlying @samp{run} command. Note that the same arguments will be
1905reused if no argument is provided during subsequent calls to
1906@samp{start} or @samp{run}.
1907
1908It is sometimes necessary to debug the program during elaboration. In
1909these cases, using the @code{start} command would stop the execution of
1910your program too late, as the program would have already completed the
1911elaboration phase. Under these circumstances, insert breakpoints in your
1912elaboration code before running your program.
1913@end table
1914
6d2ebf8b 1915@node Arguments
79a6e687 1916@section Your Program's Arguments
c906108c
SS
1917
1918@cindex arguments (to your program)
1919The arguments to your program can be specified by the arguments of the
5d161b24 1920@code{run} command.
c906108c
SS
1921They are passed to a shell, which expands wildcard characters and
1922performs redirection of I/O, and thence to your program. Your
1923@code{SHELL} environment variable (if it exists) specifies what shell
1924@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1925the default shell (@file{/bin/sh} on Unix).
1926
1927On non-Unix systems, the program is usually invoked directly by
1928@value{GDBN}, which emulates I/O redirection via the appropriate system
1929calls, and the wildcard characters are expanded by the startup code of
1930the program, not by the shell.
c906108c
SS
1931
1932@code{run} with no arguments uses the same arguments used by the previous
1933@code{run}, or those set by the @code{set args} command.
1934
c906108c 1935@table @code
41afff9a 1936@kindex set args
c906108c
SS
1937@item set args
1938Specify the arguments to be used the next time your program is run. If
1939@code{set args} has no arguments, @code{run} executes your program
1940with no arguments. Once you have run your program with arguments,
1941using @code{set args} before the next @code{run} is the only way to run
1942it again without arguments.
1943
1944@kindex show args
1945@item show args
1946Show the arguments to give your program when it is started.
1947@end table
1948
6d2ebf8b 1949@node Environment
79a6e687 1950@section Your Program's Environment
c906108c
SS
1951
1952@cindex environment (of your program)
1953The @dfn{environment} consists of a set of environment variables and
1954their values. Environment variables conventionally record such things as
1955your user name, your home directory, your terminal type, and your search
1956path for programs to run. Usually you set up environment variables with
1957the shell and they are inherited by all the other programs you run. When
1958debugging, it can be useful to try running your program with a modified
1959environment without having to start @value{GDBN} over again.
1960
1961@table @code
1962@kindex path
1963@item path @var{directory}
1964Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1965(the search path for executables) that will be passed to your program.
1966The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1967You may specify several directory names, separated by whitespace or by a
1968system-dependent separator character (@samp{:} on Unix, @samp{;} on
1969MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1970is moved to the front, so it is searched sooner.
c906108c
SS
1971
1972You can use the string @samp{$cwd} to refer to whatever is the current
1973working directory at the time @value{GDBN} searches the path. If you
1974use @samp{.} instead, it refers to the directory where you executed the
1975@code{path} command. @value{GDBN} replaces @samp{.} in the
1976@var{directory} argument (with the current path) before adding
1977@var{directory} to the search path.
1978@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1979@c document that, since repeating it would be a no-op.
1980
1981@kindex show paths
1982@item show paths
1983Display the list of search paths for executables (the @code{PATH}
1984environment variable).
1985
1986@kindex show environment
1987@item show environment @r{[}@var{varname}@r{]}
1988Print the value of environment variable @var{varname} to be given to
1989your program when it starts. If you do not supply @var{varname},
1990print the names and values of all environment variables to be given to
1991your program. You can abbreviate @code{environment} as @code{env}.
1992
1993@kindex set environment
53a5351d 1994@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1995Set environment variable @var{varname} to @var{value}. The value
1996changes for your program only, not for @value{GDBN} itself. @var{value} may
1997be any string; the values of environment variables are just strings, and
1998any interpretation is supplied by your program itself. The @var{value}
1999parameter is optional; if it is eliminated, the variable is set to a
2000null value.
2001@c "any string" here does not include leading, trailing
2002@c blanks. Gnu asks: does anyone care?
2003
2004For example, this command:
2005
474c8240 2006@smallexample
c906108c 2007set env USER = foo
474c8240 2008@end smallexample
c906108c
SS
2009
2010@noindent
d4f3574e 2011tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2012@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2013are not actually required.)
2014
2015@kindex unset environment
2016@item unset environment @var{varname}
2017Remove variable @var{varname} from the environment to be passed to your
2018program. This is different from @samp{set env @var{varname} =};
2019@code{unset environment} removes the variable from the environment,
2020rather than assigning it an empty value.
2021@end table
2022
d4f3574e
SS
2023@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2024the shell indicated
c906108c
SS
2025by your @code{SHELL} environment variable if it exists (or
2026@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2027that runs an initialization file---such as @file{.cshrc} for C-shell, or
2028@file{.bashrc} for BASH---any variables you set in that file affect
2029your program. You may wish to move setting of environment variables to
2030files that are only run when you sign on, such as @file{.login} or
2031@file{.profile}.
2032
6d2ebf8b 2033@node Working Directory
79a6e687 2034@section Your Program's Working Directory
c906108c
SS
2035
2036@cindex working directory (of your program)
2037Each time you start your program with @code{run}, it inherits its
2038working directory from the current working directory of @value{GDBN}.
2039The @value{GDBN} working directory is initially whatever it inherited
2040from its parent process (typically the shell), but you can specify a new
2041working directory in @value{GDBN} with the @code{cd} command.
2042
2043The @value{GDBN} working directory also serves as a default for the commands
2044that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2045Specify Files}.
c906108c
SS
2046
2047@table @code
2048@kindex cd
721c2651 2049@cindex change working directory
c906108c
SS
2050@item cd @var{directory}
2051Set the @value{GDBN} working directory to @var{directory}.
2052
2053@kindex pwd
2054@item pwd
2055Print the @value{GDBN} working directory.
2056@end table
2057
60bf7e09
EZ
2058It is generally impossible to find the current working directory of
2059the process being debugged (since a program can change its directory
2060during its run). If you work on a system where @value{GDBN} is
2061configured with the @file{/proc} support, you can use the @code{info
2062proc} command (@pxref{SVR4 Process Information}) to find out the
2063current working directory of the debuggee.
2064
6d2ebf8b 2065@node Input/Output
79a6e687 2066@section Your Program's Input and Output
c906108c
SS
2067
2068@cindex redirection
2069@cindex i/o
2070@cindex terminal
2071By default, the program you run under @value{GDBN} does input and output to
5d161b24 2072the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2073to its own terminal modes to interact with you, but it records the terminal
2074modes your program was using and switches back to them when you continue
2075running your program.
2076
2077@table @code
2078@kindex info terminal
2079@item info terminal
2080Displays information recorded by @value{GDBN} about the terminal modes your
2081program is using.
2082@end table
2083
2084You can redirect your program's input and/or output using shell
2085redirection with the @code{run} command. For example,
2086
474c8240 2087@smallexample
c906108c 2088run > outfile
474c8240 2089@end smallexample
c906108c
SS
2090
2091@noindent
2092starts your program, diverting its output to the file @file{outfile}.
2093
2094@kindex tty
2095@cindex controlling terminal
2096Another way to specify where your program should do input and output is
2097with the @code{tty} command. This command accepts a file name as
2098argument, and causes this file to be the default for future @code{run}
2099commands. It also resets the controlling terminal for the child
2100process, for future @code{run} commands. For example,
2101
474c8240 2102@smallexample
c906108c 2103tty /dev/ttyb
474c8240 2104@end smallexample
c906108c
SS
2105
2106@noindent
2107directs that processes started with subsequent @code{run} commands
2108default to do input and output on the terminal @file{/dev/ttyb} and have
2109that as their controlling terminal.
2110
2111An explicit redirection in @code{run} overrides the @code{tty} command's
2112effect on the input/output device, but not its effect on the controlling
2113terminal.
2114
2115When you use the @code{tty} command or redirect input in the @code{run}
2116command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2117for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2118for @code{set inferior-tty}.
2119
2120@cindex inferior tty
2121@cindex set inferior controlling terminal
2122You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2123display the name of the terminal that will be used for future runs of your
2124program.
2125
2126@table @code
2127@item set inferior-tty /dev/ttyb
2128@kindex set inferior-tty
2129Set the tty for the program being debugged to /dev/ttyb.
2130
2131@item show inferior-tty
2132@kindex show inferior-tty
2133Show the current tty for the program being debugged.
2134@end table
c906108c 2135
6d2ebf8b 2136@node Attach
79a6e687 2137@section Debugging an Already-running Process
c906108c
SS
2138@kindex attach
2139@cindex attach
2140
2141@table @code
2142@item attach @var{process-id}
2143This command attaches to a running process---one that was started
2144outside @value{GDBN}. (@code{info files} shows your active
2145targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2146find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2147or with the @samp{jobs -l} shell command.
2148
2149@code{attach} does not repeat if you press @key{RET} a second time after
2150executing the command.
2151@end table
2152
2153To use @code{attach}, your program must be running in an environment
2154which supports processes; for example, @code{attach} does not work for
2155programs on bare-board targets that lack an operating system. You must
2156also have permission to send the process a signal.
2157
2158When you use @code{attach}, the debugger finds the program running in
2159the process first by looking in the current working directory, then (if
2160the program is not found) by using the source file search path
79a6e687 2161(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2162the @code{file} command to load the program. @xref{Files, ,Commands to
2163Specify Files}.
2164
2165The first thing @value{GDBN} does after arranging to debug the specified
2166process is to stop it. You can examine and modify an attached process
53a5351d
JM
2167with all the @value{GDBN} commands that are ordinarily available when
2168you start processes with @code{run}. You can insert breakpoints; you
2169can step and continue; you can modify storage. If you would rather the
2170process continue running, you may use the @code{continue} command after
c906108c
SS
2171attaching @value{GDBN} to the process.
2172
2173@table @code
2174@kindex detach
2175@item detach
2176When you have finished debugging the attached process, you can use the
2177@code{detach} command to release it from @value{GDBN} control. Detaching
2178the process continues its execution. After the @code{detach} command,
2179that process and @value{GDBN} become completely independent once more, and you
2180are ready to @code{attach} another process or start one with @code{run}.
2181@code{detach} does not repeat if you press @key{RET} again after
2182executing the command.
2183@end table
2184
159fcc13
JK
2185If you exit @value{GDBN} while you have an attached process, you detach
2186that process. If you use the @code{run} command, you kill that process.
2187By default, @value{GDBN} asks for confirmation if you try to do either of these
2188things; you can control whether or not you need to confirm by using the
2189@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2190Messages}).
c906108c 2191
6d2ebf8b 2192@node Kill Process
79a6e687 2193@section Killing the Child Process
c906108c
SS
2194
2195@table @code
2196@kindex kill
2197@item kill
2198Kill the child process in which your program is running under @value{GDBN}.
2199@end table
2200
2201This command is useful if you wish to debug a core dump instead of a
2202running process. @value{GDBN} ignores any core dump file while your program
2203is running.
2204
2205On some operating systems, a program cannot be executed outside @value{GDBN}
2206while you have breakpoints set on it inside @value{GDBN}. You can use the
2207@code{kill} command in this situation to permit running your program
2208outside the debugger.
2209
2210The @code{kill} command is also useful if you wish to recompile and
2211relink your program, since on many systems it is impossible to modify an
2212executable file while it is running in a process. In this case, when you
2213next type @code{run}, @value{GDBN} notices that the file has changed, and
2214reads the symbol table again (while trying to preserve your current
2215breakpoint settings).
2216
6d2ebf8b 2217@node Threads
79a6e687 2218@section Debugging Programs with Multiple Threads
c906108c
SS
2219
2220@cindex threads of execution
2221@cindex multiple threads
2222@cindex switching threads
2223In some operating systems, such as HP-UX and Solaris, a single program
2224may have more than one @dfn{thread} of execution. The precise semantics
2225of threads differ from one operating system to another, but in general
2226the threads of a single program are akin to multiple processes---except
2227that they share one address space (that is, they can all examine and
2228modify the same variables). On the other hand, each thread has its own
2229registers and execution stack, and perhaps private memory.
2230
2231@value{GDBN} provides these facilities for debugging multi-thread
2232programs:
2233
2234@itemize @bullet
2235@item automatic notification of new threads
2236@item @samp{thread @var{threadno}}, a command to switch among threads
2237@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2238@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2239a command to apply a command to a list of threads
2240@item thread-specific breakpoints
93815fbf
VP
2241@item @samp{set print thread-events}, which controls printing of
2242messages on thread start and exit.
c906108c
SS
2243@end itemize
2244
c906108c
SS
2245@quotation
2246@emph{Warning:} These facilities are not yet available on every
2247@value{GDBN} configuration where the operating system supports threads.
2248If your @value{GDBN} does not support threads, these commands have no
2249effect. For example, a system without thread support shows no output
2250from @samp{info threads}, and always rejects the @code{thread} command,
2251like this:
2252
2253@smallexample
2254(@value{GDBP}) info threads
2255(@value{GDBP}) thread 1
2256Thread ID 1 not known. Use the "info threads" command to
2257see the IDs of currently known threads.
2258@end smallexample
2259@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2260@c doesn't support threads"?
2261@end quotation
c906108c
SS
2262
2263@cindex focus of debugging
2264@cindex current thread
2265The @value{GDBN} thread debugging facility allows you to observe all
2266threads while your program runs---but whenever @value{GDBN} takes
2267control, one thread in particular is always the focus of debugging.
2268This thread is called the @dfn{current thread}. Debugging commands show
2269program information from the perspective of the current thread.
2270
41afff9a 2271@cindex @code{New} @var{systag} message
c906108c
SS
2272@cindex thread identifier (system)
2273@c FIXME-implementors!! It would be more helpful if the [New...] message
2274@c included GDB's numeric thread handle, so you could just go to that
2275@c thread without first checking `info threads'.
2276Whenever @value{GDBN} detects a new thread in your program, it displays
2277the target system's identification for the thread with a message in the
2278form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2279whose form varies depending on the particular system. For example, on
8807d78b 2280@sc{gnu}/Linux, you might see
c906108c 2281
474c8240 2282@smallexample
8807d78b 2283[New Thread 46912507313328 (LWP 25582)]
474c8240 2284@end smallexample
c906108c
SS
2285
2286@noindent
2287when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2288the @var{systag} is simply something like @samp{process 368}, with no
2289further qualifier.
2290
2291@c FIXME!! (1) Does the [New...] message appear even for the very first
2292@c thread of a program, or does it only appear for the
6ca652b0 2293@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2294@c program?
2295@c (2) *Is* there necessarily a first thread always? Or do some
2296@c multithread systems permit starting a program with multiple
5d161b24 2297@c threads ab initio?
c906108c
SS
2298
2299@cindex thread number
2300@cindex thread identifier (GDB)
2301For debugging purposes, @value{GDBN} associates its own thread
2302number---always a single integer---with each thread in your program.
2303
2304@table @code
2305@kindex info threads
2306@item info threads
2307Display a summary of all threads currently in your
2308program. @value{GDBN} displays for each thread (in this order):
2309
2310@enumerate
09d4efe1
EZ
2311@item
2312the thread number assigned by @value{GDBN}
c906108c 2313
09d4efe1
EZ
2314@item
2315the target system's thread identifier (@var{systag})
c906108c 2316
09d4efe1
EZ
2317@item
2318the current stack frame summary for that thread
c906108c
SS
2319@end enumerate
2320
2321@noindent
2322An asterisk @samp{*} to the left of the @value{GDBN} thread number
2323indicates the current thread.
2324
5d161b24 2325For example,
c906108c
SS
2326@end table
2327@c end table here to get a little more width for example
2328
2329@smallexample
2330(@value{GDBP}) info threads
2331 3 process 35 thread 27 0x34e5 in sigpause ()
2332 2 process 35 thread 23 0x34e5 in sigpause ()
2333* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2334 at threadtest.c:68
2335@end smallexample
53a5351d
JM
2336
2337On HP-UX systems:
c906108c 2338
4644b6e3
EZ
2339@cindex debugging multithreaded programs (on HP-UX)
2340@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2341For debugging purposes, @value{GDBN} associates its own thread
2342number---a small integer assigned in thread-creation order---with each
2343thread in your program.
2344
41afff9a
EZ
2345@cindex @code{New} @var{systag} message, on HP-UX
2346@cindex thread identifier (system), on HP-UX
c906108c
SS
2347@c FIXME-implementors!! It would be more helpful if the [New...] message
2348@c included GDB's numeric thread handle, so you could just go to that
2349@c thread without first checking `info threads'.
2350Whenever @value{GDBN} detects a new thread in your program, it displays
2351both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2352form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2353whose form varies depending on the particular system. For example, on
2354HP-UX, you see
2355
474c8240 2356@smallexample
c906108c 2357[New thread 2 (system thread 26594)]
474c8240 2358@end smallexample
c906108c
SS
2359
2360@noindent
5d161b24 2361when @value{GDBN} notices a new thread.
c906108c
SS
2362
2363@table @code
4644b6e3 2364@kindex info threads (HP-UX)
c906108c
SS
2365@item info threads
2366Display a summary of all threads currently in your
2367program. @value{GDBN} displays for each thread (in this order):
2368
2369@enumerate
2370@item the thread number assigned by @value{GDBN}
2371
2372@item the target system's thread identifier (@var{systag})
2373
2374@item the current stack frame summary for that thread
2375@end enumerate
2376
2377@noindent
2378An asterisk @samp{*} to the left of the @value{GDBN} thread number
2379indicates the current thread.
2380
5d161b24 2381For example,
c906108c
SS
2382@end table
2383@c end table here to get a little more width for example
2384
474c8240 2385@smallexample
c906108c 2386(@value{GDBP}) info threads
6d2ebf8b
SS
2387 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2388 at quicksort.c:137
2389 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2390 from /usr/lib/libc.2
2391 1 system thread 27905 0x7b003498 in _brk () \@*
2392 from /usr/lib/libc.2
474c8240 2393@end smallexample
c906108c 2394
c45da7e6
EZ
2395On Solaris, you can display more information about user threads with a
2396Solaris-specific command:
2397
2398@table @code
2399@item maint info sol-threads
2400@kindex maint info sol-threads
2401@cindex thread info (Solaris)
2402Display info on Solaris user threads.
2403@end table
2404
c906108c
SS
2405@table @code
2406@kindex thread @var{threadno}
2407@item thread @var{threadno}
2408Make thread number @var{threadno} the current thread. The command
2409argument @var{threadno} is the internal @value{GDBN} thread number, as
2410shown in the first field of the @samp{info threads} display.
2411@value{GDBN} responds by displaying the system identifier of the thread
2412you selected, and its current stack frame summary:
2413
2414@smallexample
2415@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2416(@value{GDBP}) thread 2
c906108c 2417[Switching to process 35 thread 23]
c906108c
SS
24180x34e5 in sigpause ()
2419@end smallexample
2420
2421@noindent
2422As with the @samp{[New @dots{}]} message, the form of the text after
2423@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2424threads.
c906108c 2425
9c16f35a 2426@kindex thread apply
638ac427 2427@cindex apply command to several threads
839c27b7
EZ
2428@item thread apply [@var{threadno}] [@var{all}] @var{command}
2429The @code{thread apply} command allows you to apply the named
2430@var{command} to one or more threads. Specify the numbers of the
2431threads that you want affected with the command argument
2432@var{threadno}. It can be a single thread number, one of the numbers
2433shown in the first field of the @samp{info threads} display; or it
2434could be a range of thread numbers, as in @code{2-4}. To apply a
2435command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2436
2437@kindex set print thread-events
2438@cindex print messages on thread start and exit
2439@item set print thread-events
2440@itemx set print thread-events on
2441@itemx set print thread-events off
2442The @code{set print thread-events} command allows you to enable or
2443disable printing of messages when @value{GDBN} notices that new threads have
2444started or that threads have exited. By default, these messages will
2445be printed if detection of these events is supported by the target.
2446Note that these messages cannot be disabled on all targets.
2447
2448@kindex show print thread-events
2449@item show print thread-events
2450Show whether messages will be printed when @value{GDBN} detects that threads
2451have started and exited.
c906108c
SS
2452@end table
2453
2454@cindex automatic thread selection
2455@cindex switching threads automatically
2456@cindex threads, automatic switching
2457Whenever @value{GDBN} stops your program, due to a breakpoint or a
2458signal, it automatically selects the thread where that breakpoint or
2459signal happened. @value{GDBN} alerts you to the context switch with a
2460message of the form @samp{[Switching to @var{systag}]} to identify the
2461thread.
2462
79a6e687 2463@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2464more information about how @value{GDBN} behaves when you stop and start
2465programs with multiple threads.
2466
79a6e687 2467@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2468watchpoints in programs with multiple threads.
c906108c 2469
6d2ebf8b 2470@node Processes
79a6e687 2471@section Debugging Programs with Multiple Processes
c906108c
SS
2472
2473@cindex fork, debugging programs which call
2474@cindex multiple processes
2475@cindex processes, multiple
53a5351d
JM
2476On most systems, @value{GDBN} has no special support for debugging
2477programs which create additional processes using the @code{fork}
2478function. When a program forks, @value{GDBN} will continue to debug the
2479parent process and the child process will run unimpeded. If you have
2480set a breakpoint in any code which the child then executes, the child
2481will get a @code{SIGTRAP} signal which (unless it catches the signal)
2482will cause it to terminate.
c906108c
SS
2483
2484However, if you want to debug the child process there is a workaround
2485which isn't too painful. Put a call to @code{sleep} in the code which
2486the child process executes after the fork. It may be useful to sleep
2487only if a certain environment variable is set, or a certain file exists,
2488so that the delay need not occur when you don't want to run @value{GDBN}
2489on the child. While the child is sleeping, use the @code{ps} program to
2490get its process ID. Then tell @value{GDBN} (a new invocation of
2491@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2492the child process (@pxref{Attach}). From that point on you can debug
c906108c 2493the child process just like any other process which you attached to.
c906108c 2494
b51970ac
DJ
2495On some systems, @value{GDBN} provides support for debugging programs that
2496create additional processes using the @code{fork} or @code{vfork} functions.
2497Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2498only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2499
2500By default, when a program forks, @value{GDBN} will continue to debug
2501the parent process and the child process will run unimpeded.
2502
2503If you want to follow the child process instead of the parent process,
2504use the command @w{@code{set follow-fork-mode}}.
2505
2506@table @code
2507@kindex set follow-fork-mode
2508@item set follow-fork-mode @var{mode}
2509Set the debugger response to a program call of @code{fork} or
2510@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2511process. The @var{mode} argument can be:
c906108c
SS
2512
2513@table @code
2514@item parent
2515The original process is debugged after a fork. The child process runs
2df3850c 2516unimpeded. This is the default.
c906108c
SS
2517
2518@item child
2519The new process is debugged after a fork. The parent process runs
2520unimpeded.
2521
c906108c
SS
2522@end table
2523
9c16f35a 2524@kindex show follow-fork-mode
c906108c 2525@item show follow-fork-mode
2df3850c 2526Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2527@end table
2528
5c95884b
MS
2529@cindex debugging multiple processes
2530On Linux, if you want to debug both the parent and child processes, use the
2531command @w{@code{set detach-on-fork}}.
2532
2533@table @code
2534@kindex set detach-on-fork
2535@item set detach-on-fork @var{mode}
2536Tells gdb whether to detach one of the processes after a fork, or
2537retain debugger control over them both.
2538
2539@table @code
2540@item on
2541The child process (or parent process, depending on the value of
2542@code{follow-fork-mode}) will be detached and allowed to run
2543independently. This is the default.
2544
2545@item off
2546Both processes will be held under the control of @value{GDBN}.
2547One process (child or parent, depending on the value of
2548@code{follow-fork-mode}) is debugged as usual, while the other
2549is held suspended.
2550
2551@end table
2552
11310833
NR
2553@kindex show detach-on-fork
2554@item show detach-on-fork
2555Show whether detach-on-fork mode is on/off.
5c95884b
MS
2556@end table
2557
11310833 2558If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2559@value{GDBN} will retain control of all forked processes (including
2560nested forks). You can list the forked processes under the control of
2561@value{GDBN} by using the @w{@code{info forks}} command, and switch
2562from one fork to another by using the @w{@code{fork}} command.
2563
2564@table @code
2565@kindex info forks
2566@item info forks
2567Print a list of all forked processes under the control of @value{GDBN}.
2568The listing will include a fork id, a process id, and the current
2569position (program counter) of the process.
2570
5c95884b
MS
2571@kindex fork @var{fork-id}
2572@item fork @var{fork-id}
2573Make fork number @var{fork-id} the current process. The argument
2574@var{fork-id} is the internal fork number assigned by @value{GDBN},
2575as shown in the first field of the @samp{info forks} display.
2576
11310833
NR
2577@kindex process @var{process-id}
2578@item process @var{process-id}
2579Make process number @var{process-id} the current process. The
2580argument @var{process-id} must be one that is listed in the output of
2581@samp{info forks}.
2582
5c95884b
MS
2583@end table
2584
2585To quit debugging one of the forked processes, you can either detach
f73adfeb 2586from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2587run independently), or delete (and kill) it using the
b8db102d 2588@w{@code{delete fork}} command.
5c95884b
MS
2589
2590@table @code
f73adfeb
AS
2591@kindex detach fork @var{fork-id}
2592@item detach fork @var{fork-id}
5c95884b
MS
2593Detach from the process identified by @value{GDBN} fork number
2594@var{fork-id}, and remove it from the fork list. The process will be
2595allowed to run independently.
2596
b8db102d
MS
2597@kindex delete fork @var{fork-id}
2598@item delete fork @var{fork-id}
5c95884b
MS
2599Kill the process identified by @value{GDBN} fork number @var{fork-id},
2600and remove it from the fork list.
2601
2602@end table
2603
c906108c
SS
2604If you ask to debug a child process and a @code{vfork} is followed by an
2605@code{exec}, @value{GDBN} executes the new target up to the first
2606breakpoint in the new target. If you have a breakpoint set on
2607@code{main} in your original program, the breakpoint will also be set on
2608the child process's @code{main}.
2609
2610When a child process is spawned by @code{vfork}, you cannot debug the
2611child or parent until an @code{exec} call completes.
2612
2613If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2614call executes, the new target restarts. To restart the parent process,
2615use the @code{file} command with the parent executable name as its
2616argument.
2617
2618You can use the @code{catch} command to make @value{GDBN} stop whenever
2619a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2620Catchpoints, ,Setting Catchpoints}.
c906108c 2621
5c95884b 2622@node Checkpoint/Restart
79a6e687 2623@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2624
2625@cindex checkpoint
2626@cindex restart
2627@cindex bookmark
2628@cindex snapshot of a process
2629@cindex rewind program state
2630
2631On certain operating systems@footnote{Currently, only
2632@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2633program's state, called a @dfn{checkpoint}, and come back to it
2634later.
2635
2636Returning to a checkpoint effectively undoes everything that has
2637happened in the program since the @code{checkpoint} was saved. This
2638includes changes in memory, registers, and even (within some limits)
2639system state. Effectively, it is like going back in time to the
2640moment when the checkpoint was saved.
2641
2642Thus, if you're stepping thru a program and you think you're
2643getting close to the point where things go wrong, you can save
2644a checkpoint. Then, if you accidentally go too far and miss
2645the critical statement, instead of having to restart your program
2646from the beginning, you can just go back to the checkpoint and
2647start again from there.
2648
2649This can be especially useful if it takes a lot of time or
2650steps to reach the point where you think the bug occurs.
2651
2652To use the @code{checkpoint}/@code{restart} method of debugging:
2653
2654@table @code
2655@kindex checkpoint
2656@item checkpoint
2657Save a snapshot of the debugged program's current execution state.
2658The @code{checkpoint} command takes no arguments, but each checkpoint
2659is assigned a small integer id, similar to a breakpoint id.
2660
2661@kindex info checkpoints
2662@item info checkpoints
2663List the checkpoints that have been saved in the current debugging
2664session. For each checkpoint, the following information will be
2665listed:
2666
2667@table @code
2668@item Checkpoint ID
2669@item Process ID
2670@item Code Address
2671@item Source line, or label
2672@end table
2673
2674@kindex restart @var{checkpoint-id}
2675@item restart @var{checkpoint-id}
2676Restore the program state that was saved as checkpoint number
2677@var{checkpoint-id}. All program variables, registers, stack frames
2678etc.@: will be returned to the values that they had when the checkpoint
2679was saved. In essence, gdb will ``wind back the clock'' to the point
2680in time when the checkpoint was saved.
2681
2682Note that breakpoints, @value{GDBN} variables, command history etc.
2683are not affected by restoring a checkpoint. In general, a checkpoint
2684only restores things that reside in the program being debugged, not in
2685the debugger.
2686
b8db102d
MS
2687@kindex delete checkpoint @var{checkpoint-id}
2688@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2689Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2690
2691@end table
2692
2693Returning to a previously saved checkpoint will restore the user state
2694of the program being debugged, plus a significant subset of the system
2695(OS) state, including file pointers. It won't ``un-write'' data from
2696a file, but it will rewind the file pointer to the previous location,
2697so that the previously written data can be overwritten. For files
2698opened in read mode, the pointer will also be restored so that the
2699previously read data can be read again.
2700
2701Of course, characters that have been sent to a printer (or other
2702external device) cannot be ``snatched back'', and characters received
2703from eg.@: a serial device can be removed from internal program buffers,
2704but they cannot be ``pushed back'' into the serial pipeline, ready to
2705be received again. Similarly, the actual contents of files that have
2706been changed cannot be restored (at this time).
2707
2708However, within those constraints, you actually can ``rewind'' your
2709program to a previously saved point in time, and begin debugging it
2710again --- and you can change the course of events so as to debug a
2711different execution path this time.
2712
2713@cindex checkpoints and process id
2714Finally, there is one bit of internal program state that will be
2715different when you return to a checkpoint --- the program's process
2716id. Each checkpoint will have a unique process id (or @var{pid}),
2717and each will be different from the program's original @var{pid}.
2718If your program has saved a local copy of its process id, this could
2719potentially pose a problem.
2720
79a6e687 2721@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2722
2723On some systems such as @sc{gnu}/Linux, address space randomization
2724is performed on new processes for security reasons. This makes it
2725difficult or impossible to set a breakpoint, or watchpoint, on an
2726absolute address if you have to restart the program, since the
2727absolute location of a symbol will change from one execution to the
2728next.
2729
2730A checkpoint, however, is an @emph{identical} copy of a process.
2731Therefore if you create a checkpoint at (eg.@:) the start of main,
2732and simply return to that checkpoint instead of restarting the
2733process, you can avoid the effects of address randomization and
2734your symbols will all stay in the same place.
2735
6d2ebf8b 2736@node Stopping
c906108c
SS
2737@chapter Stopping and Continuing
2738
2739The principal purposes of using a debugger are so that you can stop your
2740program before it terminates; or so that, if your program runs into
2741trouble, you can investigate and find out why.
2742
7a292a7a
SS
2743Inside @value{GDBN}, your program may stop for any of several reasons,
2744such as a signal, a breakpoint, or reaching a new line after a
2745@value{GDBN} command such as @code{step}. You may then examine and
2746change variables, set new breakpoints or remove old ones, and then
2747continue execution. Usually, the messages shown by @value{GDBN} provide
2748ample explanation of the status of your program---but you can also
2749explicitly request this information at any time.
c906108c
SS
2750
2751@table @code
2752@kindex info program
2753@item info program
2754Display information about the status of your program: whether it is
7a292a7a 2755running or not, what process it is, and why it stopped.
c906108c
SS
2756@end table
2757
2758@menu
2759* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2760* Continuing and Stepping:: Resuming execution
c906108c 2761* Signals:: Signals
c906108c 2762* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2763@end menu
2764
6d2ebf8b 2765@node Breakpoints
79a6e687 2766@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2767
2768@cindex breakpoints
2769A @dfn{breakpoint} makes your program stop whenever a certain point in
2770the program is reached. For each breakpoint, you can add conditions to
2771control in finer detail whether your program stops. You can set
2772breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2773Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2774should stop by line number, function name or exact address in the
2775program.
2776
09d4efe1
EZ
2777On some systems, you can set breakpoints in shared libraries before
2778the executable is run. There is a minor limitation on HP-UX systems:
2779you must wait until the executable is run in order to set breakpoints
2780in shared library routines that are not called directly by the program
2781(for example, routines that are arguments in a @code{pthread_create}
2782call).
c906108c
SS
2783
2784@cindex watchpoints
fd60e0df 2785@cindex data breakpoints
c906108c
SS
2786@cindex memory tracing
2787@cindex breakpoint on memory address
2788@cindex breakpoint on variable modification
2789A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2790when the value of an expression changes. The expression may be a value
0ced0c34 2791of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2792combined by operators, such as @samp{a + b}. This is sometimes called
2793@dfn{data breakpoints}. You must use a different command to set
79a6e687 2794watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2795from that, you can manage a watchpoint like any other breakpoint: you
2796enable, disable, and delete both breakpoints and watchpoints using the
2797same commands.
c906108c
SS
2798
2799You can arrange to have values from your program displayed automatically
2800whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2801Automatic Display}.
c906108c
SS
2802
2803@cindex catchpoints
2804@cindex breakpoint on events
2805A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2806when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2807exception or the loading of a library. As with watchpoints, you use a
2808different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2809Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2810other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2811@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2812
2813@cindex breakpoint numbers
2814@cindex numbers for breakpoints
2815@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2816catchpoint when you create it; these numbers are successive integers
2817starting with one. In many of the commands for controlling various
2818features of breakpoints you use the breakpoint number to say which
2819breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2820@dfn{disabled}; if disabled, it has no effect on your program until you
2821enable it again.
2822
c5394b80
JM
2823@cindex breakpoint ranges
2824@cindex ranges of breakpoints
2825Some @value{GDBN} commands accept a range of breakpoints on which to
2826operate. A breakpoint range is either a single breakpoint number, like
2827@samp{5}, or two such numbers, in increasing order, separated by a
2828hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2829all breakpoints in that range are operated on.
c5394b80 2830
c906108c
SS
2831@menu
2832* Set Breaks:: Setting breakpoints
2833* Set Watchpoints:: Setting watchpoints
2834* Set Catchpoints:: Setting catchpoints
2835* Delete Breaks:: Deleting breakpoints
2836* Disabling:: Disabling breakpoints
2837* Conditions:: Break conditions
2838* Break Commands:: Breakpoint command lists
c906108c 2839* Breakpoint Menus:: Breakpoint menus
d4f3574e 2840* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2841* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2842@end menu
2843
6d2ebf8b 2844@node Set Breaks
79a6e687 2845@subsection Setting Breakpoints
c906108c 2846
5d161b24 2847@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2848@c consider in particular declaration with/without initialization.
2849@c
2850@c FIXME 2 is there stuff on this already? break at fun start, already init?
2851
2852@kindex break
41afff9a
EZ
2853@kindex b @r{(@code{break})}
2854@vindex $bpnum@r{, convenience variable}
c906108c
SS
2855@cindex latest breakpoint
2856Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2857@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2858number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2859Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2860convenience variables.
2861
c906108c 2862@table @code
2a25a5ba
EZ
2863@item break @var{location}
2864Set a breakpoint at the given @var{location}, which can specify a
2865function name, a line number, or an address of an instruction.
2866(@xref{Specify Location}, for a list of all the possible ways to
2867specify a @var{location}.) The breakpoint will stop your program just
2868before it executes any of the code in the specified @var{location}.
2869
c906108c 2870When using source languages that permit overloading of symbols, such as
2a25a5ba 2871C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2872@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2873
c906108c
SS
2874@item break
2875When called without any arguments, @code{break} sets a breakpoint at
2876the next instruction to be executed in the selected stack frame
2877(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2878innermost, this makes your program stop as soon as control
2879returns to that frame. This is similar to the effect of a
2880@code{finish} command in the frame inside the selected frame---except
2881that @code{finish} does not leave an active breakpoint. If you use
2882@code{break} without an argument in the innermost frame, @value{GDBN} stops
2883the next time it reaches the current location; this may be useful
2884inside loops.
2885
2886@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2887least one instruction has been executed. If it did not do this, you
2888would be unable to proceed past a breakpoint without first disabling the
2889breakpoint. This rule applies whether or not the breakpoint already
2890existed when your program stopped.
2891
2892@item break @dots{} if @var{cond}
2893Set a breakpoint with condition @var{cond}; evaluate the expression
2894@var{cond} each time the breakpoint is reached, and stop only if the
2895value is nonzero---that is, if @var{cond} evaluates as true.
2896@samp{@dots{}} stands for one of the possible arguments described
2897above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2898,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2899
2900@kindex tbreak
2901@item tbreak @var{args}
2902Set a breakpoint enabled only for one stop. @var{args} are the
2903same as for the @code{break} command, and the breakpoint is set in the same
2904way, but the breakpoint is automatically deleted after the first time your
79a6e687 2905program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2906
c906108c 2907@kindex hbreak
ba04e063 2908@cindex hardware breakpoints
c906108c 2909@item hbreak @var{args}
d4f3574e
SS
2910Set a hardware-assisted breakpoint. @var{args} are the same as for the
2911@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2912breakpoint requires hardware support and some target hardware may not
2913have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2914debugging, so you can set a breakpoint at an instruction without
2915changing the instruction. This can be used with the new trap-generation
09d4efe1 2916provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2917will generate traps when a program accesses some data or instruction
2918address that is assigned to the debug registers. However the hardware
2919breakpoint registers can take a limited number of breakpoints. For
2920example, on the DSU, only two data breakpoints can be set at a time, and
2921@value{GDBN} will reject this command if more than two are used. Delete
2922or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2923(@pxref{Disabling, ,Disabling Breakpoints}).
2924@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2925For remote targets, you can restrict the number of hardware
2926breakpoints @value{GDBN} will use, see @ref{set remote
2927hardware-breakpoint-limit}.
501eef12 2928
c906108c
SS
2929@kindex thbreak
2930@item thbreak @var{args}
2931Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2932are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2933the same way. However, like the @code{tbreak} command,
c906108c
SS
2934the breakpoint is automatically deleted after the
2935first time your program stops there. Also, like the @code{hbreak}
5d161b24 2936command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2937may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2938See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2939
2940@kindex rbreak
2941@cindex regular expression
c45da7e6
EZ
2942@cindex breakpoints in functions matching a regexp
2943@cindex set breakpoints in many functions
c906108c 2944@item rbreak @var{regex}
c906108c 2945Set breakpoints on all functions matching the regular expression
11cf8741
JM
2946@var{regex}. This command sets an unconditional breakpoint on all
2947matches, printing a list of all breakpoints it set. Once these
2948breakpoints are set, they are treated just like the breakpoints set with
2949the @code{break} command. You can delete them, disable them, or make
2950them conditional the same way as any other breakpoint.
2951
2952The syntax of the regular expression is the standard one used with tools
2953like @file{grep}. Note that this is different from the syntax used by
2954shells, so for instance @code{foo*} matches all functions that include
2955an @code{fo} followed by zero or more @code{o}s. There is an implicit
2956@code{.*} leading and trailing the regular expression you supply, so to
2957match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2958
f7dc1244 2959@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2960When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2961breakpoints on overloaded functions that are not members of any special
2962classes.
c906108c 2963
f7dc1244
EZ
2964@cindex set breakpoints on all functions
2965The @code{rbreak} command can be used to set breakpoints in
2966@strong{all} the functions in a program, like this:
2967
2968@smallexample
2969(@value{GDBP}) rbreak .
2970@end smallexample
2971
c906108c
SS
2972@kindex info breakpoints
2973@cindex @code{$_} and @code{info breakpoints}
2974@item info breakpoints @r{[}@var{n}@r{]}
2975@itemx info break @r{[}@var{n}@r{]}
2976@itemx info watchpoints @r{[}@var{n}@r{]}
2977Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2978not deleted. Optional argument @var{n} means print information only
2979about the specified breakpoint (or watchpoint or catchpoint). For
2980each breakpoint, following columns are printed:
c906108c
SS
2981
2982@table @emph
2983@item Breakpoint Numbers
2984@item Type
2985Breakpoint, watchpoint, or catchpoint.
2986@item Disposition
2987Whether the breakpoint is marked to be disabled or deleted when hit.
2988@item Enabled or Disabled
2989Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 2990that are not enabled.
c906108c 2991@item Address
fe6fbf8b 2992Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
2993pending breakpoint whose address is not yet known, this field will
2994contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
2995library that has the symbol or line referred by breakpoint is loaded.
2996See below for details. A breakpoint with several locations will
3b784c4f 2997have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
2998@item What
2999Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3000line number. For a pending breakpoint, the original string passed to
3001the breakpoint command will be listed as it cannot be resolved until
3002the appropriate shared library is loaded in the future.
c906108c
SS
3003@end table
3004
3005@noindent
3006If a breakpoint is conditional, @code{info break} shows the condition on
3007the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3008are listed after that. A pending breakpoint is allowed to have a condition
3009specified for it. The condition is not parsed for validity until a shared
3010library is loaded that allows the pending breakpoint to resolve to a
3011valid location.
c906108c
SS
3012
3013@noindent
3014@code{info break} with a breakpoint
3015number @var{n} as argument lists only that breakpoint. The
3016convenience variable @code{$_} and the default examining-address for
3017the @code{x} command are set to the address of the last breakpoint
79a6e687 3018listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3019
3020@noindent
3021@code{info break} displays a count of the number of times the breakpoint
3022has been hit. This is especially useful in conjunction with the
3023@code{ignore} command. You can ignore a large number of breakpoint
3024hits, look at the breakpoint info to see how many times the breakpoint
3025was hit, and then run again, ignoring one less than that number. This
3026will get you quickly to the last hit of that breakpoint.
3027@end table
3028
3029@value{GDBN} allows you to set any number of breakpoints at the same place in
3030your program. There is nothing silly or meaningless about this. When
3031the breakpoints are conditional, this is even useful
79a6e687 3032(@pxref{Conditions, ,Break Conditions}).
c906108c 3033
fcda367b 3034It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3035in your program. Examples of this situation are:
3036
3037@itemize @bullet
3038
3039@item
3040For a C@t{++} constructor, the @value{NGCC} compiler generates several
3041instances of the function body, used in different cases.
3042
3043@item
3044For a C@t{++} template function, a given line in the function can
3045correspond to any number of instantiations.
3046
3047@item
3048For an inlined function, a given source line can correspond to
3049several places where that function is inlined.
3050
3051@end itemize
3052
3053In all those cases, @value{GDBN} will insert a breakpoint at all
3054the relevant locations.
3055
3b784c4f
EZ
3056A breakpoint with multiple locations is displayed in the breakpoint
3057table using several rows---one header row, followed by one row for
3058each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3059address column. The rows for individual locations contain the actual
3060addresses for locations, and show the functions to which those
3061locations belong. The number column for a location is of the form
fe6fbf8b
VP
3062@var{breakpoint-number}.@var{location-number}.
3063
3064For example:
3b784c4f 3065
fe6fbf8b
VP
3066@smallexample
3067Num Type Disp Enb Address What
30681 breakpoint keep y <MULTIPLE>
3069 stop only if i==1
3070 breakpoint already hit 1 time
30711.1 y 0x080486a2 in void foo<int>() at t.cc:8
30721.2 y 0x080486ca in void foo<double>() at t.cc:8
3073@end smallexample
3074
3075Each location can be individually enabled or disabled by passing
3076@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3077@code{enable} and @code{disable} commands. Note that you cannot
3078delete the individual locations from the list, you can only delete the
16bfc218 3079entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3080the @kbd{delete @var{num}} command, where @var{num} is the number of
3081the parent breakpoint, 1 in the above example). Disabling or enabling
3082the parent breakpoint (@pxref{Disabling}) affects all of the locations
3083that belong to that breakpoint.
fe6fbf8b 3084
2650777c 3085@cindex pending breakpoints
fe6fbf8b 3086It's quite common to have a breakpoint inside a shared library.
3b784c4f 3087Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3088and possibly repeatedly, as the program is executed. To support
3089this use case, @value{GDBN} updates breakpoint locations whenever
3090any shared library is loaded or unloaded. Typically, you would
fcda367b 3091set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3092debugging session, when the library is not loaded, and when the
3093symbols from the library are not available. When you try to set
3094breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3095a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3096is not yet resolved.
3097
3098After the program is run, whenever a new shared library is loaded,
3099@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3100shared library contains the symbol or line referred to by some
3101pending breakpoint, that breakpoint is resolved and becomes an
3102ordinary breakpoint. When a library is unloaded, all breakpoints
3103that refer to its symbols or source lines become pending again.
3104
3105This logic works for breakpoints with multiple locations, too. For
3106example, if you have a breakpoint in a C@t{++} template function, and
3107a newly loaded shared library has an instantiation of that template,
3108a new location is added to the list of locations for the breakpoint.
3109
3110Except for having unresolved address, pending breakpoints do not
3111differ from regular breakpoints. You can set conditions or commands,
3112enable and disable them and perform other breakpoint operations.
3113
3114@value{GDBN} provides some additional commands for controlling what
3115happens when the @samp{break} command cannot resolve breakpoint
3116address specification to an address:
dd79a6cf
JJ
3117
3118@kindex set breakpoint pending
3119@kindex show breakpoint pending
3120@table @code
3121@item set breakpoint pending auto
3122This is the default behavior. When @value{GDBN} cannot find the breakpoint
3123location, it queries you whether a pending breakpoint should be created.
3124
3125@item set breakpoint pending on
3126This indicates that an unrecognized breakpoint location should automatically
3127result in a pending breakpoint being created.
3128
3129@item set breakpoint pending off
3130This indicates that pending breakpoints are not to be created. Any
3131unrecognized breakpoint location results in an error. This setting does
3132not affect any pending breakpoints previously created.
3133
3134@item show breakpoint pending
3135Show the current behavior setting for creating pending breakpoints.
3136@end table
2650777c 3137
fe6fbf8b
VP
3138The settings above only affect the @code{break} command and its
3139variants. Once breakpoint is set, it will be automatically updated
3140as shared libraries are loaded and unloaded.
2650777c 3141
765dc015
VP
3142@cindex automatic hardware breakpoints
3143For some targets, @value{GDBN} can automatically decide if hardware or
3144software breakpoints should be used, depending on whether the
3145breakpoint address is read-only or read-write. This applies to
3146breakpoints set with the @code{break} command as well as to internal
3147breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3148breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3149breakpoints.
3150
3151You can control this automatic behaviour with the following commands::
3152
3153@kindex set breakpoint auto-hw
3154@kindex show breakpoint auto-hw
3155@table @code
3156@item set breakpoint auto-hw on
3157This is the default behavior. When @value{GDBN} sets a breakpoint, it
3158will try to use the target memory map to decide if software or hardware
3159breakpoint must be used.
3160
3161@item set breakpoint auto-hw off
3162This indicates @value{GDBN} should not automatically select breakpoint
3163type. If the target provides a memory map, @value{GDBN} will warn when
3164trying to set software breakpoint at a read-only address.
3165@end table
3166
3167
c906108c
SS
3168@cindex negative breakpoint numbers
3169@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3170@value{GDBN} itself sometimes sets breakpoints in your program for
3171special purposes, such as proper handling of @code{longjmp} (in C
3172programs). These internal breakpoints are assigned negative numbers,
3173starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3174You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3175@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3176
3177
6d2ebf8b 3178@node Set Watchpoints
79a6e687 3179@subsection Setting Watchpoints
c906108c
SS
3180
3181@cindex setting watchpoints
c906108c
SS
3182You can use a watchpoint to stop execution whenever the value of an
3183expression changes, without having to predict a particular place where
fd60e0df
EZ
3184this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3185The expression may be as simple as the value of a single variable, or
3186as complex as many variables combined by operators. Examples include:
3187
3188@itemize @bullet
3189@item
3190A reference to the value of a single variable.
3191
3192@item
3193An address cast to an appropriate data type. For example,
3194@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3195address (assuming an @code{int} occupies 4 bytes).
3196
3197@item
3198An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3199expression can use any operators valid in the program's native
3200language (@pxref{Languages}).
3201@end itemize
c906108c 3202
82f2d802
EZ
3203@cindex software watchpoints
3204@cindex hardware watchpoints
c906108c 3205Depending on your system, watchpoints may be implemented in software or
2df3850c 3206hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3207program and testing the variable's value each time, which is hundreds of
3208times slower than normal execution. (But this may still be worth it, to
3209catch errors where you have no clue what part of your program is the
3210culprit.)
3211
37e4754d 3212On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3213x86-based targets, @value{GDBN} includes support for hardware
3214watchpoints, which do not slow down the running of your program.
c906108c
SS
3215
3216@table @code
3217@kindex watch
d8b2a693 3218@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3219Set a watchpoint for an expression. @value{GDBN} will break when the
3220expression @var{expr} is written into by the program and its value
3221changes. The simplest (and the most popular) use of this command is
3222to watch the value of a single variable:
3223
3224@smallexample
3225(@value{GDBP}) watch foo
3226@end smallexample
c906108c 3227
d8b2a693
JB
3228If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3229clause, @value{GDBN} breaks only when the thread identified by
3230@var{threadnum} changes the value of @var{expr}. If any other threads
3231change the value of @var{expr}, @value{GDBN} will not break. Note
3232that watchpoints restricted to a single thread in this way only work
3233with Hardware Watchpoints.
3234
c906108c 3235@kindex rwatch
d8b2a693 3236@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3237Set a watchpoint that will break when the value of @var{expr} is read
3238by the program.
c906108c
SS
3239
3240@kindex awatch
d8b2a693 3241@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3242Set a watchpoint that will break when @var{expr} is either read from
3243or written into by the program.
c906108c 3244
45ac1734 3245@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3246@item info watchpoints
3247This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3248it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3249@end table
3250
3251@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3252watchpoints execute very quickly, and the debugger reports a change in
3253value at the exact instruction where the change occurs. If @value{GDBN}
3254cannot set a hardware watchpoint, it sets a software watchpoint, which
3255executes more slowly and reports the change in value at the next
82f2d802
EZ
3256@emph{statement}, not the instruction, after the change occurs.
3257
82f2d802
EZ
3258@cindex use only software watchpoints
3259You can force @value{GDBN} to use only software watchpoints with the
3260@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3261zero, @value{GDBN} will never try to use hardware watchpoints, even if
3262the underlying system supports them. (Note that hardware-assisted
3263watchpoints that were set @emph{before} setting
3264@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3265mechanism of watching expression values.)
c906108c 3266
9c16f35a
EZ
3267@table @code
3268@item set can-use-hw-watchpoints
3269@kindex set can-use-hw-watchpoints
3270Set whether or not to use hardware watchpoints.
3271
3272@item show can-use-hw-watchpoints
3273@kindex show can-use-hw-watchpoints
3274Show the current mode of using hardware watchpoints.
3275@end table
3276
3277For remote targets, you can restrict the number of hardware
3278watchpoints @value{GDBN} will use, see @ref{set remote
3279hardware-breakpoint-limit}.
3280
c906108c
SS
3281When you issue the @code{watch} command, @value{GDBN} reports
3282
474c8240 3283@smallexample
c906108c 3284Hardware watchpoint @var{num}: @var{expr}
474c8240 3285@end smallexample
c906108c
SS
3286
3287@noindent
3288if it was able to set a hardware watchpoint.
3289
7be570e7
JM
3290Currently, the @code{awatch} and @code{rwatch} commands can only set
3291hardware watchpoints, because accesses to data that don't change the
3292value of the watched expression cannot be detected without examining
3293every instruction as it is being executed, and @value{GDBN} does not do
3294that currently. If @value{GDBN} finds that it is unable to set a
3295hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3296will print a message like this:
3297
3298@smallexample
3299Expression cannot be implemented with read/access watchpoint.
3300@end smallexample
3301
3302Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3303data type of the watched expression is wider than what a hardware
3304watchpoint on the target machine can handle. For example, some systems
3305can only watch regions that are up to 4 bytes wide; on such systems you
3306cannot set hardware watchpoints for an expression that yields a
3307double-precision floating-point number (which is typically 8 bytes
3308wide). As a work-around, it might be possible to break the large region
3309into a series of smaller ones and watch them with separate watchpoints.
3310
3311If you set too many hardware watchpoints, @value{GDBN} might be unable
3312to insert all of them when you resume the execution of your program.
3313Since the precise number of active watchpoints is unknown until such
3314time as the program is about to be resumed, @value{GDBN} might not be
3315able to warn you about this when you set the watchpoints, and the
3316warning will be printed only when the program is resumed:
3317
3318@smallexample
3319Hardware watchpoint @var{num}: Could not insert watchpoint
3320@end smallexample
3321
3322@noindent
3323If this happens, delete or disable some of the watchpoints.
3324
fd60e0df
EZ
3325Watching complex expressions that reference many variables can also
3326exhaust the resources available for hardware-assisted watchpoints.
3327That's because @value{GDBN} needs to watch every variable in the
3328expression with separately allocated resources.
3329
7be570e7
JM
3330The SPARClite DSU will generate traps when a program accesses some data
3331or instruction address that is assigned to the debug registers. For the
3332data addresses, DSU facilitates the @code{watch} command. However the
3333hardware breakpoint registers can only take two data watchpoints, and
3334both watchpoints must be the same kind. For example, you can set two
3335watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3336@strong{or} two with @code{awatch} commands, but you cannot set one
3337watchpoint with one command and the other with a different command.
c906108c
SS
3338@value{GDBN} will reject the command if you try to mix watchpoints.
3339Delete or disable unused watchpoint commands before setting new ones.
3340
3341If you call a function interactively using @code{print} or @code{call},
2df3850c 3342any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3343kind of breakpoint or the call completes.
3344
7be570e7
JM
3345@value{GDBN} automatically deletes watchpoints that watch local
3346(automatic) variables, or expressions that involve such variables, when
3347they go out of scope, that is, when the execution leaves the block in
3348which these variables were defined. In particular, when the program
3349being debugged terminates, @emph{all} local variables go out of scope,
3350and so only watchpoints that watch global variables remain set. If you
3351rerun the program, you will need to set all such watchpoints again. One
3352way of doing that would be to set a code breakpoint at the entry to the
3353@code{main} function and when it breaks, set all the watchpoints.
3354
c906108c
SS
3355@cindex watchpoints and threads
3356@cindex threads and watchpoints
d983da9c
DJ
3357In multi-threaded programs, watchpoints will detect changes to the
3358watched expression from every thread.
3359
3360@quotation
3361@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3362have only limited usefulness. If @value{GDBN} creates a software
3363watchpoint, it can only watch the value of an expression @emph{in a
3364single thread}. If you are confident that the expression can only
3365change due to the current thread's activity (and if you are also
3366confident that no other thread can become current), then you can use
3367software watchpoints as usual. However, @value{GDBN} may not notice
3368when a non-current thread's activity changes the expression. (Hardware
3369watchpoints, in contrast, watch an expression in all threads.)
c906108c 3370@end quotation
c906108c 3371
501eef12
AC
3372@xref{set remote hardware-watchpoint-limit}.
3373
6d2ebf8b 3374@node Set Catchpoints
79a6e687 3375@subsection Setting Catchpoints
d4f3574e 3376@cindex catchpoints, setting
c906108c
SS
3377@cindex exception handlers
3378@cindex event handling
3379
3380You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3381kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3382shared library. Use the @code{catch} command to set a catchpoint.
3383
3384@table @code
3385@kindex catch
3386@item catch @var{event}
3387Stop when @var{event} occurs. @var{event} can be any of the following:
3388@table @code
3389@item throw
4644b6e3 3390@cindex stop on C@t{++} exceptions
b37052ae 3391The throwing of a C@t{++} exception.
c906108c
SS
3392
3393@item catch
b37052ae 3394The catching of a C@t{++} exception.
c906108c 3395
8936fcda
JB
3396@item exception
3397@cindex Ada exception catching
3398@cindex catch Ada exceptions
3399An Ada exception being raised. If an exception name is specified
3400at the end of the command (eg @code{catch exception Program_Error}),
3401the debugger will stop only when this specific exception is raised.
3402Otherwise, the debugger stops execution when any Ada exception is raised.
3403
3404@item exception unhandled
3405An exception that was raised but is not handled by the program.
3406
3407@item assert
3408A failed Ada assertion.
3409
c906108c 3410@item exec
4644b6e3 3411@cindex break on fork/exec
5ee187d7
DJ
3412A call to @code{exec}. This is currently only available for HP-UX
3413and @sc{gnu}/Linux.
c906108c
SS
3414
3415@item fork
5ee187d7
DJ
3416A call to @code{fork}. This is currently only available for HP-UX
3417and @sc{gnu}/Linux.
c906108c
SS
3418
3419@item vfork
5ee187d7
DJ
3420A call to @code{vfork}. This is currently only available for HP-UX
3421and @sc{gnu}/Linux.
c906108c
SS
3422
3423@item load
3424@itemx load @var{libname}
4644b6e3 3425@cindex break on load/unload of shared library
c906108c
SS
3426The dynamic loading of any shared library, or the loading of the library
3427@var{libname}. This is currently only available for HP-UX.
3428
3429@item unload
3430@itemx unload @var{libname}
c906108c
SS
3431The unloading of any dynamically loaded shared library, or the unloading
3432of the library @var{libname}. This is currently only available for HP-UX.
3433@end table
3434
3435@item tcatch @var{event}
3436Set a catchpoint that is enabled only for one stop. The catchpoint is
3437automatically deleted after the first time the event is caught.
3438
3439@end table
3440
3441Use the @code{info break} command to list the current catchpoints.
3442
b37052ae 3443There are currently some limitations to C@t{++} exception handling
c906108c
SS
3444(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3445
3446@itemize @bullet
3447@item
3448If you call a function interactively, @value{GDBN} normally returns
3449control to you when the function has finished executing. If the call
3450raises an exception, however, the call may bypass the mechanism that
3451returns control to you and cause your program either to abort or to
3452simply continue running until it hits a breakpoint, catches a signal
3453that @value{GDBN} is listening for, or exits. This is the case even if
3454you set a catchpoint for the exception; catchpoints on exceptions are
3455disabled within interactive calls.
3456
3457@item
3458You cannot raise an exception interactively.
3459
3460@item
3461You cannot install an exception handler interactively.
3462@end itemize
3463
3464@cindex raise exceptions
3465Sometimes @code{catch} is not the best way to debug exception handling:
3466if you need to know exactly where an exception is raised, it is better to
3467stop @emph{before} the exception handler is called, since that way you
3468can see the stack before any unwinding takes place. If you set a
3469breakpoint in an exception handler instead, it may not be easy to find
3470out where the exception was raised.
3471
3472To stop just before an exception handler is called, you need some
b37052ae 3473knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3474raised by calling a library function named @code{__raise_exception}
3475which has the following ANSI C interface:
3476
474c8240 3477@smallexample
c906108c 3478 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3479 @var{id} is the exception identifier. */
3480 void __raise_exception (void **addr, void *id);
474c8240 3481@end smallexample
c906108c
SS
3482
3483@noindent
3484To make the debugger catch all exceptions before any stack
3485unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3486(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3487
79a6e687 3488With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3489that depends on the value of @var{id}, you can stop your program when
3490a specific exception is raised. You can use multiple conditional
3491breakpoints to stop your program when any of a number of exceptions are
3492raised.
3493
3494
6d2ebf8b 3495@node Delete Breaks
79a6e687 3496@subsection Deleting Breakpoints
c906108c
SS
3497
3498@cindex clearing breakpoints, watchpoints, catchpoints
3499@cindex deleting breakpoints, watchpoints, catchpoints
3500It is often necessary to eliminate a breakpoint, watchpoint, or
3501catchpoint once it has done its job and you no longer want your program
3502to stop there. This is called @dfn{deleting} the breakpoint. A
3503breakpoint that has been deleted no longer exists; it is forgotten.
3504
3505With the @code{clear} command you can delete breakpoints according to
3506where they are in your program. With the @code{delete} command you can
3507delete individual breakpoints, watchpoints, or catchpoints by specifying
3508their breakpoint numbers.
3509
3510It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3511automatically ignores breakpoints on the first instruction to be executed
3512when you continue execution without changing the execution address.
3513
3514@table @code
3515@kindex clear
3516@item clear
3517Delete any breakpoints at the next instruction to be executed in the
79a6e687 3518selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3519the innermost frame is selected, this is a good way to delete a
3520breakpoint where your program just stopped.
3521
2a25a5ba
EZ
3522@item clear @var{location}
3523Delete any breakpoints set at the specified @var{location}.
3524@xref{Specify Location}, for the various forms of @var{location}; the
3525most useful ones are listed below:
3526
3527@table @code
c906108c
SS
3528@item clear @var{function}
3529@itemx clear @var{filename}:@var{function}
09d4efe1 3530Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3531
3532@item clear @var{linenum}
3533@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3534Delete any breakpoints set at or within the code of the specified
3535@var{linenum} of the specified @var{filename}.
2a25a5ba 3536@end table
c906108c
SS
3537
3538@cindex delete breakpoints
3539@kindex delete
41afff9a 3540@kindex d @r{(@code{delete})}
c5394b80
JM
3541@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3542Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3543ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3544breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3545confirm off}). You can abbreviate this command as @code{d}.
3546@end table
3547
6d2ebf8b 3548@node Disabling
79a6e687 3549@subsection Disabling Breakpoints
c906108c 3550
4644b6e3 3551@cindex enable/disable a breakpoint
c906108c
SS
3552Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3553prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3554it had been deleted, but remembers the information on the breakpoint so
3555that you can @dfn{enable} it again later.
3556
3557You disable and enable breakpoints, watchpoints, and catchpoints with
3558the @code{enable} and @code{disable} commands, optionally specifying one
3559or more breakpoint numbers as arguments. Use @code{info break} or
3560@code{info watch} to print a list of breakpoints, watchpoints, and
3561catchpoints if you do not know which numbers to use.
3562
3b784c4f
EZ
3563Disabling and enabling a breakpoint that has multiple locations
3564affects all of its locations.
3565
c906108c
SS
3566A breakpoint, watchpoint, or catchpoint can have any of four different
3567states of enablement:
3568
3569@itemize @bullet
3570@item
3571Enabled. The breakpoint stops your program. A breakpoint set
3572with the @code{break} command starts out in this state.
3573@item
3574Disabled. The breakpoint has no effect on your program.
3575@item
3576Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3577disabled.
c906108c
SS
3578@item
3579Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3580immediately after it does so it is deleted permanently. A breakpoint
3581set with the @code{tbreak} command starts out in this state.
c906108c
SS
3582@end itemize
3583
3584You can use the following commands to enable or disable breakpoints,
3585watchpoints, and catchpoints:
3586
3587@table @code
c906108c 3588@kindex disable
41afff9a 3589@kindex dis @r{(@code{disable})}
c5394b80 3590@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3591Disable the specified breakpoints---or all breakpoints, if none are
3592listed. A disabled breakpoint has no effect but is not forgotten. All
3593options such as ignore-counts, conditions and commands are remembered in
3594case the breakpoint is enabled again later. You may abbreviate
3595@code{disable} as @code{dis}.
3596
c906108c 3597@kindex enable
c5394b80 3598@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3599Enable the specified breakpoints (or all defined breakpoints). They
3600become effective once again in stopping your program.
3601
c5394b80 3602@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3603Enable the specified breakpoints temporarily. @value{GDBN} disables any
3604of these breakpoints immediately after stopping your program.
3605
c5394b80 3606@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3607Enable the specified breakpoints to work once, then die. @value{GDBN}
3608deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3609Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3610@end table
3611
d4f3574e
SS
3612@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3613@c confusing: tbreak is also initially enabled.
c906108c 3614Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3615,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3616subsequently, they become disabled or enabled only when you use one of
3617the commands above. (The command @code{until} can set and delete a
3618breakpoint of its own, but it does not change the state of your other
3619breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3620Stepping}.)
c906108c 3621
6d2ebf8b 3622@node Conditions
79a6e687 3623@subsection Break Conditions
c906108c
SS
3624@cindex conditional breakpoints
3625@cindex breakpoint conditions
3626
3627@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3628@c in particular for a watchpoint?
c906108c
SS
3629The simplest sort of breakpoint breaks every time your program reaches a
3630specified place. You can also specify a @dfn{condition} for a
3631breakpoint. A condition is just a Boolean expression in your
3632programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3633a condition evaluates the expression each time your program reaches it,
3634and your program stops only if the condition is @emph{true}.
3635
3636This is the converse of using assertions for program validation; in that
3637situation, you want to stop when the assertion is violated---that is,
3638when the condition is false. In C, if you want to test an assertion expressed
3639by the condition @var{assert}, you should set the condition
3640@samp{! @var{assert}} on the appropriate breakpoint.
3641
3642Conditions are also accepted for watchpoints; you may not need them,
3643since a watchpoint is inspecting the value of an expression anyhow---but
3644it might be simpler, say, to just set a watchpoint on a variable name,
3645and specify a condition that tests whether the new value is an interesting
3646one.
3647
3648Break conditions can have side effects, and may even call functions in
3649your program. This can be useful, for example, to activate functions
3650that log program progress, or to use your own print functions to
3651format special data structures. The effects are completely predictable
3652unless there is another enabled breakpoint at the same address. (In
3653that case, @value{GDBN} might see the other breakpoint first and stop your
3654program without checking the condition of this one.) Note that
d4f3574e
SS
3655breakpoint commands are usually more convenient and flexible than break
3656conditions for the
c906108c 3657purpose of performing side effects when a breakpoint is reached
79a6e687 3658(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3659
3660Break conditions can be specified when a breakpoint is set, by using
3661@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3662Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3663with the @code{condition} command.
53a5351d 3664
c906108c
SS
3665You can also use the @code{if} keyword with the @code{watch} command.
3666The @code{catch} command does not recognize the @code{if} keyword;
3667@code{condition} is the only way to impose a further condition on a
3668catchpoint.
c906108c
SS
3669
3670@table @code
3671@kindex condition
3672@item condition @var{bnum} @var{expression}
3673Specify @var{expression} as the break condition for breakpoint,
3674watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3675breakpoint @var{bnum} stops your program only if the value of
3676@var{expression} is true (nonzero, in C). When you use
3677@code{condition}, @value{GDBN} checks @var{expression} immediately for
3678syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3679referents in the context of your breakpoint. If @var{expression} uses
3680symbols not referenced in the context of the breakpoint, @value{GDBN}
3681prints an error message:
3682
474c8240 3683@smallexample
d4f3574e 3684No symbol "foo" in current context.
474c8240 3685@end smallexample
d4f3574e
SS
3686
3687@noindent
c906108c
SS
3688@value{GDBN} does
3689not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3690command (or a command that sets a breakpoint with a condition, like
3691@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3692
3693@item condition @var{bnum}
3694Remove the condition from breakpoint number @var{bnum}. It becomes
3695an ordinary unconditional breakpoint.
3696@end table
3697
3698@cindex ignore count (of breakpoint)
3699A special case of a breakpoint condition is to stop only when the
3700breakpoint has been reached a certain number of times. This is so
3701useful that there is a special way to do it, using the @dfn{ignore
3702count} of the breakpoint. Every breakpoint has an ignore count, which
3703is an integer. Most of the time, the ignore count is zero, and
3704therefore has no effect. But if your program reaches a breakpoint whose
3705ignore count is positive, then instead of stopping, it just decrements
3706the ignore count by one and continues. As a result, if the ignore count
3707value is @var{n}, the breakpoint does not stop the next @var{n} times
3708your program reaches it.
3709
3710@table @code
3711@kindex ignore
3712@item ignore @var{bnum} @var{count}
3713Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3714The next @var{count} times the breakpoint is reached, your program's
3715execution does not stop; other than to decrement the ignore count, @value{GDBN}
3716takes no action.
3717
3718To make the breakpoint stop the next time it is reached, specify
3719a count of zero.
3720
3721When you use @code{continue} to resume execution of your program from a
3722breakpoint, you can specify an ignore count directly as an argument to
3723@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3724Stepping,,Continuing and Stepping}.
c906108c
SS
3725
3726If a breakpoint has a positive ignore count and a condition, the
3727condition is not checked. Once the ignore count reaches zero,
3728@value{GDBN} resumes checking the condition.
3729
3730You could achieve the effect of the ignore count with a condition such
3731as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3732is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3733Variables}.
c906108c
SS
3734@end table
3735
3736Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3737
3738
6d2ebf8b 3739@node Break Commands
79a6e687 3740@subsection Breakpoint Command Lists
c906108c
SS
3741
3742@cindex breakpoint commands
3743You can give any breakpoint (or watchpoint or catchpoint) a series of
3744commands to execute when your program stops due to that breakpoint. For
3745example, you might want to print the values of certain expressions, or
3746enable other breakpoints.
3747
3748@table @code
3749@kindex commands
ca91424e 3750@kindex end@r{ (breakpoint commands)}
c906108c
SS
3751@item commands @r{[}@var{bnum}@r{]}
3752@itemx @dots{} @var{command-list} @dots{}
3753@itemx end
3754Specify a list of commands for breakpoint number @var{bnum}. The commands
3755themselves appear on the following lines. Type a line containing just
3756@code{end} to terminate the commands.
3757
3758To remove all commands from a breakpoint, type @code{commands} and
3759follow it immediately with @code{end}; that is, give no commands.
3760
3761With no @var{bnum} argument, @code{commands} refers to the last
3762breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3763recently encountered).
3764@end table
3765
3766Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3767disabled within a @var{command-list}.
3768
3769You can use breakpoint commands to start your program up again. Simply
3770use the @code{continue} command, or @code{step}, or any other command
3771that resumes execution.
3772
3773Any other commands in the command list, after a command that resumes
3774execution, are ignored. This is because any time you resume execution
3775(even with a simple @code{next} or @code{step}), you may encounter
3776another breakpoint---which could have its own command list, leading to
3777ambiguities about which list to execute.
3778
3779@kindex silent
3780If the first command you specify in a command list is @code{silent}, the
3781usual message about stopping at a breakpoint is not printed. This may
3782be desirable for breakpoints that are to print a specific message and
3783then continue. If none of the remaining commands print anything, you
3784see no sign that the breakpoint was reached. @code{silent} is
3785meaningful only at the beginning of a breakpoint command list.
3786
3787The commands @code{echo}, @code{output}, and @code{printf} allow you to
3788print precisely controlled output, and are often useful in silent
79a6e687 3789breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3790
3791For example, here is how you could use breakpoint commands to print the
3792value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3793
474c8240 3794@smallexample
c906108c
SS
3795break foo if x>0
3796commands
3797silent
3798printf "x is %d\n",x
3799cont
3800end
474c8240 3801@end smallexample
c906108c
SS
3802
3803One application for breakpoint commands is to compensate for one bug so
3804you can test for another. Put a breakpoint just after the erroneous line
3805of code, give it a condition to detect the case in which something
3806erroneous has been done, and give it commands to assign correct values
3807to any variables that need them. End with the @code{continue} command
3808so that your program does not stop, and start with the @code{silent}
3809command so that no output is produced. Here is an example:
3810
474c8240 3811@smallexample
c906108c
SS
3812break 403
3813commands
3814silent
3815set x = y + 4
3816cont
3817end
474c8240 3818@end smallexample
c906108c 3819
6d2ebf8b 3820@node Breakpoint Menus
79a6e687 3821@subsection Breakpoint Menus
c906108c
SS
3822@cindex overloading
3823@cindex symbol overloading
3824
b383017d 3825Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3826single function name
c906108c
SS
3827to be defined several times, for application in different contexts.
3828This is called @dfn{overloading}. When a function name is overloaded,
3829@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3830a breakpoint. You can use explicit signature of the function, as in
3831@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3832particular version of the function you want. Otherwise, @value{GDBN} offers
3833you a menu of numbered choices for different possible breakpoints, and
3834waits for your selection with the prompt @samp{>}. The first two
3835options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3836sets a breakpoint at each definition of @var{function}, and typing
3837@kbd{0} aborts the @code{break} command without setting any new
3838breakpoints.
3839
3840For example, the following session excerpt shows an attempt to set a
3841breakpoint at the overloaded symbol @code{String::after}.
3842We choose three particular definitions of that function name:
3843
3844@c FIXME! This is likely to change to show arg type lists, at least
3845@smallexample
3846@group
3847(@value{GDBP}) b String::after
3848[0] cancel
3849[1] all
3850[2] file:String.cc; line number:867
3851[3] file:String.cc; line number:860
3852[4] file:String.cc; line number:875
3853[5] file:String.cc; line number:853
3854[6] file:String.cc; line number:846
3855[7] file:String.cc; line number:735
3856> 2 4 6
3857Breakpoint 1 at 0xb26c: file String.cc, line 867.
3858Breakpoint 2 at 0xb344: file String.cc, line 875.
3859Breakpoint 3 at 0xafcc: file String.cc, line 846.
3860Multiple breakpoints were set.
3861Use the "delete" command to delete unwanted
3862 breakpoints.
3863(@value{GDBP})
3864@end group
3865@end smallexample
c906108c
SS
3866
3867@c @ifclear BARETARGET
6d2ebf8b 3868@node Error in Breakpoints
d4f3574e 3869@subsection ``Cannot insert breakpoints''
c906108c
SS
3870@c
3871@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3872@c
d4f3574e
SS
3873Under some operating systems, breakpoints cannot be used in a program if
3874any other process is running that program. In this situation,
5d161b24 3875attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3876@value{GDBN} to print an error message:
3877
474c8240 3878@smallexample
d4f3574e
SS
3879Cannot insert breakpoints.
3880The same program may be running in another process.
474c8240 3881@end smallexample
d4f3574e
SS
3882
3883When this happens, you have three ways to proceed:
3884
3885@enumerate
3886@item
3887Remove or disable the breakpoints, then continue.
3888
3889@item
5d161b24 3890Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3891name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3892that @value{GDBN} should run your program under that name.
d4f3574e
SS
3893Then start your program again.
3894
3895@item
3896Relink your program so that the text segment is nonsharable, using the
3897linker option @samp{-N}. The operating system limitation may not apply
3898to nonsharable executables.
3899@end enumerate
c906108c
SS
3900@c @end ifclear
3901
d4f3574e
SS
3902A similar message can be printed if you request too many active
3903hardware-assisted breakpoints and watchpoints:
3904
3905@c FIXME: the precise wording of this message may change; the relevant
3906@c source change is not committed yet (Sep 3, 1999).
3907@smallexample
3908Stopped; cannot insert breakpoints.
3909You may have requested too many hardware breakpoints and watchpoints.
3910@end smallexample
3911
3912@noindent
3913This message is printed when you attempt to resume the program, since
3914only then @value{GDBN} knows exactly how many hardware breakpoints and
3915watchpoints it needs to insert.
3916
3917When this message is printed, you need to disable or remove some of the
3918hardware-assisted breakpoints and watchpoints, and then continue.
3919
79a6e687 3920@node Breakpoint-related Warnings
1485d690
KB
3921@subsection ``Breakpoint address adjusted...''
3922@cindex breakpoint address adjusted
3923
3924Some processor architectures place constraints on the addresses at
3925which breakpoints may be placed. For architectures thus constrained,
3926@value{GDBN} will attempt to adjust the breakpoint's address to comply
3927with the constraints dictated by the architecture.
3928
3929One example of such an architecture is the Fujitsu FR-V. The FR-V is
3930a VLIW architecture in which a number of RISC-like instructions may be
3931bundled together for parallel execution. The FR-V architecture
3932constrains the location of a breakpoint instruction within such a
3933bundle to the instruction with the lowest address. @value{GDBN}
3934honors this constraint by adjusting a breakpoint's address to the
3935first in the bundle.
3936
3937It is not uncommon for optimized code to have bundles which contain
3938instructions from different source statements, thus it may happen that
3939a breakpoint's address will be adjusted from one source statement to
3940another. Since this adjustment may significantly alter @value{GDBN}'s
3941breakpoint related behavior from what the user expects, a warning is
3942printed when the breakpoint is first set and also when the breakpoint
3943is hit.
3944
3945A warning like the one below is printed when setting a breakpoint
3946that's been subject to address adjustment:
3947
3948@smallexample
3949warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3950@end smallexample
3951
3952Such warnings are printed both for user settable and @value{GDBN}'s
3953internal breakpoints. If you see one of these warnings, you should
3954verify that a breakpoint set at the adjusted address will have the
3955desired affect. If not, the breakpoint in question may be removed and
b383017d 3956other breakpoints may be set which will have the desired behavior.
1485d690
KB
3957E.g., it may be sufficient to place the breakpoint at a later
3958instruction. A conditional breakpoint may also be useful in some
3959cases to prevent the breakpoint from triggering too often.
3960
3961@value{GDBN} will also issue a warning when stopping at one of these
3962adjusted breakpoints:
3963
3964@smallexample
3965warning: Breakpoint 1 address previously adjusted from 0x00010414
3966to 0x00010410.
3967@end smallexample
3968
3969When this warning is encountered, it may be too late to take remedial
3970action except in cases where the breakpoint is hit earlier or more
3971frequently than expected.
d4f3574e 3972
6d2ebf8b 3973@node Continuing and Stepping
79a6e687 3974@section Continuing and Stepping
c906108c
SS
3975
3976@cindex stepping
3977@cindex continuing
3978@cindex resuming execution
3979@dfn{Continuing} means resuming program execution until your program
3980completes normally. In contrast, @dfn{stepping} means executing just
3981one more ``step'' of your program, where ``step'' may mean either one
3982line of source code, or one machine instruction (depending on what
7a292a7a
SS
3983particular command you use). Either when continuing or when stepping,
3984your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3985it stops due to a signal, you may want to use @code{handle}, or use
3986@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3987
3988@table @code
3989@kindex continue
41afff9a
EZ
3990@kindex c @r{(@code{continue})}
3991@kindex fg @r{(resume foreground execution)}
c906108c
SS
3992@item continue @r{[}@var{ignore-count}@r{]}
3993@itemx c @r{[}@var{ignore-count}@r{]}
3994@itemx fg @r{[}@var{ignore-count}@r{]}
3995Resume program execution, at the address where your program last stopped;
3996any breakpoints set at that address are bypassed. The optional argument
3997@var{ignore-count} allows you to specify a further number of times to
3998ignore a breakpoint at this location; its effect is like that of
79a6e687 3999@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4000
4001The argument @var{ignore-count} is meaningful only when your program
4002stopped due to a breakpoint. At other times, the argument to
4003@code{continue} is ignored.
4004
d4f3574e
SS
4005The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4006debugged program is deemed to be the foreground program) are provided
4007purely for convenience, and have exactly the same behavior as
4008@code{continue}.
c906108c
SS
4009@end table
4010
4011To resume execution at a different place, you can use @code{return}
79a6e687 4012(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4013calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4014Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4015
4016A typical technique for using stepping is to set a breakpoint
79a6e687 4017(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4018beginning of the function or the section of your program where a problem
4019is believed to lie, run your program until it stops at that breakpoint,
4020and then step through the suspect area, examining the variables that are
4021interesting, until you see the problem happen.
4022
4023@table @code
4024@kindex step
41afff9a 4025@kindex s @r{(@code{step})}
c906108c
SS
4026@item step
4027Continue running your program until control reaches a different source
4028line, then stop it and return control to @value{GDBN}. This command is
4029abbreviated @code{s}.
4030
4031@quotation
4032@c "without debugging information" is imprecise; actually "without line
4033@c numbers in the debugging information". (gcc -g1 has debugging info but
4034@c not line numbers). But it seems complex to try to make that
4035@c distinction here.
4036@emph{Warning:} If you use the @code{step} command while control is
4037within a function that was compiled without debugging information,
4038execution proceeds until control reaches a function that does have
4039debugging information. Likewise, it will not step into a function which
4040is compiled without debugging information. To step through functions
4041without debugging information, use the @code{stepi} command, described
4042below.
4043@end quotation
4044
4a92d011
EZ
4045The @code{step} command only stops at the first instruction of a source
4046line. This prevents the multiple stops that could otherwise occur in
4047@code{switch} statements, @code{for} loops, etc. @code{step} continues
4048to stop if a function that has debugging information is called within
4049the line. In other words, @code{step} @emph{steps inside} any functions
4050called within the line.
c906108c 4051
d4f3574e
SS
4052Also, the @code{step} command only enters a function if there is line
4053number information for the function. Otherwise it acts like the
5d161b24 4054@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4055on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4056was any debugging information about the routine.
c906108c
SS
4057
4058@item step @var{count}
4059Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4060breakpoint is reached, or a signal not related to stepping occurs before
4061@var{count} steps, stepping stops right away.
c906108c
SS
4062
4063@kindex next
41afff9a 4064@kindex n @r{(@code{next})}
c906108c
SS
4065@item next @r{[}@var{count}@r{]}
4066Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4067This is similar to @code{step}, but function calls that appear within
4068the line of code are executed without stopping. Execution stops when
4069control reaches a different line of code at the original stack level
4070that was executing when you gave the @code{next} command. This command
4071is abbreviated @code{n}.
c906108c
SS
4072
4073An argument @var{count} is a repeat count, as for @code{step}.
4074
4075
4076@c FIX ME!! Do we delete this, or is there a way it fits in with
4077@c the following paragraph? --- Vctoria
4078@c
4079@c @code{next} within a function that lacks debugging information acts like
4080@c @code{step}, but any function calls appearing within the code of the
4081@c function are executed without stopping.
4082
d4f3574e
SS
4083The @code{next} command only stops at the first instruction of a
4084source line. This prevents multiple stops that could otherwise occur in
4a92d011 4085@code{switch} statements, @code{for} loops, etc.
c906108c 4086
b90a5f51
CF
4087@kindex set step-mode
4088@item set step-mode
4089@cindex functions without line info, and stepping
4090@cindex stepping into functions with no line info
4091@itemx set step-mode on
4a92d011 4092The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4093stop at the first instruction of a function which contains no debug line
4094information rather than stepping over it.
4095
4a92d011
EZ
4096This is useful in cases where you may be interested in inspecting the
4097machine instructions of a function which has no symbolic info and do not
4098want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4099
4100@item set step-mode off
4a92d011 4101Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4102debug information. This is the default.
4103
9c16f35a
EZ
4104@item show step-mode
4105Show whether @value{GDBN} will stop in or step over functions without
4106source line debug information.
4107
c906108c
SS
4108@kindex finish
4109@item finish
4110Continue running until just after function in the selected stack frame
4111returns. Print the returned value (if any).
4112
4113Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4114,Returning from a Function}).
c906108c
SS
4115
4116@kindex until
41afff9a 4117@kindex u @r{(@code{until})}
09d4efe1 4118@cindex run until specified location
c906108c
SS
4119@item until
4120@itemx u
4121Continue running until a source line past the current line, in the
4122current stack frame, is reached. This command is used to avoid single
4123stepping through a loop more than once. It is like the @code{next}
4124command, except that when @code{until} encounters a jump, it
4125automatically continues execution until the program counter is greater
4126than the address of the jump.
4127
4128This means that when you reach the end of a loop after single stepping
4129though it, @code{until} makes your program continue execution until it
4130exits the loop. In contrast, a @code{next} command at the end of a loop
4131simply steps back to the beginning of the loop, which forces you to step
4132through the next iteration.
4133
4134@code{until} always stops your program if it attempts to exit the current
4135stack frame.
4136
4137@code{until} may produce somewhat counterintuitive results if the order
4138of machine code does not match the order of the source lines. For
4139example, in the following excerpt from a debugging session, the @code{f}
4140(@code{frame}) command shows that execution is stopped at line
4141@code{206}; yet when we use @code{until}, we get to line @code{195}:
4142
474c8240 4143@smallexample
c906108c
SS
4144(@value{GDBP}) f
4145#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4146206 expand_input();
4147(@value{GDBP}) until
4148195 for ( ; argc > 0; NEXTARG) @{
474c8240 4149@end smallexample
c906108c
SS
4150
4151This happened because, for execution efficiency, the compiler had
4152generated code for the loop closure test at the end, rather than the
4153start, of the loop---even though the test in a C @code{for}-loop is
4154written before the body of the loop. The @code{until} command appeared
4155to step back to the beginning of the loop when it advanced to this
4156expression; however, it has not really gone to an earlier
4157statement---not in terms of the actual machine code.
4158
4159@code{until} with no argument works by means of single
4160instruction stepping, and hence is slower than @code{until} with an
4161argument.
4162
4163@item until @var{location}
4164@itemx u @var{location}
4165Continue running your program until either the specified location is
4166reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4167the forms described in @ref{Specify Location}.
4168This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4169hence is quicker than @code{until} without an argument. The specified
4170location is actually reached only if it is in the current frame. This
4171implies that @code{until} can be used to skip over recursive function
4172invocations. For instance in the code below, if the current location is
4173line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4174line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4175invocations have returned.
4176
4177@smallexample
417894 int factorial (int value)
417995 @{
418096 if (value > 1) @{
418197 value *= factorial (value - 1);
418298 @}
418399 return (value);
4184100 @}
4185@end smallexample
4186
4187
4188@kindex advance @var{location}
4189@itemx advance @var{location}
09d4efe1 4190Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4191required, which should be of one of the forms described in
4192@ref{Specify Location}.
4193Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4194frame. This command is similar to @code{until}, but @code{advance} will
4195not skip over recursive function calls, and the target location doesn't
4196have to be in the same frame as the current one.
4197
c906108c
SS
4198
4199@kindex stepi
41afff9a 4200@kindex si @r{(@code{stepi})}
c906108c 4201@item stepi
96a2c332 4202@itemx stepi @var{arg}
c906108c
SS
4203@itemx si
4204Execute one machine instruction, then stop and return to the debugger.
4205
4206It is often useful to do @samp{display/i $pc} when stepping by machine
4207instructions. This makes @value{GDBN} automatically display the next
4208instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4209Display,, Automatic Display}.
c906108c
SS
4210
4211An argument is a repeat count, as in @code{step}.
4212
4213@need 750
4214@kindex nexti
41afff9a 4215@kindex ni @r{(@code{nexti})}
c906108c 4216@item nexti
96a2c332 4217@itemx nexti @var{arg}
c906108c
SS
4218@itemx ni
4219Execute one machine instruction, but if it is a function call,
4220proceed until the function returns.
4221
4222An argument is a repeat count, as in @code{next}.
4223@end table
4224
6d2ebf8b 4225@node Signals
c906108c
SS
4226@section Signals
4227@cindex signals
4228
4229A signal is an asynchronous event that can happen in a program. The
4230operating system defines the possible kinds of signals, and gives each
4231kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4232signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4233@code{SIGSEGV} is the signal a program gets from referencing a place in
4234memory far away from all the areas in use; @code{SIGALRM} occurs when
4235the alarm clock timer goes off (which happens only if your program has
4236requested an alarm).
4237
4238@cindex fatal signals
4239Some signals, including @code{SIGALRM}, are a normal part of the
4240functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4241errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4242program has not specified in advance some other way to handle the signal.
4243@code{SIGINT} does not indicate an error in your program, but it is normally
4244fatal so it can carry out the purpose of the interrupt: to kill the program.
4245
4246@value{GDBN} has the ability to detect any occurrence of a signal in your
4247program. You can tell @value{GDBN} in advance what to do for each kind of
4248signal.
4249
4250@cindex handling signals
24f93129
EZ
4251Normally, @value{GDBN} is set up to let the non-erroneous signals like
4252@code{SIGALRM} be silently passed to your program
4253(so as not to interfere with their role in the program's functioning)
c906108c
SS
4254but to stop your program immediately whenever an error signal happens.
4255You can change these settings with the @code{handle} command.
4256
4257@table @code
4258@kindex info signals
09d4efe1 4259@kindex info handle
c906108c 4260@item info signals
96a2c332 4261@itemx info handle
c906108c
SS
4262Print a table of all the kinds of signals and how @value{GDBN} has been told to
4263handle each one. You can use this to see the signal numbers of all
4264the defined types of signals.
4265
45ac1734
EZ
4266@item info signals @var{sig}
4267Similar, but print information only about the specified signal number.
4268
d4f3574e 4269@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4270
4271@kindex handle
45ac1734 4272@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4273Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4274can be the number of a signal or its name (with or without the
24f93129 4275@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4276@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4277known signals. Optional arguments @var{keywords}, described below,
4278say what change to make.
c906108c
SS
4279@end table
4280
4281@c @group
4282The keywords allowed by the @code{handle} command can be abbreviated.
4283Their full names are:
4284
4285@table @code
4286@item nostop
4287@value{GDBN} should not stop your program when this signal happens. It may
4288still print a message telling you that the signal has come in.
4289
4290@item stop
4291@value{GDBN} should stop your program when this signal happens. This implies
4292the @code{print} keyword as well.
4293
4294@item print
4295@value{GDBN} should print a message when this signal happens.
4296
4297@item noprint
4298@value{GDBN} should not mention the occurrence of the signal at all. This
4299implies the @code{nostop} keyword as well.
4300
4301@item pass
5ece1a18 4302@itemx noignore
c906108c
SS
4303@value{GDBN} should allow your program to see this signal; your program
4304can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4305and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4306
4307@item nopass
5ece1a18 4308@itemx ignore
c906108c 4309@value{GDBN} should not allow your program to see this signal.
5ece1a18 4310@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4311@end table
4312@c @end group
4313
d4f3574e
SS
4314When a signal stops your program, the signal is not visible to the
4315program until you
c906108c
SS
4316continue. Your program sees the signal then, if @code{pass} is in
4317effect for the signal in question @emph{at that time}. In other words,
4318after @value{GDBN} reports a signal, you can use the @code{handle}
4319command with @code{pass} or @code{nopass} to control whether your
4320program sees that signal when you continue.
4321
24f93129
EZ
4322The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4323non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4324@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4325erroneous signals.
4326
c906108c
SS
4327You can also use the @code{signal} command to prevent your program from
4328seeing a signal, or cause it to see a signal it normally would not see,
4329or to give it any signal at any time. For example, if your program stopped
4330due to some sort of memory reference error, you might store correct
4331values into the erroneous variables and continue, hoping to see more
4332execution; but your program would probably terminate immediately as
4333a result of the fatal signal once it saw the signal. To prevent this,
4334you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4335Program a Signal}.
c906108c 4336
6d2ebf8b 4337@node Thread Stops
79a6e687 4338@section Stopping and Starting Multi-thread Programs
c906108c
SS
4339
4340When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4341Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4342breakpoints on all threads, or on a particular thread.
4343
4344@table @code
4345@cindex breakpoints and threads
4346@cindex thread breakpoints
4347@kindex break @dots{} thread @var{threadno}
4348@item break @var{linespec} thread @var{threadno}
4349@itemx break @var{linespec} thread @var{threadno} if @dots{}
4350@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4351writing them (@pxref{Specify Location}), but the effect is always to
4352specify some source line.
c906108c
SS
4353
4354Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4355to specify that you only want @value{GDBN} to stop the program when a
4356particular thread reaches this breakpoint. @var{threadno} is one of the
4357numeric thread identifiers assigned by @value{GDBN}, shown in the first
4358column of the @samp{info threads} display.
4359
4360If you do not specify @samp{thread @var{threadno}} when you set a
4361breakpoint, the breakpoint applies to @emph{all} threads of your
4362program.
4363
4364You can use the @code{thread} qualifier on conditional breakpoints as
4365well; in this case, place @samp{thread @var{threadno}} before the
4366breakpoint condition, like this:
4367
4368@smallexample
2df3850c 4369(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4370@end smallexample
4371
4372@end table
4373
4374@cindex stopped threads
4375@cindex threads, stopped
4376Whenever your program stops under @value{GDBN} for any reason,
4377@emph{all} threads of execution stop, not just the current thread. This
4378allows you to examine the overall state of the program, including
4379switching between threads, without worrying that things may change
4380underfoot.
4381
36d86913
MC
4382@cindex thread breakpoints and system calls
4383@cindex system calls and thread breakpoints
4384@cindex premature return from system calls
4385There is an unfortunate side effect. If one thread stops for a
4386breakpoint, or for some other reason, and another thread is blocked in a
4387system call, then the system call may return prematurely. This is a
4388consequence of the interaction between multiple threads and the signals
4389that @value{GDBN} uses to implement breakpoints and other events that
4390stop execution.
4391
4392To handle this problem, your program should check the return value of
4393each system call and react appropriately. This is good programming
4394style anyways.
4395
4396For example, do not write code like this:
4397
4398@smallexample
4399 sleep (10);
4400@end smallexample
4401
4402The call to @code{sleep} will return early if a different thread stops
4403at a breakpoint or for some other reason.
4404
4405Instead, write this:
4406
4407@smallexample
4408 int unslept = 10;
4409 while (unslept > 0)
4410 unslept = sleep (unslept);
4411@end smallexample
4412
4413A system call is allowed to return early, so the system is still
4414conforming to its specification. But @value{GDBN} does cause your
4415multi-threaded program to behave differently than it would without
4416@value{GDBN}.
4417
4418Also, @value{GDBN} uses internal breakpoints in the thread library to
4419monitor certain events such as thread creation and thread destruction.
4420When such an event happens, a system call in another thread may return
4421prematurely, even though your program does not appear to stop.
4422
c906108c
SS
4423@cindex continuing threads
4424@cindex threads, continuing
4425Conversely, whenever you restart the program, @emph{all} threads start
4426executing. @emph{This is true even when single-stepping} with commands
5d161b24 4427like @code{step} or @code{next}.
c906108c
SS
4428
4429In particular, @value{GDBN} cannot single-step all threads in lockstep.
4430Since thread scheduling is up to your debugging target's operating
4431system (not controlled by @value{GDBN}), other threads may
4432execute more than one statement while the current thread completes a
4433single step. Moreover, in general other threads stop in the middle of a
4434statement, rather than at a clean statement boundary, when the program
4435stops.
4436
4437You might even find your program stopped in another thread after
4438continuing or even single-stepping. This happens whenever some other
4439thread runs into a breakpoint, a signal, or an exception before the
4440first thread completes whatever you requested.
4441
4442On some OSes, you can lock the OS scheduler and thus allow only a single
4443thread to run.
4444
4445@table @code
4446@item set scheduler-locking @var{mode}
9c16f35a
EZ
4447@cindex scheduler locking mode
4448@cindex lock scheduler
c906108c
SS
4449Set the scheduler locking mode. If it is @code{off}, then there is no
4450locking and any thread may run at any time. If @code{on}, then only the
4451current thread may run when the inferior is resumed. The @code{step}
4452mode optimizes for single-stepping. It stops other threads from
4453``seizing the prompt'' by preempting the current thread while you are
4454stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4455when you step. They are more likely to run when you @samp{next} over a
c906108c 4456function call, and they are completely free to run when you use commands
d4f3574e 4457like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4458thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4459@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4460
4461@item show scheduler-locking
4462Display the current scheduler locking mode.
4463@end table
4464
c906108c 4465
6d2ebf8b 4466@node Stack
c906108c
SS
4467@chapter Examining the Stack
4468
4469When your program has stopped, the first thing you need to know is where it
4470stopped and how it got there.
4471
4472@cindex call stack
5d161b24
DB
4473Each time your program performs a function call, information about the call
4474is generated.
4475That information includes the location of the call in your program,
4476the arguments of the call,
c906108c 4477and the local variables of the function being called.
5d161b24 4478The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4479The stack frames are allocated in a region of memory called the @dfn{call
4480stack}.
4481
4482When your program stops, the @value{GDBN} commands for examining the
4483stack allow you to see all of this information.
4484
4485@cindex selected frame
4486One of the stack frames is @dfn{selected} by @value{GDBN} and many
4487@value{GDBN} commands refer implicitly to the selected frame. In
4488particular, whenever you ask @value{GDBN} for the value of a variable in
4489your program, the value is found in the selected frame. There are
4490special @value{GDBN} commands to select whichever frame you are
79a6e687 4491interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4492
4493When your program stops, @value{GDBN} automatically selects the
5d161b24 4494currently executing frame and describes it briefly, similar to the
79a6e687 4495@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4496
4497@menu
4498* Frames:: Stack frames
4499* Backtrace:: Backtraces
4500* Selection:: Selecting a frame
4501* Frame Info:: Information on a frame
c906108c
SS
4502
4503@end menu
4504
6d2ebf8b 4505@node Frames
79a6e687 4506@section Stack Frames
c906108c 4507
d4f3574e 4508@cindex frame, definition
c906108c
SS
4509@cindex stack frame
4510The call stack is divided up into contiguous pieces called @dfn{stack
4511frames}, or @dfn{frames} for short; each frame is the data associated
4512with one call to one function. The frame contains the arguments given
4513to the function, the function's local variables, and the address at
4514which the function is executing.
4515
4516@cindex initial frame
4517@cindex outermost frame
4518@cindex innermost frame
4519When your program is started, the stack has only one frame, that of the
4520function @code{main}. This is called the @dfn{initial} frame or the
4521@dfn{outermost} frame. Each time a function is called, a new frame is
4522made. Each time a function returns, the frame for that function invocation
4523is eliminated. If a function is recursive, there can be many frames for
4524the same function. The frame for the function in which execution is
4525actually occurring is called the @dfn{innermost} frame. This is the most
4526recently created of all the stack frames that still exist.
4527
4528@cindex frame pointer
4529Inside your program, stack frames are identified by their addresses. A
4530stack frame consists of many bytes, each of which has its own address; each
4531kind of computer has a convention for choosing one byte whose
4532address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4533in a register called the @dfn{frame pointer register}
4534(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4535
4536@cindex frame number
4537@value{GDBN} assigns numbers to all existing stack frames, starting with
4538zero for the innermost frame, one for the frame that called it,
4539and so on upward. These numbers do not really exist in your program;
4540they are assigned by @value{GDBN} to give you a way of designating stack
4541frames in @value{GDBN} commands.
4542
6d2ebf8b
SS
4543@c The -fomit-frame-pointer below perennially causes hbox overflow
4544@c underflow problems.
c906108c
SS
4545@cindex frameless execution
4546Some compilers provide a way to compile functions so that they operate
e22ea452 4547without stack frames. (For example, the @value{NGCC} option
474c8240 4548@smallexample
6d2ebf8b 4549@samp{-fomit-frame-pointer}
474c8240 4550@end smallexample
6d2ebf8b 4551generates functions without a frame.)
c906108c
SS
4552This is occasionally done with heavily used library functions to save
4553the frame setup time. @value{GDBN} has limited facilities for dealing
4554with these function invocations. If the innermost function invocation
4555has no stack frame, @value{GDBN} nevertheless regards it as though
4556it had a separate frame, which is numbered zero as usual, allowing
4557correct tracing of the function call chain. However, @value{GDBN} has
4558no provision for frameless functions elsewhere in the stack.
4559
4560@table @code
d4f3574e 4561@kindex frame@r{, command}
41afff9a 4562@cindex current stack frame
c906108c 4563@item frame @var{args}
5d161b24 4564The @code{frame} command allows you to move from one stack frame to another,
c906108c 4565and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4566address of the frame or the stack frame number. Without an argument,
4567@code{frame} prints the current stack frame.
c906108c
SS
4568
4569@kindex select-frame
41afff9a 4570@cindex selecting frame silently
c906108c
SS
4571@item select-frame
4572The @code{select-frame} command allows you to move from one stack frame
4573to another without printing the frame. This is the silent version of
4574@code{frame}.
4575@end table
4576
6d2ebf8b 4577@node Backtrace
c906108c
SS
4578@section Backtraces
4579
09d4efe1
EZ
4580@cindex traceback
4581@cindex call stack traces
c906108c
SS
4582A backtrace is a summary of how your program got where it is. It shows one
4583line per frame, for many frames, starting with the currently executing
4584frame (frame zero), followed by its caller (frame one), and on up the
4585stack.
4586
4587@table @code
4588@kindex backtrace
41afff9a 4589@kindex bt @r{(@code{backtrace})}
c906108c
SS
4590@item backtrace
4591@itemx bt
4592Print a backtrace of the entire stack: one line per frame for all
4593frames in the stack.
4594
4595You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4596character, normally @kbd{Ctrl-c}.
c906108c
SS
4597
4598@item backtrace @var{n}
4599@itemx bt @var{n}
4600Similar, but print only the innermost @var{n} frames.
4601
4602@item backtrace -@var{n}
4603@itemx bt -@var{n}
4604Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4605
4606@item backtrace full
0f061b69 4607@itemx bt full
dd74f6ae
NR
4608@itemx bt full @var{n}
4609@itemx bt full -@var{n}
e7109c7e 4610Print the values of the local variables also. @var{n} specifies the
286ba84d 4611number of frames to print, as described above.
c906108c
SS
4612@end table
4613
4614@kindex where
4615@kindex info stack
c906108c
SS
4616The names @code{where} and @code{info stack} (abbreviated @code{info s})
4617are additional aliases for @code{backtrace}.
4618
839c27b7
EZ
4619@cindex multiple threads, backtrace
4620In a multi-threaded program, @value{GDBN} by default shows the
4621backtrace only for the current thread. To display the backtrace for
4622several or all of the threads, use the command @code{thread apply}
4623(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4624apply all backtrace}, @value{GDBN} will display the backtrace for all
4625the threads; this is handy when you debug a core dump of a
4626multi-threaded program.
4627
c906108c
SS
4628Each line in the backtrace shows the frame number and the function name.
4629The program counter value is also shown---unless you use @code{set
4630print address off}. The backtrace also shows the source file name and
4631line number, as well as the arguments to the function. The program
4632counter value is omitted if it is at the beginning of the code for that
4633line number.
4634
4635Here is an example of a backtrace. It was made with the command
4636@samp{bt 3}, so it shows the innermost three frames.
4637
4638@smallexample
4639@group
5d161b24 4640#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4641 at builtin.c:993
4642#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4643#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4644 at macro.c:71
4645(More stack frames follow...)
4646@end group
4647@end smallexample
4648
4649@noindent
4650The display for frame zero does not begin with a program counter
4651value, indicating that your program has stopped at the beginning of the
4652code for line @code{993} of @code{builtin.c}.
4653
18999be5
EZ
4654@cindex value optimized out, in backtrace
4655@cindex function call arguments, optimized out
4656If your program was compiled with optimizations, some compilers will
4657optimize away arguments passed to functions if those arguments are
4658never used after the call. Such optimizations generate code that
4659passes arguments through registers, but doesn't store those arguments
4660in the stack frame. @value{GDBN} has no way of displaying such
4661arguments in stack frames other than the innermost one. Here's what
4662such a backtrace might look like:
4663
4664@smallexample
4665@group
4666#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4667 at builtin.c:993
4668#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4669#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4670 at macro.c:71
4671(More stack frames follow...)
4672@end group
4673@end smallexample
4674
4675@noindent
4676The values of arguments that were not saved in their stack frames are
4677shown as @samp{<value optimized out>}.
4678
4679If you need to display the values of such optimized-out arguments,
4680either deduce that from other variables whose values depend on the one
4681you are interested in, or recompile without optimizations.
4682
a8f24a35
EZ
4683@cindex backtrace beyond @code{main} function
4684@cindex program entry point
4685@cindex startup code, and backtrace
25d29d70
AC
4686Most programs have a standard user entry point---a place where system
4687libraries and startup code transition into user code. For C this is
d416eeec
EZ
4688@code{main}@footnote{
4689Note that embedded programs (the so-called ``free-standing''
4690environment) are not required to have a @code{main} function as the
4691entry point. They could even have multiple entry points.}.
4692When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4693it will terminate the backtrace, to avoid tracing into highly
4694system-specific (and generally uninteresting) code.
4695
4696If you need to examine the startup code, or limit the number of levels
4697in a backtrace, you can change this behavior:
95f90d25
DJ
4698
4699@table @code
25d29d70
AC
4700@item set backtrace past-main
4701@itemx set backtrace past-main on
4644b6e3 4702@kindex set backtrace
25d29d70
AC
4703Backtraces will continue past the user entry point.
4704
4705@item set backtrace past-main off
95f90d25
DJ
4706Backtraces will stop when they encounter the user entry point. This is the
4707default.
4708
25d29d70 4709@item show backtrace past-main
4644b6e3 4710@kindex show backtrace
25d29d70
AC
4711Display the current user entry point backtrace policy.
4712
2315ffec
RC
4713@item set backtrace past-entry
4714@itemx set backtrace past-entry on
a8f24a35 4715Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4716This entry point is encoded by the linker when the application is built,
4717and is likely before the user entry point @code{main} (or equivalent) is called.
4718
4719@item set backtrace past-entry off
d3e8051b 4720Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4721application. This is the default.
4722
4723@item show backtrace past-entry
4724Display the current internal entry point backtrace policy.
4725
25d29d70
AC
4726@item set backtrace limit @var{n}
4727@itemx set backtrace limit 0
4728@cindex backtrace limit
4729Limit the backtrace to @var{n} levels. A value of zero means
4730unlimited.
95f90d25 4731
25d29d70
AC
4732@item show backtrace limit
4733Display the current limit on backtrace levels.
95f90d25
DJ
4734@end table
4735
6d2ebf8b 4736@node Selection
79a6e687 4737@section Selecting a Frame
c906108c
SS
4738
4739Most commands for examining the stack and other data in your program work on
4740whichever stack frame is selected at the moment. Here are the commands for
4741selecting a stack frame; all of them finish by printing a brief description
4742of the stack frame just selected.
4743
4744@table @code
d4f3574e 4745@kindex frame@r{, selecting}
41afff9a 4746@kindex f @r{(@code{frame})}
c906108c
SS
4747@item frame @var{n}
4748@itemx f @var{n}
4749Select frame number @var{n}. Recall that frame zero is the innermost
4750(currently executing) frame, frame one is the frame that called the
4751innermost one, and so on. The highest-numbered frame is the one for
4752@code{main}.
4753
4754@item frame @var{addr}
4755@itemx f @var{addr}
4756Select the frame at address @var{addr}. This is useful mainly if the
4757chaining of stack frames has been damaged by a bug, making it
4758impossible for @value{GDBN} to assign numbers properly to all frames. In
4759addition, this can be useful when your program has multiple stacks and
4760switches between them.
4761
c906108c
SS
4762On the SPARC architecture, @code{frame} needs two addresses to
4763select an arbitrary frame: a frame pointer and a stack pointer.
4764
4765On the MIPS and Alpha architecture, it needs two addresses: a stack
4766pointer and a program counter.
4767
4768On the 29k architecture, it needs three addresses: a register stack
4769pointer, a program counter, and a memory stack pointer.
c906108c
SS
4770
4771@kindex up
4772@item up @var{n}
4773Move @var{n} frames up the stack. For positive numbers @var{n}, this
4774advances toward the outermost frame, to higher frame numbers, to frames
4775that have existed longer. @var{n} defaults to one.
4776
4777@kindex down
41afff9a 4778@kindex do @r{(@code{down})}
c906108c
SS
4779@item down @var{n}
4780Move @var{n} frames down the stack. For positive numbers @var{n}, this
4781advances toward the innermost frame, to lower frame numbers, to frames
4782that were created more recently. @var{n} defaults to one. You may
4783abbreviate @code{down} as @code{do}.
4784@end table
4785
4786All of these commands end by printing two lines of output describing the
4787frame. The first line shows the frame number, the function name, the
4788arguments, and the source file and line number of execution in that
5d161b24 4789frame. The second line shows the text of that source line.
c906108c
SS
4790
4791@need 1000
4792For example:
4793
4794@smallexample
4795@group
4796(@value{GDBP}) up
4797#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4798 at env.c:10
479910 read_input_file (argv[i]);
4800@end group
4801@end smallexample
4802
4803After such a printout, the @code{list} command with no arguments
4804prints ten lines centered on the point of execution in the frame.
87885426
FN
4805You can also edit the program at the point of execution with your favorite
4806editing program by typing @code{edit}.
79a6e687 4807@xref{List, ,Printing Source Lines},
87885426 4808for details.
c906108c
SS
4809
4810@table @code
4811@kindex down-silently
4812@kindex up-silently
4813@item up-silently @var{n}
4814@itemx down-silently @var{n}
4815These two commands are variants of @code{up} and @code{down},
4816respectively; they differ in that they do their work silently, without
4817causing display of the new frame. They are intended primarily for use
4818in @value{GDBN} command scripts, where the output might be unnecessary and
4819distracting.
4820@end table
4821
6d2ebf8b 4822@node Frame Info
79a6e687 4823@section Information About a Frame
c906108c
SS
4824
4825There are several other commands to print information about the selected
4826stack frame.
4827
4828@table @code
4829@item frame
4830@itemx f
4831When used without any argument, this command does not change which
4832frame is selected, but prints a brief description of the currently
4833selected stack frame. It can be abbreviated @code{f}. With an
4834argument, this command is used to select a stack frame.
79a6e687 4835@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4836
4837@kindex info frame
41afff9a 4838@kindex info f @r{(@code{info frame})}
c906108c
SS
4839@item info frame
4840@itemx info f
4841This command prints a verbose description of the selected stack frame,
4842including:
4843
4844@itemize @bullet
5d161b24
DB
4845@item
4846the address of the frame
c906108c
SS
4847@item
4848the address of the next frame down (called by this frame)
4849@item
4850the address of the next frame up (caller of this frame)
4851@item
4852the language in which the source code corresponding to this frame is written
4853@item
4854the address of the frame's arguments
4855@item
d4f3574e
SS
4856the address of the frame's local variables
4857@item
c906108c
SS
4858the program counter saved in it (the address of execution in the caller frame)
4859@item
4860which registers were saved in the frame
4861@end itemize
4862
4863@noindent The verbose description is useful when
4864something has gone wrong that has made the stack format fail to fit
4865the usual conventions.
4866
4867@item info frame @var{addr}
4868@itemx info f @var{addr}
4869Print a verbose description of the frame at address @var{addr}, without
4870selecting that frame. The selected frame remains unchanged by this
4871command. This requires the same kind of address (more than one for some
4872architectures) that you specify in the @code{frame} command.
79a6e687 4873@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4874
4875@kindex info args
4876@item info args
4877Print the arguments of the selected frame, each on a separate line.
4878
4879@item info locals
4880@kindex info locals
4881Print the local variables of the selected frame, each on a separate
4882line. These are all variables (declared either static or automatic)
4883accessible at the point of execution of the selected frame.
4884
c906108c 4885@kindex info catch
d4f3574e
SS
4886@cindex catch exceptions, list active handlers
4887@cindex exception handlers, how to list
c906108c
SS
4888@item info catch
4889Print a list of all the exception handlers that are active in the
4890current stack frame at the current point of execution. To see other
4891exception handlers, visit the associated frame (using the @code{up},
4892@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4893@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4894
c906108c
SS
4895@end table
4896
c906108c 4897
6d2ebf8b 4898@node Source
c906108c
SS
4899@chapter Examining Source Files
4900
4901@value{GDBN} can print parts of your program's source, since the debugging
4902information recorded in the program tells @value{GDBN} what source files were
4903used to build it. When your program stops, @value{GDBN} spontaneously prints
4904the line where it stopped. Likewise, when you select a stack frame
79a6e687 4905(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4906execution in that frame has stopped. You can print other portions of
4907source files by explicit command.
4908
7a292a7a 4909If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4910prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4911@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4912
4913@menu
4914* List:: Printing source lines
2a25a5ba 4915* Specify Location:: How to specify code locations
87885426 4916* Edit:: Editing source files
c906108c 4917* Search:: Searching source files
c906108c
SS
4918* Source Path:: Specifying source directories
4919* Machine Code:: Source and machine code
4920@end menu
4921
6d2ebf8b 4922@node List
79a6e687 4923@section Printing Source Lines
c906108c
SS
4924
4925@kindex list
41afff9a 4926@kindex l @r{(@code{list})}
c906108c 4927To print lines from a source file, use the @code{list} command
5d161b24 4928(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4929There are several ways to specify what part of the file you want to
4930print; see @ref{Specify Location}, for the full list.
c906108c
SS
4931
4932Here are the forms of the @code{list} command most commonly used:
4933
4934@table @code
4935@item list @var{linenum}
4936Print lines centered around line number @var{linenum} in the
4937current source file.
4938
4939@item list @var{function}
4940Print lines centered around the beginning of function
4941@var{function}.
4942
4943@item list
4944Print more lines. If the last lines printed were printed with a
4945@code{list} command, this prints lines following the last lines
4946printed; however, if the last line printed was a solitary line printed
4947as part of displaying a stack frame (@pxref{Stack, ,Examining the
4948Stack}), this prints lines centered around that line.
4949
4950@item list -
4951Print lines just before the lines last printed.
4952@end table
4953
9c16f35a 4954@cindex @code{list}, how many lines to display
c906108c
SS
4955By default, @value{GDBN} prints ten source lines with any of these forms of
4956the @code{list} command. You can change this using @code{set listsize}:
4957
4958@table @code
4959@kindex set listsize
4960@item set listsize @var{count}
4961Make the @code{list} command display @var{count} source lines (unless
4962the @code{list} argument explicitly specifies some other number).
4963
4964@kindex show listsize
4965@item show listsize
4966Display the number of lines that @code{list} prints.
4967@end table
4968
4969Repeating a @code{list} command with @key{RET} discards the argument,
4970so it is equivalent to typing just @code{list}. This is more useful
4971than listing the same lines again. An exception is made for an
4972argument of @samp{-}; that argument is preserved in repetition so that
4973each repetition moves up in the source file.
4974
c906108c
SS
4975In general, the @code{list} command expects you to supply zero, one or two
4976@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4977of writing them (@pxref{Specify Location}), but the effect is always
4978to specify some source line.
4979
c906108c
SS
4980Here is a complete description of the possible arguments for @code{list}:
4981
4982@table @code
4983@item list @var{linespec}
4984Print lines centered around the line specified by @var{linespec}.
4985
4986@item list @var{first},@var{last}
4987Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4988linespecs. When a @code{list} command has two linespecs, and the
4989source file of the second linespec is omitted, this refers to
4990the same source file as the first linespec.
c906108c
SS
4991
4992@item list ,@var{last}
4993Print lines ending with @var{last}.
4994
4995@item list @var{first},
4996Print lines starting with @var{first}.
4997
4998@item list +
4999Print lines just after the lines last printed.
5000
5001@item list -
5002Print lines just before the lines last printed.
5003
5004@item list
5005As described in the preceding table.
5006@end table
5007
2a25a5ba
EZ
5008@node Specify Location
5009@section Specifying a Location
5010@cindex specifying location
5011@cindex linespec
c906108c 5012
2a25a5ba
EZ
5013Several @value{GDBN} commands accept arguments that specify a location
5014of your program's code. Since @value{GDBN} is a source-level
5015debugger, a location usually specifies some line in the source code;
5016for that reason, locations are also known as @dfn{linespecs}.
c906108c 5017
2a25a5ba
EZ
5018Here are all the different ways of specifying a code location that
5019@value{GDBN} understands:
c906108c 5020
2a25a5ba
EZ
5021@table @code
5022@item @var{linenum}
5023Specifies the line number @var{linenum} of the current source file.
c906108c 5024
2a25a5ba
EZ
5025@item -@var{offset}
5026@itemx +@var{offset}
5027Specifies the line @var{offset} lines before or after the @dfn{current
5028line}. For the @code{list} command, the current line is the last one
5029printed; for the breakpoint commands, this is the line at which
5030execution stopped in the currently selected @dfn{stack frame}
5031(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5032used as the second of the two linespecs in a @code{list} command,
5033this specifies the line @var{offset} lines up or down from the first
5034linespec.
5035
5036@item @var{filename}:@var{linenum}
5037Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5038
5039@item @var{function}
5040Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5041For example, in C, this is the line with the open brace.
c906108c
SS
5042
5043@item @var{filename}:@var{function}
2a25a5ba
EZ
5044Specifies the line that begins the body of the function @var{function}
5045in the file @var{filename}. You only need the file name with a
5046function name to avoid ambiguity when there are identically named
5047functions in different source files.
c906108c
SS
5048
5049@item *@var{address}
2a25a5ba
EZ
5050Specifies the program address @var{address}. For line-oriented
5051commands, such as @code{list} and @code{edit}, this specifies a source
5052line that contains @var{address}. For @code{break} and other
5053breakpoint oriented commands, this can be used to set breakpoints in
5054parts of your program which do not have debugging information or
5055source files.
5056
5057Here @var{address} may be any expression valid in the current working
5058language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5059address. In addition, as a convenience, @value{GDBN} extends the
5060semantics of expressions used in locations to cover the situations
5061that frequently happen during debugging. Here are the various forms
5062of @var{address}:
2a25a5ba
EZ
5063
5064@table @code
5065@item @var{expression}
5066Any expression valid in the current working language.
5067
5068@item @var{funcaddr}
5069An address of a function or procedure derived from its name. In C,
5070C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5071simply the function's name @var{function} (and actually a special case
5072of a valid expression). In Pascal and Modula-2, this is
5073@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5074(although the Pascal form also works).
5075
5076This form specifies the address of the function's first instruction,
5077before the stack frame and arguments have been set up.
5078
5079@item '@var{filename}'::@var{funcaddr}
5080Like @var{funcaddr} above, but also specifies the name of the source
5081file explicitly. This is useful if the name of the function does not
5082specify the function unambiguously, e.g., if there are several
5083functions with identical names in different source files.
c906108c
SS
5084@end table
5085
2a25a5ba
EZ
5086@end table
5087
5088
87885426 5089@node Edit
79a6e687 5090@section Editing Source Files
87885426
FN
5091@cindex editing source files
5092
5093@kindex edit
5094@kindex e @r{(@code{edit})}
5095To edit the lines in a source file, use the @code{edit} command.
5096The editing program of your choice
5097is invoked with the current line set to
5098the active line in the program.
5099Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5100want to print if you want to see other parts of the program:
87885426
FN
5101
5102@table @code
2a25a5ba
EZ
5103@item edit @var{location}
5104Edit the source file specified by @code{location}. Editing starts at
5105that @var{location}, e.g., at the specified source line of the
5106specified file. @xref{Specify Location}, for all the possible forms
5107of the @var{location} argument; here are the forms of the @code{edit}
5108command most commonly used:
87885426 5109
2a25a5ba 5110@table @code
87885426
FN
5111@item edit @var{number}
5112Edit the current source file with @var{number} as the active line number.
5113
5114@item edit @var{function}
5115Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5116@end table
87885426 5117
87885426
FN
5118@end table
5119
79a6e687 5120@subsection Choosing your Editor
87885426
FN
5121You can customize @value{GDBN} to use any editor you want
5122@footnote{
5123The only restriction is that your editor (say @code{ex}), recognizes the
5124following command-line syntax:
10998722 5125@smallexample
87885426 5126ex +@var{number} file
10998722 5127@end smallexample
15387254
EZ
5128The optional numeric value +@var{number} specifies the number of the line in
5129the file where to start editing.}.
5130By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5131by setting the environment variable @code{EDITOR} before using
5132@value{GDBN}. For example, to configure @value{GDBN} to use the
5133@code{vi} editor, you could use these commands with the @code{sh} shell:
5134@smallexample
87885426
FN
5135EDITOR=/usr/bin/vi
5136export EDITOR
15387254 5137gdb @dots{}
10998722 5138@end smallexample
87885426 5139or in the @code{csh} shell,
10998722 5140@smallexample
87885426 5141setenv EDITOR /usr/bin/vi
15387254 5142gdb @dots{}
10998722 5143@end smallexample
87885426 5144
6d2ebf8b 5145@node Search
79a6e687 5146@section Searching Source Files
15387254 5147@cindex searching source files
c906108c
SS
5148
5149There are two commands for searching through the current source file for a
5150regular expression.
5151
5152@table @code
5153@kindex search
5154@kindex forward-search
5155@item forward-search @var{regexp}
5156@itemx search @var{regexp}
5157The command @samp{forward-search @var{regexp}} checks each line,
5158starting with the one following the last line listed, for a match for
5d161b24 5159@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5160synonym @samp{search @var{regexp}} or abbreviate the command name as
5161@code{fo}.
5162
09d4efe1 5163@kindex reverse-search
c906108c
SS
5164@item reverse-search @var{regexp}
5165The command @samp{reverse-search @var{regexp}} checks each line, starting
5166with the one before the last line listed and going backward, for a match
5167for @var{regexp}. It lists the line that is found. You can abbreviate
5168this command as @code{rev}.
5169@end table
c906108c 5170
6d2ebf8b 5171@node Source Path
79a6e687 5172@section Specifying Source Directories
c906108c
SS
5173
5174@cindex source path
5175@cindex directories for source files
5176Executable programs sometimes do not record the directories of the source
5177files from which they were compiled, just the names. Even when they do,
5178the directories could be moved between the compilation and your debugging
5179session. @value{GDBN} has a list of directories to search for source files;
5180this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5181it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5182in the list, until it finds a file with the desired name.
5183
5184For example, suppose an executable references the file
5185@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5186@file{/mnt/cross}. The file is first looked up literally; if this
5187fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5188fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5189message is printed. @value{GDBN} does not look up the parts of the
5190source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5191Likewise, the subdirectories of the source path are not searched: if
5192the source path is @file{/mnt/cross}, and the binary refers to
5193@file{foo.c}, @value{GDBN} would not find it under
5194@file{/mnt/cross/usr/src/foo-1.0/lib}.
5195
5196Plain file names, relative file names with leading directories, file
5197names containing dots, etc.@: are all treated as described above; for
5198instance, if the source path is @file{/mnt/cross}, and the source file
5199is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5200@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5201that---@file{/mnt/cross/foo.c}.
5202
5203Note that the executable search path is @emph{not} used to locate the
cd852561 5204source files.
c906108c
SS
5205
5206Whenever you reset or rearrange the source path, @value{GDBN} clears out
5207any information it has cached about where source files are found and where
5208each line is in the file.
5209
5210@kindex directory
5211@kindex dir
d4f3574e
SS
5212When you start @value{GDBN}, its source path includes only @samp{cdir}
5213and @samp{cwd}, in that order.
c906108c
SS
5214To add other directories, use the @code{directory} command.
5215
4b505b12
AS
5216The search path is used to find both program source files and @value{GDBN}
5217script files (read using the @samp{-command} option and @samp{source} command).
5218
30daae6c
JB
5219In addition to the source path, @value{GDBN} provides a set of commands
5220that manage a list of source path substitution rules. A @dfn{substitution
5221rule} specifies how to rewrite source directories stored in the program's
5222debug information in case the sources were moved to a different
5223directory between compilation and debugging. A rule is made of
5224two strings, the first specifying what needs to be rewritten in
5225the path, and the second specifying how it should be rewritten.
5226In @ref{set substitute-path}, we name these two parts @var{from} and
5227@var{to} respectively. @value{GDBN} does a simple string replacement
5228of @var{from} with @var{to} at the start of the directory part of the
5229source file name, and uses that result instead of the original file
5230name to look up the sources.
5231
5232Using the previous example, suppose the @file{foo-1.0} tree has been
5233moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5234@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5235@file{/mnt/cross}. The first lookup will then be
5236@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5237of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5238substitution rule, use the @code{set substitute-path} command
5239(@pxref{set substitute-path}).
5240
5241To avoid unexpected substitution results, a rule is applied only if the
5242@var{from} part of the directory name ends at a directory separator.
5243For instance, a rule substituting @file{/usr/source} into
5244@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5245not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5246is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5247not be applied to @file{/root/usr/source/baz.c} either.
5248
5249In many cases, you can achieve the same result using the @code{directory}
5250command. However, @code{set substitute-path} can be more efficient in
5251the case where the sources are organized in a complex tree with multiple
5252subdirectories. With the @code{directory} command, you need to add each
5253subdirectory of your project. If you moved the entire tree while
5254preserving its internal organization, then @code{set substitute-path}
5255allows you to direct the debugger to all the sources with one single
5256command.
5257
5258@code{set substitute-path} is also more than just a shortcut command.
5259The source path is only used if the file at the original location no
5260longer exists. On the other hand, @code{set substitute-path} modifies
5261the debugger behavior to look at the rewritten location instead. So, if
5262for any reason a source file that is not relevant to your executable is
5263located at the original location, a substitution rule is the only
3f94c067 5264method available to point @value{GDBN} at the new location.
30daae6c 5265
c906108c
SS
5266@table @code
5267@item directory @var{dirname} @dots{}
5268@item dir @var{dirname} @dots{}
5269Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5270directory names may be given to this command, separated by @samp{:}
5271(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5272part of absolute file names) or
c906108c
SS
5273whitespace. You may specify a directory that is already in the source
5274path; this moves it forward, so @value{GDBN} searches it sooner.
5275
5276@kindex cdir
5277@kindex cwd
41afff9a 5278@vindex $cdir@r{, convenience variable}
d3e8051b 5279@vindex $cwd@r{, convenience variable}
c906108c
SS
5280@cindex compilation directory
5281@cindex current directory
5282@cindex working directory
5283@cindex directory, current
5284@cindex directory, compilation
5285You can use the string @samp{$cdir} to refer to the compilation
5286directory (if one is recorded), and @samp{$cwd} to refer to the current
5287working directory. @samp{$cwd} is not the same as @samp{.}---the former
5288tracks the current working directory as it changes during your @value{GDBN}
5289session, while the latter is immediately expanded to the current
5290directory at the time you add an entry to the source path.
5291
5292@item directory
cd852561 5293Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5294
5295@c RET-repeat for @code{directory} is explicitly disabled, but since
5296@c repeating it would be a no-op we do not say that. (thanks to RMS)
5297
5298@item show directories
5299@kindex show directories
5300Print the source path: show which directories it contains.
30daae6c
JB
5301
5302@anchor{set substitute-path}
5303@item set substitute-path @var{from} @var{to}
5304@kindex set substitute-path
5305Define a source path substitution rule, and add it at the end of the
5306current list of existing substitution rules. If a rule with the same
5307@var{from} was already defined, then the old rule is also deleted.
5308
5309For example, if the file @file{/foo/bar/baz.c} was moved to
5310@file{/mnt/cross/baz.c}, then the command
5311
5312@smallexample
5313(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5314@end smallexample
5315
5316@noindent
5317will tell @value{GDBN} to replace @samp{/usr/src} with
5318@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5319@file{baz.c} even though it was moved.
5320
5321In the case when more than one substitution rule have been defined,
5322the rules are evaluated one by one in the order where they have been
5323defined. The first one matching, if any, is selected to perform
5324the substitution.
5325
5326For instance, if we had entered the following commands:
5327
5328@smallexample
5329(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5330(@value{GDBP}) set substitute-path /usr/src /mnt/src
5331@end smallexample
5332
5333@noindent
5334@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5335@file{/mnt/include/defs.h} by using the first rule. However, it would
5336use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5337@file{/mnt/src/lib/foo.c}.
5338
5339
5340@item unset substitute-path [path]
5341@kindex unset substitute-path
5342If a path is specified, search the current list of substitution rules
5343for a rule that would rewrite that path. Delete that rule if found.
5344A warning is emitted by the debugger if no rule could be found.
5345
5346If no path is specified, then all substitution rules are deleted.
5347
5348@item show substitute-path [path]
5349@kindex show substitute-path
5350If a path is specified, then print the source path substitution rule
5351which would rewrite that path, if any.
5352
5353If no path is specified, then print all existing source path substitution
5354rules.
5355
c906108c
SS
5356@end table
5357
5358If your source path is cluttered with directories that are no longer of
5359interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5360versions of source. You can correct the situation as follows:
5361
5362@enumerate
5363@item
cd852561 5364Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5365
5366@item
5367Use @code{directory} with suitable arguments to reinstall the
5368directories you want in the source path. You can add all the
5369directories in one command.
5370@end enumerate
5371
6d2ebf8b 5372@node Machine Code
79a6e687 5373@section Source and Machine Code
15387254 5374@cindex source line and its code address
c906108c
SS
5375
5376You can use the command @code{info line} to map source lines to program
5377addresses (and vice versa), and the command @code{disassemble} to display
5378a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5379mode, the @code{info line} command causes the arrow to point to the
5d161b24 5380line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5381well as hex.
5382
5383@table @code
5384@kindex info line
5385@item info line @var{linespec}
5386Print the starting and ending addresses of the compiled code for
5387source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5388the ways documented in @ref{Specify Location}.
c906108c
SS
5389@end table
5390
5391For example, we can use @code{info line} to discover the location of
5392the object code for the first line of function
5393@code{m4_changequote}:
5394
d4f3574e
SS
5395@c FIXME: I think this example should also show the addresses in
5396@c symbolic form, as they usually would be displayed.
c906108c 5397@smallexample
96a2c332 5398(@value{GDBP}) info line m4_changequote
c906108c
SS
5399Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5400@end smallexample
5401
5402@noindent
15387254 5403@cindex code address and its source line
c906108c
SS
5404We can also inquire (using @code{*@var{addr}} as the form for
5405@var{linespec}) what source line covers a particular address:
5406@smallexample
5407(@value{GDBP}) info line *0x63ff
5408Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5409@end smallexample
5410
5411@cindex @code{$_} and @code{info line}
15387254 5412@cindex @code{x} command, default address
41afff9a 5413@kindex x@r{(examine), and} info line
c906108c
SS
5414After @code{info line}, the default address for the @code{x} command
5415is changed to the starting address of the line, so that @samp{x/i} is
5416sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5417,Examining Memory}). Also, this address is saved as the value of the
c906108c 5418convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5419Variables}).
c906108c
SS
5420
5421@table @code
5422@kindex disassemble
5423@cindex assembly instructions
5424@cindex instructions, assembly
5425@cindex machine instructions
5426@cindex listing machine instructions
5427@item disassemble
5428This specialized command dumps a range of memory as machine
5429instructions. The default memory range is the function surrounding the
5430program counter of the selected frame. A single argument to this
5431command is a program counter value; @value{GDBN} dumps the function
5432surrounding this value. Two arguments specify a range of addresses
5433(first inclusive, second exclusive) to dump.
5434@end table
5435
c906108c
SS
5436The following example shows the disassembly of a range of addresses of
5437HP PA-RISC 2.0 code:
5438
5439@smallexample
5440(@value{GDBP}) disas 0x32c4 0x32e4
5441Dump of assembler code from 0x32c4 to 0x32e4:
54420x32c4 <main+204>: addil 0,dp
54430x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54440x32cc <main+212>: ldil 0x3000,r31
54450x32d0 <main+216>: ble 0x3f8(sr4,r31)
54460x32d4 <main+220>: ldo 0(r31),rp
54470x32d8 <main+224>: addil -0x800,dp
54480x32dc <main+228>: ldo 0x588(r1),r26
54490x32e0 <main+232>: ldil 0x3000,r31
5450End of assembler dump.
5451@end smallexample
c906108c
SS
5452
5453Some architectures have more than one commonly-used set of instruction
5454mnemonics or other syntax.
5455
76d17f34
EZ
5456For programs that were dynamically linked and use shared libraries,
5457instructions that call functions or branch to locations in the shared
5458libraries might show a seemingly bogus location---it's actually a
5459location of the relocation table. On some architectures, @value{GDBN}
5460might be able to resolve these to actual function names.
5461
c906108c 5462@table @code
d4f3574e 5463@kindex set disassembly-flavor
d4f3574e
SS
5464@cindex Intel disassembly flavor
5465@cindex AT&T disassembly flavor
5466@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5467Select the instruction set to use when disassembling the
5468program via the @code{disassemble} or @code{x/i} commands.
5469
5470Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5471can set @var{instruction-set} to either @code{intel} or @code{att}.
5472The default is @code{att}, the AT&T flavor used by default by Unix
5473assemblers for x86-based targets.
9c16f35a
EZ
5474
5475@kindex show disassembly-flavor
5476@item show disassembly-flavor
5477Show the current setting of the disassembly flavor.
c906108c
SS
5478@end table
5479
5480
6d2ebf8b 5481@node Data
c906108c
SS
5482@chapter Examining Data
5483
5484@cindex printing data
5485@cindex examining data
5486@kindex print
5487@kindex inspect
5488@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5489@c document because it is nonstandard... Under Epoch it displays in a
5490@c different window or something like that.
5491The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5492command (abbreviated @code{p}), or its synonym @code{inspect}. It
5493evaluates and prints the value of an expression of the language your
5494program is written in (@pxref{Languages, ,Using @value{GDBN} with
5495Different Languages}).
c906108c
SS
5496
5497@table @code
d4f3574e
SS
5498@item print @var{expr}
5499@itemx print /@var{f} @var{expr}
5500@var{expr} is an expression (in the source language). By default the
5501value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5502you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5503@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5504Formats}.
c906108c
SS
5505
5506@item print
5507@itemx print /@var{f}
15387254 5508@cindex reprint the last value
d4f3574e 5509If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5510@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5511conveniently inspect the same value in an alternative format.
5512@end table
5513
5514A more low-level way of examining data is with the @code{x} command.
5515It examines data in memory at a specified address and prints it in a
79a6e687 5516specified format. @xref{Memory, ,Examining Memory}.
c906108c 5517
7a292a7a 5518If you are interested in information about types, or about how the
d4f3574e
SS
5519fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5520command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5521Table}.
c906108c
SS
5522
5523@menu
5524* Expressions:: Expressions
5525* Variables:: Program variables
5526* Arrays:: Artificial arrays
5527* Output Formats:: Output formats
5528* Memory:: Examining memory
5529* Auto Display:: Automatic display
5530* Print Settings:: Print settings
5531* Value History:: Value history
5532* Convenience Vars:: Convenience variables
5533* Registers:: Registers
c906108c 5534* Floating Point Hardware:: Floating point hardware
53c69bd7 5535* Vector Unit:: Vector Unit
721c2651 5536* OS Information:: Auxiliary data provided by operating system
29e57380 5537* Memory Region Attributes:: Memory region attributes
16d9dec6 5538* Dump/Restore Files:: Copy between memory and a file
384ee23f 5539* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5540* Character Sets:: Debugging programs that use a different
5541 character set than GDB does
09d4efe1 5542* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5543@end menu
5544
6d2ebf8b 5545@node Expressions
c906108c
SS
5546@section Expressions
5547
5548@cindex expressions
5549@code{print} and many other @value{GDBN} commands accept an expression and
5550compute its value. Any kind of constant, variable or operator defined
5551by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5552@value{GDBN}. This includes conditional expressions, function calls,
5553casts, and string constants. It also includes preprocessor macros, if
5554you compiled your program to include this information; see
5555@ref{Compilation}.
c906108c 5556
15387254 5557@cindex arrays in expressions
d4f3574e
SS
5558@value{GDBN} supports array constants in expressions input by
5559the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5560you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5561memory that is @code{malloc}ed in the target program.
c906108c 5562
c906108c
SS
5563Because C is so widespread, most of the expressions shown in examples in
5564this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5565Languages}, for information on how to use expressions in other
5566languages.
5567
5568In this section, we discuss operators that you can use in @value{GDBN}
5569expressions regardless of your programming language.
5570
15387254 5571@cindex casts, in expressions
c906108c
SS
5572Casts are supported in all languages, not just in C, because it is so
5573useful to cast a number into a pointer in order to examine a structure
5574at that address in memory.
5575@c FIXME: casts supported---Mod2 true?
c906108c
SS
5576
5577@value{GDBN} supports these operators, in addition to those common
5578to programming languages:
5579
5580@table @code
5581@item @@
5582@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5583@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5584
5585@item ::
5586@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5587function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5588
5589@cindex @{@var{type}@}
5590@cindex type casting memory
5591@cindex memory, viewing as typed object
5592@cindex casts, to view memory
5593@item @{@var{type}@} @var{addr}
5594Refers to an object of type @var{type} stored at address @var{addr} in
5595memory. @var{addr} may be any expression whose value is an integer or
5596pointer (but parentheses are required around binary operators, just as in
5597a cast). This construct is allowed regardless of what kind of data is
5598normally supposed to reside at @var{addr}.
5599@end table
5600
6d2ebf8b 5601@node Variables
79a6e687 5602@section Program Variables
c906108c
SS
5603
5604The most common kind of expression to use is the name of a variable
5605in your program.
5606
5607Variables in expressions are understood in the selected stack frame
79a6e687 5608(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5609
5610@itemize @bullet
5611@item
5612global (or file-static)
5613@end itemize
5614
5d161b24 5615@noindent or
c906108c
SS
5616
5617@itemize @bullet
5618@item
5619visible according to the scope rules of the
5620programming language from the point of execution in that frame
5d161b24 5621@end itemize
c906108c
SS
5622
5623@noindent This means that in the function
5624
474c8240 5625@smallexample
c906108c
SS
5626foo (a)
5627 int a;
5628@{
5629 bar (a);
5630 @{
5631 int b = test ();
5632 bar (b);
5633 @}
5634@}
474c8240 5635@end smallexample
c906108c
SS
5636
5637@noindent
5638you can examine and use the variable @code{a} whenever your program is
5639executing within the function @code{foo}, but you can only use or
5640examine the variable @code{b} while your program is executing inside
5641the block where @code{b} is declared.
5642
5643@cindex variable name conflict
5644There is an exception: you can refer to a variable or function whose
5645scope is a single source file even if the current execution point is not
5646in this file. But it is possible to have more than one such variable or
5647function with the same name (in different source files). If that
5648happens, referring to that name has unpredictable effects. If you wish,
5649you can specify a static variable in a particular function or file,
15387254 5650using the colon-colon (@code{::}) notation:
c906108c 5651
d4f3574e 5652@cindex colon-colon, context for variables/functions
12c27660 5653@ifnotinfo
c906108c 5654@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5655@cindex @code{::}, context for variables/functions
12c27660 5656@end ifnotinfo
474c8240 5657@smallexample
c906108c
SS
5658@var{file}::@var{variable}
5659@var{function}::@var{variable}
474c8240 5660@end smallexample
c906108c
SS
5661
5662@noindent
5663Here @var{file} or @var{function} is the name of the context for the
5664static @var{variable}. In the case of file names, you can use quotes to
5665make sure @value{GDBN} parses the file name as a single word---for example,
5666to print a global value of @code{x} defined in @file{f2.c}:
5667
474c8240 5668@smallexample
c906108c 5669(@value{GDBP}) p 'f2.c'::x
474c8240 5670@end smallexample
c906108c 5671
b37052ae 5672@cindex C@t{++} scope resolution
c906108c 5673This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5674use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5675scope resolution operator in @value{GDBN} expressions.
5676@c FIXME: Um, so what happens in one of those rare cases where it's in
5677@c conflict?? --mew
c906108c
SS
5678
5679@cindex wrong values
5680@cindex variable values, wrong
15387254
EZ
5681@cindex function entry/exit, wrong values of variables
5682@cindex optimized code, wrong values of variables
c906108c
SS
5683@quotation
5684@emph{Warning:} Occasionally, a local variable may appear to have the
5685wrong value at certain points in a function---just after entry to a new
5686scope, and just before exit.
5687@end quotation
5688You may see this problem when you are stepping by machine instructions.
5689This is because, on most machines, it takes more than one instruction to
5690set up a stack frame (including local variable definitions); if you are
5691stepping by machine instructions, variables may appear to have the wrong
5692values until the stack frame is completely built. On exit, it usually
5693also takes more than one machine instruction to destroy a stack frame;
5694after you begin stepping through that group of instructions, local
5695variable definitions may be gone.
5696
5697This may also happen when the compiler does significant optimizations.
5698To be sure of always seeing accurate values, turn off all optimization
5699when compiling.
5700
d4f3574e
SS
5701@cindex ``No symbol "foo" in current context''
5702Another possible effect of compiler optimizations is to optimize
5703unused variables out of existence, or assign variables to registers (as
5704opposed to memory addresses). Depending on the support for such cases
5705offered by the debug info format used by the compiler, @value{GDBN}
5706might not be able to display values for such local variables. If that
5707happens, @value{GDBN} will print a message like this:
5708
474c8240 5709@smallexample
d4f3574e 5710No symbol "foo" in current context.
474c8240 5711@end smallexample
d4f3574e
SS
5712
5713To solve such problems, either recompile without optimizations, or use a
5714different debug info format, if the compiler supports several such
15387254 5715formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5716usually supports the @option{-gstabs+} option. @option{-gstabs+}
5717produces debug info in a format that is superior to formats such as
5718COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5719an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5720for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5721Compiler Collection (GCC)}.
79a6e687 5722@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5723that are best suited to C@t{++} programs.
d4f3574e 5724
ab1adacd
EZ
5725If you ask to print an object whose contents are unknown to
5726@value{GDBN}, e.g., because its data type is not completely specified
5727by the debug information, @value{GDBN} will say @samp{<incomplete
5728type>}. @xref{Symbols, incomplete type}, for more about this.
5729
3a60f64e
JK
5730Strings are identified as arrays of @code{char} values without specified
5731signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5732printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5733@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5734defines literal string type @code{"char"} as @code{char} without a sign.
5735For program code
5736
5737@smallexample
5738char var0[] = "A";
5739signed char var1[] = "A";
5740@end smallexample
5741
5742You get during debugging
5743@smallexample
5744(gdb) print var0
5745$1 = "A"
5746(gdb) print var1
5747$2 = @{65 'A', 0 '\0'@}
5748@end smallexample
5749
6d2ebf8b 5750@node Arrays
79a6e687 5751@section Artificial Arrays
c906108c
SS
5752
5753@cindex artificial array
15387254 5754@cindex arrays
41afff9a 5755@kindex @@@r{, referencing memory as an array}
c906108c
SS
5756It is often useful to print out several successive objects of the
5757same type in memory; a section of an array, or an array of
5758dynamically determined size for which only a pointer exists in the
5759program.
5760
5761You can do this by referring to a contiguous span of memory as an
5762@dfn{artificial array}, using the binary operator @samp{@@}. The left
5763operand of @samp{@@} should be the first element of the desired array
5764and be an individual object. The right operand should be the desired length
5765of the array. The result is an array value whose elements are all of
5766the type of the left argument. The first element is actually the left
5767argument; the second element comes from bytes of memory immediately
5768following those that hold the first element, and so on. Here is an
5769example. If a program says
5770
474c8240 5771@smallexample
c906108c 5772int *array = (int *) malloc (len * sizeof (int));
474c8240 5773@end smallexample
c906108c
SS
5774
5775@noindent
5776you can print the contents of @code{array} with
5777
474c8240 5778@smallexample
c906108c 5779p *array@@len
474c8240 5780@end smallexample
c906108c
SS
5781
5782The left operand of @samp{@@} must reside in memory. Array values made
5783with @samp{@@} in this way behave just like other arrays in terms of
5784subscripting, and are coerced to pointers when used in expressions.
5785Artificial arrays most often appear in expressions via the value history
79a6e687 5786(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5787
5788Another way to create an artificial array is to use a cast.
5789This re-interprets a value as if it were an array.
5790The value need not be in memory:
474c8240 5791@smallexample
c906108c
SS
5792(@value{GDBP}) p/x (short[2])0x12345678
5793$1 = @{0x1234, 0x5678@}
474c8240 5794@end smallexample
c906108c
SS
5795
5796As a convenience, if you leave the array length out (as in
c3f6f71d 5797@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5798the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5799@smallexample
c906108c
SS
5800(@value{GDBP}) p/x (short[])0x12345678
5801$2 = @{0x1234, 0x5678@}
474c8240 5802@end smallexample
c906108c
SS
5803
5804Sometimes the artificial array mechanism is not quite enough; in
5805moderately complex data structures, the elements of interest may not
5806actually be adjacent---for example, if you are interested in the values
5807of pointers in an array. One useful work-around in this situation is
5808to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5809Variables}) as a counter in an expression that prints the first
c906108c
SS
5810interesting value, and then repeat that expression via @key{RET}. For
5811instance, suppose you have an array @code{dtab} of pointers to
5812structures, and you are interested in the values of a field @code{fv}
5813in each structure. Here is an example of what you might type:
5814
474c8240 5815@smallexample
c906108c
SS
5816set $i = 0
5817p dtab[$i++]->fv
5818@key{RET}
5819@key{RET}
5820@dots{}
474c8240 5821@end smallexample
c906108c 5822
6d2ebf8b 5823@node Output Formats
79a6e687 5824@section Output Formats
c906108c
SS
5825
5826@cindex formatted output
5827@cindex output formats
5828By default, @value{GDBN} prints a value according to its data type. Sometimes
5829this is not what you want. For example, you might want to print a number
5830in hex, or a pointer in decimal. Or you might want to view data in memory
5831at a certain address as a character string or as an instruction. To do
5832these things, specify an @dfn{output format} when you print a value.
5833
5834The simplest use of output formats is to say how to print a value
5835already computed. This is done by starting the arguments of the
5836@code{print} command with a slash and a format letter. The format
5837letters supported are:
5838
5839@table @code
5840@item x
5841Regard the bits of the value as an integer, and print the integer in
5842hexadecimal.
5843
5844@item d
5845Print as integer in signed decimal.
5846
5847@item u
5848Print as integer in unsigned decimal.
5849
5850@item o
5851Print as integer in octal.
5852
5853@item t
5854Print as integer in binary. The letter @samp{t} stands for ``two''.
5855@footnote{@samp{b} cannot be used because these format letters are also
5856used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5857see @ref{Memory,,Examining Memory}.}
c906108c
SS
5858
5859@item a
5860@cindex unknown address, locating
3d67e040 5861@cindex locate address
c906108c
SS
5862Print as an address, both absolute in hexadecimal and as an offset from
5863the nearest preceding symbol. You can use this format used to discover
5864where (in what function) an unknown address is located:
5865
474c8240 5866@smallexample
c906108c
SS
5867(@value{GDBP}) p/a 0x54320
5868$3 = 0x54320 <_initialize_vx+396>
474c8240 5869@end smallexample
c906108c 5870
3d67e040
EZ
5871@noindent
5872The command @code{info symbol 0x54320} yields similar results.
5873@xref{Symbols, info symbol}.
5874
c906108c 5875@item c
51274035
EZ
5876Regard as an integer and print it as a character constant. This
5877prints both the numerical value and its character representation. The
5878character representation is replaced with the octal escape @samp{\nnn}
5879for characters outside the 7-bit @sc{ascii} range.
c906108c 5880
ea37ba09
DJ
5881Without this format, @value{GDBN} displays @code{char},
5882@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5883constants. Single-byte members of vectors are displayed as integer
5884data.
5885
c906108c
SS
5886@item f
5887Regard the bits of the value as a floating point number and print
5888using typical floating point syntax.
ea37ba09
DJ
5889
5890@item s
5891@cindex printing strings
5892@cindex printing byte arrays
5893Regard as a string, if possible. With this format, pointers to single-byte
5894data are displayed as null-terminated strings and arrays of single-byte data
5895are displayed as fixed-length strings. Other values are displayed in their
5896natural types.
5897
5898Without this format, @value{GDBN} displays pointers to and arrays of
5899@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5900strings. Single-byte members of a vector are displayed as an integer
5901array.
c906108c
SS
5902@end table
5903
5904For example, to print the program counter in hex (@pxref{Registers}), type
5905
474c8240 5906@smallexample
c906108c 5907p/x $pc
474c8240 5908@end smallexample
c906108c
SS
5909
5910@noindent
5911Note that no space is required before the slash; this is because command
5912names in @value{GDBN} cannot contain a slash.
5913
5914To reprint the last value in the value history with a different format,
5915you can use the @code{print} command with just a format and no
5916expression. For example, @samp{p/x} reprints the last value in hex.
5917
6d2ebf8b 5918@node Memory
79a6e687 5919@section Examining Memory
c906108c
SS
5920
5921You can use the command @code{x} (for ``examine'') to examine memory in
5922any of several formats, independently of your program's data types.
5923
5924@cindex examining memory
5925@table @code
41afff9a 5926@kindex x @r{(examine memory)}
c906108c
SS
5927@item x/@var{nfu} @var{addr}
5928@itemx x @var{addr}
5929@itemx x
5930Use the @code{x} command to examine memory.
5931@end table
5932
5933@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5934much memory to display and how to format it; @var{addr} is an
5935expression giving the address where you want to start displaying memory.
5936If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5937Several commands set convenient defaults for @var{addr}.
5938
5939@table @r
5940@item @var{n}, the repeat count
5941The repeat count is a decimal integer; the default is 1. It specifies
5942how much memory (counting by units @var{u}) to display.
5943@c This really is **decimal**; unaffected by 'set radix' as of GDB
5944@c 4.1.2.
5945
5946@item @var{f}, the display format
51274035
EZ
5947The display format is one of the formats used by @code{print}
5948(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5949@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5950The default is @samp{x} (hexadecimal) initially. The default changes
5951each time you use either @code{x} or @code{print}.
c906108c
SS
5952
5953@item @var{u}, the unit size
5954The unit size is any of
5955
5956@table @code
5957@item b
5958Bytes.
5959@item h
5960Halfwords (two bytes).
5961@item w
5962Words (four bytes). This is the initial default.
5963@item g
5964Giant words (eight bytes).
5965@end table
5966
5967Each time you specify a unit size with @code{x}, that size becomes the
5968default unit the next time you use @code{x}. (For the @samp{s} and
5969@samp{i} formats, the unit size is ignored and is normally not written.)
5970
5971@item @var{addr}, starting display address
5972@var{addr} is the address where you want @value{GDBN} to begin displaying
5973memory. The expression need not have a pointer value (though it may);
5974it is always interpreted as an integer address of a byte of memory.
5975@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5976@var{addr} is usually just after the last address examined---but several
5977other commands also set the default address: @code{info breakpoints} (to
5978the address of the last breakpoint listed), @code{info line} (to the
5979starting address of a line), and @code{print} (if you use it to display
5980a value from memory).
5981@end table
5982
5983For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5984(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5985starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5986words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5987@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5988
5989Since the letters indicating unit sizes are all distinct from the
5990letters specifying output formats, you do not have to remember whether
5991unit size or format comes first; either order works. The output
5992specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5993(However, the count @var{n} must come first; @samp{wx4} does not work.)
5994
5995Even though the unit size @var{u} is ignored for the formats @samp{s}
5996and @samp{i}, you might still want to use a count @var{n}; for example,
5997@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5998including any operands. For convenience, especially when used with
5999the @code{display} command, the @samp{i} format also prints branch delay
6000slot instructions, if any, beyond the count specified, which immediately
6001follow the last instruction that is within the count. The command
6002@code{disassemble} gives an alternative way of inspecting machine
6003instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6004
6005All the defaults for the arguments to @code{x} are designed to make it
6006easy to continue scanning memory with minimal specifications each time
6007you use @code{x}. For example, after you have inspected three machine
6008instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6009with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6010the repeat count @var{n} is used again; the other arguments default as
6011for successive uses of @code{x}.
6012
6013@cindex @code{$_}, @code{$__}, and value history
6014The addresses and contents printed by the @code{x} command are not saved
6015in the value history because there is often too much of them and they
6016would get in the way. Instead, @value{GDBN} makes these values available for
6017subsequent use in expressions as values of the convenience variables
6018@code{$_} and @code{$__}. After an @code{x} command, the last address
6019examined is available for use in expressions in the convenience variable
6020@code{$_}. The contents of that address, as examined, are available in
6021the convenience variable @code{$__}.
6022
6023If the @code{x} command has a repeat count, the address and contents saved
6024are from the last memory unit printed; this is not the same as the last
6025address printed if several units were printed on the last line of output.
6026
09d4efe1
EZ
6027@cindex remote memory comparison
6028@cindex verify remote memory image
6029When you are debugging a program running on a remote target machine
ea35711c 6030(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6031remote machine's memory against the executable file you downloaded to
6032the target. The @code{compare-sections} command is provided for such
6033situations.
6034
6035@table @code
6036@kindex compare-sections
6037@item compare-sections @r{[}@var{section-name}@r{]}
6038Compare the data of a loadable section @var{section-name} in the
6039executable file of the program being debugged with the same section in
6040the remote machine's memory, and report any mismatches. With no
6041arguments, compares all loadable sections. This command's
6042availability depends on the target's support for the @code{"qCRC"}
6043remote request.
6044@end table
6045
6d2ebf8b 6046@node Auto Display
79a6e687 6047@section Automatic Display
c906108c
SS
6048@cindex automatic display
6049@cindex display of expressions
6050
6051If you find that you want to print the value of an expression frequently
6052(to see how it changes), you might want to add it to the @dfn{automatic
6053display list} so that @value{GDBN} prints its value each time your program stops.
6054Each expression added to the list is given a number to identify it;
6055to remove an expression from the list, you specify that number.
6056The automatic display looks like this:
6057
474c8240 6058@smallexample
c906108c
SS
60592: foo = 38
60603: bar[5] = (struct hack *) 0x3804
474c8240 6061@end smallexample
c906108c
SS
6062
6063@noindent
6064This display shows item numbers, expressions and their current values. As with
6065displays you request manually using @code{x} or @code{print}, you can
6066specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6067whether to use @code{print} or @code{x} depending your format
6068specification---it uses @code{x} if you specify either the @samp{i}
6069or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6070
6071@table @code
6072@kindex display
d4f3574e
SS
6073@item display @var{expr}
6074Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6075each time your program stops. @xref{Expressions, ,Expressions}.
6076
6077@code{display} does not repeat if you press @key{RET} again after using it.
6078
d4f3574e 6079@item display/@var{fmt} @var{expr}
c906108c 6080For @var{fmt} specifying only a display format and not a size or
d4f3574e 6081count, add the expression @var{expr} to the auto-display list but
c906108c 6082arrange to display it each time in the specified format @var{fmt}.
79a6e687 6083@xref{Output Formats,,Output Formats}.
c906108c
SS
6084
6085@item display/@var{fmt} @var{addr}
6086For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6087number of units, add the expression @var{addr} as a memory address to
6088be examined each time your program stops. Examining means in effect
79a6e687 6089doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6090@end table
6091
6092For example, @samp{display/i $pc} can be helpful, to see the machine
6093instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6094is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6095
6096@table @code
6097@kindex delete display
6098@kindex undisplay
6099@item undisplay @var{dnums}@dots{}
6100@itemx delete display @var{dnums}@dots{}
6101Remove item numbers @var{dnums} from the list of expressions to display.
6102
6103@code{undisplay} does not repeat if you press @key{RET} after using it.
6104(Otherwise you would just get the error @samp{No display number @dots{}}.)
6105
6106@kindex disable display
6107@item disable display @var{dnums}@dots{}
6108Disable the display of item numbers @var{dnums}. A disabled display
6109item is not printed automatically, but is not forgotten. It may be
6110enabled again later.
6111
6112@kindex enable display
6113@item enable display @var{dnums}@dots{}
6114Enable display of item numbers @var{dnums}. It becomes effective once
6115again in auto display of its expression, until you specify otherwise.
6116
6117@item display
6118Display the current values of the expressions on the list, just as is
6119done when your program stops.
6120
6121@kindex info display
6122@item info display
6123Print the list of expressions previously set up to display
6124automatically, each one with its item number, but without showing the
6125values. This includes disabled expressions, which are marked as such.
6126It also includes expressions which would not be displayed right now
6127because they refer to automatic variables not currently available.
6128@end table
6129
15387254 6130@cindex display disabled out of scope
c906108c
SS
6131If a display expression refers to local variables, then it does not make
6132sense outside the lexical context for which it was set up. Such an
6133expression is disabled when execution enters a context where one of its
6134variables is not defined. For example, if you give the command
6135@code{display last_char} while inside a function with an argument
6136@code{last_char}, @value{GDBN} displays this argument while your program
6137continues to stop inside that function. When it stops elsewhere---where
6138there is no variable @code{last_char}---the display is disabled
6139automatically. The next time your program stops where @code{last_char}
6140is meaningful, you can enable the display expression once again.
6141
6d2ebf8b 6142@node Print Settings
79a6e687 6143@section Print Settings
c906108c
SS
6144
6145@cindex format options
6146@cindex print settings
6147@value{GDBN} provides the following ways to control how arrays, structures,
6148and symbols are printed.
6149
6150@noindent
6151These settings are useful for debugging programs in any language:
6152
6153@table @code
4644b6e3 6154@kindex set print
c906108c
SS
6155@item set print address
6156@itemx set print address on
4644b6e3 6157@cindex print/don't print memory addresses
c906108c
SS
6158@value{GDBN} prints memory addresses showing the location of stack
6159traces, structure values, pointer values, breakpoints, and so forth,
6160even when it also displays the contents of those addresses. The default
6161is @code{on}. For example, this is what a stack frame display looks like with
6162@code{set print address on}:
6163
6164@smallexample
6165@group
6166(@value{GDBP}) f
6167#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6168 at input.c:530
6169530 if (lquote != def_lquote)
6170@end group
6171@end smallexample
6172
6173@item set print address off
6174Do not print addresses when displaying their contents. For example,
6175this is the same stack frame displayed with @code{set print address off}:
6176
6177@smallexample
6178@group
6179(@value{GDBP}) set print addr off
6180(@value{GDBP}) f
6181#0 set_quotes (lq="<<", rq=">>") at input.c:530
6182530 if (lquote != def_lquote)
6183@end group
6184@end smallexample
6185
6186You can use @samp{set print address off} to eliminate all machine
6187dependent displays from the @value{GDBN} interface. For example, with
6188@code{print address off}, you should get the same text for backtraces on
6189all machines---whether or not they involve pointer arguments.
6190
4644b6e3 6191@kindex show print
c906108c
SS
6192@item show print address
6193Show whether or not addresses are to be printed.
6194@end table
6195
6196When @value{GDBN} prints a symbolic address, it normally prints the
6197closest earlier symbol plus an offset. If that symbol does not uniquely
6198identify the address (for example, it is a name whose scope is a single
6199source file), you may need to clarify. One way to do this is with
6200@code{info line}, for example @samp{info line *0x4537}. Alternately,
6201you can set @value{GDBN} to print the source file and line number when
6202it prints a symbolic address:
6203
6204@table @code
c906108c 6205@item set print symbol-filename on
9c16f35a
EZ
6206@cindex source file and line of a symbol
6207@cindex symbol, source file and line
c906108c
SS
6208Tell @value{GDBN} to print the source file name and line number of a
6209symbol in the symbolic form of an address.
6210
6211@item set print symbol-filename off
6212Do not print source file name and line number of a symbol. This is the
6213default.
6214
c906108c
SS
6215@item show print symbol-filename
6216Show whether or not @value{GDBN} will print the source file name and
6217line number of a symbol in the symbolic form of an address.
6218@end table
6219
6220Another situation where it is helpful to show symbol filenames and line
6221numbers is when disassembling code; @value{GDBN} shows you the line
6222number and source file that corresponds to each instruction.
6223
6224Also, you may wish to see the symbolic form only if the address being
6225printed is reasonably close to the closest earlier symbol:
6226
6227@table @code
c906108c 6228@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6229@cindex maximum value for offset of closest symbol
c906108c
SS
6230Tell @value{GDBN} to only display the symbolic form of an address if the
6231offset between the closest earlier symbol and the address is less than
5d161b24 6232@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6233to always print the symbolic form of an address if any symbol precedes it.
6234
c906108c
SS
6235@item show print max-symbolic-offset
6236Ask how large the maximum offset is that @value{GDBN} prints in a
6237symbolic address.
6238@end table
6239
6240@cindex wild pointer, interpreting
6241@cindex pointer, finding referent
6242If you have a pointer and you are not sure where it points, try
6243@samp{set print symbol-filename on}. Then you can determine the name
6244and source file location of the variable where it points, using
6245@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6246For example, here @value{GDBN} shows that a variable @code{ptt} points
6247at another variable @code{t}, defined in @file{hi2.c}:
6248
474c8240 6249@smallexample
c906108c
SS
6250(@value{GDBP}) set print symbol-filename on
6251(@value{GDBP}) p/a ptt
6252$4 = 0xe008 <t in hi2.c>
474c8240 6253@end smallexample
c906108c
SS
6254
6255@quotation
6256@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6257does not show the symbol name and filename of the referent, even with
6258the appropriate @code{set print} options turned on.
6259@end quotation
6260
6261Other settings control how different kinds of objects are printed:
6262
6263@table @code
c906108c
SS
6264@item set print array
6265@itemx set print array on
4644b6e3 6266@cindex pretty print arrays
c906108c
SS
6267Pretty print arrays. This format is more convenient to read,
6268but uses more space. The default is off.
6269
6270@item set print array off
6271Return to compressed format for arrays.
6272
c906108c
SS
6273@item show print array
6274Show whether compressed or pretty format is selected for displaying
6275arrays.
6276
3c9c013a
JB
6277@cindex print array indexes
6278@item set print array-indexes
6279@itemx set print array-indexes on
6280Print the index of each element when displaying arrays. May be more
6281convenient to locate a given element in the array or quickly find the
6282index of a given element in that printed array. The default is off.
6283
6284@item set print array-indexes off
6285Stop printing element indexes when displaying arrays.
6286
6287@item show print array-indexes
6288Show whether the index of each element is printed when displaying
6289arrays.
6290
c906108c 6291@item set print elements @var{number-of-elements}
4644b6e3 6292@cindex number of array elements to print
9c16f35a 6293@cindex limit on number of printed array elements
c906108c
SS
6294Set a limit on how many elements of an array @value{GDBN} will print.
6295If @value{GDBN} is printing a large array, it stops printing after it has
6296printed the number of elements set by the @code{set print elements} command.
6297This limit also applies to the display of strings.
d4f3574e 6298When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6299Setting @var{number-of-elements} to zero means that the printing is unlimited.
6300
c906108c
SS
6301@item show print elements
6302Display the number of elements of a large array that @value{GDBN} will print.
6303If the number is 0, then the printing is unlimited.
6304
b4740add
JB
6305@item set print frame-arguments @var{value}
6306@cindex printing frame argument values
6307@cindex print all frame argument values
6308@cindex print frame argument values for scalars only
6309@cindex do not print frame argument values
6310This command allows to control how the values of arguments are printed
6311when the debugger prints a frame (@pxref{Frames}). The possible
6312values are:
6313
6314@table @code
6315@item all
6316The values of all arguments are printed. This is the default.
6317
6318@item scalars
6319Print the value of an argument only if it is a scalar. The value of more
6320complex arguments such as arrays, structures, unions, etc, is replaced
6321by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6322
6323@smallexample
6324#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6325 at frame-args.c:23
6326@end smallexample
6327
6328@item none
6329None of the argument values are printed. Instead, the value of each argument
6330is replaced by @code{@dots{}}. In this case, the example above now becomes:
6331
6332@smallexample
6333#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6334 at frame-args.c:23
6335@end smallexample
6336@end table
6337
6338By default, all argument values are always printed. But this command
6339can be useful in several cases. For instance, it can be used to reduce
6340the amount of information printed in each frame, making the backtrace
6341more readable. Also, this command can be used to improve performance
6342when displaying Ada frames, because the computation of large arguments
6343can sometimes be CPU-intensive, especiallly in large applications.
6344Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6345avoids this computation, thus speeding up the display of each Ada frame.
6346
6347@item show print frame-arguments
6348Show how the value of arguments should be displayed when printing a frame.
6349
9c16f35a
EZ
6350@item set print repeats
6351@cindex repeated array elements
6352Set the threshold for suppressing display of repeated array
d3e8051b 6353elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6354array exceeds the threshold, @value{GDBN} prints the string
6355@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6356identical repetitions, instead of displaying the identical elements
6357themselves. Setting the threshold to zero will cause all elements to
6358be individually printed. The default threshold is 10.
6359
6360@item show print repeats
6361Display the current threshold for printing repeated identical
6362elements.
6363
c906108c 6364@item set print null-stop
4644b6e3 6365@cindex @sc{null} elements in arrays
c906108c 6366Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6367@sc{null} is encountered. This is useful when large arrays actually
c906108c 6368contain only short strings.
d4f3574e 6369The default is off.
c906108c 6370
9c16f35a
EZ
6371@item show print null-stop
6372Show whether @value{GDBN} stops printing an array on the first
6373@sc{null} character.
6374
c906108c 6375@item set print pretty on
9c16f35a
EZ
6376@cindex print structures in indented form
6377@cindex indentation in structure display
5d161b24 6378Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6379per line, like this:
6380
6381@smallexample
6382@group
6383$1 = @{
6384 next = 0x0,
6385 flags = @{
6386 sweet = 1,
6387 sour = 1
6388 @},
6389 meat = 0x54 "Pork"
6390@}
6391@end group
6392@end smallexample
6393
6394@item set print pretty off
6395Cause @value{GDBN} to print structures in a compact format, like this:
6396
6397@smallexample
6398@group
6399$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6400meat = 0x54 "Pork"@}
6401@end group
6402@end smallexample
6403
6404@noindent
6405This is the default format.
6406
c906108c
SS
6407@item show print pretty
6408Show which format @value{GDBN} is using to print structures.
6409
c906108c 6410@item set print sevenbit-strings on
4644b6e3
EZ
6411@cindex eight-bit characters in strings
6412@cindex octal escapes in strings
c906108c
SS
6413Print using only seven-bit characters; if this option is set,
6414@value{GDBN} displays any eight-bit characters (in strings or
6415character values) using the notation @code{\}@var{nnn}. This setting is
6416best if you are working in English (@sc{ascii}) and you use the
6417high-order bit of characters as a marker or ``meta'' bit.
6418
6419@item set print sevenbit-strings off
6420Print full eight-bit characters. This allows the use of more
6421international character sets, and is the default.
6422
c906108c
SS
6423@item show print sevenbit-strings
6424Show whether or not @value{GDBN} is printing only seven-bit characters.
6425
c906108c 6426@item set print union on
4644b6e3 6427@cindex unions in structures, printing
9c16f35a
EZ
6428Tell @value{GDBN} to print unions which are contained in structures
6429and other unions. This is the default setting.
c906108c
SS
6430
6431@item set print union off
9c16f35a
EZ
6432Tell @value{GDBN} not to print unions which are contained in
6433structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6434instead.
c906108c 6435
c906108c
SS
6436@item show print union
6437Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6438structures and other unions.
c906108c
SS
6439
6440For example, given the declarations
6441
6442@smallexample
6443typedef enum @{Tree, Bug@} Species;
6444typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6445typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6446 Bug_forms;
6447
6448struct thing @{
6449 Species it;
6450 union @{
6451 Tree_forms tree;
6452 Bug_forms bug;
6453 @} form;
6454@};
6455
6456struct thing foo = @{Tree, @{Acorn@}@};
6457@end smallexample
6458
6459@noindent
6460with @code{set print union on} in effect @samp{p foo} would print
6461
6462@smallexample
6463$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6464@end smallexample
6465
6466@noindent
6467and with @code{set print union off} in effect it would print
6468
6469@smallexample
6470$1 = @{it = Tree, form = @{...@}@}
6471@end smallexample
9c16f35a
EZ
6472
6473@noindent
6474@code{set print union} affects programs written in C-like languages
6475and in Pascal.
c906108c
SS
6476@end table
6477
c906108c
SS
6478@need 1000
6479@noindent
b37052ae 6480These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6481
6482@table @code
4644b6e3 6483@cindex demangling C@t{++} names
c906108c
SS
6484@item set print demangle
6485@itemx set print demangle on
b37052ae 6486Print C@t{++} names in their source form rather than in the encoded
c906108c 6487(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6488linkage. The default is on.
c906108c 6489
c906108c 6490@item show print demangle
b37052ae 6491Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6492
c906108c
SS
6493@item set print asm-demangle
6494@itemx set print asm-demangle on
b37052ae 6495Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6496in assembler code printouts such as instruction disassemblies.
6497The default is off.
6498
c906108c 6499@item show print asm-demangle
b37052ae 6500Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6501or demangled form.
6502
b37052ae
EZ
6503@cindex C@t{++} symbol decoding style
6504@cindex symbol decoding style, C@t{++}
a8f24a35 6505@kindex set demangle-style
c906108c
SS
6506@item set demangle-style @var{style}
6507Choose among several encoding schemes used by different compilers to
b37052ae 6508represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6509
6510@table @code
6511@item auto
6512Allow @value{GDBN} to choose a decoding style by inspecting your program.
6513
6514@item gnu
b37052ae 6515Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6516This is the default.
c906108c
SS
6517
6518@item hp
b37052ae 6519Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6520
6521@item lucid
b37052ae 6522Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6523
6524@item arm
b37052ae 6525Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6526@strong{Warning:} this setting alone is not sufficient to allow
6527debugging @code{cfront}-generated executables. @value{GDBN} would
6528require further enhancement to permit that.
6529
6530@end table
6531If you omit @var{style}, you will see a list of possible formats.
6532
c906108c 6533@item show demangle-style
b37052ae 6534Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6535
c906108c
SS
6536@item set print object
6537@itemx set print object on
4644b6e3 6538@cindex derived type of an object, printing
9c16f35a 6539@cindex display derived types
c906108c
SS
6540When displaying a pointer to an object, identify the @emph{actual}
6541(derived) type of the object rather than the @emph{declared} type, using
6542the virtual function table.
6543
6544@item set print object off
6545Display only the declared type of objects, without reference to the
6546virtual function table. This is the default setting.
6547
c906108c
SS
6548@item show print object
6549Show whether actual, or declared, object types are displayed.
6550
c906108c
SS
6551@item set print static-members
6552@itemx set print static-members on
4644b6e3 6553@cindex static members of C@t{++} objects
b37052ae 6554Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6555
6556@item set print static-members off
b37052ae 6557Do not print static members when displaying a C@t{++} object.
c906108c 6558
c906108c 6559@item show print static-members
9c16f35a
EZ
6560Show whether C@t{++} static members are printed or not.
6561
6562@item set print pascal_static-members
6563@itemx set print pascal_static-members on
d3e8051b
EZ
6564@cindex static members of Pascal objects
6565@cindex Pascal objects, static members display
9c16f35a
EZ
6566Print static members when displaying a Pascal object. The default is on.
6567
6568@item set print pascal_static-members off
6569Do not print static members when displaying a Pascal object.
6570
6571@item show print pascal_static-members
6572Show whether Pascal static members are printed or not.
c906108c
SS
6573
6574@c These don't work with HP ANSI C++ yet.
c906108c
SS
6575@item set print vtbl
6576@itemx set print vtbl on
4644b6e3 6577@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6578@cindex virtual functions (C@t{++}) display
6579@cindex VTBL display
b37052ae 6580Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6581(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6582ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6583
6584@item set print vtbl off
b37052ae 6585Do not pretty print C@t{++} virtual function tables.
c906108c 6586
c906108c 6587@item show print vtbl
b37052ae 6588Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6589@end table
c906108c 6590
6d2ebf8b 6591@node Value History
79a6e687 6592@section Value History
c906108c
SS
6593
6594@cindex value history
9c16f35a 6595@cindex history of values printed by @value{GDBN}
5d161b24
DB
6596Values printed by the @code{print} command are saved in the @value{GDBN}
6597@dfn{value history}. This allows you to refer to them in other expressions.
6598Values are kept until the symbol table is re-read or discarded
6599(for example with the @code{file} or @code{symbol-file} commands).
6600When the symbol table changes, the value history is discarded,
6601since the values may contain pointers back to the types defined in the
c906108c
SS
6602symbol table.
6603
6604@cindex @code{$}
6605@cindex @code{$$}
6606@cindex history number
6607The values printed are given @dfn{history numbers} by which you can
6608refer to them. These are successive integers starting with one.
6609@code{print} shows you the history number assigned to a value by
6610printing @samp{$@var{num} = } before the value; here @var{num} is the
6611history number.
6612
6613To refer to any previous value, use @samp{$} followed by the value's
6614history number. The way @code{print} labels its output is designed to
6615remind you of this. Just @code{$} refers to the most recent value in
6616the history, and @code{$$} refers to the value before that.
6617@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6618is the value just prior to @code{$$}, @code{$$1} is equivalent to
6619@code{$$}, and @code{$$0} is equivalent to @code{$}.
6620
6621For example, suppose you have just printed a pointer to a structure and
6622want to see the contents of the structure. It suffices to type
6623
474c8240 6624@smallexample
c906108c 6625p *$
474c8240 6626@end smallexample
c906108c
SS
6627
6628If you have a chain of structures where the component @code{next} points
6629to the next one, you can print the contents of the next one with this:
6630
474c8240 6631@smallexample
c906108c 6632p *$.next
474c8240 6633@end smallexample
c906108c
SS
6634
6635@noindent
6636You can print successive links in the chain by repeating this
6637command---which you can do by just typing @key{RET}.
6638
6639Note that the history records values, not expressions. If the value of
6640@code{x} is 4 and you type these commands:
6641
474c8240 6642@smallexample
c906108c
SS
6643print x
6644set x=5
474c8240 6645@end smallexample
c906108c
SS
6646
6647@noindent
6648then the value recorded in the value history by the @code{print} command
6649remains 4 even though the value of @code{x} has changed.
6650
6651@table @code
6652@kindex show values
6653@item show values
6654Print the last ten values in the value history, with their item numbers.
6655This is like @samp{p@ $$9} repeated ten times, except that @code{show
6656values} does not change the history.
6657
6658@item show values @var{n}
6659Print ten history values centered on history item number @var{n}.
6660
6661@item show values +
6662Print ten history values just after the values last printed. If no more
6663values are available, @code{show values +} produces no display.
6664@end table
6665
6666Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6667same effect as @samp{show values +}.
6668
6d2ebf8b 6669@node Convenience Vars
79a6e687 6670@section Convenience Variables
c906108c
SS
6671
6672@cindex convenience variables
9c16f35a 6673@cindex user-defined variables
c906108c
SS
6674@value{GDBN} provides @dfn{convenience variables} that you can use within
6675@value{GDBN} to hold on to a value and refer to it later. These variables
6676exist entirely within @value{GDBN}; they are not part of your program, and
6677setting a convenience variable has no direct effect on further execution
6678of your program. That is why you can use them freely.
6679
6680Convenience variables are prefixed with @samp{$}. Any name preceded by
6681@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6682the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6683(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6684by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6685
6686You can save a value in a convenience variable with an assignment
6687expression, just as you would set a variable in your program.
6688For example:
6689
474c8240 6690@smallexample
c906108c 6691set $foo = *object_ptr
474c8240 6692@end smallexample
c906108c
SS
6693
6694@noindent
6695would save in @code{$foo} the value contained in the object pointed to by
6696@code{object_ptr}.
6697
6698Using a convenience variable for the first time creates it, but its
6699value is @code{void} until you assign a new value. You can alter the
6700value with another assignment at any time.
6701
6702Convenience variables have no fixed types. You can assign a convenience
6703variable any type of value, including structures and arrays, even if
6704that variable already has a value of a different type. The convenience
6705variable, when used as an expression, has the type of its current value.
6706
6707@table @code
6708@kindex show convenience
9c16f35a 6709@cindex show all user variables
c906108c
SS
6710@item show convenience
6711Print a list of convenience variables used so far, and their values.
d4f3574e 6712Abbreviated @code{show conv}.
53e5f3cf
AS
6713
6714@kindex init-if-undefined
6715@cindex convenience variables, initializing
6716@item init-if-undefined $@var{variable} = @var{expression}
6717Set a convenience variable if it has not already been set. This is useful
6718for user-defined commands that keep some state. It is similar, in concept,
6719to using local static variables with initializers in C (except that
6720convenience variables are global). It can also be used to allow users to
6721override default values used in a command script.
6722
6723If the variable is already defined then the expression is not evaluated so
6724any side-effects do not occur.
c906108c
SS
6725@end table
6726
6727One of the ways to use a convenience variable is as a counter to be
6728incremented or a pointer to be advanced. For example, to print
6729a field from successive elements of an array of structures:
6730
474c8240 6731@smallexample
c906108c
SS
6732set $i = 0
6733print bar[$i++]->contents
474c8240 6734@end smallexample
c906108c 6735
d4f3574e
SS
6736@noindent
6737Repeat that command by typing @key{RET}.
c906108c
SS
6738
6739Some convenience variables are created automatically by @value{GDBN} and given
6740values likely to be useful.
6741
6742@table @code
41afff9a 6743@vindex $_@r{, convenience variable}
c906108c
SS
6744@item $_
6745The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6746the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6747commands which provide a default address for @code{x} to examine also
6748set @code{$_} to that address; these commands include @code{info line}
6749and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6750except when set by the @code{x} command, in which case it is a pointer
6751to the type of @code{$__}.
6752
41afff9a 6753@vindex $__@r{, convenience variable}
c906108c
SS
6754@item $__
6755The variable @code{$__} is automatically set by the @code{x} command
6756to the value found in the last address examined. Its type is chosen
6757to match the format in which the data was printed.
6758
6759@item $_exitcode
41afff9a 6760@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6761The variable @code{$_exitcode} is automatically set to the exit code when
6762the program being debugged terminates.
6763@end table
6764
53a5351d
JM
6765On HP-UX systems, if you refer to a function or variable name that
6766begins with a dollar sign, @value{GDBN} searches for a user or system
6767name first, before it searches for a convenience variable.
c906108c 6768
6d2ebf8b 6769@node Registers
c906108c
SS
6770@section Registers
6771
6772@cindex registers
6773You can refer to machine register contents, in expressions, as variables
6774with names starting with @samp{$}. The names of registers are different
6775for each machine; use @code{info registers} to see the names used on
6776your machine.
6777
6778@table @code
6779@kindex info registers
6780@item info registers
6781Print the names and values of all registers except floating-point
c85508ee 6782and vector registers (in the selected stack frame).
c906108c
SS
6783
6784@kindex info all-registers
6785@cindex floating point registers
6786@item info all-registers
6787Print the names and values of all registers, including floating-point
c85508ee 6788and vector registers (in the selected stack frame).
c906108c
SS
6789
6790@item info registers @var{regname} @dots{}
6791Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6792As discussed in detail below, register values are normally relative to
6793the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6794the machine you are using, with or without the initial @samp{$}.
6795@end table
6796
e09f16f9
EZ
6797@cindex stack pointer register
6798@cindex program counter register
6799@cindex process status register
6800@cindex frame pointer register
6801@cindex standard registers
c906108c
SS
6802@value{GDBN} has four ``standard'' register names that are available (in
6803expressions) on most machines---whenever they do not conflict with an
6804architecture's canonical mnemonics for registers. The register names
6805@code{$pc} and @code{$sp} are used for the program counter register and
6806the stack pointer. @code{$fp} is used for a register that contains a
6807pointer to the current stack frame, and @code{$ps} is used for a
6808register that contains the processor status. For example,
6809you could print the program counter in hex with
6810
474c8240 6811@smallexample
c906108c 6812p/x $pc
474c8240 6813@end smallexample
c906108c
SS
6814
6815@noindent
6816or print the instruction to be executed next with
6817
474c8240 6818@smallexample
c906108c 6819x/i $pc
474c8240 6820@end smallexample
c906108c
SS
6821
6822@noindent
6823or add four to the stack pointer@footnote{This is a way of removing
6824one word from the stack, on machines where stacks grow downward in
6825memory (most machines, nowadays). This assumes that the innermost
6826stack frame is selected; setting @code{$sp} is not allowed when other
6827stack frames are selected. To pop entire frames off the stack,
6828regardless of machine architecture, use @code{return};
79a6e687 6829see @ref{Returning, ,Returning from a Function}.} with
c906108c 6830
474c8240 6831@smallexample
c906108c 6832set $sp += 4
474c8240 6833@end smallexample
c906108c
SS
6834
6835Whenever possible, these four standard register names are available on
6836your machine even though the machine has different canonical mnemonics,
6837so long as there is no conflict. The @code{info registers} command
6838shows the canonical names. For example, on the SPARC, @code{info
6839registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6840can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6841is an alias for the @sc{eflags} register.
c906108c
SS
6842
6843@value{GDBN} always considers the contents of an ordinary register as an
6844integer when the register is examined in this way. Some machines have
6845special registers which can hold nothing but floating point; these
6846registers are considered to have floating point values. There is no way
6847to refer to the contents of an ordinary register as floating point value
6848(although you can @emph{print} it as a floating point value with
6849@samp{print/f $@var{regname}}).
6850
6851Some registers have distinct ``raw'' and ``virtual'' data formats. This
6852means that the data format in which the register contents are saved by
6853the operating system is not the same one that your program normally
6854sees. For example, the registers of the 68881 floating point
6855coprocessor are always saved in ``extended'' (raw) format, but all C
6856programs expect to work with ``double'' (virtual) format. In such
5d161b24 6857cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6858that makes sense for your program), but the @code{info registers} command
6859prints the data in both formats.
6860
36b80e65
EZ
6861@cindex SSE registers (x86)
6862@cindex MMX registers (x86)
6863Some machines have special registers whose contents can be interpreted
6864in several different ways. For example, modern x86-based machines
6865have SSE and MMX registers that can hold several values packed
6866together in several different formats. @value{GDBN} refers to such
6867registers in @code{struct} notation:
6868
6869@smallexample
6870(@value{GDBP}) print $xmm1
6871$1 = @{
6872 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6873 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6874 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6875 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6876 v4_int32 = @{0, 20657912, 11, 13@},
6877 v2_int64 = @{88725056443645952, 55834574859@},
6878 uint128 = 0x0000000d0000000b013b36f800000000
6879@}
6880@end smallexample
6881
6882@noindent
6883To set values of such registers, you need to tell @value{GDBN} which
6884view of the register you wish to change, as if you were assigning
6885value to a @code{struct} member:
6886
6887@smallexample
6888 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6889@end smallexample
6890
c906108c 6891Normally, register values are relative to the selected stack frame
79a6e687 6892(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6893value that the register would contain if all stack frames farther in
6894were exited and their saved registers restored. In order to see the
6895true contents of hardware registers, you must select the innermost
6896frame (with @samp{frame 0}).
6897
6898However, @value{GDBN} must deduce where registers are saved, from the machine
6899code generated by your compiler. If some registers are not saved, or if
6900@value{GDBN} is unable to locate the saved registers, the selected stack
6901frame makes no difference.
6902
6d2ebf8b 6903@node Floating Point Hardware
79a6e687 6904@section Floating Point Hardware
c906108c
SS
6905@cindex floating point
6906
6907Depending on the configuration, @value{GDBN} may be able to give
6908you more information about the status of the floating point hardware.
6909
6910@table @code
6911@kindex info float
6912@item info float
6913Display hardware-dependent information about the floating
6914point unit. The exact contents and layout vary depending on the
6915floating point chip. Currently, @samp{info float} is supported on
6916the ARM and x86 machines.
6917@end table
c906108c 6918
e76f1f2e
AC
6919@node Vector Unit
6920@section Vector Unit
6921@cindex vector unit
6922
6923Depending on the configuration, @value{GDBN} may be able to give you
6924more information about the status of the vector unit.
6925
6926@table @code
6927@kindex info vector
6928@item info vector
6929Display information about the vector unit. The exact contents and
6930layout vary depending on the hardware.
6931@end table
6932
721c2651 6933@node OS Information
79a6e687 6934@section Operating System Auxiliary Information
721c2651
EZ
6935@cindex OS information
6936
6937@value{GDBN} provides interfaces to useful OS facilities that can help
6938you debug your program.
6939
6940@cindex @code{ptrace} system call
6941@cindex @code{struct user} contents
6942When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6943machines), it interfaces with the inferior via the @code{ptrace}
6944system call. The operating system creates a special sata structure,
6945called @code{struct user}, for this interface. You can use the
6946command @code{info udot} to display the contents of this data
6947structure.
6948
6949@table @code
6950@item info udot
6951@kindex info udot
6952Display the contents of the @code{struct user} maintained by the OS
6953kernel for the program being debugged. @value{GDBN} displays the
6954contents of @code{struct user} as a list of hex numbers, similar to
6955the @code{examine} command.
6956@end table
6957
b383017d
RM
6958@cindex auxiliary vector
6959@cindex vector, auxiliary
b383017d
RM
6960Some operating systems supply an @dfn{auxiliary vector} to programs at
6961startup. This is akin to the arguments and environment that you
6962specify for a program, but contains a system-dependent variety of
6963binary values that tell system libraries important details about the
6964hardware, operating system, and process. Each value's purpose is
6965identified by an integer tag; the meanings are well-known but system-specific.
6966Depending on the configuration and operating system facilities,
9c16f35a
EZ
6967@value{GDBN} may be able to show you this information. For remote
6968targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6969support of the @samp{qXfer:auxv:read} packet, see
6970@ref{qXfer auxiliary vector read}.
b383017d
RM
6971
6972@table @code
6973@kindex info auxv
6974@item info auxv
6975Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6976live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6977numerically, and also shows names and text descriptions for recognized
6978tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6979pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6980most appropriate form for a recognized tag, and in hexadecimal for
6981an unrecognized tag.
6982@end table
6983
721c2651 6984
29e57380 6985@node Memory Region Attributes
79a6e687 6986@section Memory Region Attributes
29e57380
C
6987@cindex memory region attributes
6988
b383017d 6989@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6990required by regions of your target's memory. @value{GDBN} uses
6991attributes to determine whether to allow certain types of memory
6992accesses; whether to use specific width accesses; and whether to cache
6993target memory. By default the description of memory regions is
6994fetched from the target (if the current target supports this), but the
6995user can override the fetched regions.
29e57380
C
6996
6997Defined memory regions can be individually enabled and disabled. When a
6998memory region is disabled, @value{GDBN} uses the default attributes when
6999accessing memory in that region. Similarly, if no memory regions have
7000been defined, @value{GDBN} uses the default attributes when accessing
7001all memory.
7002
b383017d 7003When a memory region is defined, it is given a number to identify it;
29e57380
C
7004to enable, disable, or remove a memory region, you specify that number.
7005
7006@table @code
7007@kindex mem
bfac230e 7008@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7009Define a memory region bounded by @var{lower} and @var{upper} with
7010attributes @var{attributes}@dots{}, and add it to the list of regions
7011monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7012case: it is treated as the target's maximum memory address.
bfac230e 7013(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7014
fd79ecee
DJ
7015@item mem auto
7016Discard any user changes to the memory regions and use target-supplied
7017regions, if available, or no regions if the target does not support.
7018
29e57380
C
7019@kindex delete mem
7020@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7021Remove memory regions @var{nums}@dots{} from the list of regions
7022monitored by @value{GDBN}.
29e57380
C
7023
7024@kindex disable mem
7025@item disable mem @var{nums}@dots{}
09d4efe1 7026Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7027A disabled memory region is not forgotten.
29e57380
C
7028It may be enabled again later.
7029
7030@kindex enable mem
7031@item enable mem @var{nums}@dots{}
09d4efe1 7032Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7033
7034@kindex info mem
7035@item info mem
7036Print a table of all defined memory regions, with the following columns
09d4efe1 7037for each region:
29e57380
C
7038
7039@table @emph
7040@item Memory Region Number
7041@item Enabled or Disabled.
b383017d 7042Enabled memory regions are marked with @samp{y}.
29e57380
C
7043Disabled memory regions are marked with @samp{n}.
7044
7045@item Lo Address
7046The address defining the inclusive lower bound of the memory region.
7047
7048@item Hi Address
7049The address defining the exclusive upper bound of the memory region.
7050
7051@item Attributes
7052The list of attributes set for this memory region.
7053@end table
7054@end table
7055
7056
7057@subsection Attributes
7058
b383017d 7059@subsubsection Memory Access Mode
29e57380
C
7060The access mode attributes set whether @value{GDBN} may make read or
7061write accesses to a memory region.
7062
7063While these attributes prevent @value{GDBN} from performing invalid
7064memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7065etc.@: from accessing memory.
29e57380
C
7066
7067@table @code
7068@item ro
7069Memory is read only.
7070@item wo
7071Memory is write only.
7072@item rw
6ca652b0 7073Memory is read/write. This is the default.
29e57380
C
7074@end table
7075
7076@subsubsection Memory Access Size
d3e8051b 7077The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7078accesses in the memory region. Often memory mapped device registers
7079require specific sized accesses. If no access size attribute is
7080specified, @value{GDBN} may use accesses of any size.
7081
7082@table @code
7083@item 8
7084Use 8 bit memory accesses.
7085@item 16
7086Use 16 bit memory accesses.
7087@item 32
7088Use 32 bit memory accesses.
7089@item 64
7090Use 64 bit memory accesses.
7091@end table
7092
7093@c @subsubsection Hardware/Software Breakpoints
7094@c The hardware/software breakpoint attributes set whether @value{GDBN}
7095@c will use hardware or software breakpoints for the internal breakpoints
7096@c used by the step, next, finish, until, etc. commands.
7097@c
7098@c @table @code
7099@c @item hwbreak
b383017d 7100@c Always use hardware breakpoints
29e57380
C
7101@c @item swbreak (default)
7102@c @end table
7103
7104@subsubsection Data Cache
7105The data cache attributes set whether @value{GDBN} will cache target
7106memory. While this generally improves performance by reducing debug
7107protocol overhead, it can lead to incorrect results because @value{GDBN}
7108does not know about volatile variables or memory mapped device
7109registers.
7110
7111@table @code
7112@item cache
b383017d 7113Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7114@item nocache
7115Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7116@end table
7117
4b5752d0
VP
7118@subsection Memory Access Checking
7119@value{GDBN} can be instructed to refuse accesses to memory that is
7120not explicitly described. This can be useful if accessing such
7121regions has undesired effects for a specific target, or to provide
7122better error checking. The following commands control this behaviour.
7123
7124@table @code
7125@kindex set mem inaccessible-by-default
7126@item set mem inaccessible-by-default [on|off]
7127If @code{on} is specified, make @value{GDBN} treat memory not
7128explicitly described by the memory ranges as non-existent and refuse accesses
7129to such memory. The checks are only performed if there's at least one
7130memory range defined. If @code{off} is specified, make @value{GDBN}
7131treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7132The default value is @code{on}.
4b5752d0
VP
7133@kindex show mem inaccessible-by-default
7134@item show mem inaccessible-by-default
7135Show the current handling of accesses to unknown memory.
7136@end table
7137
7138
29e57380 7139@c @subsubsection Memory Write Verification
b383017d 7140@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7141@c will re-reads data after each write to verify the write was successful.
7142@c
7143@c @table @code
7144@c @item verify
7145@c @item noverify (default)
7146@c @end table
7147
16d9dec6 7148@node Dump/Restore Files
79a6e687 7149@section Copy Between Memory and a File
16d9dec6
MS
7150@cindex dump/restore files
7151@cindex append data to a file
7152@cindex dump data to a file
7153@cindex restore data from a file
16d9dec6 7154
df5215a6
JB
7155You can use the commands @code{dump}, @code{append}, and
7156@code{restore} to copy data between target memory and a file. The
7157@code{dump} and @code{append} commands write data to a file, and the
7158@code{restore} command reads data from a file back into the inferior's
7159memory. Files may be in binary, Motorola S-record, Intel hex, or
7160Tektronix Hex format; however, @value{GDBN} can only append to binary
7161files.
7162
7163@table @code
7164
7165@kindex dump
7166@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7167@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7168Dump the contents of memory from @var{start_addr} to @var{end_addr},
7169or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7170
df5215a6 7171The @var{format} parameter may be any one of:
16d9dec6 7172@table @code
df5215a6
JB
7173@item binary
7174Raw binary form.
7175@item ihex
7176Intel hex format.
7177@item srec
7178Motorola S-record format.
7179@item tekhex
7180Tektronix Hex format.
7181@end table
7182
7183@value{GDBN} uses the same definitions of these formats as the
7184@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7185@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7186form.
7187
7188@kindex append
7189@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7190@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7191Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7192or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7193(@value{GDBN} can only append data to files in raw binary form.)
7194
7195@kindex restore
7196@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7197Restore the contents of file @var{filename} into memory. The
7198@code{restore} command can automatically recognize any known @sc{bfd}
7199file format, except for raw binary. To restore a raw binary file you
7200must specify the optional keyword @code{binary} after the filename.
16d9dec6 7201
b383017d 7202If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7203contained in the file. Binary files always start at address zero, so
7204they will be restored at address @var{bias}. Other bfd files have
7205a built-in location; they will be restored at offset @var{bias}
7206from that location.
7207
7208If @var{start} and/or @var{end} are non-zero, then only data between
7209file offset @var{start} and file offset @var{end} will be restored.
b383017d 7210These offsets are relative to the addresses in the file, before
16d9dec6
MS
7211the @var{bias} argument is applied.
7212
7213@end table
7214
384ee23f
EZ
7215@node Core File Generation
7216@section How to Produce a Core File from Your Program
7217@cindex dump core from inferior
7218
7219A @dfn{core file} or @dfn{core dump} is a file that records the memory
7220image of a running process and its process status (register values
7221etc.). Its primary use is post-mortem debugging of a program that
7222crashed while it ran outside a debugger. A program that crashes
7223automatically produces a core file, unless this feature is disabled by
7224the user. @xref{Files}, for information on invoking @value{GDBN} in
7225the post-mortem debugging mode.
7226
7227Occasionally, you may wish to produce a core file of the program you
7228are debugging in order to preserve a snapshot of its state.
7229@value{GDBN} has a special command for that.
7230
7231@table @code
7232@kindex gcore
7233@kindex generate-core-file
7234@item generate-core-file [@var{file}]
7235@itemx gcore [@var{file}]
7236Produce a core dump of the inferior process. The optional argument
7237@var{file} specifies the file name where to put the core dump. If not
7238specified, the file name defaults to @file{core.@var{pid}}, where
7239@var{pid} is the inferior process ID.
7240
7241Note that this command is implemented only for some systems (as of
7242this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7243@end table
7244
a0eb71c5
KB
7245@node Character Sets
7246@section Character Sets
7247@cindex character sets
7248@cindex charset
7249@cindex translating between character sets
7250@cindex host character set
7251@cindex target character set
7252
7253If the program you are debugging uses a different character set to
7254represent characters and strings than the one @value{GDBN} uses itself,
7255@value{GDBN} can automatically translate between the character sets for
7256you. The character set @value{GDBN} uses we call the @dfn{host
7257character set}; the one the inferior program uses we call the
7258@dfn{target character set}.
7259
7260For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7261uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7262remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7263running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7264then the host character set is Latin-1, and the target character set is
7265@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7266target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7267@sc{ebcdic} and Latin 1 as you print character or string values, or use
7268character and string literals in expressions.
7269
7270@value{GDBN} has no way to automatically recognize which character set
7271the inferior program uses; you must tell it, using the @code{set
7272target-charset} command, described below.
7273
7274Here are the commands for controlling @value{GDBN}'s character set
7275support:
7276
7277@table @code
7278@item set target-charset @var{charset}
7279@kindex set target-charset
7280Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7281character set names @value{GDBN} recognizes below, but if you type
7282@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7283list the target character sets it supports.
a0eb71c5
KB
7284@end table
7285
7286@table @code
7287@item set host-charset @var{charset}
7288@kindex set host-charset
7289Set the current host character set to @var{charset}.
7290
7291By default, @value{GDBN} uses a host character set appropriate to the
7292system it is running on; you can override that default using the
7293@code{set host-charset} command.
7294
7295@value{GDBN} can only use certain character sets as its host character
7296set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7297indicate which can be host character sets, but if you type
7298@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7299list the host character sets it supports.
a0eb71c5
KB
7300
7301@item set charset @var{charset}
7302@kindex set charset
e33d66ec
EZ
7303Set the current host and target character sets to @var{charset}. As
7304above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7305@value{GDBN} will list the name of the character sets that can be used
7306for both host and target.
7307
a0eb71c5
KB
7308
7309@item show charset
a0eb71c5 7310@kindex show charset
b383017d 7311Show the names of the current host and target charsets.
e33d66ec
EZ
7312
7313@itemx show host-charset
a0eb71c5 7314@kindex show host-charset
b383017d 7315Show the name of the current host charset.
e33d66ec
EZ
7316
7317@itemx show target-charset
a0eb71c5 7318@kindex show target-charset
b383017d 7319Show the name of the current target charset.
a0eb71c5
KB
7320
7321@end table
7322
7323@value{GDBN} currently includes support for the following character
7324sets:
7325
7326@table @code
7327
7328@item ASCII
7329@cindex ASCII character set
7330Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7331character set.
7332
7333@item ISO-8859-1
7334@cindex ISO 8859-1 character set
7335@cindex ISO Latin 1 character set
e33d66ec 7336The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7337characters needed for French, German, and Spanish. @value{GDBN} can use
7338this as its host character set.
7339
7340@item EBCDIC-US
7341@itemx IBM1047
7342@cindex EBCDIC character set
7343@cindex IBM1047 character set
7344Variants of the @sc{ebcdic} character set, used on some of IBM's
7345mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7346@value{GDBN} cannot use these as its host character set.
7347
7348@end table
7349
7350Note that these are all single-byte character sets. More work inside
3f94c067 7351@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7352encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7353
7354Here is an example of @value{GDBN}'s character set support in action.
7355Assume that the following source code has been placed in the file
7356@file{charset-test.c}:
7357
7358@smallexample
7359#include <stdio.h>
7360
7361char ascii_hello[]
7362 = @{72, 101, 108, 108, 111, 44, 32, 119,
7363 111, 114, 108, 100, 33, 10, 0@};
7364char ibm1047_hello[]
7365 = @{200, 133, 147, 147, 150, 107, 64, 166,
7366 150, 153, 147, 132, 90, 37, 0@};
7367
7368main ()
7369@{
7370 printf ("Hello, world!\n");
7371@}
10998722 7372@end smallexample
a0eb71c5
KB
7373
7374In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7375containing the string @samp{Hello, world!} followed by a newline,
7376encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7377
7378We compile the program, and invoke the debugger on it:
7379
7380@smallexample
7381$ gcc -g charset-test.c -o charset-test
7382$ gdb -nw charset-test
7383GNU gdb 2001-12-19-cvs
7384Copyright 2001 Free Software Foundation, Inc.
7385@dots{}
f7dc1244 7386(@value{GDBP})
10998722 7387@end smallexample
a0eb71c5
KB
7388
7389We can use the @code{show charset} command to see what character sets
7390@value{GDBN} is currently using to interpret and display characters and
7391strings:
7392
7393@smallexample
f7dc1244 7394(@value{GDBP}) show charset
e33d66ec 7395The current host and target character set is `ISO-8859-1'.
f7dc1244 7396(@value{GDBP})
10998722 7397@end smallexample
a0eb71c5
KB
7398
7399For the sake of printing this manual, let's use @sc{ascii} as our
7400initial character set:
7401@smallexample
f7dc1244
EZ
7402(@value{GDBP}) set charset ASCII
7403(@value{GDBP}) show charset
e33d66ec 7404The current host and target character set is `ASCII'.
f7dc1244 7405(@value{GDBP})
10998722 7406@end smallexample
a0eb71c5
KB
7407
7408Let's assume that @sc{ascii} is indeed the correct character set for our
7409host system --- in other words, let's assume that if @value{GDBN} prints
7410characters using the @sc{ascii} character set, our terminal will display
7411them properly. Since our current target character set is also
7412@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7413
7414@smallexample
f7dc1244 7415(@value{GDBP}) print ascii_hello
a0eb71c5 7416$1 = 0x401698 "Hello, world!\n"
f7dc1244 7417(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7418$2 = 72 'H'
f7dc1244 7419(@value{GDBP})
10998722 7420@end smallexample
a0eb71c5
KB
7421
7422@value{GDBN} uses the target character set for character and string
7423literals you use in expressions:
7424
7425@smallexample
f7dc1244 7426(@value{GDBP}) print '+'
a0eb71c5 7427$3 = 43 '+'
f7dc1244 7428(@value{GDBP})
10998722 7429@end smallexample
a0eb71c5
KB
7430
7431The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7432character.
7433
7434@value{GDBN} relies on the user to tell it which character set the
7435target program uses. If we print @code{ibm1047_hello} while our target
7436character set is still @sc{ascii}, we get jibberish:
7437
7438@smallexample
f7dc1244 7439(@value{GDBP}) print ibm1047_hello
a0eb71c5 7440$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7441(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7442$5 = 200 '\310'
f7dc1244 7443(@value{GDBP})
10998722 7444@end smallexample
a0eb71c5 7445
e33d66ec 7446If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7447@value{GDBN} tells us the character sets it supports:
7448
7449@smallexample
f7dc1244 7450(@value{GDBP}) set target-charset
b383017d 7451ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7452(@value{GDBP}) set target-charset
10998722 7453@end smallexample
a0eb71c5
KB
7454
7455We can select @sc{ibm1047} as our target character set, and examine the
7456program's strings again. Now the @sc{ascii} string is wrong, but
7457@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7458target character set, @sc{ibm1047}, to the host character set,
7459@sc{ascii}, and they display correctly:
7460
7461@smallexample
f7dc1244
EZ
7462(@value{GDBP}) set target-charset IBM1047
7463(@value{GDBP}) show charset
e33d66ec
EZ
7464The current host character set is `ASCII'.
7465The current target character set is `IBM1047'.
f7dc1244 7466(@value{GDBP}) print ascii_hello
a0eb71c5 7467$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7468(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7469$7 = 72 '\110'
f7dc1244 7470(@value{GDBP}) print ibm1047_hello
a0eb71c5 7471$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7472(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7473$9 = 200 'H'
f7dc1244 7474(@value{GDBP})
10998722 7475@end smallexample
a0eb71c5
KB
7476
7477As above, @value{GDBN} uses the target character set for character and
7478string literals you use in expressions:
7479
7480@smallexample
f7dc1244 7481(@value{GDBP}) print '+'
a0eb71c5 7482$10 = 78 '+'
f7dc1244 7483(@value{GDBP})
10998722 7484@end smallexample
a0eb71c5 7485
e33d66ec 7486The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7487character.
7488
09d4efe1
EZ
7489@node Caching Remote Data
7490@section Caching Data of Remote Targets
7491@cindex caching data of remote targets
7492
7493@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7494remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7495performance, because it reduces the overhead of the remote protocol by
7496bundling memory reads and writes into large chunks. Unfortunately,
7497@value{GDBN} does not currently know anything about volatile
7498registers, and thus data caching will produce incorrect results when
7499volatile registers are in use.
7500
7501@table @code
7502@kindex set remotecache
7503@item set remotecache on
7504@itemx set remotecache off
7505Set caching state for remote targets. When @code{ON}, use data
7506caching. By default, this option is @code{OFF}.
7507
7508@kindex show remotecache
7509@item show remotecache
7510Show the current state of data caching for remote targets.
7511
7512@kindex info dcache
7513@item info dcache
7514Print the information about the data cache performance. The
7515information displayed includes: the dcache width and depth; and for
7516each cache line, how many times it was referenced, and its data and
7517state (dirty, bad, ok, etc.). This command is useful for debugging
7518the data cache operation.
7519@end table
7520
a0eb71c5 7521
e2e0bcd1
JB
7522@node Macros
7523@chapter C Preprocessor Macros
7524
49efadf5 7525Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7526``preprocessor macros'' which expand into strings of tokens.
7527@value{GDBN} can evaluate expressions containing macro invocations, show
7528the result of macro expansion, and show a macro's definition, including
7529where it was defined.
7530
7531You may need to compile your program specially to provide @value{GDBN}
7532with information about preprocessor macros. Most compilers do not
7533include macros in their debugging information, even when you compile
7534with the @option{-g} flag. @xref{Compilation}.
7535
7536A program may define a macro at one point, remove that definition later,
7537and then provide a different definition after that. Thus, at different
7538points in the program, a macro may have different definitions, or have
7539no definition at all. If there is a current stack frame, @value{GDBN}
7540uses the macros in scope at that frame's source code line. Otherwise,
7541@value{GDBN} uses the macros in scope at the current listing location;
7542see @ref{List}.
7543
7544At the moment, @value{GDBN} does not support the @code{##}
7545token-splicing operator, the @code{#} stringification operator, or
7546variable-arity macros.
7547
7548Whenever @value{GDBN} evaluates an expression, it always expands any
7549macro invocations present in the expression. @value{GDBN} also provides
7550the following commands for working with macros explicitly.
7551
7552@table @code
7553
7554@kindex macro expand
7555@cindex macro expansion, showing the results of preprocessor
7556@cindex preprocessor macro expansion, showing the results of
7557@cindex expanding preprocessor macros
7558@item macro expand @var{expression}
7559@itemx macro exp @var{expression}
7560Show the results of expanding all preprocessor macro invocations in
7561@var{expression}. Since @value{GDBN} simply expands macros, but does
7562not parse the result, @var{expression} need not be a valid expression;
7563it can be any string of tokens.
7564
09d4efe1 7565@kindex macro exp1
e2e0bcd1
JB
7566@item macro expand-once @var{expression}
7567@itemx macro exp1 @var{expression}
4644b6e3 7568@cindex expand macro once
e2e0bcd1
JB
7569@i{(This command is not yet implemented.)} Show the results of
7570expanding those preprocessor macro invocations that appear explicitly in
7571@var{expression}. Macro invocations appearing in that expansion are
7572left unchanged. This command allows you to see the effect of a
7573particular macro more clearly, without being confused by further
7574expansions. Since @value{GDBN} simply expands macros, but does not
7575parse the result, @var{expression} need not be a valid expression; it
7576can be any string of tokens.
7577
475b0867 7578@kindex info macro
e2e0bcd1
JB
7579@cindex macro definition, showing
7580@cindex definition, showing a macro's
475b0867 7581@item info macro @var{macro}
e2e0bcd1
JB
7582Show the definition of the macro named @var{macro}, and describe the
7583source location where that definition was established.
7584
7585@kindex macro define
7586@cindex user-defined macros
7587@cindex defining macros interactively
7588@cindex macros, user-defined
7589@item macro define @var{macro} @var{replacement-list}
7590@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7591@i{(This command is not yet implemented.)} Introduce a definition for a
7592preprocessor macro named @var{macro}, invocations of which are replaced
7593by the tokens given in @var{replacement-list}. The first form of this
7594command defines an ``object-like'' macro, which takes no arguments; the
7595second form defines a ``function-like'' macro, which takes the arguments
7596given in @var{arglist}.
7597
7598A definition introduced by this command is in scope in every expression
7599evaluated in @value{GDBN}, until it is removed with the @command{macro
7600undef} command, described below. The definition overrides all
7601definitions for @var{macro} present in the program being debugged, as
7602well as any previous user-supplied definition.
7603
7604@kindex macro undef
7605@item macro undef @var{macro}
7606@i{(This command is not yet implemented.)} Remove any user-supplied
7607definition for the macro named @var{macro}. This command only affects
7608definitions provided with the @command{macro define} command, described
7609above; it cannot remove definitions present in the program being
7610debugged.
7611
09d4efe1
EZ
7612@kindex macro list
7613@item macro list
7614@i{(This command is not yet implemented.)} List all the macros
7615defined using the @code{macro define} command.
e2e0bcd1
JB
7616@end table
7617
7618@cindex macros, example of debugging with
7619Here is a transcript showing the above commands in action. First, we
7620show our source files:
7621
7622@smallexample
7623$ cat sample.c
7624#include <stdio.h>
7625#include "sample.h"
7626
7627#define M 42
7628#define ADD(x) (M + x)
7629
7630main ()
7631@{
7632#define N 28
7633 printf ("Hello, world!\n");
7634#undef N
7635 printf ("We're so creative.\n");
7636#define N 1729
7637 printf ("Goodbye, world!\n");
7638@}
7639$ cat sample.h
7640#define Q <
7641$
7642@end smallexample
7643
7644Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7645We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7646compiler includes information about preprocessor macros in the debugging
7647information.
7648
7649@smallexample
7650$ gcc -gdwarf-2 -g3 sample.c -o sample
7651$
7652@end smallexample
7653
7654Now, we start @value{GDBN} on our sample program:
7655
7656@smallexample
7657$ gdb -nw sample
7658GNU gdb 2002-05-06-cvs
7659Copyright 2002 Free Software Foundation, Inc.
7660GDB is free software, @dots{}
f7dc1244 7661(@value{GDBP})
e2e0bcd1
JB
7662@end smallexample
7663
7664We can expand macros and examine their definitions, even when the
7665program is not running. @value{GDBN} uses the current listing position
7666to decide which macro definitions are in scope:
7667
7668@smallexample
f7dc1244 7669(@value{GDBP}) list main
e2e0bcd1
JB
76703
76714 #define M 42
76725 #define ADD(x) (M + x)
76736
76747 main ()
76758 @{
76769 #define N 28
767710 printf ("Hello, world!\n");
767811 #undef N
767912 printf ("We're so creative.\n");
f7dc1244 7680(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7681Defined at /home/jimb/gdb/macros/play/sample.c:5
7682#define ADD(x) (M + x)
f7dc1244 7683(@value{GDBP}) info macro Q
e2e0bcd1
JB
7684Defined at /home/jimb/gdb/macros/play/sample.h:1
7685 included at /home/jimb/gdb/macros/play/sample.c:2
7686#define Q <
f7dc1244 7687(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7688expands to: (42 + 1)
f7dc1244 7689(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7690expands to: once (M + 1)
f7dc1244 7691(@value{GDBP})
e2e0bcd1
JB
7692@end smallexample
7693
7694In the example above, note that @command{macro expand-once} expands only
7695the macro invocation explicit in the original text --- the invocation of
7696@code{ADD} --- but does not expand the invocation of the macro @code{M},
7697which was introduced by @code{ADD}.
7698
3f94c067
BW
7699Once the program is running, @value{GDBN} uses the macro definitions in
7700force at the source line of the current stack frame:
e2e0bcd1
JB
7701
7702@smallexample
f7dc1244 7703(@value{GDBP}) break main
e2e0bcd1 7704Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7705(@value{GDBP}) run
b383017d 7706Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7707
7708Breakpoint 1, main () at sample.c:10
770910 printf ("Hello, world!\n");
f7dc1244 7710(@value{GDBP})
e2e0bcd1
JB
7711@end smallexample
7712
7713At line 10, the definition of the macro @code{N} at line 9 is in force:
7714
7715@smallexample
f7dc1244 7716(@value{GDBP}) info macro N
e2e0bcd1
JB
7717Defined at /home/jimb/gdb/macros/play/sample.c:9
7718#define N 28
f7dc1244 7719(@value{GDBP}) macro expand N Q M
e2e0bcd1 7720expands to: 28 < 42
f7dc1244 7721(@value{GDBP}) print N Q M
e2e0bcd1 7722$1 = 1
f7dc1244 7723(@value{GDBP})
e2e0bcd1
JB
7724@end smallexample
7725
7726As we step over directives that remove @code{N}'s definition, and then
7727give it a new definition, @value{GDBN} finds the definition (or lack
7728thereof) in force at each point:
7729
7730@smallexample
f7dc1244 7731(@value{GDBP}) next
e2e0bcd1
JB
7732Hello, world!
773312 printf ("We're so creative.\n");
f7dc1244 7734(@value{GDBP}) info macro N
e2e0bcd1
JB
7735The symbol `N' has no definition as a C/C++ preprocessor macro
7736at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7737(@value{GDBP}) next
e2e0bcd1
JB
7738We're so creative.
773914 printf ("Goodbye, world!\n");
f7dc1244 7740(@value{GDBP}) info macro N
e2e0bcd1
JB
7741Defined at /home/jimb/gdb/macros/play/sample.c:13
7742#define N 1729
f7dc1244 7743(@value{GDBP}) macro expand N Q M
e2e0bcd1 7744expands to: 1729 < 42
f7dc1244 7745(@value{GDBP}) print N Q M
e2e0bcd1 7746$2 = 0
f7dc1244 7747(@value{GDBP})
e2e0bcd1
JB
7748@end smallexample
7749
7750
b37052ae
EZ
7751@node Tracepoints
7752@chapter Tracepoints
7753@c This chapter is based on the documentation written by Michael
7754@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7755
7756@cindex tracepoints
7757In some applications, it is not feasible for the debugger to interrupt
7758the program's execution long enough for the developer to learn
7759anything helpful about its behavior. If the program's correctness
7760depends on its real-time behavior, delays introduced by a debugger
7761might cause the program to change its behavior drastically, or perhaps
7762fail, even when the code itself is correct. It is useful to be able
7763to observe the program's behavior without interrupting it.
7764
7765Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7766specify locations in the program, called @dfn{tracepoints}, and
7767arbitrary expressions to evaluate when those tracepoints are reached.
7768Later, using the @code{tfind} command, you can examine the values
7769those expressions had when the program hit the tracepoints. The
7770expressions may also denote objects in memory---structures or arrays,
7771for example---whose values @value{GDBN} should record; while visiting
7772a particular tracepoint, you may inspect those objects as if they were
7773in memory at that moment. However, because @value{GDBN} records these
7774values without interacting with you, it can do so quickly and
7775unobtrusively, hopefully not disturbing the program's behavior.
7776
7777The tracepoint facility is currently available only for remote
9d29849a
JB
7778targets. @xref{Targets}. In addition, your remote target must know
7779how to collect trace data. This functionality is implemented in the
7780remote stub; however, none of the stubs distributed with @value{GDBN}
7781support tracepoints as of this writing. The format of the remote
7782packets used to implement tracepoints are described in @ref{Tracepoint
7783Packets}.
b37052ae
EZ
7784
7785This chapter describes the tracepoint commands and features.
7786
7787@menu
b383017d
RM
7788* Set Tracepoints::
7789* Analyze Collected Data::
7790* Tracepoint Variables::
b37052ae
EZ
7791@end menu
7792
7793@node Set Tracepoints
7794@section Commands to Set Tracepoints
7795
7796Before running such a @dfn{trace experiment}, an arbitrary number of
7797tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7798tracepoint has a number assigned to it by @value{GDBN}. Like with
7799breakpoints, tracepoint numbers are successive integers starting from
7800one. Many of the commands associated with tracepoints take the
7801tracepoint number as their argument, to identify which tracepoint to
7802work on.
7803
7804For each tracepoint, you can specify, in advance, some arbitrary set
7805of data that you want the target to collect in the trace buffer when
7806it hits that tracepoint. The collected data can include registers,
7807local variables, or global data. Later, you can use @value{GDBN}
7808commands to examine the values these data had at the time the
7809tracepoint was hit.
7810
7811This section describes commands to set tracepoints and associated
7812conditions and actions.
7813
7814@menu
b383017d
RM
7815* Create and Delete Tracepoints::
7816* Enable and Disable Tracepoints::
7817* Tracepoint Passcounts::
7818* Tracepoint Actions::
7819* Listing Tracepoints::
79a6e687 7820* Starting and Stopping Trace Experiments::
b37052ae
EZ
7821@end menu
7822
7823@node Create and Delete Tracepoints
7824@subsection Create and Delete Tracepoints
7825
7826@table @code
7827@cindex set tracepoint
7828@kindex trace
7829@item trace
7830The @code{trace} command is very similar to the @code{break} command.
7831Its argument can be a source line, a function name, or an address in
7832the target program. @xref{Set Breaks}. The @code{trace} command
7833defines a tracepoint, which is a point in the target program where the
7834debugger will briefly stop, collect some data, and then allow the
7835program to continue. Setting a tracepoint or changing its commands
7836doesn't take effect until the next @code{tstart} command; thus, you
7837cannot change the tracepoint attributes once a trace experiment is
7838running.
7839
7840Here are some examples of using the @code{trace} command:
7841
7842@smallexample
7843(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7844
7845(@value{GDBP}) @b{trace +2} // 2 lines forward
7846
7847(@value{GDBP}) @b{trace my_function} // first source line of function
7848
7849(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7850
7851(@value{GDBP}) @b{trace *0x2117c4} // an address
7852@end smallexample
7853
7854@noindent
7855You can abbreviate @code{trace} as @code{tr}.
7856
7857@vindex $tpnum
7858@cindex last tracepoint number
7859@cindex recent tracepoint number
7860@cindex tracepoint number
7861The convenience variable @code{$tpnum} records the tracepoint number
7862of the most recently set tracepoint.
7863
7864@kindex delete tracepoint
7865@cindex tracepoint deletion
7866@item delete tracepoint @r{[}@var{num}@r{]}
7867Permanently delete one or more tracepoints. With no argument, the
7868default is to delete all tracepoints.
7869
7870Examples:
7871
7872@smallexample
7873(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7874
7875(@value{GDBP}) @b{delete trace} // remove all tracepoints
7876@end smallexample
7877
7878@noindent
7879You can abbreviate this command as @code{del tr}.
7880@end table
7881
7882@node Enable and Disable Tracepoints
7883@subsection Enable and Disable Tracepoints
7884
7885@table @code
7886@kindex disable tracepoint
7887@item disable tracepoint @r{[}@var{num}@r{]}
7888Disable tracepoint @var{num}, or all tracepoints if no argument
7889@var{num} is given. A disabled tracepoint will have no effect during
7890the next trace experiment, but it is not forgotten. You can re-enable
7891a disabled tracepoint using the @code{enable tracepoint} command.
7892
7893@kindex enable tracepoint
7894@item enable tracepoint @r{[}@var{num}@r{]}
7895Enable tracepoint @var{num}, or all tracepoints. The enabled
7896tracepoints will become effective the next time a trace experiment is
7897run.
7898@end table
7899
7900@node Tracepoint Passcounts
7901@subsection Tracepoint Passcounts
7902
7903@table @code
7904@kindex passcount
7905@cindex tracepoint pass count
7906@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7907Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7908automatically stop a trace experiment. If a tracepoint's passcount is
7909@var{n}, then the trace experiment will be automatically stopped on
7910the @var{n}'th time that tracepoint is hit. If the tracepoint number
7911@var{num} is not specified, the @code{passcount} command sets the
7912passcount of the most recently defined tracepoint. If no passcount is
7913given, the trace experiment will run until stopped explicitly by the
7914user.
7915
7916Examples:
7917
7918@smallexample
b383017d 7919(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7920@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7921
7922(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7923@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7924(@value{GDBP}) @b{trace foo}
7925(@value{GDBP}) @b{pass 3}
7926(@value{GDBP}) @b{trace bar}
7927(@value{GDBP}) @b{pass 2}
7928(@value{GDBP}) @b{trace baz}
7929(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7930@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7931@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7932@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7933@end smallexample
7934@end table
7935
7936@node Tracepoint Actions
7937@subsection Tracepoint Action Lists
7938
7939@table @code
7940@kindex actions
7941@cindex tracepoint actions
7942@item actions @r{[}@var{num}@r{]}
7943This command will prompt for a list of actions to be taken when the
7944tracepoint is hit. If the tracepoint number @var{num} is not
7945specified, this command sets the actions for the one that was most
7946recently defined (so that you can define a tracepoint and then say
7947@code{actions} without bothering about its number). You specify the
7948actions themselves on the following lines, one action at a time, and
7949terminate the actions list with a line containing just @code{end}. So
7950far, the only defined actions are @code{collect} and
7951@code{while-stepping}.
7952
7953@cindex remove actions from a tracepoint
7954To remove all actions from a tracepoint, type @samp{actions @var{num}}
7955and follow it immediately with @samp{end}.
7956
7957@smallexample
7958(@value{GDBP}) @b{collect @var{data}} // collect some data
7959
6826cf00 7960(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7961
6826cf00 7962(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7963@end smallexample
7964
7965In the following example, the action list begins with @code{collect}
7966commands indicating the things to be collected when the tracepoint is
7967hit. Then, in order to single-step and collect additional data
7968following the tracepoint, a @code{while-stepping} command is used,
7969followed by the list of things to be collected while stepping. The
7970@code{while-stepping} command is terminated by its own separate
7971@code{end} command. Lastly, the action list is terminated by an
7972@code{end} command.
7973
7974@smallexample
7975(@value{GDBP}) @b{trace foo}
7976(@value{GDBP}) @b{actions}
7977Enter actions for tracepoint 1, one per line:
7978> collect bar,baz
7979> collect $regs
7980> while-stepping 12
7981 > collect $fp, $sp
7982 > end
7983end
7984@end smallexample
7985
7986@kindex collect @r{(tracepoints)}
7987@item collect @var{expr1}, @var{expr2}, @dots{}
7988Collect values of the given expressions when the tracepoint is hit.
7989This command accepts a comma-separated list of any valid expressions.
7990In addition to global, static, or local variables, the following
7991special arguments are supported:
7992
7993@table @code
7994@item $regs
7995collect all registers
7996
7997@item $args
7998collect all function arguments
7999
8000@item $locals
8001collect all local variables.
8002@end table
8003
8004You can give several consecutive @code{collect} commands, each one
8005with a single argument, or one @code{collect} command with several
8006arguments separated by commas: the effect is the same.
8007
f5c37c66
EZ
8008The command @code{info scope} (@pxref{Symbols, info scope}) is
8009particularly useful for figuring out what data to collect.
8010
b37052ae
EZ
8011@kindex while-stepping @r{(tracepoints)}
8012@item while-stepping @var{n}
8013Perform @var{n} single-step traces after the tracepoint, collecting
8014new data at each step. The @code{while-stepping} command is
8015followed by the list of what to collect while stepping (followed by
8016its own @code{end} command):
8017
8018@smallexample
8019> while-stepping 12
8020 > collect $regs, myglobal
8021 > end
8022>
8023@end smallexample
8024
8025@noindent
8026You may abbreviate @code{while-stepping} as @code{ws} or
8027@code{stepping}.
8028@end table
8029
8030@node Listing Tracepoints
8031@subsection Listing Tracepoints
8032
8033@table @code
8034@kindex info tracepoints
09d4efe1 8035@kindex info tp
b37052ae
EZ
8036@cindex information about tracepoints
8037@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8038Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8039a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8040defined so far. For each tracepoint, the following information is
8041shown:
8042
8043@itemize @bullet
8044@item
8045its number
8046@item
8047whether it is enabled or disabled
8048@item
8049its address
8050@item
8051its passcount as given by the @code{passcount @var{n}} command
8052@item
8053its step count as given by the @code{while-stepping @var{n}} command
8054@item
8055where in the source files is the tracepoint set
8056@item
8057its action list as given by the @code{actions} command
8058@end itemize
8059
8060@smallexample
8061(@value{GDBP}) @b{info trace}
8062Num Enb Address PassC StepC What
80631 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80642 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80653 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8066(@value{GDBP})
8067@end smallexample
8068
8069@noindent
8070This command can be abbreviated @code{info tp}.
8071@end table
8072
79a6e687
BW
8073@node Starting and Stopping Trace Experiments
8074@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8075
8076@table @code
8077@kindex tstart
8078@cindex start a new trace experiment
8079@cindex collected data discarded
8080@item tstart
8081This command takes no arguments. It starts the trace experiment, and
8082begins collecting data. This has the side effect of discarding all
8083the data collected in the trace buffer during the previous trace
8084experiment.
8085
8086@kindex tstop
8087@cindex stop a running trace experiment
8088@item tstop
8089This command takes no arguments. It ends the trace experiment, and
8090stops collecting data.
8091
68c71a2e 8092@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8093automatically if any tracepoint's passcount is reached
8094(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8095
8096@kindex tstatus
8097@cindex status of trace data collection
8098@cindex trace experiment, status of
8099@item tstatus
8100This command displays the status of the current trace data
8101collection.
8102@end table
8103
8104Here is an example of the commands we described so far:
8105
8106@smallexample
8107(@value{GDBP}) @b{trace gdb_c_test}
8108(@value{GDBP}) @b{actions}
8109Enter actions for tracepoint #1, one per line.
8110> collect $regs,$locals,$args
8111> while-stepping 11
8112 > collect $regs
8113 > end
8114> end
8115(@value{GDBP}) @b{tstart}
8116 [time passes @dots{}]
8117(@value{GDBP}) @b{tstop}
8118@end smallexample
8119
8120
8121@node Analyze Collected Data
79a6e687 8122@section Using the Collected Data
b37052ae
EZ
8123
8124After the tracepoint experiment ends, you use @value{GDBN} commands
8125for examining the trace data. The basic idea is that each tracepoint
8126collects a trace @dfn{snapshot} every time it is hit and another
8127snapshot every time it single-steps. All these snapshots are
8128consecutively numbered from zero and go into a buffer, and you can
8129examine them later. The way you examine them is to @dfn{focus} on a
8130specific trace snapshot. When the remote stub is focused on a trace
8131snapshot, it will respond to all @value{GDBN} requests for memory and
8132registers by reading from the buffer which belongs to that snapshot,
8133rather than from @emph{real} memory or registers of the program being
8134debugged. This means that @strong{all} @value{GDBN} commands
8135(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8136behave as if we were currently debugging the program state as it was
8137when the tracepoint occurred. Any requests for data that are not in
8138the buffer will fail.
8139
8140@menu
8141* tfind:: How to select a trace snapshot
8142* tdump:: How to display all data for a snapshot
8143* save-tracepoints:: How to save tracepoints for a future run
8144@end menu
8145
8146@node tfind
8147@subsection @code{tfind @var{n}}
8148
8149@kindex tfind
8150@cindex select trace snapshot
8151@cindex find trace snapshot
8152The basic command for selecting a trace snapshot from the buffer is
8153@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8154counting from zero. If no argument @var{n} is given, the next
8155snapshot is selected.
8156
8157Here are the various forms of using the @code{tfind} command.
8158
8159@table @code
8160@item tfind start
8161Find the first snapshot in the buffer. This is a synonym for
8162@code{tfind 0} (since 0 is the number of the first snapshot).
8163
8164@item tfind none
8165Stop debugging trace snapshots, resume @emph{live} debugging.
8166
8167@item tfind end
8168Same as @samp{tfind none}.
8169
8170@item tfind
8171No argument means find the next trace snapshot.
8172
8173@item tfind -
8174Find the previous trace snapshot before the current one. This permits
8175retracing earlier steps.
8176
8177@item tfind tracepoint @var{num}
8178Find the next snapshot associated with tracepoint @var{num}. Search
8179proceeds forward from the last examined trace snapshot. If no
8180argument @var{num} is given, it means find the next snapshot collected
8181for the same tracepoint as the current snapshot.
8182
8183@item tfind pc @var{addr}
8184Find the next snapshot associated with the value @var{addr} of the
8185program counter. Search proceeds forward from the last examined trace
8186snapshot. If no argument @var{addr} is given, it means find the next
8187snapshot with the same value of PC as the current snapshot.
8188
8189@item tfind outside @var{addr1}, @var{addr2}
8190Find the next snapshot whose PC is outside the given range of
8191addresses.
8192
8193@item tfind range @var{addr1}, @var{addr2}
8194Find the next snapshot whose PC is between @var{addr1} and
8195@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8196
8197@item tfind line @r{[}@var{file}:@r{]}@var{n}
8198Find the next snapshot associated with the source line @var{n}. If
8199the optional argument @var{file} is given, refer to line @var{n} in
8200that source file. Search proceeds forward from the last examined
8201trace snapshot. If no argument @var{n} is given, it means find the
8202next line other than the one currently being examined; thus saying
8203@code{tfind line} repeatedly can appear to have the same effect as
8204stepping from line to line in a @emph{live} debugging session.
8205@end table
8206
8207The default arguments for the @code{tfind} commands are specifically
8208designed to make it easy to scan through the trace buffer. For
8209instance, @code{tfind} with no argument selects the next trace
8210snapshot, and @code{tfind -} with no argument selects the previous
8211trace snapshot. So, by giving one @code{tfind} command, and then
8212simply hitting @key{RET} repeatedly you can examine all the trace
8213snapshots in order. Or, by saying @code{tfind -} and then hitting
8214@key{RET} repeatedly you can examine the snapshots in reverse order.
8215The @code{tfind line} command with no argument selects the snapshot
8216for the next source line executed. The @code{tfind pc} command with
8217no argument selects the next snapshot with the same program counter
8218(PC) as the current frame. The @code{tfind tracepoint} command with
8219no argument selects the next trace snapshot collected by the same
8220tracepoint as the current one.
8221
8222In addition to letting you scan through the trace buffer manually,
8223these commands make it easy to construct @value{GDBN} scripts that
8224scan through the trace buffer and print out whatever collected data
8225you are interested in. Thus, if we want to examine the PC, FP, and SP
8226registers from each trace frame in the buffer, we can say this:
8227
8228@smallexample
8229(@value{GDBP}) @b{tfind start}
8230(@value{GDBP}) @b{while ($trace_frame != -1)}
8231> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8232 $trace_frame, $pc, $sp, $fp
8233> tfind
8234> end
8235
8236Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8237Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8238Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8239Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8240Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8241Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8242Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8243Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8244Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8245Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8246Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8247@end smallexample
8248
8249Or, if we want to examine the variable @code{X} at each source line in
8250the buffer:
8251
8252@smallexample
8253(@value{GDBP}) @b{tfind start}
8254(@value{GDBP}) @b{while ($trace_frame != -1)}
8255> printf "Frame %d, X == %d\n", $trace_frame, X
8256> tfind line
8257> end
8258
8259Frame 0, X = 1
8260Frame 7, X = 2
8261Frame 13, X = 255
8262@end smallexample
8263
8264@node tdump
8265@subsection @code{tdump}
8266@kindex tdump
8267@cindex dump all data collected at tracepoint
8268@cindex tracepoint data, display
8269
8270This command takes no arguments. It prints all the data collected at
8271the current trace snapshot.
8272
8273@smallexample
8274(@value{GDBP}) @b{trace 444}
8275(@value{GDBP}) @b{actions}
8276Enter actions for tracepoint #2, one per line:
8277> collect $regs, $locals, $args, gdb_long_test
8278> end
8279
8280(@value{GDBP}) @b{tstart}
8281
8282(@value{GDBP}) @b{tfind line 444}
8283#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8284at gdb_test.c:444
8285444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8286
8287(@value{GDBP}) @b{tdump}
8288Data collected at tracepoint 2, trace frame 1:
8289d0 0xc4aa0085 -995491707
8290d1 0x18 24
8291d2 0x80 128
8292d3 0x33 51
8293d4 0x71aea3d 119204413
8294d5 0x22 34
8295d6 0xe0 224
8296d7 0x380035 3670069
8297a0 0x19e24a 1696330
8298a1 0x3000668 50333288
8299a2 0x100 256
8300a3 0x322000 3284992
8301a4 0x3000698 50333336
8302a5 0x1ad3cc 1758156
8303fp 0x30bf3c 0x30bf3c
8304sp 0x30bf34 0x30bf34
8305ps 0x0 0
8306pc 0x20b2c8 0x20b2c8
8307fpcontrol 0x0 0
8308fpstatus 0x0 0
8309fpiaddr 0x0 0
8310p = 0x20e5b4 "gdb-test"
8311p1 = (void *) 0x11
8312p2 = (void *) 0x22
8313p3 = (void *) 0x33
8314p4 = (void *) 0x44
8315p5 = (void *) 0x55
8316p6 = (void *) 0x66
8317gdb_long_test = 17 '\021'
8318
8319(@value{GDBP})
8320@end smallexample
8321
8322@node save-tracepoints
8323@subsection @code{save-tracepoints @var{filename}}
8324@kindex save-tracepoints
8325@cindex save tracepoints for future sessions
8326
8327This command saves all current tracepoint definitions together with
8328their actions and passcounts, into a file @file{@var{filename}}
8329suitable for use in a later debugging session. To read the saved
8330tracepoint definitions, use the @code{source} command (@pxref{Command
8331Files}).
8332
8333@node Tracepoint Variables
8334@section Convenience Variables for Tracepoints
8335@cindex tracepoint variables
8336@cindex convenience variables for tracepoints
8337
8338@table @code
8339@vindex $trace_frame
8340@item (int) $trace_frame
8341The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8342snapshot is selected.
8343
8344@vindex $tracepoint
8345@item (int) $tracepoint
8346The tracepoint for the current trace snapshot.
8347
8348@vindex $trace_line
8349@item (int) $trace_line
8350The line number for the current trace snapshot.
8351
8352@vindex $trace_file
8353@item (char []) $trace_file
8354The source file for the current trace snapshot.
8355
8356@vindex $trace_func
8357@item (char []) $trace_func
8358The name of the function containing @code{$tracepoint}.
8359@end table
8360
8361Note: @code{$trace_file} is not suitable for use in @code{printf},
8362use @code{output} instead.
8363
8364Here's a simple example of using these convenience variables for
8365stepping through all the trace snapshots and printing some of their
8366data.
8367
8368@smallexample
8369(@value{GDBP}) @b{tfind start}
8370
8371(@value{GDBP}) @b{while $trace_frame != -1}
8372> output $trace_file
8373> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8374> tfind
8375> end
8376@end smallexample
8377
df0cd8c5
JB
8378@node Overlays
8379@chapter Debugging Programs That Use Overlays
8380@cindex overlays
8381
8382If your program is too large to fit completely in your target system's
8383memory, you can sometimes use @dfn{overlays} to work around this
8384problem. @value{GDBN} provides some support for debugging programs that
8385use overlays.
8386
8387@menu
8388* How Overlays Work:: A general explanation of overlays.
8389* Overlay Commands:: Managing overlays in @value{GDBN}.
8390* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8391 mapped by asking the inferior.
8392* Overlay Sample Program:: A sample program using overlays.
8393@end menu
8394
8395@node How Overlays Work
8396@section How Overlays Work
8397@cindex mapped overlays
8398@cindex unmapped overlays
8399@cindex load address, overlay's
8400@cindex mapped address
8401@cindex overlay area
8402
8403Suppose you have a computer whose instruction address space is only 64
8404kilobytes long, but which has much more memory which can be accessed by
8405other means: special instructions, segment registers, or memory
8406management hardware, for example. Suppose further that you want to
8407adapt a program which is larger than 64 kilobytes to run on this system.
8408
8409One solution is to identify modules of your program which are relatively
8410independent, and need not call each other directly; call these modules
8411@dfn{overlays}. Separate the overlays from the main program, and place
8412their machine code in the larger memory. Place your main program in
8413instruction memory, but leave at least enough space there to hold the
8414largest overlay as well.
8415
8416Now, to call a function located in an overlay, you must first copy that
8417overlay's machine code from the large memory into the space set aside
8418for it in the instruction memory, and then jump to its entry point
8419there.
8420
c928edc0
AC
8421@c NB: In the below the mapped area's size is greater or equal to the
8422@c size of all overlays. This is intentional to remind the developer
8423@c that overlays don't necessarily need to be the same size.
8424
474c8240 8425@smallexample
df0cd8c5 8426@group
c928edc0
AC
8427 Data Instruction Larger
8428Address Space Address Space Address Space
8429+-----------+ +-----------+ +-----------+
8430| | | | | |
8431+-----------+ +-----------+ +-----------+<-- overlay 1
8432| program | | main | .----| overlay 1 | load address
8433| variables | | program | | +-----------+
8434| and heap | | | | | |
8435+-----------+ | | | +-----------+<-- overlay 2
8436| | +-----------+ | | | load address
8437+-----------+ | | | .-| overlay 2 |
8438 | | | | | |
8439 mapped --->+-----------+ | | +-----------+
8440 address | | | | | |
8441 | overlay | <-' | | |
8442 | area | <---' +-----------+<-- overlay 3
8443 | | <---. | | load address
8444 +-----------+ `--| overlay 3 |
8445 | | | |
8446 +-----------+ | |
8447 +-----------+
8448 | |
8449 +-----------+
8450
8451 @anchor{A code overlay}A code overlay
df0cd8c5 8452@end group
474c8240 8453@end smallexample
df0cd8c5 8454
c928edc0
AC
8455The diagram (@pxref{A code overlay}) shows a system with separate data
8456and instruction address spaces. To map an overlay, the program copies
8457its code from the larger address space to the instruction address space.
8458Since the overlays shown here all use the same mapped address, only one
8459may be mapped at a time. For a system with a single address space for
8460data and instructions, the diagram would be similar, except that the
8461program variables and heap would share an address space with the main
8462program and the overlay area.
df0cd8c5
JB
8463
8464An overlay loaded into instruction memory and ready for use is called a
8465@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8466instruction memory. An overlay not present (or only partially present)
8467in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8468is its address in the larger memory. The mapped address is also called
8469the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8470called the @dfn{load memory address}, or @dfn{LMA}.
8471
8472Unfortunately, overlays are not a completely transparent way to adapt a
8473program to limited instruction memory. They introduce a new set of
8474global constraints you must keep in mind as you design your program:
8475
8476@itemize @bullet
8477
8478@item
8479Before calling or returning to a function in an overlay, your program
8480must make sure that overlay is actually mapped. Otherwise, the call or
8481return will transfer control to the right address, but in the wrong
8482overlay, and your program will probably crash.
8483
8484@item
8485If the process of mapping an overlay is expensive on your system, you
8486will need to choose your overlays carefully to minimize their effect on
8487your program's performance.
8488
8489@item
8490The executable file you load onto your system must contain each
8491overlay's instructions, appearing at the overlay's load address, not its
8492mapped address. However, each overlay's instructions must be relocated
8493and its symbols defined as if the overlay were at its mapped address.
8494You can use GNU linker scripts to specify different load and relocation
8495addresses for pieces of your program; see @ref{Overlay Description,,,
8496ld.info, Using ld: the GNU linker}.
8497
8498@item
8499The procedure for loading executable files onto your system must be able
8500to load their contents into the larger address space as well as the
8501instruction and data spaces.
8502
8503@end itemize
8504
8505The overlay system described above is rather simple, and could be
8506improved in many ways:
8507
8508@itemize @bullet
8509
8510@item
8511If your system has suitable bank switch registers or memory management
8512hardware, you could use those facilities to make an overlay's load area
8513contents simply appear at their mapped address in instruction space.
8514This would probably be faster than copying the overlay to its mapped
8515area in the usual way.
8516
8517@item
8518If your overlays are small enough, you could set aside more than one
8519overlay area, and have more than one overlay mapped at a time.
8520
8521@item
8522You can use overlays to manage data, as well as instructions. In
8523general, data overlays are even less transparent to your design than
8524code overlays: whereas code overlays only require care when you call or
8525return to functions, data overlays require care every time you access
8526the data. Also, if you change the contents of a data overlay, you
8527must copy its contents back out to its load address before you can copy a
8528different data overlay into the same mapped area.
8529
8530@end itemize
8531
8532
8533@node Overlay Commands
8534@section Overlay Commands
8535
8536To use @value{GDBN}'s overlay support, each overlay in your program must
8537correspond to a separate section of the executable file. The section's
8538virtual memory address and load memory address must be the overlay's
8539mapped and load addresses. Identifying overlays with sections allows
8540@value{GDBN} to determine the appropriate address of a function or
8541variable, depending on whether the overlay is mapped or not.
8542
8543@value{GDBN}'s overlay commands all start with the word @code{overlay};
8544you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8545
8546@table @code
8547@item overlay off
4644b6e3 8548@kindex overlay
df0cd8c5
JB
8549Disable @value{GDBN}'s overlay support. When overlay support is
8550disabled, @value{GDBN} assumes that all functions and variables are
8551always present at their mapped addresses. By default, @value{GDBN}'s
8552overlay support is disabled.
8553
8554@item overlay manual
df0cd8c5
JB
8555@cindex manual overlay debugging
8556Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8557relies on you to tell it which overlays are mapped, and which are not,
8558using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8559commands described below.
8560
8561@item overlay map-overlay @var{overlay}
8562@itemx overlay map @var{overlay}
df0cd8c5
JB
8563@cindex map an overlay
8564Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8565be the name of the object file section containing the overlay. When an
8566overlay is mapped, @value{GDBN} assumes it can find the overlay's
8567functions and variables at their mapped addresses. @value{GDBN} assumes
8568that any other overlays whose mapped ranges overlap that of
8569@var{overlay} are now unmapped.
8570
8571@item overlay unmap-overlay @var{overlay}
8572@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8573@cindex unmap an overlay
8574Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8575must be the name of the object file section containing the overlay.
8576When an overlay is unmapped, @value{GDBN} assumes it can find the
8577overlay's functions and variables at their load addresses.
8578
8579@item overlay auto
df0cd8c5
JB
8580Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8581consults a data structure the overlay manager maintains in the inferior
8582to see which overlays are mapped. For details, see @ref{Automatic
8583Overlay Debugging}.
8584
8585@item overlay load-target
8586@itemx overlay load
df0cd8c5
JB
8587@cindex reloading the overlay table
8588Re-read the overlay table from the inferior. Normally, @value{GDBN}
8589re-reads the table @value{GDBN} automatically each time the inferior
8590stops, so this command should only be necessary if you have changed the
8591overlay mapping yourself using @value{GDBN}. This command is only
8592useful when using automatic overlay debugging.
8593
8594@item overlay list-overlays
8595@itemx overlay list
8596@cindex listing mapped overlays
8597Display a list of the overlays currently mapped, along with their mapped
8598addresses, load addresses, and sizes.
8599
8600@end table
8601
8602Normally, when @value{GDBN} prints a code address, it includes the name
8603of the function the address falls in:
8604
474c8240 8605@smallexample
f7dc1244 8606(@value{GDBP}) print main
df0cd8c5 8607$3 = @{int ()@} 0x11a0 <main>
474c8240 8608@end smallexample
df0cd8c5
JB
8609@noindent
8610When overlay debugging is enabled, @value{GDBN} recognizes code in
8611unmapped overlays, and prints the names of unmapped functions with
8612asterisks around them. For example, if @code{foo} is a function in an
8613unmapped overlay, @value{GDBN} prints it this way:
8614
474c8240 8615@smallexample
f7dc1244 8616(@value{GDBP}) overlay list
df0cd8c5 8617No sections are mapped.
f7dc1244 8618(@value{GDBP}) print foo
df0cd8c5 8619$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8620@end smallexample
df0cd8c5
JB
8621@noindent
8622When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8623name normally:
8624
474c8240 8625@smallexample
f7dc1244 8626(@value{GDBP}) overlay list
b383017d 8627Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8628 mapped at 0x1016 - 0x104a
f7dc1244 8629(@value{GDBP}) print foo
df0cd8c5 8630$6 = @{int (int)@} 0x1016 <foo>
474c8240 8631@end smallexample
df0cd8c5
JB
8632
8633When overlay debugging is enabled, @value{GDBN} can find the correct
8634address for functions and variables in an overlay, whether or not the
8635overlay is mapped. This allows most @value{GDBN} commands, like
8636@code{break} and @code{disassemble}, to work normally, even on unmapped
8637code. However, @value{GDBN}'s breakpoint support has some limitations:
8638
8639@itemize @bullet
8640@item
8641@cindex breakpoints in overlays
8642@cindex overlays, setting breakpoints in
8643You can set breakpoints in functions in unmapped overlays, as long as
8644@value{GDBN} can write to the overlay at its load address.
8645@item
8646@value{GDBN} can not set hardware or simulator-based breakpoints in
8647unmapped overlays. However, if you set a breakpoint at the end of your
8648overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8649you are using manual overlay management), @value{GDBN} will re-set its
8650breakpoints properly.
8651@end itemize
8652
8653
8654@node Automatic Overlay Debugging
8655@section Automatic Overlay Debugging
8656@cindex automatic overlay debugging
8657
8658@value{GDBN} can automatically track which overlays are mapped and which
8659are not, given some simple co-operation from the overlay manager in the
8660inferior. If you enable automatic overlay debugging with the
8661@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8662looks in the inferior's memory for certain variables describing the
8663current state of the overlays.
8664
8665Here are the variables your overlay manager must define to support
8666@value{GDBN}'s automatic overlay debugging:
8667
8668@table @asis
8669
8670@item @code{_ovly_table}:
8671This variable must be an array of the following structures:
8672
474c8240 8673@smallexample
df0cd8c5
JB
8674struct
8675@{
8676 /* The overlay's mapped address. */
8677 unsigned long vma;
8678
8679 /* The size of the overlay, in bytes. */
8680 unsigned long size;
8681
8682 /* The overlay's load address. */
8683 unsigned long lma;
8684
8685 /* Non-zero if the overlay is currently mapped;
8686 zero otherwise. */
8687 unsigned long mapped;
8688@}
474c8240 8689@end smallexample
df0cd8c5
JB
8690
8691@item @code{_novlys}:
8692This variable must be a four-byte signed integer, holding the total
8693number of elements in @code{_ovly_table}.
8694
8695@end table
8696
8697To decide whether a particular overlay is mapped or not, @value{GDBN}
8698looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8699@code{lma} members equal the VMA and LMA of the overlay's section in the
8700executable file. When @value{GDBN} finds a matching entry, it consults
8701the entry's @code{mapped} member to determine whether the overlay is
8702currently mapped.
8703
81d46470 8704In addition, your overlay manager may define a function called
def71bfa 8705@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8706will silently set a breakpoint there. If the overlay manager then
8707calls this function whenever it has changed the overlay table, this
8708will enable @value{GDBN} to accurately keep track of which overlays
8709are in program memory, and update any breakpoints that may be set
b383017d 8710in overlays. This will allow breakpoints to work even if the
81d46470
MS
8711overlays are kept in ROM or other non-writable memory while they
8712are not being executed.
df0cd8c5
JB
8713
8714@node Overlay Sample Program
8715@section Overlay Sample Program
8716@cindex overlay example program
8717
8718When linking a program which uses overlays, you must place the overlays
8719at their load addresses, while relocating them to run at their mapped
8720addresses. To do this, you must write a linker script (@pxref{Overlay
8721Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8722since linker scripts are specific to a particular host system, target
8723architecture, and target memory layout, this manual cannot provide
8724portable sample code demonstrating @value{GDBN}'s overlay support.
8725
8726However, the @value{GDBN} source distribution does contain an overlaid
8727program, with linker scripts for a few systems, as part of its test
8728suite. The program consists of the following files from
8729@file{gdb/testsuite/gdb.base}:
8730
8731@table @file
8732@item overlays.c
8733The main program file.
8734@item ovlymgr.c
8735A simple overlay manager, used by @file{overlays.c}.
8736@item foo.c
8737@itemx bar.c
8738@itemx baz.c
8739@itemx grbx.c
8740Overlay modules, loaded and used by @file{overlays.c}.
8741@item d10v.ld
8742@itemx m32r.ld
8743Linker scripts for linking the test program on the @code{d10v-elf}
8744and @code{m32r-elf} targets.
8745@end table
8746
8747You can build the test program using the @code{d10v-elf} GCC
8748cross-compiler like this:
8749
474c8240 8750@smallexample
df0cd8c5
JB
8751$ d10v-elf-gcc -g -c overlays.c
8752$ d10v-elf-gcc -g -c ovlymgr.c
8753$ d10v-elf-gcc -g -c foo.c
8754$ d10v-elf-gcc -g -c bar.c
8755$ d10v-elf-gcc -g -c baz.c
8756$ d10v-elf-gcc -g -c grbx.c
8757$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8758 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8759@end smallexample
df0cd8c5
JB
8760
8761The build process is identical for any other architecture, except that
8762you must substitute the appropriate compiler and linker script for the
8763target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8764
8765
6d2ebf8b 8766@node Languages
c906108c
SS
8767@chapter Using @value{GDBN} with Different Languages
8768@cindex languages
8769
c906108c
SS
8770Although programming languages generally have common aspects, they are
8771rarely expressed in the same manner. For instance, in ANSI C,
8772dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8773Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8774represented (and displayed) differently. Hex numbers in C appear as
c906108c 8775@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8776
8777@cindex working language
8778Language-specific information is built into @value{GDBN} for some languages,
8779allowing you to express operations like the above in your program's
8780native language, and allowing @value{GDBN} to output values in a manner
8781consistent with the syntax of your program's native language. The
8782language you use to build expressions is called the @dfn{working
8783language}.
8784
8785@menu
8786* Setting:: Switching between source languages
8787* Show:: Displaying the language
c906108c 8788* Checks:: Type and range checks
79a6e687
BW
8789* Supported Languages:: Supported languages
8790* Unsupported Languages:: Unsupported languages
c906108c
SS
8791@end menu
8792
6d2ebf8b 8793@node Setting
79a6e687 8794@section Switching Between Source Languages
c906108c
SS
8795
8796There are two ways to control the working language---either have @value{GDBN}
8797set it automatically, or select it manually yourself. You can use the
8798@code{set language} command for either purpose. On startup, @value{GDBN}
8799defaults to setting the language automatically. The working language is
8800used to determine how expressions you type are interpreted, how values
8801are printed, etc.
8802
8803In addition to the working language, every source file that
8804@value{GDBN} knows about has its own working language. For some object
8805file formats, the compiler might indicate which language a particular
8806source file is in. However, most of the time @value{GDBN} infers the
8807language from the name of the file. The language of a source file
b37052ae 8808controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8809show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8810set the language of a source file from within @value{GDBN}, but you can
8811set the language associated with a filename extension. @xref{Show, ,
79a6e687 8812Displaying the Language}.
c906108c
SS
8813
8814This is most commonly a problem when you use a program, such
5d161b24 8815as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8816another language. In that case, make the
8817program use @code{#line} directives in its C output; that way
8818@value{GDBN} will know the correct language of the source code of the original
8819program, and will display that source code, not the generated C code.
8820
8821@menu
8822* Filenames:: Filename extensions and languages.
8823* Manually:: Setting the working language manually
8824* Automatically:: Having @value{GDBN} infer the source language
8825@end menu
8826
6d2ebf8b 8827@node Filenames
79a6e687 8828@subsection List of Filename Extensions and Languages
c906108c
SS
8829
8830If a source file name ends in one of the following extensions, then
8831@value{GDBN} infers that its language is the one indicated.
8832
8833@table @file
e07c999f
PH
8834@item .ada
8835@itemx .ads
8836@itemx .adb
8837@itemx .a
8838Ada source file.
c906108c
SS
8839
8840@item .c
8841C source file
8842
8843@item .C
8844@itemx .cc
8845@itemx .cp
8846@itemx .cpp
8847@itemx .cxx
8848@itemx .c++
b37052ae 8849C@t{++} source file
c906108c 8850
b37303ee
AF
8851@item .m
8852Objective-C source file
8853
c906108c
SS
8854@item .f
8855@itemx .F
8856Fortran source file
8857
c906108c
SS
8858@item .mod
8859Modula-2 source file
c906108c
SS
8860
8861@item .s
8862@itemx .S
8863Assembler source file. This actually behaves almost like C, but
8864@value{GDBN} does not skip over function prologues when stepping.
8865@end table
8866
8867In addition, you may set the language associated with a filename
79a6e687 8868extension. @xref{Show, , Displaying the Language}.
c906108c 8869
6d2ebf8b 8870@node Manually
79a6e687 8871@subsection Setting the Working Language
c906108c
SS
8872
8873If you allow @value{GDBN} to set the language automatically,
8874expressions are interpreted the same way in your debugging session and
8875your program.
8876
8877@kindex set language
8878If you wish, you may set the language manually. To do this, issue the
8879command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8880a language, such as
c906108c 8881@code{c} or @code{modula-2}.
c906108c
SS
8882For a list of the supported languages, type @samp{set language}.
8883
c906108c
SS
8884Setting the language manually prevents @value{GDBN} from updating the working
8885language automatically. This can lead to confusion if you try
8886to debug a program when the working language is not the same as the
8887source language, when an expression is acceptable to both
8888languages---but means different things. For instance, if the current
8889source file were written in C, and @value{GDBN} was parsing Modula-2, a
8890command such as:
8891
474c8240 8892@smallexample
c906108c 8893print a = b + c
474c8240 8894@end smallexample
c906108c
SS
8895
8896@noindent
8897might not have the effect you intended. In C, this means to add
8898@code{b} and @code{c} and place the result in @code{a}. The result
8899printed would be the value of @code{a}. In Modula-2, this means to compare
8900@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8901
6d2ebf8b 8902@node Automatically
79a6e687 8903@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8904
8905To have @value{GDBN} set the working language automatically, use
8906@samp{set language local} or @samp{set language auto}. @value{GDBN}
8907then infers the working language. That is, when your program stops in a
8908frame (usually by encountering a breakpoint), @value{GDBN} sets the
8909working language to the language recorded for the function in that
8910frame. If the language for a frame is unknown (that is, if the function
8911or block corresponding to the frame was defined in a source file that
8912does not have a recognized extension), the current working language is
8913not changed, and @value{GDBN} issues a warning.
8914
8915This may not seem necessary for most programs, which are written
8916entirely in one source language. However, program modules and libraries
8917written in one source language can be used by a main program written in
8918a different source language. Using @samp{set language auto} in this
8919case frees you from having to set the working language manually.
8920
6d2ebf8b 8921@node Show
79a6e687 8922@section Displaying the Language
c906108c
SS
8923
8924The following commands help you find out which language is the
8925working language, and also what language source files were written in.
8926
c906108c
SS
8927@table @code
8928@item show language
9c16f35a 8929@kindex show language
c906108c
SS
8930Display the current working language. This is the
8931language you can use with commands such as @code{print} to
8932build and compute expressions that may involve variables in your program.
8933
8934@item info frame
4644b6e3 8935@kindex info frame@r{, show the source language}
5d161b24 8936Display the source language for this frame. This language becomes the
c906108c 8937working language if you use an identifier from this frame.
79a6e687 8938@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8939information listed here.
8940
8941@item info source
4644b6e3 8942@kindex info source@r{, show the source language}
c906108c 8943Display the source language of this source file.
5d161b24 8944@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8945information listed here.
8946@end table
8947
8948In unusual circumstances, you may have source files with extensions
8949not in the standard list. You can then set the extension associated
8950with a language explicitly:
8951
c906108c 8952@table @code
09d4efe1 8953@item set extension-language @var{ext} @var{language}
9c16f35a 8954@kindex set extension-language
09d4efe1
EZ
8955Tell @value{GDBN} that source files with extension @var{ext} are to be
8956assumed as written in the source language @var{language}.
c906108c
SS
8957
8958@item info extensions
9c16f35a 8959@kindex info extensions
c906108c
SS
8960List all the filename extensions and the associated languages.
8961@end table
8962
6d2ebf8b 8963@node Checks
79a6e687 8964@section Type and Range Checking
c906108c
SS
8965
8966@quotation
8967@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8968checking are included, but they do not yet have any effect. This
8969section documents the intended facilities.
8970@end quotation
8971@c FIXME remove warning when type/range code added
8972
8973Some languages are designed to guard you against making seemingly common
8974errors through a series of compile- and run-time checks. These include
8975checking the type of arguments to functions and operators, and making
8976sure mathematical overflows are caught at run time. Checks such as
8977these help to ensure a program's correctness once it has been compiled
8978by eliminating type mismatches, and providing active checks for range
8979errors when your program is running.
8980
8981@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8982Although @value{GDBN} does not check the statements in your program,
8983it can check expressions entered directly into @value{GDBN} for
8984evaluation via the @code{print} command, for example. As with the
8985working language, @value{GDBN} can also decide whether or not to check
8986automatically based on your program's source language.
79a6e687 8987@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8988settings of supported languages.
c906108c
SS
8989
8990@menu
8991* Type Checking:: An overview of type checking
8992* Range Checking:: An overview of range checking
8993@end menu
8994
8995@cindex type checking
8996@cindex checks, type
6d2ebf8b 8997@node Type Checking
79a6e687 8998@subsection An Overview of Type Checking
c906108c
SS
8999
9000Some languages, such as Modula-2, are strongly typed, meaning that the
9001arguments to operators and functions have to be of the correct type,
9002otherwise an error occurs. These checks prevent type mismatch
9003errors from ever causing any run-time problems. For example,
9004
9005@smallexample
90061 + 2 @result{} 3
9007@exdent but
9008@error{} 1 + 2.3
9009@end smallexample
9010
9011The second example fails because the @code{CARDINAL} 1 is not
9012type-compatible with the @code{REAL} 2.3.
9013
5d161b24
DB
9014For the expressions you use in @value{GDBN} commands, you can tell the
9015@value{GDBN} type checker to skip checking;
9016to treat any mismatches as errors and abandon the expression;
9017or to only issue warnings when type mismatches occur,
c906108c
SS
9018but evaluate the expression anyway. When you choose the last of
9019these, @value{GDBN} evaluates expressions like the second example above, but
9020also issues a warning.
9021
5d161b24
DB
9022Even if you turn type checking off, there may be other reasons
9023related to type that prevent @value{GDBN} from evaluating an expression.
9024For instance, @value{GDBN} does not know how to add an @code{int} and
9025a @code{struct foo}. These particular type errors have nothing to do
9026with the language in use, and usually arise from expressions, such as
c906108c
SS
9027the one described above, which make little sense to evaluate anyway.
9028
9029Each language defines to what degree it is strict about type. For
9030instance, both Modula-2 and C require the arguments to arithmetical
9031operators to be numbers. In C, enumerated types and pointers can be
9032represented as numbers, so that they are valid arguments to mathematical
79a6e687 9033operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9034details on specific languages.
9035
9036@value{GDBN} provides some additional commands for controlling the type checker:
9037
c906108c
SS
9038@kindex set check type
9039@kindex show check type
9040@table @code
9041@item set check type auto
9042Set type checking on or off based on the current working language.
79a6e687 9043@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9044each language.
9045
9046@item set check type on
9047@itemx set check type off
9048Set type checking on or off, overriding the default setting for the
9049current working language. Issue a warning if the setting does not
9050match the language default. If any type mismatches occur in
d4f3574e 9051evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9052message and aborts evaluation of the expression.
9053
9054@item set check type warn
9055Cause the type checker to issue warnings, but to always attempt to
9056evaluate the expression. Evaluating the expression may still
9057be impossible for other reasons. For example, @value{GDBN} cannot add
9058numbers and structures.
9059
9060@item show type
5d161b24 9061Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9062is setting it automatically.
9063@end table
9064
9065@cindex range checking
9066@cindex checks, range
6d2ebf8b 9067@node Range Checking
79a6e687 9068@subsection An Overview of Range Checking
c906108c
SS
9069
9070In some languages (such as Modula-2), it is an error to exceed the
9071bounds of a type; this is enforced with run-time checks. Such range
9072checking is meant to ensure program correctness by making sure
9073computations do not overflow, or indices on an array element access do
9074not exceed the bounds of the array.
9075
9076For expressions you use in @value{GDBN} commands, you can tell
9077@value{GDBN} to treat range errors in one of three ways: ignore them,
9078always treat them as errors and abandon the expression, or issue
9079warnings but evaluate the expression anyway.
9080
9081A range error can result from numerical overflow, from exceeding an
9082array index bound, or when you type a constant that is not a member
9083of any type. Some languages, however, do not treat overflows as an
9084error. In many implementations of C, mathematical overflow causes the
9085result to ``wrap around'' to lower values---for example, if @var{m} is
9086the largest integer value, and @var{s} is the smallest, then
9087
474c8240 9088@smallexample
c906108c 9089@var{m} + 1 @result{} @var{s}
474c8240 9090@end smallexample
c906108c
SS
9091
9092This, too, is specific to individual languages, and in some cases
79a6e687
BW
9093specific to individual compilers or machines. @xref{Supported Languages, ,
9094Supported Languages}, for further details on specific languages.
c906108c
SS
9095
9096@value{GDBN} provides some additional commands for controlling the range checker:
9097
c906108c
SS
9098@kindex set check range
9099@kindex show check range
9100@table @code
9101@item set check range auto
9102Set range checking on or off based on the current working language.
79a6e687 9103@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9104each language.
9105
9106@item set check range on
9107@itemx set check range off
9108Set range checking on or off, overriding the default setting for the
9109current working language. A warning is issued if the setting does not
c3f6f71d
JM
9110match the language default. If a range error occurs and range checking is on,
9111then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9112
9113@item set check range warn
9114Output messages when the @value{GDBN} range checker detects a range error,
9115but attempt to evaluate the expression anyway. Evaluating the
9116expression may still be impossible for other reasons, such as accessing
9117memory that the process does not own (a typical example from many Unix
9118systems).
9119
9120@item show range
9121Show the current setting of the range checker, and whether or not it is
9122being set automatically by @value{GDBN}.
9123@end table
c906108c 9124
79a6e687
BW
9125@node Supported Languages
9126@section Supported Languages
c906108c 9127
9c16f35a
EZ
9128@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9129assembly, Modula-2, and Ada.
cce74817 9130@c This is false ...
c906108c
SS
9131Some @value{GDBN} features may be used in expressions regardless of the
9132language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9133and the @samp{@{type@}addr} construct (@pxref{Expressions,
9134,Expressions}) can be used with the constructs of any supported
9135language.
9136
9137The following sections detail to what degree each source language is
9138supported by @value{GDBN}. These sections are not meant to be language
9139tutorials or references, but serve only as a reference guide to what the
9140@value{GDBN} expression parser accepts, and what input and output
9141formats should look like for different languages. There are many good
9142books written on each of these languages; please look to these for a
9143language reference or tutorial.
9144
c906108c 9145@menu
b37303ee 9146* C:: C and C@t{++}
b383017d 9147* Objective-C:: Objective-C
09d4efe1 9148* Fortran:: Fortran
9c16f35a 9149* Pascal:: Pascal
b37303ee 9150* Modula-2:: Modula-2
e07c999f 9151* Ada:: Ada
c906108c
SS
9152@end menu
9153
6d2ebf8b 9154@node C
b37052ae 9155@subsection C and C@t{++}
7a292a7a 9156
b37052ae
EZ
9157@cindex C and C@t{++}
9158@cindex expressions in C or C@t{++}
c906108c 9159
b37052ae 9160Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9161to both languages. Whenever this is the case, we discuss those languages
9162together.
9163
41afff9a
EZ
9164@cindex C@t{++}
9165@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9166@cindex @sc{gnu} C@t{++}
9167The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9168compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9169effectively, you must compile your C@t{++} programs with a supported
9170C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9171compiler (@code{aCC}).
9172
0179ffac
DC
9173For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9174format; if it doesn't work on your system, try the stabs+ debugging
9175format. You can select those formats explicitly with the @code{g++}
9176command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9177@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9178gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9179
c906108c 9180@menu
b37052ae
EZ
9181* C Operators:: C and C@t{++} operators
9182* C Constants:: C and C@t{++} constants
79a6e687 9183* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9184* C Defaults:: Default settings for C and C@t{++}
9185* C Checks:: C and C@t{++} type and range checks
c906108c 9186* Debugging C:: @value{GDBN} and C
79a6e687 9187* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9188* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9189@end menu
c906108c 9190
6d2ebf8b 9191@node C Operators
79a6e687 9192@subsubsection C and C@t{++} Operators
7a292a7a 9193
b37052ae 9194@cindex C and C@t{++} operators
c906108c
SS
9195
9196Operators must be defined on values of specific types. For instance,
9197@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9198often defined on groups of types.
c906108c 9199
b37052ae 9200For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9201
9202@itemize @bullet
53a5351d 9203
c906108c 9204@item
c906108c 9205@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9206specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9207
9208@item
d4f3574e
SS
9209@emph{Floating-point types} include @code{float}, @code{double}, and
9210@code{long double} (if supported by the target platform).
c906108c
SS
9211
9212@item
53a5351d 9213@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9214
9215@item
9216@emph{Scalar types} include all of the above.
53a5351d 9217
c906108c
SS
9218@end itemize
9219
9220@noindent
9221The following operators are supported. They are listed here
9222in order of increasing precedence:
9223
9224@table @code
9225@item ,
9226The comma or sequencing operator. Expressions in a comma-separated list
9227are evaluated from left to right, with the result of the entire
9228expression being the last expression evaluated.
9229
9230@item =
9231Assignment. The value of an assignment expression is the value
9232assigned. Defined on scalar types.
9233
9234@item @var{op}=
9235Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9236and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9237@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9238@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9239@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9240
9241@item ?:
9242The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9243of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9244integral type.
9245
9246@item ||
9247Logical @sc{or}. Defined on integral types.
9248
9249@item &&
9250Logical @sc{and}. Defined on integral types.
9251
9252@item |
9253Bitwise @sc{or}. Defined on integral types.
9254
9255@item ^
9256Bitwise exclusive-@sc{or}. Defined on integral types.
9257
9258@item &
9259Bitwise @sc{and}. Defined on integral types.
9260
9261@item ==@r{, }!=
9262Equality and inequality. Defined on scalar types. The value of these
9263expressions is 0 for false and non-zero for true.
9264
9265@item <@r{, }>@r{, }<=@r{, }>=
9266Less than, greater than, less than or equal, greater than or equal.
9267Defined on scalar types. The value of these expressions is 0 for false
9268and non-zero for true.
9269
9270@item <<@r{, }>>
9271left shift, and right shift. Defined on integral types.
9272
9273@item @@
9274The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9275
9276@item +@r{, }-
9277Addition and subtraction. Defined on integral types, floating-point types and
9278pointer types.
9279
9280@item *@r{, }/@r{, }%
9281Multiplication, division, and modulus. Multiplication and division are
9282defined on integral and floating-point types. Modulus is defined on
9283integral types.
9284
9285@item ++@r{, }--
9286Increment and decrement. When appearing before a variable, the
9287operation is performed before the variable is used in an expression;
9288when appearing after it, the variable's value is used before the
9289operation takes place.
9290
9291@item *
9292Pointer dereferencing. Defined on pointer types. Same precedence as
9293@code{++}.
9294
9295@item &
9296Address operator. Defined on variables. Same precedence as @code{++}.
9297
b37052ae
EZ
9298For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9299allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9300to examine the address
b37052ae 9301where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9302stored.
c906108c
SS
9303
9304@item -
9305Negative. Defined on integral and floating-point types. Same
9306precedence as @code{++}.
9307
9308@item !
9309Logical negation. Defined on integral types. Same precedence as
9310@code{++}.
9311
9312@item ~
9313Bitwise complement operator. Defined on integral types. Same precedence as
9314@code{++}.
9315
9316
9317@item .@r{, }->
9318Structure member, and pointer-to-structure member. For convenience,
9319@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9320pointer based on the stored type information.
9321Defined on @code{struct} and @code{union} data.
9322
c906108c
SS
9323@item .*@r{, }->*
9324Dereferences of pointers to members.
c906108c
SS
9325
9326@item []
9327Array indexing. @code{@var{a}[@var{i}]} is defined as
9328@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9329
9330@item ()
9331Function parameter list. Same precedence as @code{->}.
9332
c906108c 9333@item ::
b37052ae 9334C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9335and @code{class} types.
c906108c
SS
9336
9337@item ::
7a292a7a
SS
9338Doubled colons also represent the @value{GDBN} scope operator
9339(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9340above.
c906108c
SS
9341@end table
9342
c906108c
SS
9343If an operator is redefined in the user code, @value{GDBN} usually
9344attempts to invoke the redefined version instead of using the operator's
9345predefined meaning.
c906108c 9346
6d2ebf8b 9347@node C Constants
79a6e687 9348@subsubsection C and C@t{++} Constants
c906108c 9349
b37052ae 9350@cindex C and C@t{++} constants
c906108c 9351
b37052ae 9352@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9353following ways:
c906108c
SS
9354
9355@itemize @bullet
9356@item
9357Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9358specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9359by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9360@samp{l}, specifying that the constant should be treated as a
9361@code{long} value.
9362
9363@item
9364Floating point constants are a sequence of digits, followed by a decimal
9365point, followed by a sequence of digits, and optionally followed by an
9366exponent. An exponent is of the form:
9367@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9368sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9369A floating-point constant may also end with a letter @samp{f} or
9370@samp{F}, specifying that the constant should be treated as being of
9371the @code{float} (as opposed to the default @code{double}) type; or with
9372a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9373constant.
c906108c
SS
9374
9375@item
9376Enumerated constants consist of enumerated identifiers, or their
9377integral equivalents.
9378
9379@item
9380Character constants are a single character surrounded by single quotes
9381(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9382(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9383be represented by a letter or by @dfn{escape sequences}, which are of
9384the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9385of the character's ordinal value; or of the form @samp{\@var{x}}, where
9386@samp{@var{x}} is a predefined special character---for example,
9387@samp{\n} for newline.
9388
9389@item
96a2c332
SS
9390String constants are a sequence of character constants surrounded by
9391double quotes (@code{"}). Any valid character constant (as described
9392above) may appear. Double quotes within the string must be preceded by
9393a backslash, so for instance @samp{"a\"b'c"} is a string of five
9394characters.
c906108c
SS
9395
9396@item
9397Pointer constants are an integral value. You can also write pointers
9398to constants using the C operator @samp{&}.
9399
9400@item
9401Array constants are comma-separated lists surrounded by braces @samp{@{}
9402and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9403integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9404and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9405@end itemize
9406
79a6e687
BW
9407@node C Plus Plus Expressions
9408@subsubsection C@t{++} Expressions
b37052ae
EZ
9409
9410@cindex expressions in C@t{++}
9411@value{GDBN} expression handling can interpret most C@t{++} expressions.
9412
0179ffac
DC
9413@cindex debugging C@t{++} programs
9414@cindex C@t{++} compilers
9415@cindex debug formats and C@t{++}
9416@cindex @value{NGCC} and C@t{++}
c906108c 9417@quotation
b37052ae 9418@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9419proper compiler and the proper debug format. Currently, @value{GDBN}
9420works best when debugging C@t{++} code that is compiled with
9421@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9422@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9423stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9424stabs+ as their default debug format, so you usually don't need to
9425specify a debug format explicitly. Other compilers and/or debug formats
9426are likely to work badly or not at all when using @value{GDBN} to debug
9427C@t{++} code.
c906108c 9428@end quotation
c906108c
SS
9429
9430@enumerate
9431
9432@cindex member functions
9433@item
9434Member function calls are allowed; you can use expressions like
9435
474c8240 9436@smallexample
c906108c 9437count = aml->GetOriginal(x, y)
474c8240 9438@end smallexample
c906108c 9439
41afff9a 9440@vindex this@r{, inside C@t{++} member functions}
b37052ae 9441@cindex namespace in C@t{++}
c906108c
SS
9442@item
9443While a member function is active (in the selected stack frame), your
9444expressions have the same namespace available as the member function;
9445that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9446pointer @code{this} following the same rules as C@t{++}.
c906108c 9447
c906108c 9448@cindex call overloaded functions
d4f3574e 9449@cindex overloaded functions, calling
b37052ae 9450@cindex type conversions in C@t{++}
c906108c
SS
9451@item
9452You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9453call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9454perform overload resolution involving user-defined type conversions,
9455calls to constructors, or instantiations of templates that do not exist
9456in the program. It also cannot handle ellipsis argument lists or
9457default arguments.
9458
9459It does perform integral conversions and promotions, floating-point
9460promotions, arithmetic conversions, pointer conversions, conversions of
9461class objects to base classes, and standard conversions such as those of
9462functions or arrays to pointers; it requires an exact match on the
9463number of function arguments.
9464
9465Overload resolution is always performed, unless you have specified
79a6e687
BW
9466@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9467,@value{GDBN} Features for C@t{++}}.
c906108c 9468
d4f3574e 9469You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9470explicit function signature to call an overloaded function, as in
9471@smallexample
9472p 'foo(char,int)'('x', 13)
9473@end smallexample
d4f3574e 9474
c906108c 9475The @value{GDBN} command-completion facility can simplify this;
79a6e687 9476see @ref{Completion, ,Command Completion}.
c906108c 9477
c906108c
SS
9478@cindex reference declarations
9479@item
b37052ae
EZ
9480@value{GDBN} understands variables declared as C@t{++} references; you can use
9481them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9482dereferenced.
9483
9484In the parameter list shown when @value{GDBN} displays a frame, the values of
9485reference variables are not displayed (unlike other variables); this
9486avoids clutter, since references are often used for large structures.
9487The @emph{address} of a reference variable is always shown, unless
9488you have specified @samp{set print address off}.
9489
9490@item
b37052ae 9491@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9492expressions can use it just as expressions in your program do. Since
9493one scope may be defined in another, you can use @code{::} repeatedly if
9494necessary, for example in an expression like
9495@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9496resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9497debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9498@end enumerate
9499
b37052ae 9500In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9501calling virtual functions correctly, printing out virtual bases of
9502objects, calling functions in a base subobject, casting objects, and
9503invoking user-defined operators.
c906108c 9504
6d2ebf8b 9505@node C Defaults
79a6e687 9506@subsubsection C and C@t{++} Defaults
7a292a7a 9507
b37052ae 9508@cindex C and C@t{++} defaults
c906108c 9509
c906108c
SS
9510If you allow @value{GDBN} to set type and range checking automatically, they
9511both default to @code{off} whenever the working language changes to
b37052ae 9512C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9513selects the working language.
c906108c
SS
9514
9515If you allow @value{GDBN} to set the language automatically, it
9516recognizes source files whose names end with @file{.c}, @file{.C}, or
9517@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9518these files, it sets the working language to C or C@t{++}.
79a6e687 9519@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9520for further details.
9521
c906108c
SS
9522@c Type checking is (a) primarily motivated by Modula-2, and (b)
9523@c unimplemented. If (b) changes, it might make sense to let this node
9524@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9525
6d2ebf8b 9526@node C Checks
79a6e687 9527@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9528
b37052ae 9529@cindex C and C@t{++} checks
c906108c 9530
b37052ae 9531By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9532is not used. However, if you turn type checking on, @value{GDBN}
9533considers two variables type equivalent if:
9534
9535@itemize @bullet
9536@item
9537The two variables are structured and have the same structure, union, or
9538enumerated tag.
9539
9540@item
9541The two variables have the same type name, or types that have been
9542declared equivalent through @code{typedef}.
9543
9544@ignore
9545@c leaving this out because neither J Gilmore nor R Pesch understand it.
9546@c FIXME--beers?
9547@item
9548The two @code{struct}, @code{union}, or @code{enum} variables are
9549declared in the same declaration. (Note: this may not be true for all C
9550compilers.)
9551@end ignore
9552@end itemize
9553
9554Range checking, if turned on, is done on mathematical operations. Array
9555indices are not checked, since they are often used to index a pointer
9556that is not itself an array.
c906108c 9557
6d2ebf8b 9558@node Debugging C
c906108c 9559@subsubsection @value{GDBN} and C
c906108c
SS
9560
9561The @code{set print union} and @code{show print union} commands apply to
9562the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9563inside a @code{struct} or @code{class} is also printed. Otherwise, it
9564appears as @samp{@{...@}}.
c906108c
SS
9565
9566The @code{@@} operator aids in the debugging of dynamic arrays, formed
9567with pointers and a memory allocation function. @xref{Expressions,
9568,Expressions}.
9569
79a6e687
BW
9570@node Debugging C Plus Plus
9571@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9572
b37052ae 9573@cindex commands for C@t{++}
7a292a7a 9574
b37052ae
EZ
9575Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9576designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9577
9578@table @code
9579@cindex break in overloaded functions
9580@item @r{breakpoint menus}
9581When you want a breakpoint in a function whose name is overloaded,
9582@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9583you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9584
b37052ae 9585@cindex overloading in C@t{++}
c906108c
SS
9586@item rbreak @var{regex}
9587Setting breakpoints using regular expressions is helpful for setting
9588breakpoints on overloaded functions that are not members of any special
9589classes.
79a6e687 9590@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9591
b37052ae 9592@cindex C@t{++} exception handling
c906108c
SS
9593@item catch throw
9594@itemx catch catch
b37052ae 9595Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9596Catchpoints, , Setting Catchpoints}.
c906108c
SS
9597
9598@cindex inheritance
9599@item ptype @var{typename}
9600Print inheritance relationships as well as other information for type
9601@var{typename}.
9602@xref{Symbols, ,Examining the Symbol Table}.
9603
b37052ae 9604@cindex C@t{++} symbol display
c906108c
SS
9605@item set print demangle
9606@itemx show print demangle
9607@itemx set print asm-demangle
9608@itemx show print asm-demangle
b37052ae
EZ
9609Control whether C@t{++} symbols display in their source form, both when
9610displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9611@xref{Print Settings, ,Print Settings}.
c906108c
SS
9612
9613@item set print object
9614@itemx show print object
9615Choose whether to print derived (actual) or declared types of objects.
79a6e687 9616@xref{Print Settings, ,Print Settings}.
c906108c
SS
9617
9618@item set print vtbl
9619@itemx show print vtbl
9620Control the format for printing virtual function tables.
79a6e687 9621@xref{Print Settings, ,Print Settings}.
c906108c 9622(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9623ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9624
9625@kindex set overload-resolution
d4f3574e 9626@cindex overloaded functions, overload resolution
c906108c 9627@item set overload-resolution on
b37052ae 9628Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9629is on. For overloaded functions, @value{GDBN} evaluates the arguments
9630and searches for a function whose signature matches the argument types,
79a6e687
BW
9631using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9632Expressions, ,C@t{++} Expressions}, for details).
9633If it cannot find a match, it emits a message.
c906108c
SS
9634
9635@item set overload-resolution off
b37052ae 9636Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9637overloaded functions that are not class member functions, @value{GDBN}
9638chooses the first function of the specified name that it finds in the
9639symbol table, whether or not its arguments are of the correct type. For
9640overloaded functions that are class member functions, @value{GDBN}
9641searches for a function whose signature @emph{exactly} matches the
9642argument types.
c906108c 9643
9c16f35a
EZ
9644@kindex show overload-resolution
9645@item show overload-resolution
9646Show the current setting of overload resolution.
9647
c906108c
SS
9648@item @r{Overloaded symbol names}
9649You can specify a particular definition of an overloaded symbol, using
b37052ae 9650the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9651@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9652also use the @value{GDBN} command-line word completion facilities to list the
9653available choices, or to finish the type list for you.
79a6e687 9654@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9655@end table
c906108c 9656
febe4383
TJB
9657@node Decimal Floating Point
9658@subsubsection Decimal Floating Point format
9659@cindex decimal floating point format
9660
9661@value{GDBN} can examine, set and perform computations with numbers in
9662decimal floating point format, which in the C language correspond to the
9663@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9664specified by the extension to support decimal floating-point arithmetic.
9665
9666There are two encodings in use, depending on the architecture: BID (Binary
9667Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9668PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9669target.
9670
9671Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9672to manipulate decimal floating point numbers, it is not possible to convert
9673(using a cast, for example) integers wider than 32-bit to decimal float.
9674
9675In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9676point computations, error checking in decimal float operations ignores
9677underflow, overflow and divide by zero exceptions.
9678
4acd40f3
TJB
9679In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9680to inspect @code{_Decimal128} values stored in floating point registers. See
9681@ref{PowerPC,,PowerPC} for more details.
9682
b37303ee
AF
9683@node Objective-C
9684@subsection Objective-C
9685
9686@cindex Objective-C
9687This section provides information about some commands and command
721c2651
EZ
9688options that are useful for debugging Objective-C code. See also
9689@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9690few more commands specific to Objective-C support.
b37303ee
AF
9691
9692@menu
b383017d
RM
9693* Method Names in Commands::
9694* The Print Command with Objective-C::
b37303ee
AF
9695@end menu
9696
c8f4133a 9697@node Method Names in Commands
b37303ee
AF
9698@subsubsection Method Names in Commands
9699
9700The following commands have been extended to accept Objective-C method
9701names as line specifications:
9702
9703@kindex clear@r{, and Objective-C}
9704@kindex break@r{, and Objective-C}
9705@kindex info line@r{, and Objective-C}
9706@kindex jump@r{, and Objective-C}
9707@kindex list@r{, and Objective-C}
9708@itemize
9709@item @code{clear}
9710@item @code{break}
9711@item @code{info line}
9712@item @code{jump}
9713@item @code{list}
9714@end itemize
9715
9716A fully qualified Objective-C method name is specified as
9717
9718@smallexample
9719-[@var{Class} @var{methodName}]
9720@end smallexample
9721
c552b3bb
JM
9722where the minus sign is used to indicate an instance method and a
9723plus sign (not shown) is used to indicate a class method. The class
9724name @var{Class} and method name @var{methodName} are enclosed in
9725brackets, similar to the way messages are specified in Objective-C
9726source code. For example, to set a breakpoint at the @code{create}
9727instance method of class @code{Fruit} in the program currently being
9728debugged, enter:
b37303ee
AF
9729
9730@smallexample
9731break -[Fruit create]
9732@end smallexample
9733
9734To list ten program lines around the @code{initialize} class method,
9735enter:
9736
9737@smallexample
9738list +[NSText initialize]
9739@end smallexample
9740
c552b3bb
JM
9741In the current version of @value{GDBN}, the plus or minus sign is
9742required. In future versions of @value{GDBN}, the plus or minus
9743sign will be optional, but you can use it to narrow the search. It
9744is also possible to specify just a method name:
b37303ee
AF
9745
9746@smallexample
9747break create
9748@end smallexample
9749
9750You must specify the complete method name, including any colons. If
9751your program's source files contain more than one @code{create} method,
9752you'll be presented with a numbered list of classes that implement that
9753method. Indicate your choice by number, or type @samp{0} to exit if
9754none apply.
9755
9756As another example, to clear a breakpoint established at the
9757@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9758
9759@smallexample
9760clear -[NSWindow makeKeyAndOrderFront:]
9761@end smallexample
9762
9763@node The Print Command with Objective-C
9764@subsubsection The Print Command With Objective-C
721c2651 9765@cindex Objective-C, print objects
c552b3bb
JM
9766@kindex print-object
9767@kindex po @r{(@code{print-object})}
b37303ee 9768
c552b3bb 9769The print command has also been extended to accept methods. For example:
b37303ee
AF
9770
9771@smallexample
c552b3bb 9772print -[@var{object} hash]
b37303ee
AF
9773@end smallexample
9774
9775@cindex print an Objective-C object description
c552b3bb
JM
9776@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9777@noindent
9778will tell @value{GDBN} to send the @code{hash} message to @var{object}
9779and print the result. Also, an additional command has been added,
9780@code{print-object} or @code{po} for short, which is meant to print
9781the description of an object. However, this command may only work
9782with certain Objective-C libraries that have a particular hook
9783function, @code{_NSPrintForDebugger}, defined.
b37303ee 9784
09d4efe1
EZ
9785@node Fortran
9786@subsection Fortran
9787@cindex Fortran-specific support in @value{GDBN}
9788
814e32d7
WZ
9789@value{GDBN} can be used to debug programs written in Fortran, but it
9790currently supports only the features of Fortran 77 language.
9791
9792@cindex trailing underscore, in Fortran symbols
9793Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9794among them) append an underscore to the names of variables and
9795functions. When you debug programs compiled by those compilers, you
9796will need to refer to variables and functions with a trailing
9797underscore.
9798
9799@menu
9800* Fortran Operators:: Fortran operators and expressions
9801* Fortran Defaults:: Default settings for Fortran
79a6e687 9802* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9803@end menu
9804
9805@node Fortran Operators
79a6e687 9806@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9807
9808@cindex Fortran operators and expressions
9809
9810Operators must be defined on values of specific types. For instance,
9811@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9812arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9813
9814@table @code
9815@item **
9816The exponentiation operator. It raises the first operand to the power
9817of the second one.
9818
9819@item :
9820The range operator. Normally used in the form of array(low:high) to
9821represent a section of array.
9822@end table
9823
9824@node Fortran Defaults
9825@subsubsection Fortran Defaults
9826
9827@cindex Fortran Defaults
9828
9829Fortran symbols are usually case-insensitive, so @value{GDBN} by
9830default uses case-insensitive matches for Fortran symbols. You can
9831change that with the @samp{set case-insensitive} command, see
9832@ref{Symbols}, for the details.
9833
79a6e687
BW
9834@node Special Fortran Commands
9835@subsubsection Special Fortran Commands
814e32d7
WZ
9836
9837@cindex Special Fortran commands
9838
db2e3e2e
BW
9839@value{GDBN} has some commands to support Fortran-specific features,
9840such as displaying common blocks.
814e32d7 9841
09d4efe1
EZ
9842@table @code
9843@cindex @code{COMMON} blocks, Fortran
9844@kindex info common
9845@item info common @r{[}@var{common-name}@r{]}
9846This command prints the values contained in the Fortran @code{COMMON}
9847block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9848all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9849printed.
9850@end table
9851
9c16f35a
EZ
9852@node Pascal
9853@subsection Pascal
9854
9855@cindex Pascal support in @value{GDBN}, limitations
9856Debugging Pascal programs which use sets, subranges, file variables, or
9857nested functions does not currently work. @value{GDBN} does not support
9858entering expressions, printing values, or similar features using Pascal
9859syntax.
9860
9861The Pascal-specific command @code{set print pascal_static-members}
9862controls whether static members of Pascal objects are displayed.
9863@xref{Print Settings, pascal_static-members}.
9864
09d4efe1 9865@node Modula-2
c906108c 9866@subsection Modula-2
7a292a7a 9867
d4f3574e 9868@cindex Modula-2, @value{GDBN} support
c906108c
SS
9869
9870The extensions made to @value{GDBN} to support Modula-2 only support
9871output from the @sc{gnu} Modula-2 compiler (which is currently being
9872developed). Other Modula-2 compilers are not currently supported, and
9873attempting to debug executables produced by them is most likely
9874to give an error as @value{GDBN} reads in the executable's symbol
9875table.
9876
9877@cindex expressions in Modula-2
9878@menu
9879* M2 Operators:: Built-in operators
9880* Built-In Func/Proc:: Built-in functions and procedures
9881* M2 Constants:: Modula-2 constants
72019c9c 9882* M2 Types:: Modula-2 types
c906108c
SS
9883* M2 Defaults:: Default settings for Modula-2
9884* Deviations:: Deviations from standard Modula-2
9885* M2 Checks:: Modula-2 type and range checks
9886* M2 Scope:: The scope operators @code{::} and @code{.}
9887* GDB/M2:: @value{GDBN} and Modula-2
9888@end menu
9889
6d2ebf8b 9890@node M2 Operators
c906108c
SS
9891@subsubsection Operators
9892@cindex Modula-2 operators
9893
9894Operators must be defined on values of specific types. For instance,
9895@code{+} is defined on numbers, but not on structures. Operators are
9896often defined on groups of types. For the purposes of Modula-2, the
9897following definitions hold:
9898
9899@itemize @bullet
9900
9901@item
9902@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9903their subranges.
9904
9905@item
9906@emph{Character types} consist of @code{CHAR} and its subranges.
9907
9908@item
9909@emph{Floating-point types} consist of @code{REAL}.
9910
9911@item
9912@emph{Pointer types} consist of anything declared as @code{POINTER TO
9913@var{type}}.
9914
9915@item
9916@emph{Scalar types} consist of all of the above.
9917
9918@item
9919@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9920
9921@item
9922@emph{Boolean types} consist of @code{BOOLEAN}.
9923@end itemize
9924
9925@noindent
9926The following operators are supported, and appear in order of
9927increasing precedence:
9928
9929@table @code
9930@item ,
9931Function argument or array index separator.
9932
9933@item :=
9934Assignment. The value of @var{var} @code{:=} @var{value} is
9935@var{value}.
9936
9937@item <@r{, }>
9938Less than, greater than on integral, floating-point, or enumerated
9939types.
9940
9941@item <=@r{, }>=
96a2c332 9942Less than or equal to, greater than or equal to
c906108c
SS
9943on integral, floating-point and enumerated types, or set inclusion on
9944set types. Same precedence as @code{<}.
9945
9946@item =@r{, }<>@r{, }#
9947Equality and two ways of expressing inequality, valid on scalar types.
9948Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9949available for inequality, since @code{#} conflicts with the script
9950comment character.
9951
9952@item IN
9953Set membership. Defined on set types and the types of their members.
9954Same precedence as @code{<}.
9955
9956@item OR
9957Boolean disjunction. Defined on boolean types.
9958
9959@item AND@r{, }&
d4f3574e 9960Boolean conjunction. Defined on boolean types.
c906108c
SS
9961
9962@item @@
9963The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9964
9965@item +@r{, }-
9966Addition and subtraction on integral and floating-point types, or union
9967and difference on set types.
9968
9969@item *
9970Multiplication on integral and floating-point types, or set intersection
9971on set types.
9972
9973@item /
9974Division on floating-point types, or symmetric set difference on set
9975types. Same precedence as @code{*}.
9976
9977@item DIV@r{, }MOD
9978Integer division and remainder. Defined on integral types. Same
9979precedence as @code{*}.
9980
9981@item -
9982Negative. Defined on @code{INTEGER} and @code{REAL} data.
9983
9984@item ^
9985Pointer dereferencing. Defined on pointer types.
9986
9987@item NOT
9988Boolean negation. Defined on boolean types. Same precedence as
9989@code{^}.
9990
9991@item .
9992@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9993precedence as @code{^}.
9994
9995@item []
9996Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9997
9998@item ()
9999Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10000as @code{^}.
10001
10002@item ::@r{, }.
10003@value{GDBN} and Modula-2 scope operators.
10004@end table
10005
10006@quotation
72019c9c 10007@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10008treats the use of the operator @code{IN}, or the use of operators
10009@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10010@code{<=}, and @code{>=} on sets as an error.
10011@end quotation
10012
cb51c4e0 10013
6d2ebf8b 10014@node Built-In Func/Proc
79a6e687 10015@subsubsection Built-in Functions and Procedures
cb51c4e0 10016@cindex Modula-2 built-ins
c906108c
SS
10017
10018Modula-2 also makes available several built-in procedures and functions.
10019In describing these, the following metavariables are used:
10020
10021@table @var
10022
10023@item a
10024represents an @code{ARRAY} variable.
10025
10026@item c
10027represents a @code{CHAR} constant or variable.
10028
10029@item i
10030represents a variable or constant of integral type.
10031
10032@item m
10033represents an identifier that belongs to a set. Generally used in the
10034same function with the metavariable @var{s}. The type of @var{s} should
10035be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10036
10037@item n
10038represents a variable or constant of integral or floating-point type.
10039
10040@item r
10041represents a variable or constant of floating-point type.
10042
10043@item t
10044represents a type.
10045
10046@item v
10047represents a variable.
10048
10049@item x
10050represents a variable or constant of one of many types. See the
10051explanation of the function for details.
10052@end table
10053
10054All Modula-2 built-in procedures also return a result, described below.
10055
10056@table @code
10057@item ABS(@var{n})
10058Returns the absolute value of @var{n}.
10059
10060@item CAP(@var{c})
10061If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10062equivalent, otherwise it returns its argument.
c906108c
SS
10063
10064@item CHR(@var{i})
10065Returns the character whose ordinal value is @var{i}.
10066
10067@item DEC(@var{v})
c3f6f71d 10068Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10069
10070@item DEC(@var{v},@var{i})
10071Decrements the value in the variable @var{v} by @var{i}. Returns the
10072new value.
10073
10074@item EXCL(@var{m},@var{s})
10075Removes the element @var{m} from the set @var{s}. Returns the new
10076set.
10077
10078@item FLOAT(@var{i})
10079Returns the floating point equivalent of the integer @var{i}.
10080
10081@item HIGH(@var{a})
10082Returns the index of the last member of @var{a}.
10083
10084@item INC(@var{v})
c3f6f71d 10085Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10086
10087@item INC(@var{v},@var{i})
10088Increments the value in the variable @var{v} by @var{i}. Returns the
10089new value.
10090
10091@item INCL(@var{m},@var{s})
10092Adds the element @var{m} to the set @var{s} if it is not already
10093there. Returns the new set.
10094
10095@item MAX(@var{t})
10096Returns the maximum value of the type @var{t}.
10097
10098@item MIN(@var{t})
10099Returns the minimum value of the type @var{t}.
10100
10101@item ODD(@var{i})
10102Returns boolean TRUE if @var{i} is an odd number.
10103
10104@item ORD(@var{x})
10105Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10106value of a character is its @sc{ascii} value (on machines supporting the
10107@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10108integral, character and enumerated types.
10109
10110@item SIZE(@var{x})
10111Returns the size of its argument. @var{x} can be a variable or a type.
10112
10113@item TRUNC(@var{r})
10114Returns the integral part of @var{r}.
10115
844781a1
GM
10116@item TSIZE(@var{x})
10117Returns the size of its argument. @var{x} can be a variable or a type.
10118
c906108c
SS
10119@item VAL(@var{t},@var{i})
10120Returns the member of the type @var{t} whose ordinal value is @var{i}.
10121@end table
10122
10123@quotation
10124@emph{Warning:} Sets and their operations are not yet supported, so
10125@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10126an error.
10127@end quotation
10128
10129@cindex Modula-2 constants
6d2ebf8b 10130@node M2 Constants
c906108c
SS
10131@subsubsection Constants
10132
10133@value{GDBN} allows you to express the constants of Modula-2 in the following
10134ways:
10135
10136@itemize @bullet
10137
10138@item
10139Integer constants are simply a sequence of digits. When used in an
10140expression, a constant is interpreted to be type-compatible with the
10141rest of the expression. Hexadecimal integers are specified by a
10142trailing @samp{H}, and octal integers by a trailing @samp{B}.
10143
10144@item
10145Floating point constants appear as a sequence of digits, followed by a
10146decimal point and another sequence of digits. An optional exponent can
10147then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10148@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10149digits of the floating point constant must be valid decimal (base 10)
10150digits.
10151
10152@item
10153Character constants consist of a single character enclosed by a pair of
10154like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10155also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10156followed by a @samp{C}.
10157
10158@item
10159String constants consist of a sequence of characters enclosed by a
10160pair of like quotes, either single (@code{'}) or double (@code{"}).
10161Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10162Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10163sequences.
10164
10165@item
10166Enumerated constants consist of an enumerated identifier.
10167
10168@item
10169Boolean constants consist of the identifiers @code{TRUE} and
10170@code{FALSE}.
10171
10172@item
10173Pointer constants consist of integral values only.
10174
10175@item
10176Set constants are not yet supported.
10177@end itemize
10178
72019c9c
GM
10179@node M2 Types
10180@subsubsection Modula-2 Types
10181@cindex Modula-2 types
10182
10183Currently @value{GDBN} can print the following data types in Modula-2
10184syntax: array types, record types, set types, pointer types, procedure
10185types, enumerated types, subrange types and base types. You can also
10186print the contents of variables declared using these type.
10187This section gives a number of simple source code examples together with
10188sample @value{GDBN} sessions.
10189
10190The first example contains the following section of code:
10191
10192@smallexample
10193VAR
10194 s: SET OF CHAR ;
10195 r: [20..40] ;
10196@end smallexample
10197
10198@noindent
10199and you can request @value{GDBN} to interrogate the type and value of
10200@code{r} and @code{s}.
10201
10202@smallexample
10203(@value{GDBP}) print s
10204@{'A'..'C', 'Z'@}
10205(@value{GDBP}) ptype s
10206SET OF CHAR
10207(@value{GDBP}) print r
1020821
10209(@value{GDBP}) ptype r
10210[20..40]
10211@end smallexample
10212
10213@noindent
10214Likewise if your source code declares @code{s} as:
10215
10216@smallexample
10217VAR
10218 s: SET ['A'..'Z'] ;
10219@end smallexample
10220
10221@noindent
10222then you may query the type of @code{s} by:
10223
10224@smallexample
10225(@value{GDBP}) ptype s
10226type = SET ['A'..'Z']
10227@end smallexample
10228
10229@noindent
10230Note that at present you cannot interactively manipulate set
10231expressions using the debugger.
10232
10233The following example shows how you might declare an array in Modula-2
10234and how you can interact with @value{GDBN} to print its type and contents:
10235
10236@smallexample
10237VAR
10238 s: ARRAY [-10..10] OF CHAR ;
10239@end smallexample
10240
10241@smallexample
10242(@value{GDBP}) ptype s
10243ARRAY [-10..10] OF CHAR
10244@end smallexample
10245
10246Note that the array handling is not yet complete and although the type
10247is printed correctly, expression handling still assumes that all
10248arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10249above.
72019c9c
GM
10250
10251Here are some more type related Modula-2 examples:
10252
10253@smallexample
10254TYPE
10255 colour = (blue, red, yellow, green) ;
10256 t = [blue..yellow] ;
10257VAR
10258 s: t ;
10259BEGIN
10260 s := blue ;
10261@end smallexample
10262
10263@noindent
10264The @value{GDBN} interaction shows how you can query the data type
10265and value of a variable.
10266
10267@smallexample
10268(@value{GDBP}) print s
10269$1 = blue
10270(@value{GDBP}) ptype t
10271type = [blue..yellow]
10272@end smallexample
10273
10274@noindent
10275In this example a Modula-2 array is declared and its contents
10276displayed. Observe that the contents are written in the same way as
10277their @code{C} counterparts.
10278
10279@smallexample
10280VAR
10281 s: ARRAY [1..5] OF CARDINAL ;
10282BEGIN
10283 s[1] := 1 ;
10284@end smallexample
10285
10286@smallexample
10287(@value{GDBP}) print s
10288$1 = @{1, 0, 0, 0, 0@}
10289(@value{GDBP}) ptype s
10290type = ARRAY [1..5] OF CARDINAL
10291@end smallexample
10292
10293The Modula-2 language interface to @value{GDBN} also understands
10294pointer types as shown in this example:
10295
10296@smallexample
10297VAR
10298 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10299BEGIN
10300 NEW(s) ;
10301 s^[1] := 1 ;
10302@end smallexample
10303
10304@noindent
10305and you can request that @value{GDBN} describes the type of @code{s}.
10306
10307@smallexample
10308(@value{GDBP}) ptype s
10309type = POINTER TO ARRAY [1..5] OF CARDINAL
10310@end smallexample
10311
10312@value{GDBN} handles compound types as we can see in this example.
10313Here we combine array types, record types, pointer types and subrange
10314types:
10315
10316@smallexample
10317TYPE
10318 foo = RECORD
10319 f1: CARDINAL ;
10320 f2: CHAR ;
10321 f3: myarray ;
10322 END ;
10323
10324 myarray = ARRAY myrange OF CARDINAL ;
10325 myrange = [-2..2] ;
10326VAR
10327 s: POINTER TO ARRAY myrange OF foo ;
10328@end smallexample
10329
10330@noindent
10331and you can ask @value{GDBN} to describe the type of @code{s} as shown
10332below.
10333
10334@smallexample
10335(@value{GDBP}) ptype s
10336type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10337 f1 : CARDINAL;
10338 f2 : CHAR;
10339 f3 : ARRAY [-2..2] OF CARDINAL;
10340END
10341@end smallexample
10342
6d2ebf8b 10343@node M2 Defaults
79a6e687 10344@subsubsection Modula-2 Defaults
c906108c
SS
10345@cindex Modula-2 defaults
10346
10347If type and range checking are set automatically by @value{GDBN}, they
10348both default to @code{on} whenever the working language changes to
d4f3574e 10349Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10350selected the working language.
10351
10352If you allow @value{GDBN} to set the language automatically, then entering
10353code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10354working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10355Infer the Source Language}, for further details.
c906108c 10356
6d2ebf8b 10357@node Deviations
79a6e687 10358@subsubsection Deviations from Standard Modula-2
c906108c
SS
10359@cindex Modula-2, deviations from
10360
10361A few changes have been made to make Modula-2 programs easier to debug.
10362This is done primarily via loosening its type strictness:
10363
10364@itemize @bullet
10365@item
10366Unlike in standard Modula-2, pointer constants can be formed by
10367integers. This allows you to modify pointer variables during
10368debugging. (In standard Modula-2, the actual address contained in a
10369pointer variable is hidden from you; it can only be modified
10370through direct assignment to another pointer variable or expression that
10371returned a pointer.)
10372
10373@item
10374C escape sequences can be used in strings and characters to represent
10375non-printable characters. @value{GDBN} prints out strings with these
10376escape sequences embedded. Single non-printable characters are
10377printed using the @samp{CHR(@var{nnn})} format.
10378
10379@item
10380The assignment operator (@code{:=}) returns the value of its right-hand
10381argument.
10382
10383@item
10384All built-in procedures both modify @emph{and} return their argument.
10385@end itemize
10386
6d2ebf8b 10387@node M2 Checks
79a6e687 10388@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10389@cindex Modula-2 checks
10390
10391@quotation
10392@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10393range checking.
10394@end quotation
10395@c FIXME remove warning when type/range checks added
10396
10397@value{GDBN} considers two Modula-2 variables type equivalent if:
10398
10399@itemize @bullet
10400@item
10401They are of types that have been declared equivalent via a @code{TYPE
10402@var{t1} = @var{t2}} statement
10403
10404@item
10405They have been declared on the same line. (Note: This is true of the
10406@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10407@end itemize
10408
10409As long as type checking is enabled, any attempt to combine variables
10410whose types are not equivalent is an error.
10411
10412Range checking is done on all mathematical operations, assignment, array
10413index bounds, and all built-in functions and procedures.
10414
6d2ebf8b 10415@node M2 Scope
79a6e687 10416@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10417@cindex scope
41afff9a 10418@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10419@cindex colon, doubled as scope operator
10420@ifinfo
41afff9a 10421@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10422@c Info cannot handle :: but TeX can.
10423@end ifinfo
10424@iftex
41afff9a 10425@vindex ::@r{, in Modula-2}
c906108c
SS
10426@end iftex
10427
10428There are a few subtle differences between the Modula-2 scope operator
10429(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10430similar syntax:
10431
474c8240 10432@smallexample
c906108c
SS
10433
10434@var{module} . @var{id}
10435@var{scope} :: @var{id}
474c8240 10436@end smallexample
c906108c
SS
10437
10438@noindent
10439where @var{scope} is the name of a module or a procedure,
10440@var{module} the name of a module, and @var{id} is any declared
10441identifier within your program, except another module.
10442
10443Using the @code{::} operator makes @value{GDBN} search the scope
10444specified by @var{scope} for the identifier @var{id}. If it is not
10445found in the specified scope, then @value{GDBN} searches all scopes
10446enclosing the one specified by @var{scope}.
10447
10448Using the @code{.} operator makes @value{GDBN} search the current scope for
10449the identifier specified by @var{id} that was imported from the
10450definition module specified by @var{module}. With this operator, it is
10451an error if the identifier @var{id} was not imported from definition
10452module @var{module}, or if @var{id} is not an identifier in
10453@var{module}.
10454
6d2ebf8b 10455@node GDB/M2
c906108c
SS
10456@subsubsection @value{GDBN} and Modula-2
10457
10458Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10459Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10460specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10461@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10462apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10463analogue in Modula-2.
10464
10465The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10466with any language, is not useful with Modula-2. Its
c906108c 10467intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10468created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10469address can be specified by an integral constant, the construct
d4f3574e 10470@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10471
10472@cindex @code{#} in Modula-2
10473In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10474interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10475
e07c999f
PH
10476@node Ada
10477@subsection Ada
10478@cindex Ada
10479
10480The extensions made to @value{GDBN} for Ada only support
10481output from the @sc{gnu} Ada (GNAT) compiler.
10482Other Ada compilers are not currently supported, and
10483attempting to debug executables produced by them is most likely
10484to be difficult.
10485
10486
10487@cindex expressions in Ada
10488@menu
10489* Ada Mode Intro:: General remarks on the Ada syntax
10490 and semantics supported by Ada mode
10491 in @value{GDBN}.
10492* Omissions from Ada:: Restrictions on the Ada expression syntax.
10493* Additions to Ada:: Extensions of the Ada expression syntax.
10494* Stopping Before Main Program:: Debugging the program during elaboration.
10495* Ada Glitches:: Known peculiarities of Ada mode.
10496@end menu
10497
10498@node Ada Mode Intro
10499@subsubsection Introduction
10500@cindex Ada mode, general
10501
10502The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10503syntax, with some extensions.
10504The philosophy behind the design of this subset is
10505
10506@itemize @bullet
10507@item
10508That @value{GDBN} should provide basic literals and access to operations for
10509arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10510leaving more sophisticated computations to subprograms written into the
10511program (which therefore may be called from @value{GDBN}).
10512
10513@item
10514That type safety and strict adherence to Ada language restrictions
10515are not particularly important to the @value{GDBN} user.
10516
10517@item
10518That brevity is important to the @value{GDBN} user.
10519@end itemize
10520
10521Thus, for brevity, the debugger acts as if there were
10522implicit @code{with} and @code{use} clauses in effect for all user-written
10523packages, making it unnecessary to fully qualify most names with
10524their packages, regardless of context. Where this causes ambiguity,
10525@value{GDBN} asks the user's intent.
10526
10527The debugger will start in Ada mode if it detects an Ada main program.
10528As for other languages, it will enter Ada mode when stopped in a program that
10529was translated from an Ada source file.
10530
10531While in Ada mode, you may use `@t{--}' for comments. This is useful
10532mostly for documenting command files. The standard @value{GDBN} comment
10533(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10534middle (to allow based literals).
10535
10536The debugger supports limited overloading. Given a subprogram call in which
10537the function symbol has multiple definitions, it will use the number of
10538actual parameters and some information about their types to attempt to narrow
10539the set of definitions. It also makes very limited use of context, preferring
10540procedures to functions in the context of the @code{call} command, and
10541functions to procedures elsewhere.
10542
10543@node Omissions from Ada
10544@subsubsection Omissions from Ada
10545@cindex Ada, omissions from
10546
10547Here are the notable omissions from the subset:
10548
10549@itemize @bullet
10550@item
10551Only a subset of the attributes are supported:
10552
10553@itemize @minus
10554@item
10555@t{'First}, @t{'Last}, and @t{'Length}
10556 on array objects (not on types and subtypes).
10557
10558@item
10559@t{'Min} and @t{'Max}.
10560
10561@item
10562@t{'Pos} and @t{'Val}.
10563
10564@item
10565@t{'Tag}.
10566
10567@item
10568@t{'Range} on array objects (not subtypes), but only as the right
10569operand of the membership (@code{in}) operator.
10570
10571@item
10572@t{'Access}, @t{'Unchecked_Access}, and
10573@t{'Unrestricted_Access} (a GNAT extension).
10574
10575@item
10576@t{'Address}.
10577@end itemize
10578
10579@item
10580The names in
10581@code{Characters.Latin_1} are not available and
10582concatenation is not implemented. Thus, escape characters in strings are
10583not currently available.
10584
10585@item
10586Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10587equality of representations. They will generally work correctly
10588for strings and arrays whose elements have integer or enumeration types.
10589They may not work correctly for arrays whose element
10590types have user-defined equality, for arrays of real values
10591(in particular, IEEE-conformant floating point, because of negative
10592zeroes and NaNs), and for arrays whose elements contain unused bits with
10593indeterminate values.
10594
10595@item
10596The other component-by-component array operations (@code{and}, @code{or},
10597@code{xor}, @code{not}, and relational tests other than equality)
10598are not implemented.
10599
10600@item
860701dc
PH
10601@cindex array aggregates (Ada)
10602@cindex record aggregates (Ada)
10603@cindex aggregates (Ada)
10604There is limited support for array and record aggregates. They are
10605permitted only on the right sides of assignments, as in these examples:
10606
10607@smallexample
10608set An_Array := (1, 2, 3, 4, 5, 6)
10609set An_Array := (1, others => 0)
10610set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10611set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10612set A_Record := (1, "Peter", True);
10613set A_Record := (Name => "Peter", Id => 1, Alive => True)
10614@end smallexample
10615
10616Changing a
10617discriminant's value by assigning an aggregate has an
10618undefined effect if that discriminant is used within the record.
10619However, you can first modify discriminants by directly assigning to
10620them (which normally would not be allowed in Ada), and then performing an
10621aggregate assignment. For example, given a variable @code{A_Rec}
10622declared to have a type such as:
10623
10624@smallexample
10625type Rec (Len : Small_Integer := 0) is record
10626 Id : Integer;
10627 Vals : IntArray (1 .. Len);
10628end record;
10629@end smallexample
10630
10631you can assign a value with a different size of @code{Vals} with two
10632assignments:
10633
10634@smallexample
10635set A_Rec.Len := 4
10636set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10637@end smallexample
10638
10639As this example also illustrates, @value{GDBN} is very loose about the usual
10640rules concerning aggregates. You may leave out some of the
10641components of an array or record aggregate (such as the @code{Len}
10642component in the assignment to @code{A_Rec} above); they will retain their
10643original values upon assignment. You may freely use dynamic values as
10644indices in component associations. You may even use overlapping or
10645redundant component associations, although which component values are
10646assigned in such cases is not defined.
e07c999f
PH
10647
10648@item
10649Calls to dispatching subprograms are not implemented.
10650
10651@item
10652The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10653than that of real Ada. It makes only limited use of the context in
10654which a subexpression appears to resolve its meaning, and it is much
10655looser in its rules for allowing type matches. As a result, some
10656function calls will be ambiguous, and the user will be asked to choose
10657the proper resolution.
e07c999f
PH
10658
10659@item
10660The @code{new} operator is not implemented.
10661
10662@item
10663Entry calls are not implemented.
10664
10665@item
10666Aside from printing, arithmetic operations on the native VAX floating-point
10667formats are not supported.
10668
10669@item
10670It is not possible to slice a packed array.
10671@end itemize
10672
10673@node Additions to Ada
10674@subsubsection Additions to Ada
10675@cindex Ada, deviations from
10676
10677As it does for other languages, @value{GDBN} makes certain generic
10678extensions to Ada (@pxref{Expressions}):
10679
10680@itemize @bullet
10681@item
ae21e955
BW
10682If the expression @var{E} is a variable residing in memory (typically
10683a local variable or array element) and @var{N} is a positive integer,
10684then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10685@var{N}-1 adjacent variables following it in memory as an array. In
10686Ada, this operator is generally not necessary, since its prime use is
10687in displaying parts of an array, and slicing will usually do this in
10688Ada. However, there are occasional uses when debugging programs in
10689which certain debugging information has been optimized away.
e07c999f
PH
10690
10691@item
ae21e955
BW
10692@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10693appears in function or file @var{B}.'' When @var{B} is a file name,
10694you must typically surround it in single quotes.
e07c999f
PH
10695
10696@item
10697The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10698@var{type} that appears at address @var{addr}.''
10699
10700@item
10701A name starting with @samp{$} is a convenience variable
10702(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10703@end itemize
10704
ae21e955
BW
10705In addition, @value{GDBN} provides a few other shortcuts and outright
10706additions specific to Ada:
e07c999f
PH
10707
10708@itemize @bullet
10709@item
10710The assignment statement is allowed as an expression, returning
10711its right-hand operand as its value. Thus, you may enter
10712
10713@smallexample
10714set x := y + 3
10715print A(tmp := y + 1)
10716@end smallexample
10717
10718@item
10719The semicolon is allowed as an ``operator,'' returning as its value
10720the value of its right-hand operand.
10721This allows, for example,
10722complex conditional breaks:
10723
10724@smallexample
10725break f
10726condition 1 (report(i); k += 1; A(k) > 100)
10727@end smallexample
10728
10729@item
10730Rather than use catenation and symbolic character names to introduce special
10731characters into strings, one may instead use a special bracket notation,
10732which is also used to print strings. A sequence of characters of the form
10733@samp{["@var{XX}"]} within a string or character literal denotes the
10734(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10735sequence of characters @samp{["""]} also denotes a single quotation mark
10736in strings. For example,
10737@smallexample
10738 "One line.["0a"]Next line.["0a"]"
10739@end smallexample
10740@noindent
ae21e955
BW
10741contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10742after each period.
e07c999f
PH
10743
10744@item
10745The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10746@t{'Max} is optional (and is ignored in any case). For example, it is valid
10747to write
10748
10749@smallexample
10750print 'max(x, y)
10751@end smallexample
10752
10753@item
10754When printing arrays, @value{GDBN} uses positional notation when the
10755array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10756For example, a one-dimensional array of three integers with a lower bound
10757of 3 might print as
e07c999f
PH
10758
10759@smallexample
10760(3 => 10, 17, 1)
10761@end smallexample
10762
10763@noindent
10764That is, in contrast to valid Ada, only the first component has a @code{=>}
10765clause.
10766
10767@item
10768You may abbreviate attributes in expressions with any unique,
10769multi-character subsequence of
10770their names (an exact match gets preference).
10771For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10772in place of @t{a'length}.
10773
10774@item
10775@cindex quoting Ada internal identifiers
10776Since Ada is case-insensitive, the debugger normally maps identifiers you type
10777to lower case. The GNAT compiler uses upper-case characters for
10778some of its internal identifiers, which are normally of no interest to users.
10779For the rare occasions when you actually have to look at them,
10780enclose them in angle brackets to avoid the lower-case mapping.
10781For example,
10782@smallexample
10783@value{GDBP} print <JMPBUF_SAVE>[0]
10784@end smallexample
10785
10786@item
10787Printing an object of class-wide type or dereferencing an
10788access-to-class-wide value will display all the components of the object's
10789specific type (as indicated by its run-time tag). Likewise, component
10790selection on such a value will operate on the specific type of the
10791object.
10792
10793@end itemize
10794
10795@node Stopping Before Main Program
10796@subsubsection Stopping at the Very Beginning
10797
10798@cindex breakpointing Ada elaboration code
10799It is sometimes necessary to debug the program during elaboration, and
10800before reaching the main procedure.
10801As defined in the Ada Reference
10802Manual, the elaboration code is invoked from a procedure called
10803@code{adainit}. To run your program up to the beginning of
10804elaboration, simply use the following two commands:
10805@code{tbreak adainit} and @code{run}.
10806
10807@node Ada Glitches
10808@subsubsection Known Peculiarities of Ada Mode
10809@cindex Ada, problems
10810
10811Besides the omissions listed previously (@pxref{Omissions from Ada}),
10812we know of several problems with and limitations of Ada mode in
10813@value{GDBN},
10814some of which will be fixed with planned future releases of the debugger
10815and the GNU Ada compiler.
10816
10817@itemize @bullet
10818@item
10819Currently, the debugger
10820has insufficient information to determine whether certain pointers represent
10821pointers to objects or the objects themselves.
10822Thus, the user may have to tack an extra @code{.all} after an expression
10823to get it printed properly.
10824
10825@item
10826Static constants that the compiler chooses not to materialize as objects in
10827storage are invisible to the debugger.
10828
10829@item
10830Named parameter associations in function argument lists are ignored (the
10831argument lists are treated as positional).
10832
10833@item
10834Many useful library packages are currently invisible to the debugger.
10835
10836@item
10837Fixed-point arithmetic, conversions, input, and output is carried out using
10838floating-point arithmetic, and may give results that only approximate those on
10839the host machine.
10840
10841@item
10842The type of the @t{'Address} attribute may not be @code{System.Address}.
10843
10844@item
10845The GNAT compiler never generates the prefix @code{Standard} for any of
10846the standard symbols defined by the Ada language. @value{GDBN} knows about
10847this: it will strip the prefix from names when you use it, and will never
10848look for a name you have so qualified among local symbols, nor match against
10849symbols in other packages or subprograms. If you have
10850defined entities anywhere in your program other than parameters and
10851local variables whose simple names match names in @code{Standard},
10852GNAT's lack of qualification here can cause confusion. When this happens,
10853you can usually resolve the confusion
10854by qualifying the problematic names with package
10855@code{Standard} explicitly.
10856@end itemize
10857
79a6e687
BW
10858@node Unsupported Languages
10859@section Unsupported Languages
4e562065
JB
10860
10861@cindex unsupported languages
10862@cindex minimal language
10863In addition to the other fully-supported programming languages,
10864@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10865It does not represent a real programming language, but provides a set
10866of capabilities close to what the C or assembly languages provide.
10867This should allow most simple operations to be performed while debugging
10868an application that uses a language currently not supported by @value{GDBN}.
10869
10870If the language is set to @code{auto}, @value{GDBN} will automatically
10871select this language if the current frame corresponds to an unsupported
10872language.
10873
6d2ebf8b 10874@node Symbols
c906108c
SS
10875@chapter Examining the Symbol Table
10876
d4f3574e 10877The commands described in this chapter allow you to inquire about the
c906108c
SS
10878symbols (names of variables, functions and types) defined in your
10879program. This information is inherent in the text of your program and
10880does not change as your program executes. @value{GDBN} finds it in your
10881program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10882(@pxref{File Options, ,Choosing Files}), or by one of the
10883file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10884
10885@cindex symbol names
10886@cindex names of symbols
10887@cindex quoting names
10888Occasionally, you may need to refer to symbols that contain unusual
10889characters, which @value{GDBN} ordinarily treats as word delimiters. The
10890most frequent case is in referring to static variables in other
79a6e687 10891source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10892are recorded in object files as debugging symbols, but @value{GDBN} would
10893ordinarily parse a typical file name, like @file{foo.c}, as the three words
10894@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10895@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10896
474c8240 10897@smallexample
c906108c 10898p 'foo.c'::x
474c8240 10899@end smallexample
c906108c
SS
10900
10901@noindent
10902looks up the value of @code{x} in the scope of the file @file{foo.c}.
10903
10904@table @code
a8f24a35
EZ
10905@cindex case-insensitive symbol names
10906@cindex case sensitivity in symbol names
10907@kindex set case-sensitive
10908@item set case-sensitive on
10909@itemx set case-sensitive off
10910@itemx set case-sensitive auto
10911Normally, when @value{GDBN} looks up symbols, it matches their names
10912with case sensitivity determined by the current source language.
10913Occasionally, you may wish to control that. The command @code{set
10914case-sensitive} lets you do that by specifying @code{on} for
10915case-sensitive matches or @code{off} for case-insensitive ones. If
10916you specify @code{auto}, case sensitivity is reset to the default
10917suitable for the source language. The default is case-sensitive
10918matches for all languages except for Fortran, for which the default is
10919case-insensitive matches.
10920
9c16f35a
EZ
10921@kindex show case-sensitive
10922@item show case-sensitive
a8f24a35
EZ
10923This command shows the current setting of case sensitivity for symbols
10924lookups.
10925
c906108c 10926@kindex info address
b37052ae 10927@cindex address of a symbol
c906108c
SS
10928@item info address @var{symbol}
10929Describe where the data for @var{symbol} is stored. For a register
10930variable, this says which register it is kept in. For a non-register
10931local variable, this prints the stack-frame offset at which the variable
10932is always stored.
10933
10934Note the contrast with @samp{print &@var{symbol}}, which does not work
10935at all for a register variable, and for a stack local variable prints
10936the exact address of the current instantiation of the variable.
10937
3d67e040 10938@kindex info symbol
b37052ae 10939@cindex symbol from address
9c16f35a 10940@cindex closest symbol and offset for an address
3d67e040
EZ
10941@item info symbol @var{addr}
10942Print the name of a symbol which is stored at the address @var{addr}.
10943If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10944nearest symbol and an offset from it:
10945
474c8240 10946@smallexample
3d67e040
EZ
10947(@value{GDBP}) info symbol 0x54320
10948_initialize_vx + 396 in section .text
474c8240 10949@end smallexample
3d67e040
EZ
10950
10951@noindent
10952This is the opposite of the @code{info address} command. You can use
10953it to find out the name of a variable or a function given its address.
10954
c906108c 10955@kindex whatis
62f3a2ba
FF
10956@item whatis [@var{arg}]
10957Print the data type of @var{arg}, which can be either an expression or
10958a data type. With no argument, print the data type of @code{$}, the
10959last value in the value history. If @var{arg} is an expression, it is
10960not actually evaluated, and any side-effecting operations (such as
10961assignments or function calls) inside it do not take place. If
10962@var{arg} is a type name, it may be the name of a type or typedef, or
10963for C code it may have the form @samp{class @var{class-name}},
10964@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10965@samp{enum @var{enum-tag}}.
c906108c
SS
10966@xref{Expressions, ,Expressions}.
10967
c906108c 10968@kindex ptype
62f3a2ba
FF
10969@item ptype [@var{arg}]
10970@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10971detailed description of the type, instead of just the name of the type.
10972@xref{Expressions, ,Expressions}.
c906108c
SS
10973
10974For example, for this variable declaration:
10975
474c8240 10976@smallexample
c906108c 10977struct complex @{double real; double imag;@} v;
474c8240 10978@end smallexample
c906108c
SS
10979
10980@noindent
10981the two commands give this output:
10982
474c8240 10983@smallexample
c906108c
SS
10984@group
10985(@value{GDBP}) whatis v
10986type = struct complex
10987(@value{GDBP}) ptype v
10988type = struct complex @{
10989 double real;
10990 double imag;
10991@}
10992@end group
474c8240 10993@end smallexample
c906108c
SS
10994
10995@noindent
10996As with @code{whatis}, using @code{ptype} without an argument refers to
10997the type of @code{$}, the last value in the value history.
10998
ab1adacd
EZ
10999@cindex incomplete type
11000Sometimes, programs use opaque data types or incomplete specifications
11001of complex data structure. If the debug information included in the
11002program does not allow @value{GDBN} to display a full declaration of
11003the data type, it will say @samp{<incomplete type>}. For example,
11004given these declarations:
11005
11006@smallexample
11007 struct foo;
11008 struct foo *fooptr;
11009@end smallexample
11010
11011@noindent
11012but no definition for @code{struct foo} itself, @value{GDBN} will say:
11013
11014@smallexample
ddb50cd7 11015 (@value{GDBP}) ptype foo
ab1adacd
EZ
11016 $1 = <incomplete type>
11017@end smallexample
11018
11019@noindent
11020``Incomplete type'' is C terminology for data types that are not
11021completely specified.
11022
c906108c
SS
11023@kindex info types
11024@item info types @var{regexp}
11025@itemx info types
09d4efe1
EZ
11026Print a brief description of all types whose names match the regular
11027expression @var{regexp} (or all types in your program, if you supply
11028no argument). Each complete typename is matched as though it were a
11029complete line; thus, @samp{i type value} gives information on all
11030types in your program whose names include the string @code{value}, but
11031@samp{i type ^value$} gives information only on types whose complete
11032name is @code{value}.
c906108c
SS
11033
11034This command differs from @code{ptype} in two ways: first, like
11035@code{whatis}, it does not print a detailed description; second, it
11036lists all source files where a type is defined.
11037
b37052ae
EZ
11038@kindex info scope
11039@cindex local variables
09d4efe1 11040@item info scope @var{location}
b37052ae 11041List all the variables local to a particular scope. This command
09d4efe1
EZ
11042accepts a @var{location} argument---a function name, a source line, or
11043an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11044to the scope defined by that location. (@xref{Specify Location}, for
11045details about supported forms of @var{location}.) For example:
b37052ae
EZ
11046
11047@smallexample
11048(@value{GDBP}) @b{info scope command_line_handler}
11049Scope for command_line_handler:
11050Symbol rl is an argument at stack/frame offset 8, length 4.
11051Symbol linebuffer is in static storage at address 0x150a18, length 4.
11052Symbol linelength is in static storage at address 0x150a1c, length 4.
11053Symbol p is a local variable in register $esi, length 4.
11054Symbol p1 is a local variable in register $ebx, length 4.
11055Symbol nline is a local variable in register $edx, length 4.
11056Symbol repeat is a local variable at frame offset -8, length 4.
11057@end smallexample
11058
f5c37c66
EZ
11059@noindent
11060This command is especially useful for determining what data to collect
11061during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11062collect}.
11063
c906108c
SS
11064@kindex info source
11065@item info source
919d772c
JB
11066Show information about the current source file---that is, the source file for
11067the function containing the current point of execution:
11068@itemize @bullet
11069@item
11070the name of the source file, and the directory containing it,
11071@item
11072the directory it was compiled in,
11073@item
11074its length, in lines,
11075@item
11076which programming language it is written in,
11077@item
11078whether the executable includes debugging information for that file, and
11079if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11080@item
11081whether the debugging information includes information about
11082preprocessor macros.
11083@end itemize
11084
c906108c
SS
11085
11086@kindex info sources
11087@item info sources
11088Print the names of all source files in your program for which there is
11089debugging information, organized into two lists: files whose symbols
11090have already been read, and files whose symbols will be read when needed.
11091
11092@kindex info functions
11093@item info functions
11094Print the names and data types of all defined functions.
11095
11096@item info functions @var{regexp}
11097Print the names and data types of all defined functions
11098whose names contain a match for regular expression @var{regexp}.
11099Thus, @samp{info fun step} finds all functions whose names
11100include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11101start with @code{step}. If a function name contains characters
c1468174 11102that conflict with the regular expression language (e.g.@:
1c5dfdad 11103@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11104
11105@kindex info variables
11106@item info variables
11107Print the names and data types of all variables that are declared
6ca652b0 11108outside of functions (i.e.@: excluding local variables).
c906108c
SS
11109
11110@item info variables @var{regexp}
11111Print the names and data types of all variables (except for local
11112variables) whose names contain a match for regular expression
11113@var{regexp}.
11114
b37303ee 11115@kindex info classes
721c2651 11116@cindex Objective-C, classes and selectors
b37303ee
AF
11117@item info classes
11118@itemx info classes @var{regexp}
11119Display all Objective-C classes in your program, or
11120(with the @var{regexp} argument) all those matching a particular regular
11121expression.
11122
11123@kindex info selectors
11124@item info selectors
11125@itemx info selectors @var{regexp}
11126Display all Objective-C selectors in your program, or
11127(with the @var{regexp} argument) all those matching a particular regular
11128expression.
11129
c906108c
SS
11130@ignore
11131This was never implemented.
11132@kindex info methods
11133@item info methods
11134@itemx info methods @var{regexp}
11135The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11136methods within C@t{++} program, or (with the @var{regexp} argument) a
11137specific set of methods found in the various C@t{++} classes. Many
11138C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11139from the @code{ptype} command can be overwhelming and hard to use. The
11140@code{info-methods} command filters the methods, printing only those
11141which match the regular-expression @var{regexp}.
11142@end ignore
11143
c906108c
SS
11144@cindex reloading symbols
11145Some systems allow individual object files that make up your program to
7a292a7a
SS
11146be replaced without stopping and restarting your program. For example,
11147in VxWorks you can simply recompile a defective object file and keep on
11148running. If you are running on one of these systems, you can allow
11149@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11150
11151@table @code
11152@kindex set symbol-reloading
11153@item set symbol-reloading on
11154Replace symbol definitions for the corresponding source file when an
11155object file with a particular name is seen again.
11156
11157@item set symbol-reloading off
6d2ebf8b
SS
11158Do not replace symbol definitions when encountering object files of the
11159same name more than once. This is the default state; if you are not
11160running on a system that permits automatic relinking of modules, you
11161should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11162may discard symbols when linking large programs, that may contain
11163several modules (from different directories or libraries) with the same
11164name.
c906108c
SS
11165
11166@kindex show symbol-reloading
11167@item show symbol-reloading
11168Show the current @code{on} or @code{off} setting.
11169@end table
c906108c 11170
9c16f35a 11171@cindex opaque data types
c906108c
SS
11172@kindex set opaque-type-resolution
11173@item set opaque-type-resolution on
11174Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11175declared as a pointer to a @code{struct}, @code{class}, or
11176@code{union}---for example, @code{struct MyType *}---that is used in one
11177source file although the full declaration of @code{struct MyType} is in
11178another source file. The default is on.
11179
11180A change in the setting of this subcommand will not take effect until
11181the next time symbols for a file are loaded.
11182
11183@item set opaque-type-resolution off
11184Tell @value{GDBN} not to resolve opaque types. In this case, the type
11185is printed as follows:
11186@smallexample
11187@{<no data fields>@}
11188@end smallexample
11189
11190@kindex show opaque-type-resolution
11191@item show opaque-type-resolution
11192Show whether opaque types are resolved or not.
c906108c
SS
11193
11194@kindex maint print symbols
11195@cindex symbol dump
11196@kindex maint print psymbols
11197@cindex partial symbol dump
11198@item maint print symbols @var{filename}
11199@itemx maint print psymbols @var{filename}
11200@itemx maint print msymbols @var{filename}
11201Write a dump of debugging symbol data into the file @var{filename}.
11202These commands are used to debug the @value{GDBN} symbol-reading code. Only
11203symbols with debugging data are included. If you use @samp{maint print
11204symbols}, @value{GDBN} includes all the symbols for which it has already
11205collected full details: that is, @var{filename} reflects symbols for
11206only those files whose symbols @value{GDBN} has read. You can use the
11207command @code{info sources} to find out which files these are. If you
11208use @samp{maint print psymbols} instead, the dump shows information about
11209symbols that @value{GDBN} only knows partially---that is, symbols defined in
11210files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11211@samp{maint print msymbols} dumps just the minimal symbol information
11212required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11213@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11214@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11215
5e7b2f39
JB
11216@kindex maint info symtabs
11217@kindex maint info psymtabs
44ea7b70
JB
11218@cindex listing @value{GDBN}'s internal symbol tables
11219@cindex symbol tables, listing @value{GDBN}'s internal
11220@cindex full symbol tables, listing @value{GDBN}'s internal
11221@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11222@item maint info symtabs @r{[} @var{regexp} @r{]}
11223@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11224
11225List the @code{struct symtab} or @code{struct partial_symtab}
11226structures whose names match @var{regexp}. If @var{regexp} is not
11227given, list them all. The output includes expressions which you can
11228copy into a @value{GDBN} debugging this one to examine a particular
11229structure in more detail. For example:
11230
11231@smallexample
5e7b2f39 11232(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11233@{ objfile /home/gnu/build/gdb/gdb
11234 ((struct objfile *) 0x82e69d0)
b383017d 11235 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11236 ((struct partial_symtab *) 0x8474b10)
11237 readin no
11238 fullname (null)
11239 text addresses 0x814d3c8 -- 0x8158074
11240 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11241 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11242 dependencies (none)
11243 @}
11244@}
5e7b2f39 11245(@value{GDBP}) maint info symtabs
44ea7b70
JB
11246(@value{GDBP})
11247@end smallexample
11248@noindent
11249We see that there is one partial symbol table whose filename contains
11250the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11251and we see that @value{GDBN} has not read in any symtabs yet at all.
11252If we set a breakpoint on a function, that will cause @value{GDBN} to
11253read the symtab for the compilation unit containing that function:
11254
11255@smallexample
11256(@value{GDBP}) break dwarf2_psymtab_to_symtab
11257Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11258line 1574.
5e7b2f39 11259(@value{GDBP}) maint info symtabs
b383017d 11260@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11261 ((struct objfile *) 0x82e69d0)
b383017d 11262 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11263 ((struct symtab *) 0x86c1f38)
11264 dirname (null)
11265 fullname (null)
11266 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11267 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11268 debugformat DWARF 2
11269 @}
11270@}
b383017d 11271(@value{GDBP})
44ea7b70 11272@end smallexample
c906108c
SS
11273@end table
11274
44ea7b70 11275
6d2ebf8b 11276@node Altering
c906108c
SS
11277@chapter Altering Execution
11278
11279Once you think you have found an error in your program, you might want to
11280find out for certain whether correcting the apparent error would lead to
11281correct results in the rest of the run. You can find the answer by
11282experiment, using the @value{GDBN} features for altering execution of the
11283program.
11284
11285For example, you can store new values into variables or memory
7a292a7a
SS
11286locations, give your program a signal, restart it at a different
11287address, or even return prematurely from a function.
c906108c
SS
11288
11289@menu
11290* Assignment:: Assignment to variables
11291* Jumping:: Continuing at a different address
c906108c 11292* Signaling:: Giving your program a signal
c906108c
SS
11293* Returning:: Returning from a function
11294* Calling:: Calling your program's functions
11295* Patching:: Patching your program
11296@end menu
11297
6d2ebf8b 11298@node Assignment
79a6e687 11299@section Assignment to Variables
c906108c
SS
11300
11301@cindex assignment
11302@cindex setting variables
11303To alter the value of a variable, evaluate an assignment expression.
11304@xref{Expressions, ,Expressions}. For example,
11305
474c8240 11306@smallexample
c906108c 11307print x=4
474c8240 11308@end smallexample
c906108c
SS
11309
11310@noindent
11311stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11312value of the assignment expression (which is 4).
c906108c
SS
11313@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11314information on operators in supported languages.
c906108c
SS
11315
11316@kindex set variable
11317@cindex variables, setting
11318If you are not interested in seeing the value of the assignment, use the
11319@code{set} command instead of the @code{print} command. @code{set} is
11320really the same as @code{print} except that the expression's value is
11321not printed and is not put in the value history (@pxref{Value History,
79a6e687 11322,Value History}). The expression is evaluated only for its effects.
c906108c 11323
c906108c
SS
11324If the beginning of the argument string of the @code{set} command
11325appears identical to a @code{set} subcommand, use the @code{set
11326variable} command instead of just @code{set}. This command is identical
11327to @code{set} except for its lack of subcommands. For example, if your
11328program has a variable @code{width}, you get an error if you try to set
11329a new value with just @samp{set width=13}, because @value{GDBN} has the
11330command @code{set width}:
11331
474c8240 11332@smallexample
c906108c
SS
11333(@value{GDBP}) whatis width
11334type = double
11335(@value{GDBP}) p width
11336$4 = 13
11337(@value{GDBP}) set width=47
11338Invalid syntax in expression.
474c8240 11339@end smallexample
c906108c
SS
11340
11341@noindent
11342The invalid expression, of course, is @samp{=47}. In
11343order to actually set the program's variable @code{width}, use
11344
474c8240 11345@smallexample
c906108c 11346(@value{GDBP}) set var width=47
474c8240 11347@end smallexample
53a5351d 11348
c906108c
SS
11349Because the @code{set} command has many subcommands that can conflict
11350with the names of program variables, it is a good idea to use the
11351@code{set variable} command instead of just @code{set}. For example, if
11352your program has a variable @code{g}, you run into problems if you try
11353to set a new value with just @samp{set g=4}, because @value{GDBN} has
11354the command @code{set gnutarget}, abbreviated @code{set g}:
11355
474c8240 11356@smallexample
c906108c
SS
11357@group
11358(@value{GDBP}) whatis g
11359type = double
11360(@value{GDBP}) p g
11361$1 = 1
11362(@value{GDBP}) set g=4
2df3850c 11363(@value{GDBP}) p g
c906108c
SS
11364$2 = 1
11365(@value{GDBP}) r
11366The program being debugged has been started already.
11367Start it from the beginning? (y or n) y
11368Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11369"/home/smith/cc_progs/a.out": can't open to read symbols:
11370 Invalid bfd target.
c906108c
SS
11371(@value{GDBP}) show g
11372The current BFD target is "=4".
11373@end group
474c8240 11374@end smallexample
c906108c
SS
11375
11376@noindent
11377The program variable @code{g} did not change, and you silently set the
11378@code{gnutarget} to an invalid value. In order to set the variable
11379@code{g}, use
11380
474c8240 11381@smallexample
c906108c 11382(@value{GDBP}) set var g=4
474c8240 11383@end smallexample
c906108c
SS
11384
11385@value{GDBN} allows more implicit conversions in assignments than C; you can
11386freely store an integer value into a pointer variable or vice versa,
11387and you can convert any structure to any other structure that is the
11388same length or shorter.
11389@comment FIXME: how do structs align/pad in these conversions?
11390@comment /doc@cygnus.com 18dec1990
11391
11392To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11393construct to generate a value of specified type at a specified address
11394(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11395to memory location @code{0x83040} as an integer (which implies a certain size
11396and representation in memory), and
11397
474c8240 11398@smallexample
c906108c 11399set @{int@}0x83040 = 4
474c8240 11400@end smallexample
c906108c
SS
11401
11402@noindent
11403stores the value 4 into that memory location.
11404
6d2ebf8b 11405@node Jumping
79a6e687 11406@section Continuing at a Different Address
c906108c
SS
11407
11408Ordinarily, when you continue your program, you do so at the place where
11409it stopped, with the @code{continue} command. You can instead continue at
11410an address of your own choosing, with the following commands:
11411
11412@table @code
11413@kindex jump
11414@item jump @var{linespec}
2a25a5ba
EZ
11415@itemx jump @var{location}
11416Resume execution at line @var{linespec} or at address given by
11417@var{location}. Execution stops again immediately if there is a
11418breakpoint there. @xref{Specify Location}, for a description of the
11419different forms of @var{linespec} and @var{location}. It is common
11420practice to use the @code{tbreak} command in conjunction with
11421@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11422
11423The @code{jump} command does not change the current stack frame, or
11424the stack pointer, or the contents of any memory location or any
11425register other than the program counter. If line @var{linespec} is in
11426a different function from the one currently executing, the results may
11427be bizarre if the two functions expect different patterns of arguments or
11428of local variables. For this reason, the @code{jump} command requests
11429confirmation if the specified line is not in the function currently
11430executing. However, even bizarre results are predictable if you are
11431well acquainted with the machine-language code of your program.
c906108c
SS
11432@end table
11433
c906108c 11434@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11435On many systems, you can get much the same effect as the @code{jump}
11436command by storing a new value into the register @code{$pc}. The
11437difference is that this does not start your program running; it only
11438changes the address of where it @emph{will} run when you continue. For
11439example,
c906108c 11440
474c8240 11441@smallexample
c906108c 11442set $pc = 0x485
474c8240 11443@end smallexample
c906108c
SS
11444
11445@noindent
11446makes the next @code{continue} command or stepping command execute at
11447address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11448@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11449
11450The most common occasion to use the @code{jump} command is to back
11451up---perhaps with more breakpoints set---over a portion of a program
11452that has already executed, in order to examine its execution in more
11453detail.
11454
c906108c 11455@c @group
6d2ebf8b 11456@node Signaling
79a6e687 11457@section Giving your Program a Signal
9c16f35a 11458@cindex deliver a signal to a program
c906108c
SS
11459
11460@table @code
11461@kindex signal
11462@item signal @var{signal}
11463Resume execution where your program stopped, but immediately give it the
11464signal @var{signal}. @var{signal} can be the name or the number of a
11465signal. For example, on many systems @code{signal 2} and @code{signal
11466SIGINT} are both ways of sending an interrupt signal.
11467
11468Alternatively, if @var{signal} is zero, continue execution without
11469giving a signal. This is useful when your program stopped on account of
11470a signal and would ordinary see the signal when resumed with the
11471@code{continue} command; @samp{signal 0} causes it to resume without a
11472signal.
11473
11474@code{signal} does not repeat when you press @key{RET} a second time
11475after executing the command.
11476@end table
11477@c @end group
11478
11479Invoking the @code{signal} command is not the same as invoking the
11480@code{kill} utility from the shell. Sending a signal with @code{kill}
11481causes @value{GDBN} to decide what to do with the signal depending on
11482the signal handling tables (@pxref{Signals}). The @code{signal} command
11483passes the signal directly to your program.
11484
c906108c 11485
6d2ebf8b 11486@node Returning
79a6e687 11487@section Returning from a Function
c906108c
SS
11488
11489@table @code
11490@cindex returning from a function
11491@kindex return
11492@item return
11493@itemx return @var{expression}
11494You can cancel execution of a function call with the @code{return}
11495command. If you give an
11496@var{expression} argument, its value is used as the function's return
11497value.
11498@end table
11499
11500When you use @code{return}, @value{GDBN} discards the selected stack frame
11501(and all frames within it). You can think of this as making the
11502discarded frame return prematurely. If you wish to specify a value to
11503be returned, give that value as the argument to @code{return}.
11504
11505This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11506Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11507innermost remaining frame. That frame becomes selected. The
11508specified value is stored in the registers used for returning values
11509of functions.
11510
11511The @code{return} command does not resume execution; it leaves the
11512program stopped in the state that would exist if the function had just
11513returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11514and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11515selected stack frame returns naturally.
11516
6d2ebf8b 11517@node Calling
79a6e687 11518@section Calling Program Functions
c906108c 11519
f8568604 11520@table @code
c906108c 11521@cindex calling functions
f8568604
EZ
11522@cindex inferior functions, calling
11523@item print @var{expr}
d3e8051b 11524Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11525@var{expr} may include calls to functions in the program being
11526debugged.
11527
c906108c 11528@kindex call
c906108c
SS
11529@item call @var{expr}
11530Evaluate the expression @var{expr} without displaying @code{void}
11531returned values.
c906108c
SS
11532
11533You can use this variant of the @code{print} command if you want to
f8568604
EZ
11534execute a function from your program that does not return anything
11535(a.k.a.@: @dfn{a void function}), but without cluttering the output
11536with @code{void} returned values that @value{GDBN} will otherwise
11537print. If the result is not void, it is printed and saved in the
11538value history.
11539@end table
11540
9c16f35a
EZ
11541It is possible for the function you call via the @code{print} or
11542@code{call} command to generate a signal (e.g., if there's a bug in
11543the function, or if you passed it incorrect arguments). What happens
11544in that case is controlled by the @code{set unwindonsignal} command.
11545
11546@table @code
11547@item set unwindonsignal
11548@kindex set unwindonsignal
11549@cindex unwind stack in called functions
11550@cindex call dummy stack unwinding
11551Set unwinding of the stack if a signal is received while in a function
11552that @value{GDBN} called in the program being debugged. If set to on,
11553@value{GDBN} unwinds the stack it created for the call and restores
11554the context to what it was before the call. If set to off (the
11555default), @value{GDBN} stops in the frame where the signal was
11556received.
11557
11558@item show unwindonsignal
11559@kindex show unwindonsignal
11560Show the current setting of stack unwinding in the functions called by
11561@value{GDBN}.
11562@end table
11563
f8568604
EZ
11564@cindex weak alias functions
11565Sometimes, a function you wish to call is actually a @dfn{weak alias}
11566for another function. In such case, @value{GDBN} might not pick up
11567the type information, including the types of the function arguments,
11568which causes @value{GDBN} to call the inferior function incorrectly.
11569As a result, the called function will function erroneously and may
11570even crash. A solution to that is to use the name of the aliased
11571function instead.
c906108c 11572
6d2ebf8b 11573@node Patching
79a6e687 11574@section Patching Programs
7a292a7a 11575
c906108c
SS
11576@cindex patching binaries
11577@cindex writing into executables
c906108c 11578@cindex writing into corefiles
c906108c 11579
7a292a7a
SS
11580By default, @value{GDBN} opens the file containing your program's
11581executable code (or the corefile) read-only. This prevents accidental
11582alterations to machine code; but it also prevents you from intentionally
11583patching your program's binary.
c906108c
SS
11584
11585If you'd like to be able to patch the binary, you can specify that
11586explicitly with the @code{set write} command. For example, you might
11587want to turn on internal debugging flags, or even to make emergency
11588repairs.
11589
11590@table @code
11591@kindex set write
11592@item set write on
11593@itemx set write off
7a292a7a
SS
11594If you specify @samp{set write on}, @value{GDBN} opens executable and
11595core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11596off} (the default), @value{GDBN} opens them read-only.
11597
11598If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11599@code{exec-file} or @code{core-file} command) after changing @code{set
11600write}, for your new setting to take effect.
c906108c
SS
11601
11602@item show write
11603@kindex show write
7a292a7a
SS
11604Display whether executable files and core files are opened for writing
11605as well as reading.
c906108c
SS
11606@end table
11607
6d2ebf8b 11608@node GDB Files
c906108c
SS
11609@chapter @value{GDBN} Files
11610
7a292a7a
SS
11611@value{GDBN} needs to know the file name of the program to be debugged,
11612both in order to read its symbol table and in order to start your
11613program. To debug a core dump of a previous run, you must also tell
11614@value{GDBN} the name of the core dump file.
c906108c
SS
11615
11616@menu
11617* Files:: Commands to specify files
5b5d99cf 11618* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11619* Symbol Errors:: Errors reading symbol files
11620@end menu
11621
6d2ebf8b 11622@node Files
79a6e687 11623@section Commands to Specify Files
c906108c 11624
7a292a7a 11625@cindex symbol table
c906108c 11626@cindex core dump file
7a292a7a
SS
11627
11628You may want to specify executable and core dump file names. The usual
11629way to do this is at start-up time, using the arguments to
11630@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11631Out of @value{GDBN}}).
c906108c
SS
11632
11633Occasionally it is necessary to change to a different file during a
397ca115
EZ
11634@value{GDBN} session. Or you may run @value{GDBN} and forget to
11635specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11636via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11637Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11638new files are useful.
c906108c
SS
11639
11640@table @code
11641@cindex executable file
11642@kindex file
11643@item file @var{filename}
11644Use @var{filename} as the program to be debugged. It is read for its
11645symbols and for the contents of pure memory. It is also the program
11646executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11647directory and the file is not found in the @value{GDBN} working directory,
11648@value{GDBN} uses the environment variable @code{PATH} as a list of
11649directories to search, just as the shell does when looking for a program
11650to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11651and your program, using the @code{path} command.
11652
fc8be69e
EZ
11653@cindex unlinked object files
11654@cindex patching object files
11655You can load unlinked object @file{.o} files into @value{GDBN} using
11656the @code{file} command. You will not be able to ``run'' an object
11657file, but you can disassemble functions and inspect variables. Also,
11658if the underlying BFD functionality supports it, you could use
11659@kbd{gdb -write} to patch object files using this technique. Note
11660that @value{GDBN} can neither interpret nor modify relocations in this
11661case, so branches and some initialized variables will appear to go to
11662the wrong place. But this feature is still handy from time to time.
11663
c906108c
SS
11664@item file
11665@code{file} with no argument makes @value{GDBN} discard any information it
11666has on both executable file and the symbol table.
11667
11668@kindex exec-file
11669@item exec-file @r{[} @var{filename} @r{]}
11670Specify that the program to be run (but not the symbol table) is found
11671in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11672if necessary to locate your program. Omitting @var{filename} means to
11673discard information on the executable file.
11674
11675@kindex symbol-file
11676@item symbol-file @r{[} @var{filename} @r{]}
11677Read symbol table information from file @var{filename}. @code{PATH} is
11678searched when necessary. Use the @code{file} command to get both symbol
11679table and program to run from the same file.
11680
11681@code{symbol-file} with no argument clears out @value{GDBN} information on your
11682program's symbol table.
11683
ae5a43e0
DJ
11684The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11685some breakpoints and auto-display expressions. This is because they may
11686contain pointers to the internal data recording symbols and data types,
11687which are part of the old symbol table data being discarded inside
11688@value{GDBN}.
c906108c
SS
11689
11690@code{symbol-file} does not repeat if you press @key{RET} again after
11691executing it once.
11692
11693When @value{GDBN} is configured for a particular environment, it
11694understands debugging information in whatever format is the standard
11695generated for that environment; you may use either a @sc{gnu} compiler, or
11696other compilers that adhere to the local conventions.
c906108c 11697Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11698using @code{@value{NGCC}} you can generate debugging information for
c906108c 11699optimized code.
c906108c
SS
11700
11701For most kinds of object files, with the exception of old SVR3 systems
11702using COFF, the @code{symbol-file} command does not normally read the
11703symbol table in full right away. Instead, it scans the symbol table
11704quickly to find which source files and which symbols are present. The
11705details are read later, one source file at a time, as they are needed.
11706
11707The purpose of this two-stage reading strategy is to make @value{GDBN}
11708start up faster. For the most part, it is invisible except for
11709occasional pauses while the symbol table details for a particular source
11710file are being read. (The @code{set verbose} command can turn these
11711pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11712Warnings and Messages}.)
c906108c 11713
c906108c
SS
11714We have not implemented the two-stage strategy for COFF yet. When the
11715symbol table is stored in COFF format, @code{symbol-file} reads the
11716symbol table data in full right away. Note that ``stabs-in-COFF''
11717still does the two-stage strategy, since the debug info is actually
11718in stabs format.
11719
11720@kindex readnow
11721@cindex reading symbols immediately
11722@cindex symbols, reading immediately
a94ab193
EZ
11723@item symbol-file @var{filename} @r{[} -readnow @r{]}
11724@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11725You can override the @value{GDBN} two-stage strategy for reading symbol
11726tables by using the @samp{-readnow} option with any of the commands that
11727load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11728entire symbol table available.
c906108c 11729
c906108c
SS
11730@c FIXME: for now no mention of directories, since this seems to be in
11731@c flux. 13mar1992 status is that in theory GDB would look either in
11732@c current dir or in same dir as myprog; but issues like competing
11733@c GDB's, or clutter in system dirs, mean that in practice right now
11734@c only current dir is used. FFish says maybe a special GDB hierarchy
11735@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11736@c files.
11737
c906108c 11738@kindex core-file
09d4efe1 11739@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11740@itemx core
c906108c
SS
11741Specify the whereabouts of a core dump file to be used as the ``contents
11742of memory''. Traditionally, core files contain only some parts of the
11743address space of the process that generated them; @value{GDBN} can access the
11744executable file itself for other parts.
11745
11746@code{core-file} with no argument specifies that no core file is
11747to be used.
11748
11749Note that the core file is ignored when your program is actually running
7a292a7a
SS
11750under @value{GDBN}. So, if you have been running your program and you
11751wish to debug a core file instead, you must kill the subprocess in which
11752the program is running. To do this, use the @code{kill} command
79a6e687 11753(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11754
c906108c
SS
11755@kindex add-symbol-file
11756@cindex dynamic linking
11757@item add-symbol-file @var{filename} @var{address}
a94ab193 11758@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11759@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11760The @code{add-symbol-file} command reads additional symbol table
11761information from the file @var{filename}. You would use this command
11762when @var{filename} has been dynamically loaded (by some other means)
11763into the program that is running. @var{address} should be the memory
11764address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11765this out for itself. You can additionally specify an arbitrary number
11766of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11767section name and base address for that section. You can specify any
11768@var{address} as an expression.
c906108c
SS
11769
11770The symbol table of the file @var{filename} is added to the symbol table
11771originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11772@code{add-symbol-file} command any number of times; the new symbol data
11773thus read keeps adding to the old. To discard all old symbol data
11774instead, use the @code{symbol-file} command without any arguments.
c906108c 11775
17d9d558
JB
11776@cindex relocatable object files, reading symbols from
11777@cindex object files, relocatable, reading symbols from
11778@cindex reading symbols from relocatable object files
11779@cindex symbols, reading from relocatable object files
11780@cindex @file{.o} files, reading symbols from
11781Although @var{filename} is typically a shared library file, an
11782executable file, or some other object file which has been fully
11783relocated for loading into a process, you can also load symbolic
11784information from relocatable @file{.o} files, as long as:
11785
11786@itemize @bullet
11787@item
11788the file's symbolic information refers only to linker symbols defined in
11789that file, not to symbols defined by other object files,
11790@item
11791every section the file's symbolic information refers to has actually
11792been loaded into the inferior, as it appears in the file, and
11793@item
11794you can determine the address at which every section was loaded, and
11795provide these to the @code{add-symbol-file} command.
11796@end itemize
11797
11798@noindent
11799Some embedded operating systems, like Sun Chorus and VxWorks, can load
11800relocatable files into an already running program; such systems
11801typically make the requirements above easy to meet. However, it's
11802important to recognize that many native systems use complex link
49efadf5 11803procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11804assembly, for example) that make the requirements difficult to meet. In
11805general, one cannot assume that using @code{add-symbol-file} to read a
11806relocatable object file's symbolic information will have the same effect
11807as linking the relocatable object file into the program in the normal
11808way.
11809
c906108c
SS
11810@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11811
c45da7e6
EZ
11812@kindex add-symbol-file-from-memory
11813@cindex @code{syscall DSO}
11814@cindex load symbols from memory
11815@item add-symbol-file-from-memory @var{address}
11816Load symbols from the given @var{address} in a dynamically loaded
11817object file whose image is mapped directly into the inferior's memory.
11818For example, the Linux kernel maps a @code{syscall DSO} into each
11819process's address space; this DSO provides kernel-specific code for
11820some system calls. The argument can be any expression whose
11821evaluation yields the address of the file's shared object file header.
11822For this command to work, you must have used @code{symbol-file} or
11823@code{exec-file} commands in advance.
11824
09d4efe1
EZ
11825@kindex add-shared-symbol-files
11826@kindex assf
11827@item add-shared-symbol-files @var{library-file}
11828@itemx assf @var{library-file}
11829The @code{add-shared-symbol-files} command can currently be used only
11830in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11831alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11832@value{GDBN} automatically looks for shared libraries, however if
11833@value{GDBN} does not find yours, you can invoke
11834@code{add-shared-symbol-files}. It takes one argument: the shared
11835library's file name. @code{assf} is a shorthand alias for
11836@code{add-shared-symbol-files}.
c906108c 11837
c906108c 11838@kindex section
09d4efe1
EZ
11839@item section @var{section} @var{addr}
11840The @code{section} command changes the base address of the named
11841@var{section} of the exec file to @var{addr}. This can be used if the
11842exec file does not contain section addresses, (such as in the
11843@code{a.out} format), or when the addresses specified in the file
11844itself are wrong. Each section must be changed separately. The
11845@code{info files} command, described below, lists all the sections and
11846their addresses.
c906108c
SS
11847
11848@kindex info files
11849@kindex info target
11850@item info files
11851@itemx info target
7a292a7a
SS
11852@code{info files} and @code{info target} are synonymous; both print the
11853current target (@pxref{Targets, ,Specifying a Debugging Target}),
11854including the names of the executable and core dump files currently in
11855use by @value{GDBN}, and the files from which symbols were loaded. The
11856command @code{help target} lists all possible targets rather than
11857current ones.
11858
fe95c787
MS
11859@kindex maint info sections
11860@item maint info sections
11861Another command that can give you extra information about program sections
11862is @code{maint info sections}. In addition to the section information
11863displayed by @code{info files}, this command displays the flags and file
11864offset of each section in the executable and core dump files. In addition,
11865@code{maint info sections} provides the following command options (which
11866may be arbitrarily combined):
11867
11868@table @code
11869@item ALLOBJ
11870Display sections for all loaded object files, including shared libraries.
11871@item @var{sections}
6600abed 11872Display info only for named @var{sections}.
fe95c787
MS
11873@item @var{section-flags}
11874Display info only for sections for which @var{section-flags} are true.
11875The section flags that @value{GDBN} currently knows about are:
11876@table @code
11877@item ALLOC
11878Section will have space allocated in the process when loaded.
11879Set for all sections except those containing debug information.
11880@item LOAD
11881Section will be loaded from the file into the child process memory.
11882Set for pre-initialized code and data, clear for @code{.bss} sections.
11883@item RELOC
11884Section needs to be relocated before loading.
11885@item READONLY
11886Section cannot be modified by the child process.
11887@item CODE
11888Section contains executable code only.
6600abed 11889@item DATA
fe95c787
MS
11890Section contains data only (no executable code).
11891@item ROM
11892Section will reside in ROM.
11893@item CONSTRUCTOR
11894Section contains data for constructor/destructor lists.
11895@item HAS_CONTENTS
11896Section is not empty.
11897@item NEVER_LOAD
11898An instruction to the linker to not output the section.
11899@item COFF_SHARED_LIBRARY
11900A notification to the linker that the section contains
11901COFF shared library information.
11902@item IS_COMMON
11903Section contains common symbols.
11904@end table
11905@end table
6763aef9 11906@kindex set trust-readonly-sections
9c16f35a 11907@cindex read-only sections
6763aef9
MS
11908@item set trust-readonly-sections on
11909Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11910really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11911In that case, @value{GDBN} can fetch values from these sections
11912out of the object file, rather than from the target program.
11913For some targets (notably embedded ones), this can be a significant
11914enhancement to debugging performance.
11915
11916The default is off.
11917
11918@item set trust-readonly-sections off
15110bc3 11919Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11920the contents of the section might change while the program is running,
11921and must therefore be fetched from the target when needed.
9c16f35a
EZ
11922
11923@item show trust-readonly-sections
11924Show the current setting of trusting readonly sections.
c906108c
SS
11925@end table
11926
11927All file-specifying commands allow both absolute and relative file names
11928as arguments. @value{GDBN} always converts the file name to an absolute file
11929name and remembers it that way.
11930
c906108c 11931@cindex shared libraries
9cceb671
DJ
11932@anchor{Shared Libraries}
11933@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11934and IBM RS/6000 AIX shared libraries.
53a5351d 11935
9cceb671
DJ
11936On MS-Windows @value{GDBN} must be linked with the Expat library to support
11937shared libraries. @xref{Expat}.
11938
c906108c
SS
11939@value{GDBN} automatically loads symbol definitions from shared libraries
11940when you use the @code{run} command, or when you examine a core file.
11941(Before you issue the @code{run} command, @value{GDBN} does not understand
11942references to a function in a shared library, however---unless you are
11943debugging a core file).
53a5351d
JM
11944
11945On HP-UX, if the program loads a library explicitly, @value{GDBN}
11946automatically loads the symbols at the time of the @code{shl_load} call.
11947
c906108c
SS
11948@c FIXME: some @value{GDBN} release may permit some refs to undef
11949@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11950@c FIXME...lib; check this from time to time when updating manual
11951
b7209cb4
FF
11952There are times, however, when you may wish to not automatically load
11953symbol definitions from shared libraries, such as when they are
11954particularly large or there are many of them.
11955
11956To control the automatic loading of shared library symbols, use the
11957commands:
11958
11959@table @code
11960@kindex set auto-solib-add
11961@item set auto-solib-add @var{mode}
11962If @var{mode} is @code{on}, symbols from all shared object libraries
11963will be loaded automatically when the inferior begins execution, you
11964attach to an independently started inferior, or when the dynamic linker
11965informs @value{GDBN} that a new library has been loaded. If @var{mode}
11966is @code{off}, symbols must be loaded manually, using the
11967@code{sharedlibrary} command. The default value is @code{on}.
11968
dcaf7c2c
EZ
11969@cindex memory used for symbol tables
11970If your program uses lots of shared libraries with debug info that
11971takes large amounts of memory, you can decrease the @value{GDBN}
11972memory footprint by preventing it from automatically loading the
11973symbols from shared libraries. To that end, type @kbd{set
11974auto-solib-add off} before running the inferior, then load each
11975library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11976@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11977the libraries whose symbols you want to be loaded.
11978
b7209cb4
FF
11979@kindex show auto-solib-add
11980@item show auto-solib-add
11981Display the current autoloading mode.
11982@end table
11983
c45da7e6 11984@cindex load shared library
b7209cb4
FF
11985To explicitly load shared library symbols, use the @code{sharedlibrary}
11986command:
11987
c906108c
SS
11988@table @code
11989@kindex info sharedlibrary
11990@kindex info share
11991@item info share
11992@itemx info sharedlibrary
11993Print the names of the shared libraries which are currently loaded.
11994
11995@kindex sharedlibrary
11996@kindex share
11997@item sharedlibrary @var{regex}
11998@itemx share @var{regex}
c906108c
SS
11999Load shared object library symbols for files matching a
12000Unix regular expression.
12001As with files loaded automatically, it only loads shared libraries
12002required by your program for a core file or after typing @code{run}. If
12003@var{regex} is omitted all shared libraries required by your program are
12004loaded.
c45da7e6
EZ
12005
12006@item nosharedlibrary
12007@kindex nosharedlibrary
12008@cindex unload symbols from shared libraries
12009Unload all shared object library symbols. This discards all symbols
12010that have been loaded from all shared libraries. Symbols from shared
12011libraries that were loaded by explicit user requests are not
12012discarded.
c906108c
SS
12013@end table
12014
721c2651
EZ
12015Sometimes you may wish that @value{GDBN} stops and gives you control
12016when any of shared library events happen. Use the @code{set
12017stop-on-solib-events} command for this:
12018
12019@table @code
12020@item set stop-on-solib-events
12021@kindex set stop-on-solib-events
12022This command controls whether @value{GDBN} should give you control
12023when the dynamic linker notifies it about some shared library event.
12024The most common event of interest is loading or unloading of a new
12025shared library.
12026
12027@item show stop-on-solib-events
12028@kindex show stop-on-solib-events
12029Show whether @value{GDBN} stops and gives you control when shared
12030library events happen.
12031@end table
12032
f5ebfba0
DJ
12033Shared libraries are also supported in many cross or remote debugging
12034configurations. A copy of the target's libraries need to be present on the
12035host system; they need to be the same as the target libraries, although the
12036copies on the target can be stripped as long as the copies on the host are
12037not.
12038
59b7b46f
EZ
12039@cindex where to look for shared libraries
12040For remote debugging, you need to tell @value{GDBN} where the target
12041libraries are, so that it can load the correct copies---otherwise, it
12042may try to load the host's libraries. @value{GDBN} has two variables
12043to specify the search directories for target libraries.
f5ebfba0
DJ
12044
12045@table @code
59b7b46f 12046@cindex prefix for shared library file names
f822c95b 12047@cindex system root, alternate
f5ebfba0 12048@kindex set solib-absolute-prefix
f822c95b
DJ
12049@kindex set sysroot
12050@item set sysroot @var{path}
12051Use @var{path} as the system root for the program being debugged. Any
12052absolute shared library paths will be prefixed with @var{path}; many
12053runtime loaders store the absolute paths to the shared library in the
12054target program's memory. If you use @code{set sysroot} to find shared
12055libraries, they need to be laid out in the same way that they are on
12056the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12057under @var{path}.
12058
12059The @code{set solib-absolute-prefix} command is an alias for @code{set
12060sysroot}.
12061
12062@cindex default system root
59b7b46f 12063@cindex @samp{--with-sysroot}
f822c95b
DJ
12064You can set the default system root by using the configure-time
12065@samp{--with-sysroot} option. If the system root is inside
12066@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12067@samp{--exec-prefix}), then the default system root will be updated
12068automatically if the installed @value{GDBN} is moved to a new
12069location.
12070
12071@kindex show sysroot
12072@item show sysroot
f5ebfba0
DJ
12073Display the current shared library prefix.
12074
12075@kindex set solib-search-path
12076@item set solib-search-path @var{path}
f822c95b
DJ
12077If this variable is set, @var{path} is a colon-separated list of
12078directories to search for shared libraries. @samp{solib-search-path}
12079is used after @samp{sysroot} fails to locate the library, or if the
12080path to the library is relative instead of absolute. If you want to
12081use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12082@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12083finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12084it to a nonexistent directory may interfere with automatic loading
f822c95b 12085of shared library symbols.
f5ebfba0
DJ
12086
12087@kindex show solib-search-path
12088@item show solib-search-path
12089Display the current shared library search path.
12090@end table
12091
5b5d99cf
JB
12092
12093@node Separate Debug Files
12094@section Debugging Information in Separate Files
12095@cindex separate debugging information files
12096@cindex debugging information in separate files
12097@cindex @file{.debug} subdirectories
12098@cindex debugging information directory, global
12099@cindex global debugging information directory
c7e83d54
EZ
12100@cindex build ID, and separate debugging files
12101@cindex @file{.build-id} directory
5b5d99cf
JB
12102
12103@value{GDBN} allows you to put a program's debugging information in a
12104file separate from the executable itself, in a way that allows
12105@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12106Since debugging information can be very large---sometimes larger
12107than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12108information for their executables in separate files, which users can
12109install only when they need to debug a problem.
12110
c7e83d54
EZ
12111@value{GDBN} supports two ways of specifying the separate debug info
12112file:
5b5d99cf
JB
12113
12114@itemize @bullet
12115@item
c7e83d54
EZ
12116The executable contains a @dfn{debug link} that specifies the name of
12117the separate debug info file. The separate debug file's name is
12118usually @file{@var{executable}.debug}, where @var{executable} is the
12119name of the corresponding executable file without leading directories
12120(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12121debug link specifies a CRC32 checksum for the debug file, which
12122@value{GDBN} uses to validate that the executable and the debug file
12123came from the same build.
12124
12125@item
7e27a47a 12126The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12127also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12128only on some operating systems, notably those which use the ELF format
12129for binary files and the @sc{gnu} Binutils.) For more details about
12130this feature, see the description of the @option{--build-id}
12131command-line option in @ref{Options, , Command Line Options, ld.info,
12132The GNU Linker}. The debug info file's name is not specified
12133explicitly by the build ID, but can be computed from the build ID, see
12134below.
d3750b24
JK
12135@end itemize
12136
c7e83d54
EZ
12137Depending on the way the debug info file is specified, @value{GDBN}
12138uses two different methods of looking for the debug file:
d3750b24
JK
12139
12140@itemize @bullet
12141@item
c7e83d54
EZ
12142For the ``debug link'' method, @value{GDBN} looks up the named file in
12143the directory of the executable file, then in a subdirectory of that
12144directory named @file{.debug}, and finally under the global debug
12145directory, in a subdirectory whose name is identical to the leading
12146directories of the executable's absolute file name.
12147
12148@item
83f83d7f 12149For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12150@file{.build-id} subdirectory of the global debug directory for a file
12151named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12152first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12153are the rest of the bit string. (Real build ID strings are 32 or more
12154hex characters, not 10.)
c7e83d54
EZ
12155@end itemize
12156
12157So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12158@file{/usr/bin/ls}, which has a debug link that specifies the
12159file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12160@code{abcdef1234}. If the global debug directory is
12161@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12162debug information files, in the indicated order:
12163
12164@itemize @minus
12165@item
12166@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12167@item
c7e83d54 12168@file{/usr/bin/ls.debug}
5b5d99cf 12169@item
c7e83d54 12170@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12171@item
c7e83d54 12172@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12173@end itemize
5b5d99cf
JB
12174
12175You can set the global debugging info directory's name, and view the
12176name @value{GDBN} is currently using.
12177
12178@table @code
12179
12180@kindex set debug-file-directory
12181@item set debug-file-directory @var{directory}
12182Set the directory which @value{GDBN} searches for separate debugging
12183information files to @var{directory}.
12184
12185@kindex show debug-file-directory
12186@item show debug-file-directory
12187Show the directory @value{GDBN} searches for separate debugging
12188information files.
12189
12190@end table
12191
12192@cindex @code{.gnu_debuglink} sections
c7e83d54 12193@cindex debug link sections
5b5d99cf
JB
12194A debug link is a special section of the executable file named
12195@code{.gnu_debuglink}. The section must contain:
12196
12197@itemize
12198@item
12199A filename, with any leading directory components removed, followed by
12200a zero byte,
12201@item
12202zero to three bytes of padding, as needed to reach the next four-byte
12203boundary within the section, and
12204@item
12205a four-byte CRC checksum, stored in the same endianness used for the
12206executable file itself. The checksum is computed on the debugging
12207information file's full contents by the function given below, passing
12208zero as the @var{crc} argument.
12209@end itemize
12210
12211Any executable file format can carry a debug link, as long as it can
12212contain a section named @code{.gnu_debuglink} with the contents
12213described above.
12214
d3750b24 12215@cindex @code{.note.gnu.build-id} sections
c7e83d54 12216@cindex build ID sections
7e27a47a
EZ
12217The build ID is a special section in the executable file (and in other
12218ELF binary files that @value{GDBN} may consider). This section is
12219often named @code{.note.gnu.build-id}, but that name is not mandatory.
12220It contains unique identification for the built files---the ID remains
12221the same across multiple builds of the same build tree. The default
12222algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12223content for the build ID string. The same section with an identical
12224value is present in the original built binary with symbols, in its
12225stripped variant, and in the separate debugging information file.
d3750b24 12226
5b5d99cf
JB
12227The debugging information file itself should be an ordinary
12228executable, containing a full set of linker symbols, sections, and
12229debugging information. The sections of the debugging information file
c7e83d54
EZ
12230should have the same names, addresses, and sizes as the original file,
12231but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12232in an ordinary executable.
12233
7e27a47a 12234The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12235@samp{objcopy} utility that can produce
12236the separated executable / debugging information file pairs using the
12237following commands:
12238
12239@smallexample
12240@kbd{objcopy --only-keep-debug foo foo.debug}
12241@kbd{strip -g foo}
c7e83d54
EZ
12242@end smallexample
12243
12244@noindent
12245These commands remove the debugging
83f83d7f
JK
12246information from the executable file @file{foo} and place it in the file
12247@file{foo.debug}. You can use the first, second or both methods to link the
12248two files:
12249
12250@itemize @bullet
12251@item
12252The debug link method needs the following additional command to also leave
12253behind a debug link in @file{foo}:
12254
12255@smallexample
12256@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12257@end smallexample
12258
12259Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12260a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12261foo.debug} has the same functionality as the two @code{objcopy} commands and
12262the @code{ln -s} command above, together.
12263
12264@item
12265Build ID gets embedded into the main executable using @code{ld --build-id} or
12266the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12267compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12268utilities (Binutils) package since version 2.18.
83f83d7f
JK
12269@end itemize
12270
12271@noindent
d3750b24 12272
c7e83d54
EZ
12273Since there are many different ways to compute CRC's for the debug
12274link (different polynomials, reversals, byte ordering, etc.), the
12275simplest way to describe the CRC used in @code{.gnu_debuglink}
12276sections is to give the complete code for a function that computes it:
5b5d99cf 12277
4644b6e3 12278@kindex gnu_debuglink_crc32
5b5d99cf
JB
12279@smallexample
12280unsigned long
12281gnu_debuglink_crc32 (unsigned long crc,
12282 unsigned char *buf, size_t len)
12283@{
12284 static const unsigned long crc32_table[256] =
12285 @{
12286 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12287 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12288 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12289 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12290 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12291 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12292 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12293 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12294 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12295 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12296 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12297 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12298 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12299 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12300 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12301 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12302 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12303 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12304 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12305 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12306 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12307 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12308 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12309 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12310 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12311 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12312 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12313 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12314 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12315 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12316 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12317 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12318 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12319 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12320 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12321 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12322 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12323 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12324 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12325 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12326 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12327 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12328 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12329 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12330 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12331 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12332 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12333 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12334 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12335 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12336 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12337 0x2d02ef8d
12338 @};
12339 unsigned char *end;
12340
12341 crc = ~crc & 0xffffffff;
12342 for (end = buf + len; buf < end; ++buf)
12343 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12344 return ~crc & 0xffffffff;
5b5d99cf
JB
12345@}
12346@end smallexample
12347
c7e83d54
EZ
12348@noindent
12349This computation does not apply to the ``build ID'' method.
12350
5b5d99cf 12351
6d2ebf8b 12352@node Symbol Errors
79a6e687 12353@section Errors Reading Symbol Files
c906108c
SS
12354
12355While reading a symbol file, @value{GDBN} occasionally encounters problems,
12356such as symbol types it does not recognize, or known bugs in compiler
12357output. By default, @value{GDBN} does not notify you of such problems, since
12358they are relatively common and primarily of interest to people
12359debugging compilers. If you are interested in seeing information
12360about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12361only one message about each such type of problem, no matter how many
12362times the problem occurs; or you can ask @value{GDBN} to print more messages,
12363to see how many times the problems occur, with the @code{set
79a6e687
BW
12364complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12365Messages}).
c906108c
SS
12366
12367The messages currently printed, and their meanings, include:
12368
12369@table @code
12370@item inner block not inside outer block in @var{symbol}
12371
12372The symbol information shows where symbol scopes begin and end
12373(such as at the start of a function or a block of statements). This
12374error indicates that an inner scope block is not fully contained
12375in its outer scope blocks.
12376
12377@value{GDBN} circumvents the problem by treating the inner block as if it had
12378the same scope as the outer block. In the error message, @var{symbol}
12379may be shown as ``@code{(don't know)}'' if the outer block is not a
12380function.
12381
12382@item block at @var{address} out of order
12383
12384The symbol information for symbol scope blocks should occur in
12385order of increasing addresses. This error indicates that it does not
12386do so.
12387
12388@value{GDBN} does not circumvent this problem, and has trouble
12389locating symbols in the source file whose symbols it is reading. (You
12390can often determine what source file is affected by specifying
79a6e687
BW
12391@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12392Messages}.)
c906108c
SS
12393
12394@item bad block start address patched
12395
12396The symbol information for a symbol scope block has a start address
12397smaller than the address of the preceding source line. This is known
12398to occur in the SunOS 4.1.1 (and earlier) C compiler.
12399
12400@value{GDBN} circumvents the problem by treating the symbol scope block as
12401starting on the previous source line.
12402
12403@item bad string table offset in symbol @var{n}
12404
12405@cindex foo
12406Symbol number @var{n} contains a pointer into the string table which is
12407larger than the size of the string table.
12408
12409@value{GDBN} circumvents the problem by considering the symbol to have the
12410name @code{foo}, which may cause other problems if many symbols end up
12411with this name.
12412
12413@item unknown symbol type @code{0x@var{nn}}
12414
7a292a7a
SS
12415The symbol information contains new data types that @value{GDBN} does
12416not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12417uncomprehended information, in hexadecimal.
c906108c 12418
7a292a7a
SS
12419@value{GDBN} circumvents the error by ignoring this symbol information.
12420This usually allows you to debug your program, though certain symbols
c906108c 12421are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12422debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12423on @code{complain}, then go up to the function @code{read_dbx_symtab}
12424and examine @code{*bufp} to see the symbol.
c906108c
SS
12425
12426@item stub type has NULL name
c906108c 12427
7a292a7a 12428@value{GDBN} could not find the full definition for a struct or class.
c906108c 12429
7a292a7a 12430@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12431The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12432information that recent versions of the compiler should have output for
12433it.
c906108c
SS
12434
12435@item info mismatch between compiler and debugger
12436
12437@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12438
c906108c
SS
12439@end table
12440
6d2ebf8b 12441@node Targets
c906108c 12442@chapter Specifying a Debugging Target
7a292a7a 12443
c906108c 12444@cindex debugging target
c906108c 12445A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12446
12447Often, @value{GDBN} runs in the same host environment as your program;
12448in that case, the debugging target is specified as a side effect when
12449you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12450flexibility---for example, running @value{GDBN} on a physically separate
12451host, or controlling a standalone system over a serial port or a
53a5351d
JM
12452realtime system over a TCP/IP connection---you can use the @code{target}
12453command to specify one of the target types configured for @value{GDBN}
79a6e687 12454(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12455
a8f24a35
EZ
12456@cindex target architecture
12457It is possible to build @value{GDBN} for several different @dfn{target
12458architectures}. When @value{GDBN} is built like that, you can choose
12459one of the available architectures with the @kbd{set architecture}
12460command.
12461
12462@table @code
12463@kindex set architecture
12464@kindex show architecture
12465@item set architecture @var{arch}
12466This command sets the current target architecture to @var{arch}. The
12467value of @var{arch} can be @code{"auto"}, in addition to one of the
12468supported architectures.
12469
12470@item show architecture
12471Show the current target architecture.
9c16f35a
EZ
12472
12473@item set processor
12474@itemx processor
12475@kindex set processor
12476@kindex show processor
12477These are alias commands for, respectively, @code{set architecture}
12478and @code{show architecture}.
a8f24a35
EZ
12479@end table
12480
c906108c
SS
12481@menu
12482* Active Targets:: Active targets
12483* Target Commands:: Commands for managing targets
c906108c 12484* Byte Order:: Choosing target byte order
c906108c
SS
12485@end menu
12486
6d2ebf8b 12487@node Active Targets
79a6e687 12488@section Active Targets
7a292a7a 12489
c906108c
SS
12490@cindex stacking targets
12491@cindex active targets
12492@cindex multiple targets
12493
c906108c 12494There are three classes of targets: processes, core files, and
7a292a7a
SS
12495executable files. @value{GDBN} can work concurrently on up to three
12496active targets, one in each class. This allows you to (for example)
12497start a process and inspect its activity without abandoning your work on
12498a core file.
c906108c
SS
12499
12500For example, if you execute @samp{gdb a.out}, then the executable file
12501@code{a.out} is the only active target. If you designate a core file as
12502well---presumably from a prior run that crashed and coredumped---then
12503@value{GDBN} has two active targets and uses them in tandem, looking
12504first in the corefile target, then in the executable file, to satisfy
12505requests for memory addresses. (Typically, these two classes of target
12506are complementary, since core files contain only a program's
12507read-write memory---variables and so on---plus machine status, while
12508executable files contain only the program text and initialized data.)
c906108c
SS
12509
12510When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12511target as well. When a process target is active, all @value{GDBN}
12512commands requesting memory addresses refer to that target; addresses in
12513an active core file or executable file target are obscured while the
12514process target is active.
c906108c 12515
7a292a7a 12516Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12517core file or executable target (@pxref{Files, ,Commands to Specify
12518Files}). To specify as a target a process that is already running, use
12519the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12520Process}).
c906108c 12521
6d2ebf8b 12522@node Target Commands
79a6e687 12523@section Commands for Managing Targets
c906108c
SS
12524
12525@table @code
12526@item target @var{type} @var{parameters}
7a292a7a
SS
12527Connects the @value{GDBN} host environment to a target machine or
12528process. A target is typically a protocol for talking to debugging
12529facilities. You use the argument @var{type} to specify the type or
12530protocol of the target machine.
c906108c
SS
12531
12532Further @var{parameters} are interpreted by the target protocol, but
12533typically include things like device names or host names to connect
12534with, process numbers, and baud rates.
c906108c
SS
12535
12536The @code{target} command does not repeat if you press @key{RET} again
12537after executing the command.
12538
12539@kindex help target
12540@item help target
12541Displays the names of all targets available. To display targets
12542currently selected, use either @code{info target} or @code{info files}
79a6e687 12543(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12544
12545@item help target @var{name}
12546Describe a particular target, including any parameters necessary to
12547select it.
12548
12549@kindex set gnutarget
12550@item set gnutarget @var{args}
5d161b24 12551@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12552knows whether it is reading an @dfn{executable},
5d161b24
DB
12553a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12554with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12555with @code{gnutarget} the @code{target} refers to a program, not a machine.
12556
d4f3574e 12557@quotation
c906108c
SS
12558@emph{Warning:} To specify a file format with @code{set gnutarget},
12559you must know the actual BFD name.
d4f3574e 12560@end quotation
c906108c 12561
d4f3574e 12562@noindent
79a6e687 12563@xref{Files, , Commands to Specify Files}.
c906108c 12564
5d161b24 12565@kindex show gnutarget
c906108c
SS
12566@item show gnutarget
12567Use the @code{show gnutarget} command to display what file format
12568@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12569@value{GDBN} will determine the file format for each file automatically,
12570and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12571@end table
12572
4644b6e3 12573@cindex common targets
c906108c
SS
12574Here are some common targets (available, or not, depending on the GDB
12575configuration):
c906108c
SS
12576
12577@table @code
4644b6e3 12578@kindex target
c906108c 12579@item target exec @var{program}
4644b6e3 12580@cindex executable file target
c906108c
SS
12581An executable file. @samp{target exec @var{program}} is the same as
12582@samp{exec-file @var{program}}.
12583
c906108c 12584@item target core @var{filename}
4644b6e3 12585@cindex core dump file target
c906108c
SS
12586A core dump file. @samp{target core @var{filename}} is the same as
12587@samp{core-file @var{filename}}.
c906108c 12588
1a10341b 12589@item target remote @var{medium}
4644b6e3 12590@cindex remote target
1a10341b
JB
12591A remote system connected to @value{GDBN} via a serial line or network
12592connection. This command tells @value{GDBN} to use its own remote
12593protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12594
12595For example, if you have a board connected to @file{/dev/ttya} on the
12596machine running @value{GDBN}, you could say:
12597
12598@smallexample
12599target remote /dev/ttya
12600@end smallexample
12601
12602@code{target remote} supports the @code{load} command. This is only
12603useful if you have some other way of getting the stub to the target
12604system, and you can put it somewhere in memory where it won't get
12605clobbered by the download.
c906108c 12606
c906108c 12607@item target sim
4644b6e3 12608@cindex built-in simulator target
2df3850c 12609Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12610In general,
474c8240 12611@smallexample
104c1213
JM
12612 target sim
12613 load
12614 run
474c8240 12615@end smallexample
d4f3574e 12616@noindent
104c1213 12617works; however, you cannot assume that a specific memory map, device
d4f3574e 12618drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12619provide these. For info about any processor-specific simulator details,
12620see the appropriate section in @ref{Embedded Processors, ,Embedded
12621Processors}.
12622
c906108c
SS
12623@end table
12624
104c1213 12625Some configurations may include these targets as well:
c906108c
SS
12626
12627@table @code
12628
c906108c 12629@item target nrom @var{dev}
4644b6e3 12630@cindex NetROM ROM emulator target
c906108c
SS
12631NetROM ROM emulator. This target only supports downloading.
12632
c906108c
SS
12633@end table
12634
5d161b24 12635Different targets are available on different configurations of @value{GDBN};
c906108c 12636your configuration may have more or fewer targets.
c906108c 12637
721c2651
EZ
12638Many remote targets require you to download the executable's code once
12639you've successfully established a connection. You may wish to control
3d00d119
DJ
12640various aspects of this process.
12641
12642@table @code
721c2651
EZ
12643
12644@item set hash
12645@kindex set hash@r{, for remote monitors}
12646@cindex hash mark while downloading
12647This command controls whether a hash mark @samp{#} is displayed while
12648downloading a file to the remote monitor. If on, a hash mark is
12649displayed after each S-record is successfully downloaded to the
12650monitor.
12651
12652@item show hash
12653@kindex show hash@r{, for remote monitors}
12654Show the current status of displaying the hash mark.
12655
12656@item set debug monitor
12657@kindex set debug monitor
12658@cindex display remote monitor communications
12659Enable or disable display of communications messages between
12660@value{GDBN} and the remote monitor.
12661
12662@item show debug monitor
12663@kindex show debug monitor
12664Show the current status of displaying communications between
12665@value{GDBN} and the remote monitor.
a8f24a35 12666@end table
c906108c
SS
12667
12668@table @code
12669
12670@kindex load @var{filename}
12671@item load @var{filename}
c906108c
SS
12672Depending on what remote debugging facilities are configured into
12673@value{GDBN}, the @code{load} command may be available. Where it exists, it
12674is meant to make @var{filename} (an executable) available for debugging
12675on the remote system---by downloading, or dynamic linking, for example.
12676@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12677the @code{add-symbol-file} command.
12678
12679If your @value{GDBN} does not have a @code{load} command, attempting to
12680execute it gets the error message ``@code{You can't do that when your
12681target is @dots{}}''
c906108c
SS
12682
12683The file is loaded at whatever address is specified in the executable.
12684For some object file formats, you can specify the load address when you
12685link the program; for other formats, like a.out, the object file format
12686specifies a fixed address.
12687@c FIXME! This would be a good place for an xref to the GNU linker doc.
12688
68437a39
DJ
12689Depending on the remote side capabilities, @value{GDBN} may be able to
12690load programs into flash memory.
12691
c906108c
SS
12692@code{load} does not repeat if you press @key{RET} again after using it.
12693@end table
12694
6d2ebf8b 12695@node Byte Order
79a6e687 12696@section Choosing Target Byte Order
7a292a7a 12697
c906108c
SS
12698@cindex choosing target byte order
12699@cindex target byte order
c906108c 12700
172c2a43 12701Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12702offer the ability to run either big-endian or little-endian byte
12703orders. Usually the executable or symbol will include a bit to
12704designate the endian-ness, and you will not need to worry about
12705which to use. However, you may still find it useful to adjust
d4f3574e 12706@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12707
12708@table @code
4644b6e3 12709@kindex set endian
c906108c
SS
12710@item set endian big
12711Instruct @value{GDBN} to assume the target is big-endian.
12712
c906108c
SS
12713@item set endian little
12714Instruct @value{GDBN} to assume the target is little-endian.
12715
c906108c
SS
12716@item set endian auto
12717Instruct @value{GDBN} to use the byte order associated with the
12718executable.
12719
12720@item show endian
12721Display @value{GDBN}'s current idea of the target byte order.
12722
12723@end table
12724
12725Note that these commands merely adjust interpretation of symbolic
12726data on the host, and that they have absolutely no effect on the
12727target system.
12728
ea35711c
DJ
12729
12730@node Remote Debugging
12731@chapter Debugging Remote Programs
c906108c
SS
12732@cindex remote debugging
12733
12734If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12735@value{GDBN} in the usual way, it is often useful to use remote debugging.
12736For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12737or on a small system which does not have a general purpose operating system
12738powerful enough to run a full-featured debugger.
12739
12740Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12741to make this work with particular debugging targets. In addition,
5d161b24 12742@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12743but not specific to any particular target system) which you can use if you
12744write the remote stubs---the code that runs on the remote system to
12745communicate with @value{GDBN}.
12746
12747Other remote targets may be available in your
12748configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12749
6b2f586d 12750@menu
07f31aa6 12751* Connecting:: Connecting to a remote target
a6b151f1 12752* File Transfer:: Sending files to a remote system
6b2f586d 12753* Server:: Using the gdbserver program
79a6e687
BW
12754* Remote Configuration:: Remote configuration
12755* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12756@end menu
12757
07f31aa6 12758@node Connecting
79a6e687 12759@section Connecting to a Remote Target
07f31aa6
DJ
12760
12761On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12762your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12763Start up @value{GDBN} as usual, using the name of the local copy of your
12764program as the first argument.
12765
86941c27
JB
12766@cindex @code{target remote}
12767@value{GDBN} can communicate with the target over a serial line, or
12768over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12769each case, @value{GDBN} uses the same protocol for debugging your
12770program; only the medium carrying the debugging packets varies. The
12771@code{target remote} command establishes a connection to the target.
12772Its arguments indicate which medium to use:
12773
12774@table @code
12775
12776@item target remote @var{serial-device}
07f31aa6 12777@cindex serial line, @code{target remote}
86941c27
JB
12778Use @var{serial-device} to communicate with the target. For example,
12779to use a serial line connected to the device named @file{/dev/ttyb}:
12780
12781@smallexample
12782target remote /dev/ttyb
12783@end smallexample
12784
07f31aa6
DJ
12785If you're using a serial line, you may want to give @value{GDBN} the
12786@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12787(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12788@code{target} command.
07f31aa6 12789
86941c27
JB
12790@item target remote @code{@var{host}:@var{port}}
12791@itemx target remote @code{tcp:@var{host}:@var{port}}
12792@cindex @acronym{TCP} port, @code{target remote}
12793Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12794The @var{host} may be either a host name or a numeric @acronym{IP}
12795address; @var{port} must be a decimal number. The @var{host} could be
12796the target machine itself, if it is directly connected to the net, or
12797it might be a terminal server which in turn has a serial line to the
12798target.
07f31aa6 12799
86941c27
JB
12800For example, to connect to port 2828 on a terminal server named
12801@code{manyfarms}:
07f31aa6
DJ
12802
12803@smallexample
12804target remote manyfarms:2828
12805@end smallexample
12806
86941c27
JB
12807If your remote target is actually running on the same machine as your
12808debugger session (e.g.@: a simulator for your target running on the
12809same host), you can omit the hostname. For example, to connect to
12810port 1234 on your local machine:
07f31aa6
DJ
12811
12812@smallexample
12813target remote :1234
12814@end smallexample
12815@noindent
12816
12817Note that the colon is still required here.
12818
86941c27
JB
12819@item target remote @code{udp:@var{host}:@var{port}}
12820@cindex @acronym{UDP} port, @code{target remote}
12821Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12822connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12823
12824@smallexample
12825target remote udp:manyfarms:2828
12826@end smallexample
12827
86941c27
JB
12828When using a @acronym{UDP} connection for remote debugging, you should
12829keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12830can silently drop packets on busy or unreliable networks, which will
12831cause havoc with your debugging session.
12832
66b8c7f6
JB
12833@item target remote | @var{command}
12834@cindex pipe, @code{target remote} to
12835Run @var{command} in the background and communicate with it using a
12836pipe. The @var{command} is a shell command, to be parsed and expanded
12837by the system's command shell, @code{/bin/sh}; it should expect remote
12838protocol packets on its standard input, and send replies on its
12839standard output. You could use this to run a stand-alone simulator
12840that speaks the remote debugging protocol, to make net connections
12841using programs like @code{ssh}, or for other similar tricks.
12842
12843If @var{command} closes its standard output (perhaps by exiting),
12844@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12845program has already exited, this will have no effect.)
12846
86941c27 12847@end table
07f31aa6 12848
86941c27
JB
12849Once the connection has been established, you can use all the usual
12850commands to examine and change data and to step and continue the
12851remote program.
07f31aa6
DJ
12852
12853@cindex interrupting remote programs
12854@cindex remote programs, interrupting
12855Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12856interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12857program. This may or may not succeed, depending in part on the hardware
12858and the serial drivers the remote system uses. If you type the
12859interrupt character once again, @value{GDBN} displays this prompt:
12860
12861@smallexample
12862Interrupted while waiting for the program.
12863Give up (and stop debugging it)? (y or n)
12864@end smallexample
12865
12866If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12867(If you decide you want to try again later, you can use @samp{target
12868remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12869goes back to waiting.
12870
12871@table @code
12872@kindex detach (remote)
12873@item detach
12874When you have finished debugging the remote program, you can use the
12875@code{detach} command to release it from @value{GDBN} control.
12876Detaching from the target normally resumes its execution, but the results
12877will depend on your particular remote stub. After the @code{detach}
12878command, @value{GDBN} is free to connect to another target.
12879
12880@kindex disconnect
12881@item disconnect
12882The @code{disconnect} command behaves like @code{detach}, except that
12883the target is generally not resumed. It will wait for @value{GDBN}
12884(this instance or another one) to connect and continue debugging. After
12885the @code{disconnect} command, @value{GDBN} is again free to connect to
12886another target.
09d4efe1
EZ
12887
12888@cindex send command to remote monitor
fad38dfa
EZ
12889@cindex extend @value{GDBN} for remote targets
12890@cindex add new commands for external monitor
09d4efe1
EZ
12891@kindex monitor
12892@item monitor @var{cmd}
fad38dfa
EZ
12893This command allows you to send arbitrary commands directly to the
12894remote monitor. Since @value{GDBN} doesn't care about the commands it
12895sends like this, this command is the way to extend @value{GDBN}---you
12896can add new commands that only the external monitor will understand
12897and implement.
07f31aa6
DJ
12898@end table
12899
a6b151f1
DJ
12900@node File Transfer
12901@section Sending files to a remote system
12902@cindex remote target, file transfer
12903@cindex file transfer
12904@cindex sending files to remote systems
12905
12906Some remote targets offer the ability to transfer files over the same
12907connection used to communicate with @value{GDBN}. This is convenient
12908for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12909running @code{gdbserver} over a network interface. For other targets,
12910e.g.@: embedded devices with only a single serial port, this may be
12911the only way to upload or download files.
12912
12913Not all remote targets support these commands.
12914
12915@table @code
12916@kindex remote put
12917@item remote put @var{hostfile} @var{targetfile}
12918Copy file @var{hostfile} from the host system (the machine running
12919@value{GDBN}) to @var{targetfile} on the target system.
12920
12921@kindex remote get
12922@item remote get @var{targetfile} @var{hostfile}
12923Copy file @var{targetfile} from the target system to @var{hostfile}
12924on the host system.
12925
12926@kindex remote delete
12927@item remote delete @var{targetfile}
12928Delete @var{targetfile} from the target system.
12929
12930@end table
12931
6f05cf9f 12932@node Server
79a6e687 12933@section Using the @code{gdbserver} Program
6f05cf9f
AC
12934
12935@kindex gdbserver
12936@cindex remote connection without stubs
12937@code{gdbserver} is a control program for Unix-like systems, which
12938allows you to connect your program with a remote @value{GDBN} via
12939@code{target remote}---but without linking in the usual debugging stub.
12940
12941@code{gdbserver} is not a complete replacement for the debugging stubs,
12942because it requires essentially the same operating-system facilities
12943that @value{GDBN} itself does. In fact, a system that can run
12944@code{gdbserver} to connect to a remote @value{GDBN} could also run
12945@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12946because it is a much smaller program than @value{GDBN} itself. It is
12947also easier to port than all of @value{GDBN}, so you may be able to get
12948started more quickly on a new system by using @code{gdbserver}.
12949Finally, if you develop code for real-time systems, you may find that
12950the tradeoffs involved in real-time operation make it more convenient to
12951do as much development work as possible on another system, for example
12952by cross-compiling. You can use @code{gdbserver} to make a similar
12953choice for debugging.
12954
12955@value{GDBN} and @code{gdbserver} communicate via either a serial line
12956or a TCP connection, using the standard @value{GDBN} remote serial
12957protocol.
12958
2d717e4f
DJ
12959@quotation
12960@emph{Warning:} @code{gdbserver} does not have any built-in security.
12961Do not run @code{gdbserver} connected to any public network; a
12962@value{GDBN} connection to @code{gdbserver} provides access to the
12963target system with the same privileges as the user running
12964@code{gdbserver}.
12965@end quotation
12966
12967@subsection Running @code{gdbserver}
12968@cindex arguments, to @code{gdbserver}
12969
12970Run @code{gdbserver} on the target system. You need a copy of the
12971program you want to debug, including any libraries it requires.
6f05cf9f
AC
12972@code{gdbserver} does not need your program's symbol table, so you can
12973strip the program if necessary to save space. @value{GDBN} on the host
12974system does all the symbol handling.
12975
12976To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12977the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12978syntax is:
12979
12980@smallexample
12981target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12982@end smallexample
12983
12984@var{comm} is either a device name (to use a serial line) or a TCP
12985hostname and portnumber. For example, to debug Emacs with the argument
12986@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12987@file{/dev/com1}:
12988
12989@smallexample
12990target> gdbserver /dev/com1 emacs foo.txt
12991@end smallexample
12992
12993@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12994with it.
12995
12996To use a TCP connection instead of a serial line:
12997
12998@smallexample
12999target> gdbserver host:2345 emacs foo.txt
13000@end smallexample
13001
13002The only difference from the previous example is the first argument,
13003specifying that you are communicating with the host @value{GDBN} via
13004TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13005expect a TCP connection from machine @samp{host} to local TCP port 2345.
13006(Currently, the @samp{host} part is ignored.) You can choose any number
13007you want for the port number as long as it does not conflict with any
13008TCP ports already in use on the target system (for example, @code{23} is
13009reserved for @code{telnet}).@footnote{If you choose a port number that
13010conflicts with another service, @code{gdbserver} prints an error message
13011and exits.} You must use the same port number with the host @value{GDBN}
13012@code{target remote} command.
13013
2d717e4f
DJ
13014@subsubsection Attaching to a Running Program
13015
56460a61
DJ
13016On some targets, @code{gdbserver} can also attach to running programs.
13017This is accomplished via the @code{--attach} argument. The syntax is:
13018
13019@smallexample
2d717e4f 13020target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13021@end smallexample
13022
13023@var{pid} is the process ID of a currently running process. It isn't necessary
13024to point @code{gdbserver} at a binary for the running process.
13025
b1fe9455
DJ
13026@pindex pidof
13027@cindex attach to a program by name
13028You can debug processes by name instead of process ID if your target has the
13029@code{pidof} utility:
13030
13031@smallexample
2d717e4f 13032target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13033@end smallexample
13034
f822c95b 13035In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13036has multiple threads, most versions of @code{pidof} support the
13037@code{-s} option to only return the first process ID.
13038
2d717e4f
DJ
13039@subsubsection Multi-Process Mode for @code{gdbserver}
13040@cindex gdbserver, multiple processes
13041@cindex multiple processes with gdbserver
13042
13043When you connect to @code{gdbserver} using @code{target remote},
13044@code{gdbserver} debugs the specified program only once. When the
13045program exits, or you detach from it, @value{GDBN} closes the connection
13046and @code{gdbserver} exits.
13047
6e6c6f50 13048If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13049enters multi-process mode. When the debugged program exits, or you
13050detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13051though no program is running. The @code{run} and @code{attach}
13052commands instruct @code{gdbserver} to run or attach to a new program.
13053The @code{run} command uses @code{set remote exec-file} (@pxref{set
13054remote exec-file}) to select the program to run. Command line
13055arguments are supported, except for wildcard expansion and I/O
13056redirection (@pxref{Arguments}).
13057
13058To start @code{gdbserver} without supplying an initial command to run
13059or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13060Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13061the program you want to debug.
13062
13063@code{gdbserver} does not automatically exit in multi-process mode.
13064You can terminate it by using @code{monitor exit}
13065(@pxref{Monitor Commands for gdbserver}).
13066
13067@subsubsection Other Command-Line Arguments for @code{gdbserver}
13068
13069You can include @option{--debug} on the @code{gdbserver} command line.
13070@code{gdbserver} will display extra status information about the debugging
13071process. This option is intended for @code{gdbserver} development and
13072for bug reports to the developers.
13073
13074@subsection Connecting to @code{gdbserver}
13075
13076Run @value{GDBN} on the host system.
13077
13078First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13079your application using the @code{file} command before you connect. Use
13080@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13081was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13082
13083The symbol file and target libraries must exactly match the executable
13084and libraries on the target, with one exception: the files on the host
13085system should not be stripped, even if the files on the target system
13086are. Mismatched or missing files will lead to confusing results
13087during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13088files may also prevent @code{gdbserver} from debugging multi-threaded
13089programs.
13090
79a6e687 13091Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13092For TCP connections, you must start up @code{gdbserver} prior to using
13093the @code{target remote} command. Otherwise you may get an error whose
13094text depends on the host system, but which usually looks something like
2d717e4f 13095@samp{Connection refused}. Don't use the @code{load}
397ca115 13096command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13097already on the target.
07f31aa6 13098
79a6e687 13099@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13100@cindex monitor commands, for @code{gdbserver}
2d717e4f 13101@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13102
13103During a @value{GDBN} session using @code{gdbserver}, you can use the
13104@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13105Here are the available commands.
c74d0ad8
DJ
13106
13107@table @code
13108@item monitor help
13109List the available monitor commands.
13110
13111@item monitor set debug 0
13112@itemx monitor set debug 1
13113Disable or enable general debugging messages.
13114
13115@item monitor set remote-debug 0
13116@itemx monitor set remote-debug 1
13117Disable or enable specific debugging messages associated with the remote
13118protocol (@pxref{Remote Protocol}).
13119
2d717e4f
DJ
13120@item monitor exit
13121Tell gdbserver to exit immediately. This command should be followed by
13122@code{disconnect} to close the debugging session. @code{gdbserver} will
13123detach from any attached processes and kill any processes it created.
13124Use @code{monitor exit} to terminate @code{gdbserver} at the end
13125of a multi-process mode debug session.
13126
c74d0ad8
DJ
13127@end table
13128
79a6e687
BW
13129@node Remote Configuration
13130@section Remote Configuration
501eef12 13131
9c16f35a
EZ
13132@kindex set remote
13133@kindex show remote
13134This section documents the configuration options available when
13135debugging remote programs. For the options related to the File I/O
fc320d37 13136extensions of the remote protocol, see @ref{system,
9c16f35a 13137system-call-allowed}.
501eef12
AC
13138
13139@table @code
9c16f35a 13140@item set remoteaddresssize @var{bits}
d3e8051b 13141@cindex address size for remote targets
9c16f35a
EZ
13142@cindex bits in remote address
13143Set the maximum size of address in a memory packet to the specified
13144number of bits. @value{GDBN} will mask off the address bits above
13145that number, when it passes addresses to the remote target. The
13146default value is the number of bits in the target's address.
13147
13148@item show remoteaddresssize
13149Show the current value of remote address size in bits.
13150
13151@item set remotebaud @var{n}
13152@cindex baud rate for remote targets
13153Set the baud rate for the remote serial I/O to @var{n} baud. The
13154value is used to set the speed of the serial port used for debugging
13155remote targets.
13156
13157@item show remotebaud
13158Show the current speed of the remote connection.
13159
13160@item set remotebreak
13161@cindex interrupt remote programs
13162@cindex BREAK signal instead of Ctrl-C
9a6253be 13163@anchor{set remotebreak}
9c16f35a 13164If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13165when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13166on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13167character instead. The default is off, since most remote systems
13168expect to see @samp{Ctrl-C} as the interrupt signal.
13169
13170@item show remotebreak
13171Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13172interrupt the remote program.
13173
23776285
MR
13174@item set remoteflow on
13175@itemx set remoteflow off
13176@kindex set remoteflow
13177Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13178on the serial port used to communicate to the remote target.
13179
13180@item show remoteflow
13181@kindex show remoteflow
13182Show the current setting of hardware flow control.
13183
9c16f35a
EZ
13184@item set remotelogbase @var{base}
13185Set the base (a.k.a.@: radix) of logging serial protocol
13186communications to @var{base}. Supported values of @var{base} are:
13187@code{ascii}, @code{octal}, and @code{hex}. The default is
13188@code{ascii}.
13189
13190@item show remotelogbase
13191Show the current setting of the radix for logging remote serial
13192protocol.
13193
13194@item set remotelogfile @var{file}
13195@cindex record serial communications on file
13196Record remote serial communications on the named @var{file}. The
13197default is not to record at all.
13198
13199@item show remotelogfile.
13200Show the current setting of the file name on which to record the
13201serial communications.
13202
13203@item set remotetimeout @var{num}
13204@cindex timeout for serial communications
13205@cindex remote timeout
13206Set the timeout limit to wait for the remote target to respond to
13207@var{num} seconds. The default is 2 seconds.
13208
13209@item show remotetimeout
13210Show the current number of seconds to wait for the remote target
13211responses.
13212
13213@cindex limit hardware breakpoints and watchpoints
13214@cindex remote target, limit break- and watchpoints
501eef12
AC
13215@anchor{set remote hardware-watchpoint-limit}
13216@anchor{set remote hardware-breakpoint-limit}
13217@item set remote hardware-watchpoint-limit @var{limit}
13218@itemx set remote hardware-breakpoint-limit @var{limit}
13219Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13220watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13221
13222@item set remote exec-file @var{filename}
13223@itemx show remote exec-file
13224@anchor{set remote exec-file}
13225@cindex executable file, for remote target
13226Select the file used for @code{run} with @code{target
13227extended-remote}. This should be set to a filename valid on the
13228target system. If it is not set, the target will use a default
13229filename (e.g.@: the last program run).
501eef12
AC
13230@end table
13231
427c3a89
DJ
13232@cindex remote packets, enabling and disabling
13233The @value{GDBN} remote protocol autodetects the packets supported by
13234your debugging stub. If you need to override the autodetection, you
13235can use these commands to enable or disable individual packets. Each
13236packet can be set to @samp{on} (the remote target supports this
13237packet), @samp{off} (the remote target does not support this packet),
13238or @samp{auto} (detect remote target support for this packet). They
13239all default to @samp{auto}. For more information about each packet,
13240see @ref{Remote Protocol}.
13241
13242During normal use, you should not have to use any of these commands.
13243If you do, that may be a bug in your remote debugging stub, or a bug
13244in @value{GDBN}. You may want to report the problem to the
13245@value{GDBN} developers.
13246
cfa9d6d9
DJ
13247For each packet @var{name}, the command to enable or disable the
13248packet is @code{set remote @var{name}-packet}. The available settings
13249are:
427c3a89 13250
cfa9d6d9 13251@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13252@item Command Name
13253@tab Remote Packet
13254@tab Related Features
13255
cfa9d6d9 13256@item @code{fetch-register}
427c3a89
DJ
13257@tab @code{p}
13258@tab @code{info registers}
13259
cfa9d6d9 13260@item @code{set-register}
427c3a89
DJ
13261@tab @code{P}
13262@tab @code{set}
13263
cfa9d6d9 13264@item @code{binary-download}
427c3a89
DJ
13265@tab @code{X}
13266@tab @code{load}, @code{set}
13267
cfa9d6d9 13268@item @code{read-aux-vector}
427c3a89
DJ
13269@tab @code{qXfer:auxv:read}
13270@tab @code{info auxv}
13271
cfa9d6d9 13272@item @code{symbol-lookup}
427c3a89
DJ
13273@tab @code{qSymbol}
13274@tab Detecting multiple threads
13275
2d717e4f
DJ
13276@item @code{attach}
13277@tab @code{vAttach}
13278@tab @code{attach}
13279
cfa9d6d9 13280@item @code{verbose-resume}
427c3a89
DJ
13281@tab @code{vCont}
13282@tab Stepping or resuming multiple threads
13283
2d717e4f
DJ
13284@item @code{run}
13285@tab @code{vRun}
13286@tab @code{run}
13287
cfa9d6d9 13288@item @code{software-breakpoint}
427c3a89
DJ
13289@tab @code{Z0}
13290@tab @code{break}
13291
cfa9d6d9 13292@item @code{hardware-breakpoint}
427c3a89
DJ
13293@tab @code{Z1}
13294@tab @code{hbreak}
13295
cfa9d6d9 13296@item @code{write-watchpoint}
427c3a89
DJ
13297@tab @code{Z2}
13298@tab @code{watch}
13299
cfa9d6d9 13300@item @code{read-watchpoint}
427c3a89
DJ
13301@tab @code{Z3}
13302@tab @code{rwatch}
13303
cfa9d6d9 13304@item @code{access-watchpoint}
427c3a89
DJ
13305@tab @code{Z4}
13306@tab @code{awatch}
13307
cfa9d6d9
DJ
13308@item @code{target-features}
13309@tab @code{qXfer:features:read}
13310@tab @code{set architecture}
13311
13312@item @code{library-info}
13313@tab @code{qXfer:libraries:read}
13314@tab @code{info sharedlibrary}
13315
13316@item @code{memory-map}
13317@tab @code{qXfer:memory-map:read}
13318@tab @code{info mem}
13319
13320@item @code{read-spu-object}
13321@tab @code{qXfer:spu:read}
13322@tab @code{info spu}
13323
13324@item @code{write-spu-object}
13325@tab @code{qXfer:spu:write}
13326@tab @code{info spu}
13327
13328@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13329@tab @code{qGetTLSAddr}
13330@tab Displaying @code{__thread} variables
13331
13332@item @code{supported-packets}
13333@tab @code{qSupported}
13334@tab Remote communications parameters
13335
cfa9d6d9 13336@item @code{pass-signals}
89be2091
DJ
13337@tab @code{QPassSignals}
13338@tab @code{handle @var{signal}}
13339
a6b151f1
DJ
13340@item @code{hostio-close-packet}
13341@tab @code{vFile:close}
13342@tab @code{remote get}, @code{remote put}
13343
13344@item @code{hostio-open-packet}
13345@tab @code{vFile:open}
13346@tab @code{remote get}, @code{remote put}
13347
13348@item @code{hostio-pread-packet}
13349@tab @code{vFile:pread}
13350@tab @code{remote get}, @code{remote put}
13351
13352@item @code{hostio-pwrite-packet}
13353@tab @code{vFile:pwrite}
13354@tab @code{remote get}, @code{remote put}
13355
13356@item @code{hostio-unlink-packet}
13357@tab @code{vFile:unlink}
13358@tab @code{remote delete}
427c3a89
DJ
13359@end multitable
13360
79a6e687
BW
13361@node Remote Stub
13362@section Implementing a Remote Stub
7a292a7a 13363
8e04817f
AC
13364@cindex debugging stub, example
13365@cindex remote stub, example
13366@cindex stub example, remote debugging
13367The stub files provided with @value{GDBN} implement the target side of the
13368communication protocol, and the @value{GDBN} side is implemented in the
13369@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13370these subroutines to communicate, and ignore the details. (If you're
13371implementing your own stub file, you can still ignore the details: start
13372with one of the existing stub files. @file{sparc-stub.c} is the best
13373organized, and therefore the easiest to read.)
13374
104c1213
JM
13375@cindex remote serial debugging, overview
13376To debug a program running on another machine (the debugging
13377@dfn{target} machine), you must first arrange for all the usual
13378prerequisites for the program to run by itself. For example, for a C
13379program, you need:
c906108c 13380
104c1213
JM
13381@enumerate
13382@item
13383A startup routine to set up the C runtime environment; these usually
13384have a name like @file{crt0}. The startup routine may be supplied by
13385your hardware supplier, or you may have to write your own.
96baa820 13386
5d161b24 13387@item
d4f3574e 13388A C subroutine library to support your program's
104c1213 13389subroutine calls, notably managing input and output.
96baa820 13390
104c1213
JM
13391@item
13392A way of getting your program to the other machine---for example, a
13393download program. These are often supplied by the hardware
13394manufacturer, but you may have to write your own from hardware
13395documentation.
13396@end enumerate
96baa820 13397
104c1213
JM
13398The next step is to arrange for your program to use a serial port to
13399communicate with the machine where @value{GDBN} is running (the @dfn{host}
13400machine). In general terms, the scheme looks like this:
96baa820 13401
104c1213
JM
13402@table @emph
13403@item On the host,
13404@value{GDBN} already understands how to use this protocol; when everything
13405else is set up, you can simply use the @samp{target remote} command
13406(@pxref{Targets,,Specifying a Debugging Target}).
13407
13408@item On the target,
13409you must link with your program a few special-purpose subroutines that
13410implement the @value{GDBN} remote serial protocol. The file containing these
13411subroutines is called a @dfn{debugging stub}.
13412
13413On certain remote targets, you can use an auxiliary program
13414@code{gdbserver} instead of linking a stub into your program.
79a6e687 13415@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13416@end table
96baa820 13417
104c1213
JM
13418The debugging stub is specific to the architecture of the remote
13419machine; for example, use @file{sparc-stub.c} to debug programs on
13420@sc{sparc} boards.
96baa820 13421
104c1213
JM
13422@cindex remote serial stub list
13423These working remote stubs are distributed with @value{GDBN}:
96baa820 13424
104c1213
JM
13425@table @code
13426
13427@item i386-stub.c
41afff9a 13428@cindex @file{i386-stub.c}
104c1213
JM
13429@cindex Intel
13430@cindex i386
13431For Intel 386 and compatible architectures.
13432
13433@item m68k-stub.c
41afff9a 13434@cindex @file{m68k-stub.c}
104c1213
JM
13435@cindex Motorola 680x0
13436@cindex m680x0
13437For Motorola 680x0 architectures.
13438
13439@item sh-stub.c
41afff9a 13440@cindex @file{sh-stub.c}
172c2a43 13441@cindex Renesas
104c1213 13442@cindex SH
172c2a43 13443For Renesas SH architectures.
104c1213
JM
13444
13445@item sparc-stub.c
41afff9a 13446@cindex @file{sparc-stub.c}
104c1213
JM
13447@cindex Sparc
13448For @sc{sparc} architectures.
13449
13450@item sparcl-stub.c
41afff9a 13451@cindex @file{sparcl-stub.c}
104c1213
JM
13452@cindex Fujitsu
13453@cindex SparcLite
13454For Fujitsu @sc{sparclite} architectures.
13455
13456@end table
13457
13458The @file{README} file in the @value{GDBN} distribution may list other
13459recently added stubs.
13460
13461@menu
13462* Stub Contents:: What the stub can do for you
13463* Bootstrapping:: What you must do for the stub
13464* Debug Session:: Putting it all together
104c1213
JM
13465@end menu
13466
6d2ebf8b 13467@node Stub Contents
79a6e687 13468@subsection What the Stub Can Do for You
104c1213
JM
13469
13470@cindex remote serial stub
13471The debugging stub for your architecture supplies these three
13472subroutines:
13473
13474@table @code
13475@item set_debug_traps
4644b6e3 13476@findex set_debug_traps
104c1213
JM
13477@cindex remote serial stub, initialization
13478This routine arranges for @code{handle_exception} to run when your
13479program stops. You must call this subroutine explicitly near the
13480beginning of your program.
13481
13482@item handle_exception
4644b6e3 13483@findex handle_exception
104c1213
JM
13484@cindex remote serial stub, main routine
13485This is the central workhorse, but your program never calls it
13486explicitly---the setup code arranges for @code{handle_exception} to
13487run when a trap is triggered.
13488
13489@code{handle_exception} takes control when your program stops during
13490execution (for example, on a breakpoint), and mediates communications
13491with @value{GDBN} on the host machine. This is where the communications
13492protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13493representative on the target machine. It begins by sending summary
104c1213
JM
13494information on the state of your program, then continues to execute,
13495retrieving and transmitting any information @value{GDBN} needs, until you
13496execute a @value{GDBN} command that makes your program resume; at that point,
13497@code{handle_exception} returns control to your own code on the target
5d161b24 13498machine.
104c1213
JM
13499
13500@item breakpoint
13501@cindex @code{breakpoint} subroutine, remote
13502Use this auxiliary subroutine to make your program contain a
13503breakpoint. Depending on the particular situation, this may be the only
13504way for @value{GDBN} to get control. For instance, if your target
13505machine has some sort of interrupt button, you won't need to call this;
13506pressing the interrupt button transfers control to
13507@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13508simply receiving characters on the serial port may also trigger a trap;
13509again, in that situation, you don't need to call @code{breakpoint} from
13510your own program---simply running @samp{target remote} from the host
5d161b24 13511@value{GDBN} session gets control.
104c1213
JM
13512
13513Call @code{breakpoint} if none of these is true, or if you simply want
13514to make certain your program stops at a predetermined point for the
13515start of your debugging session.
13516@end table
13517
6d2ebf8b 13518@node Bootstrapping
79a6e687 13519@subsection What You Must Do for the Stub
104c1213
JM
13520
13521@cindex remote stub, support routines
13522The debugging stubs that come with @value{GDBN} are set up for a particular
13523chip architecture, but they have no information about the rest of your
13524debugging target machine.
13525
13526First of all you need to tell the stub how to communicate with the
13527serial port.
13528
13529@table @code
13530@item int getDebugChar()
4644b6e3 13531@findex getDebugChar
104c1213
JM
13532Write this subroutine to read a single character from the serial port.
13533It may be identical to @code{getchar} for your target system; a
13534different name is used to allow you to distinguish the two if you wish.
13535
13536@item void putDebugChar(int)
4644b6e3 13537@findex putDebugChar
104c1213 13538Write this subroutine to write a single character to the serial port.
5d161b24 13539It may be identical to @code{putchar} for your target system; a
104c1213
JM
13540different name is used to allow you to distinguish the two if you wish.
13541@end table
13542
13543@cindex control C, and remote debugging
13544@cindex interrupting remote targets
13545If you want @value{GDBN} to be able to stop your program while it is
13546running, you need to use an interrupt-driven serial driver, and arrange
13547for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13548character). That is the character which @value{GDBN} uses to tell the
13549remote system to stop.
13550
13551Getting the debugging target to return the proper status to @value{GDBN}
13552probably requires changes to the standard stub; one quick and dirty way
13553is to just execute a breakpoint instruction (the ``dirty'' part is that
13554@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13555
13556Other routines you need to supply are:
13557
13558@table @code
13559@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13560@findex exceptionHandler
104c1213
JM
13561Write this function to install @var{exception_address} in the exception
13562handling tables. You need to do this because the stub does not have any
13563way of knowing what the exception handling tables on your target system
13564are like (for example, the processor's table might be in @sc{rom},
13565containing entries which point to a table in @sc{ram}).
13566@var{exception_number} is the exception number which should be changed;
13567its meaning is architecture-dependent (for example, different numbers
13568might represent divide by zero, misaligned access, etc). When this
13569exception occurs, control should be transferred directly to
13570@var{exception_address}, and the processor state (stack, registers,
13571and so on) should be just as it is when a processor exception occurs. So if
13572you want to use a jump instruction to reach @var{exception_address}, it
13573should be a simple jump, not a jump to subroutine.
13574
13575For the 386, @var{exception_address} should be installed as an interrupt
13576gate so that interrupts are masked while the handler runs. The gate
13577should be at privilege level 0 (the most privileged level). The
13578@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13579help from @code{exceptionHandler}.
13580
13581@item void flush_i_cache()
4644b6e3 13582@findex flush_i_cache
d4f3574e 13583On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13584instruction cache, if any, on your target machine. If there is no
13585instruction cache, this subroutine may be a no-op.
13586
13587On target machines that have instruction caches, @value{GDBN} requires this
13588function to make certain that the state of your program is stable.
13589@end table
13590
13591@noindent
13592You must also make sure this library routine is available:
13593
13594@table @code
13595@item void *memset(void *, int, int)
4644b6e3 13596@findex memset
104c1213
JM
13597This is the standard library function @code{memset} that sets an area of
13598memory to a known value. If you have one of the free versions of
13599@code{libc.a}, @code{memset} can be found there; otherwise, you must
13600either obtain it from your hardware manufacturer, or write your own.
13601@end table
13602
13603If you do not use the GNU C compiler, you may need other standard
13604library subroutines as well; this varies from one stub to another,
13605but in general the stubs are likely to use any of the common library
e22ea452 13606subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13607
13608
6d2ebf8b 13609@node Debug Session
79a6e687 13610@subsection Putting it All Together
104c1213
JM
13611
13612@cindex remote serial debugging summary
13613In summary, when your program is ready to debug, you must follow these
13614steps.
13615
13616@enumerate
13617@item
6d2ebf8b 13618Make sure you have defined the supporting low-level routines
79a6e687 13619(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13620@display
13621@code{getDebugChar}, @code{putDebugChar},
13622@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13623@end display
13624
13625@item
13626Insert these lines near the top of your program:
13627
474c8240 13628@smallexample
104c1213
JM
13629set_debug_traps();
13630breakpoint();
474c8240 13631@end smallexample
104c1213
JM
13632
13633@item
13634For the 680x0 stub only, you need to provide a variable called
13635@code{exceptionHook}. Normally you just use:
13636
474c8240 13637@smallexample
104c1213 13638void (*exceptionHook)() = 0;
474c8240 13639@end smallexample
104c1213 13640
d4f3574e 13641@noindent
104c1213 13642but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13643function in your program, that function is called when
104c1213
JM
13644@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13645error). The function indicated by @code{exceptionHook} is called with
13646one parameter: an @code{int} which is the exception number.
13647
13648@item
13649Compile and link together: your program, the @value{GDBN} debugging stub for
13650your target architecture, and the supporting subroutines.
13651
13652@item
13653Make sure you have a serial connection between your target machine and
13654the @value{GDBN} host, and identify the serial port on the host.
13655
13656@item
13657@c The "remote" target now provides a `load' command, so we should
13658@c document that. FIXME.
13659Download your program to your target machine (or get it there by
13660whatever means the manufacturer provides), and start it.
13661
13662@item
07f31aa6 13663Start @value{GDBN} on the host, and connect to the target
79a6e687 13664(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13665
104c1213
JM
13666@end enumerate
13667
8e04817f
AC
13668@node Configurations
13669@chapter Configuration-Specific Information
104c1213 13670
8e04817f
AC
13671While nearly all @value{GDBN} commands are available for all native and
13672cross versions of the debugger, there are some exceptions. This chapter
13673describes things that are only available in certain configurations.
104c1213 13674
8e04817f
AC
13675There are three major categories of configurations: native
13676configurations, where the host and target are the same, embedded
13677operating system configurations, which are usually the same for several
13678different processor architectures, and bare embedded processors, which
13679are quite different from each other.
104c1213 13680
8e04817f
AC
13681@menu
13682* Native::
13683* Embedded OS::
13684* Embedded Processors::
13685* Architectures::
13686@end menu
104c1213 13687
8e04817f
AC
13688@node Native
13689@section Native
104c1213 13690
8e04817f
AC
13691This section describes details specific to particular native
13692configurations.
6cf7e474 13693
8e04817f
AC
13694@menu
13695* HP-UX:: HP-UX
7561d450 13696* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13697* SVR4 Process Information:: SVR4 process information
13698* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13699* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13700* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13701* Neutrino:: Features specific to QNX Neutrino
8e04817f 13702@end menu
6cf7e474 13703
8e04817f
AC
13704@node HP-UX
13705@subsection HP-UX
104c1213 13706
8e04817f
AC
13707On HP-UX systems, if you refer to a function or variable name that
13708begins with a dollar sign, @value{GDBN} searches for a user or system
13709name first, before it searches for a convenience variable.
104c1213 13710
9c16f35a 13711
7561d450
MK
13712@node BSD libkvm Interface
13713@subsection BSD libkvm Interface
13714
13715@cindex libkvm
13716@cindex kernel memory image
13717@cindex kernel crash dump
13718
13719BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13720interface that provides a uniform interface for accessing kernel virtual
13721memory images, including live systems and crash dumps. @value{GDBN}
13722uses this interface to allow you to debug live kernels and kernel crash
13723dumps on many native BSD configurations. This is implemented as a
13724special @code{kvm} debugging target. For debugging a live system, load
13725the currently running kernel into @value{GDBN} and connect to the
13726@code{kvm} target:
13727
13728@smallexample
13729(@value{GDBP}) @b{target kvm}
13730@end smallexample
13731
13732For debugging crash dumps, provide the file name of the crash dump as an
13733argument:
13734
13735@smallexample
13736(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13737@end smallexample
13738
13739Once connected to the @code{kvm} target, the following commands are
13740available:
13741
13742@table @code
13743@kindex kvm
13744@item kvm pcb
721c2651 13745Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13746
13747@item kvm proc
13748Set current context from proc address. This command isn't available on
13749modern FreeBSD systems.
13750@end table
13751
8e04817f 13752@node SVR4 Process Information
79a6e687 13753@subsection SVR4 Process Information
60bf7e09
EZ
13754@cindex /proc
13755@cindex examine process image
13756@cindex process info via @file{/proc}
104c1213 13757
60bf7e09
EZ
13758Many versions of SVR4 and compatible systems provide a facility called
13759@samp{/proc} that can be used to examine the image of a running
13760process using file-system subroutines. If @value{GDBN} is configured
13761for an operating system with this facility, the command @code{info
13762proc} is available to report information about the process running
13763your program, or about any process running on your system. @code{info
13764proc} works only on SVR4 systems that include the @code{procfs} code.
13765This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13766Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13767
8e04817f
AC
13768@table @code
13769@kindex info proc
60bf7e09 13770@cindex process ID
8e04817f 13771@item info proc
60bf7e09
EZ
13772@itemx info proc @var{process-id}
13773Summarize available information about any running process. If a
13774process ID is specified by @var{process-id}, display information about
13775that process; otherwise display information about the program being
13776debugged. The summary includes the debugged process ID, the command
13777line used to invoke it, its current working directory, and its
13778executable file's absolute file name.
13779
13780On some systems, @var{process-id} can be of the form
13781@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13782within a process. If the optional @var{pid} part is missing, it means
13783a thread from the process being debugged (the leading @samp{/} still
13784needs to be present, or else @value{GDBN} will interpret the number as
13785a process ID rather than a thread ID).
6cf7e474 13786
8e04817f 13787@item info proc mappings
60bf7e09
EZ
13788@cindex memory address space mappings
13789Report the memory address space ranges accessible in the program, with
13790information on whether the process has read, write, or execute access
13791rights to each range. On @sc{gnu}/Linux systems, each memory range
13792includes the object file which is mapped to that range, instead of the
13793memory access rights to that range.
13794
13795@item info proc stat
13796@itemx info proc status
13797@cindex process detailed status information
13798These subcommands are specific to @sc{gnu}/Linux systems. They show
13799the process-related information, including the user ID and group ID;
13800how many threads are there in the process; its virtual memory usage;
13801the signals that are pending, blocked, and ignored; its TTY; its
13802consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13803value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13804(type @kbd{man 5 proc} from your shell prompt).
13805
13806@item info proc all
13807Show all the information about the process described under all of the
13808above @code{info proc} subcommands.
13809
8e04817f
AC
13810@ignore
13811@comment These sub-options of 'info proc' were not included when
13812@comment procfs.c was re-written. Keep their descriptions around
13813@comment against the day when someone finds the time to put them back in.
13814@kindex info proc times
13815@item info proc times
13816Starting time, user CPU time, and system CPU time for your program and
13817its children.
6cf7e474 13818
8e04817f
AC
13819@kindex info proc id
13820@item info proc id
13821Report on the process IDs related to your program: its own process ID,
13822the ID of its parent, the process group ID, and the session ID.
8e04817f 13823@end ignore
721c2651
EZ
13824
13825@item set procfs-trace
13826@kindex set procfs-trace
13827@cindex @code{procfs} API calls
13828This command enables and disables tracing of @code{procfs} API calls.
13829
13830@item show procfs-trace
13831@kindex show procfs-trace
13832Show the current state of @code{procfs} API call tracing.
13833
13834@item set procfs-file @var{file}
13835@kindex set procfs-file
13836Tell @value{GDBN} to write @code{procfs} API trace to the named
13837@var{file}. @value{GDBN} appends the trace info to the previous
13838contents of the file. The default is to display the trace on the
13839standard output.
13840
13841@item show procfs-file
13842@kindex show procfs-file
13843Show the file to which @code{procfs} API trace is written.
13844
13845@item proc-trace-entry
13846@itemx proc-trace-exit
13847@itemx proc-untrace-entry
13848@itemx proc-untrace-exit
13849@kindex proc-trace-entry
13850@kindex proc-trace-exit
13851@kindex proc-untrace-entry
13852@kindex proc-untrace-exit
13853These commands enable and disable tracing of entries into and exits
13854from the @code{syscall} interface.
13855
13856@item info pidlist
13857@kindex info pidlist
13858@cindex process list, QNX Neutrino
13859For QNX Neutrino only, this command displays the list of all the
13860processes and all the threads within each process.
13861
13862@item info meminfo
13863@kindex info meminfo
13864@cindex mapinfo list, QNX Neutrino
13865For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13866@end table
104c1213 13867
8e04817f
AC
13868@node DJGPP Native
13869@subsection Features for Debugging @sc{djgpp} Programs
13870@cindex @sc{djgpp} debugging
13871@cindex native @sc{djgpp} debugging
13872@cindex MS-DOS-specific commands
104c1213 13873
514c4d71
EZ
13874@cindex DPMI
13875@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13876MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13877that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13878top of real-mode DOS systems and their emulations.
104c1213 13879
8e04817f
AC
13880@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13881defines a few commands specific to the @sc{djgpp} port. This
13882subsection describes those commands.
104c1213 13883
8e04817f
AC
13884@table @code
13885@kindex info dos
13886@item info dos
13887This is a prefix of @sc{djgpp}-specific commands which print
13888information about the target system and important OS structures.
f1251bdd 13889
8e04817f
AC
13890@kindex sysinfo
13891@cindex MS-DOS system info
13892@cindex free memory information (MS-DOS)
13893@item info dos sysinfo
13894This command displays assorted information about the underlying
13895platform: the CPU type and features, the OS version and flavor, the
13896DPMI version, and the available conventional and DPMI memory.
104c1213 13897
8e04817f
AC
13898@cindex GDT
13899@cindex LDT
13900@cindex IDT
13901@cindex segment descriptor tables
13902@cindex descriptor tables display
13903@item info dos gdt
13904@itemx info dos ldt
13905@itemx info dos idt
13906These 3 commands display entries from, respectively, Global, Local,
13907and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13908tables are data structures which store a descriptor for each segment
13909that is currently in use. The segment's selector is an index into a
13910descriptor table; the table entry for that index holds the
13911descriptor's base address and limit, and its attributes and access
13912rights.
104c1213 13913
8e04817f
AC
13914A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13915segment (used for both data and the stack), and a DOS segment (which
13916allows access to DOS/BIOS data structures and absolute addresses in
13917conventional memory). However, the DPMI host will usually define
13918additional segments in order to support the DPMI environment.
d4f3574e 13919
8e04817f
AC
13920@cindex garbled pointers
13921These commands allow to display entries from the descriptor tables.
13922Without an argument, all entries from the specified table are
13923displayed. An argument, which should be an integer expression, means
13924display a single entry whose index is given by the argument. For
13925example, here's a convenient way to display information about the
13926debugged program's data segment:
104c1213 13927
8e04817f
AC
13928@smallexample
13929@exdent @code{(@value{GDBP}) info dos ldt $ds}
13930@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13931@end smallexample
104c1213 13932
8e04817f
AC
13933@noindent
13934This comes in handy when you want to see whether a pointer is outside
13935the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13936
8e04817f
AC
13937@cindex page tables display (MS-DOS)
13938@item info dos pde
13939@itemx info dos pte
13940These two commands display entries from, respectively, the Page
13941Directory and the Page Tables. Page Directories and Page Tables are
13942data structures which control how virtual memory addresses are mapped
13943into physical addresses. A Page Table includes an entry for every
13944page of memory that is mapped into the program's address space; there
13945may be several Page Tables, each one holding up to 4096 entries. A
13946Page Directory has up to 4096 entries, one each for every Page Table
13947that is currently in use.
104c1213 13948
8e04817f
AC
13949Without an argument, @kbd{info dos pde} displays the entire Page
13950Directory, and @kbd{info dos pte} displays all the entries in all of
13951the Page Tables. An argument, an integer expression, given to the
13952@kbd{info dos pde} command means display only that entry from the Page
13953Directory table. An argument given to the @kbd{info dos pte} command
13954means display entries from a single Page Table, the one pointed to by
13955the specified entry in the Page Directory.
104c1213 13956
8e04817f
AC
13957@cindex direct memory access (DMA) on MS-DOS
13958These commands are useful when your program uses @dfn{DMA} (Direct
13959Memory Access), which needs physical addresses to program the DMA
13960controller.
104c1213 13961
8e04817f 13962These commands are supported only with some DPMI servers.
104c1213 13963
8e04817f
AC
13964@cindex physical address from linear address
13965@item info dos address-pte @var{addr}
13966This command displays the Page Table entry for a specified linear
514c4d71
EZ
13967address. The argument @var{addr} is a linear address which should
13968already have the appropriate segment's base address added to it,
13969because this command accepts addresses which may belong to @emph{any}
13970segment. For example, here's how to display the Page Table entry for
13971the page where a variable @code{i} is stored:
104c1213 13972
b383017d 13973@smallexample
8e04817f
AC
13974@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13975@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13976@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13977@end smallexample
104c1213 13978
8e04817f
AC
13979@noindent
13980This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13981whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13982attributes of that page.
104c1213 13983
8e04817f
AC
13984Note that you must cast the addresses of variables to a @code{char *},
13985since otherwise the value of @code{__djgpp_base_address}, the base
13986address of all variables and functions in a @sc{djgpp} program, will
13987be added using the rules of C pointer arithmetics: if @code{i} is
13988declared an @code{int}, @value{GDBN} will add 4 times the value of
13989@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13990
8e04817f
AC
13991Here's another example, it displays the Page Table entry for the
13992transfer buffer:
104c1213 13993
8e04817f
AC
13994@smallexample
13995@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13996@exdent @code{Page Table entry for address 0x29110:}
13997@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13998@end smallexample
104c1213 13999
8e04817f
AC
14000@noindent
14001(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
140023rd member of the @code{_go32_info_block} structure.) The output
14003clearly shows that this DPMI server maps the addresses in conventional
14004memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14005linear (@code{0x29110}) addresses are identical.
104c1213 14006
8e04817f
AC
14007This command is supported only with some DPMI servers.
14008@end table
104c1213 14009
c45da7e6 14010@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14011In addition to native debugging, the DJGPP port supports remote
14012debugging via a serial data link. The following commands are specific
14013to remote serial debugging in the DJGPP port of @value{GDBN}.
14014
14015@table @code
14016@kindex set com1base
14017@kindex set com1irq
14018@kindex set com2base
14019@kindex set com2irq
14020@kindex set com3base
14021@kindex set com3irq
14022@kindex set com4base
14023@kindex set com4irq
14024@item set com1base @var{addr}
14025This command sets the base I/O port address of the @file{COM1} serial
14026port.
14027
14028@item set com1irq @var{irq}
14029This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14030for the @file{COM1} serial port.
14031
14032There are similar commands @samp{set com2base}, @samp{set com3irq},
14033etc.@: for setting the port address and the @code{IRQ} lines for the
14034other 3 COM ports.
14035
14036@kindex show com1base
14037@kindex show com1irq
14038@kindex show com2base
14039@kindex show com2irq
14040@kindex show com3base
14041@kindex show com3irq
14042@kindex show com4base
14043@kindex show com4irq
14044The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14045display the current settings of the base address and the @code{IRQ}
14046lines used by the COM ports.
c45da7e6
EZ
14047
14048@item info serial
14049@kindex info serial
14050@cindex DOS serial port status
14051This command prints the status of the 4 DOS serial ports. For each
14052port, it prints whether it's active or not, its I/O base address and
14053IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14054counts of various errors encountered so far.
a8f24a35
EZ
14055@end table
14056
14057
78c47bea 14058@node Cygwin Native
79a6e687 14059@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14060@cindex MS Windows debugging
14061@cindex native Cygwin debugging
14062@cindex Cygwin-specific commands
14063
be448670 14064@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14065DLLs with and without symbolic debugging information. There are various
14066additional Cygwin-specific commands, described in this section.
14067Working with DLLs that have no debugging symbols is described in
14068@ref{Non-debug DLL Symbols}.
78c47bea
PM
14069
14070@table @code
14071@kindex info w32
14072@item info w32
db2e3e2e 14073This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14074information about the target system and important OS structures.
14075
14076@item info w32 selector
14077This command displays information returned by
14078the Win32 API @code{GetThreadSelectorEntry} function.
14079It takes an optional argument that is evaluated to
14080a long value to give the information about this given selector.
14081Without argument, this command displays information
d3e8051b 14082about the six segment registers.
78c47bea
PM
14083
14084@kindex info dll
14085@item info dll
db2e3e2e 14086This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14087
14088@kindex dll-symbols
14089@item dll-symbols
14090This command loads symbols from a dll similarly to
14091add-sym command but without the need to specify a base address.
14092
be90c084 14093@kindex set cygwin-exceptions
e16b02ee
EZ
14094@cindex debugging the Cygwin DLL
14095@cindex Cygwin DLL, debugging
be90c084 14096@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14097If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14098happen inside the Cygwin DLL. If @var{mode} is @code{off},
14099@value{GDBN} will delay recognition of exceptions, and may ignore some
14100exceptions which seem to be caused by internal Cygwin DLL
14101``bookkeeping''. This option is meant primarily for debugging the
14102Cygwin DLL itself; the default value is @code{off} to avoid annoying
14103@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14104
14105@kindex show cygwin-exceptions
14106@item show cygwin-exceptions
e16b02ee
EZ
14107Displays whether @value{GDBN} will break on exceptions that happen
14108inside the Cygwin DLL itself.
be90c084 14109
b383017d 14110@kindex set new-console
78c47bea 14111@item set new-console @var{mode}
b383017d 14112If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14113be started in a new console on next start.
14114If @var{mode} is @code{off}i, the debuggee will
14115be started in the same console as the debugger.
14116
14117@kindex show new-console
14118@item show new-console
14119Displays whether a new console is used
14120when the debuggee is started.
14121
14122@kindex set new-group
14123@item set new-group @var{mode}
14124This boolean value controls whether the debuggee should
14125start a new group or stay in the same group as the debugger.
14126This affects the way the Windows OS handles
c8aa23ab 14127@samp{Ctrl-C}.
78c47bea
PM
14128
14129@kindex show new-group
14130@item show new-group
14131Displays current value of new-group boolean.
14132
14133@kindex set debugevents
14134@item set debugevents
219eec71
EZ
14135This boolean value adds debug output concerning kernel events related
14136to the debuggee seen by the debugger. This includes events that
14137signal thread and process creation and exit, DLL loading and
14138unloading, console interrupts, and debugging messages produced by the
14139Windows @code{OutputDebugString} API call.
78c47bea
PM
14140
14141@kindex set debugexec
14142@item set debugexec
b383017d 14143This boolean value adds debug output concerning execute events
219eec71 14144(such as resume thread) seen by the debugger.
78c47bea
PM
14145
14146@kindex set debugexceptions
14147@item set debugexceptions
219eec71
EZ
14148This boolean value adds debug output concerning exceptions in the
14149debuggee seen by the debugger.
78c47bea
PM
14150
14151@kindex set debugmemory
14152@item set debugmemory
219eec71
EZ
14153This boolean value adds debug output concerning debuggee memory reads
14154and writes by the debugger.
78c47bea
PM
14155
14156@kindex set shell
14157@item set shell
14158This boolean values specifies whether the debuggee is called
14159via a shell or directly (default value is on).
14160
14161@kindex show shell
14162@item show shell
14163Displays if the debuggee will be started with a shell.
14164
14165@end table
14166
be448670 14167@menu
79a6e687 14168* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14169@end menu
14170
79a6e687
BW
14171@node Non-debug DLL Symbols
14172@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14173@cindex DLLs with no debugging symbols
14174@cindex Minimal symbols and DLLs
14175
14176Very often on windows, some of the DLLs that your program relies on do
14177not include symbolic debugging information (for example,
db2e3e2e 14178@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14179symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14180information contained in the DLL's export table. This section
be448670
CF
14181describes working with such symbols, known internally to @value{GDBN} as
14182``minimal symbols''.
14183
14184Note that before the debugged program has started execution, no DLLs
db2e3e2e 14185will have been loaded. The easiest way around this problem is simply to
be448670 14186start the program --- either by setting a breakpoint or letting the
db2e3e2e 14187program run once to completion. It is also possible to force
be448670 14188@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14189see the shared library information in @ref{Files}, or the
db2e3e2e 14190@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14191explicitly loading symbols from a DLL with no debugging information will
14192cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14193which may adversely affect symbol lookup performance.
14194
79a6e687 14195@subsubsection DLL Name Prefixes
be448670
CF
14196
14197In keeping with the naming conventions used by the Microsoft debugging
14198tools, DLL export symbols are made available with a prefix based on the
14199DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14200also entered into the symbol table, so @code{CreateFileA} is often
14201sufficient. In some cases there will be name clashes within a program
14202(particularly if the executable itself includes full debugging symbols)
14203necessitating the use of the fully qualified name when referring to the
14204contents of the DLL. Use single-quotes around the name to avoid the
14205exclamation mark (``!'') being interpreted as a language operator.
14206
14207Note that the internal name of the DLL may be all upper-case, even
14208though the file name of the DLL is lower-case, or vice-versa. Since
14209symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14210some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14211@code{info variables} commands or even @code{maint print msymbols}
14212(@pxref{Symbols}). Here's an example:
be448670
CF
14213
14214@smallexample
f7dc1244 14215(@value{GDBP}) info function CreateFileA
be448670
CF
14216All functions matching regular expression "CreateFileA":
14217
14218Non-debugging symbols:
142190x77e885f4 CreateFileA
142200x77e885f4 KERNEL32!CreateFileA
14221@end smallexample
14222
14223@smallexample
f7dc1244 14224(@value{GDBP}) info function !
be448670
CF
14225All functions matching regular expression "!":
14226
14227Non-debugging symbols:
142280x6100114c cygwin1!__assert
142290x61004034 cygwin1!_dll_crt0@@0
142300x61004240 cygwin1!dll_crt0(per_process *)
14231[etc...]
14232@end smallexample
14233
79a6e687 14234@subsubsection Working with Minimal Symbols
be448670
CF
14235
14236Symbols extracted from a DLL's export table do not contain very much
14237type information. All that @value{GDBN} can do is guess whether a symbol
14238refers to a function or variable depending on the linker section that
14239contains the symbol. Also note that the actual contents of the memory
14240contained in a DLL are not available unless the program is running. This
14241means that you cannot examine the contents of a variable or disassemble
14242a function within a DLL without a running program.
14243
14244Variables are generally treated as pointers and dereferenced
14245automatically. For this reason, it is often necessary to prefix a
14246variable name with the address-of operator (``&'') and provide explicit
14247type information in the command. Here's an example of the type of
14248problem:
14249
14250@smallexample
f7dc1244 14251(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14252$1 = 268572168
14253@end smallexample
14254
14255@smallexample
f7dc1244 14256(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
142570x10021610: "\230y\""
14258@end smallexample
14259
14260And two possible solutions:
14261
14262@smallexample
f7dc1244 14263(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14264$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14265@end smallexample
14266
14267@smallexample
f7dc1244 14268(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 142690x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14270(@value{GDBP}) x/x 0x10021608
be448670 142710x10021608: 0x0022fd98
f7dc1244 14272(@value{GDBP}) x/s 0x0022fd98
be448670
CF
142730x22fd98: "/cygdrive/c/mydirectory/myprogram"
14274@end smallexample
14275
14276Setting a break point within a DLL is possible even before the program
14277starts execution. However, under these circumstances, @value{GDBN} can't
14278examine the initial instructions of the function in order to skip the
14279function's frame set-up code. You can work around this by using ``*&''
14280to set the breakpoint at a raw memory address:
14281
14282@smallexample
f7dc1244 14283(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14284Breakpoint 1 at 0x1e04eff0
14285@end smallexample
14286
14287The author of these extensions is not entirely convinced that setting a
14288break point within a shared DLL like @file{kernel32.dll} is completely
14289safe.
14290
14d6dd68 14291@node Hurd Native
79a6e687 14292@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14293@cindex @sc{gnu} Hurd debugging
14294
14295This subsection describes @value{GDBN} commands specific to the
14296@sc{gnu} Hurd native debugging.
14297
14298@table @code
14299@item set signals
14300@itemx set sigs
14301@kindex set signals@r{, Hurd command}
14302@kindex set sigs@r{, Hurd command}
14303This command toggles the state of inferior signal interception by
14304@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14305affected by this command. @code{sigs} is a shorthand alias for
14306@code{signals}.
14307
14308@item show signals
14309@itemx show sigs
14310@kindex show signals@r{, Hurd command}
14311@kindex show sigs@r{, Hurd command}
14312Show the current state of intercepting inferior's signals.
14313
14314@item set signal-thread
14315@itemx set sigthread
14316@kindex set signal-thread
14317@kindex set sigthread
14318This command tells @value{GDBN} which thread is the @code{libc} signal
14319thread. That thread is run when a signal is delivered to a running
14320process. @code{set sigthread} is the shorthand alias of @code{set
14321signal-thread}.
14322
14323@item show signal-thread
14324@itemx show sigthread
14325@kindex show signal-thread
14326@kindex show sigthread
14327These two commands show which thread will run when the inferior is
14328delivered a signal.
14329
14330@item set stopped
14331@kindex set stopped@r{, Hurd command}
14332This commands tells @value{GDBN} that the inferior process is stopped,
14333as with the @code{SIGSTOP} signal. The stopped process can be
14334continued by delivering a signal to it.
14335
14336@item show stopped
14337@kindex show stopped@r{, Hurd command}
14338This command shows whether @value{GDBN} thinks the debuggee is
14339stopped.
14340
14341@item set exceptions
14342@kindex set exceptions@r{, Hurd command}
14343Use this command to turn off trapping of exceptions in the inferior.
14344When exception trapping is off, neither breakpoints nor
14345single-stepping will work. To restore the default, set exception
14346trapping on.
14347
14348@item show exceptions
14349@kindex show exceptions@r{, Hurd command}
14350Show the current state of trapping exceptions in the inferior.
14351
14352@item set task pause
14353@kindex set task@r{, Hurd commands}
14354@cindex task attributes (@sc{gnu} Hurd)
14355@cindex pause current task (@sc{gnu} Hurd)
14356This command toggles task suspension when @value{GDBN} has control.
14357Setting it to on takes effect immediately, and the task is suspended
14358whenever @value{GDBN} gets control. Setting it to off will take
14359effect the next time the inferior is continued. If this option is set
14360to off, you can use @code{set thread default pause on} or @code{set
14361thread pause on} (see below) to pause individual threads.
14362
14363@item show task pause
14364@kindex show task@r{, Hurd commands}
14365Show the current state of task suspension.
14366
14367@item set task detach-suspend-count
14368@cindex task suspend count
14369@cindex detach from task, @sc{gnu} Hurd
14370This command sets the suspend count the task will be left with when
14371@value{GDBN} detaches from it.
14372
14373@item show task detach-suspend-count
14374Show the suspend count the task will be left with when detaching.
14375
14376@item set task exception-port
14377@itemx set task excp
14378@cindex task exception port, @sc{gnu} Hurd
14379This command sets the task exception port to which @value{GDBN} will
14380forward exceptions. The argument should be the value of the @dfn{send
14381rights} of the task. @code{set task excp} is a shorthand alias.
14382
14383@item set noninvasive
14384@cindex noninvasive task options
14385This command switches @value{GDBN} to a mode that is the least
14386invasive as far as interfering with the inferior is concerned. This
14387is the same as using @code{set task pause}, @code{set exceptions}, and
14388@code{set signals} to values opposite to the defaults.
14389
14390@item info send-rights
14391@itemx info receive-rights
14392@itemx info port-rights
14393@itemx info port-sets
14394@itemx info dead-names
14395@itemx info ports
14396@itemx info psets
14397@cindex send rights, @sc{gnu} Hurd
14398@cindex receive rights, @sc{gnu} Hurd
14399@cindex port rights, @sc{gnu} Hurd
14400@cindex port sets, @sc{gnu} Hurd
14401@cindex dead names, @sc{gnu} Hurd
14402These commands display information about, respectively, send rights,
14403receive rights, port rights, port sets, and dead names of a task.
14404There are also shorthand aliases: @code{info ports} for @code{info
14405port-rights} and @code{info psets} for @code{info port-sets}.
14406
14407@item set thread pause
14408@kindex set thread@r{, Hurd command}
14409@cindex thread properties, @sc{gnu} Hurd
14410@cindex pause current thread (@sc{gnu} Hurd)
14411This command toggles current thread suspension when @value{GDBN} has
14412control. Setting it to on takes effect immediately, and the current
14413thread is suspended whenever @value{GDBN} gets control. Setting it to
14414off will take effect the next time the inferior is continued.
14415Normally, this command has no effect, since when @value{GDBN} has
14416control, the whole task is suspended. However, if you used @code{set
14417task pause off} (see above), this command comes in handy to suspend
14418only the current thread.
14419
14420@item show thread pause
14421@kindex show thread@r{, Hurd command}
14422This command shows the state of current thread suspension.
14423
14424@item set thread run
d3e8051b 14425This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14426
14427@item show thread run
14428Show whether the current thread is allowed to run.
14429
14430@item set thread detach-suspend-count
14431@cindex thread suspend count, @sc{gnu} Hurd
14432@cindex detach from thread, @sc{gnu} Hurd
14433This command sets the suspend count @value{GDBN} will leave on a
14434thread when detaching. This number is relative to the suspend count
14435found by @value{GDBN} when it notices the thread; use @code{set thread
14436takeover-suspend-count} to force it to an absolute value.
14437
14438@item show thread detach-suspend-count
14439Show the suspend count @value{GDBN} will leave on the thread when
14440detaching.
14441
14442@item set thread exception-port
14443@itemx set thread excp
14444Set the thread exception port to which to forward exceptions. This
14445overrides the port set by @code{set task exception-port} (see above).
14446@code{set thread excp} is the shorthand alias.
14447
14448@item set thread takeover-suspend-count
14449Normally, @value{GDBN}'s thread suspend counts are relative to the
14450value @value{GDBN} finds when it notices each thread. This command
14451changes the suspend counts to be absolute instead.
14452
14453@item set thread default
14454@itemx show thread default
14455@cindex thread default settings, @sc{gnu} Hurd
14456Each of the above @code{set thread} commands has a @code{set thread
14457default} counterpart (e.g., @code{set thread default pause}, @code{set
14458thread default exception-port}, etc.). The @code{thread default}
14459variety of commands sets the default thread properties for all
14460threads; you can then change the properties of individual threads with
14461the non-default commands.
14462@end table
14463
14464
a64548ea
EZ
14465@node Neutrino
14466@subsection QNX Neutrino
14467@cindex QNX Neutrino
14468
14469@value{GDBN} provides the following commands specific to the QNX
14470Neutrino target:
14471
14472@table @code
14473@item set debug nto-debug
14474@kindex set debug nto-debug
14475When set to on, enables debugging messages specific to the QNX
14476Neutrino support.
14477
14478@item show debug nto-debug
14479@kindex show debug nto-debug
14480Show the current state of QNX Neutrino messages.
14481@end table
14482
14483
8e04817f
AC
14484@node Embedded OS
14485@section Embedded Operating Systems
104c1213 14486
8e04817f
AC
14487This section describes configurations involving the debugging of
14488embedded operating systems that are available for several different
14489architectures.
d4f3574e 14490
8e04817f
AC
14491@menu
14492* VxWorks:: Using @value{GDBN} with VxWorks
14493@end menu
104c1213 14494
8e04817f
AC
14495@value{GDBN} includes the ability to debug programs running on
14496various real-time operating systems.
104c1213 14497
8e04817f
AC
14498@node VxWorks
14499@subsection Using @value{GDBN} with VxWorks
104c1213 14500
8e04817f 14501@cindex VxWorks
104c1213 14502
8e04817f 14503@table @code
104c1213 14504
8e04817f
AC
14505@kindex target vxworks
14506@item target vxworks @var{machinename}
14507A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14508is the target system's machine name or IP address.
104c1213 14509
8e04817f 14510@end table
104c1213 14511
8e04817f
AC
14512On VxWorks, @code{load} links @var{filename} dynamically on the
14513current target system as well as adding its symbols in @value{GDBN}.
104c1213 14514
8e04817f
AC
14515@value{GDBN} enables developers to spawn and debug tasks running on networked
14516VxWorks targets from a Unix host. Already-running tasks spawned from
14517the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14518both the Unix host and on the VxWorks target. The program
14519@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14520installed with the name @code{vxgdb}, to distinguish it from a
14521@value{GDBN} for debugging programs on the host itself.)
104c1213 14522
8e04817f
AC
14523@table @code
14524@item VxWorks-timeout @var{args}
14525@kindex vxworks-timeout
14526All VxWorks-based targets now support the option @code{vxworks-timeout}.
14527This option is set by the user, and @var{args} represents the number of
14528seconds @value{GDBN} waits for responses to rpc's. You might use this if
14529your VxWorks target is a slow software simulator or is on the far side
14530of a thin network line.
14531@end table
104c1213 14532
8e04817f
AC
14533The following information on connecting to VxWorks was current when
14534this manual was produced; newer releases of VxWorks may use revised
14535procedures.
104c1213 14536
4644b6e3 14537@findex INCLUDE_RDB
8e04817f
AC
14538To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14539to include the remote debugging interface routines in the VxWorks
14540library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14541VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14542kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14543source debugging task @code{tRdbTask} when VxWorks is booted. For more
14544information on configuring and remaking VxWorks, see the manufacturer's
14545manual.
14546@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14547
8e04817f
AC
14548Once you have included @file{rdb.a} in your VxWorks system image and set
14549your Unix execution search path to find @value{GDBN}, you are ready to
14550run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14551@code{vxgdb}, depending on your installation).
104c1213 14552
8e04817f 14553@value{GDBN} comes up showing the prompt:
104c1213 14554
474c8240 14555@smallexample
8e04817f 14556(vxgdb)
474c8240 14557@end smallexample
104c1213 14558
8e04817f
AC
14559@menu
14560* VxWorks Connection:: Connecting to VxWorks
14561* VxWorks Download:: VxWorks download
14562* VxWorks Attach:: Running tasks
14563@end menu
104c1213 14564
8e04817f
AC
14565@node VxWorks Connection
14566@subsubsection Connecting to VxWorks
104c1213 14567
8e04817f
AC
14568The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14569network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14570
474c8240 14571@smallexample
8e04817f 14572(vxgdb) target vxworks tt
474c8240 14573@end smallexample
104c1213 14574
8e04817f
AC
14575@need 750
14576@value{GDBN} displays messages like these:
104c1213 14577
8e04817f
AC
14578@smallexample
14579Attaching remote machine across net...
14580Connected to tt.
14581@end smallexample
104c1213 14582
8e04817f
AC
14583@need 1000
14584@value{GDBN} then attempts to read the symbol tables of any object modules
14585loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14586these files by searching the directories listed in the command search
79a6e687 14587path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14588to find an object file, it displays a message such as:
5d161b24 14589
474c8240 14590@smallexample
8e04817f 14591prog.o: No such file or directory.
474c8240 14592@end smallexample
104c1213 14593
8e04817f
AC
14594When this happens, add the appropriate directory to the search path with
14595the @value{GDBN} command @code{path}, and execute the @code{target}
14596command again.
104c1213 14597
8e04817f 14598@node VxWorks Download
79a6e687 14599@subsubsection VxWorks Download
104c1213 14600
8e04817f
AC
14601@cindex download to VxWorks
14602If you have connected to the VxWorks target and you want to debug an
14603object that has not yet been loaded, you can use the @value{GDBN}
14604@code{load} command to download a file from Unix to VxWorks
14605incrementally. The object file given as an argument to the @code{load}
14606command is actually opened twice: first by the VxWorks target in order
14607to download the code, then by @value{GDBN} in order to read the symbol
14608table. This can lead to problems if the current working directories on
14609the two systems differ. If both systems have NFS mounted the same
14610filesystems, you can avoid these problems by using absolute paths.
14611Otherwise, it is simplest to set the working directory on both systems
14612to the directory in which the object file resides, and then to reference
14613the file by its name, without any path. For instance, a program
14614@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14615and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14616program, type this on VxWorks:
104c1213 14617
474c8240 14618@smallexample
8e04817f 14619-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14620@end smallexample
104c1213 14621
8e04817f
AC
14622@noindent
14623Then, in @value{GDBN}, type:
104c1213 14624
474c8240 14625@smallexample
8e04817f
AC
14626(vxgdb) cd @var{hostpath}/vw/demo/rdb
14627(vxgdb) load prog.o
474c8240 14628@end smallexample
104c1213 14629
8e04817f 14630@value{GDBN} displays a response similar to this:
104c1213 14631
8e04817f
AC
14632@smallexample
14633Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14634@end smallexample
104c1213 14635
8e04817f
AC
14636You can also use the @code{load} command to reload an object module
14637after editing and recompiling the corresponding source file. Note that
14638this makes @value{GDBN} delete all currently-defined breakpoints,
14639auto-displays, and convenience variables, and to clear the value
14640history. (This is necessary in order to preserve the integrity of
14641debugger's data structures that reference the target system's symbol
14642table.)
104c1213 14643
8e04817f 14644@node VxWorks Attach
79a6e687 14645@subsubsection Running Tasks
104c1213
JM
14646
14647@cindex running VxWorks tasks
14648You can also attach to an existing task using the @code{attach} command as
14649follows:
14650
474c8240 14651@smallexample
104c1213 14652(vxgdb) attach @var{task}
474c8240 14653@end smallexample
104c1213
JM
14654
14655@noindent
14656where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14657or suspended when you attach to it. Running tasks are suspended at
14658the time of attachment.
14659
6d2ebf8b 14660@node Embedded Processors
104c1213
JM
14661@section Embedded Processors
14662
14663This section goes into details specific to particular embedded
14664configurations.
14665
c45da7e6
EZ
14666@cindex send command to simulator
14667Whenever a specific embedded processor has a simulator, @value{GDBN}
14668allows to send an arbitrary command to the simulator.
14669
14670@table @code
14671@item sim @var{command}
14672@kindex sim@r{, a command}
14673Send an arbitrary @var{command} string to the simulator. Consult the
14674documentation for the specific simulator in use for information about
14675acceptable commands.
14676@end table
14677
7d86b5d5 14678
104c1213 14679@menu
c45da7e6 14680* ARM:: ARM RDI
172c2a43 14681* M32R/D:: Renesas M32R/D
104c1213 14682* M68K:: Motorola M68K
104c1213 14683* MIPS Embedded:: MIPS Embedded
a37295f9 14684* OpenRISC 1000:: OpenRisc 1000
104c1213 14685* PA:: HP PA Embedded
4acd40f3 14686* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14687* Sparclet:: Tsqware Sparclet
14688* Sparclite:: Fujitsu Sparclite
104c1213 14689* Z8000:: Zilog Z8000
a64548ea
EZ
14690* AVR:: Atmel AVR
14691* CRIS:: CRIS
14692* Super-H:: Renesas Super-H
104c1213
JM
14693@end menu
14694
6d2ebf8b 14695@node ARM
104c1213 14696@subsection ARM
c45da7e6 14697@cindex ARM RDI
104c1213
JM
14698
14699@table @code
8e04817f
AC
14700@kindex target rdi
14701@item target rdi @var{dev}
14702ARM Angel monitor, via RDI library interface to ADP protocol. You may
14703use this target to communicate with both boards running the Angel
14704monitor, or with the EmbeddedICE JTAG debug device.
14705
14706@kindex target rdp
14707@item target rdp @var{dev}
14708ARM Demon monitor.
14709
14710@end table
14711
e2f4edfd
EZ
14712@value{GDBN} provides the following ARM-specific commands:
14713
14714@table @code
14715@item set arm disassembler
14716@kindex set arm
14717This commands selects from a list of disassembly styles. The
14718@code{"std"} style is the standard style.
14719
14720@item show arm disassembler
14721@kindex show arm
14722Show the current disassembly style.
14723
14724@item set arm apcs32
14725@cindex ARM 32-bit mode
14726This command toggles ARM operation mode between 32-bit and 26-bit.
14727
14728@item show arm apcs32
14729Display the current usage of the ARM 32-bit mode.
14730
14731@item set arm fpu @var{fputype}
14732This command sets the ARM floating-point unit (FPU) type. The
14733argument @var{fputype} can be one of these:
14734
14735@table @code
14736@item auto
14737Determine the FPU type by querying the OS ABI.
14738@item softfpa
14739Software FPU, with mixed-endian doubles on little-endian ARM
14740processors.
14741@item fpa
14742GCC-compiled FPA co-processor.
14743@item softvfp
14744Software FPU with pure-endian doubles.
14745@item vfp
14746VFP co-processor.
14747@end table
14748
14749@item show arm fpu
14750Show the current type of the FPU.
14751
14752@item set arm abi
14753This command forces @value{GDBN} to use the specified ABI.
14754
14755@item show arm abi
14756Show the currently used ABI.
14757
14758@item set debug arm
14759Toggle whether to display ARM-specific debugging messages from the ARM
14760target support subsystem.
14761
14762@item show debug arm
14763Show whether ARM-specific debugging messages are enabled.
14764@end table
14765
c45da7e6
EZ
14766The following commands are available when an ARM target is debugged
14767using the RDI interface:
14768
14769@table @code
14770@item rdilogfile @r{[}@var{file}@r{]}
14771@kindex rdilogfile
14772@cindex ADP (Angel Debugger Protocol) logging
14773Set the filename for the ADP (Angel Debugger Protocol) packet log.
14774With an argument, sets the log file to the specified @var{file}. With
14775no argument, show the current log file name. The default log file is
14776@file{rdi.log}.
14777
14778@item rdilogenable @r{[}@var{arg}@r{]}
14779@kindex rdilogenable
14780Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14781enables logging, with an argument 0 or @code{"no"} disables it. With
14782no arguments displays the current setting. When logging is enabled,
14783ADP packets exchanged between @value{GDBN} and the RDI target device
14784are logged to a file.
14785
14786@item set rdiromatzero
14787@kindex set rdiromatzero
14788@cindex ROM at zero address, RDI
14789Tell @value{GDBN} whether the target has ROM at address 0. If on,
14790vector catching is disabled, so that zero address can be used. If off
14791(the default), vector catching is enabled. For this command to take
14792effect, it needs to be invoked prior to the @code{target rdi} command.
14793
14794@item show rdiromatzero
14795@kindex show rdiromatzero
14796Show the current setting of ROM at zero address.
14797
14798@item set rdiheartbeat
14799@kindex set rdiheartbeat
14800@cindex RDI heartbeat
14801Enable or disable RDI heartbeat packets. It is not recommended to
14802turn on this option, since it confuses ARM and EPI JTAG interface, as
14803well as the Angel monitor.
14804
14805@item show rdiheartbeat
14806@kindex show rdiheartbeat
14807Show the setting of RDI heartbeat packets.
14808@end table
14809
e2f4edfd 14810
8e04817f 14811@node M32R/D
ba04e063 14812@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14813
14814@table @code
8e04817f
AC
14815@kindex target m32r
14816@item target m32r @var{dev}
172c2a43 14817Renesas M32R/D ROM monitor.
8e04817f 14818
fb3e19c0
KI
14819@kindex target m32rsdi
14820@item target m32rsdi @var{dev}
14821Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14822@end table
14823
14824The following @value{GDBN} commands are specific to the M32R monitor:
14825
14826@table @code
14827@item set download-path @var{path}
14828@kindex set download-path
14829@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14830Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14831
14832@item show download-path
14833@kindex show download-path
14834Show the default path for downloadable @sc{srec} files.
fb3e19c0 14835
721c2651
EZ
14836@item set board-address @var{addr}
14837@kindex set board-address
14838@cindex M32-EVA target board address
14839Set the IP address for the M32R-EVA target board.
14840
14841@item show board-address
14842@kindex show board-address
14843Show the current IP address of the target board.
14844
14845@item set server-address @var{addr}
14846@kindex set server-address
14847@cindex download server address (M32R)
14848Set the IP address for the download server, which is the @value{GDBN}'s
14849host machine.
14850
14851@item show server-address
14852@kindex show server-address
14853Display the IP address of the download server.
14854
14855@item upload @r{[}@var{file}@r{]}
14856@kindex upload@r{, M32R}
14857Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14858upload capability. If no @var{file} argument is given, the current
14859executable file is uploaded.
14860
14861@item tload @r{[}@var{file}@r{]}
14862@kindex tload@r{, M32R}
14863Test the @code{upload} command.
8e04817f
AC
14864@end table
14865
ba04e063
EZ
14866The following commands are available for M32R/SDI:
14867
14868@table @code
14869@item sdireset
14870@kindex sdireset
14871@cindex reset SDI connection, M32R
14872This command resets the SDI connection.
14873
14874@item sdistatus
14875@kindex sdistatus
14876This command shows the SDI connection status.
14877
14878@item debug_chaos
14879@kindex debug_chaos
14880@cindex M32R/Chaos debugging
14881Instructs the remote that M32R/Chaos debugging is to be used.
14882
14883@item use_debug_dma
14884@kindex use_debug_dma
14885Instructs the remote to use the DEBUG_DMA method of accessing memory.
14886
14887@item use_mon_code
14888@kindex use_mon_code
14889Instructs the remote to use the MON_CODE method of accessing memory.
14890
14891@item use_ib_break
14892@kindex use_ib_break
14893Instructs the remote to set breakpoints by IB break.
14894
14895@item use_dbt_break
14896@kindex use_dbt_break
14897Instructs the remote to set breakpoints by DBT.
14898@end table
14899
8e04817f
AC
14900@node M68K
14901@subsection M68k
14902
7ce59000
DJ
14903The Motorola m68k configuration includes ColdFire support, and a
14904target command for the following ROM monitor.
8e04817f
AC
14905
14906@table @code
14907
8e04817f
AC
14908@kindex target dbug
14909@item target dbug @var{dev}
14910dBUG ROM monitor for Motorola ColdFire.
14911
8e04817f
AC
14912@end table
14913
8e04817f
AC
14914@node MIPS Embedded
14915@subsection MIPS Embedded
14916
14917@cindex MIPS boards
14918@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14919MIPS board attached to a serial line. This is available when
14920you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14921
8e04817f
AC
14922@need 1000
14923Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14924
8e04817f
AC
14925@table @code
14926@item target mips @var{port}
14927@kindex target mips @var{port}
14928To run a program on the board, start up @code{@value{GDBP}} with the
14929name of your program as the argument. To connect to the board, use the
14930command @samp{target mips @var{port}}, where @var{port} is the name of
14931the serial port connected to the board. If the program has not already
14932been downloaded to the board, you may use the @code{load} command to
14933download it. You can then use all the usual @value{GDBN} commands.
104c1213 14934
8e04817f
AC
14935For example, this sequence connects to the target board through a serial
14936port, and loads and runs a program called @var{prog} through the
14937debugger:
104c1213 14938
474c8240 14939@smallexample
8e04817f
AC
14940host$ @value{GDBP} @var{prog}
14941@value{GDBN} is free software and @dots{}
14942(@value{GDBP}) target mips /dev/ttyb
14943(@value{GDBP}) load @var{prog}
14944(@value{GDBP}) run
474c8240 14945@end smallexample
104c1213 14946
8e04817f
AC
14947@item target mips @var{hostname}:@var{portnumber}
14948On some @value{GDBN} host configurations, you can specify a TCP
14949connection (for instance, to a serial line managed by a terminal
14950concentrator) instead of a serial port, using the syntax
14951@samp{@var{hostname}:@var{portnumber}}.
104c1213 14952
8e04817f
AC
14953@item target pmon @var{port}
14954@kindex target pmon @var{port}
14955PMON ROM monitor.
104c1213 14956
8e04817f
AC
14957@item target ddb @var{port}
14958@kindex target ddb @var{port}
14959NEC's DDB variant of PMON for Vr4300.
104c1213 14960
8e04817f
AC
14961@item target lsi @var{port}
14962@kindex target lsi @var{port}
14963LSI variant of PMON.
104c1213 14964
8e04817f
AC
14965@kindex target r3900
14966@item target r3900 @var{dev}
14967Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14968
8e04817f
AC
14969@kindex target array
14970@item target array @var{dev}
14971Array Tech LSI33K RAID controller board.
104c1213 14972
8e04817f 14973@end table
104c1213 14974
104c1213 14975
8e04817f
AC
14976@noindent
14977@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14978
8e04817f 14979@table @code
8e04817f
AC
14980@item set mipsfpu double
14981@itemx set mipsfpu single
14982@itemx set mipsfpu none
a64548ea 14983@itemx set mipsfpu auto
8e04817f
AC
14984@itemx show mipsfpu
14985@kindex set mipsfpu
14986@kindex show mipsfpu
14987@cindex MIPS remote floating point
14988@cindex floating point, MIPS remote
14989If your target board does not support the MIPS floating point
14990coprocessor, you should use the command @samp{set mipsfpu none} (if you
14991need this, you may wish to put the command in your @value{GDBN} init
14992file). This tells @value{GDBN} how to find the return value of
14993functions which return floating point values. It also allows
14994@value{GDBN} to avoid saving the floating point registers when calling
14995functions on the board. If you are using a floating point coprocessor
14996with only single precision floating point support, as on the @sc{r4650}
14997processor, use the command @samp{set mipsfpu single}. The default
14998double precision floating point coprocessor may be selected using
14999@samp{set mipsfpu double}.
104c1213 15000
8e04817f
AC
15001In previous versions the only choices were double precision or no
15002floating point, so @samp{set mipsfpu on} will select double precision
15003and @samp{set mipsfpu off} will select no floating point.
104c1213 15004
8e04817f
AC
15005As usual, you can inquire about the @code{mipsfpu} variable with
15006@samp{show mipsfpu}.
104c1213 15007
8e04817f
AC
15008@item set timeout @var{seconds}
15009@itemx set retransmit-timeout @var{seconds}
15010@itemx show timeout
15011@itemx show retransmit-timeout
15012@cindex @code{timeout}, MIPS protocol
15013@cindex @code{retransmit-timeout}, MIPS protocol
15014@kindex set timeout
15015@kindex show timeout
15016@kindex set retransmit-timeout
15017@kindex show retransmit-timeout
15018You can control the timeout used while waiting for a packet, in the MIPS
15019remote protocol, with the @code{set timeout @var{seconds}} command. The
15020default is 5 seconds. Similarly, you can control the timeout used while
15021waiting for an acknowledgement of a packet with the @code{set
15022retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15023You can inspect both values with @code{show timeout} and @code{show
15024retransmit-timeout}. (These commands are @emph{only} available when
15025@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15026
8e04817f
AC
15027The timeout set by @code{set timeout} does not apply when @value{GDBN}
15028is waiting for your program to stop. In that case, @value{GDBN} waits
15029forever because it has no way of knowing how long the program is going
15030to run before stopping.
ba04e063
EZ
15031
15032@item set syn-garbage-limit @var{num}
15033@kindex set syn-garbage-limit@r{, MIPS remote}
15034@cindex synchronize with remote MIPS target
15035Limit the maximum number of characters @value{GDBN} should ignore when
15036it tries to synchronize with the remote target. The default is 10
15037characters. Setting the limit to -1 means there's no limit.
15038
15039@item show syn-garbage-limit
15040@kindex show syn-garbage-limit@r{, MIPS remote}
15041Show the current limit on the number of characters to ignore when
15042trying to synchronize with the remote system.
15043
15044@item set monitor-prompt @var{prompt}
15045@kindex set monitor-prompt@r{, MIPS remote}
15046@cindex remote monitor prompt
15047Tell @value{GDBN} to expect the specified @var{prompt} string from the
15048remote monitor. The default depends on the target:
15049@table @asis
15050@item pmon target
15051@samp{PMON}
15052@item ddb target
15053@samp{NEC010}
15054@item lsi target
15055@samp{PMON>}
15056@end table
15057
15058@item show monitor-prompt
15059@kindex show monitor-prompt@r{, MIPS remote}
15060Show the current strings @value{GDBN} expects as the prompt from the
15061remote monitor.
15062
15063@item set monitor-warnings
15064@kindex set monitor-warnings@r{, MIPS remote}
15065Enable or disable monitor warnings about hardware breakpoints. This
15066has effect only for the @code{lsi} target. When on, @value{GDBN} will
15067display warning messages whose codes are returned by the @code{lsi}
15068PMON monitor for breakpoint commands.
15069
15070@item show monitor-warnings
15071@kindex show monitor-warnings@r{, MIPS remote}
15072Show the current setting of printing monitor warnings.
15073
15074@item pmon @var{command}
15075@kindex pmon@r{, MIPS remote}
15076@cindex send PMON command
15077This command allows sending an arbitrary @var{command} string to the
15078monitor. The monitor must be in debug mode for this to work.
8e04817f 15079@end table
104c1213 15080
a37295f9
MM
15081@node OpenRISC 1000
15082@subsection OpenRISC 1000
15083@cindex OpenRISC 1000
15084
15085@cindex or1k boards
15086See OR1k Architecture document (@uref{www.opencores.org}) for more information
15087about platform and commands.
15088
15089@table @code
15090
15091@kindex target jtag
15092@item target jtag jtag://@var{host}:@var{port}
15093
15094Connects to remote JTAG server.
15095JTAG remote server can be either an or1ksim or JTAG server,
15096connected via parallel port to the board.
15097
15098Example: @code{target jtag jtag://localhost:9999}
15099
15100@kindex or1ksim
15101@item or1ksim @var{command}
15102If connected to @code{or1ksim} OpenRISC 1000 Architectural
15103Simulator, proprietary commands can be executed.
15104
15105@kindex info or1k spr
15106@item info or1k spr
15107Displays spr groups.
15108
15109@item info or1k spr @var{group}
15110@itemx info or1k spr @var{groupno}
15111Displays register names in selected group.
15112
15113@item info or1k spr @var{group} @var{register}
15114@itemx info or1k spr @var{register}
15115@itemx info or1k spr @var{groupno} @var{registerno}
15116@itemx info or1k spr @var{registerno}
15117Shows information about specified spr register.
15118
15119@kindex spr
15120@item spr @var{group} @var{register} @var{value}
15121@itemx spr @var{register @var{value}}
15122@itemx spr @var{groupno} @var{registerno @var{value}}
15123@itemx spr @var{registerno @var{value}}
15124Writes @var{value} to specified spr register.
15125@end table
15126
15127Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15128It is very similar to @value{GDBN} trace, except it does not interfere with normal
15129program execution and is thus much faster. Hardware breakpoints/watchpoint
15130triggers can be set using:
15131@table @code
15132@item $LEA/$LDATA
15133Load effective address/data
15134@item $SEA/$SDATA
15135Store effective address/data
15136@item $AEA/$ADATA
15137Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15138@item $FETCH
15139Fetch data
15140@end table
15141
15142When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15143@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15144
15145@code{htrace} commands:
15146@cindex OpenRISC 1000 htrace
15147@table @code
15148@kindex hwatch
15149@item hwatch @var{conditional}
d3e8051b 15150Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15151or Data. For example:
15152
15153@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15154
15155@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15156
4644b6e3 15157@kindex htrace
a37295f9
MM
15158@item htrace info
15159Display information about current HW trace configuration.
15160
a37295f9
MM
15161@item htrace trigger @var{conditional}
15162Set starting criteria for HW trace.
15163
a37295f9
MM
15164@item htrace qualifier @var{conditional}
15165Set acquisition qualifier for HW trace.
15166
a37295f9
MM
15167@item htrace stop @var{conditional}
15168Set HW trace stopping criteria.
15169
f153cc92 15170@item htrace record [@var{data}]*
a37295f9
MM
15171Selects the data to be recorded, when qualifier is met and HW trace was
15172triggered.
15173
a37295f9 15174@item htrace enable
a37295f9
MM
15175@itemx htrace disable
15176Enables/disables the HW trace.
15177
f153cc92 15178@item htrace rewind [@var{filename}]
a37295f9
MM
15179Clears currently recorded trace data.
15180
15181If filename is specified, new trace file is made and any newly collected data
15182will be written there.
15183
f153cc92 15184@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15185Prints trace buffer, using current record configuration.
15186
a37295f9
MM
15187@item htrace mode continuous
15188Set continuous trace mode.
15189
a37295f9
MM
15190@item htrace mode suspend
15191Set suspend trace mode.
15192
15193@end table
15194
4acd40f3
TJB
15195@node PowerPC Embedded
15196@subsection PowerPC Embedded
104c1213 15197
55eddb0f
DJ
15198@value{GDBN} provides the following PowerPC-specific commands:
15199
104c1213 15200@table @code
55eddb0f
DJ
15201@kindex set powerpc
15202@item set powerpc soft-float
15203@itemx show powerpc soft-float
15204Force @value{GDBN} to use (or not use) a software floating point calling
15205convention. By default, @value{GDBN} selects the calling convention based
15206on the selected architecture and the provided executable file.
15207
15208@item set powerpc vector-abi
15209@itemx show powerpc vector-abi
15210Force @value{GDBN} to use the specified calling convention for vector
15211arguments and return values. The valid options are @samp{auto};
15212@samp{generic}, to avoid vector registers even if they are present;
15213@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15214registers. By default, @value{GDBN} selects the calling convention
15215based on the selected architecture and the provided executable file.
15216
8e04817f
AC
15217@kindex target dink32
15218@item target dink32 @var{dev}
15219DINK32 ROM monitor.
104c1213 15220
8e04817f
AC
15221@kindex target ppcbug
15222@item target ppcbug @var{dev}
15223@kindex target ppcbug1
15224@item target ppcbug1 @var{dev}
15225PPCBUG ROM monitor for PowerPC.
104c1213 15226
8e04817f
AC
15227@kindex target sds
15228@item target sds @var{dev}
15229SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15230@end table
8e04817f 15231
c45da7e6 15232@cindex SDS protocol
d52fb0e9 15233The following commands specific to the SDS protocol are supported
55eddb0f 15234by @value{GDBN}:
c45da7e6
EZ
15235
15236@table @code
15237@item set sdstimeout @var{nsec}
15238@kindex set sdstimeout
15239Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15240default is 2 seconds.
15241
15242@item show sdstimeout
15243@kindex show sdstimeout
15244Show the current value of the SDS timeout.
15245
15246@item sds @var{command}
15247@kindex sds@r{, a command}
15248Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15249@end table
15250
c45da7e6 15251
8e04817f
AC
15252@node PA
15253@subsection HP PA Embedded
104c1213
JM
15254
15255@table @code
15256
8e04817f
AC
15257@kindex target op50n
15258@item target op50n @var{dev}
15259OP50N monitor, running on an OKI HPPA board.
15260
15261@kindex target w89k
15262@item target w89k @var{dev}
15263W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15264
15265@end table
15266
8e04817f
AC
15267@node Sparclet
15268@subsection Tsqware Sparclet
104c1213 15269
8e04817f
AC
15270@cindex Sparclet
15271
15272@value{GDBN} enables developers to debug tasks running on
15273Sparclet targets from a Unix host.
15274@value{GDBN} uses code that runs on
15275both the Unix host and on the Sparclet target. The program
15276@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15277
8e04817f
AC
15278@table @code
15279@item remotetimeout @var{args}
15280@kindex remotetimeout
15281@value{GDBN} supports the option @code{remotetimeout}.
15282This option is set by the user, and @var{args} represents the number of
15283seconds @value{GDBN} waits for responses.
104c1213
JM
15284@end table
15285
8e04817f
AC
15286@cindex compiling, on Sparclet
15287When compiling for debugging, include the options @samp{-g} to get debug
15288information and @samp{-Ttext} to relocate the program to where you wish to
15289load it on the target. You may also want to add the options @samp{-n} or
15290@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15291
474c8240 15292@smallexample
8e04817f 15293sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15294@end smallexample
104c1213 15295
8e04817f 15296You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15297
474c8240 15298@smallexample
8e04817f 15299sparclet-aout-objdump --headers --syms prog
474c8240 15300@end smallexample
104c1213 15301
8e04817f
AC
15302@cindex running, on Sparclet
15303Once you have set
15304your Unix execution search path to find @value{GDBN}, you are ready to
15305run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15306(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15307
8e04817f
AC
15308@value{GDBN} comes up showing the prompt:
15309
474c8240 15310@smallexample
8e04817f 15311(gdbslet)
474c8240 15312@end smallexample
104c1213
JM
15313
15314@menu
8e04817f
AC
15315* Sparclet File:: Setting the file to debug
15316* Sparclet Connection:: Connecting to Sparclet
15317* Sparclet Download:: Sparclet download
15318* Sparclet Execution:: Running and debugging
104c1213
JM
15319@end menu
15320
8e04817f 15321@node Sparclet File
79a6e687 15322@subsubsection Setting File to Debug
104c1213 15323
8e04817f 15324The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15325
474c8240 15326@smallexample
8e04817f 15327(gdbslet) file prog
474c8240 15328@end smallexample
104c1213 15329
8e04817f
AC
15330@need 1000
15331@value{GDBN} then attempts to read the symbol table of @file{prog}.
15332@value{GDBN} locates
15333the file by searching the directories listed in the command search
15334path.
12c27660 15335If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15336files will be searched as well.
15337@value{GDBN} locates
15338the source files by searching the directories listed in the directory search
79a6e687 15339path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15340If it fails
15341to find a file, it displays a message such as:
104c1213 15342
474c8240 15343@smallexample
8e04817f 15344prog: No such file or directory.
474c8240 15345@end smallexample
104c1213 15346
8e04817f
AC
15347When this happens, add the appropriate directories to the search paths with
15348the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15349@code{target} command again.
104c1213 15350
8e04817f
AC
15351@node Sparclet Connection
15352@subsubsection Connecting to Sparclet
104c1213 15353
8e04817f
AC
15354The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15355To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15356
474c8240 15357@smallexample
8e04817f
AC
15358(gdbslet) target sparclet /dev/ttya
15359Remote target sparclet connected to /dev/ttya
15360main () at ../prog.c:3
474c8240 15361@end smallexample
104c1213 15362
8e04817f
AC
15363@need 750
15364@value{GDBN} displays messages like these:
104c1213 15365
474c8240 15366@smallexample
8e04817f 15367Connected to ttya.
474c8240 15368@end smallexample
104c1213 15369
8e04817f 15370@node Sparclet Download
79a6e687 15371@subsubsection Sparclet Download
104c1213 15372
8e04817f
AC
15373@cindex download to Sparclet
15374Once connected to the Sparclet target,
15375you can use the @value{GDBN}
15376@code{load} command to download the file from the host to the target.
15377The file name and load offset should be given as arguments to the @code{load}
15378command.
15379Since the file format is aout, the program must be loaded to the starting
15380address. You can use @code{objdump} to find out what this value is. The load
15381offset is an offset which is added to the VMA (virtual memory address)
15382of each of the file's sections.
15383For instance, if the program
15384@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15385and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15386
474c8240 15387@smallexample
8e04817f
AC
15388(gdbslet) load prog 0x12010000
15389Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15390@end smallexample
104c1213 15391
8e04817f
AC
15392If the code is loaded at a different address then what the program was linked
15393to, you may need to use the @code{section} and @code{add-symbol-file} commands
15394to tell @value{GDBN} where to map the symbol table.
15395
15396@node Sparclet Execution
79a6e687 15397@subsubsection Running and Debugging
8e04817f
AC
15398
15399@cindex running and debugging Sparclet programs
15400You can now begin debugging the task using @value{GDBN}'s execution control
15401commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15402manual for the list of commands.
15403
474c8240 15404@smallexample
8e04817f
AC
15405(gdbslet) b main
15406Breakpoint 1 at 0x12010000: file prog.c, line 3.
15407(gdbslet) run
15408Starting program: prog
15409Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154103 char *symarg = 0;
15411(gdbslet) step
154124 char *execarg = "hello!";
15413(gdbslet)
474c8240 15414@end smallexample
8e04817f
AC
15415
15416@node Sparclite
15417@subsection Fujitsu Sparclite
104c1213
JM
15418
15419@table @code
15420
8e04817f
AC
15421@kindex target sparclite
15422@item target sparclite @var{dev}
15423Fujitsu sparclite boards, used only for the purpose of loading.
15424You must use an additional command to debug the program.
15425For example: target remote @var{dev} using @value{GDBN} standard
15426remote protocol.
104c1213
JM
15427
15428@end table
15429
8e04817f
AC
15430@node Z8000
15431@subsection Zilog Z8000
104c1213 15432
8e04817f
AC
15433@cindex Z8000
15434@cindex simulator, Z8000
15435@cindex Zilog Z8000 simulator
104c1213 15436
8e04817f
AC
15437When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15438a Z8000 simulator.
15439
15440For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15441unsegmented variant of the Z8000 architecture) or the Z8001 (the
15442segmented variant). The simulator recognizes which architecture is
15443appropriate by inspecting the object code.
104c1213 15444
8e04817f
AC
15445@table @code
15446@item target sim @var{args}
15447@kindex sim
15448@kindex target sim@r{, with Z8000}
15449Debug programs on a simulated CPU. If the simulator supports setup
15450options, specify them via @var{args}.
104c1213
JM
15451@end table
15452
8e04817f
AC
15453@noindent
15454After specifying this target, you can debug programs for the simulated
15455CPU in the same style as programs for your host computer; use the
15456@code{file} command to load a new program image, the @code{run} command
15457to run your program, and so on.
15458
15459As well as making available all the usual machine registers
15460(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15461additional items of information as specially named registers:
104c1213
JM
15462
15463@table @code
15464
8e04817f
AC
15465@item cycles
15466Counts clock-ticks in the simulator.
104c1213 15467
8e04817f
AC
15468@item insts
15469Counts instructions run in the simulator.
104c1213 15470
8e04817f
AC
15471@item time
15472Execution time in 60ths of a second.
104c1213 15473
8e04817f 15474@end table
104c1213 15475
8e04817f
AC
15476You can refer to these values in @value{GDBN} expressions with the usual
15477conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15478conditional breakpoint that suspends only after at least 5000
15479simulated clock ticks.
104c1213 15480
a64548ea
EZ
15481@node AVR
15482@subsection Atmel AVR
15483@cindex AVR
15484
15485When configured for debugging the Atmel AVR, @value{GDBN} supports the
15486following AVR-specific commands:
15487
15488@table @code
15489@item info io_registers
15490@kindex info io_registers@r{, AVR}
15491@cindex I/O registers (Atmel AVR)
15492This command displays information about the AVR I/O registers. For
15493each register, @value{GDBN} prints its number and value.
15494@end table
15495
15496@node CRIS
15497@subsection CRIS
15498@cindex CRIS
15499
15500When configured for debugging CRIS, @value{GDBN} provides the
15501following CRIS-specific commands:
15502
15503@table @code
15504@item set cris-version @var{ver}
15505@cindex CRIS version
e22e55c9
OF
15506Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15507The CRIS version affects register names and sizes. This command is useful in
15508case autodetection of the CRIS version fails.
a64548ea
EZ
15509
15510@item show cris-version
15511Show the current CRIS version.
15512
15513@item set cris-dwarf2-cfi
15514@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15515Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15516Change to @samp{off} when using @code{gcc-cris} whose version is below
15517@code{R59}.
a64548ea
EZ
15518
15519@item show cris-dwarf2-cfi
15520Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15521
15522@item set cris-mode @var{mode}
15523@cindex CRIS mode
15524Set the current CRIS mode to @var{mode}. It should only be changed when
15525debugging in guru mode, in which case it should be set to
15526@samp{guru} (the default is @samp{normal}).
15527
15528@item show cris-mode
15529Show the current CRIS mode.
a64548ea
EZ
15530@end table
15531
15532@node Super-H
15533@subsection Renesas Super-H
15534@cindex Super-H
15535
15536For the Renesas Super-H processor, @value{GDBN} provides these
15537commands:
15538
15539@table @code
15540@item regs
15541@kindex regs@r{, Super-H}
15542Show the values of all Super-H registers.
15543@end table
15544
15545
8e04817f
AC
15546@node Architectures
15547@section Architectures
104c1213 15548
8e04817f
AC
15549This section describes characteristics of architectures that affect
15550all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15551
8e04817f 15552@menu
9c16f35a 15553* i386::
8e04817f
AC
15554* A29K::
15555* Alpha::
15556* MIPS::
a64548ea 15557* HPPA:: HP PA architecture
23d964e7 15558* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15559* PowerPC::
8e04817f 15560@end menu
104c1213 15561
9c16f35a 15562@node i386
db2e3e2e 15563@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15564
15565@table @code
15566@item set struct-convention @var{mode}
15567@kindex set struct-convention
15568@cindex struct return convention
15569@cindex struct/union returned in registers
15570Set the convention used by the inferior to return @code{struct}s and
15571@code{union}s from functions to @var{mode}. Possible values of
15572@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15573default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15574are returned on the stack, while @code{"reg"} means that a
15575@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15576be returned in a register.
15577
15578@item show struct-convention
15579@kindex show struct-convention
15580Show the current setting of the convention to return @code{struct}s
15581from functions.
15582@end table
15583
8e04817f
AC
15584@node A29K
15585@subsection A29K
104c1213
JM
15586
15587@table @code
104c1213 15588
8e04817f
AC
15589@kindex set rstack_high_address
15590@cindex AMD 29K register stack
15591@cindex register stack, AMD29K
15592@item set rstack_high_address @var{address}
15593On AMD 29000 family processors, registers are saved in a separate
15594@dfn{register stack}. There is no way for @value{GDBN} to determine the
15595extent of this stack. Normally, @value{GDBN} just assumes that the
15596stack is ``large enough''. This may result in @value{GDBN} referencing
15597memory locations that do not exist. If necessary, you can get around
15598this problem by specifying the ending address of the register stack with
15599the @code{set rstack_high_address} command. The argument should be an
15600address, which you probably want to precede with @samp{0x} to specify in
15601hexadecimal.
104c1213 15602
8e04817f
AC
15603@kindex show rstack_high_address
15604@item show rstack_high_address
15605Display the current limit of the register stack, on AMD 29000 family
15606processors.
104c1213 15607
8e04817f 15608@end table
104c1213 15609
8e04817f
AC
15610@node Alpha
15611@subsection Alpha
104c1213 15612
8e04817f 15613See the following section.
104c1213 15614
8e04817f
AC
15615@node MIPS
15616@subsection MIPS
104c1213 15617
8e04817f
AC
15618@cindex stack on Alpha
15619@cindex stack on MIPS
15620@cindex Alpha stack
15621@cindex MIPS stack
15622Alpha- and MIPS-based computers use an unusual stack frame, which
15623sometimes requires @value{GDBN} to search backward in the object code to
15624find the beginning of a function.
104c1213 15625
8e04817f
AC
15626@cindex response time, MIPS debugging
15627To improve response time (especially for embedded applications, where
15628@value{GDBN} may be restricted to a slow serial line for this search)
15629you may want to limit the size of this search, using one of these
15630commands:
104c1213 15631
8e04817f
AC
15632@table @code
15633@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15634@item set heuristic-fence-post @var{limit}
15635Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15636search for the beginning of a function. A value of @var{0} (the
15637default) means there is no limit. However, except for @var{0}, the
15638larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15639and therefore the longer it takes to run. You should only need to use
15640this command when debugging a stripped executable.
104c1213 15641
8e04817f
AC
15642@item show heuristic-fence-post
15643Display the current limit.
15644@end table
104c1213
JM
15645
15646@noindent
8e04817f
AC
15647These commands are available @emph{only} when @value{GDBN} is configured
15648for debugging programs on Alpha or MIPS processors.
104c1213 15649
a64548ea
EZ
15650Several MIPS-specific commands are available when debugging MIPS
15651programs:
15652
15653@table @code
a64548ea
EZ
15654@item set mips abi @var{arg}
15655@kindex set mips abi
15656@cindex set ABI for MIPS
15657Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15658values of @var{arg} are:
15659
15660@table @samp
15661@item auto
15662The default ABI associated with the current binary (this is the
15663default).
15664@item o32
15665@item o64
15666@item n32
15667@item n64
15668@item eabi32
15669@item eabi64
15670@item auto
15671@end table
15672
15673@item show mips abi
15674@kindex show mips abi
15675Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15676
15677@item set mipsfpu
15678@itemx show mipsfpu
15679@xref{MIPS Embedded, set mipsfpu}.
15680
15681@item set mips mask-address @var{arg}
15682@kindex set mips mask-address
15683@cindex MIPS addresses, masking
15684This command determines whether the most-significant 32 bits of 64-bit
15685MIPS addresses are masked off. The argument @var{arg} can be
15686@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15687setting, which lets @value{GDBN} determine the correct value.
15688
15689@item show mips mask-address
15690@kindex show mips mask-address
15691Show whether the upper 32 bits of MIPS addresses are masked off or
15692not.
15693
15694@item set remote-mips64-transfers-32bit-regs
15695@kindex set remote-mips64-transfers-32bit-regs
15696This command controls compatibility with 64-bit MIPS targets that
15697transfer data in 32-bit quantities. If you have an old MIPS 64 target
15698that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15699and 64 bits for other registers, set this option to @samp{on}.
15700
15701@item show remote-mips64-transfers-32bit-regs
15702@kindex show remote-mips64-transfers-32bit-regs
15703Show the current setting of compatibility with older MIPS 64 targets.
15704
15705@item set debug mips
15706@kindex set debug mips
15707This command turns on and off debugging messages for the MIPS-specific
15708target code in @value{GDBN}.
15709
15710@item show debug mips
15711@kindex show debug mips
15712Show the current setting of MIPS debugging messages.
15713@end table
15714
15715
15716@node HPPA
15717@subsection HPPA
15718@cindex HPPA support
15719
d3e8051b 15720When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15721following special commands:
15722
15723@table @code
15724@item set debug hppa
15725@kindex set debug hppa
db2e3e2e 15726This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15727messages are to be displayed.
15728
15729@item show debug hppa
15730Show whether HPPA debugging messages are displayed.
15731
15732@item maint print unwind @var{address}
15733@kindex maint print unwind@r{, HPPA}
15734This command displays the contents of the unwind table entry at the
15735given @var{address}.
15736
15737@end table
15738
104c1213 15739
23d964e7
UW
15740@node SPU
15741@subsection Cell Broadband Engine SPU architecture
15742@cindex Cell Broadband Engine
15743@cindex SPU
15744
15745When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15746it provides the following special commands:
15747
15748@table @code
15749@item info spu event
15750@kindex info spu
15751Display SPU event facility status. Shows current event mask
15752and pending event status.
15753
15754@item info spu signal
15755Display SPU signal notification facility status. Shows pending
15756signal-control word and signal notification mode of both signal
15757notification channels.
15758
15759@item info spu mailbox
15760Display SPU mailbox facility status. Shows all pending entries,
15761in order of processing, in each of the SPU Write Outbound,
15762SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15763
15764@item info spu dma
15765Display MFC DMA status. Shows all pending commands in the MFC
15766DMA queue. For each entry, opcode, tag, class IDs, effective
15767and local store addresses and transfer size are shown.
15768
15769@item info spu proxydma
15770Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15771Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15772and local store addresses and transfer size are shown.
15773
15774@end table
15775
4acd40f3
TJB
15776@node PowerPC
15777@subsection PowerPC
15778@cindex PowerPC architecture
15779
15780When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15781pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15782numbers stored in the floating point registers. These values must be stored
15783in two consecutive registers, always starting at an even register like
15784@code{f0} or @code{f2}.
15785
15786The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15787by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15788@code{f2} and @code{f3} for @code{$dl1} and so on.
15789
23d964e7 15790
8e04817f
AC
15791@node Controlling GDB
15792@chapter Controlling @value{GDBN}
15793
15794You can alter the way @value{GDBN} interacts with you by using the
15795@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15796data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15797described here.
15798
15799@menu
15800* Prompt:: Prompt
15801* Editing:: Command editing
d620b259 15802* Command History:: Command history
8e04817f
AC
15803* Screen Size:: Screen size
15804* Numbers:: Numbers
1e698235 15805* ABI:: Configuring the current ABI
8e04817f
AC
15806* Messages/Warnings:: Optional warnings and messages
15807* Debugging Output:: Optional messages about internal happenings
15808@end menu
15809
15810@node Prompt
15811@section Prompt
104c1213 15812
8e04817f 15813@cindex prompt
104c1213 15814
8e04817f
AC
15815@value{GDBN} indicates its readiness to read a command by printing a string
15816called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15817can change the prompt string with the @code{set prompt} command. For
15818instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15819the prompt in one of the @value{GDBN} sessions so that you can always tell
15820which one you are talking to.
104c1213 15821
8e04817f
AC
15822@emph{Note:} @code{set prompt} does not add a space for you after the
15823prompt you set. This allows you to set a prompt which ends in a space
15824or a prompt that does not.
104c1213 15825
8e04817f
AC
15826@table @code
15827@kindex set prompt
15828@item set prompt @var{newprompt}
15829Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15830
8e04817f
AC
15831@kindex show prompt
15832@item show prompt
15833Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15834@end table
15835
8e04817f 15836@node Editing
79a6e687 15837@section Command Editing
8e04817f
AC
15838@cindex readline
15839@cindex command line editing
104c1213 15840
703663ab 15841@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15842@sc{gnu} library provides consistent behavior for programs which provide a
15843command line interface to the user. Advantages are @sc{gnu} Emacs-style
15844or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15845substitution, and a storage and recall of command history across
15846debugging sessions.
104c1213 15847
8e04817f
AC
15848You may control the behavior of command line editing in @value{GDBN} with the
15849command @code{set}.
104c1213 15850
8e04817f
AC
15851@table @code
15852@kindex set editing
15853@cindex editing
15854@item set editing
15855@itemx set editing on
15856Enable command line editing (enabled by default).
104c1213 15857
8e04817f
AC
15858@item set editing off
15859Disable command line editing.
104c1213 15860
8e04817f
AC
15861@kindex show editing
15862@item show editing
15863Show whether command line editing is enabled.
104c1213
JM
15864@end table
15865
703663ab
EZ
15866@xref{Command Line Editing}, for more details about the Readline
15867interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15868encouraged to read that chapter.
15869
d620b259 15870@node Command History
79a6e687 15871@section Command History
703663ab 15872@cindex command history
8e04817f
AC
15873
15874@value{GDBN} can keep track of the commands you type during your
15875debugging sessions, so that you can be certain of precisely what
15876happened. Use these commands to manage the @value{GDBN} command
15877history facility.
104c1213 15878
703663ab
EZ
15879@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15880package, to provide the history facility. @xref{Using History
15881Interactively}, for the detailed description of the History library.
15882
d620b259 15883To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15884the state which is seen by users, prefix it with @samp{server }
15885(@pxref{Server Prefix}). This
d620b259
NR
15886means that this command will not affect the command history, nor will it
15887affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15888pressed on a line by itself.
15889
15890@cindex @code{server}, command prefix
15891The server prefix does not affect the recording of values into the value
15892history; to print a value without recording it into the value history,
15893use the @code{output} command instead of the @code{print} command.
15894
703663ab
EZ
15895Here is the description of @value{GDBN} commands related to command
15896history.
15897
104c1213 15898@table @code
8e04817f
AC
15899@cindex history substitution
15900@cindex history file
15901@kindex set history filename
4644b6e3 15902@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15903@item set history filename @var{fname}
15904Set the name of the @value{GDBN} command history file to @var{fname}.
15905This is the file where @value{GDBN} reads an initial command history
15906list, and where it writes the command history from this session when it
15907exits. You can access this list through history expansion or through
15908the history command editing characters listed below. This file defaults
15909to the value of the environment variable @code{GDBHISTFILE}, or to
15910@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15911is not set.
104c1213 15912
9c16f35a
EZ
15913@cindex save command history
15914@kindex set history save
8e04817f
AC
15915@item set history save
15916@itemx set history save on
15917Record command history in a file, whose name may be specified with the
15918@code{set history filename} command. By default, this option is disabled.
104c1213 15919
8e04817f
AC
15920@item set history save off
15921Stop recording command history in a file.
104c1213 15922
8e04817f 15923@cindex history size
9c16f35a 15924@kindex set history size
6fc08d32 15925@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15926@item set history size @var{size}
15927Set the number of commands which @value{GDBN} keeps in its history list.
15928This defaults to the value of the environment variable
15929@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15930@end table
15931
8e04817f 15932History expansion assigns special meaning to the character @kbd{!}.
703663ab 15933@xref{Event Designators}, for more details.
8e04817f 15934
703663ab 15935@cindex history expansion, turn on/off
8e04817f
AC
15936Since @kbd{!} is also the logical not operator in C, history expansion
15937is off by default. If you decide to enable history expansion with the
15938@code{set history expansion on} command, you may sometimes need to
15939follow @kbd{!} (when it is used as logical not, in an expression) with
15940a space or a tab to prevent it from being expanded. The readline
15941history facilities do not attempt substitution on the strings
15942@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15943
15944The commands to control history expansion are:
104c1213
JM
15945
15946@table @code
8e04817f
AC
15947@item set history expansion on
15948@itemx set history expansion
703663ab 15949@kindex set history expansion
8e04817f 15950Enable history expansion. History expansion is off by default.
104c1213 15951
8e04817f
AC
15952@item set history expansion off
15953Disable history expansion.
104c1213 15954
8e04817f
AC
15955@c @group
15956@kindex show history
15957@item show history
15958@itemx show history filename
15959@itemx show history save
15960@itemx show history size
15961@itemx show history expansion
15962These commands display the state of the @value{GDBN} history parameters.
15963@code{show history} by itself displays all four states.
15964@c @end group
15965@end table
15966
15967@table @code
9c16f35a
EZ
15968@kindex show commands
15969@cindex show last commands
15970@cindex display command history
8e04817f
AC
15971@item show commands
15972Display the last ten commands in the command history.
104c1213 15973
8e04817f
AC
15974@item show commands @var{n}
15975Print ten commands centered on command number @var{n}.
15976
15977@item show commands +
15978Print ten commands just after the commands last printed.
104c1213
JM
15979@end table
15980
8e04817f 15981@node Screen Size
79a6e687 15982@section Screen Size
8e04817f
AC
15983@cindex size of screen
15984@cindex pauses in output
104c1213 15985
8e04817f
AC
15986Certain commands to @value{GDBN} may produce large amounts of
15987information output to the screen. To help you read all of it,
15988@value{GDBN} pauses and asks you for input at the end of each page of
15989output. Type @key{RET} when you want to continue the output, or @kbd{q}
15990to discard the remaining output. Also, the screen width setting
15991determines when to wrap lines of output. Depending on what is being
15992printed, @value{GDBN} tries to break the line at a readable place,
15993rather than simply letting it overflow onto the following line.
15994
15995Normally @value{GDBN} knows the size of the screen from the terminal
15996driver software. For example, on Unix @value{GDBN} uses the termcap data base
15997together with the value of the @code{TERM} environment variable and the
15998@code{stty rows} and @code{stty cols} settings. If this is not correct,
15999you can override it with the @code{set height} and @code{set
16000width} commands:
16001
16002@table @code
16003@kindex set height
16004@kindex set width
16005@kindex show width
16006@kindex show height
16007@item set height @var{lpp}
16008@itemx show height
16009@itemx set width @var{cpl}
16010@itemx show width
16011These @code{set} commands specify a screen height of @var{lpp} lines and
16012a screen width of @var{cpl} characters. The associated @code{show}
16013commands display the current settings.
104c1213 16014
8e04817f
AC
16015If you specify a height of zero lines, @value{GDBN} does not pause during
16016output no matter how long the output is. This is useful if output is to a
16017file or to an editor buffer.
104c1213 16018
8e04817f
AC
16019Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16020from wrapping its output.
9c16f35a
EZ
16021
16022@item set pagination on
16023@itemx set pagination off
16024@kindex set pagination
16025Turn the output pagination on or off; the default is on. Turning
16026pagination off is the alternative to @code{set height 0}.
16027
16028@item show pagination
16029@kindex show pagination
16030Show the current pagination mode.
104c1213
JM
16031@end table
16032
8e04817f
AC
16033@node Numbers
16034@section Numbers
16035@cindex number representation
16036@cindex entering numbers
104c1213 16037
8e04817f
AC
16038You can always enter numbers in octal, decimal, or hexadecimal in
16039@value{GDBN} by the usual conventions: octal numbers begin with
16040@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16041begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16042@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1604310; likewise, the default display for numbers---when no particular
16044format is specified---is base 10. You can change the default base for
16045both input and output with the commands described below.
104c1213 16046
8e04817f
AC
16047@table @code
16048@kindex set input-radix
16049@item set input-radix @var{base}
16050Set the default base for numeric input. Supported choices
16051for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16052specified either unambiguously or using the current input radix; for
8e04817f 16053example, any of
104c1213 16054
8e04817f 16055@smallexample
9c16f35a
EZ
16056set input-radix 012
16057set input-radix 10.
16058set input-radix 0xa
8e04817f 16059@end smallexample
104c1213 16060
8e04817f 16061@noindent
9c16f35a 16062sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16063leaves the input radix unchanged, no matter what it was, since
16064@samp{10}, being without any leading or trailing signs of its base, is
16065interpreted in the current radix. Thus, if the current radix is 16,
16066@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16067change the radix.
104c1213 16068
8e04817f
AC
16069@kindex set output-radix
16070@item set output-radix @var{base}
16071Set the default base for numeric display. Supported choices
16072for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16073specified either unambiguously or using the current input radix.
104c1213 16074
8e04817f
AC
16075@kindex show input-radix
16076@item show input-radix
16077Display the current default base for numeric input.
104c1213 16078
8e04817f
AC
16079@kindex show output-radix
16080@item show output-radix
16081Display the current default base for numeric display.
9c16f35a
EZ
16082
16083@item set radix @r{[}@var{base}@r{]}
16084@itemx show radix
16085@kindex set radix
16086@kindex show radix
16087These commands set and show the default base for both input and output
16088of numbers. @code{set radix} sets the radix of input and output to
16089the same base; without an argument, it resets the radix back to its
16090default value of 10.
16091
8e04817f 16092@end table
104c1213 16093
1e698235 16094@node ABI
79a6e687 16095@section Configuring the Current ABI
1e698235
DJ
16096
16097@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16098application automatically. However, sometimes you need to override its
16099conclusions. Use these commands to manage @value{GDBN}'s view of the
16100current ABI.
16101
98b45e30
DJ
16102@cindex OS ABI
16103@kindex set osabi
b4e9345d 16104@kindex show osabi
98b45e30
DJ
16105
16106One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16107system targets, either via remote debugging or native emulation.
98b45e30
DJ
16108@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16109but you can override its conclusion using the @code{set osabi} command.
16110One example where this is useful is in debugging of binaries which use
16111an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16112not have the same identifying marks that the standard C library for your
16113platform provides.
16114
16115@table @code
16116@item show osabi
16117Show the OS ABI currently in use.
16118
16119@item set osabi
16120With no argument, show the list of registered available OS ABI's.
16121
16122@item set osabi @var{abi}
16123Set the current OS ABI to @var{abi}.
16124@end table
16125
1e698235 16126@cindex float promotion
1e698235
DJ
16127
16128Generally, the way that an argument of type @code{float} is passed to a
16129function depends on whether the function is prototyped. For a prototyped
16130(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16131according to the architecture's convention for @code{float}. For unprototyped
16132(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16133@code{double} and then passed.
16134
16135Unfortunately, some forms of debug information do not reliably indicate whether
16136a function is prototyped. If @value{GDBN} calls a function that is not marked
16137as prototyped, it consults @kbd{set coerce-float-to-double}.
16138
16139@table @code
a8f24a35 16140@kindex set coerce-float-to-double
1e698235
DJ
16141@item set coerce-float-to-double
16142@itemx set coerce-float-to-double on
16143Arguments of type @code{float} will be promoted to @code{double} when passed
16144to an unprototyped function. This is the default setting.
16145
16146@item set coerce-float-to-double off
16147Arguments of type @code{float} will be passed directly to unprototyped
16148functions.
9c16f35a
EZ
16149
16150@kindex show coerce-float-to-double
16151@item show coerce-float-to-double
16152Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16153@end table
16154
f1212245
DJ
16155@kindex set cp-abi
16156@kindex show cp-abi
16157@value{GDBN} needs to know the ABI used for your program's C@t{++}
16158objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16159used to build your application. @value{GDBN} only fully supports
16160programs with a single C@t{++} ABI; if your program contains code using
16161multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16162program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16163Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16164before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16165``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16166use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16167``auto''.
16168
16169@table @code
16170@item show cp-abi
16171Show the C@t{++} ABI currently in use.
16172
16173@item set cp-abi
16174With no argument, show the list of supported C@t{++} ABI's.
16175
16176@item set cp-abi @var{abi}
16177@itemx set cp-abi auto
16178Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16179@end table
16180
8e04817f 16181@node Messages/Warnings
79a6e687 16182@section Optional Warnings and Messages
104c1213 16183
9c16f35a
EZ
16184@cindex verbose operation
16185@cindex optional warnings
8e04817f
AC
16186By default, @value{GDBN} is silent about its inner workings. If you are
16187running on a slow machine, you may want to use the @code{set verbose}
16188command. This makes @value{GDBN} tell you when it does a lengthy
16189internal operation, so you will not think it has crashed.
104c1213 16190
8e04817f
AC
16191Currently, the messages controlled by @code{set verbose} are those
16192which announce that the symbol table for a source file is being read;
79a6e687 16193see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16194
8e04817f
AC
16195@table @code
16196@kindex set verbose
16197@item set verbose on
16198Enables @value{GDBN} output of certain informational messages.
104c1213 16199
8e04817f
AC
16200@item set verbose off
16201Disables @value{GDBN} output of certain informational messages.
104c1213 16202
8e04817f
AC
16203@kindex show verbose
16204@item show verbose
16205Displays whether @code{set verbose} is on or off.
16206@end table
104c1213 16207
8e04817f
AC
16208By default, if @value{GDBN} encounters bugs in the symbol table of an
16209object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16210find this information useful (@pxref{Symbol Errors, ,Errors Reading
16211Symbol Files}).
104c1213 16212
8e04817f 16213@table @code
104c1213 16214
8e04817f
AC
16215@kindex set complaints
16216@item set complaints @var{limit}
16217Permits @value{GDBN} to output @var{limit} complaints about each type of
16218unusual symbols before becoming silent about the problem. Set
16219@var{limit} to zero to suppress all complaints; set it to a large number
16220to prevent complaints from being suppressed.
104c1213 16221
8e04817f
AC
16222@kindex show complaints
16223@item show complaints
16224Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16225
8e04817f 16226@end table
104c1213 16227
8e04817f
AC
16228By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16229lot of stupid questions to confirm certain commands. For example, if
16230you try to run a program which is already running:
104c1213 16231
474c8240 16232@smallexample
8e04817f
AC
16233(@value{GDBP}) run
16234The program being debugged has been started already.
16235Start it from the beginning? (y or n)
474c8240 16236@end smallexample
104c1213 16237
8e04817f
AC
16238If you are willing to unflinchingly face the consequences of your own
16239commands, you can disable this ``feature'':
104c1213 16240
8e04817f 16241@table @code
104c1213 16242
8e04817f
AC
16243@kindex set confirm
16244@cindex flinching
16245@cindex confirmation
16246@cindex stupid questions
16247@item set confirm off
16248Disables confirmation requests.
104c1213 16249
8e04817f
AC
16250@item set confirm on
16251Enables confirmation requests (the default).
104c1213 16252
8e04817f
AC
16253@kindex show confirm
16254@item show confirm
16255Displays state of confirmation requests.
16256
16257@end table
104c1213 16258
16026cd7
AS
16259@cindex command tracing
16260If you need to debug user-defined commands or sourced files you may find it
16261useful to enable @dfn{command tracing}. In this mode each command will be
16262printed as it is executed, prefixed with one or more @samp{+} symbols, the
16263quantity denoting the call depth of each command.
16264
16265@table @code
16266@kindex set trace-commands
16267@cindex command scripts, debugging
16268@item set trace-commands on
16269Enable command tracing.
16270@item set trace-commands off
16271Disable command tracing.
16272@item show trace-commands
16273Display the current state of command tracing.
16274@end table
16275
8e04817f 16276@node Debugging Output
79a6e687 16277@section Optional Messages about Internal Happenings
4644b6e3
EZ
16278@cindex optional debugging messages
16279
da316a69
EZ
16280@value{GDBN} has commands that enable optional debugging messages from
16281various @value{GDBN} subsystems; normally these commands are of
16282interest to @value{GDBN} maintainers, or when reporting a bug. This
16283section documents those commands.
16284
104c1213 16285@table @code
a8f24a35
EZ
16286@kindex set exec-done-display
16287@item set exec-done-display
16288Turns on or off the notification of asynchronous commands'
16289completion. When on, @value{GDBN} will print a message when an
16290asynchronous command finishes its execution. The default is off.
16291@kindex show exec-done-display
16292@item show exec-done-display
16293Displays the current setting of asynchronous command completion
16294notification.
4644b6e3
EZ
16295@kindex set debug
16296@cindex gdbarch debugging info
a8f24a35 16297@cindex architecture debugging info
8e04817f 16298@item set debug arch
a8f24a35 16299Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16300@kindex show debug
8e04817f
AC
16301@item show debug arch
16302Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16303@item set debug aix-thread
16304@cindex AIX threads
16305Display debugging messages about inner workings of the AIX thread
16306module.
16307@item show debug aix-thread
16308Show the current state of AIX thread debugging info display.
8e04817f 16309@item set debug event
4644b6e3 16310@cindex event debugging info
a8f24a35 16311Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16312default is off.
8e04817f
AC
16313@item show debug event
16314Displays the current state of displaying @value{GDBN} event debugging
16315info.
8e04817f 16316@item set debug expression
4644b6e3 16317@cindex expression debugging info
721c2651
EZ
16318Turns on or off display of debugging info about @value{GDBN}
16319expression parsing. The default is off.
8e04817f 16320@item show debug expression
721c2651
EZ
16321Displays the current state of displaying debugging info about
16322@value{GDBN} expression parsing.
7453dc06 16323@item set debug frame
4644b6e3 16324@cindex frame debugging info
7453dc06
AC
16325Turns on or off display of @value{GDBN} frame debugging info. The
16326default is off.
7453dc06
AC
16327@item show debug frame
16328Displays the current state of displaying @value{GDBN} frame debugging
16329info.
30e91e0b
RC
16330@item set debug infrun
16331@cindex inferior debugging info
16332Turns on or off display of @value{GDBN} debugging info for running the inferior.
16333The default is off. @file{infrun.c} contains GDB's runtime state machine used
16334for implementing operations such as single-stepping the inferior.
16335@item show debug infrun
16336Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16337@item set debug lin-lwp
16338@cindex @sc{gnu}/Linux LWP debug messages
16339@cindex Linux lightweight processes
721c2651 16340Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16341@item show debug lin-lwp
16342Show the current state of Linux LWP debugging messages.
2b4855ab 16343@item set debug observer
4644b6e3 16344@cindex observer debugging info
2b4855ab
AC
16345Turns on or off display of @value{GDBN} observer debugging. This
16346includes info such as the notification of observable events.
2b4855ab
AC
16347@item show debug observer
16348Displays the current state of observer debugging.
8e04817f 16349@item set debug overload
4644b6e3 16350@cindex C@t{++} overload debugging info
8e04817f 16351Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16352info. This includes info such as ranking of functions, etc. The default
8e04817f 16353is off.
8e04817f
AC
16354@item show debug overload
16355Displays the current state of displaying @value{GDBN} C@t{++} overload
16356debugging info.
8e04817f
AC
16357@cindex packets, reporting on stdout
16358@cindex serial connections, debugging
605a56cb
DJ
16359@cindex debug remote protocol
16360@cindex remote protocol debugging
16361@cindex display remote packets
8e04817f
AC
16362@item set debug remote
16363Turns on or off display of reports on all packets sent back and forth across
16364the serial line to the remote machine. The info is printed on the
16365@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16366@item show debug remote
16367Displays the state of display of remote packets.
8e04817f
AC
16368@item set debug serial
16369Turns on or off display of @value{GDBN} serial debugging info. The
16370default is off.
8e04817f
AC
16371@item show debug serial
16372Displays the current state of displaying @value{GDBN} serial debugging
16373info.
c45da7e6
EZ
16374@item set debug solib-frv
16375@cindex FR-V shared-library debugging
16376Turns on or off debugging messages for FR-V shared-library code.
16377@item show debug solib-frv
16378Display the current state of FR-V shared-library code debugging
16379messages.
8e04817f 16380@item set debug target
4644b6e3 16381@cindex target debugging info
8e04817f
AC
16382Turns on or off display of @value{GDBN} target debugging info. This info
16383includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16384default is 0. Set it to 1 to track events, and to 2 to also track the
16385value of large memory transfers. Changes to this flag do not take effect
16386until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16387@item show debug target
16388Displays the current state of displaying @value{GDBN} target debugging
16389info.
c45da7e6 16390@item set debugvarobj
4644b6e3 16391@cindex variable object debugging info
8e04817f
AC
16392Turns on or off display of @value{GDBN} variable object debugging
16393info. The default is off.
c45da7e6 16394@item show debugvarobj
8e04817f
AC
16395Displays the current state of displaying @value{GDBN} variable object
16396debugging info.
e776119f
DJ
16397@item set debug xml
16398@cindex XML parser debugging
16399Turns on or off debugging messages for built-in XML parsers.
16400@item show debug xml
16401Displays the current state of XML debugging messages.
8e04817f 16402@end table
104c1213 16403
8e04817f
AC
16404@node Sequences
16405@chapter Canned Sequences of Commands
104c1213 16406
8e04817f 16407Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16408Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16409commands for execution as a unit: user-defined commands and command
16410files.
104c1213 16411
8e04817f 16412@menu
fcc73fe3
EZ
16413* Define:: How to define your own commands
16414* Hooks:: Hooks for user-defined commands
16415* Command Files:: How to write scripts of commands to be stored in a file
16416* Output:: Commands for controlled output
8e04817f 16417@end menu
104c1213 16418
8e04817f 16419@node Define
79a6e687 16420@section User-defined Commands
104c1213 16421
8e04817f 16422@cindex user-defined command
fcc73fe3 16423@cindex arguments, to user-defined commands
8e04817f
AC
16424A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16425which you assign a new name as a command. This is done with the
16426@code{define} command. User commands may accept up to 10 arguments
16427separated by whitespace. Arguments are accessed within the user command
c03c782f 16428via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16429
8e04817f
AC
16430@smallexample
16431define adder
16432 print $arg0 + $arg1 + $arg2
c03c782f 16433end
8e04817f 16434@end smallexample
104c1213
JM
16435
16436@noindent
8e04817f 16437To execute the command use:
104c1213 16438
8e04817f
AC
16439@smallexample
16440adder 1 2 3
16441@end smallexample
104c1213 16442
8e04817f
AC
16443@noindent
16444This defines the command @code{adder}, which prints the sum of
16445its three arguments. Note the arguments are text substitutions, so they may
16446reference variables, use complex expressions, or even perform inferior
16447functions calls.
104c1213 16448
fcc73fe3
EZ
16449@cindex argument count in user-defined commands
16450@cindex how many arguments (user-defined commands)
c03c782f
AS
16451In addition, @code{$argc} may be used to find out how many arguments have
16452been passed. This expands to a number in the range 0@dots{}10.
16453
16454@smallexample
16455define adder
16456 if $argc == 2
16457 print $arg0 + $arg1
16458 end
16459 if $argc == 3
16460 print $arg0 + $arg1 + $arg2
16461 end
16462end
16463@end smallexample
16464
104c1213 16465@table @code
104c1213 16466
8e04817f
AC
16467@kindex define
16468@item define @var{commandname}
16469Define a command named @var{commandname}. If there is already a command
16470by that name, you are asked to confirm that you want to redefine it.
104c1213 16471
8e04817f
AC
16472The definition of the command is made up of other @value{GDBN} command lines,
16473which are given following the @code{define} command. The end of these
16474commands is marked by a line containing @code{end}.
104c1213 16475
8e04817f 16476@kindex document
ca91424e 16477@kindex end@r{ (user-defined commands)}
8e04817f
AC
16478@item document @var{commandname}
16479Document the user-defined command @var{commandname}, so that it can be
16480accessed by @code{help}. The command @var{commandname} must already be
16481defined. This command reads lines of documentation just as @code{define}
16482reads the lines of the command definition, ending with @code{end}.
16483After the @code{document} command is finished, @code{help} on command
16484@var{commandname} displays the documentation you have written.
104c1213 16485
8e04817f
AC
16486You may use the @code{document} command again to change the
16487documentation of a command. Redefining the command with @code{define}
16488does not change the documentation.
104c1213 16489
c45da7e6
EZ
16490@kindex dont-repeat
16491@cindex don't repeat command
16492@item dont-repeat
16493Used inside a user-defined command, this tells @value{GDBN} that this
16494command should not be repeated when the user hits @key{RET}
16495(@pxref{Command Syntax, repeat last command}).
16496
8e04817f
AC
16497@kindex help user-defined
16498@item help user-defined
16499List all user-defined commands, with the first line of the documentation
16500(if any) for each.
104c1213 16501
8e04817f
AC
16502@kindex show user
16503@item show user
16504@itemx show user @var{commandname}
16505Display the @value{GDBN} commands used to define @var{commandname} (but
16506not its documentation). If no @var{commandname} is given, display the
16507definitions for all user-defined commands.
104c1213 16508
fcc73fe3 16509@cindex infinite recursion in user-defined commands
20f01a46
DH
16510@kindex show max-user-call-depth
16511@kindex set max-user-call-depth
16512@item show max-user-call-depth
5ca0cb28
DH
16513@itemx set max-user-call-depth
16514The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16515levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16516infinite recursion and aborts the command.
104c1213
JM
16517@end table
16518
fcc73fe3
EZ
16519In addition to the above commands, user-defined commands frequently
16520use control flow commands, described in @ref{Command Files}.
16521
8e04817f
AC
16522When user-defined commands are executed, the
16523commands of the definition are not printed. An error in any command
16524stops execution of the user-defined command.
104c1213 16525
8e04817f
AC
16526If used interactively, commands that would ask for confirmation proceed
16527without asking when used inside a user-defined command. Many @value{GDBN}
16528commands that normally print messages to say what they are doing omit the
16529messages when used in a user-defined command.
104c1213 16530
8e04817f 16531@node Hooks
79a6e687 16532@section User-defined Command Hooks
8e04817f
AC
16533@cindex command hooks
16534@cindex hooks, for commands
16535@cindex hooks, pre-command
104c1213 16536
8e04817f 16537@kindex hook
8e04817f
AC
16538You may define @dfn{hooks}, which are a special kind of user-defined
16539command. Whenever you run the command @samp{foo}, if the user-defined
16540command @samp{hook-foo} exists, it is executed (with no arguments)
16541before that command.
104c1213 16542
8e04817f
AC
16543@cindex hooks, post-command
16544@kindex hookpost
8e04817f
AC
16545A hook may also be defined which is run after the command you executed.
16546Whenever you run the command @samp{foo}, if the user-defined command
16547@samp{hookpost-foo} exists, it is executed (with no arguments) after
16548that command. Post-execution hooks may exist simultaneously with
16549pre-execution hooks, for the same command.
104c1213 16550
8e04817f 16551It is valid for a hook to call the command which it hooks. If this
9f1c6395 16552occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16553
8e04817f
AC
16554@c It would be nice if hookpost could be passed a parameter indicating
16555@c if the command it hooks executed properly or not. FIXME!
104c1213 16556
8e04817f
AC
16557@kindex stop@r{, a pseudo-command}
16558In addition, a pseudo-command, @samp{stop} exists. Defining
16559(@samp{hook-stop}) makes the associated commands execute every time
16560execution stops in your program: before breakpoint commands are run,
16561displays are printed, or the stack frame is printed.
104c1213 16562
8e04817f
AC
16563For example, to ignore @code{SIGALRM} signals while
16564single-stepping, but treat them normally during normal execution,
16565you could define:
104c1213 16566
474c8240 16567@smallexample
8e04817f
AC
16568define hook-stop
16569handle SIGALRM nopass
16570end
104c1213 16571
8e04817f
AC
16572define hook-run
16573handle SIGALRM pass
16574end
104c1213 16575
8e04817f 16576define hook-continue
d3e8051b 16577handle SIGALRM pass
8e04817f 16578end
474c8240 16579@end smallexample
104c1213 16580
d3e8051b 16581As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16582command, and to add extra text to the beginning and end of the message,
8e04817f 16583you could define:
104c1213 16584
474c8240 16585@smallexample
8e04817f
AC
16586define hook-echo
16587echo <<<---
16588end
104c1213 16589
8e04817f
AC
16590define hookpost-echo
16591echo --->>>\n
16592end
104c1213 16593
8e04817f
AC
16594(@value{GDBP}) echo Hello World
16595<<<---Hello World--->>>
16596(@value{GDBP})
104c1213 16597
474c8240 16598@end smallexample
104c1213 16599
8e04817f
AC
16600You can define a hook for any single-word command in @value{GDBN}, but
16601not for command aliases; you should define a hook for the basic command
c1468174 16602name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16603@c FIXME! So how does Joe User discover whether a command is an alias
16604@c or not?
16605If an error occurs during the execution of your hook, execution of
16606@value{GDBN} commands stops and @value{GDBN} issues a prompt
16607(before the command that you actually typed had a chance to run).
104c1213 16608
8e04817f
AC
16609If you try to define a hook which does not match any known command, you
16610get a warning from the @code{define} command.
c906108c 16611
8e04817f 16612@node Command Files
79a6e687 16613@section Command Files
c906108c 16614
8e04817f 16615@cindex command files
fcc73fe3 16616@cindex scripting commands
6fc08d32
EZ
16617A command file for @value{GDBN} is a text file made of lines that are
16618@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16619also be included. An empty line in a command file does nothing; it
16620does not mean to repeat the last command, as it would from the
16621terminal.
c906108c 16622
6fc08d32
EZ
16623You can request the execution of a command file with the @code{source}
16624command:
c906108c 16625
8e04817f
AC
16626@table @code
16627@kindex source
ca91424e 16628@cindex execute commands from a file
16026cd7 16629@item source [@code{-v}] @var{filename}
8e04817f 16630Execute the command file @var{filename}.
c906108c
SS
16631@end table
16632
fcc73fe3
EZ
16633The lines in a command file are generally executed sequentially,
16634unless the order of execution is changed by one of the
16635@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16636printed as they are executed. An error in any command terminates
16637execution of the command file and control is returned to the console.
c906108c 16638
4b505b12
AS
16639@value{GDBN} searches for @var{filename} in the current directory and then
16640on the search path (specified with the @samp{directory} command).
16641
16026cd7
AS
16642If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16643each command as it is executed. The option must be given before
16644@var{filename}, and is interpreted as part of the filename anywhere else.
16645
8e04817f
AC
16646Commands that would ask for confirmation if used interactively proceed
16647without asking when used in a command file. Many @value{GDBN} commands that
16648normally print messages to say what they are doing omit the messages
16649when called from command files.
c906108c 16650
8e04817f
AC
16651@value{GDBN} also accepts command input from standard input. In this
16652mode, normal output goes to standard output and error output goes to
16653standard error. Errors in a command file supplied on standard input do
6fc08d32 16654not terminate execution of the command file---execution continues with
8e04817f 16655the next command.
c906108c 16656
474c8240 16657@smallexample
8e04817f 16658gdb < cmds > log 2>&1
474c8240 16659@end smallexample
c906108c 16660
8e04817f
AC
16661(The syntax above will vary depending on the shell used.) This example
16662will execute commands from the file @file{cmds}. All output and errors
16663would be directed to @file{log}.
c906108c 16664
fcc73fe3
EZ
16665Since commands stored on command files tend to be more general than
16666commands typed interactively, they frequently need to deal with
16667complicated situations, such as different or unexpected values of
16668variables and symbols, changes in how the program being debugged is
16669built, etc. @value{GDBN} provides a set of flow-control commands to
16670deal with these complexities. Using these commands, you can write
16671complex scripts that loop over data structures, execute commands
16672conditionally, etc.
16673
16674@table @code
16675@kindex if
16676@kindex else
16677@item if
16678@itemx else
16679This command allows to include in your script conditionally executed
16680commands. The @code{if} command takes a single argument, which is an
16681expression to evaluate. It is followed by a series of commands that
16682are executed only if the expression is true (its value is nonzero).
16683There can then optionally be an @code{else} line, followed by a series
16684of commands that are only executed if the expression was false. The
16685end of the list is marked by a line containing @code{end}.
16686
16687@kindex while
16688@item while
16689This command allows to write loops. Its syntax is similar to
16690@code{if}: the command takes a single argument, which is an expression
16691to evaluate, and must be followed by the commands to execute, one per
16692line, terminated by an @code{end}. These commands are called the
16693@dfn{body} of the loop. The commands in the body of @code{while} are
16694executed repeatedly as long as the expression evaluates to true.
16695
16696@kindex loop_break
16697@item loop_break
16698This command exits the @code{while} loop in whose body it is included.
16699Execution of the script continues after that @code{while}s @code{end}
16700line.
16701
16702@kindex loop_continue
16703@item loop_continue
16704This command skips the execution of the rest of the body of commands
16705in the @code{while} loop in whose body it is included. Execution
16706branches to the beginning of the @code{while} loop, where it evaluates
16707the controlling expression.
ca91424e
EZ
16708
16709@kindex end@r{ (if/else/while commands)}
16710@item end
16711Terminate the block of commands that are the body of @code{if},
16712@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16713@end table
16714
16715
8e04817f 16716@node Output
79a6e687 16717@section Commands for Controlled Output
c906108c 16718
8e04817f
AC
16719During the execution of a command file or a user-defined command, normal
16720@value{GDBN} output is suppressed; the only output that appears is what is
16721explicitly printed by the commands in the definition. This section
16722describes three commands useful for generating exactly the output you
16723want.
c906108c
SS
16724
16725@table @code
8e04817f
AC
16726@kindex echo
16727@item echo @var{text}
16728@c I do not consider backslash-space a standard C escape sequence
16729@c because it is not in ANSI.
16730Print @var{text}. Nonprinting characters can be included in
16731@var{text} using C escape sequences, such as @samp{\n} to print a
16732newline. @strong{No newline is printed unless you specify one.}
16733In addition to the standard C escape sequences, a backslash followed
16734by a space stands for a space. This is useful for displaying a
16735string with spaces at the beginning or the end, since leading and
16736trailing spaces are otherwise trimmed from all arguments.
16737To print @samp{@w{ }and foo =@w{ }}, use the command
16738@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16739
8e04817f
AC
16740A backslash at the end of @var{text} can be used, as in C, to continue
16741the command onto subsequent lines. For example,
c906108c 16742
474c8240 16743@smallexample
8e04817f
AC
16744echo This is some text\n\
16745which is continued\n\
16746onto several lines.\n
474c8240 16747@end smallexample
c906108c 16748
8e04817f 16749produces the same output as
c906108c 16750
474c8240 16751@smallexample
8e04817f
AC
16752echo This is some text\n
16753echo which is continued\n
16754echo onto several lines.\n
474c8240 16755@end smallexample
c906108c 16756
8e04817f
AC
16757@kindex output
16758@item output @var{expression}
16759Print the value of @var{expression} and nothing but that value: no
16760newlines, no @samp{$@var{nn} = }. The value is not entered in the
16761value history either. @xref{Expressions, ,Expressions}, for more information
16762on expressions.
c906108c 16763
8e04817f
AC
16764@item output/@var{fmt} @var{expression}
16765Print the value of @var{expression} in format @var{fmt}. You can use
16766the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16767Formats}, for more information.
c906108c 16768
8e04817f 16769@kindex printf
82160952
EZ
16770@item printf @var{template}, @var{expressions}@dots{}
16771Print the values of one or more @var{expressions} under the control of
16772the string @var{template}. To print several values, make
16773@var{expressions} be a comma-separated list of individual expressions,
16774which may be either numbers or pointers. Their values are printed as
16775specified by @var{template}, exactly as a C program would do by
16776executing the code below:
c906108c 16777
474c8240 16778@smallexample
82160952 16779printf (@var{template}, @var{expressions}@dots{});
474c8240 16780@end smallexample
c906108c 16781
82160952
EZ
16782As in @code{C} @code{printf}, ordinary characters in @var{template}
16783are printed verbatim, while @dfn{conversion specification} introduced
16784by the @samp{%} character cause subsequent @var{expressions} to be
16785evaluated, their values converted and formatted according to type and
16786style information encoded in the conversion specifications, and then
16787printed.
16788
8e04817f 16789For example, you can print two values in hex like this:
c906108c 16790
8e04817f
AC
16791@smallexample
16792printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16793@end smallexample
c906108c 16794
82160952
EZ
16795@code{printf} supports all the standard @code{C} conversion
16796specifications, including the flags and modifiers between the @samp{%}
16797character and the conversion letter, with the following exceptions:
16798
16799@itemize @bullet
16800@item
16801The argument-ordering modifiers, such as @samp{2$}, are not supported.
16802
16803@item
16804The modifier @samp{*} is not supported for specifying precision or
16805width.
16806
16807@item
16808The @samp{'} flag (for separation of digits into groups according to
16809@code{LC_NUMERIC'}) is not supported.
16810
16811@item
16812The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16813supported.
16814
16815@item
16816The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16817
16818@item
16819The conversion letters @samp{a} and @samp{A} are not supported.
16820@end itemize
16821
16822@noindent
16823Note that the @samp{ll} type modifier is supported only if the
16824underlying @code{C} implementation used to build @value{GDBN} supports
16825the @code{long long int} type, and the @samp{L} type modifier is
16826supported only if @code{long double} type is available.
16827
16828As in @code{C}, @code{printf} supports simple backslash-escape
16829sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16830@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16831single character. Octal and hexadecimal escape sequences are not
16832supported.
1a619819
LM
16833
16834Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16835(@dfn{Decimal Floating Point}) types using the following length modifiers
16836together with a floating point specifier.
1a619819
LM
16837letters:
16838
16839@itemize @bullet
16840@item
16841@samp{H} for printing @code{Decimal32} types.
16842
16843@item
16844@samp{D} for printing @code{Decimal64} types.
16845
16846@item
16847@samp{DD} for printing @code{Decimal128} types.
16848@end itemize
16849
16850If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16851support for the three length modifiers for DFP types, other modifiers
3b784c4f 16852such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16853
16854In case there is no such @code{C} support, no additional modifiers will be
16855available and the value will be printed in the standard way.
16856
16857Here's an example of printing DFP types using the above conversion letters:
16858@smallexample
0aea4bf3 16859printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16860@end smallexample
16861
c906108c
SS
16862@end table
16863
21c294e6
AC
16864@node Interpreters
16865@chapter Command Interpreters
16866@cindex command interpreters
16867
16868@value{GDBN} supports multiple command interpreters, and some command
16869infrastructure to allow users or user interface writers to switch
16870between interpreters or run commands in other interpreters.
16871
16872@value{GDBN} currently supports two command interpreters, the console
16873interpreter (sometimes called the command-line interpreter or @sc{cli})
16874and the machine interface interpreter (or @sc{gdb/mi}). This manual
16875describes both of these interfaces in great detail.
16876
16877By default, @value{GDBN} will start with the console interpreter.
16878However, the user may choose to start @value{GDBN} with another
16879interpreter by specifying the @option{-i} or @option{--interpreter}
16880startup options. Defined interpreters include:
16881
16882@table @code
16883@item console
16884@cindex console interpreter
16885The traditional console or command-line interpreter. This is the most often
16886used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16887@value{GDBN} will use this interpreter.
16888
16889@item mi
16890@cindex mi interpreter
16891The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16892by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16893or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16894Interface}.
16895
16896@item mi2
16897@cindex mi2 interpreter
16898The current @sc{gdb/mi} interface.
16899
16900@item mi1
16901@cindex mi1 interpreter
16902The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16903
16904@end table
16905
16906@cindex invoke another interpreter
16907The interpreter being used by @value{GDBN} may not be dynamically
16908switched at runtime. Although possible, this could lead to a very
16909precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16910enters the command "interpreter-set console" in a console view,
16911@value{GDBN} would switch to using the console interpreter, rendering
16912the IDE inoperable!
16913
16914@kindex interpreter-exec
16915Although you may only choose a single interpreter at startup, you may execute
16916commands in any interpreter from the current interpreter using the appropriate
16917command. If you are running the console interpreter, simply use the
16918@code{interpreter-exec} command:
16919
16920@smallexample
16921interpreter-exec mi "-data-list-register-names"
16922@end smallexample
16923
16924@sc{gdb/mi} has a similar command, although it is only available in versions of
16925@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16926
8e04817f
AC
16927@node TUI
16928@chapter @value{GDBN} Text User Interface
16929@cindex TUI
d0d5df6f 16930@cindex Text User Interface
c906108c 16931
8e04817f
AC
16932@menu
16933* TUI Overview:: TUI overview
16934* TUI Keys:: TUI key bindings
7cf36c78 16935* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16936* TUI Commands:: TUI-specific commands
8e04817f
AC
16937* TUI Configuration:: TUI configuration variables
16938@end menu
c906108c 16939
46ba6afa 16940The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16941interface which uses the @code{curses} library to show the source
16942file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16943commands in separate text windows. The TUI mode is supported only
16944on platforms where a suitable version of the @code{curses} library
16945is available.
d0d5df6f 16946
46ba6afa
BW
16947@pindex @value{GDBTUI}
16948The TUI mode is enabled by default when you invoke @value{GDBN} as
16949either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16950You can also switch in and out of TUI mode while @value{GDBN} runs by
16951using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16952@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16953
8e04817f 16954@node TUI Overview
79a6e687 16955@section TUI Overview
c906108c 16956
46ba6afa 16957In TUI mode, @value{GDBN} can display several text windows:
c906108c 16958
8e04817f
AC
16959@table @emph
16960@item command
16961This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16962prompt and the @value{GDBN} output. The @value{GDBN} input is still
16963managed using readline.
c906108c 16964
8e04817f
AC
16965@item source
16966The source window shows the source file of the program. The current
46ba6afa 16967line and active breakpoints are displayed in this window.
c906108c 16968
8e04817f
AC
16969@item assembly
16970The assembly window shows the disassembly output of the program.
c906108c 16971
8e04817f 16972@item register
46ba6afa
BW
16973This window shows the processor registers. Registers are highlighted
16974when their values change.
c906108c
SS
16975@end table
16976
269c21fe 16977The source and assembly windows show the current program position
46ba6afa
BW
16978by highlighting the current line and marking it with a @samp{>} marker.
16979Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16980indicates the breakpoint type:
16981
16982@table @code
16983@item B
16984Breakpoint which was hit at least once.
16985
16986@item b
16987Breakpoint which was never hit.
16988
16989@item H
16990Hardware breakpoint which was hit at least once.
16991
16992@item h
16993Hardware breakpoint which was never hit.
269c21fe
SC
16994@end table
16995
16996The second marker indicates whether the breakpoint is enabled or not:
16997
16998@table @code
16999@item +
17000Breakpoint is enabled.
17001
17002@item -
17003Breakpoint is disabled.
269c21fe
SC
17004@end table
17005
46ba6afa
BW
17006The source, assembly and register windows are updated when the current
17007thread changes, when the frame changes, or when the program counter
17008changes.
17009
17010These windows are not all visible at the same time. The command
17011window is always visible. The others can be arranged in several
17012layouts:
c906108c 17013
8e04817f
AC
17014@itemize @bullet
17015@item
46ba6afa 17016source only,
2df3850c 17017
8e04817f 17018@item
46ba6afa 17019assembly only,
8e04817f
AC
17020
17021@item
46ba6afa 17022source and assembly,
8e04817f
AC
17023
17024@item
46ba6afa 17025source and registers, or
c906108c 17026
8e04817f 17027@item
46ba6afa 17028assembly and registers.
8e04817f 17029@end itemize
c906108c 17030
46ba6afa 17031A status line above the command window shows the following information:
b7bb15bc
SC
17032
17033@table @emph
17034@item target
46ba6afa 17035Indicates the current @value{GDBN} target.
b7bb15bc
SC
17036(@pxref{Targets, ,Specifying a Debugging Target}).
17037
17038@item process
46ba6afa 17039Gives the current process or thread number.
b7bb15bc
SC
17040When no process is being debugged, this field is set to @code{No process}.
17041
17042@item function
17043Gives the current function name for the selected frame.
17044The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17045When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17046the string @code{??} is displayed.
17047
17048@item line
17049Indicates the current line number for the selected frame.
46ba6afa 17050When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17051
17052@item pc
17053Indicates the current program counter address.
b7bb15bc
SC
17054@end table
17055
8e04817f
AC
17056@node TUI Keys
17057@section TUI Key Bindings
17058@cindex TUI key bindings
c906108c 17059
8e04817f 17060The TUI installs several key bindings in the readline keymaps
46ba6afa 17061(@pxref{Command Line Editing}). The following key bindings
8e04817f 17062are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17063
8e04817f
AC
17064@table @kbd
17065@kindex C-x C-a
17066@item C-x C-a
17067@kindex C-x a
17068@itemx C-x a
17069@kindex C-x A
17070@itemx C-x A
46ba6afa
BW
17071Enter or leave the TUI mode. When leaving the TUI mode,
17072the curses window management stops and @value{GDBN} operates using
17073its standard mode, writing on the terminal directly. When reentering
17074the TUI mode, control is given back to the curses windows.
8e04817f 17075The screen is then refreshed.
c906108c 17076
8e04817f
AC
17077@kindex C-x 1
17078@item C-x 1
17079Use a TUI layout with only one window. The layout will
17080either be @samp{source} or @samp{assembly}. When the TUI mode
17081is not active, it will switch to the TUI mode.
2df3850c 17082
8e04817f 17083Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17084
8e04817f
AC
17085@kindex C-x 2
17086@item C-x 2
17087Use a TUI layout with at least two windows. When the current
46ba6afa 17088layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17089When a new layout is chosen, one window will always be common to the
17090previous layout and the new one.
c906108c 17091
8e04817f 17092Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17093
72ffddc9
SC
17094@kindex C-x o
17095@item C-x o
17096Change the active window. The TUI associates several key bindings
46ba6afa 17097(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17098gives the focus to the next TUI window.
17099
17100Think of it as the Emacs @kbd{C-x o} binding.
17101
7cf36c78
SC
17102@kindex C-x s
17103@item C-x s
46ba6afa
BW
17104Switch in and out of the TUI SingleKey mode that binds single
17105keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17106@end table
17107
46ba6afa 17108The following key bindings only work in the TUI mode:
5d161b24 17109
46ba6afa 17110@table @asis
8e04817f 17111@kindex PgUp
46ba6afa 17112@item @key{PgUp}
8e04817f 17113Scroll the active window one page up.
c906108c 17114
8e04817f 17115@kindex PgDn
46ba6afa 17116@item @key{PgDn}
8e04817f 17117Scroll the active window one page down.
c906108c 17118
8e04817f 17119@kindex Up
46ba6afa 17120@item @key{Up}
8e04817f 17121Scroll the active window one line up.
c906108c 17122
8e04817f 17123@kindex Down
46ba6afa 17124@item @key{Down}
8e04817f 17125Scroll the active window one line down.
c906108c 17126
8e04817f 17127@kindex Left
46ba6afa 17128@item @key{Left}
8e04817f 17129Scroll the active window one column left.
c906108c 17130
8e04817f 17131@kindex Right
46ba6afa 17132@item @key{Right}
8e04817f 17133Scroll the active window one column right.
c906108c 17134
8e04817f 17135@kindex C-L
46ba6afa 17136@item @kbd{C-L}
8e04817f 17137Refresh the screen.
8e04817f 17138@end table
c906108c 17139
46ba6afa
BW
17140Because the arrow keys scroll the active window in the TUI mode, they
17141are not available for their normal use by readline unless the command
17142window has the focus. When another window is active, you must use
17143other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17144and @kbd{C-f} to control the command window.
8e04817f 17145
7cf36c78
SC
17146@node TUI Single Key Mode
17147@section TUI Single Key Mode
17148@cindex TUI single key mode
17149
46ba6afa
BW
17150The TUI also provides a @dfn{SingleKey} mode, which binds several
17151frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17152switch into this mode, where the following key bindings are used:
7cf36c78
SC
17153
17154@table @kbd
17155@kindex c @r{(SingleKey TUI key)}
17156@item c
17157continue
17158
17159@kindex d @r{(SingleKey TUI key)}
17160@item d
17161down
17162
17163@kindex f @r{(SingleKey TUI key)}
17164@item f
17165finish
17166
17167@kindex n @r{(SingleKey TUI key)}
17168@item n
17169next
17170
17171@kindex q @r{(SingleKey TUI key)}
17172@item q
46ba6afa 17173exit the SingleKey mode.
7cf36c78
SC
17174
17175@kindex r @r{(SingleKey TUI key)}
17176@item r
17177run
17178
17179@kindex s @r{(SingleKey TUI key)}
17180@item s
17181step
17182
17183@kindex u @r{(SingleKey TUI key)}
17184@item u
17185up
17186
17187@kindex v @r{(SingleKey TUI key)}
17188@item v
17189info locals
17190
17191@kindex w @r{(SingleKey TUI key)}
17192@item w
17193where
7cf36c78
SC
17194@end table
17195
17196Other keys temporarily switch to the @value{GDBN} command prompt.
17197The key that was pressed is inserted in the editing buffer so that
17198it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17199with the TUI SingleKey mode. Once the command is entered the TUI
17200SingleKey mode is restored. The only way to permanently leave
7f9087cb 17201this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17202
17203
8e04817f 17204@node TUI Commands
db2e3e2e 17205@section TUI-specific Commands
8e04817f
AC
17206@cindex TUI commands
17207
17208The TUI has specific commands to control the text windows.
46ba6afa
BW
17209These commands are always available, even when @value{GDBN} is not in
17210the TUI mode. When @value{GDBN} is in the standard mode, most
17211of these commands will automatically switch to the TUI mode.
c906108c
SS
17212
17213@table @code
3d757584
SC
17214@item info win
17215@kindex info win
17216List and give the size of all displayed windows.
17217
8e04817f 17218@item layout next
4644b6e3 17219@kindex layout
8e04817f 17220Display the next layout.
2df3850c 17221
8e04817f 17222@item layout prev
8e04817f 17223Display the previous layout.
c906108c 17224
8e04817f 17225@item layout src
8e04817f 17226Display the source window only.
c906108c 17227
8e04817f 17228@item layout asm
8e04817f 17229Display the assembly window only.
c906108c 17230
8e04817f 17231@item layout split
8e04817f 17232Display the source and assembly window.
c906108c 17233
8e04817f 17234@item layout regs
8e04817f
AC
17235Display the register window together with the source or assembly window.
17236
46ba6afa 17237@item focus next
8e04817f 17238@kindex focus
46ba6afa
BW
17239Make the next window active for scrolling.
17240
17241@item focus prev
17242Make the previous window active for scrolling.
17243
17244@item focus src
17245Make the source window active for scrolling.
17246
17247@item focus asm
17248Make the assembly window active for scrolling.
17249
17250@item focus regs
17251Make the register window active for scrolling.
17252
17253@item focus cmd
17254Make the command window active for scrolling.
c906108c 17255
8e04817f
AC
17256@item refresh
17257@kindex refresh
7f9087cb 17258Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17259
6a1b180d
SC
17260@item tui reg float
17261@kindex tui reg
17262Show the floating point registers in the register window.
17263
17264@item tui reg general
17265Show the general registers in the register window.
17266
17267@item tui reg next
17268Show the next register group. The list of register groups as well as
17269their order is target specific. The predefined register groups are the
17270following: @code{general}, @code{float}, @code{system}, @code{vector},
17271@code{all}, @code{save}, @code{restore}.
17272
17273@item tui reg system
17274Show the system registers in the register window.
17275
8e04817f
AC
17276@item update
17277@kindex update
17278Update the source window and the current execution point.
c906108c 17279
8e04817f
AC
17280@item winheight @var{name} +@var{count}
17281@itemx winheight @var{name} -@var{count}
17282@kindex winheight
17283Change the height of the window @var{name} by @var{count}
17284lines. Positive counts increase the height, while negative counts
17285decrease it.
2df3850c 17286
46ba6afa
BW
17287@item tabset @var{nchars}
17288@kindex tabset
c45da7e6 17289Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17290@end table
17291
8e04817f 17292@node TUI Configuration
79a6e687 17293@section TUI Configuration Variables
8e04817f 17294@cindex TUI configuration variables
c906108c 17295
46ba6afa 17296Several configuration variables control the appearance of TUI windows.
c906108c 17297
8e04817f
AC
17298@table @code
17299@item set tui border-kind @var{kind}
17300@kindex set tui border-kind
17301Select the border appearance for the source, assembly and register windows.
17302The possible values are the following:
17303@table @code
17304@item space
17305Use a space character to draw the border.
c906108c 17306
8e04817f 17307@item ascii
46ba6afa 17308Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17309
8e04817f
AC
17310@item acs
17311Use the Alternate Character Set to draw the border. The border is
17312drawn using character line graphics if the terminal supports them.
8e04817f 17313@end table
c78b4128 17314
8e04817f
AC
17315@item set tui border-mode @var{mode}
17316@kindex set tui border-mode
46ba6afa
BW
17317@itemx set tui active-border-mode @var{mode}
17318@kindex set tui active-border-mode
17319Select the display attributes for the borders of the inactive windows
17320or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17321@table @code
17322@item normal
17323Use normal attributes to display the border.
c906108c 17324
8e04817f
AC
17325@item standout
17326Use standout mode.
c906108c 17327
8e04817f
AC
17328@item reverse
17329Use reverse video mode.
c906108c 17330
8e04817f
AC
17331@item half
17332Use half bright mode.
c906108c 17333
8e04817f
AC
17334@item half-standout
17335Use half bright and standout mode.
c906108c 17336
8e04817f
AC
17337@item bold
17338Use extra bright or bold mode.
c78b4128 17339
8e04817f
AC
17340@item bold-standout
17341Use extra bright or bold and standout mode.
8e04817f 17342@end table
8e04817f 17343@end table
c78b4128 17344
8e04817f
AC
17345@node Emacs
17346@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17347
8e04817f
AC
17348@cindex Emacs
17349@cindex @sc{gnu} Emacs
17350A special interface allows you to use @sc{gnu} Emacs to view (and
17351edit) the source files for the program you are debugging with
17352@value{GDBN}.
c906108c 17353
8e04817f
AC
17354To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17355executable file you want to debug as an argument. This command starts
17356@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17357created Emacs buffer.
17358@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17359
5e252a2e 17360Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17361things:
c906108c 17362
8e04817f
AC
17363@itemize @bullet
17364@item
5e252a2e
NR
17365All ``terminal'' input and output goes through an Emacs buffer, called
17366the GUD buffer.
c906108c 17367
8e04817f
AC
17368This applies both to @value{GDBN} commands and their output, and to the input
17369and output done by the program you are debugging.
bf0184be 17370
8e04817f
AC
17371This is useful because it means that you can copy the text of previous
17372commands and input them again; you can even use parts of the output
17373in this way.
bf0184be 17374
8e04817f
AC
17375All the facilities of Emacs' Shell mode are available for interacting
17376with your program. In particular, you can send signals the usual
17377way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17378stop.
bf0184be
ND
17379
17380@item
8e04817f 17381@value{GDBN} displays source code through Emacs.
bf0184be 17382
8e04817f
AC
17383Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17384source file for that frame and puts an arrow (@samp{=>}) at the
17385left margin of the current line. Emacs uses a separate buffer for
17386source display, and splits the screen to show both your @value{GDBN} session
17387and the source.
bf0184be 17388
8e04817f
AC
17389Explicit @value{GDBN} @code{list} or search commands still produce output as
17390usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17391@end itemize
17392
17393We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17394a graphical mode, enabled by default, which provides further buffers
17395that can control the execution and describe the state of your program.
17396@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17397
64fabec2
AC
17398If you specify an absolute file name when prompted for the @kbd{M-x
17399gdb} argument, then Emacs sets your current working directory to where
17400your program resides. If you only specify the file name, then Emacs
17401sets your current working directory to to the directory associated
17402with the previous buffer. In this case, @value{GDBN} may find your
17403program by searching your environment's @code{PATH} variable, but on
17404some operating systems it might not find the source. So, although the
17405@value{GDBN} input and output session proceeds normally, the auxiliary
17406buffer does not display the current source and line of execution.
17407
17408The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17409line of the GUD buffer and this serves as a default for the commands
17410that specify files for @value{GDBN} to operate on. @xref{Files,
17411,Commands to Specify Files}.
64fabec2
AC
17412
17413By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17414need to call @value{GDBN} by a different name (for example, if you
17415keep several configurations around, with different names) you can
17416customize the Emacs variable @code{gud-gdb-command-name} to run the
17417one you want.
8e04817f 17418
5e252a2e 17419In the GUD buffer, you can use these special Emacs commands in
8e04817f 17420addition to the standard Shell mode commands:
c906108c 17421
8e04817f
AC
17422@table @kbd
17423@item C-h m
5e252a2e 17424Describe the features of Emacs' GUD Mode.
c906108c 17425
64fabec2 17426@item C-c C-s
8e04817f
AC
17427Execute to another source line, like the @value{GDBN} @code{step} command; also
17428update the display window to show the current file and location.
c906108c 17429
64fabec2 17430@item C-c C-n
8e04817f
AC
17431Execute to next source line in this function, skipping all function
17432calls, like the @value{GDBN} @code{next} command. Then update the display window
17433to show the current file and location.
c906108c 17434
64fabec2 17435@item C-c C-i
8e04817f
AC
17436Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17437display window accordingly.
c906108c 17438
8e04817f
AC
17439@item C-c C-f
17440Execute until exit from the selected stack frame, like the @value{GDBN}
17441@code{finish} command.
c906108c 17442
64fabec2 17443@item C-c C-r
8e04817f
AC
17444Continue execution of your program, like the @value{GDBN} @code{continue}
17445command.
b433d00b 17446
64fabec2 17447@item C-c <
8e04817f
AC
17448Go up the number of frames indicated by the numeric argument
17449(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17450like the @value{GDBN} @code{up} command.
b433d00b 17451
64fabec2 17452@item C-c >
8e04817f
AC
17453Go down the number of frames indicated by the numeric argument, like the
17454@value{GDBN} @code{down} command.
8e04817f 17455@end table
c906108c 17456
7f9087cb 17457In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17458tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17459
5e252a2e
NR
17460In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17461separate frame which shows a backtrace when the GUD buffer is current.
17462Move point to any frame in the stack and type @key{RET} to make it
17463become the current frame and display the associated source in the
17464source buffer. Alternatively, click @kbd{Mouse-2} to make the
17465selected frame become the current one. In graphical mode, the
17466speedbar displays watch expressions.
64fabec2 17467
8e04817f
AC
17468If you accidentally delete the source-display buffer, an easy way to get
17469it back is to type the command @code{f} in the @value{GDBN} buffer, to
17470request a frame display; when you run under Emacs, this recreates
17471the source buffer if necessary to show you the context of the current
17472frame.
c906108c 17473
8e04817f
AC
17474The source files displayed in Emacs are in ordinary Emacs buffers
17475which are visiting the source files in the usual way. You can edit
17476the files with these buffers if you wish; but keep in mind that @value{GDBN}
17477communicates with Emacs in terms of line numbers. If you add or
17478delete lines from the text, the line numbers that @value{GDBN} knows cease
17479to correspond properly with the code.
b383017d 17480
5e252a2e
NR
17481A more detailed description of Emacs' interaction with @value{GDBN} is
17482given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17483Emacs Manual}).
c906108c 17484
8e04817f
AC
17485@c The following dropped because Epoch is nonstandard. Reactivate
17486@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17487@ignore
17488@kindex Emacs Epoch environment
17489@kindex Epoch
17490@kindex inspect
c906108c 17491
8e04817f
AC
17492Version 18 of @sc{gnu} Emacs has a built-in window system
17493called the @code{epoch}
17494environment. Users of this environment can use a new command,
17495@code{inspect} which performs identically to @code{print} except that
17496each value is printed in its own window.
17497@end ignore
c906108c 17498
922fbb7b
AC
17499
17500@node GDB/MI
17501@chapter The @sc{gdb/mi} Interface
17502
17503@unnumberedsec Function and Purpose
17504
17505@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17506@sc{gdb/mi} is a line based machine oriented text interface to
17507@value{GDBN} and is activated by specifying using the
17508@option{--interpreter} command line option (@pxref{Mode Options}). It
17509is specifically intended to support the development of systems which
17510use the debugger as just one small component of a larger system.
922fbb7b
AC
17511
17512This chapter is a specification of the @sc{gdb/mi} interface. It is written
17513in the form of a reference manual.
17514
17515Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17516features described below are incomplete and subject to change
17517(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17518
17519@unnumberedsec Notation and Terminology
17520
17521@cindex notational conventions, for @sc{gdb/mi}
17522This chapter uses the following notation:
17523
17524@itemize @bullet
17525@item
17526@code{|} separates two alternatives.
17527
17528@item
17529@code{[ @var{something} ]} indicates that @var{something} is optional:
17530it may or may not be given.
17531
17532@item
17533@code{( @var{group} )*} means that @var{group} inside the parentheses
17534may repeat zero or more times.
17535
17536@item
17537@code{( @var{group} )+} means that @var{group} inside the parentheses
17538may repeat one or more times.
17539
17540@item
17541@code{"@var{string}"} means a literal @var{string}.
17542@end itemize
17543
17544@ignore
17545@heading Dependencies
17546@end ignore
17547
922fbb7b
AC
17548@menu
17549* GDB/MI Command Syntax::
17550* GDB/MI Compatibility with CLI::
af6eff6f 17551* GDB/MI Development and Front Ends::
922fbb7b 17552* GDB/MI Output Records::
ef21caaf 17553* GDB/MI Simple Examples::
922fbb7b 17554* GDB/MI Command Description Format::
ef21caaf 17555* GDB/MI Breakpoint Commands::
a2c02241
NR
17556* GDB/MI Program Context::
17557* GDB/MI Thread Commands::
17558* GDB/MI Program Execution::
17559* GDB/MI Stack Manipulation::
17560* GDB/MI Variable Objects::
922fbb7b 17561* GDB/MI Data Manipulation::
a2c02241
NR
17562* GDB/MI Tracepoint Commands::
17563* GDB/MI Symbol Query::
351ff01a 17564* GDB/MI File Commands::
922fbb7b
AC
17565@ignore
17566* GDB/MI Kod Commands::
17567* GDB/MI Memory Overlay Commands::
17568* GDB/MI Signal Handling Commands::
17569@end ignore
922fbb7b 17570* GDB/MI Target Manipulation::
a6b151f1 17571* GDB/MI File Transfer Commands::
ef21caaf 17572* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17573@end menu
17574
17575@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17576@node GDB/MI Command Syntax
17577@section @sc{gdb/mi} Command Syntax
17578
17579@menu
17580* GDB/MI Input Syntax::
17581* GDB/MI Output Syntax::
922fbb7b
AC
17582@end menu
17583
17584@node GDB/MI Input Syntax
17585@subsection @sc{gdb/mi} Input Syntax
17586
17587@cindex input syntax for @sc{gdb/mi}
17588@cindex @sc{gdb/mi}, input syntax
17589@table @code
17590@item @var{command} @expansion{}
17591@code{@var{cli-command} | @var{mi-command}}
17592
17593@item @var{cli-command} @expansion{}
17594@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17595@var{cli-command} is any existing @value{GDBN} CLI command.
17596
17597@item @var{mi-command} @expansion{}
17598@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17599@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17600
17601@item @var{token} @expansion{}
17602"any sequence of digits"
17603
17604@item @var{option} @expansion{}
17605@code{"-" @var{parameter} [ " " @var{parameter} ]}
17606
17607@item @var{parameter} @expansion{}
17608@code{@var{non-blank-sequence} | @var{c-string}}
17609
17610@item @var{operation} @expansion{}
17611@emph{any of the operations described in this chapter}
17612
17613@item @var{non-blank-sequence} @expansion{}
17614@emph{anything, provided it doesn't contain special characters such as
17615"-", @var{nl}, """ and of course " "}
17616
17617@item @var{c-string} @expansion{}
17618@code{""" @var{seven-bit-iso-c-string-content} """}
17619
17620@item @var{nl} @expansion{}
17621@code{CR | CR-LF}
17622@end table
17623
17624@noindent
17625Notes:
17626
17627@itemize @bullet
17628@item
17629The CLI commands are still handled by the @sc{mi} interpreter; their
17630output is described below.
17631
17632@item
17633The @code{@var{token}}, when present, is passed back when the command
17634finishes.
17635
17636@item
17637Some @sc{mi} commands accept optional arguments as part of the parameter
17638list. Each option is identified by a leading @samp{-} (dash) and may be
17639followed by an optional argument parameter. Options occur first in the
17640parameter list and can be delimited from normal parameters using
17641@samp{--} (this is useful when some parameters begin with a dash).
17642@end itemize
17643
17644Pragmatics:
17645
17646@itemize @bullet
17647@item
17648We want easy access to the existing CLI syntax (for debugging).
17649
17650@item
17651We want it to be easy to spot a @sc{mi} operation.
17652@end itemize
17653
17654@node GDB/MI Output Syntax
17655@subsection @sc{gdb/mi} Output Syntax
17656
17657@cindex output syntax of @sc{gdb/mi}
17658@cindex @sc{gdb/mi}, output syntax
17659The output from @sc{gdb/mi} consists of zero or more out-of-band records
17660followed, optionally, by a single result record. This result record
17661is for the most recent command. The sequence of output records is
594fe323 17662terminated by @samp{(gdb)}.
922fbb7b
AC
17663
17664If an input command was prefixed with a @code{@var{token}} then the
17665corresponding output for that command will also be prefixed by that same
17666@var{token}.
17667
17668@table @code
17669@item @var{output} @expansion{}
594fe323 17670@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17671
17672@item @var{result-record} @expansion{}
17673@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17674
17675@item @var{out-of-band-record} @expansion{}
17676@code{@var{async-record} | @var{stream-record}}
17677
17678@item @var{async-record} @expansion{}
17679@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17680
17681@item @var{exec-async-output} @expansion{}
17682@code{[ @var{token} ] "*" @var{async-output}}
17683
17684@item @var{status-async-output} @expansion{}
17685@code{[ @var{token} ] "+" @var{async-output}}
17686
17687@item @var{notify-async-output} @expansion{}
17688@code{[ @var{token} ] "=" @var{async-output}}
17689
17690@item @var{async-output} @expansion{}
17691@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17692
17693@item @var{result-class} @expansion{}
17694@code{"done" | "running" | "connected" | "error" | "exit"}
17695
17696@item @var{async-class} @expansion{}
17697@code{"stopped" | @var{others}} (where @var{others} will be added
17698depending on the needs---this is still in development).
17699
17700@item @var{result} @expansion{}
17701@code{ @var{variable} "=" @var{value}}
17702
17703@item @var{variable} @expansion{}
17704@code{ @var{string} }
17705
17706@item @var{value} @expansion{}
17707@code{ @var{const} | @var{tuple} | @var{list} }
17708
17709@item @var{const} @expansion{}
17710@code{@var{c-string}}
17711
17712@item @var{tuple} @expansion{}
17713@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17714
17715@item @var{list} @expansion{}
17716@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17717@var{result} ( "," @var{result} )* "]" }
17718
17719@item @var{stream-record} @expansion{}
17720@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17721
17722@item @var{console-stream-output} @expansion{}
17723@code{"~" @var{c-string}}
17724
17725@item @var{target-stream-output} @expansion{}
17726@code{"@@" @var{c-string}}
17727
17728@item @var{log-stream-output} @expansion{}
17729@code{"&" @var{c-string}}
17730
17731@item @var{nl} @expansion{}
17732@code{CR | CR-LF}
17733
17734@item @var{token} @expansion{}
17735@emph{any sequence of digits}.
17736@end table
17737
17738@noindent
17739Notes:
17740
17741@itemize @bullet
17742@item
17743All output sequences end in a single line containing a period.
17744
17745@item
17746The @code{@var{token}} is from the corresponding request. If an execution
17747command is interrupted by the @samp{-exec-interrupt} command, the
17748@var{token} associated with the @samp{*stopped} message is the one of the
17749original execution command, not the one of the interrupt command.
17750
17751@item
17752@cindex status output in @sc{gdb/mi}
17753@var{status-async-output} contains on-going status information about the
17754progress of a slow operation. It can be discarded. All status output is
17755prefixed by @samp{+}.
17756
17757@item
17758@cindex async output in @sc{gdb/mi}
17759@var{exec-async-output} contains asynchronous state change on the target
17760(stopped, started, disappeared). All async output is prefixed by
17761@samp{*}.
17762
17763@item
17764@cindex notify output in @sc{gdb/mi}
17765@var{notify-async-output} contains supplementary information that the
17766client should handle (e.g., a new breakpoint information). All notify
17767output is prefixed by @samp{=}.
17768
17769@item
17770@cindex console output in @sc{gdb/mi}
17771@var{console-stream-output} is output that should be displayed as is in the
17772console. It is the textual response to a CLI command. All the console
17773output is prefixed by @samp{~}.
17774
17775@item
17776@cindex target output in @sc{gdb/mi}
17777@var{target-stream-output} is the output produced by the target program.
17778All the target output is prefixed by @samp{@@}.
17779
17780@item
17781@cindex log output in @sc{gdb/mi}
17782@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17783instance messages that should be displayed as part of an error log. All
17784the log output is prefixed by @samp{&}.
17785
17786@item
17787@cindex list output in @sc{gdb/mi}
17788New @sc{gdb/mi} commands should only output @var{lists} containing
17789@var{values}.
17790
17791
17792@end itemize
17793
17794@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17795details about the various output records.
17796
922fbb7b
AC
17797@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17798@node GDB/MI Compatibility with CLI
17799@section @sc{gdb/mi} Compatibility with CLI
17800
17801@cindex compatibility, @sc{gdb/mi} and CLI
17802@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17803
a2c02241
NR
17804For the developers convenience CLI commands can be entered directly,
17805but there may be some unexpected behaviour. For example, commands
17806that query the user will behave as if the user replied yes, breakpoint
17807command lists are not executed and some CLI commands, such as
17808@code{if}, @code{when} and @code{define}, prompt for further input with
17809@samp{>}, which is not valid MI output.
ef21caaf
NR
17810
17811This feature may be removed at some stage in the future and it is
a2c02241
NR
17812recommended that front ends use the @code{-interpreter-exec} command
17813(@pxref{-interpreter-exec}).
922fbb7b 17814
af6eff6f
NR
17815@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17816@node GDB/MI Development and Front Ends
17817@section @sc{gdb/mi} Development and Front Ends
17818@cindex @sc{gdb/mi} development
17819
17820The application which takes the MI output and presents the state of the
17821program being debugged to the user is called a @dfn{front end}.
17822
17823Although @sc{gdb/mi} is still incomplete, it is currently being used
17824by a variety of front ends to @value{GDBN}. This makes it difficult
17825to introduce new functionality without breaking existing usage. This
17826section tries to minimize the problems by describing how the protocol
17827might change.
17828
17829Some changes in MI need not break a carefully designed front end, and
17830for these the MI version will remain unchanged. The following is a
17831list of changes that may occur within one level, so front ends should
17832parse MI output in a way that can handle them:
17833
17834@itemize @bullet
17835@item
17836New MI commands may be added.
17837
17838@item
17839New fields may be added to the output of any MI command.
17840
36ece8b3
NR
17841@item
17842The range of values for fields with specified values, e.g.,
9f708cb2 17843@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17844
af6eff6f
NR
17845@c The format of field's content e.g type prefix, may change so parse it
17846@c at your own risk. Yes, in general?
17847
17848@c The order of fields may change? Shouldn't really matter but it might
17849@c resolve inconsistencies.
17850@end itemize
17851
17852If the changes are likely to break front ends, the MI version level
17853will be increased by one. This will allow the front end to parse the
17854output according to the MI version. Apart from mi0, new versions of
17855@value{GDBN} will not support old versions of MI and it will be the
17856responsibility of the front end to work with the new one.
17857
17858@c Starting with mi3, add a new command -mi-version that prints the MI
17859@c version?
17860
17861The best way to avoid unexpected changes in MI that might break your front
17862end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17863follow development on @email{gdb@@sourceware.org} and
17864@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17865@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17866Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17867called Debugger Machine Interface (DMI) that will become a standard
17868for all debuggers, not just @value{GDBN}.
17869@cindex mailing lists
17870
922fbb7b
AC
17871@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17872@node GDB/MI Output Records
17873@section @sc{gdb/mi} Output Records
17874
17875@menu
17876* GDB/MI Result Records::
17877* GDB/MI Stream Records::
17878* GDB/MI Out-of-band Records::
17879@end menu
17880
17881@node GDB/MI Result Records
17882@subsection @sc{gdb/mi} Result Records
17883
17884@cindex result records in @sc{gdb/mi}
17885@cindex @sc{gdb/mi}, result records
17886In addition to a number of out-of-band notifications, the response to a
17887@sc{gdb/mi} command includes one of the following result indications:
17888
17889@table @code
17890@findex ^done
17891@item "^done" [ "," @var{results} ]
17892The synchronous operation was successful, @code{@var{results}} are the return
17893values.
17894
17895@item "^running"
17896@findex ^running
17897@c Is this one correct? Should it be an out-of-band notification?
17898The asynchronous operation was successfully started. The target is
17899running.
17900
ef21caaf
NR
17901@item "^connected"
17902@findex ^connected
3f94c067 17903@value{GDBN} has connected to a remote target.
ef21caaf 17904
922fbb7b
AC
17905@item "^error" "," @var{c-string}
17906@findex ^error
17907The operation failed. The @code{@var{c-string}} contains the corresponding
17908error message.
ef21caaf
NR
17909
17910@item "^exit"
17911@findex ^exit
3f94c067 17912@value{GDBN} has terminated.
ef21caaf 17913
922fbb7b
AC
17914@end table
17915
17916@node GDB/MI Stream Records
17917@subsection @sc{gdb/mi} Stream Records
17918
17919@cindex @sc{gdb/mi}, stream records
17920@cindex stream records in @sc{gdb/mi}
17921@value{GDBN} internally maintains a number of output streams: the console, the
17922target, and the log. The output intended for each of these streams is
17923funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17924
17925Each stream record begins with a unique @dfn{prefix character} which
17926identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17927Syntax}). In addition to the prefix, each stream record contains a
17928@code{@var{string-output}}. This is either raw text (with an implicit new
17929line) or a quoted C string (which does not contain an implicit newline).
17930
17931@table @code
17932@item "~" @var{string-output}
17933The console output stream contains text that should be displayed in the
17934CLI console window. It contains the textual responses to CLI commands.
17935
17936@item "@@" @var{string-output}
17937The target output stream contains any textual output from the running
ef21caaf
NR
17938target. This is only present when GDB's event loop is truly
17939asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17940
17941@item "&" @var{string-output}
17942The log stream contains debugging messages being produced by @value{GDBN}'s
17943internals.
17944@end table
17945
17946@node GDB/MI Out-of-band Records
17947@subsection @sc{gdb/mi} Out-of-band Records
17948
17949@cindex out-of-band records in @sc{gdb/mi}
17950@cindex @sc{gdb/mi}, out-of-band records
17951@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17952additional changes that have occurred. Those changes can either be a
17953consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17954target activity (e.g., target stopped).
17955
17956The following is a preliminary list of possible out-of-band records.
034dad6f 17957In particular, the @var{exec-async-output} records.
922fbb7b
AC
17958
17959@table @code
034dad6f
BR
17960@item *stopped,reason="@var{reason}"
17961@end table
17962
17963@var{reason} can be one of the following:
17964
17965@table @code
17966@item breakpoint-hit
17967A breakpoint was reached.
17968@item watchpoint-trigger
17969A watchpoint was triggered.
17970@item read-watchpoint-trigger
17971A read watchpoint was triggered.
17972@item access-watchpoint-trigger
17973An access watchpoint was triggered.
17974@item function-finished
17975An -exec-finish or similar CLI command was accomplished.
17976@item location-reached
17977An -exec-until or similar CLI command was accomplished.
17978@item watchpoint-scope
17979A watchpoint has gone out of scope.
17980@item end-stepping-range
17981An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17982similar CLI command was accomplished.
17983@item exited-signalled
17984The inferior exited because of a signal.
17985@item exited
17986The inferior exited.
17987@item exited-normally
17988The inferior exited normally.
17989@item signal-received
17990A signal was received by the inferior.
922fbb7b
AC
17991@end table
17992
17993
ef21caaf
NR
17994@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17995@node GDB/MI Simple Examples
17996@section Simple Examples of @sc{gdb/mi} Interaction
17997@cindex @sc{gdb/mi}, simple examples
17998
17999This subsection presents several simple examples of interaction using
18000the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18001following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18002the output received from @sc{gdb/mi}.
18003
d3e8051b 18004Note the line breaks shown in the examples are here only for
ef21caaf
NR
18005readability, they don't appear in the real output.
18006
79a6e687 18007@subheading Setting a Breakpoint
ef21caaf
NR
18008
18009Setting a breakpoint generates synchronous output which contains detailed
18010information of the breakpoint.
18011
18012@smallexample
18013-> -break-insert main
18014<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18015 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18016 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18017<- (gdb)
18018@end smallexample
18019
18020@subheading Program Execution
18021
18022Program execution generates asynchronous records and MI gives the
18023reason that execution stopped.
18024
18025@smallexample
18026-> -exec-run
18027<- ^running
18028<- (gdb)
18029<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18030 frame=@{addr="0x08048564",func="main",
18031 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18032 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18033<- (gdb)
18034-> -exec-continue
18035<- ^running
18036<- (gdb)
18037<- *stopped,reason="exited-normally"
18038<- (gdb)
18039@end smallexample
18040
3f94c067 18041@subheading Quitting @value{GDBN}
ef21caaf 18042
3f94c067 18043Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18044
18045@smallexample
18046-> (gdb)
18047<- -gdb-exit
18048<- ^exit
18049@end smallexample
18050
a2c02241 18051@subheading A Bad Command
ef21caaf
NR
18052
18053Here's what happens if you pass a non-existent command:
18054
18055@smallexample
18056-> -rubbish
18057<- ^error,msg="Undefined MI command: rubbish"
594fe323 18058<- (gdb)
ef21caaf
NR
18059@end smallexample
18060
18061
922fbb7b
AC
18062@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18063@node GDB/MI Command Description Format
18064@section @sc{gdb/mi} Command Description Format
18065
18066The remaining sections describe blocks of commands. Each block of
18067commands is laid out in a fashion similar to this section.
18068
922fbb7b
AC
18069@subheading Motivation
18070
18071The motivation for this collection of commands.
18072
18073@subheading Introduction
18074
18075A brief introduction to this collection of commands as a whole.
18076
18077@subheading Commands
18078
18079For each command in the block, the following is described:
18080
18081@subsubheading Synopsis
18082
18083@smallexample
18084 -command @var{args}@dots{}
18085@end smallexample
18086
922fbb7b
AC
18087@subsubheading Result
18088
265eeb58 18089@subsubheading @value{GDBN} Command
922fbb7b 18090
265eeb58 18091The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18092
18093@subsubheading Example
18094
ef21caaf
NR
18095Example(s) formatted for readability. Some of the described commands have
18096not been implemented yet and these are labeled N.A.@: (not available).
18097
18098
922fbb7b 18099@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18100@node GDB/MI Breakpoint Commands
18101@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18102
18103@cindex breakpoint commands for @sc{gdb/mi}
18104@cindex @sc{gdb/mi}, breakpoint commands
18105This section documents @sc{gdb/mi} commands for manipulating
18106breakpoints.
18107
18108@subheading The @code{-break-after} Command
18109@findex -break-after
18110
18111@subsubheading Synopsis
18112
18113@smallexample
18114 -break-after @var{number} @var{count}
18115@end smallexample
18116
18117The breakpoint number @var{number} is not in effect until it has been
18118hit @var{count} times. To see how this is reflected in the output of
18119the @samp{-break-list} command, see the description of the
18120@samp{-break-list} command below.
18121
18122@subsubheading @value{GDBN} Command
18123
18124The corresponding @value{GDBN} command is @samp{ignore}.
18125
18126@subsubheading Example
18127
18128@smallexample
594fe323 18129(gdb)
922fbb7b 18130-break-insert main
948d5102
NR
18131^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18132fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18133(gdb)
922fbb7b
AC
18134-break-after 1 3
18135~
18136^done
594fe323 18137(gdb)
922fbb7b
AC
18138-break-list
18139^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18140hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18141@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18142@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18143@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18144@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18145@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18146body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18147addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18148line="5",times="0",ignore="3"@}]@}
594fe323 18149(gdb)
922fbb7b
AC
18150@end smallexample
18151
18152@ignore
18153@subheading The @code{-break-catch} Command
18154@findex -break-catch
18155
18156@subheading The @code{-break-commands} Command
18157@findex -break-commands
18158@end ignore
18159
18160
18161@subheading The @code{-break-condition} Command
18162@findex -break-condition
18163
18164@subsubheading Synopsis
18165
18166@smallexample
18167 -break-condition @var{number} @var{expr}
18168@end smallexample
18169
18170Breakpoint @var{number} will stop the program only if the condition in
18171@var{expr} is true. The condition becomes part of the
18172@samp{-break-list} output (see the description of the @samp{-break-list}
18173command below).
18174
18175@subsubheading @value{GDBN} Command
18176
18177The corresponding @value{GDBN} command is @samp{condition}.
18178
18179@subsubheading Example
18180
18181@smallexample
594fe323 18182(gdb)
922fbb7b
AC
18183-break-condition 1 1
18184^done
594fe323 18185(gdb)
922fbb7b
AC
18186-break-list
18187^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18188hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18189@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18190@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18191@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18192@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18193@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18194body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18195addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18196line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18197(gdb)
922fbb7b
AC
18198@end smallexample
18199
18200@subheading The @code{-break-delete} Command
18201@findex -break-delete
18202
18203@subsubheading Synopsis
18204
18205@smallexample
18206 -break-delete ( @var{breakpoint} )+
18207@end smallexample
18208
18209Delete the breakpoint(s) whose number(s) are specified in the argument
18210list. This is obviously reflected in the breakpoint list.
18211
79a6e687 18212@subsubheading @value{GDBN} Command
922fbb7b
AC
18213
18214The corresponding @value{GDBN} command is @samp{delete}.
18215
18216@subsubheading Example
18217
18218@smallexample
594fe323 18219(gdb)
922fbb7b
AC
18220-break-delete 1
18221^done
594fe323 18222(gdb)
922fbb7b
AC
18223-break-list
18224^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18225hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18226@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18227@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18228@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18229@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18230@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18231body=[]@}
594fe323 18232(gdb)
922fbb7b
AC
18233@end smallexample
18234
18235@subheading The @code{-break-disable} Command
18236@findex -break-disable
18237
18238@subsubheading Synopsis
18239
18240@smallexample
18241 -break-disable ( @var{breakpoint} )+
18242@end smallexample
18243
18244Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18245break list is now set to @samp{n} for the named @var{breakpoint}(s).
18246
18247@subsubheading @value{GDBN} Command
18248
18249The corresponding @value{GDBN} command is @samp{disable}.
18250
18251@subsubheading Example
18252
18253@smallexample
594fe323 18254(gdb)
922fbb7b
AC
18255-break-disable 2
18256^done
594fe323 18257(gdb)
922fbb7b
AC
18258-break-list
18259^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18260hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18261@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18262@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18263@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18264@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18265@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18266body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18267addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18268line="5",times="0"@}]@}
594fe323 18269(gdb)
922fbb7b
AC
18270@end smallexample
18271
18272@subheading The @code{-break-enable} Command
18273@findex -break-enable
18274
18275@subsubheading Synopsis
18276
18277@smallexample
18278 -break-enable ( @var{breakpoint} )+
18279@end smallexample
18280
18281Enable (previously disabled) @var{breakpoint}(s).
18282
18283@subsubheading @value{GDBN} Command
18284
18285The corresponding @value{GDBN} command is @samp{enable}.
18286
18287@subsubheading Example
18288
18289@smallexample
594fe323 18290(gdb)
922fbb7b
AC
18291-break-enable 2
18292^done
594fe323 18293(gdb)
922fbb7b
AC
18294-break-list
18295^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18296hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18297@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18298@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18299@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18300@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18301@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18302body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18303addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18304line="5",times="0"@}]@}
594fe323 18305(gdb)
922fbb7b
AC
18306@end smallexample
18307
18308@subheading The @code{-break-info} Command
18309@findex -break-info
18310
18311@subsubheading Synopsis
18312
18313@smallexample
18314 -break-info @var{breakpoint}
18315@end smallexample
18316
18317@c REDUNDANT???
18318Get information about a single breakpoint.
18319
79a6e687 18320@subsubheading @value{GDBN} Command
922fbb7b
AC
18321
18322The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18323
18324@subsubheading Example
18325N.A.
18326
18327@subheading The @code{-break-insert} Command
18328@findex -break-insert
18329
18330@subsubheading Synopsis
18331
18332@smallexample
afe8ab22 18333 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18334 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18335 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18336@end smallexample
18337
18338@noindent
afe8ab22 18339If specified, @var{location}, can be one of:
922fbb7b
AC
18340
18341@itemize @bullet
18342@item function
18343@c @item +offset
18344@c @item -offset
18345@c @item linenum
18346@item filename:linenum
18347@item filename:function
18348@item *address
18349@end itemize
18350
18351The possible optional parameters of this command are:
18352
18353@table @samp
18354@item -t
948d5102 18355Insert a temporary breakpoint.
922fbb7b
AC
18356@item -h
18357Insert a hardware breakpoint.
18358@item -c @var{condition}
18359Make the breakpoint conditional on @var{condition}.
18360@item -i @var{ignore-count}
18361Initialize the @var{ignore-count}.
afe8ab22
VP
18362@item -f
18363If @var{location} cannot be parsed (for example if it
18364refers to unknown files or functions), create a pending
18365breakpoint. Without this flag, @value{GDBN} will report
18366an error, and won't create a breakpoint, if @var{location}
18367cannot be parsed.
922fbb7b
AC
18368@end table
18369
18370@subsubheading Result
18371
18372The result is in the form:
18373
18374@smallexample
948d5102
NR
18375^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18376enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18377fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18378times="@var{times}"@}
922fbb7b
AC
18379@end smallexample
18380
18381@noindent
948d5102
NR
18382where @var{number} is the @value{GDBN} number for this breakpoint,
18383@var{funcname} is the name of the function where the breakpoint was
18384inserted, @var{filename} is the name of the source file which contains
18385this function, @var{lineno} is the source line number within that file
18386and @var{times} the number of times that the breakpoint has been hit
18387(always 0 for -break-insert but may be greater for -break-info or -break-list
18388which use the same output).
922fbb7b
AC
18389
18390Note: this format is open to change.
18391@c An out-of-band breakpoint instead of part of the result?
18392
18393@subsubheading @value{GDBN} Command
18394
18395The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18396@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18397
18398@subsubheading Example
18399
18400@smallexample
594fe323 18401(gdb)
922fbb7b 18402-break-insert main
948d5102
NR
18403^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18404fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18405(gdb)
922fbb7b 18406-break-insert -t foo
948d5102
NR
18407^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18408fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18409(gdb)
922fbb7b
AC
18410-break-list
18411^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18412hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18413@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18414@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18415@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18416@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18417@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18418body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18419addr="0x0001072c", func="main",file="recursive2.c",
18420fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18421bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18422addr="0x00010774",func="foo",file="recursive2.c",
18423fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18424(gdb)
922fbb7b
AC
18425-break-insert -r foo.*
18426~int foo(int, int);
948d5102
NR
18427^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18428"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18429(gdb)
922fbb7b
AC
18430@end smallexample
18431
18432@subheading The @code{-break-list} Command
18433@findex -break-list
18434
18435@subsubheading Synopsis
18436
18437@smallexample
18438 -break-list
18439@end smallexample
18440
18441Displays the list of inserted breakpoints, showing the following fields:
18442
18443@table @samp
18444@item Number
18445number of the breakpoint
18446@item Type
18447type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18448@item Disposition
18449should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18450or @samp{nokeep}
18451@item Enabled
18452is the breakpoint enabled or no: @samp{y} or @samp{n}
18453@item Address
18454memory location at which the breakpoint is set
18455@item What
18456logical location of the breakpoint, expressed by function name, file
18457name, line number
18458@item Times
18459number of times the breakpoint has been hit
18460@end table
18461
18462If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18463@code{body} field is an empty list.
18464
18465@subsubheading @value{GDBN} Command
18466
18467The corresponding @value{GDBN} command is @samp{info break}.
18468
18469@subsubheading Example
18470
18471@smallexample
594fe323 18472(gdb)
922fbb7b
AC
18473-break-list
18474^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18475hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18476@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18477@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18478@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18479@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18480@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18481body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18482addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18483bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18484addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18485line="13",times="0"@}]@}
594fe323 18486(gdb)
922fbb7b
AC
18487@end smallexample
18488
18489Here's an example of the result when there are no breakpoints:
18490
18491@smallexample
594fe323 18492(gdb)
922fbb7b
AC
18493-break-list
18494^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18495hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18496@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18497@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18498@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18499@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18500@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18501body=[]@}
594fe323 18502(gdb)
922fbb7b
AC
18503@end smallexample
18504
18505@subheading The @code{-break-watch} Command
18506@findex -break-watch
18507
18508@subsubheading Synopsis
18509
18510@smallexample
18511 -break-watch [ -a | -r ]
18512@end smallexample
18513
18514Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18515@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18516read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18517option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18518trigger only when the memory location is accessed for reading. Without
18519either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18520i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18521@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18522
18523Note that @samp{-break-list} will report a single list of watchpoints and
18524breakpoints inserted.
18525
18526@subsubheading @value{GDBN} Command
18527
18528The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18529@samp{rwatch}.
18530
18531@subsubheading Example
18532
18533Setting a watchpoint on a variable in the @code{main} function:
18534
18535@smallexample
594fe323 18536(gdb)
922fbb7b
AC
18537-break-watch x
18538^done,wpt=@{number="2",exp="x"@}
594fe323 18539(gdb)
922fbb7b
AC
18540-exec-continue
18541^running
0869d01b
NR
18542(gdb)
18543*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18544value=@{old="-268439212",new="55"@},
76ff342d 18545frame=@{func="main",args=[],file="recursive2.c",
948d5102 18546fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18547(gdb)
922fbb7b
AC
18548@end smallexample
18549
18550Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18551the program execution twice: first for the variable changing value, then
18552for the watchpoint going out of scope.
18553
18554@smallexample
594fe323 18555(gdb)
922fbb7b
AC
18556-break-watch C
18557^done,wpt=@{number="5",exp="C"@}
594fe323 18558(gdb)
922fbb7b
AC
18559-exec-continue
18560^running
0869d01b
NR
18561(gdb)
18562*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18563wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18564frame=@{func="callee4",args=[],
76ff342d
DJ
18565file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18566fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18567(gdb)
922fbb7b
AC
18568-exec-continue
18569^running
0869d01b
NR
18570(gdb)
18571*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18572frame=@{func="callee3",args=[@{name="strarg",
18573value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18574file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18575fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18576(gdb)
922fbb7b
AC
18577@end smallexample
18578
18579Listing breakpoints and watchpoints, at different points in the program
18580execution. Note that once the watchpoint goes out of scope, it is
18581deleted.
18582
18583@smallexample
594fe323 18584(gdb)
922fbb7b
AC
18585-break-watch C
18586^done,wpt=@{number="2",exp="C"@}
594fe323 18587(gdb)
922fbb7b
AC
18588-break-list
18589^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18590hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18591@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18592@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18593@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18594@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18595@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18596body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18597addr="0x00010734",func="callee4",
948d5102
NR
18598file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18599fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18600bkpt=@{number="2",type="watchpoint",disp="keep",
18601enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18602(gdb)
922fbb7b
AC
18603-exec-continue
18604^running
0869d01b
NR
18605(gdb)
18606*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18607value=@{old="-276895068",new="3"@},
18608frame=@{func="callee4",args=[],
76ff342d
DJ
18609file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18610fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18611(gdb)
922fbb7b
AC
18612-break-list
18613^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18614hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18615@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18616@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18617@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18618@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18619@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18620body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18621addr="0x00010734",func="callee4",
948d5102
NR
18622file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18623fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18624bkpt=@{number="2",type="watchpoint",disp="keep",
18625enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18626(gdb)
922fbb7b
AC
18627-exec-continue
18628^running
18629^done,reason="watchpoint-scope",wpnum="2",
18630frame=@{func="callee3",args=[@{name="strarg",
18631value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18632file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18633fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18634(gdb)
922fbb7b
AC
18635-break-list
18636^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18637hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18638@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18639@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18640@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18641@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18642@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18643body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18644addr="0x00010734",func="callee4",
948d5102
NR
18645file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18646fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18647times="1"@}]@}
594fe323 18648(gdb)
922fbb7b
AC
18649@end smallexample
18650
18651@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18652@node GDB/MI Program Context
18653@section @sc{gdb/mi} Program Context
922fbb7b 18654
a2c02241
NR
18655@subheading The @code{-exec-arguments} Command
18656@findex -exec-arguments
922fbb7b 18657
922fbb7b
AC
18658
18659@subsubheading Synopsis
18660
18661@smallexample
a2c02241 18662 -exec-arguments @var{args}
922fbb7b
AC
18663@end smallexample
18664
a2c02241
NR
18665Set the inferior program arguments, to be used in the next
18666@samp{-exec-run}.
922fbb7b 18667
a2c02241 18668@subsubheading @value{GDBN} Command
922fbb7b 18669
a2c02241 18670The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18671
a2c02241 18672@subsubheading Example
922fbb7b 18673
a2c02241
NR
18674@c FIXME!
18675Don't have one around.
922fbb7b 18676
a2c02241
NR
18677
18678@subheading The @code{-exec-show-arguments} Command
18679@findex -exec-show-arguments
18680
18681@subsubheading Synopsis
18682
18683@smallexample
18684 -exec-show-arguments
18685@end smallexample
18686
18687Print the arguments of the program.
922fbb7b
AC
18688
18689@subsubheading @value{GDBN} Command
18690
a2c02241 18691The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18692
18693@subsubheading Example
a2c02241 18694N.A.
922fbb7b 18695
922fbb7b 18696
a2c02241
NR
18697@subheading The @code{-environment-cd} Command
18698@findex -environment-cd
922fbb7b 18699
a2c02241 18700@subsubheading Synopsis
922fbb7b
AC
18701
18702@smallexample
a2c02241 18703 -environment-cd @var{pathdir}
922fbb7b
AC
18704@end smallexample
18705
a2c02241 18706Set @value{GDBN}'s working directory.
922fbb7b 18707
a2c02241 18708@subsubheading @value{GDBN} Command
922fbb7b 18709
a2c02241
NR
18710The corresponding @value{GDBN} command is @samp{cd}.
18711
18712@subsubheading Example
922fbb7b
AC
18713
18714@smallexample
594fe323 18715(gdb)
a2c02241
NR
18716-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18717^done
594fe323 18718(gdb)
922fbb7b
AC
18719@end smallexample
18720
18721
a2c02241
NR
18722@subheading The @code{-environment-directory} Command
18723@findex -environment-directory
922fbb7b
AC
18724
18725@subsubheading Synopsis
18726
18727@smallexample
a2c02241 18728 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18729@end smallexample
18730
a2c02241
NR
18731Add directories @var{pathdir} to beginning of search path for source files.
18732If the @samp{-r} option is used, the search path is reset to the default
18733search path. If directories @var{pathdir} are supplied in addition to the
18734@samp{-r} option, the search path is first reset and then addition
18735occurs as normal.
18736Multiple directories may be specified, separated by blanks. Specifying
18737multiple directories in a single command
18738results in the directories added to the beginning of the
18739search path in the same order they were presented in the command.
18740If blanks are needed as
18741part of a directory name, double-quotes should be used around
18742the name. In the command output, the path will show up separated
d3e8051b 18743by the system directory-separator character. The directory-separator
a2c02241
NR
18744character must not be used
18745in any directory name.
18746If no directories are specified, the current search path is displayed.
922fbb7b
AC
18747
18748@subsubheading @value{GDBN} Command
18749
a2c02241 18750The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18751
18752@subsubheading Example
18753
922fbb7b 18754@smallexample
594fe323 18755(gdb)
a2c02241
NR
18756-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18757^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18758(gdb)
a2c02241
NR
18759-environment-directory ""
18760^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18761(gdb)
a2c02241
NR
18762-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18763^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18764(gdb)
a2c02241
NR
18765-environment-directory -r
18766^done,source-path="$cdir:$cwd"
594fe323 18767(gdb)
922fbb7b
AC
18768@end smallexample
18769
18770
a2c02241
NR
18771@subheading The @code{-environment-path} Command
18772@findex -environment-path
922fbb7b
AC
18773
18774@subsubheading Synopsis
18775
18776@smallexample
a2c02241 18777 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18778@end smallexample
18779
a2c02241
NR
18780Add directories @var{pathdir} to beginning of search path for object files.
18781If the @samp{-r} option is used, the search path is reset to the original
18782search path that existed at gdb start-up. If directories @var{pathdir} are
18783supplied in addition to the
18784@samp{-r} option, the search path is first reset and then addition
18785occurs as normal.
18786Multiple directories may be specified, separated by blanks. Specifying
18787multiple directories in a single command
18788results in the directories added to the beginning of the
18789search path in the same order they were presented in the command.
18790If blanks are needed as
18791part of a directory name, double-quotes should be used around
18792the name. In the command output, the path will show up separated
d3e8051b 18793by the system directory-separator character. The directory-separator
a2c02241
NR
18794character must not be used
18795in any directory name.
18796If no directories are specified, the current path is displayed.
18797
922fbb7b
AC
18798
18799@subsubheading @value{GDBN} Command
18800
a2c02241 18801The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18802
18803@subsubheading Example
18804
922fbb7b 18805@smallexample
594fe323 18806(gdb)
a2c02241
NR
18807-environment-path
18808^done,path="/usr/bin"
594fe323 18809(gdb)
a2c02241
NR
18810-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18811^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18812(gdb)
a2c02241
NR
18813-environment-path -r /usr/local/bin
18814^done,path="/usr/local/bin:/usr/bin"
594fe323 18815(gdb)
922fbb7b
AC
18816@end smallexample
18817
18818
a2c02241
NR
18819@subheading The @code{-environment-pwd} Command
18820@findex -environment-pwd
922fbb7b
AC
18821
18822@subsubheading Synopsis
18823
18824@smallexample
a2c02241 18825 -environment-pwd
922fbb7b
AC
18826@end smallexample
18827
a2c02241 18828Show the current working directory.
922fbb7b 18829
79a6e687 18830@subsubheading @value{GDBN} Command
922fbb7b 18831
a2c02241 18832The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18833
18834@subsubheading Example
18835
922fbb7b 18836@smallexample
594fe323 18837(gdb)
a2c02241
NR
18838-environment-pwd
18839^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18840(gdb)
922fbb7b
AC
18841@end smallexample
18842
a2c02241
NR
18843@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18844@node GDB/MI Thread Commands
18845@section @sc{gdb/mi} Thread Commands
18846
18847
18848@subheading The @code{-thread-info} Command
18849@findex -thread-info
922fbb7b
AC
18850
18851@subsubheading Synopsis
18852
18853@smallexample
a2c02241 18854 -thread-info
922fbb7b
AC
18855@end smallexample
18856
79a6e687 18857@subsubheading @value{GDBN} Command
922fbb7b 18858
a2c02241 18859No equivalent.
922fbb7b
AC
18860
18861@subsubheading Example
a2c02241 18862N.A.
922fbb7b
AC
18863
18864
a2c02241
NR
18865@subheading The @code{-thread-list-all-threads} Command
18866@findex -thread-list-all-threads
922fbb7b
AC
18867
18868@subsubheading Synopsis
18869
18870@smallexample
a2c02241 18871 -thread-list-all-threads
922fbb7b
AC
18872@end smallexample
18873
a2c02241 18874@subsubheading @value{GDBN} Command
922fbb7b 18875
a2c02241 18876The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18877
a2c02241
NR
18878@subsubheading Example
18879N.A.
922fbb7b 18880
922fbb7b 18881
a2c02241
NR
18882@subheading The @code{-thread-list-ids} Command
18883@findex -thread-list-ids
922fbb7b 18884
a2c02241 18885@subsubheading Synopsis
922fbb7b 18886
a2c02241
NR
18887@smallexample
18888 -thread-list-ids
18889@end smallexample
922fbb7b 18890
a2c02241
NR
18891Produces a list of the currently known @value{GDBN} thread ids. At the
18892end of the list it also prints the total number of such threads.
922fbb7b
AC
18893
18894@subsubheading @value{GDBN} Command
18895
a2c02241 18896Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18897
18898@subsubheading Example
18899
a2c02241 18900No threads present, besides the main process:
922fbb7b
AC
18901
18902@smallexample
594fe323 18903(gdb)
a2c02241
NR
18904-thread-list-ids
18905^done,thread-ids=@{@},number-of-threads="0"
594fe323 18906(gdb)
922fbb7b
AC
18907@end smallexample
18908
922fbb7b 18909
a2c02241 18910Several threads:
922fbb7b
AC
18911
18912@smallexample
594fe323 18913(gdb)
a2c02241
NR
18914-thread-list-ids
18915^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18916number-of-threads="3"
594fe323 18917(gdb)
922fbb7b
AC
18918@end smallexample
18919
a2c02241
NR
18920
18921@subheading The @code{-thread-select} Command
18922@findex -thread-select
922fbb7b
AC
18923
18924@subsubheading Synopsis
18925
18926@smallexample
a2c02241 18927 -thread-select @var{threadnum}
922fbb7b
AC
18928@end smallexample
18929
a2c02241
NR
18930Make @var{threadnum} the current thread. It prints the number of the new
18931current thread, and the topmost frame for that thread.
922fbb7b
AC
18932
18933@subsubheading @value{GDBN} Command
18934
a2c02241 18935The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18936
18937@subsubheading Example
922fbb7b
AC
18938
18939@smallexample
594fe323 18940(gdb)
a2c02241
NR
18941-exec-next
18942^running
594fe323 18943(gdb)
a2c02241
NR
18944*stopped,reason="end-stepping-range",thread-id="2",line="187",
18945file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18946(gdb)
a2c02241
NR
18947-thread-list-ids
18948^done,
18949thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18950number-of-threads="3"
594fe323 18951(gdb)
a2c02241
NR
18952-thread-select 3
18953^done,new-thread-id="3",
18954frame=@{level="0",func="vprintf",
18955args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18956@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18957(gdb)
922fbb7b
AC
18958@end smallexample
18959
a2c02241
NR
18960@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18961@node GDB/MI Program Execution
18962@section @sc{gdb/mi} Program Execution
922fbb7b 18963
ef21caaf 18964These are the asynchronous commands which generate the out-of-band
3f94c067 18965record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18966asynchronously with remote targets and this interaction is mimicked in
18967other cases.
922fbb7b 18968
922fbb7b
AC
18969@subheading The @code{-exec-continue} Command
18970@findex -exec-continue
18971
18972@subsubheading Synopsis
18973
18974@smallexample
18975 -exec-continue
18976@end smallexample
18977
ef21caaf
NR
18978Resumes the execution of the inferior program until a breakpoint is
18979encountered, or until the inferior exits.
922fbb7b
AC
18980
18981@subsubheading @value{GDBN} Command
18982
18983The corresponding @value{GDBN} corresponding is @samp{continue}.
18984
18985@subsubheading Example
18986
18987@smallexample
18988-exec-continue
18989^running
594fe323 18990(gdb)
922fbb7b
AC
18991@@Hello world
18992*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18993file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18994(gdb)
922fbb7b
AC
18995@end smallexample
18996
18997
18998@subheading The @code{-exec-finish} Command
18999@findex -exec-finish
19000
19001@subsubheading Synopsis
19002
19003@smallexample
19004 -exec-finish
19005@end smallexample
19006
ef21caaf
NR
19007Resumes the execution of the inferior program until the current
19008function is exited. Displays the results returned by the function.
922fbb7b
AC
19009
19010@subsubheading @value{GDBN} Command
19011
19012The corresponding @value{GDBN} command is @samp{finish}.
19013
19014@subsubheading Example
19015
19016Function returning @code{void}.
19017
19018@smallexample
19019-exec-finish
19020^running
594fe323 19021(gdb)
922fbb7b
AC
19022@@hello from foo
19023*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19024file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19025(gdb)
922fbb7b
AC
19026@end smallexample
19027
19028Function returning other than @code{void}. The name of the internal
19029@value{GDBN} variable storing the result is printed, together with the
19030value itself.
19031
19032@smallexample
19033-exec-finish
19034^running
594fe323 19035(gdb)
922fbb7b
AC
19036*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19037args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19038file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19039gdb-result-var="$1",return-value="0"
594fe323 19040(gdb)
922fbb7b
AC
19041@end smallexample
19042
19043
19044@subheading The @code{-exec-interrupt} Command
19045@findex -exec-interrupt
19046
19047@subsubheading Synopsis
19048
19049@smallexample
19050 -exec-interrupt
19051@end smallexample
19052
ef21caaf
NR
19053Interrupts the background execution of the target. Note how the token
19054associated with the stop message is the one for the execution command
19055that has been interrupted. The token for the interrupt itself only
19056appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19057interrupt a non-running program, an error message will be printed.
19058
19059@subsubheading @value{GDBN} Command
19060
19061The corresponding @value{GDBN} command is @samp{interrupt}.
19062
19063@subsubheading Example
19064
19065@smallexample
594fe323 19066(gdb)
922fbb7b
AC
19067111-exec-continue
19068111^running
19069
594fe323 19070(gdb)
922fbb7b
AC
19071222-exec-interrupt
19072222^done
594fe323 19073(gdb)
922fbb7b 19074111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19075frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19076fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19077(gdb)
922fbb7b 19078
594fe323 19079(gdb)
922fbb7b
AC
19080-exec-interrupt
19081^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19082(gdb)
922fbb7b
AC
19083@end smallexample
19084
19085
19086@subheading The @code{-exec-next} Command
19087@findex -exec-next
19088
19089@subsubheading Synopsis
19090
19091@smallexample
19092 -exec-next
19093@end smallexample
19094
ef21caaf
NR
19095Resumes execution of the inferior program, stopping when the beginning
19096of the next source line is reached.
922fbb7b
AC
19097
19098@subsubheading @value{GDBN} Command
19099
19100The corresponding @value{GDBN} command is @samp{next}.
19101
19102@subsubheading Example
19103
19104@smallexample
19105-exec-next
19106^running
594fe323 19107(gdb)
922fbb7b 19108*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19109(gdb)
922fbb7b
AC
19110@end smallexample
19111
19112
19113@subheading The @code{-exec-next-instruction} Command
19114@findex -exec-next-instruction
19115
19116@subsubheading Synopsis
19117
19118@smallexample
19119 -exec-next-instruction
19120@end smallexample
19121
ef21caaf
NR
19122Executes one machine instruction. If the instruction is a function
19123call, continues until the function returns. If the program stops at an
19124instruction in the middle of a source line, the address will be
19125printed as well.
922fbb7b
AC
19126
19127@subsubheading @value{GDBN} Command
19128
19129The corresponding @value{GDBN} command is @samp{nexti}.
19130
19131@subsubheading Example
19132
19133@smallexample
594fe323 19134(gdb)
922fbb7b
AC
19135-exec-next-instruction
19136^running
19137
594fe323 19138(gdb)
922fbb7b
AC
19139*stopped,reason="end-stepping-range",
19140addr="0x000100d4",line="5",file="hello.c"
594fe323 19141(gdb)
922fbb7b
AC
19142@end smallexample
19143
19144
19145@subheading The @code{-exec-return} Command
19146@findex -exec-return
19147
19148@subsubheading Synopsis
19149
19150@smallexample
19151 -exec-return
19152@end smallexample
19153
19154Makes current function return immediately. Doesn't execute the inferior.
19155Displays the new current frame.
19156
19157@subsubheading @value{GDBN} Command
19158
19159The corresponding @value{GDBN} command is @samp{return}.
19160
19161@subsubheading Example
19162
19163@smallexample
594fe323 19164(gdb)
922fbb7b
AC
19165200-break-insert callee4
19166200^done,bkpt=@{number="1",addr="0x00010734",
19167file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19168(gdb)
922fbb7b
AC
19169000-exec-run
19170000^running
594fe323 19171(gdb)
922fbb7b
AC
19172000*stopped,reason="breakpoint-hit",bkptno="1",
19173frame=@{func="callee4",args=[],
76ff342d
DJ
19174file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19175fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19176(gdb)
922fbb7b
AC
19177205-break-delete
19178205^done
594fe323 19179(gdb)
922fbb7b
AC
19180111-exec-return
19181111^done,frame=@{level="0",func="callee3",
19182args=[@{name="strarg",
19183value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19184file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19185fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19186(gdb)
922fbb7b
AC
19187@end smallexample
19188
19189
19190@subheading The @code{-exec-run} Command
19191@findex -exec-run
19192
19193@subsubheading Synopsis
19194
19195@smallexample
19196 -exec-run
19197@end smallexample
19198
ef21caaf
NR
19199Starts execution of the inferior from the beginning. The inferior
19200executes until either a breakpoint is encountered or the program
19201exits. In the latter case the output will include an exit code, if
19202the program has exited exceptionally.
922fbb7b
AC
19203
19204@subsubheading @value{GDBN} Command
19205
19206The corresponding @value{GDBN} command is @samp{run}.
19207
ef21caaf 19208@subsubheading Examples
922fbb7b
AC
19209
19210@smallexample
594fe323 19211(gdb)
922fbb7b
AC
19212-break-insert main
19213^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19214(gdb)
922fbb7b
AC
19215-exec-run
19216^running
594fe323 19217(gdb)
922fbb7b 19218*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19219frame=@{func="main",args=[],file="recursive2.c",
948d5102 19220fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19221(gdb)
922fbb7b
AC
19222@end smallexample
19223
ef21caaf
NR
19224@noindent
19225Program exited normally:
19226
19227@smallexample
594fe323 19228(gdb)
ef21caaf
NR
19229-exec-run
19230^running
594fe323 19231(gdb)
ef21caaf
NR
19232x = 55
19233*stopped,reason="exited-normally"
594fe323 19234(gdb)
ef21caaf
NR
19235@end smallexample
19236
19237@noindent
19238Program exited exceptionally:
19239
19240@smallexample
594fe323 19241(gdb)
ef21caaf
NR
19242-exec-run
19243^running
594fe323 19244(gdb)
ef21caaf
NR
19245x = 55
19246*stopped,reason="exited",exit-code="01"
594fe323 19247(gdb)
ef21caaf
NR
19248@end smallexample
19249
19250Another way the program can terminate is if it receives a signal such as
19251@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19252
19253@smallexample
594fe323 19254(gdb)
ef21caaf
NR
19255*stopped,reason="exited-signalled",signal-name="SIGINT",
19256signal-meaning="Interrupt"
19257@end smallexample
19258
922fbb7b 19259
a2c02241
NR
19260@c @subheading -exec-signal
19261
19262
19263@subheading The @code{-exec-step} Command
19264@findex -exec-step
922fbb7b
AC
19265
19266@subsubheading Synopsis
19267
19268@smallexample
a2c02241 19269 -exec-step
922fbb7b
AC
19270@end smallexample
19271
a2c02241
NR
19272Resumes execution of the inferior program, stopping when the beginning
19273of the next source line is reached, if the next source line is not a
19274function call. If it is, stop at the first instruction of the called
19275function.
922fbb7b
AC
19276
19277@subsubheading @value{GDBN} Command
19278
a2c02241 19279The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19280
19281@subsubheading Example
19282
19283Stepping into a function:
19284
19285@smallexample
19286-exec-step
19287^running
594fe323 19288(gdb)
922fbb7b
AC
19289*stopped,reason="end-stepping-range",
19290frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19291@{name="b",value="0"@}],file="recursive2.c",
948d5102 19292fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19293(gdb)
922fbb7b
AC
19294@end smallexample
19295
19296Regular stepping:
19297
19298@smallexample
19299-exec-step
19300^running
594fe323 19301(gdb)
922fbb7b 19302*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19303(gdb)
922fbb7b
AC
19304@end smallexample
19305
19306
19307@subheading The @code{-exec-step-instruction} Command
19308@findex -exec-step-instruction
19309
19310@subsubheading Synopsis
19311
19312@smallexample
19313 -exec-step-instruction
19314@end smallexample
19315
ef21caaf
NR
19316Resumes the inferior which executes one machine instruction. The
19317output, once @value{GDBN} has stopped, will vary depending on whether
19318we have stopped in the middle of a source line or not. In the former
19319case, the address at which the program stopped will be printed as
922fbb7b
AC
19320well.
19321
19322@subsubheading @value{GDBN} Command
19323
19324The corresponding @value{GDBN} command is @samp{stepi}.
19325
19326@subsubheading Example
19327
19328@smallexample
594fe323 19329(gdb)
922fbb7b
AC
19330-exec-step-instruction
19331^running
19332
594fe323 19333(gdb)
922fbb7b 19334*stopped,reason="end-stepping-range",
76ff342d 19335frame=@{func="foo",args=[],file="try.c",
948d5102 19336fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19337(gdb)
922fbb7b
AC
19338-exec-step-instruction
19339^running
19340
594fe323 19341(gdb)
922fbb7b 19342*stopped,reason="end-stepping-range",
76ff342d 19343frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19344fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19345(gdb)
922fbb7b
AC
19346@end smallexample
19347
19348
19349@subheading The @code{-exec-until} Command
19350@findex -exec-until
19351
19352@subsubheading Synopsis
19353
19354@smallexample
19355 -exec-until [ @var{location} ]
19356@end smallexample
19357
ef21caaf
NR
19358Executes the inferior until the @var{location} specified in the
19359argument is reached. If there is no argument, the inferior executes
19360until a source line greater than the current one is reached. The
19361reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19362
19363@subsubheading @value{GDBN} Command
19364
19365The corresponding @value{GDBN} command is @samp{until}.
19366
19367@subsubheading Example
19368
19369@smallexample
594fe323 19370(gdb)
922fbb7b
AC
19371-exec-until recursive2.c:6
19372^running
594fe323 19373(gdb)
922fbb7b
AC
19374x = 55
19375*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19376file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19377(gdb)
922fbb7b
AC
19378@end smallexample
19379
19380@ignore
19381@subheading -file-clear
19382Is this going away????
19383@end ignore
19384
351ff01a 19385@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19386@node GDB/MI Stack Manipulation
19387@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19388
922fbb7b 19389
a2c02241
NR
19390@subheading The @code{-stack-info-frame} Command
19391@findex -stack-info-frame
922fbb7b
AC
19392
19393@subsubheading Synopsis
19394
19395@smallexample
a2c02241 19396 -stack-info-frame
922fbb7b
AC
19397@end smallexample
19398
a2c02241 19399Get info on the selected frame.
922fbb7b
AC
19400
19401@subsubheading @value{GDBN} Command
19402
a2c02241
NR
19403The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19404(without arguments).
922fbb7b
AC
19405
19406@subsubheading Example
19407
19408@smallexample
594fe323 19409(gdb)
a2c02241
NR
19410-stack-info-frame
19411^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19412file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19413fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19414(gdb)
922fbb7b
AC
19415@end smallexample
19416
a2c02241
NR
19417@subheading The @code{-stack-info-depth} Command
19418@findex -stack-info-depth
922fbb7b
AC
19419
19420@subsubheading Synopsis
19421
19422@smallexample
a2c02241 19423 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19424@end smallexample
19425
a2c02241
NR
19426Return the depth of the stack. If the integer argument @var{max-depth}
19427is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19428
19429@subsubheading @value{GDBN} Command
19430
a2c02241 19431There's no equivalent @value{GDBN} command.
922fbb7b
AC
19432
19433@subsubheading Example
19434
a2c02241
NR
19435For a stack with frame levels 0 through 11:
19436
922fbb7b 19437@smallexample
594fe323 19438(gdb)
a2c02241
NR
19439-stack-info-depth
19440^done,depth="12"
594fe323 19441(gdb)
a2c02241
NR
19442-stack-info-depth 4
19443^done,depth="4"
594fe323 19444(gdb)
a2c02241
NR
19445-stack-info-depth 12
19446^done,depth="12"
594fe323 19447(gdb)
a2c02241
NR
19448-stack-info-depth 11
19449^done,depth="11"
594fe323 19450(gdb)
a2c02241
NR
19451-stack-info-depth 13
19452^done,depth="12"
594fe323 19453(gdb)
922fbb7b
AC
19454@end smallexample
19455
a2c02241
NR
19456@subheading The @code{-stack-list-arguments} Command
19457@findex -stack-list-arguments
922fbb7b
AC
19458
19459@subsubheading Synopsis
19460
19461@smallexample
a2c02241
NR
19462 -stack-list-arguments @var{show-values}
19463 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19464@end smallexample
19465
a2c02241
NR
19466Display a list of the arguments for the frames between @var{low-frame}
19467and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19468@var{high-frame} are not provided, list the arguments for the whole
19469call stack. If the two arguments are equal, show the single frame
19470at the corresponding level. It is an error if @var{low-frame} is
19471larger than the actual number of frames. On the other hand,
19472@var{high-frame} may be larger than the actual number of frames, in
19473which case only existing frames will be returned.
a2c02241
NR
19474
19475The @var{show-values} argument must have a value of 0 or 1. A value of
194760 means that only the names of the arguments are listed, a value of 1
19477means that both names and values of the arguments are printed.
922fbb7b
AC
19478
19479@subsubheading @value{GDBN} Command
19480
a2c02241
NR
19481@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19482@samp{gdb_get_args} command which partially overlaps with the
19483functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19484
19485@subsubheading Example
922fbb7b 19486
a2c02241 19487@smallexample
594fe323 19488(gdb)
a2c02241
NR
19489-stack-list-frames
19490^done,
19491stack=[
19492frame=@{level="0",addr="0x00010734",func="callee4",
19493file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19494fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19495frame=@{level="1",addr="0x0001076c",func="callee3",
19496file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19497fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19498frame=@{level="2",addr="0x0001078c",func="callee2",
19499file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19500fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19501frame=@{level="3",addr="0x000107b4",func="callee1",
19502file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19503fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19504frame=@{level="4",addr="0x000107e0",func="main",
19505file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19506fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19507(gdb)
a2c02241
NR
19508-stack-list-arguments 0
19509^done,
19510stack-args=[
19511frame=@{level="0",args=[]@},
19512frame=@{level="1",args=[name="strarg"]@},
19513frame=@{level="2",args=[name="intarg",name="strarg"]@},
19514frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19515frame=@{level="4",args=[]@}]
594fe323 19516(gdb)
a2c02241
NR
19517-stack-list-arguments 1
19518^done,
19519stack-args=[
19520frame=@{level="0",args=[]@},
19521frame=@{level="1",
19522 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19523frame=@{level="2",args=[
19524@{name="intarg",value="2"@},
19525@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19526@{frame=@{level="3",args=[
19527@{name="intarg",value="2"@},
19528@{name="strarg",value="0x11940 \"A string argument.\""@},
19529@{name="fltarg",value="3.5"@}]@},
19530frame=@{level="4",args=[]@}]
594fe323 19531(gdb)
a2c02241
NR
19532-stack-list-arguments 0 2 2
19533^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19534(gdb)
a2c02241
NR
19535-stack-list-arguments 1 2 2
19536^done,stack-args=[frame=@{level="2",
19537args=[@{name="intarg",value="2"@},
19538@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19539(gdb)
a2c02241
NR
19540@end smallexample
19541
19542@c @subheading -stack-list-exception-handlers
922fbb7b 19543
a2c02241
NR
19544
19545@subheading The @code{-stack-list-frames} Command
19546@findex -stack-list-frames
1abaf70c
BR
19547
19548@subsubheading Synopsis
19549
19550@smallexample
a2c02241 19551 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19552@end smallexample
19553
a2c02241
NR
19554List the frames currently on the stack. For each frame it displays the
19555following info:
19556
19557@table @samp
19558@item @var{level}
d3e8051b 19559The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19560@item @var{addr}
19561The @code{$pc} value for that frame.
19562@item @var{func}
19563Function name.
19564@item @var{file}
19565File name of the source file where the function lives.
19566@item @var{line}
19567Line number corresponding to the @code{$pc}.
19568@end table
19569
19570If invoked without arguments, this command prints a backtrace for the
19571whole stack. If given two integer arguments, it shows the frames whose
19572levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19573are equal, it shows the single frame at the corresponding level. It is
19574an error if @var{low-frame} is larger than the actual number of
a5451f4e 19575frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19576actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19577
19578@subsubheading @value{GDBN} Command
19579
a2c02241 19580The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19581
19582@subsubheading Example
19583
a2c02241
NR
19584Full stack backtrace:
19585
1abaf70c 19586@smallexample
594fe323 19587(gdb)
a2c02241
NR
19588-stack-list-frames
19589^done,stack=
19590[frame=@{level="0",addr="0x0001076c",func="foo",
19591 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19592frame=@{level="1",addr="0x000107a4",func="foo",
19593 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19594frame=@{level="2",addr="0x000107a4",func="foo",
19595 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19596frame=@{level="3",addr="0x000107a4",func="foo",
19597 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19598frame=@{level="4",addr="0x000107a4",func="foo",
19599 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19600frame=@{level="5",addr="0x000107a4",func="foo",
19601 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19602frame=@{level="6",addr="0x000107a4",func="foo",
19603 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19604frame=@{level="7",addr="0x000107a4",func="foo",
19605 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19606frame=@{level="8",addr="0x000107a4",func="foo",
19607 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19608frame=@{level="9",addr="0x000107a4",func="foo",
19609 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19610frame=@{level="10",addr="0x000107a4",func="foo",
19611 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19612frame=@{level="11",addr="0x00010738",func="main",
19613 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19614(gdb)
1abaf70c
BR
19615@end smallexample
19616
a2c02241 19617Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19618
a2c02241 19619@smallexample
594fe323 19620(gdb)
a2c02241
NR
19621-stack-list-frames 3 5
19622^done,stack=
19623[frame=@{level="3",addr="0x000107a4",func="foo",
19624 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19625frame=@{level="4",addr="0x000107a4",func="foo",
19626 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19627frame=@{level="5",addr="0x000107a4",func="foo",
19628 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19629(gdb)
a2c02241 19630@end smallexample
922fbb7b 19631
a2c02241 19632Show a single frame:
922fbb7b
AC
19633
19634@smallexample
594fe323 19635(gdb)
a2c02241
NR
19636-stack-list-frames 3 3
19637^done,stack=
19638[frame=@{level="3",addr="0x000107a4",func="foo",
19639 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19640(gdb)
922fbb7b
AC
19641@end smallexample
19642
922fbb7b 19643
a2c02241
NR
19644@subheading The @code{-stack-list-locals} Command
19645@findex -stack-list-locals
57c22c6c 19646
a2c02241 19647@subsubheading Synopsis
922fbb7b
AC
19648
19649@smallexample
a2c02241 19650 -stack-list-locals @var{print-values}
922fbb7b
AC
19651@end smallexample
19652
a2c02241
NR
19653Display the local variable names for the selected frame. If
19654@var{print-values} is 0 or @code{--no-values}, print only the names of
19655the variables; if it is 1 or @code{--all-values}, print also their
19656values; and if it is 2 or @code{--simple-values}, print the name,
19657type and value for simple data types and the name and type for arrays,
19658structures and unions. In this last case, a frontend can immediately
19659display the value of simple data types and create variable objects for
d3e8051b 19660other data types when the user wishes to explore their values in
a2c02241 19661more detail.
922fbb7b
AC
19662
19663@subsubheading @value{GDBN} Command
19664
a2c02241 19665@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19666
19667@subsubheading Example
922fbb7b
AC
19668
19669@smallexample
594fe323 19670(gdb)
a2c02241
NR
19671-stack-list-locals 0
19672^done,locals=[name="A",name="B",name="C"]
594fe323 19673(gdb)
a2c02241
NR
19674-stack-list-locals --all-values
19675^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19676 @{name="C",value="@{1, 2, 3@}"@}]
19677-stack-list-locals --simple-values
19678^done,locals=[@{name="A",type="int",value="1"@},
19679 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19680(gdb)
922fbb7b
AC
19681@end smallexample
19682
922fbb7b 19683
a2c02241
NR
19684@subheading The @code{-stack-select-frame} Command
19685@findex -stack-select-frame
922fbb7b
AC
19686
19687@subsubheading Synopsis
19688
19689@smallexample
a2c02241 19690 -stack-select-frame @var{framenum}
922fbb7b
AC
19691@end smallexample
19692
a2c02241
NR
19693Change the selected frame. Select a different frame @var{framenum} on
19694the stack.
922fbb7b
AC
19695
19696@subsubheading @value{GDBN} Command
19697
a2c02241
NR
19698The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19699@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19700
19701@subsubheading Example
19702
19703@smallexample
594fe323 19704(gdb)
a2c02241 19705-stack-select-frame 2
922fbb7b 19706^done
594fe323 19707(gdb)
922fbb7b
AC
19708@end smallexample
19709
19710@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19711@node GDB/MI Variable Objects
19712@section @sc{gdb/mi} Variable Objects
922fbb7b 19713
a1b5960f 19714@ignore
922fbb7b 19715
a2c02241 19716@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19717
a2c02241
NR
19718For the implementation of a variable debugger window (locals, watched
19719expressions, etc.), we are proposing the adaptation of the existing code
19720used by @code{Insight}.
922fbb7b 19721
a2c02241 19722The two main reasons for that are:
922fbb7b 19723
a2c02241
NR
19724@enumerate 1
19725@item
19726It has been proven in practice (it is already on its second generation).
922fbb7b 19727
a2c02241
NR
19728@item
19729It will shorten development time (needless to say how important it is
19730now).
19731@end enumerate
922fbb7b 19732
a2c02241
NR
19733The original interface was designed to be used by Tcl code, so it was
19734slightly changed so it could be used through @sc{gdb/mi}. This section
19735describes the @sc{gdb/mi} operations that will be available and gives some
19736hints about their use.
922fbb7b 19737
a2c02241
NR
19738@emph{Note}: In addition to the set of operations described here, we
19739expect the @sc{gui} implementation of a variable window to require, at
19740least, the following operations:
922fbb7b 19741
a2c02241
NR
19742@itemize @bullet
19743@item @code{-gdb-show} @code{output-radix}
19744@item @code{-stack-list-arguments}
19745@item @code{-stack-list-locals}
19746@item @code{-stack-select-frame}
19747@end itemize
922fbb7b 19748
a1b5960f
VP
19749@end ignore
19750
c8b2f53c 19751@subheading Introduction to Variable Objects
922fbb7b 19752
a2c02241 19753@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19754
19755Variable objects are "object-oriented" MI interface for examining and
19756changing values of expressions. Unlike some other MI interfaces that
19757work with expressions, variable objects are specifically designed for
19758simple and efficient presentation in the frontend. A variable object
19759is identified by string name. When a variable object is created, the
19760frontend specifies the expression for that variable object. The
19761expression can be a simple variable, or it can be an arbitrary complex
19762expression, and can even involve CPU registers. After creating a
19763variable object, the frontend can invoke other variable object
19764operations---for example to obtain or change the value of a variable
19765object, or to change display format.
19766
19767Variable objects have hierarchical tree structure. Any variable object
19768that corresponds to a composite type, such as structure in C, has
19769a number of child variable objects, for example corresponding to each
19770element of a structure. A child variable object can itself have
19771children, recursively. Recursion ends when we reach
25d5ea92
VP
19772leaf variable objects, which always have built-in types. Child variable
19773objects are created only by explicit request, so if a frontend
19774is not interested in the children of a particular variable object, no
19775child will be created.
c8b2f53c
VP
19776
19777For a leaf variable object it is possible to obtain its value as a
19778string, or set the value from a string. String value can be also
19779obtained for a non-leaf variable object, but it's generally a string
19780that only indicates the type of the object, and does not list its
19781contents. Assignment to a non-leaf variable object is not allowed.
19782
19783A frontend does not need to read the values of all variable objects each time
19784the program stops. Instead, MI provides an update command that lists all
19785variable objects whose values has changed since the last update
19786operation. This considerably reduces the amount of data that must
25d5ea92
VP
19787be transferred to the frontend. As noted above, children variable
19788objects are created on demand, and only leaf variable objects have a
19789real value. As result, gdb will read target memory only for leaf
19790variables that frontend has created.
19791
19792The automatic update is not always desirable. For example, a frontend
19793might want to keep a value of some expression for future reference,
19794and never update it. For another example, fetching memory is
19795relatively slow for embedded targets, so a frontend might want
19796to disable automatic update for the variables that are either not
19797visible on the screen, or ``closed''. This is possible using so
19798called ``frozen variable objects''. Such variable objects are never
19799implicitly updated.
922fbb7b 19800
a2c02241
NR
19801The following is the complete set of @sc{gdb/mi} operations defined to
19802access this functionality:
922fbb7b 19803
a2c02241
NR
19804@multitable @columnfractions .4 .6
19805@item @strong{Operation}
19806@tab @strong{Description}
922fbb7b 19807
a2c02241
NR
19808@item @code{-var-create}
19809@tab create a variable object
19810@item @code{-var-delete}
22d8a470 19811@tab delete the variable object and/or its children
a2c02241
NR
19812@item @code{-var-set-format}
19813@tab set the display format of this variable
19814@item @code{-var-show-format}
19815@tab show the display format of this variable
19816@item @code{-var-info-num-children}
19817@tab tells how many children this object has
19818@item @code{-var-list-children}
19819@tab return a list of the object's children
19820@item @code{-var-info-type}
19821@tab show the type of this variable object
19822@item @code{-var-info-expression}
02142340
VP
19823@tab print parent-relative expression that this variable object represents
19824@item @code{-var-info-path-expression}
19825@tab print full expression that this variable object represents
a2c02241
NR
19826@item @code{-var-show-attributes}
19827@tab is this variable editable? does it exist here?
19828@item @code{-var-evaluate-expression}
19829@tab get the value of this variable
19830@item @code{-var-assign}
19831@tab set the value of this variable
19832@item @code{-var-update}
19833@tab update the variable and its children
25d5ea92
VP
19834@item @code{-var-set-frozen}
19835@tab set frozeness attribute
a2c02241 19836@end multitable
922fbb7b 19837
a2c02241
NR
19838In the next subsection we describe each operation in detail and suggest
19839how it can be used.
922fbb7b 19840
a2c02241 19841@subheading Description And Use of Operations on Variable Objects
922fbb7b 19842
a2c02241
NR
19843@subheading The @code{-var-create} Command
19844@findex -var-create
ef21caaf 19845
a2c02241 19846@subsubheading Synopsis
ef21caaf 19847
a2c02241
NR
19848@smallexample
19849 -var-create @{@var{name} | "-"@}
19850 @{@var{frame-addr} | "*"@} @var{expression}
19851@end smallexample
19852
19853This operation creates a variable object, which allows the monitoring of
19854a variable, the result of an expression, a memory cell or a CPU
19855register.
ef21caaf 19856
a2c02241
NR
19857The @var{name} parameter is the string by which the object can be
19858referenced. It must be unique. If @samp{-} is specified, the varobj
19859system will generate a string ``varNNNNNN'' automatically. It will be
19860unique provided that one does not specify @var{name} on that format.
19861The command fails if a duplicate name is found.
ef21caaf 19862
a2c02241
NR
19863The frame under which the expression should be evaluated can be
19864specified by @var{frame-addr}. A @samp{*} indicates that the current
19865frame should be used.
922fbb7b 19866
a2c02241
NR
19867@var{expression} is any expression valid on the current language set (must not
19868begin with a @samp{*}), or one of the following:
922fbb7b 19869
a2c02241
NR
19870@itemize @bullet
19871@item
19872@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19873
a2c02241
NR
19874@item
19875@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19876
a2c02241
NR
19877@item
19878@samp{$@var{regname}} --- a CPU register name
19879@end itemize
922fbb7b 19880
a2c02241 19881@subsubheading Result
922fbb7b 19882
a2c02241
NR
19883This operation returns the name, number of children and the type of the
19884object created. Type is returned as a string as the ones generated by
19885the @value{GDBN} CLI:
922fbb7b
AC
19886
19887@smallexample
a2c02241 19888 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19889@end smallexample
19890
a2c02241
NR
19891
19892@subheading The @code{-var-delete} Command
19893@findex -var-delete
922fbb7b
AC
19894
19895@subsubheading Synopsis
19896
19897@smallexample
22d8a470 19898 -var-delete [ -c ] @var{name}
922fbb7b
AC
19899@end smallexample
19900
a2c02241 19901Deletes a previously created variable object and all of its children.
22d8a470 19902With the @samp{-c} option, just deletes the children.
922fbb7b 19903
a2c02241 19904Returns an error if the object @var{name} is not found.
922fbb7b 19905
922fbb7b 19906
a2c02241
NR
19907@subheading The @code{-var-set-format} Command
19908@findex -var-set-format
922fbb7b 19909
a2c02241 19910@subsubheading Synopsis
922fbb7b
AC
19911
19912@smallexample
a2c02241 19913 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19914@end smallexample
19915
a2c02241
NR
19916Sets the output format for the value of the object @var{name} to be
19917@var{format-spec}.
19918
19919The syntax for the @var{format-spec} is as follows:
19920
19921@smallexample
19922 @var{format-spec} @expansion{}
19923 @{binary | decimal | hexadecimal | octal | natural@}
19924@end smallexample
19925
c8b2f53c
VP
19926The natural format is the default format choosen automatically
19927based on the variable type (like decimal for an @code{int}, hex
19928for pointers, etc.).
19929
19930For a variable with children, the format is set only on the
19931variable itself, and the children are not affected.
a2c02241
NR
19932
19933@subheading The @code{-var-show-format} Command
19934@findex -var-show-format
922fbb7b
AC
19935
19936@subsubheading Synopsis
19937
19938@smallexample
a2c02241 19939 -var-show-format @var{name}
922fbb7b
AC
19940@end smallexample
19941
a2c02241 19942Returns the format used to display the value of the object @var{name}.
922fbb7b 19943
a2c02241
NR
19944@smallexample
19945 @var{format} @expansion{}
19946 @var{format-spec}
19947@end smallexample
922fbb7b 19948
922fbb7b 19949
a2c02241
NR
19950@subheading The @code{-var-info-num-children} Command
19951@findex -var-info-num-children
19952
19953@subsubheading Synopsis
19954
19955@smallexample
19956 -var-info-num-children @var{name}
19957@end smallexample
19958
19959Returns the number of children of a variable object @var{name}:
19960
19961@smallexample
19962 numchild=@var{n}
19963@end smallexample
19964
19965
19966@subheading The @code{-var-list-children} Command
19967@findex -var-list-children
19968
19969@subsubheading Synopsis
19970
19971@smallexample
19972 -var-list-children [@var{print-values}] @var{name}
19973@end smallexample
19974@anchor{-var-list-children}
19975
19976Return a list of the children of the specified variable object and
19977create variable objects for them, if they do not already exist. With
19978a single argument or if @var{print-values} has a value for of 0 or
19979@code{--no-values}, print only the names of the variables; if
19980@var{print-values} is 1 or @code{--all-values}, also print their
19981values; and if it is 2 or @code{--simple-values} print the name and
19982value for simple data types and just the name for arrays, structures
19983and unions.
922fbb7b
AC
19984
19985@subsubheading Example
19986
19987@smallexample
594fe323 19988(gdb)
a2c02241
NR
19989 -var-list-children n
19990 ^done,numchild=@var{n},children=[@{name=@var{name},
19991 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19992(gdb)
a2c02241
NR
19993 -var-list-children --all-values n
19994 ^done,numchild=@var{n},children=[@{name=@var{name},
19995 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19996@end smallexample
19997
922fbb7b 19998
a2c02241
NR
19999@subheading The @code{-var-info-type} Command
20000@findex -var-info-type
922fbb7b 20001
a2c02241
NR
20002@subsubheading Synopsis
20003
20004@smallexample
20005 -var-info-type @var{name}
20006@end smallexample
20007
20008Returns the type of the specified variable @var{name}. The type is
20009returned as a string in the same format as it is output by the
20010@value{GDBN} CLI:
20011
20012@smallexample
20013 type=@var{typename}
20014@end smallexample
20015
20016
20017@subheading The @code{-var-info-expression} Command
20018@findex -var-info-expression
922fbb7b
AC
20019
20020@subsubheading Synopsis
20021
20022@smallexample
a2c02241 20023 -var-info-expression @var{name}
922fbb7b
AC
20024@end smallexample
20025
02142340
VP
20026Returns a string that is suitable for presenting this
20027variable object in user interface. The string is generally
20028not valid expression in the current language, and cannot be evaluated.
20029
20030For example, if @code{a} is an array, and variable object
20031@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20032
a2c02241 20033@smallexample
02142340
VP
20034(gdb) -var-info-expression A.1
20035^done,lang="C",exp="1"
a2c02241 20036@end smallexample
922fbb7b 20037
a2c02241 20038@noindent
02142340
VP
20039Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20040
20041Note that the output of the @code{-var-list-children} command also
20042includes those expressions, so the @code{-var-info-expression} command
20043is of limited use.
20044
20045@subheading The @code{-var-info-path-expression} Command
20046@findex -var-info-path-expression
20047
20048@subsubheading Synopsis
20049
20050@smallexample
20051 -var-info-path-expression @var{name}
20052@end smallexample
20053
20054Returns an expression that can be evaluated in the current
20055context and will yield the same value that a variable object has.
20056Compare this with the @code{-var-info-expression} command, which
20057result can be used only for UI presentation. Typical use of
20058the @code{-var-info-path-expression} command is creating a
20059watchpoint from a variable object.
20060
20061For example, suppose @code{C} is a C@t{++} class, derived from class
20062@code{Base}, and that the @code{Base} class has a member called
20063@code{m_size}. Assume a variable @code{c} is has the type of
20064@code{C} and a variable object @code{C} was created for variable
20065@code{c}. Then, we'll get this output:
20066@smallexample
20067(gdb) -var-info-path-expression C.Base.public.m_size
20068^done,path_expr=((Base)c).m_size)
20069@end smallexample
922fbb7b 20070
a2c02241
NR
20071@subheading The @code{-var-show-attributes} Command
20072@findex -var-show-attributes
922fbb7b 20073
a2c02241 20074@subsubheading Synopsis
922fbb7b 20075
a2c02241
NR
20076@smallexample
20077 -var-show-attributes @var{name}
20078@end smallexample
922fbb7b 20079
a2c02241 20080List attributes of the specified variable object @var{name}:
922fbb7b
AC
20081
20082@smallexample
a2c02241 20083 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20084@end smallexample
20085
a2c02241
NR
20086@noindent
20087where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20088
20089@subheading The @code{-var-evaluate-expression} Command
20090@findex -var-evaluate-expression
20091
20092@subsubheading Synopsis
20093
20094@smallexample
20095 -var-evaluate-expression @var{name}
20096@end smallexample
20097
20098Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20099object and returns its value as a string. The format of the
20100string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20101
20102@smallexample
20103 value=@var{value}
20104@end smallexample
20105
20106Note that one must invoke @code{-var-list-children} for a variable
20107before the value of a child variable can be evaluated.
20108
20109@subheading The @code{-var-assign} Command
20110@findex -var-assign
20111
20112@subsubheading Synopsis
20113
20114@smallexample
20115 -var-assign @var{name} @var{expression}
20116@end smallexample
20117
20118Assigns the value of @var{expression} to the variable object specified
20119by @var{name}. The object must be @samp{editable}. If the variable's
20120value is altered by the assign, the variable will show up in any
20121subsequent @code{-var-update} list.
20122
20123@subsubheading Example
922fbb7b
AC
20124
20125@smallexample
594fe323 20126(gdb)
a2c02241
NR
20127-var-assign var1 3
20128^done,value="3"
594fe323 20129(gdb)
a2c02241
NR
20130-var-update *
20131^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20132(gdb)
922fbb7b
AC
20133@end smallexample
20134
a2c02241
NR
20135@subheading The @code{-var-update} Command
20136@findex -var-update
20137
20138@subsubheading Synopsis
20139
20140@smallexample
20141 -var-update [@var{print-values}] @{@var{name} | "*"@}
20142@end smallexample
20143
c8b2f53c
VP
20144Reevaluate the expressions corresponding to the variable object
20145@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20146list of variable objects whose values have changed; @var{name} must
20147be a root variable object. Here, ``changed'' means that the result of
20148@code{-var-evaluate-expression} before and after the
20149@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20150object names, all existing variable objects are updated, except
20151for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20152@var{print-values} determines whether both names and values, or just
20153names are printed. The possible values of this options are the same
20154as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20155recommended to use the @samp{--all-values} option, to reduce the
20156number of MI commands needed on each program stop.
c8b2f53c 20157
a2c02241
NR
20158
20159@subsubheading Example
922fbb7b
AC
20160
20161@smallexample
594fe323 20162(gdb)
a2c02241
NR
20163-var-assign var1 3
20164^done,value="3"
594fe323 20165(gdb)
a2c02241
NR
20166-var-update --all-values var1
20167^done,changelist=[@{name="var1",value="3",in_scope="true",
20168type_changed="false"@}]
594fe323 20169(gdb)
922fbb7b
AC
20170@end smallexample
20171
9f708cb2 20172@anchor{-var-update}
36ece8b3
NR
20173The field in_scope may take three values:
20174
20175@table @code
20176@item "true"
20177The variable object's current value is valid.
20178
20179@item "false"
20180The variable object does not currently hold a valid value but it may
20181hold one in the future if its associated expression comes back into
20182scope.
20183
20184@item "invalid"
20185The variable object no longer holds a valid value.
20186This can occur when the executable file being debugged has changed,
20187either through recompilation or by using the @value{GDBN} @code{file}
20188command. The front end should normally choose to delete these variable
20189objects.
20190@end table
20191
20192In the future new values may be added to this list so the front should
20193be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20194
25d5ea92
VP
20195@subheading The @code{-var-set-frozen} Command
20196@findex -var-set-frozen
9f708cb2 20197@anchor{-var-set-frozen}
25d5ea92
VP
20198
20199@subsubheading Synopsis
20200
20201@smallexample
9f708cb2 20202 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20203@end smallexample
20204
9f708cb2 20205Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20206@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20207frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20208frozen, then neither itself, nor any of its children, are
9f708cb2 20209implicitly updated by @code{-var-update} of
25d5ea92
VP
20210a parent variable or by @code{-var-update *}. Only
20211@code{-var-update} of the variable itself will update its value and
20212values of its children. After a variable object is unfrozen, it is
20213implicitly updated by all subsequent @code{-var-update} operations.
20214Unfreezing a variable does not update it, only subsequent
20215@code{-var-update} does.
20216
20217@subsubheading Example
20218
20219@smallexample
20220(gdb)
20221-var-set-frozen V 1
20222^done
20223(gdb)
20224@end smallexample
20225
20226
a2c02241
NR
20227@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20228@node GDB/MI Data Manipulation
20229@section @sc{gdb/mi} Data Manipulation
922fbb7b 20230
a2c02241
NR
20231@cindex data manipulation, in @sc{gdb/mi}
20232@cindex @sc{gdb/mi}, data manipulation
20233This section describes the @sc{gdb/mi} commands that manipulate data:
20234examine memory and registers, evaluate expressions, etc.
20235
20236@c REMOVED FROM THE INTERFACE.
20237@c @subheading -data-assign
20238@c Change the value of a program variable. Plenty of side effects.
79a6e687 20239@c @subsubheading GDB Command
a2c02241
NR
20240@c set variable
20241@c @subsubheading Example
20242@c N.A.
20243
20244@subheading The @code{-data-disassemble} Command
20245@findex -data-disassemble
922fbb7b
AC
20246
20247@subsubheading Synopsis
20248
20249@smallexample
a2c02241
NR
20250 -data-disassemble
20251 [ -s @var{start-addr} -e @var{end-addr} ]
20252 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20253 -- @var{mode}
922fbb7b
AC
20254@end smallexample
20255
a2c02241
NR
20256@noindent
20257Where:
20258
20259@table @samp
20260@item @var{start-addr}
20261is the beginning address (or @code{$pc})
20262@item @var{end-addr}
20263is the end address
20264@item @var{filename}
20265is the name of the file to disassemble
20266@item @var{linenum}
20267is the line number to disassemble around
20268@item @var{lines}
d3e8051b 20269is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20270the whole function will be disassembled, in case no @var{end-addr} is
20271specified. If @var{end-addr} is specified as a non-zero value, and
20272@var{lines} is lower than the number of disassembly lines between
20273@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20274displayed; if @var{lines} is higher than the number of lines between
20275@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20276are displayed.
20277@item @var{mode}
20278is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20279disassembly).
20280@end table
20281
20282@subsubheading Result
20283
20284The output for each instruction is composed of four fields:
20285
20286@itemize @bullet
20287@item Address
20288@item Func-name
20289@item Offset
20290@item Instruction
20291@end itemize
20292
20293Note that whatever included in the instruction field, is not manipulated
d3e8051b 20294directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20295
20296@subsubheading @value{GDBN} Command
20297
a2c02241 20298There's no direct mapping from this command to the CLI.
922fbb7b
AC
20299
20300@subsubheading Example
20301
a2c02241
NR
20302Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20303
922fbb7b 20304@smallexample
594fe323 20305(gdb)
a2c02241
NR
20306-data-disassemble -s $pc -e "$pc + 20" -- 0
20307^done,
20308asm_insns=[
20309@{address="0x000107c0",func-name="main",offset="4",
20310inst="mov 2, %o0"@},
20311@{address="0x000107c4",func-name="main",offset="8",
20312inst="sethi %hi(0x11800), %o2"@},
20313@{address="0x000107c8",func-name="main",offset="12",
20314inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20315@{address="0x000107cc",func-name="main",offset="16",
20316inst="sethi %hi(0x11800), %o2"@},
20317@{address="0x000107d0",func-name="main",offset="20",
20318inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20319(gdb)
a2c02241
NR
20320@end smallexample
20321
20322Disassemble the whole @code{main} function. Line 32 is part of
20323@code{main}.
20324
20325@smallexample
20326-data-disassemble -f basics.c -l 32 -- 0
20327^done,asm_insns=[
20328@{address="0x000107bc",func-name="main",offset="0",
20329inst="save %sp, -112, %sp"@},
20330@{address="0x000107c0",func-name="main",offset="4",
20331inst="mov 2, %o0"@},
20332@{address="0x000107c4",func-name="main",offset="8",
20333inst="sethi %hi(0x11800), %o2"@},
20334[@dots{}]
20335@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20336@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20337(gdb)
922fbb7b
AC
20338@end smallexample
20339
a2c02241 20340Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20341
a2c02241 20342@smallexample
594fe323 20343(gdb)
a2c02241
NR
20344-data-disassemble -f basics.c -l 32 -n 3 -- 0
20345^done,asm_insns=[
20346@{address="0x000107bc",func-name="main",offset="0",
20347inst="save %sp, -112, %sp"@},
20348@{address="0x000107c0",func-name="main",offset="4",
20349inst="mov 2, %o0"@},
20350@{address="0x000107c4",func-name="main",offset="8",
20351inst="sethi %hi(0x11800), %o2"@}]
594fe323 20352(gdb)
a2c02241
NR
20353@end smallexample
20354
20355Disassemble 3 instructions from the start of @code{main} in mixed mode:
20356
20357@smallexample
594fe323 20358(gdb)
a2c02241
NR
20359-data-disassemble -f basics.c -l 32 -n 3 -- 1
20360^done,asm_insns=[
20361src_and_asm_line=@{line="31",
20362file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20363 testsuite/gdb.mi/basics.c",line_asm_insn=[
20364@{address="0x000107bc",func-name="main",offset="0",
20365inst="save %sp, -112, %sp"@}]@},
20366src_and_asm_line=@{line="32",
20367file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20368 testsuite/gdb.mi/basics.c",line_asm_insn=[
20369@{address="0x000107c0",func-name="main",offset="4",
20370inst="mov 2, %o0"@},
20371@{address="0x000107c4",func-name="main",offset="8",
20372inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20373(gdb)
a2c02241
NR
20374@end smallexample
20375
20376
20377@subheading The @code{-data-evaluate-expression} Command
20378@findex -data-evaluate-expression
922fbb7b
AC
20379
20380@subsubheading Synopsis
20381
20382@smallexample
a2c02241 20383 -data-evaluate-expression @var{expr}
922fbb7b
AC
20384@end smallexample
20385
a2c02241
NR
20386Evaluate @var{expr} as an expression. The expression could contain an
20387inferior function call. The function call will execute synchronously.
20388If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20389
20390@subsubheading @value{GDBN} Command
20391
a2c02241
NR
20392The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20393@samp{call}. In @code{gdbtk} only, there's a corresponding
20394@samp{gdb_eval} command.
922fbb7b
AC
20395
20396@subsubheading Example
20397
a2c02241
NR
20398In the following example, the numbers that precede the commands are the
20399@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20400Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20401output.
20402
922fbb7b 20403@smallexample
a2c02241
NR
20404211-data-evaluate-expression A
20405211^done,value="1"
594fe323 20406(gdb)
a2c02241
NR
20407311-data-evaluate-expression &A
20408311^done,value="0xefffeb7c"
594fe323 20409(gdb)
a2c02241
NR
20410411-data-evaluate-expression A+3
20411411^done,value="4"
594fe323 20412(gdb)
a2c02241
NR
20413511-data-evaluate-expression "A + 3"
20414511^done,value="4"
594fe323 20415(gdb)
a2c02241 20416@end smallexample
922fbb7b
AC
20417
20418
a2c02241
NR
20419@subheading The @code{-data-list-changed-registers} Command
20420@findex -data-list-changed-registers
922fbb7b
AC
20421
20422@subsubheading Synopsis
20423
20424@smallexample
a2c02241 20425 -data-list-changed-registers
922fbb7b
AC
20426@end smallexample
20427
a2c02241 20428Display a list of the registers that have changed.
922fbb7b
AC
20429
20430@subsubheading @value{GDBN} Command
20431
a2c02241
NR
20432@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20433has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20434
20435@subsubheading Example
922fbb7b 20436
a2c02241 20437On a PPC MBX board:
922fbb7b
AC
20438
20439@smallexample
594fe323 20440(gdb)
a2c02241
NR
20441-exec-continue
20442^running
922fbb7b 20443
594fe323 20444(gdb)
a2c02241
NR
20445*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20446args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20447(gdb)
a2c02241
NR
20448-data-list-changed-registers
20449^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20450"10","11","13","14","15","16","17","18","19","20","21","22","23",
20451"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20452(gdb)
a2c02241 20453@end smallexample
922fbb7b
AC
20454
20455
a2c02241
NR
20456@subheading The @code{-data-list-register-names} Command
20457@findex -data-list-register-names
922fbb7b
AC
20458
20459@subsubheading Synopsis
20460
20461@smallexample
a2c02241 20462 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20463@end smallexample
20464
a2c02241
NR
20465Show a list of register names for the current target. If no arguments
20466are given, it shows a list of the names of all the registers. If
20467integer numbers are given as arguments, it will print a list of the
20468names of the registers corresponding to the arguments. To ensure
20469consistency between a register name and its number, the output list may
20470include empty register names.
922fbb7b
AC
20471
20472@subsubheading @value{GDBN} Command
20473
a2c02241
NR
20474@value{GDBN} does not have a command which corresponds to
20475@samp{-data-list-register-names}. In @code{gdbtk} there is a
20476corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20477
20478@subsubheading Example
922fbb7b 20479
a2c02241
NR
20480For the PPC MBX board:
20481@smallexample
594fe323 20482(gdb)
a2c02241
NR
20483-data-list-register-names
20484^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20485"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20486"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20487"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20488"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20489"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20490"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20491(gdb)
a2c02241
NR
20492-data-list-register-names 1 2 3
20493^done,register-names=["r1","r2","r3"]
594fe323 20494(gdb)
a2c02241 20495@end smallexample
922fbb7b 20496
a2c02241
NR
20497@subheading The @code{-data-list-register-values} Command
20498@findex -data-list-register-values
922fbb7b
AC
20499
20500@subsubheading Synopsis
20501
20502@smallexample
a2c02241 20503 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20504@end smallexample
20505
a2c02241
NR
20506Display the registers' contents. @var{fmt} is the format according to
20507which the registers' contents are to be returned, followed by an optional
20508list of numbers specifying the registers to display. A missing list of
20509numbers indicates that the contents of all the registers must be returned.
20510
20511Allowed formats for @var{fmt} are:
20512
20513@table @code
20514@item x
20515Hexadecimal
20516@item o
20517Octal
20518@item t
20519Binary
20520@item d
20521Decimal
20522@item r
20523Raw
20524@item N
20525Natural
20526@end table
922fbb7b
AC
20527
20528@subsubheading @value{GDBN} Command
20529
a2c02241
NR
20530The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20531all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20532
20533@subsubheading Example
922fbb7b 20534
a2c02241
NR
20535For a PPC MBX board (note: line breaks are for readability only, they
20536don't appear in the actual output):
20537
20538@smallexample
594fe323 20539(gdb)
a2c02241
NR
20540-data-list-register-values r 64 65
20541^done,register-values=[@{number="64",value="0xfe00a300"@},
20542@{number="65",value="0x00029002"@}]
594fe323 20543(gdb)
a2c02241
NR
20544-data-list-register-values x
20545^done,register-values=[@{number="0",value="0xfe0043c8"@},
20546@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20547@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20548@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20549@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20550@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20551@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20552@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20553@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20554@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20555@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20556@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20557@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20558@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20559@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20560@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20561@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20562@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20563@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20564@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20565@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20566@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20567@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20568@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20569@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20570@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20571@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20572@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20573@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20574@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20575@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20576@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20577@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20578@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20579@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20580@{number="69",value="0x20002b03"@}]
594fe323 20581(gdb)
a2c02241 20582@end smallexample
922fbb7b 20583
a2c02241
NR
20584
20585@subheading The @code{-data-read-memory} Command
20586@findex -data-read-memory
922fbb7b
AC
20587
20588@subsubheading Synopsis
20589
20590@smallexample
a2c02241
NR
20591 -data-read-memory [ -o @var{byte-offset} ]
20592 @var{address} @var{word-format} @var{word-size}
20593 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20594@end smallexample
20595
a2c02241
NR
20596@noindent
20597where:
922fbb7b 20598
a2c02241
NR
20599@table @samp
20600@item @var{address}
20601An expression specifying the address of the first memory word to be
20602read. Complex expressions containing embedded white space should be
20603quoted using the C convention.
922fbb7b 20604
a2c02241
NR
20605@item @var{word-format}
20606The format to be used to print the memory words. The notation is the
20607same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20608,Output Formats}).
922fbb7b 20609
a2c02241
NR
20610@item @var{word-size}
20611The size of each memory word in bytes.
922fbb7b 20612
a2c02241
NR
20613@item @var{nr-rows}
20614The number of rows in the output table.
922fbb7b 20615
a2c02241
NR
20616@item @var{nr-cols}
20617The number of columns in the output table.
922fbb7b 20618
a2c02241
NR
20619@item @var{aschar}
20620If present, indicates that each row should include an @sc{ascii} dump. The
20621value of @var{aschar} is used as a padding character when a byte is not a
20622member of the printable @sc{ascii} character set (printable @sc{ascii}
20623characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20624
a2c02241
NR
20625@item @var{byte-offset}
20626An offset to add to the @var{address} before fetching memory.
20627@end table
922fbb7b 20628
a2c02241
NR
20629This command displays memory contents as a table of @var{nr-rows} by
20630@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20631@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20632(returned as @samp{total-bytes}). Should less than the requested number
20633of bytes be returned by the target, the missing words are identified
20634using @samp{N/A}. The number of bytes read from the target is returned
20635in @samp{nr-bytes} and the starting address used to read memory in
20636@samp{addr}.
20637
20638The address of the next/previous row or page is available in
20639@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20640@samp{prev-page}.
922fbb7b
AC
20641
20642@subsubheading @value{GDBN} Command
20643
a2c02241
NR
20644The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20645@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20646
20647@subsubheading Example
32e7087d 20648
a2c02241
NR
20649Read six bytes of memory starting at @code{bytes+6} but then offset by
20650@code{-6} bytes. Format as three rows of two columns. One byte per
20651word. Display each word in hex.
32e7087d
JB
20652
20653@smallexample
594fe323 20654(gdb)
a2c02241
NR
206559-data-read-memory -o -6 -- bytes+6 x 1 3 2
206569^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20657next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20658prev-page="0x0000138a",memory=[
20659@{addr="0x00001390",data=["0x00","0x01"]@},
20660@{addr="0x00001392",data=["0x02","0x03"]@},
20661@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20662(gdb)
32e7087d
JB
20663@end smallexample
20664
a2c02241
NR
20665Read two bytes of memory starting at address @code{shorts + 64} and
20666display as a single word formatted in decimal.
32e7087d 20667
32e7087d 20668@smallexample
594fe323 20669(gdb)
a2c02241
NR
206705-data-read-memory shorts+64 d 2 1 1
206715^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20672next-row="0x00001512",prev-row="0x0000150e",
20673next-page="0x00001512",prev-page="0x0000150e",memory=[
20674@{addr="0x00001510",data=["128"]@}]
594fe323 20675(gdb)
32e7087d
JB
20676@end smallexample
20677
a2c02241
NR
20678Read thirty two bytes of memory starting at @code{bytes+16} and format
20679as eight rows of four columns. Include a string encoding with @samp{x}
20680used as the non-printable character.
922fbb7b
AC
20681
20682@smallexample
594fe323 20683(gdb)
a2c02241
NR
206844-data-read-memory bytes+16 x 1 8 4 x
206854^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20686next-row="0x000013c0",prev-row="0x0000139c",
20687next-page="0x000013c0",prev-page="0x00001380",memory=[
20688@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20689@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20690@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20691@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20692@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20693@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20694@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20695@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20696(gdb)
922fbb7b
AC
20697@end smallexample
20698
a2c02241
NR
20699@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20700@node GDB/MI Tracepoint Commands
20701@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20702
a2c02241 20703The tracepoint commands are not yet implemented.
922fbb7b 20704
a2c02241 20705@c @subheading -trace-actions
922fbb7b 20706
a2c02241 20707@c @subheading -trace-delete
922fbb7b 20708
a2c02241 20709@c @subheading -trace-disable
922fbb7b 20710
a2c02241 20711@c @subheading -trace-dump
922fbb7b 20712
a2c02241 20713@c @subheading -trace-enable
922fbb7b 20714
a2c02241 20715@c @subheading -trace-exists
922fbb7b 20716
a2c02241 20717@c @subheading -trace-find
922fbb7b 20718
a2c02241 20719@c @subheading -trace-frame-number
922fbb7b 20720
a2c02241 20721@c @subheading -trace-info
922fbb7b 20722
a2c02241 20723@c @subheading -trace-insert
922fbb7b 20724
a2c02241 20725@c @subheading -trace-list
922fbb7b 20726
a2c02241 20727@c @subheading -trace-pass-count
922fbb7b 20728
a2c02241 20729@c @subheading -trace-save
922fbb7b 20730
a2c02241 20731@c @subheading -trace-start
922fbb7b 20732
a2c02241 20733@c @subheading -trace-stop
922fbb7b 20734
922fbb7b 20735
a2c02241
NR
20736@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20737@node GDB/MI Symbol Query
20738@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20739
20740
a2c02241
NR
20741@subheading The @code{-symbol-info-address} Command
20742@findex -symbol-info-address
922fbb7b
AC
20743
20744@subsubheading Synopsis
20745
20746@smallexample
a2c02241 20747 -symbol-info-address @var{symbol}
922fbb7b
AC
20748@end smallexample
20749
a2c02241 20750Describe where @var{symbol} is stored.
922fbb7b
AC
20751
20752@subsubheading @value{GDBN} Command
20753
a2c02241 20754The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20755
20756@subsubheading Example
20757N.A.
20758
20759
a2c02241
NR
20760@subheading The @code{-symbol-info-file} Command
20761@findex -symbol-info-file
922fbb7b
AC
20762
20763@subsubheading Synopsis
20764
20765@smallexample
a2c02241 20766 -symbol-info-file
922fbb7b
AC
20767@end smallexample
20768
a2c02241 20769Show the file for the symbol.
922fbb7b 20770
a2c02241 20771@subsubheading @value{GDBN} Command
922fbb7b 20772
a2c02241
NR
20773There's no equivalent @value{GDBN} command. @code{gdbtk} has
20774@samp{gdb_find_file}.
922fbb7b
AC
20775
20776@subsubheading Example
20777N.A.
20778
20779
a2c02241
NR
20780@subheading The @code{-symbol-info-function} Command
20781@findex -symbol-info-function
922fbb7b
AC
20782
20783@subsubheading Synopsis
20784
20785@smallexample
a2c02241 20786 -symbol-info-function
922fbb7b
AC
20787@end smallexample
20788
a2c02241 20789Show which function the symbol lives in.
922fbb7b
AC
20790
20791@subsubheading @value{GDBN} Command
20792
a2c02241 20793@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20794
20795@subsubheading Example
20796N.A.
20797
20798
a2c02241
NR
20799@subheading The @code{-symbol-info-line} Command
20800@findex -symbol-info-line
922fbb7b
AC
20801
20802@subsubheading Synopsis
20803
20804@smallexample
a2c02241 20805 -symbol-info-line
922fbb7b
AC
20806@end smallexample
20807
a2c02241 20808Show the core addresses of the code for a source line.
922fbb7b 20809
a2c02241 20810@subsubheading @value{GDBN} Command
922fbb7b 20811
a2c02241
NR
20812The corresponding @value{GDBN} command is @samp{info line}.
20813@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20814
20815@subsubheading Example
a2c02241 20816N.A.
922fbb7b
AC
20817
20818
a2c02241
NR
20819@subheading The @code{-symbol-info-symbol} Command
20820@findex -symbol-info-symbol
07f31aa6
DJ
20821
20822@subsubheading Synopsis
20823
a2c02241
NR
20824@smallexample
20825 -symbol-info-symbol @var{addr}
20826@end smallexample
07f31aa6 20827
a2c02241 20828Describe what symbol is at location @var{addr}.
07f31aa6 20829
a2c02241 20830@subsubheading @value{GDBN} Command
07f31aa6 20831
a2c02241 20832The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20833
20834@subsubheading Example
a2c02241 20835N.A.
07f31aa6
DJ
20836
20837
a2c02241
NR
20838@subheading The @code{-symbol-list-functions} Command
20839@findex -symbol-list-functions
922fbb7b
AC
20840
20841@subsubheading Synopsis
20842
20843@smallexample
a2c02241 20844 -symbol-list-functions
922fbb7b
AC
20845@end smallexample
20846
a2c02241 20847List the functions in the executable.
922fbb7b
AC
20848
20849@subsubheading @value{GDBN} Command
20850
a2c02241
NR
20851@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20852@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20853
20854@subsubheading Example
a2c02241 20855N.A.
922fbb7b
AC
20856
20857
a2c02241
NR
20858@subheading The @code{-symbol-list-lines} Command
20859@findex -symbol-list-lines
922fbb7b
AC
20860
20861@subsubheading Synopsis
20862
20863@smallexample
a2c02241 20864 -symbol-list-lines @var{filename}
922fbb7b
AC
20865@end smallexample
20866
a2c02241
NR
20867Print the list of lines that contain code and their associated program
20868addresses for the given source filename. The entries are sorted in
20869ascending PC order.
922fbb7b
AC
20870
20871@subsubheading @value{GDBN} Command
20872
a2c02241 20873There is no corresponding @value{GDBN} command.
922fbb7b
AC
20874
20875@subsubheading Example
a2c02241 20876@smallexample
594fe323 20877(gdb)
a2c02241
NR
20878-symbol-list-lines basics.c
20879^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20880(gdb)
a2c02241 20881@end smallexample
922fbb7b
AC
20882
20883
a2c02241
NR
20884@subheading The @code{-symbol-list-types} Command
20885@findex -symbol-list-types
922fbb7b
AC
20886
20887@subsubheading Synopsis
20888
20889@smallexample
a2c02241 20890 -symbol-list-types
922fbb7b
AC
20891@end smallexample
20892
a2c02241 20893List all the type names.
922fbb7b
AC
20894
20895@subsubheading @value{GDBN} Command
20896
a2c02241
NR
20897The corresponding commands are @samp{info types} in @value{GDBN},
20898@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20899
20900@subsubheading Example
20901N.A.
20902
20903
a2c02241
NR
20904@subheading The @code{-symbol-list-variables} Command
20905@findex -symbol-list-variables
922fbb7b
AC
20906
20907@subsubheading Synopsis
20908
20909@smallexample
a2c02241 20910 -symbol-list-variables
922fbb7b
AC
20911@end smallexample
20912
a2c02241 20913List all the global and static variable names.
922fbb7b
AC
20914
20915@subsubheading @value{GDBN} Command
20916
a2c02241 20917@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20918
20919@subsubheading Example
20920N.A.
20921
20922
a2c02241
NR
20923@subheading The @code{-symbol-locate} Command
20924@findex -symbol-locate
922fbb7b
AC
20925
20926@subsubheading Synopsis
20927
20928@smallexample
a2c02241 20929 -symbol-locate
922fbb7b
AC
20930@end smallexample
20931
922fbb7b
AC
20932@subsubheading @value{GDBN} Command
20933
a2c02241 20934@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20935
20936@subsubheading Example
20937N.A.
20938
20939
a2c02241
NR
20940@subheading The @code{-symbol-type} Command
20941@findex -symbol-type
922fbb7b
AC
20942
20943@subsubheading Synopsis
20944
20945@smallexample
a2c02241 20946 -symbol-type @var{variable}
922fbb7b
AC
20947@end smallexample
20948
a2c02241 20949Show type of @var{variable}.
922fbb7b 20950
a2c02241 20951@subsubheading @value{GDBN} Command
922fbb7b 20952
a2c02241
NR
20953The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20954@samp{gdb_obj_variable}.
20955
20956@subsubheading Example
20957N.A.
20958
20959
20960@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20961@node GDB/MI File Commands
20962@section @sc{gdb/mi} File Commands
20963
20964This section describes the GDB/MI commands to specify executable file names
20965and to read in and obtain symbol table information.
20966
20967@subheading The @code{-file-exec-and-symbols} Command
20968@findex -file-exec-and-symbols
20969
20970@subsubheading Synopsis
922fbb7b
AC
20971
20972@smallexample
a2c02241 20973 -file-exec-and-symbols @var{file}
922fbb7b
AC
20974@end smallexample
20975
a2c02241
NR
20976Specify the executable file to be debugged. This file is the one from
20977which the symbol table is also read. If no file is specified, the
20978command clears the executable and symbol information. If breakpoints
20979are set when using this command with no arguments, @value{GDBN} will produce
20980error messages. Otherwise, no output is produced, except a completion
20981notification.
20982
922fbb7b
AC
20983@subsubheading @value{GDBN} Command
20984
a2c02241 20985The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20986
20987@subsubheading Example
20988
20989@smallexample
594fe323 20990(gdb)
a2c02241
NR
20991-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20992^done
594fe323 20993(gdb)
922fbb7b
AC
20994@end smallexample
20995
922fbb7b 20996
a2c02241
NR
20997@subheading The @code{-file-exec-file} Command
20998@findex -file-exec-file
922fbb7b
AC
20999
21000@subsubheading Synopsis
21001
21002@smallexample
a2c02241 21003 -file-exec-file @var{file}
922fbb7b
AC
21004@end smallexample
21005
a2c02241
NR
21006Specify the executable file to be debugged. Unlike
21007@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21008from this file. If used without argument, @value{GDBN} clears the information
21009about the executable file. No output is produced, except a completion
21010notification.
922fbb7b 21011
a2c02241
NR
21012@subsubheading @value{GDBN} Command
21013
21014The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21015
21016@subsubheading Example
a2c02241
NR
21017
21018@smallexample
594fe323 21019(gdb)
a2c02241
NR
21020-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21021^done
594fe323 21022(gdb)
a2c02241 21023@end smallexample
922fbb7b
AC
21024
21025
a2c02241
NR
21026@subheading The @code{-file-list-exec-sections} Command
21027@findex -file-list-exec-sections
922fbb7b
AC
21028
21029@subsubheading Synopsis
21030
21031@smallexample
a2c02241 21032 -file-list-exec-sections
922fbb7b
AC
21033@end smallexample
21034
a2c02241
NR
21035List the sections of the current executable file.
21036
922fbb7b
AC
21037@subsubheading @value{GDBN} Command
21038
a2c02241
NR
21039The @value{GDBN} command @samp{info file} shows, among the rest, the same
21040information as this command. @code{gdbtk} has a corresponding command
21041@samp{gdb_load_info}.
922fbb7b
AC
21042
21043@subsubheading Example
21044N.A.
21045
21046
a2c02241
NR
21047@subheading The @code{-file-list-exec-source-file} Command
21048@findex -file-list-exec-source-file
922fbb7b
AC
21049
21050@subsubheading Synopsis
21051
21052@smallexample
a2c02241 21053 -file-list-exec-source-file
922fbb7b
AC
21054@end smallexample
21055
a2c02241 21056List the line number, the current source file, and the absolute path
44288b44
NR
21057to the current source file for the current executable. The macro
21058information field has a value of @samp{1} or @samp{0} depending on
21059whether or not the file includes preprocessor macro information.
922fbb7b
AC
21060
21061@subsubheading @value{GDBN} Command
21062
a2c02241 21063The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21064
21065@subsubheading Example
21066
922fbb7b 21067@smallexample
594fe323 21068(gdb)
a2c02241 21069123-file-list-exec-source-file
44288b44 21070123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21071(gdb)
922fbb7b
AC
21072@end smallexample
21073
21074
a2c02241
NR
21075@subheading The @code{-file-list-exec-source-files} Command
21076@findex -file-list-exec-source-files
922fbb7b
AC
21077
21078@subsubheading Synopsis
21079
21080@smallexample
a2c02241 21081 -file-list-exec-source-files
922fbb7b
AC
21082@end smallexample
21083
a2c02241
NR
21084List the source files for the current executable.
21085
3f94c067
BW
21086It will always output the filename, but only when @value{GDBN} can find
21087the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21088
21089@subsubheading @value{GDBN} Command
21090
a2c02241
NR
21091The @value{GDBN} equivalent is @samp{info sources}.
21092@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21093
21094@subsubheading Example
922fbb7b 21095@smallexample
594fe323 21096(gdb)
a2c02241
NR
21097-file-list-exec-source-files
21098^done,files=[
21099@{file=foo.c,fullname=/home/foo.c@},
21100@{file=/home/bar.c,fullname=/home/bar.c@},
21101@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21102(gdb)
922fbb7b
AC
21103@end smallexample
21104
a2c02241
NR
21105@subheading The @code{-file-list-shared-libraries} Command
21106@findex -file-list-shared-libraries
922fbb7b 21107
a2c02241 21108@subsubheading Synopsis
922fbb7b 21109
a2c02241
NR
21110@smallexample
21111 -file-list-shared-libraries
21112@end smallexample
922fbb7b 21113
a2c02241 21114List the shared libraries in the program.
922fbb7b 21115
a2c02241 21116@subsubheading @value{GDBN} Command
922fbb7b 21117
a2c02241 21118The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21119
a2c02241
NR
21120@subsubheading Example
21121N.A.
922fbb7b
AC
21122
21123
a2c02241
NR
21124@subheading The @code{-file-list-symbol-files} Command
21125@findex -file-list-symbol-files
922fbb7b 21126
a2c02241 21127@subsubheading Synopsis
922fbb7b 21128
a2c02241
NR
21129@smallexample
21130 -file-list-symbol-files
21131@end smallexample
922fbb7b 21132
a2c02241 21133List symbol files.
922fbb7b 21134
a2c02241 21135@subsubheading @value{GDBN} Command
922fbb7b 21136
a2c02241 21137The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21138
a2c02241
NR
21139@subsubheading Example
21140N.A.
922fbb7b 21141
922fbb7b 21142
a2c02241
NR
21143@subheading The @code{-file-symbol-file} Command
21144@findex -file-symbol-file
922fbb7b 21145
a2c02241 21146@subsubheading Synopsis
922fbb7b 21147
a2c02241
NR
21148@smallexample
21149 -file-symbol-file @var{file}
21150@end smallexample
922fbb7b 21151
a2c02241
NR
21152Read symbol table info from the specified @var{file} argument. When
21153used without arguments, clears @value{GDBN}'s symbol table info. No output is
21154produced, except for a completion notification.
922fbb7b 21155
a2c02241 21156@subsubheading @value{GDBN} Command
922fbb7b 21157
a2c02241 21158The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21159
a2c02241 21160@subsubheading Example
922fbb7b 21161
a2c02241 21162@smallexample
594fe323 21163(gdb)
a2c02241
NR
21164-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21165^done
594fe323 21166(gdb)
a2c02241 21167@end smallexample
922fbb7b 21168
a2c02241 21169@ignore
a2c02241
NR
21170@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21171@node GDB/MI Memory Overlay Commands
21172@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21173
a2c02241 21174The memory overlay commands are not implemented.
922fbb7b 21175
a2c02241 21176@c @subheading -overlay-auto
922fbb7b 21177
a2c02241 21178@c @subheading -overlay-list-mapping-state
922fbb7b 21179
a2c02241 21180@c @subheading -overlay-list-overlays
922fbb7b 21181
a2c02241 21182@c @subheading -overlay-map
922fbb7b 21183
a2c02241 21184@c @subheading -overlay-off
922fbb7b 21185
a2c02241 21186@c @subheading -overlay-on
922fbb7b 21187
a2c02241 21188@c @subheading -overlay-unmap
922fbb7b 21189
a2c02241
NR
21190@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21191@node GDB/MI Signal Handling Commands
21192@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21193
a2c02241 21194Signal handling commands are not implemented.
922fbb7b 21195
a2c02241 21196@c @subheading -signal-handle
922fbb7b 21197
a2c02241 21198@c @subheading -signal-list-handle-actions
922fbb7b 21199
a2c02241
NR
21200@c @subheading -signal-list-signal-types
21201@end ignore
922fbb7b 21202
922fbb7b 21203
a2c02241
NR
21204@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21205@node GDB/MI Target Manipulation
21206@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21207
21208
a2c02241
NR
21209@subheading The @code{-target-attach} Command
21210@findex -target-attach
922fbb7b
AC
21211
21212@subsubheading Synopsis
21213
21214@smallexample
a2c02241 21215 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21216@end smallexample
21217
a2c02241 21218Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21219
79a6e687 21220@subsubheading @value{GDBN} Command
922fbb7b 21221
a2c02241 21222The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21223
a2c02241
NR
21224@subsubheading Example
21225N.A.
922fbb7b 21226
a2c02241
NR
21227
21228@subheading The @code{-target-compare-sections} Command
21229@findex -target-compare-sections
922fbb7b
AC
21230
21231@subsubheading Synopsis
21232
21233@smallexample
a2c02241 21234 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21235@end smallexample
21236
a2c02241
NR
21237Compare data of section @var{section} on target to the exec file.
21238Without the argument, all sections are compared.
922fbb7b 21239
a2c02241 21240@subsubheading @value{GDBN} Command
922fbb7b 21241
a2c02241 21242The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21243
a2c02241
NR
21244@subsubheading Example
21245N.A.
21246
21247
21248@subheading The @code{-target-detach} Command
21249@findex -target-detach
922fbb7b
AC
21250
21251@subsubheading Synopsis
21252
21253@smallexample
a2c02241 21254 -target-detach
922fbb7b
AC
21255@end smallexample
21256
a2c02241
NR
21257Detach from the remote target which normally resumes its execution.
21258There's no output.
21259
79a6e687 21260@subsubheading @value{GDBN} Command
a2c02241
NR
21261
21262The corresponding @value{GDBN} command is @samp{detach}.
21263
21264@subsubheading Example
922fbb7b
AC
21265
21266@smallexample
594fe323 21267(gdb)
a2c02241
NR
21268-target-detach
21269^done
594fe323 21270(gdb)
922fbb7b
AC
21271@end smallexample
21272
21273
a2c02241
NR
21274@subheading The @code{-target-disconnect} Command
21275@findex -target-disconnect
922fbb7b
AC
21276
21277@subsubheading Synopsis
21278
123dc839 21279@smallexample
a2c02241 21280 -target-disconnect
123dc839 21281@end smallexample
922fbb7b 21282
a2c02241
NR
21283Disconnect from the remote target. There's no output and the target is
21284generally not resumed.
21285
79a6e687 21286@subsubheading @value{GDBN} Command
a2c02241
NR
21287
21288The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21289
21290@subsubheading Example
922fbb7b
AC
21291
21292@smallexample
594fe323 21293(gdb)
a2c02241
NR
21294-target-disconnect
21295^done
594fe323 21296(gdb)
922fbb7b
AC
21297@end smallexample
21298
21299
a2c02241
NR
21300@subheading The @code{-target-download} Command
21301@findex -target-download
922fbb7b
AC
21302
21303@subsubheading Synopsis
21304
21305@smallexample
a2c02241 21306 -target-download
922fbb7b
AC
21307@end smallexample
21308
a2c02241
NR
21309Loads the executable onto the remote target.
21310It prints out an update message every half second, which includes the fields:
21311
21312@table @samp
21313@item section
21314The name of the section.
21315@item section-sent
21316The size of what has been sent so far for that section.
21317@item section-size
21318The size of the section.
21319@item total-sent
21320The total size of what was sent so far (the current and the previous sections).
21321@item total-size
21322The size of the overall executable to download.
21323@end table
21324
21325@noindent
21326Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21327@sc{gdb/mi} Output Syntax}).
21328
21329In addition, it prints the name and size of the sections, as they are
21330downloaded. These messages include the following fields:
21331
21332@table @samp
21333@item section
21334The name of the section.
21335@item section-size
21336The size of the section.
21337@item total-size
21338The size of the overall executable to download.
21339@end table
21340
21341@noindent
21342At the end, a summary is printed.
21343
21344@subsubheading @value{GDBN} Command
21345
21346The corresponding @value{GDBN} command is @samp{load}.
21347
21348@subsubheading Example
21349
21350Note: each status message appears on a single line. Here the messages
21351have been broken down so that they can fit onto a page.
922fbb7b
AC
21352
21353@smallexample
594fe323 21354(gdb)
a2c02241
NR
21355-target-download
21356+download,@{section=".text",section-size="6668",total-size="9880"@}
21357+download,@{section=".text",section-sent="512",section-size="6668",
21358total-sent="512",total-size="9880"@}
21359+download,@{section=".text",section-sent="1024",section-size="6668",
21360total-sent="1024",total-size="9880"@}
21361+download,@{section=".text",section-sent="1536",section-size="6668",
21362total-sent="1536",total-size="9880"@}
21363+download,@{section=".text",section-sent="2048",section-size="6668",
21364total-sent="2048",total-size="9880"@}
21365+download,@{section=".text",section-sent="2560",section-size="6668",
21366total-sent="2560",total-size="9880"@}
21367+download,@{section=".text",section-sent="3072",section-size="6668",
21368total-sent="3072",total-size="9880"@}
21369+download,@{section=".text",section-sent="3584",section-size="6668",
21370total-sent="3584",total-size="9880"@}
21371+download,@{section=".text",section-sent="4096",section-size="6668",
21372total-sent="4096",total-size="9880"@}
21373+download,@{section=".text",section-sent="4608",section-size="6668",
21374total-sent="4608",total-size="9880"@}
21375+download,@{section=".text",section-sent="5120",section-size="6668",
21376total-sent="5120",total-size="9880"@}
21377+download,@{section=".text",section-sent="5632",section-size="6668",
21378total-sent="5632",total-size="9880"@}
21379+download,@{section=".text",section-sent="6144",section-size="6668",
21380total-sent="6144",total-size="9880"@}
21381+download,@{section=".text",section-sent="6656",section-size="6668",
21382total-sent="6656",total-size="9880"@}
21383+download,@{section=".init",section-size="28",total-size="9880"@}
21384+download,@{section=".fini",section-size="28",total-size="9880"@}
21385+download,@{section=".data",section-size="3156",total-size="9880"@}
21386+download,@{section=".data",section-sent="512",section-size="3156",
21387total-sent="7236",total-size="9880"@}
21388+download,@{section=".data",section-sent="1024",section-size="3156",
21389total-sent="7748",total-size="9880"@}
21390+download,@{section=".data",section-sent="1536",section-size="3156",
21391total-sent="8260",total-size="9880"@}
21392+download,@{section=".data",section-sent="2048",section-size="3156",
21393total-sent="8772",total-size="9880"@}
21394+download,@{section=".data",section-sent="2560",section-size="3156",
21395total-sent="9284",total-size="9880"@}
21396+download,@{section=".data",section-sent="3072",section-size="3156",
21397total-sent="9796",total-size="9880"@}
21398^done,address="0x10004",load-size="9880",transfer-rate="6586",
21399write-rate="429"
594fe323 21400(gdb)
922fbb7b
AC
21401@end smallexample
21402
21403
a2c02241
NR
21404@subheading The @code{-target-exec-status} Command
21405@findex -target-exec-status
922fbb7b
AC
21406
21407@subsubheading Synopsis
21408
21409@smallexample
a2c02241 21410 -target-exec-status
922fbb7b
AC
21411@end smallexample
21412
a2c02241
NR
21413Provide information on the state of the target (whether it is running or
21414not, for instance).
922fbb7b 21415
a2c02241 21416@subsubheading @value{GDBN} Command
922fbb7b 21417
a2c02241
NR
21418There's no equivalent @value{GDBN} command.
21419
21420@subsubheading Example
21421N.A.
922fbb7b 21422
a2c02241
NR
21423
21424@subheading The @code{-target-list-available-targets} Command
21425@findex -target-list-available-targets
922fbb7b
AC
21426
21427@subsubheading Synopsis
21428
21429@smallexample
a2c02241 21430 -target-list-available-targets
922fbb7b
AC
21431@end smallexample
21432
a2c02241 21433List the possible targets to connect to.
922fbb7b 21434
a2c02241 21435@subsubheading @value{GDBN} Command
922fbb7b 21436
a2c02241 21437The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21438
a2c02241
NR
21439@subsubheading Example
21440N.A.
21441
21442
21443@subheading The @code{-target-list-current-targets} Command
21444@findex -target-list-current-targets
922fbb7b
AC
21445
21446@subsubheading Synopsis
21447
21448@smallexample
a2c02241 21449 -target-list-current-targets
922fbb7b
AC
21450@end smallexample
21451
a2c02241 21452Describe the current target.
922fbb7b 21453
a2c02241 21454@subsubheading @value{GDBN} Command
922fbb7b 21455
a2c02241
NR
21456The corresponding information is printed by @samp{info file} (among
21457other things).
922fbb7b 21458
a2c02241
NR
21459@subsubheading Example
21460N.A.
21461
21462
21463@subheading The @code{-target-list-parameters} Command
21464@findex -target-list-parameters
922fbb7b
AC
21465
21466@subsubheading Synopsis
21467
21468@smallexample
a2c02241 21469 -target-list-parameters
922fbb7b
AC
21470@end smallexample
21471
a2c02241
NR
21472@c ????
21473
21474@subsubheading @value{GDBN} Command
21475
21476No equivalent.
922fbb7b
AC
21477
21478@subsubheading Example
a2c02241
NR
21479N.A.
21480
21481
21482@subheading The @code{-target-select} Command
21483@findex -target-select
21484
21485@subsubheading Synopsis
922fbb7b
AC
21486
21487@smallexample
a2c02241 21488 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21489@end smallexample
21490
a2c02241 21491Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21492
a2c02241
NR
21493@table @samp
21494@item @var{type}
21495The type of target, for instance @samp{async}, @samp{remote}, etc.
21496@item @var{parameters}
21497Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21498Commands for Managing Targets}, for more details.
a2c02241
NR
21499@end table
21500
21501The output is a connection notification, followed by the address at
21502which the target program is, in the following form:
922fbb7b
AC
21503
21504@smallexample
a2c02241
NR
21505^connected,addr="@var{address}",func="@var{function name}",
21506 args=[@var{arg list}]
922fbb7b
AC
21507@end smallexample
21508
a2c02241
NR
21509@subsubheading @value{GDBN} Command
21510
21511The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21512
21513@subsubheading Example
922fbb7b 21514
265eeb58 21515@smallexample
594fe323 21516(gdb)
a2c02241
NR
21517-target-select async /dev/ttya
21518^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21519(gdb)
265eeb58 21520@end smallexample
ef21caaf 21521
a6b151f1
DJ
21522@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21523@node GDB/MI File Transfer Commands
21524@section @sc{gdb/mi} File Transfer Commands
21525
21526
21527@subheading The @code{-target-file-put} Command
21528@findex -target-file-put
21529
21530@subsubheading Synopsis
21531
21532@smallexample
21533 -target-file-put @var{hostfile} @var{targetfile}
21534@end smallexample
21535
21536Copy file @var{hostfile} from the host system (the machine running
21537@value{GDBN}) to @var{targetfile} on the target system.
21538
21539@subsubheading @value{GDBN} Command
21540
21541The corresponding @value{GDBN} command is @samp{remote put}.
21542
21543@subsubheading Example
21544
21545@smallexample
21546(gdb)
21547-target-file-put localfile remotefile
21548^done
21549(gdb)
21550@end smallexample
21551
21552
21553@subheading The @code{-target-file-put} Command
21554@findex -target-file-get
21555
21556@subsubheading Synopsis
21557
21558@smallexample
21559 -target-file-get @var{targetfile} @var{hostfile}
21560@end smallexample
21561
21562Copy file @var{targetfile} from the target system to @var{hostfile}
21563on the host system.
21564
21565@subsubheading @value{GDBN} Command
21566
21567The corresponding @value{GDBN} command is @samp{remote get}.
21568
21569@subsubheading Example
21570
21571@smallexample
21572(gdb)
21573-target-file-get remotefile localfile
21574^done
21575(gdb)
21576@end smallexample
21577
21578
21579@subheading The @code{-target-file-delete} Command
21580@findex -target-file-delete
21581
21582@subsubheading Synopsis
21583
21584@smallexample
21585 -target-file-delete @var{targetfile}
21586@end smallexample
21587
21588Delete @var{targetfile} from the target system.
21589
21590@subsubheading @value{GDBN} Command
21591
21592The corresponding @value{GDBN} command is @samp{remote delete}.
21593
21594@subsubheading Example
21595
21596@smallexample
21597(gdb)
21598-target-file-delete remotefile
21599^done
21600(gdb)
21601@end smallexample
21602
21603
ef21caaf
NR
21604@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21605@node GDB/MI Miscellaneous Commands
21606@section Miscellaneous @sc{gdb/mi} Commands
21607
21608@c @subheading -gdb-complete
21609
21610@subheading The @code{-gdb-exit} Command
21611@findex -gdb-exit
21612
21613@subsubheading Synopsis
21614
21615@smallexample
21616 -gdb-exit
21617@end smallexample
21618
21619Exit @value{GDBN} immediately.
21620
21621@subsubheading @value{GDBN} Command
21622
21623Approximately corresponds to @samp{quit}.
21624
21625@subsubheading Example
21626
21627@smallexample
594fe323 21628(gdb)
ef21caaf
NR
21629-gdb-exit
21630^exit
21631@end smallexample
21632
a2c02241
NR
21633
21634@subheading The @code{-exec-abort} Command
21635@findex -exec-abort
21636
21637@subsubheading Synopsis
21638
21639@smallexample
21640 -exec-abort
21641@end smallexample
21642
21643Kill the inferior running program.
21644
21645@subsubheading @value{GDBN} Command
21646
21647The corresponding @value{GDBN} command is @samp{kill}.
21648
21649@subsubheading Example
21650N.A.
21651
21652
ef21caaf
NR
21653@subheading The @code{-gdb-set} Command
21654@findex -gdb-set
21655
21656@subsubheading Synopsis
21657
21658@smallexample
21659 -gdb-set
21660@end smallexample
21661
21662Set an internal @value{GDBN} variable.
21663@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21664
21665@subsubheading @value{GDBN} Command
21666
21667The corresponding @value{GDBN} command is @samp{set}.
21668
21669@subsubheading Example
21670
21671@smallexample
594fe323 21672(gdb)
ef21caaf
NR
21673-gdb-set $foo=3
21674^done
594fe323 21675(gdb)
ef21caaf
NR
21676@end smallexample
21677
21678
21679@subheading The @code{-gdb-show} Command
21680@findex -gdb-show
21681
21682@subsubheading Synopsis
21683
21684@smallexample
21685 -gdb-show
21686@end smallexample
21687
21688Show the current value of a @value{GDBN} variable.
21689
79a6e687 21690@subsubheading @value{GDBN} Command
ef21caaf
NR
21691
21692The corresponding @value{GDBN} command is @samp{show}.
21693
21694@subsubheading Example
21695
21696@smallexample
594fe323 21697(gdb)
ef21caaf
NR
21698-gdb-show annotate
21699^done,value="0"
594fe323 21700(gdb)
ef21caaf
NR
21701@end smallexample
21702
21703@c @subheading -gdb-source
21704
21705
21706@subheading The @code{-gdb-version} Command
21707@findex -gdb-version
21708
21709@subsubheading Synopsis
21710
21711@smallexample
21712 -gdb-version
21713@end smallexample
21714
21715Show version information for @value{GDBN}. Used mostly in testing.
21716
21717@subsubheading @value{GDBN} Command
21718
21719The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21720default shows this information when you start an interactive session.
21721
21722@subsubheading Example
21723
21724@c This example modifies the actual output from GDB to avoid overfull
21725@c box in TeX.
21726@smallexample
594fe323 21727(gdb)
ef21caaf
NR
21728-gdb-version
21729~GNU gdb 5.2.1
21730~Copyright 2000 Free Software Foundation, Inc.
21731~GDB is free software, covered by the GNU General Public License, and
21732~you are welcome to change it and/or distribute copies of it under
21733~ certain conditions.
21734~Type "show copying" to see the conditions.
21735~There is absolutely no warranty for GDB. Type "show warranty" for
21736~ details.
21737~This GDB was configured as
21738 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21739^done
594fe323 21740(gdb)
ef21caaf
NR
21741@end smallexample
21742
084344da
VP
21743@subheading The @code{-list-features} Command
21744@findex -list-features
21745
21746Returns a list of particular features of the MI protocol that
21747this version of gdb implements. A feature can be a command,
21748or a new field in an output of some command, or even an
21749important bugfix. While a frontend can sometimes detect presence
21750of a feature at runtime, it is easier to perform detection at debugger
21751startup.
21752
21753The command returns a list of strings, with each string naming an
21754available feature. Each returned string is just a name, it does not
21755have any internal structure. The list of possible feature names
21756is given below.
21757
21758Example output:
21759
21760@smallexample
21761(gdb) -list-features
21762^done,result=["feature1","feature2"]
21763@end smallexample
21764
21765The current list of features is:
21766
21767@itemize @minus
21768@item
21769@samp{frozen-varobjs}---indicates presence of the
21770@code{-var-set-frozen} command, as well as possible presense of the
21771@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21772@item
21773@samp{pending-breakpoints}---indicates presence of the @code{-f}
21774option to the @code{-break-insert} command.
21775
084344da
VP
21776@end itemize
21777
ef21caaf
NR
21778@subheading The @code{-interpreter-exec} Command
21779@findex -interpreter-exec
21780
21781@subheading Synopsis
21782
21783@smallexample
21784-interpreter-exec @var{interpreter} @var{command}
21785@end smallexample
a2c02241 21786@anchor{-interpreter-exec}
ef21caaf
NR
21787
21788Execute the specified @var{command} in the given @var{interpreter}.
21789
21790@subheading @value{GDBN} Command
21791
21792The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21793
21794@subheading Example
21795
21796@smallexample
594fe323 21797(gdb)
ef21caaf
NR
21798-interpreter-exec console "break main"
21799&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21800&"During symbol reading, bad structure-type format.\n"
21801~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21802^done
594fe323 21803(gdb)
ef21caaf
NR
21804@end smallexample
21805
21806@subheading The @code{-inferior-tty-set} Command
21807@findex -inferior-tty-set
21808
21809@subheading Synopsis
21810
21811@smallexample
21812-inferior-tty-set /dev/pts/1
21813@end smallexample
21814
21815Set terminal for future runs of the program being debugged.
21816
21817@subheading @value{GDBN} Command
21818
21819The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21820
21821@subheading Example
21822
21823@smallexample
594fe323 21824(gdb)
ef21caaf
NR
21825-inferior-tty-set /dev/pts/1
21826^done
594fe323 21827(gdb)
ef21caaf
NR
21828@end smallexample
21829
21830@subheading The @code{-inferior-tty-show} Command
21831@findex -inferior-tty-show
21832
21833@subheading Synopsis
21834
21835@smallexample
21836-inferior-tty-show
21837@end smallexample
21838
21839Show terminal for future runs of program being debugged.
21840
21841@subheading @value{GDBN} Command
21842
21843The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21844
21845@subheading Example
21846
21847@smallexample
594fe323 21848(gdb)
ef21caaf
NR
21849-inferior-tty-set /dev/pts/1
21850^done
594fe323 21851(gdb)
ef21caaf
NR
21852-inferior-tty-show
21853^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21854(gdb)
ef21caaf 21855@end smallexample
922fbb7b 21856
a4eefcd8
NR
21857@subheading The @code{-enable-timings} Command
21858@findex -enable-timings
21859
21860@subheading Synopsis
21861
21862@smallexample
21863-enable-timings [yes | no]
21864@end smallexample
21865
21866Toggle the printing of the wallclock, user and system times for an MI
21867command as a field in its output. This command is to help frontend
21868developers optimize the performance of their code. No argument is
21869equivalent to @samp{yes}.
21870
21871@subheading @value{GDBN} Command
21872
21873No equivalent.
21874
21875@subheading Example
21876
21877@smallexample
21878(gdb)
21879-enable-timings
21880^done
21881(gdb)
21882-break-insert main
21883^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21884addr="0x080484ed",func="main",file="myprog.c",
21885fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21886time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21887(gdb)
21888-enable-timings no
21889^done
21890(gdb)
21891-exec-run
21892^running
21893(gdb)
21894*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21895frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21896@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21897fullname="/home/nickrob/myprog.c",line="73"@}
21898(gdb)
21899@end smallexample
21900
922fbb7b
AC
21901@node Annotations
21902@chapter @value{GDBN} Annotations
21903
086432e2
AC
21904This chapter describes annotations in @value{GDBN}. Annotations were
21905designed to interface @value{GDBN} to graphical user interfaces or other
21906similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21907relatively high level.
21908
d3e8051b 21909The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21910(@pxref{GDB/MI}).
21911
922fbb7b
AC
21912@ignore
21913This is Edition @value{EDITION}, @value{DATE}.
21914@end ignore
21915
21916@menu
21917* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21918* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21919* Prompting:: Annotations marking @value{GDBN}'s need for input.
21920* Errors:: Annotations for error messages.
922fbb7b
AC
21921* Invalidation:: Some annotations describe things now invalid.
21922* Annotations for Running::
21923 Whether the program is running, how it stopped, etc.
21924* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21925@end menu
21926
21927@node Annotations Overview
21928@section What is an Annotation?
21929@cindex annotations
21930
922fbb7b
AC
21931Annotations start with a newline character, two @samp{control-z}
21932characters, and the name of the annotation. If there is no additional
21933information associated with this annotation, the name of the annotation
21934is followed immediately by a newline. If there is additional
21935information, the name of the annotation is followed by a space, the
21936additional information, and a newline. The additional information
21937cannot contain newline characters.
21938
21939Any output not beginning with a newline and two @samp{control-z}
21940characters denotes literal output from @value{GDBN}. Currently there is
21941no need for @value{GDBN} to output a newline followed by two
21942@samp{control-z} characters, but if there was such a need, the
21943annotations could be extended with an @samp{escape} annotation which
21944means those three characters as output.
21945
086432e2
AC
21946The annotation @var{level}, which is specified using the
21947@option{--annotate} command line option (@pxref{Mode Options}), controls
21948how much information @value{GDBN} prints together with its prompt,
21949values of expressions, source lines, and other types of output. Level 0
d3e8051b 21950is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21951subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21952for programs that control @value{GDBN}, and level 2 annotations have
21953been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21954Interface, annotate, GDB's Obsolete Annotations}).
21955
21956@table @code
21957@kindex set annotate
21958@item set annotate @var{level}
e09f16f9 21959The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21960annotations to the specified @var{level}.
9c16f35a
EZ
21961
21962@item show annotate
21963@kindex show annotate
21964Show the current annotation level.
09d4efe1
EZ
21965@end table
21966
21967This chapter describes level 3 annotations.
086432e2 21968
922fbb7b
AC
21969A simple example of starting up @value{GDBN} with annotations is:
21970
21971@smallexample
086432e2
AC
21972$ @kbd{gdb --annotate=3}
21973GNU gdb 6.0
21974Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21975GDB is free software, covered by the GNU General Public License,
21976and you are welcome to change it and/or distribute copies of it
21977under certain conditions.
21978Type "show copying" to see the conditions.
21979There is absolutely no warranty for GDB. Type "show warranty"
21980for details.
086432e2 21981This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21982
21983^Z^Zpre-prompt
f7dc1244 21984(@value{GDBP})
922fbb7b 21985^Z^Zprompt
086432e2 21986@kbd{quit}
922fbb7b
AC
21987
21988^Z^Zpost-prompt
b383017d 21989$
922fbb7b
AC
21990@end smallexample
21991
21992Here @samp{quit} is input to @value{GDBN}; the rest is output from
21993@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21994denotes a @samp{control-z} character) are annotations; the rest is
21995output from @value{GDBN}.
21996
9e6c4bd5
NR
21997@node Server Prefix
21998@section The Server Prefix
21999@cindex server prefix
22000
22001If you prefix a command with @samp{server } then it will not affect
22002the command history, nor will it affect @value{GDBN}'s notion of which
22003command to repeat if @key{RET} is pressed on a line by itself. This
22004means that commands can be run behind a user's back by a front-end in
22005a transparent manner.
22006
22007The server prefix does not affect the recording of values into the value
22008history; to print a value without recording it into the value history,
22009use the @code{output} command instead of the @code{print} command.
22010
922fbb7b
AC
22011@node Prompting
22012@section Annotation for @value{GDBN} Input
22013
22014@cindex annotations for prompts
22015When @value{GDBN} prompts for input, it annotates this fact so it is possible
22016to know when to send output, when the output from a given command is
22017over, etc.
22018
22019Different kinds of input each have a different @dfn{input type}. Each
22020input type has three annotations: a @code{pre-} annotation, which
22021denotes the beginning of any prompt which is being output, a plain
22022annotation, which denotes the end of the prompt, and then a @code{post-}
22023annotation which denotes the end of any echo which may (or may not) be
22024associated with the input. For example, the @code{prompt} input type
22025features the following annotations:
22026
22027@smallexample
22028^Z^Zpre-prompt
22029^Z^Zprompt
22030^Z^Zpost-prompt
22031@end smallexample
22032
22033The input types are
22034
22035@table @code
e5ac9b53
EZ
22036@findex pre-prompt annotation
22037@findex prompt annotation
22038@findex post-prompt annotation
922fbb7b
AC
22039@item prompt
22040When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22041
e5ac9b53
EZ
22042@findex pre-commands annotation
22043@findex commands annotation
22044@findex post-commands annotation
922fbb7b
AC
22045@item commands
22046When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22047command. The annotations are repeated for each command which is input.
22048
e5ac9b53
EZ
22049@findex pre-overload-choice annotation
22050@findex overload-choice annotation
22051@findex post-overload-choice annotation
922fbb7b
AC
22052@item overload-choice
22053When @value{GDBN} wants the user to select between various overloaded functions.
22054
e5ac9b53
EZ
22055@findex pre-query annotation
22056@findex query annotation
22057@findex post-query annotation
922fbb7b
AC
22058@item query
22059When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22060
e5ac9b53
EZ
22061@findex pre-prompt-for-continue annotation
22062@findex prompt-for-continue annotation
22063@findex post-prompt-for-continue annotation
922fbb7b
AC
22064@item prompt-for-continue
22065When @value{GDBN} is asking the user to press return to continue. Note: Don't
22066expect this to work well; instead use @code{set height 0} to disable
22067prompting. This is because the counting of lines is buggy in the
22068presence of annotations.
22069@end table
22070
22071@node Errors
22072@section Errors
22073@cindex annotations for errors, warnings and interrupts
22074
e5ac9b53 22075@findex quit annotation
922fbb7b
AC
22076@smallexample
22077^Z^Zquit
22078@end smallexample
22079
22080This annotation occurs right before @value{GDBN} responds to an interrupt.
22081
e5ac9b53 22082@findex error annotation
922fbb7b
AC
22083@smallexample
22084^Z^Zerror
22085@end smallexample
22086
22087This annotation occurs right before @value{GDBN} responds to an error.
22088
22089Quit and error annotations indicate that any annotations which @value{GDBN} was
22090in the middle of may end abruptly. For example, if a
22091@code{value-history-begin} annotation is followed by a @code{error}, one
22092cannot expect to receive the matching @code{value-history-end}. One
22093cannot expect not to receive it either, however; an error annotation
22094does not necessarily mean that @value{GDBN} is immediately returning all the way
22095to the top level.
22096
e5ac9b53 22097@findex error-begin annotation
922fbb7b
AC
22098A quit or error annotation may be preceded by
22099
22100@smallexample
22101^Z^Zerror-begin
22102@end smallexample
22103
22104Any output between that and the quit or error annotation is the error
22105message.
22106
22107Warning messages are not yet annotated.
22108@c If we want to change that, need to fix warning(), type_error(),
22109@c range_error(), and possibly other places.
22110
922fbb7b
AC
22111@node Invalidation
22112@section Invalidation Notices
22113
22114@cindex annotations for invalidation messages
22115The following annotations say that certain pieces of state may have
22116changed.
22117
22118@table @code
e5ac9b53 22119@findex frames-invalid annotation
922fbb7b
AC
22120@item ^Z^Zframes-invalid
22121
22122The frames (for example, output from the @code{backtrace} command) may
22123have changed.
22124
e5ac9b53 22125@findex breakpoints-invalid annotation
922fbb7b
AC
22126@item ^Z^Zbreakpoints-invalid
22127
22128The breakpoints may have changed. For example, the user just added or
22129deleted a breakpoint.
22130@end table
22131
22132@node Annotations for Running
22133@section Running the Program
22134@cindex annotations for running programs
22135
e5ac9b53
EZ
22136@findex starting annotation
22137@findex stopping annotation
922fbb7b 22138When the program starts executing due to a @value{GDBN} command such as
b383017d 22139@code{step} or @code{continue},
922fbb7b
AC
22140
22141@smallexample
22142^Z^Zstarting
22143@end smallexample
22144
b383017d 22145is output. When the program stops,
922fbb7b
AC
22146
22147@smallexample
22148^Z^Zstopped
22149@end smallexample
22150
22151is output. Before the @code{stopped} annotation, a variety of
22152annotations describe how the program stopped.
22153
22154@table @code
e5ac9b53 22155@findex exited annotation
922fbb7b
AC
22156@item ^Z^Zexited @var{exit-status}
22157The program exited, and @var{exit-status} is the exit status (zero for
22158successful exit, otherwise nonzero).
22159
e5ac9b53
EZ
22160@findex signalled annotation
22161@findex signal-name annotation
22162@findex signal-name-end annotation
22163@findex signal-string annotation
22164@findex signal-string-end annotation
922fbb7b
AC
22165@item ^Z^Zsignalled
22166The program exited with a signal. After the @code{^Z^Zsignalled}, the
22167annotation continues:
22168
22169@smallexample
22170@var{intro-text}
22171^Z^Zsignal-name
22172@var{name}
22173^Z^Zsignal-name-end
22174@var{middle-text}
22175^Z^Zsignal-string
22176@var{string}
22177^Z^Zsignal-string-end
22178@var{end-text}
22179@end smallexample
22180
22181@noindent
22182where @var{name} is the name of the signal, such as @code{SIGILL} or
22183@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22184as @code{Illegal Instruction} or @code{Segmentation fault}.
22185@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22186user's benefit and have no particular format.
22187
e5ac9b53 22188@findex signal annotation
922fbb7b
AC
22189@item ^Z^Zsignal
22190The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22191just saying that the program received the signal, not that it was
22192terminated with it.
22193
e5ac9b53 22194@findex breakpoint annotation
922fbb7b
AC
22195@item ^Z^Zbreakpoint @var{number}
22196The program hit breakpoint number @var{number}.
22197
e5ac9b53 22198@findex watchpoint annotation
922fbb7b
AC
22199@item ^Z^Zwatchpoint @var{number}
22200The program hit watchpoint number @var{number}.
22201@end table
22202
22203@node Source Annotations
22204@section Displaying Source
22205@cindex annotations for source display
22206
e5ac9b53 22207@findex source annotation
922fbb7b
AC
22208The following annotation is used instead of displaying source code:
22209
22210@smallexample
22211^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22212@end smallexample
22213
22214where @var{filename} is an absolute file name indicating which source
22215file, @var{line} is the line number within that file (where 1 is the
22216first line in the file), @var{character} is the character position
22217within the file (where 0 is the first character in the file) (for most
22218debug formats this will necessarily point to the beginning of a line),
22219@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22220line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22221@var{addr} is the address in the target program associated with the
22222source which is being displayed. @var{addr} is in the form @samp{0x}
22223followed by one or more lowercase hex digits (note that this does not
22224depend on the language).
22225
8e04817f
AC
22226@node GDB Bugs
22227@chapter Reporting Bugs in @value{GDBN}
22228@cindex bugs in @value{GDBN}
22229@cindex reporting bugs in @value{GDBN}
c906108c 22230
8e04817f 22231Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22232
8e04817f
AC
22233Reporting a bug may help you by bringing a solution to your problem, or it
22234may not. But in any case the principal function of a bug report is to help
22235the entire community by making the next version of @value{GDBN} work better. Bug
22236reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22237
8e04817f
AC
22238In order for a bug report to serve its purpose, you must include the
22239information that enables us to fix the bug.
c4555f82
SC
22240
22241@menu
8e04817f
AC
22242* Bug Criteria:: Have you found a bug?
22243* Bug Reporting:: How to report bugs
c4555f82
SC
22244@end menu
22245
8e04817f 22246@node Bug Criteria
79a6e687 22247@section Have You Found a Bug?
8e04817f 22248@cindex bug criteria
c4555f82 22249
8e04817f 22250If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22251
22252@itemize @bullet
8e04817f
AC
22253@cindex fatal signal
22254@cindex debugger crash
22255@cindex crash of debugger
c4555f82 22256@item
8e04817f
AC
22257If the debugger gets a fatal signal, for any input whatever, that is a
22258@value{GDBN} bug. Reliable debuggers never crash.
22259
22260@cindex error on valid input
22261@item
22262If @value{GDBN} produces an error message for valid input, that is a
22263bug. (Note that if you're cross debugging, the problem may also be
22264somewhere in the connection to the target.)
c4555f82 22265
8e04817f 22266@cindex invalid input
c4555f82 22267@item
8e04817f
AC
22268If @value{GDBN} does not produce an error message for invalid input,
22269that is a bug. However, you should note that your idea of
22270``invalid input'' might be our idea of ``an extension'' or ``support
22271for traditional practice''.
22272
22273@item
22274If you are an experienced user of debugging tools, your suggestions
22275for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22276@end itemize
22277
8e04817f 22278@node Bug Reporting
79a6e687 22279@section How to Report Bugs
8e04817f
AC
22280@cindex bug reports
22281@cindex @value{GDBN} bugs, reporting
22282
22283A number of companies and individuals offer support for @sc{gnu} products.
22284If you obtained @value{GDBN} from a support organization, we recommend you
22285contact that organization first.
22286
22287You can find contact information for many support companies and
22288individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22289distribution.
22290@c should add a web page ref...
22291
129188f6 22292In any event, we also recommend that you submit bug reports for
d3e8051b 22293@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22294@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22295page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22296be used.
8e04817f
AC
22297
22298@strong{Do not send bug reports to @samp{info-gdb}, or to
22299@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22300not want to receive bug reports. Those that do have arranged to receive
22301@samp{bug-gdb}.
22302
22303The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22304serves as a repeater. The mailing list and the newsgroup carry exactly
22305the same messages. Often people think of posting bug reports to the
22306newsgroup instead of mailing them. This appears to work, but it has one
22307problem which can be crucial: a newsgroup posting often lacks a mail
22308path back to the sender. Thus, if we need to ask for more information,
22309we may be unable to reach you. For this reason, it is better to send
22310bug reports to the mailing list.
c4555f82 22311
8e04817f
AC
22312The fundamental principle of reporting bugs usefully is this:
22313@strong{report all the facts}. If you are not sure whether to state a
22314fact or leave it out, state it!
c4555f82 22315
8e04817f
AC
22316Often people omit facts because they think they know what causes the
22317problem and assume that some details do not matter. Thus, you might
22318assume that the name of the variable you use in an example does not matter.
22319Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22320stray memory reference which happens to fetch from the location where that
22321name is stored in memory; perhaps, if the name were different, the contents
22322of that location would fool the debugger into doing the right thing despite
22323the bug. Play it safe and give a specific, complete example. That is the
22324easiest thing for you to do, and the most helpful.
c4555f82 22325
8e04817f
AC
22326Keep in mind that the purpose of a bug report is to enable us to fix the
22327bug. It may be that the bug has been reported previously, but neither
22328you nor we can know that unless your bug report is complete and
22329self-contained.
c4555f82 22330
8e04817f
AC
22331Sometimes people give a few sketchy facts and ask, ``Does this ring a
22332bell?'' Those bug reports are useless, and we urge everyone to
22333@emph{refuse to respond to them} except to chide the sender to report
22334bugs properly.
22335
22336To enable us to fix the bug, you should include all these things:
c4555f82
SC
22337
22338@itemize @bullet
22339@item
8e04817f
AC
22340The version of @value{GDBN}. @value{GDBN} announces it if you start
22341with no arguments; you can also print it at any time using @code{show
22342version}.
c4555f82 22343
8e04817f
AC
22344Without this, we will not know whether there is any point in looking for
22345the bug in the current version of @value{GDBN}.
c4555f82
SC
22346
22347@item
8e04817f
AC
22348The type of machine you are using, and the operating system name and
22349version number.
c4555f82
SC
22350
22351@item
c1468174 22352What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22353``@value{GCC}--2.8.1''.
c4555f82
SC
22354
22355@item
8e04817f 22356What compiler (and its version) was used to compile the program you are
c1468174 22357debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22358C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22359to get this information; for other compilers, see the documentation for
22360those compilers.
c4555f82 22361
8e04817f
AC
22362@item
22363The command arguments you gave the compiler to compile your example and
22364observe the bug. For example, did you use @samp{-O}? To guarantee
22365you will not omit something important, list them all. A copy of the
22366Makefile (or the output from make) is sufficient.
c4555f82 22367
8e04817f
AC
22368If we were to try to guess the arguments, we would probably guess wrong
22369and then we might not encounter the bug.
c4555f82 22370
8e04817f
AC
22371@item
22372A complete input script, and all necessary source files, that will
22373reproduce the bug.
c4555f82 22374
8e04817f
AC
22375@item
22376A description of what behavior you observe that you believe is
22377incorrect. For example, ``It gets a fatal signal.''
c4555f82 22378
8e04817f
AC
22379Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22380will certainly notice it. But if the bug is incorrect output, we might
22381not notice unless it is glaringly wrong. You might as well not give us
22382a chance to make a mistake.
c4555f82 22383
8e04817f
AC
22384Even if the problem you experience is a fatal signal, you should still
22385say so explicitly. Suppose something strange is going on, such as, your
22386copy of @value{GDBN} is out of synch, or you have encountered a bug in
22387the C library on your system. (This has happened!) Your copy might
22388crash and ours would not. If you told us to expect a crash, then when
22389ours fails to crash, we would know that the bug was not happening for
22390us. If you had not told us to expect a crash, then we would not be able
22391to draw any conclusion from our observations.
c4555f82 22392
e0c07bf0
MC
22393@pindex script
22394@cindex recording a session script
22395To collect all this information, you can use a session recording program
22396such as @command{script}, which is available on many Unix systems.
22397Just run your @value{GDBN} session inside @command{script} and then
22398include the @file{typescript} file with your bug report.
22399
22400Another way to record a @value{GDBN} session is to run @value{GDBN}
22401inside Emacs and then save the entire buffer to a file.
22402
8e04817f
AC
22403@item
22404If you wish to suggest changes to the @value{GDBN} source, send us context
22405diffs. If you even discuss something in the @value{GDBN} source, refer to
22406it by context, not by line number.
c4555f82 22407
8e04817f
AC
22408The line numbers in our development sources will not match those in your
22409sources. Your line numbers would convey no useful information to us.
c4555f82 22410
8e04817f 22411@end itemize
c4555f82 22412
8e04817f 22413Here are some things that are not necessary:
c4555f82 22414
8e04817f
AC
22415@itemize @bullet
22416@item
22417A description of the envelope of the bug.
c4555f82 22418
8e04817f
AC
22419Often people who encounter a bug spend a lot of time investigating
22420which changes to the input file will make the bug go away and which
22421changes will not affect it.
c4555f82 22422
8e04817f
AC
22423This is often time consuming and not very useful, because the way we
22424will find the bug is by running a single example under the debugger
22425with breakpoints, not by pure deduction from a series of examples.
22426We recommend that you save your time for something else.
c4555f82 22427
8e04817f
AC
22428Of course, if you can find a simpler example to report @emph{instead}
22429of the original one, that is a convenience for us. Errors in the
22430output will be easier to spot, running under the debugger will take
22431less time, and so on.
c4555f82 22432
8e04817f
AC
22433However, simplification is not vital; if you do not want to do this,
22434report the bug anyway and send us the entire test case you used.
c4555f82 22435
8e04817f
AC
22436@item
22437A patch for the bug.
c4555f82 22438
8e04817f
AC
22439A patch for the bug does help us if it is a good one. But do not omit
22440the necessary information, such as the test case, on the assumption that
22441a patch is all we need. We might see problems with your patch and decide
22442to fix the problem another way, or we might not understand it at all.
c4555f82 22443
8e04817f
AC
22444Sometimes with a program as complicated as @value{GDBN} it is very hard to
22445construct an example that will make the program follow a certain path
22446through the code. If you do not send us the example, we will not be able
22447to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22448
8e04817f
AC
22449And if we cannot understand what bug you are trying to fix, or why your
22450patch should be an improvement, we will not install it. A test case will
22451help us to understand.
c4555f82 22452
8e04817f
AC
22453@item
22454A guess about what the bug is or what it depends on.
c4555f82 22455
8e04817f
AC
22456Such guesses are usually wrong. Even we cannot guess right about such
22457things without first using the debugger to find the facts.
22458@end itemize
c4555f82 22459
8e04817f
AC
22460@c The readline documentation is distributed with the readline code
22461@c and consists of the two following files:
22462@c rluser.texinfo
22463@c inc-hist.texinfo
22464@c Use -I with makeinfo to point to the appropriate directory,
22465@c environment var TEXINPUTS with TeX.
5bdf8622 22466@include rluser.texi
8e04817f 22467@include inc-hist.texinfo
c4555f82 22468
c4555f82 22469
8e04817f
AC
22470@node Formatting Documentation
22471@appendix Formatting Documentation
c4555f82 22472
8e04817f
AC
22473@cindex @value{GDBN} reference card
22474@cindex reference card
22475The @value{GDBN} 4 release includes an already-formatted reference card, ready
22476for printing with PostScript or Ghostscript, in the @file{gdb}
22477subdirectory of the main source directory@footnote{In
22478@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22479release.}. If you can use PostScript or Ghostscript with your printer,
22480you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22481
8e04817f
AC
22482The release also includes the source for the reference card. You
22483can format it, using @TeX{}, by typing:
c4555f82 22484
474c8240 22485@smallexample
8e04817f 22486make refcard.dvi
474c8240 22487@end smallexample
c4555f82 22488
8e04817f
AC
22489The @value{GDBN} reference card is designed to print in @dfn{landscape}
22490mode on US ``letter'' size paper;
22491that is, on a sheet 11 inches wide by 8.5 inches
22492high. You will need to specify this form of printing as an option to
22493your @sc{dvi} output program.
c4555f82 22494
8e04817f 22495@cindex documentation
c4555f82 22496
8e04817f
AC
22497All the documentation for @value{GDBN} comes as part of the machine-readable
22498distribution. The documentation is written in Texinfo format, which is
22499a documentation system that uses a single source file to produce both
22500on-line information and a printed manual. You can use one of the Info
22501formatting commands to create the on-line version of the documentation
22502and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22503
8e04817f
AC
22504@value{GDBN} includes an already formatted copy of the on-line Info
22505version of this manual in the @file{gdb} subdirectory. The main Info
22506file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22507subordinate files matching @samp{gdb.info*} in the same directory. If
22508necessary, you can print out these files, or read them with any editor;
22509but they are easier to read using the @code{info} subsystem in @sc{gnu}
22510Emacs or the standalone @code{info} program, available as part of the
22511@sc{gnu} Texinfo distribution.
c4555f82 22512
8e04817f
AC
22513If you want to format these Info files yourself, you need one of the
22514Info formatting programs, such as @code{texinfo-format-buffer} or
22515@code{makeinfo}.
c4555f82 22516
8e04817f
AC
22517If you have @code{makeinfo} installed, and are in the top level
22518@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22519version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22520
474c8240 22521@smallexample
8e04817f
AC
22522cd gdb
22523make gdb.info
474c8240 22524@end smallexample
c4555f82 22525
8e04817f
AC
22526If you want to typeset and print copies of this manual, you need @TeX{},
22527a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22528Texinfo definitions file.
c4555f82 22529
8e04817f
AC
22530@TeX{} is a typesetting program; it does not print files directly, but
22531produces output files called @sc{dvi} files. To print a typeset
22532document, you need a program to print @sc{dvi} files. If your system
22533has @TeX{} installed, chances are it has such a program. The precise
22534command to use depends on your system; @kbd{lpr -d} is common; another
22535(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22536require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22537
8e04817f
AC
22538@TeX{} also requires a macro definitions file called
22539@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22540written in Texinfo format. On its own, @TeX{} cannot either read or
22541typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22542and is located in the @file{gdb-@var{version-number}/texinfo}
22543directory.
c4555f82 22544
8e04817f 22545If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22546typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22547subdirectory of the main source directory (for example, to
22548@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22549
474c8240 22550@smallexample
8e04817f 22551make gdb.dvi
474c8240 22552@end smallexample
c4555f82 22553
8e04817f 22554Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22555
8e04817f
AC
22556@node Installing GDB
22557@appendix Installing @value{GDBN}
8e04817f 22558@cindex installation
c4555f82 22559
7fa2210b
DJ
22560@menu
22561* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22562* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22563* Separate Objdir:: Compiling @value{GDBN} in another directory
22564* Config Names:: Specifying names for hosts and targets
22565* Configure Options:: Summary of options for configure
22566@end menu
22567
22568@node Requirements
79a6e687 22569@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22570@cindex building @value{GDBN}, requirements for
22571
22572Building @value{GDBN} requires various tools and packages to be available.
22573Other packages will be used only if they are found.
22574
79a6e687 22575@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22576@table @asis
22577@item ISO C90 compiler
22578@value{GDBN} is written in ISO C90. It should be buildable with any
22579working C90 compiler, e.g.@: GCC.
22580
22581@end table
22582
79a6e687 22583@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22584@table @asis
22585@item Expat
123dc839 22586@anchor{Expat}
7fa2210b
DJ
22587@value{GDBN} can use the Expat XML parsing library. This library may be
22588included with your operating system distribution; if it is not, you
22589can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22590The @file{configure} script will search for this library in several
7fa2210b
DJ
22591standard locations; if it is installed in an unusual path, you can
22592use the @option{--with-libexpat-prefix} option to specify its location.
22593
9cceb671
DJ
22594Expat is used for:
22595
22596@itemize @bullet
22597@item
22598Remote protocol memory maps (@pxref{Memory Map Format})
22599@item
22600Target descriptions (@pxref{Target Descriptions})
22601@item
22602Remote shared library lists (@pxref{Library List Format})
22603@item
22604MS-Windows shared libraries (@pxref{Shared Libraries})
22605@end itemize
7fa2210b
DJ
22606
22607@end table
22608
22609@node Running Configure
db2e3e2e 22610@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22611@cindex configuring @value{GDBN}
db2e3e2e 22612@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22613of preparing @value{GDBN} for installation; you can then use @code{make} to
22614build the @code{gdb} program.
22615@iftex
22616@c irrelevant in info file; it's as current as the code it lives with.
22617@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22618look at the @file{README} file in the sources; we may have improved the
22619installation procedures since publishing this manual.}
22620@end iftex
c4555f82 22621
8e04817f
AC
22622The @value{GDBN} distribution includes all the source code you need for
22623@value{GDBN} in a single directory, whose name is usually composed by
22624appending the version number to @samp{gdb}.
c4555f82 22625
8e04817f
AC
22626For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22627@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22628
8e04817f
AC
22629@table @code
22630@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22631script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22632
8e04817f
AC
22633@item gdb-@value{GDBVN}/gdb
22634the source specific to @value{GDBN} itself
c4555f82 22635
8e04817f
AC
22636@item gdb-@value{GDBVN}/bfd
22637source for the Binary File Descriptor library
c906108c 22638
8e04817f
AC
22639@item gdb-@value{GDBVN}/include
22640@sc{gnu} include files
c906108c 22641
8e04817f
AC
22642@item gdb-@value{GDBVN}/libiberty
22643source for the @samp{-liberty} free software library
c906108c 22644
8e04817f
AC
22645@item gdb-@value{GDBVN}/opcodes
22646source for the library of opcode tables and disassemblers
c906108c 22647
8e04817f
AC
22648@item gdb-@value{GDBVN}/readline
22649source for the @sc{gnu} command-line interface
c906108c 22650
8e04817f
AC
22651@item gdb-@value{GDBVN}/glob
22652source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22653
8e04817f
AC
22654@item gdb-@value{GDBVN}/mmalloc
22655source for the @sc{gnu} memory-mapped malloc package
22656@end table
c906108c 22657
db2e3e2e 22658The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22659from the @file{gdb-@var{version-number}} source directory, which in
22660this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22661
8e04817f 22662First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22663if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22664identifier for the platform on which @value{GDBN} will run as an
22665argument.
c906108c 22666
8e04817f 22667For example:
c906108c 22668
474c8240 22669@smallexample
8e04817f
AC
22670cd gdb-@value{GDBVN}
22671./configure @var{host}
22672make
474c8240 22673@end smallexample
c906108c 22674
8e04817f
AC
22675@noindent
22676where @var{host} is an identifier such as @samp{sun4} or
22677@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22678(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22679correct value by examining your system.)
c906108c 22680
8e04817f
AC
22681Running @samp{configure @var{host}} and then running @code{make} builds the
22682@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22683libraries, then @code{gdb} itself. The configured source files, and the
22684binaries, are left in the corresponding source directories.
c906108c 22685
8e04817f 22686@need 750
db2e3e2e 22687@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22688system does not recognize this automatically when you run a different
22689shell, you may need to run @code{sh} on it explicitly:
c906108c 22690
474c8240 22691@smallexample
8e04817f 22692sh configure @var{host}
474c8240 22693@end smallexample
c906108c 22694
db2e3e2e 22695If you run @file{configure} from a directory that contains source
8e04817f 22696directories for multiple libraries or programs, such as the
db2e3e2e
BW
22697@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22698@file{configure}
8e04817f
AC
22699creates configuration files for every directory level underneath (unless
22700you tell it not to, with the @samp{--norecursion} option).
22701
db2e3e2e 22702You should run the @file{configure} script from the top directory in the
94e91d6d 22703source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22704@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22705that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22706if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22707of the @file{gdb-@var{version-number}} directory, you will omit the
22708configuration of @file{bfd}, @file{readline}, and other sibling
22709directories of the @file{gdb} subdirectory. This leads to build errors
22710about missing include files such as @file{bfd/bfd.h}.
c906108c 22711
8e04817f
AC
22712You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22713However, you should make sure that the shell on your path (named by
22714the @samp{SHELL} environment variable) is publicly readable. Remember
22715that @value{GDBN} uses the shell to start your program---some systems refuse to
22716let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22717
8e04817f 22718@node Separate Objdir
79a6e687 22719@section Compiling @value{GDBN} in Another Directory
c906108c 22720
8e04817f
AC
22721If you want to run @value{GDBN} versions for several host or target machines,
22722you need a different @code{gdb} compiled for each combination of
db2e3e2e 22723host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22724allowing you to generate each configuration in a separate subdirectory,
22725rather than in the source directory. If your @code{make} program
22726handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22727@code{make} in each of these directories builds the @code{gdb}
22728program specified there.
c906108c 22729
db2e3e2e 22730To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22731with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22732(You also need to specify a path to find @file{configure}
22733itself from your working directory. If the path to @file{configure}
8e04817f
AC
22734would be the same as the argument to @samp{--srcdir}, you can leave out
22735the @samp{--srcdir} option; it is assumed.)
c906108c 22736
8e04817f
AC
22737For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22738separate directory for a Sun 4 like this:
c906108c 22739
474c8240 22740@smallexample
8e04817f
AC
22741@group
22742cd gdb-@value{GDBVN}
22743mkdir ../gdb-sun4
22744cd ../gdb-sun4
22745../gdb-@value{GDBVN}/configure sun4
22746make
22747@end group
474c8240 22748@end smallexample
c906108c 22749
db2e3e2e 22750When @file{configure} builds a configuration using a remote source
8e04817f
AC
22751directory, it creates a tree for the binaries with the same structure
22752(and using the same names) as the tree under the source directory. In
22753the example, you'd find the Sun 4 library @file{libiberty.a} in the
22754directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22755@file{gdb-sun4/gdb}.
c906108c 22756
94e91d6d
MC
22757Make sure that your path to the @file{configure} script has just one
22758instance of @file{gdb} in it. If your path to @file{configure} looks
22759like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22760one subdirectory of @value{GDBN}, not the whole package. This leads to
22761build errors about missing include files such as @file{bfd/bfd.h}.
22762
8e04817f
AC
22763One popular reason to build several @value{GDBN} configurations in separate
22764directories is to configure @value{GDBN} for cross-compiling (where
22765@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22766programs that run on another machine---the @dfn{target}).
22767You specify a cross-debugging target by
db2e3e2e 22768giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22769
8e04817f
AC
22770When you run @code{make} to build a program or library, you must run
22771it in a configured directory---whatever directory you were in when you
db2e3e2e 22772called @file{configure} (or one of its subdirectories).
c906108c 22773
db2e3e2e 22774The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22775directory also runs recursively. If you type @code{make} in a source
22776directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22777directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22778will build all the required libraries, and then build GDB.
c906108c 22779
8e04817f
AC
22780When you have multiple hosts or targets configured in separate
22781directories, you can run @code{make} on them in parallel (for example,
22782if they are NFS-mounted on each of the hosts); they will not interfere
22783with each other.
c906108c 22784
8e04817f 22785@node Config Names
79a6e687 22786@section Specifying Names for Hosts and Targets
c906108c 22787
db2e3e2e 22788The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22789script are based on a three-part naming scheme, but some short predefined
22790aliases are also supported. The full naming scheme encodes three pieces
22791of information in the following pattern:
c906108c 22792
474c8240 22793@smallexample
8e04817f 22794@var{architecture}-@var{vendor}-@var{os}
474c8240 22795@end smallexample
c906108c 22796
8e04817f
AC
22797For example, you can use the alias @code{sun4} as a @var{host} argument,
22798or as the value for @var{target} in a @code{--target=@var{target}}
22799option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22800
db2e3e2e 22801The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22802any query facility to list all supported host and target names or
db2e3e2e 22803aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22804@code{config.sub} to map abbreviations to full names; you can read the
22805script, if you wish, or you can use it to test your guesses on
22806abbreviations---for example:
c906108c 22807
8e04817f
AC
22808@smallexample
22809% sh config.sub i386-linux
22810i386-pc-linux-gnu
22811% sh config.sub alpha-linux
22812alpha-unknown-linux-gnu
22813% sh config.sub hp9k700
22814hppa1.1-hp-hpux
22815% sh config.sub sun4
22816sparc-sun-sunos4.1.1
22817% sh config.sub sun3
22818m68k-sun-sunos4.1.1
22819% sh config.sub i986v
22820Invalid configuration `i986v': machine `i986v' not recognized
22821@end smallexample
c906108c 22822
8e04817f
AC
22823@noindent
22824@code{config.sub} is also distributed in the @value{GDBN} source
22825directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22826
8e04817f 22827@node Configure Options
db2e3e2e 22828@section @file{configure} Options
c906108c 22829
db2e3e2e
BW
22830Here is a summary of the @file{configure} options and arguments that
22831are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22832several other options not listed here. @inforef{What Configure
db2e3e2e 22833Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22834
474c8240 22835@smallexample
8e04817f
AC
22836configure @r{[}--help@r{]}
22837 @r{[}--prefix=@var{dir}@r{]}
22838 @r{[}--exec-prefix=@var{dir}@r{]}
22839 @r{[}--srcdir=@var{dirname}@r{]}
22840 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22841 @r{[}--target=@var{target}@r{]}
22842 @var{host}
474c8240 22843@end smallexample
c906108c 22844
8e04817f
AC
22845@noindent
22846You may introduce options with a single @samp{-} rather than
22847@samp{--} if you prefer; but you may abbreviate option names if you use
22848@samp{--}.
c906108c 22849
8e04817f
AC
22850@table @code
22851@item --help
db2e3e2e 22852Display a quick summary of how to invoke @file{configure}.
c906108c 22853
8e04817f
AC
22854@item --prefix=@var{dir}
22855Configure the source to install programs and files under directory
22856@file{@var{dir}}.
c906108c 22857
8e04817f
AC
22858@item --exec-prefix=@var{dir}
22859Configure the source to install programs under directory
22860@file{@var{dir}}.
c906108c 22861
8e04817f
AC
22862@c avoid splitting the warning from the explanation:
22863@need 2000
22864@item --srcdir=@var{dirname}
22865@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22866@code{make} that implements the @code{VPATH} feature.}@*
22867Use this option to make configurations in directories separate from the
22868@value{GDBN} source directories. Among other things, you can use this to
22869build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22870directories. @file{configure} writes configuration-specific files in
8e04817f 22871the current directory, but arranges for them to use the source in the
db2e3e2e 22872directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22873the working directory in parallel to the source directories below
22874@var{dirname}.
c906108c 22875
8e04817f 22876@item --norecursion
db2e3e2e 22877Configure only the directory level where @file{configure} is executed; do not
8e04817f 22878propagate configuration to subdirectories.
c906108c 22879
8e04817f
AC
22880@item --target=@var{target}
22881Configure @value{GDBN} for cross-debugging programs running on the specified
22882@var{target}. Without this option, @value{GDBN} is configured to debug
22883programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22884
8e04817f 22885There is no convenient way to generate a list of all available targets.
c906108c 22886
8e04817f
AC
22887@item @var{host} @dots{}
22888Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22889
8e04817f
AC
22890There is no convenient way to generate a list of all available hosts.
22891@end table
c906108c 22892
8e04817f
AC
22893There are many other options available as well, but they are generally
22894needed for special purposes only.
c906108c 22895
8e04817f
AC
22896@node Maintenance Commands
22897@appendix Maintenance Commands
22898@cindex maintenance commands
22899@cindex internal commands
c906108c 22900
8e04817f 22901In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22902includes a number of commands intended for @value{GDBN} developers,
22903that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22904provided here for reference. (For commands that turn on debugging
22905messages, see @ref{Debugging Output}.)
c906108c 22906
8e04817f 22907@table @code
09d4efe1
EZ
22908@kindex maint agent
22909@item maint agent @var{expression}
22910Translate the given @var{expression} into remote agent bytecodes.
22911This command is useful for debugging the Agent Expression mechanism
22912(@pxref{Agent Expressions}).
22913
8e04817f
AC
22914@kindex maint info breakpoints
22915@item @anchor{maint info breakpoints}maint info breakpoints
22916Using the same format as @samp{info breakpoints}, display both the
22917breakpoints you've set explicitly, and those @value{GDBN} is using for
22918internal purposes. Internal breakpoints are shown with negative
22919breakpoint numbers. The type column identifies what kind of breakpoint
22920is shown:
c906108c 22921
8e04817f
AC
22922@table @code
22923@item breakpoint
22924Normal, explicitly set breakpoint.
c906108c 22925
8e04817f
AC
22926@item watchpoint
22927Normal, explicitly set watchpoint.
c906108c 22928
8e04817f
AC
22929@item longjmp
22930Internal breakpoint, used to handle correctly stepping through
22931@code{longjmp} calls.
c906108c 22932
8e04817f
AC
22933@item longjmp resume
22934Internal breakpoint at the target of a @code{longjmp}.
c906108c 22935
8e04817f
AC
22936@item until
22937Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22938
8e04817f
AC
22939@item finish
22940Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22941
8e04817f
AC
22942@item shlib events
22943Shared library events.
c906108c 22944
8e04817f 22945@end table
c906108c 22946
09d4efe1
EZ
22947@kindex maint check-symtabs
22948@item maint check-symtabs
22949Check the consistency of psymtabs and symtabs.
22950
22951@kindex maint cplus first_component
22952@item maint cplus first_component @var{name}
22953Print the first C@t{++} class/namespace component of @var{name}.
22954
22955@kindex maint cplus namespace
22956@item maint cplus namespace
22957Print the list of possible C@t{++} namespaces.
22958
22959@kindex maint demangle
22960@item maint demangle @var{name}
d3e8051b 22961Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22962
22963@kindex maint deprecate
22964@kindex maint undeprecate
22965@cindex deprecated commands
22966@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22967@itemx maint undeprecate @var{command}
22968Deprecate or undeprecate the named @var{command}. Deprecated commands
22969cause @value{GDBN} to issue a warning when you use them. The optional
22970argument @var{replacement} says which newer command should be used in
22971favor of the deprecated one; if it is given, @value{GDBN} will mention
22972the replacement as part of the warning.
22973
22974@kindex maint dump-me
22975@item maint dump-me
721c2651 22976@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22977Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22978This is supported only on systems which support aborting a program
22979with the @code{SIGQUIT} signal.
09d4efe1 22980
8d30a00d
AC
22981@kindex maint internal-error
22982@kindex maint internal-warning
09d4efe1
EZ
22983@item maint internal-error @r{[}@var{message-text}@r{]}
22984@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22985Cause @value{GDBN} to call the internal function @code{internal_error}
22986or @code{internal_warning} and hence behave as though an internal error
22987or internal warning has been detected. In addition to reporting the
22988internal problem, these functions give the user the opportunity to
22989either quit @value{GDBN} or create a core file of the current
22990@value{GDBN} session.
22991
09d4efe1
EZ
22992These commands take an optional parameter @var{message-text} that is
22993used as the text of the error or warning message.
22994
d3e8051b 22995Here's an example of using @code{internal-error}:
09d4efe1 22996
8d30a00d 22997@smallexample
f7dc1244 22998(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22999@dots{}/maint.c:121: internal-error: testing, 1, 2
23000A problem internal to GDB has been detected. Further
23001debugging may prove unreliable.
23002Quit this debugging session? (y or n) @kbd{n}
23003Create a core file? (y or n) @kbd{n}
f7dc1244 23004(@value{GDBP})
8d30a00d
AC
23005@end smallexample
23006
09d4efe1
EZ
23007@kindex maint packet
23008@item maint packet @var{text}
23009If @value{GDBN} is talking to an inferior via the serial protocol,
23010then this command sends the string @var{text} to the inferior, and
23011displays the response packet. @value{GDBN} supplies the initial
23012@samp{$} character, the terminating @samp{#} character, and the
23013checksum.
23014
23015@kindex maint print architecture
23016@item maint print architecture @r{[}@var{file}@r{]}
23017Print the entire architecture configuration. The optional argument
23018@var{file} names the file where the output goes.
8d30a00d 23019
81adfced
DJ
23020@kindex maint print c-tdesc
23021@item maint print c-tdesc
23022Print the current target description (@pxref{Target Descriptions}) as
23023a C source file. The created source file can be used in @value{GDBN}
23024when an XML parser is not available to parse the description.
23025
00905d52
AC
23026@kindex maint print dummy-frames
23027@item maint print dummy-frames
00905d52
AC
23028Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23029
23030@smallexample
f7dc1244 23031(@value{GDBP}) @kbd{b add}
00905d52 23032@dots{}
f7dc1244 23033(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23034Breakpoint 2, add (a=2, b=3) at @dots{}
2303558 return (a + b);
23036The program being debugged stopped while in a function called from GDB.
23037@dots{}
f7dc1244 23038(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
230390x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23040 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23041 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23042(@value{GDBP})
00905d52
AC
23043@end smallexample
23044
23045Takes an optional file parameter.
23046
0680b120
AC
23047@kindex maint print registers
23048@kindex maint print raw-registers
23049@kindex maint print cooked-registers
617073a9 23050@kindex maint print register-groups
09d4efe1
EZ
23051@item maint print registers @r{[}@var{file}@r{]}
23052@itemx maint print raw-registers @r{[}@var{file}@r{]}
23053@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23054@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23055Print @value{GDBN}'s internal register data structures.
23056
617073a9
AC
23057The command @code{maint print raw-registers} includes the contents of
23058the raw register cache; the command @code{maint print cooked-registers}
23059includes the (cooked) value of all registers; and the command
23060@code{maint print register-groups} includes the groups that each
23061register is a member of. @xref{Registers,, Registers, gdbint,
23062@value{GDBN} Internals}.
0680b120 23063
09d4efe1
EZ
23064These commands take an optional parameter, a file name to which to
23065write the information.
0680b120 23066
617073a9 23067@kindex maint print reggroups
09d4efe1
EZ
23068@item maint print reggroups @r{[}@var{file}@r{]}
23069Print @value{GDBN}'s internal register group data structures. The
23070optional argument @var{file} tells to what file to write the
23071information.
617073a9 23072
09d4efe1 23073The register groups info looks like this:
617073a9
AC
23074
23075@smallexample
f7dc1244 23076(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23077 Group Type
23078 general user
23079 float user
23080 all user
23081 vector user
23082 system user
23083 save internal
23084 restore internal
617073a9
AC
23085@end smallexample
23086
09d4efe1
EZ
23087@kindex flushregs
23088@item flushregs
23089This command forces @value{GDBN} to flush its internal register cache.
23090
23091@kindex maint print objfiles
23092@cindex info for known object files
23093@item maint print objfiles
23094Print a dump of all known object files. For each object file, this
23095command prints its name, address in memory, and all of its psymtabs
23096and symtabs.
23097
23098@kindex maint print statistics
23099@cindex bcache statistics
23100@item maint print statistics
23101This command prints, for each object file in the program, various data
23102about that object file followed by the byte cache (@dfn{bcache})
23103statistics for the object file. The objfile data includes the number
d3e8051b 23104of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23105defined by the objfile, the number of as yet unexpanded psym tables,
23106the number of line tables and string tables, and the amount of memory
23107used by the various tables. The bcache statistics include the counts,
23108sizes, and counts of duplicates of all and unique objects, max,
23109average, and median entry size, total memory used and its overhead and
23110savings, and various measures of the hash table size and chain
23111lengths.
23112
c7ba131e
JB
23113@kindex maint print target-stack
23114@cindex target stack description
23115@item maint print target-stack
23116A @dfn{target} is an interface between the debugger and a particular
23117kind of file or process. Targets can be stacked in @dfn{strata},
23118so that more than one target can potentially respond to a request.
23119In particular, memory accesses will walk down the stack of targets
23120until they find a target that is interested in handling that particular
23121address.
23122
23123This command prints a short description of each layer that was pushed on
23124the @dfn{target stack}, starting from the top layer down to the bottom one.
23125
09d4efe1
EZ
23126@kindex maint print type
23127@cindex type chain of a data type
23128@item maint print type @var{expr}
23129Print the type chain for a type specified by @var{expr}. The argument
23130can be either a type name or a symbol. If it is a symbol, the type of
23131that symbol is described. The type chain produced by this command is
23132a recursive definition of the data type as stored in @value{GDBN}'s
23133data structures, including its flags and contained types.
23134
23135@kindex maint set dwarf2 max-cache-age
23136@kindex maint show dwarf2 max-cache-age
23137@item maint set dwarf2 max-cache-age
23138@itemx maint show dwarf2 max-cache-age
23139Control the DWARF 2 compilation unit cache.
23140
23141@cindex DWARF 2 compilation units cache
23142In object files with inter-compilation-unit references, such as those
23143produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23144reader needs to frequently refer to previously read compilation units.
23145This setting controls how long a compilation unit will remain in the
23146cache if it is not referenced. A higher limit means that cached
23147compilation units will be stored in memory longer, and more total
23148memory will be used. Setting it to zero disables caching, which will
23149slow down @value{GDBN} startup, but reduce memory consumption.
23150
e7ba9c65
DJ
23151@kindex maint set profile
23152@kindex maint show profile
23153@cindex profiling GDB
23154@item maint set profile
23155@itemx maint show profile
23156Control profiling of @value{GDBN}.
23157
23158Profiling will be disabled until you use the @samp{maint set profile}
23159command to enable it. When you enable profiling, the system will begin
23160collecting timing and execution count data; when you disable profiling or
23161exit @value{GDBN}, the results will be written to a log file. Remember that
23162if you use profiling, @value{GDBN} will overwrite the profiling log file
23163(often called @file{gmon.out}). If you have a record of important profiling
23164data in a @file{gmon.out} file, be sure to move it to a safe location.
23165
23166Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23167compiled with the @samp{-pg} compiler option.
e7ba9c65 23168
09d4efe1
EZ
23169@kindex maint show-debug-regs
23170@cindex x86 hardware debug registers
23171@item maint show-debug-regs
23172Control whether to show variables that mirror the x86 hardware debug
23173registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23174enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23175removes a hardware breakpoint or watchpoint, and when the inferior
23176triggers a hardware-assisted breakpoint or watchpoint.
23177
23178@kindex maint space
23179@cindex memory used by commands
23180@item maint space
23181Control whether to display memory usage for each command. If set to a
23182nonzero value, @value{GDBN} will display how much memory each command
23183took, following the command's own output. This can also be requested
23184by invoking @value{GDBN} with the @option{--statistics} command-line
23185switch (@pxref{Mode Options}).
23186
23187@kindex maint time
23188@cindex time of command execution
23189@item maint time
23190Control whether to display the execution time for each command. If
23191set to a nonzero value, @value{GDBN} will display how much time it
23192took to execute each command, following the command's own output.
23193This can also be requested by invoking @value{GDBN} with the
23194@option{--statistics} command-line switch (@pxref{Mode Options}).
23195
23196@kindex maint translate-address
23197@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23198Find the symbol stored at the location specified by the address
23199@var{addr} and an optional section name @var{section}. If found,
23200@value{GDBN} prints the name of the closest symbol and an offset from
23201the symbol's location to the specified address. This is similar to
23202the @code{info address} command (@pxref{Symbols}), except that this
23203command also allows to find symbols in other sections.
ae038cb0 23204
8e04817f 23205@end table
c906108c 23206
9c16f35a
EZ
23207The following command is useful for non-interactive invocations of
23208@value{GDBN}, such as in the test suite.
23209
23210@table @code
23211@item set watchdog @var{nsec}
23212@kindex set watchdog
23213@cindex watchdog timer
23214@cindex timeout for commands
23215Set the maximum number of seconds @value{GDBN} will wait for the
23216target operation to finish. If this time expires, @value{GDBN}
23217reports and error and the command is aborted.
23218
23219@item show watchdog
23220Show the current setting of the target wait timeout.
23221@end table
c906108c 23222
e0ce93ac 23223@node Remote Protocol
8e04817f 23224@appendix @value{GDBN} Remote Serial Protocol
c906108c 23225
ee2d5c50
AC
23226@menu
23227* Overview::
23228* Packets::
23229* Stop Reply Packets::
23230* General Query Packets::
23231* Register Packet Format::
9d29849a 23232* Tracepoint Packets::
a6b151f1 23233* Host I/O Packets::
9a6253be 23234* Interrupts::
ee2d5c50 23235* Examples::
79a6e687 23236* File-I/O Remote Protocol Extension::
cfa9d6d9 23237* Library List Format::
79a6e687 23238* Memory Map Format::
ee2d5c50
AC
23239@end menu
23240
23241@node Overview
23242@section Overview
23243
8e04817f
AC
23244There may be occasions when you need to know something about the
23245protocol---for example, if there is only one serial port to your target
23246machine, you might want your program to do something special if it
23247recognizes a packet meant for @value{GDBN}.
c906108c 23248
d2c6833e 23249In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23250transmitted and received data, respectively.
c906108c 23251
8e04817f
AC
23252@cindex protocol, @value{GDBN} remote serial
23253@cindex serial protocol, @value{GDBN} remote
23254@cindex remote serial protocol
23255All @value{GDBN} commands and responses (other than acknowledgments) are
23256sent as a @var{packet}. A @var{packet} is introduced with the character
23257@samp{$}, the actual @var{packet-data}, and the terminating character
23258@samp{#} followed by a two-digit @var{checksum}:
c906108c 23259
474c8240 23260@smallexample
8e04817f 23261@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23262@end smallexample
8e04817f 23263@noindent
c906108c 23264
8e04817f
AC
23265@cindex checksum, for @value{GDBN} remote
23266@noindent
23267The two-digit @var{checksum} is computed as the modulo 256 sum of all
23268characters between the leading @samp{$} and the trailing @samp{#} (an
23269eight bit unsigned checksum).
c906108c 23270
8e04817f
AC
23271Implementors should note that prior to @value{GDBN} 5.0 the protocol
23272specification also included an optional two-digit @var{sequence-id}:
c906108c 23273
474c8240 23274@smallexample
8e04817f 23275@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23276@end smallexample
c906108c 23277
8e04817f
AC
23278@cindex sequence-id, for @value{GDBN} remote
23279@noindent
23280That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23281has never output @var{sequence-id}s. Stubs that handle packets added
23282since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23283
8e04817f
AC
23284@cindex acknowledgment, for @value{GDBN} remote
23285When either the host or the target machine receives a packet, the first
23286response expected is an acknowledgment: either @samp{+} (to indicate
23287the package was received correctly) or @samp{-} (to request
23288retransmission):
c906108c 23289
474c8240 23290@smallexample
d2c6833e
AC
23291-> @code{$}@var{packet-data}@code{#}@var{checksum}
23292<- @code{+}
474c8240 23293@end smallexample
8e04817f 23294@noindent
53a5351d 23295
8e04817f
AC
23296The host (@value{GDBN}) sends @var{command}s, and the target (the
23297debugging stub incorporated in your program) sends a @var{response}. In
23298the case of step and continue @var{command}s, the response is only sent
23299when the operation has completed (the target has again stopped).
c906108c 23300
8e04817f
AC
23301@var{packet-data} consists of a sequence of characters with the
23302exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23303exceptions).
c906108c 23304
ee2d5c50 23305@cindex remote protocol, field separator
0876f84a 23306Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23307@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23308@sc{hex} with leading zeros suppressed.
c906108c 23309
8e04817f
AC
23310Implementors should note that prior to @value{GDBN} 5.0, the character
23311@samp{:} could not appear as the third character in a packet (as it
23312would potentially conflict with the @var{sequence-id}).
c906108c 23313
0876f84a
DJ
23314@cindex remote protocol, binary data
23315@anchor{Binary Data}
23316Binary data in most packets is encoded either as two hexadecimal
23317digits per byte of binary data. This allowed the traditional remote
23318protocol to work over connections which were only seven-bit clean.
23319Some packets designed more recently assume an eight-bit clean
23320connection, and use a more efficient encoding to send and receive
23321binary data.
23322
23323The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23324as an escape character. Any escaped byte is transmitted as the escape
23325character followed by the original character XORed with @code{0x20}.
23326For example, the byte @code{0x7d} would be transmitted as the two
23327bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23328@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23329@samp{@}}) must always be escaped. Responses sent by the stub
23330must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23331is not interpreted as the start of a run-length encoded sequence
23332(described next).
23333
1d3811f6
DJ
23334Response @var{data} can be run-length encoded to save space.
23335Run-length encoding replaces runs of identical characters with one
23336instance of the repeated character, followed by a @samp{*} and a
23337repeat count. The repeat count is itself sent encoded, to avoid
23338binary characters in @var{data}: a value of @var{n} is sent as
23339@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23340produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23341code 32) for a repeat count of 3. (This is because run-length
23342encoding starts to win for counts 3 or more.) Thus, for example,
23343@samp{0* } is a run-length encoding of ``0000'': the space character
23344after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
233453}} more times.
23346
23347The printable characters @samp{#} and @samp{$} or with a numeric value
23348greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23349seven repeats (@samp{$}) can be expanded using a repeat count of only
23350five (@samp{"}). For example, @samp{00000000} can be encoded as
23351@samp{0*"00}.
c906108c 23352
8e04817f
AC
23353The error response returned for some packets includes a two character
23354error number. That number is not well defined.
c906108c 23355
f8da2bff 23356@cindex empty response, for unsupported packets
8e04817f
AC
23357For any @var{command} not supported by the stub, an empty response
23358(@samp{$#00}) should be returned. That way it is possible to extend the
23359protocol. A newer @value{GDBN} can tell if a packet is supported based
23360on that response.
c906108c 23361
b383017d
RM
23362A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23363@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23364optional.
c906108c 23365
ee2d5c50
AC
23366@node Packets
23367@section Packets
23368
23369The following table provides a complete list of all currently defined
23370@var{command}s and their corresponding response @var{data}.
79a6e687 23371@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23372I/O extension of the remote protocol.
ee2d5c50 23373
b8ff78ce
JB
23374Each packet's description has a template showing the packet's overall
23375syntax, followed by an explanation of the packet's meaning. We
23376include spaces in some of the templates for clarity; these are not
23377part of the packet's syntax. No @value{GDBN} packet uses spaces to
23378separate its components. For example, a template like @samp{foo
23379@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23380bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23381@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23382@samp{foo} and the @var{bar}, or between the @var{bar} and the
23383@var{baz}.
23384
8ffe2530
JB
23385Note that all packet forms beginning with an upper- or lower-case
23386letter, other than those described here, are reserved for future use.
23387
b8ff78ce 23388Here are the packet descriptions.
ee2d5c50 23389
b8ff78ce 23390@table @samp
ee2d5c50 23391
b8ff78ce
JB
23392@item !
23393@cindex @samp{!} packet
2d717e4f 23394@anchor{extended mode}
8e04817f
AC
23395Enable extended mode. In extended mode, the remote server is made
23396persistent. The @samp{R} packet is used to restart the program being
23397debugged.
ee2d5c50
AC
23398
23399Reply:
23400@table @samp
23401@item OK
8e04817f 23402The remote target both supports and has enabled extended mode.
ee2d5c50 23403@end table
c906108c 23404
b8ff78ce
JB
23405@item ?
23406@cindex @samp{?} packet
ee2d5c50
AC
23407Indicate the reason the target halted. The reply is the same as for
23408step and continue.
c906108c 23409
ee2d5c50
AC
23410Reply:
23411@xref{Stop Reply Packets}, for the reply specifications.
23412
b8ff78ce
JB
23413@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23414@cindex @samp{A} packet
23415Initialized @code{argv[]} array passed into program. @var{arglen}
23416specifies the number of bytes in the hex encoded byte stream
23417@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23418
23419Reply:
23420@table @samp
23421@item OK
b8ff78ce
JB
23422The arguments were set.
23423@item E @var{NN}
23424An error occurred.
ee2d5c50
AC
23425@end table
23426
b8ff78ce
JB
23427@item b @var{baud}
23428@cindex @samp{b} packet
23429(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23430Change the serial line speed to @var{baud}.
23431
23432JTC: @emph{When does the transport layer state change? When it's
23433received, or after the ACK is transmitted. In either case, there are
23434problems if the command or the acknowledgment packet is dropped.}
23435
23436Stan: @emph{If people really wanted to add something like this, and get
23437it working for the first time, they ought to modify ser-unix.c to send
23438some kind of out-of-band message to a specially-setup stub and have the
23439switch happen "in between" packets, so that from remote protocol's point
23440of view, nothing actually happened.}
23441
b8ff78ce
JB
23442@item B @var{addr},@var{mode}
23443@cindex @samp{B} packet
8e04817f 23444Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23445breakpoint at @var{addr}.
23446
b8ff78ce 23447Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23448(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23449
4f553f88 23450@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23451@cindex @samp{c} packet
23452Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23453resume at current address.
c906108c 23454
ee2d5c50
AC
23455Reply:
23456@xref{Stop Reply Packets}, for the reply specifications.
23457
4f553f88 23458@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23459@cindex @samp{C} packet
8e04817f 23460Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23461@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23462
ee2d5c50
AC
23463Reply:
23464@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23465
b8ff78ce
JB
23466@item d
23467@cindex @samp{d} packet
ee2d5c50
AC
23468Toggle debug flag.
23469
b8ff78ce
JB
23470Don't use this packet; instead, define a general set packet
23471(@pxref{General Query Packets}).
ee2d5c50 23472
b8ff78ce
JB
23473@item D
23474@cindex @samp{D} packet
ee2d5c50 23475Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23476before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23477
23478Reply:
23479@table @samp
10fac096
NW
23480@item OK
23481for success
b8ff78ce 23482@item E @var{NN}
10fac096 23483for an error
ee2d5c50 23484@end table
c906108c 23485
b8ff78ce
JB
23486@item F @var{RC},@var{EE},@var{CF};@var{XX}
23487@cindex @samp{F} packet
23488A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23489This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23490Remote Protocol Extension}, for the specification.
ee2d5c50 23491
b8ff78ce 23492@item g
ee2d5c50 23493@anchor{read registers packet}
b8ff78ce 23494@cindex @samp{g} packet
ee2d5c50
AC
23495Read general registers.
23496
23497Reply:
23498@table @samp
23499@item @var{XX@dots{}}
8e04817f
AC
23500Each byte of register data is described by two hex digits. The bytes
23501with the register are transmitted in target byte order. The size of
b8ff78ce 23502each register and their position within the @samp{g} packet are
4a9bb1df
UW
23503determined by the @value{GDBN} internal gdbarch functions
23504@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23505specification of several standard @samp{g} packets is specified below.
23506@item E @var{NN}
ee2d5c50
AC
23507for an error.
23508@end table
c906108c 23509
b8ff78ce
JB
23510@item G @var{XX@dots{}}
23511@cindex @samp{G} packet
23512Write general registers. @xref{read registers packet}, for a
23513description of the @var{XX@dots{}} data.
ee2d5c50
AC
23514
23515Reply:
23516@table @samp
23517@item OK
23518for success
b8ff78ce 23519@item E @var{NN}
ee2d5c50
AC
23520for an error
23521@end table
23522
b8ff78ce
JB
23523@item H @var{c} @var{t}
23524@cindex @samp{H} packet
8e04817f 23525Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23526@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23527should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23528operations. The thread designator @var{t} may be @samp{-1}, meaning all
23529the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23530
23531Reply:
23532@table @samp
23533@item OK
23534for success
b8ff78ce 23535@item E @var{NN}
ee2d5c50
AC
23536for an error
23537@end table
c906108c 23538
8e04817f
AC
23539@c FIXME: JTC:
23540@c 'H': How restrictive (or permissive) is the thread model. If a
23541@c thread is selected and stopped, are other threads allowed
23542@c to continue to execute? As I mentioned above, I think the
23543@c semantics of each command when a thread is selected must be
23544@c described. For example:
23545@c
23546@c 'g': If the stub supports threads and a specific thread is
23547@c selected, returns the register block from that thread;
23548@c otherwise returns current registers.
23549@c
23550@c 'G' If the stub supports threads and a specific thread is
23551@c selected, sets the registers of the register block of
23552@c that thread; otherwise sets current registers.
c906108c 23553
b8ff78ce 23554@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23555@anchor{cycle step packet}
b8ff78ce
JB
23556@cindex @samp{i} packet
23557Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23558present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23559step starting at that address.
c906108c 23560
b8ff78ce
JB
23561@item I
23562@cindex @samp{I} packet
23563Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23564step packet}.
ee2d5c50 23565
b8ff78ce
JB
23566@item k
23567@cindex @samp{k} packet
23568Kill request.
c906108c 23569
ac282366 23570FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23571thread context has been selected (i.e.@: does 'k' kill only that
23572thread?)}.
c906108c 23573
b8ff78ce
JB
23574@item m @var{addr},@var{length}
23575@cindex @samp{m} packet
8e04817f 23576Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23577Note that @var{addr} may not be aligned to any particular boundary.
23578
23579The stub need not use any particular size or alignment when gathering
23580data from memory for the response; even if @var{addr} is word-aligned
23581and @var{length} is a multiple of the word size, the stub is free to
23582use byte accesses, or not. For this reason, this packet may not be
23583suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23584@cindex alignment of remote memory accesses
23585@cindex size of remote memory accesses
23586@cindex memory, alignment and size of remote accesses
c906108c 23587
ee2d5c50
AC
23588Reply:
23589@table @samp
23590@item @var{XX@dots{}}
599b237a 23591Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23592number. The reply may contain fewer bytes than requested if the
23593server was able to read only part of the region of memory.
23594@item E @var{NN}
ee2d5c50
AC
23595@var{NN} is errno
23596@end table
23597
b8ff78ce
JB
23598@item M @var{addr},@var{length}:@var{XX@dots{}}
23599@cindex @samp{M} packet
8e04817f 23600Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23601@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23602hexadecimal number.
ee2d5c50
AC
23603
23604Reply:
23605@table @samp
23606@item OK
23607for success
b8ff78ce 23608@item E @var{NN}
8e04817f
AC
23609for an error (this includes the case where only part of the data was
23610written).
ee2d5c50 23611@end table
c906108c 23612
b8ff78ce
JB
23613@item p @var{n}
23614@cindex @samp{p} packet
23615Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23616@xref{read registers packet}, for a description of how the returned
23617register value is encoded.
ee2d5c50
AC
23618
23619Reply:
23620@table @samp
2e868123
AC
23621@item @var{XX@dots{}}
23622the register's value
b8ff78ce 23623@item E @var{NN}
2e868123
AC
23624for an error
23625@item
23626Indicating an unrecognized @var{query}.
ee2d5c50
AC
23627@end table
23628
b8ff78ce 23629@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23630@anchor{write register packet}
b8ff78ce
JB
23631@cindex @samp{P} packet
23632Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23633number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23634digits for each byte in the register (target byte order).
c906108c 23635
ee2d5c50
AC
23636Reply:
23637@table @samp
23638@item OK
23639for success
b8ff78ce 23640@item E @var{NN}
ee2d5c50
AC
23641for an error
23642@end table
23643
5f3bebba
JB
23644@item q @var{name} @var{params}@dots{}
23645@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23646@cindex @samp{q} packet
b8ff78ce 23647@cindex @samp{Q} packet
5f3bebba
JB
23648General query (@samp{q}) and set (@samp{Q}). These packets are
23649described fully in @ref{General Query Packets}.
c906108c 23650
b8ff78ce
JB
23651@item r
23652@cindex @samp{r} packet
8e04817f 23653Reset the entire system.
c906108c 23654
b8ff78ce 23655Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23656
b8ff78ce
JB
23657@item R @var{XX}
23658@cindex @samp{R} packet
8e04817f 23659Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23660This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23661
8e04817f 23662The @samp{R} packet has no reply.
ee2d5c50 23663
4f553f88 23664@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23665@cindex @samp{s} packet
23666Single step. @var{addr} is the address at which to resume. If
23667@var{addr} is omitted, resume at same address.
c906108c 23668
ee2d5c50
AC
23669Reply:
23670@xref{Stop Reply Packets}, for the reply specifications.
23671
4f553f88 23672@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23673@anchor{step with signal packet}
b8ff78ce
JB
23674@cindex @samp{S} packet
23675Step with signal. This is analogous to the @samp{C} packet, but
23676requests a single-step, rather than a normal resumption of execution.
c906108c 23677
ee2d5c50
AC
23678Reply:
23679@xref{Stop Reply Packets}, for the reply specifications.
23680
b8ff78ce
JB
23681@item t @var{addr}:@var{PP},@var{MM}
23682@cindex @samp{t} packet
8e04817f 23683Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23684@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23685@var{addr} must be at least 3 digits.
c906108c 23686
b8ff78ce
JB
23687@item T @var{XX}
23688@cindex @samp{T} packet
ee2d5c50 23689Find out if the thread XX is alive.
c906108c 23690
ee2d5c50
AC
23691Reply:
23692@table @samp
23693@item OK
23694thread is still alive
b8ff78ce 23695@item E @var{NN}
ee2d5c50
AC
23696thread is dead
23697@end table
23698
b8ff78ce
JB
23699@item v
23700Packets starting with @samp{v} are identified by a multi-letter name,
23701up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23702
2d717e4f
DJ
23703@item vAttach;@var{pid}
23704@cindex @samp{vAttach} packet
23705Attach to a new process with the specified process ID. @var{pid} is a
fd96d250
PA
23706hexadecimal integer identifying the process. The attached process is
23707stopped.
2d717e4f
DJ
23708
23709This packet is only available in extended mode (@pxref{extended mode}).
23710
23711Reply:
23712@table @samp
23713@item E @var{nn}
23714for an error
23715@item @r{Any stop packet}
23716for success (@pxref{Stop Reply Packets})
23717@end table
23718
b8ff78ce
JB
23719@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23720@cindex @samp{vCont} packet
23721Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23722If an action is specified with no @var{tid}, then it is applied to any
23723threads that don't have a specific action specified; if no default action is
23724specified then other threads should remain stopped. Specifying multiple
23725default actions is an error; specifying no actions is also an error.
23726Thread IDs are specified in hexadecimal. Currently supported actions are:
23727
b8ff78ce 23728@table @samp
86d30acc
DJ
23729@item c
23730Continue.
b8ff78ce 23731@item C @var{sig}
86d30acc
DJ
23732Continue with signal @var{sig}. @var{sig} should be two hex digits.
23733@item s
23734Step.
b8ff78ce 23735@item S @var{sig}
86d30acc
DJ
23736Step with signal @var{sig}. @var{sig} should be two hex digits.
23737@end table
23738
23739The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23740not supported in @samp{vCont}.
86d30acc
DJ
23741
23742Reply:
23743@xref{Stop Reply Packets}, for the reply specifications.
23744
b8ff78ce
JB
23745@item vCont?
23746@cindex @samp{vCont?} packet
d3e8051b 23747Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23748
23749Reply:
23750@table @samp
b8ff78ce
JB
23751@item vCont@r{[};@var{action}@dots{}@r{]}
23752The @samp{vCont} packet is supported. Each @var{action} is a supported
23753command in the @samp{vCont} packet.
86d30acc 23754@item
b8ff78ce 23755The @samp{vCont} packet is not supported.
86d30acc 23756@end table
ee2d5c50 23757
a6b151f1
DJ
23758@item vFile:@var{operation}:@var{parameter}@dots{}
23759@cindex @samp{vFile} packet
23760Perform a file operation on the target system. For details,
23761see @ref{Host I/O Packets}.
23762
68437a39
DJ
23763@item vFlashErase:@var{addr},@var{length}
23764@cindex @samp{vFlashErase} packet
23765Direct the stub to erase @var{length} bytes of flash starting at
23766@var{addr}. The region may enclose any number of flash blocks, but
23767its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23768flash block size appearing in the memory map (@pxref{Memory Map
23769Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23770together, and sends a @samp{vFlashDone} request after each group; the
23771stub is allowed to delay erase operation until the @samp{vFlashDone}
23772packet is received.
23773
23774Reply:
23775@table @samp
23776@item OK
23777for success
23778@item E @var{NN}
23779for an error
23780@end table
23781
23782@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23783@cindex @samp{vFlashWrite} packet
23784Direct the stub to write data to flash address @var{addr}. The data
23785is passed in binary form using the same encoding as for the @samp{X}
23786packet (@pxref{Binary Data}). The memory ranges specified by
23787@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23788not overlap, and must appear in order of increasing addresses
23789(although @samp{vFlashErase} packets for higher addresses may already
23790have been received; the ordering is guaranteed only between
23791@samp{vFlashWrite} packets). If a packet writes to an address that was
23792neither erased by a preceding @samp{vFlashErase} packet nor by some other
23793target-specific method, the results are unpredictable.
23794
23795
23796Reply:
23797@table @samp
23798@item OK
23799for success
23800@item E.memtype
23801for vFlashWrite addressing non-flash memory
23802@item E @var{NN}
23803for an error
23804@end table
23805
23806@item vFlashDone
23807@cindex @samp{vFlashDone} packet
23808Indicate to the stub that flash programming operation is finished.
23809The stub is permitted to delay or batch the effects of a group of
23810@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23811@samp{vFlashDone} packet is received. The contents of the affected
23812regions of flash memory are unpredictable until the @samp{vFlashDone}
23813request is completed.
23814
2d717e4f
DJ
23815@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23816@cindex @samp{vRun} packet
23817Run the program @var{filename}, passing it each @var{argument} on its
23818command line. The file and arguments are hex-encoded strings. If
23819@var{filename} is an empty string, the stub may use a default program
23820(e.g.@: the last program run). The program is created in the stopped
fd96d250 23821state.
2d717e4f
DJ
23822
23823This packet is only available in extended mode (@pxref{extended mode}).
23824
23825Reply:
23826@table @samp
23827@item E @var{nn}
23828for an error
23829@item @r{Any stop packet}
23830for success (@pxref{Stop Reply Packets})
23831@end table
23832
b8ff78ce 23833@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23834@anchor{X packet}
b8ff78ce
JB
23835@cindex @samp{X} packet
23836Write data to memory, where the data is transmitted in binary.
23837@var{addr} is address, @var{length} is number of bytes,
0876f84a 23838@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23839
ee2d5c50
AC
23840Reply:
23841@table @samp
23842@item OK
23843for success
b8ff78ce 23844@item E @var{NN}
ee2d5c50
AC
23845for an error
23846@end table
23847
b8ff78ce
JB
23848@item z @var{type},@var{addr},@var{length}
23849@itemx Z @var{type},@var{addr},@var{length}
2f870471 23850@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23851@cindex @samp{z} packet
23852@cindex @samp{Z} packets
23853Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23854watchpoint starting at address @var{address} and covering the next
23855@var{length} bytes.
ee2d5c50 23856
2f870471
AC
23857Each breakpoint and watchpoint packet @var{type} is documented
23858separately.
23859
512217c7
AC
23860@emph{Implementation notes: A remote target shall return an empty string
23861for an unrecognized breakpoint or watchpoint packet @var{type}. A
23862remote target shall support either both or neither of a given
b8ff78ce 23863@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23864avoid potential problems with duplicate packets, the operations should
23865be implemented in an idempotent way.}
23866
b8ff78ce
JB
23867@item z0,@var{addr},@var{length}
23868@itemx Z0,@var{addr},@var{length}
23869@cindex @samp{z0} packet
23870@cindex @samp{Z0} packet
23871Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23872@var{addr} of size @var{length}.
2f870471
AC
23873
23874A memory breakpoint is implemented by replacing the instruction at
23875@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23876@var{length} is used by targets that indicates the size of the
2f870471
AC
23877breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23878@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23879
2f870471
AC
23880@emph{Implementation note: It is possible for a target to copy or move
23881code that contains memory breakpoints (e.g., when implementing
23882overlays). The behavior of this packet, in the presence of such a
23883target, is not defined.}
c906108c 23884
ee2d5c50
AC
23885Reply:
23886@table @samp
2f870471
AC
23887@item OK
23888success
23889@item
23890not supported
b8ff78ce 23891@item E @var{NN}
ee2d5c50 23892for an error
2f870471
AC
23893@end table
23894
b8ff78ce
JB
23895@item z1,@var{addr},@var{length}
23896@itemx Z1,@var{addr},@var{length}
23897@cindex @samp{z1} packet
23898@cindex @samp{Z1} packet
23899Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23900address @var{addr} of size @var{length}.
2f870471
AC
23901
23902A hardware breakpoint is implemented using a mechanism that is not
23903dependant on being able to modify the target's memory.
23904
23905@emph{Implementation note: A hardware breakpoint is not affected by code
23906movement.}
23907
23908Reply:
23909@table @samp
ee2d5c50 23910@item OK
2f870471
AC
23911success
23912@item
23913not supported
b8ff78ce 23914@item E @var{NN}
2f870471
AC
23915for an error
23916@end table
23917
b8ff78ce
JB
23918@item z2,@var{addr},@var{length}
23919@itemx Z2,@var{addr},@var{length}
23920@cindex @samp{z2} packet
23921@cindex @samp{Z2} packet
23922Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23923
23924Reply:
23925@table @samp
23926@item OK
23927success
23928@item
23929not supported
b8ff78ce 23930@item E @var{NN}
2f870471
AC
23931for an error
23932@end table
23933
b8ff78ce
JB
23934@item z3,@var{addr},@var{length}
23935@itemx Z3,@var{addr},@var{length}
23936@cindex @samp{z3} packet
23937@cindex @samp{Z3} packet
23938Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23939
23940Reply:
23941@table @samp
23942@item OK
23943success
23944@item
23945not supported
b8ff78ce 23946@item E @var{NN}
2f870471
AC
23947for an error
23948@end table
23949
b8ff78ce
JB
23950@item z4,@var{addr},@var{length}
23951@itemx Z4,@var{addr},@var{length}
23952@cindex @samp{z4} packet
23953@cindex @samp{Z4} packet
23954Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23955
23956Reply:
23957@table @samp
23958@item OK
23959success
23960@item
23961not supported
b8ff78ce 23962@item E @var{NN}
2f870471 23963for an error
ee2d5c50
AC
23964@end table
23965
23966@end table
c906108c 23967
ee2d5c50
AC
23968@node Stop Reply Packets
23969@section Stop Reply Packets
23970@cindex stop reply packets
c906108c 23971
8e04817f
AC
23972The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23973receive any of the below as a reply. In the case of the @samp{C},
23974@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23975when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23976number} is defined by the header @file{include/gdb/signals.h} in the
23977@value{GDBN} source code.
c906108c 23978
b8ff78ce
JB
23979As in the description of request packets, we include spaces in the
23980reply templates for clarity; these are not part of the reply packet's
23981syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23982components.
c906108c 23983
b8ff78ce 23984@table @samp
ee2d5c50 23985
b8ff78ce 23986@item S @var{AA}
599b237a 23987The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23988number). This is equivalent to a @samp{T} response with no
23989@var{n}:@var{r} pairs.
c906108c 23990
b8ff78ce
JB
23991@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23992@cindex @samp{T} packet reply
599b237a 23993The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23994number). This is equivalent to an @samp{S} response, except that the
23995@samp{@var{n}:@var{r}} pairs can carry values of important registers
23996and other information directly in the stop reply packet, reducing
23997round-trip latency. Single-step and breakpoint traps are reported
23998this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23999
24000@itemize @bullet
b8ff78ce 24001@item
599b237a 24002If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24003corresponding @var{r} gives that register's value. @var{r} is a
24004series of bytes in target byte order, with each byte given by a
24005two-digit hex number.
cfa9d6d9 24006
b8ff78ce
JB
24007@item
24008If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24009hex.
cfa9d6d9 24010
b8ff78ce 24011@item
cfa9d6d9
DJ
24012If @var{n} is a recognized @dfn{stop reason}, it describes a more
24013specific event that stopped the target. The currently defined stop
24014reasons are listed below. @var{aa} should be @samp{05}, the trap
24015signal. At most one stop reason should be present.
24016
b8ff78ce
JB
24017@item
24018Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24019and go on to the next; this allows us to extend the protocol in the
24020future.
cfa9d6d9
DJ
24021@end itemize
24022
24023The currently defined stop reasons are:
24024
24025@table @samp
24026@item watch
24027@itemx rwatch
24028@itemx awatch
24029The packet indicates a watchpoint hit, and @var{r} is the data address, in
24030hex.
24031
24032@cindex shared library events, remote reply
24033@item library
24034The packet indicates that the loaded libraries have changed.
24035@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24036list of loaded libraries. @var{r} is ignored.
24037@end table
ee2d5c50 24038
b8ff78ce 24039@item W @var{AA}
8e04817f 24040The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24041applicable to certain targets.
24042
b8ff78ce 24043@item X @var{AA}
8e04817f 24044The process terminated with signal @var{AA}.
c906108c 24045
b8ff78ce
JB
24046@item O @var{XX}@dots{}
24047@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24048written as the program's console output. This can happen at any time
24049while the program is running and the debugger should continue to wait
24050for @samp{W}, @samp{T}, etc.
0ce1b118 24051
b8ff78ce 24052@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24053@var{call-id} is the identifier which says which host system call should
24054be called. This is just the name of the function. Translation into the
24055correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24056@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24057system calls.
24058
b8ff78ce
JB
24059@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24060this very system call.
0ce1b118 24061
b8ff78ce
JB
24062The target replies with this packet when it expects @value{GDBN} to
24063call a host system call on behalf of the target. @value{GDBN} replies
24064with an appropriate @samp{F} packet and keeps up waiting for the next
24065reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24066or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24067Protocol Extension}, for more details.
0ce1b118 24068
ee2d5c50
AC
24069@end table
24070
24071@node General Query Packets
24072@section General Query Packets
9c16f35a 24073@cindex remote query requests
c906108c 24074
5f3bebba
JB
24075Packets starting with @samp{q} are @dfn{general query packets};
24076packets starting with @samp{Q} are @dfn{general set packets}. General
24077query and set packets are a semi-unified form for retrieving and
24078sending information to and from the stub.
24079
24080The initial letter of a query or set packet is followed by a name
24081indicating what sort of thing the packet applies to. For example,
24082@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24083definitions with the stub. These packet names follow some
24084conventions:
24085
24086@itemize @bullet
24087@item
24088The name must not contain commas, colons or semicolons.
24089@item
24090Most @value{GDBN} query and set packets have a leading upper case
24091letter.
24092@item
24093The names of custom vendor packets should use a company prefix, in
24094lower case, followed by a period. For example, packets designed at
24095the Acme Corporation might begin with @samp{qacme.foo} (for querying
24096foos) or @samp{Qacme.bar} (for setting bars).
24097@end itemize
24098
aa56d27a
JB
24099The name of a query or set packet should be separated from any
24100parameters by a @samp{:}; the parameters themselves should be
24101separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24102full packet name, and check for a separator or the end of the packet,
24103in case two packet names share a common prefix. New packets should not begin
24104with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24105packets predate these conventions, and have arguments without any terminator
24106for the packet name; we suspect they are in widespread use in places that
24107are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24108existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24109packet.}.
c906108c 24110
b8ff78ce
JB
24111Like the descriptions of the other packets, each description here
24112has a template showing the packet's overall syntax, followed by an
24113explanation of the packet's meaning. We include spaces in some of the
24114templates for clarity; these are not part of the packet's syntax. No
24115@value{GDBN} packet uses spaces to separate its components.
24116
5f3bebba
JB
24117Here are the currently defined query and set packets:
24118
b8ff78ce 24119@table @samp
c906108c 24120
b8ff78ce 24121@item qC
9c16f35a 24122@cindex current thread, remote request
b8ff78ce 24123@cindex @samp{qC} packet
ee2d5c50
AC
24124Return the current thread id.
24125
24126Reply:
24127@table @samp
b8ff78ce 24128@item QC @var{pid}
599b237a 24129Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24130@item @r{(anything else)}
ee2d5c50
AC
24131Any other reply implies the old pid.
24132@end table
24133
b8ff78ce 24134@item qCRC:@var{addr},@var{length}
ff2587ec 24135@cindex CRC of memory block, remote request
b8ff78ce
JB
24136@cindex @samp{qCRC} packet
24137Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24138Reply:
24139@table @samp
b8ff78ce 24140@item E @var{NN}
ff2587ec 24141An error (such as memory fault)
b8ff78ce
JB
24142@item C @var{crc32}
24143The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24144@end table
24145
b8ff78ce
JB
24146@item qfThreadInfo
24147@itemx qsThreadInfo
9c16f35a 24148@cindex list active threads, remote request
b8ff78ce
JB
24149@cindex @samp{qfThreadInfo} packet
24150@cindex @samp{qsThreadInfo} packet
24151Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24152may be too many active threads to fit into one reply packet, this query
24153works iteratively: it may require more than one query/reply sequence to
24154obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24155be the @samp{qfThreadInfo} query; subsequent queries in the
24156sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24157
b8ff78ce 24158NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24159
24160Reply:
24161@table @samp
b8ff78ce 24162@item m @var{id}
ee2d5c50 24163A single thread id
b8ff78ce 24164@item m @var{id},@var{id}@dots{}
ee2d5c50 24165a comma-separated list of thread ids
b8ff78ce
JB
24166@item l
24167(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24168@end table
24169
24170In response to each query, the target will reply with a list of one or
e1aac25b
JB
24171more thread ids, in big-endian unsigned hex, separated by commas.
24172@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24173ids (using the @samp{qs} form of the query), until the target responds
24174with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24175
b8ff78ce 24176@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24177@cindex get thread-local storage address, remote request
b8ff78ce 24178@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24179Fetch the address associated with thread local storage specified
24180by @var{thread-id}, @var{offset}, and @var{lm}.
24181
24182@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24183thread for which to fetch the TLS address.
24184
24185@var{offset} is the (big endian, hex encoded) offset associated with the
24186thread local variable. (This offset is obtained from the debug
24187information associated with the variable.)
24188
db2e3e2e 24189@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24190the load module associated with the thread local storage. For example,
24191a @sc{gnu}/Linux system will pass the link map address of the shared
24192object associated with the thread local storage under consideration.
24193Other operating environments may choose to represent the load module
24194differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24195
24196Reply:
b8ff78ce
JB
24197@table @samp
24198@item @var{XX}@dots{}
ff2587ec
WZ
24199Hex encoded (big endian) bytes representing the address of the thread
24200local storage requested.
24201
b8ff78ce
JB
24202@item E @var{nn}
24203An error occurred. @var{nn} are hex digits.
ff2587ec 24204
b8ff78ce
JB
24205@item
24206An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24207@end table
24208
b8ff78ce 24209@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24210Obtain thread information from RTOS. Where: @var{startflag} (one hex
24211digit) is one to indicate the first query and zero to indicate a
24212subsequent query; @var{threadcount} (two hex digits) is the maximum
24213number of threads the response packet can contain; and @var{nextthread}
24214(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24215returned in the response as @var{argthread}.
ee2d5c50 24216
b8ff78ce 24217Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24218
24219Reply:
24220@table @samp
b8ff78ce 24221@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24222Where: @var{count} (two hex digits) is the number of threads being
24223returned; @var{done} (one hex digit) is zero to indicate more threads
24224and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24225digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24226is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24227digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24228@end table
c906108c 24229
b8ff78ce 24230@item qOffsets
9c16f35a 24231@cindex section offsets, remote request
b8ff78ce 24232@cindex @samp{qOffsets} packet
31d99776
DJ
24233Get section offsets that the target used when relocating the downloaded
24234image.
c906108c 24235
ee2d5c50
AC
24236Reply:
24237@table @samp
31d99776
DJ
24238@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24239Relocate the @code{Text} section by @var{xxx} from its original address.
24240Relocate the @code{Data} section by @var{yyy} from its original address.
24241If the object file format provides segment information (e.g.@: @sc{elf}
24242@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24243segments by the supplied offsets.
24244
24245@emph{Note: while a @code{Bss} offset may be included in the response,
24246@value{GDBN} ignores this and instead applies the @code{Data} offset
24247to the @code{Bss} section.}
24248
24249@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24250Relocate the first segment of the object file, which conventionally
24251contains program code, to a starting address of @var{xxx}. If
24252@samp{DataSeg} is specified, relocate the second segment, which
24253conventionally contains modifiable data, to a starting address of
24254@var{yyy}. @value{GDBN} will report an error if the object file
24255does not contain segment information, or does not contain at least
24256as many segments as mentioned in the reply. Extra segments are
24257kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24258@end table
24259
b8ff78ce 24260@item qP @var{mode} @var{threadid}
9c16f35a 24261@cindex thread information, remote request
b8ff78ce 24262@cindex @samp{qP} packet
8e04817f
AC
24263Returns information on @var{threadid}. Where: @var{mode} is a hex
24264encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24265
aa56d27a
JB
24266Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24267(see below).
24268
b8ff78ce 24269Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24270
89be2091
DJ
24271@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24272@cindex pass signals to inferior, remote request
24273@cindex @samp{QPassSignals} packet
23181151 24274@anchor{QPassSignals}
89be2091
DJ
24275Each listed @var{signal} should be passed directly to the inferior process.
24276Signals are numbered identically to continue packets and stop replies
24277(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24278strictly greater than the previous item. These signals do not need to stop
24279the inferior, or be reported to @value{GDBN}. All other signals should be
24280reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24281combine; any earlier @samp{QPassSignals} list is completely replaced by the
24282new list. This packet improves performance when using @samp{handle
24283@var{signal} nostop noprint pass}.
24284
24285Reply:
24286@table @samp
24287@item OK
24288The request succeeded.
24289
24290@item E @var{nn}
24291An error occurred. @var{nn} are hex digits.
24292
24293@item
24294An empty reply indicates that @samp{QPassSignals} is not supported by
24295the stub.
24296@end table
24297
24298Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24299command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24300This packet is not probed by default; the remote stub must request it,
24301by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24302
b8ff78ce 24303@item qRcmd,@var{command}
ff2587ec 24304@cindex execute remote command, remote request
b8ff78ce 24305@cindex @samp{qRcmd} packet
ff2587ec 24306@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24307execution. Invalid commands should be reported using the output
24308string. Before the final result packet, the target may also respond
24309with a number of intermediate @samp{O@var{output}} console output
24310packets. @emph{Implementors should note that providing access to a
24311stubs's interpreter may have security implications}.
fa93a9d8 24312
ff2587ec
WZ
24313Reply:
24314@table @samp
24315@item OK
24316A command response with no output.
24317@item @var{OUTPUT}
24318A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24319@item E @var{NN}
ff2587ec 24320Indicate a badly formed request.
b8ff78ce
JB
24321@item
24322An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24323@end table
fa93a9d8 24324
aa56d27a
JB
24325(Note that the @code{qRcmd} packet's name is separated from the
24326command by a @samp{,}, not a @samp{:}, contrary to the naming
24327conventions above. Please don't use this packet as a model for new
24328packets.)
24329
be2a5f71
DJ
24330@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24331@cindex supported packets, remote query
24332@cindex features of the remote protocol
24333@cindex @samp{qSupported} packet
0876f84a 24334@anchor{qSupported}
be2a5f71
DJ
24335Tell the remote stub about features supported by @value{GDBN}, and
24336query the stub for features it supports. This packet allows
24337@value{GDBN} and the remote stub to take advantage of each others'
24338features. @samp{qSupported} also consolidates multiple feature probes
24339at startup, to improve @value{GDBN} performance---a single larger
24340packet performs better than multiple smaller probe packets on
24341high-latency links. Some features may enable behavior which must not
24342be on by default, e.g.@: because it would confuse older clients or
24343stubs. Other features may describe packets which could be
24344automatically probed for, but are not. These features must be
24345reported before @value{GDBN} will use them. This ``default
24346unsupported'' behavior is not appropriate for all packets, but it
24347helps to keep the initial connection time under control with new
24348versions of @value{GDBN} which support increasing numbers of packets.
24349
24350Reply:
24351@table @samp
24352@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24353The stub supports or does not support each returned @var{stubfeature},
24354depending on the form of each @var{stubfeature} (see below for the
24355possible forms).
24356@item
24357An empty reply indicates that @samp{qSupported} is not recognized,
24358or that no features needed to be reported to @value{GDBN}.
24359@end table
24360
24361The allowed forms for each feature (either a @var{gdbfeature} in the
24362@samp{qSupported} packet, or a @var{stubfeature} in the response)
24363are:
24364
24365@table @samp
24366@item @var{name}=@var{value}
24367The remote protocol feature @var{name} is supported, and associated
24368with the specified @var{value}. The format of @var{value} depends
24369on the feature, but it must not include a semicolon.
24370@item @var{name}+
24371The remote protocol feature @var{name} is supported, and does not
24372need an associated value.
24373@item @var{name}-
24374The remote protocol feature @var{name} is not supported.
24375@item @var{name}?
24376The remote protocol feature @var{name} may be supported, and
24377@value{GDBN} should auto-detect support in some other way when it is
24378needed. This form will not be used for @var{gdbfeature} notifications,
24379but may be used for @var{stubfeature} responses.
24380@end table
24381
24382Whenever the stub receives a @samp{qSupported} request, the
24383supplied set of @value{GDBN} features should override any previous
24384request. This allows @value{GDBN} to put the stub in a known
24385state, even if the stub had previously been communicating with
24386a different version of @value{GDBN}.
24387
24388No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24389are defined yet. Stubs should ignore any unknown values for
24390@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24391packet supports receiving packets of unlimited length (earlier
24392versions of @value{GDBN} may reject overly long responses). Values
24393for @var{gdbfeature} may be defined in the future to let the stub take
24394advantage of new features in @value{GDBN}, e.g.@: incompatible
24395improvements in the remote protocol---support for unlimited length
24396responses would be a @var{gdbfeature} example, if it were not implied by
24397the @samp{qSupported} query. The stub's reply should be independent
24398of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24399describes all the features it supports, and then the stub replies with
24400all the features it supports.
24401
24402Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24403responses, as long as each response uses one of the standard forms.
24404
24405Some features are flags. A stub which supports a flag feature
24406should respond with a @samp{+} form response. Other features
24407require values, and the stub should respond with an @samp{=}
24408form response.
24409
24410Each feature has a default value, which @value{GDBN} will use if
24411@samp{qSupported} is not available or if the feature is not mentioned
24412in the @samp{qSupported} response. The default values are fixed; a
24413stub is free to omit any feature responses that match the defaults.
24414
24415Not all features can be probed, but for those which can, the probing
24416mechanism is useful: in some cases, a stub's internal
24417architecture may not allow the protocol layer to know some information
24418about the underlying target in advance. This is especially common in
24419stubs which may be configured for multiple targets.
24420
24421These are the currently defined stub features and their properties:
24422
cfa9d6d9 24423@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24424@c NOTE: The first row should be @headitem, but we do not yet require
24425@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24426@item Feature Name
be2a5f71
DJ
24427@tab Value Required
24428@tab Default
24429@tab Probe Allowed
24430
24431@item @samp{PacketSize}
24432@tab Yes
24433@tab @samp{-}
24434@tab No
24435
0876f84a
DJ
24436@item @samp{qXfer:auxv:read}
24437@tab No
24438@tab @samp{-}
24439@tab Yes
24440
23181151
DJ
24441@item @samp{qXfer:features:read}
24442@tab No
24443@tab @samp{-}
24444@tab Yes
24445
cfa9d6d9
DJ
24446@item @samp{qXfer:libraries:read}
24447@tab No
24448@tab @samp{-}
24449@tab Yes
24450
68437a39
DJ
24451@item @samp{qXfer:memory-map:read}
24452@tab No
24453@tab @samp{-}
24454@tab Yes
24455
0e7f50da
UW
24456@item @samp{qXfer:spu:read}
24457@tab No
24458@tab @samp{-}
24459@tab Yes
24460
24461@item @samp{qXfer:spu:write}
24462@tab No
24463@tab @samp{-}
24464@tab Yes
24465
89be2091
DJ
24466@item @samp{QPassSignals}
24467@tab No
24468@tab @samp{-}
24469@tab Yes
24470
be2a5f71
DJ
24471@end multitable
24472
24473These are the currently defined stub features, in more detail:
24474
24475@table @samp
24476@cindex packet size, remote protocol
24477@item PacketSize=@var{bytes}
24478The remote stub can accept packets up to at least @var{bytes} in
24479length. @value{GDBN} will send packets up to this size for bulk
24480transfers, and will never send larger packets. This is a limit on the
24481data characters in the packet, including the frame and checksum.
24482There is no trailing NUL byte in a remote protocol packet; if the stub
24483stores packets in a NUL-terminated format, it should allow an extra
24484byte in its buffer for the NUL. If this stub feature is not supported,
24485@value{GDBN} guesses based on the size of the @samp{g} packet response.
24486
0876f84a
DJ
24487@item qXfer:auxv:read
24488The remote stub understands the @samp{qXfer:auxv:read} packet
24489(@pxref{qXfer auxiliary vector read}).
24490
23181151
DJ
24491@item qXfer:features:read
24492The remote stub understands the @samp{qXfer:features:read} packet
24493(@pxref{qXfer target description read}).
24494
cfa9d6d9
DJ
24495@item qXfer:libraries:read
24496The remote stub understands the @samp{qXfer:libraries:read} packet
24497(@pxref{qXfer library list read}).
24498
23181151
DJ
24499@item qXfer:memory-map:read
24500The remote stub understands the @samp{qXfer:memory-map:read} packet
24501(@pxref{qXfer memory map read}).
24502
0e7f50da
UW
24503@item qXfer:spu:read
24504The remote stub understands the @samp{qXfer:spu:read} packet
24505(@pxref{qXfer spu read}).
24506
24507@item qXfer:spu:write
24508The remote stub understands the @samp{qXfer:spu:write} packet
24509(@pxref{qXfer spu write}).
24510
23181151
DJ
24511@item QPassSignals
24512The remote stub understands the @samp{QPassSignals} packet
24513(@pxref{QPassSignals}).
24514
be2a5f71
DJ
24515@end table
24516
b8ff78ce 24517@item qSymbol::
ff2587ec 24518@cindex symbol lookup, remote request
b8ff78ce 24519@cindex @samp{qSymbol} packet
ff2587ec
WZ
24520Notify the target that @value{GDBN} is prepared to serve symbol lookup
24521requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24522
24523Reply:
ff2587ec 24524@table @samp
b8ff78ce 24525@item OK
ff2587ec 24526The target does not need to look up any (more) symbols.
b8ff78ce 24527@item qSymbol:@var{sym_name}
ff2587ec
WZ
24528The target requests the value of symbol @var{sym_name} (hex encoded).
24529@value{GDBN} may provide the value by using the
b8ff78ce
JB
24530@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24531below.
ff2587ec 24532@end table
83761cbd 24533
b8ff78ce 24534@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24535Set the value of @var{sym_name} to @var{sym_value}.
24536
24537@var{sym_name} (hex encoded) is the name of a symbol whose value the
24538target has previously requested.
24539
24540@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24541@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24542will be empty.
24543
24544Reply:
24545@table @samp
b8ff78ce 24546@item OK
ff2587ec 24547The target does not need to look up any (more) symbols.
b8ff78ce 24548@item qSymbol:@var{sym_name}
ff2587ec
WZ
24549The target requests the value of a new symbol @var{sym_name} (hex
24550encoded). @value{GDBN} will continue to supply the values of symbols
24551(if available), until the target ceases to request them.
fa93a9d8 24552@end table
0abb7bc7 24553
9d29849a
JB
24554@item QTDP
24555@itemx QTFrame
24556@xref{Tracepoint Packets}.
24557
b8ff78ce 24558@item qThreadExtraInfo,@var{id}
ff2587ec 24559@cindex thread attributes info, remote request
b8ff78ce
JB
24560@cindex @samp{qThreadExtraInfo} packet
24561Obtain a printable string description of a thread's attributes from
24562the target OS. @var{id} is a thread-id in big-endian hex. This
24563string may contain anything that the target OS thinks is interesting
24564for @value{GDBN} to tell the user about the thread. The string is
24565displayed in @value{GDBN}'s @code{info threads} display. Some
24566examples of possible thread extra info strings are @samp{Runnable}, or
24567@samp{Blocked on Mutex}.
ff2587ec
WZ
24568
24569Reply:
24570@table @samp
b8ff78ce
JB
24571@item @var{XX}@dots{}
24572Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24573comprising the printable string containing the extra information about
24574the thread's attributes.
ff2587ec 24575@end table
814e32d7 24576
aa56d27a
JB
24577(Note that the @code{qThreadExtraInfo} packet's name is separated from
24578the command by a @samp{,}, not a @samp{:}, contrary to the naming
24579conventions above. Please don't use this packet as a model for new
24580packets.)
24581
9d29849a
JB
24582@item QTStart
24583@itemx QTStop
24584@itemx QTinit
24585@itemx QTro
24586@itemx qTStatus
24587@xref{Tracepoint Packets}.
24588
0876f84a
DJ
24589@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24590@cindex read special object, remote request
24591@cindex @samp{qXfer} packet
68437a39 24592@anchor{qXfer read}
0876f84a
DJ
24593Read uninterpreted bytes from the target's special data area
24594identified by the keyword @var{object}. Request @var{length} bytes
24595starting at @var{offset} bytes into the data. The content and
0e7f50da 24596encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24597additional details about what data to access.
24598
24599Here are the specific requests of this form defined so far. All
24600@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24601formats, listed below.
24602
24603@table @samp
24604@item qXfer:auxv:read::@var{offset},@var{length}
24605@anchor{qXfer auxiliary vector read}
24606Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24607auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24608
24609This packet is not probed by default; the remote stub must request it,
89be2091 24610by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24611
23181151
DJ
24612@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24613@anchor{qXfer target description read}
24614Access the @dfn{target description}. @xref{Target Descriptions}. The
24615annex specifies which XML document to access. The main description is
24616always loaded from the @samp{target.xml} annex.
24617
24618This packet is not probed by default; the remote stub must request it,
24619by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24620
cfa9d6d9
DJ
24621@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24622@anchor{qXfer library list read}
24623Access the target's list of loaded libraries. @xref{Library List Format}.
24624The annex part of the generic @samp{qXfer} packet must be empty
24625(@pxref{qXfer read}).
24626
24627Targets which maintain a list of libraries in the program's memory do
24628not need to implement this packet; it is designed for platforms where
24629the operating system manages the list of loaded libraries.
24630
24631This packet is not probed by default; the remote stub must request it,
24632by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24633
68437a39
DJ
24634@item qXfer:memory-map:read::@var{offset},@var{length}
24635@anchor{qXfer memory map read}
79a6e687 24636Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24637annex part of the generic @samp{qXfer} packet must be empty
24638(@pxref{qXfer read}).
24639
0e7f50da
UW
24640This packet is not probed by default; the remote stub must request it,
24641by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24642
24643@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24644@anchor{qXfer spu read}
24645Read contents of an @code{spufs} file on the target system. The
24646annex specifies which file to read; it must be of the form
24647@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24648in the target process, and @var{name} identifes the @code{spufs} file
24649in that context to be accessed.
24650
68437a39
DJ
24651This packet is not probed by default; the remote stub must request it,
24652by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24653@end table
24654
0876f84a
DJ
24655Reply:
24656@table @samp
24657@item m @var{data}
24658Data @var{data} (@pxref{Binary Data}) has been read from the
24659target. There may be more data at a higher address (although
24660it is permitted to return @samp{m} even for the last valid
24661block of data, as long as at least one byte of data was read).
24662@var{data} may have fewer bytes than the @var{length} in the
24663request.
24664
24665@item l @var{data}
24666Data @var{data} (@pxref{Binary Data}) has been read from the target.
24667There is no more data to be read. @var{data} may have fewer bytes
24668than the @var{length} in the request.
24669
24670@item l
24671The @var{offset} in the request is at the end of the data.
24672There is no more data to be read.
24673
24674@item E00
24675The request was malformed, or @var{annex} was invalid.
24676
24677@item E @var{nn}
24678The offset was invalid, or there was an error encountered reading the data.
24679@var{nn} is a hex-encoded @code{errno} value.
24680
24681@item
24682An empty reply indicates the @var{object} string was not recognized by
24683the stub, or that the object does not support reading.
24684@end table
24685
24686@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24687@cindex write data into object, remote request
24688Write uninterpreted bytes into the target's special data area
24689identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24690into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24691(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24692is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24693to access.
24694
0e7f50da
UW
24695Here are the specific requests of this form defined so far. All
24696@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24697formats, listed below.
24698
24699@table @samp
24700@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24701@anchor{qXfer spu write}
24702Write @var{data} to an @code{spufs} file on the target system. The
24703annex specifies which file to write; it must be of the form
24704@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24705in the target process, and @var{name} identifes the @code{spufs} file
24706in that context to be accessed.
24707
24708This packet is not probed by default; the remote stub must request it,
24709by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24710@end table
0876f84a
DJ
24711
24712Reply:
24713@table @samp
24714@item @var{nn}
24715@var{nn} (hex encoded) is the number of bytes written.
24716This may be fewer bytes than supplied in the request.
24717
24718@item E00
24719The request was malformed, or @var{annex} was invalid.
24720
24721@item E @var{nn}
24722The offset was invalid, or there was an error encountered writing the data.
24723@var{nn} is a hex-encoded @code{errno} value.
24724
24725@item
24726An empty reply indicates the @var{object} string was not
24727recognized by the stub, or that the object does not support writing.
24728@end table
24729
24730@item qXfer:@var{object}:@var{operation}:@dots{}
24731Requests of this form may be added in the future. When a stub does
24732not recognize the @var{object} keyword, or its support for
24733@var{object} does not recognize the @var{operation} keyword, the stub
24734must respond with an empty packet.
24735
ee2d5c50
AC
24736@end table
24737
24738@node Register Packet Format
24739@section Register Packet Format
eb12ee30 24740
b8ff78ce 24741The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24742In the below, some thirty-two bit registers are transferred as
24743sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24744to fill the space allocated. Register bytes are transferred in target
24745byte order. The two nibbles within a register byte are transferred
ee2d5c50 24746most-significant - least-significant.
eb12ee30 24747
ee2d5c50 24748@table @r
eb12ee30 24749
8e04817f 24750@item MIPS32
ee2d5c50 24751
599b237a 24752All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2475332 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24754registers; fsr; fir; fp.
eb12ee30 24755
8e04817f 24756@item MIPS64
ee2d5c50 24757
599b237a 24758All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24759thirty-two bit registers such as @code{sr}). The ordering is the same
24760as @code{MIPS32}.
eb12ee30 24761
ee2d5c50
AC
24762@end table
24763
9d29849a
JB
24764@node Tracepoint Packets
24765@section Tracepoint Packets
24766@cindex tracepoint packets
24767@cindex packets, tracepoint
24768
24769Here we describe the packets @value{GDBN} uses to implement
24770tracepoints (@pxref{Tracepoints}).
24771
24772@table @samp
24773
24774@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24775Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24776is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24777the tracepoint is disabled. @var{step} is the tracepoint's step
24778count, and @var{pass} is its pass count. If the trailing @samp{-} is
24779present, further @samp{QTDP} packets will follow to specify this
24780tracepoint's actions.
24781
24782Replies:
24783@table @samp
24784@item OK
24785The packet was understood and carried out.
24786@item
24787The packet was not recognized.
24788@end table
24789
24790@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24791Define actions to be taken when a tracepoint is hit. @var{n} and
24792@var{addr} must be the same as in the initial @samp{QTDP} packet for
24793this tracepoint. This packet may only be sent immediately after
24794another @samp{QTDP} packet that ended with a @samp{-}. If the
24795trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24796specifying more actions for this tracepoint.
24797
24798In the series of action packets for a given tracepoint, at most one
24799can have an @samp{S} before its first @var{action}. If such a packet
24800is sent, it and the following packets define ``while-stepping''
24801actions. Any prior packets define ordinary actions --- that is, those
24802taken when the tracepoint is first hit. If no action packet has an
24803@samp{S}, then all the packets in the series specify ordinary
24804tracepoint actions.
24805
24806The @samp{@var{action}@dots{}} portion of the packet is a series of
24807actions, concatenated without separators. Each action has one of the
24808following forms:
24809
24810@table @samp
24811
24812@item R @var{mask}
24813Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24814a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24815@var{i} should be collected. (The least significant bit is numbered
24816zero.) Note that @var{mask} may be any number of digits long; it may
24817not fit in a 32-bit word.
24818
24819@item M @var{basereg},@var{offset},@var{len}
24820Collect @var{len} bytes of memory starting at the address in register
24821number @var{basereg}, plus @var{offset}. If @var{basereg} is
24822@samp{-1}, then the range has a fixed address: @var{offset} is the
24823address of the lowest byte to collect. The @var{basereg},
599b237a 24824@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24825values (the @samp{-1} value for @var{basereg} is a special case).
24826
24827@item X @var{len},@var{expr}
24828Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24829it directs. @var{expr} is an agent expression, as described in
24830@ref{Agent Expressions}. Each byte of the expression is encoded as a
24831two-digit hex number in the packet; @var{len} is the number of bytes
24832in the expression (and thus one-half the number of hex digits in the
24833packet).
24834
24835@end table
24836
24837Any number of actions may be packed together in a single @samp{QTDP}
24838packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24839length (400 bytes, for many stubs). There may be only one @samp{R}
24840action per tracepoint, and it must precede any @samp{M} or @samp{X}
24841actions. Any registers referred to by @samp{M} and @samp{X} actions
24842must be collected by a preceding @samp{R} action. (The
24843``while-stepping'' actions are treated as if they were attached to a
24844separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24845
24846Replies:
24847@table @samp
24848@item OK
24849The packet was understood and carried out.
24850@item
24851The packet was not recognized.
24852@end table
24853
24854@item QTFrame:@var{n}
24855Select the @var{n}'th tracepoint frame from the buffer, and use the
24856register and memory contents recorded there to answer subsequent
24857request packets from @value{GDBN}.
24858
24859A successful reply from the stub indicates that the stub has found the
24860requested frame. The response is a series of parts, concatenated
24861without separators, describing the frame we selected. Each part has
24862one of the following forms:
24863
24864@table @samp
24865@item F @var{f}
24866The selected frame is number @var{n} in the trace frame buffer;
599b237a 24867@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24868was no frame matching the criteria in the request packet.
24869
24870@item T @var{t}
24871The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24872@var{t} is a hexadecimal number.
9d29849a
JB
24873
24874@end table
24875
24876@item QTFrame:pc:@var{addr}
24877Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24878currently selected frame whose PC is @var{addr};
599b237a 24879@var{addr} is a hexadecimal number.
9d29849a
JB
24880
24881@item QTFrame:tdp:@var{t}
24882Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24883currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24884is a hexadecimal number.
9d29849a
JB
24885
24886@item QTFrame:range:@var{start}:@var{end}
24887Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24888currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24889and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24890numbers.
24891
24892@item QTFrame:outside:@var{start}:@var{end}
24893Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24894frame @emph{outside} the given range of addresses.
24895
24896@item QTStart
24897Begin the tracepoint experiment. Begin collecting data from tracepoint
24898hits in the trace frame buffer.
24899
24900@item QTStop
24901End the tracepoint experiment. Stop collecting trace frames.
24902
24903@item QTinit
24904Clear the table of tracepoints, and empty the trace frame buffer.
24905
24906@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24907Establish the given ranges of memory as ``transparent''. The stub
24908will answer requests for these ranges from memory's current contents,
24909if they were not collected as part of the tracepoint hit.
24910
24911@value{GDBN} uses this to mark read-only regions of memory, like those
24912containing program code. Since these areas never change, they should
24913still have the same contents they did when the tracepoint was hit, so
24914there's no reason for the stub to refuse to provide their contents.
24915
24916@item qTStatus
24917Ask the stub if there is a trace experiment running right now.
24918
24919Replies:
24920@table @samp
24921@item T0
24922There is no trace experiment running.
24923@item T1
24924There is a trace experiment running.
24925@end table
24926
24927@end table
24928
24929
a6b151f1
DJ
24930@node Host I/O Packets
24931@section Host I/O Packets
24932@cindex Host I/O, remote protocol
24933@cindex file transfer, remote protocol
24934
24935The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24936operations on the far side of a remote link. For example, Host I/O is
24937used to upload and download files to a remote target with its own
24938filesystem. Host I/O uses the same constant values and data structure
24939layout as the target-initiated File-I/O protocol. However, the
24940Host I/O packets are structured differently. The target-initiated
24941protocol relies on target memory to store parameters and buffers.
24942Host I/O requests are initiated by @value{GDBN}, and the
24943target's memory is not involved. @xref{File-I/O Remote Protocol
24944Extension}, for more details on the target-initiated protocol.
24945
24946The Host I/O request packets all encode a single operation along with
24947its arguments. They have this format:
24948
24949@table @samp
24950
24951@item vFile:@var{operation}: @var{parameter}@dots{}
24952@var{operation} is the name of the particular request; the target
24953should compare the entire packet name up to the second colon when checking
24954for a supported operation. The format of @var{parameter} depends on
24955the operation. Numbers are always passed in hexadecimal. Negative
24956numbers have an explicit minus sign (i.e.@: two's complement is not
24957used). Strings (e.g.@: filenames) are encoded as a series of
24958hexadecimal bytes. The last argument to a system call may be a
24959buffer of escaped binary data (@pxref{Binary Data}).
24960
24961@end table
24962
24963The valid responses to Host I/O packets are:
24964
24965@table @samp
24966
24967@item F @var{result} [, @var{errno}] [; @var{attachment}]
24968@var{result} is the integer value returned by this operation, usually
24969non-negative for success and -1 for errors. If an error has occured,
24970@var{errno} will be included in the result. @var{errno} will have a
24971value defined by the File-I/O protocol (@pxref{Errno Values}). For
24972operations which return data, @var{attachment} supplies the data as a
24973binary buffer. Binary buffers in response packets are escaped in the
24974normal way (@pxref{Binary Data}). See the individual packet
24975documentation for the interpretation of @var{result} and
24976@var{attachment}.
24977
24978@item
24979An empty response indicates that this operation is not recognized.
24980
24981@end table
24982
24983These are the supported Host I/O operations:
24984
24985@table @samp
24986@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24987Open a file at @var{pathname} and return a file descriptor for it, or
24988return -1 if an error occurs. @var{pathname} is a string,
24989@var{flags} is an integer indicating a mask of open flags
24990(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24991of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24992@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24993
24994@item vFile:close: @var{fd}
24995Close the open file corresponding to @var{fd} and return 0, or
24996-1 if an error occurs.
24997
24998@item vFile:pread: @var{fd}, @var{count}, @var{offset}
24999Read data from the open file corresponding to @var{fd}. Up to
25000@var{count} bytes will be read from the file, starting at @var{offset}
25001relative to the start of the file. The target may read fewer bytes;
25002common reasons include packet size limits and an end-of-file
25003condition. The number of bytes read is returned. Zero should only be
25004returned for a successful read at the end of the file, or if
25005@var{count} was zero.
25006
25007The data read should be returned as a binary attachment on success.
25008If zero bytes were read, the response should include an empty binary
25009attachment (i.e.@: a trailing semicolon). The return value is the
25010number of target bytes read; the binary attachment may be longer if
25011some characters were escaped.
25012
25013@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25014Write @var{data} (a binary buffer) to the open file corresponding
25015to @var{fd}. Start the write at @var{offset} from the start of the
25016file. Unlike many @code{write} system calls, there is no
25017separate @var{count} argument; the length of @var{data} in the
25018packet is used. @samp{vFile:write} returns the number of bytes written,
25019which may be shorter than the length of @var{data}, or -1 if an
25020error occurred.
25021
25022@item vFile:unlink: @var{pathname}
25023Delete the file at @var{pathname} on the target. Return 0,
25024or -1 if an error occurs. @var{pathname} is a string.
25025
25026@end table
25027
9a6253be
KB
25028@node Interrupts
25029@section Interrupts
25030@cindex interrupts (remote protocol)
25031
25032When a program on the remote target is running, @value{GDBN} may
25033attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25034control of which is specified via @value{GDBN}'s @samp{remotebreak}
25035setting (@pxref{set remotebreak}).
25036
25037The precise meaning of @code{BREAK} is defined by the transport
25038mechanism and may, in fact, be undefined. @value{GDBN} does
25039not currently define a @code{BREAK} mechanism for any of the network
25040interfaces.
25041
25042@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25043transport mechanisms. It is represented by sending the single byte
25044@code{0x03} without any of the usual packet overhead described in
25045the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25046transmitted as part of a packet, it is considered to be packet data
25047and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25048(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25049@code{0x03} as part of its packet.
25050
25051Stubs are not required to recognize these interrupt mechanisms and the
25052precise meaning associated with receipt of the interrupt is
25053implementation defined. If the stub is successful at interrupting the
25054running program, it is expected that it will send one of the Stop
25055Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25056of successfully stopping the program. Interrupts received while the
25057program is stopped will be discarded.
25058
ee2d5c50
AC
25059@node Examples
25060@section Examples
eb12ee30 25061
8e04817f
AC
25062Example sequence of a target being re-started. Notice how the restart
25063does not get any direct output:
eb12ee30 25064
474c8240 25065@smallexample
d2c6833e
AC
25066-> @code{R00}
25067<- @code{+}
8e04817f 25068@emph{target restarts}
d2c6833e 25069-> @code{?}
8e04817f 25070<- @code{+}
d2c6833e
AC
25071<- @code{T001:1234123412341234}
25072-> @code{+}
474c8240 25073@end smallexample
eb12ee30 25074
8e04817f 25075Example sequence of a target being stepped by a single instruction:
eb12ee30 25076
474c8240 25077@smallexample
d2c6833e 25078-> @code{G1445@dots{}}
8e04817f 25079<- @code{+}
d2c6833e
AC
25080-> @code{s}
25081<- @code{+}
25082@emph{time passes}
25083<- @code{T001:1234123412341234}
8e04817f 25084-> @code{+}
d2c6833e 25085-> @code{g}
8e04817f 25086<- @code{+}
d2c6833e
AC
25087<- @code{1455@dots{}}
25088-> @code{+}
474c8240 25089@end smallexample
eb12ee30 25090
79a6e687
BW
25091@node File-I/O Remote Protocol Extension
25092@section File-I/O Remote Protocol Extension
0ce1b118
CV
25093@cindex File-I/O remote protocol extension
25094
25095@menu
25096* File-I/O Overview::
79a6e687
BW
25097* Protocol Basics::
25098* The F Request Packet::
25099* The F Reply Packet::
25100* The Ctrl-C Message::
0ce1b118 25101* Console I/O::
79a6e687 25102* List of Supported Calls::
db2e3e2e 25103* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25104* Constants::
25105* File-I/O Examples::
25106@end menu
25107
25108@node File-I/O Overview
25109@subsection File-I/O Overview
25110@cindex file-i/o overview
25111
9c16f35a 25112The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25113target to use the host's file system and console I/O to perform various
0ce1b118 25114system calls. System calls on the target system are translated into a
fc320d37
SL
25115remote protocol packet to the host system, which then performs the needed
25116actions and returns a response packet to the target system.
0ce1b118
CV
25117This simulates file system operations even on targets that lack file systems.
25118
fc320d37
SL
25119The protocol is defined to be independent of both the host and target systems.
25120It uses its own internal representation of datatypes and values. Both
0ce1b118 25121@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25122translating the system-dependent value representations into the internal
25123protocol representations when data is transmitted.
0ce1b118 25124
fc320d37
SL
25125The communication is synchronous. A system call is possible only when
25126@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25127or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25128the target is stopped to allow deterministic access to the target's
fc320d37
SL
25129memory. Therefore File-I/O is not interruptible by target signals. On
25130the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25131(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25132
25133The target's request to perform a host system call does not finish
25134the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25135after finishing the system call, the target returns to continuing the
25136previous activity (continue, step). No additional continue or step
25137request from @value{GDBN} is required.
25138
25139@smallexample
f7dc1244 25140(@value{GDBP}) continue
0ce1b118
CV
25141 <- target requests 'system call X'
25142 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25143 -> @value{GDBN} returns result
25144 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25145 <- target hits breakpoint and sends a Txx packet
25146@end smallexample
25147
fc320d37
SL
25148The protocol only supports I/O on the console and to regular files on
25149the host file system. Character or block special devices, pipes,
25150named pipes, sockets or any other communication method on the host
0ce1b118
CV
25151system are not supported by this protocol.
25152
79a6e687
BW
25153@node Protocol Basics
25154@subsection Protocol Basics
0ce1b118
CV
25155@cindex protocol basics, file-i/o
25156
fc320d37
SL
25157The File-I/O protocol uses the @code{F} packet as the request as well
25158as reply packet. Since a File-I/O system call can only occur when
25159@value{GDBN} is waiting for a response from the continuing or stepping target,
25160the File-I/O request is a reply that @value{GDBN} has to expect as a result
25161of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25162This @code{F} packet contains all information needed to allow @value{GDBN}
25163to call the appropriate host system call:
25164
25165@itemize @bullet
b383017d 25166@item
0ce1b118
CV
25167A unique identifier for the requested system call.
25168
25169@item
25170All parameters to the system call. Pointers are given as addresses
25171in the target memory address space. Pointers to strings are given as
b383017d 25172pointer/length pair. Numerical values are given as they are.
db2e3e2e 25173Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25174
25175@end itemize
25176
fc320d37 25177At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25178
25179@itemize @bullet
b383017d 25180@item
fc320d37
SL
25181If the parameters include pointer values to data needed as input to a
25182system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25183standard @code{m} packet request. This additional communication has to be
25184expected by the target implementation and is handled as any other @code{m}
25185packet.
25186
25187@item
25188@value{GDBN} translates all value from protocol representation to host
25189representation as needed. Datatypes are coerced into the host types.
25190
25191@item
fc320d37 25192@value{GDBN} calls the system call.
0ce1b118
CV
25193
25194@item
25195It then coerces datatypes back to protocol representation.
25196
25197@item
fc320d37
SL
25198If the system call is expected to return data in buffer space specified
25199by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25200target using a @code{M} or @code{X} packet. This packet has to be expected
25201by the target implementation and is handled as any other @code{M} or @code{X}
25202packet.
25203
25204@end itemize
25205
25206Eventually @value{GDBN} replies with another @code{F} packet which contains all
25207necessary information for the target to continue. This at least contains
25208
25209@itemize @bullet
25210@item
25211Return value.
25212
25213@item
25214@code{errno}, if has been changed by the system call.
25215
25216@item
25217``Ctrl-C'' flag.
25218
25219@end itemize
25220
25221After having done the needed type and value coercion, the target continues
25222the latest continue or step action.
25223
79a6e687
BW
25224@node The F Request Packet
25225@subsection The @code{F} Request Packet
0ce1b118
CV
25226@cindex file-i/o request packet
25227@cindex @code{F} request packet
25228
25229The @code{F} request packet has the following format:
25230
25231@table @samp
fc320d37 25232@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25233
25234@var{call-id} is the identifier to indicate the host system call to be called.
25235This is just the name of the function.
25236
fc320d37
SL
25237@var{parameter@dots{}} are the parameters to the system call.
25238Parameters are hexadecimal integer values, either the actual values in case
25239of scalar datatypes, pointers to target buffer space in case of compound
25240datatypes and unspecified memory areas, or pointer/length pairs in case
25241of string parameters. These are appended to the @var{call-id} as a
25242comma-delimited list. All values are transmitted in ASCII
25243string representation, pointer/length pairs separated by a slash.
0ce1b118 25244
b383017d 25245@end table
0ce1b118 25246
fc320d37 25247
0ce1b118 25248
79a6e687
BW
25249@node The F Reply Packet
25250@subsection The @code{F} Reply Packet
0ce1b118
CV
25251@cindex file-i/o reply packet
25252@cindex @code{F} reply packet
25253
25254The @code{F} reply packet has the following format:
25255
25256@table @samp
25257
d3bdde98 25258@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25259
25260@var{retcode} is the return code of the system call as hexadecimal value.
25261
db2e3e2e
BW
25262@var{errno} is the @code{errno} set by the call, in protocol-specific
25263representation.
0ce1b118
CV
25264This parameter can be omitted if the call was successful.
25265
fc320d37
SL
25266@var{Ctrl-C flag} is only sent if the user requested a break. In this
25267case, @var{errno} must be sent as well, even if the call was successful.
25268The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25269
25270@smallexample
25271F0,0,C
25272@end smallexample
25273
25274@noindent
fc320d37 25275or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25276
25277@smallexample
25278F-1,4,C
25279@end smallexample
25280
25281@noindent
db2e3e2e 25282assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25283
25284@end table
25285
0ce1b118 25286
79a6e687
BW
25287@node The Ctrl-C Message
25288@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25289@cindex ctrl-c message, in file-i/o protocol
25290
c8aa23ab 25291If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25292reply packet (@pxref{The F Reply Packet}),
fc320d37 25293the target should behave as if it had
0ce1b118 25294gotten a break message. The meaning for the target is ``system call
fc320d37 25295interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25296(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25297packet.
fc320d37
SL
25298
25299It's important for the target to know in which
25300state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25301
25302@itemize @bullet
25303@item
25304The system call hasn't been performed on the host yet.
25305
25306@item
25307The system call on the host has been finished.
25308
25309@end itemize
25310
25311These two states can be distinguished by the target by the value of the
25312returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25313call hasn't been performed. This is equivalent to the @code{EINTR} handling
25314on POSIX systems. In any other case, the target may presume that the
fc320d37 25315system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25316as if the break message arrived right after the system call.
25317
fc320d37 25318@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25319yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25320@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25321before the user requests a break, the full action must be finished by
25322@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25323The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25324or the full action has been completed.
25325
25326@node Console I/O
25327@subsection Console I/O
25328@cindex console i/o as part of file-i/o
25329
d3e8051b 25330By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25331descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25332on the @value{GDBN} console is handled as any other file output operation
25333(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25334by @value{GDBN} so that after the target read request from file descriptor
253350 all following typing is buffered until either one of the following
25336conditions is met:
25337
25338@itemize @bullet
25339@item
c8aa23ab 25340The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25341@code{read}
25342system call is treated as finished.
25343
25344@item
7f9087cb 25345The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25346newline.
0ce1b118
CV
25347
25348@item
c8aa23ab
EZ
25349The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25350character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25351
25352@end itemize
25353
fc320d37
SL
25354If the user has typed more characters than fit in the buffer given to
25355the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25356either another @code{read(0, @dots{})} is requested by the target, or debugging
25357is stopped at the user's request.
0ce1b118 25358
0ce1b118 25359
79a6e687
BW
25360@node List of Supported Calls
25361@subsection List of Supported Calls
0ce1b118
CV
25362@cindex list of supported file-i/o calls
25363
25364@menu
25365* open::
25366* close::
25367* read::
25368* write::
25369* lseek::
25370* rename::
25371* unlink::
25372* stat/fstat::
25373* gettimeofday::
25374* isatty::
25375* system::
25376@end menu
25377
25378@node open
25379@unnumberedsubsubsec open
25380@cindex open, file-i/o system call
25381
fc320d37
SL
25382@table @asis
25383@item Synopsis:
0ce1b118 25384@smallexample
0ce1b118
CV
25385int open(const char *pathname, int flags);
25386int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25387@end smallexample
25388
fc320d37
SL
25389@item Request:
25390@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25391
0ce1b118 25392@noindent
fc320d37 25393@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25394
25395@table @code
b383017d 25396@item O_CREAT
0ce1b118
CV
25397If the file does not exist it will be created. The host
25398rules apply as far as file ownership and time stamps
25399are concerned.
25400
b383017d 25401@item O_EXCL
fc320d37 25402When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25403an error and open() fails.
25404
b383017d 25405@item O_TRUNC
0ce1b118 25406If the file already exists and the open mode allows
fc320d37
SL
25407writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25408truncated to zero length.
0ce1b118 25409
b383017d 25410@item O_APPEND
0ce1b118
CV
25411The file is opened in append mode.
25412
b383017d 25413@item O_RDONLY
0ce1b118
CV
25414The file is opened for reading only.
25415
b383017d 25416@item O_WRONLY
0ce1b118
CV
25417The file is opened for writing only.
25418
b383017d 25419@item O_RDWR
0ce1b118 25420The file is opened for reading and writing.
fc320d37 25421@end table
0ce1b118
CV
25422
25423@noindent
fc320d37 25424Other bits are silently ignored.
0ce1b118 25425
0ce1b118
CV
25426
25427@noindent
fc320d37 25428@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25429
25430@table @code
b383017d 25431@item S_IRUSR
0ce1b118
CV
25432User has read permission.
25433
b383017d 25434@item S_IWUSR
0ce1b118
CV
25435User has write permission.
25436
b383017d 25437@item S_IRGRP
0ce1b118
CV
25438Group has read permission.
25439
b383017d 25440@item S_IWGRP
0ce1b118
CV
25441Group has write permission.
25442
b383017d 25443@item S_IROTH
0ce1b118
CV
25444Others have read permission.
25445
b383017d 25446@item S_IWOTH
0ce1b118 25447Others have write permission.
fc320d37 25448@end table
0ce1b118
CV
25449
25450@noindent
fc320d37 25451Other bits are silently ignored.
0ce1b118 25452
0ce1b118 25453
fc320d37
SL
25454@item Return value:
25455@code{open} returns the new file descriptor or -1 if an error
25456occurred.
0ce1b118 25457
fc320d37 25458@item Errors:
0ce1b118
CV
25459
25460@table @code
b383017d 25461@item EEXIST
fc320d37 25462@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25463
b383017d 25464@item EISDIR
fc320d37 25465@var{pathname} refers to a directory.
0ce1b118 25466
b383017d 25467@item EACCES
0ce1b118
CV
25468The requested access is not allowed.
25469
25470@item ENAMETOOLONG
fc320d37 25471@var{pathname} was too long.
0ce1b118 25472
b383017d 25473@item ENOENT
fc320d37 25474A directory component in @var{pathname} does not exist.
0ce1b118 25475
b383017d 25476@item ENODEV
fc320d37 25477@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25478
b383017d 25479@item EROFS
fc320d37 25480@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25481write access was requested.
25482
b383017d 25483@item EFAULT
fc320d37 25484@var{pathname} is an invalid pointer value.
0ce1b118 25485
b383017d 25486@item ENOSPC
0ce1b118
CV
25487No space on device to create the file.
25488
b383017d 25489@item EMFILE
0ce1b118
CV
25490The process already has the maximum number of files open.
25491
b383017d 25492@item ENFILE
0ce1b118
CV
25493The limit on the total number of files open on the system
25494has been reached.
25495
b383017d 25496@item EINTR
0ce1b118
CV
25497The call was interrupted by the user.
25498@end table
25499
fc320d37
SL
25500@end table
25501
0ce1b118
CV
25502@node close
25503@unnumberedsubsubsec close
25504@cindex close, file-i/o system call
25505
fc320d37
SL
25506@table @asis
25507@item Synopsis:
0ce1b118 25508@smallexample
0ce1b118 25509int close(int fd);
fc320d37 25510@end smallexample
0ce1b118 25511
fc320d37
SL
25512@item Request:
25513@samp{Fclose,@var{fd}}
0ce1b118 25514
fc320d37
SL
25515@item Return value:
25516@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25517
fc320d37 25518@item Errors:
0ce1b118
CV
25519
25520@table @code
b383017d 25521@item EBADF
fc320d37 25522@var{fd} isn't a valid open file descriptor.
0ce1b118 25523
b383017d 25524@item EINTR
0ce1b118
CV
25525The call was interrupted by the user.
25526@end table
25527
fc320d37
SL
25528@end table
25529
0ce1b118
CV
25530@node read
25531@unnumberedsubsubsec read
25532@cindex read, file-i/o system call
25533
fc320d37
SL
25534@table @asis
25535@item Synopsis:
0ce1b118 25536@smallexample
0ce1b118 25537int read(int fd, void *buf, unsigned int count);
fc320d37 25538@end smallexample
0ce1b118 25539
fc320d37
SL
25540@item Request:
25541@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25542
fc320d37 25543@item Return value:
0ce1b118
CV
25544On success, the number of bytes read is returned.
25545Zero indicates end of file. If count is zero, read
b383017d 25546returns zero as well. On error, -1 is returned.
0ce1b118 25547
fc320d37 25548@item Errors:
0ce1b118
CV
25549
25550@table @code
b383017d 25551@item EBADF
fc320d37 25552@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25553reading.
25554
b383017d 25555@item EFAULT
fc320d37 25556@var{bufptr} is an invalid pointer value.
0ce1b118 25557
b383017d 25558@item EINTR
0ce1b118
CV
25559The call was interrupted by the user.
25560@end table
25561
fc320d37
SL
25562@end table
25563
0ce1b118
CV
25564@node write
25565@unnumberedsubsubsec write
25566@cindex write, file-i/o system call
25567
fc320d37
SL
25568@table @asis
25569@item Synopsis:
0ce1b118 25570@smallexample
0ce1b118 25571int write(int fd, const void *buf, unsigned int count);
fc320d37 25572@end smallexample
0ce1b118 25573
fc320d37
SL
25574@item Request:
25575@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25576
fc320d37 25577@item Return value:
0ce1b118
CV
25578On success, the number of bytes written are returned.
25579Zero indicates nothing was written. On error, -1
25580is returned.
25581
fc320d37 25582@item Errors:
0ce1b118
CV
25583
25584@table @code
b383017d 25585@item EBADF
fc320d37 25586@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25587writing.
25588
b383017d 25589@item EFAULT
fc320d37 25590@var{bufptr} is an invalid pointer value.
0ce1b118 25591
b383017d 25592@item EFBIG
0ce1b118 25593An attempt was made to write a file that exceeds the
db2e3e2e 25594host-specific maximum file size allowed.
0ce1b118 25595
b383017d 25596@item ENOSPC
0ce1b118
CV
25597No space on device to write the data.
25598
b383017d 25599@item EINTR
0ce1b118
CV
25600The call was interrupted by the user.
25601@end table
25602
fc320d37
SL
25603@end table
25604
0ce1b118
CV
25605@node lseek
25606@unnumberedsubsubsec lseek
25607@cindex lseek, file-i/o system call
25608
fc320d37
SL
25609@table @asis
25610@item Synopsis:
0ce1b118 25611@smallexample
0ce1b118 25612long lseek (int fd, long offset, int flag);
0ce1b118
CV
25613@end smallexample
25614
fc320d37
SL
25615@item Request:
25616@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25617
25618@var{flag} is one of:
0ce1b118
CV
25619
25620@table @code
b383017d 25621@item SEEK_SET
fc320d37 25622The offset is set to @var{offset} bytes.
0ce1b118 25623
b383017d 25624@item SEEK_CUR
fc320d37 25625The offset is set to its current location plus @var{offset}
0ce1b118
CV
25626bytes.
25627
b383017d 25628@item SEEK_END
fc320d37 25629The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25630bytes.
25631@end table
25632
fc320d37 25633@item Return value:
0ce1b118
CV
25634On success, the resulting unsigned offset in bytes from
25635the beginning of the file is returned. Otherwise, a
25636value of -1 is returned.
25637
fc320d37 25638@item Errors:
0ce1b118
CV
25639
25640@table @code
b383017d 25641@item EBADF
fc320d37 25642@var{fd} is not a valid open file descriptor.
0ce1b118 25643
b383017d 25644@item ESPIPE
fc320d37 25645@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25646
b383017d 25647@item EINVAL
fc320d37 25648@var{flag} is not a proper value.
0ce1b118 25649
b383017d 25650@item EINTR
0ce1b118
CV
25651The call was interrupted by the user.
25652@end table
25653
fc320d37
SL
25654@end table
25655
0ce1b118
CV
25656@node rename
25657@unnumberedsubsubsec rename
25658@cindex rename, file-i/o system call
25659
fc320d37
SL
25660@table @asis
25661@item Synopsis:
0ce1b118 25662@smallexample
0ce1b118 25663int rename(const char *oldpath, const char *newpath);
fc320d37 25664@end smallexample
0ce1b118 25665
fc320d37
SL
25666@item Request:
25667@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25668
fc320d37 25669@item Return value:
0ce1b118
CV
25670On success, zero is returned. On error, -1 is returned.
25671
fc320d37 25672@item Errors:
0ce1b118
CV
25673
25674@table @code
b383017d 25675@item EISDIR
fc320d37 25676@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25677directory.
25678
b383017d 25679@item EEXIST
fc320d37 25680@var{newpath} is a non-empty directory.
0ce1b118 25681
b383017d 25682@item EBUSY
fc320d37 25683@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25684process.
25685
b383017d 25686@item EINVAL
0ce1b118
CV
25687An attempt was made to make a directory a subdirectory
25688of itself.
25689
b383017d 25690@item ENOTDIR
fc320d37
SL
25691A component used as a directory in @var{oldpath} or new
25692path is not a directory. Or @var{oldpath} is a directory
25693and @var{newpath} exists but is not a directory.
0ce1b118 25694
b383017d 25695@item EFAULT
fc320d37 25696@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25697
b383017d 25698@item EACCES
0ce1b118
CV
25699No access to the file or the path of the file.
25700
25701@item ENAMETOOLONG
b383017d 25702
fc320d37 25703@var{oldpath} or @var{newpath} was too long.
0ce1b118 25704
b383017d 25705@item ENOENT
fc320d37 25706A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25707
b383017d 25708@item EROFS
0ce1b118
CV
25709The file is on a read-only filesystem.
25710
b383017d 25711@item ENOSPC
0ce1b118
CV
25712The device containing the file has no room for the new
25713directory entry.
25714
b383017d 25715@item EINTR
0ce1b118
CV
25716The call was interrupted by the user.
25717@end table
25718
fc320d37
SL
25719@end table
25720
0ce1b118
CV
25721@node unlink
25722@unnumberedsubsubsec unlink
25723@cindex unlink, file-i/o system call
25724
fc320d37
SL
25725@table @asis
25726@item Synopsis:
0ce1b118 25727@smallexample
0ce1b118 25728int unlink(const char *pathname);
fc320d37 25729@end smallexample
0ce1b118 25730
fc320d37
SL
25731@item Request:
25732@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25733
fc320d37 25734@item Return value:
0ce1b118
CV
25735On success, zero is returned. On error, -1 is returned.
25736
fc320d37 25737@item Errors:
0ce1b118
CV
25738
25739@table @code
b383017d 25740@item EACCES
0ce1b118
CV
25741No access to the file or the path of the file.
25742
b383017d 25743@item EPERM
0ce1b118
CV
25744The system does not allow unlinking of directories.
25745
b383017d 25746@item EBUSY
fc320d37 25747The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25748being used by another process.
25749
b383017d 25750@item EFAULT
fc320d37 25751@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25752
25753@item ENAMETOOLONG
fc320d37 25754@var{pathname} was too long.
0ce1b118 25755
b383017d 25756@item ENOENT
fc320d37 25757A directory component in @var{pathname} does not exist.
0ce1b118 25758
b383017d 25759@item ENOTDIR
0ce1b118
CV
25760A component of the path is not a directory.
25761
b383017d 25762@item EROFS
0ce1b118
CV
25763The file is on a read-only filesystem.
25764
b383017d 25765@item EINTR
0ce1b118
CV
25766The call was interrupted by the user.
25767@end table
25768
fc320d37
SL
25769@end table
25770
0ce1b118
CV
25771@node stat/fstat
25772@unnumberedsubsubsec stat/fstat
25773@cindex fstat, file-i/o system call
25774@cindex stat, file-i/o system call
25775
fc320d37
SL
25776@table @asis
25777@item Synopsis:
0ce1b118 25778@smallexample
0ce1b118
CV
25779int stat(const char *pathname, struct stat *buf);
25780int fstat(int fd, struct stat *buf);
fc320d37 25781@end smallexample
0ce1b118 25782
fc320d37
SL
25783@item Request:
25784@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25785@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25786
fc320d37 25787@item Return value:
0ce1b118
CV
25788On success, zero is returned. On error, -1 is returned.
25789
fc320d37 25790@item Errors:
0ce1b118
CV
25791
25792@table @code
b383017d 25793@item EBADF
fc320d37 25794@var{fd} is not a valid open file.
0ce1b118 25795
b383017d 25796@item ENOENT
fc320d37 25797A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25798path is an empty string.
25799
b383017d 25800@item ENOTDIR
0ce1b118
CV
25801A component of the path is not a directory.
25802
b383017d 25803@item EFAULT
fc320d37 25804@var{pathnameptr} is an invalid pointer value.
0ce1b118 25805
b383017d 25806@item EACCES
0ce1b118
CV
25807No access to the file or the path of the file.
25808
25809@item ENAMETOOLONG
fc320d37 25810@var{pathname} was too long.
0ce1b118 25811
b383017d 25812@item EINTR
0ce1b118
CV
25813The call was interrupted by the user.
25814@end table
25815
fc320d37
SL
25816@end table
25817
0ce1b118
CV
25818@node gettimeofday
25819@unnumberedsubsubsec gettimeofday
25820@cindex gettimeofday, file-i/o system call
25821
fc320d37
SL
25822@table @asis
25823@item Synopsis:
0ce1b118 25824@smallexample
0ce1b118 25825int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25826@end smallexample
0ce1b118 25827
fc320d37
SL
25828@item Request:
25829@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25830
fc320d37 25831@item Return value:
0ce1b118
CV
25832On success, 0 is returned, -1 otherwise.
25833
fc320d37 25834@item Errors:
0ce1b118
CV
25835
25836@table @code
b383017d 25837@item EINVAL
fc320d37 25838@var{tz} is a non-NULL pointer.
0ce1b118 25839
b383017d 25840@item EFAULT
fc320d37
SL
25841@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25842@end table
25843
0ce1b118
CV
25844@end table
25845
25846@node isatty
25847@unnumberedsubsubsec isatty
25848@cindex isatty, file-i/o system call
25849
fc320d37
SL
25850@table @asis
25851@item Synopsis:
0ce1b118 25852@smallexample
0ce1b118 25853int isatty(int fd);
fc320d37 25854@end smallexample
0ce1b118 25855
fc320d37
SL
25856@item Request:
25857@samp{Fisatty,@var{fd}}
0ce1b118 25858
fc320d37
SL
25859@item Return value:
25860Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25861
fc320d37 25862@item Errors:
0ce1b118
CV
25863
25864@table @code
b383017d 25865@item EINTR
0ce1b118
CV
25866The call was interrupted by the user.
25867@end table
25868
fc320d37
SL
25869@end table
25870
25871Note that the @code{isatty} call is treated as a special case: it returns
258721 to the target if the file descriptor is attached
25873to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25874would require implementing @code{ioctl} and would be more complex than
25875needed.
25876
25877
0ce1b118
CV
25878@node system
25879@unnumberedsubsubsec system
25880@cindex system, file-i/o system call
25881
fc320d37
SL
25882@table @asis
25883@item Synopsis:
0ce1b118 25884@smallexample
0ce1b118 25885int system(const char *command);
fc320d37 25886@end smallexample
0ce1b118 25887
fc320d37
SL
25888@item Request:
25889@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25890
fc320d37 25891@item Return value:
5600ea19
NS
25892If @var{len} is zero, the return value indicates whether a shell is
25893available. A zero return value indicates a shell is not available.
25894For non-zero @var{len}, the value returned is -1 on error and the
25895return status of the command otherwise. Only the exit status of the
25896command is returned, which is extracted from the host's @code{system}
25897return value by calling @code{WEXITSTATUS(retval)}. In case
25898@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25899
fc320d37 25900@item Errors:
0ce1b118
CV
25901
25902@table @code
b383017d 25903@item EINTR
0ce1b118
CV
25904The call was interrupted by the user.
25905@end table
25906
fc320d37
SL
25907@end table
25908
25909@value{GDBN} takes over the full task of calling the necessary host calls
25910to perform the @code{system} call. The return value of @code{system} on
25911the host is simplified before it's returned
25912to the target. Any termination signal information from the child process
25913is discarded, and the return value consists
25914entirely of the exit status of the called command.
25915
25916Due to security concerns, the @code{system} call is by default refused
25917by @value{GDBN}. The user has to allow this call explicitly with the
25918@code{set remote system-call-allowed 1} command.
25919
25920@table @code
25921@item set remote system-call-allowed
25922@kindex set remote system-call-allowed
25923Control whether to allow the @code{system} calls in the File I/O
25924protocol for the remote target. The default is zero (disabled).
25925
25926@item show remote system-call-allowed
25927@kindex show remote system-call-allowed
25928Show whether the @code{system} calls are allowed in the File I/O
25929protocol.
25930@end table
25931
db2e3e2e
BW
25932@node Protocol-specific Representation of Datatypes
25933@subsection Protocol-specific Representation of Datatypes
25934@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25935
25936@menu
79a6e687
BW
25937* Integral Datatypes::
25938* Pointer Values::
25939* Memory Transfer::
0ce1b118
CV
25940* struct stat::
25941* struct timeval::
25942@end menu
25943
79a6e687
BW
25944@node Integral Datatypes
25945@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25946@cindex integral datatypes, in file-i/o protocol
25947
fc320d37
SL
25948The integral datatypes used in the system calls are @code{int},
25949@code{unsigned int}, @code{long}, @code{unsigned long},
25950@code{mode_t}, and @code{time_t}.
0ce1b118 25951
fc320d37 25952@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25953implemented as 32 bit values in this protocol.
25954
fc320d37 25955@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25956
0ce1b118
CV
25957@xref{Limits}, for corresponding MIN and MAX values (similar to those
25958in @file{limits.h}) to allow range checking on host and target.
25959
25960@code{time_t} datatypes are defined as seconds since the Epoch.
25961
25962All integral datatypes transferred as part of a memory read or write of a
25963structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25964byte order.
25965
79a6e687
BW
25966@node Pointer Values
25967@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25968@cindex pointer values, in file-i/o protocol
25969
25970Pointers to target data are transmitted as they are. An exception
25971is made for pointers to buffers for which the length isn't
25972transmitted as part of the function call, namely strings. Strings
25973are transmitted as a pointer/length pair, both as hex values, e.g.@:
25974
25975@smallexample
25976@code{1aaf/12}
25977@end smallexample
25978
25979@noindent
25980which is a pointer to data of length 18 bytes at position 0x1aaf.
25981The length is defined as the full string length in bytes, including
fc320d37
SL
25982the trailing null byte. For example, the string @code{"hello world"}
25983at address 0x123456 is transmitted as
0ce1b118
CV
25984
25985@smallexample
fc320d37 25986@code{123456/d}
0ce1b118
CV
25987@end smallexample
25988
79a6e687
BW
25989@node Memory Transfer
25990@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25991@cindex memory transfer, in file-i/o protocol
25992
25993Structured data which is transferred using a memory read or write (for
db2e3e2e 25994example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25995with all scalar multibyte datatypes being big endian. Translation to
25996this representation needs to be done both by the target before the @code{F}
25997packet is sent, and by @value{GDBN} before
25998it transfers memory to the target. Transferred pointers to structured
25999data should point to the already-coerced data at any time.
0ce1b118 26000
0ce1b118
CV
26001
26002@node struct stat
26003@unnumberedsubsubsec struct stat
26004@cindex struct stat, in file-i/o protocol
26005
fc320d37
SL
26006The buffer of type @code{struct stat} used by the target and @value{GDBN}
26007is defined as follows:
0ce1b118
CV
26008
26009@smallexample
26010struct stat @{
26011 unsigned int st_dev; /* device */
26012 unsigned int st_ino; /* inode */
26013 mode_t st_mode; /* protection */
26014 unsigned int st_nlink; /* number of hard links */
26015 unsigned int st_uid; /* user ID of owner */
26016 unsigned int st_gid; /* group ID of owner */
26017 unsigned int st_rdev; /* device type (if inode device) */
26018 unsigned long st_size; /* total size, in bytes */
26019 unsigned long st_blksize; /* blocksize for filesystem I/O */
26020 unsigned long st_blocks; /* number of blocks allocated */
26021 time_t st_atime; /* time of last access */
26022 time_t st_mtime; /* time of last modification */
26023 time_t st_ctime; /* time of last change */
26024@};
26025@end smallexample
26026
fc320d37 26027The integral datatypes conform to the definitions given in the
79a6e687 26028appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26029structure is of size 64 bytes.
26030
26031The values of several fields have a restricted meaning and/or
26032range of values.
26033
fc320d37 26034@table @code
0ce1b118 26035
fc320d37
SL
26036@item st_dev
26037A value of 0 represents a file, 1 the console.
0ce1b118 26038
fc320d37
SL
26039@item st_ino
26040No valid meaning for the target. Transmitted unchanged.
0ce1b118 26041
fc320d37
SL
26042@item st_mode
26043Valid mode bits are described in @ref{Constants}. Any other
26044bits have currently no meaning for the target.
0ce1b118 26045
fc320d37
SL
26046@item st_uid
26047@itemx st_gid
26048@itemx st_rdev
26049No valid meaning for the target. Transmitted unchanged.
0ce1b118 26050
fc320d37
SL
26051@item st_atime
26052@itemx st_mtime
26053@itemx st_ctime
26054These values have a host and file system dependent
26055accuracy. Especially on Windows hosts, the file system may not
26056support exact timing values.
26057@end table
0ce1b118 26058
fc320d37
SL
26059The target gets a @code{struct stat} of the above representation and is
26060responsible for coercing it to the target representation before
0ce1b118
CV
26061continuing.
26062
fc320d37
SL
26063Note that due to size differences between the host, target, and protocol
26064representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26065get truncated on the target.
26066
26067@node struct timeval
26068@unnumberedsubsubsec struct timeval
26069@cindex struct timeval, in file-i/o protocol
26070
fc320d37 26071The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26072is defined as follows:
26073
26074@smallexample
b383017d 26075struct timeval @{
0ce1b118
CV
26076 time_t tv_sec; /* second */
26077 long tv_usec; /* microsecond */
26078@};
26079@end smallexample
26080
fc320d37 26081The integral datatypes conform to the definitions given in the
79a6e687 26082appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26083structure is of size 8 bytes.
26084
26085@node Constants
26086@subsection Constants
26087@cindex constants, in file-i/o protocol
26088
26089The following values are used for the constants inside of the
fc320d37 26090protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26091values before and after the call as needed.
26092
26093@menu
79a6e687
BW
26094* Open Flags::
26095* mode_t Values::
26096* Errno Values::
26097* Lseek Flags::
0ce1b118
CV
26098* Limits::
26099@end menu
26100
79a6e687
BW
26101@node Open Flags
26102@unnumberedsubsubsec Open Flags
0ce1b118
CV
26103@cindex open flags, in file-i/o protocol
26104
26105All values are given in hexadecimal representation.
26106
26107@smallexample
26108 O_RDONLY 0x0
26109 O_WRONLY 0x1
26110 O_RDWR 0x2
26111 O_APPEND 0x8
26112 O_CREAT 0x200
26113 O_TRUNC 0x400
26114 O_EXCL 0x800
26115@end smallexample
26116
79a6e687
BW
26117@node mode_t Values
26118@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26119@cindex mode_t values, in file-i/o protocol
26120
26121All values are given in octal representation.
26122
26123@smallexample
26124 S_IFREG 0100000
26125 S_IFDIR 040000
26126 S_IRUSR 0400
26127 S_IWUSR 0200
26128 S_IXUSR 0100
26129 S_IRGRP 040
26130 S_IWGRP 020
26131 S_IXGRP 010
26132 S_IROTH 04
26133 S_IWOTH 02
26134 S_IXOTH 01
26135@end smallexample
26136
79a6e687
BW
26137@node Errno Values
26138@unnumberedsubsubsec Errno Values
0ce1b118
CV
26139@cindex errno values, in file-i/o protocol
26140
26141All values are given in decimal representation.
26142
26143@smallexample
26144 EPERM 1
26145 ENOENT 2
26146 EINTR 4
26147 EBADF 9
26148 EACCES 13
26149 EFAULT 14
26150 EBUSY 16
26151 EEXIST 17
26152 ENODEV 19
26153 ENOTDIR 20
26154 EISDIR 21
26155 EINVAL 22
26156 ENFILE 23
26157 EMFILE 24
26158 EFBIG 27
26159 ENOSPC 28
26160 ESPIPE 29
26161 EROFS 30
26162 ENAMETOOLONG 91
26163 EUNKNOWN 9999
26164@end smallexample
26165
fc320d37 26166 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26167 any error value not in the list of supported error numbers.
26168
79a6e687
BW
26169@node Lseek Flags
26170@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26171@cindex lseek flags, in file-i/o protocol
26172
26173@smallexample
26174 SEEK_SET 0
26175 SEEK_CUR 1
26176 SEEK_END 2
26177@end smallexample
26178
26179@node Limits
26180@unnumberedsubsubsec Limits
26181@cindex limits, in file-i/o protocol
26182
26183All values are given in decimal representation.
26184
26185@smallexample
26186 INT_MIN -2147483648
26187 INT_MAX 2147483647
26188 UINT_MAX 4294967295
26189 LONG_MIN -9223372036854775808
26190 LONG_MAX 9223372036854775807
26191 ULONG_MAX 18446744073709551615
26192@end smallexample
26193
26194@node File-I/O Examples
26195@subsection File-I/O Examples
26196@cindex file-i/o examples
26197
26198Example sequence of a write call, file descriptor 3, buffer is at target
26199address 0x1234, 6 bytes should be written:
26200
26201@smallexample
26202<- @code{Fwrite,3,1234,6}
26203@emph{request memory read from target}
26204-> @code{m1234,6}
26205<- XXXXXX
26206@emph{return "6 bytes written"}
26207-> @code{F6}
26208@end smallexample
26209
26210Example sequence of a read call, file descriptor 3, buffer is at target
26211address 0x1234, 6 bytes should be read:
26212
26213@smallexample
26214<- @code{Fread,3,1234,6}
26215@emph{request memory write to target}
26216-> @code{X1234,6:XXXXXX}
26217@emph{return "6 bytes read"}
26218-> @code{F6}
26219@end smallexample
26220
26221Example sequence of a read call, call fails on the host due to invalid
fc320d37 26222file descriptor (@code{EBADF}):
0ce1b118
CV
26223
26224@smallexample
26225<- @code{Fread,3,1234,6}
26226-> @code{F-1,9}
26227@end smallexample
26228
c8aa23ab 26229Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26230host is called:
26231
26232@smallexample
26233<- @code{Fread,3,1234,6}
26234-> @code{F-1,4,C}
26235<- @code{T02}
26236@end smallexample
26237
c8aa23ab 26238Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26239host is called:
26240
26241@smallexample
26242<- @code{Fread,3,1234,6}
26243-> @code{X1234,6:XXXXXX}
26244<- @code{T02}
26245@end smallexample
26246
cfa9d6d9
DJ
26247@node Library List Format
26248@section Library List Format
26249@cindex library list format, remote protocol
26250
26251On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26252same process as your application to manage libraries. In this case,
26253@value{GDBN} can use the loader's symbol table and normal memory
26254operations to maintain a list of shared libraries. On other
26255platforms, the operating system manages loaded libraries.
26256@value{GDBN} can not retrieve the list of currently loaded libraries
26257through memory operations, so it uses the @samp{qXfer:libraries:read}
26258packet (@pxref{qXfer library list read}) instead. The remote stub
26259queries the target's operating system and reports which libraries
26260are loaded.
26261
26262The @samp{qXfer:libraries:read} packet returns an XML document which
26263lists loaded libraries and their offsets. Each library has an
26264associated name and one or more segment base addresses, which report
26265where the library was loaded in memory. The segment bases are start
26266addresses, not relocation offsets; they do not depend on the library's
26267link-time base addresses.
26268
9cceb671
DJ
26269@value{GDBN} must be linked with the Expat library to support XML
26270library lists. @xref{Expat}.
26271
cfa9d6d9
DJ
26272A simple memory map, with one loaded library relocated by a single
26273offset, looks like this:
26274
26275@smallexample
26276<library-list>
26277 <library name="/lib/libc.so.6">
26278 <segment address="0x10000000"/>
26279 </library>
26280</library-list>
26281@end smallexample
26282
26283The format of a library list is described by this DTD:
26284
26285@smallexample
26286<!-- library-list: Root element with versioning -->
26287<!ELEMENT library-list (library)*>
26288<!ATTLIST library-list version CDATA #FIXED "1.0">
26289<!ELEMENT library (segment)*>
26290<!ATTLIST library name CDATA #REQUIRED>
26291<!ELEMENT segment EMPTY>
26292<!ATTLIST segment address CDATA #REQUIRED>
26293@end smallexample
26294
79a6e687
BW
26295@node Memory Map Format
26296@section Memory Map Format
68437a39
DJ
26297@cindex memory map format
26298
26299To be able to write into flash memory, @value{GDBN} needs to obtain a
26300memory map from the target. This section describes the format of the
26301memory map.
26302
26303The memory map is obtained using the @samp{qXfer:memory-map:read}
26304(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26305lists memory regions.
26306
26307@value{GDBN} must be linked with the Expat library to support XML
26308memory maps. @xref{Expat}.
26309
26310The top-level structure of the document is shown below:
68437a39
DJ
26311
26312@smallexample
26313<?xml version="1.0"?>
26314<!DOCTYPE memory-map
26315 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26316 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26317<memory-map>
26318 region...
26319</memory-map>
26320@end smallexample
26321
26322Each region can be either:
26323
26324@itemize
26325
26326@item
26327A region of RAM starting at @var{addr} and extending for @var{length}
26328bytes from there:
26329
26330@smallexample
26331<memory type="ram" start="@var{addr}" length="@var{length}"/>
26332@end smallexample
26333
26334
26335@item
26336A region of read-only memory:
26337
26338@smallexample
26339<memory type="rom" start="@var{addr}" length="@var{length}"/>
26340@end smallexample
26341
26342
26343@item
26344A region of flash memory, with erasure blocks @var{blocksize}
26345bytes in length:
26346
26347@smallexample
26348<memory type="flash" start="@var{addr}" length="@var{length}">
26349 <property name="blocksize">@var{blocksize}</property>
26350</memory>
26351@end smallexample
26352
26353@end itemize
26354
26355Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26356by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26357packets to write to addresses in such ranges.
26358
26359The formal DTD for memory map format is given below:
26360
26361@smallexample
26362<!-- ................................................... -->
26363<!-- Memory Map XML DTD ................................ -->
26364<!-- File: memory-map.dtd .............................. -->
26365<!-- .................................... .............. -->
26366<!-- memory-map.dtd -->
26367<!-- memory-map: Root element with versioning -->
26368<!ELEMENT memory-map (memory | property)>
26369<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26370<!ELEMENT memory (property)>
26371<!-- memory: Specifies a memory region,
26372 and its type, or device. -->
26373<!ATTLIST memory type CDATA #REQUIRED
26374 start CDATA #REQUIRED
26375 length CDATA #REQUIRED
26376 device CDATA #IMPLIED>
26377<!-- property: Generic attribute tag -->
26378<!ELEMENT property (#PCDATA | property)*>
26379<!ATTLIST property name CDATA #REQUIRED>
26380@end smallexample
26381
f418dd93
DJ
26382@include agentexpr.texi
26383
23181151
DJ
26384@node Target Descriptions
26385@appendix Target Descriptions
26386@cindex target descriptions
26387
26388@strong{Warning:} target descriptions are still under active development,
26389and the contents and format may change between @value{GDBN} releases.
26390The format is expected to stabilize in the future.
26391
26392One of the challenges of using @value{GDBN} to debug embedded systems
26393is that there are so many minor variants of each processor
26394architecture in use. It is common practice for vendors to start with
26395a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26396and then make changes to adapt it to a particular market niche. Some
26397architectures have hundreds of variants, available from dozens of
26398vendors. This leads to a number of problems:
26399
26400@itemize @bullet
26401@item
26402With so many different customized processors, it is difficult for
26403the @value{GDBN} maintainers to keep up with the changes.
26404@item
26405Since individual variants may have short lifetimes or limited
26406audiences, it may not be worthwhile to carry information about every
26407variant in the @value{GDBN} source tree.
26408@item
26409When @value{GDBN} does support the architecture of the embedded system
26410at hand, the task of finding the correct architecture name to give the
26411@command{set architecture} command can be error-prone.
26412@end itemize
26413
26414To address these problems, the @value{GDBN} remote protocol allows a
26415target system to not only identify itself to @value{GDBN}, but to
26416actually describe its own features. This lets @value{GDBN} support
26417processor variants it has never seen before --- to the extent that the
26418descriptions are accurate, and that @value{GDBN} understands them.
26419
9cceb671
DJ
26420@value{GDBN} must be linked with the Expat library to support XML
26421target descriptions. @xref{Expat}.
123dc839 26422
23181151
DJ
26423@menu
26424* Retrieving Descriptions:: How descriptions are fetched from a target.
26425* Target Description Format:: The contents of a target description.
123dc839
DJ
26426* Predefined Target Types:: Standard types available for target
26427 descriptions.
26428* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26429@end menu
26430
26431@node Retrieving Descriptions
26432@section Retrieving Descriptions
26433
26434Target descriptions can be read from the target automatically, or
26435specified by the user manually. The default behavior is to read the
26436description from the target. @value{GDBN} retrieves it via the remote
26437protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26438qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26439@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26440XML document, of the form described in @ref{Target Description
26441Format}.
26442
26443Alternatively, you can specify a file to read for the target description.
26444If a file is set, the target will not be queried. The commands to
26445specify a file are:
26446
26447@table @code
26448@cindex set tdesc filename
26449@item set tdesc filename @var{path}
26450Read the target description from @var{path}.
26451
26452@cindex unset tdesc filename
26453@item unset tdesc filename
26454Do not read the XML target description from a file. @value{GDBN}
26455will use the description supplied by the current target.
26456
26457@cindex show tdesc filename
26458@item show tdesc filename
26459Show the filename to read for a target description, if any.
26460@end table
26461
26462
26463@node Target Description Format
26464@section Target Description Format
26465@cindex target descriptions, XML format
26466
26467A target description annex is an @uref{http://www.w3.org/XML/, XML}
26468document which complies with the Document Type Definition provided in
26469the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26470means you can use generally available tools like @command{xmllint} to
26471check that your feature descriptions are well-formed and valid.
26472However, to help people unfamiliar with XML write descriptions for
26473their targets, we also describe the grammar here.
26474
123dc839
DJ
26475Target descriptions can identify the architecture of the remote target
26476and (for some architectures) provide information about custom register
26477sets. @value{GDBN} can use this information to autoconfigure for your
26478target, or to warn you if you connect to an unsupported target.
23181151
DJ
26479
26480Here is a simple target description:
26481
123dc839 26482@smallexample
1780a0ed 26483<target version="1.0">
23181151
DJ
26484 <architecture>i386:x86-64</architecture>
26485</target>
123dc839 26486@end smallexample
23181151
DJ
26487
26488@noindent
26489This minimal description only says that the target uses
26490the x86-64 architecture.
26491
123dc839
DJ
26492A target description has the following overall form, with [ ] marking
26493optional elements and @dots{} marking repeatable elements. The elements
26494are explained further below.
23181151 26495
123dc839 26496@smallexample
23181151
DJ
26497<?xml version="1.0"?>
26498<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26499<target version="1.0">
123dc839
DJ
26500 @r{[}@var{architecture}@r{]}
26501 @r{[}@var{feature}@dots{}@r{]}
23181151 26502</target>
123dc839 26503@end smallexample
23181151
DJ
26504
26505@noindent
26506The description is generally insensitive to whitespace and line
26507breaks, under the usual common-sense rules. The XML version
26508declaration and document type declaration can generally be omitted
26509(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26510useful for XML validation tools. The @samp{version} attribute for
26511@samp{<target>} may also be omitted, but we recommend
26512including it; if future versions of @value{GDBN} use an incompatible
26513revision of @file{gdb-target.dtd}, they will detect and report
26514the version mismatch.
23181151 26515
108546a0
DJ
26516@subsection Inclusion
26517@cindex target descriptions, inclusion
26518@cindex XInclude
26519@ifnotinfo
26520@cindex <xi:include>
26521@end ifnotinfo
26522
26523It can sometimes be valuable to split a target description up into
26524several different annexes, either for organizational purposes, or to
26525share files between different possible target descriptions. You can
26526divide a description into multiple files by replacing any element of
26527the target description with an inclusion directive of the form:
26528
123dc839 26529@smallexample
108546a0 26530<xi:include href="@var{document}"/>
123dc839 26531@end smallexample
108546a0
DJ
26532
26533@noindent
26534When @value{GDBN} encounters an element of this form, it will retrieve
26535the named XML @var{document}, and replace the inclusion directive with
26536the contents of that document. If the current description was read
26537using @samp{qXfer}, then so will be the included document;
26538@var{document} will be interpreted as the name of an annex. If the
26539current description was read from a file, @value{GDBN} will look for
26540@var{document} as a file in the same directory where it found the
26541original description.
26542
123dc839
DJ
26543@subsection Architecture
26544@cindex <architecture>
26545
26546An @samp{<architecture>} element has this form:
26547
26548@smallexample
26549 <architecture>@var{arch}</architecture>
26550@end smallexample
26551
26552@var{arch} is an architecture name from the same selection
26553accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26554Debugging Target}).
26555
26556@subsection Features
26557@cindex <feature>
26558
26559Each @samp{<feature>} describes some logical portion of the target
26560system. Features are currently used to describe available CPU
26561registers and the types of their contents. A @samp{<feature>} element
26562has this form:
26563
26564@smallexample
26565<feature name="@var{name}">
26566 @r{[}@var{type}@dots{}@r{]}
26567 @var{reg}@dots{}
26568</feature>
26569@end smallexample
26570
26571@noindent
26572Each feature's name should be unique within the description. The name
26573of a feature does not matter unless @value{GDBN} has some special
26574knowledge of the contents of that feature; if it does, the feature
26575should have its standard name. @xref{Standard Target Features}.
26576
26577@subsection Types
26578
26579Any register's value is a collection of bits which @value{GDBN} must
26580interpret. The default interpretation is a two's complement integer,
26581but other types can be requested by name in the register description.
26582Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26583Target Types}), and the description can define additional composite types.
26584
26585Each type element must have an @samp{id} attribute, which gives
26586a unique (within the containing @samp{<feature>}) name to the type.
26587Types must be defined before they are used.
26588
26589@cindex <vector>
26590Some targets offer vector registers, which can be treated as arrays
26591of scalar elements. These types are written as @samp{<vector>} elements,
26592specifying the array element type, @var{type}, and the number of elements,
26593@var{count}:
26594
26595@smallexample
26596<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26597@end smallexample
26598
26599@cindex <union>
26600If a register's value is usefully viewed in multiple ways, define it
26601with a union type containing the useful representations. The
26602@samp{<union>} element contains one or more @samp{<field>} elements,
26603each of which has a @var{name} and a @var{type}:
26604
26605@smallexample
26606<union id="@var{id}">
26607 <field name="@var{name}" type="@var{type}"/>
26608 @dots{}
26609</union>
26610@end smallexample
26611
26612@subsection Registers
26613@cindex <reg>
26614
26615Each register is represented as an element with this form:
26616
26617@smallexample
26618<reg name="@var{name}"
26619 bitsize="@var{size}"
26620 @r{[}regnum="@var{num}"@r{]}
26621 @r{[}save-restore="@var{save-restore}"@r{]}
26622 @r{[}type="@var{type}"@r{]}
26623 @r{[}group="@var{group}"@r{]}/>
26624@end smallexample
26625
26626@noindent
26627The components are as follows:
26628
26629@table @var
26630
26631@item name
26632The register's name; it must be unique within the target description.
26633
26634@item bitsize
26635The register's size, in bits.
26636
26637@item regnum
26638The register's number. If omitted, a register's number is one greater
26639than that of the previous register (either in the current feature or in
26640a preceeding feature); the first register in the target description
26641defaults to zero. This register number is used to read or write
26642the register; e.g.@: it is used in the remote @code{p} and @code{P}
26643packets, and registers appear in the @code{g} and @code{G} packets
26644in order of increasing register number.
26645
26646@item save-restore
26647Whether the register should be preserved across inferior function
26648calls; this must be either @code{yes} or @code{no}. The default is
26649@code{yes}, which is appropriate for most registers except for
26650some system control registers; this is not related to the target's
26651ABI.
26652
26653@item type
26654The type of the register. @var{type} may be a predefined type, a type
26655defined in the current feature, or one of the special types @code{int}
26656and @code{float}. @code{int} is an integer type of the correct size
26657for @var{bitsize}, and @code{float} is a floating point type (in the
26658architecture's normal floating point format) of the correct size for
26659@var{bitsize}. The default is @code{int}.
26660
26661@item group
26662The register group to which this register belongs. @var{group} must
26663be either @code{general}, @code{float}, or @code{vector}. If no
26664@var{group} is specified, @value{GDBN} will not display the register
26665in @code{info registers}.
26666
26667@end table
26668
26669@node Predefined Target Types
26670@section Predefined Target Types
26671@cindex target descriptions, predefined types
26672
26673Type definitions in the self-description can build up composite types
26674from basic building blocks, but can not define fundamental types. Instead,
26675standard identifiers are provided by @value{GDBN} for the fundamental
26676types. The currently supported types are:
26677
26678@table @code
26679
26680@item int8
26681@itemx int16
26682@itemx int32
26683@itemx int64
7cc46491 26684@itemx int128
123dc839
DJ
26685Signed integer types holding the specified number of bits.
26686
26687@item uint8
26688@itemx uint16
26689@itemx uint32
26690@itemx uint64
7cc46491 26691@itemx uint128
123dc839
DJ
26692Unsigned integer types holding the specified number of bits.
26693
26694@item code_ptr
26695@itemx data_ptr
26696Pointers to unspecified code and data. The program counter and
26697any dedicated return address register may be marked as code
26698pointers; printing a code pointer converts it into a symbolic
26699address. The stack pointer and any dedicated address registers
26700may be marked as data pointers.
26701
6e3bbd1a
PB
26702@item ieee_single
26703Single precision IEEE floating point.
26704
26705@item ieee_double
26706Double precision IEEE floating point.
26707
123dc839
DJ
26708@item arm_fpa_ext
26709The 12-byte extended precision format used by ARM FPA registers.
26710
26711@end table
26712
26713@node Standard Target Features
26714@section Standard Target Features
26715@cindex target descriptions, standard features
26716
26717A target description must contain either no registers or all the
26718target's registers. If the description contains no registers, then
26719@value{GDBN} will assume a default register layout, selected based on
26720the architecture. If the description contains any registers, the
26721default layout will not be used; the standard registers must be
26722described in the target description, in such a way that @value{GDBN}
26723can recognize them.
26724
26725This is accomplished by giving specific names to feature elements
26726which contain standard registers. @value{GDBN} will look for features
26727with those names and verify that they contain the expected registers;
26728if any known feature is missing required registers, or if any required
26729feature is missing, @value{GDBN} will reject the target
26730description. You can add additional registers to any of the
26731standard features --- @value{GDBN} will display them just as if
26732they were added to an unrecognized feature.
26733
26734This section lists the known features and their expected contents.
26735Sample XML documents for these features are included in the
26736@value{GDBN} source tree, in the directory @file{gdb/features}.
26737
26738Names recognized by @value{GDBN} should include the name of the
26739company or organization which selected the name, and the overall
26740architecture to which the feature applies; so e.g.@: the feature
26741containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26742
ff6f572f
DJ
26743The names of registers are not case sensitive for the purpose
26744of recognizing standard features, but @value{GDBN} will only display
26745registers using the capitalization used in the description.
26746
e9c17194
VP
26747@menu
26748* ARM Features::
26749* M68K Features::
26750@end menu
26751
26752
26753@node ARM Features
123dc839
DJ
26754@subsection ARM Features
26755@cindex target descriptions, ARM features
26756
26757The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26758It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26759@samp{lr}, @samp{pc}, and @samp{cpsr}.
26760
26761The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26762should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26763
ff6f572f
DJ
26764The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26765it should contain at least registers @samp{wR0} through @samp{wR15} and
26766@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26767@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26768
f8b73d13
DJ
26769@subsection MIPS Features
26770@cindex target descriptions, MIPS features
26771
26772The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26773It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26774@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26775on the target.
26776
26777The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26778contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26779registers. They may be 32-bit or 64-bit depending on the target.
26780
26781The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26782it may be optional in a future version of @value{GDBN}. It should
26783contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26784@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26785
822b6570
DJ
26786The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26787contain a single register, @samp{restart}, which is used by the
26788Linux kernel to control restartable syscalls.
26789
e9c17194
VP
26790@node M68K Features
26791@subsection M68K Features
26792@cindex target descriptions, M68K features
26793
26794@table @code
26795@item @samp{org.gnu.gdb.m68k.core}
26796@itemx @samp{org.gnu.gdb.coldfire.core}
26797@itemx @samp{org.gnu.gdb.fido.core}
26798One of those features must be always present.
26799The feature that is present determines which flavor of m86k is
26800used. The feature that is present should contain registers
26801@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26802@samp{sp}, @samp{ps} and @samp{pc}.
26803
26804@item @samp{org.gnu.gdb.coldfire.fp}
26805This feature is optional. If present, it should contain registers
26806@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26807@samp{fpiaddr}.
26808@end table
26809
7cc46491
DJ
26810@subsection PowerPC Features
26811@cindex target descriptions, PowerPC features
26812
26813The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26814targets. It should contain registers @samp{r0} through @samp{r31},
26815@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26816@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26817
26818The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26819contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26820
26821The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26822contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26823and @samp{vrsave}.
26824
26825The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26826contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26827@samp{spefscr}. SPE targets should provide 32-bit registers in
26828@samp{org.gnu.gdb.power.core} and provide the upper halves in
26829@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26830these to present registers @samp{ev0} through @samp{ev31} to the
26831user.
26832
aab4e0ec 26833@include gpl.texi
eb12ee30 26834
2154891a 26835@raisesections
6826cf00 26836@include fdl.texi
2154891a 26837@lowersections
6826cf00 26838
6d2ebf8b 26839@node Index
c906108c
SS
26840@unnumbered Index
26841
26842@printindex cp
26843
26844@tex
26845% I think something like @colophon should be in texinfo. In the
26846% meantime:
26847\long\def\colophon{\hbox to0pt{}\vfill
26848\centerline{The body of this manual is set in}
26849\centerline{\fontname\tenrm,}
26850\centerline{with headings in {\bf\fontname\tenbf}}
26851\centerline{and examples in {\tt\fontname\tentt}.}
26852\centerline{{\it\fontname\tenit\/},}
26853\centerline{{\bf\fontname\tenbf}, and}
26854\centerline{{\sl\fontname\tensl\/}}
26855\centerline{are used for emphasis.}\vfill}
26856\page\colophon
26857% Blame: doc@cygnus.com, 1991.
26858@end tex
26859
c906108c 26860@bye